
GIS by ESRI ª

Exploring ArcObjectsTM

Vol. 1—Applications and Cartography

Edited by Michael Zeiler

Attribution.p65 9/27/01, 2:02 PM1



Copyright © 2001 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and the
copyright laws of the given countries of origin and applicable international
laws, treaties, and/or conventions. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, or by any information
storage or retrieval system, except as expressly permitted in writing by
ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

The information contained in this document is subject to change without
notice.

�����������	
������

Julio Andrade, Eleanor Blades, Patr ick Brennan, Tom Brown,
Euan Cameron, Scott Campbell, Jillian Clark, Jim Clarke, Chris Davies,
Cory Eicher, Ryan Gatti, Shelly Gill, Erik Hoel, Melita Kennedy,
Allan Laframboise, Russell Louks, Keith Ludwig, Gary MacDougall,
Glenn Meister, Sud Menon, Jason Pardy, Bruce Payne, Ghislain Prince,
Sentha Shanmugam, Brad Taylor, Steve Van Esch, Aleta Vienneau,
Michael Waltuch, Steve Wheatley, Larry Young, Michael Zeiler

���������	
��
�����	�������������������

Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall
the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in FAR
§52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19
(JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

PUBLISHED BY

ESRI
380 New York Street

Redlands, California 92373-8100

ESRI, ArcView, ArcIMS, SDE, and the ESRI globe logo are trademarks of
ESRI, registered in the United States and cer tain other countries;
registration is pending in the European Community. ArcObjects, ArcGIS,
ArcMap, ArcCatalog, ArcScene , ArcInfo, ArcEdit , ArcEditor,
ArcToolbox, 3D Analyst, ArcPress, ArcSDE, GIS by ESRI, and the
ArcGIS logo are trademarks and Geography Network, www.esri.com,
and @esri.com are service marks of ESRI.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

ESRI
   Exploring ArcObjects
    Volume 1—Applications and cartography
    ISBN: 1-58948-001-5 (Volume 1)
    Volume 2—Geographic Data Management
    ISBN: 1-58948-002-3 (Volume 2)
    ISBN: 1-58948-000-7 (Set)

Attribution.p65 9/27/01, 2:02 PM2



Contents
VOLUME 1—APPLICATIONS AND CARTOGRAPHY

CHAPTER 1: INTRODUCING ARCOBJECTS ............................................................... 1

ArcObjects Developer Help system ............................................................................................... 5
Reading object model diagrams .................................................................................................... 10
Getting started with VBA and ArcObjects ................................................................................ 14
Top ArcObjects .................................................................................................................................. 24
ArcObjects problem solving guide ............................................................................................... 56

CHAPTER 2: DEVELOPING WITH ARCOBJECTS .................................................... 75

The Microsoft Component Object Model ............................................................................... 76
Developing with ArcObjects and COM ..................................................................................... 89
The Visual Basic environment ...................................................................................................... 100
Visual Basic for Applications ........................................................................................................ 114
The Visual Basic development environment ............................................................................ 120
Visual Basic developer add-ins .................................................................................................... 128
Visual C .............................................................................................................................................. 140
Active Template Library ................................................................................................................. 164
Packing and deploying customizations ..................................................................................... 176
Bibliography ...................................................................................................................................... 179

CHAPTER 3: CUSTOMIZING THE USER INTERFACE .................................... 181

Application framework objects ................................................................................................... 182
Customizing through documents and templates ................................................................. 184
Extending ArcGIS applications ................................................................................................... 191
Framework dialog box objects .................................................................................................... 240

CHAPTER 4: COMPOSING MAPS ........................................................................... 249

ArcMap core objects ..................................................................................................................... 250
ArcMap page layout objects ........................................................................................................ 284
ArcMap map element objects ..................................................................................................... 298
ArcMap data window objects ..................................................................................................... 314
ArcMap map layer objects ........................................................................................................... 328
ArcMap map surround objects .................................................................................................. 371
ArcMap spatial bookmark objects ............................................................................................. 384
ArcMap style gallery objects ........................................................................................................ 387
ArcMap map grid objects ............................................................................................................. 398
ArcMap number format objects ................................................................................................. 416
ArcMap labeling objects ................................................................................................................ 432
Customizing ArcMap through Automation ............................................................................ 444

TOC.p65 9/27/01, 2:08 PM3



iv • Exploring ArcObjects

CHAPTER 5: DISPLAYING GRAPHICS ................................................................... 449

Feature renderer objects .............................................................................................................. 450
Creating a custom renderer ........................................................................................................ 477
Color objects ................................................................................................................................... 483
Symbol objects ................................................................................................................................. 502
Marker symbol objects .................................................................................................................. 509
Line symbol objects ........................................................................................................................ 518
Fill symbol objects ........................................................................................................................... 533
Text symbol objects ....................................................................................................................... 543
3D chart symbol objects .............................................................................................................. 558
Frame decoration objects ............................................................................................................. 565
Display objects ................................................................................................................................. 569
Display application patterns ........................................................................................................ 574
Classify objects ................................................................................................................................ 579
Rubber band objects ..................................................................................................................... 589
Selection tracker objects .............................................................................................................. 591
Display feedback objects .............................................................................................................. 599

CHAPTER 6: DIRECTING MAP OUTPUT ........................................................... 627

Printer objects ................................................................................................................................. 628
Exporter objects ............................................................................................................................. 642

CHAPTER 7: WORKING WITH THE CATALOG .............................................. 657

ArcCatalog concepts ..................................................................................................................... 658
GxView, GxApplication, and related objects .......................................................................... 664
GxObject and related objects .................................................................................................... 680
FindDialog and related objects ................................................................................................... 708
Metadata objects ............................................................................................................................ 715

INDEX ..................................................................................................................................... vii

VOLUME 2—GEOGRAPHIC DATA MANAGEMENT

CHAPTER 8: ACCESSING THE GEODATABASE ................................................ 729

Core geodatabase model .............................................................................................................. 730
Workspace and name objects ..................................................................................................... 732
Dataset objects ................................................................................................................................ 764
Table, object class, and feature class objects ........................................................................... 774
Row, object, and feature objects ................................................................................................ 798
Query, cursor, and selection objects .......................................................................................... 809
Relationship objects ....................................................................................................................... 827
Class extension objects ................................................................................................................. 832
Annotation and dimension objects ........................................................................................... 845
Domain and validation rule objects ........................................................................................... 858
Geometric network objects ......................................................................................................... 868
Versioning objects ........................................................................................................................... 886
Data converter objects ................................................................................................................. 898
ArcInfo coverage objects .............................................................................................................. 907
Metadata objects ............................................................................................................................ 921
On-the-fly table join objects ....................................................................................................... 942
Dynamic segmentation objects ................................................................................................... 957
XY Event objects ............................................................................................................................ 975

TOC.p65 9/27/01, 2:08 PM4



Contents • v

CHAPTER 9: SHAPING FEATURES WITH GEOMETRY .................................. 979

Geometry object model ................................................................................................................ 980
3D geometry objects .................................................................................................................. 1058

CHAPTER 10: MANAGING THE SPATIAL REFERENCE ............................... 1069

CHAPTER 11: EDITING FEATURES ...................................................................... 1127

CHAPTER 12: SOLVING LINEAR NETWORKS ............................................... 1163

CHAPTER 13: INTEGRATING RASTER DATA .................................................. 1203

APPENDIX A: OPEN DATA ACCESS IN ARCGIS ............................................. 1273

APPENDIX B: GEODATABASE MODELING WITH UML ........................... 1283

APPENDIX C: DEVELOPING FOR ARCGIS DEPLOYMENTS .................... 1293

APPENDIX D: DEVELOPING WITH THE MAP CONTROL ...................... 1303

INDEX ..................................................................................................................................... vii

TOC.p65 9/27/01, 2:08 PM5



TOC.p65 9/27/01, 2:08 PM6



1

Introducing
ArcObjects

ESRI® ArcObjects™ is the development platform for the ArcGIS™ family of

applications such as ArcMap™, ArcCatalog™, and ArcScene™. The

ArcObjects software components expose the full range of functionality

available in ArcInfo™ and ArcView® to software developers.

ArcObjects is a framework that lets you create domain-specific components

from other components. The ArcObjects components collaborate to serve

every data management and map presentation function common to most

GIS applications. ArcObjects provides an infrastructure for

application customization that lets you concentrate on

serving the specific needs of your clients.

This chapter discusses: using this book and the

other developer resources • reading the object

model diagrams • getting started with

ArcObjects and VBA • applying an ArcObjects

problem-solving guide • examining the most

commonly used components in ArcObjects with

sample VBA code that solves a set of common tasks

Michael Waltuch, Euan Cameron, Allan Laframboise, Michael Zeiler

1



2 • Exploring ArcObjects • Volume 1

ARCOBJECTS AND THE ARCGIS DESKTOP

ArcObjects is the development platform for ArcGIS Desktop.

ArcGIS Desktop is a suite of GIS software systems: ArcInfo, ArcEditor™,
and ArcView. These systems serve GIS professionals with a spectrum of
geographic data management, spatial editing, and cartographic visualiza-
tion functionality.

The ArcGIS Desktop systems each contain a configuration of applications,
such as ArcCatalog, ArcMap, ArcToolbox™, and ArcScene, and can host a
variety of extension products such as ArcGIS Spatial Analyst, ArcGIS
Geostatistical Analyst, ArcGIS 3D Analyst™, and others.

This book documents the core components of ArcObjects that comprise
these two core applications: ArcMap and ArcCatalog.

THE ARCOBJECTS FRAMEWORK

ArcObjects is built using Microsoft’s Component Object Model (COM)
technology. Therefore, it is possible to extend ArcObjects by writing COM
components using any COM-compliant development language. You can
extend every part of the ArcObjects architecture in exactly the same way
as ESRI developers do.

CUSTOMIZING ARCGIS DESKTOP

The most common way that developers will customize the ArcGIS Desk-
top applications is through Visual Basic® for Applications (VBA), which is
embedded within ArcCatalog and ArcMap.

Through VBA, you can leverage the application framework that already
exists in ArcMap and ArcCatalog for general data management and map
presentation tasks and extend ArcGIS with your own custom commands,
tools, menus, and modules.

Using VBA inside ArcGIS Desktop, you can achieve the majority of your
customization needs with relatively little development effort.

More advanced developers can further extend ArcGIS Desktop with cus-
tom map layers, renderers, property pages, and data sources.

For specialized applications, developers with sufficient skill can bypass
the application framework of ArcMap and ArcCatalog and instead build
their own targeted applications. The Map control, discussed in
Appendix D, provides a good point of entry, allowing access to the re-
mainder of ArcObjects.

For more information on the products and
applications that form the ArcGIS system, see

the ESRI book What is ArcGIS?

ArcMap is used for mapping and editing tasks
as well as map-based analysis.

ArcCatalog is used for managing your spatial
data holdings, defining your geographic data

schemas, and recording and viewing metadata.



Chapter 1 • Introducing ArcObjects • 3

USING THIS BOOK

Exploring ArcObjects is for anyone who wants to customize or extend the
ArcMap and ArcCatalog applications.

Everyone should read the first two chapters for an overview of develop-
ing with ArcObjects. You can use the remainder of the two volumes as a
reference to the core ArcObjects components in ArcMap and ArcCatalog.

To serve the greatest base of developers, most of the code samples in this
book are written in VBA. As necessary, some code samples are written in
Microsoft® Visual Basic (VB) or Visual C++®. All code is included on the
ArcGIS CD at arcexe81\ArcObjects Developer kit\Samples\Exploring
ArcObjects.

VOLUME 1—APPLICATIONS AND CARTOGRAPHY

The first volume documents the ArcObjects components directly used by
the ArcMap and ArcCatalog applications, as well as the components used
for cartographic presentation.

Chapter 1, ‘Introducing ArcObjects’, gives you an overview of using
ArcObjects in the VBA environment, discusses how to read the object
model diagrams, contains code examples for common tasks, and presents
a problem-solving guide that can help you start with ArcObjects.

Chapter 2, ‘Developing with ArcObjects’, provides in-depth coverage of
everything you need to know about applying COM, VBA, VB, Visual C++,
and ATL to ArcObjects development.

Chapter 3, ‘Customizing the user interface’, discusses the general compo-
nents and techniques for modifying the user interface of all
ArcGIS Desktop applications.

Chapter 4, ‘Composing maps’, explains how views work in ArcMap and
how to manipulate map layers, graphics, and elements of a map.

Chapter 5, ‘Displaying graphics’, documents the drawing of layers with
feature renderers; working with colors, symbols, and annotation; and
using the visual feedback components.

Chapter 6, ‘Directing map output’, describes how to send your maps to
printing devices and graphics formats.

Chapter 7, ‘Working with the Catalog’, gives details on how to customize
the ArcCatalog application to work with your geographic data.

VOLUME 2—GEOGRAPHIC DATA MANAGEMENT

The second volume documents the ArcObjects components that manage
geographic data and auxiliary component subsystems, such as spatial
reference and geometry.

Chapter 8, ‘Accessing the geodatabase’, provides the foundation for the
core geographic data management components in ArcObjects.

Chapter 9, ‘Shaping features with geometry’, documents the rich geomet-
ric subsystem in ArcObjects that supports feature definition and graphic
element interaction in ArcMap.



4 • Exploring ArcObjects • Volume 1

Chapter 10, ‘Managing the spatial reference’, discusses how to work with
geographic data from a variety of coordinate systems.

Chapter 11, ‘Editing features’, explains how to perform customization of
editing tasks in ArcMap.

Chapter 12, ‘Solving linear networks’, documents how to solve network
tracing and allocation problems.

Chapter 13, ‘Integrating raster data’, discusses the use of raster data ob-
jects to provide a background display and perform analysis on image
data.

Appendix A, ‘Open data access in ArcGIS’, discusses the use of universal
data-access technology for accessing geographic data outside of ESRI®

applications.

Appendix B, ‘Geodatabase modeling with UML’, gives the conceptual
background for using the CASE functionality in ArcCatalog for data mod-
eling.

Appendix C, ‘Developing for ArcGIS deployments’, discusses which func-
tions in ArcObjects are available in the ArcInfo, ArcEditor, and ArcView
systems.

Appendix D, ‘Developing with the Map control’, discusses how you can
simplify external application development and access all of ArcObjects.

CORRECTIONS AND UPDATES

It is inevitable that a book of this scope and size will contain some errors
of omission and fact. You will find corrections and late-breaking updates
for this book at www.esri.com/arcobjectsonline.

You can report errors that you find or suggestions for future editions of
this book to ArcObjects@esri.com. This e-mail address is not to be used
for technical support queries. You can find resources for technical sup-
port on ESRI’s Web site, www.esri.com.

USING THIS BOOK



Chapter 1 • Introducing ArcObjects • 5

The ArcObjects Developer Help system is an essen-
tial resource for both beginning and experienced
ArcObjects developers. It lets you find detailed
reference documentation about every coclass, class,
interface, and enumeration within ArcObjects as
well as sample code, technical documents, and
object model diagrams.

You can start the ArcObjects Developer Help system
by clicking the Windows Start button, clicking the
Programs menu, pointing to ArcGIS, and clicking
ArcObjects Developer Help.

The main table of contents outlines everything that
you can find in the ArcObjects Developer Help
system. The main table of contents also contains

links to ArcObjects Online and ArcSDE™ Online.

Getting started with ArcObjects

The Getting Started page contains links to several documents that give
you a conceptual foundation for developing with ArcObjects.

The ArcObjects and Component Object Model (COM) topic covers basic
COM and ArcObjects terminology. It can be used as
a quick reference for beginning COM programmers
because it defines many terms and concepts related
to COM programming.

The Coding Techniques for ArcObjects topic de-
scribes how to use ArcObjects in VBA; it is a quick
reference for beginner to intermediate-level
ArcObjects programmers because it explains how to
navigate the ArcObjects library and describes the
general syntax, structures, and keywords required
for COM programming in VBA.

The Working with Visual Basic for Applications topic describes how and
where to write custom VBA macros inside ArcMap and ArcCatalog. You
can learn about application-level variables and how to integrate VBA
macros to control ArcMap and ArcCatalog. You can also learn where to
write and save your code in the VBA environment.

The Working with Visual Basic topic is a general discussion about topics
related to working with ArcObjects outside of the VBA environment. To
get an overview of how to create an ActiveX DLL in VB, reference inter-
nal ArcObjects and start ArcMap from an external client.

The Other Resources topic links you to a page that lists recommended
COM- and VBA-related books.

ARCOBJECTS DEVELOPER HELP SYSTEM

Some of the documents reached through the
Getting Started page cover technical topics

discussed in Chapter 2, ‘Developing with
ArcObjects’.

The ArcObjects Developer Help system main
table of contents



6 • Exploring ArcObjects • Volume 1

Object model overviews

The Object Model Overviews Start Page contains links to textual descrip-
tions for each object model diagram.

This quick reference provides an overview of each
class diagram including a description of the main
classes and what they can be used for. This is a
good starting point if you want to know which class
diagram to start with given a programming task.

Reading object model diagrams

The Diagrams Start Page in the Object Model Diagrams topic contains a
list of links to each detailed object model diagram in PDF format.

These object model diagrams visually present the
inheritance structure of ArcObjects so that you can
identify the key objects, see which objects have
associations, determine which objects create other
objects, understand how interface inheritance ex-
tends type definitions, and find the full list of inter-
faces implemented by a coclass.

Before studying these object
model diagrams, you should
read the object model diagram
overview descriptions so that
you understand the context of
that package within the
ArcObjects framework.

ARCOBJECTS DEVELOPER HELP SYSTEM



Chapter 1 • Introducing ArcObjects • 7

Finding utility programs

The Utilities Start Page contains several programs useful to developers.

The Components Category Manager lets you associate
software components that you have created and com-
piled into DLLs into the ArcObjects component catego-
ries for objects such as commands, snap agents, and
extensions. This lets you integrate your custom compo-
nents within the system.

The ESRI Object Browser is a custom-enhanced object
browser that lets you search and locate ArcObjects
coclasses, classes, interfaces, and enumerations. For
more information, see Chapter 2,
‘Developing with ArcObjects’.

These tools are useful for intermediate to advanced
ArcObjects developers. The Visual Basic add-ins are
discussed further in this section.

Accessing technical documents

The Technical Documents Start Page provides links to
white papers and other technical documents.

You can read these documents to gain background
information and knowledge on specific technical con-
cepts. This resource is recommended for all program-
mers.

Browsing the ArcObjects Component Help

The ArcObjects Component Help system is a comprehensive online refer-
ence to all of ArcObjects. This is a vital resource for
all ArcObjects programmers.

This system helps you find any given interface,
coclass, or constant alphabetically. You can also
easily find all the objects that implement a given
interface.

ARCOBJECTS DEVELOPER HELP SYSTEM



8 • Exploring ArcObjects • Volume 1

Using developer samples

The Samples Page documents the structure of the sample code.

This page provides links to examples of how to use
an assortment of ArcObjects classes and interfaces
to accomplish a given task.

Tip samples provide “cut and paste” style code
snippets, while tools provide more complete ex-
amples that generally require compilation and regis-
tration. These samples invite you to explore the
interplay of interfaces and classes to solve real-
world problems. These samples are an essential
resource for all ArcObjects developers.

ARCOBJECTS DEVELOPER HELP SYSTEM

Finding objects alphabetically

The Index tab lets you search for objects by keywords and find all
ArcObjects classes and interfaces through a tree view.

Using this tree view, you can display de-
tailed information on classes, interfaces,
methods, properties, and events.



Chapter 1 • Introducing ArcObjects • 9

ARCOBJECTS DEVELOPER HELP SYSTEM

Searching by keywords

The Search tab lets you type in a keyword and find all the documents in
the ArcObjects Developer Help system containing that keyword.

You can sort the list of documents by title,
location, and rank. Selecting a document
displays it in the contents view, with the
keywords highlighted.

Using the Search tab is an effective way to
quickly browse the object documentation
and gain familiarity with ArcObjects.

Saving favorite documents

The Favorites tab lets you store and access links to documents of interest
to you.

This tab has buttons that let you set and
save shortcuts to useful help topics.



10 • Exploring ArcObjects • Volume 1

Reading the object model diagrams

ArcMap
coclass

ArcMap
abstract class

ArcMap
class

ArcCatalog
coclass

ArcCatalog
abstract class

Framework
coclass

Framework
abstract class

Display
coclass

Display
abstract class

Output
coclass

Output
abstract class

ArcCatalog
class

Framework
class

Display
class

Output
class

Chapter 3
Volume 1—Applications and cartography

Editor
coclass

Editor
abstract class

Network
coclass

Network
abstract class

Editor
class

Network
class

Geometry
coclass

Geometry
abstract class

Spatial
reference
coclass

Spatial
reference

abstract class

Geodatabase
coclass

Geodatabase
abstract class

Geometry
class

Spatial
reference

class

Geodatabase
class

Raster
abstract class

Raster
coclass

Raster class

Chapter 4 Chapter 5 Chapter 6 Chapter 7

Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13
Volume 2—Geographic data management

This book and the
inserted ArcGIS

object model
diagrams use this

color code to denote
the coclasses, classes,
and abstract classes
in the ArcObjects

subsystems.

Types of Classes

An abstract class cannot be used to create new objects, it is a
specification for instances of subclasses (through type
inheritance.)

A coclass can directly create objects by declaring a new object.

A class cannot directly create objects, but objects of a class can
be created as a property of another class or instantiated by
objects from another class.

Types of Relationships

Associations represent relationships between classes. They
have defined multiplicities at both ends.

Type inheritance defines specialized classes of objects that
share properties and methods with the superclass and have
additional properties and methods. Note that interfaces in
superclasses are not duplicated in subclasses.

Instantiation specifies that one object from one class has a
method with which it creates an object from another class.

Composition is a relationship in which objects from the "whole"
class control the lifetime of objects from the "part" class.

An N-ary association specifies that more than two classes are
associated. A diamond is placed at the intersection of the
association branches.

A Multiplicity is a constraint on the number of objects that can
be associated with another object. Association and composition
relationships have multiplicities on both sides. This is the notation
for multiplicities:

  1 - One and only one (if none shown, one is implied)

  0..1 - Zero or one

  M..N - From M to N (positive integers)

  * or 0..* - From zero to any positive integer

  1..* - From one to any positive integer

Object model key

Interface key

Property Get
Property Put
Property Get/Put
Property Put by Reference

Function
Event function

AbstractClass

Type inheritance

Instantiation

Association

Composition

1..*
Multiplicity

Class

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

CoClass
Inbound interface

Outbound interface

Interface:Inherited interface

Properties

Methods

Special Interfaces

(Optional) represents interfaces that are inherited by some subclasses
but not all. The subclasses list the optional interfaces they implement.

(Instance) represents interfaces that are only on specific instances of
the class.

(<classname>) indicates the name of the helper class required to
support this event interface in Visual Basic.



Chapter 1 • Introducing ArcObjects • 11

The diagram notation used in this book and the ArcObjects object model
diagrams are based on the Unified Modeling Language (UML) notation,
an industry-diagramming standard for object-oriented analysis and design,
with some modifications for documenting COM-specific constructs.

The object model diagrams are an important supplement to the informa-
tion you receive in object browsers. The development environment,
Visual Basic or other, lists all of the many classes and members but does
not show the structure of those classes. These diagrams complete your
understanding of the ArcObjects components.

Classes and objects

There are three types of classes shown in the UML diagrams: abstract
classes, coclasses, and classes.

abstract
class

class

Type
inheritance

Instantiation

Association

Composition

1..*

Multiplicity

coclass

A coclass represents objects that you can directly create using the object
declaration syntax in your development environment. In Visual Basic, this
is written with the Dim pFoo As New FooObject syntax.

A class cannot directly create new objects, but objects of a class can be
created as a property of another class or by functions from another class.

An abstract class cannot be used to create new objects, but it is a specifi-
cation for subclasses. An example is that a “line” could be an abstract
class for “primary line” and “secondary line” classes.

Relationships

Among abstract classes, coclasses, and classes, there are several types of
class relationships possible.

1..*

1..*Owner Land parcel

In this diagram, an owner can own one or many land parcels, and a land
parcel can be owned by one or many owners.

Associations represent relationships between classes. They have defined
multiplicities at both ends.

INTERPRETING THE OBJECT MODEL DIAGRAMS



12 • Exploring ArcObjects • Volume 1

A Multiplicity is a constraint on the number of objects that can be associ-
ated with another object. This is the notation for multiplicities:

1—One and only one. Showing this multiplicity is optional; if none is
shown, “1” is implied.

0..1—Zero or one

M..N—From M to N (positive integers)

* or 0..*—From zero to any positive integer

1..*—From one to any positive integer

Type inheritance

Type inheritance defines specialized classes that share properties and meth-
ods with the superclass and have additional properties and methods.

Line

Primary
line

Secondary
line

This diagram shows that a primary line (creatable class) and secondary
line (creatable class) are types of a line (abstract class).

Instantiation

Instantiation specifies that one object from one class has a method with
which it creates an object from another class.

TransformerPole

A pole object might have a method to create a transformer object.

Composition

Composition is a stronger form of aggregation in which objects from the
“whole” class control the lifetime of objects from the “part” class.

CrossarmPole
1..*

A pole contains one or many crossarms. In this design, a crossarm cannot
be recycled when the pole is removed. The pole object controls the
lifetime of the crossarm object.

INTERPRETING THE OBJECT MODEL DIAGRAMS



Chapter 1 • Introducing ArcObjects • 13

ESRI OBJECT BROWSER

The ESRI Object Browser lets you explore the structure of ArcObjects. It
is a generic tool that ESRI created to address certain limitations of stan-
dard object browsers, such as the Microsoft OLEView tool or the
Microsoft Visual Basic object browser.

The main utility of the ESRI Object Browser is that it lets you
search for coclasses that contain a specified interface. It does
this by scanning the type libraries you’ve selected for object
library references.

There are three views for the selected objects.

You can see the objects and their interfaces and members in
Visual Basic syntax.

You can also view the objects, interfaces, and mem-
bers in a style consistent with the notation of the
detailed ArcObjects object model diagrams.

Developers using Visual C++ and other
languages besides Visual Basic will find
the most precise type definitions in the IDL
view of the coclasses, interfaces, and
members.



14 • Exploring ArcObjects • Volume 1

GETTING STARTED WITH  VBA AND ARCOBJECTS

You can use a variety of development languages with ArcObjects, but the
easiest and quickest one to learn is included with your ArcGIS applica-
tion, VBA. This chapter has many code examples, all of which can be
easily executed from within the VBA environment.

What follows is a quick overview that illustrates the steps you will be
taking when working with the samples later in this chapter. In this short
tutorial you will learn how to add a toolbar to ArcMap, create a macro
and execute it, add a command button to a toolbar, and create a tool that
will allow you to interact with the display canvas.

The respective ArcGIS application user guides show how to carry out
many of the customization tasks you want to accomplish without writing
a single line of code. This tutorial provides a quick, guided tour of some
of those same key tasks; details and explanations are left for later so that
you can start to work as quickly as possible.

Let’s get started.

1. To start this tutorial, click the Windows Start button, point to Programs,
point to ArcGIS, and click ArcMap.

2. In the startup dialog box, click Start using ArcMap.

3. Add some sample data or your own data to the map.

Showing and hiding toolbars using the Customize dialog box

1. Click the Tools menu and click Customize.

The Customize dialog box appears.

You can also double-click any unoccupied area of any toolbar to
display the Customize dialog box.

2. If it is not visible, click the Toolbars tab.

The presence or absence of a check mark next to the toolbar name
indicates its visible state.

3. Check and uncheck the check boxes.

Creating a new toolbar

1. In the Toolbars tab of the Customize dialog box, click New.

2. In the dialog box that appears, specify Chapter One Examples as the
name of the new toolbar or use the default setting.

3. Store the toolbar in the document by changing the name of the Save in
dropdown list from Normal.mxt to Untitled or the name of the current
project.

4. Click OK.

Using other languages, such as Visual
Basic and Visual C++, is covered in

Chapter 2, ‘Developing with ArcObjects’.

VBA is available in ArcMap, ArcCatalog,
and ArcScene applications. The examples
in this quick-start tutorial all work within

ArcMap, but the process of creating
macros and commands for the other

applications is the same.

The Customize dialog box

The New Toolbar dialog box



Chapter 1 • Introducing ArcObjects • 15

The newly created toolbar appears near the top of the application
window.

Adding buttons to a toolbar

1. Make sure the toolbar you just created, Chapter One Examples, is
visible.

2. If it is not visible, display the Customize dialog box.

3. Click the Commands tab of the Customize dialog box.

4. Select the Pan/Zoom category from the Categories list at the left of the
dialog box.

5. Scroll to the bottom of the Commands list at the right of the dialog
box.

6. Select the Zoom in command and drag it to the Chapter One Examples
toolbar. Release the command when the arrow cursor with a small box
below it appears.

7. Continue adding commands from the Pan/Zoom category until you
have your own version of the built-in Tools toolbar.

Note that you may switch to other categories to select commands.

8. Resize the toolbar so that its width allows the display of two com-
mands per row.

Note that you can dock the toolbar or drag it to any of the toolbar
drop sites on the application window.

Renaming a toolbar

1. In the Toolbars tab, click the name of the toolbar whose name you
want to change.

In this case, select Chapter One Examples.

2. Click the Rename button.

3. In the dialog box that appears, specify My Own Tools as the new
name.

Note that you can only rename toolbars you’ve created.

4. Click OK.

If you decide not to rename the toolbar, click Cancel.

Removing buttons from a toolbar

1. Make sure the toolbar you just renamed, My Own Tools, is visible.

2. If it is not visible, display the Customize dialog box.

3. Drag some of the commands off the toolbar.

Dragging a toolbar

Your Chapter One Examples toolbar might look
like this.

GETTING STARTED WITH  VBA AND ARCOBJECTS

My Own Tools toolbar



16 • Exploring ArcObjects • Volume 1

Even though you’ve removed the buttons from the toolbar, they are
still available in the Customize dialog box.

Adding a menu to a toolbar

1. Make sure the My Own Tools toolbar is visible.

2. If it is not visible, display the Customize dialog box.

3. Click the Commands tab and choose the Menus category from the
Categories list on the left-hand side of the dialog box.

4. In the Commands list at the right-hand side of the dialog box, click
Selection.

5. Drag and drop it to the left of the Zoom In button on the My Own
Tools toolbar.

6. Click Close in the Customize dialog box.

7. Click Selection on the My Own Tools toolbar and note the menu that
appears.

Saving changes to a template

You can save your work to a document or template. Changes saved to a
document are specific to the document, whereas changes saved to a
template will be reflected in all documents based on the template.

1. Click the File menu and click Save As.

2. Navigate to the Templates folder of the <installation directory>\bin
folder.

3. Click the Create New Folder button.

Type a new name for the folder and double-click it. You’ll see the
folder name as a tab the next time you create a document from a
template.

4. Type the template name, click ArcMap Templates (*.mxt) from the Save
as type dropdown menu, then click Save.

WRITING MACROS IN VBA

You can use the VBA integrated development environment to create
macros to help you automate tasks you perform repeatedly or to extend
the application’s built-in functionality.

Creating a macro

With the Visual Basic Editor, you can edit macros, copy macros from one
module to another, rename the modules that store the macros, or rename
the macros.

1. Click the Tools menu, point to Macros, then click Macros.

2. In the Macros dialog, type MyZoomIn in the Macro name text box and
click Create.

GETTING STARTED WITH  VBA AND ARCOBJECTS

Selection menu on the My Own Tools toolbar

The Macros dialog box



Chapter 1 • Introducing ArcObjects • 17

The application creates a new module named Module1 and stubs in
the Sub procedure.

3. Enter the following code for MyZoomIn:

Sub MyZoomIn()

‘

‘ macro: MyZoomIn

‘

Dim pDoc As IMxDocument

Dim pEnv As IEnvelope

Set pDoc = ThisDocument

Set pEnv = pDoc.ActiveView.Extent

pEnv.Expand 0.5, 0.5, True

pDoc.ActiveView.Extent = pEnv

pDoc.ActiveView.Refresh

End Sub

The first line of the macro declares a variable that represents the
ArcMap document. At this point, we won’t go into the coding tech-
niques that are used with the ArcInfo COM-based object model. These
techniques are discussed in greater detail in Chapter 2, ‘Developing
with ArcObjects’.

The second line declares a variable that represents a rectangle with
sides parallel to a coordinate system defining the extent of the data.
You’ll use pEnv to define the visible bounds of the map.

The predefined variable, ThisDocument, is the IDocument interface to
the MxDocument object that represents the ArcMap document.

The ActiveView property provides an IActiveView interface that links
the document data to the current screen display of that data.

By reducing the size of the envelope that represents the extent of the
map, the macro zooms in on the map’s features once the screen dis-
play is refreshed.

4. Switch back to ArcMap by clicking the File menu, clicking Close, and
clicking Return to ArcMap.

5. Click the Tools menu, point to Macros, then click Macros.

6. Select the Module1.MyZoomIn macro and click Run.

The display zooms in.

Adding a macro to a toolbar

You’ll want convenient access to the macros you write. You can add a
macro to built-in toolbars or toolbars you’ve created.

1. Click the Tools menu and click Customize.

2. In the Toolbars tab, ensure that the toolbar you created is visible.

3. Click the Commands tab and select the Macros category.

GETTING STARTED WITH  VBA AND ARCOBJECTS

The Customize dialog box



18 • Exploring ArcObjects • Volume 1

4. Click the name of your project in the Save in dropdown menu.

The commands list to the right of the dialog box lists
Project.Module1.MyZoomIn.

5. Drag the macro name to the My Own Tools toolbar you created.

The macro appears with a default icon.

6. To change its properties, right-click the icon.

7. In the context menu that appears, click Change Button Image and
choose a button from the palette of icons.

8. Close the Customize dialog box.

9. Click the button to run the macro.

Invoking the Visual Basic Editor directly

As an alternative to the Create button in the Macros dialog box, you can
navigate directly to the Visual Basic Editor and create procedures on your
own. In this section, you’ll create a macro named MyZoomOut in the
Module1 module that will zoom out from the display. You can use the
same code that you used for MyZoomIn, with only a minor modification
to one line.

1. Press Alt+F11, which is the Visual Basic Editor keyboard accelerator.

2. Click Project Explorer in the Visual Basic Editor View menu.

3. In the Project Explorer, click the Project entry, then Modules, then
Module1.

4. In the Code Window, copy the MyZoomIn code from the beginning of
the Sub to the End Sub.

5. Paste the MyZoomIn Sub code below the existing code.

6. Change the name of the copied Sub to MyZoomOut.

7. Change the line:

pEnv.Expand 0.5, 0.5, True

to:

pEnv.Expand 2.0, 2.0, True

8. Follow steps 1–9 of the ‘Adding a macro to a toolbar’ section of the
tutorial to add and run your second macro.

Getting help in the Code Window

The two macros you’ve just completed perform operations similar to the
Fixed Zoom In and Fixed Zoom Out commands on the Tools toolbar.
You didn’t really add any new functionality, but you’ve perhaps learned
something about the object model and how to start to write some useful
code. You can learn more about the methods with which you’ve worked
by making use of the ArcObjects Class Help that’s available in the Object
Browser or in the Code Window.

GETTING STARTED WITH  VBA AND ARCOBJECTS



Chapter 1 • Introducing ArcObjects • 19

1. Click the Tools menu, point to Macros, then click Visual Basic Editor.

2. Locate the Module1 module. In the MyZoomIn Sub, click the method
name Expand in the line:

pEnv.Expand 0.5, 0.5, True

3. Press F1.

The ArcObjects Class Help window displays the help topic for Expand. In
addition to ArcObjects Help, consult the ArcObjects Developer Help in
the ArcGIS program group for object model diagrams, samples, tips, and
tricks.

Calling built-in commands

If you’ve read any of the ArcGIS user guides, you know that the code
you’ll be writing will add functionality to what’s already a rich environ-
ment. There may be instances in which you want to make use of several
built-in commands executed in sequence or combine built-in commands
with your own code.

Calling existing commands involves working with the ArcID module.
Using the Find method, the code locates the unique identifier (UID) of
the command in the ArcID module. If you want to look at the ArcID
module in greater detail, it’s in the Normal template of your application.

The following steps outline how to write a macro that calls existing com-
mands.

1. Click the Tools menu, point to Macros, then click Visual Basic Editor.

2. In the Module1 module, create a Sub procedure with the following code:

Sub FullExtentPlus()

  ‘

  ‘ macro: FullExtentPlus

  ‘

  Dim intAns As Integer

  Dim pItem As ICommandItem

  With ThisDocument.CommandBars

    Set pItem = .Find(ArcID.PanZoom_FullExtent)

    pItem.Execute

    intAns = MsgBox(“Zoom to previous extent?”, vbYesNo)

    If intAns = vbYes Then

      Set pItem = .Find(ArcID.PanZoom_ZoomToLastExtentBack)

      pItem.Execute

    End If

  End With

End Sub

3. Add the FullExtentPlus macro to a toolbar or menu.

4. Run the MyZoomIn macro and then run FullExtentPlus.

GETTING STARTED WITH  VBA AND ARCOBJECTS

The Name of a command in the ArcID
module can be derived using the following

formula: Category In Customize Catego-
ries List + “_” + Command Caption in
Customize Commands List. Any spaces

are removed from the name.

Later you will learn that in ArcObjects
many things are given unique identifiers.



20 • Exploring ArcObjects • Volume 1

Creating a command in VBA

Up to this point in the tutorial, you’ve only created macros. A command
is similar to a macro but allows more customization in the way that it
interacts with the user and provides ToolTips, descriptions, and so on. Once
invoked, a command usually performs some direct action without user
intervention. A command is a type of UIControls. You can read more about
all the UIControls in Chapter 3, ‘Customizing the user interface’.

1. Click the Tools menu and click Customize.

2. In the Customize dialog box, click the Commands tab and change the
Save in dropdown menu to the name of your project or to Untitled.

3. In the Categories list, select UIControls.

4. Click New UIControl.

5. In the dialog box that appears, choose UIButtonControl as the
UIControl Type, then click Create and Edit.

Adding code for the UIToolControl

The application adds an entry in the Object Box for the UIButtonControl
and stubs in an event procedure for the UIButtonControl’s Click event.
You’ll add code to this event to zoom the display to the extents of the
dataset.

1. Add the following code to the Click event:

Private Sub UIButtonControl1_Click()

  Dim pDoc As IMxDocument

  Set pDoc = ThisDocument

  pDoc.ActiveView.Extent = pDoc.ActiveView.FullExtent

  pDoc.ActiveView.Refresh

End Sub

So far these is no difference to the macros you developed earlier. You
will now add a ToolTip and message for the command.

2. Click Message in the Procedure combo box. This creates a stub func-
tion, to which you should add the following code:

Private Function UIButtonControl1_Message() As String

  UIButtonControl1_Message = _

    “Zooms the display to the full dataset extents”

End Function

3. Click ToolTip in the Procedure combo box. This creates a stub func-
tion, to which you should add the following code:

Private Function UIButtonControl1_ToolTip() As String

  UIButtonControl1_ToolTip= “Full Extent”

End Function

GETTING STARTED WITH  VBA AND ARCOBJECTS

The New UIControl dialog box

The following code assumes the
UIButtonControl was named

UIButtonControl1. If another name was
used because this name was already in
use, make the necessary changes to the

code snippets.



Chapter 1 • Introducing ArcObjects • 21

4. Click the Visual Basic Editor’s File menu, click Close, then click Return
to ArcMap.

5. Click the Tools menu, click Customize, then click the Commands tab.

6. In the Customize dialog box, click the Commands tab and change the
Save in dropdown menu to the name of your project or to Untitled.

7. In the Categories list, choose UIControls and drag the UIButtonControl
you created to a toolbar. Close the Customize dialog box.

Try the new command by zooming in on the map and clicking the but-
ton. Also, test the ToolTip and description properties. The ToolTip will
display if you pause the cursor over the button, while the description will
display in the status bar as the cursor moves over the button.

Creating a tool in VBA

Up to this point in the tutorial, you’ve only created commands, either
with macros or UIButtonControls. As you’ve seen in the built-in toolbars
and menus, users interact with other controls in addition to commands.
As part of the customization environment, you can add sophisticated
controls to toolbars and menus. In this section of the tutorial, you’ll create
a UIToolControl to interact with the ArcMap display.

1. Click the Tools menu and click Customize.

2. Click the Commands tab and change the Save in combo box to the
name of your project or Untitled.

3. Choose UIControls from the Categories list.

4. Click New UIControl.

5. In the dialog box that appears, choose UIToolControl as the UIControl
Type, then click Create and Edit.

Adding code for the UIToolControl

The application adds an entry in the Object Box for the UIToolControl
and stubs in an event procedure for the UIToolControl’s Select event. You
won’t add any code to the Select event procedure at this time; instead,
select the MouseDown event in the Procedures combo box on the right-
hand side of the Code Window. You’ll add code to this event to enable
you to drag a rectangle on the screen display; the application will zoom
to the rectangle’s extent.

1. Add the following code to the MouseDown event procedure:

Dim pDoc As IMxDocument

Dim pScreenDisp As IScreenDisplay

Dim pRubber As IRubberBand

Dim pEnv As IEnvelope

Set pDoc = ThisDocument

Set pScreenDisp = pDoc.ActiveView.ScreenDisplay

Set pRubber = New RubberEnvelope

GETTING STARTED WITH  VBA AND ARCOBJECTS

The following code assumes the
UIToolControl was named

UIToolControl1. If another name was
used because this name was already in
use, make the necessary changes to the

code snippets.



22 • Exploring ArcObjects • Volume 1

Set pEnv = pRubber.TrackNew(pScreenDisp, Nothing)

pDoc.ActiveView.Extent = pEnv

pDoc.ActiveView.Refresh

The key line of the procedure is the one that contains the TrackNew
method, which rubber bands a new shape on the specified screen.
The code uses the Envelope object that the method returns to set the
new extent for the map.

When you selected the MouseDown event procedure to add code to it,
you may have noticed that UIToolControl supports several other
events. The customization framework handles many of the details of
coding for you, so you only have to code the event procedures you
need. Later in Chapter 2, ‘Developing with ArcObjects’, you’ll find that
this is in contrast to what is required when implementing a tool as part
of an ActiveX® DLL. A tool is not appropriate for all occasions. You
can control when a tool or command is available by adding code to its
Enabled event procedure.

2. Add the following code to the UIToolControl1’s Enabled event proce-
dure:

Private Function UIToolControl1_Enabled() As Boolean

  Dim pDoc As IMxDocument

  Set pDoc = ThisDocument

  UIToolControl1_Enabled = (pDoc.FocusMap.LayerCount <> 0)

End Function

3. Add the following code to the CursorID event procedure to control the
cursor that appears when you use the tool:

Private Function UIToolControl1_CursorID() As Variant

  UIToolControl1_CursorID = 3 ‘ Crosshair

End Function

4. Add a ToolTip and message for the tool control as you did for
UIButtonControls in the steps above.

5. Click the Visual Basic Editor File menu, click Close, then click Return
to ArcMap.

6. Click the Tools menu, click Customize, then click the Commands tab.

7. In the Customize dialog box, click the Commands tab and change the
Save in dropdown menu to the name of your project, or to Untitled.

8. In the Categories list, choose UIControls and drag the UIToolControl
that you created to a toolbar. Close the Customize dialog box.

Try out the tool by selecting it and dragging a rectangle on the display.
You can also see the Enabled event procedure code in action if you
remove all layers from the map. Once you add data back to the map, the
tool will be enabled again.

GETTING STARTED WITH  VBA AND ARCOBJECTS



Chapter 1 • Introducing ArcObjects • 23

GETTING STARTED WITH  VBA AND ARCOBJECTS

Changing button properties

You can change the image on any toolbar button or menu command,
except for a button that displays a list or a menu when you click it. You
can display text, an icon, or both on a toolbar button. You can also dis-
play either an icon and text or text only on a menu command. You can
change the image that represents the tool and other properties by right-
clicking the button.

1. Right-click any toolbar and click Customize in the context menu that
appears. Context menus are available throughout ArcMap, ArcCatalog,
and ArcScene. Click the right mouse button to determine whether a
context menu is available.

2. Right-click the button whose properties you want to change.

3. In the context menu that appears, click Change Button Image and
choose an image. The image you chose appears on the face of the
button.

4. Close the Customize dialog box.

Congratulations! You now have the basic knowledge to tackle the ex-
ample code samples later in this chapter. Along with each of these code
samples is a hint about where best to develop the code, either in a
macro, command, or tool.



24 • Exploring ArcObjects • Volume 1

Output
Exporter Printer

TextSymbol FillSymbol

Display

Marker-
Symbol LineSymbol

Rubber-
band

Display-
Feedback

Feature-
Renderer

Top

Map-
Surround

Feature-
Layer

Mx-
Document

Application

MapPage-
Layout

Style-
Gallery

Style-
GalleryItem

Element

Curve Envelope

PolygonPolyline

Point

Polycurve

Spatial
reference

Spatial-
Reference

 ArcObjects is a large library of COM
components containing many hundreds of
classes. Fortunately, you can implement

many common development tasks using a
small subset of these classes. If you

understand the classes shown on this
diagram, you will have a solid foundation

for developing with the rest of ArcObjects.
The code examples on the pages that

follow make use of these top ArcObjects.

Layers use renderers to control how data are
drawn to the screen.  Renderers often have

property pages associated with them in order to
allow the end user to change the symbolization

Symbols are used when drawing geometries on the screen.
The geometry defines the location, the symbol defines the

color, line style, text font, and other properties

A spatial reference represents
either geographic or projected

coordinate systems. Many
objects within ArcObjects can

have a spatial reference

A rubber band object
gives you the ability to
visually track a geometry
on the display

All geometry types inherit from
the Geometry abstract class.
Many objects can have a
geometry

Layers display data from a variety
of data sources within a map

The most common type of
layer is the FeatureLayer,
which supports the display
of vector data

Elements are graphics on a page
or on the map. They are stored

within the map document

The page layout contains one
or more data frames and is

used to generate output from
a map document

To quickly gain access to predefined complex symbols
and colors, you can extract gallery items and use them

directly, instead of building the symbols manually

The style gallery is a collection of styles used by the
application to control symbology, including color, line

thickness, and other display characteristics

The Editor is the object that
handles edit operations
within ArcMap

The application object is the top level object of an ArcGIS
application. The method of access to this object depends

on the customization methodology used. From this object,
it is possible to work down to other objects in the

application such as MxDocument, Map, and PageLayout

The Document object is often the common starting
point for many ArcMap customizations. It contains
the VBA project. In VBA, this is obtained using the
ThisDocument variable

The Map object provides access to the
layers within the map, the map spatial
reference, scale, and other properties

Color objects support the specification of
color using a variety or color models. Colors
are most commonly used within symbols

An envelope is the rectangular
bounding box defined by
maximum and minimum
coordinates

A polygon is a collection of
rings that are ordered by their
containment relationship

A polyline is an ordered
collection of paths that can
be disjointed or connected

Display objects control the screen
drawing of maps and page layouts. They

contain code to draw geometries, handle
the display transformation between

device units and map and page units, and
related functions

Map surrounds are objects associated
with a map that appear on a page
layout, such as a legend or scalebar

Use Printer and Exporter objects to export
maps and page layouts to printers and files

A point is a zero-dimensional
geometry. Points are defined
with x,y coordinate pairs with
optional z-values

ArcMap
editing

Geometry

Display

ArcMap

Editor

Layer

Symbol Color

Geometry

Display feedback objects
provide fine-grained support
for giving a user visual
feedback to geometry
operations, such as digitizing
lines and editing vertices

Cancel-
Tracker

The cancel tracker is used by various
objects to let the user abort an
operation such as a screen redraw



Chapter 1 • Introducing ArcObjects • 25

ArcObjects

Raster-
Dataset

PixelBlock

Raster

The pixel block is a generic
container for a pixel array

A raster dataset represents an
existing dataset stored on disk or in a
database in a particular raster format

A raster band represents a
single band of a raster dataset

A raster is a dynamic, in-
memory representation

of pixels that derives
from a raster data source

Raster
Raster-
Band

ArcCatalog
GxObject

GxView

GxDialog
GxObject-

Filter GxObject Filters are used by the GxDialog
to limit the GxObject types displayed in the
dialog box, and also to limit which GxObject
types can be selected by the user

GxObjects represent
individual data items, such as
shapefiles and feature classes

Views provides multiple
representations of your data

with the ArcCatalog application

The GxDialog object allows the
user to interactively select data

GxAppli-
cation

The GxApplication
represents the running
ArcCatalog application

Command-
Bars

Application

Framework

1..*

Document

Command-
Bar

UID

Extension

1..*

Command-
Item

The command item is an element
that exists on a command bar,
such as a button

The UID object is an object that
represents a GUID.  Its value can
be set using the GUID in registry

format or the Programmatic ID

The application is the top level
object of an ArcGIS application.
The method of access to this
object depends on the
customization methodology
used. From this object, it is
possible to work down to other
objects in the application

The document object is often the
most accessed application object.
It contains the VBA project. Many
of the other properties are
application specific

CommandBars is a collection of
the toolbars and menus
associated with the document

A command bar is a toolbar,
menubar, or context menu

The Extension object provides
the standard mechanism to
extend ArcGIS applications

1..*

Feature-
Dataset

Dataset

Geo-
Dataset QueryDef

QueryFilter 1..*

Fields

Field

Selection-
Set

Feature-
Class

Object-
Class

Cursor

Table

0..1 Class-
Extension

RowBuffer

Row

Feature

Object

Workspace

table and query filter
create a selection set

table and query filter create a cursor

selection set and query
filter create a cursor

A selection set defines a set
of rows on a table based on
some selection criteria.

A workspace is a container of
spatial and nonspatial datasets
such as feature classes, raster
datasets, and tables

A feature dataset
is a container for
feature classes that
share the same
spatial reference

A feature class is a type of object
class that stores geographic features

A feature encapsulates a geographic
entity that has behavior

A cursor iterates over rows in a table and is most
commonly produced as a result of a database
query. It can also insert rows into a table

Each table has a fields
collection. that holds all
the field objects

Class extensions provide a mechanism
for programmatically extending a
geodatabase class, such as
implementing custom validation rules

Geodatabase

Query filter objects are used to define both
spatial and nonspatial database queries



26 • Exploring ArcObjects • Volume 1

The object model diagrams reveal a
structure not evident in standard object
browsers. Shown here is an abstract
class, Element, with six interfaces. The
IElement interface is shown because a
code sample made a call to it.

Reading the illustrated code samples

The illustrated code samples in this section show you the fundamentals of programming with COM
components in ArcObjects. Start by entering the VBA environment in ArcMap or ArcCatalog and type in
the code. Step through the code in the VBA debugger. Look at these pages and study the relationships
between coclasses and interfaces. A careful reading of the samples in this section gives you all the important
concepts you need for developing with ArcObjects, as well as an introduction to the most important
ArcObjects components.

The interface

Type inheritance

Interface inheritance

An interface is  a speci f icat ion of
properties and methods. Many coclasses
can implement  the same interface.
Interfaces a l low a h igh degree of
interoperability and shared behavior
among a set of objects.

AreaField is a return property of type
IField. FeatureClassID is of type long.

The CreateFeature method creates an
object of type IFeature. FeatureCount
takes in a query filter and returns a long.

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

ShapeType: tagesriGeometryType

A GraphicElement is an abstract class that specifies
the two interfaces shown here as well as the six
interfaces on the Element abstract class.

T e x t E l e m e n t  i s  a  c o c l a s s  t h a t
implements six interfaces in addition
to the two from GraphicElement and
six from Element.

IGraphicElement
ITransform2D Graphic-

Element

IBoundsProperties
IElementEditVertices

IGroupSymbolElement
IPropertySupport

ITextElement
ITransformEvents

TextElement

 ITextElement : IUnknown

ScaleText: Boolean
Symbol: ITextSymbol
Text: String

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

Element
 IElement : IUnknown

Locked: Boolean
SelectionTracker:ISelectionTracker

Activate (in Display: IDisplay)
Deactivate
Draw (in Display: IDisplay, in

trackCancel: ITrackCancel)
HitTest (in X: Double, in Y: Double,

in Tolerance: Double) : Boolean
QueryBounds (in Display: IDisplay,

in Bounds: IEnvelope)
QueryOutline (in Display: IDisplay,

in Outline: IPolygon)

Geometry: IGeometry

IMapFrame and IMapSurroundFrame
inherit from IF rameElement . All
p r o p e r t i e s  a n d  m e t h o d s  o f
IFrameElement are accessible to the
developer who accesses IMapFrame
or IMapSurroundFrame.

IFrameElement:IUnknown

Background: IBackground
Border: IBorder
DraftMode: Boolean
Object: Variant
Thumbnail: Long

 IMapFrame : IFrameElement

Container: IGraphicsContainer
ExtentType: esriExtentTypeEnum
LocatorRectangleCount: Long
Map: IMap
MapBounds: IEnvelope
MapScale: Double

RemoveAllLocatorRectangles
RemoveLocatorRectangle (in Locator:

ILocatorRectangle)

AddLocatorRectangle (in Locator:
ILocatorRectangle)

CreateSurroundFrame (in CLSID: IUID,
in optionalStyle: IMapSurround) :
IMapSurroundFrame

LocatorRectangle (in Index: Long) :
ILocatorRectangle

IMapSurroundFrame:IFrameElement

MapSurround: IMapSurround
MapFrame: IMapFrame

QueryInterface

QueryInterface is a method in the IUnknown
interface, which all COM objects inherit
from. This method lets you query for and
navigate to methods in other interfaces
implemented by an object.

class
interface1 method1

method2

method3
method4

interface2

QueryInterface



Chapter 1 • Introducing ArcObjects • 27

LOCATE AND EXECUTE COMMAND ON TOOLBAR

Locate and Execute Command on Toolbar

This sample illustrates how to
programmatically execute existing

commands on command bars
within ArcMap.

 ICommandItem : IUnknown

Action: String
BuiltIn: Boolean
Caption: String
Category: String
Command: ICommand
FaceID: Variant
Group: Boolean
HelpContextID: Long
HelpFile: String
ID: IUID
Index: Long
Message: String
Name: String
Parent: ICommandBar
Style: esriCommandStyles
Tag: String
Tooltip: String
Type: esriCommandTypes

Delete
Execute
Refresh
Reset

Dim pCommandItem As ICommandItem

Set pCommandItem = ThisDocument.CommandBars.Find(ArcID.Query_ZoomToSelected)
If (pCommandItem Is Nothing) Then Exit Sub
pCommandItem.Execute

Set pCommandItem = ThisDocument.CommandBars.Find(ArcID.ReportObject_CreateReport)
If (pCommandItem Is Nothing) Then Exit Sub
pCommandItem.Execute

1

2

3

Add this code to the Click event of a command in ArcMap.

Framework

ArcMap

To find the command to execute, you can use the CommandBars collection. The
command bars collection is a property on the IDocument interface
(ThisDocument). Using the Find method, search using the ArcID module to
provide the command's identifier. The ArcID module has members that can be
identified using the Name property of a command. The convention for naming
commands is: <command category> "_" <caption>.

1

Assuming a valid command
item is returned from the find,
the command is executed by
calling the Execute method.

2

The process is repeated for another
command. In this way, several existing
ArcMap commands can be executed
with only one click of a button.

3

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 ICommandBars : IUnknown

LargeIcons: Boolean
ShowToolTips: Boolean

Create (in Name: String, barType:
esriCmdBarType) : ICommandBar

HideAllToolbars

Find (in identifier: Variant, noRecurse:
Boolean, noCreate: Boolean) :
ICommandItem

 IDocument : IDispatch

Accelerators: IAcceleratorTable
CommandBars: ICommandBars
ID: IUID
Parent: IApplication
Title: String
Type: esriDocumentType
VBProject: Object



28 • Exploring ArcObjects • Volume 1

DRAW DIGITIZED LINE ON SCREEN

This sample uses a rubber banding line to
obtain a digitized line geometry. With the

geometry created, a symbol is created. The
symbol is set as the current display symbol
and the line is drawn. The color thickness
and the style of the line symbol are set.

 IPolyline : IPolycurve

Reshape (reshapeSource: IPath) :
Boolean

SimplifyNetwork

RubberLine

RubberBandIRubberBand

 IRubberBand : IUnknown

TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol,
in Geometry: IGeometry) : Boolean

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol)
: IGeometry

3
A RubberLine object is used to capture a
digitized line geometry from the user. The
TrackNew method takes the screen to draw
to and the symbol to draw with and returns
the created geometry.

5

Finally, the geometry is drawn on the
screen. Notice the call to start
drawing followed by the setting of
the symbol, and then the actual
drawing of the geometry.
FinishDrawing ensures the
synchronization of the drawing
events.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer Since the IScreenDisplay interface

of the active view is to be used
frequently within the function, a
local variable is used.

2

The IMxDocument interface is used
to retrieve the currently active view,
which can be a Map or a PageLayout.

1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint:
IGeometry)

DrawPoint (in Point: IGeometry)

StartDrawing (in hDC: Long, in
cacheID: Integer)

SetSymbol (in sym: ISymbol)

DrawText (in Shape: IGeometry, in
Text: String)

FinishDrawing
Progress (in VertexCount: Long)

DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle:

IEnvelope)

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

ArcMap



Chapter 1 • Introducing ArcObjects • 29

This sample uses a rubber banding line to
obtain a digitized line geometry. With the

geometry created, a symbol is created. The
symbol is set as the current display symbol
and the line is drawn. The color thickness
and the style of the line symbol are set.

 IPolyline : IPolycurve

Reshape (reshapeSource: IPath) :
Boolean

SimplifyNetwork

RubberLine

RubberBandIRubberBand

 IRubberBand : IUnknown

TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol,
in Geometry: IGeometry) : Boolean

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol) :
IGeometry

3
A RubberLine object is used to capture a
digitized line geometry from the user. The
TrackNew method takes the screen to draw to
and the symbol to draw with and returns the
created geometry.

5

Finally, the geometry is drawn on the
screen. Notice the call to start
drawing followed by the setting of the
symbol, and then the actual drawing
of the geometry. FinishDrawing
ensures the synchronization of the
drawing events.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer Since the IScreenDisplay interface

of the active view is to be used
frequently within the function, a
local variable is used.

2

The IMxDocument interface is used to
retrieve the currently active view, which
can be a Map or a PageLayout.

1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)

DrawPoint (in Point: IGeometry)

StartDrawing (in hDC: Long, in cacheID:
Integer)

SetSymbol (in sym: ISymbol)

DrawText (in Shape: IGeometry, in Text:
String)

FinishDrawing
Progress (in VertexCount: Long)

DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

ArcMap

4
To draw a geometry on the screen, an appropriate symbol is required.
This symbol instructs the screen how to draw the geometry. This step
creates a SimpleLineSymbol object and sets its properties. The Color
of the Line is defined by creating an RGBColor object and setting its
Red, Green, and Blue properties.

Color
IClone
IColor  IColor : IUnknown

CMYK: Long
NullColor: Boolean
RGB: Long
Transparency: Unsigned Char
UseWindowsDithering: Boolean

GetCIELAB (out l: Double, out a:
Double, out b: Double)

SetCIELAB (in l: Double, in a:
Double, in b: Double)

RGBColor
IRGBColor  IRgbColor : IColor

Blue: Long
Green: Long
Red: Long

SimpleLineSymbolISimpleLineSymbol

LineSymbolILineSymbol
IMapLevel

IPropertySupport  ILineSymbol : IUnknown

Color: IColor
Width: Double

 ISimpleLineSymbol : ILineSymbol

Style: tagesriSimpleLineStyle

Display

Draw Digitized Line on Screen

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pScreen As IScreenDisplay
Set pScreen = pMxDoc.ActiveView.ScreenDisplay

Dim pPolyline As IPolyline
Dim pRubber As IRubberBand
Set pRubber = New RubberLine
Set pPolyline = pRubber.TrackNew(pScreen, Nothing)

Dim pLineSymbol As ISimpleLineSymbol
Set pLineSymbol = New SimpleLineSymbol

Dim pRGBColor As IRgbColor
Set pRGBColor = New RgbColor
With pRGBColor
  .Red = 255
  .Green = 128
  .Blue = 128
End With

With pLineSymbol
  .Width = 2
  .Color = pRGBColor
  .Style = esriSLSSolid
End With

With pScreen
  .StartDrawing pScreen.hDC, esriNoScreenCache
  .SetSymbol pLineSymbol
  .DrawPolyline pPolyline
  .FinishDrawing
End With

1

2

3

4

5

Add this to the MouseDown event of a tool in ArcMap.



30 • Exploring ArcObjects • Volume 1

ADD FEATURE CLASS TO ARCMAP

Geodatabase

This sample opens a shapefile on the user's
local disk and adds the contents to the map
as a feature layer. The default symbology is
used. This sample could easily be changed

to support different data sources.

Shapefile-
Workspace-

Factory

WorkspaceFactory
IWorkspaceFactory

IWorkspaceFactory2
 IWorkspaceFactory : IUnknown

WorkspaceDescription (in plural:
Boolean) : String

WorkspaceType: esriWorkspaceType

ContainsWorkspace (in
parentDirectory: String, in fileNames:
IFileNames) : Boolean

Copy (in WorkspaceName:
IWorkspaceName, in destinationFolder:
String, out workspaceNameCopy:
IWorkspaceName) : Boolean

Create (in parentDirectory: String, in
Name: String, in ConnectionProperties:
IPropertySet, in hWnd: Long) :
IWorkspaceName

GetClassID: IUID
GetWorkspaceName (in

parentDirectory: String, in fileNames:
IFileNames) : IWorkspaceName

IsWorkspace (in FileName: String) :
Boolean

Move (in WorkspaceName:
IWorkspaceName, in
destinationFolder: String) : Boolean

Open (in ConnectionProperties:
IPropertySet, in hWnd: Long) :
IWorkspace

OpenFromFile (in FileName: String, in
hWnd: Long) : IWorkspace

ReadConnectionPropertiesFromFile (in
FileName: String) : IPropertySet

The OpenFromFile method returns
a reference to a workspace.2

The ShapefileWorkspaceFactory
coclass creates a shapefile
workspace factory object.

1

FeatureClass
IFeatureClass

IFeatureClassLoad (optional)
IFeatureClassWrite

IGeoDataset
INetworkClass

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Table
IClass
ITable

ITable2

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock

(optional)

ObjectClass
 IObjectClass : IClass

AliasName: String
ObjectClassID: Long
RelationshipClasses (in

role: esriRelRole) :
IEnumRelationshipClass

WorkspaceIDatabaseCompact (optional)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspaceAnno (optional)
IFeatureWorkspaceManage

IFeatureWorkspaceSchemaEdit
IGeodatabaseRelease (optional)

ISpatialCacheManager
ISQLSyntax

ITransactions (optional)
ITransactionsOptions (optional)

IWorkspace
IWorkspaceConfiguration (optional)

IWorkspaceDomains (optional)
IWorkspaceDomains2 (optional)

IWorkspaceEdit
IWorkspaceProperties (optional)

 IFeatureWorkspace : IUnknown

CreateFeatureClass (in Name: String, in
Fields: IFields, in CLSID: IUID, in
EXTCLSID: IUID, in FeatureType:
esriFeatureType, in ShapeFieldName:
String, in ConfigKeyword: String) :
IFeatureClass

CreateFeatureDataset (in Name:
String, in SpatialReference:
ISpatialReference) : IFeatureDataset

CreateQueryDef: IQueryDef
CreateRelationshipClass (in

relClassName: String, in OriginClass:
IObjectClass, in DestinationClass:
IObjectClass, in forwardLabel: String,
in backwardLabel: String, in
Cardinality: esriRelCardinality, in
Notification: esriRelNotification, in
IsComposite: Boolean, in IsAttributed:
Boolean, in relAttrFields: IFields, in
OriginPrimaryKey: String, in
destPrimaryKey: String, in
OriginForeignKey: String, in
destForeignKey: String) :
IRelationshipClass

CreateTable (in Name: String, in Fields:
IFields, in CLSID: IUID, in EXTCLSID:
IUID, in ConfigKeyword: String) : ITable

OpenFeatureClass (in Name: String) :
IFeatureClass

OpenFeatureDataset (in Name: String)
: IFeatureDataset

OpenFeatureQuery (in queryName:
String, in pQueryDef: IQueryDef) :
IFeatureDataset

OpenRelationshipClass (in Name:
String) : IRelationshipClass

OpenRelationshipQuery (in pRelClass:
IRelationshipClass, in joinForward:
Boolean, in pSrcQueryFilter:
IQueryFilter, in pSrcSelectionSet:
ISelectionSet, in TargetColumns:
String, in DoNotPushJoinToDB:
Boolean) : ITable

OpenTable (in Name: String) : ITable

A Workspace object contains an
IFeatureWorkspace interface. This
has an OpenFeatureClass method

that returns a FeatureClass.

3



Chapter 1 • Introducing ArcObjects • 31

Layer

IGeoDataset
ILayer

IPersist
IPersistStream

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

AreaOfInterest: IEnvelope
Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double,

in Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

FeatureLayerIAttributeTable
IClass

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationshipClass

IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureLayerSelectionEvents
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClassSchemaEvents
IPropertySupport

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

 IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

In order to add data to the map,
create a FeatureLayer and
associate the FeatureClass with it.

4

The IMxDocument interface is obtained
from the ThisDocument global variable.

6

The Name property is set
to display the layer name in
the ArcMap table of
contents. Notice that
although the Name
property is on the ILayer
interface, it is accessed
directly via the
IFeatureLayer interface
due to interface inheritance.

5

The AddLayer method on the
IMxDocument interface adds the
FeatureLayer object to ArcMap.

7

ArcMap

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

AddLayer (in Layer: ILayer)

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

Finally, the newly added layer is drawn on the
screen. Notice the use of the PartialRefresh
method instead of the Refresh method; this
ensures optimal drawing of all the map layers.

8

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long,

in wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

Dim pWorkspaceFactory As IWorkspaceFactory
Set pWorkspaceFactory = New ShapefileWorkspaceFactory

Dim pWorkSpace As IFeatureWorkspace
Set pWorkSpace = pWorkspaceFactory.OpenFromFile("C:\Source\", 0)

Dim pClass As IFeatureClass
Set pClass = pWorkSpace.OpenFeatureClass("USStates")

Dim pLayer As IFeatureLayer
Set pLayer = New FeatureLayer
Set pLayer.FeatureClass = pClass
pLayer.Name = pClass.AliasName

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

pMxDoc.AddLayer pLayer
pMxDoc.ActiveView.PartialRefresh esriViewGeography, pLayer, _
 Nothing

1

2

4

5

6

7

Add this code to the Click event of a UIButtonControl in ArcMap.

8

3



32 • Exploring ArcObjects • Volume 1

ADD LAYER TO ARCMAP USING GXDIALOG

ArcMap

ArcCatalog

The GxDialog coclass provides the user
interface used by all ArcGIS applications
when selecting data sources.

3
To limit the data sources available for selection
within the dialog box, a GxObjectFilter is
used. For this example, the filter only allows
feature classes to be selected. Using filters
simplifies the code after the selection is made.

4
The DoModalOpen method on
the IGxDialog interface is called
to display the GxDialog. Once the
user has finished, the selected
feature classes can be accessed via
the GxObject enumerator that is
passed out of the method call.

5
If the enumerator is nothing, no selections

were made and the sub is exited.
Otherwise, the enumerator is reset in

preparation for its iteration.

This example allows the user to select a
feature dataset or feature class to be added

to ArcMap using the GxDialog.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddMapSurround (in MapSurround:
IMapSurround)

ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

Layers (UID: IUID, recursive: Boolean)
: IEnumLayer

MapScale: Double

LayerCount: Long
Layer (in Index: Long) : ILayer

AddLayers (in Layers: IEnumLayer, in
autoArrange: Boolean)

AddLayer (in Layer: ILayer)

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

IGxObjectFilter

GxFilterFeatureClasses
 IGxObjectFilter : IUnknown

Description: String
Name: String

CanChooseObject (in Object:
IGxObject, result:
tagesriDoubleClickResult) : Boolean

CanDisplayObject (in Object:
IGxObject) : Boolean

CanSaveObject (in Location:
IGxObject, in newObjectName:
String, objectAlreadyExists:
Boolean) : Boolean

 IEnumGxObject : IUnknown

Reset
Next: IGxObject

GxDialog
IGxDialog

IGxObjectFilterCollection
IGxSelectionEvents

 IGxDialog : IUnknown

DoModalSave (in
parentWindow: Long) :
Boolean

DoModalOpen (in
parentWindow: Long, out
Selection: IEnumGxObject)
: Boolean

AllowMultiSelect: Boolean
ButtonCaption: String
FinalLocation: IGxObject
InternalCatalog: IGxCatalog
Name: String

RememberLocation: Boolean
ReplacingObject: Boolean
StartingLocation: Variant
Title: String

ObjectFilter: IGxObjectFilter

2

To obtain the active map, use the FocusMap
property of the IMxDocument interface.

Finally, the newly added layer is drawn on the
screen. Notice the use of the PartialRefresh
method instead of the Refresh method; this
ensures optimal drawing of all the map layers.

1

8



Chapter 1 • Introducing ArcObjects • 33

Geodatabase

6
Since an appropriate GxObjectFilter
object was used, the GxObjects returned
from the enumerator will support the
IGxDataset interface.

7
The enumerator is iterated over
and for each GxObject
accessed, a FeatureLayer object
is created that is associated with
the FeatureClass. Notice that
the Dataset property of the
GxDataset is assigned to the
FeatureClass property of the
Layer.

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog
pGxDialog.AllowMultiSelect = True
pGxDialog.Title = "Select Feature Classes to Add to Map"

Dim pGxFilter As IGxObjectFilter
Set pGxFilter = New GxFilterFeatureClasses
Set pGxDialog.ObjectFilter = pGxFilter

Dim pGxObjects As IEnumGxObject
pGxDialog.DoModalOpen ThisDocument.Parent.hWnd, pGxObjects

If (pGxObjects Is Nothing) Then Exit Sub
pGxObjects.Reset

Dim pLayer As IFeatureLayer
Dim pGxDataset As IGxDataset
Set pGxDataset = pGxObjects.Next
Do Until (pGxDataset Is Nothing)
  Set pLayer = New FeatureLayer
  Set pLayer.FeatureClass = pGxDataset.Dataset
  pLayer.Name = pLayer.FeatureClass.AliasName
  pMxDoc.FocusMap.AddLayer pLayer
  Set pGxDataset = pGxObjects.Next
Loop
pMxDoc.ActiveView.PartialRefresh esriViewGeography, _
 Nothing, Nothing

2

3

4

5

6

Add this to the Click event of a UIButtonControl in ArcMap.

7

1

8

FeatureLayerIAttributeTable
IClass

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationshipClass

IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureLayerSelectionEvents
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClassSchemaEvents
IPropertySupport

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

 IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

Layer
IGeoDataset

ILayer
IPersist

IPersistStream

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

AreaOfInterest: IEnvelope
Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double, in

Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

 IGxDataset : IUnknown

Dataset: IDataset
DatasetName: IDatasetName
Type: esriDatasetType

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

 IObjectClass : IClass

ObjectClassID: Long
RelationshipClasses (in

role: esriRelRole) :
IEnumRelationshipClass

AliasName: String

ArcMap



34 • Exploring ArcObjects • Volume 1

STYLE GALLERY AUTO SYMBOL SELECTION

This sample goes through all polygon layers in the
map and attempts to match the symbology from
the standard style set to the layer name.  ArcMap

does this by default. Therefore, to see a real
difference before testing the tool, layer names

should be changed to reflect suitable styles. For
example, try changing a layer name to "Glacier" and

executing this command.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean

Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

FocusMap: IMap

An enumerator is obtained from the style gallery for the style
gallery's FillSymbol entries that, when accessed, will loop over
all the FillSymbols.

2

To begin, you must gain access to
the current document.1

3
Using the IMap layer properties,
loop over all the layers in the
map.

ArcMap
 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

Layers (UID: IUID, recursive: Boolean)
: IEnumLayer

MapScale: Double

LayerCount: Long
Layer (in Index: Long) : ILayer

 IStyleGallery : IUnknown

Categories (in ClassName: String) :
IEnumBSTR

Class (in Index: Long) :
IStyleGalleryClass

ClassCount: Long

AddItem (in Item: IStyleGalleryItem)
Clear
ImportStyle (in FileName: String)
LoadStyle (in FileName: String, in

ClassName: String)
RemoveItem (in Item:

IStyleGalleryItem)
SaveStyle (in FileName: String, in

styleSet: String, in ClassName: String)
UpdateItem (in Item: IStyleGalleryItem)

Items (in ClassName: String, in
styleSet: String, in Category: String) :
IEnumStyleGalleryItem

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

8
Finally, all the geographic layers are
refreshed to update the map display.



Chapter 1 • Introducing ArcObjects • 35

4
If the type of layer is not an
IGeoFeatureLayer, continue to
the next layer.

5
Using the FeatureClass property,
check the shape type of the layer.
If it is not Polygon, skip to the next
layer.

6
The style gallery enumerator is reset and
then iterated over to look for a match
between the style item name and the layer
name.

7
If a match in name is found, the
symbol obtained from the style
gallery is set into the renderer.

Geodatabase

Display

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

ShapeType: tagesriGeometryType

 IStyleGalleryItem : IUnknown

Category: String

Name: String
Item: IUnknown Pointer
ID: Long

IEnumStyleGalleryItem:IUnknown

Next: IStyleGalleryItem
Reset

ISimpleRenderer:IUnknown

Description: String
Label: String
Symbol: ISymbol

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

AreaOfInterest: IEnvelope
Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double,

in Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

 IGeoFeatureLayer : IFeatureLayer

AnnotationProperties:
IAnnotateLayerPropertiesCollection

AnnotationPropertiesID: IUID
CurrentMapLevel: Long
DisplayAnnotation: Boolean
DisplayFeatureClass: IFeatureClass
ExclusionSet: IFeatureIDSet
Renderer: IFeatureRenderer
RendererPropertyPageClassID: IUID

SearchDisplayFeatures (in QueryFilter:
IQueryFilter, in Recycling: Boolean) :
IFeatureCursor

ArcMap

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pStyleItems As IEnumStyleGalleryItem
Set pStyleItems = pMxDoc.StyleGallery.Items("Fill Symbols", _
 "ESRI.style", "Default")
Dim pGalleryItem As IStyleGalleryItem

Dim pRenderer As ISimpleRenderer
Dim pGeoFeatureLayer As IGeoFeatureLayer
Dim i As Long
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
  If (TypeOf pMxDoc.FocusMap.Layer(i) Is IGeoFeatureLayer) Then
    Set pGeoFeatureLayer = pMxDoc.FocusMap.Layer(i)
    If (pGeoFeatureLayer.FeatureClass.ShapeType = _
     esriGeometryPolygon) Then
      pStyleItems.Reset
      Set pGalleryItem = pStyleItems.Next
      Do While (Not pGalleryItem Is Nothing)
        If (pGeoFeatureLayer.Name = pGalleryItem.Name) Then
          Set pRenderer = pGeoFeatureLayer.Renderer
          Set pRenderer.Symbol = pGalleryItem.Item
          Exit Do
        End If
        Set pGalleryItem = pStyleItems.Next
      Loop
      End If
    End If
  Next i
  pMxDoc.ActivatedView.PartialRefresh esriViewGeography, _
   Nothing, Nothing

1

2

3

4

5

6

Add this to the Click event of a UIButtonControl in ArcMap.

7

8



36 • Exploring ArcObjects • Volume 1

LOOP THROUGH SELECTED AREA FEATURES

This sample loops through the selected
features of the focus map. It loops using the

IEnumFeature interface, which is reached
through a QueryInterface from the

FeatureSelection property of the map. For
each feature it checks the geometry type
and if Polygon, it performs a QueryInterface

for the IArea interface. Using the Area
property of the interface, it adds the area

to a running total. At the end, it reports the
total area via a message box.

 IFeatureSelection : IUnknown

BufferDistance: Double
CombinationMethod:

esriSelectionResultEnum
SelectionColor: IColor
SelectionSet: ISelectionSet
SelectionSymbol: ISymbol
SetSelectionSymbol: Boolean

Add (in Feature: IFeature)
Clear
SelectFeatures (in Filter: IQueryFilter,

in Method: esriSelectionResultEnum,
in justOne: Boolean)

SelectionChanged

The UID helper object is used
to represent the GUID for the
IGeoFeatureLayer interface.

2

3
The UID object created previously is used
to obtain an enumerator for all layers that
support the IGeoFeatureLayer interface.
Notice the resetting of the enumerator
before its use.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean

Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

FocusMap: IMap

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean
Layer (in Index: Long) : ILayer

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

LayerCount: Long
Layers (UID: IUID, recursive: Boolean)

: IEnumLayer
MapScale: Double

UID
IUID  IUID : IDispatch

SubType: Long
Value: Variant

Compare (in otherID:
IUID) : Boolean

Generate

4
The layers enumerator is iterated
over using the standard enumerator
method, Next.

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Insert (in useBuffering: Boolean) :

IFeatureCursor
Search (in Filter: IQueryFilter, in

Recycling: Boolean) : IFeatureCursor
Select (in QueryFilter: IQueryFilter, in

selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

 IFeatureLayer : ILayer

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

Search (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

 IFeatureLayer : ILayer

DataSourceType: String

FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

Search (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

DisplayField: String

5
If the shape type of
the feature class is
not a Polygon, the

layer is skipped.

Framework

ArcMap

Geodatabase

 IEnumLayer : IUnknown

Reset
Next: ILayer

To obtain the layers of the map, you must first get
access to the currently active map. Do this through the
FocusMap property of the IMxDocument interface.

1

6 Obtain the IFeatureSelection interface by performing
a QueryInterface to the IFeatureLayer interface.



Chapter 1 • Introducing ArcObjects • 37

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pUID As New UID
pUID = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}" 'IGeoFeatureLayer IID

Dim pEnumLayer As IEnumLayer
Set pEnumLayer = pMxDoc.FocusMap.Layers(pUID, True)
pEnumLayer.Reset

Dim pFeatureLayer As IFeatureLayer
Dim pFeatureSelection As IFeatureSelection
Dim pFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim pArea As IArea
Dim dTotalArea As Double

Set pFeatureLayer = pEnumLayer.Next
Do Until (pFeatureLayer Is Nothing)
  If (pFeatureLayer.FeatureClass.ShapeType = esriGeometryPolygon) Then
    Set pFeatureSelection = pFeatureLayer

    If (pFeatureSelection.SelectionSet.Count <> 0) Then
      pFeatureSelection.SelectionSet.Search Nothing, True, pFeatureCursor
      Set pFeature = pFeatureCursor.NextFeature

      Do Until (pFeature Is Nothing)
        Set pArea = pFeature.Shape
        dTotalArea = dTotalArea + pArea.Area
        Set pFeature = pFeatureCursor.NextFeature
      Loop
    End If
  End If
  Set pFeatureLayer = pEnumLayer.Next
Loop

MsgBox "Total Area for selected polygon features = " & CStr(dTotalArea)

2

3

4

5

7

9

Add this code to the Click event of a UIButtonControl in ArcMap.

8

1

6

10

 IArea : IUnknown

Area: Double
Centroid: IPoint
LabelPoint: IPoint

QueryCentroid (Center: IPoint)
QueryLabelPoint (LabelPoint: IPoint)

 IArea : IUnknown

Area: Double
Centroid: IPoint
LabelPoint: IPoint

QueryCentroid (Center: IPoint)
QueryLabelPoint (LabelPoint: IPoint)

9
For each feature returned by the cursor,
the Area of the feature's shape is
obtained and totalled. The area is obtained
by performing a QueryInterface on the
feature's shape for the IArea interace and
getting the Area property from it.

 ISelectionSet : IUnknown

FullName: IName
IDs: IEnumIDs
Target: ITable

Add (in OID: Long)
AddList (in Count: Long, in OIDList:

Long)
Combine (in otherSet: ISelectionSet, in

setOp: esriSetOperation, out
resultSet: ISelectionSet)

MakePermanent
Refresh
RemoveList (in Count: Long, in

OIDList: Long)

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Count: Long

Search (in pQueryFilter: IQueryFilter, in
Recycling: Boolean, out ppCursor:
ICursor)

 IFeature : IObject

Extent: IEnvelope
FeatureType: esriFeatureType

ShapeCopy: IGeometry
Shape: IGeometry

 IFeatureCursor : IUnknown

Fields: IFields

DeleteFeature
FindField (in Name: String) : Long
Flush

NextFeature: IFeature
UpdateFeature (in Object: IFeature)

InsertFeature (in Buffer:
IFeatureBuffer) : Variant

8
If there are selected features, a
cursor onto these features is
obtained from the layers
selection set.

Geodatabase

Geometry

7
Before attempting to loop through selected
features, a check is performed to ensure
that there are selected features for the
current layer. If there are no selected
features, the layer is skipped.

10

10
Finally, the totalled area is displayed
to the user in a standard Visual Basic
Message Box.



38 • Exploring ArcObjects • Volume 1

SPATIAL QUERY

This sample builds a spatial query filter,
gets a feature cursor based on the filter

and then loops over all the features,
totalling the number of points, lines, and

areas, and reports these to the user.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize

OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps

Display

ArcMap

The IMxDocument
interface is obtained from
the ThisDocument
global variable.

1

A user-defined envelope defining the
extent of the spatial query is required.
The rubber envelope object is used.

2

The active view associated with the focus
map is acquired in order for the rubber
banding geometry to have the correct
spatial reference.

3

The TrackNew method is called.
This allows the user to drag the
mouse to define the envelope.

4

Each layer in the map is looped over; if the
layer is not of type IGeoFeatureLayer,
the layer is skipped.

6

RubberBandIRubberBand

 IRubberBand : IUnknown

TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol,
in Geometry: IGeometry) : Boolean

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol)
: IGeometry

Rubber-
Envelope

 IActiveView : IUnknown

ExportFrame: tagRECT
Extent: IEnvelope
ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String

Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

PrinterChanged (in Printer: IPrinter)
Refresh

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

LayerCount: Long
Layers (UID: IUID, recursive: Boolean)

: IEnumLayer
MapScale: Double

IsFramed: Boolean
Layer (in Index: Long) : ILayer

 IFeatureLayer : ILayer

Search (in QueryFilter:
IQueryFilter, in Recycling:
Boolean) : IFeatureCursor

DataSourceType: String
DisplayField: String
FeatureClass: IFeatureClass
ScaleSymbols: Boolean
Selectable: Boolean

 IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter:

IQueryFilter) : Long
GetFeature (in ID: Long) : IFeature
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

LengthField: IField
ShapeFieldName: String
ShapeType: tagesriGeometryType

Insert (in useBuffering: Boolean) :
IFeatureCursor

Search (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long, in

Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)



Chapter 1 • Introducing ArcObjects • 39

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pEnv As IEnvelope
Dim pRubber As IRubberBand
Set pRubber = New RubberEnvelope

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.FocusMap
Set pEnv = pRubber.TrackNew(pActiveView.ScreenDisplay, Nothing)

Dim pSpatialFilter As ISpatialFilter
Set pSpatialFilter = New SpatialFilter
Set pSpatialFilter.Geometry = pEnv
pSpatialFilter.SpatialRel = esriSpatialRelIntersects

Dim lPoints As Long, lPolygons As Long, lPolylines As Long
Dim pLayer As IFeatureLayer
Dim pFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim i As Long
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
  If (TypeOf pMxDoc.FocusMap.Layer(i) Is IGeoFeatureLayer) Then
    Set pLayer = pMxDoc.FocusMap.Layer(i)
    pSpatialFilter.GeometryField = pLayer.FeatureClass.ShapeFieldName

    Set pFeatureCursor = pLayer.Search(pSpatialFilter, True)
    Set pFeature = pFeatureCursor.NextFeature
    Do Until (pFeature Is Nothing)
      Select Case pFeature.Shape.GeometryType
        Case esriGeometryPoint
          lPoints = lPoints + 1
        Case esriGeometryPolyline
          lPolylines = lPolylines + 1
        Case esriGeometryPolygon
          lPolygons = lPolygons + 1
      End Select
      Set pFeature = pFeatureCursor.NextFeature
    Loop
  End If
Next i

MsgBox "Features Found:" & vbCrLf & lPoints & " Points " & vbCrLf & _
 lPolylines & " Polylines " & vbCrLf & lPolygons & " Polygons "

1

2

3

4

5

6

Add this to the MouseDown event of a UIToolControl in ArcMap.

7

9

8

10

 IFeatureCursor : IUnknown

Fields: IFields

DeleteFeature
FindField (in Name: String) : Long
Flush
InsertFeature (in Buffer:

IFeatureBuffer) : Variant
NextFeature: IFeature
UpdateFeature (in Object: IFeature)

Enumeration esriSpatialRelEnum

0 - esriSpatialRelUndefined
1 - esriSpatialRelIntersects
2 - esriSpatialRelEnvelopeIntersects
3 - esriSpatialRelIndexIntersects
4 - esriSpatialRelTouches
5 - esriSpatialRelOverlaps
6 - esriSpatialRelCrosses
7 - esriSpatialRelWithin
8 - esriSpatialRelContains
9 - esriSpatialRelRelation

Geodatabase

Geometry
A new spatial filter object is created.
The shape and spatial reference is set.

5

The spatial filter must be told what
column in the database table holds the
feature shape. This information is
retrieved from the feature class.

7

A feature cursor is obtained
from the layer by calling the
Search method passing in
the SpatialFilter.

8

This cursor is looped over and the features returned by
the cursor are inspected. Based on their geometry type,
the totals are updated accordingly.

9
QueryFilter

IClone
IPersistStream

IQueryFilter
IQueryFilter2

SpatialFilterISpatialFilter

 ISpatialFilter : IQueryFilter

GeometryEx (in Geometry:
IGeometry) : Boolean

GeometryField: String

Geometry: IGeometry
FilterOwnsGeometry: Boolean

SearchOrder: tagesriSearchOrder
SpatialRel: esriSpatialRelEnum
SpatialRelDescription: String

 IGeometry : IUnknown

Dimension: tagesriGeometryDimension

SpatialReference: ISpatialReference

GeoNormalize
GeoNormalizeFromLongitude

(Longitude: Double)
Project (newReferenceSystem:

ISpatialReference)
QueryEnvelope (outEnvelope: IEnvelope)
SetEmpty
SnapToSpatialReference

Envelope: IEnvelope
GeometryType: tagesriGeometryType
IsEmpty: Boolean

 IFeature : IObject

Extent: IEnvelope
FeatureType: esriFeatureType
Shape: IGeometry
ShapeCopy: IGeometry

Enumeration tagesriGeometryType

 0 - esriGeometryNull
 1 - esriGeometryPoint
 2 - esriGeometryMultipoint
 3 - esriGeometryPolyline
 4 - esriGeometryPolygon
 5 - esriGeometryEnvelope
 6 - esriGeometryPath
 7 - esriGeometryAny
 9 - esriGeometryMultiPatch
11 - esriGeometryRing
13 - esriGeometryLine
14 - esriGeometryCircularArc
15 - esriGeometryBezier3Curve
16 - esriGeometryEllipticArc
17 - esriGeometryBag
18 - esriGeometryTriangleStrip
19 - esriGeometryTriangleFan
20 - esriGeometryRay
21 - esriGeometrySphere

Finally, the results of the selection are
displayed in a Visual Basic message box.10



40 • Exploring ArcObjects • Volume 1

ADD MAP SURROUND TO PAGE LAYOUT

This example adds legend map surround to
a page layout and fills the legend with the

layers of the map. Map surrounds are
dynamically linked to their associated map;

therefore, any changes to the map are
reflected in the map surround.

You must ensure that the active
view associated with the
PageLayout is used. Hence, you
cannot use the ActiveView
property of the IMxDocument
interface since that may be
associated with the FocusMap.
You must perform a
QueryInterface on PageLayout
for its IActiveView interface.

2

The graphic container
associated with the
PageLayout is obtained.

3

The FindFrame method on the
IGraphicsContainer is used to
find the map frame associated
with the focus map.

4

The legend map surround
frame is created and its
name is set.

6

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack

SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

PageLayout: IPageLayout
RelativePaths: Boolean

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

 IGraphicsContainer : IUnknown

BringForward (in Elements:
IEnumElement)

BringToFront (in Elements:
IEnumElement)

DeleteAllElements

FindFrame (in frameObject: Variant) :
IFrameElement

GetElementOrder (in Elements:
IEnumElement) : Variant

LocateElements (in Point: IPoint, in
Tolerance: Double) : IEnumElement

LocateElementsByEnvelope (in
Envelope: IEnvelope) : IEnumElement

MoveElementFromGroup (in Group:
IGroupElement, in Element: IElement,
in zorder: Long)

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Next: IElement
PutElementOrder (in order: Variant)
Reset
SendBackward (in Elements:

IEnumElement)
SendToBack (in Elements:

IEnumElement)
UpdateElement (in Element: IElement)

DeleteElement (in Element: IElement)

AddElements (in Elements:
IElementCollection, in zorder: Long)

AddElement (in Element: IElement, in
zorder: Long)

The legend is added to the
graphics container of the
PageLayout. This ensures
that the legend element is
saved in the map
document.

10

Finally, the graphics layer
of the screen is refreshed.

11

IFrameElement:IUnknown

Background: IBackground
Border: IBorder
DraftMode: Boolean
Object: Variant
Thumbnail: Long

 IMapSurround : IUnknown

Draw (in Display: IDisplay, in
trackCancel: ITrackCancel, in
Bounds: IEnvelope)

FitToBounds (in Display: IDisplay,
in Bounds: IEnvelope, out
Changed: Boolean)

QueryBounds (in Display: IDisplay,
in oldBounds: IEnvelope,
newBounds: IEnvelope)

Refresh

Icon: Long
Map: IMap
Name: String

DelayEvents (in delay: Boolean)

IMapSurroundFrame:IFrameElement

MapSurround: IMapSurround
MapFrame: IMapFrame

ArcMap

 IMapFrame : IFrameElement

Container: IGraphicsContainer
ExtentType: esriExtentTypeEnum
LocatorRectangleCount: Long
Map: IMap
MapBounds: IEnvelope
MapScale: Double

RemoveAllLocatorRectangles
RemoveLocatorRectangle (in Locator:

ILocatorRectangle)

AddLocatorRectangle (in Locator:
ILocatorRectangle)

CreateSurroundFrame (in CLSID: IUID,
in optionalStyle: IMapSurround) :
IMapSurroundFrame

LocatorRectangle (in Index: Long) :
ILocatorRectangle

1
The IMxDocument
interface is obtained from
the ThisDocument
global variable.



Chapter 1 • Introducing ArcObjects • 41

The CreateSurroundFrame method requires
the GUID of the surround element type. A UID
object is created and its value is set to the ID of
the legend class.

5

The IElement interface is accessed by a QueryInterface
from IMapSurroundFrame. This interface is required to
set the geometry of the frame. The geometry controls the
location of the legend on the paper.

7

The geometry associated
with the focus map's
MapFrame is obtained.

8

A new envelope geometry
for the legend is created and
positioned relative to the
focus map's map frame.

9

 IElement : IUnknown

Draw (in Display: IDisplay, in
trackCancel: ITrackCancel)

HitTest (in X: Double, in Y: Double, in
Tolerance: Double) : Boolean

QueryBounds (in Display: IDisplay, in
Bounds: IEnvelope)

QueryOutline (in Display: IDisplay, in
Outline: IPolygon)

Geometry: IGeometry
Locked: Boolean
SelectionTracker: ISelectionTracker

Activate (in Display: IDisplay)
Deactivate

UID
IUID  IUID : IDispatch

SubType: Long
Value: Variant

Compare (in otherID:
IUID) : Boolean

Generate

Framework
Geometry

Display

Envelope
IArea

IEnvelope
IEnvelope2
IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator
IZAware

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long, in

Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.PageLayout

Dim pGraphicsContainer As IGraphicsContainer
Dim pMapFrame As IMapFrame
Set pGraphicsContainer = pMxDoc.PageLayout
Set pMapFrame = pGraphicsContainer.FindFrame(pMxDoc.FocusMap)

Dim pMapSurroundFrame As IMapSurroundFrame
Dim pUID As New UID
Dim pElement As IElement
pUID.Value = "esriCore.Legend"
Set pMapSurroundFrame = pMapFrame.CreateSurroundFrame(pUID, Nothing)
pMapSurroundFrame.MapSurround.Name = "Legend"

Set pElement = pMapSurroundFrame

Dim pMainMapElement As IElement
Dim pMainEnv As IEnvelope
Set pMainMapElement = pMapFrame
Set pMainEnv = pMainMapElement.Geometry.Envelope

Dim pEnv As IEnvelope
Set pEnv = New Envelope
pEnv.PutCoords pMainEnv.XMax + 1.5, pMainEnv.YMin + 1.5, _
 pMainEnv.XMax - 1.5, pMainEnv.YMax - 1.5
pElement.Geometry = pEnv
pElement.Activate pActiveView.ScreenDisplay
pGraphicsContainer.AddElement pElement, 0
pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

2

3

4

5

6

7

Add this to the Click event of a UIButtonControl in ArcMap, and execute the
command when in Page View.

8

9

10

11

1



42 • Exploring ArcObjects • Volume 1

ADD TEXT CALLOUT TO ACTIVE VIEW

This sample adds one of the more
complicated types of graphic elements to a

map or page layout, depending on the
current view. The callout is added to the

center of the view.

A TextElement object is created and its Text
property is set. This is the object that will be
added to the graphics container.

2

3
The IElement interface is used to set the geometry
of the element. The IElement interface is obtained
by performing a QueryInterface on the
ITextElement interface.

IGraphicElement
ITransform2D Graphic-

Element

IBoundsProperties
IElementEditVertices

IGroupSymbolElement
IPropertySupport

ITextElement
ITransformEvents

TextElement

 ITextElement : IUnknown

ScaleText: Boolean
Symbol: ITextSymbol
Text: String

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

Element
 IElement : IUnknown

Locked: Boolean
SelectionTracker:ISelectionTracker

Activate (in Display: IDisplay)
Deactivate
Draw (in Display: IDisplay, in

trackCancel: ITrackCancel)
HitTest (in X: Double, in Y: Double,

in Tolerance: Double) : Boolean
QueryBounds (in Display: IDisplay,

in Bounds: IEnvelope)
QueryOutline (in Display: IDisplay,

in Outline: IPolygon)

Geometry: IGeometry

4
The center of the active view is
calculated. This will be used to
place the text element.

5
The geometry of the text element is
a point. A new Point object is
created and the coordinates are set,
then the Geometry property of the
TextElement is assigned this newly
created point.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection
ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long, in

Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

PointIConstructPoint
IConstructPoint2

IGeometry2
IHitTest

IMAware
IPersist

IPersistStream
IPoint

IPointIDAware
IProximityOperator

IRelationalOperator
ITopologicalOperator

ITransform3D
IZAware

Geometry
IClone

IGeometry
ITransform2D

ISupportErrorInfo

 IPoint : IGeometry

ID: Long
M: Double
VertexAttribute (attributeType:

esriGeometryAttributes) :
Double

X: Double
Y: Double
Z: Double

Compare (pOtherPoint: IPoint)
: Long

ConstrainAngle
(constraintAngle: Double,
Anchor: IPoint,
allowOpposite: Boolean)

ConstrainDistance
(constraintRadius: Double,
Anchor: IPoint)

QueryCoords (out X: Double,
out Y: Double)

PutCoords (X: Double, Y:
Double)

10
The graphics layer is redrawn to
display the newly added text element.
Once again, notice the use of the
PartialRefresh method.

Geometry

ArcMap
The IMxDocument interface is
obtained from the ThisDocument
global variable.

1



Chapter 1 • Introducing ArcObjects • 43

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pTextElement As ITextElement
Set pTextElement = New TextElement

Dim pElement As IElement
Set pElement = pTextElement
pTextElement.Text = "Text in a callout" & vbCrLf & "In middle of screen"

Dim dMidX As Double, dMidY As Double, pPoint As IPoint
dMidX = (pMxDoc.ActiveView.Extent.XMax + pMxDoc.ActiveView.Extent.XMin) / 2
dMidY = (pMxDoc.ActiveView.Extent.YMax + pMxDoc.ActiveView.Extent.YMin) / 2
Set pPoint = New Point
pPoint.PutCoords dMidX, dMidY
pElement.Geometry = pPoint

Dim pTextSymbol As IFormattedTextSymbol
Set pTextSymbol = New TextSymbol
Dim pCallout As ICallout
Set pCallout = New BalloonCallout
Set pTextSymbol.Background = pCallout
pPoint.PutCoords dMidX - pMxDoc.ActiveView.Extent.Width / 4, _
 dMidY + pMxDoc.ActiveView.Extent.Width / 20
pCallout.AnchorPoint = pPoint

pTextElement.Symbol = pTextSymbol
Dim pGraphicsContainer As IGraphicsContainer
Set pGraphicsContainer = pMxDoc.ActiveView
pGraphicsContainer.AddElement pElement, 0
pElement.Activate pMxDoc.ActiveView.ScreenDisplay
pMxDoc.ActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

2

3

4

5

6

8

7

Add this code to the Click event of a UIButtonControl in ArcMap.

9

10

1

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

CalloutICallout
IQueryGeometry

Balloon-
Callout

IBalloonCallout
ITextMargins

 ICallout : IUnknown

AnchorPoint: IPoint
LeaderTolerance: Double

TextSymbol
IFormattedTextSymbol

IMapLevel
IMask

IPropertySupport
ISimpleTextSymbol

ISymbolRotation
ITextSymbol

IFormattedTextSymbol:ITextSymbol

Background: ITextBackground
Case: tagesriTextCase
CharacterSpacing: Double
CharacterWidth: Double
Direction: tagesriTextDirection
FillSymbol: IFillSymbol
FlipAngle: Double
Kerning: Boolean
Leading: Double
Position: tagesriTextPosition
ShadowColor: IColor
ShadowXOffset: Double
ShadowYOffset: Double
TypeSetting: Boolean
WordSpacing: Double

6
To display the text element as a callout, an appropriate
text symbol must be used with the background set to be
the Callout. The TextSymbol and BalloonCallout
objects are created and associated with each other.

7
A Point is used to set the
AnchorPoint of the Callout.

 IGraphicsContainer : IUnknown

AddElements (in Elements:
IElementCollection, in zorder: Long)

BringForward (in Elements:
IEnumElement)

BringToFront (in Elements:
IEnumElement)

DeleteAllElements
DeleteElement (in Element: IElement)
FindFrame (in frameObject: Variant) :

IFrameElement
GetElementOrder (in Elements:

IEnumElement) : Variant
LocateElements (in Point: IPoint, in

Tolerance: Double) : IEnumElement
LocateElementsByEnvelope (in

Envelope: IEnvelope) : IEnumElement
MoveElementFromGroup (in Group:

IGroupElement, in Element: IElement,
in zorder: Long)

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Next: IElement
PutElementOrder (in order: Variant)
Reset
SendBackward (in Elements:

IEnumElement)
SendToBack (in Elements:

IEnumElement)
UpdateElement (in Element: IElement)

AddElement (in Element: IElement, in
zorder: Long)

8
The text symbol is set into the
TextElement. This ensures the text
element draws itself using the callout.

9
The graphics container associated with the
active view of the document is obtained by
performing a QueryInterface on the
IActiveView interface. The TextElement is
then added to the container. This ensures that
the element is saved within the map document.

Display



44 • Exploring ArcObjects • Volume 1

GEOMETRY PROJECTION

This sample takes the current cursor
coordinates and converts them from

pixels to map units. It then projects these
map coordinates to a projected and
geographic spatial reference system,

displaying the results in the Status Bar.

The IMxDocument
interface is obtained from
the ThisDocument
global variable.

1

The active view of the focus map is obtained
by performing a QueryInterface on the
FocusMap property of the IMxDocument
interface.

4

The cursor location
in pixels (x,y) is
converted to map
units using a method
on the IDisplay-
Transformation
interface, then stored
in a Point object.
This point object will
have the same
spatial reference as
the map.

5

The cursor point is projected from the map coordinates
into the Cassini coordinate system and the projected
coordinates are written to a string.

6

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

 IPoint : IGeometry

ID: Long
M: Double
VertexAttribute (attributeType:

esriGeometryAttributes) : Double
X: Double
Y: Double
Z: Double

Compare (pOtherPoint: IPoint) : Long
ConstrainAngle (constraintAngle:

Double, Anchor: IPoint,
allowOpposite: Boolean)

ConstrainDistance (constraintRadius:
Double, Anchor: IPoint)

PutCoords (X: Double, Y: Double)
QueryCoords (out X: Double, out Y:

Double)

IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect: IEnvelope,
in devRect: tagRECT, in options:
Long)

DeviceFrame: tagRECT

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

 IGeometry : IUnknown

Dimension: tagesriGeometryDimension

SpatialReference: ISpatialReference

GeoNormalize
GeoNormalizeFromLongitude

(Longitude: Double)
Project (newReferenceSystem:

ISpatialReference)
QueryEnvelope (outEnvelope: IEnvelope)
SetEmpty
SnapToSpatialReference

Envelope: IEnvelope
GeometryType: tagesriGeometryType
IsEmpty: Boolean

Geometry

The cursor point is projected from the Cassini
coordinate system into the WGS 84 reference system
and the coordinates are appended to a string.

8

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize

OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps

 IDocument : IDispatch

Accelerators: IAcceleratorTable
CommandBars: ICommandBars
ID: IUID

Title: String
Type: esriDocumentType
VBProject: Object

Parent: IApplication

IMxDocument
IPersist

IPropertySupport
IReportUnitFormat

 IApplication : IDispatch

FindExtensionByCLSID (in
extensionCLSID:IUID) : IExtension

FindExtensionByName (in
extensionName: String):IExtension

IsDialogVisible (in dialogID: Long) :
Boolean

LockCustomization (in Password :
String, custFilter :
ICustomizationFilter)

NewDocument (selectTemplate:
Boolean, templatePath: String)

OpenDocument (Path: String)
PrintDocument
PrintPreview
RefreshWindow
SaveAsDocument (saveAsPath:

String, saveAsCopy: Boolean)
SaveDocument (saveAsPath: String)
ShowDialog (in dialogID: Long,

bShow: Variant) : Variant
Shutdown
UnlockCustomization (in Password:

String)

Caption: String
CurrentTool: ICommandItem
Document: IDocument
hWnd: Long

Templates: ITemplates
VBE: Object
Visible: Boolean

Name: String
StatusBar: IStatusBar

 IStatusBar : IUnknown

ProgressAnimation :
IAnimationProgressor

ProgressBar: IStepProgressor
Visible: Boolean

HideProgressAnimation
HideProgressBar
PlayProgressAnimation (in

playAnim: Boolean)
ShowProgressAnimation (in

Message: String, in
animationPath: String)

ShowProgressBar (in Message:
String, in min: Long, in max:
Long, in Step: Long, in
onePanel: Boolean)

StepProgressBar

Message (in pane: Long) : String
Panes: Long

ArcMap

The string is
displayed in the
status bar of the
ArcMap application.

9

Framework

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow



Chapter 1 • Introducing ArcObjects • 45

Spatial reference

A new SpatialReferenceEnvironment
object is created. This object will be
used to create coordinate system
objects for the required reference
systems.

2

Using the object
created in the previous
step, a projected
coordinate system
based on the world
Cassini projection is
created.

3

Using the object created in step 2, a geographic
coordinate system based on the WGS 84 reference
system is created.

7

SpatialReferenceEnvironment
IClassFactory

ISpatialReferenceFactory
ISpatialReferenceFactory2

ISupportErrorInfo

 ISpatialReferenceFactory : IUnknown

CreateDatum (datumType: Long) :
IDatum

CreateESRISpatialReference
(spatRefInfo: String, out
SpatialReference: ISpatialReference,
out cBytesRead: Long)

CreateESRISpatialReferenceFromPRJ
(prj: String) : ISpatialReference

CreateGeoTransformation
(gTransformationType: Long) :
ITransformation

CreateParameter (parameterType:
Long) : IParameter

CreatePredefinedAngularUnits: ISet
CreatePredefinedDatums: ISet
CreatePredefinedLinearUnits: ISet
CreatePredefinedPrimeMeridians: ISet
CreatePredefinedProjections: ISet
CreatePredefinedSpheroids: ISet

CreateProjection (projectionType:
Long) : IProjection

CreateSpheroid (spheroidType: Long) :
ISpheroid

CreateUnit (unitType: Long) : IUnit
ExportESRISpatialReferenceToPRJFile

(prjFile: String, SpatialReference:
ISpatialReference)

CreateESRISpatialReferenceFromPRJFile
(prjFile: String) : ISpatialReference

CreateGeographicCoordinateSystem
(gcsType: Long) :
IGeographicCoordinateSystem

CreateProjectedCoordinateSystem
(pcsType: Long) :
IProjectedCoordinateSystem

CreatePrimeMeridian (primeMeridianType:
Long) : IPrimeMeridian

IProjectedCoordinateSystem :
ISpatialReference

Azimuth: Double
CentralMeridian (in inDegrees:

Boolean) : Double
CentralParallel: Double
CoordinateUnit: ILinearUnit
FalseEasting: Double
FalseNorthing: Double
GeographicCoordinateSystem:

IGeographicCoordinateSystem
Horizon (in horizonIndex: Long) :

esriSRHorizon
HorizonCount: Long
LatitudeOf1st: Double
LatitudeOf2nd: Double
LatitudeOfOrigin: Double
LongitudeOf1st: Double
LongitudeOf2nd: Double
LongitudeOfOrigin: Double
Projection: IProjection
ScaleFactor: Double
StandardParallel1: Double
StandardParallel2: Double
Usage: String

Forward (in Count: Long, Points:
_WKSPoint)

GetParameters (out parameters:
IParameter)

Inverse (in Count: Long, Points:
_WKSPoint)

IGeographicCoordinateSystem :
ISpatialReference

CoordinateUnit: IAngularUnit
Datum: IDatum
PrimeMeridian: IPrimeMeridian
Usage: String

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pSpatialRefFactory As ISpatialReferenceFactory
Set pSpatialRefFactory = New SpatialReferenceEnvironment

Dim pProjectedCoodinateSystem As IProjectedCoordinateSystem
Set pProjectedCoodinateSystem =
pSpatialRefFactory.CreateProjectedCoordinateSystem(esriSRProjCS_World_Cassini)

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.FocusMap

Dim pPoint As IPoint
Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

pPoint.Project pProjectedCoodinateSystem
Dim sMessage As String
sMessage = "Cassini : " & CStr(Round(pPoint.x, 2)) & ", " & _
 CStr(Round(pPoint.y, 2))

Dim pGeographicCoordinateSystem As IGeographicCoordinateSystem
Set pGeographicCoordinateSystem = _
 pSpatialRefFactory.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

pPoint.Project pGeographicCoordinateSystem
sMessage = sMessage & " and WGS84 : " & CStr(Round(pPoint.x, 2)) & ", " &
CStr(Round(pPoint.y, 2))
ThisDocument.Parent.StatusBar.Message(0) = sMessage

1

2

3

4

5

6

7

Add this code to the MouseMove event of a UIToolControl in ArcMap.

8

9



46 • Exploring ArcObjects • Volume 1

DISPLAY RASTER CELL VALUE IN STATUS BAR

This sample displays the pixel value
of the first raster layer in the map.
This sample will display multiplane
data in the form "(value 1, value 2,

value 3)" for three planes.

Geometry

ArcMap
 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

The IMxDocument
interface is obtained from
the ThisDocument global
variable.

1

The layers of the map are looped through.
The first raster layer is processed and then the
function is exited.

5

 IMap : IUnknown

ActiveGraphicsLayer: ILayer
AnnotationEngine: IAnnotateMap
AreaOfInterest: IEnvelope
Barriers (pExtent: IEnvelope) :

IBarrierCollection
BasicGraphicsLayer: IGraphicsLayer
ClipBorder: IBorder
ClipGeometry: IGeometry
Description: String
DistanceUnits: esriUnits
Expanded: Boolean
FeatureSelection: ISelection
IsFramed: Boolean

MapSurround (in Index: Long) :
IMapSurround

MapSurroundCount: Long
MapUnits: esriUnits
Name: String
ReferenceScale: Double
SelectionCount: Long
SpatialReference: ISpatialReference
SpatialReferenceLocked: Boolean
UseSymbolLevels: Boolean

AddLayer (in Layer: ILayer)
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
AddMapSurround (in MapSurround:

IMapSurround)
ClearLayers
ClearMapSurrounds
ClearSelection
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

DelayDrawing (in delay: Boolean)
DelayEvents (in delay: Boolean)
DeleteLayer (in Layer: ILayer)
DeleteMapSurround (in MapSurround:

IMapSurround)
GetPageSize (out widthInches: Double,

out heightInches: Double)
MoveLayer (in Layer: ILayer, in toIndex:

Long)
RecalcFullExtent
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

SetPageSize (in widthInches: Double, in
heightInches: Double)

MapScale: Double

Layer (in Index: Long) : ILayer
LayerCount: Long
Layers (UID: IUID, recursive: Boolean)

: IEnumLayer

IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect: IEnvelope,
in devRect: tagRECT, in options:
Long)

DeviceFrame: tagRECT

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

The active view for the
focus map is obtained.

2

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize

OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps

 IDocument : IDispatch

Accelerators: IAcceleratorTable
CommandBars: ICommandBars
ID: IUID

Title: String
Type: esriDocumentType
VBProject: Object

Parent: IApplication

IMxDocument
IPersist

IPropertySupport
IReportUnitFormat

 IApplication : IDispatch

FindExtensionByCLSID (in
extensionCLSID:IUID) : IExtension

FindExtensionByName (in
extensionName: String):IExtension

IsDialogVisible (in dialogID: Long) :
Boolean

LockCustomization (in Password :
String, custFilter :
ICustomizationFilter)

NewDocument (selectTemplate:
Boolean, templatePath: String)

OpenDocument (Path: String)
PrintDocument
PrintPreview
RefreshWindow
SaveAsDocument (saveAsPath:

String, saveAsCopy: Boolean)
SaveDocument (saveAsPath: String)
ShowDialog (in dialogID: Long,

bShow: Variant) : Variant
Shutdown
UnlockCustomization (in Password:

String)

Caption: String
CurrentTool: ICommandItem
Document: IDocument
hWnd: Long

Templates: ITemplates
VBE: Object
Visible: Boolean

Name: String
StatusBar: IStatusBar

 IStatusBar : IUnknown

Message (in pane: Long) : String
Panes: Long
ProgressAnimation :

IAnimationProgressor
ProgressBar: IStepProgressor
Visible: Boolean

HideProgressAnimation
HideProgressBar
PlayProgressAnimation (in

playAnim: Boolean)
ShowProgressAnimation (in

Message: String, in
animationPath: String)

ShowProgressBar (in Message:
String, in min: Long, in max:
Long, in Step: Long, in
onePanel: Boolean)

StepProgressBar

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry

hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

DisplayTransformation:
IDisplayTransformation

Filter: IDisplayFilter

The raster values
are displayed in
the status bar.

13

Framework



Chapter 1 • Introducing ArcObjects • 47

 IRasterProps : IUnknown

IsInteger: Boolean
MapModel: IRasterMapModel
NoDataValue: Variant
PixelType: rstPixelType
SpatialReference: ISpatialReference
Width: Long

MeanCellSize: IPnt

Extent: IEnvelope
Height: Long

Raster

The ILayer interface is accessed through
a QueryInterface for the IRasterLayer
interface. This interface gives access to
raster-specific properties of the layer.

A pixel block the size of
one pixel is created.7

The IRasterProps interface is obtained. This
provides information about the extent of the
raster in both real-world units and pixels.

8

The coordinates of the
cursor are calculated in
raster pixel units.

9

The planes or the raster
are looped over, extracting
the pixel values.

11

Checks are made to ensure that there are
raster values present at the location. If
there are, they are appended to the value
string.

12

IPnt

DblPnt
 IPnt : IUnknown

X: Double
Y: Double

Convert2Point (in env: IPoint)
Set2Point (in env: IPoint)
SetCoords (in X: Double, in Y: Double)

The cursor coordinates, in pixels,
must be converted to map units.
The ToMapPoint method on the
IDisplayTransformation interface
does this.

3

A dblPoint object is created and the coordinates are
set to 1.0, 1.0. This will be used to define the size of
the pixel block used to interrogate the raster.

 IPoint : IGeometry

ID: Long
M: Double
VertexAttribute (attributeType:

esriGeometryAttributes) : Double
X: Double
Y: Double
Z: Double

Compare (pOtherPoint: IPoint) : Long
ConstrainAngle (constraintAngle:

Double, Anchor: IPoint,
allowOpposite: Boolean)

ConstrainDistance (constraintRadius:
Double, Anchor: IPoint)

PutCoords (X: Double, Y: Double)
QueryCoords (out X: Double, out Y:

Double)

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim pActiveView As IActiveView
Set pActiveView = pMxDoc.FocusMap
Dim pPoint As IPoint
Set pPoint = pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

Dim pBlockSize As IPnt
Set pBlockSize = New DblPnt
pBlockSize.SetCoords 1#, 1#

Dim pLayer As IRasterLayer
Dim pPixelBlock As IPixelBlock
Dim vValue As Variant
Dim i As Long, j As Long
Dim sPixelVals As String
sPixelVals = "No Raster"
Dim pRasterProps As IRasterProps
Dim dXSize As Double, dYSize As Double
Dim pPixel As IPnt
Set pPixel = New DblPnt
For i = 0 To pMxDoc.FocusMap.LayerCount - 1
  If (TypeOf pMxDoc.FocusMap.Layer(i) Is IRasterLayer) Then
    Set pLayer = pMxDoc.FocusMap.Layer(i)
    Set pPixelBlock = pLayer.Raster.CreatePixelBlock(pBlockSize)

    Set pRasterProps = pLayer.Raster
    dXSize = pRasterProps.Extent.XMax - pRasterProps.Extent.XMin
    dYSize = pRasterProps.Extent.YMax - pRasterProps.Extent.YMin
    dXSize = dXSize / pRasterProps.Width
    dYSize = dYSize / pRasterProps.Height

    pPixel.x = (pPoint.x - pRasterProps.Extent.XMin) / dXSize
    pPixel.y = (pRasterProps.Extent.YMax - pPoint.y) / dYSize

    pLayer.Raster.Read pPixel, pPixelBlock
    For j = 0 To pPixelBlock.Planes - 1
      If (sPixelVals = "No Raster") Then
        sPixelVals = "("
      Else
        sPixelVals = sPixelVals & ", "
      End If
      vValue = pPixelBlock.GetVal(j, 0, 0)
      sPixelVals = sPixelVals & CStr(vValue)
    Next j
    If (sPixelVals <> "No Raster") Then sPixelVals = sPixelVals & ")"
    ThisDocument.Parent.StatusBar.Message(0) = "Raster value = " & sPixelVals
    Exit For
  End If
Next I

2

3

4

5

6
7

8

Add this code to the MouseMove event of a UIToolControl in ArcMap.

9

10
11

1

12

13

 IRasterLayer : ILayer

BandCount: Long
ColumnCount: Long
DataFrameExtent: IEnvelope
DisplayResolutionFactor: Long
FilePath: String
PrimaryField: Long
PyramidPresent: Boolean
Raster: IRaster
Renderer: IRasterRenderer
RowCount: Long
ShowResolution: Boolean
VisibleExtent: IEnvelope

CreateFromDataset (in RasterDataset:
IRasterDataset)

CreateFromFilePath (in FilePath: String)
CreateFromRaster (in Raster: IRaster)

 IPixelBlock : IUnknown

BytesPerPixel: Long
Height: Long

Width: Long

GetVal (in plane: Long, in X: Long, in
Y: Long) : Variant

PixelType (in plane: Long) : rstPixelType
Planes: Long
SafeArray (in plane: Long) : Variant

 IRaster : IUnknown

ResampleMethod: rstResamplingTypes

CreateCursor: IRasterCursor
CreatePixelBlock (in Size: IPnt) :

IPixelBlock
Read (in tlc: IPnt, in block: IPixelBlock)

4

6

The pixel block for the raster
location is populated.10



48 • Exploring ArcObjects • Volume 1

EXPORT CURRENT VIEW

Export current view

This sample takes the current active view
and exports it to a JPEG file. This code is

similar to the next sample, which prints the
active view to a PostScript printer.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

Exporter
IExporter

IJpegExporter Jpeg-
Exporter

 IExporter : IUnknown

ClipToGraphicExtent: Boolean
ExportFileName: String
FileExtension: String
Filter: String
Name: String

Resolution: Integer
PixelBounds: IEnvelope

StartExporting: Long
FinishExporting

CancelTracker
ITrackCancel  ITrackCancel : IUnknown

CancelOnClick: Boolean
CancelOnKeyPress: Boolean
CheckTime: Long
ProcessMessages: Boolean
Progressor: IProgressor
TimerFired: Boolean

Cancel
Continue: Boolean
Reset
StartTimer (in hWnd: Long, in

milliseconds: Long)
StopTimer

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim lScrRes As Long
lScrRes = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

Dim pExporter As IExporter
Set pExporter = New JpegExporter
pExporter.ExportFileName = "C:\Export.jpg"
pExporter.Resolution = lScrRes

Dim deviceRECT As tagRECT
deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

Dim pDriverBounds As IEnvelope
Set pDriverBounds = New Envelope

pDriverBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right, _
 deviceRECT.Top
pExporter.PixelBounds = pDriverBounds

Dim pCancel As ITrackCancel
Set pCancel = New CancelTracker

pMxDoc.ActiveView.Output pExporter.StartExporting, lScrRes, deviceRECT, _
 pMxDoc.ActiveView.Extent, pCancel

pExporter.FinishExporting

2

3

4

5

6

7

8

Add this code to the Click event of a command in ArcMap.

9

1

Geometry

Display

ArcMap

Output

For convenience, the
resolution of the screen
is set to a local variable.

2

A new JpegExporter object is
created and the IExporter
interface is obtained. The
filename and resolution are set.

3

The device rectangle is
stored as a local variable.4

A new envelope object is
created. This object will
represent the driver
bounds envelope.

5

The driver bounds envelope is populated
with the coordinates from the device
rectangle. This envelope is used to set
the IExporter PixelBounds property.

6

A new CancelTracker object is
created. This object will allow the
export process to be aborted.

7

A call to the active view's Output method writes the current view to
the exporter. Notice the hDC required by the Output method is
obtained by calling StartExporting on the Exporter.

8

Finally, the FinishExporting
method is called. This call ensures
that the drawing is completed and
the export file is closed.

9

IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect:
IEnvelope, in devRect: tagRECT, in
options: Long)

DeviceFrame: tagRECT

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

tagRECT

bottom: Long
Left: Long
Right: Long
Top: Long

Envelope

Geometry
IClone

IGeometry
ITransform2D

ISupportErrorInfo

IArea
IEnvelope

IEnvelope2
IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator
IZAware

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long, in

Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)

PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

OffsetZ (Z: Double)

The IMxDocument interface is
obtained from the ThisDocument
global variable.

1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry

hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

Filter: IDisplayFilter

DisplayTransformation:
IDisplayTransformation

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow



Chapter 1 • Introducing ArcObjects • 49

CancelTracker
ITrackCancel  ITrackCancel : IUnknown

CancelOnClick: Boolean
CancelOnKeyPress: Boolean
CheckTime: Long
ProcessMessages: Boolean
Progressor: IProgressor
TimerFired: Boolean

Cancel
Continue: Boolean
Reset
StartTimer (in hWnd: Long, in

milliseconds: Long)
StopTimer

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim lScrRes As Long
lScrRes = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

Dim pExporter As IExporter
Set pExporter = New JpegExporter
pExporter.ExportFileName = "C:\Export.jpg"
pExporter.Resolution = lScrRes

Dim deviceRECT As tagRECT
deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

Dim pDriverBounds As IEnvelope
Set pDriverBounds = New Envelope

pDriverBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right, _
 deviceRECT.Top
pExporter.PixelBounds = pDriverBounds

Dim pCancel As ITrackCancel
Set pCancel = New CancelTracker

pMxDoc.ActiveView.Output pExporter.StartExporting, lScrRes, deviceRECT, _
 pMxDoc.ActiveView.Extent, pCancel

pExporter.FinishExporting

2

3

4

5

6

7

8

Add this code to the Click event of a UIButtonControl in ArcMap.

9

1

Geometry

Display

A new envelope object
is created. This object
will represent the driver
bounds envelope.

5

A new CancelTracker object is
created. This object will allow the
export process to be aborted.

7

Envelope

Geometry
IClone

IGeometry
ITransform2D

ISupportErrorInfo

IArea
IEnvelope

IEnvelope2
IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator
IZAware

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long, in

Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)

PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

OffsetZ (Z: Double)



50 • Exploring ArcObjects • Volume 1

PRINT CURRENT VIEW

This sample takes the currently active view
and prints the file to a PostScript printer.

This code is similar to the previous sample,
which exports the active view to a JPEG file.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets

IDocumentDefaultSymbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

 IMxDocument : IUnknown

ActivatedView: IActiveView
ActiveView: IActiveView
ActiveViewCommand: ICommand
ContentsView (in Index: Long) :

IContentsView
ContentsViewCount: Long
ContextItem: IUnknown Pointer
CurrentContentsView: IContentsView
CurrentLocation: IPoint
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
DefaultTextFont: Font
DefaultTextFontSize: IFontSize
DelayUpdateContents: Boolean
FocusMap: IMap
Maps: IMaps
OperationStack: IOperationStack
PageLayout: IPageLayout
RelativePaths: Boolean
SearchTolerance: Double
SearchTolerancePixels: Long
SelectedItem: IUnknown Pointer
SelectedLayer: ILayer
StyleGallery: IStyleGallery
TableProperties: ITableProperties

AddLayer (in Layer: ILayer)
CanInsertObject (pEnabled: Boolean)
InsertObject
UpdateContents

ArcMap

Output

For convenience,
the resolution of
the screen is set to
a local variable.

2

A new PsPrinter object is
created and the IPrinter
interface is obtained.

3

The resolution of the
screen is then passed to
the printer.

6

For convenience, the
device rectangle is stored
as a local variable.

7
IDisplayTransformation:ITransformation

Bounds: IEnvelope
ConstrainedBounds: IEnvelope

FittedBounds: IEnvelope
ReferenceScale: Double
Resolution: Double
Rotation: Double
ScaleRatio: Double
SpatialReference: ISpatialReference
SuppressEvents: Boolean
Units: esriUnits
VisibleBounds: IEnvelope
ZoomResolution: Boolean

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

FromPoints (in pointDistance: Double) :
Double

ToMapPoint (in X: Long, in Y: Long) :
IPoint

ToPoints (in mapDistance: Double) :
Double

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

TransformRect (in mapRect:
IEnvelope, in devRect: tagRECT, in
options: Long)

DeviceFrame: tagRECT

 IActiveView : IUnknown

ExportFrame: tagRECT

ExtentStack: IExtentStack
FocusMap: IMap
FullExtent: IEnvelope
GraphicsContainer: IGraphicsContainer
IsMapActivated: Boolean

ShowRulers: Boolean
ShowScrollBars: Boolean
ShowSelection: Boolean
TipText (in X: Double, in Y: Double) :

String
Activate (hWnd: Long)
Clear
ContentsChanged
Deactivate
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
HitTestMap (in Location: IPoint) : IMap
IsActive: Boolean

PrinterChanged (in Printer: IPrinter)
Refresh

Extent: IEnvelope

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

ScreenCacheID (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

ScreenDisplay: IScreenDisplay
Selection: ISelection

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

OnMessage (in msg: Unsigned Long, in
wParam: Unsigned Machine Int, in
lParam: Long)

tagRECT

bottom: Long
Left: Long
Right: Long
Top: Long

A call to the active view's Output method exports the current view to
the printer. Notice the hDC required by the Output method is obtained
by calling the StartPrinting method of the Printer.

10

Finally, the FinishPrinting method
is called. This call ensures that the
drawing is completed and the
printer receives the plot.

11

The IMxDocument interface is
used to access the active view.1

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry

hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

Filter: IDisplayFilter

DisplayTransformation:
IDisplayTransformation

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

PrinterIClone
IPersistStream

IPrinter

PsPrinter

IColorCorrection
IFontMapEnvironment

IPsDriver
IPsDriver2
IPsPrinter

ISpotPlateCollection

 IPrinter : IUnknown

DriverName: String
FileExtension: String
Filter: String

PrintToFile: String

SpoolFileName: String
StepProgressor: IStepProgressor
Units: esriUnits

VerifyDriverSettings: Boolean

Name: String
Paper: IPaper
PrintableBounds: IEnvelope

Resolution: Integer

DoesDriverSupportPrinter (in
PrinterName: String) : Boolean

FinishPrinting

StartPrinting (in PixelBounds:
IEnvelope, in hDcPrinter: Long) : Long

QueryPaperSize (out Width: Double,
out Height: Double)



Chapter 1 • Introducing ArcObjects • 51

 IMxApplication : IUnknown

Display: IAppDisplay
Paper: IPaper
Printer: IPrinter
SelectionEnvironment:

ISelectionEnvironment

CopyToClipboard
Export

Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument

Dim lScrRes As Long
lScrRes = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

Dim pPrinter As IPrinter
Set pPrinter = New PsPrinter

Dim pMxApp As IMxApplication
Set pMxApp = ThisDocument.Parent

Set pPrinter.Paper = pMxApp.Paper
pPrinter.Resolution = lScrRes

Dim deviceRECT As tagRECT
deviceRECT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.DeviceFrame

Dim pDriverBounds As IEnvelope
Set pDriverBounds = New Envelope
pDriverBounds.PutCoords deviceRECT.Left, deviceRECT.bottom, deviceRECT.Right, _
 deviceRECT.Top

Dim pCancel As ITrackCancel
Set pCancel = New CancelTracker

pMxDoc.ActiveView.Output pPrinter.StartPrinting(pDriverBounds, 0), lScrRes, _
 deviceRECT, pMxDoc.ActiveView.Extent, pCancel
pPrinter.FinishPrinting

2

3

4

5
6

7

8

Add this code to the Click event of a UIButtonControl in ArcMap.

9

10

11

1

Geometry

Display

The IMxApplication interface on the
application object is required in order to get the
page details. This interface is obtained by
performing a QueryInterface on the Parent
property of the ThisDocument variable.

4

The paper object used
by the application is set
into the printer object.

5

A new envelope object is created.
This object will represent the driver
bounds. The driver bounds envelope
is populated with the coordinates
from the device rectangle. This
envelope is used to set the IPrinter
PixelBounds property.

8A new CancelTracker object is
created. This object allows the
printing process to be aborted.

9

Envelope

Geometry
IClone

IGeometry
ITransform2D

ISupportErrorInfo

IArea
IEnvelope

IEnvelope2
IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator
IZAware

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long, in

Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)

PutCoords (XMin: Double, YMin: Double,
XMax: Double, YMax: Double)

PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

OffsetZ (Z: Double)

CancelTracker
ITrackCancel  ITrackCancel : IUnknown

CancelOnClick: Boolean
CancelOnKeyPress: Boolean
CheckTime: Long
ProcessMessages: Boolean
Progressor: IProgressor
TimerFired: Boolean

Cancel
Continue: Boolean
Reset
StartTimer (in hWnd: Long, in

milliseconds: Long)
StopTimer



52 • Exploring ArcObjects • Volume 1

DISPLAY MAP EXTENT IN GXVIEW AS ENVELOPE

This command takes the current displayed
data layer and draws the data extent in a

thick red line in the preview.

 IEnvelope : IGeometry

Depth: Double
Height: Double
LowerLeft: IPoint
LowerRight: IPoint
MinMaxAttributes: _esriPointAttributes
MMax: Double
MMin: Double
UpperLeft: IPoint
UpperRight: IPoint
Width: Double
XMax: Double
XMin: Double
YMax: Double
YMin: Double
ZMax: Double
ZMin: Double

CenterAt (p: IPoint)
DefineFromPoints (Count: Long, in

Points: IPoint)
DefineFromWKSPoints (Count: Long,

in Points: _WKSPoint)
Expand (dx: Double, dy: Double,

asRatio: Boolean)
ExpandM (dm: Double, asRatio:Boolean)
ExpandZ (dz: Double, asRatio: Boolean)
Intersect (inEnvelope: IEnvelope)
Offset (X: Double, Y: Double)
OffsetM (M: Double)
OffsetZ (Z: Double)
PutCoords (XMin: Double, YMin: Double,

XMax: Double, YMax: Double)
PutWKSCoords (e: _WKSEnvelope)
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

QueryWKSCoords (out e:
_WKSEnvelope)

Union (inEnvelope: IEnvelope)

 IGxPreview : IUnknown

SupportedViewClassIDs: ISet
View: IGxView
ViewClassID: IUID

 IGxView : IUnknown

ClassID: IUID
DefaultToolbarCLSID: IUID
hWnd: Long
Name: String
SupportsTools: Boolean

Activate (in Application: IGxApplication,
in Catalog: IGxCatalog)

Applies (in Selection:IGxObject):Boolean
Deactivate
Refresh
SystemSettingChanged (in Flag: Long,

in section: String)

Geometry

Framework

ArcMap

ArcCatalog

The IGxApplication interface
is obtained by accessing the
Applcation global variable.

1

If the current view is not a
Preview, the procedure is exited.2

To access the preview-specific
properties, the IGxPreview
interface is accessed through a
QueryInterface call on the
IGxView interface.

3

There are potentially many types of
previews. If it is not a geographic preview,
the procedure is exited.

4

The extent of the currently
displayed layer is assigned
to an envelope variable.

5

Application

IApplication
IDockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

GxApplicationIGxApplication
IGxCatalogEvents

IGxCatalogEventsDisp
IGxViewContainer

 IGxApplication : IUnknown

AreaOfInterest: IEnvelope
CanDeleteSelection: Boolean
CanRenameSelection: Boolean
Catalog: IGxCatalog
Location: String
SelectedObject: IGxObject
Selection: IGxSelection
TreeView: IGxTreeView
View: IGxView
ViewClassID: IUID

DeleteSelection
ExpandSelection
Refresh (in startingPath: String)
RenameSelection
ShowContextMenu (in X: Long,

in Y: Long)

IGxGeographicView : IUnknown

Map: IMap
MapDisplay: IScreenDisplay

DisplayedLayer: ILayer

 ILayer : IUnknown

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel:
ITrackCancel)

Cached: Boolean
MaximumScale: Double
MinimumScale: Double

ShowTips: Boolean
SpatialReference: ISpatialReference
SupportedDrawPhases: Long
TipText (in X: Double, in Y: Double,

in Tolerance: Double) : String
Valid: Boolean
Visible: Boolean

Name: String

AreaOfInterest: IEnvelope

 IScreenDisplay : IDisplay

ActiveCache: Integer
CacheCount: Integer
CacheMemDC (in Index: Integer) : Long
CancelTracker: ITrackCancel
hWnd: Long
IsFirstCacheTransparent: Boolean
IsFramed: Boolean
ScaleContents: Boolean
SuppressResize: Boolean
UseScrollbars: Boolean
WindowDC: Long

AddCache: Integer
DoScroll (in xDelta: Long, in yDelta:

Long, in updateScreen: Boolean)
DrawCache (in hDC: Long, in Index:

Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

IsCacheDirty (in cacheIndex: Integer) :
Boolean

PanMoveTo (in mouseLocation: IPoint)
PanStart (in mouseLocation: IPoint)
PanStop: IEnvelope
RemoveAllCaches
RemoveCache (in cacheID: Integer)
RotateMoveTo (in pPoint: IPoint)
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
RotateStop: Double
RotateTimer
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

StartRecording
StopRecording
TrackPan
TrackRotate
UpdateWindow

 IDisplay : IUnknown

ClipEnvelope: IEnvelope
ClipEnvelopes: ISet
ClipGeometry: IGeometry
DisplayTransformation:

IDisplayTransformation
Filter: IDisplayFilter
hDC: Long
hPalette: Long
IlluminationProps: IIlluminationProps
SuppressEvents: Boolean

DrawMultipoint (in Multipoint: IGeometry)
DrawPoint (in Point: IGeometry)
DrawPolygon (in Polygon: IGeometry)
DrawPolyline (in Polyline: IGeometry)
DrawRectangle (in rectangle: IEnvelope)
DrawText (in Shape: IGeometry, in

Text: String)
FinishDrawing
Progress (in VertexCount: Long)
SetSymbol (in sym: ISymbol)
StartDrawing (in hDC: Long, in cacheID:

Integer)

Finally, with the symbol and
geometry of the extent obtained,
the extent is drawn on the screen.

11



Chapter 1 • Introducing ArcObjects • 53

Color
IClone
IColor  IColor : IUnknown

CMYK: Long
NullColor: Boolean
RGB: Long
Transparency: Unsigned Char
UseWindowsDithering: Boolean

GetCIELAB (out l: Double, out
a: Double, out b: Double)

SetCIELAB (in l: Double, in a:
Double, in b: Double)

RGBColor
IRGBColor

Dim pGxApp As IGxApplication
Set pGxApp = Application

Dim pGxView As IGxView
Set pGxView = pGxApp.View
If (TypeOf pGxView Is IGxPreview) Then
  Dim pGxPreview As IGxPreview
  Set pGxPreview = pGxView

  If (TypeOf pGxPreview.View Is IGxGeographicView) Then
    Dim pGxGeoView As IGxGeographicView
    Set pGxGeoView = pGxPreview.View

    Dim pEnv As IEnvelope
    Set pEnv = pGxGeoView.DisplayedLayer.AreaOfInterest

    Dim pLineSymbol As ISimpleLineSymbol
    Set pLineSymbol = New SimpleLineSymbol

    Dim pColor As IColor
    Set pColor = New RgbColor

    pColor.RGB = vbRed
    With pLineSymbol
      .Color = pColor
      .Width = 2
    End With

    Dim pFillSymbol As ISimpleFillSymbol
    Set pFillSymbol = New SimpleFillSymbol

    With pFillSymbol
      .Style = esriSFSHollow
      .Outline = pLineSymbol
    End With

    With pGxGeoView.MapDisplay
      .StartDrawing 0, esriNoScreenCache
      .SetSymbol pFillSymbol
      .DrawRectangle pEnv
      .FinishDrawing
    End With
  End If
End If

1

2

3

4

5

6

7

Add this to the Click event of a UIButtonControl in ArcCatalog.

8

9

10

11

Display

A line symbol is created for later
use as the fill symbol's outline.6

An RGB color object is created and
its color set to red.7

This color object is
assigned to the line
symbol, along with
a width of 2.

8

The fill symbol is
created.9

Symbol
IClone

IPersist
IPersistStream

ISymbol

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

ILineSymbol: IUnknown

Color: IColor
Width: Double

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

 IFillSymbol : IUnknown

Color: IColor
Outline: ILineSymbol

SimpleFillSymbol
ISimpleFillSymbol ISimpleFillSymbol : IFillSymbol

Style: tagesriSimpleFillStyle

SimpleLineSymbol
ISimpleLineSymbol ISimpleLineSymbol : ILineSymbol

Style: tagesriSimpleLineStyle

The line symbol created
in step 6 is assigned to
the fill symbol's outline,
and the style of the fill
symbol is set to hollow.

10



54 • Exploring ArcObjects • Volume 1

EDIT FEATURE CLASS SCHEMA

This code sample inspects the selected
objects in the ArcCatalog browser and if
they are feature classes in a geodatabase,

makes an edit to their alias name.

 IGxObject : IUnknown

BaseName: String
Category: String
ClassID: IUID
FullName: String
InternalObjectName: IName
IsValid: Boolean
Name: String
Parent: IGxObject

Attach (in Parent: IGxObject, in
pCatalog: IGxCatalog)

Detach
Refresh

 IGxCatalog : IUnknown

FileFilter: IGxFileFilter

Close
ConnectFolder (in folderPath: String) :

IGxFolder
ConstructFullName (in Object:

IGxObject) : String
DisconnectFolder (in folderPath: String)
GetObjectFromFullName (in FullName:

String, out numFound: Long) : Variant
ObjectAdded (in Object: IGxObject)
ObjectChanged (in Object: IGxObject)
ObjectDeleted (in Object: IGxObject)
ObjectRefreshed (in Object: IGxObject)

Location: String
SelectedObject: IGxObject
Selection: IGxSelection

 IGxSelection : IUnknown

Count: Long
DelayEvents: Boolean
FirstObject: IGxObject
Location: IGxObject
SelectedObjects: IEnumGxObject

Clear (in initiator: IUnknown Pointer)
IsSelected (in Object: IGxObject) :

Boolean
Select (in Object: IGxObject, in

appendToExistingSelection: Boolean,
in initiator: IUnknown Pointer)

SetLocation (in Location: IGxObject,
pInitiator: IUnknown Pointer)

Unselect (in Object: IGxObject, in
initiator: IUnknown Pointer)

Framework

For convenience, the
IGxCatalog interface is
stored as a local variable.

2

The selection of
GxObjects is obtained
from the Catalog.

3

The SelectedObjects property is accessed
through a QueryInterface for an enumerator.
This will allow you to iterate over all the
selected objects within the Catalog.

4

Start iterating by asking the
enumerator for its next object.
This is repeated until the
enumerator returns nothing.

5

Check for Null. If it is Null, use
the selected object from the
Catalog and not the enumerator.

6
The type of the GxObject is
checked. If it supports the
IGxDataset interface, its type is a
feature class, and the workspace
type is filesystem, it is processed.
Otherwise it is skipped.

7

ArcCatalog

The IGxApplication interface
is obtained by accessing the
Application global variable.

1

Application

IApplication
IDockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

GxApplicationIGxApplication
IGxCatalogEvents

IGxCatalogEventsDisp
IGxViewContainer

 IGxApplication : IUnknown

AreaOfInterest: IEnvelope
CanDeleteSelection: Boolean
CanRenameSelection: Boolean
Catalog: IGxCatalog
Location: String
SelectedObject: IGxObject
Selection: IGxSelection
TreeView: IGxTreeView
View: IGxView
ViewClassID: IUID

DeleteSelection
ExpandSelection
Refresh (in startingPath: String)
RenameSelection
ShowContextMenu (in X: Long,

in Y: Long)

 IEnumGxObject : IUnknown

Reset
Next: IGxObject

Notice the error handling
code that checks for a
specific error return value.

13



Chapter 1 • Introducing ArcObjects • 55

Edit Feature Class Schema

This code sample inspects the selected
objects in the ArcCatalog browser and if
they are feature classes in a geodatabase,

makes an edit to their alias name.

 IGxObject : IUnknown

BaseName: String
Category: String
ClassID: IUID
FullName: String
InternalObjectName: IName
IsValid: Boolean
Name: String
Parent: IGxObject

Attach (in Parent: IGxObject, in
pCatalog: IGxCatalog)

Detach
Refresh

 IGxCatalog : IUnknown

FileFilter: IGxFileFilter

Close
ConnectFolder (in folderPath: String) :

IGxFolder
ConstructFullName (in Object:

IGxObject) : String
DisconnectFolder (in folderPath: String)
GetObjectFromFullName (in FullName:

String, out numFound: Long) : Variant
ObjectAdded (in Object: IGxObject)
ObjectChanged (in Object: IGxObject)
ObjectDeleted (in Object: IGxObject)
ObjectRefreshed (in Object: IGxObject)

Location: String
SelectedObject: IGxObject
Selection: IGxSelection

 IGxSelection : IUnknown

Count: Long
DelayEvents: Boolean
FirstObject: IGxObject
Location: IGxObject
SelectedObjects: IEnumGxObject

Clear (in initiator: IUnknown Pointer)
IsSelected (in Object: IGxObject) :

Boolean
Select (in Object: IGxObject, in

appendToExistingSelection: Boolean,
in initiator: IUnknown Pointer)

SetLocation (in Location: IGxObject,
pInitiator: IUnknown Pointer)

Unselect (in Object: IGxObject, in
initiator: IUnknown Pointer)

Dim pGxApp As IGxApplication
Set pGxApp = Application

Dim pGxCatalog As IGxCatalog
Set pGxCatalog = pGxApp.Catalog

Dim pGxSelection As IGxSelection
Set pGxSelection = pGxCatalog.Selection

Dim pGxObjects As IEnumGxObject
Set pGxObjects = pGxSelection.SelectedObjects
pGxObjects.Reset

Dim pGxObject As IGxObject
Set pGxObject = pGxObjects.Next

If (pGxObject Is Nothing) Then Set pGxObject =
pGxCatalog.SelectedObject

Dim pGxDataset As IGxDataset
Dim pObjectClass As IObjectClass
Dim pClassSchemaEdit As IClassSchemaEdit
Dim pSchemaLock As ISchemaLock
Do Until (pGxObject Is Nothing)
  If (TypeOf pGxObject Is IGxDataset) Then
    Set pGxDataset = pGxObject
    If ((pGxDataset.Type = esriDTFeatureClass) And _
        (pGxDataset.Dataset.Workspace.Type <> _
        esriFileSystemWorkspace)) Then
      Set pObjectClass = pGxDataset.Dataset
      Set pSchemaLock = pObjectClass

      Set pClassSchemaEdit = pObjectClass
      On Error GoTo lockDB
      pSchemaLock.ChangeSchemaLock esriExclusiveSchemaLock
      On Error GoTo 0
      pClassSchemaEdit.AlterAliasName "ArcObjects Updated Alias"

      pSchemaLock.ChangeSchemaLock esriSharedSchemaLock
    End If
  End If
  Set pGxObject = pGxObjects.Next
Loop

Exit Sub

lockDB:

If (Err.Number = FDO_E_SCHEMA_LOCK_CONFLICT) Then
  MsgBox "Unable to obtain exclusive database lock",
vbExclamation + vbOKOnly, "Database Lock Error"
Else
  MsgBox "Unknown error getting schema lock", vbExclamation +
vbOKOnly, "Database Error"
End If
Err.Clear

1

2

3

4

5

6

7

Add this to the Click event of a command in ArcCatalog.

8

9

10

11

12

13

Geodatabase
Framework

For convenience, the
IGxCatalog interface is
stored as a local variable.

2

The selection of
GxObjects is obtained
from the Catalog.

3

The SelectedObjects property is accessed
through a QueryInterface for an enumerator.
This will allow you to iterate over all the
selected objects within the Catalog.

4

Start iterating by asking the
enumerator for its next object.  This
is repeated until the enumerator
returns nothing.

5

Check for Null. If it is Null, use
the selected object from the
Catalog and not the enumerator.

6
The type of the GxObject is
checked. If it supports the
IGxDataset interface, its type is a
feature class, and the workspace type
is filesystem, it is processed.
Otherwise it is skipped.

7

To make the schema
change, you must have a
schema lock. The schema
lock interface is accessed
through a
QueryInterface from the
IObjectClass interface.

The method to edit the schema is
on the IClassSchemaEdit
interface. This is accessed through
a QueryInterface from the
IObjectClass interface.

9

It is possible that when you ask the database
for an exclusive lock it will fail because another
user is editing, hence you must prepare for this
with a specialized error handler.

10

ArcCatalog

e IGxApplication interface
btained by accessing the
plication global variable.

1

Application

IApplication
DockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

GxApplicationIGxApplication
IGxCatalogEvents

IGxCatalogEventsDisp
IGxViewContainer

 IGxApplication : IUnknown

AreaOfInterest: IEnvelope
CanDeleteSelection: Boolean
CanRenameSelection: Boolean
Catalog: IGxCatalog
Location: String
SelectedObject: IGxObject
Selection: IGxSelection
TreeView: IGxTreeView
View: IGxView
ViewClassID: IUID

DeleteSelection
ExpandSelection
Refresh (in startingPath: String)
RenameSelection
ShowContextMenu (in X: Long, in

Y: Long)

 IEnumGxObject : IUnknown

Reset
Next: IGxObject

 IGxDataset : IUnknown

Dataset: IDataset
DatasetName: IDatasetName
Type: esriDatasetType

 IClassSchemaEdit : IUnknown

AlterClassExtensionCLSID (in
ClassExtensionCLSID: IUID, in
classExtensionProperties:IPropertySet)

AlterDefaultValue (in FieldName: String,
in Value: Variant)

AlterDomain (in FieldName: String, in
Domain: IDomain)

AlterFieldAliasName (in FieldName:
String, in AliasName: String)

AlterFieldModelName (in FieldName:
String, in ModelName: String)

AlterInstanceCLSID (in InstanceCLSID:
IUID)

AlterModelName (in Name: String)
RegisterAsObjectClass (in

suggestedOIDFieldName: String, in
ConfigKeyword: String) : Long

AlterAliasName (in Name: String)

 IDataset : IUnknown

BrowseName: String
Category: String
FullName: IName
Name: String
PropertySet: IPropertySet
Subsets: IEnumDataset
Type: esriDatasetType

CanCopy: Boolean
CanDelete: Boolean
CanRename: Boolean
Copy (in copyName:String,in

copyWorkspace:IWorkspace):IDataset
Delete
Rename (in Name: String)

Workspace: IWorkspace

 IWorkspace : IUnknown

ConnectionProperties: IPropertySet
DatasetNames (in DatasetType:

esriDatasetType) : IEnumDatasetName
Datasets (in DatasetType:

esriDatasetType) : IEnumDataset

ExecuteSQL (in sqlStmt: String)
Exists: Boolean
IsDirectory: Boolean

PathName: String
Type: esriWorkspaceType
WorkspaceFactory: IWorkspaceFactory

Enumeration esriDatasetType

 1 - esriDTAny
 2 - esriDTContainer
 3 - esriDTGeo
 4 - esriDTFeatureDataset
 5 - esriDTFeatureClass
 6 - esriDTPlanarGraph
 7 - esriDTGeometricNetwork
 9 - esriDTText
10 - esriDTTable
11 - esriDTRelationshipClass
12 - esriDTRasterDataset
13 - esriDTRasterBand
14 - esriDTTin
15 - esriDTCadDrawing
16 - esriDTRasterCatalog

Enumeration esriWorkspaceType

0 - esriFileSystemWorkspace
1 - esriLocalDatabaseWorkspace
2 - esriRemoteDatabaseWorkspace

 ISchemaLock : IUnknown

ChangeSchemaLock (in schemaLock:
esriSchemaLock)

GetCurrentSchemaLocks (out
schemaLockInfo:
IEnumSchemaLockInfo)

The schema edit is made.

11

The exclusive lock is
released.12

 IObjectClass : IClass

AliasName: String
ObjectClassID: Long
RelationshipClasses (in role: esriRelRole)

: IEnumRelationshipClass

Notice the error handling
code that checks for a
specific error return value.

13

8



56 • Exploring ArcObjects • Volume 1

ARCOBJECTS PROBLEM-SOLVING GUIDE

The ArcObjects library is a comprehensive set of COM components de-
signed to provide developers with the ability to extend and customize
ArcGIS applications such as ArcMap and ArcCatalog. The ArcObjects
library consists of over 1,000 classes and 2,000 interfaces that are visually
documented in several dozen object model diagrams.

With this extensive set of classes, you can create a wide variety of
customizations and custom applications to extend existing ArcGIS applica-
tions. However, as you begin developing with ArcObjects, you may find the
extent of the ArcObjects library overwhelming, and it may be difficult to
know where to begin. The goal of this problem-solving guide is to present
a methodology to help you solve real-world ArcObjects programming tasks.

The guide helps you describe and categorize your task and documents
how to use the help resources and tools to solve the problem program-
matically. In the end, the guide will not only help solve individual prob-
lems but will also help you understand and navigate the structure of
ArcObjects.

The guide is broken into three parts. Part one is designed to help you
define the ArcObjects programming task as clearly as possible. Part two
illustrates how to use the help resources to locate the correct object
model diagram you should start with. Part three provides an example of
how to navigate the object model diagrams in order to assemble the code
required to solve the task.

The following steps outline each part of the problem-solving guide:

PART ONE: DEFINE THE ARCOBJECTS PROGRAMMING TASK

1.  Describe the problem in ArcObjects terms.

2.  Identify subtasks.

3.  Decide where to write the code.

4.  Search for a related sample or recommended methodology.

PART TWO: LOCATE THE CORRECT OBJECT MODEL

1.  Identify a subtask.

2.  Extract keywords.

3.  Search for the correct object model diagrams.

4.  Review all related documentation.

PART THREE: NAVIGATE THE OBJECT MODEL DIAGRAM

1.  Review the structure of the object model diagram.

2.  Trace the flow between classes and assemble code.

Although there are three parts, this type of problem solving is really one
continuous process. You may find it necessary to revisit some steps as
you gain knowledge about a particular topic by reading the pages in this
book and by exploring the wide variety of code samples available.

ArcObjects programming task

Describe problem
in ArcObjects terms

Decide where to
write code

Divide task
into subtasks

Search for a
related sample

Part I: Define the ArcObjects
programming task

Part II: Find the
correct object
model diagram

Subtask 1 ...

Subtask 2 ...

Subtask 3 ...

Extract keywords

Search for the
correct object

model diagrams

Review all related
documentation

Review the
structure of the

object model
diagram

Trace the flow
between classes and

write code

Part III: Navigate the
object model diagram

Steps of the ArcObjects
problem solving guide



Chapter 1 • Introducing ArcObjects • 57

ARE YOU READY?

Before getting started with this problem-solving guide, you should be
familiar with the basic terminology behind COM and ArcObjects, and you
should know how to use the available help resources and tools. Here is a
checklist of some topics discussed earlier in this chapter that should
already be familiar to you:

• How to program with COM interfaces and classes in Visual Basic

• How to use the ArcObjects Developer Help system

• How to read and interpret the ArcObjects object model diagrams with
Acrobat® Reader

• How to use ESRI’s object browser, EOBrowser, to inspect the structure
of ArcObjects not visible with other object browsers

• How to navigate this book using the index, table of contents, and
inserted ArcGIS object model diagrams

• How to access continually updated information at ESRI’s technical
resource Web site, www.esri.com/arcobjectsonline

It is particularly important to understand the previous section in this
chapter along with the illustrated code samples before starting with this
problem-solving guide.

USING THE ARCOBJECTS PROBLEM-SOLVING GUIDE

This problem-solving guide uses a real-world ArcObjects programming
problem to explain the details of each step. To learn the methodology
behind this guide, first follow the instructions and complete the real-
world programming task defined below, then define your own problem
and use these steps to solve your own development task.

This problem-solving guide will solve this example task: Add a dataset
called States to ArcMap.

PART ONE: DEFINE THE ARCOBJECTS PROGRAMMING TASK

The most important aspect of successfully using the problem-solving
guide is being able to define the task itself. A task may originate from a
real-world GIS problem at your workplace or may be the result of an
enhancement you would like to make to the existing ArcGIS system. A
task may be as simple as adding a UIToolControl to the user interface of
ArcMap to zoom in on the map or as detailed as creating a custom fea-
ture for the geodatabase. In either case, in order to define the task as
completely as possible, you should consider the following steps:

1.  Describe the problem using ArcGIS terminology.

2.  Divide the task into smaller subtasks.

3.  Decide where to compile the source code.

4.  Find an existing sample or recommended methodology.

ARCOBJECTS PROBLEM-SOLVING GUIDE

The best way to learn ArcObjects is to first
become familiar with the fundamental ArcGIS

and COM terminology and concepts, then learn
how to effectively use all of the help resources,
tools, documentation, and samples that are at

your disposal. This book provides a good
foundation for the basic terms and concepts,

and this section focuses specifically on how to
use the help resources to solve ArcObjects-

related programming tasks.

If you are not comfortable with any of these
topics, concepts, resources, or tools, go back and
review the previous sections of this chapter. For
more detailed information on Visual Basic and
COM programming techniques, you can also

reference Chapter 2, ‘Developing with
ArcObjects’.

This guide does not attempt to provide an all-
encompassing method for every ArcObjects

programming task. It simply provides a method-
ology that can help you clearly define your initial

objective and make effective use of the many
resources and tools available.



58 • Exploring ArcObjects • Volume 1

Describe the problem in ArcGIS terms

When defining the problem, it is useful to frame the task with ArcGIS
terminology and to describe the actions as completely as possible. This
will help you find topics in the help system and the relevant components
in ArcObjects.

In many cases, this step will also force you to go back and review impor-
tant background topics and reading materials related to the task at hand.
From this research, you will gain further insight about how a particular
task can be solved.

For this example, the original task description is Add a dataset called
States to ArcMap.

Using ArcGIS terminology, this statement could be expanded like this:
Access the States feature class from a personal geodatabase and add it to
ArcMap.

The most noticeable change to the description is that it has been ex-
panded by identifying the datasets involved and by using the proper
ArcObjects terminology. For example, the dataset named States has been
more accurately defined as a feature class that resides in an existing
personal geodatabase (stored in a Microsoft Access database).

Another important change is that the actions in the description have also
been more completely defined. It now reveals the fact that it will be
necessary to open the database first and then add a feature class in it to
ArcMap. As you will see in the next step, it is important to identify these
actions, as they can be treated as two separate programming tasks when
building the final code.

Define subtasks

This step forces you to revisit the original task description and determine
if it can be broken down into smaller, more manageable subtasks. This
process allows you to focus on smaller parts of the original problem at
one time and, therefore, smaller sections of the ArcObjects object model
diagrams when it comes time to write code. The easiest way to identify
subtasks is to look for verbs or action words that are hidden in the de-
scription. From the original task description, two subtasks can be easily
identified.

From your expanded statement—Access the States feature class from a
personal geodatabase and add it to ArcMap—you can identify two
subtasks:

• Access the States feature class.

• Add the new layer to the map.

Each subtask will be solved individually as you traverse through parts
two and three of this guide. This is important because it enables you to
focus on small parts of the problem and smaller sections of the object
model diagrams.

ARCOBJECTS PROBLEM-SOLVING GUIDE

To become familiar with basic ArcGIS terminol-
ogy, refer to these ESRI books: Getting Started

with ArcGIS, Building a Geodatabase, and
Modeling Our World, as well as the other

resources mentioned earlier.



Chapter 1 • Introducing ArcObjects • 59

Decide where to write the code

With the problem description and subtasks defined, you need to decide
where to write the code and how to provide the functionality to end
users.

Remember that where you test code and where you write the final code
are two different issues. During the testing and initial design phase, it is
always recommended to start writing code as a VBA macro in either
ArcMap or ArcCatalog. There, you can easily assemble, test, and debug
the source and experiment with any number of classes or interfaces. After
completing the testing phase, you can then decide to leave the code as a
VBA macro or move it to another format.

Deciding where to write the final application code can be a complicated
matter, and as you gain experience developing with ArcObjects, your
decision making will improve. In general, the answer is governed by the
type of application you are developing and how you want to deliver the
functionality to end users.

In general, there are three ways to write ArcObjects code:

• As a VBA macro in an ArcGIS application

• As an ActiveX COM component such as a DLL or OCX

• As a standalone EXE

You should also note that browsing the samples and associated docu-
mentation might help you determine where to locate your code. This is
covered in detail in the next step.

Writing VBA macros in ArcGIS applications

As mentioned, you should start development by using the VBA environ-
ment in one of the existing ArcGIS applications. VBA is a simple pro-
gramming language with many utilities, such as design time code comple-
tion and the Object Browser, that will help you assemble code quickly.

Here are some more reasons to choose the VBA environment:

• It’s fast and easy to create, test, and debug macros inside ArcMap and
ArcCatalog.

• The standard ESRI type libraries are already referenced for you.

• Important global variables, such as the Application and Document, are
available.

• It’s simple to assemble UI forms using VBA and ActiveX® components.

• It’s straightforward to integrate VBA code with new ArcObjects
UIControls.

• It’s relatively easy to migrate VBA code to VB ActiveX DLL projects.

• Many code samples available in the help system are macros that can
be cut, pasted, and run with the VBA environment.

ARCOBJECTS PROBLEM-SOLVING GUIDE

You should always begin by trying to write
ArcObjects code in the VBA environment in

ArcMap or ArcCatalog. If necessary, this code
can be moved to a different development
environment before final compilation and

distribution.

For information about how to get started with
the VBA environment, see the VBA topic in this

chapter as well as related topics in the
ArcObjects Developer Help system.



60 • Exploring ArcObjects • Volume 1

After the testing phase, you can easily save the VBA code into a
Normal.mxt, Project.mxd, or custom Project.mxt file. Projects, documents,
and templates can then be delivered to end users so they can take advan-
tage of the new functionality your application provides. (See the topic on
customizing with documents and templates in Chapter 3, ‘Customizing the
user interface’.)

Writing ActiveX COM components

If you wish to use a programming language other than VBA or if you
want to package ArcObjects functionality into a COM DLL, EXE, or OCX,
you will have to work outside of the VBA development environment.
This approach generally requires creating a project, referencing the
ArcObjects type library, adding code, then compiling the source into a
binary file.

Writing ActiveX COM components should be done when you want to
extend the existing ArcObjects architecture by adding new custom com-
ponents. The process requires implementing one or more ArcObjects
interfaces in the new object (see the topic on creating COM components
in Chapter 2, ‘Developing with ArcObjects’).

Unlike working in the VBA environment, all new components require
Component Category registration in order to work correctly (see the topic
on the Component Category manager in Chapter 2, ‘Developing with
ArcObjects’).

These are some advantages of building custom components:

• They can be easily delivered to end users via custom setup programs.

• You can hide ArcObjects code in a binary file and then deliver the
functionality to end users with a setup program.

• You can extend and customize virtually every aspect of the ArcGIS
technology.

Components can be broadly categorized into two areas of customization:
those that reside at the application level, such as custom buttons,
toolbars, windows, and extensions, and those that reside at the
geodatabase level, such as custom feature class extensions and custom
features. Some of these more advanced customizations cannot be accom-
plished through the VBA environment.

The main disadvantage of working outside of the VBA environment is
that you will have to acquire and use another COM-compliant develop-
ment tool. Another consideration is the fact that you do not have direct
access to the Application and ThisDocument global variables.

The development tool you choose must support the creation of new
components as well as the implementation of COM interfaces in order to
acquire a hook back into the ArcGIS applications (for more details, see
Chapter 3, ‘Customizing the user interface’). Interfaces that provide this
functionality will allow you to acquire references to the Application and
ThisDocument global variables, just as if you were working in the VBA

ARCOBJECTS PROBLEM-SOLVING GUIDE

This approach of writing ActiveX COM compo-
nents must be taken if you wish to extend the

existing ArcObjects architecture. Custom
components can reside at the application or

geodatabase level.



Chapter 1 • Introducing ArcObjects • 61

environment. Another disadvantage is that it is often more difficult to
debug the code (see the topic on getting started with VBA in Chapter 2,
‘Developing with ArcObjects’).

Standalone applications

ArcObjects can be used to write standalone applications. This generally
requires creating a project, referencing the ArcObjects type library, then
assembling the required code to support the functionality of the applica-
tion.

These are some advantages of building standalone applications:

• You can use the ESRI ArcObjects Map control to simplify the embed-
ding of ArcObjects functionality in your application.

• You can design a highly customized user interface specific to your
application.

• You can quickly create small, lightweight applications.

These are the disadvantages of building standalone applications:

• You cannot take advantage of the extensive functionality that ESRI has
built into the existing ArcGIS applications such as ArcMap or
ArcCatalog.

• If you are not using the Map control, you will have to provide your
own map display for visual applications.

• You will have to design your own data loading and layer management
tools.

• You cannot use ArcMap documents or templates to their fullest capacity.

• You cannot take advantage of the components that give you the ability
to extend the existing ArcMap and ArcCatalog framework.

• None of the extensions, including the Editor, can be used.

Although it is possible, it is not recommended to create standalone appli-
cations if the functionality you desire can be realized by extending exist-
ing ArcGIS applications such as ArcMap and ArcCatalog. All ArcGIS appli-
cations share the same application framework, designed to be extended
by third-party developers.

If you create a standalone application, you have a significantly higher
development effort. The Map control mitigates, but does not eliminate,
this additional effort. Standalone applications are appropriate only for
highly specialized implementations.

Of the three options for writing code—as VBA macros in ArcMap or
ArcCatalog, as ActiveX COM components, or as standalone applications—
the example used in this problem-solving guide, adding a dataset called
States to ArcMap, will simply be run as a VBA macro stored in a map
document (.mxd file).

ARCOBJECTS PROBLEM-SOLVING GUIDE



62 • Exploring ArcObjects • Volume 1

Find a related sample or recommended methodology

The last step is to search all of the available resources for a code sample
and to look for any documentation that may be related to the task at
hand. To accomplish this, you will need to make use of the help re-
sources and tools. As you may already know, there is often more than
one way to accomplish a programming task. The recommendation here is
to search the available resources for similar implementations in order to
help you decide how to go about solving the problem.

The easiest way to locate a sample is to search using the ArcObjects
Developer Help system.

1.  Start the ArcObjects Developer Help system.

2.  Click the Search tab and type “Add”.

3.  Sort by clicking the “Title” field. You can sort by location
as well.

4.  Browse down until you find “samples” and until you
locate the “Add a shapefile programmatically” sample.
Open the page and study the sample.

5.  Click the Contents tab. This reveals the location of the
sample. Browse the other samples in this folder structure.
Make note of the location of the sample.

6.  Click the Favorites tab, give the current topic a title, and
add the sample to your favorites list.

Unfortunately, in this case it was not possible to find a sample that solves
the exact problem, but a sample was found that relates to the problem.
The sample found illustrates how to open and load a shapefile into
ArcMap. Since you are not ready to write code at this point, the sample
was simply stored in the favorites list so that it can be referenced later on.
This will still prove to be a valuable step later on when writing code in
the final steps.

Whether a sample was located or not, it is a good idea to look for back-
ground information related to the current task. The ArcObjects Developer
Help system contains some topics that you might find valuable in the

Getting Started section. These pages provide some useful
information, such as the basic principles related to working
with ArcObjects in VB and VBA. Although the documenta-
tion doesn’t relate to the problem description, it still relates
to the overall task since this example will be written as a
VBA macro. Therefore, it is a good idea to review this
documentation.

1.  Open the Getting Started Page in the ArcObjects De-
velop Help system.

2.  Review the documentation related to working with
Visual Basic for Applications.

ARCOBJECTS PROBLEM-SOLVING GUIDE

The Samples in the ArcObjects Developer Help
system fall into two categories: Tips and Tools.
Tips are smaller examples of ArcObjects code
that you can generally cut and paste and then

run as a VBA script in ArcMap or ArcCatalog.
Tools are more complete examples of applica-

tions that often require compilation and
component category registration. Many of the
tools are COM components themselves. If you
find a tip or tool that may be useful, be sure to

store it in the Favorites tab for future reference.



Chapter 1 • Introducing ArcObjects • 63

If nothing is found that directly relates to the task at hand, it is a good
idea to visit the other documentation available. You can check some
other resources, such as the ArcGIS Desktop Help, and ESRI books, such
as What is ArcGIS?, Building a Geodatabase, and Modeling Our World.

Summary of part one

Now that you have more clearly defined the various components of the
task and have done some research on the topic, it is possible to move on
to the next step, which will help identify which object model diagram to
start with.

Here is all of the task-related information found in part one of the prob-
lem-solving guide for the current example:

Task defined in ArcGIS terminology: Access the States feature class from
an existing Access personal geodatabase and add it to ArcMap.

Subtask 1: Access the States feature class.

Subtask 2: Add the new layer to the map.

Where to write the code: As a VBA macro in ArcMap.

Located sample: Add a shapefile to ArcMap programmatically.

PART TWO: FIND THE CORRECT OBJECT MODEL DIAGRAM

This section explains how to use the help resources and tools to locate
the correct object model diagram required to solve a task. As a reminder,
the remaining steps in parts two and three are designed to work through
one subtask at a time. Therefore, you will need to proceed through all of
the remaining steps with subtask 1, then come back here to solve
subtask 2.

Identify a subtask

Start with the first subtask defined in part one.

Original task: Access the States feature class from an existing Access per-
sonal geodatabase and add it to ArcMap.

Subtask 1: Access the States feature class.

Subtask 2: Add the new layer to ArcMap.

Extract keywords

This step requires that you extract keywords from the subtask description.
This is not an exact science, but the more ArcObjects terms used in the
original description, the more success you will have here. Therefore, it
should be evident that it is critical to define the initial task correctly in the
first step of part one.

Two terms can be extracted from the previously defined subtask: “Access”
and “feature class”.

ARCOBJECTS PROBLEM-SOLVING GUIDE

It is important to use the correct ArcObjects
terminology when describing the original task so

that it is possible to extract meaningful key-
words from each subtask. These keywords are

important because they can be used later on to
search for topics in the help system and to

search for classes in the object model diagrams.



64 • Exploring ArcObjects • Volume 1

Search for the correct object model diagram

The objective of this step is to use the keywords defined above to identify
the correct object model diagram. The easiest way to find the object
model diagram is to use Adobe® Acrobat Reader to search the ArcGIS
object model PDF file. Searching the entire ArcGIS object model should
lead you to one or more words or classes that are directly associated with
an object model diagram.

The ArcGIS object model is a simplified version of the entire
ArcObjects library. This object model contains subsystems
that are composed of one or more object model diagrams.
Each subsystem is clearly marked with a number that associ-
ates it with one of the chapters in the two volumes of this
book.

The methodology here is to search the object model with the
keywords defined in the last step, identify the appropriate
subsystem or object model diagram, then go directly to the
associated chapter in the book to learn more about the re-

lated classes. The chapters of the book provide both a detailed descrip-
tion of the classes and a number of helpful code samples.

Another valuable resource is the AllOMDs.pdf file. This diagram contains
all of the object model diagrams with expanded interfaces, members, and
enumerations. It can be searched using Acrobat Reader just like the
ArcGIS object model diagram, but since it contains considerably more
detail, expect the search to point to many more hits. The advantage of
using this object model diagram is that it will cover virtually every class
and interface in the entire ArcObjects library at one time.

Use the Find tool in Acrobat Reader to search for the keywords in the
ArcGIS Object Model PDF.

1.  Open the ArcGIS Object Model diagram.

2.  Use the Find tool to search for each word from the keyword list.
Try to search until you identify a class. Searching for the keywords
“Access” and “Feature class” yields hits in the Geodatabase section
of the ArcGIS object model diagram.

3.  Write down the object model diagram or subsystem to which the
majority of the searches point. For this example, both keywords
point to the geodatabase object model diagram.

4.  Identify the chapter in the book that is associated with the
OMD. The geodatabase section of the ArcGIS object model diagram
is labeled with the number 8; therefore, you can find that subsystem
documented in Volume 2, Chapter 8, ‘Accessing the geodatabase’ .

In this example, all of the search results point to descriptive text or
an actual class associated with the geodatabase object model diagram.
Therefore, this clearly indicates that you should start with this diagram to
solve the subtask.

ARCOBJECTS PROBLEM-SOLVING GUIDE

The ArcGIS Object Model.pdf file contains
subsystems that contain one or more object

model diagrams. This diagram only shows those
classes that are documented in the ArcObjects

book. To search against the entire ArcObjects
library, you can also use the AllOMDs.pdf file.

If you were unsuccessful at finding a diagram,
repeat the steps using the AllOMDs.pdf file.



Chapter 1 • Introducing ArcObjects • 65

Review the documentation

With the object model diagram identified, the last step in part two is to
review the available ArcObjects documentation. The best place to start is
with the Object Model Overviews section of the ArcObjects Developer
Help system. The Object Model Overviews Start Page provides a brief
description of each subsystem that composes the ArcObjects library. At a
minimum, you will find an overview of each subsystem that provides a
description of the main classes associated with each subsystem.

Review the appropriate Object Model Overview page in the
ArcObjects Developer Help system.

1.  Go to the ArcObjects Developer Help system and click
Object Model Overviews.

2.  From the Object Model Overviews Start Page, click the
desired object model. For this example, click Geodatabase.

3.  Read the overview information available to learn about
the classes that belong to the selected object model dia-
gram.

The object model diagram overviews provide some back-
ground information for the most important classes in each
object model diagram. From this, you should be able to

identify new keywords that you may have missed or even class names
that are directly related to the current subtask. Add these keywords to the
existing keyword list to improve your ability to navigate through the
object model diagram.

From the Geodatabase overview page, you should have been able to
identify the following keywords: “Access”, “Feature class”, “Workspace”,
and “Factory”.

Next, go to the Exploring ArcObjects book and read the chapter associ-
ated with the geodatabase object model diagram. For this subtask, you
should go to Volume 2, Chapter 8, ‘Accessing the geodatabase’.

Reviewing this chapter should provide you with a solid understanding of
what the main classes and interfaces are for as well as some good code
samples. This last step is one of the most important parts of the entire
problem-solving guide.

PART THREE: NAVIGATE THE OBJECT MODEL DIAGRAM

The last part of the guide involves navigating the object model diagrams
and assembling the required code to solve each subtask. This is generally
the most difficult step because it involves the use of many of the help
resources and tools and is generally not a linear process. As you become
more familiar with the help tools and the object model diagrams, this
process will become easier.

ARCOBJECTS PROBLEM-SOLVING GUIDE



66 • Exploring ArcObjects • Volume 1

Review the structure of the object model diagram

It is a good idea to familiarize yourself with the general structure of the
object model diagram before proceeding. The easiest way to accomplish
this is to use Acrobat Reader to zoom in and pan around the model.

1.  Open the geodatabase object model diagram with Acrobat
Reader.

2.  Zoom in and pan around the diagram to view the overall
structure.

Another way to become familiar with the object model diagram
is to examine the relationship between classes and interfaces of
an existing sample. It is recommended that you physically trace
the flow between the classes and interfaces to understand how
the classes relate to one another. This knowledge will be useful
as it will help you assemble your own code in the next step.

In part one, step 4, the “Add a shapefile to ArcMap program-
matically” sample was located. Use this to start exploring the

geodatabase object model diagram.

1. Click the Favorites tab where you saved the link to this sample in the
ArcObjects Developer Help system. Make note of the classes used in
this sample.

2. Open the geodatabase object model diagram and search for the main
classes used in the sample.

3. Follow the inheritance symbols all the way to the feature class.

4. Pay special attention to any inheritance relationships that may exist.

Trace the flow between the classes and assemble code

In this step you will search for classes in the object model diagram based
on the keywords identified for the current subtask. After locating some
potential classes to start with, you will go to the ArcObjects Developer
Help system and look for any help topics that may be available. The last
step is to start writing the code based on the knowledge you have gained
from these steps.

Start with the first subtask by searching for the keywords in the
geodatabase object model diagram.

Subtask 1: Access the States feature class.

Keyword List: Access, Feature Class, Workspace, Factory

1.  Using Acrobat Reader, zoom in to about 75 percent and
search the geodatabase object model diagram for the first key-
word in the list: Access.

ARCOBJECTS PROBLEM-SOLVING GUIDE

When searching the object model diagrams, it is
important to pay attention to the UML symbols

that identify relationships between classes. If
there is no obvious relationship joining two
classes, or if they are located in completely

different parts of the model, you should keep in
mind that they are still likely associated with

each other in some way. It’s also important to
inspect all of the interfaces associated with the
classes since they may contain members that

are references to other classes.



Chapter 1 • Introducing ArcObjects • 67

You should find the AccessWorkspaceFactory class.

2.  Once you find the class, go back to the ArcObjects
Developer Help system and use the Index tab to search for
all instances of AccessWorkspaceFactory. Once a help topic
is located, browse the available information along with any
examples. To determine what interfaces the class supports,
expand the Interfaces hyperlink on the page. Identify these
below.

AccessWorkspaceFactory supports the following interfaces:
IWorkspaceFactory, IWorkspaceFactory2, and ILocal-
DatabaseCompact.

If no help topic is available, use the Search tab to find all
related help documents in the system, such as samples, you
might have missed in the initial steps.

3.  Now, return to the object model diagram and follow the
inheritance symbols that connect the AccessWorkspaceFactory
class to WorkspaceFactory. Note that the abstract class supports
the IWorkspaceFactory interface. This information is valuable
because it indicates that AccessWorkspaceFactory also must
implement IWorkspaceFactory. It is important to note that this
inheritance information can only be derived from the object
model diagram itself or from the discussions in the associated
chapters in this book.

At this point, you might also be interested in discovering what
other coclasses implement IWorkspaceFactory. The easiest way

is to look at the coclasses that inherit from Workspace on the object
model diagram, but this can also be discovered two other ways. The first
is to use the ArcObjects Developer Help system and click the Index tab to
search for IWorkspaceFactory. Expand the ‘CoClasses that implement
IWorkspaceFactory’ hyperlink to list the classes that support the interface.

This will list all of the coclasses for you. The second way is to use the
ESRI EOBrowser application to search for all of the coclasses that imple-

ment the same interface. The coclasses are listed below.

4.  With the information you have gathered from the object
model diagram, the sample, the help system, and the
EOBrowser, you should be able write some basic code to
cocreate an instance of the AccessWorkspaceFactory class.
At this point, you could also go back to the ArcObjects
Help system and look for an example on the same page
that was located for the AccessWorkspaceFactory search.
With this information and from browsing the object model
diagram, the code could be assembled like this:

‘ Subtask 1. Access the States feature class

Dim pWSF as IWorkspaceFactory

Set pWSF = New AccessWorkspaceFactory

ARCOBJECTS PROBLEM-SOLVING GUIDE



68 • Exploring ArcObjects • Volume 1

5.  Now, inspect the members of the IWorkspaceFactory interface and try
to identify which one can be used to open the database. Again, this
information can be acquired using multiple tools. You can:

• Read and interpret the members on the object model diagram.

• Search for the interface in the ArcObjects Developer Help system by
expanding the Members hyperlink.

• Display the members in VB/VBA using IntelliSense or by pressing F2
to view the Object Browser.

• Search for the interface using the ESRI EOBrowser and expand it to
inspect all of its members.

Although there are many avenues to take, it is generally recommended to
use the ArcObjects Developer Help system since it provides a description
of each member, the required parameters, and often a code sample.

6.  After inspecting the members of IWorkspaceFactory, it should be
obvious that there are multiple members that can be used to open a

geodatabase. In this case, since the file path of the database is
known to be “C:\data\US.mdb”, the
IWorkspaceFactory::OpenFromFile member can be used. Since
the IWorkspaceFactory::OpenFromFile member returns a refer-
ence to an IWorkspace interface, it will be necessary to store this
return value.

The code so far might look like this:

‘ Subtask 1. Access the States feature class

Dim pWSF as IWorkspaceFactory

Dim pWS as IWorkspace

Set pWSF = New AccessWorkspaceFactory

Set pWS = pWSF.OpenFromFile(“c:\data\US.mdb”, 0)

7.  If you inspect the IWorkspace interface, you will see that it will take
several calls to search and open the “states” feature class if
IWorkspace::Datasets or IWorkspace::DatasetNames are used. In this case
it will be necessary to loop through all of the feature classes available just

to identify the “states” feature class in the enumeration. Since
you already know the name of the feature class to open, you
should look for a way to optimize this process. The best re-
source at this point would be Volume 2, Chapter 8, ‘Accessing
the geodatabase’, but if you inspect the class carefully, you
might find it immediately.

8.  If you look at the Workspace class on the object model dia-
gram or if you review Volume 2, Chapter 8, �Accessing the
geodatabase�, you will notice that this class also supports the
IFeatureWorkspace interface. This interface is designed to
provide feature class-level access to a workspace. It supports an
IFeatureWorkspace::OpenFeatureClass member, which takes a
string name directly and returns an IFeatureClass reference.

ARCOBJECTS PROBLEM-SOLVING GUIDE

It is possible to view the members of an
interface by using a number of tools, such as the

ArcObjects Developer Help, the VB/VBA
IntelliSense or Object Browser, and the ESRI

EOBrowser. In most cases, however, it is recom-
mended to use the ArcObjects Developer Help

since it provides a more complete description of
the members and often provides an example of

how to use them.



Chapter 1 • Introducing ArcObjects • 69

Since you can provide the name as a string and directly return a
reference, you should use this interface to return a reference to
the “states” feature class. To access the interface, it will be neces-
sary to use QueryInterface against the IWorkspace reference. It
should also be noted that the return value must be stored as an
IFeatureClass reference.

You should recognize that there is often more than one way to
solve a problem using the numerous classes and interfaces
available in the ArcObjects library. When this is the case, you
should research the documentation and test to find out which
set of classes and interfaces work most optimally to solve your
particular programming task.

After assembling the code it might look like this:

‘ Subtask 1. Access the States feature class

Dim pWSF as IWorkspaceFactory

Dim pWS as IWorkspace

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pWS = pWSF.OpenFromFile(“c:\data\US.mdb”, 0)

Set pFWS = pWS ‘ QI

Set pFC = pFWS.OpenFeatureClass(“States”)

To optimize the code even further, rewrite it as follows:

‘ Subtask 1. Access the States feature class

Dim pWSF as IWorkspaceFactory

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pFWS = pWSF.OpenFromFile(“c:\data\US.mdb”, 0)

Set pFC = pFWS.OpenFeatureClass(“States”)

Now that the code for the first subtask has been completed, you must
return to part two of the problem-solving guide to assemble the code for
the last subtask.

Return to part two, step 1 of this problem-solving guide and find the
correct object model diagram for the next subtask.

Subtask two is “Add the new layer to the map.”

Go to part two, step 2 and extract keywords.

The keywords are “Layer” and “Map”.

Go to part two, step 3 and search for the correct object model diagram.
Use the Find tool in Acrobat Reader to search for the keywords in the
ArcGIS Object Model PDF.

The object model that contains these keywords is the ArcMap object model.

Go to part two, step 4 and identify the chapter in the book that is associ-

ARCOBJECTS PROBLEM-SOLVING GUIDE



70 • Exploring ArcObjects • Volume 1

ated with the object model diagram. Chapter 4, ‘Composing maps’, docu-
ments the ArcMap object model.

Go to step 4 and review the appropriate object model overview page.

1. Start the ArcObjects Developer Help system and click
Object Model Overviews.

2. Click the Object Model Overviews Start Page. For this
subtask, select ArcMap.

3. Read the overview information available to learn about
the classes.

From the overview, it should be obvious that a number of
new keywords need to be added to the list. You may want
to sort the list as well.

New keyword list: Application, MxDocument, Map,
FeatureLayer, Add

Go to the Exploring ArcObjects book and read the associ-
ated chapter. For this subtask, read Chapter 4, ‘Composing

maps’.

With the information gained from the help system and the chapter in the
book, you may be able to assemble the required code at this point; other-
wise, continue on to the next part.

Return to part three, step 1. Review the structure of the object model
diagram.

If you return to the sample that was identified in part one,
step 4, you will notice that there are classes and interfaces that
have not yet been located on an object model diagram. Take
this time to look for these classes on the ArcMap object model
diagram.

1.  Using the ArcObjects Developer Help system, click the Favor-
ites tab where you saved the link to this sample. View the
sample.

2.  Open the ArcMap object model diagram with Acrobat Reader
and start tracing the flow between the classes by searching for
the class names with the Find tool. Start with the Application
class.

3.  Follow the classes all the way to the Map class. Notice that
there is a wormhole associated with the Map class that indicates
it will be necessary to go to the map layer object model diagram
to view the layer classes.

4.  Now, open the map layer object model diagram with Acrobat
Reader and follow the diagram until you locate the FeatureLayer
class.

This step reveals that it will be necessary to traverse the map
layer object model diagram to access the layers associated with a

ARCOBJECTS PROBLEM-SOLVING GUIDE



Chapter 1 • Introducing ArcObjects • 71

map. This information is also available from the Overview Start
Page in the ArcObjects Developer Help system.

Go to step 2, trace the flow between the classes, and assemble
code. Start this process by searching for the keywords for the
current subtask.

Subtask 2: Add the layer to ArcMap.

Keyword List: Application, MxDocument, Map, FeatureLayer, Add

1.  Using Acrobat Reader, search the relevant object model dia-
gram for each keyword. For Application, you should find the
Application class.

Inspect the interfaces that the class supports.

2.  Once you find the class, go back to the ArcObjects Developer Help
system and use the Index to search for that class. For this first keyword,

click Application (esriMx). Read the information available.
The help documentation reveals that Application is the
primary object for ArcMap and ArcCatalog. Select the Inter-
faces hyperlink and view the interfaces associated with the
Application class. Click IApplication to view the information
available. Look for an example and then write code to
access the Application.

‘ Subtask 2. Add the new layer to the map

Dim pApp as IApplication

Set pApp = Application

Now expand the members of IApplication with the Mem-
bers hyperlink. This information reveals that it is possible to
access the current document with the
IApplication::Document member. The code could be up-

dated as follows:

‘ Subtask 2. Add the new layer to the map

Dim pApp as IApplication

Dim pDoc as IDocument

Set pApp = Application

Set pDoc = pApp.Document

3.  Now return to the object model diagram and find the MxDocument
class. Inspect the interfaces associated with this class. Notice that
IDocument does not provide a member to access the Map class,
but the IMxDocument interface does. Navigate the diagram to
find the Map class.

ARCOBJECTS PROBLEM-SOLVING GUIDE



72 • Exploring ArcObjects • Volume 1

4.  Go back to the ArcObjects Developer Help system and
use the Index to search for MxDocument. Read the infor-
mation available. Click the Interfaces hyperlink. Click IMx-
Document and expand the members. Notice that the IMx-
Document interface supports the FocusMap member and
returns a reference to IMap. Use this member to access the
Map class.

Update the code to get a reference to the document’s map.

‘ Subtask 2. Add the new layer to the map

Dim pApp as IApplication

Dim pDoc as IDocument

Dim pMxDoc as IMxDocument

Dim pMap as IMap

Set pApp = Application

Set pDoc = pApp.Document

Set pMxDoc = pDoc ‘QI

Set pMap = pMxDoc.FocusMap

5.  Go back to the ArcObjects Developer Help system and
use the Index to search for the Map coclass. Select the
Interfaces hyperlink and the IMap interface. Expand the
members and locate the AddLayer member. This member
will be used later to add a layer to the map, but first you
need to create the new layer and associate it with the
“states” data.

ARCOBJECTS PROBLEM-SOLVING GUIDE



Chapter 1 • Introducing ArcObjects • 73

6.  Locate the wormhole in the ArcMap object model diagram
that connects the Map class to the map layer object model dia-
gram. Open the map layer object model diagram and browse the
contents. Search for the “FeatureLayer” keyword until you find
the class. Inspect the inheritance relationship between Feature-
Layer and Layer. Also, identify the interface inheritance between
IFeatureLayer and ILayer.

The interface inheritance information can also be acquired if you
go back to the ArcObjects Developer Help system and use the
Index to search for the FeatureLayer coclass. Expand the Inter-
faces hyperlink and notice that it supports the ILayer interface.

7.  Now, inspect the members of IFeatureLayer more
closely by using the ArcObjects Developer Help system or
the object model diagram. Notice it supports an
IFeatureLayer::FeatureClass member property. From the
documentation and the information in Chapter 4, ‘Compos-
ing maps’, it should be obvious that you need to use this
property to connect the FeatureClass class to the Feature-
Layer class. The feature class contains a reference to the
“states” dataset that was acquired in Subtask 1. Also, set the
name of the layer to IFeatureClass::AliasName. The last
step is to add the new layer to the Map.

‘ Subtask 2. Add the new layer to the map

Dim pApp as IApplication

Dim pDoc as IDocument

Dim pMxDoc as IMxDocument

Dim pMap as IMap

Dim pFL as IFeatureLayer

Set pApp = Application

Set pDoc = pApp.Document

Set pMxDoc = pDoc ‘ QI

Set pMap = pMxDoc.FocusMap

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ‘ pFC From Subtask 1.

pFL.Name = pFC.AliasName

pMap.AddLayer pFL

8.  Now that you understand the relationship between the classes and
interfaces, the code can be optimized. Rewrite the code as follows:

‘ Subtask 2. Add the new layer to the map

Dim pApp as IApplication

Dim pDoc as IMxDocument

Dim pFL as IFeatureLayer

Set pApp = Application

ARCOBJECTS PROBLEM-SOLVING GUIDE



74 • Exploring ArcObjects • Volume 1

ARCOBJECTS PROBLEM-SOLVING GUIDE

Set pMxDoc = pApp.Document

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ‘ pFC From Subtask 1.

pFL.Name = pFC.AliasName

pMxDoc.FocusMap.AddLayer pFL

9.  Now, assemble all of the code from subtasks 1 and 2. It will look like
this:

‘ Subtask 1. Access the states feature class.

Dim pWSF as IWorkspaceFactory

Dim pFWS as IFeatureWorkspace

Dim pFC as IFeatureClass

Set pWSF = New AccessWorkspaceFactory

Set pFWS = pWSF.OpenFromFile(“c:\data\US.mdb”, 0)

Set pFC = pFWS.OpenFeatureClass(“States”)

‘ Subtask 2. Add the new layer to the map

Dim pApp as IApplication

Dim pMxDoc as IMxDocument

Dim pFL as IFeatureLayer

Set pApp = Application

Set pMxDoc = pApp.Document

Set pFL = New FeatureLayer

Set pFL.FeatureClass = pFC ‘ pFC from Subtask 1.

pFL.Name = pFC.AliasName

pMxDoc.FocusMap.AddLayer pFL

SUMMARY

It should be clear now that there are several ways to solve ArcObjects
programming problems. The similarities between all of them, however,
are being able to use the help documents and resources effectively and
being able to read the object model diagrams. Hopefully this guide has
provided you with an opportunity to visit the main resources that are
available and exercise their use in order to solve this real-world problem.



75

Developing with
ArcObjects

ArcObjects is based on Microsoft’s Component Object Model (COM). End users

of ArcGIS applications don’t necessarily have to understand COM, but if you’re a

developer intent on developing applications based on ArcObjects or extending the

existing ArcMap and ArcCatalog applications using ArcObjects, an understanding of

COM is a requirement. The level of understanding required

depends on the depth of customization or development

you wish to undertake.

Although this chapter does not cover the entire COM

environment, it provides both Visual Basic (VB) and Visual

C++ developers with sufficient knowledge to be effective in

using ArcObjects. There are many coding tips and guidelines

that should make your work with ArcObjects more

effective. The chapter ends with a bibliography if you’re

looking for more indepth detail not offered in this book.

Euan Cameron

2



76 • Exploring ArcObjects • Volume 1

THE MICROSOFT COMPONENT OBJECT MODEL

Before discussing COM specifically, it is worth considering the wider use
of software components in general. There are a number of factors driving
the motivation behind software components, but the principal one is the
fact that software development is a costly and time-consuming venture.

In an ideal world, it should be possible to write a piece of code once
and then reuse it again and again using a variety of development tools,
even in circumstances that the original developer did not foresee. Ide-
ally, changes to the code’s functionality made by the original developer
could be deployed without requiring existing users to change or
recompile their code.

Early attempts at producing reusable chunks of code revolved around the
creation of class libraries, usually developed in C++. These early attempts
suffered from several limitations, notably difficulty of sharing parts of the
system (it is very difficult to share binary C++ components—most attempts
have only shared source code), problems of persistence and updating
C++ components without recompiling, lack of good modeling languages
and tools, and proprietary interfaces and customization tools.

To counteract these and other problems, many software engineers have
adopted component-based approaches to system development. A soft-
ware component is a binary unit of reusable code.

Several different but overlapping standards have emerged for develop-
ing and sharing components. For building interactive desktop applica-
tions, Microsoft’s COM is the de facto standard. On the Internet,
JavaBeans™ is viable technology. At a coarser grain appropriate for
application-level interoperability, the Object Management Group (OMG)
has specified the common object request broker architecture (CORBA).

To understand COM (and therefore all COM-based technologies), it’s
important to realize that it isn’t an object-oriented language but a proto-
col or standard. COM is more than just a technology; it is a methodol-
ogy of software development. COM defines a protocol that connects
one software component, or module, with another. By making use of
this protocol, it’s possible to build reusable software components that
can be dynamically interchanged in a distributed system.

COM also defines a programming model, known as interface-based pro-
gramming. Objects encapsulate the manipulation methods and the data
that characterize each instantiated object behind a well-defined interface.
This promotes structured and safe system development since the client of
an object is protected from knowing any of the details of how a particular
method is implemented. COM doesn’t specify how an application should
be structured. As an application programmer working with COM, language,
structure, and implementation details are left up to you.

COM does specify an object model and programming requirements that
enable COM objects to interact with other COM objects. These objects
can be within a single process, in other processes, or even on remote
machines. They can be written in other languages and may have been
developed in very different ways. That is why COM is referred to as a

ESRI chose COM as the component technology
for ArcGIS because it is a mature technology that

offers good performance, many of today’s
development tools support it, and there are a

multitude of third-party components that can be
used to extend the functionality of ArcObjects.

The key to the success of components is that
they implement, in a very practical way, many of

the object-oriented principles now commonly
accepted in software engineering. Components
facilitate software reuse because they are self-

contained building blocks that can easily be
assembled into larger systems.



Chapter 2 • Developing with ArcObjects • 77

binary specification or standard—it is a standard that applies after a
program has been translated to binary machine code.

COM allows these objects to be reused at a binary level, meaning that third
party developers do not require access to source code, header files, or
object libraries in order to extend the system even at the lowest level.

COMPONENTS, OBJECTS, CLIENTS, AND SERVERS

Different texts use the terms components, objects, clients, and servers to
mean different things (to add to the confusion, various texts refer to the
same thing using all of these terms). Therefore, it is worthwhile to define
the terminology that this book will use.

COM is a client/server architecture. The server (or object) provides some
functionality, and the client uses that functionality. COM facilitates the
communication between the client and the object. An object can at the
same time be a server to a client and be a client of some other object’s
services.

Client
VBApp.exe

Server / Client
ArcMap.exe

Server
Map.dll

The client and its servers can exist in the same process or in a different
process space. In-process servers are packaged in Dynamic Link Library
(DLL) form, and these DLLs are loaded into the client’s address space
when the client first accesses the server. Out-of-process servers are
packaged in executables (EXE) and run in their own address space.
COM makes the differences transparent to the client.

When creating COM objects, the developer must be aware of the type of
server that the objects will sit inside, but if the creator of the object has
implemented them correctly the packaging does not affect the use of the
objects by the client.

There are pros and cons to each method of packaging that are sym-
metrically opposite. DLLs are faster to load into memory, and calling a
DLL function is faster. EXEs, on the other hand, provide a more robust
solution (if the server fails, the client will not crash), and security is
better handled since the server has its own security context.

In a distributed system, EXEs are more flexible, and it does not matter if
the server has a different byte ordering than the client. The majority of
ArcObjects servers are packaged as in-process servers (DLLs). Later, you
will see the performance benefits associated with in-process servers.

In a COM system, the client, or user of functionality, is completely iso-
lated from the provider of that functionality, the object. All the client
needs to know is that the functionality is available; with this knowledge,
the client can make method calls to the object and expect the object to
honor them. In this way, COM is said to act as a contract between client
and object. If the object breaks that contract, the behavior of the system
will be unspecified. In this way, COM development is based on trust
between the implementer and the user of functionality.

Objects are instances of COM classes that
make services available for use by a client. Hence
it is normal to talk of clients and objects instead

of clients and servers. These objects are often
referred to as COM objects and component

objects. This book will refer to them simply as
objects.

Client and server

COM+ server

MyComputer

process space

YourComputer

process space

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects which
make access transparent to the client. The COM

run-time handles the remoting layer

COM
objects

yourEXE

server

myEXE

client

Objects inside an out-of-process server are
accessed by COM-supplied proxy objects which

make access transparent to the client

MyComputer

process space process space

COM out-of-process server

COM
object

s

myEXE

client

proxy
object

yourEXE

server

proxy
object

MyComputer

process space

Objects inside an in-process server are accessed
directly by their clients.

COM in-process server

myDLL
COM

objects

client

yourDLL

server

THE MICROSOFT COMPONENT OBJECT MODEL



78 • Exploring ArcObjects • Volume 1

In the ArcGIS applications there are many objects that provide, via their inter-
faces, thousands of properties and methods. When you use the ESRI object
libraries you can assume that all these properties and interfaces have been fully
implemented, and if they are present on the object diagrams, they are there to
use.

CLASS FACTORY

Within each server there is an object called a class factory that the COM
runtime interacts with in order to instantiate objects of a particular class.
For every corresponding COM class there is a class factory. Normally,
when a client requests an object from a server, the appropriate class
factory creates a new object and passes out that object to the client.

While this is the normal implementation, it is not the only implementa-
tion possible. The class factory can also create an instance of the object
the first time and, with subsequent calls, pass out the same object to
clients. This type of implementation creates what is known as a single-
ton object since there is only one instance of the object per process.

GLOBALLY UNIQUE IDENTIFIERS

A distributed system potentially has many thousands of interfaces,
classes, and servers, all of which must be referenced when locating and
binding clients and objects together at runtime. Clearly, using human-
readable names would lead to the potential for clashes, hence COM
uses Globally Unique Identifiers (GUIDs), 128 bit numbers that are
virtually guaranteed to be unique in the world . It is possible to generate
10 million GUIDs per second until the year 5770 A.D., and each one
would be unique.

The COM API defines a function that can be used to generate GUIDs; in
addition, all COM-compliant development tools automatically assign
GUIDs when appropriate. GUIDs are the same as Universally Unique
Identifiers (UUIDs), defined by the Open Group’s Distributed Computing
Environment (DCE) specification. Below is a sample GUID in registry
format.

  {E6BDAA76-4D35-11D0-98BE-00805F7CED21}

COM CLASSES AND INTERFACES

Developing with COM means developing using interfaces, the so-called
interface-based programming model. All communication between ob-
jects is made via their interfaces. COM interfaces are abstract, meaning
there is no implementation associated with an interface; the code associ-
ated with an interface comes from a class implementation. The interface
sets out what requests can be made of an object that chooses to imple-
ment the interface.

How an interface is implemented differs between objects. Thus the
objects inherit the type of interface, not its implementation, which is
called type inheritance. Functionality is modeled abstractly with the
interfaces and implemented within a class implementation. Classes and

THE MICROSOFT COMPONENT OBJECT MODEL

GUIDGEN.EXE is a utility that ships with
Microsoft’s Visual Studio and provides an easy-to-

use user interface for generating GUIDs. It can
be found in the directory <VS Install

Dir>\Common\Tools.

The acronym GUID is commonly pronounced
“gwid”.

Class
factory A

IClassFactory

IUnknown

COM
object A

InterfaceA

IUnknown

COM
object B

InterfaceB

IUnknown

COM
object B

InterfaceB

IUnknown

Class
factory B

IClassFactory

IUnknown

A server  is a binary file that contains all the
code required by one or more COM classes. This
includes both the code that works with COM to
instantiate objects into memory and the code to

perform the methods supported by the objects
contained within the server.



Chapter 2 • Developing with ArcObjects • 79

Access-
Workspace-

Factory

Workspace-
Factory

Workspace

This is a simplified portion of the geodatabase
object model showing type inheritance among

abstract classes and coclasses and instantiation of
classes.

interfaces are often referred to as the “What” and “How” of COM. The interface
defines what an object can do, and the class defines how it is done.

COM classes provide the code associated with one or more interfaces, thus encap-
sulating the functionality entirely within the class. Two classes can both have the
same interface, but they may implement them quite differently. By implementing
these interfaces in this way, COM displays classic object-oriented polymorphic
behavior. COM does not support the concept of multiple inheritance; however,
this is not a shortcoming since individual classes can implement multiple inter-
faces. See the diagram to the left on polymorphic behavior.

Within ArcObjects are three types of classes that the developer must be aware of:
abstract classes, coclasses, and classes. An abstract class cannot be created; it is
solely a specification for instances of subclasses (through type inheritance).
ArcObjects Dataset or Geometry classes are examples of abstract classes. An
object of type Geometry cannot be created, but an object of type Polyline can.
This Polyline object in turn implements the interfaces defined within the Geom-
etry base class, hence any interfaces defined within object-based classes are acces-
sible from the coclass.

A coclass is a publicly creatable class. In other words, it is possible for COM to
create an instance of that class and give the resultant object to the client in order
for the client to use the services defined by the interfaces of that class. A class
cannot be publicly created, but objects of this class can be created by other
objects within ArcObjects and given to clients to use.

To the left is a diagram that illustrates the polymorphic behavior exhibited in
COM classes when implementing interfaces. Notice that both the Human and
Parrot classes implement the ITalk interface. The ITalk interface defines the
methods and properties, such as StartTalking, StopTalking, or Language, but clearly
the two classes implement these differently.

INSIDE INTERFACES

COM interfaces are how COM objects communicate with each other. When
working with COM objects, the developer never works with the COM object
directly but gains access to the object via one of its interfaces. COM interfaces
are designed to be a grouping of logically related functions. The virtual functions
are called by the client and implemented by the server; in this way an object’s
interfaces are the contract between the client and object. The client of an object
is holding an interface pointer onto that object. This interface pointer is referred
to as an opaque pointer since the client cannot gain any knowledge of the imple-
mentation details within an object or direct access to an object’s state data. The
client must communicate through the member functions of the interface. This
allows COM to provide a binary standard through which all objects can effec-
tively communicate.

Interfaces allow developers to model functionality abstractly. Visual C++ devel-
opers see interfaces as a collection of pure virtual functions, while Visual Basic
developers see an interface as a collection of properties, functions, and sub
routines.

THE MICROSOFT COMPONENT OBJECT MODEL

This diagram shows how common behavior,
expressed as interfaces, can be shared among
multiple objects, animals in this example, to

support polymorphism.

Human
IBirth

ITalk

IWalk

IDeath

Parrot
IBirth

ITalk

IWalk

IFly

IDeath

Dog
IBirth

IWalk

IDeath

Classes

Interfaces

IBirth

ITalk

IWalk

IFly

IDeath



80 • Exploring ArcObjects • Volume 1

The concept of the interface is fundamental in COM. The COM Specification
(Microsoft, 1995) emphasizes these four points when discussing COM interfaces:

1. An interface is not a class. An interface cannot be instantiated by itself since it
carries no implementation.

2. An interface is not an object. An interface is a related group of functions and
is the binary standard through which clients and objects communicate.

3. Interfaces are strongly typed. Every interface has its own interface identifier,
thereby eliminating the possibility of a collision between interfaces of the
same human-readable name.

4. Interfaces are immutable. Interfaces are never versioned. Once defined and
published, an interface cannot be changed.

Once an interface has been published, it is not possible to change the
external signature of that interface. It is possible at any time to change
the implementation details of an object that exposes an interface. This
change may be a minor bug fix or a complete reworking of the underly-
ing algorithm; the clients of the interface do not care since the interface
appears the same to them. This means that when upgrades to the serv-
ers are deployed in the form of new DLLs and EXEs, existing clients
need not be recompiled to make use of the new functionality. If the
external signature of the interface is no longer sufficient, a new interface
is created to expose the new functions. Old or deprecated interfaces are
not removed from a class to ensure all existing client applications can
continue to communicate with the newly upgraded server. Newer clients
will have the choice of using the old or new interfaces.

THE IUNKNOWN INTERFACE

All COM interfaces derive from the IUnknown interface, and all COM
objects must implement this interface. The IUnknown interface performs
two tasks: it controls object lifetime and provides run-time type support.
It is through the IUnknown interface that clients maintain a reference on
an object while it is in use—leaving the actual lifetime management to
the object itself.

Object lifetime is controlled with two methods, AddRef and Release, and
an internal reference counter. Every object must have an implementation
of IUnknown in order to control its own lifetime. Anytime an interface
pointer is created or duplicated, the AddRef method is called, and when
the client no longer requires this pointer, the corresponding Release
method is called. When the reference count reaches zero, the object
destroys itself.

Clients also use IUnknown to acquire other interfaces on an object.
QueryInterface is the method that a client calls when another interface
on the object is required. When a client calls QueryInterface, the object provides an
interface and calls AddRef. In fact, it is the responsibility of any COM method

THE MICROSOFT COMPONENT OBJECT MODEL

The name IUnknown came from a 1988
internal Microsoft paper called Object Archi-
tecture: Dealing with the Unknown – or –

Type Safety in a Dynamically Extensible Class
Library.

An interface’s permanence is not restricted to
simply its method signatures, but it extends to
its semantic behavior as well. For example, an

interface defines two methods, A and B, with no
restrictions placed on their use. It breaks the

COM contract if at a subsequent release
Method A requires that Method B be executed

first. A change like this would force possible
recompilations of clients.



Chapter 2 • Developing with ArcObjects • 81

Since IUnknown is fundamental to all COM
objects, in general there are no references to

IUnknown in any of the ArcObjects documenta-
tion and class diagrams.

Smart pointers are a class-based smart type and
are covered in detail later in this chapter.

The method QueryInterface is often referred
to by the abbreviation QI.

that returns an interface to increment the reference count for the object on
behalf of the caller. The client must call the Release method when the interface is
no longer needed. The client calls AddRef explicitly only when an interface is
duplicated.

When developing a COM object, the developer must obey the rules of
QueryInterface. These rules dictate that interfaces for an object are symmetric,
transitive, and reflexive and are always available for the lifetime of an object. For
the client this means that, given a valid interface to an object, it is always valid to
ask the object, via a call to QueryInterface, for any other interface on that object
including itself. It is not possible to support an interface and later deny access to
that interface, perhaps because of time or security constraints. Other mechanisms
must be used to provide this level of functionality. Some classes support the
concept of optional interfaces. Depending on the coclass, they may optionally
implement an interface; this does not break this rule since the interface is either
always available or always not available on the class.

When requested for a particular interface, the QueryInterface method can return an
already assigned piece of memory for that requested interface, or it can allocate a
new piece of memory and return that. The only case when the same piece of
memory must be returned is when the IUnknown interface is requested. When
comparing two interface pointers to see if they point to the same object, it is
important that a simple comparison not be performed. To correctly compare two
interface pointers to see if they are for the same object, they both must be que-
ried for their IUnknown, and the comparison must be performed on the IUnknown
pointers. In this way, the IUnknown interface is said to define a COM object’s
identity.

It’s good practice in Visual Basic to call Release explicitly by assigning an
interface equal to Nothing to release any resources it’s holding. Even if
you don’t call Release, Visual Basic will automatically call it when you
no longer need the object—that is, when it goes out of scope. With
global variables, you must explicitly call Release. In Visual Basic, the
system performs all these reference-counting operations for you, making
the use of COM objects relatively straightforward.

In C++, however, you must increment and decrement the reference
count to allow an object to correctly control its own lifetime. Likewise,
the QueryInterface method must be called when asking for another
interface. In C++ the use of smart pointers simplifies much of this.
These smart pointers are class-based and hence have appropriate con-
structors, destructors, and overloaded operators to automate much of
the reference counting and query interface operations.

INTERFACE DEFINITION LANGUAGE

Microsoft Interface Definition Language (MIDL) is used to describe COM
objects including their interfaces. This MIDL is an extension of the IDL
defined by the Distributed Computing Environment (DCE), where it used to define

THE MICROSOFT COMPONENT OBJECT MODEL

The rules of QueryInterface dictate that
interfaces of an object are reflexive, symmetric,

and transitive. It is always possible, holding a
valid interface pointer on an object, to get any

other interface on that object.



82 • Exploring ArcObjects • Volume 1

server
class

outbound interface
inbound interface

client
class

interfaceinterface
interface

In the diagrams in this book and the ArcObjects
object model diagrams, outbound interfaces are

depicted with a solid circle on the interface jack.

remote procedure calls between clients and servers. The MIDL extensions include
most of the Object Definition Language (ODL) statements and attributes. ODL
was used in the early days of OLE Automation for the creation of type libraries.

TYPE LIBRARY

A type library is best thought of as a binary version of an Interface Definition
Language (IDL) file. It contains a binary description of all coclasses, interfaces,
methods, and types contained within a server or servers.

There are several COM interfaces provided by Microsoft that work with type
libraries. Two of these interfaces are ITypeInfo and ITypeLib. By utilizing these
standard COM interfaces, various development tools and compilers can gain
information about the coclasses and interfaces supported by a particular library.

In order to support the concept of a language-independent development set of
components, all relevant data concerning the ArcObjects libraries is shipped
inside type libraries. There are no header files, source files, or object files supplied
or needed by external developers.

INBOUND AND OUTBOUND INTERFACES

Interfaces can be either inbound or outbound. An inbound interface is
the most common kind—the client makes calls to functions within the
interface contained on an object. An outbound interface is one where
the object makes calls to the client—a technique analogous to the tradi-
tional callback mechanism.

There are differences in the way these interfaces are implemented. The
implementer of an inbound interface must implement all functions of the
interface; failure to do so breaks the contract of COM. This is also true for
outbound interfaces. If you use Visual Basic, you don’t have to implement
all functions present on the interface since it provides stub methods for
the methods you don’t implement. On the other hand, if you use C++ you
must implement all the pure virtual functions to compile the class.

Connection points is a specific methodology for working with outbound
COM interfaces. The connection point architecture defines how the
communication between objects is set up and taken down. Connection
points are not the most efficient way of initializing bidirectional object
communication, but they are in common use because many develop-
ment tools and environments support them.

Dispatch event interfaces
There are some objects with ArcObjects that support two outbound
event interfaces that look similar to the methods they support. An ex-
ample of two such interfaces are the IDocumentEvents and the
IDocumentEventsDisp. The “Disp” suffix denotes a pure Dispatch inter-
face. These dispatch interfaces are used by VBA when dealing with cer-
tain application events, such as loading documents. A VBA programmer
works with the dispatch interfaces, while a developer using another development

THE MICROSOFT COMPONENT OBJECT MODEL

MIDL is commonly referred to simply as IDL.

The IDL defines the public interface that
developers use when working with ArcObjects.

When compiled, the IDL creates a type library.



Chapter 2 • Developing with ArcObjects • 83

language uses the nonpure dispatch interface. Since these dispatch event interfaces
are application specific, the details are discussed in the application chapters of the
book, not the framework chapter.

Default interfaces
Every COM object has a default interface that is returned when the object is
created if no other interface is specified. All the objects within the ESRI object
libraries have IUnknown as their default interface, with a few exceptions.

The default interface of the Application object for both ArcCatalog and ArcMap is
the IApplication interface. These uses of nonIUnknown default interfaces are a
requirement of Visual Basic for Applications and are found on the ArcMap and
ArcCatalog application-level objects.

This means that variables that hold interface pointers must be declared
in a certain way. For more details, see the coding sections later in this
chapter. When COM objects are created, any of the supported interfaces
can be requested at creation time.

IDispatch interface
COM supports three types of binding:

1. Late. This is where type discovery is left until runtime. Method calls
made by the client but not implemented by the object will fail at
execution time.

2. ID. Method IDs are stored at compile time, but execution of the
method is still performed through a higher-level function.

3. Custom vTable (early). Binding is performed at compile time. The
client can then make method calls directly into the object.

The IDispatch interface supports late- and ID-binding languages. The
IDispatch interface has methods that allow clients to ask the object what
methods it supports.

Assuming the required method is supported, the client executes the
method by calling the IDispatch::Invoke method. This method, in turn,
calls the required method and returns the status and any parameters
back to the client on completion of the method call.

Clearly, this is not the most efficient way to make calls on a COM object.
Late binding requires a call to the object to retrieve the list of method
IDs; the client must then construct the call to the Invoke method and call
it. The Invoke method must then unpack the method parameters and call
the function.

All these steps add significant overhead to the time it takes to execute a
method. In addition, every object must have an implementation for
IDispatch, which makes all objects larger and adds to their development
time.

THE MICROSOFT COMPONENT OBJECT MODEL

Binding is the term given to the process of
matching the location of a function given a

pointer to an object.

Custom vTable binding 825,000 20,000

Late binding 22,250 5,000

Binding type
In process

DLL
Out of process

DLL

This table shows the number of function calls
that can be made per second on a typical

Pentium® III machine.

The reason for making IUnknown the default
interface is because the VB object browser hides

information for the default interface. The fact
that it hides IUnknown is not important for VB

developers.



84 • Exploring ArcObjects • Volume 1

ID binding offers a slight improvement over late binding in that the method IDs
are cached at compile time, which means the initial call to retrieve the IDs is not
required. However, there is still significant call overhead because the
IDispatch::Invoke method is still called in order to execute the required method on
the object.

Early binding, often referred to as custom vTable binding, does not use
the IDispatch interface. Instead, a type library provides the required
information at compile time to allow the client to know the layout of the server
object. At runtime, the client makes method calls directly into the object. This is
the fastest method of calling object methods and also has the benefit of compile-
time type checking.

Objects that support both IDispatch and custom vTable are referred to
as dual interface objects. The object classes within the ESRI object
libraries do not implement the IDispatch interface; this means that these
object libraries cannot be used with late-binding scripting languages
such as JavaScript™ or VBScript since these languages require that all
COM servers accessed support the IDispatch interface.

Careful examination of the ArcGIS class diagrams indicates that the
Application objects support IDispatch because there is a requirement in
VBA for the IDispatch interface.

All ActiveX controls support IDispatch. This means it is possible to use
the various ActiveX controls shipped with ArcObjects to access func-
tionality from within scripting environments.

INTERFACE INHERITANCE

An interface consists of a group of methods and properties. If one
interface inherits from another, then all of the methods and properties in
the parent are directly available in the inheriting object.

The underlying principle here is interface inheritance, rather than the
implementation inheritance you may have seen in languages such as
SmallTalk and C++. In implementation inheritance, an object inherits
actual code from its parent; in interface inheritance, it’s the definitions
of the methods of the object that are passed on. The coclass that imple-
ments the interfaces must provide the implementation for all inherited
interfaces.

Implementation inheritance is not supported in a heterogeneous devel-
opment environment because of the need to access source and header
files. For reuse of code, COM uses the principles of aggregation and
containment. Both of these are binary-reuse techniques.

AGGREGATION AND CONTAINMENT

For a third-party developer to make use of existing objects, using either
containment or aggregation, the only requirement is that the server
housing the contained or aggregated object is installed on both the
developer and target release machines. Not all development languages
support aggregation.

THE MICROSOFT COMPONENT OBJECT MODEL

vTable

vTable

GetTypeInfoCount

GetTypeInfo

GetIDsOfNames

Invoke

Name

Document

StatusBar

QueryInterface

AddRef

Release

QueryInterface

AddRef

Release

Name

Description

AreaOfInterest

Custom - Map

Dual - Application

IUnknown

IMap

IUnknown

IDispatch

IApplication

These diagrams summarize the custom and
IDispatch interfaces for two classes in

ArcObjects. The layout of the vTable displays the
differences. It also illustrates the importance of
implementing all methods—if one method is

missing, the vTable will have the wrong layout,
and hence the wrong function pointer would be

returned to the client, resulting in a system
crash.

Interfaces that directly inherit from an interface
other than IUnknown cannot be implemented

in VB.



Chapter 2 • Developing with ArcObjects • 85

The simplest form of binary reuse is containment. Containment allows
modification of the original object’s method behavior but not the
method’s signature. With containment, the contained object (inner) has
no knowledge that it is contained within another object (outer). The
outer object must implement all the interfaces supported by the inner.
When requests are made on these interfaces, the outer object simply
delegates them to the inner. To support new functionality, the outer
object can either implement one of the interfaces without passing the
calls on or implement an entirely new interface in addition to those
interfaces from the inner object.

COM aggregation involves an outer object that controls which interfaces it
chooses to expose from an inner object. Aggregation does not allow modification
of the original object’s method behavior. The inner object is aware that it is being
aggregated into another object and forwards any QueryInterface calls to the outer
(controlling) object so that the object as a whole obeys the laws of COM.

To the clients of an object using aggregation, there is no way to distinguish which
interfaces the outer object implements and which interfaces the inner object
implements.

Custom features make use of both containment and aggregation. The
developer aggregates the interfaces where no customizations are required
and contains those that are to be customized. The individual methods on
the contained interfaces can then either be implemented in the custom-
ized class, thus providing custom functionality, or the method call can be
passed to the appropriate method on the contained interface.

Aggregation is important in this case since there are some hidden inter-
faces defined on a feature that cannot be contained. For more information
on custom features, see Volume 2, Chapter 8, ‘Accessing the geodatabase’.

Visual Basic 6 does not support aggregation, so it can’t be used to cre-
ate custom features.

THREADS, APARTMENTS, AND MARSHALLING

A thread is a process flow through an application. There are potentially
many threads within Windows applications. An apartment is a group of
threads that work with contexts within a process. With COM+, a context
belongs to one apartment. There are potentially many types of context;
security is an example of a type of context. Before successfully commu-
nicating with each other, objects must have compatible contexts.

COM supports two types of apartments: single-threaded apartment (STA)
and multithreaded apartment (MTA). COM+ supports the additional
thread-neutral apartment (TNA). A process can have any number of
STAs; each process creates one STA called the main apartment. Threads
that are created as apartment threaded are placed in an STA. All user-
interface code is placed in an STA to prevent deadlock situations. A
process can only have one MTA. A thread that is started as multi-
threaded is placed in the MTA. The TNA has no threads permanently
associated with it; rather, threads enter and leave the apartment when
appropriate.

THE MICROSOFT COMPONENT OBJECT MODEL

COM
aggregation

class

interface1

method3
method4

interface2

IUnknown

IUnknown

class

method1
method2

COM
containment

feature

interface2

method7
method8

interface4

IUnknown

IUnknown

class

method1
method2

method5
method6

interface3

method3
method4

interface1

Custom
feature

class

interface1

method3
method4

interface2

IUnknown (inner)

IUnknown (controlling)

class

method1
method2

child class

parent class

Although an understanding of apartments and
threading is not essential in the use of

ArcObjects, basic knowledge will help you
understand some of the implications with certain

development environments highlighted later in
this chapter.



86 • Exploring ArcObjects • Volume 1

In-process objects have an entry in the registry, the ThreadingModel,
that informs the COM Service Control Manager  (SCM) into which apart-
ment to place the object. If the object’s requested apartment is compat-
ible with the creator’s apartment, the object is placed in that apartment;
otherwise, the SCM will find or create the appropriate apartment. If no
threading model is defined, the object will be placed in the main apart-
ment of the process. The ThreadingModel registry entry can have the
following values:

1. Apartment. Object must be executed within the STA. Normally used
by UI objects.

2. Free. Object must be executed within the MTA. Objects creating
threads are normally placed in the MTA.

3. Both. Object is compatible with all apartment types. The object will
be created in the same apartment as the creator.

4. Neutral. Objects must execute in the TNA. Used by objects to ensure
there is no thread switch when called from other apartments. This is
only available under COM+.

Marshalling enables a client to make interface-function calls to objects
in other apartments transparently. Marshalling can occur between COM
apartments on different machines, between COM apartments in different
process spaces, and between COM apartments in the same process
space (STA to MTA, for example). COM provides a standard marshaller
that handles function calls that use automation-compliant data types
(see table below). Nonautomation data types can be handled by the
standard marshaller as long as proxy stub code is generated; otherwise,
custom-marshalling code is required.

unsigned char

Boolean

Type

8-bit unsigned data item

Data item that can have the value True or False

Description

float

double

32-bit IEEE floating-point number

64-bit IEEE floating-point number

long

int

32-bit signed integer

Signed integer, whose size is system dependent

BSTR

short

Length-prefixed string

16-bit signed integer

DATE

CURRENCY

64-bit, floating-point fractional number of days since Dec 30, 1899

8-byte, fixed-point number

Typedef enum myenum

SCODE

Signed integer, whose size is system dependent

For 16-bit systems - Built-in error that corresponds to VT_ERROR

Interface IUnknown *

Interface IDispatch *

Pointer to an interface that does not derive from IDispatch

Pointer to the IDispatch interface

Coclass Typename *

dispinterface Typename *

Pointer to a coclass name (VT_UNKNOWN)

Pointer to an interface derived from IDispatch

SAFEARRAY(TypeName)

[oleautomation] interface Typename *

TypeName is any of the above types. Array of these types

Pointer to an interface that derives from IDispatch

Decimal

TypeName*

96-bit unsigned binary integer scaled by a variable power of 10. A decimal data
type that provides a size and scale for a number (as in coordinates)

TypeName is any of the above types. Pointer to a type

THE MICROSOFT COMPONENT OBJECT MODEL

Apartments

process space
Thread
neutral

apartment

Single threaded apartment
(main apartment)

Single threaded apartment

Single threaded apartment

Multi-threaded apartment

Think of the SCM (pronounced scum) as the
COM runtime environment. The SCM interacts
with objects, servers, and the operating system
and provides the transparency between clients

and the objects that they work with.



Chapter 2 • Developing with ArcObjects • 87

COMPONENT CATEGORY

Component categories are used by client applications to find all COM
classes of a particular type that are installed on the system efficiently.
For example, a client application may support a data export function in
which you can specify the output format—a component category could
be used to find all the data export classes for the various formats. If
component categories are not used, the application has to instantiate
each object and interrogate it to see if it supports the required function-
ality, which is not a practical approach. Component categories support
the extensibility of COM by allowing the developer of the client applica-
tion to create and work with classes that belong to a particular category.
If at a later date a new class is added to the category, the client applica-
tion need not be changed to take advantage of the new class; it will
automatically pick up the new class the next time the category is read.

COM AND THE REGISTRY

COM makes use of the Windows® system registry to store information
about the various parts that compose a COM system. The
classes, interfaces, DLLs, EXEs, type libraries, and so forth,
are all given unique identifiers (GUIDs) that the SCM uses
when referencing
these components. To see an example of this, run regedit,
then open HKEY_CLASSES_ROOT. This opens a list
of all the classes registered on the system.

COM makes use of the registry for a number of housekeeping
tasks, but the most important and most easily understood is

the use of the registry when instantiating COM objects into memory. In
the simplest case, that of an in-process server,
the steps are as follows:

1. Client requests the services of a COM object.

2. SCM looks for the requested objects registry entry by searching on
the class ID (a GUID).

3. DLL is located and loaded into memory. The SCM calls a function
within the DLL called DllGetClassObject, passing the desired class as
the first argument.

4. The class object normally implements the interface IClassFactory. The
SCM calls the method CreateInstance on this interface to instantiate
the appropriate object into memory.

5. Finally, the SCM asks the newly created object for the interface that
the client requested and passes that interface back to the client. At
this stage, the SCM drops out of the equation, and the client and
object communicate directly.

THE MICROSOFT COMPONENT OBJECT MODEL

The function DllGetClassObject is the function
that makes a DLL a COM DLL. Other functions,

such as DllRegisterServer and
DllUnregisterServer, are nice to have but not
essential for a DLL to function as a COM DLL.

ESRI keys in the Windows system registry



88 • Exploring ArcObjects • Volume 1

From the above sequence of steps, it is easy to imagine how changes in
the object’s packaging (DLL versus EXE) make little difference to the
client of the object. COM handles these differences.

AUTOMATION

Automation is the technology used by individual objects or entire appli-
cations to provide access to their encapsulated functionality via a late-
bound language. Commonly, automation is thought of as writing mac-
ros, where these macros can access many applications in order for a
task to be done. ArcObjects, as already stated, does not support the
IDispatch interface; hence, it cannot be used alone by an automation
controller.

It is possible to instantiate an instance of ArcMap by cocreating the document
object and then making calls into ArcMap via the document object or one of its
connected objects. There are, however, problems with this approach since the
automation controller instance and the ArcMap instance are running in separate
processes. Many of the objects contained within ArcObjects are process depen-
dent, and therefore simple Automation will not work. Using other techniques
outlined in Chapter 4, ‘Composing maps’, it is possible to interact with ArcMap in
a way analogous to OLE Automation.

THE MICROSOFT COMPONENT OBJECT MODEL



Chapter 2 • Developing with ArcObjects • 89

DEVELOPING WITH  ARCOBJECTS AND COM

Any language that supports COM can be used to develop with
ArcObjects. The guidelines and advice in this section are useful for any
programmer working with ArcObjects. The subsequent sections of this
chapter deal specifically with Visual Basic, Visual Basic for Applications,
and Visual C++. The main reason for this is that the majority of the
samples accompanying the software are written in these environments,
and these development tools are well suited for the creation of COM
software components.

CODING STANDARDS

Each of the language-specific sections begins with a section on coding
standards for that language. These standards are used internally at ESRI
and are followed by the samples that ship with the software.

To understand why standards and guidelines are important, consider
that in any large software development project, there are many back-
grounds represented by the team members. Each programmer has per-
sonal opinions concerning how code should look and be built. If each
programmer engineers code differently, it becomes increasingly difficult
to share work and ideas. On a successful team, the developers adapt
their coding styles to the tone set by the group. Often, this means adapt-
ing one’s code to match the style of existing code in the system.

Initially, this may seem burdensome, but adopting a uniform program-
ming style and set of techniques invariably increases software quality.
When all the code in a project conforms to a standard set of styles and
conventions, less time is wasted learning the particular syntactic quirks
of individual programmers, and more time can be spent reviewing,
debugging, and extending the code. Even at a social level, uniform style
encourages team-oriented, rather than individualist, outlooks—leading to
greater team unity, productivity and, ultimately, better software.

GENERAL CODING TIPS AND RESOURCES

This section on general coding tips will benefit all developers working
with ArcObjects no matter what language they are using.

Class diagrams
Getting help with the object model is fundamental to successfully work-
ing with ArcObjects. Chapter 1, ‘Introducing ArcObjects’, started the
process of introducing the class diagrams and showing many of the
common routes through the objects. The class diagrams are most useful
if viewed in the early learning process in printed form. This allows
developers to appreciate the overall structure of the object model imple-
mented by ArcObjects. When you are comfortable with the overall
structure, the PDF files included with the software distribution can be
more effective to work with. The PDF files are searchable; you can use
the Search dialog box in Acrobat Reader to find classes and interfaces
quickly.

For simplicity, some samples will not follow the
coding standards. As an example, it is recom-
mended that when coding in Visual Basic, all

types defined within the ESRI object library are
prefixed with the library name esriCore. This is

only done in samples where a name clash will
occur. Omitting this text makes the code easier
to understand for developers new to ArcObjects.



90 • Exploring ArcObjects • Volume 1

Object browsers
In addition to the class diagram PDF files, the type library information
can be viewed using a number of object browsers. Visual Basic has a
built-in Object Browser; OLEView (a free utility from Microsoft) also
displays type library information. The best object viewer to use is the
ESRI object viewer. This object viewer can be used to view type infor-
mation for any type library but defaults to the ESRI Object Library. Infor-
mation on the classes and interfaces can be displayed in Visual Basic,
Visual C++, or object diagram format.

The object browsers can view coclasses and classes but cannot be used
to view abstract classes. Abstract classes are only viewable on the object
diagrams, where their use is solely to simplify the models.

Component help
All interfaces and coclasses are documented in the component help file.
This is a compiled HTML file that can be viewed by itself or when using
an integrated developer environment (IDE). In Visual C++ and Visual
Basic, if the cursor is over an ESRI type when the F1 key is pressed, the
appropriate page in the ArcObjects Class Help in the ArcObjects Devel-
oper Help system is displayed in the compiled HTML viewer. Ultimately,
this will be the help most commonly accessed when you get to know
the object models better.

Code wizards
There are a number of Code Generation Wizards available to help with
the creation of boiler plate code, both in Visual C++ and Visual Basic.
While these wizards are useful in removing the tediousness in common
tasks, they do not excuse you as the developer from understanding the
underlying principles of the generated code. The main objective should
be to read the accompanying documentation and understand the limita-
tions of these tools.

Indexing of collections
All collection-like objects in ArcObjects are zero-based for their index-
ing. This is not the case with all development environments; Visual
Basic has both zero- and one-based collections. As a general rule, if the
collection base is not known, assume that the collection base is zero.
This ensures that a runtime error will be raised when the collection is
first accessed (assuming the access of the collection does not start at
zero). Assuming a base of one means the first element of a zero-based
collection would be missed and an error would only be raised if the
end of the collection were reached when the code is executed.

Accessing collection elements
When accessing elements of a collection sequentially, it is best to use an
enumerator interface. This provides the fastest method of walking
through the collection. The reason for this is that each time an element
is requested by index, internally an enumerator is used to locate the

DEVELOPING WITH  ARCOBJECTS AND COM

This graph shows the performance benefits of
accessing a collection using an enumerator

opposed to the elements index. As expected, the
graph shows a classic power trend line

(y=cxb).The client (VB) and Server (VC++) code
used to generate these metrics are included in

the book samples.



Chapter 2 • Developing with ArcObjects • 91

element. Hence, if the collection is looped over getting each element in turn, the
time taken increases by power (y=cxb).

Enumerator use
When requesting an enumerator interface from an object, the client has
no idea how the object has implemented this interface. The object may
create a new enumerator, or it may decide for efficiency to return a
previously created enumerator. If a previous enumerator is passed to the
client, the position of the element pointer will be at the last accessed
element. To ensure that the enumerator is at the start of the collection,
the client should reset the enumerator before use.

Error handling
All methods of interfaces, in other words, methods callable from other
objects, should handle internal errors and signify success or failure via
an appropriate HRESULT. COM does not support passing exceptions out
of interface method calls. COM supports the notion of a COM exception.
A COM exception utilizes the COM error object by populating it with
relevant information and then returning an appropriate HRESULT to
signify failure. Clients, on receiving the HRESULT, can then interrogate
the COM Error object for contextual information about the error. Lan-
guages such as Visual Basic implement their own form of exception
handling. For more information, see the section on the Visual Basic
Virtual Machine.

Notification interfaces
There are a number of interfaces in ArcObjects that have no methods.
These are known as notification interfaces. Their purpose is to inform
the application framework that the class that implements them supports
a particular set of functionality. For instance, the Application Framework
uses these interfaces to determine if a menu object is a root-level menu
(IRootLevelMenu) or a context menu (IShortcutMenu).

Clientside storage
Some ArcObjects methods expect interface pointers to point to valid
objects prior to making the method call. This is known as client storage
since the client allocates the memory needed for the object before the
method call. Let’s say you have a polygon and you want to get its
bounding box. To do this, use the QueryEnvelope method on IPolygon.
If you write the following code:

  Dim pEnv As IEnvelope

  pPolygon.QueryEnvelope pEnv

you’ll get an error because the QueryEnvelope method expects you (the
client) to create the Envelope. The method will modify the envelope you
pass in and return the changed one back to you. The correct code is
shown below.

  Dim pEnv As IEnvelope

  Set pEnv = New Envelope

DEVELOPING WITH  ARCOBJECTS AND COM

Exception handling is language specific and, since
COM is language neutral, exceptions are not

supported.



92 • Exploring ArcObjects • Volume 1

  pPolygon.QueryEnvelope pEnv

How do you know when to create and when not to create? In general,
all methods that begin with “Query”, such as QueryEnvelope, expect you
to create the object. If the method name is GetEnvelope, then an object
will be created for you. The reason for this clientside storage is perfor-
mance. Where it is anticipated that the method on an object will be
called in a tight loop, the parameters need only be created once and
simply populated. This is faster than creating new objects inside the
method each time.

Property by value and by reference
Occasionally, you will see a property that can be set by value or by
reference, meaning that it has both a put_XXX and a putref_XXX
method. On first appearance this may seem odd—why does a property
need to support both? A Visual C++ developer sees this as simply giving
the client the opportunity to pass ownership of a resource over to the
server (using the putref_XXX method). A Visual Basic developer will see
this as quite different; indeed, it is likely because of the Visual Basic
developer that both By Reference and By Value are supported on the
property.

To illustrate this, assume there are two text boxes on a form, Text1 and
Text2. With a propput, it is possible to do the following in Visual Basic:

  Text1.text = Text2.text

It is also possible to write this:

  Text1.text = Text2

or this:

��Text1 = Text2
All these cases make use of the propput method to assign the text string
of text box Text2 to the text string of text box Text1. The second and
third cases work because since no specific property is stated, Visual
Basic looks for the property with a DISPID of 0.

This all makes sense assuming that it is the text string property of the
text box that is manipulated. What happens if the actual object refer-
enced by the variable Text2 is to be assigned to the variable Text1? If
there was only a propput method it would not be possible, hence the
need for a propputref method. With the propputref method, the following
code will achieve the setting of the object reference.

  Set Text1 = Text2

Initializing Outbound interfaces
When initializing an Outbound interface, it is important to only initialize
the variable if the variable does not already listen to events from the
server object. Failure to follow this rule will result in an infinite loop.

As an example, assume there is a variable ViewEvents that has been
dimensioned as:

  Private WithEvents ViewEvents As Map

DEVELOPING WITH  ARCOBJECTS AND COM

DISPIDs are unique IDs given to properties and
methods in order for the IDispatch interface to
efficiently call the appropriate method using the

Invoke method.

Notice the use of the “Set”.



Chapter 2 • Developing with ArcObjects • 93

To correctly sink this event handler, you can write code within the OnClick event
of a UI button control, like this:

Private Sub UIButtonControl1_Click()

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  ' Check to see that the map is different than what is currently connected

  If (Not ViewEvents Is pMxDoc.FocusMap) Then

    ' Sink the event since listener has not been initialised with this map

    Set ViewEvents = pMxDoc.FocusMap

  End If

End Sub

Notice in the above code the use of the Is keyword to check for object
identity.

DATABASE CONSIDERATIONS

When programming against the database, there are a number of rules
that must be followed to ensure that the code will be optimal. These
rules are detailed below.

If you are going to edit data programmatically, that is, not use the edit-
ing tools in ArcMap, you need to follow these rules in order to ensure
that custom object behavior (such as network topology maintenance or
triggering of custom-feature-defined methods) is correctly invoked in
response to the changes your application makes to the database. You
must also follow these rules in order to ensure that your changes are
made within the multiuser editing (long transaction) framework.

Edit sessions
Make all changes to the geodatabase within an edit session, which is
bracketed between StartEditing and StopEditing method calls on the
IEditWorkspace interface found on theWorkspace object.

This behavior is required for any multiuser update of the database.
Starting an edit session gives the application a state of the database that
is guaranteed not to change, except for changes made by the editing
application.

In addition, starting an edit session turns on behavior in the
geodatabase such that a query against the database is guaranteed to
return a reference to an existing object in memory if the object was
previously retrieved and is still in use.

This behavior is required for correct application behavior when navigat-
ing between a cluster of related objects while making modifications to
objects. In other words, when you are not within an edit session, the
database can create a new instance of a COM object each time the
application requests a particular object from the database.

Edit operations
Group your changes into edit operations, which are bracketed between

DEVELOPING WITH  ARCOBJECTS AND COM



94 • Exploring ArcObjects • Volume 1

the StartEditOperation and StopEditOperation method calls on the IEditWorkspace
interface.

You may make all your changes within a single edit operation if so required. Edit
operations can be undone and redone. If you are working with data stored in
ArcSDE, creating at least one edit operation is a requirement. There is no additional
overhead to creating an edit operation.

Recycling and nonrecycling cursors
Use nonrecycling search cursors to select objects or fetch objects that
are to be updated. Recycling cursors should only be used for read-only
operations, such as drawing and querying features.

Nonrecycling cursors within an edit session create new objects only if
the object to be returned does not already exist in memory.

Fetching properties using query filters
Always fetch all properties of the object; query filters should always use
“*”. For efficient database access, the number of properties of an object
retrieved from the database can be specified. As an example, drawing a
feature requires only the OID and the Shape of the feature, hence the
simpler renderers only retrieve these two columns from the database.
This optimization speeds up drawing but is not suitable when editing
features.

If all properties are not fetched, then object-specific code that is trig-
gered may not find the properties that the method requires. For ex-
ample, a custom feature developer might write code to update attributes
A and B whenever the geometry of a feature changes. If only the geom-
etry was retrieved, then attributes A and B would be found to be miss-
ing within the OnChanged method. This would cause the OnChanged
method to return an error, which would cause the Store to return an
error and the edit operation to fail.

Marking changed objects
After changing an object, mark the object as changed (and guarantee
that it is updated in the database) by calling Store on the object. Delete
an object by calling the Delete method on the object. Set versions of
these calls also exist and should be used if the operation is being per-
formed on a set of objects to ensure optimal performance.

Calling these methods guarantees that all necessary polymorphic object
behavior built into the geodatabase is executed (for example, updating
of network topology or updating of specific columns in response to
changes in other columns in ESRI-supplied objects). It also guarantees
that developer-supplied behavior is correctly triggered.

Update and insert cursors
Never use update cursors or insert cursors to update or insert objects
into object and feature classes in an already loaded geodatabase that
has active behavior.

DEVELOPING WITH  ARCOBJECTS AND COM



Chapter 2 • Developing with ArcObjects • 95

Update and insert cursors are bulk cursor APIs for use during initial database load-
ing. If used on an object or feature class with active behavior, they will bypass all
object-specific behavior associated with object creation (such as topology creation)
and with attribute or geometry updating (such as automatic recalculation of other
dependent columns).

Shape and ShapeCopy geometry property
Make use of a Feature object’s Shape and ShapeCopy properties to opti-
mally retrieve the geometry of a feature. To better understand how these
properties relate to a feature’s geometry, refer to the diagram to the left
to see how features coming from a data source are instantiated into
memory for use within an application.

Features are instantiated from the data source using the following se-
quence:

1. The application requests a Feature object from a data source by call-
ing the appropriate geodatabase API method calls.

2. The geodatabase makes a request to COM to create a vanilla COM
object of the desired COM class (normally this class is
esriCore.Feature).

3. COM creates the Feature COM object.

4. The geodatabase gets attribute and geometry data from a data source.

5. The vanilla Feature object is populated with appropriate attributes.

6. The Geometry COM object is created and a reference is set in the
Feature object.

7. The Feature object is passed to the application.

8. The Feature object exists in the application until it is no longer re-
quired.

USING A TYPE LIBRARY

Since objects from ArcObjects do not implement IDispatch, it is essential
to make use of a type library in order for the compiler to early-bind to
the correct data types. This applies to all development environments,
although for both Visual Basic and Visual C++ there are wizards that
help you set this reference.

The type library required by the core ArcObjects is located in the
ArcGIS install\bin folder and is called esriCore.olb. Many different files
can contain type library information, including EXEs, DLLs, OCXs, and
OLBs.

COM DATA TYPES

COM objects talk via their interfaces, and hence all data types used must
be supported by IDL. IDL supports a large number of data types; how-
ever, not all languages that support COM support these data types. Be-
cause of this, ArcObjects does not make use of all the data types avail-
able in IDL but limits the majority of interfaces to the data type

DEVELOPING WITH  ARCOBJECTS AND COM

Application

DatabaseCOM

7

Geodatabase API

8

5

6

2 4

3

7

1

The diagram above clearly shows that the
Feature, which is a COM object, has another

COM object for its geometry. The Shape
property of the feature simply passes the

IGeometry interface pointer to this geometry
object out to the caller that requested the

shape. This means that if more than one client
requested the shape, all clients point to the

same geometry object. Hence, this geometry
object must be treated as read-only. No changes
should be performed on the geometry returned

from this property, even if the changes are
temporary. Anytime a change is to be made to a

feature’s shape, the change must be made on
the geometry returned by the ShapeCopy
property, and the updated geometry should

subsequently be assigned to the Shape property.



96 • Exploring ArcObjects • Volume 1

supported by Visual Basic. The table below shows the data types supported by
IDL and their corresponding types in a variety of languages.

charboolean unsigned char unsupported

charbyte unsigned char unsupported

charsmall char unsupported

shortshort short Integer

intlong long Long

longhyper __int64 unsupported

floatfloat float Single

doubledouble double Double

charchar unsigned char unsupported

shortwchar_t wchar_t Integer

intenum enum Enum

Interface Ref.Interface Pointer Interface Pointer Interface Ref.

ms.com.VariantVARIANT VARIANT Variant

java.lang.StringBSTR BSTR String

[true/false]VARIANT_BOOL short (-1/0) Boolean

IDL Microsoft C++ Visual Basic Microsoft JavaLanguage

Base types

Extended
types

Note the extended data types at the bottom of the table: VARIANT, BSTR,
and VARIANT_BOOL. While it is possible to pass strings using data types
like char and wchar_t, these are not supported in languages such as
Visual Basic. Visual Basic uses BSTRs as its text data type. A BSTR is a
length-prefixed wide character array, where the pointer to the array
points to the text contained within it and not the length prefix. Visual
C++ maps VARIANT_BOOL values onto 0 and –1 for the False and True
values, respectively. This is different from the normal mapping of 0 and
1. Hence, when writing C++ code, be sure to use the correct macros—
VARIANT_FALSE and VARIANT_TRUE—not False and True.

USING COMPONENT CATEGORIES

Component categories are used extensively in ArcObjects so that devel-
opers can extend the system without requiring any changes to the
ArcObjects code that will work with the new functionality.

ArcObjects uses component categories in two ways. The first requires
classes to be registered in the respective component category at all times,
for example, ESRI Mx Extensions. Classes, if present in that component
category, have an object that implements IExtension interface and are
instantiated when the ArcMap application is started. If the class is removed
from the component category, the extension will not load, even if the map
document (MXD file) is referencing that extension.

The second use is when the application framework uses the component
category to locate classes and display them to a user to allow some user
customization to occur. Unlike the first method, the application remem-
bers (inside its map document) the objects being used and will subse-
quently load them from the map document. An example of this is the
commands used within ArcMap. ArcMap reads the ESRI Mx Commands
category when the Customization dialog box is displayed to the user.
This is the only time the category is read. Once the user selects a com-
mand and adds it to a toolbar, the map document is used to determine

DEVELOPING WITH  ARCOBJECTS AND COM



Chapter 2 • Developing with ArcObjects • 97

what commands should be instantiated. Later, when this chapter covers
debugging Visual Basic code, you’ll see the importance of this.

Now that you’ve seen two uses of component categories, you will see
how to get your classes registered into the correct component category.
Development environments have various levels of support for compo-
nent categories; ESRI provides two ways of adding classes to a compo-
nent category. The first can only be used for Commands and command
bars that are added to either ArcMap or ArcCatalog. Using the Add From
File button on the Customize dialog box (shown to the left), it is pos-
sible to select a server. All classes in that server are then added to either
the ESRI Gx Commands or the ESRI Mx Commands, depending on the
application being customized. While this utility is useful, it is limited
since it adds all the classes found in the server. It is not possible to
remove classes, and it only supports two of the many component cat-
egories implemented within ArcObjects.

Distributed with ArcGIS applications is a utility application called the
Component Category Manager, shown to the left. This small application
allows you to add and remove classes from any of the component
categories on your system, not just ArcObjects ones. Expanding a cat-
egory displays a list of classes in the category. You can then use the
Add Object button to display a checklist of all the classes found in the
server. You check the required classes, and these checked classes are
then added to the category.

Using these ESRI tools is not the only method to interact with compo-
nent categories. During the installation of the server on the target user’s
machine, it is possible to add the relevant information to the Registry
using a registry script. Below is one such script. The first line tells win-
dows for which version of regedit this script is intended. The last line,
starting with “[HKEY_LOCAL_”, executes the registry command—all the
other lines are comments in the file.

REGEDIT4

; This Registry Script enters coclasses into their appropriate Component Category

; Use this script during installation of the components

; Coclass: Exporter.ExportingExtension

; CLSID: {E233797D-020B-4AD4-935C-F659EB237065}

; Component Category: ESRI Mx Extensions

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{E233797D-020B-4AD4-935C-
F659EB237065}\Implemented Categories\{B56A7C45-83D4-11D2-A2E9-080009B6F22B}]

The last line in the code above is one continuous line in the script.

The last method is for the self-registration code off the server to add the
relevant classes within the server to the appropriate categories. Not all
development environments allow this to be set up. Visual Basic has no
support for component categories, although there is an add-in that adds
this functionality. See the sections on Visual Basic Developer Add-ins
and ATL later in this chapter.

DEVELOPING WITH  ARCOBJECTS AND COM

The Component Category Manager

The Customize dialog box in ArcMap and
ArcCatalog



98 • Exploring ArcObjects • Volume 1

WHICH DEVELOPMENT ENVIRONMENT

You have already learned that developing with ArcObjects does not restrict
you to a proprietary development environment and that any compiler
capable of working with COM can be used. This section highlights some
of the considerations when choosing a development environment. The
choice is not restricted to which compiler; there are broader issues
including which application framework to use—ArcMap, ArcCatalog, or
your own. These broader issues are not within the scope of this book.

The choice of development environment is not a simple task and is
influenced by many factors. Many developers will be selecting either
Visual Basic for Applications, Visual Basic, or Visual C++, while others
will use Delphi, C++ Builder, and so on. The primary driving force is the
experience and skill level of the developers that will write the code.
Other issues worth considering are the requirements, performance,
development process, and security of code.

The performance issues of choosing the development language are not
as significant as you might think. Since the majority of the work will be
performed within the ArcObjects objects, which are all written in C++,
the developer’s customization language is for the most part used to
control the program flow and user interface interaction. Since Visual
Basic uses the same optimized back-end compiler technology that Vi-
sual C++ uses, the generated machine code performs at a comparable
level. Tests have shown that to perform typical actions on features con-
tained within a database (drawing, querying, editing, and so on), Visual
Basic is approximately 2 percent slower than optimized Visual C++
code, and Visual Basic for Applications is 2 percent slower than Visual
Basic.

Visual Basic is a very productive tool, especially for user interface devel-
opment, but there are limitations to what can be done in Visual Basic. In
the majority of cases, these limitations will not affect developers customiz-
ing and extending ArcObjects, with the exception of Custom Features.
Many of the limitations have to do with the development environment
itself. Debugging Visual Basic code is not as flexible as Visual C++. Using
Visual Basic in a large development environment with many developers is
not as productive as Visual C++ since partial compilations of projects are
not supported. If one file is changed in a Visual Basic project, all the files
must be recompiled. Since Visual Basic hides much of the interaction with
COM away inside the Visual Basic Virtual Machine, low-level COM plumb-
ing code cannot be written in Visual Basic.

Since Visual Basic for Applications does not support the creation of
DLLs, all the source code must be shipped inside a document. It is
possible to lock the source code projects with a document to stop third
parties from seeing the customization code; however, this locking of the
project also prevents third parties from using VBA to customize the
application further. VBA is an ideal prototyping environment that pro-
vides the means for deploying lightweight customizations but, for other
more involved customizations, Visual Basic should be considered. VBA

DEVELOPING WITH  ARCOBJECTS AND COM



Chapter 2 • Developing with ArcObjects • 99

also suffers from having its own form designer, meaning the UI source
cannot be shared between VBA and Visual Basic. In addition, the con-
trols used by VBA do not expose their window handles, which further
limits their use.

DEVELOPING WITH  ARCOBJECTS AND COM



100 • Exploring ArcObjects • Volume 1

The tables below summarize suggested
naming standards for the various ele-

ments of your Visual Basic projects.

cls

frm

Prefix

Class

Form

Module Type

prj

bas

Project

Standard

Name your modules according to the overall
function they provide; do not leave any with

default names (such as “Form1”, “Class1”,  or
“Module1”). Additionally, prefix the names of

forms, classes, and standard modules with three
letters that denote the type of module, as shown

in the table above.

cbo

chk

Prefix

Combo box

Check box

Control Type

cdl

cmd

Common dialog

Command button

fra

frm

Frame

Form

grd

gph

Grid

Graph

iml

img

Image list

Image

lst

lbl

List box

Label

map

lvw

Map control

List view

mnu

msk

Menu

Masked edit

opt

ole

Option button

OLE client

pbr

pic

Progress bar

Picture box

srl

rtf

Scroll bar

Rich text box

sbr

sld

Status bar

Slider

txt

tab

Text box

Tab strip

tbr

tmr

Tool bar

Timer

tvwTree view

As with modules, name your controls according
to the function they provide; do not leave them

with default names since this leads to decreased
maintainability. Use the three-letter prefixes

above to identify the type of the control.

This section is intended for both VB and VBA developers. Differences
in the development environments are clearly marked throughout the
text.

USER-INTERFACE STANDARDS

Consider preloading forms to increase the responsiveness of your appli-
cation. Be careful not to preload too many (preloading three or four
forms is fine).

Use resource files (.res) instead of external files when working with
bitmap files, icons, and related files.

Make use of constructors and destructors to set variable references that are
only set when the class is loaded. These are the VB functions:
Class_Initialize() and Class_Terminate(), or Form_Load() and
Form_Unload(). Set all variables to Nothing when the object is destroyed.

Make sure the tab order is set correctly for the form. Do not add scroll
bars to the tabbing sequence; it is too confusing.

Add access keys to those labels that identify controls of special impor-
tance on the form (use the TabIndex property).

Use system colors where possible instead of hard-coded colors.

Variable declaration
• Always use Option Explicit (or turn on Require Variable Declaration

in the VB Options dialog box). This forces all variables to be de-
clared before use and thereby prevents careless mistakes.

• Use Public and Private to declare variables at module scope and Dim
in local scope. (Dim and Private mean the same at Module scope;
however, using Private is more informative.) Do not use Global any-
more; it is available only for backward compatibility with VB 3.0 and
earlier.

• Always provide an explicit type for variables, arguments, and func-
tions. Otherwise, they default to Variant, which is less efficient.

• Only declare one variable per line unless the type is specified for
each variable.

This line causes count to be declared as a Variant, which is likely to be
unintended.

  Dim count, max As Long

This line declares both count and max as Long, the intended type.

  Dim count As Long, max As Long

These lines also declare count and max as Long and are more readable.

  Dim count As Long

  Dim max As Long

Parentheses
Use parentheses to make operator precedence and logic comparison
statements easier to read.

THE VISUAL BASIC ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 101

Use the following notation for naming variables
and constants:

[<libraryName.>][<scope_>]<type><name>

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case.

stdole

esriCore

Library Name

<empty>

Standard OLE COM Library

ESRI Object Library

Library

Simple variable datatype

<libraryName>

g

c

Prefix

m

<empty>

public variable defined in a class form or
standard module

constant within a form or class

Variable scope

private variable defined in a class or form

local variable

<scope>

Boolean

Data Type

byte or unsigned char

function

handle

int (integer)

long

a pointer

string

b

Prefix

by

fn

h

i

l

p

s

doubled

<type>

  Result = ((x * 24) / (y / 12)) + 42

  If ((Not pFoo Is Nothing) And (Counter > 200)) Then

Order of conditional determination
Visual Basic, unlike languages such as C and C++, performs conditional
tests on all parts of the condition, even if the first part of the condition
is False. This means you must not perform conditional tests on objects
and interfaces that had their validity tested in an earlier part of the con-
ditional statement.

  ' The following line will raise a runtime error if pFoo is NULL

  If ((Not pFoo Is Nothing) And (TypeOf pFoo.Thing Is IBar)) then

  End If

  ' The correct way to test this code is

  If (Not pFoo Is Nothing) Then

    If (TypeOf pFoo.Thing Is IBar) Then

      ' Perform action on IBar thing of Foo

    End If

  End If

Indentation
Use two spaces for indentation or a tab width of two. Since there is only
ever one editor for VB code, formatting is not as critical an issue as it is
for C++ code.

Default properties
Avoid using default properties except for the most common cases. They
lead to decreased legibility.

Intermodule referencing
When accessing intermodule data or functions, always qualify the refer-
ence with the module name. This makes the code more readable and
results in more efficient runtime binding.

Multiple property operations
When performing multiple operations against different properties of the
same object, use a With … End With statement. It is more efficient than
specifying the object each time.

  With frmHello

    .Caption = "Hello world"

    .Font = "Playbill"

    .Left = (Screen.Width - .Width) / 2

    .Top  = (Screen.Height - .Height) / 2

  End With

Arrays
For arrays, never change Option Base to anything other than zero (which
is the default). Use LBound and UBound to iterate over all items in an
array.

THE VISUAL BASIC ENVIRONMENT



102 • Exploring ArcObjects • Volume 1

  myArray = GetSomeArray

  For i = LBound(myArray) To UBound(myArray)

    MsgBox cstr(myArray(i))

  Next I

Bitwise operators
Since And, Or, and Not are bitwise operators, ensure that all conditions
using them test only for Boolean values (unless, of course, bitwise
semantics are what is intended).

  If (Not pFoo Is Nothing) Then

    ' Valid Foo do something with it

  End If

Type suffixes
Refrain from using type suffixes on variables or function names (such
as myString$ or Right$(myString)), unless they are needed to distin-
guish 16-bit from 32-bit numbers.

Ambiguous type matching
For ambiguous type matching, use explicit conversion operators (such
as CSng, CDbl, and CStr), instead of relying on VB to pick which one
will be used.

Simple image display
Use an ImageControl rather than a PictureBox for simple image display.
It is much more efficient.

Error handling
Always use On Error to ensure fault-tolerant code. For each function
that does error checking, use On Error to jump to a single error handler
for the routine that deals with all exceptional conditions that are likely to
be encountered. After the error handler processes the error—usually by
displaying a message—it should proceed by issuing one of the recovery
statements shown on the table to the left.

Error handling in Visual Basic is not the same as general error handling
in COM (see the section ‘Working with HRESULTs’).

Event functions
Refrain from placing more than a few lines of code in event functions
to prevent highly fractured and unorganized code. Event functions
should simply dispatch to reusable functions elsewhere.

Memory management
To ensure efficient use of memory resources, the following points
should be considered:

• Unload forms regularly. Do not keep many forms loaded but invisible
since this consumes system resources.

Exit Sub

Recovery
Statement

Raise

Resume

Resume
Next

Frequency

usually

often

rarely

very rarely

Meaning

Function failed, pass control
back to caller

Raise a new error code in
the caller's scope

Error condition removed,
re-attempt offending
statement

Ignore error and continue
with next statement

THE VISUAL BASIC ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 103

• Be aware that referencing a form-scoped variable causes the form to
be loaded.

• Set unused objects to Nothing to free up their memory.

• Make use of Class_Initialize() and Class_Terminate() to allocate and
destroy resources.

While Wend constructs
Avoid While … Wend constructs. Use the Do While … Loop or Do Until ...
Loop instead because you can conditionally branch out of
this construct.

  pFoos.Reset

  Set pFoo = pFoos.Next

  Do While (Not pFoo Is Nothing)

    If (pFoo.Answer = "Done") Then Exit Loop

    Set pFoo = pFoos.Next

  Loop

The Visual Basic Virtual Machine
The Visual Basic Virtual Machine (VBVM) contains the intrinsic Visual
Basic controls and services, such as starting and ending a Visual Basic
application, required to successfully execute all Visual Basic developed
code.

The VBVM is packaged as a DLL that must be installed on any machine
wanting to execute code written with Visual Basic, even if the code has
been compiled to native code. If the dependencies of any Visual Basic
compiled file are viewed, the file msvbvm60.dll is listed; this is the DLL
housing the Virtual Machine.

For more information on the services provided by the VBVM, see the
sections ‘Interacting with the IUnknown interface’ and ‘Working with
HRESULTs’ in this chapter.

Interacting with the IUnknown interface
The section on COM contains a lengthy section on the IUnknown inter-
face and how it forms the basis on which all of COM is built. Visual
Basic hides this interface from developers and performs the required
interactions (QueryInterface, AddRef, and Release function calls) on the
developer’s behalf. It achieves this because of functionality contained
within the VBVM. This simplifies development with COM for many
developers, but to work successfully with ArcObjects you must under-
stand what the VBVM is doing.

Visual Basic developers are used to dimensioning variables as follows:

  Dim pColn as New Collection  'Create a new collection object

  PColn.Add "Foo", "Bar"       'Add element to collection

It is worth considering what is happening at this point. From a quick
inspection of the code it looks like the first line creates a collection
object and gives the developer a handle on that object in the form of

The VBVM was called the VB Runtime in earlier
versions of the software.

THE VISUAL BASIC ENVIRONMENT



104 • Exploring ArcObjects • Volume 1

pColn. The developer then calls a method on the object Add. Earlier in
the chapter you learned that objects talk via their interfaces, never
through a direct handle on the object itself. Remember, objects expose
their services via their interfaces. If this is true, something isn’t adding
up.

What is actually happening is some “VB magic” performed by the
VBVM and some trickery by the Visual Basic Editor in the way that it
presents objects and interfaces. The first line of code instantiates an
instance of the collection class, then assigns the default interface for that
object, _Collection, to the variable pColn. It is this interface, _Collection,
that has the methods defined on it. Visual Basic has hidden the fact of
interface-based programming to simplify the developer experience. This
is not an issue if all the functionality implemented by the object can be
accessed via one interface, but it is an issue when there are multiple
interfaces on an object that provides services.

The Visual Basic editor backs this up by hiding default interfaces from
the IntelliSense completion list and the object browser. By default, any
interfaces that begin with an underscore, “_”, are not displayed in the
object browser (to display these interfaces turn Show Hidden Member
on, although this will still not display default interfaces).

You have already learned that the majority of ArcObjects have
IUnknown as their default interface and that Visual Basic does not ex-
pose any of IUnknown’s methods, namely, QueryInterface, AddRef, and
Release. Assume you have a class Foo that supports three interfaces,
IUnknown (the default interface), IFoo, and IBar. This means that if you
were to dimension the variable pFoo as below, the variable pFoo would
point to the IUnknown interfaces.

  Dim pFoo As New Foo     ' Create a new Foo object

  pFoo.??????

Since Visual Basic does not allow direct access to the methods of
IUnknown, you would immediately have to QI for an interface with
methods on it that you can call. Because of this, the correct way to
dimension a variable that will hold pointers to interfaces is as follows:

  Dim pFoo As IFoo   ' Variable will hold pointer to IFoo interface

  Set pFoo = New Foo ' Create Instance of Foo object and QI for IFoo

Now that you have a pointer to one of the object’s interfaces, it is an
easy matter to request from the object any of its other interfaces.

  Dim pBar as IBar  'Dim variable to hold pointer to interface

  Set pBar = pFoo   'QI for IBar interface

By convention, most classes have an interface with the same name as
the class with an “I” prefix; this tends to be the interface most com-
monly used when working with the object. You are not restricted to
which interface you request when instantiating an object; any supported
interface can be requested, hence the code below is valid.

  Dim pBar as IBar

  Set pBar = New Foo  'CoCreate Object

  Set pFoo = pBar     'QI for interface

THE VISUAL BASIC ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 105

Objects control their own lifetime, which requires clients to call AddRef
anytime an interface pointer is duplicated by assigning it to another
variable and to call Release anytime the interface pointer is no longer
required. Ensuring that there are a matching number of AddRefs and
Releases is important and, fortunately, Visual Basic performs these calls
automatically. This ensures that objects do not “leak”. Even when inter-
face pointers are reused, Visual Basic will correctly call release on the
old interface before assigning the new interface to the variable. The
code below illustrates these concepts; note the reference count on the
object at the various stages of code execution.

Private Sub VBMagic()

  ' Dim a variable to the IUnknown interface on the simple object

  Dim pUnk As IUnknown

  ' Co Create simpleobject asking for the IUnknown interface

  Set pUnk = New SimpleObject 'refCount = 1

  ' We need access to methods lets QI for a useful interface

  ' Define the interface we are to request

  Dim pMagic As ISimpleObject

  ' Perform the QI operation

  Set pMagic = punk 'refCount = 2

  ' Dim another variable to hold another interface on the object

  Dim pMagic2 As IAnotherInterface

  ' QI for that interface

  Set pMagic2 = pMagic 'refCount = 3

  ' Release the interface pointer

  Set pMagic2 = Nothing 'refCount = 2

  ' Release the interface

  Set pMagic = Nothing 'refCount = 1

  ' Now reuse the pUnk variable - what will VB do for this?

  Set pUnk = New SimpleObject 'refCount = 1, then 0, then 1

  ' Let the interface variable go out of scope and VB to tidy up

End Sub 'refCount = 0

Often interfaces have properties that are actually pointers to other inter-
faces. Visual Basic allows you to access these properties in a shorthand
fashion by chaining interfaces together. For instance, assume that you
have a pointer to the IFoo interface, and that interface has a property
called Gak that is an IGak interface with the method DoSomething().
You have a choice on how to access the DoSomething method. The first
method is the long-handed way.

See Visual Basic Magic sample on the disk for
this code. You are encouraged to run the sample
and step though the code. This object also uses

an ATL C++ project to define the SimpleObject
and its interfaces; you are encouraged to look at
this code to learn a simple implementation of a

C++ ATL object.

THE VISUAL BASIC ENVIRONMENT



106 • Exploring ArcObjects • Volume 1

  Dim pGak as IGak

  Set pGak = pFoo      'Assign IGak interface to local variable

  pGak.DoSomething     'Call method on IGak interface

Alternatively, you can chain the interfaces and accomplish the same
thing on one line of code.

  pFoo.Gak.DoSomething  'Call method on IGak interface

When looking at the sample code, you will see both methods. Normally
the former method is used on the simpler samples, as it explicitly tells
you what interfaces are being worked with. More complex samples use
the shorthand method.

This technique of chaining interfaces together can always be used to get
the value of a property, but it cannot always be used to set the value of
a property. Interface chaining can only be used to set a property if all
the interfaces in the chain are set by reference. For instance, the code
below would execute successfully.

  Dim pMxDoc As ImxDocument

  Set pMxDoc = ThisDocument

  pMxDoc.FocusMap.Layers(0).Name = "Foo"

The above example works because both the Layer of the Map and the
Map of the document are returned by reference. The lines of code
below would not work since the Extent envelope is set by value on the
active view.

  pMxDoc.ActiveView.Extent.Width = 32

The reason that this does not work is that the VBVM expands the inter-
face chain in order to get the end property. Because an interface in the
chain is dealt with by value, the VBVM has its own copy of the variable,
not the one chained. To set the Width property of the extent envelope
in the above example, the VBVM must write code similar to this:

  Dim pActiveView as IActiveView

  Set pActiveView = pMxDoc.ActiveView

  Dim pEnv as IEnvelope

  Set pEnv = pActiveView.Extent  ' This is a get by value,

  PEnv.Width = 32   ' The VBVM has set its copy of the Extent and not

                   ' the copy inside the ActiveView

For this to work the VBVM requires the extra line below.

  pActiveView.Extent = pEnv  ' This is a set by value,

Accessing  ArcObjects
You will now see some specific uses of the create instance and query
interface operations that involve ArcObjects. To use an ArcGIS object in
Visual Basic or VBA, you must first reference the ESRI object library. In
a standalone Visual Basic application, always reference esriCore.olb.
Inside of ArcMap or ArcCatalog, a reference is automatically made to
the esriMx.olb and esriGx.olb libraries when you start the application, so
no external referencing to esriCore.olb is required.

THE VISUAL BASIC ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 107

You will start by identifying a simple object and an interface that it
supports. In this case, you will use a Point object and the IPoint inter-
face. One way to set the coordinates of the point is to invoke the
PutCoords method on the IPoint interface and pass in the coordinate
values.

  Dim pPt As IPoint

  Set pPt = New Point

  pPt.PutCoords 100, 100

The first line of this simple code fragment illustrates the use of a vari-
able to hold a reference to the interface that the object supports. The
line reads the IID for the IPoint interface from the ESRI object library.
You may find it less ambiguous (as per the coding guidelines), particu-
larly if you reference other object libraries in the same project to pre-
cede the interface name with the library name, for example:

  Dim pPt As esriCore.IPoint

That way, if there happens to be another IPoint referenced in your project,
there won’t be any ambiguity as to which one you are referring.

The second line of the fragment creates an instance of the object or
coclass, then performs a QI operation for the IPoint interface that it
assigns to pPt.

With a name for the coclass as common as Point, you may want to
precede the coclass name with the library name, for example:

  Set pPt = New esriCore.Point

The last line of the code fragment invokes the PutCoords method. If a
method can’t be located on the interface, an error will be shown at
compile time.

Working with HRESULTs
So far you have seen that all COM methods signify success or failure via
an HRESULT that is returned from the method; no exceptions are raised
outside of the interface. You have also learned that Visual Basic raises
exceptions when errors are encountered. In Visual Basic, HRESULTs are
never returned from method calls and, to confuse you further when
errors do occur, Visual Basic throws an exception. How can this be?
The answer lies with the Visual Basic Virtual Machine. It is the VBVM
that receives the HRESULT; if this is anything other than S_OK, the
VBVM throws the exception. If it was able to retrieve any worthwhile
error information from the COM error object, it populates the Visual
Basic Err object with that information. In this way, the VBVM handles
all HRESULTs returned from the client.

When implementing interfaces in Visual Basic, it is good coding practice
to raise an HRESULT error to inform the caller that an error has oc-
curred. Normally, this is done when a method has not been imple-
mented.

  ' Defined in Module

  Const E_NOTIMPL = &H80004001 'Constant that represents HRESULT

A QI is required since the default interface of
the object is IUnknown. Since the pPt variable

was declared as type IPoint, the default
IUnknown interface was QI’d for the IPoint

interface.

This is the compilation error message shown
when a method or property is not found on an

interface.

THE VISUAL BASIC ENVIRONMENT

IID is short for Interface Identifier, a GUID.

Coclass is an abbreviation of component object
class.



108 • Exploring ArcObjects • Volume 1

  'Added to any method not implemented

  On Error GoTo 0

  Err.Raise E_NOTIMPL

You must also write code to handle the possibility that an HRESULT
other than S_OK is returned. When this happens, an error handler
should be called and the error dealt with. This may mean simply telling
the user, or perhaps it may mean automatically dealing with the error
and continuing with the function. The choice depends on the circum-
stances. Below is a very simple error handler that will catch any error
that occurs within the function and report it to the user. Note the use of
the Err object to provide the user with some description of the error.

Private Sub Test()

  On Error GoTo ErrorHandler

  ' Do something here

  Exit Sub    ' Must exit sub here before error handler

ErrorHandler:

  Msgbox "Error In Application – Description " & Err.Description

End Sub

Working with properties
Some properties refer to specific interfaces in the ESRI object library,
and other properties have values that are standard data types, such as
strings, numeric expressions, Boolean values, and so forth. For interface
references, declare an interface variable and use the Set statement to
assign the interface reference to the property. For other values, declare a
variable with an explicit data type or use Visual Basic’s Variant data
type. Then, use a simple assignment statement to assign the value to the
variable.

Properties that are interfaces can either be set by reference or set by
value. Properties that are set by value do not require the Set statement.

  Dim pEnv As IEnvelope

  Set pEnv = pActiveView.Extent   'Get extent property of view

  pEnv.Expand 0.5, 0.5, True      'Shrink envelope

  pActiveView.Extent = pEnv       'Set By Value extent back on IActiveView

  Dim pFeatureLayer as IfeatureLayer

  Set pFeatureLayer = New FeatureLayer    'Create New Layer

  Set pFeatureLayer.FeatureClass = pClass 'Set ByRef a class into layer

As you might expect, some properties are read-only, others are write-
only, and still others are read–write. All the object browsers and the
ArcObjects Class Help (found in the ArcObjects Developer Help system)
provide this information. If you attempt to use a property and either
forget or misuse the Set keyword, Visual Basic will fail the compilation
of the source code with a method or data member not found error
message. This error may seem strange since it may be given for trying to
assign a value to a read-only property. The reason for the message is
that Visual Basic is attempting to find a method in the type library that

THE VISUAL BASIC ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 109

maps to the property name. In the above examples, the underlying
method calls in the type library are put_Extent and putref_FeatureClass.

Working with methods
Methods perform some action and may or may not return a value. In
some instances, a method returns a value that’s an interface; for ex-
ample, in the code fragment below, EditSelection returns an enumerated
feature interface:

  Dim pApp As IApplication

  Dim pEditor As IEditor

  Dim pEnumFeat As IEnumFeature 'Holds the selection

  Dim pID As New UID

  'Get a handle to the Editor extension

  pID = "esriCore.Editor"

  Set pApp = Application

  Set pEditor = pApp.FindExtensionByCLSID(pID)

  'Get the selection

  Set pEnumFeat = pEditor.EditSelection

In other instances, a method returns a Boolean value that reflects the
success of an operation or writes data to a parameter; for example, the
DoModalOpen method of GxDialog returns a value of True if a selection
occurs and writes the selection to an IEnumGxObject parameter.

Be careful not to confuse the idea of a Visual Basic return value from a
method call with the idea that all COM methods must return an
HRESULT. The VBVM is able to read type library information and set up
the return value of the VB method call to be the appropriate parameter
of the COM method.

Working with events
Events let you know when something has occurred. You can add code
to respond to an event. For example, a command button has a Click
event. You add code to perform some action when the user clicks the
control. You can also add events that certain objects generate. VBA and
Visual Basic let you declare a variable with the keyword WithEvents.
WithEvents tells the development environment that the object variable
will be used to respond to the object’s events. This is sometimes re-
ferred to as an “event sink”. The declaration must be made in a class
module or a form. Here’s how you declare a variable and expose the
events of an object in the Declarations section:

  Private WithEvents m_pViewEvents as Map

Visual Basic only supports one outbound interface (marked as the
default outbound interface in the IDL) per coclass. To get around this
limitation, the coclasses that implement more than one outbound inter-
face have an associated dummy coclass that allows access to the sec-
ondary outbound interface. These coclasses have the same name as the
outbound interface they contain, minus the I.

  Private WithEvents m_pMapEvents as MapEvents

THE VISUAL BASIC ENVIRONMENT



110 • Exploring ArcObjects • Volume 1

Once you’ve declared the variable, search for its name in the Object
combo box at the top left of the Code window. Then, inspect the list of
events you can attach code to in the Procedure/Events combo box at
the top right of the Code window.

Not all procedures of the outbound event interface need to be stubbed
out, as Visual Basic will stub out any unimplemented methods. This is
different from inbound interfaces, where all methods must be stubbed
out for compilation to occur.

Before the methods are called, the hookup between the event source
and sink must be made. This is done by setting the variable that repre-
sents the sink to the event source.

  Set m_pMapEvents = pMxDoc.FocusMap

Pointers to valid objects as parameters
Some ArcGIS methods expect interfaces for some of their parameters.
The interface pointers passed can point to an instanced object before
the method call or after the method call is completed.

For example, if you have a polygon (pPolygon) whose center point you
want to find, you can write code like this:

  Dim pArea As IArea

  Dim pPt As IPoint

  Set pArea = pPolygon ' QI for IArea on pPolygon

  Set pPt = pArea.Center

You don’t need to create pPt because the Center method creates a Point
object for you and passes back a reference to the object via its IPoint
interface. Only methods that use clientside storage require you to create
the object prior to the method call.

Passing data between modules
When passing data between modules it is best to use accessor and
mutator functions that manipulate some private member variable. This
provides data encapsulation, which is a fundamental technique in ob-
ject-oriented programming. Public variables should never be used.

For instance, you might have decided that a variable has a valid range
of 1–100. If you were to allow other developers direct access to that
variable, they could set the value to an illegal value. The only way of
coping with these illegal values is to check them before they get used.
This is both error prone and tiresome to program. The technique of
declaring all variables private member variables of the class and provid-
ing accessor and mutator functions for manipulating these variables will
solve this problem.

In the example below, these properties are added to the default inter-
face of the class. Notice the technique used to raise an error to the
client.

Private m_lPercentage As Long

Public Property Get Percentage() As Long

THE VISUAL BASIC ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 111

  Percentage = m_lPercentage

End Property

Public Property Let Percentage(ByVal lNewValue As Long)

  If (lNewValue >= 0) And (lNewValue <= 100) Then

    m_lPercentage = lNewValue

  Else

    Err.Raise vbObjectError + 29566, "MyProj.MyObject", _

    "Invalid Percentage Value. Valid values (0 -> 100)"

  End If

End Property

When you write code to pass an object reference from one form, class,
or module to another, for example:

  Private Property Set PointCoord(ByRef pPt As IPoint)

    Set m_pPoint = pPt

  End Property

your code passes a pointer to an instance of the IPoint interface. This
means that you are only passing the reference to the interface, not the
interface itself; if you add the ByVal keyword (as follows), the interface
is passed by value.

  Private Property Let PointCoord(ByVal pPt As IPoint)

    Set m_pPoint = pPt

  End Property

In both of these cases the object pointed to by the interfaces is always
passed by reference. In order to pass the object by value, a clone of the
object must be made, and that is passed.

Using the TypeOf keyword
To check whether an object supports an interface, you can use Visual
Basic’s TypeOf keyword. For example, given an item selected in the
ArcMap table of contents, you can test whether it is a FeatureLayer
using the following code:

  Dim pDoc As IMxDocument

  Dim pUnk As IUnknown

  Dim pFeatLyr As IGeoFeatureLayer

  Set pDoc = ThisDocument

  Set pUnk = pDoc.SelectedItem

  If TypeOf pUnk Is IGeoFeatureLayer Then  ' can we QI for IGeoFeatureLayer?

    Set pFeatLyr = pUnk                      ' actually QI happens here

    ' Do something with pFeatLyr

  End If

Using the Is operator
If your code requires you to compare two interface reference variables,
you can use the Is operator. Typically, you can use the Is operator in the
following circumstances:

THE VISUAL BASIC ENVIRONMENT



112 • Exploring ArcObjects • Volume 1

To check if you have a valid interface.

  Dim pPt As IPoint

  Set pPt = New Point

  If (Not pPt Is Nothing) Then 'a valid pointer?

    ... ' do something with pPt

  End If

To check if two interface variables refer to the same actual object, say
you’ve got two interface variables of type IPoint, pPt1, and pPt2. Are
they pointing to the same object? If they are, then pPt1 Is pPt2.

The Is keyword works with the COM identity of an object. Below is an
example that illustrates the use of the Is keyword when finding out if a
certain method on an interface returns a copy of or a reference to the
same real object.

In the following example, the Extent property on a map (IMap) returns a
copy, while the ActiveView property on a document (IMxDocument)
always returns a reference to the real object.

  Dim pDoc As IMxDocument

  Dim pEnv1 As IEnvelope, pEnv2 as IEnvelope

  Dim pActView1 As IActiveView

  Dim pActView2 as IActiveView

  Set pDoc = ThisDocument

  Set pEnv1 = pDoc.ActiveView.Extent

  Set pEnv2 = pDoc.ActiveView.Extent

  Set pActView1 = pDoc.ActiveView

  Set pActView2 = pDoc.ActiveView

  ' Extent returns a copy,

  ' so pEnv1 Is pEnv2 returns False

  Debug.Print pEnv1 Is pEnv2

  ' ActiveView returns a reference,

  ' so pActView1 Is pActView2

  Debug.Print pActView1 Is pActView2

Iterating through a collection
In your work with ArcMap and ArcCatalog, you’ll discover that in many
cases you’ll be working with collections. You can iterate through these
collections with an enumerator. An enumerator is an interface that pro-
vides methods for traversing a list of elements. Enumerator interfaces
typically begin with IEnum and have two methods: Next and Reset. Next
returns the next element in the set and advances the internal pointer,
and Reset resets the internal pointer to the beginning.

Here is some VBA code that loops through the selected features
(IEnumFeature) in a map. To try the code, add the States sample layer to
the map and use the Select tool to select multiple features (drag a rect-
angle to do this). Add the code to a VBA macro, then execute the
macro. The name of each selected state will be printed in the debug
window.

  Dim pDoc As IMxDocument

THE VISUAL BASIC ENVIRONMENT

Enumerators can support other methods, but
these two methods are common amongst all

enumerators.



Chapter 2 • Developing with ArcObjects • 113

  Dim pEnumFeat As IEnumFeature

  Dim pFeat As IFeature

  Set pDoc = ThisDocument

  Set pEnumFeat = pDoc.FocusMap.FeatureSelection

  Set pFeat = pEnumFeat.Next

  Do While (Not pFeat Is Nothing)

    Debug.Print pFeat.Value(pFeat.Fields.FindField("state_name"))

    Set pFeat = pEnumFeat.Next

  Loop

Some collection objects, the Visual Basic Collection being one, imple-
ment a special interface called _NewEnum. This interface, because of
the _ prefix, is hidden, but Visual Basic developers can still use it to
simplify iterating through a collection. The Visual Basic For Each con-
struct works with this interface to perform the Reset and Next steps
through a collection.

  Dim pColn as Collection

  Set pColn = GetCollection()' Collection returned from some function

  Dim thing as Variant      ' VB uses methods on _NewEnum to step through

  For Each thing in pColn  ' an enumerator.

    MsgBox Cstr(thing)

  Next

THE VISUAL BASIC ENVIRONMENT



114 • Exploring ArcObjects • Volume 1

VISUAL BASIC FOR APPLICATIONS

This section of the chapter discusses how to program in the VBA envi-
ronment to control either ArcMap, ArcCatalog, or ArcScene by accessing
the objects they expose. Your code manipulates the objects by getting
and setting properties on their interfaces, such as setting the
MaximumScale and MinimumScale of a Map’s FeatureLayer, invoking
methods on the interfaces, such as adding a vertex to a polyline, or
setting a field’s value. The code runs when an event occurs, for ex-
ample, when a user opens a document, clicks a button, or alters data by
modifying an edit sketch.

First, though, you’ll see the aspects of the VBA development environ-
ment in which you’ll do your work that are specific to the ESRI applica-
tions. Consult the Visual Basic Reference, the online help file that dis-
plays when you click Microsoft Visual Basic Help in the Help menu of
the VBA Editor for generic help on the user interface, conceptual topics,
how-to topics, language reference topics, customizing the Visual Basic
Editor, and user forms and controls.

In the VBA development environment you can add modules, class
modules, and user forms to the default project contained in every
ArcGIS application document. A project can consist of as many mod-
ules, class modules, and user forms as your work requires. A project is
a collection of items to which you add code. A module is a set of dec-
larations followed by procedures—a list of instructions that your code
performs. A class module is a special type of module that contains the
definition of a class, including its property and method definitions. A
user form is a container for user interface controls, such as command
buttons and text boxes.

ArcMap has a default project associated with its document that’s listed
in the Project Explorer as Project followed by its filename. In addition,
you’ll see another project listed in the Project Explorer called Normal
(Normal.mxt).

Normal is, in fact, a template for all documents. It’s always loaded into
the document. It contains all the user-interface elements that users see,
as well as the class module named ArcID, which contains all the UIDs
for the application’s commands.

Since any modifications made to Normal will be reflected every time
you create or open a document, you should be careful when making
changes to Normal.

In ArcMap, users can start by opening a template other than the default
template. These templates are available to them in the New dialog box.
From a developer’s perspective this is a base template, a document that
loads an additional project into the document; it is listed in the Project
Explorer as the TemplateProject followed by its filename. This project
can store code in modules, class modules, forms, and any other
customizations, such as maps with data, page layout frames, and so on.
Any modifications or changes made to this base template are reflected
only in documents that are derived from it.



Chapter 2 • Developing with ArcObjects • 115

VISUAL BASIC FOR APPLICATIONS

In ArcCatalog, Normal (Normal.gxt) is the only project that appears in
the Project Explorer. There is no default Project in ArcCatalog, and you
can’t load any templates. You can, of course, add code to Normal.gxt
inside modules, class modules, or forms, but again, be careful when
making changes.

Once you’ve invoked the Visual Basic Editor, you can insert a module,
class module, or user form. Then you insert a procedure or enter code
for an existing event procedure in the item’s Code window, where you
can write, display, and edit code. You can open as many Code windows
as you have modules, class modules, and user forms, so you can easily
view the code and copy and paste between Code windows. In addition
to creating your own modules, you can import other modules, class
modules, or user forms from disk.

If your work requires it, you can add an external object library or type
library reference to your project. This makes another application’s ob-
jects available in your code. Once a reference is set, the referenced
objects are displayed in the development environment’s Object Browser.

Getting started with VBA
To begin programming with VBA in ArcMap or ArcCatalog, you start the
Visual Basic Editor.

To start the Visual Basic Editor
1. Start ArcMap or ArcCatalog.

2. Click the Tools menu, point to Macros, then click Visual Basic Editor.
You can also use the shortcut keys Alt+F11 to display the Visual
Basic Editor. To navigate among the projects in the Visual Basic
Editor, use the Project Explorer. It displays a list of the document’s
modules, class modules, and user forms.

To add a macro to a module
ArcMap and ArcCatalog both provide a shortcut for creating a simple
macro in a module.

1. Click the Tools menu, point to Macros, then click Macros.

2. Type the name of the macro you want to create in the Macro name
text box. If you don’t specify a module name, the application creates
a module called modulexx and stores the macro in that module. If no
module is specified after you specify a module, and a module is
already active, the macro is placed in that module. Preceding a
macro’s name with a name and a dot stores it in a module with the
specified name. If the module doesn’t exist, the application creates it.

3. Click the dropdown arrow of the Macros in the combo box and
choose the VBA project in which you want to create the macro.

4. Press the Enter key or click Create.

5. The stub for a Sub procedure for the macro appears in the Code
window.



116 • Exploring ArcObjects • Volume 1

VISUAL BASIC FOR APPLICATIONS

Adding modules and class modules
All ArcGIS application documents contain the class module
ThisDocument, a custom object that represents the specific document
associated with a VBA project. The document object is called Mx-
Document in ArcMap and GxDocument in ArcCatalog. The IDocument
interface provides access to the document’s title, type, accelerator table,
command bars collection, parent application, and Visual Basic project.

Modules and class modules can contain more than one type of proce-
dure: sub, function, or property. You can choose the procedure type
and its scope when you insert a procedure. Inserting a procedure is like
creating a code template into which you enter code.

Every procedure has either private or public scope. Procedures with
private scope are limited to the module that contains them—only a
procedure within the same module can call a private procedure. If you
declare the procedure public, other programs and modules can call it.

Variables in your procedures may either be local or global. Global vari-
ables exist during the entire time the code executes, whereas local vari-
ables exist only while the procedure in which they are declared is run-
ning. The next time you execute a procedure, all local variables are
reinitialized. However, you can preserve the value of all local variables
in a procedure for the code’s lifetime by declaring them static, thereby
fixing their value.

To add a procedure to an existing module
1. In the Project Explorer, double-click the ArcMap Objects, ArcCatalog

Objects, or Modules folder, then choose the name of a module.
Ensure that the code view of the module is active by clicking the
View Code button.

2. Click the Insert menu and click Procedure.

3. Type the name of the procedure in the Name text box.

4. Click the Type dropdown arrow and click the type of procedure: Sub,
Function, or Property.

5. Click the Scope dropdown arrow and click Public or Private.

6. To declare all local variables static, check the All Local variables as
Statics check box.

7. Click OK. VBA stubs in a procedure into the item’s Code window into
which you can enter code. The stub contains the first and last lines
of code for the type of procedure you’ve added.

8. Enter code into the procedure.

For more information about procedures, see the Microsoft Visual
Basic online help reference.

Adding user forms
If you want your code to prompt the user for information, or you want
to display the result of some action performed when the user invokes



Chapter 2 • Developing with ArcObjects • 117

VISUAL BASIC FOR APPLICATIONS

an ArcGIS application command or tool or in response to some other
event, use VBA’s user forms. User forms provide a context in which you
can provide access to a rich set of integrated controls. Some of these
controls are similar to the UIControls that are available as part of the
Customize dialog box’s Commands tab. In addition to text boxes or
command buttons, you have access to a rich set of additional controls.
A user form is a container for user-interface controls, such as command
buttons and text boxes. A control is a Visual Basic object you place on
a user form that has its own properties, methods, and events. You use
controls to receive user input, display output, and trigger event proce-
dures. You can set the form to be either modal, in which case the user
must respond before using any other part of the application, or
modeless, in which case subsequent code is executed as it’s encoun-
tered.

To add and start coding in a user form
1. In the Project Explorer, select the Project to which you want to add a

user form.

2. Click the Insert menu and click UserForm.

3. VBA inserts a user form into your project and opens the Controls
Toolbox.

4. Click the controls that you want to add to the user interface from the
Controls Toolbox.

5. Add code to the user form or to its controls.

For more information about adding controls, see the Microsoft Visual
Basic online help reference.

To display the Code window for a user form or control, double-click the
user form or control. Then, choose the event you want your code to
trigger from the dropdown list of events and procedures in the Code
window and start typing your code. Or, just as in a module or class
module, insert a procedure and start typing your code.

To display the form during an ArcMap or ArcCatalog session in re-
sponse to some action, invoke its Show method, as in this example:

  UserForm1.Show vbModeless 'show modeless

Some VBA project management techniques
To work efficiently in the ArcGIS application’s VBA development envi-
ronment and reduce the amount of work you have to do every time you
start a new task, make use of several techniques that will streamline your
work:

Reusing modules, class modules, and user forms
To add an existing module or form to the Normal template, the Project,
or a TemplateProject, click the name of the destination in the Project
Explorer, then choose Import File from the File menu. You can choose
any VBA module, user form, or class module to add a copy of the file



118 • Exploring ArcObjects • Volume 1

VISUAL BASIC FOR APPLICATIONS

to your project. To export an item from your project so that it is available for
importing into other projects, select the item you want to export in the Project
Explorer, choose Export File from the File menu, then navigate to where you
want to save the file. Exporting an item does not remove it from your project.

Removing project items
When you remove an item, it is permanently deleted from the project list—you
can’t undo the Remove action; however, this action doesn’t delete a file if it
exists on disk. Before removing an item, make sure the remaining code in other
modules and user forms doesn’t refer to code in the removed item. To remove an
item, select it in the Project Explorer, then choose Remove <Name> from the
File menu. Before you remove the item, you’ll be asked whether you want to
export it. If you click Yes in the message box, the Export File dialog box opens.
If you click No, VBA deletes the item.

Protecting your code
To protect your code from alteration and viewing by users, you can lock a
Project, a TemplateProject, or even Normal. When you lock one of these items,
you set a password that must be entered before it can be viewed in the Project
Explorer. To lock one of these items, right-click Project, TemplateProject, or
Normal in the Project Explorer, then click the Properties item in the context
menu that appears. In the Properties dialog box, click the Protection tab and
click the option to Lock Project for Viewing. Enter a password and confirm it.
Finally, save your ArcMap or ArcCatalog file and close it. The next time you or
anyone else opens the file, the project is locked. If anyone wants to view or edit
the project, they must enter the password.

Saving a VBA project
VBA projects are stored in a file that can be a base template (*.mxt), the Normal
template, or a document (*.mxd). When a user creates a new ArcMap document
from a base template, the new document references the base template’s VBA
project and its items. To save your ArcMap document and your VBA project,
click Save from the ArcMap File menu or Save <File Name> from the File menu
in the Visual Basic Editor. Both commands save your file with the project and
any items stored in it. After saving the file, its filename is displayed in the Project
Explorer in parentheses after the project name. To save the document as a tem-
plate, click Save As from the ArcMap File menu and specify ArcMap Templates
(*.mxt) as the File type.

Running  VBA code
As you build and refine your code, you can run it within VBA to test and debug
it. This section discusses running your code in the Visual Basic Editor during
design time. For more information about running and debugging a VBA program,
such as adding break points, adding watch expressions, and stepping into and out
of execution, see Microsoft Visual Basic online help.



Chapter 2 • Developing with ArcObjects • 119

VISUAL BASIC FOR APPLICATIONS

To run your code in the Visual Basic Editor or from the Macros dialog box
1. Click the Tools menu and click Macros.

2. In the Macro list, click the macro you want and click Run.

If the macro you want is not listed, make sure you’ve chosen the appro-
priate item: either Normal, Project, or TemplateProject in the Macros In
box. Private procedures do not appear in any menus or dialog boxes.

To run only one procedure in the Visual Basic Editor
1. In the Project Explorer, open the module that contains the procedure

that you want to run.

2. In the Code window, click an insertion point in the procedure code.

3. Click the Run menu and click Run Sub/UserForm.

Only the procedure in which your cursor is located runs.

After you’ve finished writing your code
After you have finished writing code, users can run it from ArcMap or
ArcCatalog. To do this, they choose Macros and then Macros from the
Tools menu. You can also associate the code with a command or tool,
or it can run in response to events or in other ways that you design.

Using the Global Application objects
Application and ThisDocument are examples of global system variables
that can be accessed by any module or class in the VBA environment
while ArcMap is running. This variable is automatically set to reference
the current document when ArcMap opens the document. You can use
ThisDocument as a shortcut when programming in VBA to access the
current document. Here is an example of how to use both the Applica-
tion and ThisDocument:

  Dim pMxDoc as IMxDocument

  Set pMxDoc = Application.Document

 'or

  Set pMxDoc = ThisDocument

Both methods illustrated above result in a reference being set to the
local document.

Since ArcCataog does not support the use of
documents, the ThisDocument global variable is

not available to developers. However, the
Application variable is available if a developer

wishes to access IGxApplication or
IApplication.



120 • Exploring ArcObjects • Volume 1

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT

In the previous section of this chapter, we focused primarily on how to
write code in the VBA development environment embedded within
ArcMap and ArcCatalog. This section focuses on particular issues related
to creating ActiveX DLLs that can be added to the applications and
writing external standalone applications using the Visual Basic develop-
ment environment. More details of using Visual Basic are given with the
documentation that accompanies ArcObjects Developer Controls.

Creating COM components
Most developers use Visual Basic to create a COM component that
works with ArcMap or ArcCatalog. Earlier in this chapter you learned
that since the ESRI applications are COM clients—their architecture
supports the use of software components that adhere to the COM speci-
fication—you can build components with different languages including
Visual Basic. These components can then be added to the applications
easily. For information about packaging and deploying COM compo-
nents that you’ve built with Visual Basic, see the last section of this
chapter.

This section is not intended as a Visual Basic tutorial; rather, it highlights
aspects of Visual Basic that you should know in order to be effective
when working with ArcObjects.

In Visual Basic you can build a COM component that will work with
ArcMap or ArcCatalog by creating an ActiveX DLL. This section will
review the rudimentary steps involved. Note that these steps are not all-
inclusive. Your project may involve other requirements.

1. Start Visual Basic. In the New Project dialog box, create an ActiveX
DLL Project.

2. In the Properties window, make sure that the Instancing property for
the initial class module and any other class modules you add to the
Project is set to 5—MultiUse.

3. Reference the ESRI Object Library.

4. Implement the required interfaces. When you implement an interface
in a class module, the class provides its own versions of all the pub-
lic procedures specified in the type library of the interface. In addi-
tion to providing a mapping between the interface prototypes and
your procedures, the Implements statement causes the class to accept
COM QueryInterface calls for the specified interface ID. You must
include all the public procedures involved. A missing member in an
implementation of an interface or class causes an error. If you don’t
put code in one of the procedures in a class you are implementing,
you can raise the appropriate error (Const E_NOTIMPL =
&H80004001). That way, if someone else uses the class, they’ll under-
stand that a member is not implemented.

5. Add any additional code that’s needed.

The ESRI VB Add-In interface implementer can
be used to automate steps 3 and 4.



Chapter 2 • Developing with ArcObjects • 121

6. Establish the Project Name and other properties to identify the com-
ponent. In the Project Properties dialog box, the Project Name you
specify will be used as the name of the component’s type library. It
can be combined with the name of each class the component pro-
vides to produce unique class names (these names are also called
ProgIDs). These names appear in the Component Category Manager.
Save the project.

7. Compile the DLL.

8. Set the component’s Version Compatibility to binary. As your code
evolves, it’s good practice to set the components to Binary Compat-
ibility so, if you make changes to a component, you’ll be warned that
you’re breaking compatibility. For additional information, see the
‘Binary compatibility mode’ help topic in the Visual Basic online
help.

9. Save the project.

10.Make the component available to the application. You can add a
component to a document or template by clicking the Add from file
button in the Customize dialog box’s Commands tab. In addition, you
can register a component in the Component Category Manager.

Implementing interfaces
You implement interfaces differently in Visual Basic depending if they
are inbound or outbound interfaces. An outbound interface is seen by
Visual Basic as an event source and is supported through the
WithEvents keyword. To handle the outbound interface,
IActiveViewEvents, in Visual Basic (the default outbound interface of the
Map class), use the WithEvents keyword and provide appropriate func-
tions to handle the events.

  Private WithEvents ViewEvents As Map

  Private Sub ViewEvents_SelectionChanged()

    ' User changed feature selection update my feature list form

    UpdateMyFeatureForm

  End Sub

Inbound interfaces are supported with the Implements keyword. How-
ever, unlike the outbound interface, all the methods defined on the
interface must be stubbed out. This ensures that the vTable is correctly
formed when the object is instantiated. Not all of the methods have to
be fully coded, but the stub functions must be there. If the implementa-
tion is blank, an appropriate return code should be given to any client
to inform them that the method is not implemented (see the section
Working with HRESULTs). To implement the IExtension interface, code
similar to that below is required. Note that all the methods are imple-
mented.

Private m_pApp As IApplication

Implements IExtension

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT

Visual Basic automatically generates the
necessary GUIDs for the classes, interfaces, and

libraries. Setting binary compatibility forces VB to
reuse the GUIDs from a previous compilation of

the DLL. This is essential since ArcMap stores
the GUIDs of commands in the document for

subsequent loading.



122 • Exploring ArcObjects • Volume 1

After the ESRI Object Library is referenced, all
the types contained within it are available to

Visual Basic. IntelliSense will also work with the
contents of the object library.

 Private Property Get IExtension_Name() As String

  IExtension_Name = "Sample Extension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

  Set m_pApp = initializationData

End Sub

Private Sub IExtension_Shutdown()

  Set m_pApp = Nothing

End Sub

Setting references to the ESRI object libraries
The principal difference between working with the VBA development
environment embedded in the applications and working with Visual
Basic is that the latter environment requires that you load the appropri-
ate object libraries so that any object variables that you declare can be
found. If you don’t add the reference, you’ll get the error message to
the left. In addition, the global variables ThisDocument and Application
are not available to you.

To add a reference to an object library
In all cases, you’ll need to load the ESRI Object Library esriCore.olb.
Depending on what you want your code to do, you may add other ESRI
object libraries, perhaps for one of the extensions.

To display the References dialog box in which you can set the refer-
ences you need, select References in the Visual Basic Project menu.

After you set a reference to an object library by selecting the check box
next to its name, you can find a specific object and its methods and
properties in the Object Browser.

If you are not using any objects in a referenced library, you should
clear the check box for that reference to minimize the number of object
references Visual Basic must resolve, thus reducing the time it takes
your project to compile. You should not remove a reference for an item
that is used in your project.

You can’t remove the “Visual Basic for Applications” and “Visual Basic
objects and procedures” references because they are necessary for
running Visual Basic.

Referring to a document
Each VBA project (Normal, Project, TemplateProject) has a class called
ThisDocument, which represents the document object. Anywhere you
write code in VBA you can reference the document as ThisDocument.
Further, if you are writing your code in the ThisDocument Code window,
you have direct access to all the methods and properties on IDocument.
This is not available in Visual Basic. You must first get a reference to the
Application and then the document. When adding both extensions and

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT



Chapter 2 • Developing with ArcObjects • 123

Singletons are objects that only support one
instance of the object. These objects have a class

factory that ensures that anytime an object is
requested, a pointer to an already existing object

is returned.

commands to ArcGIS applications, a pointer to the IApplication interface
is provided. For code samples that show you how to get a handle on
the application, see Chapter 3, ‘Customizing the user interface’.

Implements IExtension

Private m_pApp As IApplication

Private Sub IExtension_Startup(ByRef initializationData As Variant)

  Set m_pApp = initializationData    ' Assign IApplication

End Sub

Implements ICommand

Private m_pApp As IApplication

Private Sub ICommand_OnCreate(ByVal hook As Object)

  Set m_pApp = hook                  ' QI for IApplication

End Sub

Now that a reference to the application is in an IApplication pointer
member variable, the document, and hence all other objects, can be
accessed from any method within the class.

  Dim pDoc as IDocument

  Set pDoc = m_pApp.Document

  MsgBox pDoc.Name

Getting to an object
In the previous example, navigating around the objects within ArcMap is
a straightforward process since a pointer to the Application object, the
root object of most of the ArcGIS application’s objects, is passed to the
object via one of its interfaces. This, however, is not the case with all
interfaces that are implemented within the ArcObjects application frame-
work. There are cases when you may implement an object that exists
within the framework and there is no possibility to traverse the object
hierarchy from that object. This is because very few objects support a
reference to their parent object (the IDocument interface has a property
named Parent that references the IApplication interface). In order to give
developers access to the application object, there is a singleton object
that provides a pointer to the running application object. The code
below illustrates its use.

  Dim pAppRef As New AppRef

  Dim pApp as IApplication

  Set pApp = pAppRef

You must be careful to ensure that this object is only used where the
implementation will only ever run within ArcMap and ArcCatalog. For
instance, it would not be a good idea to make use of this function from
within a custom feature since that would restrict what applications could
be used to view the feature class.

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT



124 • Exploring ArcObjects • Volume 1

Running ArcMap with a command line argument
You can start ArcMap from the command line and pass it an argument
that is either the pathname of a document (.mxd) or the pathname of a
template (.mxt). In the former case, ArcMap will open the document; in
the latter case, ArcMap will create a new document based on the tem-
plate specified.

You can also pass an argument and create an instance of ArcMap by
supplying arguments to the Win32 API’s ShellExecute function or Visual
Basic’s Shell function as follows:

  Dim ret As Variant

  ret = Shell("d:\arcexe81\bin\arcmap.exe _

    d:\arcexe80\bin\templates\LetterPortrait.mxt", vbNormalFocus)

By default, Shell runs other programs asynchronously. This means that
ArcMap might not finish executing before the statements following the
Shell function are executed.

To execute a program and wait until it is terminated, you must call three
Win32 API functions. First, call the CreateProcessA function to load and
execute ArcMap. Next, call the WaitForSingleObject function, which
forces the operating system to wait until ArcMap has been terminated.
Finally, when the user has terminated the application, call the
CloseHandle function to release the application’s 32-bit identifier to the
system pool.

DEBUGGING VISUAL BASIC CODE

Visual Basic has a debugger integrated into its development environment.
This is in many cases a valuable tool when debugging Visual Basic code;
however, in some cases it is not possible to use the VB debugger. The use
of the debugger and these special cases are discussed below.

Running the code within an application
It is possible to use the Visual Basic debugger to debug your
ArcObjects-based source code even when ActiveX DLLs are the target
server. The application that will host your DLL must be set as the Debug
application. To do this, select the appropriate application, ArcMap.exe,
for instance, and set it as the Start Program in the Debugging Options of
the Project Properties.

Using commands on the Debug toolbar, ArcMap can be started and the
DLL loaded and debugged. Break points can be set, lines stepped over,
functions stepped into, and variables checked. Moving the line pointer
in the left-hand margin can also set the current execution line.

Visual Basic debugger issues
In many cases, the Visual Basic debugger will work without any prob-
lems; however, there are two problems when using the debugger that is
supplied with Visual Basic 6. Both of these problems exist because of
the way that Visual Basic implements its debugger.

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT

In Visual Basic, it is not possible to determine
the command line used to start the application.

There is a sample on disk that provides this
functionality. It can be found at

\arcgis\arcexe81\ArcObjects Developer
Kit\samples\COM Techniques\Command Line.



Chapter 2 • Developing with ArcObjects • 125

Normally when running a tool within ArcMap, the DLL is loaded into
ArcMap address space, and calls are made directly into the DLL. When
debugging, this is not the case. Visual Basic makes changes to the regis-
try so that the CLSID for your DLL does not point to your DLL but,
instead, it points to the Visual Basic Debug DLL (VB6debug.dll). The
Debug DLL must then support all the interfaces implemented by your
class on the fly. With the VB Debug DLL loaded into ArcMap, any
method calls that come into the DLL are forwarded on to Visual Basic,
where the code to be debugged is executed. The two problems with this
are caused by the changes made to the Registry and the cross-process
space method calling. When these restrictions are first encountered, it
can be confusing since the object works outside the debugger or at least
until it hits the area of problem code.

Since the method calls made from ArcMap to the custom tool are across
apartments, there is a requirement for the interfaces to be marshalled.
This marshalling causes problems in certain circumstances. Most data
types can be automatically marshaled by the system, but there are a few
that require custom code because the standard marshaler does not
support the data types. If one of these data types is used by an interface
within the custom tool and there is no custom marshalling code, the
debugger will fail with an “Interface not supported error”.

The registry manipulation also breaks the support for component cat-
egories. Any time there is a request on a component category, the cat-
egory manager within COM will be unable to find your component
because, rather than asking whether your DLL belongs to the compo-
nent category, COM is asking whether the VB debugger DLL belongs to
the component category, which obviously it doesn’t. What this means is
that anytime a component category is used to automate the loading of a
DLL, the DLL cannot be debugged using the Visual Basic debugger.

This obviously causes problems for many of the ways to extend the
framework. The most common way to extend the framework is to add a
command or tool. Previously it was discussed how component catego-
ries were used in this instance. Remember the component category was
only used to build the list of commands in the dialog box. This means
that if the command to be debugged is already present on a toolbar, the
Visual Basic debugger can be used. Hence, the procedure for debug-
ging Visual Basic objects that implement the ICommand interface is to
ensure that the command is added to a toolbar when ArcMap is ex-
ecuted standalone and then, after saving the document, loading ArcMap
through the debugger.

In some cases, such as extensions and property pages, it is not possible
to use the Visual Basic debugger. If you have access to the Visual C++
Debugger, you can use one of the options outlined below. Fortunately,
there are a number of ESRI Visual Basic Add-ins that make it possible to
track down the problem quickly and effectively. The add-ins described
below, in the section ‘Visual Basic Developer Add-Ins’, provide error log
information including line and module details. A sample output from an

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT



126 • Exploring ArcObjects • Volume 1

error log is given below; note the call stack information along with line
numbers.

Error Log saved on : 8/28/2000 - 10:39:04 AM

Record Call Stack Sequence - Bottom line is error line.

    chkVisible_MouseUp C:\Source\MapControl\Commands\frmLayer.frm Line : 196

    RefreshMap C:\Source\MapControl\Commands\frmLayer.frm Line : 20

Description

    Object variable or With block variable not set

Alternatives to the Visual Basic debugger
If the Visual Basic debugger and add-ins do not provide enough infor-
mation, the Visual C++ debugger can be used, either on its own or with
C++ ATL wrapper classes. The Visual C++ debugger does not run the
object to be debugged out of process from ArcMap, which means that
none of the above issues apply. Common debug commands are given
in the section ‘Debugging tips in Visual Studio’. Both of the techniques
below require the Visual Basic project to be compiled with Debug Sym-
bol information.

The Visual C++ Debugger can work with this symbolic debug informa-
tion and the source files.

Visual C++ Debugger
It is possible to use the Visual C++ debugger directly by attaching to a
running process that has the Visual Basic object to be debugged loaded
and then setting a break point in the Visual Basic file. When the line of
code is reached, the debugger will halt execution and step you into the
source file at the correct line. The required steps are shown below.

1. Start an appropriate application, such as ArcMap.exe.

2. Start Microsoft Visual C++.

3. Attach to the ArcMap process using Menu option Build -> Start De-
bug -> Attach to process.

4. Load the appropriate Visual Basic Source file into the Visual C++
debugger and set the break point.

5. Call the method within ArcMap.

No changes can be made to the source code within the debugger, and
variables cannot be inspected, but code execution can be viewed and
altered. This is often sufficient to determine what is wrong, especially
with logic-related problems.

ATL Wrapper Classes
Using the Active Template Library (ATL), you can create a class that
implements the same interfaces as the Visual Basic Class. When you
create the ATL Object, you create the Visual Basic object. All method
calls are then passed to the Visual Basic Object for execution. You

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT

Create Debug Symbol information using
the Create Symbolic Debug info option

on the Compile tab of the Project Proper-
ties dialog box.



Chapter 2 • Developing with ArcObjects • 127

debug the contained object by setting a break point in the appropriate
C++ wrapper method, and when the code reaches the break point, the
debugger is stepped into the Visual Basic Code. For more information
on this technique, look at the ATL Debugger sample in the Developer
Samples of the ArcObjects Developer Help system.

THE VISUAL BASIC DEVELOPMENT ENVIRONMENT



128 • Exploring ArcObjects • Volume 1

VISUAL BASIC DEVELOPER ADD-INS

The ESRI add-ins automate some of the tasks performed by the software
engineer when developing with ArcObjects, as well as provide tools that
make debugging code easier.

What is a Visual Basic add-in?
A Visual Basic add-in extends the functionality provided through the MS
Visual Basic Integrated Development Environment (IDE). An add-in
typically automates repetitive tasks performed by a software engineer.

Add-ins register themselves with Visual Basic. After an add-in is installed
it will appear automatically on the Add-Ins menu. The menu to the left
shows the Add-In menu with the ESRI add-ins loaded.

Automatic references
When you develop with Visual Basic, you must reference all the exter-
nal type libraries in order for the compiler to locate all the object types,
interface types, and so on. The IntelliSense mechanism also makes use
of this type library information.

In all cases when developing ArcObjects-based applications, you’ll need
to load the ESRI Object Library esriCore.olb. Depending on what you
want your code to do, you may add other ESRI object libraries, perhaps
for one of the extensions.

Normally, to add references to external libraries in Visual Basic you
would display the References dialog box in the Visual Basic Project
menu, then check on the required libraries. Depending on the number
of libraries installed on your system, it can take a few seconds to display
the References dialog box and locate the appropriate libraries. This
Visual Basic add-in simplifies the process, and, if enabled, will automate
this reference setting for all Visual Basic Projects.

To access the add-in, click ESRI Automatic References on the Add-Ins
pulldown menu. Only the ArcObjects type libraries and controls are
listed in the interface. To the left is the add-in’s user interface.

Compile and register
This Visual Basic add-in supports the building of components and the
subsequent registration of these components into the appropriate com-
ponent category. To access the add-in, click ESRI Compile and Register
on the Add-Ins pulldown menu. Not all the ESRI component categories
are supported; however, the add-in supports the categories that are used
commonly by the application framework and the geodatabase. To the
left is the add-in’s user interface.

The add-in lists all the classes defined within the VB project in the left
column and lists all the available component categories in the right
column. The developer selects a class in the left column and checks the
appropriate component categories in the right. When a project is loaded,

The Add-Ins menu provides access to numerous
developer tools that help ArcObjects developers

be more productive.

The Compile and Register add-in enhances VB by
adding support for component categories.

This dialog box is displayed faster than the
Visual Basic Reference dialog box, making it the

interface of choice when setting references to
ESRI type libraries and controls.



Chapter 2 • Developing with ArcObjects • 129

VISUAL BASIC DEVELOPER ADD-INS

the interface updates to reflect the project’s classes, and if these classes
are within component categories, the categories list also updates. If the
class has not been registered in a category, all items in the list will be
unchecked.

When each class has the appropriate component category selected, the
project can be built. Clicking the Compile button builds the project.
Upon completion of a successful compile, the classes are registered into
the required component category. If a class’ component category
changes, the class is removed from the old component category. If a
class is not marked as a member of any category, it will be removed
from any of the supported categories in which it is currently registered.
If the developer has displayed the form once or the class already exists
within the category, the Compile command can be executed directly by
holding down the Ctrl key when selecting the add-in from the menu.

The Options menu has three items: Display Dialogs, Unregister on Error,
and Set Binary Compatibility. Display Dialogs, if enabled, displays dialog
boxes informing the developer of the operations that are being per-
formed: saving the source files, compiling and registering the compo-
nent, and so on. Unregister On Error sets the behavior if an error is
encountered during the compilation and registration process. If checked
when an error occurs at any time during the execution of the add-in,
the component is unregistered from the system. Set Binary Compatibility,
if checked, will automatically set the project’s component compatibility
to be Binary with the newly compiled DLL. The states of these menu
items are saved in the registry and loaded on subsequent uses of the
tool. By default, they are all enabled.

Before compiling the project, all source files within the project are
saved. If a module has never been saved, the developer is prompted to
save the project via the standard VB interface. This ability to save source
files prior to a compile gives functionality that is not present in Visual
Basic. Visual Basic only saves source files prior to building executables;
it does not save source files when building DLLs.

If the current Visual Basic project has a class that is marked to go into
either the ESRI Mx Command Bars or ESRI Gx Command Bars, the class
can be marked as a premier toolbar.

To flag a toolbar class as a premier toolbar, you must display the Pre-
mier Toolbar Classes check list by clicking the Premier Toolbars button.
This displays the list box shown on the left. All classes that are in the
appropriate component category will be placed in this list. If the classes
are already in the registry as premier toolbars, they will be automatically
checked. To remove them from the registry, uncheck the class and
compile the project. All classes checked will be added to the registry as
premier toolbars. When developing the project, you must be aware that
after every compile the toolbar will act like a fresh install when ArcMap
or ArcCatalog is next started (that is, even if the toolbar was previously
hidden, it will appear).

Remember, component categories are used by
client applications to efficiently find all compo-
nents of a particular type that are installed on
the system. For example, ArcMap uses compo-
nent categories extensively to efficiently locate

installed components on a user’s system.
Component categories support the extensibility
of COM by allowing the developer of the client

application to create and work with classes that
belong to a particular category. If at a later date

a new class is added to the category, the client
application need not be changed to take

advantage of the new class; it will automatically
pick up the new class the next time the

category is read.

Premier toolbars are toolbars that are displayed
the first time ArcMap or ArcCatalog is started

after installation. Once the user has hidden them
for the first time, they are no longer displayed.

This is good way of highlighting the installation
of customizations to the user.

It is not a good idea to have classes that have a
ProgID of project1.class1. This will be the
result if the default project name and class

name are not changed before compilation. Any
classes that have a ProgID that is

project1.class1 will not automatically be loaded
in the right column of the form.



130 • Exploring ArcObjects • Volume 1

VISUAL BASIC DEVELOPER ADD-INS

The required changes to the registry are made at compile time. An entry
is also made in the registry script to ensure that the class is also marked
as a Premier toolbar at install time.

Since the process of component category registration is tied to the com-
pilation, these classes will only be registered in the categories on the
developer’s machine. To help with the installation of components on
third-party machines, the compilation process also generates a Registry
Script file. The file has the same name as the project with a .reg exten-
sion and is located in the VB Project directory. A sample script is shown
below.

REGEDIT4

; This Registry Script enters CoClasses Into their appropriate Component
Category ; Use this script during installation of the components

; Coclass: prjDisplay.ZoomIn ; CLSID: {FC7EC05F-6B1B-4A59-B8A2-37CE33738728}
; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{FC7EC05F-6B1B-4A59-B8A2-
37CE33738728}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

; Coclass: prjDisplay.ZoomOut ; CLSID: {2C120434-0248-43DB-AD8E-
BD4523A93DF8} ; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{2C120434-0248-43DB-AD8E-
BD4523A93DF8}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

The Components menu has two items. Select Component Categories
displays the dialog box shown on the left. Using this dialog box, it is
possible to select the Component Categories that the add-in displays in
its Component Categories list. To reset the list back to the default set-
tings, use the Reset Component Categories menu command.

Interface implementer
When implementing interfaces in Visual Basic, the developer is forced
to stub out all the methods of the interface; unfortunately, Visual Basic
does not automate this process. Thus, when you implement two inter-
faces, such as ICommand and ITool, it can mean carrying out a repeti-
tive task for more than 20 method calls. Fortunately, this add-in auto-
mates this task.

To access the add-in, select the ESRI Interface Implementer menu item
on the Add-Ins pulldown menu. When creating a COM server, this add-
in can be used to generate the stub functions. In addition to generating
the stub functions, the DLL also adds a reference to the ESRI Object
Library and adds a module that contains a generic error-handling rou-
tine. For more details on this error-handling module, see the Error Han-
dler add-in. A reference to the error handler is also added to the project.

By default, all stub functions are created with an error handler; this can
be overridden by unchecking Generate Error Handlers on the Options
menu. The state of this menu is saved in the registry. The Options menu
has one other entry, Raise E_NOTIMPL, that defaults to unchecked.
When this is checked, all functions disable error handling and raise the
standard error E_NOTIMPL to indicate to clients that the function has

The Component Categories dialog box allows
you to configure the component categories

supported by the add-in.



Chapter 2 • Developing with ArcObjects • 131

not been implemented. A constant is also added to the module that
defines the variable E_NOTIMPL. The two lines of code added when
this option is checked are shown below.

 On Error GoTo 0

  Err.Raise E_NOTIMPL

Developers must remove these two lines when they implement the
function.

The interface implementer interface can be seen to the left. The two
combo boxes at the top of the form offer a shortcut to many of the
ArcObjects interfaces that are commonly implemented. The combo
boxes divide the interfaces into two broad groups: application and
geodatabase interfaces.

If the required interface is not in one of the combo boxes, all the inter-
faces that are available in the selected type library are listed in the list
below. You can scroll down the list, selecting all the interfaces required,
then click OK or Apply. This will add the stub functions for all selected
interfaces in one action.

You can also search the list using the search facility. To search the
interface the developer types the name of the required interface in the
text box below the list. The first interface that matches the entered text is
displayed at the top of the list box. The search is not case sensitive by
default. A popup menu, available on the text entry field, can enable a
case-sensitive search if required. Click OK or Apply with an interface
highlighted to implement the interface. You don’t have to check the
check box; the first selected interface is automatically selected. Thus, by
simply typing in the text box and clicking Apply, multiple interfaces can
be implemented very quickly.

Interfaces can only be generated in class modules. The module used is
the currently selected module in the project browser, not necessarily the
currently active code window. If the selected module and code window
do not match, the developer is warned that the code will be placed in
the selected class module and not the current window.

The tool will only implement an interface once per module.

If an error-handling module already exists within the project, a new one
will not be added. If the error-handling module is an out-of-date ver-
sion, the tool updates the module to match the latest installed error
handler.

When the add-in displays the form, the text search field allows you to
start searching for the required interface immediately.

VISUAL BASIC DEVELOPER ADD-INS

The Interface Implementer dialog box has
facilities to select interfaces from shortcut combo
boxes, a full list of the interfaces in the selected

type library, and a search facility.



132 • Exploring ArcObjects • Volume 1

VISUAL BASIC DEVELOPER ADD-INS

Command Creation Wizard
The Command Creation Wizard facilitates the creation of a command or
tool for use within ArcMap, ArcCatalog, the Map control, or a combina-
tion of these. For instance, a tool written for ArcMap may also be suit-
able for the Map control. It is possible to quickly develop commands
and tools without this wizard using the interface implementer and the
Compile and Register Add-ins, but this wizard has many features that
make the addition of commands straightforward.

To access the add-in, click ESRI Command Wizard from the Add-Ins
pulldown menu. An introduction screen will display.

This screen has information about the wizard. When you complete the
wizard, it compiles and registers the project automatically. The project
will only be saved to file if you select this option at the start of the
wizard.

The first step of the wizard displays only if the project was not saved
prior to executing the wizard. It is advisable to save the project at the
start of the wizard, as this will also ensure that the project is saved on
completion.

When you save a project using the wizard, if no filenames have been
assigned to modules, you are prompted to enter the filenames. In addi-
tion, you can elect to check for default names. If you enabled these
options, the wizard checks the names of modules and, if a default name
is detected, you are prompted to enter a new name. Default names are
not a good idea since there is less chance that the programmable ID will
be unique.

The wizard always performs the next step, project compilation, either
after you save the project or when the wizard starts. If the project fails
to compile, the wizard displays step 2. You have no other choice but to
fix the compilation error and rerun the wizard.

The next step involves selecting the target application in which the
command will operate. Not all commands are suitable for all application
environments. For example, a Select tool used to select features on a
map could be used within the Map control or the ArcMap application
since the topmost object that must be accessed is the Map, and both
these environments expose a map object; however, a Select tool may
not be suitable for ArcCatalog since it does not expose a Map object.

The graphic panel on the left illustrates the choices made. You must
select at least one application in order to continue on to the next step.

Step 4 of the wizard allows you to determine various properties of the
code that the wizard generates.

You can add the generated source code to an existing class within your
project. This option is only enabled if there is a suitable class module
within your active project. The wizard disregards any class that already
implements the ICommand interface. If the wizard does create a new
class, it assigns the class the name of the Commands caption, minus any
spaces, preceded by “cls”.

Introduction screen

Step 1

Step 2

Step 3

Step 4



Chapter 2 • Developing with ArcObjects • 133

VISUAL BASIC DEVELOPER ADD-INS

The Error Handlers option controls whether the wizard adds error-
handling code to the functions. All functions should have an error
handler, but if you do not wish to use the generic ESRI error handler
you can disable the creation of the error handlers and add your own.

Verbose comments can be helpful when starting out with Command
development. With this option enabled, several hundred lines of com-
ment code are added.

A number of objects within the ArcObjects object model support out-
bound event interfaces. To work with these interfaces, a certain amount
of plumbing code is required to ensure that the event source and sink
are connected. The wizard supports all three common event sources:
the MxDocument, PageLayout, and Map objects. None of these options
are available if ArcCatalog is set as a target application. When the Map
control is selected, the choice is limited to the Map object. ArcMap
supports all three event sources.

The stub functions the wizard creates will, by default, contain no lines
of code other than error-handling code. The exceptions to this are the
functions where code was added because it was required to perform an
action, such as setting member variables when the command is created.
If the function does not contain automatically generated code, you can
add a message box to the function. This allows you to see when the
application framework calls the function. This can be very helpful when
you start to work with events. If the wizard creates a tool, a message
box is not added to the OnClick event.

The wizard displays step 5 only if you chose to add the code to a class
already in the project. If there is only one class, the wizard displays the
class in the list with its check box selected; otherwise, you must select a
class before continuing.

The wizard displays step 6 only if you chose to listen to Document
events in step 4. The NewDocument and OpenDocument events are
mandatory as these are required to maintain the source sink connection
as new documents are created or loaded.

If you do not select an event to implement, it is straightforward to add
the event later. You must select the variable DocumentEvents in the
Object combo box of the Visual Basic editor, and the required event is
selected in Visual Basic’s Procedure combo box.

The wizard displays step 7 only if you chose to listen to Map events in
step 4. The wizard assigns the event handler to the variable
MapActiveViewEvents.

The wizard displays step 8 only if you chose to listen to PageLayout
events in step 4. The wizard assigns the event handler to the variable
PageActiveViewEvents.

Step 9 allows you to select whether to create a command or a tool. A
command has the majority of the functionality coded within the
OnClick event, whereas a tool is used to handle user interaction with the

Step 5

Step 6

Step 7

Step 8

Step 9



134 • Exploring ArcObjects • Volume 1

VISUAL BASIC DEVELOPER ADD-INS

ActiveView (Map or PageLayout). Typically this involves handling mouse
events, such as mouse down, mouse move, and mouse up.

Both commands and tools must implement the ICommand interface.
Step 10 allows you to specify the properties of the ICommand interface.
The name of the command is automatically generated from the category
and caption entries. This can be changed if required. If the command
has a bitmap, it can be added by selecting a bitmap file. If the bitmap
uses a masking color, this can also be selected by clicking in the Mask
color box on the form.

The bitmap is added to an image list named using the class name
prepended with “iml”, and the image is keyed with the string “Bitmap”.
The image list is added to a form module with the name frmResources.
If the module is not present in the project, the wizard adds a form
module. The wizard remembers the path of the bitmap file and will
open the bitmap file browser at that path on subsequent calls.

The option to Enable conditionally allows you to select when the com-
mand will be enabled with the application based on some preset condi-
tions. Step 11 covers these options. The Checked when active option is
only available for commands since tools are automatically checked by
the application when they are the active tool. When a button on a
toolbar is checked, the button appears depressed; when the button is on
a menu, a small checkmark is placed to the left of the caption.

The wizard displays step 11 only if you selected the option to Enable
conditionally in step 10. These conditions are Data View, Layout View,
Data Present, and Edit Status. Data View and Layout View are mutually
exclusive. The conditions that you can choose to base the enabling on
can be AND’d or OR’d together. If some other combination is required,
you must edit the generated source code.

The wizard displays step 12 if you are creating a tool. It is a common
function of a tool to generate a geometry object through input from the
user; the object is then used in a subsequent action. To support this,
you can elect to support Display Feedback, which can be in one of the
four geometry types. Pressing the mouse button down and moving the
cursor creates the Envelope and Circle geometries. When you release the
mouse, the wizard creates the geometry. You can create polygon and
polyline geometries by pressing the mouse button; each successive
button press creates a vertex on the geometry. Double-clicking creates
the geometry.

A tool normally is in one of two states: passive or active. When the user
interacts with the tool, normally by pressing a key or mouse button, the
tool is in its active state. When the user is not directly interacting with
the tool and the tool is simply the current tool in use, the tool is in its
passive state. You can associate cursors with these two states. The cur-
sors are added to an image list named using the class name preceded
with “iml”, and the images are keyed with the strings “Active” and “Pas-
sive”. The wizard adds the image list to a form module with the name

Step 10

Step 11

Step 12



Chapter 2 • Developing with ArcObjects • 135

VISUAL BASIC DEVELOPER ADD-INS

frmResources. If the module is not present in the project, a form module
is added. The wizard remembers the path of the cursor file and will
open the cursor file browser at that path on subsequent calls.

The last panel of the wizard has two options that control the compiling
and registration stage and an option to save all the settings selected
during the wizard execution as the defaults. These settings include all
check boxes and options but do not include the command string prop-
erties or the bitmap and icons.

After the wizard generates all the source code, it compiles the project
into a DLL. The wizard then registers the DLL on the system and places
the newly created class in the appropriate component categories. Only
the newly created command is placed in a component category. If there
are other classes, the Compile and Register Wizard can be used to regis-
ter these and create the Registry script for use later with an install pro-
gram. If required after the successful compile, you can direct the wizard
to set the project’s version compatibility mode to the newly compiled
DLL by checking the Set Binary Compatibility option. You can view the
progress of these various stages by checking the Display Progress Dia-
logs check box.

Error handler generator
This Visual Basic add-in automates the generation of error handling
code. To access the add-in select the ESRI ErrorHandler Generator
menu item on the Add-Ins menu. There are two parts to this add-in: the
generation of the error handling code and the execution of the code
when a runtime error is created.

The add-in creates the error handlers automatically; you don’t ever have
to write the error handler manually (unless a specialized handler is
required). It is often better to wrap particular function calls with a spe-
cialized handler but still have the generic handler in use for the majority
of the function.

The DLL can generate the error handlers in one of three ways:

1. Generate an error handler for the current function.

2. Generate error handlers for all the functions within the current module.

3. Generate error handlers for all source files within the active project.

The message box shown to the left asks for the method to use.
This message box can be bypassed by pressing a combination
of the Ctrl and Shift keys when executing the tool. The message
box also allows the setting of four options.

•   Update Error Handlers—Default is True. Forces the error
handlers, generated by the add-in, in the function(s) to be
rewritten even if they are already there. Use this option to en-
sure that the error handlers match the latest version or if you
make a change to the dependency requirements. This ensures

the correct arguments are passed to the ErrorHandler function.

Step 13

Error Handler add-in dialog box



136 • Exploring ArcObjects • Volume 1

VISUAL BASIC DEVELOPER ADD-INS

• Update Error Module—Default is True. Regenerates the
ErrorHandler.bas module added to the project each time the add-in is
executed. Typically this would be toggled off if you change the
strings used by the various user interfaces. This should be toggled on
if there is a change in the dependency requirements.

• No Dependency—Default is False. Error handler has no runtime
dependency on the ErrorHandlerUI.DLL file. The error log user inter-
face is not available, but the error is simply handled and the call
stack displayed to the user in a message box.

• Parent Error Forms—Default is False. Parents the various forms using
the m_ParentHWND module variable.

In addition to the error handler it adds to the functions, the add-in,
depending on the options, declares one or two variables in the module:
c_ModuleFileName and m_ParentHWND. The first, a constant, holds a
string identifying the filename of the module on disk. If the add-in is
executed before the file is saved, this string will be blank. To update the
constant you can either enter the name manually or run the add-in
again—this will update the constant value. The second is a variable that
can hold a window handle that will be used to parent the various user
interfaces used by the runtime error handlers. By default, all the error
handler interfaces use the desktop as their parent window. Setting the
member variable m_ParentHWND, defined at the top of the module, to
a valid window handle will parent the error dialogs to this window. By
default, the member variable m_ParentHWND is not added to the mod-
ule, and all interfaces use the desktop as their parent.

The error handling code makes use of the same generic error handler
module that is included with the Interface implementation tool. By
default, every time the Error Handler tool executes, this module is regen-
erated. This means that any changes made to the module will be lost.
The generic error handling function HandleError takes ten arguments.

bTopProcedure

Name

sProcedureName

IErrNumber

sErrSource

sErrDescription

version

parentHWND

reserved1

reserved2

reserved3

Boolean

Data type

string

long

string

string

long

long

variant

variant

variant

Description

States whether the error handling function was called from a top-level function or not.
Public methods, events and properties and friends are all top-level functions. Private
methods called from within the same module are not top-level functions

Encapsulates the function and module name, and any line number information available

ErrorNumber (retrieved from Err object)

ErrorSource (retrieved from Err object)

ErrorDescription (retrieved from Err object)

VersionOfFunction (optional Default 1)

Parent hWnd for error dialogs, NULL is valid (option is NULL)

Reserved

Reserved

Reserved

Depending on the first parameter, the HandleError function either pre-
sents the error to the user using a variety of interfaces or raises the error.
A top-level error handler will eventually catch this raised error. In this
way, the call stack can be created. For this mechanism to function cor-
rectly, all functions should implement this error handler.



Chapter 2 • Developing with ArcObjects • 137

VISUAL BASIC DEVELOPER ADD-INS

The sixth parameter controls the user interface. You can choose to
display either a simple Message Box, as shown in the figure to the left,
with the error information contained within it (Version 1), or a more
comprehensive error handling facility (Version 3). Version 2 is provided
for backward compatibility, but its use is deprecated. The message box
displayed when an error is raised using Version 1 is shown in the dialog
box on the left. Notice the call stack and the original error description.

Version 4 of the Error Handler displays a message box to the user in-
forming the user that an unexpected error has occurred, along with the
error log showing the error message, number, and call stack. Neither of
these forms are modal. The forms are implemented as singleton objects,
meaning that no matter how many modules make use of the error han-
dler, the errors will all be written to the same error log. If the error log is
already displayed, the information message box is not shown. The error
log is brought to the front of the display and the error appended to the
text already there.

The contents of the error log can either be saved to a text file for later
viewing or printed out. Save and Print options are available on the File
menu.

Although the call stack information is useful, the error log displays the
most information when combined with Line numbers. In order to obtain
line number information in the error log, the source files must be anno-
tated using the Line Number Generator add-in. If line number informa-
tion is available, the error log displays data similar to that shown to the
left.

Error Handler Remover
This add-in removes the error handlers from the source files. To access
the add-in, click the Add-Ins menu and click ESRI Error Handler Re-
mover. The add-in displays the message box to the left, which allows
the developer to select the files within a project that should have their
error handlers removed. You can bypass the dialog box by pressing the

Shift and Ctrl keys when the add-in is executed.

Only ESRI error handlers are removed. If all the handlers for a mod-
ule are removed, the two constants added to the top of the source
file are also removed. If the error handlers are removed from all the
source files of a project, the error handler module is removed from
the project, but the file is not deleted from disk.

Line Number Generator
The Error Handler add-in can display line number information if there is
any line number data available within the source file. Visual Basic sup-
ports the extraction of line number information, but only when lines are
explicitly labeled with line numbers. This add-in adds line numbers to
the appropriate lines within the source files of the active project. Line
numbers are added only to those lines that support labeling.

Version 1 error log

Version 4 information message box

Version 4 error log

Error log with line number information

Error Handler Remover dialog box



138 • Exploring ArcObjects • Volume 1

VISUAL BASIC DEVELOPER ADD-INS

To access the add-in, click the Add-Ins menu and click ESRI
Line Number Generator. The add-in displays the dialog box
to the left, which lets you select to which files within a
project line numbers should be added. You can bypass the
dialog box by pressing the Shift and Ctrl keys when the add-
in is executed. To update the line number information after
edits have been made, reexecute the add-in.

Line number labels in the source code can be obtrusive, making the
code difficult to read. Hence you should only add them to debug code
when tracing down a problem; remove them after the problem is found.
A sample of these labels placed in the source code is shown below.

Dim pSourceFeature As IFeature

Dim pTargetFeature As IFeature

Dim i As Long

53: Set pSourceFeature = pFeatureCursor.NextFeature

 

55: Do While (Not pSourceFeature Is Nothing)

56: Set pTargetFeature = pTargetClass.CreateFeature

 

58: Set pTargetFeature.Shape = pSourceFeature.ShapeCopy

 

60: For i = 0 To pTargetClass.Fields.FieldCount - 1

61: If ((pTargetClass.Fields.Field(i).Type <> esriFieldTypeGeometry) And _
(pTargetClass.Fields.Field(i).Type <> esriFieldTypeOID)) Then

 

63: pTargetFeature.Value(i) = Now End If

 

65: Next i

66: pTargetFeature.Store

 

68: Set pSourceFeature = pFeatureCursor.NextFeature

69: Loop

Using a combination of the error handler add-in and this line number
generator, it is possible to ship software that will provide rich error infor-
mation in the event of runtime errors within a released product. Even if
the line number labels are not placed in the source code during the
majority of the development, it is valid to create the release build with
the line numbers in place. In this way, if an end user encounters an
error, rich context error information is available to investigate the error.

Line Number Remover
This add-in removes the line numbers from the source files.
To access the add-in, click the Add-Ins menu and click ESRI
Line Number Remover. The add-in displays the message box
to the left to let you select the files within a project whose
line number labels should be removed. You can bypass the
dialog box by pressing the Shift and Ctrl keys when the add-
in is executed.

Line Number Generator dialog box

Line Number Remover dialog box



Chapter 2 • Developing with ArcObjects • 139

VISUAL BASIC DEVELOPER ADD-INS

Align Control Creation with Tab index
When hosting VB user interfaces within applications not created by VB, the Tab
index of forms may not be honored. To correct this problem, the controls within
a form should be created in their Tab index order.

This add-in ensures that the creation of controls in a form
occurs in the same order as the control’s Tab index. To access
the add-in, click the Add-Ins menu and click ESRI Align Con-
trols with Tab Index. The add-in displays the message box on
the left to let you select the modules within a project that have
a user interface whose controls you want to align. You can
bypass the dialog box by pressing the Shift and Ctrl keys when
the add-in is executed.

To achieve the correct creation sequence, the z order of the controls are altered
to match the Tab index. Therefore, if you have controls containing controls, you
must ensure that you have the Tab index correct, otherwise the controls may
“disappear” behind other controls.

In some cases, it may not be possible to change the creation sequence because of
the z ordering restriction. In these cases, you must write code within the load
sequence of the user interface component that sets the tab sequence.



140 • Exploring ArcObjects • Volume 1

This section provides coding guidelines when using C++. It also has
useful information when debugging projects in Visual Studio. It finishes
with a section on developing using the ATL.

Naming conventions

Type names
All type names (class, struct, enum, and typedef) begin with an uppercase
letter and use mixed case for the rest of the name:

    class Foo : public CObject { . . .};

    struct Bar { . . .};

    enum ShapeType { . . . };

    typedef int* FooInt;

Typedefs for function pointers (callbacks) append Proc to the end of
their names.

    typedef void (*FooProgressProc)(int step);

Enumeration values all begin with a lowercase string that identifies the
project; in the case of ArcObjects this is esri, and each string occurs on
separate lines:

    typedef enum esriQuuxness

    {

      esriQLow,

      esriQMedium,

      esriQHigh

    } esriQuuxness;

Function names
Name functions using the following conventions:

For simple accessor and mutator functions, use Get<Property> and
Set<Property>:

    int GetSize();

    void SetSize(int size);

If the client is providing storage for the result, use Query<Property>:

    void QuerySize(int& size);

For state functions, use Set<State and Is<State> or Can<State>:

    bool IsFileDirty();

    void SetFileDirty(bool dirty);

    bool CanConnect();

Where the semantics of an operation are obvious from the types of
arguments, leave type names out of the function names.

Instead of:

    AddDatabase(Database& db);

consider using:

    Add(Database& db);

VISUAL C++

Name variables and constants using the follow-
ing format (this is an abridged Hungarian

notation):

[<scope>_]<type><name>

c

m

Prefix

g

<empty>

Static class member (including constants)

Instance class members

Variable scope

Globally static variable

local variable or struct or public class
member

<type>

Boolean

Data Type

byte or unsigned char

short used as size

DWORD, double word or unsigned long

int (integer)

long

a pointer

string

function

handle

ASCIIZ null-terminated string

WORD unsigned int

short used as coordinates

b

Prefix

by

cx / cy

dw

i

l

p

s

fn

h

sz

w

x, y

doubled

floatf

smart pointerip

<name> describes how the variable is used or
what it contains. The <scope> and <type>

portions should always be lowercase, and the
<name> should use mixed case:

m_hWnd

Variable Name

ipEnvelope

m_pUnkOuter

c_isLoaded

g_pWindowList

a handle to a HWND

Description

a smart pointer to a COM interface

a pointer to an object

a static class member

a global pointer to an object



Chapter 2 • Developing with ArcObjects • 141

Instead of:

    ConvertFoo2Bar(Foo* foo, Bar* bar);

consider using:

    Convert(Foo* foo, Bar* bar)

If a client relinquishes ownership of some data to an object, use
Give<Property>. If an object relinquishes ownership of some data to a
client, use Take<Property>:

    void GiveGraphic(Graphic* graphic);

    Graphic* TakeGraphic(int itemNum);

Use function overloading when a particular operation works with differ-
ent argument types:

    void Append(const CString& text);

    void Append(int number);

Argument names
Use descriptive argument names in function declarations. The argument
name should clearly indicate what purpose the argument serves:

    bool Send(int messageID, const char* address, const char* message);

True and false
There are at least three different sets of keywords for indicating the truth
value of an expression. C++ has a built-in data-type bool, with keywords
true and false. Win32 defines TRUE and FALSE macros. VB compatible
COM programming requires the use of the Automation type
VARIANT_BOOL, with macros VARIANT_TRUE and VARIANT_FALSE.

These keyword macros have one thing in common. True evaluates to a
nonzero value, and False evaluates to zero. VARIANT_TRUE is defined
as -1, which means that the correct macros and keywords must be used
when comparing variables.

Class design
Conforming to a class design standard leads to easy-to-use and main-
tainable C++ class implementations.

Class layout
Organize class definitions in the following manner:

    class MyClass : public CObject, private MyPrivateClass

    {

      // The public description of the class goes here. It describes what

      // the class represents (from a client's perspective), and highlights

      // which methods are the most important. Optionally, it shows examples

      // of how to use the class.

    public:

      // Nested class and struct definitions.

      // Enumerations, typedefs and constants.

VISUAL C++



142 • Exploring ArcObjects • Volume 1

     MyClass()          {}

      virtual ~MyClass() {}

      // Public operations.

      // Public accessor/mutator functions.

    protected:

      // Protected description of the class goes here. This documentation

      // usually consists of instructions to potential subclassers on how to

      // subclass the class correctly.

      // Nested class and struct definitions.

      // Enumerations, typedefs and constants.

      // Protected data members.

      // Subclass-accessible operations. These are usually virtual.

    private:

      // Nested class definitions.

      // Enumerations, typedefs, and constants.

      // Private data members.

      // Private operations.

    };

Organizing classes this way helps clients of the class since it groups
public operations and functions at the beginning. All the proprietary
implementation details occur at the end of the class definition since
clients do not need to know about them.

Public data
Do not make data members public unless the class is intended to be a
semi-intelligent structure. One of the major benefits to using objects is
the ability to encapsulate and hide implementation details from clients.

Class size
Keep classes small to decrease their complexity and increase their reus-
ability. If you cannot summarize what the class does in a paragraph or
less, chances are it is too complex and should be broken up into mul-
tiple classes.

Inline methods
Use inline methods only for empty implementations or for those con-
taining only a few statements. Do not add a semicolon after the function
body, but do add spaces to offset the brackets when there are state-
ments in the function body. When several methods are inlined, line up
the function bodies on the same column.

    MyClass() : m_count(0) {}

    void SetCount(int count) { m_count = count; }

VISUAL C++



Chapter 2 • Developing with ArcObjects • 143

Comments
To increase class legibility, add comments after the method or data
member. If the comment fits to the right, place it there; otherwise, add it
afterwards as an indented comment.

    public:

      void SetCount(int count);

     //

      // Sets the count property of the object. Use this method only

      // when you are resetting the object.

      int GetCount(); // Gets the current count.

    private:

      int     m_count; // The current count.

      bool    m_inited;

      //

       // This property indicates whether or not the object is

       // currently being inited.

Construction
Be sure to provide a copy constructor and overload for the operator if
the default structurewise copy will result in an invalid object. Alterna-
tively, consider hiding both by making them private.

    MyClass(const MyClass& rhs);

    MyClass& operator=(const MyClass& rhs);

Initialization versus assignment in constructors
When the constructor is invoked for an instance of a class, the follow-
ing operations occur in the following order (storage is allocated for the
entire instance):

• The constructor is invoked for the base class (in superclass to
subclass order for all classes in the hierarchy).

• The constructors for any data members that are class variables are
invoked in the order of their declaration in the interface specification.

• Execution of code defined within the constructor body occurs.

To avoid redundant operators, the following approach to constructor
definition is suggested:

• Explicitly specify the call to the base class in the initialized list even if
the default constructor is intended. This makes it more likely that
errors can be detected during walk-throughs.

• Always initialize data members that are class variables using the
initialization list, and initialize them in the order in which they are
declared in the interface specification. This avoids unnecessary calls
to default constructors and prevents unexpected side effects due to
order of initialization.

VISUAL C++



144 • Exploring ArcObjects • Volume 1

• Initialize any primitive data types and pointers in either the initializer
list or the body of the constructor.

Assignment operators
The assignment operators (=) should be explicitly defined for all classes.
The automatic memberwise copy provided by the compiler is adequate
only for shallow copy situations. Even if it works for initial development,
it is likely to be inadequate when maintenance is performed. The fol-
lowing precautions should always be taken:

• The assignment operator should always return a reference to itself.
The return type will be Type&, and the return value will be *this.

• The “other” assignment operators ( +=, -=, *=, and so on) should
conform to the same behavior as the primary assignment operator.

• Always check for self-assignment. The following example format
should always be used for the simple assignment operator.

    Type& Type::operator = (const Type& rhs)

    {

      if (this != &rhs)

      {

        ... code to perform copy goes here ...

      }

      return *this;

    }

• Assign base variables by invoking the base assignment operator. The
following example indicates appropriate behavior:

    DerivedType& DerivedType::operator = (const DerivedType& rhs)

    {

      if (this != &rhs)

      {

        BaseType::operator = (rhs);

        ... code to perform copy goes here ...

      }

      return *this;

    }

Casting
In general, all casts should now use one of the following explicit cast-
ings.

    static_cast<>()

    const_caset<>()

    dynamic_cast<>()

    reinterpret_cast<>()

The new style casts are preferred because they are more explicit and
more visible.

const Methods
Make methods const when they do not change the object in any way.

VISUAL C++



Chapter 2 • Developing with ArcObjects • 145

    int GetCount() const { return m_count; }

If a method is conceptually const from the client’s viewpoint, but inter-
nally the implementation needs to adjust some private data member,
make the function const but cast away its const-like quality in the imple-
mentation.

    int GetCount() const;

    int MyClass::GetCount() const

    {

      MyClass*  self = const_cast<MyClass*> this;  // Cast away const-ness

      if (self->m_countLoaded)

        self->LoadCount();

      return m_count;

    }

The keyword mutable can explicitly exempt data elements from const-
like quality.

Using the const modifier
The const modifier is used in variable declaration to indicate that the
variable cannot be modified after initialization. If the variable is declared
with program, file, or function scope, it must be initialized when it is
declared. When a pointer variable is declared, there are five possible
options, as shown to the left.

When using reference variables, the reference may never be modified.
The const modifier only refers to the referenced data.

When const is used as a keyword following a class-member function, it
indicates that the member function will not modify any class member
variables. The const keyword must be used in both the interface defini-
tion and the implementation.

Type definitions and constants
If a constant or a type definition (class, struct, enum, or typedef) concep-
tually belongs to another class (that is, its only use is within the interface
or implementation of another class), place it within the public, pro-
tected, or private scope of that class.

    class Foo : public CObject

    {

    public:

      struct Bar

      {

        int   width;

        int   height;

      };

      typedef int ProgressLevel;

Foo* pFoo

Statement

const Foo* pFoo

const Foo& pFoo

Foo* const pFoo

const Foo* const
pFoo

Both the pointer and the
referenced data may be modified

Meaning

The pointer may be modified, but
not the referenced data

The referenced data may not be
modified

The referenced data may be
modified, but not the pointer

Neither the pointer or referenced
data may be modified

const options for pointer variables

VISUAL C++



146 • Exploring ArcObjects • Volume 1

    protected:

       typedef enum esriProgress

      {

        esriPIdle,

        esriPRunning,

        esriPCompleted

      } esriProgress;

    };

Syntactic guidelines
The following syntactic guidelines make code more readable; they help
maintainability and group development.

Indentation
Use tabs for indentation and set the tab size equal to two spaces. Do
not replace tabs with spaces.

Implementation organization
Organize .cpp files as follows:

    // Include precompiled header.

    // Other includes.

    // Macro definitions.

    // Global data.

    // Static class members.

    // Constructor(s).

    // Destructor.

    // Public operations.

    //   These should occur in the same order as the class definition.

    // Protected operations.

    //   These should occur in the same order as the class definition.

    // Private operations.

    //   These should occur in the same order as the class definition.

Avoid macros
Where possible, use const definitions instead of macros.

Instead of:

    #define MAX_COUNT    10

use:

    const int    g_maxCount    = 10;

Instead of:

    #define DEFAULT_USER TEXT("Moe")

use:

    const TCHAR* g_defaultUser = TEXT("Moe");

VISUAL C++



Chapter 2 • Developing with ArcObjects • 147

Comments
Use C++-style comments rather than C comments, unless you are writing
a file that needs to be compiled by the C compiler.

    // This is a C++ comment and should be used in all C++ code.

    /* This is a C comment and should only be used in C code. */

White space
Arguments should be separated by a comma and single space. Spaces
should not occur between the function name and the initial parenthesis
or between the parentheses and the arguments.

    result = MyFunction(count, name, &context);

Separate functions with at least one blank line.

    void MyClass::MyFunction1()

    {

    }

    void MyClass::MyFunction2()

    {

    }

Operators
Surround all operators with a space to the left and right.

    size += sizeof(address);

    i = j / 10 - 25;

Do not use extra spaces with these operators: !, #, ->, ., ++, and -.

    if (!fileIsDirty) return;

    #define DEBUG_ME

    AfxGetApp()->ParseCommandLine(cmdInfo);

    theConnection.Close();

    if (i++ > 10 && j— < 100)

Operator precedence
Where operator precedence is not immediately obvious, use parentheses
to indicate order of execution.

    result = (i - (10 - count)) / 42;

Nested if statements
Avoid deeply nested blocks of if statements. They are difficult to read
and debug.

    if (i < 10)

    {

      if (i != 5)

      {

        if (j == 42)

        {

          MyFunc(i, j);

        }

      }

    }

VISUAL C++



148 • Exploring ArcObjects • Volume 1

Instead, use algorithmically equivalent else-if blocks that check the re-
verse conditions and are not deeply nested:

    if (i >= 10)

    {

    }

    else if (i == 5)

    {

    }

    else if (j == 42)

    {

      MyFunc(i, j);

    }

Function declarations
Whenever possible, place function declarations on a single line:

   bool ConnectToDatabase(const char* machineName, const char* databaseName);

If the declaration is too long, break it up into multiple indented lines,
with all argument names positioned in the same column:

    bool Connection::ConnectToDatabase(

const char* machineName,

const char* databaseName,

const char* userName,

const char* password,

unsigned long timeout,

int& connectionID);

When calling functions, try to place all arguments on a single line. If this
is not possible, break them up into multiple lines, with each line in-
dented one tab stop in from the leftmost character of the function
name:

   bool connectionResult = myConnection.ConnectToDatabase(machine, database,

user, password, timeout,

connectionID);

Global scope
Use :: to indicate global scope.

    result = ::AfxMessageBox(errMsg, MB_OK, 0);

Brackets
Brackets should occupy an entire line by themselves.

    for (int i = 0; i < 10; i++)

    {

    }

    if (i <= 10)

    {

    }

    else

    {

    }

VISUAL C++



Chapter 2 • Developing with ArcObjects • 149

Variable declaration
Where possible, declare variables where they are used, rather than
grouping them together at the beginning of a function.

    void MyFunc()

    {

      . . .

      CString database;

      theDB.QueryDatabaseName(database);

      . . .

    }

Where possible, declare loop variables in the first line of a for statement.

    for (int i = 0; i < 10; i++)

    {

      . . .

    }

Avoid declaring multiple local variables on a single line.

    int connCount, connSuccess, passwordHandle, securityAttributes;

Instead, put them on separate lines, or at least group together only those
that are logically related.

    int connCount, connSuccess;

    int passwordHandle, securityAttributes;

When declaring pointers, place the asterisk directly next to the type and
leave a space before the variable, argument, or function name.

Instead of:

    char *myText;

use:

    char* myText;

Instead of:

    void *MyFunc(int *arg);

use:

    void* MyFunc(int* arg);

Bit-fields
Use bit-fields where possible to promote efficiency.

    unsigned m_flagA:1;

    unsigned m_flagB:1;

    unsigned:0; // pads to integer boundary

Nested headers
Avoid including headers in other headers. Use forward declarations
where possible.

    class Bar;

    class Foo

    {

    public:

VISUAL C++



150 • Exploring ArcObjects • Volume 1

      Bar* m_bar;

    };

Switch Statements
Construct a switch statement as follows. Note that the case and break
keywords are indented one level, and the statements are all indented
two levels.

    switch (code)

    {

      case firstCase:

        . . .

      break;

      case secondCase:

        . . .

      break;

      default:

        . . .

      break;

    }

When an individual case contains many statements, move them into a
separate function or enclose them with additional brackets.

    case nthCase:

    {

      . . .

    }

    break;

Always provide a default case within switch statements, even if the result
is to log an error message and terminate. Always provide a break or
return statement for each case path or an explicit comment on the justi-
fication for fall-through behavior.

Use references
Use references instead of pointers unless a NULL pointer value is
needed. This is because the semantics of passing a pointer in C and
C++ is very ambiguous.

    void MyFunc(int* s);

The parameters of the function above could represent any of the fol-
lowing:

• A single int

• An array of int of a certain length

• An input-only parameter

• An output-only parameter

• Both an input and an output parameter

VISUAL C++



Chapter 2 • Developing with ArcObjects • 151

By using references (and const), these ambiguities are avoided.

    void MyFunc(int& s);

    void MyFunc(const int[]& s);

    void MyFunc(const int& s);

    void MyFunc(int& s);

Initialization
Use initialization syntax to initialize all data members to their default
values, unless the initialization is conditional. Do not leave any mem-
bers uninitialized. Place each data member on its own separate line.

    MyClass()

      : m_count(0),

        m_name(0)

    {

    }

NULL initialization
Use 0 instead of NULL. In C++, the value 0 can be used to initialize any
numeric or pointer variable.

Exceptions
A class should handle the exceptions thrown by objects that it uses and
should define and throw its own exceptions when an unrecoverable
situation occurs.

Avoid global data
Global data is inherently dangerous in a multithreaded environment.
Where possible, try to embed all data in objects. In situations where
data represents a shared resource, be sure to protect access to it with a
critical section.

Avoid macros
C++ provides language constructs that in many cases obviate the need
for macros. The constructs are integrated into the compiler and
debugger. Thus, you gain type safety and ease of debugging.

Instead of doing this:

    #define MyConstant 10

do this:

    const long s_MyConstant  = 10

Instead of doing this:

    #define MyHelper(a, b) \

    a = 1;                 \

    b = 2;                 \

    a = b + a;             \

do this:

    inline double MyHelper(double a, double b) {…}

VISUAL C++



152 • Exploring ArcObjects • Volume 1

About the only time you need macros is to adjust behavior in accor-
dance with build settings:

    #ifdef _DEBUG

    OutputDebugString("I'm Here");

    #endif

Using C++ with MFC and Win32

Standard C++ data types
Use standard C++ data types (int, short, long, bool, void, and others)
unless the exact size of the data is critical to the behavior of the func-
tion, as with serialization or file I/O. In these cases, use Windows data
types that are explicitly signed/unsigned and have an unambiguous size.

Use ASSERT and VERIFY
The ASSERT and VERIFY macros are invaluable debugging aids that
should be used liberally throughout your code to check for entry and
exit conditions or any other exceptional situations.

    ASSERT(pWnd);

    VERIFY(loading && userCount > 2);

Use ASSERT during the development phase to ensure that clients are
adhering to rules for your interfaces. An assertion failure during devel-
opment indicates that the contract between caller and callee has been
broken.

The VERIFY macro does not go away in release builds. Use this only to
check for catastrophic failure.

ASSERT and VERIFY behave identically in debug builds. However, in
release builds, ASSERT compiles into nothing, whereas the arguments to
VERIFY get treated as regular statements.

    ASSERT(wnd && loading);      // NOP in release build.

    VERIFY(contents->LoadContextMenu());  // LoadContextMenu happens in

                                           // release build!

Use  WIN32_ASSERT
Any Win32 call that sets an error code can use WIN32_ASSERT to throw
an exception that displays the result of GetLastError(). However, this
macro behaves the same as VERIFY, in that the side effect remains even
in a release build, so be sure that this is the behavior you want.

Character strings
Consider using CString for all string data that you track and manipulate,
instead of managing your own character arrays.

• Since CString is entirely TCHAR-based, Unicode is handled transpar-
ently with no extra work on your part.

• CString is very efficient with memory—where the same string value is passed
from one CString to the next, no new storage is allocated until the second
string is modified.

VISUAL C++

BYTE

Windows Type

SHORT

LONG

WORD

DWORD

unsigned char

Description

signed 16-bit integer

signed 32-bit integer

unsigned 16-bit integer

unsigned 32-bit integer

Windows data types

If MFC is not available, consider using one of the
string smart types covered later in this chapter.



Chapter 2 • Developing with ArcObjects • 153

Application settings
Use the Windows registry to store and retrieve application settings. Do not use
.ini files.

Windows and MFC function calls
Calls to all Windows and global MFC functions should use :: to indicate
global scope.

Localization requirements

When developing an application intended for use in more than one
language, a number of issues must be considered that will make the
localization of the software an easier process.

Use string resources
Never place string constants in the code; instead, define them in a re-
source file from which they are loaded at runtime.

    CString  errorMessage;

    errorMessage.LoadString(IDS_FILE_NOT_FOUND);

The only exceptions are debugging strings—they may reside directly in
the code since they do not affect the released product and need not be
localized.

Store all string constants together in a standard module to facilitate
translation to other languages.

Support Unicode
All code should be Unicode-compliant; therefore, use arrays of TCHAR
(instead of char) to represent character strings. Depending on the com-
pilation settings, TCHAR expands either into single-character strings
(ANSI) or wide-character strings (Unicode).

For string literals, use the TEXT macro to force the string or character to
be Unicode compliant.

    TCHAR dirSep = TEXT('\');

    CString driveName(TEXT("C:"), 2);

Instead of the standard ANSI string functions, use the generic text map-
ping macros. A list of the more common string-handling functions,
along with the correct macro to use, appears on the table to the left.

For a complete list of generic text-mapping macros, refer to the Visual
C++ online help, in C/C++ Run-Time Library Reference, in the ‘Generic
Text Mappings’ chapter.

SMART TYPES

Smart types are objects that behave like types. They are C++ class imple-
mentations that encapsulate a data type, wrapping it with operators and
functions that make working with the underlying type easier and less
error prone but transparent. When these smart types encapsulate an
interface pointer, they are referred to as smart pointers. Smart pointers

strlen

ANSI Function

strcat

strncpy

strchr

strncmp

_tcslen

Unicode-compliant macro

_tcscat

_tcsncpy

_tcschr

_tcsncmp

strstr

atoi

atol

splitpath

_tcsstr

_ttoi

_ttol

_tsplitpath

VISUAL C++



154 • Exploring ArcObjects • Volume 1

work by working with the IUnknown interface to ensure that resource
allocation and deallocation are correctly managed. They accomplish this
by various functions, construct and destruct methods, and overloaded
operators. There are numerous smart types available to the C++ pro-
grammer. The two main types of smart types covered here are defined
by Direct-To-COM (DTC) and the Active Template Library. The relevant
Direct-To-COM compiler extensions for the ArcObjects developer will be
covered in the Active Template Library section later in this chapter.

Smart types can make the task of working with COM interfaces and data
types easier since many of the API calls are moved into a class imple-
mentation; however, they must be used with caution and never without
a clear understanding of how they are interacting with the encapsulated
data type.

Direct-To-COM
The smart type classes supplied with DTC are known as the Compiler COM
Support Classes and consist of:

• _com_error—this class represents an exception condition in one of
the COM support classes. This object encapsulates the HRESULT and
the IErrorInfo COM exception object.

• _com_ptr_t—this class encapsulates a COM interface pointer. See
below for common uses.

• _bstr_t—this class encapsulates the BSTR data type. The functions
and operators on this class are not as rich as the ATL BSTR smart
type, hence this is not normally used.

• _variant_t—this class encapsulates the VARIANT data type. The func-
tions and operators on this class are not as rich as the ATL VARIANT
smart type, hence this is not normally used.

To define a smart pointer for an interface, you can use the macro
_COM_SMARTPTR_TYPEDEF like this:

    _COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

The compiler expands this as such:

    typedef _com_ptr_t<_com_IIID<IFoo, __uuidof(IFoo)> > IFooPtr;

Once declared, it is simply a matter of declaring a variable as the type of
the interface and appending Ptr to the end of the interface. Below are
some common uses of this smart pointer that you will see in the numer-
ous C++ samples.

    // Get a CLSID GUID constant

    extern "C" const GUID __declspec(selectany) CLSID_Foo = \

        {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

    // Declare Smart Pointers for IFoo, IBar and IGak interfaces

    _COM_SMARTPTR_TYPEDEF(IFoo, __uuidof(IFoo));

    _COM_SMARTPTR_TYPEDEF(IBar, __uuidof(IBar));

    _COM_SMARTPTR_TYPEDEF(IGak, __uuidof(IGak));

VISUAL C++

DTC was an initiative from Microsoft to make
COM C++ programming more like Visual Basic.

To achieve this, DTC provides a set of classes
and compiler extensions that shipped initially

with Visual Studio 5.



Chapter 2 • Developing with ArcObjects • 155

    STDMETHODIMP SomeClass::Do ()

    {

      // Create Instance of Foo class and QI for IFoo interface

      IFooPtr       ipFoo(CLSID_Foo);

      if (ipFoo == 0) return E_NOMEMORY

      // Call method on IFoo to get IBar

      IBarPtr      ipBar;

      HRESULT hr = ipFoo->get_Bar(&ipBar);

      if (FAILED(hr)) return hr;

      // QI IBar interface for IGak interface

      IGakPtr       ipGak(ipBar);

      // Call method on IGak

      hr  = ipGak->DoSomething()

      if (FAILED(hr)) return hr;

      // Explicitly call Release()

      ipGak = 0

      ipBar = 0

      // Let destructor call IFoo's Release

      return S_OK;

    }

Active Template Library
ATL defines various smart types, as seen in the list below. You are free
to combine both the ATL and DTC smart types in your code.

ATL smart types:

• CComPtr—class encapsulates a COM interface pointer by wrapping
the AddRef and Release methods of the IUnknown interface.

• CComQIPtr—class encapsulates a COM interface and supports all
three methods of the IUnknown interface: QueryInterface, AddRef,
and Release.

• CComBSTR—class encapsulates the BSTR data type.

• CComVariant—class encapsulates the VARIANT data type.

• CRegKey—class provides methods for manipulating Windows registry
entries.

• CComDispatchDriver—class provides methods for getting and setting
properties and calling methods through an object’s IDispatch inter-
face.

• CSecurityDescriptor—Class provides methods for setting up and
working with the Discretionary Access Control List (DACL).

This section examines the first four smart types and their uses. The
example code below, written with ATL smart pointers, looks like the
following:

VISUAL C++



156 • Exploring ArcObjects • Volume 1

    // Get a CLSID GUID constant

    extern "C" const GUID __declspec(selectany) CLSID_Foo = \

        {0x2f3b470c,0xb01f,0x11d3,{0x83,0x8e,0x00,0x00,0x00,0x00,0x00,0x00}};

    STDMETHODIMP SomeClass::Do ()

    {

      // Create Instance of Foo class and QI for IFoo interface

      CComPtr<IFoo>       ipFoo;

      HRESULT hr = CoCreateInstance(CLSID_Foo, NULL, CLSCTX_INPROC_SERVER,

                                IID_IFoo, (void **)& ipFoo);

       if (FAILED(hr)) return hr

      // Call method on IFoo to get IBar

      CComPtr<IBar>      ipBar;

      HRESULT hr = ipFoo->get_Bar(&ipBar);

      if (FAILED(hr)) return hr;

      // IBar interface for IGak interface

      CComQIPtr<IGak>       ipGak(ipBar);

      // Call method on IGak

      hr  = ipGak->DoSomething()

      if (FAILED(hr)) return hr;

      // Explicitly class Release()

      ipGak = 0

      ipBar = 0

      // Let destructor call Foo's Release

      return S_OK;

    }

When reassigning an ATL smart pointer, a debug ASSERT is raised if the
previous interface pointer is not explicitly released.

The most common smart pointer seen in the samples is the DTC type. In
the examples below, which illustrate the BSTR and VARIANT data types,
the DTC pointers are used. When working with CComBSTR, use the text
mapping L“<string>”, for example, L“name”, to declare constant
OLECHAR strings. CComVariant derives directly from the VARIANT data
type, meaning that there is no overloading with its implementation,
which in turn simplifies its use. It has a rich set of constructors and
functions that make working with VARIANTs straightforward; there are
even methods for reading and writing from streams. Be sure to call the
Clear method before reusing the variable.

    IFeaturePtr  ipFeature(GetControllingUnknown()); // Get IFeature interface

    // Get IFields interface and find index of Name field

    long*         lIndex;

VISUAL C++



Chapter 2 • Developing with ArcObjects • 157

    IFieldsPtr    ipFields;

    HRESULT hr;

    hr = ipFeature->get_Fields(&ipFields);

    if (FAILED(hr)) return hr;

    hr = ipFields->FindField(CComBSTR(L"Name"), &lIndex);

    if (FAILED(hr)) return hr;

    // Get OID change its type to String and set Name

    // then set it back onto the feature

    CComVariant   vID;

    hr = ipFeature->get_Value(0, &vID);

    if FAILED(hr)) return hr;

    // Change its data type

    hr = vID.ChangeType(VT_BSTR);

    if (FAILED(hr)) return hr;

    hr = ipFeature->put_Value(lIndex, vID);

    if (FAILED(hr)) return hr;

    hr = ipFeature->Store();

    if (FAILED(hr)) return hr;

When working with CComBSTR and CComVariant, the Detach() func-
tion returns the underlying data type and should be used when passing
a pointer as an [out] parameter of a method. The use of the Detach
method is shown below.

    void GetName(BSTR* name)

    {

      CComBSTR bsName(L"FooBar");

      *name = bsName.Detach();

    }

USEFUL C++ TIPS

These C++ tips are included here as tips for better development and
should not be seen as a set of rules.

A better callback model
Instead of passing function pointers and opaque context data to imple-
ment callbacks, consider defining an abstract notification class that
encapsulates the various notification events that can be fired. Clients can
then subclass and instantiate this class to register for notification.

To see how this might work, consider the following example. It shows
how to implement a traditional callback mechanism between an object
(Bar) and a client (Foo).

    class Foo : public CObject

    {

    public:

VISUAL C++



158 • Exploring ArcObjects • Volume 1

      Foo(Bar& bar) { bar.m_client = this; bar.m_clientProc = BarStub; }

      int Bar(char* string)  { printf("%s", string); }

      static int BarStub(void* client, char* string)

                       { ((Foo*)client) ->Bar(string); }

    };

    class Bar

    {

    public:

      typedef int (*BarProc)(void* client, char* string);

      void*     m_client;

      BarProc   m_clientProc;

      void InvokeCallback()

        { if (m_clientProc) (*m_clientProc)(m_client, string); }

    };

The Bar class defines the prototype for the callback function and has
two member variables: the address of the function to invoke and the
object (stored as a void*) to pass along to the callback. Furthermore, at
the Foo end, an additional static stub routine (BarStub) is needed that
casts the opaque pointer to a Foo object before the real Foo method
(Bar) is invoked. This seems like a lot of overhead for such a simple
task. It is also dangerous because it casts the void* into a Foo*.

However, there is a better way. By taking advantage of abstract classes
in C++, the relationship between Foo and Bar can be much more
cleanly implemented:

    class Foo : public CObject, public BarInterface

    {

    public:

      Foo(Bar& bar)         { bar.m_client = this; }

      int Bar(char* string) { printf("%s", string); }

    };

    class BarInterface

    {

    public:

      virtual int Bar(void* client, char* string) = 0;

    };

    class Bar

    {

    public:

      BarInterface*   m_client;

      void InvokeCallback() { if (m_client) m_client->Bar(string); }

    };

VISUAL C++



Chapter 2 • Developing with ArcObjects • 159

The difference in this solution is that an abstract class, BarInterface,
has been introduced. It lives alongside the Bar class, like before, and
contains virtual methods that must be overridden by subclasses. These
methods represent the events (callbacks) that the Bar class sends. The
events are handled when a client provides a subclass that implements
them. In this example, Foo derives both from CObject and from
BarInterface and implements the BarInterface method, Bar.

There are several advantages to this approach. First of all, type safety is
always maintained, unlike the former example; objects are never cast
to void* and then cast back to objects. Also, when a class provides
multiple callbacks (which is often the case), they can all be encapsu-
lated together in the abstract callback class. Some or all of them may
be tagged with = 0, indicating that they must be overridden; this pre-
vents clients from unwittingly implementing one callback while forget-
ting another, which is vital for proper functioning. One can also pro-
vide default implementations for the callbacks, should a subclass
choose not to implement one. (Providing defaulted functions under
the traditional model is difficult and error-prone.)  Lastly, by using
virtual functions directly, there is no need for static stub functions.

DEBUGGING TIPS IN DEVELOPER STUDIO

Visual C++ comes with a feature-rich debugger. These tips will help
you get the most from your debugging session.

Backing up after failure
When a function call has failed and you’d like to know why (by step-
ping into it), you don’t have to restart the application. Use the Set Next
Statement command to reposition the program cursor back to the
statement that failed (right-click on the statement to bring up the de-
bugging context menu). Then, just step into the function.

Unicode string display
Set your debugger options to display Unicode strings (click the Tools
menu, click Options, click Debug, then check the Display Unicode
Strings check box).

Variable value display
Pause the cursor over a variable name in the source code to see its
current value. If it is a structure, click it and bring up the QuickWatch
dialog box (the Eyeglasses icon or Shift+F9) or drag and drop it into
the Watch window.

Undocking windows
If the Output window (or any docked window, for that matter) seems
too small to you, try undocking it to make it a real window. Just right-
click it and toggle the Docking View item.

VISUAL C++



160 • Exploring ArcObjects • Volume 1

Conditional break points
Use conditional break points when you need to stop at a break point
only once some condition is reached (a for-loop reaching a particular
counter value). To do so, set the break point normally, then bring up
the Breakpoints window (Ctrl+B or Alt+F9). Select the specific break
point you just set and then click the Condition button to display a dialog
in which you specify the break point condition.

Preloading DLLs
You can preload DLLs that you wish to debug before executing the
program. This allows you to set break points up front rather than wait
until the DLL has been loaded during program execution. (Click Project,
click Settings, click Debug, click Category, then click Additional DLLs.)
Then, click in the list area below to add any DLLs you wish to have
preloaded.

Changing display formats
You can change the display format of variables in the QuickWatch
dialog box or in the Watch window using the formatting symbols in the
following table.

d, i

Symbol

signed decimal integer

Format

0xF000F065

Value

-268373915

Displays

u unsigned decimal integer 0x0065 101

o unsigned octal integer 0xF065 0170145

x, X hexadecimal integer 61541 0x0000F065

l, h long or short prefix for d, I, u, o, x, X 00406042, hx 0x0C22

f signed floating-point 3./2. 1.500000

e signed scientific notation 3./2. 1.500000e+00

g e or f, whichever is shorter 3./2. 1.5

c single character 0x0065 'e'

s string 0x0012FDE8 "Hello"

su Unicode string "Hello"

hr string 0 S_OK

To use a formatting symbol, type the variable name followed by a
comma and the appropriate symbol. For example, if var has a value of
0x0065, and you want to see the value in character form, type var,c in
the Name column on the tab of the Watch window. When you press
ENTER, the character-format value appears: var,c = ‘e’. Likewise, assum-
ing that hr is a variable holding HRESULTS, view a human-readable
form of the HRESULT by typing “hr,hr” in the Name column.

You can use the formatting symbols shown in the following table to
format the contents of memory locations.

VISUAL C++



Chapter 2 • Developing with ArcObjects • 161

ma

Symbol

mw

mu

64 ASCII characters

Format

8 words

2-byte characters (Unicode)

0x0012ffac
.4...0...".0W&..
.....1W&.0.:W..1
...."..1.JO&.1.2
.."..1...0y....1

Value

0x0012ffac
34B3 00CB 3084 8094
22FF 308A 2657 0000

0x0012fc60
8478 77f4 ffff ffff
0000 0000 0000 0000

m
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0....".0W&..

mb
16 bytes in hex, followed by 16 ASCII
characters

0x0012ffac
B3 34 CB 00 84 30 94 80
FF 22 8A 30 57 26 00 00 .4...0...".0W&..

md 4 double-words
0x0012ffac
00CB34B3 80943084 308A22FF 00002657

With the memory location formatting symbols, you can type any value
or expression that evaluates to a location. To display the value of a
character array as a string, precede the array name with an ampersand,
&yourname. A formatting character can also follow an expression:

• rep+1,x

• alps[0],mb

• xloc,g

• count,d

To watch the value at an address or the value pointed to by a register,
use the BY, WO, or DW operator:

• BY returns the contents of the byte pointed at.

• WO returns the contents of the word pointed at.

• DW returns the contents of the doubleword pointed at.

Follow the operator with a variable, register, or constant. If the BY, WO,
or DW operator is followed by a variable, then the environment watches
the byte, word, or doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any
location.

To display a Unicode string in the Watch window or the QuickWatch
dialog box, use the su format specifier. To display data bytes with
Unicode characters in the Watch window or the QuickWatch dialog box,
use the mu format specifier.

MFC Class Autoexpand
Microsoft Developer Studio has an autoexpand capability for Microsoft
Foundation Class library classes. The string (or other information) be-
tween the braces ({ }) is automatically expanded.

Keyboard shortcuts
There are numerous keyboard shortcuts that make working with the
Visual Studio editor faster. Some of the more useful keyboard shortcuts
follow.

VISUAL C++

You can apply formatting symbols to structures,
arrays, pointers, and objects as unexpanded

variables only. If you expand the variable, the
specified formatting affects all members. You

cannot apply formatting symbols to individual
members.



162 • Exploring ArcObjects • Volume 1

The text editor uses many of the standard shortcut keys used by Win-
dows applications, such as Word. Some specific source code editing
shortcuts are listed below.

Correct indent selected code based on surrounding lines.

Action

Find the matching brace.

Display list of members.

Complete the word, once the number of letters entered allows the editor to recognize it. Use full when
completing function and variable names.

Indents selection one tab stop to the right.

Indents selection one tab to the left.

Alt+F8

Shortcut

Ctrl+]

Ctrl+J

Ctrl+Spacebar

Tab

Shift+Tab

Below is a table of common keyboard shortcuts used in the debugger.

Add or remove breakpoint from current line.

Action

Remove all breakpoints.

Disable breakpoints.

Display auto window and move cursor into it.

Display call stack window and move cursor into it.

Display locals window and move cursor into it.

Display auto window and move cursor into it.

End debugging session.

Execute code one statement at a time, stepping into functions.

Execute code one statement at a time, stepping over functions.

Restart a debugging session.

Resume execution from current statement to selected statement.

Run the application.

Run the application without the debugger.

Set the next statement.

Stop execution.

F9

Shortcut

Ctrl+Shift+F9

Ctrl+F9

Ctrl+Alt+A

Ctrl+Alt+C

Ctrl+Alt+L

Ctrl+Alt+A

Shift+F5

F11

F10

Ctrl+Shift+F5

Ctrl+F10

F5

Ctrl+F5

Ctrl+Shift+F10

Ctrl+Break

Loading the following shortcuts can greatly increase your productivity
with the Visual Studio development environment.

Close a menu or dialog box, cancel an operation in progress, or place focus in the current document window.

Action

Create a new file.

Create a new project.

Cycle through the MDI child windows one window at a time.

Display the auto window and move the cursor into it.

Display the call stack window and move the cursor into it.

Display the document outline window and move the cursor into it.

Display the find window.

Display the find window. If there is no current Find criteria, put the word under your cursor in the find box.

Display the immediate window and move the cursor into it. Not available if you are in the text editor window.

Display the locals window and move the cursor into it.

Display the output window and move the cursor into it

Display the project explorer window and move the cursor into it.

Display the properties window and move the cursor into it.

Open a file.

Open a project.

Print all or part of the document.

Save all of the files, projects, or documents.

Select all.

Save the current document or selected item or items.

ESC

Shortcut

CTRL+SHIFT+N

CTRL+N

CTRL+F6 or
CTRL+TAB

CTRL+ALT+A

CTRL+ALT+C

CTRL+ALT+T

CTRL+H

CTRL+F

CTRL+ALT+I

CTRL+ALT+L

CTRL+ALT+O

CTRL+ALT+J

CTRL+ALT+P

CTRL+SHIFT+O

CTRL+O

CTRL+P

CTRL+SHIFT+S

CTRL+S

CTRL+A

VISUAL C++



Chapter 2 • Developing with ArcObjects • 163

Navigating through online Help topics
Right-click a blank area of a toolbar to display a list of all the available
toolbars. The Infoviewer toolbar contains up and down arrows that
allow you to cycle through help topics in the order in which they
appear in the table of contents. The left and right arrows cycle through
help topics in the order that you visited them.

VISUAL C++



164 • Exploring ArcObjects • Volume 1

ACTIVE TEMPLATE LIBRARY

This section on the ATL cannot hope to cover all the topics that a devel-
oper working with ATL should know in order to become an effective
ATL C++ developer, but it will serve as an introduction to getting started
with ATL. ATL helps you implement COM objects, and it saves typing,
but it does not excuse you from knowing C++ and how to develop
COM objects.

This section will introduce ATL by working through the creation of a
project that implements one object to Zoom In to the ArcMap display by
a factor of 2. Each stage of the project is explained including how to
automatically generate code. You are encouraged to look at the bibliog-
raphy at the end of this chapter in order to seek more in depth refer-
ence materials.

ATL IN BRIEF

ATL is a set of C++ template classes designed to be small, fast, and
extensible, based loosely on the Standard Template Library (STL). ATL
provides a set of wizards that extend the Visual Studio development
environment. These wizards automate some of the tedious plumbing
code that all ATL projects must have. The wizards include, but are not
limited to, the following:

• Application—used to initialize an ATL C++ project.

• Object—used to create COM objects. Both C++ and IDL code is
generated, along with the appropriate code to support the creation of
the objects at runtime.

• Property—used to add properties to interfaces.

• Method—used to add methods to interfaces; both the Property and
Method Wizards require you to know some IDL syntax.

• Interface Implementation—used to implement stub functions for
existing interfaces.

ATL provides base classes for implementing COM objects, as well as
implementations for some of the common COM interfaces, including
IUnknown, IDispatch, and IClassFactory. There are also classes that
provide support for ActiveX controls and their containers.

ATL provides the required services for exposing ATL-based COM ob-
jects—these being registration, server lifetime, and class objects.

These template classes build a hierarchy that sandwiches your class.
These inheritances are shown below. The CComxxxThreadModel sup-
ports thread-safe access to global, instance, and static data. The
CComObjectRootEx provides the behavior for the IUnknown methods.
The interfaces at the second level represent the interfaces that the class
will implement; these come in two varieties. The IxxxImpl is an ATL-
supplied interface that also includes an implementation; the other inter-
faces have pure virtual functions that must be fully implemented within
your class. The CComObject class inherits your class; this class provides
the implementation of the IUnknown methods along with the object
instantiation and lifetime control.

CComObject<CMyObject>

CMyObject

CComObjectRootEx<>

IMyInt2

IMyIntIXxxImpl

CComXxxThreadModel

The hierarchical layers of ATL



Chapter 2 • Developing with ArcObjects • 165

This layer structure allows changes to be made that affect the interaction
of the Object and COM, with only minimal changes to your source files.
Only the inherited classes must change.

ATL AND DTC

In addition to the smart types covered earlier in this chapter, DTC pro-
vides some useful compiler extensions you can use when creating ATL-
based objects. The functions __declspec and __uuidof are two such
functions, but the most useful is the #import command.

COM interfaces are defined in IDL, then compiled by the Microsoft IDL
compiler (MIDL.exe). This results in the creation of a type library and
header files. The project uses these files automatically when compiling
software that references these interfaces. This approach is limited in that
when working with interfaces you must have access to the IDL files. As
a developer of ArcObjects, you only have access to the type library
information contained in the esriCore.olb or equivalent file. While it is
possible to engineer a header file from a type library, it is a tedious
process, especially when using a large type library such as the ESRI
Object Library. The #import command automates the creation of the
necessary files required by the compiler. Since the command was devel-
oped to support DTC when using it to import the ESRI Object Library,
there are a number of parameters that must be passed so that the cor-
rect import takes place.

    #import "esriCore.olb" \ \\ Typelib to generate C++ mapping

    raw_interfaces_only, \ \\ Don't add raw_ to method names

    raw_native_types, \ \\ Don't map to DTC smart types

    no_namespace, \ \\ Don't wrap with C++ name space

    named_guids, \ \\ Named guids and declspecs

    exclude("OLE_COLOR", "OLE_HANDLE") \\ Exclude conflicting types

This importing of the type library creates the smart pointers and CLSID
constants seen in the section on Smart Types. The exclude
(“OLE_COLOR”, “OLE_HANDLE”) is required because Windows defines
these to be unsigned longs, which conflicts with the ArcObjects defini-
tion of long—this was required to support Visual Basic as a client of
ArcObjects since Visual Basic has no support for unsigned types. There
are no issues with excluding these.

HANDLING ERRORS IN ATL

It is possible to return an HRESULT as the only signaling of failure in a
method; however, as we saw with Visual Basic, not all development
environments have comprehensive support for HRESULTs. In addition,
simply returning HRESULTs to Visual Basic clients raises the “Automa-
tion Error – Unspecified Error”. ATL provides a simple mechanism for
working with the COM exception object in order to provide more con-
text when methods fail.

When creating an ATL object, the Object Wizard has an option to sup-
port ISupportErrorInfo. If you toggle the option on, when the wizard

ACTIVE TEMPLATE LIBRARY

If possible, you should always raise these COM
exceptions to ensure that clients have access to

this rich error information if required.



166 • Exploring ArcObjects • Volume 1

runs your object will implement the interface ISupportErrorInfo, and a
method will be added that looks something like this:

    STDMETHODIMP MyClass::InterfaceSupportsErrorInfo(REFIID riid)

    {

      static const IID* arr[] =

      {

        &IID_IMyClass,

      };

      for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)

      {

        if (InlineIsEqualGUID(*arr[i], riid))

          return S_OK;

      }

      return S_FALSE;

    }

It is now possible to return rich error messages by calling one of the
ATL error functions. These functions even work with resource files to
ensure easy internationalization of the message strings.

    // Return a simple string

    AtlReportError(CLSID_MyClass, _T("No connection to Database."),

      IID_IMyClass, E_FAIL);

       // Get the Error Text from a resource string

    AtlReportError(CLSID_MyClass, IDS_DBERROR, IID_IMyClass, E_FAIL,

      _Module.m_hInstResource);

LINKING ATL CODE

One of the primary purposes of ATL is to support the creation of small
fast objects for distribution over the Internet. To support this, the ATL
development team gives the developer a number of choices when com-
piling and linking the source code. Choices must be made about how to
link or dynamically access the C runtime (CRT) libraries, the registration
code, and the various ATL utility functions. If no CRT calls are made in
the code, this can be removed from the link. If CRT calls are made and
the linker switch _ATL_MIN_CRT is not removed from the link line, the
error shown below will generate during the link stage of the build.
When compiling a debug build, there will probably not be a problem;
however, depending on the code written, there may be problems when
compiling a release build. If you receive this error, either remove the
CRT calls or change the linker switches.

LIBCMT.lib(crt0.obj) : error LNK2001: unresolved external symbol _main

ReleaseMinSize/History.dll : fatal error LNK1120: 1 unresolved externals

Error executing link.exe.

If the Utilities code is dynamically loaded at runtime, you must ensure
that the appropriate DLL (ATL.DLL) is installed and registered on the
user’s system. The following table shows the various choices and the related
linker switches.

ACTIVE TEMPLATE LIBRARY



Chapter 2 • Developing with ArcObjects • 167

Utilities Registrar

Debug static dynamic

RelMinSize
dynamic dynamic

RelMinDepend
static static

CRT

yes

no

no

Symbols

_ATL_MIN_CRT
_ATL_DLL

_ATL_MIN_CRT
_ATL_STATIC_REGISTRY

DEBUGGING ATL CODE

In addition to the standard Visual Studio facilities, ATL provides a num-
ber of debugging options that provide specific support for debugging
COM objects. The output of these debugging options is displayed in the
Visual C++ Output window. The QueryInterface call can be debugged
by setting the symbol _ATL_DEBUG_QI, AddRef, and Release calls with
the symbol _ATL_DEBUG_INTERFACES, and leaked objects can be
traced by monitoring the list of leaked interfaces at termination time
when the _ATL_DEBUG_INTERFACES symbol is defined. The leaked
interfaces list has entries like the following:

    INTERFACE LEAK: RefCount = 1, MaxRefCount = 3, {Allocation = 10}

On its own, this does not tell you much apart from the fact that one of
your objects is leaking because an interface pointer has not been re-
leased. However, the Allocation number allows you to automatically
break when that interface is obtained by setting the m_nIndexBreakAt
member of the CComModule at server startup time. This, in turn, calls
the function DebugBreak() to force the execution of the code to stop at
the relevant place in the debugger. For this to work the program flow
must be the same, but it can be very useful.

    extern "C"

    BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID /

      *lpReserved*/)

    {

        if (dwReason == DLL_PROCESS_ATTACH)

        {

            _Module.Init(ObjectMap, hInstance, &LIBID_HISTORYLib);

            DisableThreadLibraryCalls(hInstance);

            _Module.m_nIndexBreakAt = 10

        }

        else if (dwReason == DLL_PROCESS_DETACH)

        {

            _Module.Term();

        }

        return TRUE;    // ok

    }

ACTIVE TEMPLATE LIBRARY



168 • Exploring ArcObjects • Volume 1

CREATING AN ATL COM SERVER AND OBJECT

This example will create a COM in-process server, a DLL, and add one
object to that server that implements the ICommand interface to allow it
to be used within ArcMap. Not all aspects of the process or options
available will be explained; you are encouraged to use the Visual Studio
online Help to find more information.

1. Start Visual C++.

2. Open the New Project form by clicking File and clicking New.

3. Click ATL COM AppWizard, then enter the project name and location
of the source files. The project name will be the name given to the
server file. Click OK.

4. On the next dialog box, accept the defaults and click OK. Click OK
on the Information dialog box. The skeleton project is now created
and loaded into the editor.

5. Close inspection of the file view in the workspace window will show
that an IDL file, along with a CPP file, has been created for the server,
along with files to support precompiled header files and resources.
The server file has the implementations of the exported DLL func-
tions:

• DllMain

• DllCanUnloadNow

• DllGetClassObject

• DllRegisterServer

• DllUnregisterServer

The majority of these functions simply delegate to the CComModule
class, defined as _Module.

    //////////////////////////////////////////////////////////////

    // DllRegisterServer - Adds entries to the system registry

    STDAPI DllRegisterServer(void)

    {

        // registers object, typelib and all interfaces in typelib

        return _Module.RegisterServer(TRUE);

    }

The IDL file only contains the library GUID and two importlibs for the
standard COM API calls.

    [

      uuid(D8FBD63B-E107-43BE-A493-E71A8A467561),

      version(1.0),

      helpstring("DisplayCommands 1.0 Type Library")

    ]

    library DISPLAYCOMMANDSLib

    {

      importlib("stdole32.tlb");

ACTIVE TEMPLATE LIBRARY

This example uses the project name
DisplayCommands.

Application Wizard

Server-type step in the Application Wizard



Chapter 2 • Developing with ArcObjects • 169

      importlib("stdole2.tlb");

    };

6. With the Server code present the ATL COM objects can be added.
This is done using the ATL Object Wizard. Start this wizard by click-
ing the Insert menu and clicking New ATL Object. Click Next to de-
fine a simple object.

7. Give the object a name and confirm that the automatically generated
names are concise but informative.

8. Click the Attributes tab and set the Interface type to Custom. This
ensures that the interface IZoomIn inherits directly from IUnknown
and not IDispatch, which is the default—in this way it is the same as
all the other ArcObjects interfaces. While this is not necessary, it
reduces the size of the COM object when it is instantiated for better
memory management.

9. Click OK when finished. This creates three new files, ZoomIn.cpp,
ZoomIn.h, and ZoomIn.rgs, and changes the existing files,
DisplayCommands.idl, DisplayCommands.cpp, DisplayCommands.rc,
and Resource.h.

The ZoomIn coclass and the IZoomIn interfaces are added to the IDL,
and the coclass is added to the DisplayCommands.cpp file to the
object map. This table has an entry for every coclass in the server.
ATL makes extensive use of tables to hold information about the
COM object and has various macros that initialize and add entries to
these tables.

    BEGIN_OBJECT_MAP(ObjectMap)

    OBJECT_ENTRY(CLSID_ZoomIn, CZoomIn)

    END_OBJECT_MAP()

The three ZoomIn files that are specific to the ZoomIn class are the
registry script, the header, and the implementation files. The registry
script file ZoomIn.rgs is shown below. This registry script will be
executed when the server is registered and unregistered. If required,
you can enter other information into the registry by editing this script.

    HKCR

    {

      DisplayCommands.ZoomIn.1 = s 'ZoomIn Class'

      {

        CLSID = s '{52442231-E144-4B7C-94EF-70ABB17476E5}'

      }

      DisplayCommands.ZoomIn = s 'ZoomIn Class'

      {

        CLSID = s '{52442231-E144-4B7C-94EF-70ABB17476E5}'

        CurVer = s 'DisplayCommands.ZoomIn.1'

      }

      NoRemove CLSID

      {

      ForceRemove {52442231-E144-4B7C-94EF-70ABB17476E5} = s 'ZoomIn Class'

ATL Object Wizard

Name allocation step of the ATL Object Wizard

Defining the characteristics of your COM object

ACTIVE TEMPLATE LIBRARY

The wizard can also be accessed via the ATL
toolbar or the context menu in the class view of

the workspace window.

This example names the coclass ZoomIn.

The registry script parser is very particular, hence
care must be exercised when editing this file.



170 • Exploring ArcObjects • Volume 1

      {

          ProgID = s 'DisplayCommands.ZoomIn.1'

          VersionIndependentProgID = s 'DisplayCommands.ZoomIn'

          InprocServer32 = s '%MODULE%'

          {

            val ThreadingModel = s 'Apartment'

          }

          'TypeLib' = s '{D8FBD63B-E107-43BE-A493-E71A8A467561}'

        }

      }

    }

At this stage, the CPP implementation file is empty, except for some
includes. The header file contains the C++ class definition. Notice the
inheritance list of the class.

    /////////////////////////////////////////////////////////////

    // CZoomIn

    class ATL_NO_VTABLE CZoomIn :

    ..public CComObjectRootEx<CComSingleThreadModel>,

    ..public CComCoClass<CZoomIn, &CLSID_ZoomIn>,

    ..public IZoomIn

    {

    public:

    ..CZoomIn()

    ..{

    ..}

    DECLARE_REGISTRY_RESOURCEID(IDR_ZOOMIN)

    DECLARE_PROTECT_FINAL_CONSTRUCT()

    BEGIN_COM_MAP(CZoomIn)

    ..COM_INTERFACE_ENTRY(IZoomIn)

    END_COM_MAP()

    // IZoomIn

    public:

    };

A map is used to drive the query interface implementation. The inter-
face map must list all the interfaces supported by the object. ATL’s
implementation of QueryInterface uses these entries in the COM_MAP.
Two other macros are present: DECLARE_REGISTRY_RESOURCEID
(IDR_ZOOMIN), which binds the registry script to the class, and
DECLARE_PROTECT_FINAL_CONSTRUCT(), which stops reference
counting problems during the execution of the FinalConstruct method,
primarily when aggregating objects.

10.Confirm that everything has been successful by pressing F7 to com-
pile the project.

11.Click Class View in the Workspace browser.

ACTIVE TEMPLATE LIBRARY

All publicly created classes (coclasses) must
inherit from the class CComCoClass.

Interface Implementation Wizard



Chapter 2 • Developing with ArcObjects • 171

12.Select the class CZoomIn and display the context menu. This menu
allows access to various wizards including the Method and Property
Wizards. Click Implement Interface to display the list of available type
libraries.

You will be implementing the ICommand interface defined within the
ESRI Object Library; this means you must select this type library
before continuing by clicking the Add Typelib button.

Next, select the ICommand interface and click OK. Changes are made
to the ZoomIn.h file.

The Interface Implementation tool only updates the header file for
the class. Therefore, the interface that has just been implemented
should also be added to the coclass ZoomIn defined in the IDL file.
You can also take this opportunity to mark the IUnknown interface as
the default interface of the coclass.

      coclass ZoomIn

      {

        [default] interface IUnknown;

        interface IZoomIn;

        interface ICommand;

      };

If you try to compile the IDL file at this point (using the Workspace
Browser context menu with the IDL file selected in the Workspace
Browser), an error will be raised stating there is an unresolved for-
ward declaration ICommand. The esriCore.olb file must be included
in the library section of the IDL, in a similar way that the standard
COM libraries are. Another cause of the forward declaration error that
you may encounter in your ATL development is that an interface
method uses a type included within the ESRI Object Library. By
default, interface definitions are placed before the library section of
the IDL file. To fix the compile error, the interface definition must be
moved inside the library section after the importlib directive.

    library DISPLAYCOMMANDSLib

    {

      importlib("stdole32.tlb");

      importlib("stdole2.tlb");

      importlib("C:\arcexe81\ArcObjects Developer Kit\Help\esriCore.olb");

13.The header file is where most of the code has been placed. Several
changes must be made: some are required, while others are simply
good coding practices.

The ICommand interface has been added to the inheritance list of the
C++ class as well as the COM_MAP.

    class ATL_NO_VTABLE CZoomIn :

      public CComObjectRootEx<CComSingleThreadModel>,

      public CComCoClass<CZoomIn, &CLSID_ZoomIn>,

     public IZoomIn,

     public ICommand

    {

Additional type libraries can be selected to
access their interfaces.

Locate and check required interfaces and click
OK.

ACTIVE TEMPLATE LIBRARY

This path will vary depending on your installation.



172 • Exploring ArcObjects • Volume 1

    public:

      CZoomIn()

      {

      }

    DECLARE_REGISTRY_RESOURCEID(IDR_ZOOMIN)

    DECLARE_PROTECT_FINAL_CONSTRUCT()

    BEGIN_COM_MAP(CZoomIn)

      COM_INTERFACE_ENTRY(IZoomIn)

      COM_INTERFACE_ENTRY(ICommand)

    END_COM_MAP()

14.The wizard also added the stub functions for the ICommand inter-
face to the header file. These functions should be moved to the CPP
file, leaving only the function prototypes in the header file. The listing
below shows the changes required for each function.

The wizard creates this function in the header file.

      STDMETHOD(get_Enabled)(VARIANT_BOOL * Enabled)

      {

        if (Enabled == NULL)

          return E_POINTER;

        return E_NOTIMPL;

      }

The header file prototype should look like this:

      STDMETHOD(get_Enabled)(VARIANT_BOOL * Enabled);

The implementation file should look like this:

    STDMETHODIMP CZoomIn::get_Enabled(VARIANT_BOOL * Enabled)

    {

      if (Enabled == NULL)

        return E_POINTER;

      return E_NOTIMPL;

    }

15.Next, the #import that imports the ESRI Object Library into the class
must be edited. The reverse engineering of the type library takes a
few seconds so, for more efficient compilation in the future, remove
this #import line from the header and add it to the precompiled
header file stdafx.h. Remember to exclude both OLE_COLOR and
OLE_HANDLE from the import.

    #pragma warning(push)

    #pragma warning(disable : 4146)

    #pragma warning(disable : 4192)

    #import "C:\arcexe81\ArcObjects Developer Kit\Help\esriCore.olb" \

        raw_interfaces_only, \

        raw_native_types, \

        no_namespace, \

ACTIVE TEMPLATE LIBRARY

This path will vary depending on your installation.



Chapter 2 • Developing with ArcObjects • 173

        named_guids, \

        exclude("OLE_COLOR", "OLE_HANDLE")

    #pragma warning(pop)

Several warnings will appear. These can be safely disabled using the
#pragma statement. It is advisable to push and pop the warning stack
so that the warnings are only disabled for this import.

16.Add a member variable to hold a bitmap resource used by the Com-
mand button; this involves changes to the ZoomIn header file and the
creation of a Bitmap resource in the resource editor. From the main
menu, click Insert, click Resource, then click Import. Navigate to the
.bmp file you wish to use as the ZoomIn icon. Click OK when fin-
ished. Using the properties for the resource, set the name of the
resource to “IDB_ZOOMIN”. Add the following member variable to
the ZoomIn.h header file.

    private:

      HBITMAP             m_hBitmap;

This member variable is initialized in the class constructor and re-
leased in the class destructor. Notice the use of the _Module for ac-
cess to the application instance handle. The IDB_ZOOMIN is a
bitmap resource defined in the resource editor.

    CZoomIn()

     {

         m_hBitmap = ::LoadBitmap(_Module.m_hInst, MAKEINTRESOURCE(IDB_ZOOMIN));

     }

    ~CZoomIn()

     {

         DeleteObject(m_hBitmap);

     }

17.Next, add a member variable that will hold a reference to the applica-
tion. This reference is the IApplication interface, which is passed to
the command when it is created.

    IApplicationPtr          m_ipApp;

The member variable does not need to be initialized in the class
initialization list since it is a smart pointer. Smart pointers are initial-
ized, by default, to NULL. If this were a standard interface pointer, it
would have to be initialized in the constructor’s initialization list.

18.The final change to the header file involves the automatic registration
of the class into the appropriate Component Category. This is an
optional step, but one that makes installation of the server easier. It
means that the end user will see the new command in the Customize
dialog box the first time ArcMap is started after the DLL is registered.

For your convenience, a header file is provided that defines con-
stants for all the CATIDs used by ArcGIS. You could also have re-
trieved this information from the registry and created your own con-
stants.

ACTIVE TEMPLATE LIBRARY



174 • Exploring ArcObjects • Volume 1

    #include "C:\arcexe81\ArcObjects Developer Kit\Kits\CATIDS\h\ArcCATIDs.h"

The category map is used to drive this registration information:

    BEGIN_CATEGORY_MAP(CZoomIn)

      IMPLEMENTED_CATEGORY(__uuidof(CATID_MxCommands))

    END_CATEGORY_MAP()

19.Now all that is left to do is for the implementation code to be added
to the cpp file.

Below are some of the methods of the ICommand interface, with a
comment.

Note the use of VARIANT_TRUE.

    STDMETHODIMP CZoomIn::get_Enabled(VARIANT_BOOL * Enabled)

   {

      if (Enabled == NULL)

        return E_POINTER;

      *Enabled = VARIANT_TRUE;   // Enable the tool always

      return S_OK;

   }

Note the use of the API calls used to create a BSTR.

    STDMETHODIMP CZoomIn::get_Name(BSTR * Name)

   {

      if (Name == NULL)

        return E_POINTER;

      *Name = ::SysAllocString(L"Exploring ArcObjects_Zoom In");

      return S_OK;

   }

A simple cast is all that is required here to coerce the bitmap handle
into an OLE_HANDLE variable.

    STDMETHODIMP CZoomIn::get_Bitmap(OLE_HANDLE * Bitmap)

   {

      if (Bitmap == NULL)

        return E_POINTER;

      *Bitmap = (OLE_HANDLE) m_hBitmap;

      return S_OK;

   }

The OnCreate method is passed the IDispatch interface of the object.
Using the QueryInterface support of the smart pointer, it is a simple
matter to set the member variable to be the hook. The smart pointer
handles the QI.

    STDMETHODIMP CZoomIn::OnCreate(IDispatch * hook)

   {

      m_ipApp = hook;

ACTIVE TEMPLATE LIBRARY

This path will vary depending on your installation.



Chapter 2 • Developing with ArcObjects • 175

      return S_OK;

   }

The OnClick method is implemented to zoom the display by a factor
of two. There is no error checking to simplify the code.

    STDMETHODIMP CZoomIn::OnClick()

   {

      // HRESULT checking omitted for clarity

      IDocumentPtr       ipDoc;

      m_ipApp->get_Document(&ipDoc);

      IMxDocumentPtr     ipMxDoc(ipDoc);

      IActiveViewPtr     ipActiveView;

      ipMxDoc->get_ActiveView(&ipActiveView);

      IEnvelopePtr       ipEnv;

      ipActiveView->get_Extent(&ipEnv);

      ipEnv->Expand(0.5, 0.5, VARIANT_TRUE);

      ipActiveView->put_Extent(ipEnv);

      ipActiveView->Refresh();

      return S_OK;

   }

20.Now, compile the project by pressing F7. Load the command into
ArcMap and test.

The above example illustrates many of the tasks that you will perform
when implementing COM objects using ATL. You are encouraged to
look at the other samples included with the software.

ACTIVE TEMPLATE LIBRARY



176 • Exploring ArcObjects • Volume 1

PACKING AND DEPLOYING CUSTOMIZATIONS

This section looks at what is involved with packaging developments and
deploying these on other machines. Exactly what must be packaged
depends on the type of development; the typical steps are outlined
below.

WHAT GETS PACKAGED

The obvious things to package are the server DLLs; however, you
should also consider the following:

• With VBA developments, all code required is packaged in the Map
document file.

• Type Libraries. If the DLLs do not have type information contained
within them, the type libraries associated with the DLLs should also
be packaged.

• Object Diagrams. Since you have developed using COM, other devel-
opers are free to work with your code in the same way that you work
with ArcObjects. Object diagrams and help within the DLLs are good
ways of supplying developers with information.

• Other files to package can include data files, help files, documenta-
tion, and so on.

The server deployment is the most involved, so the rest of this section
will cover the process of packaging and deploying a DLL server that
contains one or more coclass implementations.

It is very important not to package any of the core ArcObjects DLLs or
type libraries into your package. If you did this and the user uninstalled
your software, there would be a danger that they might uninstall some
of the files ArcGIS requires to function correctly.

JUST THE DLL

It is possible to simply give the user a copy of the DLL with instructions
on how to register the DLL on the system. Normally, this involves the
use of the Windows Utility RegSvr32.EXE. To register a DLL, the user
must type a command line similar to that below.

  RegSvr32 MyServer.DLL

To unregister a server, the command is run with the /U switch.

  RegSvr32 /U MyServer.DLL

A dialog box appears when the operation completes. When running
regsvr32 on several files, it is advisable to run it in silent mode with the
/S switch—this disables the dialog box.

Depending on how the DLL was developed, registering the DLL may not
be the only task. The coclasses contained with the DLL may have to be
added to the appropriate component categories. If ATL was used, as
shown in the ATL section, this can be made automatic on server regis-
tration. Other alternatives include the facility in the applications for
commands; the Category Manager utility application; and the
ComponentCategoryManager coclass, which is part of the framework
subsystem or the creation of a registry script.

Both Visual Basic- and ATL-generated DLLs
contain type library information. Often when

many DLLs are involved it is better to extract
the type library information into one file, which

is exactly what is done with the esriCore.olb.
This means that when working with many DLLs,

only one reference is required.



Chapter 2 • Developing with ArcObjects • 177

Included in the Utilities directory of the ArcObjects Developers Kit folder
is a small registry script called reg_in_menu.reg. The registry script adds
options to the Windows Explorer context menu when DLL, EXE, OLB,
and OCX files are selected. The five options provide support for register-
ing and unregistering the files. The context menu is shown in the figure
to the left.

USING REGISTRY SCRIPTS

After the server is registered on the system, registry scripts provide a good
mechanism for adding supplemental information about the server to the
registry including the component category information. These registry
scripts can either be written by hand or generated from the Compile and
Register Visual Basic Add-In. A sample script is shown below. The lines
beginning “[HKEY” must all be on one line in the file.

REGEDIT4

; This Registry Script enters CoClasses Into their appropriate Component
Category ; Use this script during installation of the components

; Coclass: prjDisplay.ZoomIn ; CLSID: {FC7EC05F-6B1B-4A59-B8A2-37CE33738728}
; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{FC7EC05F-6B1B-4A59-B8A2-
37CE33738728}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

; Coclass: prjDisplay.ZoomOut ; CLSID: {2C120434-0248-43DB-AD8E-
BD4523A93DF8} ; Component Category: ESRI Mx Commands
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{2C120434-0248-43DB-AD8E-
BD4523A93DF8}\Implemented Categories\{B56A7C42-83D4-11D2-A2E9-080009B6F22B}]

USING AN INSTALLATION PROGRAM

Most setup packages work well with registry scripts. For example, the
Visual Basic Package and Deployment Wizard provides a straightfor-
ward way of creating setup programs. To create a setup program for
your server follow the following steps:

1. Click the Start menu and click the Package and Deployment Wizard.
The dialog box to the left is displayed. Select the Visual Basic project
to be packaged and choose the package option. This will build the
setup program and gather all files required by the setup program into
a support directory for easy regeneration of the package. The wizard
then performs some checks to ensure that the server created by the
Visual Basic project is up-to-date with its source files. If not, you are
given the option to recompile the project.

2. Next, the package type is selected; this will normally be a Standard
Setup Package.

3. The next step allows you to specify the folder where the package is
created. This folder will contain the Setup executable and cabinet
files and a supporting folder with all the files used to build the pack-
age.

4. Ensure that the files list shown doesn’t include any Core ArcObjects
files and that any other files required by the installation are added.

Although the Package and Deployment Wizard
only works with Visual Basic projects, it is

possible to create an empty project and add files
of any type in order to package non-Visual Basic

developments.

Step 1

Step 2

Step 3

Step 4

PACKING AND DEPLOYING CUSTOMIZATIONS



178 • Exploring ArcObjects • Volume 1

The additional files normally include a registry script to perform
advanced registration, along with help files, and so on. Notice in the
illustration that the esriCore.olb file has been unchecked, and the
registry script has been added.

5. The next panel depends on whether a registry file was added in the
previous step. If the file was added, the dialog box to the left is
shown. If no file was added, go to step 6. The simplest option is to
accept the default. This will cause the registry script to be executed
when the setup program has registered the servers on the target ma-
chine but will not copy the registry script to the machine.

6. The wizard then asks if one or multiple cabinet files will be created.
This depends on whether or not the setup program will span multiple
floppy disks.

7. Next, follow a couple of panels asking for the Installation Screen title
and where on the Windows Start menu the setup program should
group files. Often when installing DLLs it is not appropriate to define
an entry on the Start menu. Sometimes, even with DLLs, it may be
desirable to add access to documents containing help information.

8. The next panel allows the user to define the location of the various
files after they have been installed. Various macros are defined that
will point to different locations, depending on the configuration of
the target machine.

9. The next panel allows files to be marked as shared. Any files of the
installation that will be used by other programs or installations must
be marked as shared. This ensures that the uninstall program does
not remove them automatically, which would break the other pro-
grams.

10.Finally, the Finish panel is displayed. Click Finish to assemble the
package. The three files in the package directory—setup, cabinet, and
list files—can then be given to third parties for a seamless install.

This is just one method of packaging COM developments. Whatever
method you use, the setup procedure must be as simple as possible and
involve as few decisions as possible in order to avoid user frustration.

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

PACKING AND DEPLOYING CUSTOMIZATIONS



Chapter 2 • Developing with ArcObjects • 179

This bibliography is not intended as a complete resource, but it does
contain many of the everyday references that ESRI developers use when
developing C++ and Visual Basic code and ArcObjects. It is not neces-
sary to buy all these books before starting to program in COM; rather,
look at these books and others that are available, and perhaps buy the
one most suitable to your development track. The books listed below
cover COM and developing with COM in Visual C++, mainly using ATL
and Visual Basic. The books listed are from various companies; how-
ever, there are many other companies producing books for developers
of COM components. You are encouraged to look at these other books,
too.

ATL

Grimes, Richard. ATL COM Programmer’s Reference. Chicago: Wrox Press
Inc., 1998.

Grimes, Richard. Professional ATL COM Programming. Chicago: Wrox
Press Inc., 1998.

Grimes, Richard, and Reilly Stockton, and Alex Stockton, and Julian
Templeman. Beginning ATL 3 COM Programming. Chicago: Wrox Press
Inc., 1999.

King, Brad and George Shepherd. Inside ATL. Redmond, WA: Microsoft
Press, 1999.

Rector, Brent, and Chris Sells, and Jim Springfield. ATL Internals. Read-
ing, MA: Addison–Wesley, 1999.

C++

Lippman, Stanley. C++ Primer: Second Edition. Reading, MA: Addison–
Wesley, 1991.

Lippman, Stanley. Inside the C++ Object Model. Reading, MA: Addison–
Wesley, 1996.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs
and Designs. Reading, MA: Addison–Wesley, 1992.

Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Pro-
grams and Designs. Reading, MA: Addison–Wesley, 1996.

Shepard, George and David Kruglinski. Inside Visual C++: Fifth Edition.
Redmond, WA: Microsoft Press, 1998.

Stroustrup, Bjarne. The C++ Programming Language: Third Edition.
Reading, MA: Addison–Wesley, 1997.

COM

Box, Don. Essential COM. Reading, MA: Addison–Wesley, 1998.

Chappell, David. Understanding ActiveX and OLE: A Guide for Developers
and Managers. Redmond, WA: Microsoft Press, 1996.

BIBLIOGRAPHY



180 • Exploring ArcObjects • Volume 1

Effective COM: 50 Ways to Improve Your COM and MTS-Based Applica-
tions. Edited by Don Box, Keith Brown, Tim Ewald, and Chris Sells.
Reading, MA: Addison–Wesley, 1998.

Major, Al. COM IDL and Interface Design. Chicago: Wrox Press Inc.,
1999.

Platt, David S. Understanding COM+. Redmond, WA: Microsoft Press,
1999.

Rogerson, Dale. Inside COM: Microsoft’s Component Object Model.
Redmond, WA: Microsoft Press, 1997.

SOFTWARE ENGINEERING

Gamma, Erich, and Richard Helm, and Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison–Wesley, 1995.

The New Hacker’s Dictionary: Second Edition. Edited by Eric Raymond.
Cambridge, MA: MIT Press, 1993.

VBA

Cummings, Steve. VBA For Dummies. New York: IDG Books Worldwide,
1999.

Getz, Ken and Mike Gilbert. VBA Developer’s Handbook. San Francisco:
Sybex, 1997.

Lomax, Paul. VB and VBA in a Nutshell: The Language. Sebastopol, CA:
O’Reilly & Associates, 1998.

VISUAL BASIC

Lewis, Thomas. VB COM. Chicago: Wrox Press Inc., 1999.

Microsoft Visual Basic 6.0 Programmer’s Guide. Redmond, WA:
Microsoft Press, 1998.

Pattison, Ted. Programming Distributed Applications with COM and
Microsoft Visual Basic 6.0. Redmond, WA: Microsoft Press, 1998.

Wright, Peter. Beginning Visual Basic 6 Objects. Chicago: Wrox Press
Inc., 1998.

WINDOWS DEVELOPMENT

Petzold, Charles. Programming Windows 95: The Definitive Developer’s
Guide to the Windows 95 API. Redmond, WA: Microsoft Press, 1996.

Shepard, George and Scot Wingo. MFC Internals: Inside the Microsoft
Foundation Class Architecture. Reading, MA: Addison–Wesley, 1996.

BIBLIOGRAPHY



181

Customizing the
user interface

The ArcGIS applications are engineered for ease of use and

powerful geographic display, query, and analysis. By their

design, they are generic and serve a broad audience of users.

With the ArcObjects application framework, you have unlimited

freedom to customize the user interface for your

users’ business needs. You can add new toolbars,

buttons, tools, commands, and other elements. You

can deliver advanced functions through custom

commands. You can augment the functionality of

applications through extensions, and you can

selectively propagate customizations through

templates.

This chapter discusses the application framework

object model and how to employ these objects to deliver

custom applications that are at once simple and powerful.

Eleanor Blades, Euan Cameron

3



182 • Exploring ArcObjects • Volume 1

Application framework

1..*

Application is the core object that represents ArcMap or ArcCatalog
and provides access to the current state of the user interface

Document provides access to properties, such
as title and type, and contains the Visual Basic
for Applications project

A collection of command bars
associated with a document

A toolbar definition is
used by the command
bars collection to create
a toolbar

A menu definition is used by
the command bars collection

to create a menu A document command bar is a
custom menu or toolbar created
with the Customize dialog box

The component category
manager object registers
components with the
component categories used
by the ESRI applications

A unique identifier object
represents the globally
unique identifier for any
COM object

The application running
object table is a global list of
all currently running ESRI
COM based applications

An application reference
object is a reference to the
currently running application

A command bar is a toolbar,
menubar, menu, or context menu

AppRef
IApplication

Document
IDocument

AppROT
IAppROT

IAppROTEvents

ICommandBars

page xx

Command-
Bars

CommandBar
ICommandBar

ICommandItem

Document-
CommandBar

COM-
CommandBar

Component-
Category-
Manager

IComponentCategoryManager
UID

IUID

Dockable-
Window

IDockableWindow

Dockable-
WindowDef

IDockableWindowDef
ISupportErrorInfo

ICustomizationFilter Customization-
Filter

A dockable window can
exist in a floating state
or attached to the main
application window

IExtension
IExtensionAccelerators

IExtensionConfig Extension Application

IApplication
IDockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

*

0..1

IMenuDef
IRootLevelMenu

IShortcutMenu MenuDef

IToolbarDef

ToolbarDef

Command-
BarDef

MouseCursor
IMouseCursor

DllThread-
Manager

IDllThreadManager

You can use MouseCursor
to set the system mouse
cursor to be one of the
standard built-in cursors
or a custom cursor

A DLL thread manager
provides access to an
event that DLL thread
managers listen for

A COM command bar
can be written in any
COM-compliant
language and is
compiled as an ActiveX
DLL

An extension provides a mechanism
for extending an application

A customization filter provides
a mechanism for locking parts

of the customization
functionality in an application

A command bar
definition is used by

the command bars
collection to create a
COM command bar

A dockable window definition is used by the
application to create a dockable window



Chapter 3 • Customizing the user interface • 183

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rkobjects

UIButtonControl acts as
a button or menu item
that performs a simple

task when clicked

UIComboBoxControl is a
dropdown list box control

that can be added to a toolbar

UIEditBoxControl is an editable
textbox control that can be added

to a toolbar

UIToolControl acts as a button
that allows further interaction

with the application display

A button is a simple
command that performs a

simple task when clicked

A tool acts as a button
that allows further

interaction with the
application display

A tool control is dropdown list
box control, editable textbox

control, or other type of control
that can be added to a toolbar

A subtyped command is a
group of related commands

that can share properties

A MultiItem is a dynamic command that appears
as zero or more adjacent menu items on a menu

depending upon the state of the application

MacroItems are
simple procedures

written in the
Visual Basic Editor

A collection of up to three templates can
be loaded in ArcMap, one in ArcCatalog.
Templates help you define the scope of
customization

The status bar is the horizontal area at
the bottom of ArcMap and ArcCatalog
that provides information about the
current application state

Templates
ITemplates

*

An accelerator table
contains a list of
accelerator keys and
the command
identifiers associated
with them

Accelerator
IAccelerator

Accelerator-
Table

IAcceleratorTable
IPersist

IPersistStream

An accelerator key is
a keyboard shortcut
to quickly execute a
common command

A command item is an
element on a command bar,

such as a button, tool, or
menu item MacroItem

Command-
Item

ICommandItem
IPersist

IPersistStream
ISupportInfo

StatusBar
IStatusBar

UICombo-
BoxControl

IUIComboBoxControl
IUIComboBoxControlEvents

UIButton-
Control

IUIButtonControlEvents

UIEditBox-
Control

IUIEditBoxControl
IUIEditBoxControlEvents

UITool-
Control

IUIToolControlEvents

Command

UIControl

MultiItem
IMultiItem

IMultiItemEx

Subtyped-
Command

ICommand
ICommandSubtype

ToolControl
ICommand

IToolControl

Tool
ICommand

ITool

Button
ICommand

IExtensionManager
IExtensionManagerAdmin

ISupportErrorInfo
Extension-
Manager



184 • Exploring ArcObjects • Volume 1

You can help your users work more quickly and efficiently by building
a custom user interface that rearranges the standard user interface and
adds new custom commands.

The customization framework in ArcObjects lets you programmatically
customize the user interface of ArcMap, ArcCatalog, and other ArcGIS
applications. You can manipulate the elements of the user interface—
toolbars, menus, commands, and so on—and customize your applica-
tion in accordance with the Windows user interface guidelines.

Most of the objects in the customization framework correspond to
items in the various applications.

DOCUMENTS AND TEMPLATES

Whenever you are using ArcMap, you have a map document open.
The document stores the map state, custom user interface settings, and
a Visual Basic for Applications project.

Understanding documents and templates is the key to understanding
customization with ArcObjects in ArcGIS applications.

Each document and template contains a persistent state of the user
interface, a Visual Basic for Applications project, and other
application-specific information, such as cartographic layouts for
ArcMap documents.

The structure and function of documents and templates vary from one
application to another. Because of this variation, it is best to discuss
them in the context of each respective application. ArcMap employs
the full structure of documents and templates.

CUSTOMIZING ARCMAP

You can customize ArcMap in several ways:

• You can add references to geographic data and define how the data
is displayed.

• You can create a map layout with a spatial reference and ancillary
cartographic elements.

• You can add, remove, or rearrange elements of the standard user
interface.

• You can write code in a Visual Basic for Applications project.

All customization in ArcMap is stored in a map document or a map
template.

The changes you make to the ArcMap table of contents, the layout of
a map, the toolbars and their command items, and the VBA code you
write all get saved to the map document.

A map document can reside anywhere on your file system; it has a file
extension of .mxd.

CUSTOMIZING THROUGH DOCUMENTS AND TEMPLATES

map document

data references

map layout

user interface

VBA project

The ArcMap table of
contents manages the
geographic data
referenced in the map.

A map can be composed
with data frames and
cartographic elements
and saved.

ArcMap has a standard
user interface which can
be customized and saved
in a document.

A Visual Basic for
Applications project
contains forms, modules,
and classes.



Chapter 3 • Customizing the user interface • 185

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

Map templates
You can use map templates to disseminate customization throughout
an organization—globally, by project, or by document.

A map template is a kind of map document. In nearly every respect,
map templates are structurally identical to map documents. The func-
tional difference is that ArcMap recognizes and uses templates as a
starting point to create new map documents. This is similar to how you
work with templates in Microsoft Office applications.

Any customization of the user interface or the VBA project becomes
part of the newly created map document. Furthermore, any changes to
a template will propagate to template-based documents when they are
next loaded.

There are three levels of templates and documents in ArcMap. You can
save changes to any level to control how widely your customizations
are used.

Custom map documents
When you are working with a map, you are setting references to data,
designing a map layout, customizing the user interface, and writing
VBA code, all with the lifetime of the document.

Selective customization with project templates
Other projects and other users can share the customizations that you
make through templates. A template is a kind of map document that is
specified to be a starting point for a new map document. The new
map document will inherit all of the customizations from the template
(data references, map layout, user interface state, and VBA project).

Global customizations with the normal template
ArcMap has a special template called Normal that stores any personal
settings you have made to the user interface that you want loaded
every time you start ArcMap. Any customizations that you save to the
Normal template will get propagated to all the other map documents
when they are next opened.

When you first start ArcMap after installing the software, a Normal
template is automatically created and put in your profiles location,
which is one of the following folders depending on your operating
system.

For Windows NT®:

C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcMap\Templates\

For Windows 2000:

C:\Documents and Settings\<your username>\Application
Data\ESRI\ArcMap\Templates\

This is the default Normal template that contains all the standard
toolbars and commands and places the toolbars and the table of

Normal template

There is always a normal
template in the

\arcexe\bin\Templates folder. Any
changes to the normal template

propagate to all templates and
documents.

Project templates

Map documents

Project templates can be
created anywhere on your
file system. Changes made

to project templates
propagate to all documents

based on that template.

Map documents are
based on templates.

They can be based on a
project template or

directly on the normal
template.

Normal.mxt

Plat.mxt

Tierra.mxd TanoRoad.mxd

ArcMap automatically creates a Normal
template if one does not exist. If you

have applied unintended customizations,
such as removing toolbars and command

items, you can simply remove the
Normal.mxt file and a new one with the

standard user interface will be generated.
This is easier than undoing a set of

unintended customizations.

This is how the three loaded templates in
ArcMap—normal, project template, and project
(current document)—appear in the VBA project

explorer.

CUSTOMIZING THROUGH DOCUMENTS AND TEMPLATES



186 • Exploring ArcObjects • Volume 1

contents in their default positions. Any customizations that you save in
your Normal template get saved to this file.

If you want to make changes that appear every time you open ArcMap,
save them in the Normal template.

Suppose your administrator has custom toolbars or tools to which she
would like everyone in your organization to have access. Your admin-
istrator could create a customized Normal template and allow everyone
in your organization to use that Normal template instead of the default
Normal template. To accomplish this, your administrator would cus-
tomize her Normal template and then copy that Normal.mxt file to the
\ArcGIS\arcexe81\bin\Templates folder. Everyone would then start
with this Normal template instead of the default Normal template. The
following is an explanation of how this works.

If there is no Normal.mxt file in your profiles location when you start
ArcMap, the application will look in the
\ArcGIS\arcexe81\bin\Templates folder. If a Normal.mxt file exists in
the \ArcGIS\arcexe81\bin\Templates folder, that file will be copied to
your profiles location and will then be treated as your personal Normal
template. Therefore, you start off with a copy of your organization’s
customized Normal template, but from that point on you can save your
own customizations to it.

If a Normal.mxt file is not found in your profiles location or in the
\ArcGIS\arcexe81\bin\Templates folder, then a new default
Normal.mxt file will be created and placed in your profiles location.

CUSTOMIZING ARCCATALOG

You can customize ArcCatalog in several ways:

• You can add, remove, or rearrange elements of the standard user
interface.

• You can write code in a Visual Basic for Applications project.

ArcCatalog does not employ the full structure of documents and tem-
plates like ArcMap does. The ArcCatalog application does not use
documents or base templates; it only uses a Normal template. There-
fore, all customizations to the ArcCatalog user interface are stored in
the Normal template.

When you first start ArcCatalog after installing the software, a Normal
template called Normal.gxt is automatically created and put in your
profiles location, which is one of the following folders depending on
your operating system.

For Windows NT:

C:\WINNT\Profiles\<your username>\Application Data\ESRI\ArcCatalog\

For Windows 2000:

C:\Documents and Settings\<your username>\Application Data\ESRI\ArcCatalog\

CUSTOMIZING THROUGH DOCUMENTS AND TEMPLATES

This is how the Normal template appears in the
VBA project explorer.



Chapter 3 • Customizing the user interface • 187

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

Each running ArcGIS application is represented by an instance of an
Application object—ArcCatalog by Application from the ESRI ArcCatalog
object library (esriGx.olb), and ArcMap by Application from the ESRI
ArcMap object library (esriMx.olb).

The IGxApplication is documented in Chapter 7, ‘Working with the Cata-
log’. The IMxApplication is documented in Chapter 4, ‘Composing
maps’. The IApplication interface is shared by both Application classes.

The Application object is instantiated in VBA when an ArcGIS applica-
tion is launched. It is always available as a global object, and you can
inspect properties of Application in this way:

  MsgBox Application.Caption

You can also launch the ArcMap application in Visual Basic or other
COM-compliant language. For example, to launch ArcMap from VB,
create a new project, add a reference to the ESRI core library (esriCore),
add this code to a Sub, then execute the Sub:

  Dim m_doc As IDocument

  Set  m_doc = New MxDocument 'start ArcMap

Visual C++ programmers use the #import directive to obtain type infor-
mation. Importing esriCore.olb will automatically build “smart pointer”
classes for ArcGIS interfaces. With smart pointers, an instance of
ArcMap can then be created in C++ as follows:

  // Example : Creating an instance of ArcMap

  IDocumentPtr ipDoc (CLSID_MxDocument);

 IApplication : IDispatch Provides access to members that query or modify the
application.

Caption: String The caption of this application.
CurrentTool: ICommandItem The currently selected tool.
Document: IDocument The document that is currently loaded in the application.
hWnd: Long The handle of the application's window.
Name: String The name of this application.
StatusBar: IStatusBar The statusbar of this application.
Templates: ITemplates The templates collection.
VBE: Object The Visual Basic Environment.
Visible: Boolean Indicates if the application window is visible.

FindExtensionByCLSID (in
extensionCLSID: IUID) : IExtension

Finds an extension by its CLSID.

FindExtensionByName (in
extensionName: String) : IExtension

Finds an extension by its name.

IsDialogVisible (in dialogID: Long) :
Boolean

Indicates if the specified dialog is visible in the application.

LockCustomization (in Password:
String, custFilter: ICustomizationFilter)

Locks the application's user interface against any customizations.

NewDocument (selectTemplate:
Boolean, templatePath: String)

Creates a new document in this application.

OpenDocument (Path: String) Opens a document in this application.
PrintDocument Displays the Print dialog.
PrintPreview Displays how the document will look like when it is printed.
RefreshWindow Redraws the application window.
SaveAsDocument (saveAsPath: String,

saveAsCopy: Boolean)
Saves the document that is currently open in this application to a

different file.
SaveDocument (saveAsPath: String) Saves the document that is currently open in this application.
ShowDialog (in dialogID: Long, bShow:

Variant) : Variant
Displays the specified dialog in the application.

Shutdown Terminates the application.
UnlockCustomization (in Password:

String)
Unlocks previous user interface customization lock.

Application

ArcMap

ArcCatalog

Application

IApplication
IDockableWindow-

Manager
IExtensionManager

IGxApplication
IMultiThreaded-

Application
IVBAApplication
IWindowPosition

IApplication
IDockableWindow-

Manager
IExtensionManager

IMultiThreaded-
Application

IMxApplication
IVBAApplication
IWindowPosition

Application is the core object that
represents an ArcGIS application

(ArcMap, ArcCatalog, or other). Through
this object, you can access properties and
methods for the application and navigate
to other elements, such as the document,

window handle, and status bar.

Extensions are subsystems that add significant
functionality to an application.

ArcGIS Spatial Analyst is an example of an
extension to an application.

APPLICATION COCLASS

Caption Current tool

Status bar Visual Basic Editor Templates

Documents contain custom user interface
settings, a VBA project, and other settings, such
as layers and map extent. You can open or save

documents.



188 • Exploring ArcObjects • Volume 1

The IApplication interface provides access to the Document object, the
extensions, the StatusBar object, the Templates object, the currently
selected tool, and the Visual Basic Editor.

There are several methods that allow you to open, save, and print docu-
ments; lock and unlock the application from user customizations; dis-
play dialog boxes; and exit the application.

The NewDocument, OpenDocument, PrintDocument, PrintPreview, and
SaveAsDocument methods are not implemented in ArcCatalog. The
SaveDocument method in ArcCatalog saves the Normal template rather
than saving a document.

 IVbaApplication : IUnknown Provides access to members that modify the VBA projects
in this application.

CreateCodeModule (in docName:
String, in moduleName: String)

Creates a code module in the specified VBA project.

InsertCode (in docName: String, in
moduleName: String, in codeText:
String)

Inserts code into the specified module.

RemoveCodeModule (in docName:
String, in moduleName: String)

Removes a code module from the specified VBA project.

RunVBAMacro (in docName: String, in
moduleName: String, in MacroName:
String, in arguments: Variant) : Variant

Runs the specified VBA macro.

The Application object implements the IVbaApplication interface, which
allows you to programmatically insert, remove, and run VBA code with-
out actually opening the Visual Basic Editor.

To get access to this interface, do a QueryInterface (QI) on Application.
The IVbaApplication interface has methods to create a new module,
insert code into a specific module, remove a module, and run a macro.

The following code shows how to create a new VBA module, insert a
VBA macro into that module, and run the macro.

  Dim pVbaApp As IVbaApplication

  Dim s As String

  Set pVbaApp = Application

  pVbaApp.CreateCodeModule "Project", "MyModule"

  s = "Public Sub MyMacro" & vbNewLine & _

    "  Msgbox Application.Document.Title" & vbNewLine & "End Sub"

  pVbaApp.InsertCode "Project", "MyModule", s

  pVbaApp.RunVBAMacro "Project", "MyModule", "MyMacro", Nothing

 IMultiThreadedApplication : IUnknown Provides access to members that control DLL thread
managers.

GetProcessID: Long The process ID for the application.
RegisterThreadManager (in

pThreadMgr: IDllThreadManager) :
Long

Registers a DLL thread manager with the application.

UnregisterThreadManager (in
mgrCookie: Long)

Unregisters a DLL thread manager with the application.

The IMultiThreadedApplication interface has methods for registering and
unregistering thread managers with the application and returning the
process ID of the application.

For more information on threading, read
Threads, Apartments, and Marshalling in

Chapter 2, ‘Developing with ArcObjects’ .

APPLICATION COCLASS



Chapter 3 • Customizing the user interface • 189

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

Multithreading refers to a software configuration where independent
paths of execution are in use simultaneously in an application. Each
thread has its own stack and its own CPU state.

The Application object implements the IMultiThreadedApplication inter-
face, which provides a simple callback mechanism for registering user
created thread manager objects. A thread manager object is any object
that implements the IDllThreadManager interface. The thread manager
object will be notified prior to application shutdown so that all currently
running threads can be exited cleanly before the Application process
actually shuts down.

If you are developing components that will create threads and will be
used in any of the ArcGIS application processes, the DLL that contains
these components must also contain an object that implements IDll-
ThreadManager. Also, you must use the IMultiThreadedApplication
interface to register this thread manager object with that application.

 IDllThreadManager : IUnknown Provides access to an event that DLL thread managers
listen for.

OnShutdown Occurs when the application is shutting down. DLL threads should be
terminated upon receiving this message.

The IDllThreadManager interface has an OnShutdown method that
notifies the DLL thread manager object that the application is shutting
down so that the DLL thread manager can terminate any threads that
were created by the components in that DLL.

 IWindowPosition : IUnknown Provides access to members that query or modify a
window's position, size and state.

Height: Long The height of the window.
Left: Long The distance between the internal left edge of the window and

screen.
State: tagesriWindowState The state of the window.
Top: Long The distance between the internal top edge of the window and

screen.
Width: Long The width of the window.

Move (in Left: Long, in Top: Long,
Width: Long, Height: Long)

Moves and optionally resizes the windows in a single function.

The IWindowPosition interface has methods to move and resize a win-
dow. Any window object can implement this interface. All the ArcGIS
application windows implement this interface; you can QI from the
application to IWindowPosition.

The Left and Top properties determine the position of the window in
screen coordinates relative to the upper-left corner of the display screen.

The Height and Width properties determine the size of the window.

Use the Move method to set these four properties at the same time.

APPLICATION COCLASS



190 • Exploring ArcObjects • Volume 1

Enumeration tagesriWindowState Application window states.

0 - esriWSNormal The window is restored.
1 - esriWSMinimize The window is minimized.
2 - esriWSMaximize The window is maximized.

The esriWindowState enumeration specifies whether the window is
normal, minimized, or maximized.

The following code in the ThisDocument code window in the Normal
template forces the application window to always open with the speci-
fied size and position.

Private Function MxDocument_NewDocument() As Boolean

  Dim pWindPos As IWindowPosition

  Set pWindPos = Application

  pWindPos.Move 10, 10, 600, 500

End Function

Private Function MxDocument_OpenDocument() As Boolean

  Dim pWindPos As IWindowPosition

  Set pWindPos = Application

  pWindPos.Move 10, 10, 600, 500

End Function

APPLICATION COCLASS



Chapter 3 • Customizing the user interface • 191

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

EXTENDING ARCGIS APPLICATIONS

Extensions provide the developer with a powerful mechanism for
extending the core functionality of the ArcGIS applications. An exten-
sion can provide a toolbar with new tools, listen for and respond to
events, perform feature validation, and so on.

Extensions act as a central point of reference for developers when they
are creating commands and tools for use within the applications. Often
these commands and tools must share data or access common UI
components. An extension is the logical place to store this data and
develop the UI components. The main reason for this is that there is
only ever one instance of an extension per running application and,
given an IApplication interface, it is always possible to locate the exten-
sion and work with it.

Any extension that is registered with an application is automatically
loaded and unloaded by the application; the end user does nothing to
load or unload. For example, an extension that has been added to the
“ESRI Mx Extensions” component category will be started when
ArcMap is started and shut down when ArcMap is shut down.

When customizing an ArcGIS application, you can deliver these
customizations in a generic or locked down user environment. Generic
and locked down environments are often referred to as Extension and
OEM products, respectively.

With a generic environment, you, as a developer, have no control over
the end user’s environment. Your customizations must live harmoni-
ously with potentially many other ArcGIS customizations that the user
has installed. This is the type of extension that ESRI supplies. With a
locked down environment, you, as the developer of that environment,
have complete control over the setup of the application and how the
user interacts with that environment.

Because the mechanisms for customization are the same for both of
the above environments, it is important to follow a set of rules when
developing a generic application. If, as a developer, you initially de-
velop customizations for a locked down environment for a custom
application, you cannot deliver these customizations to a generic
ArcGIS user. In order to deliver this functionality to generic ArcGIS
users, you must develop a generic solution in addition to the locked
down solution.

GENERIC APPLICATION DEVELOPMENT RULES

If in doubt about whether a rule applies to your development or not,
you should not remove anything that does not belong to you. In this
way, generic customizations act as extensions to a user’s ArcGIS sys-
tem. Below are the rules for creating generic customizations:

• Do not remove UI components, including buttons, tools, and prop-
erty pages, that do not belong to you.

• Your extension should not use customization filters unless the filter
is applied to a specific document.

These two environments, Generic and Locked
Down, are often referred to as Extension and

OEM products. There is much more to the
creation of an OEM product besides writing

software, which is beyond the scope of this book.
For more details on OEM development, you

should contact ESRI.

Extensions are the best mechanism for deliver-
ing professionally built application customizations.

However, any customizations you make must
follow the rules given here to ensure that
conflicting customizations are not created.

Application

IApplication
IDockableWindow-

Manager
IExtensionManager

IMultiThreaded-
Application

IVBAApplication
IWindowPosition

IExtension
IExtensionAccelerators

IExtensionConfig Extension

*

An extension provides a mechanism for
extending an application.



192 • Exploring ArcObjects • Volume 1

• Do not make changes in document persistence that will invalidate
previously saved documents.

• Do not abort document events by returning True from these events.

• If your extension works with a license, your extension must imple-
ment IExtensionConfig and follow the conventions used by the
ArcGIS extension. For more information, refer to the discussion on
IExtensionConfig later in this chapter.

LOCKED DOWN APPLICATION DEVELOPMENT RULES

Although none of the generic application rules apply to the creation of
a locked down application, it is good programming practice to write
your code defensively. That way, the code will fail gracefully if a con-
flict does occur.

As an example, extensions designed for locked applications can use
customization filters. However, when applying a customization filter
you should always be prepared for the case of a filter already being in
operation. The following code displays an error message if the attempt
to apply the customization filter fails.

Private Function m_pDoc_OpenDocument() As Boolean

  On Error GoTo FilterErr

  ' Reset the Lock when a document is opened.

  m_pApp.LockCustomization "mylock", m_MyFilter

  Exit Function

FilterErr:

  MsgBox "Attempt To Lock Document With Filter Failed", _

   vbOKOnly + vbExclamation, "Extension Error"

End Function

WORKING WITH AND CREATING EXTENSIONS

The Application object implements the IExtensionManager interface,
which has properties to get a reference to a particular extension and to
get a count of how many extensions are currently loaded.

 IExtensionManager : IUnknown Provides access to members that query extension.

Extension (in Index: Long) : IExtension The extension at the specified index.
ExtensionCount: Long The number of extensions loaded in the application.

To get access to the application extension manager, do a QI for
IExtensionManager on Application. Note that other types of objects can
also implement IExtensionManager. For example, the Editor toolbar in
ArcMap is an extension that manages editor extensions. Therefore, the
Editor object also implements IExtensionManager.

This VBA code uses the application extension manager to loop
through all of the extensions that are currently loaded in the applica-
tion, then reports the name of the extensions.

  Dim pExtMgr As IExtensionManager, pExt As IExtension

  Dim i as Integer

EXTENDING ARCGIS APPLICATIONS



Chapter 3 • Customizing the user interface • 193

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

  Set pExtMgr = Application

  For i = 0 To pExtMgr.ExtensionCount - 1

    Set pExt = pExtMgr.Extension(i)

    MsgBox pExt.Name

  Next

This is not the only way to get a reference to an extension; the
IApplication interface has FindExtensionByCLSID and
FindExtensionByName methods.

To create your own extension, implement the IExtension interface. You
can also optionally implement IExtensionConfig and
IExtensionAccelerators.

 IExtension : IUnknown Provides access to members that define an extension.

Name: String The name of the extension.

Shutdown Shuts down the extension.
Startup (in initializationData: Variant) Starts up the extension with the given initialization data.

The IExtension interface allows you to set the name of the extension and
specify what action takes place when the extension is started or
shut down.

The following code demonstrates how to create a custom ArcMap ex-
tension that can perform some action when the document events occur.
When this extension is loaded, a message box appears when a new
document is created and when a document is opened.
Implements IExtension
Dim m_pDoc as IDocument
Dim m_pApp As IApplication
' Need to listen for the MxDocument events
Dim WithEvents m_pDocEvents As MxDocument

Private Property Get IExtension_Name() As String
  IExtension_Name = "My Extension"
End Property

Private Sub IExtension_Shutdown()
  ' Clear the reference to the Application and MxDocument
  Set m_pApp = Nothing
  Set m_pDocEvents = Nothing
  Set m_pDoc = Nothing
End Sub

Private Sub IExtension_Startup(initializationData As Variant)
  Set m_pApp = initializationData
  'Start listening for the MxDocument events.
  Set m_pDocEvents = m_pApp.Document
  Set m_pDoc = m_pApp.Document
End Sub

Private Function m_pDocEvents_NewDocument() As Boolean
  MsgBox "Creating a new document."
End Function

To use this extension in ArcMap, register it in
the “ESRI Mx Extensions” component category.

EXTENDING ARCGIS APPLICATIONS

To ensure that there is not the potential for a
name clash, the use of the

FindExtensionByCLSID method is encouraged.

For more information on creating COM compo-
nents, see Chapter 2, ‘Developing with

ArcObjects’.



194 • Exploring ArcObjects • Volume 1

Private Function m_pDocEvents_OpenDocument() As Boolean

  MsgBox "Opening a document"

End Function

 IExtensionConfig : IUnknown Provides access to members that describe an extension.

Description: String Detailed description of the extension.
ProductName: String Name of the extension.
State: esriExtensionState The state of the extension.

If you want your extension to be exposed in the Extensions dialog box,
you should implement the IExtensionConfig interface. The Extensions
dialog box allows users to turn extensions on and off. The
IExtensionConfig interface provides the Extension dialog box with the
name of the extension and a description of the extension; it also speci-
fies the state of the extension.

Enumeration esriExtensionState Extension availability states.

1 - esriESEnabled Enabled for use.
2 - esriESDisabled Disabled by the user.
4 - esriESUnavailable Unavailable - not licensed.

The esriExtensionState enumeration is used to specify whether the exten-
sion is enabled, disabled, or unavailable. The state of the extension is
user-based. When an extension is installed, its default state is unchecked
(esriESDisabled), and the user must knowingly check the extension on
in the Extensions dialog box.

With a custom extension, you have full control over what happens
when your extension is turned on or off. However, it is a good idea to
follow the same design as the ArcGIS extensions. The following notes
explain how the ArcGIS extensions work when they are turned on or off
in the Extensions dialog box.

When a user checks one of the ArcGIS extensions in the Extensions
dialog box, the following things occur:

• The checked state of the extension is saved to the user settings in the
registry. (This occurs automatically by the application—it is not some-
thing a developer needs to do.)

• The extension requests a license from the license manager.

• If a license is available, the tools are enabled on the toolbar delivered
by the extension.

• If a license is not available, the tools are disabled on the toolbar
delivered by the extension. Also, text stating that the license is un-
available is displayed to the right of the extension name in the Ex-
tensions dialog box.

EXTENDING ARCGIS APPLICATIONS

The Extensions dialog box allows you to turn
extensions on and off.



Chapter 3 • Customizing the user interface • 195

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

When a user unchecks one of the ArcGIS extensions in the Extensions
dialog box, the following things occur:

• The extension verifies that it is not being used within that applica-
tion.

• If the extension is being used within the application, the extension
does not allow itself to be unchecked and a warning message is
given.

• If the extension is not being used within the application, the
uncheck completes successfully and the remaining steps occur.

• The unchecked state for the extension is saved in the user settings
in the registry. (This occurs automatically by the application—it is
not something a developer needs to do.)

• If the toolbar for the extension is active, the appropriate tools are
disabled.

• The Extension lets the license manager know it is no longer using
the extension license within the application, and the license man-
ager releases the license for that extension.

The IExtensionConfig interface is independent of ESRI’s licensing ap-
proach, so as a developer you can incorporate a custom licensing
solution. Alternatively, if your extension doesn’t work with a license
manager, you don’t have to worry about requesting and releasing a
license. You can implement IExtensionConfig to enable and disable the
tools on your extension’s toolbar accordingly.

The following excerpt of code from a class module that also imple-
ments IExtension shows you how you can use the IExtensionConfig
interface.

Implements IExtensionConfig

Private m_pExtState As esriExtensionState

Private Property Get IExtensionConfig_Description() As String

  IExtensionConfig_Description = "This is the sample extension."

End Property

Private Property Let IExtensionConfig_State(ByVal RHS As _

    esriCore.esriExtensionState)

  m_pExtState = RHS

End Property

Private Property Get IExtensionConfig_ProductName() As String

  IExtensionConfig_ProductName = "Sample Extension"

End Property

Private Property Get IExtensionConfig_State() As _

    esriCore.esriExtensionState

  IExtensionConfig_State = m_pExtState

EXTENDING ARCGIS APPLICATIONS



196 • Exploring ArcObjects • Volume 1

End Property

The application has a mechanism for dealing with extension-specific
data in an ArcMap document. For example, some of the ArcGIS exten-
sions have their own types of layers saved in the document. When a
user opens such a document and the extension-specific layer is
loaded, an attempt is made to create the layer. Creation may fail for
one of three reasons:

• The extension has not been installed.

• The extension is not checked on in the Extension dialog box.

• The extension is checked on, but a license for the extension is
currently not available.

In each of these failure cases, a warning will be issued stating what the
problem is. The document is then opened but without the extension-
specific layer. However, if the extension is installed, checked on in the
Extension dialog box, and an extension license was successfully ob-
tained, the document opens successfully.

If you want any of the commands in your extension to have keyboard
accelerators associated with them, your extension needs to implement
IExtensionAccelerators.

 IExtensionAccelerators : IUnknown Provides access to a method that creates extension
accelerators.

CreateAccelerators Called to create the keyboard accelerators for this extension.

The IExtensionAccelerators interface has one method called
CreateAccelerators that creates the accelerators for the extension. This
method is called when the accelerator table is created during applica-
tion startup, when a new document is created, or when a document is
opened. Accelerators and the accelerator table are discussed later in
this chapter.

When you use the CreateAccelerators method to assign an accelerator
to one of the commands in your extension, check to make sure that no
other command is currently using the key combination that you want
to use.

The following code excerpt from a class module that also implements
IExtension shows you how you can use the IExtensionAccelerators
interface.

Implements IExtensionAccelerators

Private m_pDoc As IDocument

Private Sub IExtensionAccelerators_CreateAccelerators()

  Dim pAccelTable As IAcceleratorTable

  Dim pAccel As IAccelerator

  Dim u As New UID

  Set pAccelTable = m_pDoc.Accelerators

EXTENDING ARCGIS APPLICATIONS

If one of the ArcGIS applications fails to start
after you have registered a custom extension in

one of the ESRI extension component categories,
then you should check for errors in your exten-

sion. If there are any problems in your extension,
this may cause the application startup sequence

to abort.



Chapter 3 • Customizing the user interface • 197

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

  Set pAccel = pAccelTable.FindByKey(vbKeyH, True, False, False)

  ' Create accelerator only if nothing else is using it

  If pAccel Is Nothing Then

    'The clsid of one of the commands in the ext

    u.Value = "CustomCOMCommands.clsICommand"

    pAccelTable.Add u, vbKeyH, True, False, False

  End If

End Sub

APPLICATION STARTUP SEQUENCE

When working with extensions, customization filters, and document
events, it is important to have an understanding of the application
startup sequence. The basic startup sequence is:

1. User starts application.

2. Application object created.

3. Document object created.

4. Extensions are loaded.

5. If a document file is specified on the command line or if ArcMap is
started by double-clicking a document file, then the document is
loaded. If not, a new document is created. If the user then chooses
to open an existing document, that document is loaded.

6. Application startup completed.

The order of extension loading cannot be controlled. The extensions
are loaded in CLSID order using the appropriate component category.
In certain circumstances, you may want to share data between exten-
sions. In such circumstances, the data should not be associated with
one extension but with another helper class. Each extension can check
to see if the helper object has been created, and if not, the extension
can create it. Once the helper object is created by the first initialized
extension, the other extensions can access the data it contains.

Any document-specific code, such as customization filters, should not
be placed in the extension-loading stage. The extensions are loaded
before any map document is opened. This ensures that any extensions
referred to in the map document are present when the document is
opened. If you had a customization filter that was initialized during its
extension startup, it would only operate until a document was opened
or a new document was created. This is because customization filters
are tied to individual documents. To get around this problem, event
handlers can be initialized during extension startup, and the docu-
ment-specific code can be added to the appropriate events. For ex-
ample, when the open or new document events occur, the
customization filter can be applied.

HANDLING GLOBAL APPLICATION DATA

When developing components for use within the ArcGIS suite of appli-
cations, it is often desirable to share data between components. As

EXTENDING ARCGIS APPLICATIONS



198 • Exploring ArcObjects • Volume 1

stated in the introduction, an extension is the logical place to store this
data. For example, you might define public variables in the extension
class and then access these variables directly.

Using public variables is not a good practice, since as creator of the
variable you lose control over that variable when you add your com-
ponent into the system. A better technique is to provide accessor and
mutator functions. This allows for data encapsulation within the exten-
sion.

In Visual Basic, these functions are defined as a property on the de-
fault interface of the class. To locate the property, you must locate the
extension, then QI the Extension object for its default interface. Then,
you can call the properties on that interface.

The following VB code shows a class that implements the IExtension
interface with a member variable that holds a Zoom Percentage, which
has a valid range of 0–100. Also, a piece of code from the OnClick
event of a command that uses that percentage to Zoom the display is
provided.

This is a piece of code for clsDisplayExtension:

Implements IExtension

Private m_lZoomPercentage As Long

Private m_pApp As IApplication

Private Property Get IExtension_Name() As String

  IExtension_Name = "Display Extension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

  Set m_pApp = initializationData

  ' Initialize the Percentage value

  m_lZoomPercentage = 50

End Sub

Private Sub IExtension_Shutdown()

  Set m_pApp = Nothing

End Sub

Public Property Get ZoomPercentage() As Long

  ZoomPercentage = m_lZoomPercentage

End Property

Public Property Let ZoomPercentage(ByVal lPercentage As Long)

  If (lPercentage >= 0) And (lPercentage <= 100) Then

    m_lZoomPercentage = lPercentage

  Else

EXTENDING ARCGIS APPLICATIONS



Chapter 3 • Customizing the user interface • 199

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

    Err.Raise vbObjectError + 29566, "MyProj.MyObject", _

    "Invalid Percentage Value. Valid values (0 -> 100)"

  End If

End Property

The following code is for the OnClick event of the command:

Private Sub ICommand_OnClick()

  Dim pExtension As clsDisplayExtension

  Dim pUID As New UID

  pUID.Value = "prjDisplay.clsDisplayExtension"

  ' QI IExtension for interface _clsDisplayExtension

  Set pExtension = m_pApp.FindExtensionByCLSID(pUID)

  ' Get Extent

  Dim pActiveView As IActiveView

  Set pActiveView = m_pMxDoc.ActiveView

  Dim pEnv As IEnvelope

  Set pEnv = pActiveView.Extent

  ' Zoom Extent and refresh the screen

  pEnv.Expand pExtension.ZoomPercentage / 100, _

    pExtension.ZoomPercentage / 100, True

  pActiveView.Extent pEnv

  pActiveView.Refresh

End Sub

PERSISTENCE

The state of the application is persisted inside an OLE2 document. For
instance, ArcMap saves its state in an .mxd file and its various template
files, which are documents themselves.

Not every object is given the opportunity to save information within the
document. The application framework knows which objects can be
saved. When the user clicks Save on the File menu, the application
framework creates a document storage and then asks these objects to
save themselves to the document.

The framework works with the objects by calling QueryInterface for an
appropriate persistence interface; if it finds a suitable interface, it calls
the appropriate methods, passing a suitable storage medium—normally
a stream. The object is then responsible for serializing its state into the
storage medium. The framework is not concerned with what is written to
the medium; this is the sole concern of the object. When loading the
state of an object from the storage medium, the object is able to read
the serialized data and rehydrate itself.

An ArcObjects developer has two methods of saving data into the docu-
ment—through an Extension or through a supported persistable object

EXTENDING ARCGIS APPLICATIONS



200 • Exploring ArcObjects • Volume 1

class. Persistable objects classes are classes such as layers, renderers,
and so on. Commands and tools are not given the opportunity to persist
information they are maintaining. For these and other objects which the
framework will not automatically persist, an application extension must
be used. When creating an extension, you need to implement a suitable
persistence interface in addition to the IExtension interface. The persis-
tence interface is IPersistStream if developing in Visual C++ or IPersist-
Variant if developing in Visual Basic.

 IPersistVariant : IUnknown Provides access to members used for storage of an object
through VARIANTs.

ID: IUID The ID of the object.

Load (in Stream: IVariantStream) Loads the object properties from the stream.
Save (in Stream: IVariantStream) Saves the object properties to the stream.

The IPersistVariant interface has one property, the class ID of the object
being persisted, and two methods—Load and Save—that perform the
loading and saving from the stream. It is good practice to version the
persisted data so that the data can evolve over time in a way that allows
backwards compatibility. It is important to load and save the data in the
same order since access to the stream is always sequential. Below is a
very simple example of an extension that implements persistence. It
displays a message box when a document is opened that informs the
user how many times the document has been saved.

Option Explicit

Implements IExtension

Implements IPersistVariant

Const c_lVersion = 1

Private m_lNumSaves As Long

Private m_pApp As IApplication

Private Property Get IExtension_Name() As String

  IExtension_Name = "Persistence Example Extension"

End Property

Private Sub IExtension_Startup(ByRef initializationData As Variant)

  Set m_pApp = initializationData

End Sub

Private Sub IExtension_Shutdown()

  Set m_pApp = Nothing

End Sub

Private Property Get IPersistVariant_ID() As esriCore.IUID

  IPersistVariant_ID.Value = "PersistenceSample.clsPersistExtension"

End Property

Private Sub IPersistVariant_Load(ByVal Stream As esriCore.IVariantStream)

EXTENDING ARCGIS APPLICATIONS



Chapter 3 • Customizing the user interface • 201

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

EXTENDING ARCGIS APPLICATIONS

  Dim version As Long

  version = Stream.Read

  If (version > c_lVersion) Then Exit Sub

  m_lNumSaves = Stream.Read

  MsgBox "Document Saved " & CStr(m_lNumSaves) & " Times"

End Sub

Private Sub IPersistVariant_Save(ByVal Stream As esriCore.IVariantStream)

  Stream.Write c_lVersion

  m_lNumSaves = m_lNumSaves + 1

  Stream.Write m_lNumSaves

End Sub

 IVariantStream : IUnknown Provides access to members that store values to and
retrieve values from a stream.

Read: Variant Reads a value from a stream.
Write (in Value: Variant) Writes a value to a stream.

Notice the use of the Write and Read methods on the IVariantStream
interfaces in the above code. These methods take variants, meaning they
can save most data types. If an object, such as a layer, has a persistence
interface, the object can be passed to these methods via one of its
interfaces, and the object will be persisted.



202 • Exploring ArcObjects • Volume 1

CUSTOMIZATIONFILTER ABSTRACT CLASS

A customization filter provides a mechanism to lock parts of the
customization functionality in the ArcGIS applications. If you use an
extension to enable a customization filter, you should do so only in
locked down applications where you have complete control over the
application setup and how the users interact with that application. In
generic applications, you can use customization filters if they are ap-
plied to a specific document.

To create a customization filter, implement the ICustomizationFilter
interface in a class module. To activate your customization filter, pass it
into the IApplication::LockCustomization method. You can make the
call to LockCustomization in a simple VBA macro, in the
MxDocument_OpenDocument or MxDocument_NewDocument event in
VBA, or in an extension. If this is done in a macro or the open docu-
ment event in VBA, make sure that the VBA project has a reference to
the class that implements the customization filter.

If the customization filter is applied in an extension, you must be
aware of the application startup sequence in order for this to work
correctly. Refer to the Application startup sequence discussion earlier
in this chapter. Also, be aware that if your customization filter is ap-
plied by an extension, it may override other locking logic that might be
saved in an existing ArcMap document; also, another extension might
activate a customization filter before your extension is even loaded.
There can only be one active customization filter in a
running application.

 ICustomizationFilter : IUnknown Provides access to members that define a customization
filter.

OnCustomizationEvent (in
custEventType:
esriCustomizationEvent, in eventCtx:
Variant) : Boolean

Occurs when certain types of customization occur.

The ICustomizationFilter interface has an OnCustomizationEvent event
that occurs whenever a user attempts any type of customization.

The custEventType parameter of OnCustomizationEvent specifies what
type of customization event has just happened. The types of
customization events are defined by the esriCustomizationEvent
constants.

Enumeration esriCustomizationEvent Customization event types.

0 - esriCEAddCategory Occurs when the Categories list on the Customize dialog is populated.
1 - esriCEAddCommand Occurs when the Commands list on the Customize dialog is

populated.
2 - esriCEShowCustDlg Occurs when the Customize dialog is requested to be opened.
3 - esriCEShowVBAIDE Occurs when the Visual Basic Editor is requested to be opened.
4 - esriCEInvokeCommand Occurs when a command on a commandbar is about to be executed.
5 - esriCEShowCustCtxMenu Occurs when the Customize context menu is popped up for a

command item.

The following lists additional things that the customization events can
be used for:

Application

IApplication
IDockableWindow-

Manager
IExtensionManager

IMultiThreaded-
Application

IVBAApplication
IWindowPosition

0..1
ICustomizationFilter Customization-

Filter

A customization filter locks parts of customized
functionality of ArcGIS applications.



Chapter 3 • Customizing the user interface • 203

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

• esriCEAddCategory can be used to remove categories from the
Categories list in the Customize dialog box.

• esriCEAddCommand can be used to remove commands from the
Commands list in the Customize dialog box.

• esriCEShowCustDlg can be used to prevent the Customize dialog
box from being opened.

• esriCEShowVBAIDE can be used to prevent the Visual Basic
Editor from being opened.

• esriCEInvokeCommand can be used to prevent a particular com-
mand from being executed.

• esriCEShowCustCtxMenu can be used to prevent the Customize
context menu from being displayed when you right-click a com-
mand item when the Customize dialog box is open.

The eventCtx parameter of OnCustomizationEvent provides event context
information for each type of customization event. To see what type of
information is provided by eventCtx for each customization event type,
refer to the table below.

string representing category name

eventCtx

UID or string identifying a command

nothing

nothing

CommandItem

nothing

esriCEAddCategory

CustEventType

esriCEAddCommand

esriCEShowCustDlg

esriCEShowVBAIDE

esriCEInvokeCommand

esriCEShowCustCtxMenu

The following VB class module defines a customization filter. This filter
locks the following three areas of customization:

• Prevents the Visual Basic Editor from being opened.

• Locks the Map and Edit categories. These categories will not appear
in the Categories list on the Commands panel of the Customize dialog
box. This prevents users from dragging the commands in these cat-
egories onto toolbars.

• Locks the What’s This command. This command will not show up in
the Commands list for the Help category on the Commands panel of
the Customize dialog box. This prevents users from dragging this
command onto a toolbar but still gives them access to the other
commands in the Help category.

Implements ICustomizationFilter

Private Function ICustomizationFilter_OnCustomizationEvent _

      (ByVal custEventType As esriCore.esriCustomizationEvent, _

       ByVal eventCtx As Variant) As Boolean

    ' Lock the Visual Basic editor.

    ' custEventType is esriCEShowVBAIDE

    ' eventCtx is nothing

    If custEventType = esriCEShowVBAIDE Then

CUSTOMIZATIONFILTER ABSTRACT CLASS

Use the IApplication::LockCustomization
method to activate the customization filter.



204 • Exploring ArcObjects • Volume 1

        ICustomizationFilter_OnCustomizationEvent = True

    ' Lock the Map and Edit categories.

    ' custEventType is esriCEAddCategory

    ' eventCtx is a string representing the category name

    ElseIf custEventType = esriCEAddCategory Then

        Select Case eventCtx

        Case "Map"

            ICustomizationFilter_OnCustomizationEvent = True

        Case "Edit"

            ICustomizationFilter_OnCustomizationEvent = True

        Case Else

            ICustomizationFilter_OnCustomizationEvent = False

        End Select

    ' Lock the What's This Help command.

    ' custEventType is esriCEAddCommand

    ' eventCtx can be either a UID or a string identifier

    ' for a command.

    ElseIf custEventType = esriCEAddCommand Then

        'UID for What's This Help command

        Dim u As New UID

        u.Value = "esriCore.HelpTool"

        If u = eventCtx Then

             ICustomizationFilter_OnCustomizationEvent = True

        End If

     End If

End Function

Another common use of a customization filter is to restrict access to
functionality by trapping Invoke calls. For example, the customization
filter can prevent the execution of a command when a user tries to
execute that command. To simplify the coding, a collection of disal-
lowed commands can be created; then, when each command is in-
voked, it can be tested against this collection. These collections can be
built on a user-by-user basis to provide user-level customization locking.

Below is an example of a class that implements the ICustomizationFilter
to support this functionality.

Option Explicit

Implements ICustomizationFilter

Private m_pBlockedCommands As Collection

Private Sub Class_Initialize()

  Set m_pBlockedCommands = New Collection

  Dim pUID As IUID

  ' Add Commands to Disable

  Set pUID = New UID

  pUID.Value = "esriCore.StartEditingCommand"

  m_pBlockedCommands.Add pUID.Value, pUID.Value

CUSTOMIZATIONFILTER ABSTRACT CLASS



Chapter 3 • Customizing the user interface • 205

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

  Set pUID = New UID

  pUID.Value = "esriCore.AddDataCommand"

  m_pBlockedCommands.Add pUID.Value, pUID.Value

End Sub

Private Sub Class_Terminate()

  Set m_pBlockedCommands = Nothing

End Sub

Private Function IsCommandBlocked(pItemUID As IUID) As Boolean

  IsCommandBlocked = True

  Dim tmpStr As String

  On Error GoTo Missing

  tmpStr = m_pBlockedCommands.Item(pItemUID.Value)

  Exit Function

Missing:

  IsCommandBlocked = False

  Err.Clear

End Function

Private Function ICustomizationFilter_OnCustomizationEvent _

  (ByVal custEventType As esriCore.esriCustomizationEvent, _

   ByVal eventCtx As Variant) As Boolean

  If (custEventType = esriCEInvokeCommand) Then

    Dim pItem As ICommandItem

    Set pItem = eventCtx

    ICustomizationFilter_OnCustomizationEvent = IsCommandBlocked(pItem.ID)

  End If

End Function

If you wanted to create an extension to apply one of these customization
filters, the class of the extension could be coded as follows:

Implements IExtension

Dim m_pApp As IApplication

Dim m_MyFilter As ICustomizationFilter

' Need to listen for the MxDocument events so that the Lock

' can be set on OpenDocument and NewDocument events.

Dim WithEvents m_pDoc As MxDocument

Private Property Get IExtension_Name() As String

  IExtension_Name = "MyFilterExt"

End Property

Private Sub IExtension_Shutdown()

  Set m_pApp = Nothing

  Set m_pDoc = Nothing

CUSTOMIZATIONFILTER ABSTRACT CLASS



206 • Exploring ArcObjects • Volume 1

End Sub

Private Sub IExtension_Startup(initializationData As Variant)

  If TypeOf initializationData Is IMxApplication Then

    Set m_pApp = initializationData

    'Start listening for the MxDocument events.

    If Not m_pDoc Is m_pApp.Document Then

      Set m_pDoc = m_pApp.Document

    End If

    ' Replace MyFilter with the class name of your filter

    Set m_MyFilter = New clsMyFilter

  End If

End Sub

Private Function m_pDoc_NewDocument() As Boolean

  On Error GoTo FilterErr

  ' Set the Lock when a new document is created.

   m_pApp.LockCustomization "mylock", m_MyFilter

  Exit Function

FilterErr:

  MsgBox "Attempt To Lock Document With Filter Failed", _

   vbOKOnly + vbExclamation, "Extension Error"

End Function

Private Function m_pDoc_OpenDocument() As Boolean

  On Error GoTo FilterErr

  ' Reset the Lock when a document is opened.

  m_pApp.LockCustomization "mylock", m_MyFilter

  Exit Function

FilterErr:

  MsgBox "Attempt To Lock Document With Filter Failed", _

   vbOKOnly + vbExclamation, "Extension Error"

End Function

CUSTOMIZATIONFILTER ABSTRACT CLASS

To use this extension in ArcMap, register it in
the ESRI Mx Extensions component category.



Chapter 3 • Customizing the user interface • 207

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

If for some reason you can’t easily get a reference to the Application
object in your code, you can create a new AppRef object. For example,
there are cases where you may implement an object that exists within
the application framework, but there is no way to traverse the applica-
tion hierarchy from that object.

In order to provide developers with access to the Application object,
there is a singleton object that provides a pointer to the running applica-
tion object. The code below illustrates its use.

  Dim pApp As IApplication

  Set pApp = New AppRef

You can only use the AppRef object if your code is running inside one
of the ArcGIS application processes.

IApplication

AppRef

The application reference object, AppRef,
is a reference to the currently running

ArcGIS application.

APPREF COCLASS



208 • Exploring ArcObjects • Volume 1

STATUSBAR CLASS

IStatusBar

StatusBar

The status bar is the horizontal area at
the bottom of an ArcGIS application

window. It provides information about the
current state of the application.

The status bar provides information about the selected command. For
example, if you select a layer in the table of contents in ArcMap, the
status bar will tell you how many features are currently selected. It may
also display a progress bar while something is being processed.

The StatusBar property on the IApplication interface can be used to get
a reference to the StatusBar object.

 IStatusBar : IUnknown Provides access to members that define the application
statusbar.

Message (in pane: Long) : String The message displayed by one of the status bar panes.
Panes: Long Indicates which standard panes are shown by the status bar. Use a

combination of esriStatusBarPanes constants.
ProgressAnimation:

IAnimationProgressor
The progress animation object on the statusbar.

ProgressBar: IStepProgressor The progress bar object on the statusbar.
Visible: Boolean Indicates if the statusbar is visible.

HideProgressAnimation Hides the progress animation.
HideProgressBar Hides the progress bar.
PlayProgressAnimation (in playAnim:

Boolean)
Plays the progress animation if the parameter is true; otherwise stops

it.
ShowProgressAnimation (in Message:

String, in animationPath: String)
Makes the progress animation visible.

ShowProgressBar (in Message: String,
in min: Long, in max: Long, in Step:
Long, in onePanel: Boolean)

Makes the progress bar visible.

StepProgressBar Steps the progress bar to the next position.

The IStatusBar interface allows you to set the properties of the status
bar. The status bar is divided into sections called panes. The Panes
property specifies which panes of the status bar are currently visible.

Enumeration esriStatusBarPanes Status bar panes.

  0 - esriStatusMain Leftmost pane where application messages are displayed.
  1 - esriStatusAnimation Pane showing an animated icon.
  2 - esriStatusPosition Pane showing mouse position in map coordinates.
  4 - esriStatusPagePosition Pane showing mouse position in page coordinates.
  8 - esriStatusSize Pane showing object size.
 16 - esriStatusCapsLock Pane showing caps lock indicator.
 32 - esriStatusNumLock Pane showing num lock indicator.
 64 - esriStatusScrollLock Pane showing scroll lock indicator.
128 - esriStatusClock Pane showing clock.

The esriStatusBarPanes constants define which panes are shown. The
Panes property is a bit field; this means that you can use a combination
of the esriStatusBarPanes constants. Add up the values of the panes you
want shown and set the Panes property to the total.

Only the default panes are shown in the status bar.

The default value of Panes is 7; this means that the main (0), animation
(1), position (2), and page position (4) panes are visible (0 + 1 + 2 + 4 =
7). You can set the Panes property to 255 to show all panes.

Status bar



Chapter 3 • Customizing the user interface • 209

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

All the panes are shown in the status bar.

The Message property allows you to display text in the status bar. Most
commonly, the main pane is used for the display of messages; however,
any pane can be used.

The ProgressBar property and the HideProgressBar, ShowProgressBar,
and StepProgressBar methods are used to control the step progress bar
on the status bar. The step progress bar displays in the main status bar
pane.

 IProgressor : IUnknown Provides access to members that report progress.

Message: String The message displayed by the progressor.

Hide Hides the progressor.
Show Shows the progressor.
Step Animates or steps the progressor.

The IProgressor interface is a generic interface for progressors. There are
methods to show, step, and hide the progressor and a property to set
the message of the progressor.

 IStepProgressor : IProgressor Provides access to memebers that report progress in
stepped increments.

MaxRange: Long The maximum range of the progression.
MinRange: Long The minimum range of the progression.
Position: Long The current position of the progression.
StepValue: Long The step increment of the progression.

OffsetPosition (in offsetValue: Long) :
Long

Offsets the position of the progression.

The IStepProgressor interface has properties for setting the properties of
the step progress bar, such as the message, the minimum and maximum
values, and the step size. Use the IStatusBar::ProgressorBar interface to
get access to the step progress bar. Alternatively, the IStatusBar::Show-
ProgressBar method provides shortcuts to the properties of the step
progress bar. This method allows you to set the message, minimum and
maximum values, and the step size of the step progress bar and also
display the step progress bar. Therefore, it is unnecessary to use IStep-
Progressor to do this.

The following code displays a step progress bar and steps in a loop
from 1 to 900,000.

Public Sub StepProg()

  Dim pStatusBar As IStatusBar

  Dim i As Long

  Dim pProgbar As IStepProgressor

  Set pStatusBar = Application.StatusBar

  Set pProgbar = pStatusBar.ProgressBar

The step progressor bar is the blue moving line
that displays the percentage of completeness.

STATUSBAR CLASS



210 • Exploring ArcObjects • Volume 1

  pProgbar.Position = 0

  pStatusBar.ShowProgressBar "Loading...", 0, 900000, 1, True

  For i = 0 To 900000

    pStatusBar.StepProgressBar

  Next

  pStatusBar.HideProgressBar

End Sub

On the IStatusBar interface, the ProgressAnimation property and the
HideProgressAnimation, ShowProgressAnimation, and
PlayProgressAnimation methods control the animation progressor (spin-
ning globe) on the status bar. The animation progressor displays in the
animation pane. You can use the default spinning globe for the animation
progressor or specify your own animation file (.avi).

 IAnimationProgressor : IProgressor Provides access to members that report progress using an
animation.

Animation: esriAnimations The animation displayed by the progressor as one of the
esriAnimation constants. (Not implemented).

OpenPath (in animationPath: String) Opens the AVI file specified in the path and displays its first frame.
The AVI file specified must not contain audio.

Play (frameFrom: Long, frameTo: Long,
repeat: Long)

Plays the animation.

Seek (in frameTo: Long) Moves to the specified frame of the animation. The animation starts
at this frame the next time it is played.

Stop Stops the animation.

The IProgressAnimation interface has methods for controlling the anima-
tion progessor, such as setting the path to the avi file and showing and
playing the animation progressor.

Use the IStatusBar::AnimationProgressor interface to get access to the
animation progressor.

Alternatively, the IStatusBar::ShowProgressAnimation method provides a
shortcut to the OpenPath and Show methods of the animation progressor.

The IStatusBar::PlayProgressAnimation method provides a shortcut to the
Play and Stop methods of the animation progressor.

The Animation property on IAnimationProgressor is not implemented.

The following code plays the animation progressor on the status bar.

Public Sub AnimProg()

  Dim pStatusBar As IStatusBar

  Dim i As Long

  Dim pProgAnim As IAnimationProgressor

  Set pStatusBar = Application.StatusBar

  Set pProgAnim = pStatusBar.ProgressAnimation

  pProgAnim.Show

  pStatusBar.PlayProgressAnimation True

  For i = 0 To 10000

    pStatusBar.Message(0) = "Counting..." & Str(i)

  Next

  pStatusBar.PlayProgressAnimation False

  pProgAnim.Hide

End Sub

The animation progressor is the spinning globe
on the status bar. You could also display a custom

animation here.

STATUSBAR CLASS



Chapter 3 • Customizing the user interface • 211

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

DOCUMENT CLASS

This Document object only represents the generic document properties
common to all ArcGIS applications. Each application has its own docu-
ment object.

The document object in ArcMap is called MxDocument; for further
discussion, see Chapter 4, ‘Composing maps’. The document object in
ArcCatalog is called GxDocument; for further discussion, see Chapter 7,
‘Working with the Catalog’.

Even though ArcCatalog doesn’t use documents, it has a document
object associated with it. The document provides access to the user
interface elements and the VBA project. The GxDocument is really just
the Normal template, Normal.gxt.

Use the Document property of the IApplication interface to get a refer-
ence to the document.

In the Visual Basic Editor, each VBA project contains a VBA class mod-
ule called ThisDocument. This class represents the document object.
When you are working in the ThisDocument code window in VBA, you
have direct access to the properties and methods on the IDocument
interface.

 IDocument : IDispatch Provides access to other objects in the document.

Accelerators: IAcceleratorTable The accelerator table for this document.
CommandBars: ICommandBars The commandbars collection in this document.
ID: IUID The unique id for this document.
Parent: IApplication The application in which this document is open.
Title: String The title of this document.
Type: esriDocumentType The type of this document.
VBProject: Object The VBProject for this document.

The IDocument interface provides access to the document’s title, type,
accelerator table, command bars collection, parent application, and
Visual Basic for Applications project.

Use the Document property of the IApplication interface to get a refer-
ence to the document.

The following VBA code will report the title of the document:

  Dim pDoc As IDocument

  Set pDoc = Application.Document

  MsgBox pDoc.Title

Enumeration esriDocumentType Document types.

0 - esriDocumentTypeNormal The Normal template.
1 - esriDocumentTypeTemplate The base template.
2 - esriDocumentTypeDocument The current document.

The esriDocumentType enumeration is used by the Type property on the
IDocument interface. Use this enumeration to determine whether the
document object is the current document, a base template, or the Nor-
mal template.

IDocument

Document

The document in ArcMap stores objects
such as map layers and elements. The

document in ArcCatalog is actually
default user interface settings in the

Normal template.



212 • Exploring ArcObjects • Volume 1

TEMPLATES CLASS

ITemplates

Templates

The templates collection references the
template objects that are currently

loaded with the application.

Moab estates.mxd
Current document

Plat.mxt

Base template

Normal.mxt

Normal template

Scope of applying customizations

Normal

ProjectTemplate

Project

VBA project objectsDocument objects

The ArcMap package contains an object called
Template that is unrelated to the Templates

collection.

A template is a document that is used as a starting point for creating
new documents. It carries customizations of several types—user inter-
face, VBA project, and application-specific data.

ArcMap has two or three templates loaded with an application. If the
document is based on the Normal template, two items are in the tem-
plates collection. If the document is based on a project template, three
items are in the templates collection. ArcCatalog always has one item in
the templates collection; this item represents Normal.gxt.

 ITemplates : IUnknown Provides access to members that query the templates
collection.

Count: Long The number of templates associated with the current document.
Item (in Index: Long) : String The pathname to the template at the given index.

The ITemplates interface has a Count property that returns the number of
currently loaded templates. The Item property returns the full filename of
the specified template. This provides a convenient way to find out
where the Normal template, project template, or document is stored on
disk.

This VBA code will report the name of the project template that is
loaded in ArcMap, if there is one loaded:

  Dim pTemplates As ITemplates

  Set pTemplates = Application.Templates

  If pTemplates.Count = 3 Then

    MsgBox pTemplates.Item(1)

  End If



Chapter 3 • Customizing the user interface • 213

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

DOCKABLEWINDOW AND DOCKABLEWINDOWDEF CLASSES

A dockable window is a window that can exist in a floating state or
attached to the main application window. The table of contents in
ArcMap and the tree view in ArcCatalog are examples of dockable
windows.

 IDockableWindowManager : IUnknown Provides access to a method that finds a dockable window
in the application.

GetDockableWindow (in dockWnd:
IUID) : IDockableWindow

Finds a dockable window looking first in the collection and then in the
category.

The Application object implements the IDockableWindowManager
interface that is used to get access to a particular dockable window. The
GetDockableWindow method finds a dockable window using the UID of
the dockable window. To get access to this interface, do a QI on
Application.

 IDockableWindow : IUnknown Provides access to members that define and control a
dockable window.

Caption: String The caption of the dockable window.
ID: IUID The unique id for this dockable window.
Name: String The name of the dockable window.
UserData: Variant User defined data.

Dock (in dockFlags: esriDockFlags) Docks or undocks this docking window.
IsVisible: Boolean Indicates if this docking window is visible.
Show (in Show: Boolean) Hides or shows the dockable window.

The IDockableWindow interface queries the properties of a dockable
window, such as the Caption, Name, and ID. This interface also has
methods to return whether the window is currently visible, to display
the window, and to dock the window in a particular location on the
application.

The following VBA code finds the ArcMap table of contents and, if it’s
currently visible, docks it on the right side of the application.

  Dim pDocWinMgr As IDockableWindowManager

  Dim pTOC As IDockableWindow

  Set pDocWinMgr = Application  'QI

  Set pTOC = pDocWinMgr.GetDockableWindow(arcid.TableofContents)

  If pTOC.IsVisible Then

    pTOC.Dock esriDockRight

  End If

 IDockableWindowDef : IUnknown Provides access to members that define a dockable
window.

Caption: String The caption of the dockable window.
ChildHWND: Long The hWnd of the window to be embedded in a dockable window.
Name: String The name of the dockable window.
UserData: Variant User defined data.

OnCreate (in hook: Object) Occurs when this dockable window is created and provides access to
the application.

OnDestroy Occurs when the docking window is about to be destroyed.

To create your own dockable window, implement the IDockableWindow-
Def interface. This interface allows you to set properties, such as cap-
tion and name. You use the ChildHWND property to define what the
window will consist of by passing in an hWnd of a control, such as a

Dockable-
Window

IDockableWindow

A dockable window is an auxiliary
window that can display data. This

window is treated as a modeless child
window of the application.

Dockable-
WindowDef

IDockableWindowDef
ISupportErrorInfo

A dockable window definition is used by
the application to create a dockable

window.



214 • Exploring ArcObjects • Volume 1

form, listbox, and so on. The OnCreate method provides a hook to the
application and allows you to perform any necessary initialization of
the window. The OnDestroy method is called when the window is about
to be destroyed.

The class you create is a definition for a dockable window; it is not
actually a dockable window object. Once your class is registered in one
of the dockable window component categories, the application uses the
definition of the dockable window in your class to create the actual
dockable window.

The following VB class module defines a dockable window that displays
a list of layers with their selection count and updates that list whenever
the selection changes.

Implements IDockableWindowDef

Dim m_pApp As IApplication

Dim m_pMXDoc As IMxDocument

Dim WithEvents m_pMapEvent As Map

Private Property Get IDockableWindowDef_Caption() As String

  IDockableWindowDef_Caption = "Selected Features Count"

End Property

Private Property Get IDockableWindowDef_ChildHWND() As _

esriCore.OLE_HANDLE

  IDockableWindowDef_ChildHWND = frmDockWin.lstDockWin.hWnd

End Property

Private Property Get IDockableWindowDef_Name() As String

  IDockableWindowDef_Name = "Selection Count"

End Property

Private Sub IDockableWindowDef_OnCreate(ByVal hook As Object)

  Set m_pApp = hook

  Set m_pMXDoc = m_pApp.Document

  Set m_pMapEvent = m_pMXDoc.FocusMap

End Sub

Private Sub IDockableWindowDef_OnDestroy()

  Set m_pMapEvent = Nothing

  Set m_pMXDoc = Nothing

  Set m_pApp = Nothing

End Sub

Private Property Get IDockableWindowDef_UserData() As Variant

End Property

Private Sub m_pMapEvent_SelectionChanged()

  Dim pMap As IMap

  Dim i As Integer

  Dim pFLayer As IFeatureLayer

To use your dockable window in one of the
ArcGIS applications, you have to register it in the
appropriate component category. For example, if
your dockable window was designed to be used

in ArcMap, you would register it in the ESRI Mx
Dockable Windows component category. You also

have to have code to display that window in
ArcMap. Use the IDockableWindowManager
and IDockableWindow interfaces to do this.

DOCKABLEWINDOW AND DOCKABLEWINDOWDEF CLASSES



Chapter 3 • Customizing the user interface • 215

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

DOCKABLEWINDOW AND DOCKABLEWINDOWDEF CLASSES

  Dim pSel As IFeatureSelection

  Set pMap = m_pMapEvent

  frmDockWin.lstDockWin.Clear

  For i = 0 To pMap.LayerCount - 1

    If TypeOf pMap.Layer(i) Is IFeatureSelection Then

      Set pFLayer = pMap.Layer(i)

      Set pSel = pFLayer

      frmDockWin.lstDockWin.AddItem pFLayer.Name & ": " &
pSel.SelectionSet.Count

    End If

  Next

End Sub



216 • Exploring ArcObjects • Volume 1

ACCELERATORTABLE AND ACCELERATOR CLASSES

Some commands in the application already have accelerators assigned to
them, but you can also assign additional accelerators to these commands.

The AcceleratorTable is an object with a list of accelerator keys and the
command identifiers associated with them. You can get a reference to
the AcceleratorTable of a document using the Accelerators property of
IDocument.

 IAcceleratorTable : IUnknown Provides access to members that modify the accelerator
table.

Count: Long The count of accelerator items in the table.
Item (in Index: Long) : IAccelerator The accelerator object at the specified index.

Add (in ID: Variant, in Key: Long, bCtrl:
Boolean, bAlt: Boolean, bShift:
Boolean) : Boolean

Adds a new accelerator to the accelerator table.

Find (in ID: Variant) : IArray Finds the accelerator object/s currently associated with the specified
command ID.

FindByKey (in Key: Long, bCtrl:
Boolean, bAlt: Boolean, bShift:
Boolean) : IAccelerator

Finds the accelerator object associated with the specified key
combination.

The IAcceleratorTable interface is used to add or find accelerators in an
AcceleratorTable.

The following VBA code assigns the Ctrl+Shift+A accelerator to the Add
Data command if this accelerator is not already assigned to another
command.

  Dim pAccelTbl As IAcceleratorTable

  Set pAccelTbl = Application.Document.Accelerators

  If pAccelTbl.FindByKey(vbKeyA, True, False, True) Is Nothing Then

    pAccelTbl.Add ArcID.File_AddData, vbKeyA, True, False, True

  End If

 IAccelerator : IUnknown Provides access to members that define an accelerator.

Alt: Boolean Indicates if the Alt key is pressed for this accelerator.
CommandID: Variant The identifier of the command that this accelerator activates.
Ctrl: Boolean Indicates if the Ctrl key is pressed for this accelerator.
Key: Long The keycode for this accelerator.
Shift: Boolean Indicates if the Shift key is pressed for this accelerator.

Delete Removes this accelerator from the accelerator table.

The IAccelerator interface defines the properties of an accelerator. Use the
Add method in the IAcceleratorTable interface to create an accelerator.

The following VBA code removes all accelerators currently assigned to the
Add Data command. The Find method on the IAcceleratorTable interface
returns an array of all the accelerators for a particular command.

  Dim pAccelTbl As IAcceleratorTable

  Dim pAccelArray As IArray, pAccel As IAccelerator

  Dim i as Integer

  Set pAccelTbl = Application.Document.Accelerators

  Set pAccelArray = pAccelTbl.Find(ArcID.File_AddData)

  For i = 0 To pAccelArray.Count - 1

    Set pAccel = pAccelArray.Element(i)

    pAccel.Delete

  Next

*
IAccelerator

Accelerator

Accelerator-
Table

IAcceleratorTable
IPersist

IPersistStream

An accelerator is a mapping between a
particular keyboard combination and a

command. When you press the combina-
tion of keys on the keyboard, the com-

mand is executed. For example, Ctrl+C is
a well-known accelerator for copying

something in Windows.

Accelerator table Accelerator



Chapter 3 • Customizing the user interface • 217

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

COMMANDBARS AND COMMANDBAR CLASSES

CommandBars is a collection of the command bars associated with a
document.

CommandBar represents a toolbar, menubar, menu, or context menu.

 ICommandBars : IUnknown Provides access to members that work on the collection of
commandbars.

LargeIcons: Boolean Indicates if large icons should be shown.
ShowToolTips: Boolean Indicates if tooltips should be shown.

Create (in Name: String, barType:
esriCmdBarType) : ICommandBar

Creates a new blank toolbar or shortcut menu.

Find (in identifier: Variant, noRecurse:
Boolean, noCreate: Boolean) :
ICommandItem

Searches for the item specified by identifier.

HideAllToolbars Hides all visible bars.

The ICommandBars interface allows you to set properties for the
CommandBars and to create, find, or hide CommandBars. Use the
CommandBars property of IDocument to get a reference to the
CommandBars collection.

Enumeration esriCmdBarType Commandbar types.

0 - esriCmdBarTypeToolbar Toolbar commandbar type.
1 - esriCmdBarTypeMenu Menu commandbar type.
2 - esriCmdBarTypeShortcutMenu Context menu commandbar type.

The esriCmdBarType enumeration specifies the type of command bar.
Use this enumeration with the ICommandBars::Create method to create
a new toolbar or shortcut menu. Do not use the esriCmdBarTypeMenu
enumeration with the ICommandBars::Create method to create a new
menu; use the ICommandBar::CreateMenu method instead.

Use the Find method in ICommandBars to get a reference to a particular
CommandBar.

There is a built-in module called ArcID in the VBA project for the Nor-
mal template in both ArcMap and ArcCatalog. This module is a utility for
finding the UID of the built-in commands and toolbars. Pass the name
of a command or toolbar in as an argument to ArcID, and the UID of
that item is returned. The ArcID module is regenerated every time the
Normal template is loaded; the registry is read to get the GUIDs of all the
commands and toolbars that are currently used by the application.

The following code shows how you can use the ArcID module to find
the Standard toolbar in ArcMap.

  Dim pCmdBars As ICommandBars

  Dim pStdBar As ICommandBar

  Set pCmdBars = Application.Document.CommandBars

  Set pStdBar = pCmdBars.Find(arcid.Standard_Toolbar)

ICommandBars

1..*

Command-
Bars

Command-
Bar

ICommandBar
ICommandItem

A command bar is a toolbar, menubar,
menu, or context menu. CommandBars
is a collection of all the toolbars available

to a document.

Toolbar

Menubar

Menu

Context menu



218 • Exploring ArcObjects • Volume 1

 ICommandBar : IUnknown Provides access to members that modify a commandbar.

Count: Long The number of items contained within this commandbar.
Item (in Index: Long) : ICommandItem The command item on this commandbar at the specified index.

Add (in cmdID: IUID, Index: Variant) :
ICommandItem

Adds a new command to this commandbar.

CreateMacroItem (in Name: String,
FaceID: Variant, Action: String, Index:
Variant) : ICommandItem

Creates a new macro item on this commandbar at the specified
position.

CreateMenu (in Name: String, Index:
Variant) : ICommandBar

Creates a new blank menu on this commandbar at the specified
position.

Dock (in dockFlags: esriDockFlags,
referenceBar: ICommandBar)

Docks or undocks this commandbar.

Find (in identifier: Variant, noRecurse:
Boolean) : ICommandItem

Finds a command on this commandbar.

IsVisible: Boolean Indicates if this commandbar is visible.
Popup (X: Long, Y: Long) :

ICommandItem
Displays this commandbar as a popup menu at the specified location.

The ICommandBar interface lets you modify a CommandBar by adding
a command, menu, or macro item to it.

The Count property returns the number of command items on the com-
mand bar, and the Item property allows you get a reference to the com-
mand item at the specified index.

The IsVisible method determines whether or not the command bar is
currently visible.

Use the Dock method to show or hide the command bar and to put it in
a floating state or place it in a particular location on the application
window.

Enumeration esriDockFlags Toolbar docking flags.

 0 - esriDockHide Hides the toolbar.
 1 - esriDockShow Shows the toolbar.
 2 - esriDockLeft Docks the toolbar on the left side of the application.
 4 - esriDockRight Docks the toolbar on the right side of the application.
 8 - esriDockTop Docks the toolbar on the top of the application.
16 - esriDockBottom Docks the toolbar on the bottom of the application.
32 - esriDockFloat Floats the toolbar.
64 - esriDockToggle Toggles the toolbar visibility.

The esriDockFlags enumeration is used with the Dock method to specify
where the command bar should be placed.

You can write VBA code to create custom toolbars or menus; however,
these toolbars and menus are only stored in memory; they are never
written out to any document or template. Use the Create method in
ICommandBars to create a new toolbar or shortcut menu. Use the
CreateMenu method in ICommandBar to create a new menu.

The following VBA macro creates a new toolbar, puts a new menu on it,
adds an item to the menu, and places the toolbar at the top of the appli-
cation below the Standard toolbar.

Sub CreateBar()

  Dim pCommandBars As ICommandBars

  Dim pNewBar As ICommandBar

  Dim pNewMenu As ICommandBar

  Dim pCmdBars As ICommandBars

COMMANDBARS AND COMMANDBAR CLASSES



Chapter 3 • Customizing the user interface • 219

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

  Set pCommandBars = Application.Document.CommandBars

  'Create the new toolbar

  Set pNewBar = pCommandBars.Create("MyToolbar", esriCmdBarTypeToolbar)

  'Create the new menu on the new toolabr

  Set pNewMenu = pNewBar.CreateMenu("MyMenu")

  'Add an item to the menu

  pNewMenu.Add arcid.File_AddData

  Set pCmdBars = Application.Document.CommandBars

  'Place the new toolbar at the top of the app below the Standard toolbar

  pNewBar.Dock esriDockBottom, pCmdBars.Find(arcid.Standard_Toolbar)

End Sub

COMMANDBARS AND COMMANDBAR CLASSES



220 • Exploring ArcObjects • Volume 1

CUSTOM COMMAND BARS

There are two basic types of custom command bars that you can cre-
ate—document command bars and COM command bars. Document
command bars can be created using built-in functionality in the applica-
tions. COM command bars can be created by defining menus or
toolbars in any COM-compliant language and compiling them into an
ActiveX DLL.

The command bars collection uses command bar definitions (either
ToolBarDef or MenuDef) to create command bars. For example, a class
that implements IToolbarDef is only a definition for a toolbar; it is not
actually a toolbar object. Once this class is registered in one of the
command bar component categories, the command bars collection uses
the definition of the toolbar in your class to create the actual command
bar.

 IToolBarDef: IUnknown Provides access to members that define a toolbar.

Caption: String The caption of this toolbar.
ItemCount: Long The number of items in this toolbar.
Name: String The name of this toolbar.

GetItemInfo (in pos: Long, in itemDef:
IItemDef)

The CLSID for the item on this toolbar at the specified index.

To create a custom toolbar, implement IToolbarDef. The IToolbarDef
interface is used to define the properties of a custom toolbar. You can
set the caption and name of the toolbar and specify what command
items are on the toolbar.

 IItemDef : IUnknown Provides access to members that define an item on a
commandbar.

Group: Boolean Indicates if the defined item should start a group on the menu or
toolbar.

ID: String The CLSID or PROGID of the item being defined.
SubType: Long The subtype of the item being defined.

The IItemDef interface defines a command item on a toolbar or menu.
Use the IItemDef interface with the GetItemInfo method on either the
IToolbarDef or the IMenuDef interface to define the items on the toolbar
or menu. This interface specifies the identifier (CLSID or ProgID) of the
command and its subtype if there is one. It also determines whether this
item begins a group on the toolbar or menu.

 Implements IToolBarDef

 Private Property Get IToolBarDef_Caption() As String

    IToolBarDef_Caption = "MyToolbar"

 End Property

 Private Sub IToolBarDef_GetItemInfo(ByVal pos As Long, _

        ByVal itemDef As esriCore.IItemDef)

    Select Case pos

    Case 0

      itemDef.ID = "esriCore.AddDataCommand"

      itemDef.Group = False

CommandBar
ICommandBar

ICommandItem

COM-
CommandBar

Command-
BarDef

IMenuDef
IRootLevelMenu

IShortcutMenu MenuDef

IToolbarDef

ToolbarDef

ICommandBars Command-
Bars

You can create custom document com-
mand bars using the Customize dialog

box in ArcMap or ArcCatalog. To create a
custom toolbar, use the New button on

the Toolbars panel. To create a custom
menu, go to the New Menu category on
the Commands panel and drag the New
Menu command to any toolbar or menu.
These types of toolbars and menus are

stored in a specific document or template
and can only be used in that document

or template.



Chapter 3 • Customizing the user interface • 221

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

    Case 1

      itemDef.ID = "esriCore.FullExtentCommand"

      itemDef.Group = True

    End Select

  End Sub

 Private Property Get IToolBarDef_ItemCount() As Long

    IToolBarDef_ItemCount = 2

 End Property

 Private Property Get IToolBarDef_Name() As String

    IToolBarDef_Name = "MyToolbar"

 End Property

When an end user installs your custom toolbar, you may want this
toolbar immediately available in the application so that the user doesn’t
have to manually display that toolbar before using it. You can add a
registry setting to make this toolbar automatically appear the first time
the application is run after the installation of your toolbar. In the setup
program for your toolbar, create a new key under:

HKEY_CURRENT_USER\Software\ESRI\ArcMap\Settings\PremierToolbars

The key name should be the CLSID of the toolbar. You don’t have to set
a value for this key.

The PremierToolbars setting is only used the first time the application is
started; if the user subsequently hides the toolbar, no further attempts
will be made to show the toolbar on application startup. After the appli-
cation is started, the value of your PremierToolbars key is set to 1 and is
then ignored by the application.

 IMenuDef : IUnknown Provides access to members that define a menu.

Caption: String The caption of this menu.
ItemCount: Long The number of items in this menu.
Name: String The name of this menu.

GetItemInfo (in pos: Long, in itemDef:
IItemDef)

The CLSID for the item on this menu at the specified index.

To create a custom menu, implement IMenuDef. The IMenuDef interface
is identical to the IToolbarDef interface except that it is used to indicate
to the application that this is a menu.

 IRootLevelMenu : IUnknown Identifies a root level menu.

If you are creating a root menu (a menu that will appear in the Menus
command category in the Customize dialog box), implement both
IMenuDef and IRootLevelMenu. IRootLevelMenu is an indicator interface
that is only used to indicate to the application that the menu should be
treated as a root menu.

CUSTOM COMMAND BARS

In the registry, a custom toolbar has been added
to PremierToolbars.

If you are working in Visual Basic, you can use
the ESRI Compile and Register Add-in to set up
this registry key. For more information, refer to

Chapter 2, ‘Developing with ArcObjects’.



222 • Exploring ArcObjects • Volume 1

 IShortcutMenu : IUnknown Identifies a context menu.

If you are creating a context menu, implement both IMenuDef and
IShortcutMenu. IShortcutMenu is an indicator interface that is only used
to indicate to the application that this menu should be treated as a
context menu.

CUSTOM COMMAND BARS



Chapter 3 • Customizing the user interface • 223

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

COMMANDITEM CLASS

A CommandItem class represents any item on a command bar.

 ICommandItem : IUnknown Provides access to members that define a command item.

Action: String The name of the VBA macro this command should run when pressed.
BuiltIn: Boolean Indicates whether this command item is built-in or if it was

implemented through VBA.
Caption: String The caption of this command item.
Category: String The name of the category with which this command item is

associated.
Command: ICommand A reference to the internal command object.
FaceID: Variant The bitmap that is used as the icon on this command item.
Group: Boolean Indicates if this command item begins a menu or toolbar group.
HelpContextID: Long The help context ID associated with this command item.
HelpFile: String The help file associated with this command item.
ID: IUID The unique integer ID associated with this command item.
Index: Long The positional index of this command item within its menu or toolbar.
Message: String The status bar message for this command item.
Name: String The name of this command item.
Parent: ICommandBar The menu or toolbar that this command item currently resides on.
Style: esriCommandStyles The display style of this command item.
Tag: String The tag for this command item.
Tooltip: String The tooltip for this command item.
Type: esriCommandTypes The type of this command item.

Delete Removes this object from the commandbar.
Execute Causes the command to execute.
Refresh Causes the command to be redrawn.
Reset Restores this command item's properties to that of the original.

The ICommandItem interface allows you to get or set the properties of
the CommandItem, such as caption, button image, status bar message,
ToolTip, display style, help context ID, and so on. You can obtain a
reference to the command on which this item is based. The
ICommandItem interface also provides methods to execute, delete,
refresh, and reset the CommandItem.

Use the Find method from either ICommandBars or ICommandBar to
obtain a reference to a particular CommandItem.

This VBA code changes the caption, button image, and display style of
the Add Data button on the Standard toolbar. To change the button
image, set the FaceID property to a custom bitmap on disk.

  Dim pStdBar As ICommandBar

  Dim pCmdItem As ICommandItem

  Set pStdBar= Application.Document.CommandBars.Find(ArcID.Standard_Toolbar)

  Set pCmdItem = pStdBar.Find(ArcID.File_AddData)

  pCmdItem.Caption = "Add Layer..."

  pCmdItem.FaceID = LoadPicture("c:\bitmaps\layer.bmp")

  pCmdItem.Style = esriCommandStyleIconAndText

Enumeration esriCommandStyles Command display styles.

0 - esriCommandStyleTextOnly Display text only.
1 - esriCommandStyleIconOnly Display icon only.
2 - esriCommandStyleIconAndText Display icon and text.
4 - esriCommandStyleMenuBar Display bar as main menu.

The esriCommandStyles enumeration is used with the Style property to
set whether the CommandItem is displayed on a command bar using its
caption, image, or both.

*

CommandBar
ICommandBar

ICommandItem

Command-
Item

ICommandItem
IPersist

IPersistStream
ISupportInfo

A command item is any item on a
command bar. For example, button, tools,

and menu items that appear on com-
mand bars are all command items.



224 • Exploring ArcObjects • Volume 1

Enumeration esriCommandTypes Command types.

0 - esriCmdTypeCommand Built in command.
1 - esriCmdTypeMenu Menu.
2 - esriCmdTypeToolbar Toolbar.
3 - esriCmdTypeMacro Macro Item.
4 - esriCmdTypeUIButtonCtrl UIButtonControl.
5 - esriCmdTypeUIToolCtrl UIToolControl.
6 - esriCmdTypeUIComboBoxCtrl UIComboBoxControl.
7 - esriCmdTypeUIEditBoxCtrl UIEditBoxControl.

The esriCommandTypes enumeration is used with the Type property to
specify whether the CommandItem is a command, macro, or UI control.

COMMANDITEM CLASS



Chapter 3 • Customizing the user interface • 225

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

UICONTROL CLASSES

UIControls are VBA-based commands. This means that VBA code stored
in a document or template defines and determines the behavior of this
type of command. If a UIControl was created in a document, it can only
be accessed in that document. If a UIControl was created in a template,
it can be accessed in the template and any document that uses the
template. If a UIControl was created in the Normal template, it can be
accessed at all levels. There are four different types of UIControl:
UIButtonControl, UIComboBoxControl, UIEditBoxControl, and
UIToolControl.

To create a new UIControl, use the New UIControl button on the Cus-
tomize dialog box in the ArcGIS applications; this creates a UIControl
stub. While the Customize dialog box is still open, you can drag the new
UIControl to any toolbar. You can then write the code that defines and
determines the behavior of the UIControl. This code is written in the
Visual Basic Editor in the ThisDocument code window for the document
or template in which you created the UIControl.

The new UIControl is listed in the Object Box on the code window;
select the UIControl in this list. Then, click one of the functions listed
in the Procedures/Events box on the code window. This will stub out
the function in the code window. You can now write your code. When
the Visual Basic Editor is open, your UIButtonControl is in design mode.
To fully test your button in ArcMap or ArcCatalog, you need to close
the Visual Basic Editor.

The interfaces for UIControls are usable only in Visual Basic for
Applications.

ICommandItem

UIControl

Command-
Item

UI Controls represent buttons, combo
boxes, edit boxes, or tools in a custom

dialog box.

Button Combo box Edit box Tool



226 • Exploring ArcObjects • Volume 1

A UIButtonControl acts as a button or menu item that performs a simple
task when clicked.

 IUIButtonControlEvents : UIButtonControl Events interface

Checked: Boolean Requests whether the specified item is checked.

Click The specified item was clicked.
Enabled: Boolean Requests whether the specified item is enabled.

Message: String Requests the current message text for the specified item.
ToolTip: String Requests the current Tooltip text for the specified item.

The IUIButtonControlEvents interface defines the properties of a
UIButtonControl, such as the enabled state, checked state, ToolTip, and
status bar message. This interface also has a Click method that defines
what action occurs when the button is clicked.

The following VBA code is a full implementation of a UIButtonControl
that reports the number of selected features in all the layers. This control
is enabled only when there are layers in the map.

  Private Function UIButtonControl1_Checked() As Boolean

    UIButtonControl1_Checked = False

  End Function

  Private Sub UIButtonControl1_Click()

    Dim pMxDoc As IMxDocument

    Dim SelCount As Long

    Set pMxDoc = Application.Document

    SelCount = pMxDoc.FocusMap.SelectionCount

    MsgBox SelCount

  End Sub

  Private Function UIButtonControl1_Enabled() As Boolean

    Dim pMxDoc As IMxDocument

    Dim LayerCount As Long

    Set pMxDoc = Application.Document

    LayerCount = pMxDoc.FocusMap.LayerCount

    If LayerCount > 0 Then

      UIButtonControl1_Enabled = True

    Else

      UIButtonControl1_Enabled = False

    End If

  End Function

  Private Function UIButtonControl1_Message() As String

    UIButtonControl1_Message = "Return selection count for all layers"

  End Function

  Private Function UIButtonControl1_ToolTip() As String

    UIButtonControl1_ToolTip = "Selection Count"

  End Function

IUIButton-
ControlEvents UIButton-

Control

A UI button control acts as a button or
menu item that performs a simple task

when clicked. You can set properties such
as status bar message, ToolTip, enabled

state, and checked state.

UIBUTTONCONTROL CLASS



Chapter 3 • Customizing the user interface • 227

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

IUIComboBoxControl
IUIComboBox-
ControlEvents

UICombo-
BoxControl

A UIComboBox control is a dropdown list
box control that can be added to a

toolbar.

A UIComboBoxControl has properties and methods that allow you to
change, add, and remove items in the combo box list. The EditChange,
SelectionChange, and Keydown events allow you to control what hap-
pens when a user changes the text or selection in the combo box.

 IUIComboBoxControlEvents : UIComboBoxControl Events interface

EditChange Occurs when the user types within the edit portion of the combobox.

Enabled: Boolean Requests whether the specified item is enabled.
GotFocus Occurs when UIComboBoxControl gets focus.

KeyDown (in keyCode: Long, in shift:
Long)

Occurs when the user presses a key.

LostFocus Occurs when UIComboBoxControl loses focus.

Message: String Requests the current message text for the specified item.
SelectionChange (in newIndex: Long) Occurs when the user selects an item in the combobox.

ToolTip: String Requests the current Tooltip text for the specified item.

The IUIComboBoxControlEvents interface defines the properties of a
UIComboBoxControl, such as the enabled state, ToolTip, and status bar
message. This interface also has EditChange, KeyDown, and
SelectionChange methods that allow you to control what happens when
a user changes the text or selection in the combo box.

The following VBA code displays a message box that reports the cur-
rently selected item when the selection changes in the combo box.

Private Sub UIComboBoxControl1_SelectionChange(ByVal newIndex As Long)

  MsgBox UIComboBoxControl1.Item(newIndex)

End Sub

 IUIComboBoxControl : IDispatch UIComboBox Control interface

EditText: String Returns or sets the edit text within the combobox.
Item (in index: Long) : String Returns the text at the specified index.

ItemCount: Long Returns the number of items currently inside of the combobox.
ListIndex: Long Returns or sets the selected index within the combobox.

AddItem (in itemText: String, index:
Variant)

Adds an item to the combobox, optionally at the specified index.

DeleteItem (in index: Long) Deletes an item from the combobox at the specified index.
RemoveAll Removes all items from the combobox.

The IUIComboBoxControl interface has properties and methods that
allow you to change, edit, and remove items in the combo box list.

The following VBA macro adds items to UIComboBoxControl1 and
selects the first item in the list.

  Public Sub PopulateComboBox()

    UIComboBoxControl1.AddItem "Red"

    UIComboBoxControl1.AddItem "Green"

    UIComboBoxControl1.AddItem "Blue"

    UIComboBoxControl1.AddItem "Yellow"

    UIComboBoxControl1.ListIndex = 0

  End Sub

UICOMBOBOXCONTROL CLASS



228 • Exploring ArcObjects • Volume 1

A UIEditBox has a property to set the text that appears in the edit box.
The Change and Keydown events allow you to control what happens
when a user changes the text in the edit box.

 IUIEditBoxControlEvents : UIEditBoxControl Events interface

Change Occurs when the user types within the editbox.

Enabled: Boolean Requests whether the specified item is enabled.
GotFocus Occurs when UIEditBoxControl gets focus.

KeyDown (in keyCode: Long, in shift:
Long)

Occurs when the user presses a key.

LostFocus Occurs when UIEditBoxControl loses focus.

Message: String Requests the current message text for the specified item.
ToolTip: String Requests the current Tooltip text for the specified item.

The IUIEditBoxControlEvents interface defines the properties of a
UIEditBoxControl, such as the enabled state, ToolTip, and status bar
message.

This interface also has Change and KeyDown methods that allow you to
control what happens when a user changes the text in the edit box.

The following VBA code uses the KeyDown method to report the cur-
rent text in the edit box if the Return key is pressed.

Private Sub UIEditBoxControl1_KeyDown(ByVal keyCode As Long, ByVal shift As
Long)

  If keyCode = vbKeyReturn Then

    MsgBox UIEditBoxControl1.Text

  End If

End Sub

 IUIEditBoxControl : IDispatch UIEditBoxControl interface

Text: String Returns or sets the editbox text.

Clear Clears the contents of the editbox.

The IUIEditBoxControl interface has a Text property for getting and
setting the text in the UIEditBox control and a Clear method for deleting
the text.

The following VBA macro sets the text in a UIEditBoxControl called
UIEditBoxControl1.

Public Sub SetText()

  UIEditBoxControl1.Text = "Hello"

End Sub

UIEDITBOXCONTROL CLASS

IUIEditBoxControl
IUIEditBox-

ControlEvents
UIEditBox-

Control

A UI edit box control is an editable text
box control that can be added to a

toolbar.



Chapter 3 • Customizing the user interface • 229

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

A UIToolControl is similar to a COM command that implements the ITool
interface. This type of control can interact with the application’s display.
You can set all the properties that UIButtonControls have and define
what occurs on events, including mouse move, mouse button press and
release, keyboard key press and release, double-click, and right-click.

 IUIToolControlEvents : UIToolControl Events interface

ContextMenu (in x: Long, in y: Long) :
Boolean

Occurs when the user clicks the right mouse button.

CursorID: Variant Requests the cursor ID of the specified item.
DblClick Occurs when the user double clicks the mouse.

Deactivate: Boolean Occurs when the tool is deactivated.
Enabled: Boolean Requests whether the specified item is enabled.

KeyDown (in keyCode: Long, in shift:
Long)

Occurs when the user presses a key.

KeyUp (in keyCode: Long, in shift: Long) Occurs when the user releases a key.

Message: String Requests the current message text for the specified item.
MouseDown (in button: Long, in shift:

Long, in x: Long, in y: Long)
Occurs when the user presses a mouse button.

MouseMove (in button: Long, in shift:
Long, in x: Long, in y: Long)

Occurs when the user moves the mouse.

MouseUp (in button: Long, in shift: Long,
in x: Long, in y: Long)

Occurs when the user releases a mouse button.

Refresh (in hDC: Long) Occurs when the map is refreshed.
Select Occurs when the tool is selected.

ToolTip: String Requests the current Tooltip text for the specified item.

The IUIToolControlEvents interface defines the properties of a
UIToolControl, such as the enabled state, cursor, ToolTip, and status bar
message. This interface also has methods that allow you to control what
happens on events, including mouse move, mouse button press and
release, keyboard key press and release, double-click, and right-click.

The following VBA code displays the x,y coordinates of the left mouse
button click in the ArcMap status bar message.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

 ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  ' Check for left button press

  If button = 1 Then

    ' Convert x and y to map units.

    Dim pPoint As IPoint

    Dim pMxApp As IMxApplication

    Set pMxApp = Application

    Set pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(x, y)

    ' Set the statusbar message

    Application.StatusBar.Message(0) = Str(pPoint.x) & "," & Str(pPoint.y)

  End If

End Sub

UITOOLCONTROL CLASS

IUIToolControlEvents
UITool-
Control

A UI tool control interacts with the
application’s display.



230 • Exploring ArcObjects • Volume 1

COM CUSTOM COMMANDS AND BUTTON CUSTOM CLASS

You can create COM commands in any development environment that
supports COM—for example, Visual Basic, Visual C++, or Delphi®.
COM-based commands are distributed in the form of ActiveX DLLs.

The interfaces discussed in this section (ICommand, ITool, IToolControl,
ICommandSubtype, and IMultiItem) are generally implemented to create
custom commands. It is very rare that you would use these interfaces to
query the properties of the command. In the application, all commands
are exposed through command items, so you would use the
ICommandItem interface to query the properties or to override some of
the properties of the underlying command.

You can create the following types of commands: Button, Tool,
ToolControl, SubtypedCommand, and MultiItem.

Buttons can be put on toolbars and menus. To create a custom button,
you only have to implement ICommand.

 ICommand : IUnknown Provides access to members that define a COM command.

Bitmap: Long The bitmap that is used as the icon on this command.
Caption: String The caption of this command.
Category: String The name of the category with which this command is associated.
Checked: Boolean Indicates if this command is checked.
Enabled: Boolean Indicates if this command is enabled.
HelpContextID: Long The help context ID associated with this command.
HelpFile: String The name of the help file associated with this command.
Message: String The statusbar message for this command.
Name: String The name of this commmand.
Tooltip: String The tooltip for this command.

OnClick Occurs when this command is clicked.
OnCreate (in hook: Object) Occurs when this command is created.

The ICommand interface must be implemented by all COM-based com-
mands (except for MultiItems). This interface determines the behavior
and properties of simple commands, such as buttons and menu items.
For example, the ICommand interface sets command properties, such as
caption, name, category, bitmap, status bar message, ToolTip, help
context ID and help file, enabled state, and checked state. It also de-
fines what action happens when the command is clicked.

The main concept to understand about implementing ICommand is the
OnCreate method. This method occurs when the command is instanti-
ated and provides a hook to the application object that instantiated the
command. Once you have this reference to the application object, you
can access the other objects in the application. The following VB code
fragment from a class file that implements ICommand gets a reference to
the application object and, from that, gets a reference to the document
object.

  Dim m_pApp As IApplication

  Dim m_pMxDoc As IMxApplication

  Private Sub ICommand_OnCreate(ByVal hook As Object)

    Set m_pApp = hook

    Set m_pMxDoc = m_pApp.Document

  End Sub

ICommand

Command

Button

Buttons are simple commands that act
as button or menu items and perform

simple actions when clicked.

For more information on creating COM compo-
nents, see Chapter 2, ‘Developing with

ArcObjects’.



Chapter 3 • Customizing the user interface • 231

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

ICommand
ITool

Command

Tool

A tool acts as a button that allows
further interaction with the application

display. Tools can only be put on toolbars.

TOOL CUSTOM CLASS

To create a custom Tool object, implement both ICommand and ITool.
The Zoom In tool is a good example of a tool—you click or drag a
rectangle over the map display to define the area on which to zoom.

 ITool : IUnknown Provides access to members that define a tool.

Cursor: Long The mouse pointer for this tool.

Deactivate: Boolean Causes the tool to no longer be the active tool.
OnContextMenu (in X: Long, in Y: Long)

: Boolean
Context menu event occured at the given xy location.

OnDblClick Occurs when a mouse button is double clicked when this tool is
active.

OnKeyDown (in keyCode: Long, in Shift:
Long)

Occurs when a key on the keyboard is pressed when this tool is
active.

OnKeyUp (in keyCode: Long, in Shift:
Long)

Occurs when a key on the keyboard is released when this tool is
active.

OnMouseDown (in Button: Long, in
Shift: Long, in X: Long, in Y: Long)

Occurs when a mouse button is pressed when this tool is active.

OnMouseMove (in Button: Long, in
Shift: Long, in X: Long, in Y: Long)

Occurs when the mouse is moved when this tool is active.

OnMouseUp (in Button: Long, in Shift:
Long, in X: Long, in Y: Long)

Occurs when a mouse button is released when this tool is active.

Refresh (in hDC: Long) Occurs when a screen display in the application is refreshed.

The ITool interface is implemented by specialized commands that can
interact with the application’s display. Only one tool can be active in the
application at a time. With the ITool interface, you can define what
occurs on events, such as mouse move, mouse button press and re-
lease, keyboard key press and release, double-click, and right-click.

The following is a code excerpt from a class that implements
ICommand and ITool. This ArcMap tool displays the x,y coordinates of
the left moust button click in the status bar. The x,y coordinates that are
passed in as arguments to this subprocedure are converted to map
coordinates.

Private Sub ITool_OnMouseDown(ByVal Button As Long, ByVal Shift As Long, _

                                   ByVal X As Long, ByVal Y As Long)

   ' Check to see if left button is pressed

  If Button = 1 Then

    ' Convert x and y to map units. m_pApp is set in ICommand_OnCreate.

    Dim pPoint As IPoint

    Dim pMxApp As IMxApplication

    Set pMxApp = m_pApp

    Set pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(x, y)

    ' Set the statusbar message.

    m_pApp.StatusBar.Message(0) = Str(pPoint.X) & "," & Str(pPoint.Y)

  End If

End Sub



232 • Exploring ArcObjects • Volume 1

ICommand
IToolControl

Command

ToolControl

A tool control is a dropdown list box
control, editable textbox control, or other

type of control that can be added
to a toolbar.

To create a custom ToolControl object,
implement both ICommand and IToolControl.

A command that implements the IToolControl interface passes its win-
dow handle to the application using the hWnd property. The OnDrop
method is used to specify on which type of command bar this tool
control can be put. In most cases, tool controls can only be used on
toolbars.

 IToolControl : IUnknown Provides access to members that define a toolcontrol.

hWnd: Long The handle of the control.

OnDrop (in barType: esriCmdBarType) :
Boolean

Indicates if the drag-drop operation is valid.

OnFocus (in complete:
ICompletionNotify)

Occurs when the control gains focus.

The IToolControl interface is implemented by commands that act as edit
box controls or combo box controls. A command that implements
IToolControl passes its window handle to the application.

 ICompletionNotify : IUnknown Provides access to a method that advises the framework
that the control user has indicated completion.

SetComplete Advises the framework that the control user has indicated completion.

The ICompletionNotify interface provides the IToolControl interface with
a mechanism to report to the application that the tool control no longer
needs focus.

When the ToolControl object gains focus, an ICompletionNotify object is
passed to the tool control as the complete parameter in the IToolControl
OnFocus method. The tool control needs to call the ICompletionNotify
SetComplete method to let the application know that the control should
lose focus.

In the following VB code, the hWnd property passes back the window
handle of a combo box control on a form in the VB project. The
OnDrop method specifies that the tool control can only be dropped
onto toolbars. In the OnFocus method, a variable is set to the
ICompletionNotify object so that SetComplete can be called when the tool
control no longer needs focus. For example, if a combo box control
loses focus after a user selects an item in the combo box, the combo
box Click event calls SetComplete.
  Implements IToolControl
  Public pCompNotify As ICompletionNotify
  Private Property Get IToolControl_hWnd   () As esriCore.OLE_HANDLE
    IToolControl_hWnd = Form1.Combo1.hWnd
  End Property

  Private Function IToolControl_OnDrop  (ByVal barType As _
                                    esriCore.esriCmdBarType) As Boolean
    If barType = esriCmdBarTypeToolbar Then IToolControl_OnDrop = True
  End Function

  Private Sub IToolControl_OnFocus  (ByVal complete As _
                                    esriCore.ICompletionNotify)
    Set pCompNotify = complete
  End Sub

TOOLCONTROL CUSTOM CLASS

Only one instance of a particular tool control is
allowed to exist in the application at

any one time.



Chapter 3 • Customizing the user interface • 233

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

ICommand
ICommandSubtype

Command

Subtyped
Command

A subtyped command object is a group
of related commands that can share

properties. Subtyped commands can be
put on toolbars and menus.

SUBTYPEDCOMMAND CUSTOM CLASS

To create a custom SubtypedCommand class, implement the ICommand
and ICommandSubtype interfaces.

 ICommandSubType: IUnknown Provides access to members that define a subtyped
command.

GetCount: Long The number of commands defined with this CLSID.
SetSubType (in SubType: Long) The subtype of the command.

The ICommandSubType interface is used when you want more than one
command in a single class. You would implement both ICommand and
ICommandSubType in your class. The ICommandSubType interface lets
you specify how many subtypes there are. Then, within the implementa-
tion of each ICommand property, you set the property for each subtype
instead of implementing the ICommand interface multiple times.

This VB code fragment is from a class that implements ICommand and
ICommandSubType; it specifies that the subtyped command contains
two subtypes. In the Caption property of ICommand, a case statement is
used to determine which subtype is being queried.

  Dim m_lSubType As Long

  Private Function ICommandSubType_GetCount() As Long

    ICommandSubType_GetCount = 2

  End Function

  Private Sub ICommandSubType_SetSubType(ByVal SubType As Long)

    m_lSubType = SubType

  End Sub

  Private Property Get ICommand_Caption() As String

    Select Case m_lSubType

    Case 1

        ICommand_Caption = "Command 1"

    Case 2

        ICommand_Caption = "Command 2"

    End Select

End Property



234 • Exploring ArcObjects • Volume 1

IMultiItem
IMultiItemEx

Command

MultiItem

A MultiItem object is a dynamic com-
mand that appears as zero or more

adjacent menu items on a menu, de-
pending on the state of the application.

A MultiItem can be used when items on a menu can’t be determined
prior to run time or the items need to be modified based on the state of
the system. The menu items at the bottom of the File menu, which
represent the most recently used files, are a good example of this.

 IMultiItem : IUnknown Provides access to members that define a multiItem.

Caption: String The caption of the multiItem.
HelpContextID: Long The help context ID associated with this multiItem.
HelpFile: String The name of the help file associated with this multiItem.
ItemBitmap (in Index: Long) : Long The bitmap for the item at the specified index.
ItemCaption (in Index: Long) : String The caption of the item at the specified index.
ItemChecked (in Index: Long) : Boolean Indicates if item at the specified index is checked.
ItemEnabled (in Index: Long) : Boolean Indicates if the item at the specified index is enabled.
Message: String The status bar message for all items on the multiItem.
Name: String The name of the multiItem.

OnItemClick (in Index: Long) Occurs when the item at the specified index is clicked.
OnPopup (in hook: Object) : Long Occurs when the menu that contains the multiItem is about to be

displayed.

The IMultiItem interface allows a single object to act like several adja-
cent menu items. During run time, the framework notifies MultiItem
commands when their host menu is about to be shown. At this point, all
the commands implementing IMultiItem can query the system to deter-
mine how many items should be represented and how each should
appear. The IMultiItem interface allows you to assign properties, such as
caption, bitmap, enabled state, and checked state, to each item. You do
not implement the ICommand interface when creating a MultiItem.

The main concept to understand about implementing IMultiItem is the
OnPopup method. This method occurs just before the menu containing
the MultiItem is displayed. OnPopup provides a hook to the application
object that instantiated the MultiItem and is also used to set the number
of items in the MultiItem. The following VB code fragment gets a refer-
ence to the application object, document object, and map object. This
particular MultiItem will contain an item corresponding to each layer in
the map, so the map layer count is returned to specify the number of
items.

  Dim m_pApp As IApplication 'ArcMap application

  Dim m_pMxDoc As IMxDocument     'ArcMap document

  Dim m_pMap As IMap         'Current focus map

  Dim m_pLayerCnt As Long     'Number of layers in the map

  Private Function IMultiItem_OnPopup(ByVal hook As Object) As Long

    Set m_pApp = hook

    Set m_pMxDoc = m_pApp.Document

    Set m_pMap = m_pMxDoc.FocusMap

    m_pLayerCnt = m_pMap.LayerCount

    IMultiItem_OnPopup = m_pLayerCnt

  End Function

MULTIITEM CUSTOM CLASS



Chapter 3 • Customizing the user interface • 235

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

You can return the count of running applications
and return application references. You can also

add and remove application references.

APPROT COCLASS

The AppROT object represents the application running object table,
which is a global list of all the currently running ArcGIS applications.
AppROT only contains references to application objects that implement
the IApplication interface. ArcMap, ArcCatalog, and other ArcGIS appli-
cations automatically register themselves in the running object table
when starting and remove themselves from the table when terminating.
(The AppROT object should not be confused with Microsoft’s running
object table, which contains all running COM objects.)

Advanced developers can create custom standalone applications with
ArcObjects by creating their own implementation of IApplication. They
can register and expunge application references in AppROT through the
Add and Remove methods.

 IAppROT : IUnknown Provides access to members that manipulate the ESRI
application running object table, AppROT.

Count: Long The count of application references within the running object table.
Item (in Index: Long) : IApplication The application reference at the specified index in the running object

table.

Add (in pApp: IApplication) : Long Adds an application reference to the running object table.
Remove (in cookie: Long) Removes an application reference from the running object table.

The Add method returns a long value called a cookie, which is a refer-
ence to an application. It should be kept by the client application for
eventual use in the Remove method.

This VBA code iterates through all running applications and lists captions.

  Dim pAppROT as AppROT

  Set pAppRot = New AppROT

  Dim i as Integer

  For i = 0 to pApprot.Count - 1

    msgbox pAppROT.Item(i).Caption

  Next

 IAppROTEvents : IUnknown Provides access to events that occur on the ESRI
application running object table.

AppAdded (in pApp: IApplication) Occurs when an application reference is added to the table.
AppRemoved (in pApp: IApplication) Occurs when an application reference is removed from the table.

The AppROT events let interested applications and components know
when an ArcGIS application has been started or terminated. When an
instance of an application starts or terminates, an event will automati-
cally fire from AppROT to let all listeners know about it. This may be
useful if listening components or applications need to maintain switch-
to lists or if they want to synchronize representations between all run-
ning instances so that if something happens in one application, all
others can be informed and update themselves appropriately. Such
coordinating components need to know when new instances start and
when existing ones terminate.

In the following VB code, the StartListening routine initializes the
m_pAppROT variable, which will listen to the IAppRotEvents. The code in
the events uses the TypeOf keyword to determine which application was
started or shutdown, and reports a message with that information.

Whenever an ArcGIS application is started or
dismissed, you can add custom code whenever
that event is fired. Through this code, you can

synchronize the behavior of many running
applications.

IAppROT
IAppROTEvents AppROT

The application running object table is an
instantiable class that gives you access to

a list of all running ArcGIS applications.



236 • Exploring ArcObjects • Volume 1

  Dim WithEvents m_pAppROTEvents As AppROT

  Public Sub StartListening()

    Set m_pAppROTEvents = New AppROT

  End Sub

  Private Sub m_pAppROTEvents_AppAdded(ByVal pApp As IApplication)

    If TypeOf pApp Is IMxApplication Then

      MsgBox "ArcMap started"

    ElseIf TypeOf pApp Is IGxApplication Then

      MsgBox "ArcCatalog started"

    End If

  End Sub

  Private Sub m_pAppROTEvents_AppRemoved(ByVal pApp As IApplication)

    If TypeOf pApp Is IMxApplication Then

      MsgBox "ArcMap shut down"

    ElseIf TypeOf pApp Is IGxApplication Then

      MsgBox "ArcCatalog shut down"

    End If

  End Sub

APPROT COCLASS



Chapter 3 • Customizing the user interface • 237

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

COMPONENTCATEGORYMANAGER COCLASS

IComponentCategory-
Manager Component-

Category-
Manager

Component categories are used by client
applications to efficiently find all compo-

nents of a particular type that are in-
stalled on the system.

The ComponentCategoryManager object provides a mechanism for you
to programmatically add or remove new components to a particular
category and create new component categories.

For example, ArcMap only supports commands that implement the
ICommand interface. A component category, ESRI Mx Commands, is
used to find all the command components that can be used inside
ArcMap.

If component categories were not used, the application would have to
instantiate each COM component and interrogate it to see if it supported
the required functionality, which is not a practical approach. Compo-
nent categories support the extensibility of COM by allowing the devel-
oper of the client application to create and work with classes that be-
long to a particular category. If at a later date a new class is added to
the category, the client application need not be changed to take advan-
tage of the new class; it will automatically pick up the new class the next
time the category is read.

 IComponentCategoryManager :
 IUnknown

Provides access to members that work with the component
category manager.

Create (in Name: String, in Category:
IUID)

Creates a component category.

Setup (in PathName: String, in
ObjectType: IUID, in Category: IUID, in
install: Boolean)

Installs or uninstalls the objects that match the object type into the
given category.

SetupObject (in PathName: String, in
obj: IUID, in Category: IUID, in install:
Boolean)

Installs or uninstalls the given object into the given category.

The IComponentCategoryManager interface has methods that allow you
to create a new component category, add or remove a particular object
to a category, and add or remove all objects of a certain type to a cat-
egory. To get access to the IComponentCategoryManager interface,
create a new instance of a ComponentCategoryManager object.

The following Visual Basic code registers a specific command contained
in a DLL with the ArcMap commands component category.
Public Sub RegObj()

  Dim dllPath As String
  dllPath = "D:\MyTools\MyCustomTool.dll"

  Dim pCCMgr As IComponentCategoryManager
  Set pCCMgr = New ComponentCategoryManager

  Dim objUID As New UID
  objUID.Value = "MyCustomTool.MyTool"

  Dim catUID As New UID
  catUID.Value = "{B56A7C42-83D4-11D2-A2E9-080009B6F22B}"

  pCCMgr.SetupObject dllPath, objUID, catUID, True
End Sub

Set the path to the dll. Change this to the
location of your dll.

 Get a reference to the component category
manager.

Get the UID for the object. This will be the UID
for your command,  the ProgID of your class.

Get the UID of the category.

Register the objects with the category.



238 • Exploring ArcObjects • Volume 1

MOUSECURSOR COCLASS

You can use MouseCursor to set the system mouse cursor to be one of
the standard built-in cursors or a custom cursor. This is useful if you
want to display a wait cursor while your code performs a large process.

 IMouseCursor : IUnknown Provides access to members that set the system cursor.

SetCursor (in cursorID: Variant) Sets the application's cursor to cursor id or picture object specified by
cursorID. The cursor is automatically reset when the MouseCursor
instance is released.

The IMouseCursor interface has one method, SetCursor, which sets the
system’s cursor to the cursor ID or picture object specified by the
cursorID parameter. The cursor is automatically reset when the Mouse-
Cursor instance is released. The instance is released when the calling
procedure ends; when the variable that references the mouse cursor is
set to nothing; or when something, such as the display of a message
box, overrides Windows messaging.

The following VBA example uses the built-in wait cursor. The cursor is
automatically reset when this subprocedure ends.

Public Sub WaitCurs()

  Dim pMouseCursor As IMouseCursor

  Dim i As Integer

  Set pMouseCursor = New MouseCursor

  pMouseCursor.SetCursor 2

  For i = 0 To 10000

    Application.StatusBar.Message(0) = Str(i)

  Next

End Sub

Instead of using one of the built-in cursors, you can set the cursor to a
custom cursor; it can be either a cursor file (.cur) or icon file (.ico). You
can store your custom cursor in an Image control on a form or use the
Visual Basic LoadPicture function to load the cursor.

The following VBA example sets the cursor to the Picture property of an
Image control called Image1, which is on UserForm1.

  Dim pMouseCursor As IMouseCursor

  Set pMouseCursor = New MouseCursor

  pMouseCursor.SetCursor UserForm1.Image1.Picture

The following VBA example uses the LoadPicture function to set the
cursor.

  Dim pMouseCursor As IMouseCursor

  Set pMouseCursor = New MouseCursor

  pMouseCursor.SetCursor LoadPicture("D:\Cursors\Bullseye.cur")

MouseCursor
IMouseCursor

The mouse cursor object is a reference
to the system mouse cursor object.

The values of cursorID that can be used to set
the mouse cursor to one of the built-in cursors.



Chapter 3 • Customizing the user interface • 239

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

IUID

UID

A unique identifier represents the globally unique
identifier for all COM objects.

UID COCLASS

A unique identifier object, or UID, represents the globally unique identi-
fier (GUID) for any COM object.

COM interfaces and coclasses are identified by a GUID.

The GUID for an interface is called an interface ID (IID).

The GUID for a coclass is called a class ID (CLSID).

A ProgID is a text alias for a CLSID; the ProgID is a string composed of
the project name and the class name of the coclass.

The UID object can be used to represent the GUID of an object.

 IUID : IDispatch Provides access to members that work with globally unique
identifier objects.

SubType: Long The subtype of the UID object.
Value: Variant The value of the UID object.

Compare (in otherID: IUID) : Boolean Indicates if the two UID objects represent the same globally unique
identifier.

Generate Creates a new globally unique value for the UID object.

The IUID interface has properties and methods that allow you to set the
value of a UID object, set the subtype of the UID object, generate a new
globally unique value, and compare two UID objects.

In the following VB example, u is defined as a new UID object and is
set to the CLSID of the ArcMap AddData command. That way, u can be
used in any of the methods that require an IUID object.

The IUID interface is the default interface for the UID coclass—you
don’t need to Dim the interface; you can cocreate this object in Visual
Basic, as shown in the following code.

  Dim u As New UID

  u.Value = "{E1F29C6B-4E6B-11D2-AE2C-080009EC732A}"

In the following example, u is set to the ProgID of the ESRI Object
Editor extension.

  Dim u As New UID

  u.Value = "esriCore.Editor"



240 • Exploring ArcObjects • Volume 1

The ArcGIS applications provide a set of simple dialog boxes for getting
input from the user or for displaying information. For more elaborate
dialog boxes, you can create your own forms in VB or VBA.

Coordinate-
Dialog

ICoordinateDialog

GetString-
Dialog

IGetStringDialog

GetUserAnd-
Password-

Dialog

IGetUserAndPasswordDialog

ListDialog
IListDialog

Message-
Dialog

IMessageDialog

Number-
Dialog

INumberDialog

Progress-
Dialog

IProgressDialog
IProgressDialog2

IProgressor
IStepProgressor

Progress-
Dialog-
Factory

IProgressDialogFactory

Framework dialog box objects

The Progress dialog box factory creates and
displays a new progress dialog box

A Progress dialog box displays animation and a
step progressor bar

The Coordinate dialog box is used for getting
user input in the form of x, y coordinates

The Get String dialog is used for getting user
input in the form of a string

The Get User and Password dialog is used for
getting username and password information

The List dialog box is used to present a list of
options and allows the user to select one of the
options

The Message dialog box is used to display a
message to the user

The Number dialog box is used for getting user
input in the form of a number



Chapter 3 • Customizing the user interface • 241

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

Instead of reporting the progress of an operation in the status bar, you can
display a progress dialog box instead. The progress dialog box displays an
animation and a step progress bar. The ProgressDialogFactory coclass
creates and displays a new progress dialog box.

 IProgressDialogFactory : IUnknown Provides access to a method that creates a progress dialog.

Create (in trackCancel: ITrackCancel, in
hWnd: Long) : IStepProgressor

Creates a progress dialog.

The IProgressDialogFactory interface has one method, Create, which
creates and displays a progress dialog box. You can pass a Cancel-
Tracker object into this method to allow the user to cancel the process.

 IProgressDialog2 : IUnknown Provides access to members that work with a progress
dialog.

Animation: esriProgressAnimationTypes The animation type displayed in the dialog.
CancelEnabled: Boolean Indicates if the Cancel button is enabled.
Description: String The description displayed in the dialog.
Title: String The caption displayed in the dialog.

HideDialog Hides the progress dialog.
ShowDialog Shows the progress dialog.

The IProgressDialog interface is the original interface for the progress
dialog box. However, you should use the more recent IProgressDialog2
interface instead. The IProgressDialog2 interface has methods for hiding
and showing the progress dialog box.

The Title and Description properties can be used to provide the user
with information about the process that the dialog box is tracking.

The CancelEnabled property specifies if the Cancel button is enabled. If
CancelEnabled is set to True, you can use the Continue method on the
CancelTracker object to determine if the user hit Cancel and the opera-
tions should be stopped.

The Animation property specifies the type of animation displayed in the
dialog box.

Enumeration
esriProgressAnimationTypes

Progress animation types.

0 - esriProgressGlobe Spinning globe animation.
1 - esriDownloadFile Downloading file animation.

The animation in the dialog box can either be the spinning globe ani-
mation or the downloading file animation.

The following VBA code creates and displays a progress dialog box and
shows the progress of a loop counting to 10,000.

Sub ProgDialog()

  Dim pProDlgFact As IProgressDialogFactory

  Dim pStepPro As IStepProgressor

  Dim pProDlg As IProgressDialog2

  Dim pTrkCan As ITrackCancel

  Dim boolCont As Boolean

  Dim i As Long

PROGRESSDIALOGFACTORY AND PROGRESSDIALOG

The progress dialog box

Progress-
Dialog

IProgressDialog
IProgressDialog2

IProgressor
IStepProgressor

Progress-
Dialog-
Factory

IProgressDialogFactory

A progress dialog box displays an anima-
tion and a step progressor bar.



242 • Exploring ArcObjects • Volume 1

  '  Create a CancelTracker

  Set pTrkCan = New CancelTracker

  ' Create the ProgressDialog. This automatically displays the dialog

  Set pProDlgFact = New ProgressDialogFactory

  Set pProDlg = pProDlgFact.Create(pTrkCan, Application.hWnd)

  ' Set the properties of the ProgressDialog

  pProDlg.CancelEnabled = True

  pProDlg.Description = "This is counting to 10000."

  pProDlg.Title = "Counting..."

  pProDlg.Animation = esriDownloadFile

  ' Set the properties of the Step Progressor

  Set pStepPro = pProDlg

  pStepPro.MinRange = 0

  pStepPro.MaxRange = 10000

  pStepPro.StepValue = 1

  pStepPro.Message = "Hello"

  ' Step. Do your big process here.

  boolCont = True

  For i = 0 To 10000

    Application.StatusBar.Message(0) = Str(i)

    'Check if the cancel button was pressed. If so, stop process

    boolCont = pTrkCan.Continue

    If Not boolCont Then

      Exit For

    End If

  Next i

  ' Done

  Set pTrkCan = Nothing

  Set pStepPro = Nothing

  Set pProDlg = Nothing

End Sub

PROGRESSDIALOGFACTORY AND PROGRESSDIALOG



Chapter 3 • Customizing the user interface • 243

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

To get access to the ICoordinateDialog interface, instantiate a new
CoordinateDialog object.

 ICoordinateDialog : IUnknown Provides access to members that work with a dialog for
getting coordinates.

X: Double The X value entered in the dialog.
Y: Double The Y value entered in the dialog.

DoModal (in Title: String, in initialX:
Double, in initialY: Double, in
numDecs: Long, in hWnd: Long) :
Boolean

Shows the dialog.

The ICoordinateDialog interface has a DoModal method for displaying
the dialog box. There are parameters on this method for setting the
dialog box title, the initial x-value, the initial y-value, and the number of
decimal places in the values. If nonnumeric values were entered or if
the dialog box was cancelled, the DoModal method returns False. The x
and y properties allow you to get the x- and y-values that were entered
in the dialog box.

The following VBA code shows a CoordinateDialog and reports the x-
and y-values.

Public Sub CoordDlg()

  Dim pCoordDlg As ICoordinateDialog

  Dim boolValid As Boolean

  Set pCoordDlg = New CoordinateDialog

  boolValid = pCoordDlg.DoModal("Enter X & Y coordinates", 1, 1, _

        3, Application.hWnd)

  If boolValid Then

    MsgBox "X: " & pCoordDlg.X & vbNewLine & _

           "Y: " & pCoordDlg.Y

  Else

    MsgBox "Bad entries."

  End If

End Sub

COORDINATEDIALOG COCLASS

The GetCoordinateDialog

Coordinate-
Dialog

ICoordinateDialog

The Coordinate dialog box gets user
input in the form of x,y coordinates.



244 • Exploring ArcObjects • Volume 1

To get access to the IGetStringDialog interface, instantiate a new Get-
StringDialog object.

 IGetStringDialog : IUnknown Provides access to members that work with a dialog for
getting a string.

Value: String The value of the string.

DoModal (in dialogTitle: String, in
getStringLabel: String, in initialValue:
String, in hWnd: Long) : Boolean

Shows the dialog.

The IGetStringDialog interface has a DoModal method for displaying the
dialog box. There are parameters on this method for setting the dialog
box title, the label for the string, and the initial value for the string. If the
dialog box was cancelled, the DoModal method returns False.

The Value property allows you to get the value of the string that was
entered in the dialog box.

The following VBA code shows a GetStringDialog and reports the string
value that was entered in the dialog box.

Public Sub GetStrDlg()

  Dim pGetStrDlg As IGetStringDialog

  Dim boolOK As Boolean

  Set pGetStrDlg = New GetStringDialog

  boolOK = pGetStrDlg.DoModal("Please enter a string", _

      "String:", "Hello", Application.hWnd)

  If boolOK Then

    MsgBox pGetStrDlg.Value

  Else

    MsgBox "Cancelled."

  End If

End Sub

GETSTRINGDIALOG COCLASS

The get string dialog box

GetString-
Dialog

IGetStringDialog

The get string dialog box gets user input
in the form of a string.



Chapter 3 • Customizing the user interface • 245

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

To get access to the IGetUserAndPasswordDialog interface, instantiate a
new GetUserAndPasswordDialog object.

 IGetUserAndPasswordDialog :
 IUnknown

Provides access to members that work with a dailog for
getting user and password information.

Password: String The password entered in the dialog.
UserName: String The user name entered in the dialog.

DoModal (in dialogTitle: String, in
stringLabel: String, in hWnd: Long) :
Boolean

Shows the dialog.

The IGetUserAndPasswordDialog interface has a DoModal method for
displaying the dialog box. There are parameters on this method for
setting the dialog box title and a message to be displayed in the dialog
box. If the dialog box was cancelled, the DoModal method returns False.

The UserName property allows you to get the username that was entered
in the dialog box.

The Password property allows you to get the password that was entered
in the dialog box.

The following VBA code shows a GetUserAndPasswordDialog and vali-
dates the username and password that were entered in the dialog box.

Public Sub GetUserPassDlg()

  Dim pGetUserPassDlg As IGetUserAndPasswordDialog

  Dim boolOK As Boolean

  Set pGetUserPassDlg = New GetUserAndPasswordDialog

  boolOK = pGetUserPassDlg.DoModal("Login", _

       "Login for this document:", Application.hWnd)

  If boolOK Then

    If pGetUserPassDlg.UserName = "GISTeam" And _

     pGetUserPassDlg.Password = "guru" Then

      MsgBox "You're in!"

    Else

      MsgBox "Wrong username or password."

    End If

  Else

    MsgBox "Cancelled."

  End If

End Sub

GETUSERANDPASSWORDDIALOG COCLASS

The get user and password dialog box

GetUserAnd-
Password-

Dialog

IGetUserAnd-
PasswordDialog

The get user and password dialog box
gets username and password informa-

tion.



246 • Exploring ArcObjects • Volume 1

To get access to the IListDialog interface, instantiate a new ListDialog
object.

 IListDialog : IUnknown Provides access to members that work with a dialog for
displaying a list.

Choice: Long The index of the string chosen (use after calling DoModal). Strings
are numbered starting at 0 in the order that they were added, not
the order that they appear in the dialog.

AddString (Choice: String) Adds a string to the list that the dialog will show. These strings will be
sorted in alphabetical order.

DoModal (in Title: String, in
initialChoice: Long, in hWnd: Long) :
Boolean

Displays the list dialog and lets the user select a choice. Returns false
if the user hits the cancel button.

The IListDialog interface has an AddString method for populating the list
that is displayed in the dialog box, and a DoModal method for display-
ing the dialog box. The DoModal method has parameters for setting the
title of the dialog and the initial selection. This method returns False if
the dialog box was cancelled. When the dialog box is displayed, the
items in the list are sorted in alphabetical order.

The Choice property returns the index of the selected item in the list.
The items are numbered starting at zero in the order that they were
added, not in the order in which they appear in the dialog box.

The following VBA code shows a list in the dialog box, then reports the
string associated with the selected item.

Public Sub ListDlg()

  Dim pListDlg As IListDialog

  Dim boolOK As Boolean

  Set pListDlg = New ListDialog

  pListDlg.AddString "California"

  pListDlg.AddString "Arizona"

  pListDlg.AddString "Utah"

  pListDlg.AddString "Nevada"

  boolOK = pListDlg.DoModal("The list", 0, Application.hWnd)

  If boolOK Then

    Select Case pListDlg.Choice

    Case 0

      MsgBox "California"

    Case 1

      MsgBox "Arizona"

    Case 2

      MsgBox "Utah"

    Case 3

      MsgBox "Nevada"

    End Select

  Else

    MsgBox "Cancelled."

  End If

End Sub

LISTDIALOG COCLASS

The ListDialog

ListDialog
IListDialog

The list dialog box presents a list of
options and allows the user to select one

of the options.



Chapter 3 • Customizing the user interface • 247

C
u

st
o

m
iz

at
io

n
fr

am
ew

o
rk

To get access to the IMessageDialog interface, instantiate a new Message-
Dialog object.

 IMessageDialog : IUnknown Provides access to a method that works with a dialog for
displaying a message.

DoModal (in Title: String, in Message:
String, in OKButtonMessage: String, in
CANCELButtonMessage: String, in
hWnd: Long) : Boolean

Shows the dialog with a message.

The IMessageDialog interface has a DoModal method for displaying the
dialog box. There are parameters on this method for setting the dialog
box title, the message, the caption for the OK button, and the caption
for the Cancel button. If the dialog box was cancelled, the DoModal
method returns False.

The following VBA code shows a MessageDialog and checks whether
the user clicked OK or Cancel.

Public Sub MsgDlg()

  Dim pMsgDlg As IMessageDialog

  Dim boolYes As Boolean

  Set pMsgDlg = New MessageDialog

  boolYes = pMsgDlg.DoModal("Processing...", _

     "This will take awhile. Do you want to continue?", "YES", _

     "NO", Application.hWnd)

  If boolYes Then

    MsgBox "Continuing"

  Else

    MsgBox "Stopping."

  End If

End Sub

MESSAGEDIALOG COCLASS

The message dialog box

Message-
Dialog

IMessageDialog

The message dialog box displays a
message to the user.



248 • Exploring ArcObjects • Volume 1

To get access to the INumberDialog interface, instantiate a new Number-
Dialog object.

 INumberDialog : IUnknown Provides access to members that work with a dialog for
getting a number.

Value: Double The number value entered in the dialog.

DoModal (in Title: String, in initialValue:
Double, in numDecs: Long, in hWnd:
Long) : Boolean

Shows the dialog.

The INumberDialog interface has a DoModal method for displaying the
dialog box. There are parameters on this method for setting the dialog
box title, an initial value for the number, and the number of decimal
places. If a nonnumeric value was entered or if the dialog box was
cancelled, the DoModal method returns False.

The Value property allows you to get the number that was entered in the
dialog box.

The following VBA code shows a NumberDialog and reports the num-
ber that was entered in the dialog box.

Public Sub NumbDlg()

  Dim pNumbDlg As INumberDialog

  Dim boolValid As Boolean

  Set pNumbDlg = New NumberDialog

  boolValid = pNumbDlg.DoModal("Enter a number", 1, 3, _

       Application.hWnd)

  If boolValid Then

    MsgBox pNumbDlg.Value

  Else

    MsgBox "Bad entry."

  End If

End Sub

NUMBERDIALOG COCLASS

The number dialog box

Number-
Dialog

INumberDialog

The number dialog box gets user input in
the form of a number.



249

Composing maps

The ArcMap application employs a presentation model

that closely parallels our everyday experience of reading

maps. You can customize the geographic expression of

your user interface by programming the ArcMap object

model.

The topics covered in this chapter include: controlling the

application through the core map objects • affecting the ArcMap

layout view with the page layout objects • adding graphics with the map

element objects • augmenting the cartographic display with data

window objects • drawing map features with the layer objects

• providing spatial context to the map with map surround objects

• standardizing symbology with style gallery objects • providing a visual

measurement framework with map grid objects • showing

quantitative information with the number objects • annotating the

map with labeling objects

4
Steve Van Esch, Eleanor Blades, Sentha Shanmugam, Scott Campbell, Larry Young



250 • Exploring ArcObjects • Volume 1

*

Element

StyleGallery

The Map object is a container for vector,
raster, and graphic data.  Maps reside on
the page layout and contain the geographic
data typically seen on a map

The Page object
represents the

page of paper the
layout resides on

The application display helps
manage all of the displays
present in the application

The application object represents
the running ArcMap application

The style gallery is a list of predefined
items (styles) used to create maps

MxDocument controls the current active
view that specifies whether the user is

interacting with the entire map layout or
a specific data frame in the layout

IExtension

Extension

MapSurround SpatialBookmark

A layer is a specific class of data
added to a Map. Layer types include
features (coverages, shapefiles,
geodatabases), rasters, images, TINs,
CAD, IMS, and annotation

A map surround is a specific
group of elements that is
associated with a map.  Map
surrounds include north arrows,
scale bars, and legends

A spatial bookmark is a
specific map extent that
has been saved along
with a name identifying it

IAppDisplay
IDisplay

IDraw
IScreenDisplay

IScreenDisplay2

AppDisplay

Elements are a broad group of items
that can be placed on the page layout

or on a map.  For example, a map title
is a text element placed on the page

layout

The table of contents
catalog view represents the

Source tab in ArcMap's table
of contents

ArcMap supports extensions that are
automatically created when the
application starts. The ArcMap editing
tools are an example of an extension

IIdentifyDialog
IIdentifyDialog2

IIdentifyDialogProps IdentifyDialog

The selection environment controls
the application's selection behavior

IMapEvents

MapEvents

*

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets
IDocumentDefault-

Symbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

IPersist
IPersistStream

ISelectionEnvironment
ISelectionEnvironmentLayer

ISelectionEnvironmentStorage
ISelectionEnvironmentThreshold

Selection-
Environment

IActiveViewEvents
IComProperty-

SheetEvents
IContentsView

TOCView

Application

IApplication
IApplicationWindows

IExtensionManager
IDockableWindow-

Manager
IEnumPrinterNames

IMultiThreaded-
Application

IMxApplication
IObjectFactory

 IVBAApplication
IWindowPosition

IdentifyDialog is the dialog box for
quickly querying data attributes

DataWindow

ArcMap core objects

TOCCatalog
View

IDocumentEvents

This object provides
access to the

IMapEvents
outbound interface

Page

IActiveView
IActiveViewEvents

IBasicMap
IConnectionPointContainer

IDisplayAdmin
IDisplayEvents

IGraphicsContainer
IGraphicsContainerSelect

IMap
IMapBarriers

IMapBookmarks
IMapEvents

IMapGeographicTransformations
IPersist

IPersistStream
IRelationshipClassCollection

ISelectionEvents
IStandaloneTableCollection

ITableCollection
ITransformEvents

IViewManager

Map

PageLayout

Layer

The table of contents display
view represents the Display tab

in ArcMap's table of contents
TOCDisplay-

View



Chapter 4 • Composing maps • 251

A
rc

M
ap

To better comprehend programming against the ArcMap object model, it
helps to understand the relationship between the ArcMap objects and
the user interface. This illustration shows several important parts of the
map that you can control with key objects. Compare this to the object
model diagram on the facing page.

ARCMAP USER INTERFACE

FeatureLayer
(Map Layer)

MapDocument

Page

Map (focus) in
a data frame

TextElement in
a Map

Legend
(MapSurround)

MapTitle (MapSurround) NorthArrow (MapSurround)
PageLayout (layout view)

Focus map (data view)TOCDisplayView TOCCatalogView

For more information about ArcMap user interface concepts, see Using
ArcMap.



252 • Exploring ArcObjects • Volume 1

APPLICATION COCLASS

The Application object directly manages a collection of objects, includ-
ing MxDocument, AppDisplay, SelectionEnvironment, and any registered
extensions; it also manages a StatusBar, Templates, Paper, and printer
object. For more information, see Chapter 3, ‘Customizing the user inter-
face’, and Chapter 5, ‘Displaying graphics’. When you first start ArcMap,
the Application object is first created, and then it in turn instantiates all
of the objects it manages.

 IApplication : IDispatch Provides access to members that query or modify the
application.

Caption: String The caption of this application.
CurrentTool: ICommandItem The currently selected tool.
Document: IDocument The document that is currently loaded in the application.
hWnd: Long The handle of the application's window.
Name: String The name of this application.
StatusBar: IStatusBar The statusbar of this application.
Templates: ITemplates The templates collection.
VBE: Object The Visual Basic Environment.
Visible: Boolean Indicates if the application window is visible.

FindExtensionByCLSID (in
extensionCLSID: IUID) : IExtension

Finds an extension by its CLSID.

FindExtensionByName (in
extensionName: String) : IExtension

Finds an extension by its name.

IsDialogVisible (in dialogID: Long) :
Boolean

Indicates if the specified dialog is visible in the application.

LockCustomization (in Password:
String, custFilter: ICustomizationFilter)

Locks the application's user interface against any customizations.

NewDocument (selectTemplate:
Boolean, templatePath: String)

Creates a new document in this application.

OpenDocument (Path: String) Opens a document in this application.
PrintDocument Displays the Print dialog.
PrintPreview Displays how the document will look like when it is printed.
RefreshWindow Redraws the application window.
SaveAsDocument (saveAsPath: String,

saveAsCopy: Boolean)
Saves the document that is currently open in this application to a

different file.
SaveDocument (saveAsPath: String) Saves the document that is currently open in this application.
ShowDialog (in dialogID: Long, bShow:

Variant) : Variant
Displays the specified dialog in the application.

Shutdown Terminates the application.
UnlockCustomization (in Password:

String)
Unlocks previous user interface customization lock.

The IApplication interface provides access to the MxDocument object, the
extensions, the StatusBar object, the Templates object, the currently se-
lected tool, and the Visual Basic Editor. There are several methods that
allow you to open, save, and print documents; lock and unlock the appli-
cation from user customizations; display dialog boxes; and exit the appli-
cation. For more details, see Chapter 3, ‘Customizing the user interface’.

 IMxApplication : IUnknown Provides access to members that control the Mx
Application.

Display: IAppDisplay The application display.
Paper: IPaper The current paper settings.
Printer: IPrinter The current printer settings.
SelectionEnvironment:

ISelectionEnvironment
The selection environment.

CopyToClipboard Copies the current view to the clipboard.
Export Exports the current document.

The IMxApplication interface provides access to the remainder of the
objects the Application automatically creates, including AppDisplay,
Paper coclass, Printer, and SelectionEnvironment. Additionally, IMx-
Application exposes methods for exporting the current map document
or copying it to the system clipboard.

Application

IApplication
IApplicationWindows

IExtensionManager
IDockableWindow-

Manager
IEnumPrinterNames

IMultiThreaded-
Application

IMxApplication
IObjectFactory

 IVBAApplication
IWindowPosition

This object represents the running
application and is the initial point of
access to many other objects in the

ArcMap application.



Chapter 4 • Composing maps • 253

A
rc

M
ap

  Dim pMxApp As IMxApplication

  Set pMxApp = Application 'Query Interface

  MsgBox pMxApp.SelectionEnvironment.SearchTolerance

 IApplicationWindows : IUnknown Provides access to members that control the DataWindow
Container.

DataWindows: ISet The data windows in the application.

IApplicationWindows provides access to the application’s data windows.
This interface has one property, DataWindows, which returns an ISet
reference to a Set object. The Set object is used because it can hold a
collection of heterogeneous objects and, as is the case here, one data
window may be a magnifier window and another an overview window.
All data windows implement the IDataWindows interface. The example
below moves the first data window found to the top-left corner of the
terminal display and makes it 500 x 500 screen pixels.

Public Sub AccessDataWindows()

  Dim pAppWindows As IApplicationWindows

  Dim pDataWindow As IDataWindow

  Dim pWindowsSet As ISet

  Set pAppWindows = Application 'QI

  Set pWindowsSet = pAppWindows.DataWindows

  pWindowsSet.Reset

  Set pDataWindow = pWindowsSet.Next

  If pDataWindow Is Nothing Then Exit Sub

  pDataWindow.PutPosition 0, 0, 500, 500

End Sub

 IEnumPrinterNames : IUnknown Provides access to an enumeration of all the Printers.

Next: String The next Printer Name.
Reset Reset the Enumeration to the beginning.

Use IEnumPrinterNames to loop through all of the available printers
currently configured on your machine. The Next property returns the
name of a printer, which can be passed to IPaper::PrinterName on the
Paper object to change the current target printer.

 IObjectFactory : IUnknown Provides a means for automation clients to create
arbitrary objects within the application's process space.

Create (in objectID: Variant) : IUnknown
Pointer

Creates an instance of an object identified by objectID.

The IObjectFactory interface is a new interface released at ArcGIS 8.1 that
allows users driving ArcMap through automation to create objects in the
ArcMap process space. This eliminates marshalling between objects cre-
ated in, for example, a Visual Basic application and ArcMap. Eliminating
marshalling greatly improves performance as ArcMap can work directly
with new objects instead of through intra-application communication.

For documentation on the IDockableWindowManager, IExtensionManager,
IMultiThreadedApplication, and IVBAApplication interfaces, see Chapter 3,
‘Customizing the user interface’.

For more information, see the topic on customiz-
ing ArcMap through automation at the end of

this chapter.

APPLICATION COCLASS



254 • Exploring ArcObjects • Volume 1

MXDOCUMENT COCLASS

The ArcMap document is called MxDocument; its role is to control the
representation of data. The ArcMap application automatically creates this
object when the application first starts.

In the ArcMap object model, the MxDocument is cocreatable in case
you are not customizing within an ArcMap session—instantiating a new
MxDocument creates a new instance of the Application object, which in
turn creates the MxDocument object. There is one MxDocument per
session of ArcMap.

MxDocument specifically creates and manages the following objects: an
empty Map, a PageLayout, the TOCCatalogView, the TOCDisplayView,
the StyleGallery, and the TableProperties. You can obtain a reference to
the MxDocument through IApplication::Document.

One of the most important aspects of MxDocument is the notion of its
views. You can think of the view as the main application window, or the
place where all data is drawn. ArcMap currently has two different views,
data view and layout view—developers using C++ can create additional
ones.

Objects implement the IActiveView interface to establish themselves as
views. The data view corresponds to a Map object, and the layout view
corresponds to the PageLayout object. Either of these objects can be set
as the document’s active view, and only one view is visible at a time. A
map document can contain several Map objects, one per data frame.
The data view always corresponds to the Map currently in focus.

Each view consists of a ScreenDisplay object, which performs the actual
drawing. Each ScreenDisplay object in turn has a DisplayTransformation
object, which manages the map-to-device transformation. When you
need to draw features or get at a Map’s spatial reference, for example, it
is very important you get a handle to the correct ScreenDisplay.

To help with this, ArcMap exposes the AppDisplay object, which has a
handy property for returning the ScreenDisplay with focus. In addition,
this object has its own implementation of IScreenDisplay and, in this
case, if you draw or pan, the results will appear in all of the displays
currently instantiated in the application. For more details, see the docu-
mentation on the AppDisplay object later in this chapter.

IChangeLayout
IContentsViewEdit

IDataGraphs
IDocument

IDocumentDirty
IDocumentDatasets
IDocumentDefault-

Symbols
IDocumentEvents

IDocumentEventsDisp
IDocumentInfo
IMxDocument

IPersist
IPropertySupport

IReportUnitFormat

MxDocument

Each running instance of ArcMap works
with a current map document, which is

represented by MxDocument.

PageLayout Map

IActiveView

MxDocument

IMaps

*

 MxDocument controls the current active view,
which specifies whether the user is interacting

with the map as a whole through its page
layout, or whether the user is viewing one of the

maps in data view.



Chapter 4 • Composing maps • 255

A
rc

M
ap

 IMxDocument : IUnknown Provides access to members that control the Mx
Document.

ActivatedView: IActiveView The activated view.  This is the same as the active view unless a data
frame is activated within a layout.

ActiveView: IActiveView The active view.
ActiveViewCommand: ICommand The command associated with the active view.
ContentsView (in Index: Long) :

IContentsView
The contents view at the specified index.

ContentsViewCount: Long The number of contents views in the document.
ContextItem: IUnknown Pointer The last item that was right-clicked.
CurrentContentsView: IContentsView The current contents view of the document.
CurrentLocation: IPoint The current mouse location in map units.
DefaultColor (in Type:

tagesriMxDefaultColorTypes) : IColor
The default color for the given type.

DefaultTextFont: Font The default font for text.
DefaultTextFontSize: IFontSize The default font size for text.
DelayUpdateContents: Boolean Indicates document update notifications should be ignored.
FocusMap: IMap The current focus map.
Maps: IMaps The collection of maps in the document.
OperationStack: IOperationStack The operation stack.
PageLayout: IPageLayout The page layout.
RelativePaths: Boolean Indicates if path names are stored relative to the document.
SearchTolerance: Double The global search tolerance in geographic units for selection.
SearchTolerancePixels: Long The global search tolerance in pixels for selection.
SelectedItem: IUnknown Pointer The selected item in the layer control.
SelectedLayer: ILayer The selected layer in the layer control.
StyleGallery: IStyleGallery Reference to the document's Style Gallery.
TableProperties: ITableProperties Table properties, for Layers and Tables in ArcMap.

AddLayer (in Layer: ILayer) Adds a layer to the current focus map.
CanInsertObject (pEnabled: Boolean) Indicates if the document allows objects to be inserted.
InsertObject Inserts an object into the document.  Displays the insert object dialog.
UpdateContents Notifies the document that the contents have been updated.

The following VBA code checks the type of active view:

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  If TypeOf pMxDoc.ActiveView Is IMap Then

    MsgBox "Active View is a Map"

  ElseIf TypeOf pMxDoc.ActiveView Is IPageLayout Then

    MsgBox "Active view is the PageLayout"

  End If

The following VBA code returns the total number of maps managed by
the document:

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  MsgBox pMxDoc.Maps.Count

The following VBA code accesses the document’s map, which has
focus (though this is not necessarily the active view):

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  MsgBox pMap.LayerCount

IMxDocument is a starting point for accessing
most of the other ArcMap objects including the

views, the collection of maps, the page layout,
the style gallery, and the table properties. This

interface also manages many properties reflected
in the running application including the current
table of contents, the currently selected item in

the table of contents, and the current mouse
location.

IMxDocument is also useful when working
with content views—the different tabs in the
table of contents. Some members that work

with content views are SelectedItem,
ContextItem, and UpdateContents. Here are

some common problems and solutions.

I need to know what items are selected
in the active content view. Use the

SelectedItem property to obtain a reference to
the selected item in the TOC. This property

returns an IUnknown because an item in the
TOC can be any number of things. For example,
when working in the Display tab, the reference

could be to a Map object if you have a data
frame selected, one of the Layer objects

(FeatureLayer, FDOGraphicsLayer, or other)
if you have a layer selected, or a LegendGroup
if you have a unique value or heading selected. In

the Source tab, the reference can be to any of
the above objects plus a Table, FeatureDataset,

or Workspace. In the case where more than
one item is selected, the reference is to the Set

object.

I need to refresh the TOC because of
changes I have made programmatically.

Use UpdateContents to automatically refresh
the active TOC. Alternatively, you can use

CurrentContentsView to get a reference to
the active TOC and call

IContentsView::Refresh.

I’m creating a content menu and need to
know which item was right-clicked.

ContextItem returns the last item that was
right-clicked; it works the same as SelectedItem.

The Map also has an Expanded property to
collapse or open or close the map tree in the

Contents view.

MXDOCUMENT COCLASS



256 • Exploring ArcObjects • Volume 1

 IChangeLayout : IUnknown Provides access to members that control changing the
document's layout.

ChangeLayout: Boolean Indicates if the wizard used to select a new layout is shown.

Use the IChangeLayout interface to change the template the document is
currently based on. A template is a type of map document that provides
a quick way to create a new map. Templates often contain data, a cus-
tom interface, and a predefined layout that arranges map elements such
as North arrows, scale bars, and logos. IChangeLayout has one member
called ChangeLayout that launches a wizard from which a new template
can be selected.

 IContentsViewEdit : IUnknown Provides access to members that control Contents View
Edit.

AddContentsView (in ContentsView:
IContentsView)

Adds a contents view object to the TOC.

ClearContentsViews Removes all current contents views.

Use the IContentsViewEdit interface to manage the content views (tabs)
in the table of contents. This interface has methods for adding new
content views and removing existing ones. Custom content views are
created by implementing the IContentsView interface. IContentsViewEdit
also has a member that clears all of the content views. ArcMap ships
with two content views, Display and Source. Use
IMxDocument::ContentsView or IMxDocument::CurrentContentsView to
obtain a reference to a particular contents view.

 IDataGraphs : IUnknown Provides access to members that control the datagraph
collection.

Count: Long Number of graphs.
Item (in Index: Long) : IDataGraph The graph at the given index.

Add (in graph: IDataGraph) Adds a graph to the collection.
Create: IDataGraph Creates a new graph and returns it.
Remove (in graph: IDataGraph) Removes a graph from the collection.
RemoveAt (in Index: Long) Removes a graph at the specified index.
Reset Removes all graphs from the collection.

The IDataGraphs interface manages the collection of data graphs cur-
rently associated with the document. Use IDataGraphs to create new
data graphs, clear old ones, or obtain a reference to a specific graph.

 IDocumentDatasets : IUnknown Provides access to members that control the Dataset
Container.

Datasets: IEnumDataset The datasets in the document.

Use the IDocumentDatasets interface to access the datasets currently
loaded in the document. IDocumentDatasets has only one member,
Datasets, which returns an IEnumDataset reference, which can be used
to cycle through all of the datasets in the document.

Public Sub DocumentDatasets()

  Dim pDocumentDatasets As IDocumentDatasets

  Dim pEnumDataset As IEnumDataset

  Dim pDataset As IDataset

  Set pDocumentDatasets = Application.Document

The Change Layout dialog box in ArcMap

MXDOCUMENT COCLASS



Chapter 4 • Composing maps • 257

A
rc

M
ap

  Set pEnumDataset = pDocumentDatasets.Datasets

  pEnumDataset.Reset

  Set pDataset = pEnumDataset.Next

  Do While Not pDataset Is Nothing

    MsgBox pDataset.Name

    Set pDataset = pEnumDataset.Next

  Loop

End Sub

 IDocumentDefaultSymbols : IUnknown Provides access to members that control Default Symbols
for the document.

AreaPatch: IAreaPatch Default Area Patch.
Callout: IFormattedTextSymbol Default Callout.
CustomTOCFont: Font Custom TOC Font.
CustomTOCFontSize: Double Custom TOC Font Size in Points.
FillSymbol: IFillSymbol Default Fill Symbol.
LinePatch: ILinePatch Default Line Patch.
LineSymbol: ILineSymbol Default Line Symbol.
MarkerSymbol: IMarkerSymbol Default Marker Symbol.
PatchHeight: Double Default Patch Height in Points.
PatchWidth: Double Default Patch Width in Points.
TextSymbol: ITextSymbol Default Text Symbol.

The IDocumentDefaultSymbols interface provides a central point for
accessing and managing symbols used by many tools. For example,
layout tools, such as the New Rectangle tool, rely on the symbols man-
aged by this interface to symbolize the graphics they create; in this case,
the New Rectangle tool creates a polygon graphic using the fill symbol
stored in IDocumentDefaultSymbols::FillSymbol. The example below
shows one method to change the default fill symbol.

Public Sub ChangeDefaultFillSymbol()

  Dim pDefaultSymbols As IDocumentDefaultSymbols

  Dim pFillSymbol As IFillSymbol

  Dim pColor As IRgbColor

  Set pDefaultSymbols = Application.Document

  Set pFillSymbol = pDefaultSymbols.FillSymbol

  Set pColor = New RgbColor

  pColor.Red = 255

  pFillSymbol.Color = pColor

  pDefaultSymbols.FillSymbol = pFillSymbol

End Sub

 IDocumentEvents : IUnknown Provides access to events that occur in ArcMap.

ActiveViewChanged Fired when the active view changes.
BeforeCloseDocument: Boolean Fired before a document is closed. Return True to abort the close

process.
CloseDocument Fired when a document is closed.
MapsChanged Fired when a change is made to the map collection.
NewDocument Fired when a new document is created.
OnContextMenu (in X: Long, in Y: Long,

out handled: Boolean)
Indicates if a context menu should be displayed at the given xy

location. Return true if handled.
OpenDocument Fired when a document is opened.

IDocumentEvents is the outbound interface on the MxDocument object.
Use this interface to listen for specific events related to map documents.

MXDOCUMENT COCLASS



258 • Exploring ArcObjects • Volume 1

For example, an event is fired whenever a map document is opened.
For more details on map document events, see IDocumentEventsDisp
below.

 IDocumentEventsDisp : IDispatch Provides access to events that occur in ArcMap.

ActiveViewChanged: Boolean Fired when the active view has changed.
BeforeCloseDocument: Boolean Fired before a document is closed. Return True to abort the close

process.
CloseDocument: Boolean Fired when a document is closed.
MapsChanged: Boolean Fired when a change is made to the map collection.
NewDocument: Boolean Fired when a new document is created.
OnContextMenu (in X: Long, in Y: Long)

: Boolean
Indicates if a context menu should be displayed at the given xy

location. Return true if handled.
OpenDocument: Boolean Fired when a document is opened.
VBAReset: Boolean Fired when VBA is reset.

IDocumentEvents and IDocumentEventsDisp are nearly identical except
the latter is exposed automatically in the ArcMap VBA editor. When
working in VBA, an MxDocument object is defined in all ThisDocument
class modules. After selecting this object in the Object Box, you can
select any of the IDocumentEventsDisp events by clicking them in Proce-
dure/Method Box. Selecting one of the events stubs out the event pro-
cedure in the class module.

In ArcMap, there can be up to three VBA projects (Project,
TemplateProject, and Normal) loaded; each one has a ThisDocument class
module. You can write code for each document event in each
ThisDocument code window. It is important to know the order in which
the document events for each VBA project get fired. For example, when
the NewDocument event occurs, the code in the
MxDocument_NewDocument function in Project.ThisDocument executes
first, followed by code in TemplateProject.ThisDocument, and finally code
in Normal.ThisDocument.

If an event function in Project.ThisDocument returns True, then the code
for this event in TemplateProject.ThisDocument and Normal.ThisDocument
does not get executed. This provides a mechanism for a document to
override any code that might be in the base template or the Normal
template.

The sample below asks the user for a username and password before
providing complete access to the document. This sample’s intent is to
show how the open document event works, not how to secure a
document.

Private Function MxDocument_OpenDocument() As Boolean

  Dim pGetUser As IGetUserAndPasswordDialog

  Dim pTemplates As ITemplates

  Dim sUserName As String

  Dim sPassword As String

  Set pTemplates = Application.Templates

  Set pGetUser = New GetUserAndPasswordDialog

  If pGetUser.DoModal("Enter Username and Password", " ", _

MXDOCUMENT COCLASS



Chapter 4 • Composing maps • 259

A
rc

M
ap

        Application.hWnd) Then

    sUserName = pGetUser.UserName

    sPassword = pGetUser.Password

    If Not UCase(sUserName) = UCase("GIS") Or _

      Not UCase(sPassword) = UCase("opensaysme") Then

      'Open new document

      MsgBox "Sorry, you do not have access to this document."

      Application.NewDocument False, pTemplates.Item(0)

    End If

  Else

    Application.NewDocument False, pTemplates.Item(0)

  End If

End Function

 IDocumentInfo : IUnknown Provides access to members that control the Document
Info.

Author: String The author of the document.
Category: String The category of the document.
Comments: String Comments for the document.
DocumentTitle: String The title of the document.
HyperlinkBase: String The hyperlink base of the document.
Keywords: String The keywords for the document.
SavePreview: Boolean Indicates if a preview of the document is saved when the document is

saved.
Subject: String The subject of the document.

All map documents have properties, such as who authored the docu-
ment and what the document represents. The IDocumentInfo interface
conveniently provides properties for entering map document metadata.
IDocumentInfo also manages a few map document properties that are
not metadata type information.

The SavePreview property specifies whether or not a thumbnail image of
the layout is displayed in ArcCatalog when browsing map documents.

The HyperlinkBase property specifies the root Web address for hyperlink
fields. For example, you can set a map document’s HyperlinkBase prop-
erty to www.esri.com and a Web-linked field on a feature to
ArcObjectsOnline. When you turn on field hyperlinks for a layer and
use the Hyperlink tool, the two are put together, and www.esri.com/
ArcObjectsOnline becomes the hyperlink.

MXDOCUMENT COCLASS



260 • Exploring ArcObjects • Volume 1

APPDISPLAY COCLASS AND EXTENSION CLASS

The AppDisplay object has its own implementation of IScreenDisplay
whereby the properties and methods get applied to all of the display
objects currently instantiated in the application. For example, if you
draw or pan in this screen display, all of the screen displays in the
application are forwarded the same call.

 IAppDisplay : IScreenDisplay Provides access to members that control the Mx Display.

Count: Long The number of ScreenDisplays associated with the application.
FocusScreen: IScreenDisplay The ScreenDisplay associated with the window the mouse is over.

May be a lens window or the main window.
MainScreen: IScreenDisplay The ScreenDisplay associated with the main application window.  Set

this property before using the other properties and methods.
ScreenDisplay (in idx: Long) :

IScreenDisplay
Return the nth ScreenDisplay associated with the application.

Views are not the only objects that have a ScreenDisplay; each
MapInsetWindow has its own ScreenDisplay object. The Pan tool uses the
AppDisplay object to pan the active view and all magnifier windows if they
are not in snapshot mode. This AppDisplay object can also pass references
to any individual ScreenDisplay object, the ScreenDisplay object currently
with focus, or the main ScreenDisplay belonging to active view.

For documentation on the IDisplay, IScreenDisplay, and IDraw inter-
faces, see Chapter 5, ‘Displaying graphics’.

The Application object directly manages the life of all application exten-
sions. Application extensions are those extensions registered in the ESRI
MxExtension objects; the editing tools in ArcMap are an example of an
MxExtension. All extensions are automatically created and destroyed in
synchronization with an Application object.

 IExtension : IUnknown Provides access to members that define an extension.

Name: String Returns the name of the extension.

Shutdown Shuts down the extension.
Startup (in initializationData: Variant) Starts up the extension with the given initialization data.

Use the IExtension interface to query the properties of an extension or
implement this interface to create your own custom extension. There are
other categories for extensions, such as ESRI Editor Extensions, that are
not managed by the Application object, but they work in much the same
fashion.

Use IApplication::FindExtension to get a reference to a particular extension.
Public Sub CheckEditState()
  Dim pEditor As IEditor
  Dim pUID As New UID

  pUID = "esriCore.Editor"
  Set pEditor = Application.FindExtensionByCLSID(pUID)

  If pEditor.EditState = esriStateEditing Then
    MsgBox "Active Edit Session Present"
  End If
End Sub

IAppDisplay
IDisplay

IDraw
IScreenDisplay

IScreenDisplay2

AppDisplay

Because there are potentially multiple
objects, each with its own ScreenDisplay

object, the Application object also has
an AppDisplay object to help manage

all of these.

IExtension

Extension

An extension is registered with an ArcGIS
application to augment the application.



Chapter 4 • Composing maps • 261

A
rc

M
ap

Contents views are tabs in the ArcMap table of contents. ArcMap ships
with two contents views: display view and source view. The Display tab
is the TOCDisplayView object, and the Source tab is the TOCCatalog-
View object. Developers can add new contents views by creating their
own custom object that implements the IContentsView interface. All
contents views must be registered in the ‘ESRI Contents Views’ compo-
nent category.

All contents views are managed by the MxDocument object. All contents
views registered in the contents views component category are automati-
cally created by an MxDocument object when it is first created. However,
only one contents view can be active at a time. Use the IMxDocument::
CurrentContentsView property to set the current contents view and to get
a reference to the current contents view.

Setting the current contents view automatically refreshes the table of con-
tents (IContentsView::Refresh). The MxDocument objects has two additional
members for accessing the contents views: IMxDocument::ContentsView,
which takes an index, and IMxDocument::ContentsViewCount.

Contents views implement IActiveViewEvents. These objects are not
sources for IActiveViewEvents; however, they are sinks. These objects are
clients responding to the active view events fired by the PageLayout and
Map objects.

 IContentsView : IUnknown Provides access to members that control table of contents
views.

ContextItem: Variant The context item (could be an enumerator).
hWnd: Long The HWND of the contents view.
Name: String The name of the contents view.
ProcessEvents: Boolean Indicates if the view is currently responding to events.
SelectedItem: Variant The selected item (could be an enumerator).
ShowLines: Boolean Indicates if lines are shown in the TOC tree.
Visible: Boolean Indicates if the view is visible.

Activate (in parentHWnd: Long, in
Document: IMxDocument)

Activates the contents view.

AddToSelectedItems (in Item: Variant) Adds to the selected items.
Deactivate Deactivates the contents view.
Refresh (in Item: Variant) Refreshes the contents view.  If a non-null item is specified, it

refreshes only that item and its children.
RemoveFromSelectedItems (in Item:

Variant)
Removes an item from the selected items.

The IContentsView interface provides the contract for the minimum behav-
ior all contents views must support. Each contents view implements this
interface slightly differently. For more information on their custom imple-
mentation, see the documentation on TOCDisplayView and
TOCSourceView.

Aside from implementing this interface to create a new contents view, this
interface is rarely accessed by applications and, in many cases, contents
views do not provide an implementation for several of the members. More
commonly used members on this interface are Name, SelectedItem, and
Visible. In fact, accessing the currently selected item is actually much
easier via IMxDocument::SelectedItem off the MxDocument object. This
property will return the currently selected item on the active contents view.

TOCDISPLAYVIEW AND TOCCONTENTSVIEW COCLASSES

IActiveViewEvents
IComProperty-

SheetEvents
IContentsView

TOCView

TOCDisplay-
View

TOCCatalog
View

IDocumentEvents

The Display tab in the ArcMap table of
contents shows all the layers on the map

and what the features in each layer
represent.

The Source tab in the ArcMap table of
contents shows all the layers on the map

and from where they originate.

IActiveView
IActiveViewEvents

IBasicMap
IConnectionPoint-

Container
IDisplayAdmin

IDisplayEvents
IGraphicsContainer

IGraphicsContainer-
Select

IMap
IMapBarriers

IMapBookmarks
IMapEvents

IMapGeographic-
Transformations

IPersist
IPersistStream

IRelationshipClass-
Collection

ISelectionEvents
IStandaloneTable-

Collection
ITableCollection

ITransformEvents
IViewManager

Map



262 • Exploring ArcObjects • Volume 1

When you work with the SelectedItem property, remember that it returns
a reference to the currently selected item in the contents view you are
working with. The return is a variant because there are several possible
objects the selected item can be.

When working with the TOCDisplayView object, the reference could be
to a Map object if you have a data frame selected, one of the Layer
objects (FeatureLayer, FDOGraphicsLayer, or other) if you have a layer
selected, or a LegendGroup if you have a unique value or heading
selected.

If you are working with the TOCSourceView object, the reference can
be to any of the above objects plus a Table, FeatureDataset, or
Workspace.

If more than one item is selected, the reference is to a Set object.
Again, it is much easier to use IMxDocument::SelectedItem, which
returns an IUnknown instead of IContentsView::SelectedItem, which
returns a Variant.

The TOCDisplayView object represents the Display tab in the ArcMap
table of contents. For information about the capabilities inside the
Display tab, see Using ArcMap. This object is creatable strictly because
the MxDocument needs to create one when it is first created; there is
generally no need for developers to create or access this object.

TOCDisplayView and TOCSourceView currently do not provide an
implementation for these members: IContentsView::put_SelectedItem,
IContentsView::AddToSelectedItems,
IContentsView::RemoveFromSelectedItems, and
IActiveViewEvents::SelectionChanged.

The TOCSourceView object represents the Source tab in the ArcMap
table of contents. For information about this tab including its capabili-
ties, consult Using ArcMap. Like the TOCDisplayView object, this object
is creatable because the MxDocument creates one when it is first cre-
ated; there is generally no need for developers to create or access this
object. See the note in TOCDisplayView about which members are not
currently implemented by this object.

TOCDISPLAYVIEW AND TOCCONTENTSVIEW COCLASSES



Chapter 4 • Composing maps • 263

A
rc

M
ap

MAP COCLASS

Every map document contains at least one Map object. Only one Map can
have focus at a time, and this Map is called the focus map. IMxDocument
provides access to all of the Map objects loaded in the document;
IMxDocument::FocusMap returns a reference to the Map currently with
focus, and IMxDocument.Maps returns the entire collection of Map objects.

ArcMap comes with two different views: data view and layout view.
Data view relates to a Map object, and layout view relates to the Page-
Layout object. A map document can contain any number of Map ob-
jects—the focus Map always represents the data view.

All of the layers in a map share the same spatial reference. A Map’s
spatial reference is automatically set to the spatial reference of the first
layer loaded. New layers loaded into a Map are projected to the Map
object’s spatial reference if their spatial reference is different.

In ArcMap, Map objects are always contained by MapFrame objects—the
PageLayout object actually manages all the MapFrame objects, a type of
element, and each MapFrame manages a Map. Note that for convenience,
the MxDocument object passes a reference to the focus map and the
Map’s collection. In reality, however, the PageLayout object manages these.
Each Map object, in turn, manages a collection of Layer objects. Types of
Layer objects include FeatureLayers, FDOGraphicsLayers, and GroupLayers.

Every Map also manages a CompositeGraphicsLayer object, which con-
tains a collection of graphics layers. The default graphics layer is a Map
object’s basic graphics layer where all graphics, including labels, are
drawn by default. The Map provides direct access to this layer with the
property IMap::BasicGraphicsLayer. A Map object’s basic graphics layer
cannot be deleted from the CompositeGraphicsLayer object, though new
graphics layers can be added and deleted.

The layer collection returned from the IMap::Layers property does not
include the Map object’s CompositeGraphicsLayer; to access this object,
you must use the IMap::BasicGraphicsLayer property. The Map also has
a shortcut to the basic graphics layer IGraphicsContainer interface; you
can query an interface from any of the Map interfaces, for example,
IMap, to IGraphicsLayers.

MapSurround objects are elements that are related to a Map. Types of
map surrounds include Legends, NorthArrows, and ScaleBars. The Map
object exposes several properties and methods for accessing the map
surrounds associated with it. All map surrounds are actually contained
by a MapSurroundFrame which, like a MapFrame, is ultimately managed
by the PageLayout object.

The Map object is cocreatable so that new Map objects can be created
and added to the document. Instantiating a new Map object automati-
cally creates the following related objects on which it relies: a Screen-
Display object, which every view uses to manage the drawing window,
and a new CompositeGraphicsLayer, as discussed above.

IActiveView
IActiveViewEvents

IBasicMap
IConnectionPoint-

Container
IDisplayAdmin

IDisplayEvents
IGraphicsContainer

IGraphicsContainer-
Select

IMap
IMapBarriers

IMapBookmarks
IMapEvents

IMapGeographic-
Transformations

IPersist
IPersistStream

IRelationshipClass-
Collection

ISelectionEvents
IStandaloneTable-

Collection
ITableCollection

ITransformEvents
IViewManager

Map

The Map object is a container for map
data—it manages layers of feature and

graphic data. The Map object is a primary
point for customization tasks because it

not only manages layers of data, but it is
also a view and has to manage the

drawing of all its data. Typical tasks with
the Map object include adding a new

layer, panning the display, changing the
view extent (zooming functions), chang-

ing the spatial reference, and getting the
currently selected features and elements.



264 • Exploring ArcObjects • Volume 1

The IMap interface is a starting point for many of the tasks one does
with a Map. For example, you can use IMap to add, delete, and access
map layers containing data from various sources, including feature
layers and graphics layers; associate map surround objects (legends,
scale bars, and so on) with the Map; access the various properties of a
Map, including the area of interest, the current map units, and the spa-
tial reference; and select features and access the Map object’s current
selection.

 IMap : IUnknown Provides access to members that control the map.

ActiveGraphicsLayer: ILayer The active graphics layer.  If no graphic layers exist a basic memory
graphics layer will be created.

AnnotationEngine: IAnnotateMap The annotation (label) engine the map will use.
AreaOfInterest: IEnvelope Area of interest for the map.
Barriers (pExtent: IEnvelope) :

IBarrierCollection
The list of barriers and their weight for labeling.

BasicGraphicsLayer: IGraphicsLayer The basic graphics layer.
ClipBorder: IBorder An optional border drawn around ClipGeometry.
ClipGeometry: IGeometry A shape that layers in the map are clipped to.
Description: String Description of the map.
DistanceUnits: esriUnits The distance units for the map.
Expanded: Boolean Indicates if the Map is expanded.
FeatureSelection: ISelection The feature selection for the map.
IsFramed: Boolean Indicates if map is drawn in a frame rather than on the whole

window.
Layer (in Index: Long) : ILayer The layer at the given index.
LayerCount: Long Number of layers in the map.
Layers (UID: IUID, recursive: Boolean) :

IEnumLayer
The layers in the map of the type specified in the uid.  If recursive is

true it will return layers in group layers.
MapScale: Double The scale of the map as a representative fraction.
MapSurround (in Index: Long) :

IMapSurround
The map surround at the given index.

MapSurroundCount: Long Number of map surrounds associated with the map.
MapUnits: esriUnits The units for the map.
Name: String Name of the map.
ReferenceScale: Double The reference scale of the map as a representative fraction.
SelectionCount: Long Number of selected features.
SpatialReference: ISpatialReference The spatial reference of the map.
SpatialReferenceLocked: Boolean Prevents the spatial reference from being changed.
UseSymbolLevels: Boolean Indicates if the Map draws using symbol levels.

AddLayer (in Layer: ILayer) Adds a layer to the map.
AddLayers (in Layers: IEnumLayer, in

autoArrange: Boolean)
Adds multiple layers to the map, arranging them nicely if specified.

AddMapSurround (in MapSurround:
IMapSurround)

Adds a map surround to the map.

ClearLayers Removes all layers from the map.
ClearMapSurrounds Removes all map surrounds from the map.
ClearSelection Clears the map selection.
ComputeDistance (in p1: IPoint, in p2:

IPoint) : Double
Computes the distance between two points on the map and returns

the result.
CreateMapSurround (in CLSID: IUID, in

optionalStyle: IMapSurround) :
IMapSurround

Create and initialize a map surround.  An optional style from the style
gallery may be specified.

DelayDrawing (in delay: Boolean) Suspends drawing.
DelayEvents (in delay: Boolean) Used to batch operations together to minimize notifications.
DeleteLayer (in Layer: ILayer) Deletes a layer from the map.
DeleteMapSurround (in MapSurround:

IMapSurround)
Deletes a map surround from the map.

GetPageSize (out widthInches: Double,
out heightInches: Double)

Gets the page size for the map.

MoveLayer (in Layer: ILayer, in toIndex:
Long)

Moves a layer to another position.

RecalcFullExtent Forces the full extent to be recalculated.
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

Selects features in the map given a shape and a selection
environment (optional).

SelectFeature (in Layer: ILayer, in
Feature: IFeature)

Selects a feature.

SetPageSize (in widthInches: Double, in
heightInches: Double)

Sets the page size for the map (optional).

IMap is the main interface to the Map coclass
and is used for controlling the Map’s data and

associated elements.

MAP COCLASS



Chapter 4 • Composing maps • 265

A
rc

M
ap

Public Sub AddShapeFile()

  Dim pWorkspaceFactory As IWorkspaceFactory

  Dim pFeatureWorkspace As IFeatureWorkspace

  Dim pFeatureLayer As IFeatureLayer

  Dim pMxDocument As IMxDocument

  Dim pMap As IMap

  ' Create a new ShapefileWorkspaceFactory object and

  ' open a shapefile folder

  Set pWorkspaceFactory = New ShapefileWorkspaceFactory

  Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile _

   ("c:\arcgis\arcexe81\ArcObjects Developer Kit\Samples\Data\USA", 0)

  'Create a new FeatureLayer and assign a shapefile to it

  Set pFeatureLayer = New FeatureLayer

  Set pFeatureLayer.FeatureClass = _

    pFeatureWorkspace.OpenFeatureClass("States")

  pFeatureLayer.Name = pFeatureLayer.FeatureClass.AliasName

  'Add the FeatureLayer to the focus map

  Set pMxDocument = Application.Document

  Set pMap = pMxDocument.FocusMap

  pMap.AddLayer pFeatureLayer

End Sub

Use this code to get the currently selected feature.

Public Sub GetSelectedFeature()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pEnumFeature As IEnumFeature

  Dim pFeature As IFeature

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pEnumFeature = pMap.FeatureSelection

  pEnumFeature.Reset

  Set pFeature = pEnumFeature.Next

End Sub

This code shows how to select features by shape.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pMxApp As IMxApplication

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pRubberEnv As IRubberBand

  Dim pEnvelope As IEnvelope

  Set pMxApp = Application 'QI

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMap 'QI

  Set pRubberEnv = New RubberEnvelope

To use this sample, paste the code into a new
UIToolControl’s MouseDown event. Com-

pletely close VBA so that mouse events fire.
Select the tool and drag out an envelope.

MAP COCLASS



266 • Exploring ArcObjects • Volume 1

  'Flag the area of the old selection to invalidate

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

  'Use TrackNew to prompt user to drag out a square on the display

  Set pEnvelope = pRubberEnv.TrackNew(pActiveView.ScreenDisplay, Nothing)

  'Perform the selection

  pMap.SelectByShape pEnvelope, pMxApp.SelectionEnvironment, False

  'Flag the area of the new selection to invalidate

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

End Sub

 IBasicMap : IUnknown Provides access to members that control the basic map.

ActiveGraphicsLayer: ILayer The active graphics layer.  If no graphic layers exist a basic memory
graphics layer will be created.

AreaOfInterest: IEnvelope Area of interest for the map.
BasicGraphicsLayer: IGraphicsLayer The basic graphics layer.
Description: String Description of the map.
FeatureSelection: ISelection The map's feature selection.
Layer (in Index: Long) : ILayer The layer at the given index.
LayerCount: Long Number of layers in the map.
Layers (UID: IUID, recursive: Boolean) :

IEnumLayer
The layers in the map of the type specified in the uid.  If recursive is

true it will return layers in group layers.
Name: String Name of the map.
SelectionCount: Long Number of selected features in the map.
SpatialReference: ISpatialReference The spatial reference of the map.

AddLayer (in pLayer: ILayer) Adds a layer to the map.
AddLayers (in pLayers: IEnumLayer, in

autoArrange: Boolean)
Adds multiple layers to the map, arranging them nicely if specified.

ClearLayers Removes all layers from the map.
ClearSelection Clears the map selection.
DeleteLayer (in pLayer: ILayer) Deletes a layer from the map.
SelectByShape (in Shape: IGeometry,

in env: ISelectionEnvironment, in
justOne: Boolean)

Selects features in the map given a shape and a selection
environment (optional).

IBasicMap is a subset of IMap that provides support for ArcScene. Both
Map (2D) and Scene (3D) components implement this interface. These
components are used by both ArcMap and ArcScene (such as Table
coclass) QI for IBasicMap rather than IMap.

MAP COCLASS



Chapter 4 • Composing maps • 267

A
rc

M
ap

 IGraphicsContainer : IUnknown Provides access to members that control the Graphics
Container.

AddElement (in Element: IElement, in
zorder: Long)

Add a new graphic element to the layer.

AddElements (in Elements:
IElementCollection, in zorder: Long)

Add new graphic elements to the layer.

BringForward (in Elements:
IEnumElement)

Move the specified elements one step closer to the top of the stack
of elements.

BringToFront (in Elements:
IEnumElement)

Make the specified elements draw in front of all other elements.

DeleteAllElements Delete all the elements.
DeleteElement (in Element: IElement) Delete the given element.
FindFrame (in frameObject: Variant) :

IFrameElement
Find the frame that contains the specified object.

GetElementOrder (in Elements:
IEnumElement) : Variant

Private order object.  Used to undo ordering operations.

LocateElements (in Point: IPoint, in
Tolerance: Double) : IEnumElement

Returns the elements at the given coordinate.

LocateElementsByEnvelope (in
Envelope: IEnvelope) : IEnumElement

Returns the elements that intersect with the given envelope.

MoveElementFromGroup (in Group:
IGroupElement, in Element: IElement,
in zorder: Long)

Move the element from the group to the container.

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Move the element from the container to the group.

Next: IElement Returns the next graphic in the container.
PutElementOrder (in order: Variant) Private order object.  Used to undo ordering operations.
Reset Reset internal cursor so that Next returns the first element.
SendBackward (in Elements:

IEnumElement)
Move the specified elements one step closer to the bottom of the

stack of elements.
SendToBack (in Elements:

IEnumElement)
Make the specified elements draw behind all other elements.

UpdateElement (in Element: IElement) The graphic element's properties have changed.

The Map object is a graphics container somewhat like the PageLayout
object.

Elements, such as a text element (label), can be added directly to a
Map, or they can be stored in a database. For those elements stored in
a Map, the Map actually manages a CompositeGraphicsLayer object to
store all the elements. CompositeGraphicsLayer objects can have mul-
tiple layers in them.

One layer is the Map’s basic graphics layer, which is also the default
graphics layer. Access this layer using IMap::BasicGraphicsLayer. The
basic graphics layer is a special layer that cannot be deleted and is not
reported in the CompositeGraphicsLayer’s layer count. Further, this
layer’s element count reports the total number of elements in all the
CompositeGraphicsLayer’s layers. If you delete all elements in the
Map’s basic graphics layer, you delete all elements in all target layers
(annotation groups) in the CompositeGraphicsLayer. In the case where
the Map’s CompositeGraphicsLayer does have multiple layers, use
IMap::ActiveGraphicsLayer to set or get a reference to the active layer.

The active graphics layer does not always reference a layer in the
Map’s CompositeGraphicsLayer; this is the case when a database layer
containing elements is set as the active graphics layer. A feature-linked
annotation layer (FDOGraphicsLayer) is a good example of this.

The Map’s IGraphicsContainer always returns a reference to the Map’s
active graphics layer. Again, this can either be the basic graphics layer,
a layer in the Map’s CompositeGraphicsLayer, or a feature layer such as
an FDOGraphicsLayer.

MAP COCLASS



268 • Exploring ArcObjects • Volume 1

 IGraphicsContainerSelect : IUnknown Provides access to members that control graphic container
selection.

DominantElement: IElement Dominant element.
ElementSelectionCount: Long Returns the number of selected elements.
SelectedElements: IEnumElement Returns the selected elements.
SelectionBounds (in Display: IDisplay) :

IEnvelope
Returns the bounds of the selection.

ElementSelected (in Element: IElement)
: Boolean

Indicates if the element is selected.

SelectAllElements Selects all elements.
SelectedElement (in Index: Long) :

IElement
Returns the nth selected element.  Use Selection count to get the

number of selected elements.
SelectElement (in Element: IElement) Selects the specified element.
SelectElements (in Elements:

IEnumElement)
Selects the specified elements.

SelectionTracker (in Index: Long) :
ISelectionTracker

Returns the tracker for the nth selected element.  Use Selection
count to get the number of selected elements.

UnselectAllElements Unselects all elements.
UnselectElement (in Element: IElement) Unselects the specified element.
UnselectElements (in Elements:

IEnumElement)
Unselects the specified elements.

The IGraphicsContainerSelect interface is documented with the Page-
Layout object later in this chapter.

 IActiveView : IUnknown Provides access to members that control the active view -
the main application window.

ExportFrame: tagRECT The device rectangle to export.
Extent: IEnvelope The visible extent rectangle.
ExtentStack: IExtentStack The extent stack.
FocusMap: IMap The map that tools and controls act on.
FullExtent: IEnvelope The full extent rectangle.
GraphicsContainer: IGraphicsContainer The active graphics container.
IsMapActivated: Boolean Indicates if the focus map is activated.
ScreenCacheID (in phase:

tagesriViewDrawPhase, in data:
IUnknown Pointer) : Integer

The screen cache ID that is used to draw the specified phase.

ScreenDisplay: IScreenDisplay The screen display used by the view.
Selection: ISelection The selection.
ShowRulers: Boolean Indicates if rulers are visible.
ShowScrollBars: Boolean Indicates if scrollbars are visible.
ShowSelection: Boolean Indicates if selection is visible.
TipText (in X: Double, in Y: Double) :

String
The tip text to display at the given location.

Activate (hWnd: Long) Gives this view control of the specified window.
Clear Empties the view contents.
ContentsChanged Called by clients when view objects are modified.
Deactivate Another view takes over the associated window.
Draw (in hDC: Long, in trackCancel:

ITrackCancel)
Draws the view to the specified device context.  TrackCancel is

optional.
GetContextMenu (in X: Double, in Y:

Double, out clsidMenu: IUID)
Called when a context menu should be displayed at the given xy

location. Return menu that should be displayed.
HitTestMap (in Location: IPoint) : IMap Returns any maps present in the view at the given location.  Return

value may be zero if there are no maps or the coordinate is not
over a map.

IsActive: Boolean Indicates if view is active or not.
OnMessage (in msg: Unsigned Long, in

wParam: Unsigned Machine Int, in
lParam: Long)

Call from your application's message loop to enable automatic
resizing and keyboard accelerators.

Output (in hDC: Long, in dpi: Long, in
PixelBounds: tagRECT, in
VisibleBounds: IEnvelope, in
trackCancel: ITrackCancel)

Renders the view to the specified DC.

PartialRefresh (in phase:
tagesriViewDrawPhase, in data:
IUnknown Pointer, in Envelope:
IEnvelope)

Draws the specified view phase.  Use an envelope of zero to draw
the entire phase.

PrinterChanged (in Printer: IPrinter) Called by application when printer changes.
Refresh Causes the entire view to draw.

The IActiveView interface controls the main application window, includ-
ing all drawing operations. Use this interface to change the extent of the

MAP COCLASS



Chapter 4 • Composing maps • 269

A
rc

M
ap

view, access the associated ScreenDisplay object, show or hide rulers
and scroll bars, and refresh the view. The Map object’s implementation
of the IActiveView is different from the PageLayout object’s implementa-
tion. For more information about the different views, see the Mx-
Document topic in this chapter.

Two important methods on this interface are Refresh and PartialRefresh;
see the discussion comparing these two methods later in this chapter.

This VBA script lets the user zoom in on the current active view:
Public Sub ZoomInCenter()
  Dim pMxDocument As IMxDocument
  Dim pActiveView As IActiveView
  Dim pDisplayTransform As IDisplayTransformation
  Dim pEnvelope As IEnvelope
  Dim pCenterPoint As IPoint

  Set pMxDocument = Application.Document
  Set pActiveView = pMxDocument.FocusMap
  Set pDisplayTransform = _
    pActiveView.ScreenDisplay.DisplayTransformation
  Set pEnvelope = pDisplayTransform.VisibleBounds
  ' IActiveView::Extent is a shortcut to the visible bounds
  Set pEnvelope = pActiveView.Extent

  Set pCenterPoint = New Point
  pCenterPoint.x = ((pEnvelope.XMax - pEnvelope.XMin) / 2) + _
   pEnvelope.XMin
  pCenterPoint.y = ((pEnvelope.YMax - pEnvelope.YMin) / 2) + _
   pEnvelope.YMin
  pEnvelope.Width = pEnvelope.Width / 2
  pEnvelope.Height = pEnvelope.Height / 2
  pEnvelope.CenterAt pCenterPoint
  pDisplayTransform.VisibleBounds = pEnvelope
  pActiveView.Refresh
End Sub

 IActiveViewEvents : IUnknown Provides access to events that occur when the state of the
active view changes.

AfterDraw (in Display: IDisplay, in
phase: tagesriViewDrawPhase)

Fired after the specified phase is drawn.

AfterItemDraw (in Index: Integer, in
Display: IDisplay, phase:
tagesriDrawPhase)

Fired after an individual view item is drawn.  Example: view items
include layers in a map or elements in a page layout.

ContentsChanged Fired when the contents of the view changes.
ContentsCleared Fired when the contents of the view is cleared.
FocusMapChanged Fired when a new map is made active.
ItemAdded (in Item: Variant) Fired when an item is added to the view.
ItemDeleted (in Item: Variant) Fired when an item is deleted from the view.
ItemReordered (in Item: Variant, in

toIndex: Long)
Fired when a view item is reordered.

SelectionChanged Fired when the selection changes.
SpatialReferenceChanged Fired when the spatial reference is changed.
ViewRefreshed (in View: IActiveView, in

phase: tagesriViewDrawPhase, in
data: Variant, in Envelope: IEnvelope)

Fired when view is refreshed before draw happens.

The IActiveViewEvents interface is the default outbound interface on the
Map object. It is exposed off the Map object so that clients may listen
and respond to specific events related to the active view, such as

MAP COCLASS



270 • Exploring ArcObjects • Volume 1

AfterDraw and SelectionChanged. Many coclasses implement this inter-
face, and each of them fires events differently. For example, the Map
object does not fire the FocusMap changed event, whereas the Page-
Layout object does. Similarly, the Map object fires the Item Deleted
Event when a layer is removed from the Map, and the PageLayout ob-
ject fires the same event when elements such as a map frame or graphic
are deleted.

The AfterViewDraw event will not fire unless IViewManager::VerboseEvents
is set to True. For more details, see the discussion on IViewManager.

The following VBA script is a simple example showing one possible
way an event listener can be set up. Run the SetUpEvents routine to set
up the listener. From that point on, whenever the focus Map’s selection
changes, the SelectionChanged routine will be called.

Private WithEvents MapActiveViewEvents As Map

Public Sub SetUpEvents()

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  Set MapActiveViewEvents = pMxDoc.FocusMap

End Sub

Private Sub MapActiveViewEvents_SelectionChanged()

  MsgBox "Selection Changed"

End Sub

 IMapBarriers : IUnknown Provides access to members that control map barriers.

Barriers2 (pExtent: IEnvelope, in
pTrackCancel: ITrackCancel) :
IBarrierCollection

The list of barriers and their weight for labeling.

The IMapBarriers interface returns a list of all the barriers and their
weights from all the layers in the Map. Layers with barriers include those
layers that implement IBarrierProperties—the CompositeGraphicsLayer,
CoverageAnnotationLayer, and FDOGraphicsLayer. When creating a
labeling engine, use this interface to conveniently access all the barriers
from all the layers.

 IMapBookmarks : IUnknown Provides access to members that control the map
bookmarks.

Bookmarks: IEnumSpatialBookmark The bookmarks.

AddBookmark (in bookmark:
ISpatialBookmark)

Adds a bookmark to the collection.

RemoveAllBookmarks Removes all bookmarks.
RemoveBookmark (in bookmark:

ISpatialBookmark)
Removes a bookmark from the collection.

All spatial bookmarks are managed by a Map object and are persisted in
the map document. A Map’s bookmarks are managed by the IMap-
Bookmarks interface. Use IMapBookmarks to access existing bookmarks,
add new ones, and delete old ones. Once you have a reference to a
particular bookmark, you can make the Map’s extent equal to that stored
in the bookmark.

MAP COCLASS

Barriers are used by labeling engines to signal
that a label should not be placed in a particular

region. Barriers currently include annotation,
graphical elements, and symbols generated from
renderers. For example, a feature layer using a

pie chart renderer doesn’t want labels to appear
directly above the pie chart’s symbols. In this

case, pie chart symbols act as barriers informing
the label engine that no labels should be placed

on top of them.

Bookmarks make it easy to jump to specific
extents because they save map extents along
with a name identifying them. There are two

types of spatial bookmarks available in ArcMap:
Area of Interest bookmarks and Feature

bookmarks.

In ArcMap, bookmarks are accessible via the
Bookmarks menu under the View menu. ArcMap
also has a bookmark manager that allows users

to delete undesired bookmarks.



Chapter 4 • Composing maps • 271

A
rc

M
ap

This sample shows one method for creating a new Area of Interest
bookmark:

Public Sub AddSpatialBookMark()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pAreaOfInterest As IAOIBookmark

  Dim pMapBookmarks As IMapBookmarks

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMap

  'Create a new bookmark and set its location to the focus map's

  'current extent

  Set pAreaOfInterest = New AOIBookmark

  Set pAreaOfInterest.Location = pActiveView.Extent

  'Give the bookmark a name

  pAreaOfInterest.Name = "My bookmark"

  'Add the bookmark to the map's bookmark collection.This will add

  'the bookmark to the Bookmarks menu accessible from the View menu

  Set pMapBookmarks = pMap

  pMapBookmarks.AddBookmark pAreaOfInterest

End Sub

This sample shows one way to find an existing spatial bookmark and
zoom to its stored extent:

Public Sub ZoomToBookmark()

  Dim pMxDoc As IMxDocument

  Dim pMapBookmarks As IMapBookmarks

  Dim pEnumBookmarks As IEnumSpatialBookmark

  Dim pBookmark As ISpatialBookmark

  Set pMxDoc = Application.Document

  Set pMapBookmarks = pMxDoc.FocusMap

  Set pEnumBookmarks = pMapBookmarks.Bookmarks

  pEnumBookmarks.Reset

  Set pBookmark = pEnumBookmarks.Next

  Do While Not pBookmark Is Nothing

    If pBookmark.Name = "My bookmark" Then

      pBookmark.ZoomTo pMxDoc.FocusMap

      pMxDoc.ActiveView.Refresh

      Exit Sub

    End If

    Set pBookmark = pEnumBookmarks.Next

  Loop

End Sub

MAP COCLASS



272 • Exploring ArcObjects • Volume 1

 IMapEvents : IUnknown Provides access to events that occur when the state of the
map changes.

FeatureClassChanged (in oldClass:
IFeatureClass, in newClass:
IFeatureClass)

Fired when the feature class changes.

VersionChanged (in oldVersion:
IVersion, in newVersion: IVersion)

Fired when the version changes.

The IMapEvents interface is exposed off the Map object, enabling clients
to listen and respond to two events occurring inside a map:
FeatureClassChanged and VersionChanged. Both of these events are
related to changing the version the map’s layers are working with. For
example, if someone changes the version an edit session is working
with, the Editor has to know about all the new feature classes so that it
can reset the snapping environment.

The Map object’s default outbound interface is IActiveViewEvents. Be-
cause Visual Basic can only handle one outbound interface per object,
the MapEvents object has been created to give Visual Basic users a
method for responding to the events grouped under IMapEvents.

The example demonstrates listening to map events. The event is de-
clared on the MapEvents object instead of the Map object.

Private WithEvents MapEvents As MapEvents

Public Sub InitBookMark()

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  Set MapEvents = pMxDoc.FocusMap

End Sub

Private Sub MapEvents_FeatureClassChanged(ByVal oldClass As _

   IFeatureClass, ByVal newClass As IFeatureClass)

  MsgBox "Feature Class Changed"

End Sub

Private Sub MapEvents_VersionChanged(ByVal oldVersion As _

    IVersion, ByVal newVersion As IVersion)

  MsgBox "Version Changed"

End Sub

 ITableCollection : IUnknown Provides access to members that control a table collection.

Table (in Index: Long) : ITable The table at the given index.
TableCount: Long Number of tables.

AddTable (in Table: ITable) Adds a table to the collection.
RemoveAllTables Removes all tables from the collection.
RemoveTable (in Table: ITable) Removes a table from the collection.

The ITableCollection interface is used to manage tables associated with a
Map. Use this interface to add new tables to a map, remove old tables,
or access a table already loaded. The following VBA macro loads a
table into the focus map.

Public Sub AddTable()

  Dim pMxDoc As IMxDocument

MAP COCLASS

IMapEvents

MapEvents

 The MapEvents coclass provides access
to the IMapEvents outbound interface.



Chapter 4 • Composing maps • 273

A
rc

M
ap

  Dim pMap As IMap

  Dim pTable As ITable

  Dim pTableCollection As ITableCollection

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pTableCollection = pMap 'QI

  Set pTable = OpenTable("d:\data\usa\tables", "stdemog.dbf")

  If pTable Is Nothing Then Exit Sub

  pTableCollection.AddTable pTable

  pMxDoc.UpdateContents

End Sub

Private Function OpenTable(strWorkspace As String, _

   strTableName As String) As ITable

  On Error GoTo ErrorHandler

  Dim pShpWorkspaceName As IWorkspaceName

  Dim pDatasetName As IDatasetName

  Dim pName As IName

  'Create the workspace name object

  Set pShpWorkspaceName = New WorkspaceName

  pShpWorkspaceName.PathName = strWorkspace

  pShpWorkspaceName.WorkspaceFactoryProgID = _

    "esriCore.shapefileworkspacefactory.1"

  'Create the table name object

  Set pDatasetName = New TableName

  pDatasetName.Name = strTableName

  Set pDatasetName.WorkspaceName = pShpWorkspaceName

  'Open the table

  Set pName = pDatasetName

  Set OpenTable = pName.Open

  Exit Function 'exit to avoid error handler

ErrorHandler:

  Set OpenTable = Nothing

End Function

MAP COCLASS



274 • Exploring ArcObjects • Volume 1

 IViewManager : IUnknown Provides access to members used to describe or define view
behavior.

ConserveMemory: Boolean Indicates whether to be conservative when allocating resources.
DelayBackgroundDraw: Boolean Indicates if the background should draw immediately.  Set to true to

eliminate flashing during animation.
ElementSelection: ISelection Object to use for element selection.
ExternalDrawing (in phase:

tagesriViewDrawPhase) : Boolean
Indicates if external clients are drawing in response to the specified

phase.
OutputBandSize: Long Size allocated for each band when banding output.
TopFilterIndex: Long Phase index that supplements TopFilterPhase.  Clients should set the

item index here if they draw in response to AfterDrawItem and they
use a display filter.  TopFilterPhase must also be specified.

TopFilterPhase: tagesriViewDrawPhase The highest phase in the drawing order that uses a display filter.
Clients should set this when they draw in response to AfterDraw
and they use a display filter.

UsesPageCoordinates: Boolean Indicates whether view uses page coordinates.
VerboseEvents: Boolean Expand or limit the number of events that are fired.  The following

events are not fired if VerboseEvents is false: AfterDrawItem.

IViewManager is a low-level interface to the properties defining the
behavior of the active view.

One commonly used property managed by the IViewManager interface
is VerboseEvents. When VerboseEvents is set to False, the default,
IActiveViewEvents::AfterItemDraw, is not fired. To listen for this event,
you must set VerboseEvents equal to True.

The sample below buffers each selected feature and draws the result on
the display. The buffer polygons have a black outline and a slanted red
line fill.

Private WithEvents ActiveViewEvents As Map

Private m_pMxDoc As IMxDocument

Private m_pBufferPolygon As IPolygon

Private m_pLastBufferedExtent As IEnvelope

Private m_pFillSymbol As ISimpleFillSymbol

Public Sub InitEvents()

  Dim pViewManager As IViewManager

  Dim pRgbColor As IRgbColor

  Set m_pMxDoc = Application.Document

  Set pViewManager = m_pMxDoc.FocusMap

  pViewManager.VerboseEvents = True

  Set ActiveViewEvents = m_pMxDoc.FocusMap

  Set m_pActiveView = m_pMxDoc.FocusMap

  'Create a fill symbol

  Set m_pFillSymbol = New SimpleFillSymbol

  Set pRgbColor = New RgbColor

  pRgbColor.Red = 255

  m_pFillSymbol.Style = esriSFSForwardDiagonal

  m_pFillSymbol.Color = pRgbColor

End Sub

MAP COCLASS



Chapter 4 • Composing maps • 275

A
rc

M
ap

MAP COCLASS

Private Sub ActiveViewEvents_AfterItemDraw(ByVal Index As Integer, _

      ByVal display As IDisplay, ByVal phase As esriDrawPhase)

  'Only draw in the geography phase

  If Not phase = esriDPGeography Then Exit Sub

  'Draw the buffered polygon

  If m_pBufferPolygon Is Nothing Then Exit Sub

  With display

    .SetSymbol m_pFillSymbol

    .DrawPolygon m_pBufferPolygon

  End With

End Sub

Private Sub ActiveViewEvents_SelectionChanged()

  Dim pActiveView As IActiveView

  Dim pEnumFeature As IEnumFeature

  Dim pFeature As IFeature

  Dim pPolygon As IPolygon

  Dim pTopoOperator As ITopologicalOperator

  Dim pGeometryBag As IGeometryCollection

  Set pActiveView = m_pMxDoc.FocusMap

  Set pGeometryBag = New GeometryBag

  'Flag last buffered region for invalidation

  If Not m_pLastBufferedExtent Is Nothing Then

    pActiveView.PartialRefresh esriViewGeography, Nothing, _

       m_pLastBufferedExtent

  End If

  If m_pMxDoc.FocusMap.SelectionCount = 0 Then

    'Nothing selected; don't draw anything; bail

    Set m_pBufferPolygon = Nothing

    Exit Sub

  End If

  'Buffer each selected feature

  Set pEnumFeature = m_pMxDoc.FocusMap.FeatureSelection

  pEnumFeature.Reset

  Set pFeature = pEnumFeature.Next

  Do While Not pFeature Is Nothing

    Set pTopoOperator = pFeature.Shape

    Set pPolygon = pTopoOperator.Buffer(0.1)

    pGeometryBag.AddGeometry pPolygon

    'Get next feature

    Set pFeature = pEnumFeature.Next

  Loop



276 • Exploring ArcObjects • Volume 1

  'Union all the buffers into one polygon

  Set m_pBufferPolygon = New Polygon

  Set pTopoOperator = m_pBufferPolygon 'QI

  pTopoOperator.ConstructUnion pGeometryBag

  Set m_pLastBufferedExtent = m_pBufferPolygon.Envelope

  'Flag new buffered region for invalidation

  pActiveView.PartialRefresh esriViewGeography, Nothing, _

       m_pBufferPolygon.Envelope

End Sub

MAP COCLASS



Chapter 4 • Composing maps • 277

A
rc

M
ap

The Application object, which represents the running application, man-
ages a SelectEnvironment object that controls several default properties
related to creating and drawing selections. For example, when a selec-
tion is being performed, should previously selected objects be
unselected, or should the newly selected object be appended to the
original selection? The SelectionEnvironment object provides much
more, including the default color all selections are drawn in. The one
exception is the dominant element selection color.

A SelectionEnvironment object is automatically created by the Applica-
tion object when the application starts. You may want to create your
own SelectionEnvironment object if you want to perform a selection
without changing the application’s selection environment. Access to the
Application object’s SelectionEnvironment is through IMxApplication::
SelectionEnvironment. This property is read-only; you cannot substitute
the Application object’s SelectionEnvironment object with another.

The code below changes the default selection color to red; the default is
cyan.

Public Sub ChangeDefaultSelectionColor()

  Dim pMxDoc As IMxDocument

  Dim pMxApp As IMxApplication

  Dim pSelectionEnv As ISelectionEnvironment

  Dim pRgbColor As IRgbColor

  Set pMxApp = Application 'QI

  Set pMxDoc = Application.Document

  'Obtain a reference to the application's selection environment

  Set pSelectionEnv = pMxApp.SelectionEnvironment

  'Change the selection color to red

  Set pRgbColor = New RgbColor

  pRgbColor.Red = 255

  Set pSelectionEnv.DefaultColor = pRgbColor

End Sub

 ISelectionEnvironment : IUnknown Provides access to members that control the selection
environment.

AreaSearchDistance: Double Distance used for selecting areas by proximity.
AreaSelectionMethod:

esriSpatialRelEnum
Selection method used for areas.

CombinationMethod:
esriSelectionResultEnum

Combination method for the selection results.

DefaultColor: IColor Search tolerance in device units.
LinearSearchDistance: Double Distance used for selecting lines by proximity.
LinearSelectionMethod:

esriSpatialRelEnum
Selection method used for lines.

PointSearchDistance: Double Distance used for selecting points by proximity.
PointSelectionMethod:

esriSpatialRelEnum
Selection method used for points.

SearchTolerance: Long Search tolerance in device units.

The ISelectionEnvironment interface is the primary interface the
SelectionEnvironment object implements; the SelectionEnvironment

IPersist
IPersistStream

ISelectionEnvironment
ISelectionEnvironment-

Layer
ISelectionEnvironment-

Storage
ISelectionEnvironment-

Threshold

Selection-
Environment

The selection environment controls the
applications’ selection behavior.

SELECTIONENVIRONMENT COCLASS

In the ArcMap application, most of the selection
environment properties are available on the

Selection/Options dialog box.



278 • Exploring ArcObjects • Volume 1

object also provides defaults for the various types of selections made,
including the combination method, selection color, selection method,
and search tolerance. The MxDocument’s SearchTolerance property is a
shortcut to the SearchTolerance property on the Application’s
SelectionEnvironment object.

This code sample selects features based on the mouse down
point location.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pMxApp As IMxApplication

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pEnvelope As IEnvelope

  Set pMxApp = Application

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMap

  Set pEnvelope = pMxDoc.CurrentLocation.Envelope

  pEnvelope.Expand pMxDoc.SearchTolerance, _

    pMxDoc.SearchTolerance, False

  'Refresh the old selection to erase it

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

  'Perform the selection using a point created on mouse down

  pMap.SelectByShape pEnvelope, pMxApp.SelectionEnvironment, True

  'Refresh again to draw the new selection

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

End Sub

Enumeration esriSelectionResultEnum Selection result options.

0 - esriSelectionResultNew Creates a new selection.
1 - esriSelectionResultAdd Adds to the current selection.
2 - esriSelectionResultSubtract Subtracts from the current selection.
3 - esriSelectionResultAnd Selects from the current selection.
4 - esriSelectionResultXOR Performs an 'exclusive or' with the current selection.

The esriSelectionResultEnum enumeration is used by
CombinationMethod to specify the combination method when a new
selection is being created. The default is to always create a new selec-
tion, but often you need to add new features to the current selection.
To do this, change ISelectionEnvironment::CombinationMethod to
esriSelectionResultAdd before performing the selection.

To use this sample, add a new UIToolControl
onto a toolbar and paste this code into its

mouse down event. Completely close VBA so
that mouse events will fire. Select the tool and

click the focus map to select features.

SELECTIONENVIRONMENT COCLASS



Chapter 4 • Composing maps • 279

A
rc

M
ap

 ISelectionEnvironmentStorage :
 IUnknown

Provides access to members that controls whether objects
save their selections.

SaveSelections: Boolean Indicates if objects save their selections.

The ISelectionEnvironmentStorage interface has one property,
SaveSelections, that specifies whether each layer’s current selection will
be saved with the document or not. This property is set to
True by default.

 ISelectionEnvironmentThreshold :
 IUnknown

Provides access to members that control the selection
environment warning threshold.

ShowSelectionWarning: Boolean Indicates if warnings are displayed when the record count exceeds
the selection warning threshold.

WarningThreshold: Long Threshold (number of records), above which selection warnings may
be shown.

The ISelectionEnvironmentThreshold interface holds properties that
some selection tools use to determine if a warning should be displayed
if the number of records reaches a certain threshold when performing
large selections.

This interface is not automatically checked when
creating a selection; instead, when creating a

custom selection tool, you can optionally check
the properties in the interface and determine, on

your own, if a warning message should be
displayed. For example, the ArcMap Select All

command uses this interface, but the Select
Features tool does not.

SELECTIONENVIRONMENT COCLASS



280 • Exploring ArcObjects • Volume 1

In general, the Map creates three caches: one for all the layers, another
for any annotation or graphics, and a third for any feature
selections. A layer can create its own private cache if it sets
ILayer::Cached equal to True. In this case, the Map will create a sepa-
rate cache for the layer and groups the layers above and below it into
different caches.

IActiveView::PartialRefresh uses its knowledge of the cache layout to
invalidate as little as possible. IActiveView::Refresh, on the other hand,
invalidates all the caches (which is inefficient). Use PartialRefresh
whenever possible. 

Both PartialRefresh and Refresh call IScreenDisplay::Invalidate; this sets
a flag clients watch for. Clients draw a cache from scratch (the data-
base) if its flag is set to True, and from cache if its flag is set to False.

This table shows the phases each view supports and what they map to.

Phase                            Map                    Layout
esriViewBackground          unused                     page/snap grid
esriViewGeography           layers                    unused
esriViewGeoSelection        feature selection     unused
esriViewGraphics              labels/graphics        graphics
esriViewGraphicSelection   graphic selection    element selection
esriViewForeground          unused                  snap guides

Multiple draw phases may be or’d together.  For example, this code speci-
fies a phase of 6 to invalidate the geography (2) and the geo selection (4). 

  pActiveView.PartialRefresh esriViewGeography + _

    esriViewGeoSelection, Nothing, Nothing

which is the same as:

  pActiveView.PartialRefresh 6, Nothing, Nothing

Use the data parameter to invalidate just a specific piece of data. For
example, if a layer is loaded and its cache property is set to True, this layer
alone can be invalidated. A tracking layer is a good example of this.

The rectangle parameter specifies a region to invalidate. For example, if a
graphic element is added, it is usually only necessary to invalidate the
immediate area surrounding the new graphic. Both the data and rectangle
parameters are optional. 

Here are several Visual Basic examples in ArcMap:

 pActiveView.PartialRefresh esriViewGeography, pLayer, Nothing

 pActiveView.PartialRefresh esriViewGeography, Nothing, Nothing

 pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

 pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

Below are several Visual Basic examples in PageLayout.

 pActiveView.PartialRefresh esriViewGraphics, pElement, Nothing

 pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

 pActiveView.PartialRefresh esriViewGraphicSelection, Nothing, Nothing

REFRESHING THE MAP VERSUS PARTIAL REFRESH

Each view has a ScreenDisplay object
that performs drawing operations. The

ScreenDisplay object also makes it
possible for clients to create any number

of caches.  A cache is an off-screen
bitmap representing the application’s

window. Instead of drawing directly to
the screen, graphics are drawn into

caches, then the caches are drawn on the
screen. When the application’s window is

obscured and requires redrawing, it is
done so from the caches instead of the

database. In this way, caches improve
drawing performance—bitmap rendering
is faster than reading and displaying data

from a database.

refresh layer

refresh all layers

refresh selection

refresh labels

refresh element

refresh all elements

refresh selection



Chapter 4 • Composing maps • 281

A
rc

M
ap

When using PartialRefresh, it is often necessary that you call it
twice if more than one region on the display is being worked
with. For example, when moving features, you must invalidate
the original area the features were in as well as the new area to
wihch the features have moved. A similar and more common
case is working with selections. Whenever a new selection is
created, you must call PartialRefresh twice, once to invalidate
the old selection and again to invalidate the new selection. The
following VBA code excerpt shows an example of this. This
code has been taken from a UIToolControl that selects features.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pMxApp As IMxApplication

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pRubberEnv As IRubberBand

  Dim pEnvelope As IEnvelope

  Set pMxApp = Application 'QI

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMap 'QI

  Set pRubberEnv = New RubberEnvelope

  'Flag the area of the old selection to invalidate

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

  'Use TrackNew to prompt user to drag out a square on the display

  Set pEnvelope = pRubberEnv.TrackNew(pActiveView.ScreenDisplay, _

    Nothing)

  'Perform the selection

  pMap.SelectByShape pEnvelope, pMxApp.SelectionEnvironment, False

  'Flag the area of the new selection to invalidate

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

End Sub

PartialRefresh just flags an area on the display that needs invalidating.
The invalidatation doesn’t immediately occur when PartialRefresh is
called. Instead, a Windows flag is set, and only when Windows pro-
cesses its message loop (after a routine like the one above is executed)
does the actual invalidation occur. So, in the above example, calling
PartialRefresh twice in a single routine simply tells Windows that there
are two areas on the selection cache (bitmap) that require invalidat-
ing—the bounds of the old selection and the new selection.

REFRESHING THE MAP VERSUS PARTIAL REFRESH



282 • Exploring ArcObjects • Volume 1

Identifying features, raster cells, and so on, is simplified by the Identify-
Dialog object. The IdentifyDialog object automatically performs a search
on all the layers specified and populates a standard dialog box with the
search results. This object makes identification easier because you don’t
have to manually call IIdentify::Identify on each desired layer—the
IdentifyDialog does this automatically and populates the results in a
standard dialog box.

To use the IdentifyDialog object, you must cocreate a new instance of it
and set several of its properties—this hooks it up to the current applica-
tion. The object is global, however, if an instance has already been
created for the application. In this case, cocreating a new one really
finds the one already available. It is important to remember that only
one Identify dialog box may be opened per session in ArcMap.

 IIdentifyDialog : IUnknown Provides access to members that control Identifying layers
by OID or a point.

Display: IDisplay The display.
Map: IMap The map of identifying layers.

AddLayerIdentifyOID (in pLayer: ILayer,
in OID: Long)

Add layer and show object of the given OID.

AddLayerIdentifyPoint (in pLayer:
ILayer, in X: Long, in Y: Long)

Add layer and show objects that contain the given point.

ClearLayers Clear shown layers.
Show Show dialog.

The primary interface on the IdentifyDialog object is the IIdentifyDialog.
There are two properties, Display and Map, which must be set before
the object can be used. These properties tie the object to the current
application, enabling it to perform searches. Typically, the Map property
is set to the document’s focus map (IMxDocument::FocusMap), and the
Display property is set to the focus map’s ScreenDisplay object.

Features, rasters, and others are identified as they are added to the
IdentifyDialog object. There are two methods for adding layers:
AddLayerIdentifyOID and AddLayerIdentifyPoint. The first method
searches for features based on a specific objectID (OID), and the latter
searches for features based on an x,y location.

 IIdentifyDialogProps : IUnknown Provides access to members that control Identify dialog
properties.

FlashEffect: Integer The flash effect.
Layers: IEnumLayer The layers eligible for searching.
TopmostOnly: Boolean Indicates if the search stops once a result has been found.

The IdentifyDialog object additionally implements IIdentifyDialogProps.

The primary member of this interface is the Layers property, which
provides a list of all the layers in the Map specified to
IIdentifyDialog::Map.

The TopmostOnly property is used internally by
IIdentifyDialog::AddLayerIdentifyPoint. When set to True, the default,
AddLayerIdentifyPoint, searches for features only in the top map layer.
The only way to change this property is to change it in the Layers

IIdentifyDialog
IIdentifyDialog2

IIdentifyDialogProps IdentifyDialog

IdentifyDialog is the dialog box for
quickly querying data attributes.

IDENTIFYDIALOG COCLASS

The Identify Results dialog box in ArcMap



Chapter 4 • Composing maps • 283

A
rc

M
ap

combo box on the Identify dialog box. You cannot programmatically set
this beforehand. The dropdown combo box has choices for specific
layers, all visible layers, topmost layer, and all selectable layers.

The FlashEffect property is currently not implemented.

The script below searches from features around an input x,y location
coming from a UIToolControl’s mouse down event.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pMxDoc As IMxDocument

  Dim pActiveView As IActiveView

  Dim pIdentifyDialog As IIdentifyDialog

  Dim pIdentifyDialogProps As IIdentifyDialogProps

  Dim pEnumLayer As IEnumLayer

  Dim pLayer As ILayer

  Set pMxDoc = Application.Document

  Set pActiveView = pMxDoc.FocusMap

  'Create a new IdentifyDialog and associate it

  'with the focus map and the map's display

  Set pIdentifyDialog = New IdentifyDialog

  Set pIdentifyDialogProps = pIdentifyDialog 'QI

  Set pIdentifyDialog.Map = pMxDoc.FocusMap

  Set pIdentifyDialog.display = pActiveView.ScreenDisplay

  'Clear the dialog on each mouse click

  pIdentifyDialog.ClearLayers

  'Perform an identify on all of the layers the dialog

  'says are searchable

  Set pEnumLayer = pIdentifyDialogProps.Layers

  pEnumLayer.Reset

  Set pLayer = pEnumLayer.Next

  Do While Not pLayer Is Nothing

    pIdentifyDialog.AddLayerIdentifyPoint pLayer, x, y

    Set pLayer = pEnumLayer.Next

  Loop

  pIdentifyDialog.Show

End Sub

IDENTIFYDIALOG COCLASS



284 • Exploring ArcObjects • Volume 1

The PageLayout object corresponds to the ArcMap layout view. A Page-
Layout object is automatically created by the document when you first
start ArcMap. Access the ArcMap PageLayout object via
IMxDocument::PageLayout. This property is read–write; you can instanti-
ate your own PageLayout object and swap out the documents’ existing
PageLayout.

The PageLayout object is very similar to the Map object. Both are views,
meaning they take control of the main application window; both are
also graphics containers, meaning they can store graphical elements. If
there is no map activated in layout view (IMxDocument::ActivatedView),
all new graphic elements are added to the PageLayout. If a Map is acti-
vated, graphic elements are added to the focus map
(IMxDocument::FocusMap). Although both the PageLayout and Map
objects are graphics containers, the type of graphics they store is differ-
ent. The PageLayout can additionally store frame elements such as a
MapFrame, and both can store graphic elements, such as a TextElement.

Although the map document (MxDocument) can pass a reference to the
focus map and the entire collection of maps in the document, the Page-
Layout object really manages all Map objects via MapFrame objects. In
ArcMap, all Maps must be contained by a MapFrame element, which is
directly managed by the PageLayout. It is only for convenience that map
documents are able to pass a reference to Maps.

IActiveView
IActiveViewEvents
IConnectionPoint-

Container
IDisplayAdmin

IGraphicsContainer
IGraphicsContainer-

Select
IGraphicSnap-

Environment
IPageEvents
IPageLayout

IPersist
IPersistStream

ISelectionEvents
ITransformEvents

IViewManager

PageLayout

The page layout manages the layout of a
hardcopy output page. The view the

page layout draws in the main applica-
tion window depicts exactly what gets

printed. A page layout typically consists of
one or more maps, graphics, and a title. It
facilitates the creation and management

of these parts of a map.

Ruler settings
represents the layout
rulers

The snap grid is a grid
of reference points on
the layout used to aid
element placement.
The snap grid works
in conjunction with a
grid snap agent

A page layout manages the layout
of a hard-copy output page

Graphic snap agents move
elements by attempting to

snap them to various objects
such as the snap grid

ArcMap page layout objects

IPersist
IPersistStream

ISnapGuides SnapGuides

SnapGrid
IPersist

IPersistStream
ISnapGrid

Ruler-
Settings

IPersist
IPersistStream
IRulerSettings

Graphic-
Snap-

Environment

IGraphicSnap-
Environment

IPersist
IPersistStream

The graphic snap environment controls which
graphic snap agents are active, the order in
which they are called, and the snap tolerance

GridSnap
GuideSnap
MarginSnap
RulerSnap

IGraphicSnap
IPageLayoutSnap

IPersist GraphicSnap

IClone
IElement

IElementProperties
IPersist

IPersistStream

Element
The page represents
the piece of paper
the layout resides on

Snap guides are
horizontal and vertical
lines added to the
layout that aid
element placement.
The snap guides work
in conjunction with a
guide snap agent

*

Page

IClone
IConnectionPointContainer

IFrameProperties
IPage

IPageEvents
IPersist

IPersistStream
IPropertySupport

IActiveView
IActiveViewEvents

IConnectionPointContainer
IDisplayAdmin

IGraphicsContainer
IGraphicsContainerSelect

IGraphicSnapEnvironment
IPageEvents
IPageLayout

IPersist
IPersistStream

ISelectionEvents
ITransformEvents

IViewManager

PageLayout



Chapter 4 • Composing maps • 285

A
rc

M
ap

In order to present itself as a hardcopy output page, the PageLayout
automatically creates these objects: SnapGuides, SnapGrid, RulerSettings,
and Page.

 IPageLayout : IUnknown Provides access to members that control the Page Layout.

AlignToMargins: Boolean Indicates if graphics will be aligned to the margins or to each other.

HorizontalSnapGuides: ISnapGuides The horizontal snapping guides.
Page: IPage The page.
RulerSettings: IRulerSettings The ruler settings.
SnapGrid: ISnapGrid The snapping grid.
VerticalSnapGuides: ISnapGuides The vertical snapping guides.
ZoomPercent: Double The current zoom percent.  100 means 1:1.  200 means twice

normal size, etc.

FocusNextMapFrame Focus the next map.
FocusPreviousMapFrame Focus the previous map.
ReplaceMaps (in Maps: IMaps) Replace the maps in the data frames with the specified maps.  If

there are more maps than frames, new frames are created.  If
there are fewer frames than maps, extra frames are cleared.

ZoomToPercent (in percent: Long) Magnify the page by a certain percentage.  100 means actual size.
200 means twice normal size, etc.

ZoomToWhole Fit the whole page in the window.
ZoomToWidth Fit the width of the page to the screen.

The IPageLayout interface is the primary interface implemented by the
PageLayout object. Use this interface to access the RulerSettings, the
SnapGrid, the SnapGuides, and the Page objects. IPageLayout also has
methods for zooming the view and changing the focus map. This code
demonstrates zooming.
Public Sub ZoomToPercent()
  Dim pPageLayout As IPageLayout
  Dim pMxDoc As IMxDocument
  Set pMxDoc = Application.Document
  Set pPageLayout = pMxDoc.PageLayout
  'Ensure the application is in layout view
  If Not pMxDoc.ActiveView Is pMxDoc.PageLayout Then
    Set pMxDoc.ActiveView = pMxDoc.PageLayout
  End If
  pPageLayout.ZoomToPercent 50  'Zoom the view to 50%
End Sub

The PageLayout object also implements
IActiveView, which, like the Map class, you

interact with to control the extents that are
being viewed. But unlike the Map’s active view,
the reference system is in page units. Hence, all
graphic elements are positioned in page units.

PAGELAYOUT COCLASS



286 • Exploring ArcObjects • Volume 1

 IGraphicsContainer : IUnknown Provides access to members that control the Graphics
Container.

AddElement (in Element: IElement, in
zorder: Long)

Add a new graphic element to the layer.

AddElements (in Elements:
IElementCollection, in zorder: Long)

Add new graphic elements to the layer.

BringForward (in Elements:
IEnumElement)

Move the specified elements one step closer to the top of the stack
of elements.

BringToFront (in Elements:
IEnumElement)

Make the specified elements draw in front of all other elements.

DeleteAllElements Delete all the elements.
DeleteElement (in Element: IElement) Delete the given element.
FindFrame (in frameObject: Variant) :

IFrameElement
Find the frame that contains the specified object.

GetElementOrder (in Elements:
IEnumElement) : Variant

Private order object.  Used to undo ordering operations.

LocateElements (in Point: IPoint, in
Tolerance: Double) : IEnumElement

Returns the elements at the given coordinate.

LocateElementsByEnvelope (in
Envelope: IEnvelope) : IEnumElement

Returns the elements that intersect with the given envelope.

MoveElementFromGroup (in Group:
IGroupElement, in Element: IElement,
in zorder: Long)

Move the element from the group to the container.

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Move the element from the container to the group.

Next: IElement Returns the next graphic in the container.
PutElementOrder (in order: Variant) Private order object.  Used to undo ordering operations.
Reset Reset internal cursor so that Next returns the first element.
SendBackward (in Elements:

IEnumElement)
Move the specified elements one step closer to the bottom of the

stack of elements.
SendToBack (in Elements:

IEnumElement)
Make the specified elements draw behind all other elements.

UpdateElement (in Element: IElement) The graphic element's properties have changed.

IGraphicsContainer provides access to the PageLayout object’s graphic
elements. Use this interface to add new elements or access existing
ones. For example, a title at the top of a layout is a TextElement stored in
the layout’s graphics container.

The script below shows one method for adding a new text element onto
the page layout. In this example, a UIToolControl is used to get a mouse
down event so users can place the text element anywhere they desire
on the page layout. The script will only add a new element if ArcMap is
in layout view.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

     ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pMxDoc As IMxDocument

  Dim pPageLayout As IPageLayout

  Dim pActiveView As IActiveView

  Dim pGraphicsContainer As IGraphicsContainer

  Dim pTextElement As ITextElement

  Dim pElement As IElement

  Dim pPoint As IPoint

  Set pMxDoc = Application.Document

  Set pPageLayout = pMxDoc.PageLayout

  Set pActiveView = pPageLayout 'QI

  Set pGraphicsContainer = pPageLayout 'QI

  'Check that ArcMap is in layout view

  If Not TypeOf pMxDoc.ActiveView Is IPageLayout Then

    MsgBox "Tool works only in layout view"

PAGELAYOUT COCLASS



Chapter 4 • Composing maps • 287

A
rc

M
ap

    Exit Sub

  End If

  Set pTextElement = New TextElement

  Set pElement = pTextElement 'QI

  'Create a point from the x,y coordinate parameters

  Set pPoint = _

   pActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x,y)

  pTextElement.Text = "My Map"

  pElement.Geometry = pPoint

  pGraphicsContainer.AddElement pTextElement, 0

  'Refresh only the pagelayout's graphics

  pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

End Sub

This script moves all the elements in the layout one inch to the right:

Public Sub MoveAllElements()

  Dim pMxDoc As IMxDocument

  Dim pPageLayout As IPageLayout

  Dim pActiveView As IActiveView

  Dim pGraphicsContainer As IGraphicsContainer

  Dim pElement As IElement

  Dim pTransform2D As ITransform2D

  Set pMxDoc = Application.Document

  Set pPageLayout = pMxDoc.PageLayout

  Set pActiveView = pPageLayout 'QI

  Set pGraphicsContainer = pPageLayout 'QI

  'Loop through all the elements and move each one 1 inch

  pGraphicsContainer.Reset

  Set pElement = pGraphicsContainer.Next

  Do While Not pElement Is Nothing

    Set pTransform2D = pElement

    pTransform2D.Move 1, 0

    Set pElement = pGraphicsContainer.Next

  Loop

  'Refresh only the pagelayout's graphics

  pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing

End Sub

PAGELAYOUT COCLASS



288 • Exploring ArcObjects • Volume 1

 IGraphicsContainerSelect : IUnknown Provides access to members that control graphic container
selection.

DominantElement: IElement Dominant element.
ElementSelectionCount: Long Returns the number of selected elements.
SelectedElements: IEnumElement Returns the selected elements.
SelectionBounds (in Display: IDisplay) :

IEnvelope
Returns the bounds of the selection.

ElementSelected (in Element: IElement)
: Boolean

Indicates if the element is selected.

SelectAllElements Selects all elements.
SelectedElement (in Index: Long) :

IElement
Returns the nth selected element.  Use Selection count to get the

number of selected elements.
SelectElement (in Element: IElement) Selects the specified element.
SelectElements (in Elements:

IEnumElement)
Selects the specified elements.

SelectionTracker (in Index: Long) :
ISelectionTracker

Returns the tracker for the nth selected element.  Use Selection
count to get the number of selected elements.

UnselectAllElements Unselects all elements.
UnselectElement (in Element: IElement) Unselects the specified element.
UnselectElements (in Elements:

IEnumElement)
Unselects the specified elements.

Most objects that are graphics containers, such as PageLayout and Map,
implement the IGraphicsContainerSelect interface to expose additional
members for managing their element selection. For example,
IGraphicsContainerSelect::UnselectAllElements can be used to clear an
object’s graphic element selection.

The following simple VBA example returns the number of elements
currently selected in the focus Map and the PageLayout:

Public Sub GraphicSelectionCount()

  Dim pMxDocument As IMxDocument

  Dim pMap As IMap

  Dim pPageLayout As IPageLayout

  Dim pMapGraphicsSelect As IGraphicsContainerSelect

  Dim pPageLayoutGraphicsSelect As IGraphicsContainerSelect

  Set pMxDocument = Application.Document

  Set pMap = pMxDocument.FocusMap

  Set pPageLayout = pMxDocument.PageLayout

  Set pMapGraphicsSelect = pMap

  Set pPageLayoutGraphicsSelect = pPageLayout

  MsgBox pMapGraphicsSelect.ElementSelectionCount

  MsgBox pPageLayoutGraphicsSelect.ElementSelectionCount

End Sub

PAGELAYOUT COCLASS



Chapter 4 • Composing maps • 289

A
rc

M
ap

PAGE COCLASS

The PageLayout object automatically creates a Page object to manage the
page of paper on which the layout resides. Aside from color, size, and
orientation, the Page object manages additional layout properties, such as
page units, border style, and printable bounds. Access the PageLayout’s
Page object via IPageLayout::Page.

 IPage : IUnknown Provides access to members that control the Page.

Background: IBackground The page background.
BackgroundColor: IColor The page color.
Border: IBorder The page border.
DelayEvents: Boolean Indicates if the page stops firing IPageEvents until the flag is set to

false.
FormID: esriPageFormID The Page form.
IsPrintableAreaVisible: Boolean Indicates if the printable area is visible.
Orientation: Integer The Page orientation. 1 = portrait.  2 = landscape.
PageToPrinterMapping:

esriPageToPrinterMapping
The page to printer mapping.

PrintableBounds: IEnvelope The printable bounds.
StretchGraphicsWithPage: Boolean Indicates if graphics should stretch with the page when the page size

changes.
Units: esriUnits The units used for the page and all associated coordinates.

DrawBackground (in Display: IDisplay) Draw the page background.
DrawBorder (in Display: IDisplay) Draw the page border.
DrawPaper (in Display: IDisplay, in

eraseColor: IColor)
Draw the paper. EraseColor is the color of the area surrounding the

page.  Only the area around the page is drawn in order to eliminate
flashing. Use EraseColor = 0 to simply draw page.

DrawPrintableArea (in Display: IDisplay) Draw the printable area.
GetDeviceBounds (in Printer: IPrinter, in

currentPage: Integer, in Overlap:
Double, in Resolution: Integer, in
deviceBounds: IEnvelope)

The number of printer pages spanned by the page.

GetPageBounds (in Printer: IPrinter, in
currentPage: Integer, in Overlap:
Double, in pageBounds: IEnvelope)

The number of printer pages spanned by the page.

PrinterChanged (in Printer: IPrinter) Called by PageLayout when printer changes.
PrinterPageCount (in Printer: IPrinter, in

Overlap: Double, out pageCount:
Integer)

The number of printer pages spanned by the page.

PutCustomSize (in Width: Double, in
Height: Double)

The size of the page in page units.

QuerySize (out Width: Double, out
Height: Double)

The size of the page in page units.

IPage is the primary interface on the Page object. Use this interface to
access all of the properties of an ArcMap page, including the page’s
border, background, background color, orientation, and size.

Public Sub CheckPageSize()

  Dim pMxDoc As IMxDocument

  Dim pPage As IPage

  Dim dHeight As Double

  Dim dWidth As Double

  Set pMxDoc = Application.Document

  Set pPage = pMxDoc.PageLayout.Page

  pPage.QuerySize dWidth, dHeight

  If dWidth = 8.5 And dHeight = 11 Then

    pPage.PutCustomSize 5, 5

  End If

End Sub

Public Sub ChangePageColor()

  Dim pMxDoc As IMxDocument

Page

IClone
IConnectionPoint-

Container
IFrameProperties

IPage
IPageEvents

IPersist
IPersistStream

IPropertySupport

The page represents the piece of paper
on which the layout resides. The page has
many properties, including color, size, and

orientation.

This code checks the current page size and, if it
is 8.5" x 11", changes it to 5" x 5".



290 • Exploring ArcObjects • Volume 1

  Dim pPage As IPage

  Dim pColor As IColor

  Dim pRgbColor As IRgbColor

  Set pMxDoc = Application.Document

  Set pPage = pMxDoc.PageLayout.Page

  Set pRgbColor = New RgbColor

  pRgbColor.Blue = 204

  pRgbColor.Red = 255

  pRgbColor.Green = 255

  pPage.BackgroundColor = pRgbColor

End Sub

Enumeration esriPageFormID Forms support in Page.

 0 - esriPageFormLetter Letter - 8.5in x 11in.
 1 - esriPageFormLegal Legal - 8.5in x 14in.
 2 - esriPageFormTabloid Tabloid - 11in x 17in.
 3 - esriPageFormC C - 17in x 22in.
 4 - esriPageFormD D - 22in x 34in.
 5 - esriPageFormE E - 34in x 44in.
 6 - esriPageFormA5 Metric A5 - 148mm x 210mm.
 7 - esriPageFormA4 Metric A4 - 210mm x 297mm.
 8 - esriPageFormA3 Metric A3 - 297mm x 420mm.
 9 - esriPageFormA2 Metric A2 - 420mm x 594mm.
10 - esriPageFormA1 Metric A1 - 594mm x 841mm.
11 - esriPageFormA0 Metric A0 - 841mm x 1189mm.
12 - esriPageFormCUSTOM Custom Page Size.
13 - esriPageFormSameAsPrinter Page Form same as Printer Form.

The esriPageFormID enumeration provides a convenient list of preselected
page sizes for use by the Page object. For example, to change the layout
to standard legal page size, pass in esriPageFormLegal to IPage::FormID.
This is much quicker than setting a custom size with IPage::PutCustomSize.

One important element in this enumeration is esriPageFormSameAsPrinter.
When the FormID property has been set to this element, the layout’s
page size mimics the page size of the printer; whenever the printer page
size changes, the layout’s page size changes to match it. You can see
this behavior in the ArcMap application on the Page Setup dialog box
accessed from the File menu. Click the File menu and click Page Setup.
If the Same as Printer check box is checked, the map setup will change
to reflect any changes to the printer setup.

Public Sub SetLegalPageSize()

  Dim pMxDoc As IMxDocument

  Dim pPageLayout As IPageLayout

  Dim pPage As IPage

  Dim x As Double, y As Double

  Set pMxDoc = Application.Document

  Set pPageLayout = pMxDoc.PageLayout

  Set pPage = pPageLayout.Page

  pPage.FormID = esriPageFormLegal

  pPage.QuerySize x, y

  MsgBox x & "  " & y

End Sub

This code changes the page color to yellow.

This sample uses the esriPageFormID enu-
meration to quickly change the page size.

PAGE COCLASS



Chapter 4 • Composing maps • 291

A
rc

M
ap

Enumeration esriPageToPrinterMapping Page to Printer Mapping.

0 - esriPageMappingCrop Crop Page to Printer.
1 - esriPageMappingScale Scale Page to Printer.
2 - esriPageMappingTile Tile Page to Printer.

The esriPageToPrinterMapping enumeration tells the Page what to do
when the layout’s page size does not match the printer’s page size. This
is often the case when IPage::FormID is set to something other than
esriPageFormSameAsPrinter. By default, ArcMap crops the page, but you
can choose to either scale the page or tile it. In the ArcMap application,
you can see these choices on the Print dialog box.

 IPageEvents : IUnknown Provides access to events that occur when the Page
changes.

PageColorChanged Fired when the page color changes.
PageMarginsChanged Fired when the page margins change.
PageSizeChanged Fired when the page size changes.
PageUnitsChanged Fired when the units used by the page changes.

The Page object is the event source for page events. Page events are fired
by the Page object to notify all clients that certain aspects of the page have
changed. The page events are grouped under the IPageEvents interface
and are PageColorChanged, PageMarginsChanged, PageSizeChanged, and
PageUnitsChanged. Within ArcMap, there is only one client—the Page-
Layout object—listening for these events. The PageLayout object listens for
these events so it can modify its layout according to changes made to its
page. For example, when the page units are changed, the page layout
needs to update its transformation, update the snap tolerance and snap
grid, update its snap guides, and convert its graphics to the new units.

PAGE COCLASS



292 • Exploring ArcObjects • Volume 1

SNAPGRID COCLASS

In layout view, right-click the screen and click Grid. This lets you show
or hide the snap grid, as well as enable or disable snapping to the grid.
The SnapGrid object represents the snap grid. Although this object is
cocreatable, there is generally no need to create one as the PageLayout
object automatically creates one when it is created. Use
IPageLayout::SnapGrid to get a reference to the snap grid currently
associated with the layout view.

For information about enabling and disabling grid snapping, see the
section on graphic snap agents.

The SnapGrid implements IPersist and IPersistStream to save the object’s
current settings in the current map document.

 ISnapGrid : IUnknown Provides access to members that control the Snapping grid.

HorizontalSpacing: Double The horizontal distance between grid points.
IsVisible: Boolean Indicates if the snapping grid is visible.
VerticalSpacing: Double The vertical distance between grid points.

Draw (in Display: IDisplay, in Page:
IPage)

Draw the grid.

The primary interface on the SnapGrid object is ISnapGrid. Use this
interface to change the grid’s horizontal and vertical spacing and control
whether or not the grid is visible. The sample below changes the snap
grid’s vertical and horizontal spacing to 0.5 inches and ensures the grid
is visible.

Public Sub SnapGrid()

  Dim pMxDoc As IMxDocument

  Dim pSnapGrid As ISnapGrid

  Dim pActiveView As IActiveView

  Set pMxDoc = Application.Document

  Set pSnapGrid = pMxDoc.PageLayout.SnapGrid

  pSnapGrid.HorizontalSpacing = 0.5

  pSnapGrid.VerticalSpacing = 0.5

  pSnapGrid.IsVisible = True

  Set pActiveView = pMxDoc.PageLayout

  pActiveView.Refresh

End Sub

SnapGrid
IPersist

IPersistStream
ISnapGrid

The layout view supports a snap grid,
which is a grid of reference points on the

layout used to help position elements. The
grid may be used as a visual indicator of

size and position, or it may be used to
snap elements into position.

This image shows the snap grid.



Chapter 4 • Composing maps • 293

A
rc

M
ap

SNAPGUIDES COCLASS

IPersist
IPersistStream

ISnapGuides SnapGuides

You can use rulers, guides, and grids in
layout view to align elements on the

page.

This image shows a vertical and a horizontal
snap guide added to the layout.

The PageLayout object has two SnapGuides objects, one for managing
horizontal guides, and one for managing vertical guides. Use
IPageLayout::VerticalSnapGuides or IPageLayout::HorizontalSnapguides
to obtain a reference to the desired SnapGuides object.

Each SnapGuides object manages an internal collection of individual
guides. For example, the SnapGuides object that represents the horizon-
tal snap guides may contain 10 individual guides.

 ISnapGuides : IUnknown Provides access to members that control the Snapping
guides.

AreVisible: Boolean Indicates if snapping guides are visible.
DrawLevel: tagesriViewDrawPhase Level where guides are drawn.
Guide (in idx: Long) : Double The nth guide. The position is specified in page units.
GuideCount: Long The number of guides.

AddGuide (in pos: Double) Adds a guide at the specified position.  The position is specified in
page units.

Draw (in Display: IDisplay, in
isHorizontal: Boolean)

Draw a fine line showing exactly where objects will snap.

DrawHighlight (in Display: IDisplay, in
isHorizontal: Boolean)

Draw a highlight around the snap line for a nice visual effect.

RemoveAllGuides Removes all the guides.
RemoveGuide (in idx: Long) Removes the nth guide.

Use ISnapGuides to add a new guide, remove a guide, and turn the
visibility of the guides on or off. The sample below adds a new hori-
zontal guide 5 inches from the bottom of the page and then turns on
the horizontal guides’ visibility if they are turned off.

Public Sub AddHorizontalSnapGuide()

  'Add a horizontal snap guide 5 inches up the page

  Dim pMxDoc As IMxDocument

  Dim pHorizontalSnapGuides As ISnapGuides

  Dim pActiveView As IActiveView

  Set pMxDoc = Application.Document

  Set pHorizontalSnapGuides = pMxDoc.PageLayout.HorizontalSnapGuides

  pHorizontalSnapGuides.AddGuide 5

  If Not pHorizontalSnapGuides.AreVisible Then

    pHorizontalSnapGuides.AreVisible = True

    Set pActiveView = pMxDoc.PageLayout

    pActiveView.Refresh

  End If

End Sub



294 • Exploring ArcObjects • Volume 1

RULERSETTINGS COCLASS

Ruler-
Settings

IPersist
IPersistStream
IRulerSettings

Rulers show the size of a page and
elements on the final printed map.

This image shows the horizontal ruler with the
SmallestDivision property set to 2.

This image shows the same ruler again but with
the SmallestDivision property set to 0.1. Notice

that there are now 10 markings between
each inch.

The PageLayout object has a RulerSettings object that manages the ruler
settings. Although this object is cocreatable, there is generally no need
to create one because the PageLayout object automatically instantiates
one when it is created. Use IPageLayout::RulerSettings to get a reference
to the RulerSettings object currently associated with the layout view.

 IRulerSettings : IUnknown Provides access to members that control Ruler setup.

SmallestDivision: Double The size of the smallest ruler division. The size is in page units.

The IRulerSettings interface only has one property, SmallestDivision. This
property controls the size of the smallest ruler division in page units. For
example, if the page size is 8.5 by 11 inches and the SmallestDivision is
set to 2, the rulers in layout view will read off every 2 inches. If the
property is set to .1, the rulers will read off every 1/10 of an inch.

Public Sub ChangeRulerSettings()

  Dim pMxDoc As IMxDocument

  Dim pRulerSettings As IRulerSettings

       
  Set pMxDoc = Application.Document

  Set pRulerSettings = pMxDoc.PageLayout.RulerSettings

  pRulerSettings.SmallestDivision = 2

  pMxDoc.ActiveView.Refresh

End Sub



Chapter 4 • Composing maps • 295

A
rc

M
ap

GRAPHICSNAPENVIRONMENT COCLASS

To aid in aligning and positioning elements on a page, the layout view
supports element snapping. Elements may be snapped to the snap grid,
rulers, guides, and margins. Snapping is performed by a combination of
efforts between snapping target objects and snap agents. The snap
agents attempt to move a graphic to a position on a snapping target
object. The PageLayout object manages the snap agents, snapping target
objects, and the snapping environment.

The GraphicSnapEnvironment object manages the graphic snap agents.
This object is cocreatable, but typically this is not necessary because
PageLayout object automatically creates the object when it itself is created.
The PageLayout actually aggregates a GraphicSnapEnvironment object,
making it part of the PageLayout object.

To get a reference to the GraphicSnapEnvironment associated with the
page layout, simply perform a query interface from any of the other
interfaces on PageLayout, such as IPageLayout.

 IGraphicSnapEnvironment : IUnknown Provides access to members that control the Collection of
snap agents used for snapping graphics.

SnapAgent (in Index: Long) :
IGraphicSnap

Get a snap agent.  The index argument is zero based.

SnapAgentCount: Long The number of snap agents.
SnapAgentOrder: IArray An array of IDs indicating how agents should be ordered.
SnapTolerance: Double The snap tolerance in page units.

AddSnapAgent (in SnapAgent:
IGraphicSnap)

Add a new snap agent to the environment.

ClearSnapAgents Remove all snap agents.
DeleteSnapAgent (in SnapAgent:

IGraphicSnap)
Remove specified snap agent from the environment.

SnapShape (in Shape: IGeometry) Snap the shape using the agents in the environment.

Use the IGraphicSnapEnvironment interface to add or delete snap
agents and to snap a graphic into place with SnapShape. The SnapShape
method calls each snap agent’s snap method until one of them returns
True, indicating that they have moved the graphic. When a snap agent
returns True, no other snap agents are called. You can also use the
SnapAgentOrder property on this interface to control in which order the
snap agents are called. With this interface, you can establish a snap
agent priority—for example, you may decide snapping to the snap grid
is more important than snapping to the page margins.

Graphic-
Snap-

Environment

IGraphicSnap-
Environment

IPersist
IPersistStream

The graphic snap environment controls
which graphic snap agents are active, the

order in which they are called, and the
snap tolerance.



296 • Exploring ArcObjects • Volume 1

IGraphicSnap
IPageLayoutSnap

IPersist GraphicSnap

GridSnap
GuideSnap
MarginSnap
RulerSnap

The grid snap moves graphics to the
snap grid. The guide snap moves graphics
to the horizontal and vertical guides. The

margin snap snaps graphics to the
layouts printable bounds. The ruler snap

snaps graphics to the rulers.

GRAPHIC SNAP COCLASSES

Rulers, guides, and grids are layout objects that aid in aligning elements
on a page. However, these objects are only half the story—there are also
snap agents that snap to them. Layout snap agents include GridSnap,
GuideSnap, MarginSnap, and RulerSnap. There is a one-to-one correla-
tion between the snap agents and the objects to which they snap. For
example, the GridSnap snap agent attempts to snap graphic elements to
the snap grid created by the SnapGrid object. The exception is the
MarginSnap snap agent, which simply snaps to the layout’s printable
bounds (IPage::PrintableBounds).

Graphics are snapped into place by calling IGraphicSnapEnvironment::
SnapShape on the PageLayout object. SnapShape in turn calls
IGraphicSnap::SnapX and IGraphicSnap::SnapY on each active snap agent
(in the order specified by IGraphicSnapEnvironment::SnapOrder) until
one of the snap agents returns True, indicating that a new point has been
found that meets the criteria of the snap agent. SnapX and SnapY are
separate calls because some agents, such as guides, may only act in one
direction.

GraphicSnap is an abstract class with the interface IGraphicSnap, which
all graphic snap agents implement.

In ArcMap, a guide snap agent is automatically created and then snaps to
vertical and horizontal snap guides. There is no need to create more than
one type of snap agent. In ArcMap, you can access the snapping environ-
ment and snap agents by right-clicking in the layout view and clicking
Options. On the Layout View tab, you can turn snap agents on or off,
control the snap agent order, and set the snap tolerance.

 IGraphicSnap : IUnknown Provides access to members that control snapping graphics.

Name: String The name of the snap agent.

SnapX (in Shape: IGeometry, in
Tolerance: Double) : Boolean

Indicates if the point is snapped in the horizontal direction.

SnapY (in Shape: IGeometry, in
Tolerance: Double) : Boolean

Indicates if the point is snapped in the vertical direction.

All graphic snap agents implement the IGraphicSnap interface. This inter-
face only has three members: Name, SnapX, and SnapY. SnapX and SnapY
are unique and are used to determine if a graphic can be snapped. For
example, the GridSnap agent’s implementation of SnapX for polygon
graphics checks if either the Xmin or Xmax of the graphics bounding
rectangle is within snap tolerance of the snap grid. If either is, the graphic
is moved the calculated distance between the two. SnapX and SnapY
always return a Boolean, indicating whether or not the graphic was
snapped. If any snap agent returns True, no other snap agents are called.

 IPageLayoutSnap : IGraphicSnap Provides access to members that control snap agents that
are used with PageLayout.

PageLayout: IPageLayout Sets the PageLayout that this snap agent is associated with.

This interface is used to tie the snap agents to the PageLayout object. If
this property is not set, the graphic snap agents will not work properly.



Chapter 4 • Composing maps • 297

A
rc

M
ap

Because IPageLayoutSnap inherits from IGraphicSnap, all the methods
on IGraphicSnap are directly available on IPageLayoutSnap.

The following sample demonstrates how a grid snap agent can be
added to the layout:

Public Sub AddGridSnapAgent()

  Dim pMxDoc As IMxDocument

  Dim pPageLayout As IPageLayout

  Dim pSnapEnv As IGraphicSnapEnvironment

  Dim pPageLayoutSnap As IPageLayoutSnap

  Set pMxDoc = Application.Document

  Set pPageLayout = pMxDoc.PageLayout

  Set pSnapEnv = pPageLayout

  Set pPageLayoutSnap = New GridSnap

  pPageLayoutSnap.PageLayout = pPageLayout

  pSnapEnv.AddSnapAgent pPageLayoutSnap

End Sub

GRAPHIC SNAP COCLASSES



298 • Exploring ArcObjects • Volume 1

ArcMap map element objects

A frame element forms a border
around other elements or objects

IGraphicElement Frame-
Element

A frame element is a neatline

A map frame manipulates the
frame containing the map

A map surround frame
manipulates the frames of
map elements such as
North arrows and legends

An OLE frame is an OLE
object graphic

A table frame
manipulates the
frame containing
the table

IOleFrame
IElementShutdown

GraphicElement
OleFrame

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

Frame-
Element

IActiveViewEvents
IConnectionPointContainer

IDisplayAdmin
IDisplayEvents

IGraphicsComposite
IGraphicsContainerProperty

IMapFrame
IMapFrameEvents

IMapGrids
ITransformEvents

MapFrame

IGraphicsComposite
IMapFrameEvents

IMapSurroundEvents
IMapSurroundFrame

ITransformEvents

Map-
Surround-

Frame

ITableFrame

TableFrame

*

IBoundsProperties
IMarkerElement Marker-

Element

IBoundsProperties
IElementEditVertices

ILineElement
LineElement

A line element is a line graphic

A marker
element is a

point graphic

A group element is a set of
grouped elements

Graphic elements are simple graphics
that can appear in a data view

Map elements represent all the
graphics that can appear on a map

A text element is a text graphic

A data graph element
manipulates the frame

containing a graph

IActiveViewEvents
IDataGraphElement

IGraphicsContainerProperty
DataGraph-

Element

IEllipseElement Ellipse-
Element

IRectangleElement Rectangle-
Element

ICircleElement Circle-
Element

IElementEditVertices
IPolygonElement Polygon-

Element

IBoundsProperties
IFillShapeElement FillShape-

Element A fill shape element is a
graphic of a closed area

BmpPicture-
Element

EmfPicture-
Element

An EMF picture
element is a
Windows Enhanced
Metafile picture

A BMP picture element
is a Windows bitmap

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

IOlePictureElement
IPictureElement

Picture-
Element

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IBoundsProperties
IFrameElement

IFrameDraw
IFrameProperties

IGroupElement

Group-
Element

A picture element
represents Windows raster
or vector graphic objects

IBoundsProperties
IElementEditCallout

IElementEditVertices
IGroup-

SymbolElement
ITextElement

ITransformEvents

TextElement

MultiPatch-
Element

IGraphicElement Graphic-
Element



Chapter 4 • Composing maps • 299

A
rc

M
ap

ELEMENT ABSTRACT CLASS

A map layout and a data frame can both contain elements, but elements
are most commonly manipulated as part of a map layout. Elements can
basically be thought of as the nonfeature-based components of a map.
The list of supported elements includes FrameElements, which hold
maps; MapSurroundFrames, which hold North arrows, scale bar, and so
on; and GraphicElements, which hold text, line, point, fillshape, and
picture elements.

Elements are commonly accessed through the IGraphicsContainer inter-
face implemented by the Map and PageLayout objects. Through this inter-
face you can add, delete, update, and retrieve the individual elements
within a Map or PageLayout. Use the GroupElement object to combine
multiple elements into a single unit for manipulation by the user.

 IElement : IUnknown Provides access to members that control the Element.

Geometry: IGeometry Shape of the element as a geometry.
Locked: Boolean Indicates if the element is in a read-only state.
SelectionTracker: ISelectionTracker Selection tracker used by this element.

Activate (in Display: IDisplay) Prepare to display graphic on screen.
Deactivate ActiveView that graphics are displayed on is no longer visible.
Draw (in Display: IDisplay, in

trackCancel: ITrackCancel)
Draws the element into the given display object.

HitTest (in X: Double, in Y: Double, in
Tolerance: Double) : Boolean

Indicates if the given x and y coordinates are contained by the
element.

QueryBounds (in Display: IDisplay, in
Bounds: IEnvelope)

Bounds of the element taking symbology into consideration.

QueryOutline (in Display: IDisplay, in
Outline: IPolygon)

Bounds of the element taking symbology into consideration.

IElement is the generic interface implemented by all graphic elements
and frames. Most methods that return graphics (various methods and
properties of IGraphicsContainer and IGraphicsContainerSelect) return
them as generic IElement objects. IElement gives the programmer access
to the geometry of the object and employs methods for querying the
object and drawing it. It is the programmer’s responsibility to determine
what type of object is hosting the IElement interface by performing a QI.
In VB, check the elements in a page layout for a PolygonElement in the
following manner:

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pElement = pContainer.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is IPolygonElement Then

      MsgBox "This is a PolygonElement"

    End If

    Set pElement = pContainer.Next

  Loop

The SelectionTracker property will return an ISelectionTracker, which
can be used to reshape the element. Reshaping of elements is done via
handles around the edges of the element. QueryBounds and

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

Element is the abstract class on which
all graphic elements and frames are

based.



300 • Exploring ArcObjects • Volume 1

QueryOutline both require instantiated objects to be passed in. The
results of each will be the same for line and point elements, but will
vary for polygon elements (QueryBounds returns the bounding box,
while QueryOutline will return an outline of the element).

 IElementProperties : IUnknown Provides access to members that control the Element
Properties.

AutoTransform: Boolean Indicates if transform is applied to symbols and other parts of
element. False = only apply transform to geometry.

CustomProperty: Variant Custom property.
Name: String Name of the element.
Type: String Type of the element.

IElementProperties is a generic interface implemented by all graphic
elements and frames. This interface allows the developer to attach cus-
tom properties to an element. The Name and Type properties allow the
developer to categorize their custom properties.

AutoTransform is a Boolean value that indicates whether internal settings
should be transformed along with the element’s geometry when a trans-
form is applied via ITransform2D. For instance, if you have a point
element and you rotate it around a central location (the anchor point of
the rotation being different from the point element itself), then the
AutoTransform property is used to determine whether the orientation of
the symbol associated to the element should also be rotated by the
same amount.

ELEMENT ABSTRACT CLASS



Chapter 4 • Composing maps • 301

A
rc

M
ap

GRAPHICELEMENT ABSTRACT CLASS

Graphic elements are added to a data frame or map to highlight areas or
provide detail beyond that of the geographic features. The process of
redlining (marking areas for correction or notification) can be done by
adding graphic elements to the map. Annotation, which is used to label
features, is unique in that it is both a geographic feature and a graphic
element (specifically a TextElement). Annotation is added to the map
based on attribute values or other text strings.

 IGraphicElement : IUnknown Provides access to members that control the Graphic
Element object.

SpatialReference: ISpatialReference Spatial reference of the map.

The IGraphicElement interface is a generic interface implemented by all
graphic elements. This interface provides access to the spatial reference
of the element. The spatial reference of the element reflects its location
on the map.

 ITransform2D : IUnknown Provides access to members that supply an object with
Euclidean 2D transformation capabilities.

Move (dx: Double, dy: Double) Moves the object dx units horizontally and dy units vertically.
MoveVector (v: ILine) Moves the object defined by a 2D displacement vector.
Rotate (Origin: IPoint, RotationAngle:

Double)
Rotates the object about the specified origin point through

rotationAngle radians.
Scale (Origin: IPoint, sx: Double, sy:

Double)
Scales the object about the specified origin point a factor of sx

horizontally and sy vertically.
Transform (Direction:

tagesriTransformDirection,
Transformation: ITransformation)

Applies an arbitrary transformation.

The ITransform2D interface is implemented by elements and basic
geometries (points, polylines, and so on) to aid in the repositioning of
objects. This interface allows elements and geometries to be moved,
rotated, scaled, and transformed to new locations. It is implemented for
graphic elements so that they can move along with the geometries (fea-
tures) by which they are placed. The ITransform2D interface is docu-
mented more fully in Volume 2, Chapter 9, ‘Shaping features
with geometry’.

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

Descending from the Element abstract
class, GraphicElement objects are

elements that work in both a data frame
and a map layout. This category of

elements includes text, lines, points,
polygons, and pictures.



302 • Exploring ArcObjects • Volume 1

The ITextElement interface is the default
interface for the TextElement coclass.
This interface allows access to the text
string and symbology for the element.

The IElementEditVertices interface is
implemented by TextElement,

LineElement, and PolygonElement to
support the editing of vertices for these

elements.

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

IBoundsProperties
IElementEditCallout

IElementEditVertices
IGroup-

SymbolElement
ITextElement

ITransformEvents

TextElement

The TextElement coclass is a graphic
element that supports text or annotation

strings for labeling features and maps.
Text elements range from the labeling

on a street to the title of a map.

Annotation is both a geographic feature (stored in the geodatabase as a
feature with attributes) and a TextElement. It is actually a custom feature
within the geodatabase, and the TextElement is one of the components
of that feature.

The following VBA code will access the TextElement in a selected set of
annotation features:
  Dim pDoc As IMxDocument, pMap As IMap
  Set pDoc = ThisDocument
  Set pMap = pDoc.FocusMap
  Dim pFeatSel As IEnumFeature
  Set pFeatSel = pMap.FeatureSelection
  Dim pFeat As IFeature
  Set pFeat = pFeatSel.Next
  Do While Not pFeat Is Nothing
    If TypeOf pFeat Is IAnnotationFeature Then
      Dim pAnnoFeat As IAnnotationFeature, pElem As IElement
      Set pAnnoFeat = pFeat
      Set pElem = pAnnoFeat.Annotation
      Dim pTextEl As ITextElement
      Set pTextEl = pElem
    End If
    Set pFeat = pFeatSel.Next
  Loop

 ITextElement : IUnknown Provides access to members that control the Text element.

ScaleText: Boolean Indicates if the text scales with the map.
Symbol: ITextSymbol Text symbol this element uses to draw itself.
Text: String Text being displayed by this element.

Annotation feature classes have a reference scale stored with them so that
the annotation automatically scales based on a desired size. For instance,
if you want your annotation to be 10 pt. at a scale of 400 map units, you
will make your reference scale 400 and set your symbol size to 10 pt.
When the scale of your map is set to 200, the annotation will appear twice
as large. The ScaleText property of ITextElement indicates whether the
automatic scaling should take place for that particular element.

 IElementEditVertices : IUnknown Provides access to members that control the Element edit
vertices object.

MovingVertices: Boolean Indicates if this element is moving its vertices.

GetMoveVerticesSelectionTracker:
ISelectionTracker

Selection tracker to move points used by this element.

The MovingVertices property tells SelectionTracker to hand out the nor-
mal selection tracker (False) or forward the call to
GetMoveVerticesSelectionTracker (True).

 IElementEditCallout : IUnknown Callout editing interfaces for text elements.

EditingCallout: Boolean Returns or sets a flag indicating if this element is editing it's callout.

GetMoveTextSelectionTracker:
ISelectionTracker

Returns the selection tracker to move the text used by this
element.

TEXTELEMENT COCLASS



Chapter 4 • Composing maps • 303

A
rc

M
ap

IMarkerElement
IPropertySupport Marker-

Element

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

The MarkerElement coclass is a type of
graphic element used to support point

(marker) graphics within a data frame or
map layout.

IElementEditVertices
ILineElement

IPropertySupport
LineElement

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

The LineElement coclass is a type of
graphic element used to support line
graphics within a data frame or map

layout.

To determine whether a GraphicElement is a LineElement, check for the
implementation of the ILineElement interface:

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pElement = pContainer.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is ILineElement Then

      Dim pLineElem As ILineElement

      Set pLineElem = pElement

    End If

    Set pElement = pContainer.Next

  Loop

 ILineElement : IUnknown Provides access to members that control the Line element.

Symbol: ILineSymbol Line symbol this element uses to draw itself.

The ILineElement interface is the default interface for the LineElement
coclass. This interface is only implemented for the LineElement coclass;
it provides access to the symbology for the element.

Check for the implementation of the IMarkerElement interface to deter-
mine if your element is a MarkerElement:

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pElement = pContainer.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is IMarkerElement Then

      Dim pMarkerElem As IMarkerElement

      Set pMarkerElem = pElement

    End If

    Set pElement = pContainer.Next

  Loop

 IMarkerElement : IUnknown Provides access to members that control the Marker
element.

Symbol: IMarkerSymbol Marker symbol this element uses to draw itself.

The IMarkerElement interface is the default interface for the
MarkerElement coclass. This interface is only implemented for the
MarkerElement coclass and provides access to the symbology for the
element.

LINEELEMENT AND MARKERELEMENT COCLASSES



304 • Exploring ArcObjects • Volume 1

IFrameElement
IGroupElement Group-

Element

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

A group element is a creatable object
that is composed of one or more ele-

ment objects.

GroupElement objects are passed to the developer as IElements (by
IGraphicsContainer::Next among other members). It is up to the devel-
oper to determine if the object supports IGroupElement, which would
make it a GroupElement object. Use GroupElement objects when you
want to move or rotate more than one element as a unit.

 IGroupElement : IUnknown Provides access to members that control the Group
element.

Element (in Index: Long) : IElement Element at the given index of the group.
ElementCount: Long Number of elements in the group.
Elements: IEnumElement Elements in the group.

AddElement (in Element: IElement) Adds the given element to the group.
ClearElements Removes all elements from the group.
DeleteElement (in Element: IElement) Removes the given element from the group.

IGroupElement is the interface for creating a group of element objects. It
is implemented by the GroupElement object. This interface will allow the
programmer to manipulate (Add, Clear, or Delete) a group of elements.

The following code uses IGroupElement::DeleteElement to remove the
second element in a group:

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pElement = pContainer.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is IGroupElement Then

      Dim pElem2 As IElement, pGroup As IGroupElement

      Set pGroup = pElement

      Set pElem2 = pGroup.Element(1)

      pGroup.DeleteElement pElem2

    End If

    Set pElement = pContainer.Next

  Loop

DeleteElement removes the element from the group and deletes the ele-
ment from the map. If you want to keep the element in the map but
remove it from the group, you will need to readd the element to the
map after deleting it from the group.

 IFrameElement : IUnknown Provides access to members that control the Frame
element object.

Background: IBackground Frame background used by this element.
Border: IBorder Frame border used by this element.
DraftMode: Boolean Indicates if this element is in draft mode, i.e., draws fast.
Object: Variant Object framed by this element.
Thumbnail: Long Small bitmap representation of this element.

The IFrameElement interface is a generic interface for manipulating the
properties of the frame itself (not the object within the frame).

GROUPELEMENT COCLASS



Chapter 4 • Composing maps • 305

A
rc

M
ap

DATAGRAPHELEMENT COCLASS

Through the user interface, DataGraphElement objects are created by
selecting the Show Graph on Layout option when creating a graph or
the Show on Layout option after the graph has been created.

DataGraphElement objects can only appear on page layouts. The pur-
pose of the class is to allow graphs to be displayed on the page layouts
for outputting purposes.

 IDataGraphElement : IUnknown Provides access to members that control the datagraph
element.

DataGraph: IDataGraph The graph.
Map: IMap The parent map.

The IDataGraphElement interface is implemented only by the Data-
GraphElement coclass and provides access to the graph and the parent
map. Through the parent map, you can access the layer or table that
was used to generate the graph.

The following VBA code demonstrates how to loop through the ele-
ments in a page layout, find the elements that support IDataGraph-
Element, and change the selection set property on the graph to True (use
the selected set):

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pElement = pContainer.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is IDataGraphElement Then

        Dim pDataGraphEl As IDataGraphElement, pDataGraph As IDataGraph

        Set pDataGraphEl = pElement

        Set pDataGraph = pDataGraphEl.DataGraph

        pDataGraph.UseSelectedSet = True

    End If

    Set pElement = pContainer.Next

  Loop

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

IActiveViewEvents
IDataGraphElement
IGraphicsContainer-

Property

DataGraph-
Element

The DataGraphElement object is a
type of Element that supports graphs

based on data in the map.



306 • Exploring ArcObjects • Volume 1

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

Frame-
Element

FrameElement is the abstract class on
which all frame element objects are

based.

FRAMEELEMENT ABSTRACT CLASS

FrameElements contain other map elements—they serve as the back-
ground and border to these elements. The MapFrame element holds a
map and allows the programmer access to that map along with the
background and border properties of the container holding that map
within a layout session.

 IFrameElement : IUnknown Provides access to members that control the Frame
element object.

Background: IBackground Frame background used by this element.
Border: IBorder Frame border used by this element.
DraftMode: Boolean Indicates if this element is in draft mode, i.e., draws fast.
Object: Variant Object framed by this element.
Thumbnail: Long Small bitmap representation of this element.

The IFrameElement interface is a generic interface for manipulating the
properties of the frame itself (not the object within the frame). This
interface provides access to the background and border properties of
the frame, as well as access to the object within the frame.

The Object property returns the object within the frame, but it returns it
as a variant. The programmer is required to determine what type of
object it is. To get an IMap object, first determine if the FrameElement
supports IMapFrame, then use the Map property of that interface.

The Thumbnail property returns a picture of the contents within the
frame. This is useful for showing previews in other windows.

The FrameElement object does not house any particular type of element,
but can be grouped with other elements that are not normally associated
with frames. For example, PointElement does not support IFrameElement
interface, and so, by default, you do not have a frame for your point.
However, there may be times when you want to make a point graphic
stand out by placing it inside a border with a particular background.
This can be accomplished by creating a FrameElement object and
grouping it (IGroupElement) with your PointElement.

  Dim pFrame as IFrameElement, pPointElement as IMarkerElement

  Dim pGroup as IGroupElement

  Set pFrame = New FrameElement

  Set pGroup = New GroupElement

  pGroup.AddElement pPointElement

  pGroup.AddElement pFrame

 IGraphicElement : IUnknown Provides access to members that control the Graphic
Element object.

SpatialReference: ISpatialReference Spatial reference of the map.

The IGraphicElement interface is a generic interface implemented by all
graphic elements and OleFrame. The purpose of the interface is to
provide the spatial reference information for the element.

The FrameElement types include
FrameElement (holds point, line, and polygon

graphics), OleFrame (holds OLE objects such as
Word documents), MapFrame (holds maps),

and MapSurroundFrame (holds North arrows,
scale bar, legends, and other map primitives).



Chapter 4 • Composing maps • 307

A
rc

M
ap

The OleFrame object allows for the embedding of standard OLE objects
in a page layout. Check an element for the implementation of IOleFrame
to determine if it is an OleFrame object.

 IOleFrame : IUnknown Graphic Element that holds an OLE object

OleClientItem Valid only in MFC environment.  Returns pointer to the
COleClientItem representing the OLE object.

CreateOleClientItem (oleDocument) Valid only in MFC environment. Initialize the internal COleClientItem.
Pass in a pointer to the application's COleDocument.

Edit Edit the object in-place.
EditProperties: Boolean Show the properties dialog for the object.
Hide Stop editing the object.
Open Edit the object in a separate application window.

The IOleFrame interface is implemented by the OleFrame coclass, which
allows for the editing of embedded OLE objects. The interface allows
for the standard manipulation of embedded OLE objects.

The Edit method allows for the editing of the object within the frame,
while the Open method allows for editing of the object within its own
domain.

C++ programmers can use the CreateOleClientItem method to initialize
the internal COleClientItem. Pass in a pointer to the application’s
COleDocument when executing the method.

MapFrame objects are unique among the other frames and elements
because they support events (MapSurroundFrames also support events)
and reference grids. The MapFrameResized event is supported through
IMapFrameEvents to allow for the updating of map grids (graticules)
when the frame is resized. Map grids are only supported through the
MapFrame, not on the map itself.

Check an element for the implementation of IMapFrame to determine if
it is a MapFrame object.

 IMapFrame : IFrameElement Provides access to the members that control the map
element object.

Container: IGraphicsContainer The frame's container.
ExtentType: esriExtentTypeEnum The way in which the map extent of the frame is specified.
LocatorRectangleCount: Long The number of locator rectangles.
Map: IMap The associated map.
MapBounds: IEnvelope The bounds of the map displayed by the frame.
MapScale: Double The scale at which the map should be displayed.

AddLocatorRectangle (in Locator:
ILocatorRectangle)

Add a new locator rectangle to the data frame.

CreateSurroundFrame (in CLSID: IUID,
in optionalStyle: IMapSurround) :
IMapSurroundFrame

Returns the map surround frame element of the type given in clsid.
An optional style object may be specified.

LocatorRectangle (in Index: Long) :
ILocatorRectangle

Returns the locator rectangle at the specified index.

RemoveAllLocatorRectangles Remove all the locator rectangles from the data frame.
RemoveLocatorRectangle (in Locator:

ILocatorRectangle)
Remove a locator rectangle from the data frame.

IMapFrame is the interface implemented only by the MapFrame coclass.
The interface provides access to the map within the frame and also has
the ability to create locator rectangles outlining the areas covered by
other data frames. Among other things, locator rectangles can be used
to highlight inset areas.

IOleFrame
IGraphicElement OleFrame

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

Frame-
Element

OleFrame objects house OLE objects
(Excel spreadsheets, Word documents,
and so on) that have been added to a

page layout.

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

Frame-
Element

IActiveViewEvents
IConnectionPoint-

Container
IDisplayAdmin

IDisplayEvents
IGraphicsComposite
IGraphicsContainer-

Property
IMapFrame

IMapFrameEvents
IMapGrids

ITransformEvents

MapFrame

MapFrame objects house IMap objects
(data frames) within a page layout.

OLEFRAME, MAPFRAME, AND MAPSURROUNDFRAME



308 • Exploring ArcObjects • Volume 1

The MapBounds and MapScale properties can be used to update the
extent of the map within the frame, but make sure the ExtentType is set
to the correct option for the property you update.

The Container property provides access to the PageLayout object within
which the MapFrame object resides. The back pointer to the PageLayout is
needed so that the container can be refreshed when the MapFrame is
updated via a connection point (not through the PageLayout itself).

The CreateSurroundFrame method should be used for creating map
surround elements (North arrows, scale bars, and so on) that you want
to be linked to the map frame. Surrounds created in this method will be
updated when the map is updated (scale changed, and so on).

 IMapFrameEvents : IUnknown Provides access to the events that occur when the state of
the map frame changes.

MapFrameResized Occurs when a map frame is resized.

The IMapFrameEvents interface is implemented by the MapFrame and
MapSurroundFrame coclasses. This interface is used to notify related
objects of changes in the size of the frame.

 IMapGrids : IUnknown Provides access to members that control the map grids in a
data frame.

MapGrid (in Index: Long) : IMapGrid The map grid at the specified index.
MapGridCount: Long The number of map grids associated with the map frame.

AddMapGrid (in MapGrid: IMapGrid) Adds a map grid to the map frame.
ClearMapGrids Clears all map grids from the map frame.
DeleteMapGrid (in MapGrid: IMapGrid) Deletes a map grid from the map frame.

The IMapGrids interface supports adding and deleting map grids (grati-
cules) to a map frame. It is implemented by the MapFrame object and
acts as a collection for map grids.

The MapSurroundFrame object is a type of FrameElement that holds sur-
round objects such as North arrows, legends, and scale bars. Like the
MapFrame coclass, MapSurroundFrame objects support the
MapFrameResized event. Listening for the event allows for the updating of
objects, such as scale bars, that may need to change when the map is
resized.

 IMapSurroundFrame : IFrameElement Provides access to the members that control the map
surround element interface.

MapFrame: IMapFrame The frame element of the map associated with this object's map
surround.

MapSurround: IMapSurround The map surround displayed by this frame element.

IMapSurroundFrame is the default interface for the MapSurroundFrame
coclass. This interface permits access to the surround within the frame
and the IMapFrame to which the surround is related.

The MapFrame property provides access to the frame to which the
surround is linked.

IMapFrameEvents
IMapSurroundFrame

ITransformEvents

Map-
Surround-

Frame

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

Frame-
Element

Surrounds are related to map frames so that
changes in the map frame are reflected in the

surround. For instance, if the map frame is
rotated, then a North arrow linked to the frame

should also be rotated.

OLEFRAME, MAPFRAME, AND MAPSURROUNDFRAME



Chapter 4 • Composing maps • 309

A
rc

M
ap

Through the user interface, TableFrame objects are created by opening
an attribute table and selecting Add table to layout from the Options
pulldown menu.

The purpose of the object class is to allow attributes tables to be dis-
played with a page layout. TableFrame objects can only exist within a
page layout; they can’t be added to a map.

 ITableFrame: IUnknown Provides access to members that control table frames.

StartCol: Long The first column to display.
StartRow: Long The first row to display.
Table: ITable The table (either standalone table or feature layer).
TableProperty: ITableProperty The table property.
TableView: ITableView The table view to show.

The ITableFrame interface is implemented only by the TableFrame co-
class and provides access to the table held by the frame and the proper-
ties of that table. Through this interface, you can specify the starting
column and row for the table being displayed and access the query filter
and selection set for the table.

The following VBA code demonstrates how to loop through the ele-
ments in the page layout, find the ones that support ITableFrame, and
set the starting row for each to 2:

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pElement = pContainer.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is ITableFrame Then

      Dim pTab As ITableFrame

      Set pTab = pElement

      pTab.StartRow = 2

    End If

    Set pElement = pContainer.Next

  Loop

Using the TableView property you can get an ITableView object and
change properties of the table view such as ShowSelected (which deter-
mines whether all records or just the selected records are shown in the
table).

The Table property will return to you the ITable object associated with
the frame, but you can also get to this object by using the Table property
on the ITableProperty object returned with the TableProperty property.

TABLEFRAME COCLASS

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

Frame-
Element

ITableFrame

TableFrame

The TableFrame object is a type of
FrameElement that holds tables.



310 • Exploring ArcObjects • Volume 1

FILL SHAPE ELEMENT COCLASSES

The FillShapeElement abstract class is a type of Element, but it is also an
abstract class supporting CircleElement, EllipseElement, PolygonElement,
and RectangleElement. Each of the supported elements represents
a two-dimensional, closed-area graphic.

 IFillShapeElement : IUnknown Provides access to members that control the Fill Shape
element.

Symbol: IFillSymbol Fill symbol this element uses to draw itself.

IFillShapeElement is a generic interface supported by all
FillShapeElements. This interface provides access to the symbology used
in displaying the element.

 IPropertySupport : IUnknown Provides access to members that set a default property on
an object.

Current (in pUnk: IUnknown Pointer) :
IUnknown Pointer

The object currently being used.

Applies (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at any given time.

Apply (in NewObject: IUnknown Pointer)
: IUnknown Pointer

Applies the given property to the receiver and returns the old object.

CanApply (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at that particular
moment.

IPropertySupport is the interface implemented by Elements and various
other components (DimensionLayer, FeatureLayer, TinEdgeRenderer, and
others) to provide access to generic properties of the object. The inter-
face determines whether a certain property can be applied to an object,
then allows that property to be applied when appropriate.

Applies indicates whether an object can be applied at all, while
CanApply indicates whether an object can be applied at that particular
moment (whether or not the object is currently editable).

Current will return the current object of the specified type. For instance,
you may ask a CircleElement for its current IColor property.

 ICircleElement : IUnknown Provides access to members that control the Circle
element.

The ICircleElement interface is implemented only by the CircleElement
coclass. The interface does not have any properties or methods and
primarily exists for determining if an element is a circle.

 IEllipseElement : IUnknown Provides access to members that control the Ellipse
element.

The IEllipseElement interface is implemented only by the EllipseElement
coclass. The interface does not have any properties or methods and
primarily exists for determining if an element is an ellipse.

A CircleElement is a type of
FillShapeElement that supports circle

graphics.

An EllipseElement is a type of
FillShapeElement that supports ellipse

graphics.

IRectangleElement Rectangle-
Element

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

MultiPatch-
Element

IEllipseElement Ellipse-
Element

ICircleElement Circle-
Element

IElementEditVertices
IPolygonElement Polygon-

Element

IGraphicElement Graphic-
Element

IBoundsProperties
IFillShapeElement FillShape-

Element



Chapter 4 • Composing maps • 311

A
rc

M
ap

 IPolygonElement : IUnknown Provides access to members that control the Polygon
element.

The IPolygonElement interface is implemented only by the Polygon-
Element coclass. The interface does not have any properties or methods
and primarily exists for determining if an element is a polygon.

 IRectangleElement : IUnknown Provides access to members that control the Rectangle
element.

The IRectangleElement interface is implemented only by the Rectangle-
Element coclass. The interface does not have any properties or methods
and primarily exists for determining if an element is a rectangle.

 IElementEditVertices : IUnknown Provides access to members that control the Element edit
vertices object.

MovingVertices: Boolean Indicates if this element is moving its vertices.

GetMoveVerticesSelectionTracker:
ISelectionTracker

Selection tracker to move points used by this element.

The MovingVertices property tells SelectionTracker to hand out the nor-
mal selection tracker (False) or forward the call to
GetMoveVerticesSelectionTracker (True).

A RectangleElement is a type of
FillShapeElement that supports rect-

angle graphics.

You can set a rectangle as the geometry
for a RectangleElement, but the geom-
etry is actually stored and returned as a

polygon.

FILL SHAPE ELEMENT COCLASSES

A PolygonElement is a type of
FillShapeElement that supports polygon

graphics.



312 • Exploring ArcObjects • Volume 1

PictureElement objects are very similar to OleFrame objects. However,
PictureElements are the elements themselves, while OleFrames are the
frames around the object. More subtly, OleFrame objects can contain
pictures (bmp files and others), but they can also contain other types
of OLE objects (Word documents, Excel spreadsheets, and others). 
PictureElement objects can only contain pictures (.bmp or .emf files).

 IPictureElement : IUnknown Provides access to members that control the Picture
element.

Filter: String Filter used in CFileDialog.
MaintainAspectRatio: Boolean Indicates if the resize box will maintain the picture's aspect ratio.
PictureAspectRatio: Double Filter used in CFileDialog.
PictureDescription: String Description of the Picture Element.
SavePictureInDocument: Boolean Indicates if the Picture will be stored in the Document.

ImportPictureFromFile (in Name: String) File to be imported.

The IPictureElement interface is the generic interface implemented by
BmpPictureElement and EmfPictureElement types.

Check for the implementation of the IPictureElement interface to
determine if your element is a PictureElement. The following code
demonstrates this.

  Dim pMyElement As IPictureElement

  Set pMyElement = New BmpPictureElement

  If TypeOf pMyElement Is IPictureElement Then

    MsgBox ("pMyElement is IPictureElement")

  Else

    MsgBox ("pMyElement is not IPictureElement")

  End If

Use the Filter property to determine if the PictureElement is a Bmp-
PictureElement or an EmfPictureElement. For instance, for the Emf-
PictureElement, the filter is “Windows Enhanced Metafile
(*.emf)|*.emf|”.

SavePictureInDocument specifies whether that actual picture will be
saved with the document or just link to the picture on disk.

Make sure you have the correct filter set before using
ImportPictureFromFile.

 IOlePictureElement : IUnknown Provides access to members that control the Ole Style
Picture element.

ImportPicture (in pictureDisp: Picture) Import Picture from an IPictureDisp interface.

The IOlePictureElement interface is a generic interface implemented by
BmpPictureElement and EmfPictureElement. The interface is used to
load a picture into one of these coclasses through an OLE
IPictureDisp. To load a picture from a file, use IPictureElement.

The following VBA code adds a picture element to the layout. The
code uses the PictureAspectRatio property of IPictureElement to ensure
that the proper ratio is maintained. The ratio is given as change in
x/change in y, so if you want your image to be two inches tall on the

BmpPicture-
Element

EmfPicture-
Element

IBoundsProperties
IFrameDraw

IFrameElement
IFrameProperties

IOlePictureElement
IPictureElement

Picture-
Element

IClone
IElement

IElementProperties
IPersist

IPersistStream
IPropertySupport

ITransform2D

Element

IGraphicElement Graphic-
Element

The PictureElement abstract class is a
type of graphic element that supports the

BmpPictureElement and EmfPicture-
Element coclasses.

The BmpPictureElement coclass
supports bitmap files. Query

IPictureElement::Filter to determine if
your element is a BmpPictureElement.

The EmfPictureElement coclass sup-
ports .emf (Windows Enhanced Metafile)

files. Query IPictureElement::Filter to
determine if your element is an Emf-

PictureElement.

PICTURE ELEMENT COCLASSES



Chapter 4 • Composing maps • 313

A
rc

M
ap

y-axis, then it would need to be 2 * PictureAspectRatio long
on the x-axis.

Private Sub AddPicture()

  Dim pDoc As IMxDocument, pPageLayout As IPageLayout

  Dim pContainer As IGraphicsContainer, pElement As IElement, _

    pPic As IPictureElement

  Set pDoc = ThisDocument

  Set pPageLayout = pDoc.PageLayout

  Set pContainer = pPageLayout

  pContainer.Reset

  Set pPic = New BmpPictureElement

  pPic.ImportPictureFromFile
"d:\arcgis\arcexe81\symbols\stipples\woodland.bmp"

  pPic.MaintainAspectRatio = True

  Dim pEnv As IEnvelope

  Dim dXmin As Double, dYmin As Double, dXmax As Double, _

    dYmax As Double

  dXmin = 2

  dYmin = 2

  dXmax = 2 + (2 * pPic.PictureAspectRatio)

  dYmax = 2 + 2

  Set pEnv = New Envelope

  pEnv.PutCoords dXmin, dYmin, dXmax, dYmax

  Set pElement = pPic

  pElement.Geometry = pEnv

  pPic.MaintainAspectRatio = True

  pContainer.AddElement pPic, 0

  Dim pActive As IActiveView

  Set pActive = pPageLayout

  pActive.Refresh

End Sub

PICTURE ELEMENT COCLASSES



314 • Exploring ArcObjects • Volume 1

Data windows are additional windows associated with the ArcMap
application; their purpose is to provide a separate window for displaying
additional data. The data window framework provides an architecture
for easily creating new data windows. ArcMap ships with a variety of
data windows, including: DataGraphWindow, TableWindow, TableView,
MapInsetWindow, and OverviewWindow.

The Application object manages all data windows; access to a particular
window is available using the IApplicationWindows interface on the
Application object.

All data windows implement the following interfaces: IDataWindow,
IActiveViewEvents, and IDocumentEvents. However, custom data win-
dows cannot be implemented in Visual Basic.

 IDataWindow : IUnknown Provides access to members that control popup windows
that show map data.

Application: Object Provides the window with a reference to the application.
hWnd: Long The window's handle.
IsDockable: Boolean Indicates if the window is dockable.
IsVisible: Boolean Indicates if the window is visible.

PutPosition (in Left: Long, in Top: Long,
in Right: Long, in bottom: Long)

The window's position in screen pixels.

QueryPosition (out Left: Long, out Top:
Long, out Right: Long, out bottom:
Long)

The window's position in screen pixels.

Refresh Cause the window to redraw.
Show (in Show: Boolean) Indicates if the window is shown.

Use the IDataWindow interface to access the generic properties and
methods each data window has, such as the following: is it visible, is it
dockable, refresh the window, and change its position.

Data windows are additional displays
associated with the application.

ArcMap data window objects

MapInset windows display a
magnified view of the focus
map

Overview windows display the
full extent view of the focus map

Table windows display a table

Data windows are additional
displays associated with the

application

Data graph windows display
graphs

IActiveViewEvents
IComPropertySheetEvents

IDataGraphWindow
IDocumentEvents

IPersist
IPersistStream

DataGraph-
Window

IDataWindowFactory Overview-
Window-
Factory

A map inset window
factory creates map

inset windows

An overview window
factory creates overview

windows

IDataWindow-
Factory MapInset-

Window-
Factory

Data graphs represent
ArcMap and ArcCatalog
graphs

A table view
displays a table

IClone
IDataGraph

IDataGraphAxis
IDataGraphTicks

IDataGraphAreaProperties
IDataGraphBarProperties

IDataGraphColorProperties
IDataGraphHighLowCloseProperties

IDataGraphOverlayProperties
IDataGraphPieProperties

IDataGraphProperties
IPersistStream

DataGraph

ITableWindow
ITableWindow2

Table-
Window

IActiveViewEvents
IDocumentEvents

IMapSurroundEvents
IOverviewWindow

IPersistStream

Overview-
Window

IClone
ITableControl

ITableControlInfo
ITableControlWidth

ITableOutput
ITableView

ITableView2
ITableViewTableFields

TableView

IDataWindow

DataWindow

IActiveViewEvents
IDocumentEvents

ILensWindow
IMapInsetWindow

IMapSurroundEvents
IPersistStream

MapInset-
Window

IDataWindow

DataWindow



Chapter 4 • Composing maps • 315

A
rc

M
ap

The DataGraphWindow wraps a DataGraph object that allows a data
graph to appear in a separate data window. The DataGraphElement
object also wraps the DataGraph object, but in this case it does so to
enable a graph to be directly added to a layout. The example below
shows one method for creating a new data graph window. This example
creates a graph using the currently selected feature layer in the table of
contents.

Public Sub CreateNewGraph()

    Dim pMxDoc As IMxDocument

    Dim pTable As ITable

    Dim pDataGraph As IDataGraph

    Dim pDataGraphProperties As IDataGraphProperties

    Dim pGraphWindow As IDataGraphWindow

    Dim pDataGraphs As IDataGraphs

    Set pMxDoc = Application.Document

    If pMxDoc.SelectedLayer Is Nothing Then Exit Sub

    If Not TypeOf pMxDoc.SelectedLayer Is IFeatureLayer Then Exit Sub

    Set pTable = pMxDoc.SelectedLayer

    'Create a new graph

    Set pDataGraph = New DataGraph

    'Set the default Table, DataGraph will select a default graph

    'type and some fields

    Set pDataGraph.Table = pTable

    'Specifically give the graph a name and title

    pDataGraph.Name = pMxDoc.SelectedLayer.Name & " Graph"

    Set pDataGraphProperties = pDataGraph 'QI

    pDataGraphProperties.Title = "Cool Graph"

    'Associate the data graph with a data graph window

    Set pGraphWindow = New DataGraphWindow

    Set pGraphWindow.DataGraph = pDataGraph

    Set pGraphWindow.Application = Application

    'Add the graph to the system

    Set pDataGraphs = pMxDoc 'QI

    pDataGraphs.Add pDataGraph

End Sub

 IDataGraphWindow : IDataWindow Provides access to members that control the DataGraph
Window.

DataGraph: IDataGraph The DataGraph used by this window.

Use the IDataGraphWindow interface to access or set the DataGraph
object associated with the DataGraphWindow. For more information
about the DataGraph object, see the section on elements.

IDataWindow

DataWindow

IActiveViewEvents
IComPropertySheet-

Events
IDataGraphWindow

IDocumentEvents
IPersist

IPersistStream

DataGraph-
Window

Data graph windows display graphs.

DATAGRAPHWINDOW COCLASS



316 • Exploring ArcObjects • Volume 1

The MapInsetWindow object is the component behind the ArcMap
magnifier window. This data window provides a zoomed view of the
current focus map. To create a new magnifier window in ArcMap, click
the Windows menu and click Magnifier. The MapInsetWindow object
contains a MapInset (a type of map surround), which has the job of
controlling the zoom and setting the bounds of the map. The
MapInsetWindow allows the MapInset to appear in its own private win-
dow rather than on the page layout.

The MapInsetWindow object is not a directly creatable object. To create
a new map inset window, you must call IDataWindowFactory::Create
on a new MapInsetWindowFactory object. The example below shows
one method for creating a new magnifier window.

  Public Sub CreateMagnifierWindow()

    Dim pMapInset As IMapInset

    Dim pMapInsetWindow As IMapInsetWindow

    Dim pDataWindowFactory As IDataWindowFactory

    Set pDataWindowFactory = New MapInsetWindowFactory

    If pDataWindowFactory.CanCreate(Application) Then

      Set pMapInsetWindow = pDataWindowFactory.Create(Application)

      Set pMapInset = pMapInsetWindow.MapInset

      'Set the zoom percent to 200%

      pMapInset.ZoomPercent = 200

      pMapInsetWindow.Show True

    End If

  End Sub

 IMapInsetWindow : ILensWindow Provides access to members that control the Map Inset
Window.

MapInset: IMapInset The MapInset used by this window.

FlashLocation Draw leader lines from the inset to the location on the map shown by
the inset.

Use the IMapInsetWindow interface to access the MapInset object associ-
ated with the MapInsetWindow. IMapInsetWindow also contains a
FlashLocation method, which pinpoints the bounds of the MapInset on
the focus map.

 ILensWindow : IDataWindow Provides access to members that control the Lens Window.

IsLive: Boolean Indicates if the window shows a live view of what's under it or a
snapshot.

ScreenDisplay: IScreenDisplay The screen display used by this window.
UpdateWhileDragging: Boolean Indicates if the window is redrawn as it's moved or not.

Use the ILensWindow interface to access and set other import properties
of a magnifier window. For example, ILensWindow controls whether or
not the magnifier window updates while it is being dragged over the
focus map; ILensWindow also controls whether or not the window
should contain a snapshot of a specific location. Of course, when a
snapshot is in place, the UpdateWhileDragging property has no effect.

MAPINSETWINDOW CLASS

IActiveViewEvents
IDocumentEvents

ILensWindow
IMapInsetWindow

IMapSurroundEvents
IPersistStream

MapInset-
Window

IDataWindow

DataWindow

A map inset window displays a magnified
view of the focus map.

A magnification window with a zoom percent of
400



Chapter 4 • Composing maps • 317

A
rc

M
ap

The OverviewWindow object is the component behind the ArcMap
overview window. This data window provides an overview of the cur-
rent focus map. To create a new overview window in ArcMap, click the
Windows menu and click Overview.

The OverviewWindow object contains an Overview object—a type of
map surround. This object controls the contents of the data window.
The OverviewWindow allows the Overview to appear in its own private
window rather than on the page layout.

 IOverviewWindow : IDataWindow Provides access to members that control the Overview
Window.

Overview: IOverview The Overview used by this window.

The OverviewWindow object is not directly creatable. To make a new
overview window, you must call IDataWindowFactory::Create on a new
OverviewWindowFactory object. The code below shows one method for
creating a new overview window.

Public Sub CreateOverviewWindow()

  Dim pOverview As IOverview

  Dim pOverviewWindow As IOverviewWindow

  Dim pDataWindowFactory As IDataWindowFactory

  Dim pFillSymbol As ISimpleFillSymbol

  Dim pLineSymbol As ISimpleLineSymbol

  Dim pRgbColor As IRgbColor

  Set pDataWindowFactory = New OverviewWindowFactory

  If Not pDataWindowFactory.CanCreate(Application) Then Exit Sub

  'Create a new overview window

  Set pOverviewWindow = pDataWindowFactory.Create(Application)

  'Change the area of interterest fill symbol

  'to a hollow fill with a blue border

  Set pOverview = pOverviewWindow.Overview

  Set pFillSymbol = New SimpleFillSymbol

  Set pLineSymbol = New SimpleLineSymbol

  Set pRgbColor = New RgbColor

  pRgbColor.Blue = 255

  pLineSymbol.Color = pRgbColor

  pFillSymbol.Style = esriSFSNull

  pFillSymbol.Outline = pLineSymbol

  pOverview.AoiFillSymbol = pFillSymbol

End Sub

OVERVIEWWINDOW CLASS

IActiveViewEvents
IDocumentEvents

IMapSurroundEvents
IOverviewWindow

IPersistStream

Overview-
Window

IDataWindow

DataWindow

An overview window displays the full
extent view of the focus map.

An overview window



318 • Exploring ArcObjects • Volume 1

MAPINSETWINDOWFACTORY AND OVERVIEWWINDOWFACTORY

As discussed earlier, the MapInsetWindow and OverviewWindow objects
are not directly creatable. You must use the related factory objects to
create them.

 IDataWindowFactory : IUnknown Provides access to members that control the Factory for
creating floating windows.

Name: String The name of objects created by this factory.

CanCreate (in app: Object) : Boolean Indicates if the window is available given the current application state.
Create (in app: Object) : IDataWindow Create a new floating window.

The data window factory objects implement the IDataWindowFactory
interface. Use this interface to check if the window object is creatable
and, if it is, to create it. For example, map inset windows and overview
windows cannot be created when ArcMap is in layout mode. For more
information, see the CreateMagnifierWindow code sample documented
with the MapInsetWindow class.

IDataWindowFactory MapInset-
Window-
Factory

Use a map inset window factory to
create a map inset window (magnifica-

tion window).

IDataWindowFactory Overview-
Window-
Factory

Use an overview window factory to
create an overview window.



Chapter 4 • Composing maps • 319

A
rc

M
ap

The TableWindow object is a data window that presents a feature class
attribute table or standalone table. Each TableWindow houses a TableView;
for more information on TableViews, see Chapter 7, ‘Working with the
Catalog’. The TableWindow allows users to sort, summarize, edit, and get
statistics on records in a table.

 ITableWindow : IDataWindow Displays table window in ArcMap. This interface
intergrates ITableView with ArcMap's events and
selections.

FeatureLayer: IFeatureLayer Setup feature class to view/edit
SelectionSet: ISelectionSet Current selection set of the table. Only valid for tables showing all

rows.
ShowAliasNamesInColumnHeadings:

Boolean
Show alias names or the real field name in column headings.

Default False.
ShowSelected: Boolean Show only features that are selected
Table: ITable Setup table to view/edit
TableControl: ITableControl Get table control. Table needs to be showing before you can get a

valid pointer.
TableSelectionAction:

tagesriTableSelectionActions
Action to perform when table selections are made

FindViaFeatureLayer (in pFeatureLayer:
IFeatureLayer, in ShowSelected:
Boolean) : ITableWindow

Is table (of a featurelayer) already being displayed

FindViaTable (in pTable: ITable, in
ShowSelected: Boolean) : ITableWindow

Is table already being displayed

UpdateSelection (in pSelection:
ISelectionSet)

Updates current table selection. Does not update Mx feature layer
selection.

ITableWindow is the primary interface on the TableWindow object. Use
this interface to set or access the properties of a TableWindow, such as
the feature layer or standalone table that is to be presented, in the data
window. One interesting property on ITableWindow is ShowSelected; use
this property to control whether all records or just the selected ones are
displayed.

The example below opens the table associated with the currently se-
lected feature layer or standalone table in the ArcMap table of contents.
The code only creates a new table if it determines one has not already
been created. To use this code, select a feature layer or standalone table
in the table of contents and run this VBA macro.

  Public Sub OpenTableWindow()

    Dim pMxDoc As IMxDocument

    Dim pUnknown As IUnknown

    Dim pFeatureLayer As IFeatureLayer

    Dim pStandaloneTable As IStandaloneTable

    Dim pTable As ITable

    Dim pTableWindow As ITableWindow

    Dim pExistingTableWindow As ITableWindow

    Dim bSetProperties As Boolean

    'Get the selected item from the current contents view

    Set pMxDoc = ThisDocument

    Set pTableWindow = New TableWindow

    Set pUnknown = pMxDoc.SelectedItem

    'Determine the selected item's type

    'Exit sub if item is not a feature layer or standalone table

    If pUnknown Is Nothing Then

TABLEWINDOW COCLASS

IDataWindow

DataWindow

ITableWindow
ITableWindow2 Table-

Window

Table windows display tables.



320 • Exploring ArcObjects • Volume 1

      Exit Sub

    ElseIf TypeOf pUnknown Is IFeatureLayer Then 'A featurelayer

      Set pFeatureLayer = pUnknown

      Set pExistingTableWindow = _

            pTableWindow.FindViaFeatureLayer(pFeatureLayer, False)

      'Check if a table already exists; if not create one

      If pExistingTableWindow Is Nothing Then

        Set pTableWindow.FeatureLayer = pFeatureLayer

        bSetProperties = True

      End If

    ElseIf TypeOf pUnknown Is IStandaloneTable Then

      'A standalone table

      Set pStandaloneTable = pUnknown

      Set pTable = pStandaloneTable.Table

      Set pExistingTableWindow = _

         pTableWindow.FindViaTable(pTable, False)

      'Check if a table already exists; if not, create one

      If pExistingTableWindow Is Nothing Then

        Set pTableWindow.Table = pTable

        bSetProperties = True

      End If

    Else 'Cannot determine selected item type, exit sub

      Exit Sub

    End If

    If bSetProperties Then

      pTableWindow.TableSelectionAction = esriSelectFeatures

      pTableWindow.ShowSelected = False

      pTableWindow.ShowAliasNamesInColumnHeadings = True

      Set pTableWindow.Application = Application

    Else

      Set pTableWindow = pExistingTableWindow

    End If

    'Ensure table is visible

    If Not pTableWindow.IsVisible Then pTableWindow.Show True

  End Sub

 ITableWindow2 : IDataWindow This interface extends ITableWindow to work with ILayers

Layer: ILayer Setup layer attributes to view
StandaloneTable: IStandaloneTable Sets the standalone table to view/edit

ITableWindow2 extends table windows, making other layer types (such
as raster layers) addable. With ITableWindow, only feature layers can be
added to a table window.

TABLEWINDOW COCLASS



Chapter 4 • Composing maps • 321

A
rc

M
ap

The DataGraph object is the main attribute graphing or charting generation
object.

 IDataGraph : IUnknown Provides access to members that control the  data graph.

CGraphHandle: Long The CGraph handle.  CGraph handle can only be used with C++
clients.

FieldSet1: String First field set as a comma delimited list.
FieldSet2: String Second field set as a comma delimited list.
FieldSet3: String Third field set as a comma delimited list.
FieldSet4: String Fourth field set as a comma delimited list.
MaxDataPoints: Long Maximum number of data points.
Name: String Name of the graph.
PreviewMode: Boolean Indicates if the graph is in preview mode.
ReloadAlways: Boolean Indicates if the graph should always be reloaded.
SeriesByRecord: Boolean Indicates if the records or fields for the data series should be used.
Table: ITable The graph's table.
UseSelectedSet: Boolean Indicates if the selected set should be used.
Valid: Boolean Indicates if the graph is currently valid.

Attach (in hWnd: Long) Attaches the DataGraph to the input hWnd.
CopyToClipboard Copys the graph to the clipboard.
Detach Detaches the DataGraph from its current hWnd.
Draw Updates the display of the graph based upon the associated map's

current settings.
DrawToDC (in hDC: Long, in pRect:

tagRECT)
Draws the graph to the input device context.

ExportToFile (in FileName: String) Exports the graph to a file.
LoadFromFile (in FileName: String) Load the graph from a file.
Print Prints the graph.
Reload Loads data values from a table.
Resize (in nType: Long, in Width: Long,

in Height: Long)
Resizes the graph display.

SaveToFile (in FileName: String) Saves the graph to a file.

The IDataGraph interface contains the most basic methods and proper-
ties common to all DataGraph objects.

Important properties of the IDataGraph interface include the Table
property and the FieldSet properties (FieldSet1, FieldSet2, FieldSet3, and
FieldSet4). The FieldSet properties strings contain comma-delimited lists
of field names. Note that the different FieldSets are used differently de-
pending on the graph type of the DataGraph. Other properties control
how the graph is displayed in a DataGraphWindow or on the Page-
Layout coclass.

IDataGraph methods perform operations such as reloading the Data-
Graph (Reload method), redrawing the graph (Draw method), drawing
the graph to a particular Windows device context (DrawToDC), and
loading a graph from a file or exporting the graph to a different file
format (SaveToFile, LoadFromFile, and ExportToFile).

The Attach and Detach methods allow the graph to draw directly to a
Window hWnd. This method can be used both by C++ and VB, as long
as you have access to the control’s hWnd property.

IClone
IDataGraph

IDataGraphAxis
IDataGraphTicks
IDataGraphArea-

Properties
IDataGraphBar-

Properties
IDataGraphColor-

Properties
IDataGraphHighLow-

CloseProperties
IDataGraphOverlay-

Properties
IDataGraphPie-

Properties
IDataGraphProperties

IPersistStream

DataGraph

Data graphs present information about
map features in an easy-to-understand

manner. The information on a graph
comes directly from the attribute infor-

mation stored with the geographic data.

DATAGRAPH COCLASS



322 • Exploring ArcObjects • Volume 1

 IDataGraphProperties : IUnknown Provides access to members that control the  datagraph
properties.

GraphSubtype:
esriDataGraphSubtypeEnum

Subtype of the graph.

GraphType: esriDataGraphTypeEnum Type of graph.
LegendPosition:

esriDataGraphLegendPositionEnum
The graph's legend position.

ShowDataLabels: Boolean Indicates if the graph shows data labels.
ShowLegend: Boolean Indicates if the graph shows a legend.
ShowXAxisLabels: Boolean Indicates if the graph shows X axis labels.
SubTitle: String Sub-title of the graph.
Title: String Title of the graph.
XAxisLabelField: String X axis label field.

EditAdvancedProperties Edits the advanced properties for the graph.

The IDataGraphProperties interface contains additional general proper-
ties common to all graph types. The GraphType and GraphSubType
properties allow you to set the graph type and graph subtype using
enum values. Other properties control whether to show different types
of labels, the values used for the title and subtitle, and the position and
display status of the legend. The EditAdvancedProperties method in-
vokes an additional set of property pages on the DataGraph object.

 IDataGraphAreaProperties : IUnknown Provides access to members that control the datagraph
area properties.

UseLogXAxis: Boolean Indicates if a logrithmic X Axis should be used.
UseLogYAxis: Boolean Indicates if a logrithmic Y Axis should be used.

The IDataGraphAreaProperties interface contains properties specific to
area type graphs. The two properties control if the area graph uses
logarithms on the x- or y-axes when generating the graph display.

 IDataGraphBarProperties : IUnknown Provides access to members that control the datagraph bar
properties.

BarGap: Long Gap between bars in a Bar or Column graph.  Gap value is expressed
as a value between 0 and 100.

The IDataGraphBarProperties interface contains properties specific to
bar type graphs. The BarGap property controls the gap between bars on
the graph display.

 IDataGraphColorTable : IUnknown Provides access to the datagraph color table.

ColorEnum (in Index: Long) :
esriDataGraphColorEnum

The color enum of a position in the color table.

ColorRGB (in Index: Long) : Long The RGB value of a position in the color table.
PaletteIndex:

esriDataGraphPaletteEnum
The palette index of the color table.

Size: Long Size of the color table.

Reset Resets the color table to the default settings.

The IDataGraphColorTable interface contains properties and methods
for controlling the graph’s color table.

Note that DataGraphs have a very limited set of palettes. The ColorRGB
property performs a color match to match the input color with the clos-
est color from the current graph color palette. Other methods on the
IDataGraphColorTable interface allow you to set the color palette, set a

DATAGRAPH COCLASS



Chapter 4 • Composing maps • 323

A
rc

M
ap

color table entry by an esriDataGraphColorEnum, or reset the color
table to the default settings.

 IDataGraphHighLowCloseProperties :
 IUnknown

Provided access to memebrs that control the datagraph
high low close properties.

ShowHighLowTicks: Boolean Indicates if tick marks at high and low locations should be shown.
ShowOpenCloseTicks: Boolean Indicates if tick marks at open and close locations should be shown.

The IDataGraphHighLowCloseProperties interface contains properties
specific to HighLowClose type graphs. The properties control whether
the tick marks show at high and low locations and at open and close
locations.

 IDataGraphOverlayProperties :
IUnknown

Provides access to members that control the datagraph
overlay properties.

OverlayColor: esriDataGraphColorEnum Overlay color.
OverlayLinePattern:

esriDataGraphOverlayLinePatternEnu
m

Overlay line pattern.

OverlayLineThickness:
esriDataGraphOverlayLineThicknessE
num

Overlay line thickness.

OverlayMarker:
esriDataGraphMarkerEnum

Overlay marker.

OverlayType:
esriDataGraphOverlayTypeEnum

Overlay graph type.

ShareYAxisRange: Boolean Indicates if the overlay field shares the Y axis data range.
ShowBestFit: Boolean Indicates if the best fit should be shown.
ShowCurveFit: Boolean Indicates if the curve should be fitted.
ShowMean: Boolean Indicates if the mean should be shown.
ShowMinMax: Boolean Indicates if the min/max should be shown.
ShowStdDev: Boolean Indicates if the standard deviation should be shown.
UseOverlay: Boolean Indicates if an overlay graph should be used.
UseOverlayLineThickness: Boolean Indicates if line thickness flag should be used.
XAxisField: String X axis field.
YAxisField: String Y axis field.

The IDataGraphOverlayProperties interface contains properties specific
to graph overlays. A graph overlay is a separate set of graph features
drawn on top of the primary graph features. The overlay graph proper-
ties control elements such as the type of overlay graph, the color of the
overlay graph, line thickness or line pattern, and overlay marker symbol.
They also control whether different types of statistical lines show along
with the overlay graph.

 IDataGraphPieProperties : IUnknown Provides access to members that control the datagraph pie
properties.

LabelSlicesUsing:
esriDataGraphPieLabelSliceUsingEnu
m

The pie slice labels using enumeration.

LabelUsingColors: Boolean Indicates if label pie slices should be using colors.
PreventLabelOverlap: Boolean Indicates if pie label overlap should be prevented.
ShowConnectingLines: Boolean Indicates if pie label connecting lines should be shown.

The IDataGraphPieProperties interface contains properties specific to pie
type graphs. The properties control different labeling options as well as
whether or not to display lines connecting labels with their pie slices.

DATAGRAPH COCLASS



324 • Exploring ArcObjects • Volume 1

TABLEVIEW COCLASS

In ArcMap, all tables are presented in a table data window. Table win-
dows house a table view, also known as a table control. In ArcCatalog,
there are no table windows; instead, a table view is directly displayed as
a GX view. The table view object is cocreatable. For example, you can
instantiate a new table view object, link it to a table, and display it in a
custom form.

 ITableView : IUnknown Provides access to members that set up the table and
initially show it.

Callback: ITableViewCallback Sets up the call back routine.
QueryFilter: IQueryFilter QueryFilter of records to show.
SelectionSet: ISelectionSet Selection set of records to show/select.
ShowAliasNamesInColumnHeadings:

Boolean
Show alias names or the real field name in column headings. Default

False.
ShowSelected: Boolean Show only features that are selected.
Table: ITable Table to view/edit.
TableSelectionAction:

tagesriTableSelectionActions
Action to perform when table selections are made.

Show (in parentHWnd: Long, in
initialExtent: tagRECT, in
initiallyVisible: Boolean)

Show table

The primary interface on the table view objects is ITableView. Use this
interface to link a table to the table view and display it.

 ITableView2 : IUnknown Provides access to members that interact with table.

AllowEditing: Boolean Allow editing. Default: True
ShowAliasNamesInColumnHeadings:

Boolean
Indicates if column headings are using alias names.

ShowSelected: Boolean Indicates if selected records are being displayed.

GetLeftCol: Long Gets the left visible column of the view window.
GetTopRow: Long Gets the top visible row of the view window.
Output (in hDC: Long, in dpi: Long, in

Left: Long, in Top: Long, in Width:
Long, in Height: Long, in StartRow:
Long, in StartCol: Long)

Draw the table to the specified device context.

SetPosition (in Left: Long, in Top: Long,
in Width: Long, in Height: Long)

Sets the position of the view window.

ITableView2 manages some additional table view properties such as
whether the table can be edited or not. It also controls whether the table
only shows selected records or all of the records.

 ITableControl : IUnknown Provides access to members that control the table once it
has been shown.

DrawSelectedShapes (in pDisplay:
IDisplay)

Draws selected features on display.

EditChanged Call after start or stop editing, to update table grid.
GetCurrentRow (in isOid: Boolean) :

Long
The current row the user is on. If isOid = TRUE, then rowNumber is

an OID, else it is an offset.
Redraw Redraws the grid.
RemoveAndReloadCache Lose cache, so the table window is current with the underlying

database.
RereadFIDs (pSelection: ISelectionSet) ReReads rows. Called when viewing selected records and the selection

changes.
SetCurrentRow (in isOid: Boolean, in

rowNumber: Long)
The current row the user is on. If isOid = TRUE, then rowNumber is

an OID, else it is an offset.
UpdateSelection (pSelection:

ISelectionSet)
Updates the current selection, that the current selection is currently

pointing to.

The ITableControl interface manages methods that apply to an existing
displayed table. For example, use the methods managed by this inter-
face to draw the features currently selected in the table, redraw the table
after edits have been made, and set the current row in the table.

IClone
ITableControl

ITableControlInfo
ITableControlWidth

ITableOutput
ITableView

ITableView2
ITableViewTableFields

TableView

A table view (table control) holds a table.



Chapter 4 • Composing maps • 325

A
rc

M
ap

 ITableControlWidth : IUnknown Provides access to members that control the table once it
has been shown.

FullTableWidth: Long Table width of all columns, and scroll bars.
RecommendMinimumTableWidth: Long Recommend minimum table width, that will ensure all controls can be

seen.

The ITableControlWidth interface has two properties that aid in sizing
the table when first displaying it. The RecommendMinimumTableWidth
property returns the minimum width the table needs to be to see all
columns. The FullTableWidth property returns the current table width.

 ITableViewTableFields : IUnknown Provides access to members that associate additional field
properties with the table being displayed.

TableFields: ITableFields The collection of field information for the table being viewed/edited.

The ITableViewTableFields interface has one property that provides
access to the fields in the table.

TABLEVIEW COCLASS



326 • Exploring ArcObjects • Volume 1

Not all the tabular data associated with a layer has to be stored in its
attribute table. You may choose to store some data in separate tables.
You can add this tabular data directly to your map as a table and use it
in conjunction with the layers on your map. These tables don’t display
on your map, but they are listed in the table of contents on the Source
tab. Work with these tables as you would any table based on geographic
features. For example, you can view the table, add new fields, create
graphs, and join it to other tables.

Use the IStandaloneTableCollection interface on the Map to get a refer-
ence to a StandaloneTable. Alternatively, if you have a TableWindow,
you can use the ITableWindow2::StandaloneTable property to get the
StandaloneTable that is displayed by that TableWindow.

 IStandaloneTable : IUnknown Provides access to members that control a standalone
table.

DisplayField: String Primary display field.
Name: String Name of the standalone table.
Table: ITable The table associated with the standalone table.
Valid: Boolean Indicates if the standalone table is currently valid.

The IStandaloneTable interface has properties to manage the table on
which the standalone table is based.

Use Table property to set or get the underlying table object. There are
also properties to specify the name and the display field.

 ITableFields : IUnknown Table Fields interface.

Field (in Index: Long) : IField The field at the given index.
FieldCount: Long The field count.
FieldInfo (in Index: Long) : IFieldInfo The extended field information for the field at the given index.

FindField (in FieldName: String) : Long The index of the field with the given name.

You can use the ITableFields interface to return the field count and to
get a particular field.

The FieldInfo property provides extended information on the field; it
returns a FieldInfo object. For more information, refer to the discussion
on the FieldInfo coclass later in this chapter.

 ITableSelection : IUnknown Provides access to members that control table selection.

SelectionSet: ISelectionSet The selected set of rows.

AddRow (in Row: IRow) Adds a row to the selection set (honoring the current combination
method).

Clear Clears the selection.
SelectionChanged Fires the layer update event. Required when SelectionSet changes.
SelectRows (in Filter: IQueryFilter, in

Method: esriSelectionResultEnum, in
justOne: Boolean)

Selects rows based upon the specified criteria and combination
method.

The ITableSelection interface lets you perform a selection on the table,
add a row to the current selection, and clear the selection; it then noti-
fies you that the selection changed. You can also specify the selection
set using the SelectionSet property.

STANDALONETABLE COCLASS

StandAlone-
Table

IClass
IDataset

IDisplayRelationship-
Class

IObjectClassSchema-
Events

IRelationshipClass-
Collection

IRelationshipClass-
CollectionEdit

ISelectionEvents
IStandAloneTable

ITable
ITableFields

ITableSelection

A StandaloneTable is not associated
with a feature class, raster, or other

dataset.

This map contains a standalone table called
STDEMOG. Standalone tables are listed on the

Source tab.



Chapter 4 • Composing maps • 327

A
rc

M
ap

For information on the other interfaces on StandaloneTable, refer to the
FeatureLayer coclass later in this chapter.

The following VBA code gets the first standalone table in the map,
selects the rows that have a population greater that 10,000,000, and
reports the number of selected rows:

Public Sub TableSel()

  Dim pMxDoc As IMxDocument

  Dim pMap As IStandaloneTableCollection

  Dim pStdAloneTbl As IStandaloneTable

  Dim pTableSel As ITableSelection

  Dim pQueryFilt As IQueryFilter

  Dim pSelSet As ISelectionSet

  ' Get the standalone table from the map

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pStdAloneTbl = pMap.StandaloneTable(0)

  Set pTableSel = pStdAloneTbl

  ' Make the query filter

  Set pQueryFilt = New QueryFilter

  pQueryFilt.WhereClause = "POP1990 > 10000000"

  ' Perform the selection

  pTableSel.SelectRows pQueryFilt, esriSelectionResultNew, False

  ' Report how many rows were selected

  Set pSelSet = pTableSel.SelectionSet

  MsgBox pSelSet.Count & " rows selected in " & pStdAloneTbl.Name

End Sub

STANDALONETABLE COCLASS

After running this macro, the selection is shown
in the table window. The message box reports

how many rows were selected.



328 • Exploring ArcObjects • Volume 1

ArcMap map
FeatureClass in Geodatabase

Renderer in Display

*

A layer is used to display
geographic information on a map

A group layer is a group
of layers that appear and

act like a single layer in
the table of contents

A hyperlink displays
linked data, such as text

files or Web pages,
when you click it

A composite graphics layer
manages other graphics layer,

but is also a graphics layer itself

An FDO graphics layer is a layer based
on an annotation feature class in a
geodatabase

A dimension layer displays
descriptive text and supporting

graphics (such as leader lines) that
are associated with map features

An Internet map server layer displays data
from an image service on the Internet

Graphics layers manage the
graphics associated with a map

GroupLayer

ICompositeLayer
IConnectionPointContainer

IDisplayAdmin
IGroupLayer

IIdentify
IIdentify2

ILayer2
ILayerEvents

ILayerInfo
ILayerPosition

IMapLevel

A feature layer
displays data from a
feature class on a map

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

IMSMap-
Layer

ICompositeLayer
ICompositeLayer2

IDataLayer
IDataLayer2

IDisplayAdmin
IDisplayFilterManager

IIdentify
IIdentify2

IIMSMapLayer
ILayerDrawingProperties

ILayerEffects
ILayerInfo

ILayerPosition

Composite-
Graphics-

Layer

ICompositeGraphicsLayer
ICompositeLayer

IGeoDatasetSchemaEdit
IGraphicsLayerScale

Dimension-
Layer

IAttributeTable
IDimensionLayer

IClass
IConnectionPointContainer

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationshipClass

IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureLayerSelectionEvents
IFeatureSelection

IFind
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

IMapLevel
IObjectClassSchemaEvents

IPropertySupport
  IRelationshipClass-

Collection
IRelationshipClass-

CollectionEdit
ITable

ITableFields
ITableSelection

*Hyperlink
IHyperlink

IPersist
IPersistStream

IAttributeTable
IClass

IConnectionPointContainer
IDataLayer

IDataLayer2
IDataset

IDisplayAdmin
IDisplayFilterManager

IDisplayRelationshipClass
IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureLayerSelectionEvents
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClassSchemaEvents
IPropertySupport

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

Feature-
Layer

Graphics-
Layer

IBarrierProperties
IBarrierProperties2
IConnectionPoint-

Container
IGraphicsContainer

IGraphics-
ContainerSelect
IGraphicsLayer

IOverflow-
GraphicsContainer

ISelectionEvents

FDO-
Graphics-

Layer

IAttributeTable
IClass

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationshipClass

IDisplayTable
IFDOAttributeConversion

IFDOGraphicsLayer
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureSelection
IFind

IHotlinkContainer
IHotlinkMacro

IHyperlinkContainer
IIdentify

IIdentify2
ILayer2

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

IMapLevel
IObjectClassEvents

IObjectClassSchemaEvents
IPropertySupport

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection



Chapter 4 • Composing maps • 329

A
rc

M
ap

layer objects
A CAD feature layer displays a CAD
feature class from a drawing

A coverage annotation
layer displays annotation

from a coverage

A TIN layer
displays 3D
surface data

Coverage-
Annotation-

Layer

IAttributeTable
IBarrierProperties

IBarrierProperties2
ICoverageAnnotationLayer

ICoverageAnnotationLayer2
IDataLayer

IDataLayer2
IFeatureLayer

IFind
ILayerFields

ILayerInfo
ITableFields

RasterLayer
Documented in

chapter 13,
"Integrating raster

data"

IAttributeTable
IClass

IConnectionPointContainer
IDataLayer

IDataLayer2
IDataset

IDisplayAdmin
IDisplayRelationshipClass

IDisplayTable
IGeoReference

IIdentify
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IObjectClass
IRasterLayer

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

A CAD layer displays a
CAD drawing

A CadAnnotationLayer
is used to control the

symbology of the
annotation features

from a CAD layer

CadFeature-
Layer

IAttributeTable
ICadDrawingLayers

ICadTransformations
IClass

IConnectionPointContainer
IDataLayer

IDataLayer2
IDataset

IDisplayAdmin
IDisplayFilterManager

IDisplayRelationshipClass
IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureSelection
IFind

IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawingProperties

ILayerEffects
ILayerExtensions

ILayerFields
ILayerInfo

ILayerPosition
ILegendInfo

IMapLevel
IObjectClassSchemaEvents

IPropertySupport
IRelationshipClassCollection

IRelationshipClassCollectionEdit
ITable

ITableFields
ITableSelection

CadLayer

ICadLayer
ICad3DRenderMode
ICadDrawingLayers

ICadTransformations
IConnectionPointContainer

IDataLayer
IDataLayer2

IDisplayAdmin
IIdentify

ILayerEffects
ILayerExtensions

ILayerInfo
ILayerPosition

TinLayer

IConnectionPointContainer
IDataLayer

IDataLayer2
IDisplayAdmin

IDisplayFilterManager
IIdentify

ILayerDrawingProperties
ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
ITableFields

ITinLayer

Raster-
CatalogLayer

Documented in
chapter 13,

"Integrating raster
data"

IConnectionPointContainer
IDataLayer

IDataLayer2
IDisplayAdmin

IIdentify
ILayerEffects
ILayerEvents

ILayerDrawingProperties
ILayerExtensions

ILayerInfo
ILayerPosition

ILegendInfo
IRasterCatalogLayer

Cad-
Annotation-

Layer

IAttributeTable
IBarrierProperties

IBarrierProperties2
ICadDrawingLayers

ICadTransformations
ICoverageAnnotationLayer

ICoverageAnnotationLayer2
IDataLayer

IDataLayer2
IFeatureLayer

IFind
ILayerFields

ILayerInfo
ITableFields



330 • Exploring ArcObjects • Volume 1

LAYER ABSTRACT CLASS

Layers display geographic information on a map. A layer doesn’t store
the actual geographic data; it references the data contained in cover-
ages, shapefiles, geodatabases, images, grids, and so on, then defines
how to display this geographic data.

Each different type of layer object represents different types of data. Ex-
amples of layer objects include FeatureLayer, GraphicsLayer, RasterLayer,
TinLayer, CoverageAnnotationLayer, and GroupLayer.

The Map object manages the collection of layers. You can use the Layer
or the Layers property on the IMap interface to get a reference to a layer.
To determine the type of layer to which you have a reference, query for
specific interfaces. For example, if the layer object supports the IGeo-
FeatureLayer interface, then you know it is a FeatureLayer object. In
Visual Basic, this might be coded as follows:

  Dim pLayer as ILayer

  Set player = pMap.Layer(0)

  If TypeOf pLayer is IGeoFeatureLayer Then

    'pLayer is a FeatureLayer object

  End If

 ILayer : IUnknown Provides access to members that work with all layers.

AreaOfInterest: IEnvelope The default area of interest for the layer.
Cached: Boolean Indicates if the layer needs its own display cache.
MaximumScale: Double Maximum scale (representative fraction) at which the layer will

display.
MinimumScale: Double Minimum scale (representative fraction) at which the layer will

display.
Name: String Layer name.
ShowTips: Boolean Indicates if the layer shows map tips.
SpatialReference: ISpatialReference Spatial reference for the layer.
SupportedDrawPhases: Long Supported draw phases.
TipText (in X: Double, in Y: Double, in

Tolerance: Double) : String
Map tip text at the specified location.

Valid: Boolean Indicates if the layer is currently valid.
Visible: Boolean Indicates if the layer is currently visible.

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in trackCancel: ITrackCancel)

Draws the layer to the specified display for the given draw phase.

All layer objects implement the ILayer and IGeoDataset interfaces. The
ILayer interface has a method to draw the layer and properties to define
the extent of the layer, the minimum and maximum display scale, the
spatial reference, the name, the supported draw phases, and the map tip
text. There are also properties that indicate whether the layer is visible,
valid, or cached, and whether or not the layer shows map tips.

The Cached property indicates whether the layer requires its own dis-
play cache or not. If Cached is set to True, the Map will give a separate
display cache to the layer so it can be refreshed independently of all
other layers. A tracking layer is a good example of a custom layer that
would set the Cached property to True.

Note that the SpatialReference property is used only for the map display;
it does not change the spatial reference of the underlying data. It carries
the map object’s knowledge of the current on-the-fly projection back to
the feature layer.

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

Geographic data is represented on a
map as a layer. A layer might represent a

particular type of feature, such as high-
ways, lakes, or wildlife habitats, or it might

represent a particular type of data, such
as a satellite image, a computer-aided

design (CAD) drawing, or a terrain
elevation surface in a TIN.

This map contains different types of layers.

For more information on caching, see the topic
‘Refreshing the map versus partial refresh’

earlier in this chapter.



Chapter 4 • Composing maps • 331

A
rc

M
ap

The following VB function finds and returns the layer with the specified
name.

Function FindLayerByName(pMap As IMap, sName As String) As ILayer

  Dim i As Integer

  For i = 0 To pMap.LayerCount - 1

    If pMap.Layer(i).Name = sName Then

      Set FindLayerByName = pMap.Layer(i)

    End If

  Next

End Function

 IGeoDataset : IUnknown GeoDataset Interface.

Extent: IEnvelope The extent of the GeoDataset.
SpatialReference: ISpatialReference The spatial reference of the GeoDataset.

The IGeoDataset interface specifies the extent and spatial reference of
the underlying data. The SpatialReference property on IGeoDataset is
read-only. The property is used to set the spatial reference of the Map;
the Map’s spatial reference is automatically set to the spatial reference of
the first layer loaded. For more information on this interface, refer to
Volume 2, Chapter 8, ‘Accessing the geodatabase’.

The following code reports the name of the spatial reference of the
layer.

Sub ReportSpatRef()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pLayer As IGeoDataset

  Dim pSpatRef As ISpatialReference

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pLayer = pMap.Layer(0)

  Set pSpatRef = pLayer.SpatialReference

  MsgBox pSpatRef.Name

End Sub

The Coordinate System panel of Data Frame
Properties is automatically set based on the

spatial reference of the first layer added to the
map.

LAYER ABSTRACT CLASS



332 • Exploring ArcObjects • Volume 1

FEATURELAYER COCLASS

A FeatureLayer is a layer based on a feature class in a vector geographic
dataset—a geodatabase, coverage, or shapefile.

 IFeatureLayer : ILayer Provides access to members that control common aspects
of a feature layer.

DataSourceType: String Data source type.
DisplayField: String Primary display field.
FeatureClass: IFeatureClass The layer's feature class.
ScaleSymbols: Boolean Indicates if symbols are scaled for the layer.
Selectable: Boolean Indicates if layer is selectable.

Search (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Creates a cursor based upon the search criteria.

The IFeatureLayer interface has properties that determine the feature
class of the layer, the data source type, the display field, whether the
symbols are scaled, and whether the layer is selectable. There is also a
method for performing a search on the layer. If there is a definition
query set on the layer, the Search method will work on the subset of the
features in the layer that meet the definition criteria. However, the
Search method will not work on joined fields. If the feature layer has
any joins, use the IGeoFeatureLayer::SearchDisplayFeatures method
instead.

The following code creates a feature layer from a shapefile and adds it
to the map:

Sub AddLayer()

  Dim pShpWksFact As IWorkspaceFactory

  Dim pFeatWks As IFeatureWorkspace

  Dim pFeatClass As IFeatureClass

  Dim pFeatLayer As IFeatureLayer

  Dim pDataSet As IDataset

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Set pShpWksFact = New ShapefileWorkspaceFactory

  Set pFeatWks = pShpWksFact.OpenFromFile("D:\Data\Canada", 0)

  Set pFeatClass = pFeatWks.OpenFeatureClass("province")

  Set pFeatLayer = New FeatureLayer

  Set pFeatLayer.FeatureClass = pFeatClass

  Set pDataSet = pFeatClass

  pFeatLayer.Name = pDataSet.Name

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  pMap.AddLayer pFeatLayer

End Sub

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

IAttributeTable
IClass

IConnectionPoint-
Container

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationship-

Class
IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayer-

Definition
IFeatureLayer-

SelectionEvents
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawing-

Properties
ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClass-
SchemaEvents

IPropertySupport
IRelationshipClass-

Collection
IRelationshipClass-

CollectionEdit
ITable

ITableFields
ITableSelection

Feature-
Layer

A feature layer displays point, line, or
polygon geographic data.

This map contains feature layers.



Chapter 4 • Composing maps • 333

A
rc

M
ap

 IGeoFeatureLayer : IFeatureLayer Provides access to members that control geographic
aspects of a feature layer.

AnnotationProperties:
IAnnotateLayerPropertiesCollection

Annotation properties.

AnnotationPropertiesID: IUID The UID used for annotation properties.
CurrentMapLevel: Long Current map level for drawing symbols.
DisplayAnnotation: Boolean Indicates if the layer displays annotation.
DisplayFeatureClass: IFeatureClass Feature class used for display operations (may include joined fields).
ExclusionSet: IFeatureIDSet Set of features that are excluded from drawing.
Renderer: IFeatureRenderer Renderer used to draw the layer.
RendererPropertyPageClassID: IUID Class id of the property page for the renderer.

SearchDisplayFeatures (in QueryFilter:
IQueryFilter, in Recycling: Boolean) :
IFeatureCursor

Creates a cursor from the display feature class based upon the
search criteria.

Only the FeatureLayer object uses the IGeoFeatureLayer. This interface
has properties to set the annotation and renderer for the layer.

The SearchDisplayFeatures method allows you to search the feature layer
to find features that meet the specified criteria. If there is a definition
query set on the layer, the SearchDisplayFeatures method will work on the
subset of the features in the layer that meet the definition criteria. This
search method will also work on joined fields if you qualify the field
names. For example, if you want to search on a joined field called
“Pop1990” from a table called “Demog”, you should use
“Demog.Pop1990” as the field name in query filter used in the search
method. The IDisplayTable::SearchDisplayTable method is a similar search
method that will work on feature layers as well as other types of layers. If
you want your code to be generic enough to work on different types of
layers and standalone tables, you should perform searches using
IDisplayTable::SearchDisplayTable.

The IGeoFeatureLayer interface inherits from the IFeatureLayer interface,
and the IFeatureLayer interface inherits from the ILayer interface. This
means that when you are working with the IGeoFeatureLayer interface, all
the properties and methods in IFeatureLayer and ILayer are exposed.
Therefore, when you are working with a feature layer object, you don’t
need to QI for IFeatureLayer or ILayer; if you QI for IGeoFeatureLayer, you
will get everything from all of these three interfaces.

The following code performs a search on the first layer in the map. This
layer is joined to a table named “Demog”, and a joined field is used in
the query filter for the search method. The name of each feature in the
results is reported.

Sub GeoFeatLyrSearch()

  Dim pDoc As IMxDocument, pMap As IMap

  Dim pLayer As IGeoFeatureLayer

  Dim pQueryFilt As IQueryFilter

  Dim pFeatCursor As IFeatureCursor

  Dim pFeature As IFeature

  Set pDoc = Application.Document

  Set pMap = pDoc.FocusMap

  Set pLayer = pMap.Layer(0)

  ' Create the query filter and set the where clause. Note that

  ' this is a joined layer so you must qualify the field names.

  Set pQueryFilt = New QueryFilter

FEATURELAYER COCLASS



334 • Exploring ArcObjects • Volume 1

  pQueryFilt.WhereClause = "DEMOG.Pop1991 > 1000000"

  'Perform the search and report name of each feature in results

  Set pFeatCursor = pLayer.SearchDisplayFeatures(pQueryFilt, True)

  Set pFeature = pFeatCursor.NextFeature

  MsgBox pFeature.Value(pFeatCursor.FindField("Province.Name"))

  Do Until pFeature Is Nothing

    Set pFeature = pFeatCursor.NextFeature

    If Not pFeature Is Nothing Then

      MsgBox pFeature.Value(pFeatCursor.FindField("Province.Name"))

    End If

  Loop

End Sub

 IDataLayer : IUnknown Provides access to members that control the data source
properties of a layer.

DataSourceName: IName Name of the data object for the layer.
DataSourceSupported (in Name:

IName) : Boolean
Indicates if the specified data object name is supported by the layer.

RelativeBase: String Base path used when storing relative path names.

Connect (in pOptRepairName: IName) :
Boolean

Connects the layer to its data source.  An optional name object can
be specified to aid in repairing a lost connection.

The IDataLayer interface provides information about the data source of
the layer, such as the data source name, the base path used in
relative pathnames, and whether the layer supports the data
source. There is also a method to connect to the data source if
the connection has been lost. The following code reports the
base path used in relative pathnames:

Public Sub GetRelativeBase()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pLayer As IDataLayer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pLayer = pMap.Layer(0)

  MsgBox pLayer.RelativeBase

End Sub

 IDisplayTable : IUnknown Provides access to members that work with the display
table associated with a standalone table.

DisplayTable: ITable The display table.

SearchDisplayTable (in pQueryFilter:
IQueryFilter, in Recycling: Boolean) :
ICursor

Creates a cursor from the display table based upon the search
criteria.

SelectDisplayTable (in pQueryFilter:
IQueryFilter, in selType:
esriSelectionType, in selOption:
esriSelectionOption, in
pSelWorkspace: IWorkspace) :
ISelectionSet

Creates a selection set from the display table based upon the search
criteria.

The display table is the table used for display purposes. This table
differs from the table of the base feature class of the layer
(IFeatureLayer::FeatureClass) in that it may contain joined fields. The
display table is the RelQueryTable object of the layer. The IDisplayTable
interface has a property to get a reference to the display table and

FEATURELAYER COCLASS



Chapter 4 • Composing maps • 335

A
rc

M
ap

methods to perform searches and selections on the display table. If you
want your code to be generic enough to work on different types of
layers and standalone tables, you should perform selections and
searches using the methods on IDisplayTable rather than similar meth-
ods on other interfaces.

The following code creates a selection set using the SelectDisplayTable
method, then reports the number of selected features. It is necessary to
create a scratch workspace to use for the selection. This code only
creates a selection set; it doesn’t show the selection on the display. To
see how to show the selection on the display, refer to the IFeature-
Selection interface.

Public Sub DpyTableSelect()

  Dim pDoc As IMxDocument

  Dim pMap As IMap

  Dim pDpyTable As IDisplayTable

  Dim pScratchWorkspace As IWorkspace

  Dim pScratchWorkspaceFactory As IScratchWorkspaceFactory

  Dim pQFilt As IQueryFilter

  Dim pSelSet As ISelectionSet

  Set pDoc = Application.Document

  Set pMap = pDoc.FocusMap

  Set pDpyTable = pMap.Layer(0)

  ' Create a scratch workspace to use for the selection

  Set pScratchWorkspaceFactory = New ScratchWorkspaceFactory

  Set pScratchWorkspace = _

   pScratchWorkspaceFactory.DefaultScratchWorkspace

  ' Create the query filter

  Set pQFilt = New QueryFilter

  pQFilt.WhereClause = "TYPE = 'Gravel'"

  ' Create the selection set

  Set pSelSet = pDpyTable.SelectDisplayTable(pQFilt, _

    esriSelectionTypeIDSet, esriSelectionOptionNormal, _

    pScratchWorkspace)

  ' Report number of selected features

  MsgBox pSelSet.Count

End Sub

 IDisplayAdmin : IUnknown Provides access to members that control display
administration.

UsesFilter: Boolean Indicates if the current object draws using a filter.

The IDisplayAdmin interface indicates whether the layer uses a
display filter.

FEATURELAYER COCLASS

A display filter allows a rasterized version of the
layer to be processed for drawing purposes. You

can create your own display filter to display a
layer using more raster-like effects, such as

contrast and brightness adjustments.



336 • Exploring ArcObjects • Volume 1

 IDisplayFilterManager : IDisplayAdmin Provides access to members that control display filter
management.

DisplayFilter: IDisplayFilter The display filter.

The IDisplayFilterManager interface specifies what display filter object is
currently being used.

 IPropertySupport : IUnknown Provides access to members that set a default property on
an object.

Current (in pUnk: IUnknown Pointer) :
IUnknown Pointer

The object currently being used.

Applies (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at any given time.

Apply (in NewObject: IUnknown Pointer)
: IUnknown Pointer

Applies the given property to the receiver and returns the old object.

CanApply (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at that particular
moment.

Many objects implement the IPropertySupport interface to provide access
to properties of the object. The interface has methods for determining
whether a certain property can be applied to an object; it allows the
property to be applied when appropriate. FeatureLayer’s implementation
of IPropertySupport is used to check to see if the specified display filter
object can be applied to the layer. The Applies method indicates whether
the specified display filter object can be applied at all, while the
CanApply method indicates whether the specified display filter object
can be applied at that particular moment. The Current method will
return the current display filter. FeatureLayer also uses IPropertySupport
for some renderer objects.

 IFeatureLayer2 : IUnknown Additional interface to provides access to members that
control common aspects of a feature layer.

ShapeType: tagesriGeometryType The layer's shape type.

The IFeatureLayer2 interface has a ShapeType property that uses the
esriGeometryType enumeration to indicate the shape type of the features
in the layer.

 IFeatureLayerDefinition : IUnknown Provides access to members that are used to create a
selection layer from an existing FeatureLayer's selected
features.

DefinitionExpression: String Definition query expression for the existing layer.
DefinitionSelectionSet: ISelectionSet Set of features defined by the existing layer's definition query

expression.
RelationshipClass: IRelationshipClass The current relationship class used to display related fields.

CreateSelectionLayer (in LayerName:
String, in useCurrentSelection:
Boolean, in joinTableNames: String, in
Expression: String) : IFeatureLayer

Creates a new feature layer from the existing layer based on the
current selection and the specified query expression.

The IFeatureLayerDefinition interface can be used to set a definition
query on the feature layer so that only the features that meet the speci-
fied criteria are displayed. The CreateSelectionLayer method allows you to
create a new layer based on the current selection on the layer, the cur-
rent definition query on the layer, or the combination of the two.

The RelationshipClass property returns a reference to the relationship
class that defines the relationship between the layer and the table to

FEATURELAYER COCLASS



Chapter 4 • Composing maps • 337

A
rc

M
ap

which it is joined, if there is one. However, it’s better to use the
RelationshipClass property on the IDisplayRelationshipClass interface for
this since you’ll also have access to the other properties and methods
that deal with joins.

The following code uses the DefinitionExpression property to assign a
definition query to the feature layer. Only the features in the layer that
have an area greater than 350,000 are displayed.

Sub DefineLayer()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pFeatLayerDef As IFeatureLayerDefinition

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pFeatLayerDef = pMap.Layer(0)

  pFeatLayerDef.DefinitionExpression = "Area > 350000"

  pMxDoc.ActiveView.PartialRefresh esriViewGeography, _

         Nothing, Nothing

End Sub

 IFeatureLayerSelectionEvents :
 IUnknown

Provides access to events that occur when the selection
changes.

FeatureLayerSelectionChanged Occurs when the selection changes.

The IFeatureLayerSelectionEvents interface has an event that occurs
when the selection on the layer changes.

 IFeatureSelection : IUnknown Provides access to members that control feature selection.

BufferDistance: Double Buffer distance used for the selection.
CombinationMethod:

esriSelectionResultEnum
Combination method for the selection.

SelectionColor: IColor Selection color.  (used when SetSelectionSymbol = FALSE).
SelectionSet: ISelectionSet The selected set of features.
SelectionSymbol: ISymbol Selection symbol.
SetSelectionSymbol: Boolean Indicates if the selected set of features is drawn using the

SelectionSymbol.

Add (in Feature: IFeature) Adds a feature to the selection set (honoring the current combination
method).

Clear Clears the selection.
SelectFeatures (in Filter: IQueryFilter, in

Method: esriSelectionResultEnum, in
justOne: Boolean)

Selects features based upon the specifed criteria and combination
method.

SelectionChanged Fires the features layer update event. Required when SelectionSet
changes.

The IFeatureSelection interface has properties to set the selection color
and symbol, buffer distance, and selection combination method. There
are methods to perform a selection on the layer, add a feature to the
current selection, clear the selection, and notify you that the selection
changed. The SelectFeatures method performs the selection and auto-
matically shows the selection in the display. Use the SelectionSet property
to get the set of the selected features after the selection is performed. If
you have created a selection set some other way, you can use the
SelectionSet property to assign that selection set to the feature layer so
that the selection shows up on the display.

FEATURELAYER COCLASS

After running this macro, only the features that
meet the specified criteria are shown in the

display. The Definition Query panel of the layer’s
Properties dialog box shows the expression that

was assigned by this macro.



338 • Exploring ArcObjects • Volume 1

This code selects all the features that have an area greater than 350,000
data units and reports the number of selected features.

Public Sub SelFeatures()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pFeatSel As IFeatureSelection

  Dim pQueryFilt As IQueryFilter

  Dim pSelSet As ISelectionSet

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pFeatSel = pMap.Layer(0)

  ' Make the query filter

  Set pQueryFilt = New QueryFilter

  pQueryFilt.WhereClause = "AREA > 350000"

  'Perform the selection and refresh the view

  pFeatSel.SelectFeatures pQueryFilt, esriSelectionResultNew, False

  pFeatSel.SelectionChanged

  pMxDoc.ActiveView.PartialRefresh esriViewGeography, _

          Nothing, Nothing

  'Report how many features were selected

  Set pSelSet = pFeatSel.SelectionSet

  MsgBox pSelSet.Count

End Sub

 IIdentify : IUnknown Provides access to members that identify features.

Identify (in pGeom: IGeometry) : IArray Identifies objects at the specified location.

The IIdentify interface has a method that identifies features at the speci-
fied location. The Identify method returns an array of FeatureIdentifyObj
objects.

 ILayer2 : IUnknown Provides access to additional members that work with all
layers.

AreaOfInterest: IEnvelope Area of interest for the layer.
ScaleRangeReadOnly: Boolean Indicates if the minimum and maximum scale range values are read-

only.

The ILayer2 interface contains additional ILayer properties that set the
extent of the layer and lock the scale range.

 ILayerDrawingProperties : IUnknown Provides access to members that control layer drawing
properties.

DrawingPropsDirty: Boolean Indicates if the layer drawing properties are dirty.

The ILayerDrawingProperties interface is used internally by the Layer
Properties dialog box to indicate whether any of the properties

FEATURELAYER COCLASS

After running this macro, the selection is shown
in the display, and the message box reports how

many features were selected.



Chapter 4 • Composing maps • 339

A
rc

M
ap

that determine how a layer is drawn have been changed. For
example, if you set the minimum or maximum draw scale, set
the renderer, turn on labeling, or change similar properties, then
the DrawingPropsDirty property is automatically set to True. The
map display is refreshed only if the layer’s drawing properties
are dirty after the Layer Properties dialog box is dismissed.

 ILayerEffects : IUnknown Provides access to members that control layer effects.

Brightness: Integer Layer brightness in percent (0-100).
Contrast: Integer Layer contrast in percent (0-100).
SupportsBrightnessChange: Boolean Indicates if the layer supports brightness changes.
SupportsContrastChange: Boolean Indicates if the layer supports contrast changes.
SupportsInteractive: Boolean Indicates if the layer supports interactive effects changes.
SupportsTransparency: Boolean Indicates if the layer supports transparency.
Transparency: Integer Layer transparency in percent (0-100).

The ILayerEffects interface changes the brightness, contrast, and trans-
parency of the layer. The controls on the Effects toolbar use the ILayer-
Effects interface. Feature layers only support transparency changes.
Raster layers support all three types of layer effects. Before you attempt
to change a layer effect, you should check to see if the layer supports
that type of change. To determine this, use the
SupportsBrightnessChange, SupportsContrastChange, and
SupportsTransparency properties. The display settings on your com-
puter must be set to True Color in order for layer effects to work cor-
rectly.

The following VBA code changes the transparency of the first map
layer:

Sub ChangeTransparency()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pLayerEffects As ILayerEffects

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pLayerEffects = pMap.Layer(0)

  If pLayerEffects.SupportsTransparency Then

    pLayerEffects.Transparency = 30

    pMxDoc.ActiveView.PartialRefresh esriViewGeography, _

        Nothing, Nothing

  End If

End Sub

When you set the ILayerEffects::Transparency property on a feature
layer, a display filter is created and applied to the layer. You can ac-
complish the same effect by implementing IDisplayFilter and using
IDisplayFilterManager to assign it to the layer.

Setting a layer’s transparency in ArcMap

FEATURELAYER COCLASS



340 • Exploring ArcObjects • Volume 1

 ILayerEvents : IUnknown Provides access to events that occur when layer visibility
changes.

VisibilityChanged (in currentState:
Boolean)

Occurs when layer visibility changes.

The ILayerEvents interface has an event that occurs when the visibility
of the layer changes—either the layer is turned on (checked) or off
(unchecked) in the table of contents. The LayerEvents::-
VisibilityChanged event occurs when the value of the ILayer::Visible
property is changed. Note, VisibilityChanged does not occur when the
visibility of the layer changes due to minimum or maximum
scale properties.

The following code listens for the VisibilityChanged event. When the
first feature layer in the map is turned on or off, a message box is
displayed.

Dim WithEvents pLyrEvents As FeatureLayer

Sub StartListening()

  Dim pMxDoc As IMxDocument, pMap As IMap

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pLyrEvents = pMap.Layer(0)

End Sub

Private Sub pLyrEvents_VisibilityChanged(ByVal currentState As Boolean)

  Dim pLayer As ILayer

  Set pLayer = pLyrEvents

  MsgBox pLayer.name & " is visible: " & currentState

End Sub

 ILayerExtensions : IUnknown Provides access to members that manage layers used by the
extensions.

Extension (in Index: Long) : IUnknown
Pointer

The extension at the specified index.

ExtensionCount: Long Number of extensions.

AddExtension (in ext: IUnknown
Pointer)

Adds a new extension.

RemoveExtension (in Index: Long) Removes the specified extension.

You can extend the existing layer implementation by implementing and
registering layer extensions. For example, feature layers currently use
extensions that implement IFeatureLayerSourcePageExtension to set a
feature layer’s data source.

 ILayerFields : IUnknown Provides access to members that work with a layer's fields.

Field (in Index: Long) : IField The field at the specified index.
FieldCount: Long The number of fields.
FieldInfo (in Index: Long) : IFieldInfo Extended field information for the field at the specified index.

FindField (in FieldName: String) : Long Returns the index of the field with the specified name.

The ILayerFields interface has properties and methods for finding fields,
returning the field count, and getting extended information on the field.
The FieldInfo coclass provides this extended information.

FEATURELAYER COCLASS



Chapter 4 • Composing maps • 341

A
rc

M
ap

FEATURELAYER COCLASS

 ILegendInfo : IUnknown Provides access to members that control legend
information provided by a renderer.

LegendGroup (Index: Long) :
ILegendGroup

Number of legend groups contained by the object.

LegendGroupCount: Long Number of legend groups contained by the object.
LegendItem: ILegendItem Optional.  Defines legend formatting for layer rendered with this

object.
SymbolsAreGraduated: Boolean Indicates if symbols are graduated.

The ILegendInfo interface has properties that report legend information
provided by a renderer. Each layer must implement ILegendInfo; nor-
mally, the implementation is delegated to the renderer.



342 • Exploring ArcObjects • Volume 1

The IDisplayRelationshipClass interface is used to manage joins on the
layer, and the IRelationshipClassCollection and IRelationshipClassCollection-
Edit interfaces are used to manage relates on the layer.

 IDisplayRelationshipClass : IUnknown Provides access to members that are used to set up joins.

JoinType: esriJoinType Join type for the most recent join performed.
RelationshipClass: IRelationshipClass Relationship class that defines how the tables are joined.

DisplayRelationshipClass (in relClass:
IRelationshipClass, in JoinType:
esriJoinType)

Sets a join based on the specified relationship class and join type.

The IDisplayRelationshipClass interface is used to set up joins between the
layer and other tables. The DisplayRelationshipClass method internally calls
RelQueryTable::Init to perform a join. The relationship class that is used as
input to the DisplayRelationshipClass method can be either a predefined
relationship class in a geodatabase or a memory relationship class
(MemoryRelationshipClass coclass). For more information on both types of
relationship classes, refer to Volume 2, Chapter 8, ‘Accessing the
geodatabase’.

The IDisplayRelationshipClass interface also has a property that indicates
the type of the most recent join and a property that returns the relationship
class that defines the tables that are joined. The RelationshipClass property
on the IFeatureLayerDefinition interface can also be used to get a refer-
ence to the relationship class. However, it’s better to use the IDisplay-
RelationshipClass interface for this since you’ll have access to the other
properties and methods dealing with joins.

Enumeration esriJoinType Different types of joins.

0 - esriLeftOuterJoin Left outer join. All source rows are included.
1 - esriLeftInnerJoin Left inner join. Only match source rows are included.

The esriJoinType enumeration indicates the join type. The join can either
be a left-outer join, where all source rows are included, or a left-inner
join, where only match source rows are included.

The following code performs a one-to-one, left-outer join on the first layer
in the map and the first table in the map using a memory relationship
class. The join field is “Code” in both the layer and the table. In the
IMemoryRelationshipClassFactory::Open method, it is important to use the
layer’s feature class as the pOriginForeignClass rather than the
pOriginPrimaryClass.
Public Sub JoinTable()
  Dim pMxDoc As IMxDocument
  Dim pMap As IMap
  Dim pLayer As IGeoFeatureLayer
  Dim pDpyRC As IDisplayRelationshipClass
  Dim pTableCollection As ITableCollection
  Dim pTable As ITable
  Dim pMemRCFact As IMemoryRelationshipClassFactory
  Dim pRelClass As IRelationshipClass

FEATURELAYER AND JOINING TABLES

ArcMap provides two ways to associate
data stored in tables with the features in
the layer: joins and relates. When you join
a table to the layer’s attribute table, you
append the fields from the table to the

layer’s table. Joins can be used for one-to-
one or many-to-one relationships between

a layer and a table.

Relating the layer’s table with another
table defines a relationship between the

two tables, but it doesn’t append the
fields of the table to the layer’s table.

Relates can be used for one-to-many or
many-to-many relationships between a

layer and a table. Relates defined in
ArcMap are essentially the same as

simple relationship classes defined in a
geodatabase, except that they are saved

with the map instead of in a
geodatabase. If the feature class of the

layer already has predefined relationship
classes in the geodatabase, these relation-

ships are automatically available for use
in ArcMap (you do not have to relate the

tables in ArcMap).

The join called DEMOG is associated with the
layer.



Chapter 4 • Composing maps • 343

A
rc

M
ap

  Set pMxDoc = Application.Document
  Set pMap = pMxDoc.FocusMap
  ' Get a reference to the layer
  Set pLayer = pMap.Layer(0)
  Set pDpyRC = pLayer

  ' Get a reference to the table
  Set pTableCollection = pMap
  Set pTable = pTableCollection.Table(0)

  ' Create a relationship class in memory
  Set pMemRCFact = New MemoryRelationshipClassFactory
  Set pRelClass = pMemRCFact.Open("ProvDemog", pTable, "CODE",
pLayer.FeatureClass, _
          "CODE", "Province", "Demog", esriRelCardinalityOneToOne)

  ' Perform the join
  pDpyRC.DisplayRelationshipClass pRelClass, esriLeftOuterJoin
End Sub

The following code performs a join using a predefined relationship in a
geodatabase:
Public Sub JoinWithGDBRelate()
  Dim pMxDoc As IMxDocument, pMap As IMap
  Dim pLayer As IGeoFeatureLayer
  Dim pDpyRC As IDisplayRelationshipClass
  Dim pFeatClass As IFeatureClass
  Dim pEnumRC As IEnumRelationshipClass
  Dim pRelClass As IRelationshipClass

  Set pMxDoc = Application.Document
  Set pMap = pMxDoc.FocusMap

  ' Get a reference to the layer
  Set pLayer = pMap.Layer(0)
  Set pDpyRC = pLayer

  ' Get the relationshipclass from the layer's featureclass
  Set pFeatClass = pLayer.FeatureClass
  Set pEnumRC = pFeatClass.RelationshipClasses(esriRelRoleAny)
  Set pRelClass = pEnumRC.Next

  ' Perform the join
  pDpyRC.DisplayRelationshipClass pRelClass, esriLeftOuterJoin
End Sub

 IRelationshipClassCollection :
IUnknown

Provides access to members that return the memory
relationship classes defined for standalone tables or layers
in ArcMap.

RelationshipClasses:
IEnumRelationshipClass

The memory relationship classes.

FindRelationshipClasses (in
objectClass: IObjectClass, in role:
esriRelRole) : IEnumRelationshipClass

Finds all relationship classes in the collection that reference the given
object class in the specified role.

The IRelationshipClassCollection interface provides a method to get all

FEATURELAYER AND JOINING TABLES



344 • Exploring ArcObjects • Volume 1

the relationship classes associated with the layer and a method to find
all the relationship classes that reference the given object class in the
specified role.

Enumeration esriRelRole Relationship Role.

1 - esriRelRoleAny Any.
2 - esriRelRoleOrigin Origin.
3 - esriRelRoleDestination Destination.

The esriRelRole enumeration indicates the relationship role. The layer
can be the origin or the destination in the relationship.

 IRelationshipClassCollectionEdit :
IUnknown

Provides access to members that add and remove memory
relationship classes from a standalone table or layer.

AddRelationshipClass (in
RelationshipClass: IRelationshipClass)

Adds the specified memory relationship class to a standalone table or
layer.

RemoveAllRelationshipClasses Removes all memory relationship classes from a standalone table or
layer.

RemoveRelationshipClass (in
RelationshipClass: IRelationshipClass)

Removes the specified memory relationship class from a standalone
table or layer.

The IRelationshipClassCollectionEdit interface provides members that
manage the memory relationships (relates) associated with the layer. You
can add relationship classes, remove a particular relationship class, or
remove all relationship classes using the methods on this interface. The
following code uses the AddRelationshipClass method to set up a relate
between the first layer in the map and the first table in the map:
Public Sub RelateTable()
  Dim pMxDoc As IMxDocument
  Dim pMap As IMap
  Dim pLayer As IGeoFeatureLayer
  Dim pTableCollection As ITableCollection
  Dim pTable As ITable
  Dim pMemRC As IMemoryRelationshipClass
  Dim pRCCollectionEdit As IRelationshipClassCollectionEdit

  Set pMxDoc = Application.Document
  Set pMap = pMxDoc.FocusMap

  'Get a reference to the layer
  Set pLayer = pMap.Layer(0)
  Set pRCCollectionEdit = pLayer

  ' Get a reference to the table
  Set pTableCollection = pMap
  Set pTable = pTableCollection.Table(0)

  ' Create a relationship class in memory
  Set pMemRC = New MemoryRelationshipClass
  pMemRC.Init "ProvDemog", pTable, "CODE", pLayer.FeatureClass, _
          "CODE", "Province", "DEMOG", esriRelCardinalityOneToOne

  ' Perform the relate
  pRCCollectionEdit.AddRelationshipClass pMemRC
End Sub

The relate called ProvDemog is associated
with the layer.

FEATURELAYER AND JOINING TABLES



Chapter 4 • Composing maps • 345

A
rc

M
ap

When hotlinks are assigned to a feature layer, every feature in the layer
is linked to the item listed in its hotlink field. If the hotlink field is empty
for a feature, that feature is not linked to anything. To set up hotlinks
using the user interface in ArcMap, click the Display panel of the Layer
Properties dialog box and check Support Hyperlinks using field. Click
the field that contains the hyperlink information, then use the IHotlink-
Container interface on the FeatureLayer coclass to programmatically
assign hotlinks.

 IHotlinkContainer : IUnknown Provides access to members that manage all the hotlinks of
a layer (e.g. field based hyperlinks or those that that call
macros).

HotlinkField: String Field used for hotlinks.
HotlinkType: esriHyperlinkType Hotlink type.

The IHotLinkContainer interface is used to assign hotlinks to a layer.
Using this interface, you can specify what field in the layer’s attribute
table contains the hotlink information; you can also specify the hotlink
type.

Enumeration esriHyperlinkType Hyperlink type.

0 - esriHyperlinkTypeDocument Document hyperlink type.
1 - esriHyperlinkTypeURL URL hyperlink type.
2 - esriHyperlinkTypeMacro Macro hyperlink type.

The esriHyperlinkType enumeration specifies the type of hotlinks and
hyperlinks—either document, URL, or macro—that are assigned to the
layer.

The following code sets the hotlink field and type for the first layer in
the map:

Sub AssignHotlinks()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pHotlinkContainer As IHotlinkContainer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pHotlinkContainer = pMap.Layer(0)

  pHotlinkContainer.HotlinkField = "Canada-ID"

  pHotlinkContainer.HotlinkType = esriHyperlinkTypeDocument

End Sub

 IHotlinkMacro : IUnknown Provides access to members that control a hyperlink that
calls a macro.

MacroName: String Name of macro used for the hotlink.

The IHotlinkMacro interface specifies the macro to be used by the
hotlinks if the hyperlink type is esriHyperlinkTypeMacro. A hotlink
macro has the following structure by default. The pLink argument is a

FEATURELAYER AND HOTLINKS

A hyperlink displays linked data, such as
text files or Web pages, when you click it.

There are two types of hyperlinks that
can be associated with a layer—dynamic

hyperlinks, which can be created as you
browse your data, and hotlinks, which are
hyperlinks stored in a field in the feature

layer. Both hyperlinks and hotlinks can be
assigned to features in a layer to display

a document or Web page when a feature
is clicked using the Hyperlink tool.

Hotlinks use a field in the database to
store the hyperlink address for a Web
page, document, or some information

used by a macro.



346 • Exploring ArcObjects • Volume 1

hyperlink object that is automatically created and has its Link property
set to a value from the hotlink field.

Sub Hyperlink(pLink, pLayer)

  Dim pHyperlink As IHyperlink

  Set pHyperlink = pLink

  Dim pFLayer As IFeatureLayer

  Set pFLayer = pLayer

  ' Then do something with the hyperlink

End Sub

The following code sets up hotlinks for the first layer in the map using
the Picture field. A macro called PicHyperlink is used for the hotlinks.
When you click a feature with the Hotlink tool, the macro displays a
form showing the picture specified in the hotlink field for that feature.

Sub AssignHotlinks()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pHotlinkContainer As IHotlinkContainer

  Dim pHotlinkMacro As IHotlinkMacro

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pHotlinkContainer = pMap.Layer(0)

  Set pHotlinkMacro = pHotlinkContainer

  pHotlinkContainer.HotlinkField = "Pictures"

  pHotlinkContainer.HotlinkType = esriHyperlinkTypeMacro

  pHotlinkMacro.MacroName = "Project.MyMacros.PicHyperlink"

End Sub

Sub PicHyperlink(pLink, pLayer)

  Dim pHyperlink As IHyperlink

  Set pHyperlink = pLink

  Dim pFLayer As IFeatureLayer

  Set pFLayer = pLayer

  If Not UserForm1.Visible Then

    UserForm1.Show vbModeless

  End If

  UserForm1.Picture = LoadPicture(pHyperlink.link)

End Sub

After running this code, the Display panel of the
Layer Properties dialog box shows that the layer

now supports hyperlinks using the Pictures
field—the hyperlink type is macro.

When you click a feature with the Hyperlink
tool, a window showing the picture specified in

the hotlink field appears.

FEATURELAYER AND HOTLINKS



Chapter 4 • Composing maps • 347

A
rc

M
ap

Hyperlinks are generally assigned one feature at a time; unlike hotlinks,
they are set up for an individual feature rather than an entire feature
layer. The Identify dialog box in the user interface in ArcMap interac-
tively sets up hyperlinks.

 IHyperlinkContainer : IUnknown Provides access to members that manage all the hyperlinks
of a layer.

Hyperlink (in Index: Long) : IHyperlink The hyperlink at the specified index.
HyperlinkCount: Long Number of hyperlinks.

AddHyperlink (in link: IHyperlink) Adds a hyperlink.
RemoveHyperlink (in Index: Long) Removes the hyperlink at the specified index.

Use the IHyperlinkContainer interface on the FeatureLayer coclass with
the IHyperlink interface on the Hyperlink coclass to programmatically
assign hyperlinks.

The hyperlink container manages the hyperlinks for a feature layer.
The IHyperlinkContainer interface has methods for adding hyperlinks
to and removing hyperlinks from the layer. There is a property to get a
count of all the hyperlinks on the layer and a property to get a refer-
ence to a specific hyperlink. To assign hyperlinks to a feature in the
layer, you must first create a new Hyperlink object, then set the proper-
ties on the IHyperlink interface.

 IHyperlink : IUnknown Provides access to members that control a dynamic
hyperlink (i.e. one that can exist with or without a
container).

FeatureId: Long Id for the feature that contains the hyperlink.
link: String Hyperlink target.
LinkType: esriHyperlinkType Hyperlink type.

Jump Jumps to the hyperlink target.

The IHyperlink interface defines a hyperlink. Use this interface to set
the ID of the feature with which the hyperlink is associated, the name
of the file or URL to which it is to be linked, and the type of hyperlink
it is.

The following code creates a hyperlink for the selected feature in the
layer. The link type is URL, and the link is set to ESRI’s Web page. The
IHyperlinkContainer::AddHyperlink method assigns the hyperlink to the
layer.

Sub AddHyperlink()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pLayer As IGeoFeatureLayer

  Dim pFeatureSel As IFeatureSelection

  Dim pSelSet As ISelectionSet

  Dim pEnumIDs As IEnumIDs

  Dim pFID As Long

  Dim pHyperlink As IHyperlink

  Dim pHyperlinkContainer As IHyperlinkContainer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

HYPERLINK COCLASS

Hyperlink
IHyperlink

IPersist
IPersistStream

Hyperlinks are not dependent on a field
and do not call macros. They are dynamic

and more flexible than a hotlink in that
they do not need to exist in a container.

After running this code, the Identify dialog box
shows that the hyperlink was assigned to the

selected feature.



348 • Exploring ArcObjects • Volume 1

HYPERLINK COCLASS

  Set pLayer = pMap.Layer(0)

  'Get the feature id of first selected feature

  Set pFeatureSel = pLayer

  Set pSelSet = pFeatureSel.SelectionSet

  If pSelSet.Count = 0 Then

    MsgBox "Please select a feature."

    Exit Sub

  End If

  Set pEnumIDs = pSelSet.IDs

  pFID = pEnumIDs.Next

  'Create a new hyperlink and set its properties

  Set pHyperlink = New Hyperlink

  pHyperlink.link = "www.esri.com"

  pHyperlink.LinkType = esriHyperlinkTypeURL

  pHyperlink.FeatureId = pFID

  'Assign the hyperlink to the layer

  Set pHyperlinkContainer = pLayer

  pHyperlinkContainer.AddHyperlink pHyperlink

End Sub



Chapter 4 • Composing maps • 349

A
rc

M
ap

A FeatureIdentifyObject object provides access to the identified feature
and has methods that can operate on that feature.

 IFeatureIdentifyObj : IUnknown Provides access to a member that sets the feature used by
the identify object.

Feature: IFeature The feature to be identified.

The IFeatureIdentifyObj interface sets the feature to be identified.

 IIdentifyObj : IUnknown Provides access to members that control feature
identification for a layer.

hWnd: Long The window handle.
Layer: ILayer Target layer for identification.
Name: String Name of the identify object.

CanIdentify (in pLayer: ILayer) :
Boolean

Indicates if the object can identify the specified layer.

Flash (in pDisplay: IScreenDisplay) Flashes the identified object on the screen.
PopUpMenu (in X: Long, in Y: Long) Displays a context sensitive popup menu at the specified location.

The IIdentifyObj interface returns the window handle, layer, and name
of the feature; it has methods to flash the feature in the display and to
display a context menu at the Identify location.

The following UIToolControl code uses the IIdentify::Identify method to
get the FeatureIdentifyObject objects at the mouse-click location. Then,
some of the properties of the feature first identified are reported.
Private Sub UIToolControl1_MouseDown(ByVal button As Long, _
     ByVal shift As Long, ByVal x As Long, ByVal y As Long)
  Dim pMxApp As IMxApplication, pDoc As IMxDocument
  Dim pMap As IMap, pIdentify As IIdentify
  Dim pPoint As IPoint, pIDArray As IArray
  Dim pFeatIdObj As IFeatureIdentifyObj, pIdObj As IIdentifyObj

  Set pMxApp = Application
  Set pDoc = Application.Document
  Set pMap = pDoc.FocusMap
  Set pIdentify = pMap.Layer(0)

  ' Convert x and y to map units
  Set pPoint = pMxApp.Display.DisplayTransformation.ToMapPoint(x, y)
  Set pIDArray = pIdentify.Identify(pPoint)

  'Get the FeatureIdentifyObject
  If Not pIDArray Is Nothing Then
    Set pFeatIdObj = pIDArray.Element(0)
    Set pIdObj = pFeatIdObj
    pIdObj.Flash pMxApp.Display

    ' Report info from FeatureIdentifyObject
    MsgBox "Layer: " & pIdObj.Layer.Name & vbNewLine & _
           "Feature: " & pIdObj.Name
  Else
    MsgBox "No feature identified."
  End If
End Sub

FEATUREIDENTIFYOBJECT COCLASS

Feature-
Identify-
Object

IFeatureIdentifyObj
IIdentifyObj

IMapIdentifyObject
IRowIdentifyObject

A FeatureIdentifyObject provides
shortcuts to some of the properties of

the identified feature.



350 • Exploring ArcObjects • Volume 1

FIELDINFO COCLASS

The FieldInfo coclass has an interface called IFieldInfo that allows you
to set an alias for the field, set the number format if the field is numeric,
set the visibility flag for the field, and return a string representation of a
value in the field.

 IFieldInfo : IUnknown Provides access to properties that give extended
information on the field.

Alias: String The alias for the field.
AsString (in Value: Variant) : String The string representation of a given value based on the current field

information.
NumberFormat: INumberFormat The number format for the field (invalid if non-numeric field).
Visible: Boolean Indicates if the field is visible.

This code uses the ILayerFields::FindField method to get the index of the
specified field and then uses the FieldInfo property to access the FieldInfo
object for that field. The field’s visible property is set to False so that the
field is no longer visible in the attribute table of the layer.

Public Sub HideField()

  Dim pDoc As IMxDocument

  Dim pMap As IMap

  Dim pLayerFlds As ILayerFields

  Dim pFldInfo As IFieldInfo

  Set pDoc = Application.Document

  Set pMap = pDoc.FocusMap

  Set pLayerFlds = pMap.Layer(0)

  Set pFldInfo = pLayerFlds.FieldInfo(pLayerFlds.FindField("Area"))

  pFldInfo.Visible = False

End Sub

FieldInfo
IFieldInfo

IPersist
IPersistStream

FieldInfo provides extend information on
a field.

After running this code, the Fields panel of the
Layer Properties dialog box shows that the Area

field has been made invisible.



Chapter 4 • Composing maps • 351

A
rc

M
ap

COVERAGEANNOTATIONLAYER COCLASS

Annotation can be organized into annotation levels and subclasses. For
example, a coverage storing roads may have street names in one annota-
tion level, highway names in another level, and place names in a third
level. Alternatively, the roads coverage might have two subclasses, one for
street names, Anno.Street, and one for highway names, Anno.Hwy. Each
subclass may contain several levels for specific annotation text sizes.

A CoverageAnnotationLayer is a layer that is based on a coverage anno-
tation feature class. If an annotation coverage has no subclasses, then
there is only one layer for this coverage. However, if the annotation
coverage has subclasses, each subclass is treated as a separate layer. A
CoverageAnnotationLayer may have more than one level.

 ICoverageAnnotationLayer : IUnknown Provides access to members that control a coverage
annotation layer.

ArrowSymbol: ILineSymbol The line symbol for the arrow.
Font (in SymbolNumber: Long) : Font The font for the specified symbol number.
FontColor (in SymbolNumber: Long) :

IColor
The font color for the specified symbol number.

LevelCount: Long The number of levels in the layer.
LevelNumber (in Index: Long) : Long The level number at the specified index.
LevelVisibility (in LevelNumber: Long) :

Boolean
Indicates if the level at the specified level number is visible.

NextGraphic: IElement Generates the next graphic element in the graphics generation loop.
Returns a NULL element after the last annotation feature has been
read.  Call only after StartGeneratingGraphics.

SymbolCount: Long The number of symbols used by the layer.
SymbolNumber (in Index: Long) : Long The symbol number at the specified index.
TextSymbol (in SymbolNumber: Long) :

ITextSymbol
The text symbol for the specified symbol number.

GenerateGraphics (in box: IEnvelope, in
Display: IDisplay) : IEnumElement

Generates graphic elements from the annotation features.  The
optional envelope specifies a bounding box.  The display is used for
converting from map units.

NextFeatureAndGraphic (out Feature:
IFeature, out Element: IElement)

Generates the next feature and graphic element in the graphics
generation loop.  Returns a NULL feature and element after the
last annotation feature has been read.  Call only after
StartGeneratingGraphics.

StartGeneratingGraphics (in box:
IEnvelope, in Display: IDisplay, in
withAttributes: Boolean)

Starts a graphics generation process from the annotation features.
The optional envelope specifies a bounding box.  The display is used
for converting from map units.

The ICoverageAnnotationLayer interface controls the display of coverage
annotation. Use the LevelCount property to get the number of levels in
the layer and the LevelVisibility property to specify whether a specific
level is visible in the layer.

Use the SymbolCount property to get the number of symbols defined for
the layer. The ArrowSymbol, Font, FontColor, and TextSymbol properties
allow you to change the properties of a specific symbol in the layer.

The ICoverageAnnotationLayer interface also has methods for convert-
ing the annotation to graphics.

The following VBA code reports how many levels and symbols there
are in the coverage annotation layer. It loops through all the levels and
reports whether the level is visible. It also loops through all the symbols
and reports the font size of that symbol.

Public Sub AnnoReport()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pCovAnnoLyr As ICoverageAnnotationLayer

  Dim i As Integer

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

Coverage-
Annotation-

Layer

IAttributeTable
IBarrierProperties

IBarrierProperties2
ICoverageAnnotation-

Layer
ICoverageAnnotation-

Layer2
IDataLayer

IDataLayer2
IFeatureLayer

IFind
ILayerFields

ILayerInfo
ITableFields

Annotation is a unique coverage feature
class that stores labels used to describe

other geographic features.

Annotation is only used for display purposes; it is
not used in analysis. The labels are stored as

text strings along with the text symbol numbers
used to draw them and their location and

positioning specifications. A coverage annotation
feature class can use more than one symbol to

define how the annotation is to be displayed.

The Levels panel of the coverage annotation’s
Layer Properties dialog box shows that this layer
has six levels and shows which levels are visible.

The Symbols panel of the coverage annotation’s
Layer Properties dialog box shows that this layer

has four symbols and shows their properties.



352 • Exploring ArcObjects • Volume 1

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pCovAnnoLyr = pMap.Layer(0)

  ' Report the count of levels and symbols

  MsgBox "This layer has " & pCovAnnoLyr.LevelCount & _

      " levels and " & pCovAnnoLyr.SymbolCount & " symbols."

  ' Loop through the levels and report whether level is visible

  For i = 0 To pCovAnnoLyr.LevelCount - 1

    MsgBox "Level " & pCovAnnoLyr.LevelNumber(i) & _

       " is visible: " & pCovAnnoLyr.LevelVisibility(i)

  Next

  ' Loop through the symbols and report the font size

  For i = 0 To pCovAnnoLyr.SymbolCount - 1

    MsgBox "Symbol " & pCovAnnoLyr.SymbolNumber(i) & ": " & _

    pCovAnnoLyr.Font(i).Size

  Next

End Sub

 IBarrierProperties2 : IUnknown Provides access to members that control how objects
(text, features, graphics) act as barriers for labelling with
the cancel tracker

Barriers2 (in Display: IDisplay, in
pBarriers: IGeometryCollection, in
Extent: IEnvelope, in trackCancel:
ITrackCancel)

List of barriers within the specified extent, or all barriers if no
extent given.

Weight: Long Weight of the barriers for this layer.

The IBarrierProperties2 interface has a QueryBarriers method for getting
the collection of geometries (the pBarriers parameter) that represent the
barriers for the layer. The trackCancel parameter is used to get the Cancel-
Tracker object; this allows the drawing of labels to be stopped during the
barriers loading phase. The IBarriersProperties2 interface also has a
Weight property that specifies the weight of the barriers in the layer.

The IBarriersProperties interface is the original version of this interface.
You should always use IBarriersProperties2.

You can use the IMapBarriers interface on Map to conveniently access
all the barriers from all the layers in the map; this interface returns a
collection of barriers.

The following VBA macro reports the number of barriers in the current
extent of the data view. You have to create a valid geometry collection
object and pass this object into the QueryBarriers method, which will
populate the collection. The resulting collection will consist of the ge-
ometries that represent the barriers in the current extent.

Public Sub Barriers()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pCovAnnoLyr As ICoverageAnnotationLayer

COVERAGEANNOTATIONLAYER COCLASS

This map contains a coverage annotation layer
called annotation.red.

Barriers are used by labeling engines to signal
that a label should not be placed in a particular

location. Barriers currently include annotation,
graphical elements, and symbols generated from

renderers. A layer uses barriers to let other
layers know where its elements are so that

nothing gets displayed on top of those elements.



Chapter 4 • Composing maps • 353

A
rc

M
ap

  Dim i As Integer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMap

  Set pCovAnnoLyr = pMap.Layer(0)

  Dim pBarrierProp As IBarrierProperties2

  Set pBarrierProp = pCovAnnoLyr

  ' Create a geometry collection to pass into the method

  Dim pGeomCol As IGeometryCollection

  Set pGeomCol = New GeometryBag

  ' Use the QueryBarriers method to populate the geometry collection

  pBarrierProp.QueryBarriers pActiveView.ScreenDisplay, pGeomCol, _

        pActiveView.Extent, Nothing

  MsgBox pGeomCol.GeometryCount

End Sub

COVERAGEANNOTATIONLAYER COCLASS



354 • Exploring ArcObjects • Volume 1

TINLAYER COCLASS

TINs represent continuous surfaces, such as terrain elevation or tem-
perature gradient. Typically, you display a TIN using color-shaded relief.
This lets you easily see the ridges, valleys, and hillsides, along with their
respective heights. You can display any one of three surface characteris-
tics—slope, aspect, and elevation—on your map and even simulate
shaded relief. You can also display the internal structure of a TIN—for
example, nodes and breaklines—independently or on top of the shaded
relief display.

A TinLayer is a layer that is based on TIN. A TinLayer can use more
than one renderer for its display.

 ITinLayer : ILayer Provides access to members that control a TIN layer.

Dataset: ITin The TIN used to define the layer.
DisplayField: String The primary display field.
RendererCount: Long The number of renderers.
ScaleSymbols: Boolean Indicates if symbols are scaled for this layer.

AddRenderer (in Renderer:
ITinRenderer)

Add a renderer to the end of the group.

ClearRenderers Remove all the renderers from the group.
DeleteRenderer (in Renderer:

ITinRenderer)
Remove a renderer from the group.

GetRenderer (in Index: Long) :
ITinRenderer

Gets the nth renderer.

InsertRenderer (in Renderer:
ITinRenderer, in Index: Long)

Insert a renderer at given index.

The ITinLayer interface defines how the TIN is displayed in the layer.

The Dataset property returns the TIN dataset on which the layer is
based.

The RendererCount property returns the number of renderers currently
used by the TinLayer.

Use the AddRenderer, InsertRenderer, GetRenderer, ClearRenderers, and
DeleteRenderers methods to define the set of renderers associated with
the layer.

The following VBA code reports the name of each renderer used by the
TinLayer:

Public Sub RendererReport()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pTinLayer As ITinLayer

  Dim pTinRend As ITinRenderer

  Dim i As Integer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pTinLayer = pMap.Layer(0)

  For i = 0 To pTinLayer.RendererCount - 1

    Set pTinRend = pTinLayer.GetRenderer(i)

    MsgBox pTinRend.Name

  Next

End Sub

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

TinLayer

IConnectionPoint-
Container

IDataLayer
IDataLayer2

IDisplayAdmin
IDisplayFilterManager

IIdentify
ILayerDrawing-

Properties
ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
ITableFields

ITinLayer

TIN layers are used to display three-
dimensional surface data.

This map has a TIN layer called
DeathValleyTerrain. Three different renderers

are used to display this layer.

The Symbology panel of the TIN layer Properties
dialog box shows which renderers are used by
the layer, and allows you to add and remove

renderers and set the properties of the
renderers.



Chapter 4 • Composing maps • 355

A
rc

M
ap

GROUPLAYER COCLASS

When you want to work with several layers as one layer, gather them
together into a group layer. Suppose you have two layers on a map,
with one representing rivers and the other lakes. You might choose to
group these layers together and name the resulting layer “water sys-
tems”. Turning off a group layer turns off all its component layers. The
properties of the group layer override any conflicting properties of its
constituent layers. However, you can still work with the individual layers
in the group.

 IGroupLayer : ILayer Provides access to members that control a collection of
layers that behaves like a single layer.

Expanded: Boolean Indicates if the group's entry is expanded in the TOC.

Add (in Layer: ILayer) Adds a layer to the end of the group.
Clear Removes all layers from the group.
Delete (in Layer: ILayer) Removes the specified layer from the group.

The IGroupLayer interface provides methods for managing the contents
of group layers.

The Add method adds the specified layer to the group, the Remove
method removes the specified layer from the group, and the Clear
method removes all the layers from the group.

The Expanded property indicates whether or not the group layer is
expanded in the map’s table of contents.

 ICompositeLayer : IUnknown Provides access to members that work with a collection of
layers that behaves like a single layer.

Count: Long Number of layers in the collection.
Layer (in Index: Long) : ILayer Layer in the collection at the specified index.

The ICompositeLayer is a generic interface for working with a layer that
contains other layers.

The Count property returns the number of layers in the group, and the
Layer property returns the layer at the specified index.

The following VBA code creates a new group layer, moves two layers
from the map into this group layer, adds the group layer to the map,
then reports the number of layers in the new group layer.

Sub CreateGroupLayer()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pRiverLayer As IGeoFeatureLayer

  Dim pLakeLayer As IGeoFeatureLayer

  Dim i As Integer

  Dim pGroupLayer As IGroupLayer

  Dim pCompLayer As ICompositeLayer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  ' Get references to the rivers and lakes layers.

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

GroupLayer

ICompositeLayer
IConnectionPoint-

Container
IDisplayAdmin

IGroupLayer
IIdentify

IIdentify2
ILayer2

ILayerEvents
ILayerInfo

ILayerPosition
IMapLevel

A group layer is a group of several layers
that appear and act like a single layer in

the table of contents in ArcMap.

This map contains a group layer called Water
Systems, which consists of two layers—rivers and

lakes.



356 • Exploring ArcObjects • Volume 1

  For i = 0 To pMap.LayerCount - 1

    If pMap.Layer(i).Name = "rivers" Then

      Set pRiverLayer = pMap.Layer(i)

    End If

    If pMap.Layer(i).Name = "lakes" Then

      Set pLakeLayer = pMap.Layer(i)

    End If

  Next

  ' Create the group layer and add the layers to it.

  Set pGroupLayer = New GroupLayer

  pGroupLayer.Name = "Water Systems"

  pGroupLayer.Add pRiverLayer

  pGroupLayer.Add pLakeLayer

  ' Remove the rivers and lakes layers from the map,

  ' add the group layer to the map, and refesh the TOC.

  pGroupLayer.Expanded = True

  pMap.DeleteLayer pRiverLayer

  pMap.DeleteLayer pLakeLayer

  pMap.AddLayer pGroupLayer

  pMxDoc.UpdateContents

  ' Report the number of layers in the group layer

  Set pCompLayer = pGroupLayer

  MsgBox "Number of layers in the new group layer: " & _

          pCompLayer.Count

End Sub

GROUPLAYER COCLASS



Chapter 4 • Composing maps • 357

A
rc

M
ap

The Internet is a vast resource for geographic data. Organizations can
publish their data using ArcIMS® and serve it over the Internet. The
Geography NetworkSM, which also uses ArcIMS, provides easy access to
data on the Internet. You can view this data as layers in ArcMap.

ArcIMS provides two types of map services: an ArcIMS Feature Service
and an ArcIMS Image Service.

An ArcIMS feature service is similar to a feature dataset that contains
many feature classes. Each ArcIMS feature class represents a unique
entity; the actual features are streamed to the client. When you add a
feature service to the map, a group layer consisting of one or more
feature layers is also added to the map. You can work with feature
layers based on ArcIMS feature services in ArcMap the same way you
work with feature layers based on local feature classes.

An ArcIMS image service is a raster representation of a complete map.
When you add an image service to ArcMap, you’ll see a new layer on
your map. This layer is an Internet Map Server map layer (IMSMap-
Layer). You can turn off specific sublayers in the IMS map layer so you
see only those that are of interest to you.

An IMSMapLayer is a composite layer consisting of IMS sublayers. You
can use the ICompositeLayer::Layer property to get a reference to an IMS
sublayer; the sublayer is of type IIMSSubLayer. From that, you can get a
reference to the ACLayer (Arc Connection layer) on which the sublayer
is based. An ACLayer does not implement ILayer; rather, it is an XML
representation of the layer from the Internet service. ACLayers use the
symbology defined on the Internet service for display in ArcMap.

 IIMSMapLayer : ILayer IMS Map Layer interface.

AreaOfInterest: IEnvelope The area of interest.
Connection: IIMSServiceDescription The service.
IMSMap: IACMap The IMS map.

ConnectToService (in Service:
IIMSServiceDescription)

Connects to the map service with the given server url.

MoveSubLayerTo (in subLayer:
IIMSSubLayer, in Index: Long)

Change the sublayer order.

The IIMSMapLayer interface indicates that the layer is an IMS map layer.

The Connection property and Connect method manage the connection
to the Internet service.

The MoveSubLayerTo method allows you to rearrange the order of the
sublayers in the IMSMapLayer.

The IMSMap property returns a reference to the ACMap (Arc Connection
map), which is an XML representation of the map that was served over
the Internet.

The following code loops through all the sublayers in the IMSMapLayer
and reports the name of the sublayer.

Public Sub IMSLyrInfo()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

This map contains an IMSMapLayer called
“World”, which contains many IMS sublayers. The

symbology for each layer is defined by the
Internet service.

The Layers panel of the IMSMapLayer Proper-
ties dialog box lists all of the sublayers in the

IMSMapLayer, and provides access to the
properties of each sublayer.

IMSMAPLAYER COCLASS

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

IMSMap-
Layer

ICompositeLayer
ICompositeLayer2

IDataLayer
IDataLayer2

IDisplayAdmin
IDisplayFilterManager

IIdentify
IIdentify2

IIMSMapLayer
ILayerDrawing-

Properties
ILayerEffects

ILayerInfo
ILayerPosition

An Internet Map Server layer displays
data from an image service on the

Internet.



358 • Exploring ArcObjects • Volume 1

  Dim pIMSMapLyr As IIMSMapLayer

  Dim pCompLyr As ICompositeLayer

  Dim pIMSSubLyr As IIMSSubLayer

  Dim pACLayer As IACLayer

  Dim i As Integer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  If TypeOf pMap.Layer(0) Is IIMSMapLayer Then

    Set pIMSMapLyr = pMap.Layer(0)

    Set pCompLyr = pIMSMapLyr

    For i = 0 To pCompLyr.Count - 1

      If TypeOf pCompLyr.Layer(i) Is IIMSSubLayer Then

        Set pIMSSubLyr = pCompLyr.Layer(i)

        Set pACLayer = pIMSSubLyr.IMSLayer

        MsgBox pACLayer.Name

      End If

    Next

  End If

End Sub

IMSMAPLAYER COCLASS



Chapter 4 • Composing maps • 359

A
rc

M
ap

Dimensions are a special kind of map annotation that show specific
lengths or distances on a map. A dimension may indicate the length of
a side of a building or land parcel or the distance between two features
such as a fire hydrant and the corner of a building. Dimensions can be
as simple as a piece of text with a leader line or more elaborate.

In the geodatabase, dimensions are stored in dimension feature classes.
Like other feature classes in the geodatabase, all features in a dimension
feature class have a geographic location and attributes and can either be
inside or outside of a feature dataset. Like annotation features, each
dimension feature knows what its symbology is and how it should be
drawn.

A DimensionLayer object is a layer that is based on a dimension feature
class. Feature classes of feature type esriFTDimension are dimension
feature classes.

 IDimensionLayer : IUnknown Provides identity for dimension layers.

The IDimensionLayer interface indicates to the map that this layer is a
dimension layer. There are no methods or properties on this interface.
Most of the interfaces that are implemented by FeatureLayer are avail-
able for use with the DimensionLayer.

The symbology used to display the dimension layer is defined in the
geodatabase.

DIMENSIONLAYER COCLASS

IGeoDataset
ILayer Layer

Dimension-
Layer

IAttributeTable
IDimensionLayer

IClass
IConnectionPoint-

Container
IDataLayer

IDataLayer2
IDataset

IDisplayAdmin
IDisplayFilterManager
IDisplayRelationship-

Class
IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayer-

Definition
IFeatureLayer-

SelectionEvents
IFeatureSelection

IFind
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawing-

Properties
ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

IMapLevel
IObjectClass-

SchemaEvents
IPropertySupport

  IRelationshipClass-
Collection

IRelationshipClass-
CollectionEdit

ITable
ITableFields

ITableSelection

DimensionLayer displays descriptive
text and supporting graphics, such as

leader lines, that are associated with map
features.

This map contains a dimension layer called
“Lots_Dim”. The green arrows and text are the

dimension features.



360 • Exploring ArcObjects • Volume 1

Use a CadLayer if you want to add the CAD drawing as a layer for
display only. In the map, this layer contains all of the layers in the draw-
ing and uses the symbology defined in the drawing. You can choose
which of the drawing’s layers the layer in ArcMap displays.

 ICadLayer : ILayer Provides access to properties that give information on the
CAD drawing.

CadDrawingDataset:
ICadDrawingDataset

The dataset of the CAD drawing.

FilePath: String Full pathname of the CAD drawing.
Is2d: Boolean Indicates if the CAD drawing is 2D.
Is3d: Boolean Indicates if the CAD drawing is 3D.
IsAutoCad: Boolean Indicates if the CAD drawing is an AutoCAD file.
IsDgn: Boolean Indicates if the CAD drawing is a MicroStation file.

The ICadLayer interface has properties to determine if the CAD drawing
is an AutoCAD® drawing (.dwg) file, a MicroStation® design (.dgn) file, a
2D drawing, or a 3D drawing. It also gives you the full pathname of the
CAD drawing file used by the layer and the CAD drawing dataset.

This code reports some of the properties of the first CAD layers in the
map:

Sub LayerProps()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pCadLayer As ICadLayer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pCadLayer = pMap.Layer(0)

  MsgBox "File: " & pCadLayer.FilePath & vbNewLine & _

        "Is AutoCAD: " & pCadLayer.IsAutoCad & vbNewLine & _

        "Is Dgn: " & pCadLayer.IsDgn & vbNewLine & _

        "Is 3D: " & pCadLayer.Is3d & vbNewLine

End Sub

 ICadDrawingLayers : IUnknown Provides access to properties that give information on the
layers in the CAD drawing.

DrawingLayerCount: Long The number of layers in the CAD drawing.
DrawingLayerName (in Index: Long) :

String
The name of the CAD drawing layer at the specified index.

DrawingLayerVisible (in Index: Long) :
Boolean

Indicates if the specified CAD drawing layer visible in the CAD layer in
ArcMap.

OriginalDrawingLayerVisible (in Index:
Long) : Boolean

Indicates if the specified CAD drawing layer visible in the CAD
drawing itself.

The ICadDrawingLayers interface manages the layers in the CAD draw-
ing. These are the CAD drawing layers, not the layers in the map in
ArcMap. You can get the count of the layers in the drawing and the
name of the layer at the specified index in the drawing.

The DrawingLayerVisible property indicates if the specified drawing
layer is visible in the CadLayer or CadFeatureLayer in ArcMap.

The OriginalDrawingLayerVisible property indicates if the drawing layer
is visible in the CAD drawing itself.

IGeoDataset
ILayer Layer

CadLayer

ICadLayer
ICad3DRenderMode
ICadDrawingLayers

ICadTransformations
IConnectionPoint-

Container
IDataLayer

IDataLayer2
IDisplayAdmin

IIdentify
ILayerEffects

ILayerExtensions
ILayerInfo

ILayerPosition

You can display a CAD drawing as a
layer in ArcMap; you don’t have to

convert the data.

An ArcMap layer based on CAD drawing is
either a CadLayer or a CadFeatureLayer.

In ArcMap, a CAD drawing is represented as
either a CAD drawing or a CAD dataset. The
CAD drawing represents all the layers in the

drawing. The CAD dataset represents the
drawing’s features with individual feature classes

(point, line, polygon, and annotation feature
classes).

A CadLayer is based on the CAD drawing
representation, and a CadFeatureLayer is based

on CAD dataset representation.

CADLAYER COCLASS

The CadLayer in this map represents all the
CAD drawing layers. The symbology defined in

the CAD drawing displays the layer in the map.



Chapter 4 • Composing maps • 361

A
rc

M
ap

 ICadTransformations : IUnknown ICadTransformations Interface

EnableTransformations: Boolean Indicates if global transformations are enabled.
TransformMode: tagesriCadTransform The transformation type.
WorldFileName: String The pathname of the world file.

GetFromToTransform (out fromPoint1:
_WKSPoint, out fromPoint2:
_WKSPoint, out toPoint1: _WKSPoint,
out toPoint2: _WKSPoint)

Returns the points of a two point transformation.

GetTransformation (out from:
_WKSPoint, out to: _WKSPoint, out
Angle: Double, out Scale: Double)

Returns the rotation, scale, and translation of a transformation.

SetFromToTransform (in fromPoint1:
_WKSPoint, in fromPoint2:
_WKSPoint, in toPoint1: _WKSPoint, in
toPoint2: _WKSPoint)

Sets the points of a two point transformation.

SetTransformation (in from: _WKSPoint,
in to: _WKSPoint, in Angle: Double, in
Scale: Double)

Sets the rotation, scale, and translation of a transformation.

The ICadTransformations interface allows you to transform the CAD data
so that it matches other data in your map. You can perform the transfor-
mation using a two-point method, a rotation, a scale and translation
method, or a World file. If a World file is used, there is a property to get
and set the filename of the World file.

The ICadTransformations interface controls the
settings in the Transformation panel of the

layer’s Properties dialog box for CadLayer and
CadFeatureLayer.

CADLAYER COCLASS



362 • Exploring ArcObjects • Volume 1

IGeoDataset
ILayer Layer

CadFeature-
Layer

IAttributeTable
ICadDrawingLayers

ICadTransformations
IClass

IConnectionPoint-
Container

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationship-

Class
IDisplayTable
IFeatureLayer

IFeatureLayer2
IFeatureLayer-

Definition
IFeatureSelection

IFind
IGeoFeatureLayer
IHotlinkContainer

IHotlinkMacro
IHyperlinkContainer

IIdentify
IIdentify2

ILayer2
ILayerDrawing-

Properties
ILayerEffects

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IMapLevel

IObjectClass-
SchemaEvents

IPropertySupport
IRelationshipClass-

Collection
IRelationshipClass-

CollectionEdit
ITable

ITableFields
ITableSelection

Use a CadFeatureLayer if you want to
change symbology or analyze CAD data.

This map has three CadFeatureLayers. The
PARCELS.DWG point layer contains all the point

features in the CAD drawing, the
PARCELS.DWG polyline layer contains all the

polyline features in the CAD drawing, and the
PARCELS.DWG polygon layer contains all the

polygon features in the CAD drawing.

CAD data is treated as features in a CadFeatureLayer. CAD drawing files
typically store different types of entities on different layers in a drawing
file. There might be one layer in the CAD drawing for building foot-
prints, another for streets, a third for well locations, and a fourth for
textual annotation. However, CAD drawing files do not restrict the type
of entities you can have on a drawing layer. Thus, building footprints
might be on the same drawing layer as streets. When working with a
CAD drawing as feature classes in ArcMap, all points are represented in
one layer, all lines are represented in another layer, and all polygons are
represented in a third layer. Therefore, you’ll likely add several ArcMap
layers from the same CAD drawing file and adjust what features display
in those layers.

The CadFeatureLayer implements ICadDrawingLayers and
ICADTransformations. Also, with CadFeatureLayer you can QI to most
of the interfaces on FeatureLayer. Thus, you can perform the same
operations on CAD feature layers as you can on feature layers.

The following code loops through all the drawing layers. If the drawing
layer’s name is BLDGS, then the layer is made visible in the CadFeature-
Layer; otherwise, the drawing layer is made invisible. You can do this if,
for example, you only want buildings in the polygon CadFeatureLayer
for that CAD drawing.

Sub SetVisibleLayers()

  Dim pMxDoc As IMxDocument, pMap As IMap

  Dim pCadDrawLyrs As ICadDrawingLayers, i As Integer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pCadDrawLyrs = pMap.Layer(0)

  For i = 0 To pCadDrawLyrs.DrawingLayerCount - 1

    If pCadDrawLyrs.DrawingLayerName(i) = "BLDGS" Then

      pCadDrawLyrs.DrawingLayerVisible(i) = True

    Else

      pCadDrawLyrs.DrawingLayerVisible(i) = False

    End If

  Next

  pMxDoc.ActiveView.PartialRefresh esriViewGeography, Nothing, _

   Nothing

End Sub

CADFEATURELAYER COCLASS



Chapter 4 • Composing maps • 363

A
rc

M
ap

In a CadAnnotationLayer, CAD data is treated as annotation features. All
the annotation entities in the CAD drawing file will be included in one
CadAnnotationLayer.

Since the CadAnnotationLayer coclass implements ICadDrawings, you
are able to specify what layers from the CAD drawing file are visible in
the CadAnnotationLayer. Therefore, you are able to control which an-
notation entities from the drawing are actually displayed in the layer in
ArcMap.

The CadAnnotationLayer coclass also implements all of the interfaces
that are found on the CoverageAnnotationLayer coclass. Thus you can
perform the same operations on CAD annotation layers as you can on
coverage annotation layers.

CADANNOTATIONLAYER COCLASS

IGeoDataset
ILayer Layer

Cad-
Annotation-

Layer

IAttributeTable
IBarrierProperties

IBarrierProperties2
ICadDrawingLayers

ICadTransformations
ICoverageAnnotation-

Layer
ICoverageAnnotation-

Layer2
IDataLayer

IDataLayer2
IFeatureLayer

IFind
ILayerFields

ILayerInfo
ITableFields

You would use a CadAnnotationLayer
if you want to change the symbology of

the annotation or have more control over
which annotation entities get displayed in

the ArcMap layer.



364 • Exploring ArcObjects • Volume 1

GRAPHICSLAYER ABSTRACT CLASS

Graphics layer objects manage the graphics associated with a map—
graphic elements that were added in data view.

If you want more control over when graphics in a data frame draw in
relation to other layers, or you want to draw graphics only when a
particular layer is visible, you can create annotation. Annotation can be
graphic elements but not frame elements.

When you add graphics to a data frame, you can choose which annota-
tion target they’re added to. By default, the annotation target is your
map, so your graphics will be stored in the map and will always be
drawn. Alternatively, you can create an annotation group and make that
the target to which graphics will be added.

Each annotation group is a graphics layer. Annotation groups are useful
for organizing a large number of graphics because they can be turned
on and off individually.

If you want to use annotation on different maps, store it in a
geodatabase as an annotation feature class and make that the target for
graphics you add. Annotation feature classes that you create appear in
your map as annotation layers (FDOGraphicLayer objects) in the table
of contents.

All graphics layers implement IGraphicsLayer, IGraphicsContainer, and
ISelectionEvents.

 IGraphicsLayer : IUnknown Provides access to members that control the Graphics
Layer.

AssociatedLayer: ILayer Layer that is associated with this graphics layer.
UseAssociatedLayerVisibility: Boolean Indicates if the layer that is associated with this graphics layer

controls the visibility

Activate (in containerScreen:
IScreenDisplay)

Prepare to display graphic on screen.

Deactivate ActiveView that graphics are displayed on is no longer visible.

A graphics layer can be associated with another layer in the map; when
that other layer changes visibility, the graphics layer can change visibility
also. The IGraphicsLayer interface manages this.

The AssociatedLayer property specifies which layer the graphics layer is
associated with—for example, this can be Nothing.

The UseAssociatedLayerVisibility property indicates if the graphics layer
should use the same visibility setting as the associated layer.

The IGraphicsLayer interface also has methods to activate and deacti-
vate the graphics layer. When a graphics layer is active, it is the current
annotation target.

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

Graphics-
Layer

IBarrierProperties
IBarrierProperties2
IConnectionPoint-

Container
IGraphicsContainer

IGraphics-
ContainerSelect
IGraphicsLayer

IOverflow-
GraphicsContainer

ISelectionEvents

Graphics layers manage the graphics
associated with a map.



Chapter 4 • Composing maps • 365

A
rc

M
ap

 IGraphicsContainer : IUnknown Provides access to members that control the Graphics
Container.

AddElement (in Element: IElement, in
zorder: Long)

Add a new graphic element to the layer.

AddElements (in Elements:
IElementCollection, in zorder: Long)

Add new graphic elements to the layer.

BringForward (in Elements:
IEnumElement)

Move the specified elements one step closer to the top of the stack
of elements.

BringToFront (in Elements:
IEnumElement)

Make the specified elements draw in front of all other elements.

DeleteAllElements Delete all the elements.
DeleteElement (in Element: IElement) Delete the given element.
FindFrame (in frameObject: Variant) :

IFrameElement
Find the frame that contains the specified object.

GetElementOrder (in Elements:
IEnumElement) : Variant

Private order object.  Used to undo ordering operations.

LocateElements (in Point: IPoint, in
Tolerance: Double) : IEnumElement

Returns the elements at the given coordinate.

LocateElementsByEnvelope (in
Envelope: IEnvelope) : IEnumElement

Returns the elements that intersect with the given envelope.

MoveElementFromGroup (in Group:
IGroupElement, in Element: IElement,
in zorder: Long)

Move the element from the group to the container.

MoveElementToGroup (in Element:
IElement, in Group: IGroupElement)

Move the element from the container to the group.

Next: IElement Returns the next graphic in the container.
PutElementOrder (in order: Variant) Private order object.  Used to undo ordering operations.
Reset Reset internal cursor so that Next returns the first element.
SendBackward (in Elements:

IEnumElement)
Move the specified elements one step closer to the bottom of the

stack of elements.
SendToBack (in Elements:

IEnumElement)
Make the specified elements draw behind all other elements.

UpdateElement (in Element: IElement) The graphic element's properties have changed.

A graphics layer is essentially a graphics container. The IGraphics-
Container interface manages the elements in the graphics container. Use
this interface to access and manipulate existing graphic elements or to add
new ones.

 ISelectionEvents : IUnknown Provides access to events that occur when the selection
changes.

SelectionChanged Fired when the selection changes.

The ISelectionEvents interface has one event, SelectionChanged, which
occurs when the selection in the graphics layer changes.

The following code reports when the selection in the graphics layer of the
map changes. The StartListening macro is used to initialize the events
variable, pSelEvents.

Dim WithEvents pSelEvents As CompositeGraphicsLayer

Sub StartListening()

  Dim pMxDoc As IMxDocument, pMap As IMap

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pSelEvents = pMap.BasicGraphicsLayer

End Sub

Private Sub pSelEvents_SelectionChanged()

  MsgBox "Selection has changed."

End Sub

GRAPHICSLAYER ABSTRACT CLASS

Note that the methods that add elements to
the graphics container do not clone the ele-

ments. If the element that you are adding to a
graphics container was retrieved from another
graphics container, you should make sure that

your code clones the element before you add it
to the destination graphics container.



366 • Exploring ArcObjects • Volume 1

COMPOSITEGRAPHICSLAYER COCLASS

The graphic elements in a Map are organized and stored in
graphics layers.

By default, graphics are stored in the basic graphics layer (IMap::-
BasicGraphicsLayer property). For example, when you label features or
use the graphics tools, these elements are added to the basic graphics
layer by default. The basic graphics layer has a graphics container to
manage the graphic elements in that layer. If you QI from the Map co-
class to IGraphicsContainer, you get the same graphics container as the
one on the basic graphics layer.

The basic graphics layer is also a composite graphics layer, so it can
manage other graphics layers. The graphics layers that the Composite-
GraphicsLayer manages are referred to as annotation groups or annota-
tion target layers. The IMap::ActiveGraphicsLayer property specifies
which graphics layer is currently active. By default, the basic graphics
layer is the active layer, but any annotation group, or an FDOGraphics-
Layer, can be set as the active graphics layer.

 ICompositeGraphicsLayer :
 IGraphicsLayer

Provides access to members that control a collection of
graphics layers that behave like single layer.

AddLayer (in LayerName: String, in
FeatureLayer: IFeatureLayer) :
IGraphicsLayer

Adds a layer to the composite graphics layer.

DeleteLayer (in LayerName: String) Removes a layer from the composite graphics layer.
FindLayer (in LayerName: String) :

IGraphicsLayer
Finds a layer in the composite graphics layer.

The ICompositeGraphicsLayer interface provides methods for creating,
finding, and deleting graphics layers. When you add a new graphics
layer to the CompositeGraphicsLayer, you can specify what feature layer
this new graphics layer is associated with.

From the ArcMap user interface, click the option to Convert Labels to
Annotation from the feature layer context menu. Choose the Map as the
annotation storage option. A new graphics layer is added to the
CompositeGraphicsLayer and is associated with that feature layer. If you
choose the New Annotation Target option from the Drawing menu on
the Draw toolbar and choose to save annotation in the map, a new
graphics layer is added to the CompositeGraphicsLayer, but it is not
associated with any layer in the map.

 ICompositeLayer : IUnknown Provides access to members that work with a collection of
layers that behaves like a single layer.

Count: Long Number of layers in the collection.
Layer (in Index: Long) : ILayer Layer in the collection at the specified index.

The CompositeGraphicsLayer and its graphics layers (annotation groups)
are not treated as other types of layers in that none of these layers can be
accessed with the IMap::Layer or IMap::Layers properties. In addition, they
are not included in the IMap::LayerCount, and they are not shown in the
table of contents.

Graphics-
Layer

IBarrierProperties
IBarrierProperties2
IConnectionPoint-

Container
IGraphicsContainer

IGraphics-
ContainerSelect
IGraphicsLayer

IOverflow-
GraphicsContainer

ISelectionEvents

Composite-
Graphics-

Layer

ICompositeGraphics-
Layer

ICompositeLayer
IGeoDataset-

SchemaEdit
IGraphicsLayerScale

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

A CompositeGraphicsLayer object is a
graphics layer that can manage other

graphics layers. The basic graphics con-
tainer of a map is a composite graphics

layer.

The Active Annotation Target menu shows which
graphics layer is currently active.



Chapter 4 • Composing maps • 367

A
rc

M
ap

Use the IMap::BasicGraphicsLayer property to get access to the Composite-
GraphicsLayer. Then, you can QI to the ICompositeLayer interface to get
access to the individual layers and get a count of the graphics layers.

The basic graphics layer itself is not included in the count and cannot be
accessed by the Layer property on ICompositeLayer; the reference you
have to the CompositeGraphicsLayer is really the basic graphics layer
itself.

The following code loops through all the layers in the basic graphics
layer and reports whether the graphics layers are associated with a
feature layer:

Sub CheckAssociation()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pBasicGraLyr As ICompositeLayer

  Dim pGraLyr As IGraphicsLayer

  Dim pAssocLayer As ILayer

  Dim i As Integer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pBasicGraLyr = pMap.BasicGraphicsLayer

  For i = 0 To pBasicGraLyr.Count - 1

    Set pGraLyr = pBasicGraLyr.Layer(i)

    Set pAssocLayer = pGraLyr.AssociatedLayer

    If Not pAssocLayer Is Nothing Then

      MsgBox "Associated feature layer: " & pAssocLayer.Name

    Else

      MsgBox "Not associated with a feature layer."

    End If

  Next

End Sub

The IGeoDatasetSchemaEdit interface allows you to change the spatial
reference associated with the graphics layer. For more information on
this interface, refer to Volume 2, Chapter 8, ‘Accessing the geodatabase’.

The CompositeGraphicsLayer coclass also implements IGraphicsContainer-
Select. If you QI from the CompositeGraphicsLayer coclass to
IGraphicsContainerSelect, you get the same object as you would with a QI
from the Map coclass to IGraphicsContainerSelect.

 IGraphicsLayerScale : IUnknown Provides access to members that control the Graphics
Layer Scale.

ReferenceScale: Double the reference scale of the layer as a representative fraction
Units: esriUnits the units the reference scale is in.

The IGraphicsLayerScale has a ReferenceScale property that specifies the
map scale to be used as a reference for the annotation size. The anno-
tation will scale as you zoom the map. For example, if the reference

COMPOSITEGRAPHICSLAYER COCLASS



368 • Exploring ArcObjects • Volume 1

scale is set to 1000 (1:1000), the same text will display twice as large at
the mapscale 1:500 and, similarly, twice as small at 1:2000.

The Units property on this interface is not implemented.

 IOverflowGraphicsContainer : IUnknown Provides access to members that control the Overflow
Graphics Container.

OverflowElements: IElementCollection the element collection.

AddOverflowElement (pElement:
IElement)

Add an element to the collection.

DeleteAllOverflowElements Delete all the element in the collection.
DeleteOverflowElement (pElement:

IElement)
Delete an element in the collection.

When you convert labels to annotation, the labels that overlap other
labels can be placed in the overflow labels window. This enables you to
decide whether you want them to appear on the map and, if so, place
them manually on the map at the desired location. An overflow graphics
container manages the collection of elements displayed in the overflow
labels window.

The IOverFlowGraphicsContainer interface has properties and methods
that control the overflow graphics container. There are methods to add
an overflow label to the element collection, delete an overflow label
from the element collection, or delete all the elements.

The Annotation panel of the Data Frame Properties dialog box lists all of
the graphics layers available to the map. The following table shows what
properties and methods are used by the controls on this property sheet.

Control Property or Method
Group Name column ICompositeLayer::Layer(i)::Name
Feature Layer Name column IGraphicsLayer::AssociatedLayer
Reference Scale column IGraphicsLayerScale::ReferenceScale
ToggleVisibilty button ICompositeLayer::Layer(i)::Visible
Toggle Association button IGraphicsLayer::UseAssociatedLayer
Delete Group button ICompositeGraphicsLayer::DeleteLayer
Add Group button ICompositeGraphicsLayer::AddLayer
Change Coord Sys button IGeoDatasetSchemeEdit::AlterSpatialReference

The following code creates a new annotation group in the map and
moves the selected graphics from the default graphics layer to the new
annotation group. To accomplish this, a new graphics layer is added to
the CompositeGrapicsLayer of the map.

Public Sub CreateAnnoGroup()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pBasicGraLyr As ICompositeGraphicsLayer

  Dim pBasicGraCont As IGraphicsContainer

  Dim pBasicGraContSel As IGraphicsContainerSelect

  Dim pEnumElement As IEnumElement

  Dim pNewAnnoGroup As IGraphicsLayer

  Dim pNewGraCont As IGraphicsContainer

The Annotation panel of the Data Frame
Properties dialog box

COMPOSITEGRAPHICSLAYER COCLASS



Chapter 4 • Composing maps • 369

A
rc

M
ap

  Dim pElement As IElement

  Dim pClone As IClone

  Dim pElemClone As IClone

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pBasicGraLyr = pMap.BasicGraphicsLayer

  Set pBasicGraCont = pBasicGraLyr

  Set pBasicGraContSel = pBasicGraLyr

  ' Create the new graphics layer group and associate it

  ' with the first feature layer in the map

  Set pNewAnnoGroup = pBasicGraLyr.AddLayer("New Anno",  pMap.Layer(0))

  Set pNewGraCont = pNewAnnoGroup

  ' Get the selected elements from the default graphics layer

  Set pEnumElement = pBasicGraContSel.SelectedElements

  Set pElement = pEnumElement.Next

  ' Clone each selected graphic from the default graphics layer,

  ' add the clone to the new graphics layer, and delete original

  ' from the default graphcis layer

  While Not pElement Is Nothing

    Set pClone = pElement

    Set pElemClone = pClone.Clone

    pNewGraCont.AddElement pElemClone, 0

    pBasicGraCont.DeleteElement pElement

    Set pElement = pEnumElement.Next

  Wend

  pMxDoc.ActivatedView.PartialRefresh esriViewGraphics, Nothing, Nothing

End Sub

COMPOSITEGRAPHICSLAYER COCLASS



370 • Exploring ArcObjects • Volume 1

FDOGRAPHICSLAYER COCLASS

FDOGraphicsLayer objects are different from other graphics layers in
that they are listed in the table of contents. However, they are also listed
in the Active Annotation Target menu. To add elements to an FDO-
GraphicsLayer, you must start editing the layer and set it as the active
annotation target.

 IFDOGraphicsLayer : IUnknown Provides access to members that control the FDO graphics
layer.

BeginAddElements Begins a batch process for adding elements to a graphics layer.
DoAddElements (in pElements:

IElementCollection, in zorder: Long)
Adds a batch of elements to a graphics layer.

DoAddFeature (in pFeature: IFeature, in
pElement: IElement, in zorder: Long)

Adds a feature and its corresponding element to a graphics layer.

EndAddElements Ends the batch process for adding elements to a graphics layer.
SetupAttributeConversion (in

numAttributes: Long, in inputCols:
Long, in outputCols: Long)

Sets up attribute conversion parameters for batch conversion.

The IFDOGraphicsLayer interface indicates that the graphics layer is an
FDOGraphicsLayer. If you have a reference to a graphics layer, you can
try to QI for IFDOGraphicsLayer to check if you have an FDOGraphics-
Layer object. This interface also has methods for batch loading annota-
tion. These methods provide an optimized way to convert labels to
annotation.

 IFDOAttributeConversion : IUnknown Provides access to members that control the  attribute
conversion to a FDO graphics layer.

SetupAttributeConversion2 (in
numAttributes: Long, in inputCols:
Variant, in outputCols: Variant)

Sets up attribute conversion parameters for batch conversion

The SetupAttributeConversion method on IFDOGraphicsLayer will not
work in Visual Basic; use the SetupAttributeConversion2 method on
IFDOAttributeConversion instead.

The StatesAnno layer is an FDOGraphicsLayer. This layer consists of the
state labels and the red polygon, and shows up in both the table of
contents and the active annotation target list.

IGeoDataset
ILayer

IPersist
IPersistStream

Layer

Graphics-
Layer

IBarrierProperties
IBarrierProperties2
IConnectionPoint-

Container
IGraphicsContainer

IGraphics-
ContainerSelect
IGraphicsLayer

IOverflow-
GraphicsContainer

ISelectionEvents

FDO-
Graphics-

Layer

IAttributeTable
IClass

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayFilterManager
IDisplayRelationship-

Class
IDisplayTable

IFDOAttribute-
Conversion

IFDOGraphicsLayer
IFeatureLayer

IFeatureLayer2
IFeatureLayerDefinition

IFeatureSelection
IFind

IHotlinkContainer
IHotlinkMacro

IHyperlinkContainer
IIdentify

IIdentify2
ILayer2

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

IMapLevel
IObjectClassEvents

IObjectClassSchema-
Events

IPropertySupport
IRelationshipClass-

Collection
IRelationshipClass-

CollectionEdit
ITable

ITableFields
ITableSelection

Annotation in a geodatabase is stored in
special feature classes called annotation

classes. An FDOGraphicsLayer (Feature
Data Object graphics layer) is based on
an annotation feature class stored in a
geodatabase. Use an FDOGraphics-

Layer if you want to use this annotation
on different maps.



Chapter 4 • Composing maps • 371

A
rc

M
ap

ArcMap map surround objects

A scale bar
graphically
shows a
map's
scale

Patches are individual color
boxes in a legend

*

ILinePatch

LinePatch

AlternatingScaleBar
DoubleAlternatingScaleBar

HollowScaleBar

IDoubleFillScaleBar DoubleFill-
ScaleBar

IGraphicsComposite
IPropertySupport

IScalebar
IScaleMarks

ITransformEvents

Scalebar

IMapInset

MapInset

IScaleText
IPropertySupport

ITransformEvents ScaleText

Map surrounds are associated with a data
frame and provide a cartographic context
for the geographic data and extent

MapTitle

IActiveViewEvents
IGraphicsComposite

ILegend
IPropertySupport

IReadingDirection

Legend

Scale line scale bars are repre-
sented with a single line
symbol

Stepped-
ScaleLine

IScaleLine

ScaleLine

Double-fill scale bars are symbolized
using two fill symbols

IAreaPatch

AreaPatch

IOverview

Overview

Legend items are the
individual parts of a
legend

IGraphics-
Composite

IMarkerNorthArrow
IPropertySupport

ITransformEvents

Marker-
NorthArrow

INorthArrow

NorthArrow

An overview displays the
full map extent of a
dataframe, together with a
box graphic showing the
current map extent

Marker North arrows use a
character marker symbol

The North arrow object is a
base class for all north arrow
types

A scale text map
surround is a text
element that
describes the
map's scale

A map title is a text element describing
a map

A map inset is a magnified view of a map

A legend is a list of
symbols appearing

on a map

ILegendClassFormat
IPersist

IPersistStream
LegendClass-

Format

Legend class format objects
control each legend item's
presentation

IHorizontalBar-
LegendItem

IVerticalLegendItem

Horizontal-
BarLegend-

Item

IHorizontalLegendItem Horizontal-
LegendItem

IHorizontalLegendItem
INestedLegendItem Nested-

LegendItem

IVerticalLegendItem Vertical-
LegendItem

Single-
Division-
ScaleBar

ISingleFillScaleBar SingleFill-
ScaleBar

Single-fill scale bars are
symbolized using one fill

symbol

IClone
ILegendFormat
ILegendLayout

IPersist
IPersistStream

Legend-
Format

IClone
IPatch

IPersist
IPersistStream

Patch

IBoundsProperties
IClone

IConnectionPointContainer
IMapSurround

IMapSurroundEvents
IPersist

IPersistStream

MapSurround

IClone
ILegendItem

ILegendItem2
IPersist

IPersistStream

LegendItem

A legend format
manages a
legend's default
properties



372 • Exploring ArcObjects • Volume 1

MAPSURROUND ABSTRACT CLASS

Map surrounds are specific types of elements that are associated with a
Map object. A good example of a map surround and its capabilities is
the North arrow. North arrows are built as map surrounds so that they
can respond to map rotation—when a map is rotated, its North arrow is
rotated the same amount.

In ArcMap, map surrounds are always contained by a MapSurround-
Frame object—a type of element. MapSurroundFrames are similar to
MapFrames, which house a Map object, in that the PageLayout object
manages both of them. In fact, the PageLayout manages all frame ob-
jects. Each MapSurroundFrame is also related to a MapFrame; if a Map-
Frame is deleted, all of its MapSurroundFrames are deleted as well. Map
surrounds are placed on the layout, not in a Map’s graphics layer.

Map surrounds can be moved anywhere on the layout, not just within
the confines of a map frame. Because map surrounds are directly asso-
ciated with a Map, the Map has a shortcut to all the map surrounds
associated with it, IMap::MapSurrounds. This member, along with
IMap::MapSurroundCount, allows you to loop through all of the avail-
able map surrounds for a given Map object.

 IMapSurround : IUnknown Provides access to members that control the map surround.

Icon: Long Icon used to represent the map surround.
Map: IMap The parent map.
Name: String Name of the map surround.

DelayEvents (in delay: Boolean) Used to batch operations together to minimize notifications.
Draw (in Display: IDisplay, in

trackCancel: ITrackCancel, in Bounds:
IEnvelope)

Draws the map surround into the specified display bounds.

FitToBounds (in Display: IDisplay, in
Bounds: IEnvelope, out Changed:
Boolean)

Adjusts the map surround to fit the bounds.  The changed argument
indicates whether the size of the map surround was changed.

QueryBounds (in Display: IDisplay, in
oldBounds: IEnvelope, newBounds:
IEnvelope)

Returns the bounds of the map surround.

Refresh Makes sure the latest updates are refected the next time the Map
Surround is drawn.

All map surrounds implement the IMapSurround interface. This interface
provides all the common functionality between all map surrounds. Use
this interface to access the name of a particular map surround and the
associated map. This interface also has methods for determining a
surround’s size and changing it.

 IMapSurroundEvents : IUnknown Provides access to events that occur when the state of the
map surrounds changes.

AfterDraw (in Display: IDisplay) Fired after drawing completes.
BeforeDraw (in Display: IDisplay) Fired before drawing starts.
ContentsChanged Fired when the contents of the map surround changes.

IMapSurroundsEvents is the outbound interface for all map surround
objects. This interface allows you to draw a map surround in a window.
The events let the window know when to redraw.

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

Map surrounds are a special class of
elements that are contained by a map
surround frame and associated with a

Map.

IMap::MapSurrounds

*

*

IMapSurroundFrame::
MapFrame

PageLayout

MapSurround-
Frame

MapFrame

Marker-
NorthArrow

Map

This diagram shows the relationship between a
North arrow map surround, its map surround
frame, and its related Map.  The PageLayout

ultimately manages the frame objects but, when
a Map is deleted, its related map surrounds and

their frames are deleted as well.



Chapter 4 • Composing maps • 373

A
rc

M
ap

LEGEND COCLASS

The Legend coclass is one of the most complicated map surround ob-
jects because it relies on several other objects to create a good-looking
legend.

Legends are associated with the renderers that belong to each layer in a
map. Each layer in a map has a separate renderer. Each renderer has
one or more LegendGroup objects; the number of legend groups de-
pends on the renderer’s implementation. Each LegendGroup, in turn, has
one or more LegendClass objects. A LegendClass object represents an
individual classification and has its own symbol and label—a descrip-
tion and format are optional.

The diagram to the left illustrates this hierarchy. This legend has two
map layers in it: USA Rivers and USA States. The symbology for the
States layer is based on multiple attributes: SUB_REGION and POP1999.
For simplicity, only the Pacific region has been added to the legend.
Because the USA States layer is symbolizing on multiple items, there are
two legend groups. The first legend group has three legend classes, and
the second legend group has one legend class. The USA Rivers layer
has one legend group and one legend class. For more details on legend
groups and classes, see Chapter 5, ‘Displaying graphics’.

Legends have a similar hierarchy. Each Legend object has one or more
LegendItem objects. There is one legend item per map layer involved in
the legend. Legend items control the presentation of the layers in a
legend. There are several types of legend items, including Horizontal-
LegendItem, HorizontalBarLegendItem, VerticalLegendItem, and Nested-
LegendItem.

The symbology and classification scheme in a legend is almost entirely
based on the map’s renderers. For example, to change the color of an
element in a legend, you must change the element’s corresponding
legend class. Legends automatically update in response to changes
made in their related renderers. You can also customize the style of a
legend patch. For example, you change regular rectangle area patches to
natural area patches.

Legends have many more properties, including the gap size between the
various parts of the legend, the title position, and default patches. Each
Legend object automatically instantiates a LegendFormat object that man-
ages all of these additional properties. Most legend properties have a
default, making it very easy to create a new legend that looks good.
When you change the properties of a legend after you have added it to
the layout, you must call ILegend::Refresh to have changes reflected.

IActiveViewEvents
IGraphicsComposite

ILegend
IPropertySupport

IReadingDirection

Legend

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

A legend is a list of symbols appearing
on the map; legends include a sample of

each symbol and text describing what
feature each symbol represents.

This image maps ArcMap layer renderers’ legend
groups and classes to a typical legend.

This image labels a legend’s items. There is one
legend item per map layer, just as there is one

legend group per map layer (renderer).

The bottom area patch’s style has been changed
from a rectangular area patch to a natural area

patch.



374 • Exploring ArcObjects • Volume 1

 ILegend : IMapSurround Provides access to members that control a legend.

AutoAdd: Boolean Indicates if a new item should be added when a new layer is added
to the map.

AutoReorder: Boolean Indicates if the legend items should be kept in the same order as the
layers.

AutoVisibility: Boolean Indictes if items should be shown only when associated layers are
visible.

FlowRight: Boolean Reserved for future use.
Format: ILegendFormat The formatting options for the legend (can be stored in the style

gallery).
Item (in Index: Long) : ILegendItem The specified item from the legend.
ItemCount: Long Number of items in the legend.
Title: String Title.

AddItem (in Item: ILegendItem) Adds a new item to the legend (to the end of the  list).
ClearItems Removes all items from the legend.
InsertItem (in Index: Long, in Item:

ILegendItem)
Inserts a new item into the legend (at the location specified by index).

RemoveItem (in Index: Long) Removes the specified item from the legend.

The Legend’s primary interface is ILegend. Use this interface to modify a
legend and access its subparts. For example, this interface provides
access to the legend’s items and its legend format object. ILegend also
manages a few of the legend properties such as the title. Again, when
changing the properties of an existing legend, you must call
ILegend::Refresh to have the changes reflected in the layout.

 IReadingDirection : IUnknown Provides access to members that control the reading
direction.

RightToLeft: Boolean Reading direction.

The IReadingDirection interface has one property that controls whether
the legend items are aligned along the left or right side. By default, this
property is set to False.

The legend on the left has RightToLeft set to
False, and the legend on the right has

RightToLeft set to True.

LEGEND COCLASS



Chapter 4 • Composing maps • 375

A
rc

M
ap

LEGEND ITEM COCLASSES

Legend map surrounds maintain a collection of associated layers. Each
layer is represented by a LegendItem. LegendItems are responsible for
formatting the legend information for a single layer. The Legend relies
heavily on its associated LegendItems to lay out the legend. When the
legend is refreshed, it creates a set of graphic elements to use for ren-
dering itself.

The legend items do most of the work—each one pulls the legend
information from its associated layer and formats it into a positioned set
of graphic elements. The Legend simply positions the title and legend
item graphics relative to one another.

All legend items have a LegendClassFormat object that optionally con-
tains additional formatting information. For example, this object can
control the text formatting, patch style, and patch size. In most cases,
however, these properties are not set, and the Legend uses its Legend-
Format object instead.

The Legend’s LegendFormat object manages defaults for these properties.
For example, legend patches are usually managed by the LegendFormat
object and not by a LegendClassFormat object.

There are currently four types of legend items: HorizontalLegendItem,
VerticalLegendItem, HorizontalBarLegendItem, and NestedLegendItem.

 ILegendItem : IUnknown Provides access to members that control how a layer
appears in a legend.  Can be stored in a style.

CanDisplay (in Layer: ILayer) : Boolean Indicates if the style is compatible with the specified layer.
Columns: Integer Number of columns in the legend item.
Graphics: IEnumElement List of graphics that represent the legend item.  Must call

CreateGraphics first.
GroupIndex: Long Zero-based index of the legend group shown by this item.  Use -1 to

show all legend groups using this item.
HeadingSymbol: ITextSymbol Text symbol used to draw the heading.
Height: Double Height of the item in points. Must call CreateGraphics first.
KeepTogether: Boolean Indicates if classes must appear in a single column or whether they

can be split across multiple columns.
Layer: ILayer Associated layer.
LayerNameSymbol: ITextSymbol Text symbol used to draw the layer name.
LegendClassFormat:

ILegendClassFormat
Default formatting information for the legend classes.  Renderer may

override.
Name: String Name of the style.
NewColumn: Boolean Indicates if the item starts a new column in the legend.
ShowDescriptions: Boolean Indicates if descriptions are visible.
ShowHeading: Boolean Indicates if heading is visibile.
ShowLabels: Boolean Indicates if labels are visible.
ShowLayerName: Boolean Indicates if layer name is visibile.
Width: Double Width of the item in points. Must call CreateGraphics first.

CreateGraphics (in Display: IDisplay, in
LegendFormat: ILegendFormat)

Rebuilds the list of graphics.  Call whenever the associated layer
changes.

All legend items implement the ILegendItem interface. The interface
controls all of the properties a legend item has—the layer it is associated
with; the number of columns it should span; whether it should be dis-
played in a new column; and whether the label, description, heading,
and layer name should be displayed. This interface also provides access
to the legend items LegendClassFormat object.

IVerticalLegendItem Vertical-
LegendItem

IHorizontalBar-
LegendItem

IVertical-
LegendItem

Horizontal-
BarLegend-

Item

IHorizontal-
LegendItem Horizontal-

LegendItem

IHorizontal-
LegendItem

INestedLegendItem
Nested-

LegendItem

IClone
ILegendItem

ILegendItem2
IPersist

IPersistStream

LegendItem

Legend items are the individual items in
a legend. For example, a simple map

with three layers typically has three
legend items in its legend.



376 • Exploring ArcObjects • Volume 1

Enumeration
esriLegendItemArrangement

Legend item arrangement options for the order of patches,
labels, and descriptions.

0 - esriPatchLabelDescription Patch followed by label followed by description.
1 - esriPatchDescriptionLabel Patch followed by description followed by label.
2 - esriLabelPatchDescription Label followed by patch followed by description.
3 - esriLabelDescriptionPatch Label followed by description followed by patch.
4 - esriDescriptionPatchLabel Description followed by patch followed by label.
5 - esriDescriptionLabelPatch Description followed by label followed by patch.

All legend items use the esriLegendItemArrangement enumeration to
specify the position of the label, patch, and description. The default is
esriPatchLabelDescription, which translates to the patch on the far left,
label to the right of the patch, then the description, if available, on the
far right.

 IHorizontalLegendItem : IUnknown Provides access to members that work with legend item
arrangement.

Arrangement:
esriLegendItemArrangement

Legend item arrangement.

Horizontal legend items are the default and most commonly used class
of legend items. The image to the left shows an example.

 IHorizontalBarLegendItem : IUnknown Provides access to members that work with horizontal bar
legend items.

AngleAbove: Double Angle of text that appears above the bar.
AngleBelow: Double Angle of text that appears below the bar.

The IHorizontalBarLegendItem interface supports additional properties
for controlling the angle of the labels above and below the patch. The
default is to display the labels at a 45-degree angle. The image to the left
shows such an example.

 IVerticalLegendItem : IUnknown Provides access to members that work with legend item
arrangement.

Arrangement:
esriLegendItemArrangement

Legend item arrangement.

Vertical legend items have the patches on top of the legend item text.

 INestedLegendItem : IUnknown Provides access to members that work with nested legend
items.

AutoLayout: Boolean Indicates if text automatically sizes to fit the markers.
HorizontalAlignment:

tagesriTextHorizontalAlignment
Horizontal alignment of markers.

LabelEnds: Boolean Indicates if only the first and last markers are labeled.
LeaderOverhang: Double Distance that the leaders extend past the circles (points).
LeaderSymbol: ILineSymbol Symbol used to draw the leader lines.
OutlineSymbol: IFillSymbol Symbol used to draw outlines.
ShowOutlines: Boolean Indicates if only the marker outlines are drawn.

Nested legend items only work with graduated symbols. The image to
the left shows a legend with a default nested legend item. The INested-
LegendItem interface controls the many properties a nested legend item
has, including whether or not to label the ends, the leader symbol, and
the outline symbol.

Horizontal legend items in a legend

Horizontal bar legend items in a legend

Vertical legend items in a legend

Nested legend items in a legend

LEGEND ITEM COCLASSES



Chapter 4 • Composing maps • 377

A
rc

M
ap

LEGENDCLASSFORMAT AND LEGENDFORMAT COCLASSES

As mentioned earlier, each legend item has a LegendClass format object
that controls the format of the individual legend item, including the
symbols used for the label and description.

 ILegendClassFormat : IUnknown Provides access to members that control formatting
information for a legend class.

AreaPatch: IAreaPatch The area patch. (Optional.  If non-null, this overrides default area
patch specified by ILegend.LegendFormat.)

DescriptionSymbol: ITextSymbol Text symbol used to draw legend group descriptions.
LabelSymbol: ITextSymbol Text symbol used to draw the legend group labels.
LinePatch: ILinePatch The line patch. (Optional. If non-null, this overrides default line patch

specified by ILegend.LegendFormat.)
PatchHeight: Double Height of the patch in points.
PatchWidth: Double Width of the patch in points.

The renderer used to display the layer may also supply a default
LegendClassFormat so that the legend formatting information gets
stored with the layer (in a metadata-like fashion). By default, a layer’s
LegendClassFormat is set to Nothing. When a layer does not supply a
LegendClassFormat, the legend’s LegendFormat is used. The Legend-
ClassFormat properties are optional. If they are not set, the default
value from the LegendFormat object is used instead. This applies to
PatchWidth, PatchHeight, LinePatch, and AreaPatch. This makes it
easy to get all the patches in the legend to look the same even though
they are controlled by different legend items. It also makes it possible
to have different patch shapes for each layer if desired.

Each Legend has a LegendFormat object with which it works. The
LegendFormat object controls many of the properties of a legend, par-
ticularly the spacing between the different parts in a legend.

 ILegendFormat : IUnknown Provides access to members that control formatting
information for a legend.

DefaultAreaPatch: IAreaPatch Area patch.  Can be overridden by the LegendItem.
DefaultLinePatch: ILinePatch Line patch.  Can be overridden by the LegendItem.
DefaultPatchHeight: Double Patch height in points.  Can be overridden by the LegendItem.
DefaultPatchWidth: Double Patch width in points.  Can be overridden by the LegendItem.
GroupGap: Double Vertical distance in points between legend groups.
HeadingGap: Double Vertical distance in points between a heading and the legend graphics

that follow.
HorizontalItemGap: Double Horizontal distance in points between legend item columns. Used for

legends that have more than one column.
HorizontalPatchGap: Double Horizontal distance in points between a patch and the legend

graphics before and after.
LayerNameGap: Double Vertical distance in points between layer names and the legend

graphics that follow.
ShowTitle: Boolean Indicates if title is visibile.
TextGap: Double Horizontal distance in points between labels and descriptions.
TitleGap: Double Vertical distance in points between title and first legend item.
TitlePosition: esriRectanglePosition Legend title position.
TitleSymbol: ITextSymbol Text symbol used to draw the legend title.
VerticalItemGap: Double Vertical distance in points between legend items.
VerticalPatchGap: Double Vertical distance in points between patches.

Scale (in XScale: Double, in YScale:
Double)

Multiply all distances, gaps, and size property values on this interface
by the specified scale factors.

The ILegendFormat interface manages many legend properties, most
notably the spacing between the different legend parts. There are also
properties for default line and area patches, including their height and
width, that are used when a legend item does not provide its own for-
matting information.

IClone
ILegendFormat
ILegendLayout

IPersist
IPersistStream

Legend-
Format

The legend format controls the spacing
between the different parts in a legend.

Although LegendFormat  is creatable, creating
a new Legend object automatically creates a
new LegendFormat. Access to the Legend’s

LegendFormat object is through
ILegend::Format.

ILegendClassFormat
IPersist

IPersistStream
LegendClass-

Format

Legend class format objects control each
legend item's presentation.



378 • Exploring ArcObjects • Volume 1

AREAPATCH AND LINEPATCH COCLASSES

IAreaPatch

AreaPatch

ILinePatch

LinePatch

IClone
IPatch

IPersist
IPersistStream

Patch

The patches help describe the features in
each legend class.

Patches are the individual color boxes or lines associated with each
legend class. Both the LegendFormat and LegendFormatClass objects
manage area and line patches.

 IPatch : IUnknown Provides access to members that work with a legend patch.

Geometry: IGeometry Patch geometry.
Name: String Name of the patch.
PreserveAspectRatio: Boolean Indicates if aspect ratio of patch is preserved.

get_Geometry (in Bounds: IEnvelope) :
IGeometry

Patch geometry sized to fit the specified bounds.

Geometry and PreserveAspectRatio are two primary properties in a patch
area. The Geometry property specifies the shape of the patch. The
sample below shows one way to programmatically change a legend’s
area patches. The PreserveAspectRatio property controls how the geom-
etry scales when the legend expands.

The sample below changes the LegendFormat’s default area patch to a
shape similar to the selected element. To use, add a new polygon element
(it doesn’t matter what size) to the layout. Select the new element and then
select a legend. Make sure the legend has area patches in it. Run the
macro, and all the area patches in the specified legend item should adopt
the new style. The code works with the last legend item; modify the code
as necessary. Also, the color of the element has no bearing on the legend
since the color comes from the renderer. You can modify the sample to
also do line patches.
Public Sub CustomAreaPatch()
  Dim pMxDoc As IMxDocument
  Dim pGraphicsContainer As IGraphicsContainerSelect
  Dim pLegendSurround As IMapSurroundFrame
  Dim pLegend As ILegend
  Dim pLegendItem As ILegendItem
  Dim pPatch As IPatch
  Dim pElement As IElement
  Dim pLegendFormat As ILegendFormat

  Set pMxDoc = Application.Document
  Set pGraphicsContainer = pMxDoc.PageLayout
  Set pLegendSurround = pGraphicsContainer.SelectedElement(1)
  Set pLegend = pLegendSurround.MapSurround
  Set pLegendItem = pLegend.Item(pLegend.ItemCount - 1)
  Set pElement = pGraphicsContainer.SelectedElement(0)
  Set pPatch = New AreaPatch
  pPatch.Geometry = pElement.Geometry
  Set pLegendFormat = pLegend.Format
  pLegendFormat.DefaultAreaPatch = pPatch
  pLegend.Refresh
  pMxDoc.ActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing
End Sub

Patches also implement indicator interfaces so that the patch type for a
given object can easily be determined. Area patches implement
IAreaPatch, and line patches implement ILinePatch. These interfaces
have no members.



Chapter 4 • Composing maps • 379

A
rc

M
ap

MARKERNORTHARROW  AND MAPINSET COCLASSES

MarkerNorthArrows are character marker symbols typically coming from
the ESRI North font. However, any character from any font can be used
as a North arrow.

MarkerNorthArrows implement two additional interfaces: INorthArrow
and IMarkerNorthArrow.

 INorthArrow : IMapSurround Provides access to members that control the north arrow.

Angle: Double The counter-clockwise rotation of the north arrow in degrees.  This
value is calculated from the map.

CalibrationAngle: Double Calibration angle.  Rotation is modified by this angle.
Color: IColor Color used to draw the north arrow.
ReferenceLocation: IPoint The point on the map where north is calculated.
Size: Double Size of the north arrow in points (1/72 inch).

The INorthArrow interface provides a common interface for North arrow
properties, such as size, color, and reference location.

 IMarkerNorthArrow : IUnknown Provides access to members that control the Marker north
arrow.

MarkerSymbol: IMarkerSymbol Symbol used to draw the north arrow.  Use set to specify a marker
for custom north arrows.

IMarkerNorthArrow has one property, MarkerSymbol, that controls
which marker symbol the North arrow uses. By default, the marker
symbol belongs to the ESRI North font.

A MapInset map surround is another view of the current map extent. If
you pan or zoom in on the map the MapInset is related to, the MapInset
will mimic the change.

A map inset map surround is the surround found inside map inset data
windows.

 IMapInset : IMapSurround Provides access to members that control the inset map
surrounds.

Description: String Description reflecting the current settings of the MapInset.
IsLive: Boolean Indicates if the inset shows a live view of the underlying map.  False

means a snapshot of the underlying map is taken at the time the
flag is changed.

MapBounds: IEnvelope The relative position of the inset to the associated map (used when
the inset is live). The zoom amount is applied to this rectangle to
determine the visible bounds that is actually drawn.

UsingZoomScale: Boolean Indicates if ZoomScale or ZoomPercent is being used.  The one
specified last is being used.

VisibleBounds: IEnvelope The map extent shown by the inset (used when the inset is not live).
ZoomPercent: Double Zoom amount as a percentage.  100 means show the underlying

map at normal size.
ZoomScale: Double The zoom amount as an absolute Scale (i.e., 1:20000).

CalculateVisibleBounds Calculates the visible bounds by applying the zoom or scale
parameter to MapBounds (used when snapshot is false).

For more information on map inset windows (magnification windows),
see ‘ArcMap data window objects’ earlier in this chapter.

INorthArrow

NorthArrow

IMarkerNorthArrow Marker-
NorthArrow

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

Marker North arrows are typical North
arrows added to a layout.

IMapInset

MapInset

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

A map inset is a miniature map that
typically shows a magnified view of an

actual map.



380 • Exploring ArcObjects • Volume 1

An overview map surround is the surround found in overview data
windows.

 IOverview : IMapSurround Provides access to members that control the overview.

AoiFillSymbol: IFillSymbol Fill symbol used to display the area of interest.
OverlayGridLabelSymbol: ITextSymbol Text symbol used to label overlay grid cells with the layer's display

field.
OverlayGridLayer: ILayer Overlay grid layer for the overview.

SetOverlayGridCell (in gridLayerFid:
Long)

Sets the extent of the associated map to the specified overlay grid
cell.

UpdateDisplay (in windowWidth: Long,
in windowHeight: Long)

Updates the display of the overview based upon the associated map's
current settings.

For more information on overview windows, see ‘ArcMap data window
objects’ earlier in this chapter.

The map title object is a map surround that holds a piece of text you
can use to label a map. This may not be the title of the whole layout,
but rather a subtitle for a specific map in the layout.

MapTitle

IOverview

Overview

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

An Overview map surround is a map
showing the full extent of the map to

which it is related.

A map title holds text to label a map.

OVERVIEW AND MAPTITLE COCLASSES



Chapter 4 • Composing maps • 381

A
rc

M
ap

SCALEBAR COCLASS

There are many types of scale bar map surrounds, including several
types of scale lines, single-fill scale bars, and double-fill scale bars. All
scale bars implement IScaleBar and IScaleMarks.

 IScaleBar : IMapSurround Provides access to members that control the scalebar map
surrounds.

BarColor: IColor Color used to draw the bar.
BarHeight: Double Height of the bar in points (1/72 inch).
Division: Double Number of units in one major division.
Divisions: Integer Total number of divisions (including those before zero).
DivisionsBeforeZero: Integer Number of divisions to the left of zero.
LabelFrequency:

tagesriScaleBarFrequency
The label style indicating which marks are labeled.

LabelGap: Double Vertical gap between the bar and the labels in points (1/72 inch).
LabelPosition: tagesriVertPosEnum Vertical positioning of the mark labels.
LabelSymbol: ITextSymbol Symbol used to draw the labels.
NumberFormat: INumberFormat Number format.
ResizeHint: tagesriScaleBarResizeHint Indicates what happens when scale bar is resized.
Subdivisions: Integer Number of subdivisions per major division.
UnitLabel: String The unit label.
UnitLabelGap: Double Gap between the scale bar and the unit label in points (1/72 inch).
UnitLabelPosition: tagesriScaleBarPos Vertical positioning of the unit label.
UnitLabelSymbol: ITextSymbol Unit label symbol.
Units: esriUnits The units reported.

UseMapSettings Sets division and units based on map.

The IScaleBar interface manages most of the properties a scale bar has,
including bar color, bar height, division, and label frequency.

 IScaleMarks : IUnknown Provides access to members that control the scale bar mark
properties.

DivisionMarkHeight: Double Height of division marks in points (1/72 inch).  Use esriAutoScaleBar
to automatically calculate.

DivisionMarkSymbol: ILineSymbol Symbol used to draw the division marks.
MarkFrequency:

tagesriScaleBarFrequency
Mark frequency.

MarkPosition: tagesriVertPosEnum Vertical positioning of the marks relative to the bar.
SubdivisionMarkHeight: Double Height of subdivision marks in points (1/72 inch).  Use

esriAutoScaleBar to automatically calculate.
SubdivisionMarkSymbol: ILineSymbol Symbol used to draw the subdivision marks.

The IScaleMarks interface manages all of the properties of a scale bar
that relate to the individual marks, including the division mark height,
division marker symbol, marker frequency, and marker position.

IScalebar
IScaleMarks

ITransformEvents Scalebar

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

A scale bar shows a map’s scale
graphically.



382 • Exploring ArcObjects • Volume 1

DOUBLE- AND SINGLE-FILL SCALE BAR COCLASSES

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

IGraphicsComposite
IPropertySupport

IScalebar
IScaleMarks

ITransformEvents

Scalebar

AlternatingScaleBar
DoubleAlternatingScaleBar

HollowScaleBar

IDoubleFillScaleBar DoubleFill-
ScaleBar

Double-fill scale bars are one style of
scale bar that uses two fill symbols.

SingleDivisionScaleBar

IScalebar
IScaleMarks

ITransformEvents
Scalebar

ISingleFill-
ScaleBar SingleFill-

ScaleBar

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

Single-fill scale bars are those scale bars
symbolized with a single fill symbol.

Double-fill scale bars are the most advanced scale bars. These use two
symbols to create an attractive scale bar. There are currently three types
of double-fill scale bars: alternating, double-alternating, and hollow.
The graphic to the lower-left corner shows an example of each.

 IDoubleFillScaleBar : IUnknown Provides access to members that control a scale bar that
uses two fill symbols to draw bar.

FillSymbol1: IFillSymbol Symbol used to draw the bar.
FillSymbol2: IFillSymbol Symbol used to draw the bar.

All double-fill scale bars implement the IDoubleFillScaleBar interface.
This interface manages the two fill symbols used when rendering the
scale bar.

Alternating scale bar

Double alternating scale bar

Hollow scale bar

Single-fill scale bars are similar to double-fill scale bars except they use
one fill symbol. ArcMap currently has one single-fill scale bar, the
SingleDivisionScaleBar. The graphic to the left shows an example of a
single-division scale bar.

 ISingleFillScaleBar : IUnknown Provides access to members that control a scale bar that
uses a single fill symbol to draw bar.

FillSymbol: IFillSymbol Symbol used to draw the bar.

The ISingleFillScaleBar interface manages the single-fill symbol used by
scale bars of this type.

Single division scale bar



Chapter 4 • Composing maps • 383

A
rc

M
ap

SCALE LINE AND SCALE TEXT COCLASSES

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

IGraphicsComposite
IPropertySupport

IScalebar
IScaleMarks

ITransformEvents

Scalebar

IScaleLine

ScaleLine

SteppedScaleLine

Scale lines are another class of scale bars
that are based on line work instead of
polygons. The graphic below shows an
example of a stepped-line scale bar.

Stepped-line scale bar

Scale line scale bars are the only class of scale bars that represent a
scale bar as a line. ArcMap currently has one type of scale line scale
bar—the stepped-line scale bar.

 IScaleLine : IUnknown Provides access to members that control a line scale bar.

LineSymbol: ILineSymbol Symbol used to draw the line.

The IScaleLine interface manages the one line symbol used by scale
lines.

Scale text is essentially a text element that describes the map’s scale.
One example of scale text is “1 inch equals 2,400 miles”.

 IScaleText : IMapSurround Provides access to members that control the scale text.

Format: String Format of the scale text. Style must be set to custom.
MapUnitLabel: String Map unit label of the scale text. Style must be set to relative.
MapUnits: esriUnits Map units of the scale text. Style must be set to custom.
NumberFormat: INumberFormat Number formatting.
PageUnitLabel: String Page unit label of the scale text. Style must be set to relative.
PageUnits: esriUnits Page units of the scale text. Style must be set to custom.
Style: tagesriScaleTextStyleEnum Style of the scale text.
Symbol: ITextSymbol Symbol of the scale text.
Text: String The scale text.

The IScaleText interface controls the format of the string that is added as
a map surround element. This interface has properties such as MapUnit
and MapUnitLabel—“miles”, PageUnit and PageUnitLabel—“inches”, and
Text, which combines the label properties into a sentence.

IScaleText
IPropertySupport

ITransformEvents ScaleText

IBoundsProperties
IClone

IConnectionPoint-
Container

IMapSurround
IMapSurroundEvents

IPersist
IPersistStream

MapSurround

Scale text is a text element indicating a
map’s scale.



384 • Exploring ArcObjects • Volume 1

There are two types of spatial bookmarks in ArcMap: Area of Interest
and Feature bookmarks. Both types of spatial bookmarks are managed
by the Map object for which they store extents. Bookmarks are persisted
in the map document saved to disk. You can access a Map’s spatial
books using its IMapBookmarks interface. This interface has methods for
accessing bookmarks, adding new ones, and deleting old ones.

 ISpatialBookmark : IUnknown Provides access to members that control a spatial
bookmark.

BookmarkType: String Type of the bookmark.
Name: String Name of the bookmark.

ZoomTo (in Map: IMap) Zooms to the bookmark.

All spatial bookmarks implement the ISpatialBookmark interface. This
interface defines all the common functionality between all bookmarks,
particularly the name of the bookmark and a zoom function. Use this
interface to check the name of a spatial bookmark and zoom to the
extent stored in a bookmark. The ZoomTo function changes the map’s
extent via IActiveView::Extent. ZoomTo does not automatically invalidate
the display.

Implement the ISpatialBook interface to create new custom spatial book-
marks.

Create a new AOIBookmark whenever you want to create an Area of
Interest bookmark. This object persists an envelope holding an extent
somewhere within the confines of the map’s spatial extent. Like all
spatial bookmarks, after creating an Area of Interest bookmark, you can
later find it by name and set the map’s current extent equal to the extent
stored in the bookmark. In ArcMap, new Area of Interest bookmarks are
created using the various commands found by clicking View and click-
ing Bookmarks.

 IAOIBookmark : ISpatialBookmark Provides access to members that control an AOI bookmark.

Location: IEnvelope Location of the bookmark.

The only other interface that AOIBookmark implements is
IAOIBookmark, which has one property for accessing the extent the
object holds. All of the different spatial bookmark objects have a unique
interface that actually inherits from ISpatialBookmark. This makes it easy

ISpatialBookmark
IPersist

IPersistStream
Spatial-

Bookmark

Spatial bookmarks are user-defined
extents saved, along with a name identi-

fying them, in an ArcMap document.

ISpatialBookmark
IPersist

IPersistStream
Spatial-

Bookmark

IAOIBookmark AOI-
Bookmark

This is the Area of Interest bookmark.
An area of interest is a map extent that

one would create when zooming in or
panning the display.

A feature bookmark stores information
about a particular feature so that it can

be quickly found again

An area of interest is a map extent
you would create when zooming in

or panning the display

ArcMap spatial bookmark objects
ISpatialBookmark

IPersist
IPersistStream

Spatial-
Bookmark

IAOIBookmark AOI-
Bookmark

IFeatureBookmark Feature-
Bookmark



Chapter 4 • Composing maps • 385

A
rc

M
ap

SPATIAL BOOKMARK COCLASSES

to access the ISpatialBookmark members without performing a query
interface. By inheriting the interface, the members appear as though
they belong directly on the unique interface. For example, if you have a
variable declared as an IAOIBookmark, you can directly call ZoomTo
without querying the interface for ISpatialBookmark.

The script below creates a new Area of Interest bookmark and adds it to
the focus map’s bookmark collection:

Public Sub AddAreaOfInterestBookMark()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pAreaOfInterest As IAOIBookmark

  Dim pMapBookmarks As IMapBookmarks

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMap 'QI

  'Create a new bookmark and set it's location to focus map's current extent

  Set pAreaOfInterest = New AOIBookmark

  Set pAreaOfInterest.Location = pActiveView.Extent

  'Give the bookmark a name

  pAreaOfInterest.Name = "My Bookmark"

  'Add the bookmark to the map's bookmark collection

  'This will add the bookmark to Bookmarks menu accessible from View menu

  Set pMapBookmarks = pMap

  pMapBookmarks.AddBookmark pAreaOfInterest

End Sub

This script searches for a specific bookmark and then zooms to its
stored extent.

Public Sub FindSpatialBookMark()

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pAreaOfInterest As IAOIBookmark

  Dim pMapBookmarks As IMapBookmarks

  Dim pEnumBookmarks As IEnumSpatialBookmark

  Dim pSpatialBookmark As ISpatialBookmark

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pMapBookmarks = pMap 'QI

  Set pActiveView = pMap 'QI

  Set pEnumBookmarks = pMapBookmarks.Bookmarks

  pEnumBookmarks.Reset

  Set pSpatialBookmark = pEnumBookmarks.Next

  'Loop through all the available bookmarks

  'to find the one we want to zoom to



386 • Exploring ArcObjects • Volume 1

  Do While Not pSpatialBookmark Is Nothing

    If pSpatialBookmark.Name = "My Bookmark" Then

      'Zoom to the bookmark's extent

      pSpatialBookmark.ZoomTo pMxDoc.FocusMap

      'Refresh the display

      pActiveView.Refresh

      Exit Do

    End If

    Set pSpatialBookmark = pEnumBookmarks.Next

  Loop

End Sub

Create a new FeatureBookmark whenever you want to quickly find a
particular feature more than one time. This object stores the ID of a
feature and the feature class it belongs to so that it can quickly discover
and display the feature at any time.

In ArcMap, new Feature bookmarks are created using the Identify tool.
Identify a feature and right-click the feature node in the Identify dialog
box, then click Set Bookmark. Like all bookmarks, this new bookmark
will be added to the map’s collection of bookmarks and listed on the
Bookmarks menu.

 IFeatureBookmark : ISpatialBookmark Provides access to members that control a feature
bookmark.

FeatureClass: IFeatureClass Feature class.
FeatureId: Long Feature id.

Draw (in Display: IDisplay) Draws the feature on the map display.
Flash (in Display: IDisplay) Flashes the feature on the map display.
PanTo (in Display: IDisplay) Pans to the feature on the map display.

The FeatureBookmark object also implements the IFeatureBookmark
interface, which provides the necessary properties for setting the feature
class and feature ID. This interface also has methods for flashing the
feature, panning to it, and drawing. These methods are not implemented
at ArcGIS 8.1.

IFeatureBookmark Feature-
Bookmark

ISpatialBookmark
IPersist

IPersistStream
Spatial-

Bookmark

Where Area of Interest bookmarks store
a user-specified extent, Feature book-

marks store information about a particu-
lar feature so that it may quickly be

found and displayed over and over again.

SPATIAL BOOKMARK COCLASSES



Chapter 4 • Composing maps • 387

A
rc

M
ap

An enumeration of
style gallery items

Style items provide access to the
individual map elements and

symbols that make up a style

Style selectors provide you with the
means to interactively choose or

edit a style item

Using the style gallery
coclasses, you can create
various types of style items

AreaPatchStyleGalleryClass
BackgroundStyleGalleryClass
BorderStyleGalleryClass
ColorRampStyleGalleryClass
ColorStyleGalleryClass
FillSymbolStyleGalleryClass
LabelStyleGalleryClass
LegendItemStylGalleryClass
LinePatchStyleGalleryClass
LineSymbolStyleGalleryClass
MapGridStyleGalleryClass
MarkerSymbolStyleGalleryClass
NorthArrowStyleGalleryClass
ScalebarStyleGalleryClass
ScaleTextStyleGalleryClass
ShadowStyleGalleryClass
TextSymbolStyleGalleryClass

IPersistStream
IStyleGallery

IStyleGalleryStorage StyleGallery

IEnumStyleGalleryItem EnumStyle-
GalleryItem

IStyleGalleryItem
IPersistStream Style-

GalleryItem

ArcMap style gallery objects

MapGrid-
Selector

BackgroundSelector
BorderSelector
LabelStyleSelector
LegendItemSelector
NorthArrowSelector
ScaleBarSelector
ScaleTextSelector

IMapGridSelector

StyleSelector

IStyleDialog Style-
References-

Dialog

IComPropertySheetEvents
IStyleDialog

Style-
Manager-

Dialog
Gives you access to the

ArcMap style manager
dialog box

Gives you access to the
ArcMap style references

dialog box

A style gallery is a collection of styles. Each
ArcMap document has a style gallery associated

with it. Using this style gallery, you can access the
styles referenced by that document

*

IStyleGalleryClass StyleGallery-
Class



388 • Exploring ArcObjects • Volume 1

Styles are collections of symbols and map elements
that are often grouped by functionality. For example,
symbols and map elements used by the transportation
industry may be grouped into a Transportation Style.

Styles are stored in files that usually have a .style
extension. ESRI provides several styles for you to use
out of the box. These styles are found under
<install_directory>\Bin\Styles. You will find com-
monly used symbols and map elements in ESRI.style,
and more domain-specific style items in relevantly
named .style files. The personal style file for each user
is maintained in that user’s Profiles directory—for
example, C:\WINNT\Profiles\user_name\Application
Data\ESRI\ArcMap\user_name.style.

A style is composed of several style items. These style
items provide access to individual map elements and
symbols. Style items are organized into classes, which
are types of style items. A class may have several

groups of items organized into categories. In the style manager figure,
Precipitation is a style item that belongs to the Color Ramps class and
the Default Ramps category.

The StyleGallery coclass is a collection of the styles referenced by a map
document. StyleGallery is a singleton class, which means that there is
only one instance of this class per ArcMap session.

 IStyleGallery : IUnknown Provides access to members modify the Style Gallery.

Categories (in ClassName: String) :
IEnumBSTR

The categories within the given class.

Class (in Index: Long) :
IStyleGalleryClass

The class at the given index.

ClassCount: Long Number of classes in the Style Gallery.
Items (in ClassName: String, in styleSet:

String, in Category: String) :
IEnumStyleGalleryItem

The style items from the specified style file, in the specified class and
category. The style set and category may be blank to return all
items.

AddItem (in Item: IStyleGalleryItem) Adds an item to the target style file.
Clear Removes all styles from the Style Gallery.
ImportStyle (in FileName: String) Imports a style from a file other than a .style file.
LoadStyle (in FileName: String, in

ClassName: String)
Loads a style from a file. If class is specified, only items in that class

will be loaded.
RemoveItem (in Item: IStyleGalleryItem) Removes an item from the target style file.
SaveStyle (in FileName: String, in

styleSet: String, in ClassName: String)
Saves the specified style to a file. If class is specified, only items in

that class will be saved.
UpdateItem (in Item: IStyleGalleryItem) Updates an existing item in target style file.

The IStyleGallery interface provides access to the categories, classes, and
items in a style. Using this interface, you can add, remove, and update
style items. You can also load style files, save a style into another file, or
import a style from a custom style file.

You can get to the style gallery used by a map document using the
IMxDocument::StyleGallery property.

  Dim pMxDoc As IMxDocument

  Dim pStyleGallery As IStyleGallery

STYLEGALLERY COCLASS

IPersistStream
IStyleGallery

IStyleGalleryStorage StyleGallery

A style gallery is a collection of styles.
Each ArcMap document has a style

gallery associated with it. Using this style
gallery, you can access the styles refer-

enced by that document.

Style gallery items Categories

Styles

Style gallery classes



Chapter 4 • Composing maps • 389

A
rc

M
ap

  Set pMxDoc = ThisDocument

  Set pStyleGallery = pMxDoc.StyleGallery

Using the IStyleGallery::Categories interface, you can get a listing of the
categories in a particular style class. This property takes in the name of
the class as an argument. This is the string after which style class folders
are named in the style manager. This is also the string returned by
IStyleGalleryClass::Name for the style gallery class of your interest.

  Dim pEnumBstr As IEnumBSTR

  Dim sCatList As String

  Dim sCat As String

  Set pEnumBstr = pStyleGallery.Categories("Fill Symbols")

  sCatList = "Fill Symbol Categories: "

  sCat = pEnumBstr.Next

  Do

    sCatList = sCatList & " " & sCat

    sCat = pEnumBstr.Next

  Loop While sCat <> ""

  MsgBox sCatList

You can access the various classes available to the style gallery using
IStyleGallery::Class.

  Dim lClasses as Long

  lClasses = pStyleGallery.ClassCount

  Dim pClass As IStyleGalleryClass

  Dim I As Long

  For I = 0 To (lClasses - 1)

    Set pClass = pStyleGallery.Class(I)

    MsgBox pClass.Name

  Next I

Using IStyleGallery::Items, you can access the style items in a style file.
Using the ClassName and Category arguments, you can get the style
items from a specific style gallery class and a specific category in that
class. If you use blank strings for these arguments, you get all the style
items in the style.

  Dim pEnumStyleGall As IEnumStyleGalleryItem

  Dim pStyleItem As IStyleGalleryItem

  Dim pStyleStorage As IStyleGalleryStorage

  'Add style file to style gallery

  Set pStyleStorage = pStyleGallery

  pStyleStorage.AddFile “D:\test.style”

  'Access style items

  Set pEnumStyleGall = pStyleGallery.Items("Shadows", "D:\test.style", _

    "Default")

  Set pStyleItem = pEnumStyleGall.Next

STYLEGALLERY COCLASS



390 • Exploring ArcObjects • Volume 1

After accessing an item, you can make changes to it and update the
item in the style file it comes from using IStyleGallery::UpdateItem.

  'Make changes to the item

  pStyleItem.Category = "My Category"

  Dim pStyleStorage As IStyleGalleryStorage

  Set pStyleStorage = pStyleGallery

  Dim sOldFile As String

  sOldFile = pStyleStorage.TargetFile

  'Set the target style file for the changes

  pStyleStorage.TargetFile = "D:\test.style"

  'Update the item in the style

  pStyleGallery.UpdateItem pStyleItem

  pStyleStorage.TargetFile = sOldFile

Similarly, you can remove an item from a style file by first accessing it,
then using IStyleGallery::RemoveItem to remove it.

  Dim sOldFile As String

  sOldFile = pStyleStorage.TargetFile

  'Set the target style file for the changes

  pStyleStorage.TargetFile = "D:\test.style"

  'Remove the item from the style

  pStyleGallery.RemoveItem pStyleItem

  pStyleStorage.TargetFile = sOldFile

To add a style item, you would first have to create it. After creating the
style item, you can add it using IStyleGallery::AddItem.

  Dim sOldFile As String

  sOldFile = pStyleStorage.TargetFile

  'Set the target style file for the changes

  pStyleStorage.TargetFile = "D:\test.style"

  'Add the new item

  pStyleGallery.AddItem pNewItem

  pStyleStorage.TargetFile = sOldFile

Using IStyleGallery::ImportStyle, you can load a style from a custom style
file. This method looks for a custom style importer under the Style Im-
porters category in the Category Manager. If the custom style importer’s
IStyleImporter::CanImport property returns True, this importer’s
IStyleImporter::Import method is used to import the file.

The Style References dialog box shows refer-
enced style files with checked check boxes and
unreferenced style files with unchecked check

boxes.

STYLEGALLERY COCLASS



Chapter 4 • Composing maps • 391

A
rc

M
ap

 IStyleGalleryStorage : IUnknown Provides access to members that manage the files used in
the Style Gallery.

CanUpdate (in Path: String) : Boolean Indicates if the specified file can be updated.
DefaultStylePath: String The default file path for searching for standard styles.
File (in Index: Long) : String The file at the given index.
FileCount: Long The number of files in the Style Gallery.
TargetFile: String The target output file for adding, updating and removing items.

AddFile (in Path: String) Adds a file to the Style Gallery.
RemoveFile (in Path: String) Removes a file from the Style Gallery.

The IStyleGalleryStorage interface provides access to the style files refer-
enced in the style gallery. It also has methods that let you add and
remove style files.

IStyleGalleryStorage::DefaultStylePath gives the location from which style
files are read and listed for referencing in the Style References dialog
box. This is currently <install_directory>\Bin\Styles. If you do not
specify a path for a style file, this is the directory that ArcMap looks into
for the file you specified.

The IStyleGalleryStorage::TargetFile property allows you to set a style file
as the target for adding, removing, or updating items using the IStyle-
Gallery interface. You can see this functionality illustrated in the IStyle-
Gallery code samples. If the file you specify as IStyleGalleryStorage::
TargetFile is not referenced by the style gallery, it gets referenced auto-
matically. If this file does not exist, it gets created.

You can use IStyleGalleryStorage::CanUpdate to check if you have per-
missions to make changes to a style file before doing so.

  pStyleStorage.AddFile pStyleStorage.DefaultStylePath & "Civic.style"

  pStyleStorage.TargetFile = pStyleStorage.DefaultStylePath & "ESRI.style"

  MsgBox "The target file now is " & pStyleStorage.TargetFile

STYLEGALLERY COCLASS



392 • Exploring ArcObjects • Volume 1

ENUMSTYLEGALLERYITEM AND STYLEGALLERYITEM COCLASSES

EnumStyleGalleryItem is an enumeration of style gallery items. It is cre-
ated by the style gallery in response to IStyleGallery::Items.

 IEnumStyleGalleryItem : IUnknown Provides access to members that enumerate over a set of
Style Gallery items.

Next: IStyleGalleryItem Gets the next Style Gallery item.
Reset Resets the enumerator.

Using IEnumStyleGalleryItem, you can access the style gallery items in
the enumeration. IEnumStyleGalleryItem::Reset resets the enumeration so
that the item accessed by IEnumStyleGalleryItem::Next will be the first
item on the enumeration.

The StyleGalleryItem coclass encapsulates a symbol or map element and
the style information associated with it, such as its name, ID, and cat-
egory.

 IStyleGalleryItem : IUnknown Provides access to members that defien items in the Style
Gallery.

Category: String The category of the item.
ID: Long Id for the item in the Style Gallery.
Item: IUnknown Pointer The symbol or map element to be stored in the Style Gallery item.
Name: String The name of the item in the Style Gallery.

Using IStyleGalleryItem, you can access the category a style item belongs
to and the name it is with. You can also find the ID of that item in the
style file. But, most importantly, the IStyleGalleryItem::Item property
allows you to access the symbol or map element of which the item is
composed. IStyleGalleryItem::Item returns an IUnknown interface that
you can QI for an interface supported by that symbol or map element.

The following example shows how you can access the marker symbols
stored in a style:

  Dim pStyleStorage As IStyleGalleryStorage

  Dim pStyleGallery As IStyleGallery

  Dim pStyleClass As IStyleGalleryClass

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Set pStyleGallery = pMxDoc.StyleGallery

  Set pStyleStorage = pStyleGallery

  Dim pEnumStyleGall As IEnumStyleGalleryItem

  Dim pStyleItem As IStyleGalleryItem

  Dim pMarkerSym As IMarkerSymbol

  'Initialize the style gallery

  Set pEnumStyleGall = pStyleGallery.Items("Marker Symbols", "ESRI.style", _

    "Default")

  pEnumStyleGall.Reset

  Set pStyleItem = pEnumStyleGall.Next

  Do While Not pStyleItem Is Nothing   'Loop through and access each marker

    Set pMarkerSym = pStyleItem.Item

IEnumStyleGalleryItem EnumStyle-
GalleryItem

EnumStyleGalleryItem is an enumera-
tion of style gallery items.

IStyleGalleryItem
IPersistStream Style-

GalleryItem

A StyleGalleryItem object contains a
symbol or map element and the style

item information associated with it.



Chapter 4 • Composing maps • 393

A
rc

M
ap

    Debug.Print pStyleItem.Name & " " & pMarkerSym.Size

    Set pStyleItem = pEnumStyleGall.Next

  Loop

You can create new style gallery items by first creating a symbol or map
element relevant to this style gallery class. You can make this the Item
for a newly created style gallery item. You can then add this item to a
style gallery. Alternatively, you can use IStyleGalleryClass::NewObject to
create the symbol or map element. The latter method is illustrated under
IStyleGalleryClass.

  'Create the new object

  Dim pNewObject As IUnknown

  Set pNewObject = New SimpleFillSymbol

  'Assign properties specific to the style class

  Dim pSimpleFillSymbol As ISimpleFillSymbol

  Set pSimpleFillSymbol = pNewObject

  pSimpleFillSymbol.Color = BuildRGB(55, 55, 200)

  'Create new style item using object, and add it to the target style

  Dim pNewItem As IStyleGalleryItem

  Set pNewItem = New StyleGalleryItem

  pNewItem.Item = pNewObject

  pNewItem.Name = "My Fill Symbol"

  pStyleGallery.AddItem pNewItem

ENUMSTYLEGALLERYITEM AND STYLEGALLERYITEM COCLASSES



394 • Exploring ArcObjects • Volume 1

STYLE SELECTOR COCLASSES

The StyleSelector abstract class is inherited by several coclasses, all of
which are dialog boxes you can use in your application to select a style
item of the respective type.

 IStyleSelector : IUnknown Style Selector Dialog interface

AddStyle (in Style: IUnknown Pointer) :
Boolean

Specify the original style.  May specify more than one.

DoModal (in parentHWnd: Long) :
Boolean

Show the selector.

GetStyle (in Index: Long) : IUnknown
Pointer

Returns the updated style.  Index is required when more than one
style was originally added.

The methods in the IStyleSelector interface allow you to bring up a Style
Selector dialog box. You can use IStyleSelector::DoModal to bring up the
dialog. Optionally, you can specify the style item that the Style Selector
dialog box comes up with using IStyleSelector::AddStyle. This will allow
you to control the default style item. You can get the user’s choice with
IStyleSelector::GetStyle.

  Dim pSelector As IStyleSelector

  Set pSelector = New BackgroundSelector

  Dim bOK As Boolean

  Dim pFill As IFillSymbol

  Dim pBackground As ISymbolBackground

  bOK = pSelector.DoModal(Application.hWnd)

  If (bOK) Then

    Set pBackground = pSelector.GetStyle(0)

    Set pFill = pBackground.FillSymbol

    MsgBox pFill.Color.CMYK

  End If

  Set pBackground = New SymbolBackground

  Set pFill = New SimpleFillSymbol

  pFill.Color = BuildRGB(200, 90, 90)

  pBackground.FillSymbol = pFill

  pSelector.AddStyle pBackground

  bOK = pSelector.DoModal(Application.hWnd)

  If (bOK) Then

    Set pBackground = pSelector.GetStyle(0)

    Set pFill = pBackground.FillSymbol

    MsgBox pFill.Color.CMYK

  End If

 IMapGridSelector : IUnknown Provides access to the map grid selector.

MapFrame: IMapFrame The map frame whose map grids are edited.

Map grid selectors need information on the data frame to which the
map grid belongs. You can specify this using IMapGridSelector.

MapGrid-
Selector

BackgroundSelector
BorderSelector
LabelStyleSelector
LegendItemSelector
NorthArrowSelector
ScaleBarSelector
ScaleTextSelector

IMapGridSelector

StyleSelector

The Style Selector dialog box lets you
choose a style item of a specific style

class. For example, the
BackgroundSelector allows you to

choose a background style item.

Style Selector

None

BackgroundSelector

BorderSelector

None

ColorSelector

SymbolSelector

LabelStyleSelector

LegendItemSelector

None

SymbolSelector

MapGridSelector

SymbolSelector

NorthArrowSelector

ScaleBarSelector

ScaleTextSelector

ShadowSelector

SymbolSelector

Style Gallery Class

AreaPatchStyleGalleryClass

BackgroundStyleGalleryClass

BorderStyleGalleryClass

ColorRampStyleGalleryClass

ColorStyleGalleryClass

FillSymbolStyleGalleryClass

LabelStyleGalleryClass

LegendItemStyleGalleryClass

LinePatchStyleGalleryClass

LineSymbolStyleGalleryClass

MapGridStyleGalleryClass

MarkerSymbolStyleGalleryClass

NorthArrowStyleGalleryClass

ScaleBarStyleGalleryClass

ScaleTextStyleGalleryClass

ShadowStyleGalleryClass

TextSymbolStyleGalleryClass

This table shows you the selectors you can use
to interactively choose items of each style gallery

class.



Chapter 4 • Composing maps • 395

A
rc

M
ap

STYLE GALLERY CLASS COCLASSES

The various coclasses that inherit from the StyleGallery abstract class
encapsulate functionality, creating style items of the respective type.

 IStyleGalleryClass : IUnknown Style Gallery Class interface

Description: String Description for the Style Gallery Class
ItemClass: GUID Interface ID for the items in the class
Name: String Name of the Style Gallery Class
NewObject (in newType: String) :

IUnknown Pointer
Creates a new object of the specified type

NewObjectTypes: IEnumBSTR Returns the available types of new items in this class
PreviewRatio: Double The width ratio to 1 height.

EditProperties (in galleryItem: IUnknown
Pointer, in listener:
IComPropertySheetEvents, in hWnd:
Long, out ok: Boolean)

Edits the properties of a Style Gallery Item of the supported class

Preview (in galleryItem: IUnknown
Pointer, in hDC: Long, in rectangle:
tagRECT)

Draws a preview of a Style Gallery Item of the supported class

The IStyleGalleryClass interface gives you access to the class name,
description, and type of new objects that can be created with the class.
Using this interface, you can create new style items using edit properties
of an item, then draw a preview of the item to a window.

The table below lists some of the properties exposed by IStyleGallery-
Class for the coclasses that support it.

BackgroundStyleGalleryClass 2

Area patch—geometry used to draw
symbol patches

Background

Style gallery class
Preview

ratio Description

BorderStyleGalleryClass 4 Border

ColorStyleGalleryClass 1 Colors

FillSymbolStyleGalleryClass 1 Fill Symbols

LabelStyleGalleryClass 4 Labels—text symbol and placement
option for labeling

LegendItemStyleGalleryClass 2 Legend Items—the part of the legend
that corresponds to one layer

LinePatchStyleGalleryClass 2 Line Patch—geometry used to draw
symbol patches

LineSymbolStyleGalleryClass 1 Line Symbols

MapGridStyleGalleryClass 3 Reference Systems

MarkerSymbolStyleGalleryClass 1 Marker Symbols

NorthArrowStyleGalleryClass 1 North Arrows

ScaleTextStyleGalleryClass 10 Scale Texts—display scale as
formatted text

ShadowStyleGalleryClass 2 Drop Shadow

TextSymbolStyleGalleryClass 3 Text Symbols

AreaPatchStyleGalleryClass 2

ColorRampStyleGalleryClass 4 Color Ramps

Text Symbols

Backgrounds

Name

Borders

Colors

Fill Symbols

Labels

Legend Items

Line Patches

Line Symbols

Reference
Systems

Marker Symbols

North Arrows

Scale Texts

Shadows

Area Patches

Color Ramps

Normal Background

New object types

Normal Border

RGB, CMYK, HSV, Gray,
Name

Fill Symbol

Label

Horizontal Bar, Nested,
Horizontal, Vertical

Line Patches

Line Symbol

Graticule, Measured Grid,
Index Grid

Marker Symbol

North Arrow

Scale Text

Normal Shadow

Text Symbol

Area patches

Random Color Ramp, Multi-
part Color Ramp, Preset
Color Ramp, Algorithmic
Color Ramp

ScaleBarStyleGalleryClass 6 Scale BarsScale Bars Scale Line, Stepped Scale
Line, Hollow Scale Bar, Single
Division Scale Bar, Alternating
Scale Bar, Double Alternating
Scale Bar

AreaPatchStyleGalleryClass
BackgroundStyleGalleryClass
BorderStyleGalleryClass
ColorRampStyleGalleryClass
ColorStyleGalleryClass
FillSymbolStyleGalleryClass
LabelStyleGalleryClass
LegendItemStylGalleryClass
LinePatchStyleGalleryClass
LineSymbolStyleGalleryClass
MapGridStyleGalleryClass
MarkerSymbolStyleGalleryClass
NorthArrowStyleGalleryClass
ScalebarStyleGalleryClass
ScaleTextStyleGalleryClass
TextSymbolStyleGalleryClass

IStyleGalleryClass StyleGallery-
Class

You can instantiate new style items of a
specific class with a style gallery class.

The list of available style gallery classes
is read from the ESRI Style Gallery
Classes category in the Component

Category Manager.



396 • Exploring ArcObjects • Volume 1

The code below illustrates how you can access the style gallery classes
in a style:

  Dim lClasses As Long

  Dim sObjTypeList As String

  Dim sObjType As String

  lClasses = pStyleGallery.ClassCount

  Dim pClass As IStyleGalleryClass

  Dim i As Long

  For i = 0 To (lClasses - 1)

    Set pClass = pStyleGallery.Class(i)

    sObjTypeList = pClass.Name & ":"

    Set pEnumBstr = pClass.NewObjectTypes

    sObjType = pEnumBstr.Next

   Do While Not sObjType = ""

      sObjTypeList = sObjTypeList & "," & sObjType

      sObjType = pEnumBstr.Next

    Loop

    Debug.Print sObjTypeList

  Next i

When you create a new symbol item using IStyleGalleryClass::NewObject,
the argument has to be one of the strings reported by IStyleGalleryClass::
NewObjectTypes for that class. You can QI the returned object for an
interface supported by the new style gallery item, then add this as an
item to the style gallery using IStyleGalleryItem.

This method of creating a new style gallery item is especially useful
when you wish to create a new object based on your user’s choice of
object type from a list of object types that you create using
IStyleGalleryClass::NewObjectTypes.

  'Create the new object

  Dim pClass As IStyleGalleryClass

  Dim pNewObject As IUnknown

  Set pClass = New FillSymbolStyleGalleryClass

  Set pNewObject = pClass.NewObject("Fill Symbol")

  'Assign properties specific to the style class

  If TypeOf pNewObject Is ISimpleFillSymbol Then

    Dim pSimpleFillSymbol As ISimpleFillSymbol

    Set pSimpleFillSymbol = pNewObject

    pSimpleFillSymbol.Color = BuildRGB(55, 55, 200)

  End If

  'Create new style item using object, and add it to the target style

  Dim pNewItem As IStyleGalleryItem

  Set pNewItem = New StyleGalleryItem

  pNewItem.Item = pNewObject

  pNewItem.Name = "My Fill Symbol"

  pStyleGallery.AddItem pNewItem

STYLE GALLERY CLASS COCLASSES



Chapter 4 • Composing maps • 397

A
rc

M
ap

The StyleManagerDialog coclass is a dialog box that lets you manage
the styles referenced by a map document and the style items in them.
The StyleReferencesDialog coclass is a dialog box that lets you manage
which style files ArcMap references.

 IStyleDialog : IUnknown Style Dialog interface

Title: String The title of the style dialog.

DoModal (in StyleGallery: IStyleGallery,
Parent: Long) : Boolean

Displays a style dialog for the given style gallery.

Before calling IStyleDialog::DoModal, use IStyleManager::Title to change
the title of the Style Manager dialog box.

  Dim pMxDoc As IMxDocument

  Dim pStyleGallery As IStyleGallery

  Set pMxDoc = ThisDocument

  Set pStyleGallery = pMxDoc.StyleGallery

  Dim pStyleDialog As IStyleDialog

  Set pStyleDialog = New StyleManagerDialog

  pStyleDialog.DoModal pStyleGallery, Application.hWnd

IStyleDialog Style-
References-

Dialog

IComProperty-
SheetEvents
IStyleDialog

Style-
Manager-

Dialog

The StyleManagerDialog and the
StyleReferencesDialog allow you to

bring up the Style Manager and the Style
References dialog boxes, respectively.

STYLEMANAGERDIALOG AND STYLEREFERENCESDIALOG



398 • Exploring ArcObjects • Volume 1

A button tab style labels using rectangular
buttons that line the grid. A continuous tab
style labels using a continuous band around
the grid. A rounded tab style labels using
rounded rectangles that line the gridGraticuleFactory

IndexGridFactory
MeasuredGridFactory

CustomOverlayGridFactory

ICustomOverlayGrid Custom-
OverlayGrid

IMeasuredGrid
IProjectedGrid Measured-

Grid

IIndexGrid

IndexGrid

IGraticule
IMeasuredGrid Graticule

ButtonTabStyle
ContinuousTabStyle
RoundedTabStyle

IBackgroundTabStyle Background-
TabStyle

IMixedFontGridLabel
IFormattedGridLabel MixedFont-

GridLabel

IFormattedGridLabel Formatted-
GridLabel

IDMSGridLabel DMS-
GridLabel

A DMS grid label displays the map grid using
degrees, minutes, and seconds

A formatted grid label uses a number format
to label the map grid

A map grid factory can be used to quickly
create a map grid with default properties

A mixed-font grid label displays the label in two
fonts and also uses a number format

A measured grid divides the map into a
grid of units in any coordinate system

An index grid divides the map into a
grid for indexing

A graticule divides the map into a
grid of meridians and parallels

A custom overlay grid divides the
map using lines from the data

source you specify

A map grid is a grid of
reference points or lines on the

layout that help you visually
identify the location of features

on the map IClone
IMapGrid

IPersist
IPersistStream

MapGrid

IndexGrid-
TabStyle

IIndexGridTabStyle

IGridLabel
IPersistStream GridLabel

An index grid tab style
governs the way an
index grid is labeled

IMapGridFactory MapGrid-
Factory

A grid label governs the way a map
grid is labeled along the borders

ArcMap map grid objects

A background tab style
labels the index grid
using square, round, or
rounded-square boxes

ISimpleMapGridBorder SimpleMap-
GridBorder

ICalibratedMapGridBorder Calibrated-
MapGrid-

Border

A simple map grid
border is composed of
simple lines

A calibrated map grid
border is composed
of a graduated band

A map grid border is
the set of lines that
outline the map grid

IMapGridBorder
IPersistStream MapGrid-

Border



Chapter 4 • Composing maps • 399

A
rc

M
ap

MAPGRID ABSTRACT CLASS

To get to a map grid programmatically, navigate to the PageLayout
coclass, then use its IGraphicsContainer interface’s FindFrame method
to get to the Map’s MapFrame. The MapFrame coclass has an IMapGrids
interface from which you can get to all the map grids for that dataframe.

  Dim pMap As IMap, pMxDoc As IMxDocument

  Dim pMapFrame As IMapFrame

  Dim pGraphicsContainer As IGraphicsContainer

  Dim pMapGrid As IMapGrid

  Set pMxDoc = ThisDocument

  Set pMap = pMxDoc.FocusMap

  Set pGraphicsContainer = pMxDoc.PageLayout

  Set pMapFrame = pGraphicsContainer.FindFrame(pMap)

  Dim pMapGrids As IMapGrids

  Set pMapGrids = pMapFrame

  Set pMapGrid = pMapGrids.MapGrid(0)

 IMapGrid : IUnknown Provides access to members that control a map grid.

Border: IMapGridBorder The map grid border.
ExteriorWidth (in pDisplay: IDisplay, in

pMapFrame: IMapFrame) : Double
The width (in display units) of the portion of the grid that is outside of

the frame.
LabelFormat: IGridLabel The label format for map grid labels.
LineSymbol: ILineSymbol The symbol used to draw grid lines - null will draw no lines.
Name: String The name of the map grid.
SubTickCount: Integer The number of subticks to draw between the major ticks.
SubTickLength: Double The length of the subticks in points.
SubTickLineSymbol: ILineSymbol The symbol used to draw the subtick lines.
TickLength: Double The length of the major ticks in points.
TickLineSymbol: ILineSymbol The line symbol used to draw the major ticks.
TickMarkSymbol: IMarkerSymbol The symbol used to draw tick marks at the grid interval intersections -

null will draw no tick marks.
Visible: Boolean Indicates if the map grid is visible.

Draw (in Display: IDisplay, in
pMapFrame: IMapFrame)

Draws the map grid for a map frame to the given display.

GenerateGraphics (in pMapFrame:
IMapFrame, in GraphicsContainer:
IGraphicsContainer)

Generates graphic elements corresponding to the grid lines and stores
them in the specified graphics container.

PrepareForOutput (in hDC: Long, in dpi:
Long, in PixelBounds: tagRECT, in
pMapFrame: IMapFrame)

Prepares the map grid for output to a device.

QueryLabelVisibility (out leftVis:
Boolean, out topVis: Boolean, out
rightVis: Boolean, out bottomVis:
Boolean)

Returns the visibility of the labels along all four sides of the map grid.

QuerySubTickVisibility (out leftVis:
Boolean, out topVis: Boolean, out
rightVis: Boolean, out bottomVis:
Boolean)

Returns the visibility of the subticks along all four sides of the map
grid.

QueryTickVisibility (out leftVis: Boolean,
out topVis: Boolean, out rightVis:
Boolean, out bottomVis: Boolean)

Returns the visibility of the ticks along all four sides of the map grid.

SetDefaults (in pMapFrame:
IMapFrame)

Sets the properties of the map grid to default values.

SetLabelVisibility (in leftVis: Boolean, in
topVis: Boolean, in rightVis: Boolean,
in bottomVis: Boolean)

Sets the visibility of the labels along all four sides of the map grid.

SetSubTickVisibility (in leftVis: Boolean,
in topVis: Boolean, in rightVis:
Boolean, in bottomVis: Boolean)

Sets the visibility of the subticks along all four sides of the map grid.

SetTickVisibility (in leftVis: Boolean, in
topVis: Boolean, in rightVis: Boolean,
in bottomVis: Boolean)

Sets the visibility of the ticks along all four sides of the map grid.

IMapGrid holds the methods and properties common to all types of
map grids. The Draw method can be used to draw a map grid to, for
example, a PictureBox control that has a map and display associated

IClone
IMapGrid

IPersist
IPersistStream

MapGrid

A map grid is a grid of reference points
or lines on the layout.

A map grid can be a grid of geographic or
projected coordinates, or a reference grid like

those found in street maps.  Map grids are part
of the layout of a map and can only be seen in

layout view.

You can use map grids to look at a map and
figure out the approximate location of a feature.

You can also use them to find features on the
map when you know the location of the feature.

Map grids are essentially made up of three
coclasses derived from the MapGrid,

MapGridBorder, and GridLabel abstract
classes.  To create a MapGrid object, create

instances of all of these.  Associate the
MapGridBorder and the GridLabel objects

with the MapGrid object.  Then, add the new
MapGrid to the layout.  We will see each of

these steps in detail as we progress through this
section.

Tic mark

Sub tic

Tic

Grid label

Grid border

Grid line

Parts of a map grid



400 • Exploring ArcObjects • Volume 1

with it. The PrepareForOutput method takes a device’s HDC and should
be called before the Draw method.

When you create a new map grid, you have to populate the properties
of the grid that IMapGrid exposes. The following code illustrates how
you can do this. After doing this, you can populate the properties ex-
posed by interfaces specific to the grid type, then add the grid to a data
frame.

  Dim pMapGrid As IMapGrid 'Create the map grid

  Set pMapGrid = New Graticule

  pMapGrid.Name = "Map Grid" 'Set the map grid's name

  'Set the line symbol used to draw the grid

  Dim pLineSymbol As ISimpleLineSymbol

  Set pLineSymbol = New SimpleLineSymbol

  pLineSymbol.Style = esriSLSSolid

  pLineSymbol.Width = 2

  pLineSymbol.Color = BuildRGB(52, 52, 52)  'Soft Black

  pMapGrid.LineSymbol = pLineSymbol

  pMapGrid.TickLength = 15 'Set the Tick Properties

  Set pLineSymbol = New SimpleLineSymbol

  pLineSymbol.Style = esriSLSSolid

  pLineSymbol.Width = 1.5

  pLineSymbol.Color = BuildRGb(0, 0, 0)

  pMapGrid.TickLineSymbol = pLineSymbol

  pMapGrid.TickMarkSymbol = Nothing

  pMapGrid.SubTickCount = 5 'Set the Sub Tick Properties

  pMapGrid.SubTickLength = 10

  Set pLineSymbol = New SimpleLineSymbol

  pLineSymbol.Style = esriSLSSolid

  pLineSymbol.Width = 0.2

  pLineSymbol.Color = BuildRGb(0, 0, 0)

  pMapGrid.SubTickLineSymbol = pLineSymbol

  'Set the Tick, SubTick, Label Visibility along the 4 sides of the grid

  pMapGrid.SetTickVisibility True, True, True, True

  pMapGrid.SetSubTickVisibility True, True, True, True

  pMapGrid.SetLabelVisibility True, True, True, True

  'Make map grid visible, so it gets drawn when Active View is updated

  pMapGrid.Visible = True

To avoid code repetition, the BuildRGB function is used in this section to
create Color objects using red, blue, and green values and to get their
IColor interface.

Public Function BuildRGB(lRed As Long, lGreen As Long, lBlue As Long) _

  As IRgbColor

  Dim pRGBColor As IRgbColor

If you want tick marks in your grid, you can
create a marker symbol and assign it to the

IMapGrid::TickMarkSymbol property.  If you do
not want either a TickMarkSymbol or a
TickLineSymbol, set these properties to

‘Nothing’.

MAPGRID ABSTRACT CLASS



Chapter 4 • Composing maps • 401

A
rc

M
ap

  Set pRGBColor = New RgbColor

  With pRGBColor

    .Red = lRed

    .Green = lGreen

    .Blue = lBlue

    .UseWindowsDithering = True

  End With

  Set BuildRGb = pRGBColor

End Function

MAPGRID ABSTRACT CLASS



402 • Exploring ArcObjects • Volume 1

A graticule is a map grid with lines along longitudes and latitudes.

 IGraticule : IMapGrid Provides access to the members that control the graticule.

AutoInterval: Boolean Indicates if the graticule automatically and interactively computes the
interval size.

AddElement (in Label: String, in
Location: Double, in IsLatitude:
Boolean, in LabelSymbol:
ITextSymbol)

Adds a grid line at custom location to the graticule.

RemoveElement (in Label: String) Removes a grid line in a custom location.

The IGraticule interface is not implemented yet. The AddElement method
is intended to be used for adding extra lines to the graticule. The
RemoveElement method is intended to remove these lines. AutoInterval is
intended to enable the computation of a suitable interval between grid
lines based on the scale of display.

 IMeasuredGrid : IUnknown Provides access to the members that control the lines that
make up the map grid.

FixedOrigin: Boolean Indicates if the origin is read from the XOrigin and YOrigin properties
(true) or if it is computed dynamically from the data frame (false).

Units: esriUnits The units for the intervals and origin.
XIntervalSize: Double The interval between grid lines along the X axis.
XOrigin: Double The origin of the grid on the X axis.
YIntervalSize: Double The interval between grid lines along the Y axis.
YOrigin: Double The origin of the grid on the Y axis.

The IMeasureGrid interface is implemented by the MeasuredGrid and
Graticule coclasses. It exposes information on the origins, intervals, and
units of the grid. If you set IMeasuredGrid::FixedOrigin to False, the
origin is computed from the data frame instead of from the x- and
y-origin properties. IMeasuredGrid::Units need not be populated for a
graticule.

  'Create graticule

  Dim pMapGrid As IMapGrid

  Dim pMeasuredGrid As IMeasuredGrid

  Set pMeasuredGrid = New Graticule

  Set pMapGrid = pMeasuredGrid

  'Set the IMeasuredGrid properties

  pMeasuredGrid.FixedOrigin = True

  pMeasuredGrid.XIntervalSize = 10  'meridian interval

  pMeasuredGrid.XOrigin = -180

  pMeasuredGrid.YIntervalSize = 10 'parallel interval

  pMeasuredGrid.YOrigin = -90

IClone
IMapGrid

IPersist
IPersistStream

MapGrid

IGraticule
IMeasuredGrid Graticule

A graticule divides the map by meridians
and parallels.

GRATICULE COCLASS

A graticule



Chapter 4 • Composing maps • 403

A
rc

M
ap

INDEXGRID COCLASS

An index grid is a map grid that divides the map into the specified
number of columns and rows. It is mainly used to index a map.

 IIndexGrid : IMapGrid Provides access to members that control the index grid.

ColumnCount: Long The number of columns in the index grid.
RowCount: Long The number of rows in the index grid.
XLabel (in column: Long) : String The label for the given column in the index grid.
YLabel (in Row: Long) : String The label for the given row in the index grid.

QueryCellExtent (in Row: Long, in
column: Long, in pMapFrame:
IMapFrame, Extent: IEnvelope)

Provides access to the cell extent in page space for the given row and
column.

IIndexGrid gives you access to the functionality common to all index
grids. Using the XLabel and the YLabel properties, you can set or retrieve
the label for each column and index in the grid. You can create an
index grid as illustrated in the sample below:

  'Create indexgrid

  Dim pMapGrid As IMapGrid

  Dim pIndexGrid As IIndexGrid

  Set pIndexGrid = New IndexGrid

  Set pMapGrid = pIndexGrid

  'Set the IIndexGrid properties

  pIndexGrid.ColumnCount = 5

  pIndexGrid.RowCount = 5

  'Set grid label strings for the x and y axes

  Dim i As Integer

  For i = 0 To (pIndexGrid.ColumnCount - 1)

    pIndexGrid.XLabel(i) = VBA.Chr(i + Asc("A"))

  Next i

  For i = 0 To (pIndexGrid.RowCount - 1)

    pIndexGrid.YLabel(i) = VBA.Str(i + 1)

  Next i

IIndexGrid::QueryCellExtent is useful for finding the features that cross a
cell in the grid. You can use the envelope returned by this method in a
spatial filter after transforming it into map coordinates. Using
IDisplayTransformation::TransformRect, you can use this filter to search
for the features that cross this cell in the grid and to create an index
listing of features and their location on the grid.

IClone
IMapGrid

IPersist
IPersistStream

MapGrid

IIndexGrid

IndexGrid

An index grid divides the map into a grid
for indexing. A popular use for this is in

street maps, where you locate a street in
an alphabetic listing on the map, find the
grid cell it is in, and use this information

to locate the street on the map.

An index grid



404 • Exploring ArcObjects • Volume 1

MEASUREDGRID COCLASS

A measured grid is a map grid with grid lines on a coordinate system
specified using the IProjectedGrid interface.

 IProjectedGrid : IUnknown Provides access to members that control the projection
information for map grids.

SpatialReference: ISpatialReference The spatial reference system of the grid.

The IProjectedGrid interface holds the spatial reference information
associated with a measured grid. If you want to create a measured grid
in the same projection as the data frame it is in, you can set the
IProjectedGrid::SpatialReference property using the data frame’s
IMap::SpatialReference property.

To create a measured grid with a different projection, you should first
create an instance of a coclass that inherits from SpatialReference. You
can then set the IProjectedGrid::SpatialReference property of the grid
with the ISpatialReference interface of this object.

The following example shows how to create a measured grid and set
the properties exposed through its specific interfaces.

  'create measuredgrid

  Dim pMapGrid As IMapGrid, pMeasuredGrid As IMeasuredGrid

  Set pMeasuredGrid = New MeasuredGrid

  Set pMapGrid = pMeasuredGrid

  'Set the IMeasuredGrid properties

  ' Origin coordinates and interval sizes are in map units

  pMeasuredGrid.FixedOrigin = True

  pMeasuredGrid.Units = m_pMap.MapUnits

  pMeasuredGrid.XIntervalSize = 1000000  'meridian interval

  pMeasuredGrid.XOrigin = -3000000

  pMeasuredGrid.YIntervalSize = 1000000 'parallel interval

  pMeasuredGrid.YOrigin = -3000000

  'Set the IProjectedGrid properties

  Dim pProjectedGrid As IProjectedGrid

  Set pProjectedGrid = pMeasuredGrid

  Set pProjectedGrid.SpatialReference = m_pMap.SpatialReference

A custom overlay grid is a map grid with grid lines read from a feature
class.

 ICustomOverlayGrid : IMapGrid Custom Overlay Grid interface

DataSource: IFeatureClass Sets or returns the data source containing the grid cells
LabelField: String Sets or returns the name of the field used to label the grid

The ICustomOverlayGrid interface gives you access to the feature class
that the grid lines are read from through the ICustomOverlayGrid::
DataSource property. It also lets you specify which field in this feature
class will label the grid using the ICustomOverlayGrid::LabelField property.

IClone
IMapGrid

IPersist
IPersistStream

MapGrid

IMeasuredGrid
IProjectedGrid Measured-

Grid

A measured grid divides the map into a
grid of units in a coordinate system of

your choice.

The grid can be in a projected coordinate system
or in a geographic coordinate system.  A

measured grid in a geographic coordinate system
is equivalent to a graticule. A measured grid can
be in the same spatial reference system as the

data frame or in a different one.

A measured grid

ICustomOverlayGrid Custom-
OverlayGrid

IClone
IMapGrid

IPersist
IPersistStream

MapGrid

The custom overlay grid divides the map
using lines from the data source you

specify.



Chapter 4 • Composing maps • 405

A
rc

M
ap

MAPGRIDBORDER AND SIMPLEMAPGRIDBORDER

The map grid border coclasses determine how the outline of a map grid
is drawn.

 IMapGridBorder : IUnknown Provides access to members that control the map grid
border.

DisplayName: String The display name for the map grid border.
Width: Double The width of the map grid border in points.

Draw (in Display: IDisplay, in
frameGeometry: IGeometry, in
mapGeometry: IGeometry)

Draws the border to the specified display, using the frame bounds
and the map bounds in page space.

Using the IMapGridBorder interface, you can find the width of the map
grid border. Using the DisplayName property, you can report the type of
the border object to which the IMapGridBorder interface is pointing.
The table on the left lists the strings reported by this property for the two
border types.

When you create a new map grid border, you don’t need to use the
IMapGridBorder interface. As you can see, all the properties exposed by
this interface are read-only.

A simple map grid border is drawn using a line symbol specified with
the ISimpleMapGridBorder interface.

 ISimpleMapGridBorder : IUnknown Provides access to the members that control the simple
map grid border.

LineSymbol: ILineSymbol The line symbol used to draw the border.

The ISimpleMapGridBorder interface provides access to the line symbol
used to draw the grid border through the LineSymbol property. The code
below illustrates how you can create a simple map grid border.

  'Create a simple map grid border

  Dim pSimpleMapGridBorder As ISimpleMapGridBorder

  Set pSimpleMapGridBorder = New SimpleMapGridBorder

  'Set the ISimpleMapGridBorder properties

  Dim pLineSymbol As ISimpleLineSymbol

  Set pLineSymbol = New SimpleLineSymbol

  pLineSymbol.Style = esriSLSSolid

  pLineSymbol.Color = BuildRGb(0, 0, 0)

  pLineSymbol.Width = 2

  pSimpleMapGridBorder.LineSymbol = pLineSymbol

  'Assign this border to the map grid

  pMapGrid.Border = pSimpleMapGridBorder

IMapGridBorder
IPersistStream MapGrid-

Border

A map grid border is the set of lines that
outline the map grid.

IMapGridBorder
IPersistStream MapGrid-

Border

ISimpleMapGridBorder SimpleMap-
GridBorder

A simple map grid border is composed of
the lines that frame the map grid.

A simple map grid border

Display Name

"Simple Border"

"Calibrated Border"

Type of MapGridBorder

SimpleMapGridBorder

CalibratedMapGridBorder



406 • Exploring ArcObjects • Volume 1

CALIBRATEDMAPGRIDBORDER COCLASS

The CalibratedMapGridBorder coclass encapsulates the functionality
required to draw a map grid outline composed of a graduated band.

 ICalibratedMapGridBorder : IUnknown Provides access to members that control the calibrated
map grid border.

Alternating: Boolean Indicates if the border pattern alternates across the width of the
border.

BackgroundColor: IColor The background color of the border pattern.
BorderWidth: Double The width of the border in points.
ForegroundColor: IColor The foreground color of the border pattern.
Interval: Double The interval between border patterns in points.

You can use the ICalibratedMapGridBorder interface to set or retrieve
the properties of a calibrated map grid border, such as the foreground
and background color of the pattern, the interval of the pattern, the
background color of the band, and the width of the border.

If you want the pattern to alternate in two bands across the width of the
border, set the Alternating property to True. Setting this property to False
will produce a border with a single band of the pattern.

The code below illustrates how you can create a calibrated map grid
border.

  'Create a calibrated map grid border

  Dim pCalibratedBorder As ICalibratedMapGridBorder

  Set pCalibratedBorder = New CalibratedMapGridBorder

  'Set ICalibratedMapGridBorder properties

  pCalibratedBorder.BackgroundColor = BuildRGb(255, 255, 255)

  pCalibratedBorder.ForegroundColor = BuildRGb(0, 0, 0)

  pCalibratedBorder.BorderWidth = 10

  pCalibratedBorder.Interval = 72

  pCalibratedBorder.Alternating = True  'Double alternating border

  'Assign this border to the map grid

  pMapGrid.Border = pCalibratedBorder

The interval of the pattern on the band is in points and page units. If
you want to compute your border intervals in map units, you can use a
DisplayTransformation to convert your interval from map units to page
units. You can convert these to points, considering that there are
72 points to an inch.

For more information on using DisplayTransformation, see Chapter 5,
‘Displaying graphics’.

IMapGridBorder
IPersistStream MapGrid-

Border

ICalibratedMap-
GridBorder Calibrated-

MapGrid-
Border

A calibrated map grid border is com-
posed of a graduated band defining the

edge of the map grid.

A calibrated map grid border



Chapter 4 • Composing maps • 407

A
rc

M
ap

GRIDLABEL ABSTRACT CLASS

A grid label object is associated with every map grid object and pro-
vides the functionality required to draw labels around the map grid.

 IGridLabel : IUnknown Provides access to members that control the way a map
grid is labeled.

Applies (in grid: IMapGrid) : Boolean Indicates if this grid label can be used with the specified map grid.
Color: IColor The color of the grid label.
DisplayName: String The display name for the type of grid label.
EditObject: IUnknown Pointer The interface to an object that can be edited with a property sheet.

The object is either the grid label itself or a single editable property.
Font: Font The font used by the grid label.
LabelAlignment (in axis:

esriGridAxisEnum) : Boolean
Indicates if the grid label is horizontal (true) or vertical (false) on the

specified axis.
LabelOffset: Double The offset of the grid label from the border in points.

Draw (in labelValue: Double, in
Location: IPoint, in axis:
esriGridAxisEnum, in Display: IDisplay)

Draws a label on the specified grid axis.

Preview (in hDC: Long, in rectangle:
tagRECT)

Draws a preview of the grid label into the specified hdc.

QueryTextExtent (in labelValue: Double,
in Location: IPoint, in axis:
esriGridAxisEnum, in Display: IDisplay,
Extent: IEnvelope)

Determines the extent of a label's text on the specified grid axis.

The IGridLabel interface holds properties common to all types of grid
labels. Not all grid labels can be used with all types of grids. The Applies
property of IGridLabel returns True if the grid label can be used with the
grid that you pass in as argument. The table to the left lists the types of
labels that can be used with each grid type.

Using the IGridLabel::DisplayName property, you can list the type of
label that the IGridLabel interface is pointing to. The strings returned for
the various label types are also listed in the table to the left.

You can control the vertical or horizontal orientation of the labels along
each of the four sides of the grid using the IGridLabel::LabelAlignment
property. You specify which axis you are setting the property for using
an esriGridAxisEnum enumeration.

Enumeration esriGridAxisEnum Map grid axes.

0 - esriGridAxisNone No axis.
1 - esriGridAxisTop Top axis.
2 - esriGridAxisBottom Bottom axis.
3 - esriGridAxisLeft Left axis.
4 - esriGridAxisRight Right axis.

Here’s how you would populate the properties exposed by IGridLabel
for a newly created GridLabel:

  ' Create grid label

  Dim pGridLabel as IGridLabel

  Set pGridLabel = New DMSGridLabel

  ' Set font and color

  Dim pFont As IFontDisp

  Set pFont = New StdFont

  pFont.Name = "Arial"

  pFont.Size = 24

  pGridLabel.Font = pFont

  pGridLabel.Color = BuildRGB(0, 0, 0)

IGridLabel
IPersistStream GridLabel

A grid label governs the way a map grid
is labeled along the borders.

Label

DMSLabel

DisplayName

Degrees Minutes Seconds

FormattedLabel

MixedFontLabel

ButtonTabStyle

RoundedTabStyle

ContinuousTabStyle

BackgroundTabStyle

Formatted

Mixed Font

Button Tabs

Rounded Tabs

Continuous Tabs

Filled Background

Grid

Graticule

Measured-
Grid

Index-Grid



408 • Exploring ArcObjects • Volume 1

  'Specify Vertical Labels

  pGridLabel.LabelAlignment(esriGridAxisLeft) = False

  pGridLabel.LabelAlignment(esriGridAxisRight) = False

  pGridLabel.LabelOffset = 6

You would then set the properties specific to the type of grid label you
are creating. You would associate the newly created grid label to the
grid using the grid’s IMapGrid::LabelFormat property:

  pMapGrid.LabelFormat = pGridLabel

IGridLabel::QueryTextExtent is used to check for labeling conflicts by
ArcMap. The IGridLabel::EditObject method is used in the MapGrid
property pages. It returns an interface that determines which dialog box
is brought up when a user clicks Additional Properties under the Labels
tab. The interfaces returned for each of the label types are listed in the
table on the left.

GRIDLABEL ABSTRACT CLASS

Grid label

DMSGridLabel

Edit object returned

IDMSGridLabel

FormattedGridLabel INumberFormat

MixedFontGridLabel IMixedFontGridLabel

IndexFontGridLabel IIndexGridTabStyle



Chapter 4 • Composing maps • 409

A
rc

M
ap

DMSGRIDLABEL COCLASS

The DMSGridLabel coclass is used to label a map grid using degrees,
minutes, and seconds.

 IDMSGridLabel : IUnknown Provides access to members that control the DMS Grid
Label.

LabelType: esriDMSGridLabelType The type of the DMS grid label.
LatLonFormat: ILatLonFormat The format with which the latitudes and longitudes are displayed.
MinutesColor: IColor The color used to display the minutes.
MinutesFont: Font The font used to display the minutes.
SecondsColor: IColor The color used to display the seconds.
SecondsFont: Font The font used to display the seconds.
ShowZeroMinutes: Boolean Indicates if zero minutes are shown.
ShowZeroSeconds: Boolean Indicates if zero seconds are shown.

IDMSGridLabel provides access to the font, color, and format informa-
tion required to create a DMS grid label. The LabelType property can be
set using the esriDMSGridLabelType enumeration, which is listed below.
At ArcGIS 8.1, only the esriDMSGridLabelStandard and
esriDMSGridLabelStacked values have been implemented.

Enumeration esriDMSGridLabelType DMS grid label type options.

0 - esriDMSGridLabelStandard Standard.
1 - esriDMSGridLabelStacked Minutes stacked over seconds.
2 - esriDMSGridLabelDD Decimal degrees.
3 - esriDMSGridLabelDM Decimal minutes.
4 - esriDMSGridLabelDS Decimal seconds.

The following code demonstrates how to create a DMS grid label:
  'Create a DMS grid label
  Dim pDMSLabel As IDMSGridLabel
  Set pDMSLabel = New DMSGridLabel

  'Set IDMSGridLabel properties
  pDMSLabel.LabelType = esriDMSGridLabelStandard
  pDMSLabel.ShowZeroMinutes = True
  pDMSLabel.ShowZeroSeconds = True

  Dim pLatLonFormat As ILatLonFormat
  Set pLatLonFormat = New LatLonFormat
  pLatLonFormat.ShowDirections = True
  pDMSLabel.LatLonFormat = pLatLonFormat

  Dim pFont As IFontDisp
  Set pFont = New StdFont
  pFont.Bold = False
  pFont.Name = "Arial"
  pFont.Italic = False
  pFont.Underline = False
  pFont.Size = 8
  pDMSLabel.MinutesFont = pFont
  pDMSLabel.MinutesColor = BuildRGB(0, 0, 0)
  pDMSLabel.SecondsFont = pFont
  pDMSLabel.SecondsColor = BuildRGB(0, 0, 0)

IDMSGridLabel DMS-
GridLabel

IGridLabel
IPersistStream GridLabel

A DMS grid label labels the map grid
using degrees, minutes, and seconds.  You

can use this coclass to label graticules.

You can use a standard label to create a DMS
label with the degrees, minutes, and seconds on
the same line. A stacked label has the minutes
stacked over the seconds, with both in smaller

font size.

DMS grid label set to
esriDMSGridLabelStandard

DMS grid label set to
esriDMSGridLabelStacked



410 • Exploring ArcObjects • Volume 1

IGridLabel
IPersistStream GridLabel

IFormattedGridLabel Formatted-
GridLabel

A formatted grid label uses any of the
number format coclasses that support

INumberFormat to label the map grid.

For more information on these classes, refer to
the ArcMap number format objects topic in this

chapter.

A measured grid with formatted grid labels

The FormattedGridLabel coclass makes use of one of the coclasses that
inherits from the NumberFormat abstract class to create the grid labels.

 IFormattedGridLabel : IUnknown Provides access to members controlling the number format
of a grid label.

Format: INumberFormat The format used to display the numbers in the grid label.

This interface has a Format property that takes an INumberFormat inter-
face. The following code illustrates the creation of a formatted grid
label:

  'Create the label

  Dim pFormattedGridLabel As IFormattedGridLabel

  Set pFormattedGridLabel = New FormattedGridLabel

  'Set IFormattedGridLabel properties

  Dim pNumericFormat As INumericFormat

  Set pNumericFormat = New NumericFormat

  pNumericFormat.AlignmentOption = esriAlignRight

  pNumericFormat.RoundingOption = esriRoundNumberOfDecimals

  pNumericFormat.RoundingValue = 2

  pNumericFormat.ShowPlusSign = False

  pNumericFormat.UseSeparator = True

  pNumericFormat.ZeroPad = True

  pFormattedGridLabel.Format = pNumericFormat

FORMATTEDGRIDLABEL COCLASS



Chapter 4 • Composing maps • 411

A
rc

M
ap

Use the MixedFontGridLabel coclass to label map grids in two fonts and
in the format specified using the IFormattedGridLabel interface.

 IMixedFontGridLabel : IUnknown Provides access to members that define the appearance of
the secondary group of digits in the grid label.

NumGroupedDigits: Integer The number of digits that are displayed in the secondary font and
color.

SecondaryColor: IColor The color of the second group of digits.
SecondaryFont: Font The font used for the second group of digits.

The IMixedFontGridLabel::NumberOfDigits property determines how the
two fonts are applied to the label string. The last n digits of the label—
where n is the number assigned as the NumberOfDigits—are displayed
in the secondary font and color. The remaining digits are displayed in
the primary font and color.

The primary font and color are set using IGridLabel::Font and
IGridLabel::Color. The secondary font and color are set using
IMixedFontGridLabel::SecondaryFont and
IMixedFontGridLabel::SecondaryColor.

The following code illustrates how you can create a mixed font grid
label:

  'Create the label

  Dim pMixedFontLabel As IMixedFontGridLabel

  Set pMixedFontLabel = New MixedFontGridLabel

  'Set IMixedFontGridLabel properties

  Dim pFont As IFontDisp

  Set pFont = New StdFont

  pFont.Name = "Arial"

  pFont.Size = 12

  pMixedFontLabel.SecondaryFont = pFont

  pMixedFontLabel.SecondaryColor = BuildRGB(0, 0, 0)

  pMixedFontLabel.NumGroupedDigits = 6 '-1 if not being used

  'Set IFormattedGridLabel properties

  Dim pFormattedGridLabel As IFormattedGridLabel

  Set pFormattedGridLabel = pMixedFontLabel

  Dim pNumericFormat As INumericFormat

  Set pNumericFormat = New NumericFormat

  pNumericFormat.AlignmentOption = esriAlignRight

  pNumericFormat.RoundingOption = esriRoundNumberOfDecimals

  pNumericFormat.RoundingValue = 2

  pNumericFormat.ShowPlusSign = True

  pNumericFormat.UseSeparator = False

  pNumericFormat.ZeroPad = True

MIXEDFONTGRIDLABEL COCLASS

IGridLabel
IPersistStream GridLabel

IMixedFontGridLabel
IFormattedGridLabel MixedFont-

GridLabel

A mixed font grid label uses two fonts to
display the label. It also uses a number

format to format the label string.

A measured grid with mixed font labels



412 • Exploring ArcObjects • Volume 1

The index grid tab style coclasses provide the means to label an index
grid. These coclasses are described below.

 IIndexGridTabStyle : IUnknown Provides access to members that control the way an index
grid's labels are drawn.

ForegroundColor: IColor The foreground color of the tab.
OutlineColor: IColor The outline color of the tab.
Thickness: Double The thickness of the tab in points.

PrepareDraw (in labelValue: String, in
tabWidthPage: Double, in axis:
esriGridAxisEnum)

Sets up the tab for drawing.

The IIndexGridTabStyle interface provides access to the color and thick-
ness of the index grid’s labels. The PrepareDraw method should be
called before IGridLabel::Draw is called on index grid tab style labels.

You can create an index grid tab style label using a coclass that inherits
from IndexGridTabStyle, as outlined in the following examples. The
code illustrates how to populate the properties exposed by the IIndex-
GridTabStyle interface after you create the label:

  'Set IIndexGridTabStyle properties

  pIndexGridTabStyle.ForegroundColor = BuildRGB(255, 190, 190)

  pIndexGridTabStyle.OutlineColor = BuildRGB(110, 110, 110)

  pIndexGridTabStyle.Thickness = 20

Button tab style labels are rectangular buttons, each the width of the
grid cell that it borders. The following code shows you how to create a
button tab style grid label.

  'Create the label

  Dim pIndexGridTabStyle As IIndexGridTabStyle

  Set pIndexGridTabStyle = New ButtonTabStyle

Continuous tab style labels form a continuous band around the map
grid. The example below shows how you can create a label of this kind:

  Dim pIndexGridTabStyle As IIndexGridTabStyle

  Set pIndexGridTabStyle = New ContinuousTabStyle

Rounded tab style labels are rounded rectangles; each one is the width
of the grid cell it borders. Using the example below, you can create your
rounded tab style grid label.

  Dim pIndexGridTabStyle As IIndexGridTabStyle

  Set pIndexGridTabStyle = New RoundedTabStyle

INDEX GRID TAB STYLE COCLASSES

IndexGrid-
TabStyle

IIndexGridTabStyle

ButtonTabStyle
ContinuousTabStyle
RoundedTabStyle

IBackgroundTabStyle Background-
TabStyle

IGridLabel
IPersistStream GridLabel

An index grid tab style governs the way
an index grid is labeled.

Button tab style

Continuous tab style

Rounded tab style



Chapter 4 • Composing maps • 413

A
rc

M
apesriBackgroundTabRound

esriBackgroundTabRectangle

esriBackgroundTabRoundedRectangle

A background tab style labels the index grid using square, round, or
rounded-square boxes. These boxes are centered outside the grid cells
they border.

 IBackgroundTabStyle : IUnknown Provides access to members that control background tab
style grid labels.

BackgroundType:
esriBackgroundTabType

The type of the background tab style.

IBackgroundTabStyle has a BackgroundType property you can use to
determine the shape of the boxes that the BackGroundTabStyle label
uses.

Enumeration esriBackgroundTabType Types of background tabs for index grids.

0 - esriBackgroundTabRound Round.
1 - esriBackgroundTabRectangle Rectangle.
2 - esriBackgroundTabRoundedRectangle Rounded rectangle.

The example below illustrates how you can create a background tab
style label that uses round boxes to label a map grid.

  Dim pIndexGridTabStyle As IIndexGridTabStyle

  Set pIndexGridTabStyle = New BackgroundTabStyle

  'Set IBackgroundTabStyle properties

  Dim pBackgroundTabStyle As IBackgroundTabStyle

  Set pBackgroundTabStyle = pIndexGridTabStyle

  pBackgroundTabStyle.BackgroundType = esriBackgroundTabRound

INDEX GRID TAB STYLE COCLASSES



414 • Exploring ArcObjects • Volume 1

You can use the MapGridFactory coclasses to quickly create map grids.
The map grids created will have default properties applied.

Use one of the inheriting coclasses—GraticuleFactory, IndexGridFactory,
MeasuredGridFactory, or CustomOverlayGridFactory—to create the
respective map grid.

 IMapGridFactory : IUnknown Provides access to members of the map grid factory.

Name: String The name of the map grid class.

Create (in MapFrame: IMapFrame) :
IMapGrid

Creates a map grid.

IMapGridFactory::Create takes a map frame as the argument and returns
an IMapGrid interface to a newly created map grid. The map grid has
default properties. This is similar to creating a map grid and using
IMapGrid::SetDefault to assign properties to it. IMapGridFactory::Name
returns the name of the map grid class to which the map grid factory
object belongs. The following code shows you how to create a graticule
using a map grid factory:
  'Get the map frame for selected data frame
  Dim pMap As IMap
  Dim pMxDoc As IMxDocument
  Dim pGraphicsContainer As IGraphicsContainer
  Dim pMapFrame As IMapFrame
  Set pMxDoc = ThisDocument
  Set pMap = pMxDoc.FocusMap
  Set pGraphicsContainer = pMxDoc.PageLayout
  Set pMapFrame = pGraphicsContainer.FindFrame(pMap)
  'Create a graticule
  Dim pMapGrid As IMapGrid
  Dim pMapGridFactory As IMapGridFactory
  Set pMapGridFactory = New GraticuleFactory
  Set pMapGrid = pMapGridFactory.Create(pMapFrame)

MAP GRID FACTORY COCLASSES

IMapGridFactory MapGrid-
Factory

GraticuleFactory
IndexGridFactory

MeasuredGridFactory
CustomOverlayGridFactory

A map grid factory lets you quickly create
a map grid with default properties.



Chapter 4 • Composing maps • 415

A
rc

M
ap

ADDING A MAP GRID TO A DATA FRAME

After creating your map grid, you can use the IMapGrids::AddMapGrid
method to add it to the data frame. You can get the map frame as out-
lined in the previous example and QI it for the IMapGrids interface. If
you want the change to be immediately apparent, refresh the active
view. The following code illustrates this.
  'Get the IMapGrids and IActiveView interfaces
  Dim pMapGrids As IMapGrids
  Set pMapGrids = pMapFrame
  Set pMapGrid = pMapGrids.MapGrid(0)

  Dim pActiveView As IActiveView
  Set pActiveView = pMxDoc.PageLayout

  pMapGrids.AddMapGrid pMapGrid   'Add map grid, and refresh active view
  pActiveView.PartialRefresh esriViewBackground, Nothing, Nothing

REMOVING MAP GRIDS FROM A DATA FRAME

To remove map grids from a data frame, use IMapGrids::DeleteMapGrid
as shown below.
  Dim i As Long
  Dim lCount As Long

  lCount = m_pMapGrids.MapGridCount

  For i = 0 To lCount - 1   'Delete all map grids
    'When you delete grid(0), then next grid becomes the new grid(0).
    Set pMapGrid = m_pMapGrids.MapGrid(0)
    m_pMapGrids.DeleteMapGrid pMapGrid
  Next i

  Set m_pActiveView = pMxDoc.ActiveView
  m_pActiveView.PartialRefresh esriViewBackground, Nothing, Nothing

MAP GRIDS AND DATA FRAMES



416 • Exploring ArcObjects • Volume 1

The INumberFormat interface exposes the two number-formatting meth-
ods (ValueToString and StringToValue) used by all the number format
interfaces and coclasses.

 INumberFormat : IUnknown Provides access to members that format numbers.

StringToValue (in str: String) : Double Converts a formatted string to a numeric value.
ValueToString (in Value: Double) :

String
Converts a numeric value to a formatted string.

The ValueToString method transforms numerical values into a string. The
StringToValue method returns numerical values from formatted strings,
reversing the ValueToString operation.

The ValueToString method converts a numerical value into a formatted
string. The string is formatted based on the property settings of the
particular number-formatting interfaces used. For more information
about property settings of number-formatting interfaces, refer to the
number-formatting interface you’re interested in later in this section. In
some cases, the format produced by the ValueToString method depends
on two interfaces’ property settings. For example, AngleFormat uses
IAngleFormat and INumericFormat to determine the formatting.

The StringToValue method converts a formatted string into a numerical
value in the form of a Double. The string doesn’t necessarily need to be
formatted with the ValueToString method, but it does need to appear as if
it were formatted with the associated interface’s implementation of the
ValueToString method. For more information, refer to the relevant number-
formatting interface in which you’re interested in the sections that follow.

IClone
INumberFormat Number-

Format

The number-format objects convert
numerical values into strings and strings

into numerical values using
ValueToString and StringToValue
methods. How this conversion takes
place is normally dependent on the

property settings of one or two other
interfaces.

IRateFormat

RateFormat

IAngleFormat

AngleFormat

IPercentageFormat Percentage-
Format

INumericFormat Numeric-
Format

IFractionFormat Fraction-
Format

ICustomNumberFormat CustomNum-
berFormat

IClone
INumberFormat Number-

Format

Currency-
Format

A scientific format object
converts numbers with

exponent values

A fraction format object
converts fractional values

A custom number format
converts a wide range of

numeric formats

A currency format
object  converts
currency values

Numeric format objects
convert to and from angle,
latitude-longitude,
percentages, and rate values

ArcMap number format objects
Number format objects
convert values to text
strings and vice versa

Scientific-
Format

IScientificNumberFormat

ILatLonFormat
ILatLonFormat2 LatLon-

Format



Chapter 4 • Composing maps • 417

A
rc

M
ap

NUMERIC FORMAT COCLASSES

The format produced with the NumericFormat coclass object is deter-
mined solely by the INumericFormat interface property settings.

Formats produced with other coclasses that support INumericFormat
depend on two interfaces’ property settings: the INumericFormat inter-
face as well as the implemented interface within the numeric format
coclasses. This means that the NumericFormat coclass can be used to
do general formatting of numbers (such as number of decimal places
and plus sign), while the other coclasses that support INumericFormat
can perform special formatting (such as rates, latitude–longitude, and
percentages) by using a combination of INumericFormat and their own
interface.

 INumericFormat : IUnknown Numeric format interface.

AlignmentOption:
esriNumericAlignmentEnum

The alignment option applied to the ValueToString method.

AlignmentWidth: Long The alignment width applied to the ValueToString method.
RoundingOption:

esriRoundingOptionEnum
The rounding option applied to the ValueToString method.

RoundingValue: Long The rounding value, whose meaning depends on the rounding option.
ShowPlusSign: Boolean Indicates if formatted numbers contain a plus sign for positive

numbers.
UseSeparator: Boolean Indicates if formatted numbers contain digit grouping symbols.
ZeroPad: Boolean Indicates if formatted numbers contain padded zeros to the right of

the decimal.

The AlignmentOption property sets or returns an option that tells the
ValueToString method in the associated INumberFormat interface how to
align formatted numbers. For example, the value “0.34”, formatted as a
string with an AlignmentWidth of 5, is returned as “0.34” with an
AlignmentOption of esriAlignRight and “0.34” with an AlignmentOption
of esriAlignLeft.

The settings for AlignmentOption are as follows:

• With esriAlignRight, which is the default, numbers are aligned to the
right. If the AlignmentWidth property is wider than the resulting for-
matted number, spaces are padded at the left to make the output
AlignmentWidth characters wider.

• With esriAlignLeft, numbers are aligned to the left. No spaces are
padded at the left or the right. If AlignmentOption is set to
esriAlignLeft, the AlignmentWidth property is ignored. For both op-
tions, even if the AlignmentWidth is not sufficient to hold the format-
ted number, the number will not be truncated.

The AlignmentWidth property is used to set or return the width (the
default is 12) of the resulting string produced by ValueToString from the
associated INumberFormat interface.

If the AlignmentOption property is set to esriAlignRight, the formatted
number will be AlignmentWidth characters wide; spaces will be padded
to the left of the number as needed. If AlignmentOption is equal to
esriAlignLeft, the AlignmentWidth property is ignored. The width in-
cludes plus signs and any decimal points. For example, +1,234.56 has a
width of 9.

The following coclasses all support the
INumericFormat interface:

AngleFormat

LatLonFormat

NumericFormat

PercentageFormat

RateFormat

The AngleFormat, LatLonFormat,
PercentageFormat, and RateFormat coclasses
all support the INumericFormat interface as

well as their own default interfaces
(IAngleFormat, ILatLonFormat,

IPercentageFormat, and IRateFormat,
respectively).

For each of the coclasses, the combination of
properties on both interfaces is used to deter-
mine how numbers are formatted when using

the ValueToString and StringToValue methods
from the associated INumberFormat interface.

IClone
INumberFormat Number-

Format

INumericFormat Numeric-
Format

IRateFormat

RateFormat

IPercentageFormat Percentage-
Format

ILatLonFormat
ILatLonFormat2 LatLon-

Format

IAngleFormat

AngleFormat



418 • Exploring ArcObjects • Volume 1

The RoundingOption property specifies how the RoundingValue prop-
erty should be used to format a number using ValueToString. The two
options are esriRoundNumberOfDecimals, which is the default, and
esriRoundNumberOfSignificantDigits.

The esriRoundNumberOfDecimals option rounds values to the number
of decimal places defined in the RoundingValue property. If ZeroPad is
also set to True, decimal zeros are appended up to the number of
places indicated in the RoundingValue property.

If esriRoundNumberOfSignificantDigits is used, then values are
rounded to the number of significant digits indicated in the
RoundingValue property.

To format numbers and express significant zeros at the right of the
decimal, set ZeroPad to True. For example, the number 12.0345, for-
matted with a RoundingValue, is equal to 8, and ZeroPad = True be-
comes 12.034500, or simply 12.0345 if ZeroPad = False.

The RoundingValue property sets or returns the number of decimal
places or significant digits to round a number to when the
ValueToString method in the associated INumberFormat interface for-
mats numbers. The default value is 6 for both rounding options.

The table below shows how the value of 123.456 is formatted as a
string with various rounding settings.

Rounding option

esriRoundNumberOfDecimals

Rounding value ValueToString result

"123.46"
2

"123.46"

"123.4560"
4

"123.456"

True

ZeroPad

False

True

False

esriRoundNumberOfSignificantDigits

"120"
2

"120"

"123.45600"
8

"123.456"

True

False

True

False

The ShowPlusSign property sets or returns a Boolean indicator that
indicates whether or not a plus sign symbol (+) is to be prefixed to
positive numbers when the ValueToString method in the associated
INumberFormat interface is used.

The default value is False—positive numbers are formatted without a
plus sign, and negative values are formatted with a minus sign (-). If
this property is set to True, then positive numbers are formatted with a
plus sign, and negatives behave as before. Zero values are never pre-
fixed.

The UseSeparator property is used to specify whether to include a digit-
grouping symbol when formatting numbers with the ValueToString
method. False is the default, meaning that numbers are formatted with-
out a digit-grouping symbol—for example, “1234567.89”. However, if it

NUMERIC FORMAT COCLASSES



Chapter 4 • Composing maps • 419

A
rc

M
ap

is set to True, then a digit-grouping symbol is used as follows:
“1,234,567.89”. The formatting itself is determined using the current
regional settings defined for the system at runtime. To change the
separator symbol or where the separator appears in the formatted
number, change the settings on the Number tab of the Control Panel’s
Regional Settings applet.

ZeroPad is a Boolean property that states whether or not to pad zeros
to the right of the decimal. If this property is left as the default value of
False, then numbers will be formatted without padding decimal zeros.
The last decimal digit (to the right of the decimal point) will be a
nonzero digit. If set to True, however, zeros are appended to the right
of the decimal point in accordance with the RoundingValue property.

NUMERIC FORMAT COCLASSES



420 • Exploring ArcObjects • Volume 1

AngleFormat is the IAngleFormat interface coclass whose members
determine how the ValueToString method in the associated INumber-
Format interface formats numbers in an angular format.

 IAngleFormat : IUnknown Angle format interface.

AngleInDegrees: Boolean Indicates if the ValueToString argument is in degrees.
DisplayDegrees: Boolean Indicates if the formatted number is an angle in degrees.

The members in the IAngleFormat interface define how the
ValueToString method in the associated INumberFormat interface formats
numbers.

Use the IAngleFormat interface to format numbers that represent angles.

The AngleInDegrees property sets or returns whether the input angle
represents degrees (True) or radians (False), which is the default value.

DisplayDegrees sets or returns whether the angle is displayed as degrees
(True) or radians (False).

If the AngleInDegrees property is not set the same as the DisplayDegrees
property (both of these are Boolean properties), a radian-to-degree or
degree-to-radian conversion will take place when the ValueToString
method formats the number. AngleInDegrees affects the ValueToString
argument value. If the value is in degrees, then AngleInDegrees is set to
True. If AngleInDegrees is False, the argument is assumed to be a radian
value.

DisplayDegrees deals with the ValueToString result. If you want the re-
sulting formatted number to be a degree value, set DisplayDegrees to
True. A degree symbol (°) is also appended to the resulting formatted
number. If DisplayDegrees is False, the formatted number is a radian
value, and no degree symbol is appended.

The corresponding StringToValue method also uses these two properties.
To obtain the numerical value that was used as a parameter to the
ValueToString method, make sure the AngleInDegrees and DisplayDegrees
properties are the same as they were when the ValueToString method
was used. These settings may seem like they work in reverse when using
the StringToValue method, but if you consider that StringToValue is
intended to obtain numerical values from formatted strings, this makes
more sense.

The DisplayDegrees property sets or returns an option that tells the
ValueToString method in the associated INumberFormat interface
whether or not the resulting formatted expression is in degrees or radi-
ans. If this property is set to False, the default, then the resulting format
is a radian value, and a degree symbol is not appended. If the property
is set to True, however, the resulting format is displayed as a degree
value with a degree symbol appended to it.

ANGLEFORMAT COCLASS

IClone
INumberFormat Number-

Format

INumericFormat Numeric-
Format

IAngleFormat

AngleFormat

The angle format object is used for
formatting numeric values that represent

angles, such as 69°. It also allows the
conversion between radians and degrees.



Chapter 4 • Composing maps • 421

A
rc

M
ap

This LatLonFormat coclass formats numbers that represent latitude and
longitude values. For example, the value 55.87 would be converted to
the string ‘55°52’12"N’.

 ILatLonFormat : IUnknown Latitude/Longitude format interface.

IsLatitude: Boolean Indicates if a formatted number is a latitude or not.
ShowDirections: Boolean Indicates if a directional letter (N-S-E-W) is appended to the

formatted number.
ShowZeroMinutes: Boolean Indicates if zero minutes are included in formatted output.
ShowZeroSeconds: Boolean Indicates if zero seconds are included in formatted output.

GetDMS (in Value: Double, out degrees:
Long, out minutes: Long, out seconds:
Double)

Returns the degrees, minutes, and seconds for a lat/lon number.

Use the ILatLonFormat interface to format numbers that represent lati-
tude or longitude. The members in the ILatLonFormat interface define
how the ValueToString method in the associated INumberFormat inter-
face formats numbers.

The LatLonFormat coclass also inherits the INumericFormat interface,
which means both of these interfaces’ properties determine how num-
bers are formatted. GetDMS is a utility method that returns the degrees,
minutes, and seconds for a given latitude or longitude value. To use it
you should pass in the input decimal degree value and also pass in
three double values representing the output degrees, minutes, and sec-
onds that will be populated by the method. The following code demon-
strates this.

Sub LatLonTest()

  Dim pLatLonFormat As ILatLonFormat

  Set pLatLonFormat = New LatLonFormat

  Dim dValue as Double

  dValue = 45.253

  Dim lDegrees As Long, lMinutes As Long, dSeconds As Double

  ' The GetDMS method calculates degrees, minutes and seconds

  pLatLonFormat.GetDMS dValue, lDegrees, lMinutes, dSeconds

  MsgBox lDegrees & " degrees" & vbNewLine & lMinutes & _

   "minutes" & vbNewLine & dSeconds & " seconds", , "DMS(" & dValue & ")"

End Sub

The IsLatitude property specifies whether subsequent values represent
latitude (True) or longitude (False). If the value of the property is set to
False and the ShowDirections property is set to True, then when the
ValueToString method from the associated INumberFormat interface is
used, a directional letter designation of either E (for positive values) or
W (for negative values) is appended to the format. An example is
“23°E”. Also, when used with the IDMSGridLabel interface, it sets an
indicator to specify that latitude labels will be placed on top of the data

IClone
INumberFormat Number-

Format

INumericFormat Numeric-
Format

ILatLonFormat
ILatLonFormat2 LatLon-

Format

This LatLonFormat object formats
numbers from decimal values to degrees,

minutes, and seconds.

LATLONFORMAT COCLASS



422 • Exploring ArcObjects • Volume 1

frame border, and longitude labels will be placed to the left of the data
frame border.

If True, the directional letter will be either N or S; with IDMSGridLabel,
latitude labels are placed below the data frame border, and longitude
labels are placed to the right.

ShowDirections sets or returns a Boolean value specifying whether or
not direction is shown with a letter (N, S, E, or W). It is useful only with
the ValueToString method in the associated INumberFormat interface.
The default value is False.

As an alternative, the ShowPlusSign property from INumericFormat can
be used to show similar information since the LatLonFormat coclass also
supports this interface.

The ShowZeroMinutes and ShowZeroSeconds properties simply set or
return a Boolean value to specify whether or not a zero value in the
minutes or seconds location is expressed when the ValueToString
method in the associated INumberFormat interface formats numbers. For
both properties, nonzero values are always expressed in the format. If
ShowZeroSeconds is True, then zero values in the minutes location are
also shown, regardless of the ShowZeroMinutes setting.

As an example, if ShowZeroSeconds is True, then ValueToString will
return 17°0’0 from an input value of 17.0.

LATLONFORMAT COCLASS



Chapter 4 • Composing maps • 423

A
rc

M
ap

The PercentageFormat coclass allows the conversion between values
and strings that represent percentages. The PercentageFormat coclass
also supports the INumericFormat interface, so a combination of these
interfaces’ properties determines how numbers are formatted.

 IPercentageFormat : IUnknown Percentage format interface.

AdjustPercentage: Boolean Indicates if ValueToString agument is treated as a fraction or a
percentage.

The AdjustPercentage property allows the conversion to and from frac-
tions. If it is set to False, the default, then the arguments to both the
ValueToString and StringToValue methods are assumed to be in percent-
age format already. For ValueToString a percentage symbol is simply
appended to the value, and for StringToValue this is removed. If this
property is set to True, however, the argument to the ValueToString
method is treated as a fraction. The value is multiplied by 100, and a
percent symbol is appended. For StringToValue, the output is converted
to a fraction (from a percentage)—it is divided by 100, and any percent-
age symbol is removed. This is demonstrated in the following code:
Sub PercentageFormatExample()
  Dim pPercentageFormat As IPercentageFormat
  Dim dValue As Double, sV2S As String, dS2V As Double
  Dim pNumberFormat As INumberFormat

  Set pPercentageFormat = New PercentageFormat
  Set pNumberFormat = pPercentageFormat

  dValue = 0.5 ' Set the input value

  'First try with a conversion between fractions and percentages
  pPercentageFormat.AdjustPercentage = True

  sV2S = pNumberFormat.ValueToString(dValue)
  dS2V = pNumberFormat.StringToValue(sV2S)

  MsgBox "ValueToString(" & dValue & ") = '" & sV2S & "'" & _
    vbNewLine & "StringToValue('" & sV2S & "') = " & dS2V, , _
    "PercentageFormat - AdjustPercentage = " & _
    pPercentageFormat.AdjustPercentage

  'Now try without converting between fractions and percentages
  pPercentageFormat.AdjustPercentage = False

  sV2S = pNumberFormat.ValueToString(dValue)
  dS2V = pNumberFormat.StringToValue(sV2S)

  MsgBox "ValueToString(" & dValue & ") = '" & sV2S & "'" & _
    vbNewLine & "StringToValue('" & sV2S & "') = " & dS2V, , _
    "PercentageFormat - AdjustPercentage = " & _
    pPercentageFormat.AdjustPercentage
End Sub

IClone
INumberFormat Number-

Format

INumericFormat Numeric-
Format

IPercentageFormat Percentage-
Format

The percentage-format object formats
values that represent percentages. For

example, 56 is formatted to “56%”, with
an optional conversion from a fraction to

a percentage, for example, 0.5 to “56%”.

PERCENTAGEFORMAT COCLASS



424 • Exploring ArcObjects • Volume 1

The RateFormat coclass and the IRateFormat interface format numeric
values according to a given rate factor and string suffix.

 IRateFormat : IUnknown Rate format interface.

RateFactor: Double The rate factor applied to the ValueToSring and StringToValue
methods.

RateString: String The label appended to the formatted rate number.

The interface’s two properties (RateString and RateFactor) determine
how the formatting takes place when using the ValueToString and
StringToValue methods of the associated INumberFormat interface. This
coclass supports INumericFormat so its members are also used in the
formatting process.

When using the ValueToString method, any string defined in the
RateString property (the default value is Null) is appended to the
method’s input value. Also, the value in the RateFactor property (the
default value is 1000) is divided into the ValueToString argument value.
For example, ValueToString (300) with a RateFactor of 3 and a
RateString of “loaves” would return a formatted string of “100 loaves”.

The corresponding StringToValue method also uses both these proper-
ties. The value from the input string is multiplied by the value in the
RateFactor property when StringToValue converts the number back.
Also, if set, the RateString is stripped from the result.

CurrencyFormat is a coclass that formats numbers to look like a cur-
rency. For example, the number 123456.789, when formatted with
CurrencyFormat (default U.S. English regional settings), looks like
$123,456.79. Note that the formatted number is rounded to the nearest
cent. Negative numbers are typically depicted inside parentheses—for
example, a negative number of the same value would be formatted as
($123,456.79).

To format numbers as currency, create a CurrencyFormat object and
use the ValueToString method.

CurrencyFormat does not have an ICurrencyFormat interface because
there are no member properties to set. To use it, define an object as an
INumberFormat and set it to a new CurrencyFormat. Numbers are for-
matted according to the current regional settings defined for the system
at runtime. To change the way currency numbers are formatted, change
the settings on the Currency tab of the Control panel’s Regional Settings
applet.

RATEFORMAT AND CURRENCYFORMAT COCLASSES

IClone
INumberFormat Number-

Format

INumericFormat Numeric-
Format

IRateFormat

RateFormat

The rate-format object allows the for-
matting of values that represent rates.

Using the associated ValueToString
method on INumericFormat, it can be

used to multiply the value by the
RateFactor and append the

RateString.

IClone
INumberFormat Number-

Format

Currency-
Format

The CurrencyFormat coclass has no
interface of its own—it simply uses the

ValueToString and StringToValue
methods from INumberFormat to

convert between values representing
currency and formatted strings. The

formatting is taken from your system
settings.



Chapter 4 • Composing maps • 425

A
rc

M
ap

Use the ScientificFormat coclass when you want to express numbers in
a scientific format, for example, to create a table of empirical values.
ScientificFormat expresses numbers as a power of 10. For example, the
value 1500 in scientific format to 3 significant digits is the expression
1.50e+003, where the number before “e” is the mantissa, and the num-
ber after “e” is the power of 10, or exponent. The meaning of this ex-
pression is 1.50 x 10^3. The number of digits in the exponent (+003)
cannot be changed—it is always a plus or minus sign and 3 digits.

The DecimalPlaces property sets or returns a long representing the num-
ber of decimals to show in the mantissa. Since all digits in a scientific
format expression are significant, set the DecimalPlaces property to the
number of desired significant digits minus 1. For example, to express the
value 1 to 3 significant digits (1.00e+000), set DecimalPlaces to 2. The
default value is 6.

The power behind the scientific format expresses significant zeros. For
example, a 1000-yard distance measured with a bicycle odometer may
only be accurate to the nearest 10th mile (176 yards). In this case, 1000
is only significant to one place and should be expressed as 1 x 10^3.
On the other hand, you may know the measurement is precise to the
last zero (perhaps you carefully measured this distance with a yard-
stick)—in this case, you should express the measurement as 1.000 x
10^3.

Number-
Format

Scientific-
Format

IScientificNumber-
Format

The scientific-format object allows the
conversion of values to and from scien-
tific (exponential) notation, for example,

19730 to “1.97e+006”.

SCIENTIFICFORMAT COCLASS



426 • Exploring ArcObjects • Volume 1

Use the IFractionFormat interface to either convert from a decimal frac-
tion to a formatted fraction (using the ValueToString method) or to
evaluate a formatted fraction as a decimal (using the StringToValue
method). Basically, this means that ValueToString could convert an input
of 0.75 to a string such as “3/4”, and 2.5 could become “2 1/2”, while
StringToValue would do the reverse.

The properties FractionOption and FractionFactor give you more control
over how the ValueToString conversion takes place because they allow
you to use the FractionFactor to specify what denominator should be
used for the output. The way in which this FractionFactor is used de-
pends on which of the two settings (esriFractionOptionEnum) is used
for the FractionOption property.

The default option for FractionOption is esriSpecifyFractionDigits, which
means that the FractionFactor property specifies the maximum number
of digits to which the numerator or denominator is calculated. If the
value passed to ValueToString evaluates a fraction whose numerator or
denominator has more digits than specified in the FractionFactor prop-
erty, the formatted string will be rounded to represent the closest frac-
tion to the number of digits specified. As an example, the fraction 893/
1234 returns a decimal value of 0.723662884927066. ValueToString can
format this decimal number back to “893/1234”; however, the maximum
number of decimal places to be used in the output fraction is three (by
default). Therefore, by default this returns a formatted result of 474/655
because this is the closest three-digit fraction to the decimal value. To
calculate all four digits in the denominator and return to the original
fraction, FractionFactor needs to be set to a value of 4. The caveat here
is that the higher the FractionFactor setting, the more processing time it
will take to figure out the fraction.

Alternatively, if FractionOption is set to esriSpecifyFractionDenominator,
then the FractionFactor property value is used to explicitly specify the
denominator. Since the ValueToString method doesn’t have to calculate
the denominator, the result is returned very quickly. For example, when
using esriSpecifyFractionDenominator, if the FractionFactor is set to 8,
then the resulting fraction would be given in eighths.

Public Sub FractionDemo()

  Dim pFraForm As IFractionFormat

  Dim pNumForm As INumberFormat

  Set pFraForm = New FractionFormat

  Set pNumForm = pFraForm

  'Specify denominator explicitly

  pFraForm.FractionOption = esriSpecifyFractionDenominator

  pFraForm.FractionFactor = 8 'Use eighths

  MsgBox pNumForm.ValueToString(0.75) 'Shows "6/8"

Number-
Format

IFractionFormat Fraction-
Format

The fraction-format object converts from
decimal values to fractions (using

ValueToString) and vice versa (using
StringToValue).

FRACTIONFORMAT COCLASS



Chapter 4 • Composing maps • 427

A
rc

M
ap

  pFraForm.FractionFactor = 4 'Use fourths

  MsgBox pNumForm.ValueToString(0.75) 'Shows "3/4"

  pFraForm.FractionFactor = 4  'Use fourths

  'Still shows "3/4" because result is rounded

  MsgBox pNumForm.ValueToString(0.85)

End Sub

The result will be rounded to fit the denominator specified, as both 0.75
and 0.85 become “3/4” in the above example.

When using StringToValue, neither the FractionOption nor the
FractionFactor properties are used; instead, a straightforward evaluation
of the fraction is carried out. For example, “5/8” returns a value of
0.625, and “6 3/4” returns 6.75.

FRACTIONFORMAT COCLASS



428 • Exploring ArcObjects • Volume 1

Use the ICustomNumberFormat interface to format numbers in a cus-
tomized way using the FormatString member property. The associated
INumberFormat’s ValueToString method is used to return a string for-
matted to fit whatever the FormatString property is set to. The
StringToValue method reverses this formatting. The formatting is done
based on the following sets of characters in the FormatString:

0 Digit placeholder. Displays a digit or a zero. If the expression has a
digit in the position where the 0 appears in the format string, display
it; otherwise, display a zero in that position.  If the number has
fewer digits than there are zeros (on either side of the decimal) in
the format expression, display leading or trailing zeros. If the num-
ber has more digits to the right of the decimal separator than there
are zeros to the right of the decimal separator in the format expres-
sion, round the number to as many decimal places as there are
zeros. If the number has more digits to the left of the decimal sepa-
rator than there are zeros to the left of the decimal separator in the
format expression, display the extra digits without modification.

# Digit placeholder. Displays a digit or nothing. If the expression has a
digit in the position where the # appears in the format string, display
it; otherwise, display nothing in that position. This symbol works like
the 0-digit placeholder, except that leading and trailing zeros aren’t
displayed if the number has the same or fewer digits than there are
# characters on either side of the decimal separator in the format
expression.

. Decimal placeholder. In some locales, a comma is used as the
decimal separator. The decimal placeholder determines how many
digits are displayed to the left and right of the decimal separator. If
the format expression contains only number signs to the left of this
symbol, numbers smaller than 1 begin with a decimal separator. To
display a leading zero displayed with fractional numbers, use 0 as
the first-digit placeholder to the left of the decimal separator. The
actual character used as a decimal placeholder in the formatted
output depends on the number format recognized by your system.

, Thousand separator. In some locales, a period is used as a thou-
sand separator. The thousand separator separates thousands from
hundreds within a number that has four or more places to the left
of the decimal separator. Standard use of the thousand separator is
specified if the format contains a thousand separator surrounded by
digit placeholders (0 or #). The actual character used as the thou-
sand separator in the formatted output depends on the number
format recognized by your system.

Number-
Format

ICustomNumberFormat CustomNum-
berFormat

The custom-number-format object and
its default interface allow numeric values

to be formatted as strings. It works by
pattern matching and allows conversions,

such as changing
ValueToString(12345678.9) to

“$12,345,678.90 big ones”.

CUSTOMNUMBERFORMAT COCLASS

The actual characters used as decimal placehold-
ers and thousand’s separators in the formatted

output depend on the number format recognized
by the system at runtime; thus, it is dependent

on your regional settings. To change the way
numbers are formatted, change the settings on

the Numbers tab of the Control panel’s Regional
Settings applet.



Chapter 4 • Composing maps • 429

A
rc

M
ap

‘ABC’ Literal string. You can place literal strings on either side of
numeric placeholders. For example, you can define a format expres-
sion as, “The formatted number is: ###,###.#0”.

All of the above can be combined to produce complex results. For
example, using ValueToString with a value of 12345678.9 and a
FormatString of ‘$#,###,###.#0 bucks’, the output should be
“$12,345,678.90 bucks”.

CUSTOMNUMBERFORMAT COCLASS



430 • Exploring ArcObjects • Volume 1

A NumberFormatDialog represents a graphical interface on the proper-
ties of the above interfaces. It allows you to set up one of the number
format objects, which you may then use to format numeric values. The
dialog box can be seen as a helper object since you are not required to
use it, and you may wish to create your own VBA form to present the
options to users in a different way.

The dialog box itself is split into two parts. On the left side is a list of all
the categories available, each of which equates to roughly one of the
NumberFormat coclasses. The right side shows the user interface par-
ticular to the category selected on the left-hand side.

For example, when RateFormat is selected from the left-hand side, the
right side displays a dropdown box that allows the user to select and
type in the factor (IRateFactor::RateFactor), and a text box where they
can optionally type in a suffix (IRateFactor::RateString). Additionally,
because the RateFactor coclass also supports INumericFormat, the Nu-
meric Options button is also shown. If this button is pressed, then a
second modal dialog box is displayed that allows access to the proper-
ties from INumericFormat, such as ShowPlusSign, RoundingValue, and
RoundingOption.

 INumberFormatDialog : IUnknown Number Format Dialog

NumberFormat: INumberFormat Sets or returns the current number format object

DoModal (in hWnd: Long) : Boolean Displays the number format dialog

The only interface supported by the NumberFormatDialog is INumber-
FormatDialog, which has one method, DoModal, and one read–write
property, NumberFormat.

DoModal displays the dialog box on top of the window specified by the
hWnd parameter. The method returns a Boolean to indicate which but-
ton was clicked when the dialog box was closed. True is returned if OK
was clicked, and False is returned if either Cancel or the Close button
was clicked. Because the dialog box is displayed modally, code execu-
tion does not continue until the dialog box has been closed.

The NumberFormat property allows you to set or get the NumberFormat
object used by the dialog box. This has two uses: setting the
NumberFormat object prior to calling DoModal (telling the dialog box
which type of format object should be shown in the display initializing
any settings) and getting the number-format object returned from the
dialog box.

Private Sub UIButtonControl1_Click()

  Dim pApp As IApplication

  Dim pNumFrmDialog As INumberFormatDialog

  Dim pNumerForm As INumericFormat

  Dim pNumForm As INumberFormat

  Dim hWnd As OLE_HANDLE

NUMBERFORMATDIALOG COCLASS

INumberFormat Number-
Format-
Dialog

The Number Format dialog box gives a
graphical user interface for setting up the

number format objects in the above
sections.

The Number Format dialog box is used within
ArcMap in several places, including:

Symbol property page: FormatLabels option in
the ClassBreaksRenderer section

Scale bar property page: Number Format button
in the Numbers & Marks tab

Layer property page: Format button in the
Fields tab

It can also be used by developers to present
number-formatting options to users.



Chapter 4 • Composing maps • 431

A
rc

M
ap

  ' Get the application's window handle

  hWnd = Application.hWnd

  ' Create a new NumberFormatDialog

  Set pNumFrmDialog = New NumberFormatDialog

  ' Create a new NumericFormat

  Set pNumerForm = New NumericFormat

  ' Setup the NumericFormat

  With pNumerForm

    .RoundingOption = esriRoundNumberOfDecimals

    .RoundingValue = 3

    .ShowPlusSign = True

    .UseSeparator = True

  End With

  ' Set the NumberFormatDialog's NumberFormat property

  pNumFrmDialog.NumberFormat = pNumerForm

  ' Open the dialog on the application's window

  If pNumFrmDialog.DoModal(hWnd) Then

    ' Get the returned INumberFormat and use to format a number

    Set pNumForm = pNumFrmDialog.NumberFormat

    MsgBox pNumForm.ValueToString(12345.6789)

  End If

End Sub

NUMBERFORMATDIALOG COCLASS



432 • Exploring ArcObjects • Volume 1

One of the key factors in creating a usable map is labeling (or annotat-
ing) features on the map. Labeling is the placing of text near a feature to
purvey information about that feature. Normally the label is based on
attribute values of the feature itself, but it doesn’t have to be.

The ArcMap labeling environment offers a wide variety of methods for
labeling features and for resolving conflicts when labels overlap each
other. The labeling environment includes the ability to specify which
features are to be labeled (all features, features identified by an SQL
query, and so on); the expression that is used to label them (expressions
can be simple or complex based on VB and Java scripting); placement
options and weights for those placements; and priority specifications of
one layer versus another. Depending on the requirements of the user, it
is also possible to label one layer with multiple expressions.

The objects in this model provide the ability to access all of the
parameters associated with the labeling of features. Advanced develop-
ers can also create their own expression-parsing engines to be used in
the labeling process.

Annotate layer properties holds a set of
labeling properties for a feature layer

Basic overposter layer properties
specify label placement and conflict

resolution properties

Label engine layer properties specify
labeling properties for a feature layer

Line label placement priorities specify
conflict resolution weights for labels placed

relative to line features

Line label position specifies the desired
label position and placement option  for

labels placed relative to line features

Point placement priorities specify conflict
resolution weights for labels placed relative

to point features

Labeling objects
ILineLabelPosition LineLabel-

Position

IAnnotateLayerProperties
IAnnotateLayerTransformationProperties

IAnnotateProperties
IClone

ILabelEngineLayerProperties
IPersistStream

LabelEngine-
Layer-

Properties

ILineLabelPlacementPriorities LineLabel-
Placement-

Priorities

IPointPlacementPriorities Point-
Placement-

PrioritiesIBasicOverposterLayerProperties
IOverposterLayerProperties

IClone

BasicOver-
posterLayer-
Properties

IAnnotateLayerPropertiesCollection
IPersistStream

Annotate-
Layer-

Properties-
Collection

IAnnotationExpressionEngine
IPersistStream

Annotation-
Expression-

Engine

Annotation-
VBScript-

Engine

Annotation-
JScript-
Engine

IBarrierCollection Barrier-
CollectionA barrier collection holds a

set of geometries used as
barriers in label placement

An annotation Java Script engine
specifies a label expression based
on Java Script

An annotation VB Script engine
specifies a label expression

based on VB Script



Chapter 4 • Composing maps • 433

A
rc

M
ap

The AnnotateLayerPropertiesCollection holds a collection of the different
labeling sets (LabelEngineLayerProperties objects) assigned to a particular
feature layer. The collection can be created, or it can be retrieved from
the IGeoLayer::AnnotationProperties property on a feature layer. It is
possible to label a layer with more than one expression. The purpose of
the AnnotateLayerPropertiesCollection object is to keep track of the set of
expressions that have been assigned.

 IAnnotateLayerPropertiesCollection :
 IUnknown

Provides access to members that work with a collection of
annotation settings for a feature layer.

Count: Long Returns the number of items in the collection.

Add (in Item: IAnnotateLayerProperties) Adds an item to the collection.
Clear Removes all the items in the collection.
QueryItem (in Index: Long, out Item:

IAnnotateLayerProperties,
placedElements: IElementCollection,
unplacedElements:
IElementCollection)

Returns the item in the collection at the specified index.

Remove (in Layerprops:
IAnnotateLayerProperties)

Removes the item in the collection at the specified index.

Sort Sorts the items in the collection.

The IAnnotateLayerPropertiesCollection interface allows for the manipula-
tion of the IAnnotateLayerProperties (LabelEngineLayerProperties coclass)
objects held within the collection. Through the interface, the developer
can add, remove, sort, and query the objects in the collection.

QueryItem provides access to the items in the collection as well as the
placed and unplaced elements that go with each LabelEngineLayer-
Properties object.

The following VBA code gets the collection object from a layer and
displays the expression defined for each property set within
the collection.

Sub AnnoClasses()

  Dim pDoc As IMxDocument, pMap As IMap, lLoop As Long

  Dim pGeoLayer As IGeoFeatureLayer

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  For lLoop = 0 To pMap.LayerCount - 1

    If UCase(pMap.Layer(lLoop).Name) = "PIPES" Then

      Set pGeoLayer = pMap.Layer(lLoop)

      Exit For

    End If

  Next lLoop

  Dim pAnnoProps As IAnnotateLayerPropertiesCollection

  Dim pLabelEngine As ILabelEngineLayerProperties

  Set pAnnoProps = pGeoLayer.AnnotationProperties

  For lLoop = 0 To pAnnoProps.count - 1

    pAnnoProps.QueryItem lLoop, pLabelEngine

    Debug.Print pLabelEngine.Expression

  Next lLoop

End Sub

ANNOTATELAYERPROPERTIESCOLLECTION COCLASS

IAnnotateLayer-
PropertiesCollection

IPersistStream

Annotate-
Layer-

Properties-
Collection

The AnnotateLayerPropertiesCollection
object holds one or more labeling prop-

erty objects for a feature layer. These
objects in turn specify how the labels are
to be rendered and placed relative to the
features. Each object in the set can apply

to a subset (query) of the features.



434 • Exploring ArcObjects • Volume 1

A LabelEngineLayerProperties object maintains the set of properties
associated with the labeling of a feature layer. Multiple LabelEngine-
LayerProperties can be created for a single feature layer; they are stored
within an AnnotateLayerPropertiesCollection. The object keeps track of
which features to label, how to label them, what symbology to use, how
to transform the labels based on the current scale, and what to do with
unplaced labels.

The following VBA code demonstrates how to create a new Label-
EngineLayerProperties object and add it to the AnnotateLayerProperties-
Collection object retrieved from a line feature layer (for example,
“PIPES”). The code also creates and employs BasicOverposterLayer-
Properties, LineLabelPlacementPriorities, and LineLabelPosition objects.

Sub AddAnnoProps()

  Dim pDoc As IMxDocument, pMap As IMap, lLoop As Long

  Dim pGeoLayer As IGeoFeatureLayer

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  For lLoop = 0 To pMap.LayerCount - 1

    If UCase(pMap.Layer(lLoop).Name) = "PIPES" Then

      Set pGeoLayer = pMap.Layer(lLoop)

      Exit For

    End If

  Next lLoop

  Dim pAnnoProps As IAnnotateLayerPropertiesCollection

  Set pAnnoProps = pGeoLayer.AnnotationProperties

  Dim pAnnoLayerProps As IAnnotateLayerProperties

  Dim pPosition As IlineLabelPosition

  Dim pPlacement As ILineLabelPlacementPriorities

  Dim pBasic As IBasicOverposterLayerProperties

  Dim pLabelEngine As ILabelEngineLayerProperties

  Set pPosition = New LineLabelPosition

  pPosition.Parallel = False

  pPosition.Perpendicular = True

  Set pPlacement = New LineLabelPlacementPriorities

  Set pBasic = New BasicOverposterLayerProperties

  pBasic.FeatureType = esriOverposterPolyline

  pBasic.LineLabelPlacementPriorities = pPlacement

  pBasic.LineLabelPosition = pPosition

  Set pLabelEngine = New LabelEngineLayerProperties

  Set pLabelEngine.BasicOverposterLayerProperties = pBasic

  pLabelEngine.Expression = "[TONODE_]"

  Set pAnnoLayerProps = pLabelEngine

  pAnnoProps.Add pAnnoLayerProps

End Sub

LABELENGINELAYERPROPERTIES COCLASS

IAnnotateLayer-
Properties

IAnnotateLayerTrans-
formationProperties
IAnnotateProperties

IClone
ILabelEngineLayer-

Properties
IPersistStream

LabelEngine-
Layer-

Properties

The LabelEngineLayerProperties
object maintains one instance of labeling

properties for a feature layer. These
properties specify how the labels are to
be rendered and placed relative to the

features. These properties include on
which attribute or expression you should

base the labels, with which symbol to
render the label text, the position relative

to the features, and conflict resolution
weights.



Chapter 4 • Composing maps • 435

A
rc

M
ap

 IAnnotateLayerProperties : IUnknown Provides access to members that work with the display of
dynamic labels (text) for a feature layer.

AddUnplacedToGraphicsContainer:
Boolean

Indicates if overflow labels are put into a graphics container.

AnnotationMaximumScale: Double The maximum scale at which to display annotation.
AnnotationMinimumScale: Double The minimum scale at which to display annotation.
Class: String The class name.
CreateUnplacedElements: Boolean Indicates if unplaced elements are created.
DisplayAnnotation: Boolean Indicates if the layer displays annotation.
Extent: IEnvelope The extent to perform labeling in.
FeatureLayer: IFeatureLayer The annotated feature class.
FeatureLinked: Boolean Indicates if the text is feature linked.
GraphicsContainer: IGraphicsContainer The graphics container used to hold overflow labels.
LabelWhichFeatures:

esriLabelWhichFeatures
The type of features labeled.

Priority: Long Priority for labels of this feature class (0 is highest).
UseOutput: Boolean Indicates if the output will be used.
WhereClause: String SQL where clause that determines which features are labeled.

The IAnnotateLayerProperties interface is implemented only by the Label-
EngineLayerProperties object and provides the answer to the question of
which features to label and at what scales. Through this interface, the
developer can specify the priority of the labels, a where clause to be
applied to the feature layer, and a specification of what to do with
unplaced elements.

The FeatureLinked, LabelWhichFeatures, and GraphicsContainer proper-
ties apply only when the set of labels is being converted to annotation.
The developer can use the GraphicsContainer property to specify where
the converted labels will go.

The FeatureLayer property is used internally during the labeling process.
If you find it necessary to set this property, be sure to set it back to Null
after labeling has completed.

 IAnnotateLayerTransformationProperties :
 IUnknown

Provides access to members that control transformation
properties for the display of dynamic labels (text) for a
feature layer..

Bounds: IEnvelope The full extent in world coordinates.
ReferenceScale: Double Reference scale for computing scaled symbol sizes
ScaleRatio: Double Scale ratio of the transformation.  Based on

IAnnotationLayerProperties.Extent and Bounds.
Units: esriUnits The units of the world coordinates.

The IAnnotateLayerTransformationProperties interface is implemented
only by the LabelEngineLayerProperties object; it holds the settings that
determine what size to draw the labels at different scales. Use this inter-
face when you want to specify the reference scale and other transfor-
mation properties to use with a LabelEngineLayerProperties object.

The ScaleRatio is a ratio between the IAnnotateLayerProperties::Extent
property and the IAnnotateLayerTransformationProperties property.

LABELENGINELAYERPROPERTIES COCLASS



436 • Exploring ArcObjects • Volume 1

 ILabelEngineLayerProperties :
 IUnknown

Provides access to some of the main properties for labeling
features.

BasicOverposterLayerProperties:
IBasicOverposterLayerProperties

The overposter properties, which specify how labels are placed
relative to features.

Expression: String The VBScript or JavaScript expression that evaluates and formats the
label.

ExpressionParser:
IAnnotationExpressionEngine

The object that interprets the expression.

IsExpressionSimple: Boolean Indicates if the expression is simple.
Offset: Double The offset between the label and the feature.
Symbol: ITextSymbol The text symbol used to draw the label.
SymbolID: Long The ID of the group symbol used to draw the label.

The ILabelEngineLayerProperties interface is implemented only by the
LabelEngineLayerProperties object and provides access to the expres-
sion, symbol, and overposting properties of the label engine object. Use
this interface when you want to access the AnnotationExpressionEngine
and BasicOverposterLayerProperties objects associated with the label
engine object.

By default, the ExpressionParser property will return the Annotation-
VBScriptEngine object. In general, the developer would not use this
property unless they wanted to use Java scripting for labeling. In this
case, an AnnotationJScriptEngine object would be created, and the
ExpressionParser property would be set to this. The expression to use is
always set through the Expression property.

The IsExpressionSimple property identifies whether a complex expression
is being used in the Expression property. Complex expressions involve a
parser object (ExpressionParser property) to parse the string.

The SymbolID property is used during the conversion of labels to anno-
tation when a group symbol is being applied. A group symbol is applied
when a feature-linked annotation class is being created and when con-
verting coverage annotation to the geodatabase.

LABELENGINELAYERPROPERTIES COCLASS



Chapter 4 • Composing maps • 437

A
rc

M
ap

You can either create the BasicOverposterLayerProperties object, or you
can retrieve it from the ILabelEngineLayerProperties::BasicOverposter-
LayerProperties property.

 IBasicOverposterLayerProperties :
 IUnknown

Provides access to members that control the placement of
labels relative to features using conflict detection.

BufferRatio: Double Label buffer ratio. A value of 1 means a buffer the size of the label
height.

FeatureType:
esriBasicOverposterFeatureType

Feature type.

FeatureWeight:
esriBasicOverposterWeight

Barrier weighting for features in the layer.

GenerateUnplacedLabels: Boolean Indicates if unplaced labels are generated.
LabelWeight:

esriBasicOverposterWeight
Barrier weighting for labels in the layer.

LineLabelPlacementPriorities:
ILineLabelPlacementPriorities

Line label placement position priority options.

LineLabelPosition: ILineLabelPosition Line label placement position options.
LineOffset: Double Offset in map units at which labels will be placed away from line

features.
NumLabelsOption:

esriBasicNumLabelsOption
Feature labeling option for the layer.

PointPlacementAngles: Variant Point label placement angle(s).
PointPlacementMethod:

esriOverposterPointPlacementMethod
Point label placement method.

PointPlacementOnTop: Boolean Indicates if point labels are placed on top of features.
PointPlacementPriorities:

IPointPlacementPriorities
Point label placement position priority options.

The IBasicOverposterLayerProperties interface is implemented only by
the BasicOverposterLayerProperties object—it provides access to the
overposting resolution methods employed by the label engine object.
Each set of labeling properties defines how conflict resolution
(overposting) issues will be resolved for those labels. The IBasic-
OverposterLayerProperties interface provides access to most of these
properties.

FeatureType specifies whether labeling is being performed on point, line,
or polygon features. Be sure to check this property before accessing any
feature-type-specified property, such as LineLabelPosition or
PointPlacementAngles.

FeatureWeight specifies whether labels can be placed on top of the
features in a layer, while LabelWeight specifies whether the labels can
conflict with other labels.

NumLabelsOption indicates how many labels to place per feature.

 IBasicOverposterLayerProperties2 :
 IUnknown

Provides access to members that control the maximum
distance labels/symbols are placed away from their
respective features.

MaxDistanceFromTarget: Double The feature type.

The IBasicOverposterLayerProperties2 interface is implemented only by
the BasicOverposterLayerProperties object and was added to allow you
to set the maximum distance a label could be placed from its target
(MaxDistanceFromTarget property).

BASICOVERPOSTERLAYERPROPERTIES COCLASS

IBasicOverposter-
LayerProperties

IOverposter-
LayerProperties

IClone

BasicOver-
posterLayer-
Properties

The BasicOverposterLayerProperties
object maintains properties that specify
the desired label position relative to the

features and weights for resolving conflict
among labels and features from

other layers.



438 • Exploring ArcObjects • Volume 1

 IOverposterLayerProperties : IUnknown Provides access to members that control the placement of
labels or symbols on top of features (barriers).

IsBarrier: Boolean Indicates if features are treated as barriers to label/symbol
placement.

PlaceLabels: Boolean Indicates if labels are placed for the layer.
PlaceSymbols: Boolean Indicates if symbols are placed for the layer.

The IOverposterLayerProperties interface is implemented only by the
BasicOverposterLayerProperties object and provides access to whether
labels or symbols are placed.

The IsBarrier property indicates whether the features in the layer should
serve as barriers for label placement (do not put labels on top of the
features).

BASICOVERPOSTERLAYERPROPERTIES COCLASS



Chapter 4 • Composing maps • 439

A
rc

M
ap

The LineLabelPlacementPriorities object keeps track of the weight values
assigned to the label engine object during the placement of labels along
line features. The object is creatable, but it can also be retrieved from the
IBasicOverposterLayerProperties::LineLabelPlacementPriorities property.

 ILineLabelPlacementPriorities :
 IUnknown

Provides access to members that control placement
position priorities for line labels.

AboveAfter: Long Label position priority for above and after the line.
AboveAlong: Long Label position priority for above and along the line.
AboveBefore: Long Label position priority for above and before the line.
AboveEnd: Long Label position priority for above and at the end of the line.
AboveStart: Long Label position priority for above and at the start of the line.
BelowAfter: Long Label position priority for below and after the line.
BelowAlong: Long Label position priority for below and along the line.
BelowBefore: Long Label position priority for below and before the line.
BelowEnd: Long Label position priority for below and at the end of the line.
BelowStart: Long Label position priority for below and at the start of the line.
CenterAfter: Long Label position priority for in the center and after the line.
CenterAlong: Long Label position priority for in the center and along the line.
CenterBefore: Long Label position priority for in the center and before the line.
CenterEnd: Long Label position priority for in the center and at the end of the line.
CenterStart: Long Label position priority for in the center and at the start of the line.

The ILineLabelPlacementPriorities interface is the only interface imple-
mented by the LineLabelPlacementPriorities coclass. Use this interface
when you want to change the weighting values for conflict resolution
when labeling line features.

The Start weight (AboveStart, BelowStart, and CenterStart) values only
come into play when the Label only at start option is selected. The same
principle applies for the End weight values.

The LineLabelPosition object is used in conjunction with the LineLabel-
PlacementPriorities object to specify how labels are to be placed along
line features. The LineLabelPosition object dictates the default position for
labels along lines, while the LineLabelPlacementPriorities object dictates
how the labels will be placed when there are conflicts. The LineLabel-
Position coclass is creatable, but it can also be retrieved from the
IBasicOverposterLayerProperties::LineLabelPosition property.

 ILineLabelPosition : IUnknown Provides access to members that control the relative
position of line labels.

Above: Boolean Indicates if labels are placed above lines.
AtEnd: Boolean Indicates if labels are placed at the start of lines.
AtStart: Boolean Indicates if labels are placed at the start of lines.
Below: Boolean Indicates if labels are placed below lines.
Horizontal: Boolean Indicates if labels are placed horizontally.
InLine: Boolean Indicates if labels are placed inside lines.
Left: Boolean Indicates if labels are placed to the left of lines.
Offset: Double Offset from the start/end of line.
OnTop: Boolean Indicates if labels are placed on top of lines.
Parallel: Boolean Indicates if labels are placed parallel to lines.
Perpendicular: Boolean Indicates if labels are placed perpendicular to lines.
ProduceCurvedLabels: Boolean Indicates if labels follow lines.
Right: Boolean Indicates if labels are placed to the right of lines.

Use the ILineLabelPosition interface when you want to specify the de-
fault location of labels along line features. AtEnd and AtStart properties
specify default locations that have weights attached to them in case
there is a conflict, while Parallel and Perpendicular properties indicate
options that are not changed by conflicts.

LINELABELPLACEMENTPRIORITIES AND LINELABELPOSITION

ILineLabelPlacement-
Priorities

LineLabel-
Placement-

Priorities

The LineLabelPlacementPriorities
object maintains the weights associated

with label placement positions relative to
the line start points and endpoints.

ILineLabelPosition LineLabel-
Position

The LineLabelPosition object maintains
the flags associated with the possible
label placement options. These include

whether the labels should be placed
horizontally, parallel (straight or curved),
or perpendicular relative to the line, and

whether the orientation should be
determined by the line direction.



440 • Exploring ArcObjects • Volume 1

The PointPlacementPriorities object keeps track of the weight values
assigned to the label engine object during the placement of labels
around point features.

The PointPlacementPriorities object is creatable, but it can also be re-
trieved from IBasicOverposterLayerProperties::PointPlacementPriorities.

 IPointPlacementPriorities : IUnknown Provides access to members that control placement
position priorities for point labels.

AboveCenter: Long Label position priority for above and center (0-9).
AboveLeft: Long Label position priority for above and to the left (0-9).
AboveRight: Long Label position priority for above and to the right (0-9).
BelowCenter: Long Label position priority for below and center (0-9).
BelowLeft: Long Label position priority for below and to the left (0-9).
BelowRight: Long Label position priority for below and to the right (0-9).
CenterLeft: Long Label position priority for center and to the left (0-9).
CenterRight: Long Label position priority for center and to the right (0-9).

The IPointPlacementPriorities interface is the only interface implemented
by the PointPlacementPriorities coclass. Use this interface when you want
to change the weighting values for conflict resolution when you are label-
ing point features. The interface provides weight settings for the eight
positions around the point when the IBasicOverposterLayerProperties::
PointPlacementMethod is set to esriAroundPoint. A value of one sets the
highest priority (preferred position), a value of 2 sets the second priority,
and so on. A value of 0 means that the position should not be used.

AboveCenter identifies the weight to use when attempting to place label-
ing for a point at the “12:00” position.

The following VBA code shows how to change the placement options
for the labeling of the feature layer “VALVES” to ensure labels are only
placed in the AboveCenter position.
Sub PointLabelProps()
  Dim pDoc As IMxDocument, pMap As IMap, lLoop As Long
  Dim pGeoLayer As IGeoFeatureLayer
  Set pDoc = ThisDocument
  Set pMap = pDoc.FocusMap
  For lLoop = 0 To pMap.LayerCount - 1
    If UCase(pMap.Layer(lLoop).Name) = "VALVES" Then
      Set pGeoLayer = pMap.Layer(lLoop)
      Exit For
    End If
  Next lLoop

  Dim pAnnoProps As IAnnotateLayerPropertiesCollection
  Dim pLabelEngine As ILabelEngineLayerProperties
  Dim pBasic As IBasicOverposterLayerProperties
  Dim pProps As IPointPlacementPriorities
  Set pAnnoProps = pGeoLayer.AnnotationProperties
  pAnnoProps.QueryItem 0, pLabelEngine
  Set pBasic = pLabelEngine.BasicOverposterLayerProperties
  Set pProps = pBasic.PointPlacementPriorities
  pProps.AboveCenter = 1
  pProps.AboveLeft = 0

POINTPLACEMENTPRIORITIES COCLASS

IPointPlacement-
Priorities

Point-
Placement-

Priorities

The PointPlacementPriorities object
maintains the weights associated with

label placement positions relative to point
features.



Chapter 4 • Composing maps • 441

A
rc

M
ap

  pProps.AboveRight = 0
  pProps.BelowCenter = 0
  pProps.BelowLeft = 0
  pProps.BelowRight = 0
  pProps.CenterLeft = 0
  pProps.CenterRight = 0
  pBasic.PointPlacementPriorities = pProps

End Sub

POINTPLACEMENTPRIORITIES COCLASS



442 • Exploring ArcObjects • Volume 1

The AnnotationExpressionEngine supports two types of objects for pars-
ing the expressions used in labeling: the AnnotationVBScriptEngine (for
VB scripting) and the AnnotationJScriptEngine (for Java scripting). On
very rare occasions, a developer may want to write their own parser
based on this abstract class.

 IAnnotationExpressionEngine :
 IUnknown

Provides access to members that work with low level
information about a script based labeling expression.

AppendCode: String The code to append.
Name: String The name of the expression engine.

CreateFunction (in Name: String, in
parameters: String, in Expression:
String) : String

Creates the specified function.

SetCode (in fullCode: String, in
runFunction: String) :
IAnnotationExpressionParser

The function to base labels on.

SetExpression (in preCode: String, in
Expression: String) :
IAnnotationExpressionParser

The expression to base labels on.

The IAnnotationExpressionEngine interface is implemented by all label
parsing engines.

AppendCode indicates the string to use when appending multiple strings
together to form the expression. For VB scripting, the AppendCode is set
to“&”, while for Java scripting it is “+”.

Name identifies the type of engine being used as the parser (“VB Script”
or “Java Script”).

The AnnotationVBScriptEngine coclass is used for parsing VB scripting
code during the labeling process. By default, VB scripting is used
through this object to parse advanced labeling expressions. In general, a
developer would only use an object of this type generating strings based
on the defined expression for use outside the core labeling environ-
ment.

The AnnotationJScriptEngine coclass is used for parsing Java scripting
code during the labeling process. A developer will create an object of
this type when they want to perform labeling of features based on Java
scripting code. Once the object is created, it can be applied through
ILabelEngineLayerProperties::ExpressionParser.

Assuming an IGeoLayer object is present, the following code can be
used to change the parser to Java Script (just make sure you also update
the Expression as necessary):

  Dim pAnnoProps As IAnnotateLayerPropertiesCollection

  Set pAnnoProps = pGeoLayer.AnnotationProperties

  Dim pAnnoLayerProps As IAnnotateLayerProperties

  pAnnoProps.QueryItem 0, pAnnoLayerProps

  Dim pLabelEngine As ILabelEngineLayerProperties

  Set pLabelEngine = pAnnoLayerProps

  Dim pAnnoEngine As IAnnotationExpressionEngine

  Set pAnnoEngine = New AnnotationJScriptEngine

  Set pLabelEngine.ExpressionParser = pAnnoEngine

ANNOTATION EXPRESSION ENGINE COCLASSES

Annotation-
VBScript-

Engine

Annotation-
JScript-
Engine

IAnnotation-
ExpressionEngine

IPersistStream

Annotation-
Expression-

Engine

The AnnotationExpressionEngine
object parses an expression on which to

base the label text. This can be a function
based on either VB or Java script code.

This interface is used internally to initially define
and later validate labeling expressions entered

by the user through the user dialog boxes. In
general, developers will not need to use the

properties and methods of this interface.
However, if a developer chooses to write their
own parser engine, then this interface must be
implemented for defining the expression to use

in generating labels.

The methods on this interface only need to be
called when the developer wants to generate

strings to use outside the core
labeling environment.



Chapter 4 • Composing maps • 443

A
rc

M
ap

The BarrierCollection object keeps track of the set of barrier geometries
being used during the placement of labels. As new labels are placed,
their geometries are also added to the collection. When a new label to
be placed conflicts with an existing barrier in the collection, the
overposting engine will look for a new location for the label (depending
on the settings defined in the BasicOverposterLayerProperties object).
The object can either be created, or it can be retrieved from the
IMap::Barriers or IMapBarriers::Barriers2 properties.

 IBarrierCollection : IUnknown Provides access to members that control a collection of
objects that act as barriers to label placement.

Count: Long Returns the number of items in the collection.

Add (in Barriers: IGeometryCollection, in
Weight: esriBasicOverposterWeight)

Adds the specified item to the collection.

Clear Removes all the items in the collection.
QueryItem (in Index: Long, out Barrier:

IGeometryCollection, Weight:
esriBasicOverposterWeight)

Returns the item in the collection at the specified index.

The IBarrierCollection interface allows for the manipulation of the ge-
ometries that make up the current set of barriers to label placement.
Through this interface the developer can add, clear, and query the
defined geometries and weights.

The Add and QueryItem properties add and return collections of geom-
etries (IGeometryCollection) as a single barrier. Each IGeometryCollection
represents a single graphics layer in the map.

The following VBA code shows how to access the BarrierCollection and
the number of geometries for one entry in the collection based on the
current extent of the map:

Sub LabelBarriers()

  Dim pDoc As IMxDocument, pMap As IMap, pBarriers As IBarrierCollection

  Dim pGeometry As IGeometryCollection, pActive As IActiveView

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  Set pActive = pMap

  Set pBarriers = pMap.Barriers(pActive.Extent)

  pBarriers.QueryItem 0, pGeometry

  Debug.Print pBarriers.count & " - " & pGeometry.GeometryCount

End Sub

BARRIERCOLLECTION COCLASS

IBarrierCollection Barrier-
Collection

The BarrierCollection object holds one
or more geometry collection objects, each

with an associated label conflict resolu-
tion weight.



444 • Exploring ArcObjects • Volume 1

CUSTOMIZING ARCMAP THROUGH AUTOMATION

In modern operating systems, such as UNIX® and Windows NT,
all applications run in their own protected address space. Since
memory is not directly accessible between these separate pro-
cesses, calls made between them are necessarily slower due to
the translations and remote invocations that must occur.

Normally, ArcGIS applications are extended by user
customizations made available to the application through such
mechanisms as component categories. For example, when
ArcMap is launched, this application loads all properly registered
extension objects into its process space. Since these objects then
exist in ArcMap process space, access between them is direct
and fast. The same is true for custom extensions, commands,
and even VBA code running within ArcMap since they do not
need to communicate between each other across process bound-
aries. COM communication in this case is generally referred to as
“in-process” or simply “in-proc”.

Conversely, it is possible to create a Visual Basic executable—a
standalone application—that obtains a reference to and works with
ArcMap “remotely” from its separate process space. In this case, there
are two separate applications running and, therefore, two separate
process spaces. COM communication in this case is referred to as “out-
of-process” or simply “out-of-proc”. This kind of access is also com-
monly called “automation”. Although, as far as the client is concerned,
things appear to be the same in automation as they are in the in-proc
case, there are important differences of which programmers need to be
aware.

PROBLEMS WITH AUTOMATION

Performance
Interapplication communication (whether through COM or some other
mechanism) must cross process boundaries since all applications (in
UNIX, Windows NT, and other operating systems) live in their own
protected-address space. When a COM object is created in one process
and accessed in another, interprocess marshaling (communication) must
occur, and this is very expensive. In an application such as ArcMap,
where large numbers of components are accessed over short periods of
time (such as in drawing or query), this overhead can become extreme.

Process-confined types
Certain types, such as GDI handles and others, cannot be used within
the context of a different process from which they were created in, or
are restricted in what can be done with them in that foreign process.
For instance, a bitmap created in one process and handed to another
through COM (for example, as an OLE_HANDLE) cannot be rendered
on a DC in the foreign-process space.

In general, the model for extending
ArcGIS applications is through in-process
COM delivered as DLLs, such as exten-

sions, commands, property pages, and so
on. In some cases, however, it may be

necessary to “drive” ArcGIS applications
from a separate application, a practice
commonly referred to as Automation.



Chapter 4 • Composing maps • 445

A
rc

M
ap

Deadlocks and other threading issues
Some areas of ArcGIS do not currently support access from a foreign-
process space. For instance, map layers from one instance of ArcMap
cannot be successfully rendered in a separate instance of ArcMap.
Many of these limitations are due to limitations of what sorts of system
objects can be shared between separate process spaces, and some are
due to performance issues.

SOLUTION

In general, when “driving” ArcMap through automation, it is often the
case that what you really want is for things to be as they are in the in-
proc case. It would be desirable if there were some way that a request
to create an object in one process space could be controlled so that
the actual object instance could come into existence within the appli-
cation being “driven” (ArcMap), instead of from where the request is
actually made (the driving application).  In reality, using VB’s New
statement simply creates the object in the driving application’s process
space, not in the ArcMap process.

This sort of control is made possible by the IObjectFactory interface,
obtainable from the ArcMap Application object (which your process
obtains through automation). This interface can be used to create an
arbitrary object within the ArcMap process (in the main STA) by calling
the Create method—passing in the ProgID/ClsID of the component you
want to create. The caller receives a proxy to that object that now
resides within ArcMap. Calls from within ArcMap to objects created in
this way are local to the ArcMap process.

A useful example would be where an attempt is made to load a new
feature layer into a map within ArcMap by a separate application writ-
ten in Visual Basic, which uses automation to control the instance of
ArcMap. Prior to ArcGIS 8.1, a new FeatureLayer object could only be
created in the VB application’s process space. In this case, the Feature-
Layer would have to be remotely accessed by the ArcMap Map object,
while the Map object itself would have to be remotely accessed by
both the VB code in the separate executable as well as the Feature-
Layer object.

This case is actually even more complex due to numerous other sup-
port objects that are involved in the interactions between Map and
FeatureLayer objects. For example, for ArcMap to draw all the features
represented in the feature layer, each feature would have to be re-
motely accessed through automation, creating an enormous bottleneck
and a corresponding performance disaster. Note in the diagram to the
left how the FeatureLayer object and the Map object exist in separate
process spaces, and so must communicate through proxies.

With the release of ArcGIS 8.1, it is possible to create the FeatureLayer
object within ArcMap process space so that the interaction between
these two objects is direct instead of through intra-application commu-
nication. Automation in still occurring in the sense that the VB code in

CUSTOMIZING ARCMAP THROUGH AUTOMATION

Visual Basic application
process space

ArcMap application
process space

Arc-
Map
code

Map
Object
proxy

Feature
layer

object Stub

Feature
layer

object
proxy

Stub

VB
code

Map
Object



446 • Exploring ArcObjects • Volume 1

the separate process is still calling remotely to these objects, which
now exist in ArcMap’s process, but these remote calls are minimal in
number (setting a property or two, and so on). The numerous calls that
normally occur as a result of drawing now occur solely within ArcMap.
Note in the new diagram how both the FeatureLayer object and the
Map object exist in ArcMap process space.

The following example demonstrates how a feature layer can be loaded
into ArcMap from a standalone Visual Basic application using the
IObjectFactory interface.

Private m_pMxApp As IApplication

Private Sub Form_Load()

  frmIObjectFactory.MousePointer = vbHourglass

  ' Create an out-of-process instance of ArcMap

  Dim pDoc As IDocument

  Set pDoc = New MxDocument

  ' Hold on to this instance of ArcMap in a global in case

  ' we need it later.

  Set m_pMxApp = pDoc.Parent

  frmIObjectFactory.MousePointer = vbNormal

End Sub

Private Sub Form_Unload(Cancel As Integer)

  m_pMxApp.Shutdown

End Sub

Private Sub Command1_Click()

  Dim pObjFactory As IObjectFactory

  Dim pWorkspaceFactory As IWorkspaceFactory

  Dim pFeatureWorkspace As IFeatureWorkspace

  Dim pFeatureLayer As IFeatureLayer

  Dim pMxDocument As IMxDocument

  Dim pMap As IMap

  ' Show ArcMap

  m_pMxApp.Visible = True

  ' Obtain the object factory interface from the app

  Set pObjFactory = m_pMxApp

  ' Create a shapefile feature layer and add it to ArcMap.

  ' Note that we will use ArcMap's generic object factory to ensure that

  ' these objects exist in ArcMap's process space.

CUSTOMIZING ARCMAP THROUGH AUTOMATION

Visual Basic application
process space

ArcMap application
process space

Arc-
Map
code

Map
Object
proxy

Feature
layer

objectStub

Feature
layer

object
proxy

Stub

VB
code

Map
Object



Chapter 4 • Composing maps • 447

A
rc

M
ap

  ' Equivalent of Set pWorkspaceFactory = New ShapefileWorkspaceFactory

  Set pWorkspaceFactory = _

     pObjFactory.Create("esriCore.ShapefileWorkspaceFactory")

  Set pFeatureWorkspace = _

    pWorkspaceFactory.OpenFromFile("D:\Samples\Data\Usa", 0)

  ' Equivalent of Set pFeatureLayer = New FeatureLayer

  Set pFeatureLayer = pObjFactory.Create("esriCore.FeatureLayer")

  Set pFeatureLayer.FeatureClass = _

    pFeatureWorkspace.OpenFeatureClass("States")

  pFeatureLayer.Name = pFeatureLayer.FeatureClass.AliasName

  'Add the FeatureLayer to the focus map

  Set pMxDocument = m_pMxApp.Document

  Set pMap = pMxDocument.FocusMap

  pMap.AddLayer pFeatureLayer

  pMxDocument.ActiveView.PartialRefresh esriViewGeography, Nothing, Nothing

End Sub

CUSTOMIZING ARCMAP THROUGH AUTOMATION





449

Displaying
graphics

Shelly Gill, Scott Campbell, Chris Davies, Steve Van Esch, Jim Clarke, Cory Eicher

5
ArcMap employs a rich palette of display objects to realize strong user interaction

and sophisticated cartographic presentation. These are the components in

ArcObjects for customizing ArcMap, making superior maps, and building custom

map-centric applications.

The topics covered in this chapter include: drawing layers

with feature renderers • defining colors for

display and printing • drawing point features

with marker symbols • drawing linear

features with line symbols • drawing areas

with fill symbols • labeling features with

text symbols • displaying numeric data with

chart symbols • adorning frame elements with

frame decorations • controlling the display output

• grouping numeric values into classes • customizing

user interaction with rubber band objects, selection

trackers, and display feedbacks



450 • Exploring ArcObjects • Volume 1

Feature renderer objects

A feature renderer draws
features to a display from a
feature class

A biunique value renderer
combines the symbols of a unique
value renderer and a class breaks

renderer

A chart renderer
draws pie, bar,

and stacked bar
chart symbols

based on
attributes of each

feature

A class breaks
renderer can be used

to draw graduated
color (choropleth) and

graduated symbol
maps

A dot density renderer draws
varying densities of dots
within polygon features

A simple renderer draws
each feature using the
same symbol

The unique value
renderer defines the
symbol a feature is to
be drawn with based
on an attribute value

FeatureLayer
in ArcMap

BiUnique-
Value-

Renderer

IBivariateRenderer

DotDensity-
Renderer

IDataExclusion
IDotDensityRenderer

IDotDensityUIRenderer
IRendererFields

Unique-
Value-

Renderer

ILevelRenderer
IRotationRenderer

ITransparencyRenderer
IUniqueValueRenderer

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

A proportional symbol renderer draws
a symbol of varying size for each
feature, the size is in proportion to a
field value

A scale dependent renderer is
made of multiple renderers,
each operating within a scale
range

ICalcRendererValues Calc-
Renderer-

Values

CalcRendererValues is a utility object
used to perform simple statistical
calculations on a feature layer for use by
renderers

*

Legend-
Class

ILegendClass
IPersist

IPersistStream

The legend group contains a
collection of legend class objects

IScaleDependent-
Renderer

Scale-
Dependent-
Renderer

Legend-
Group

ILegendGroup
IPersist

IPersistStream

*

Chart-
Renderer

IBarrierProperties2
IChartRenderer
IDataExclusion

IDataNormalization
IIdentify

IPieChartRenderer
IRendererFields

Class-
Breaks-

Renderer

IBarrierProperties2
IClassBreaksRenderer

IClassBreaksUIProperties
IDataExclusion

IDataNormalization
IDataSampling
ILevelRenderer

IRotationRenderer

Proportional-
Symbol-
Renderer

IBarrierProperties2
IDataExclusion

IDataNormalization
IRotationRenderer

IProportional-
SymbolRenderer

The legend class contains a symbol and some
text in the form of a label and description to
describe what that symbol represents

Simple-
Renderer

IDisplayAdmin
ILevelRenderer

IPropertySupport
IRotationRenderer

ISimpleRenderer
ITransparencyRenderer



Chapter 5 • Displaying graphics • 451

D
is

p
la

y

A feature renderer is a method for drawing feature layers. The feature
renderers use symbols and colors to visually display features, possibly
based on one or more attributes. There is one feature renderer associ-
ated with each feature layer. The scale breaks and biunique value ren-
derers also contain other renderers. You can choose a renderer to dis-
play features differently depending on attribute values in the fields of a
feature class. The following are types of feature renderers:

• SimpleRenderer uses the same symbol for each feature.

• ClassBreaksRenderer allows classes of numeric attribute values to be
defined. A different symbol is specified for each class. The symbols
typically vary in either color or size. This renderer can be used for
ordinal, interval, or ratio data.

• UniqueValueRenderer uses a different symbol for each unique at-
tribute value. A value can come from a single field or a combination
of more than one field. This is used for nominal data.

• ProportionalSymbolRenderer modifies the size of the symbol in pro-
portion to an attribute from a field.

• DotDensityRenderer displays a scattering of marker symbols in poly-
gon features, the density of which reflects the value of an attribute.

• ChartRenderer displays pie, bar, or stacked bar charts that are com-
prised from one or more attribute fields.

• ScaleBreaksRenderer switches renderers depending on the map view-
ing scale.

• BiUniqueValueRenderer combines a unique-value renderer with a
class-breaks renderer (either graduated colors or graduated symbol
type symbology). This allows multiple attributes to be reflected in one
symbol.

FEATURE RENDERER OVERVIEW

Drawing a map with a single symbol

Drawing a map with proportional symbols

Drawing categories in a map with symbols

Drawing quantities in a map with symbols

Drawing value densities in a map with dots

Drawing multiple categories in a map

Drawing a map with pie charts



452 • Exploring ArcObjects • Volume 1

The default implementation of a feature takes
the symbol supplied by the renderer and uses

this to draw the feature. However, if this feature
is a custom feature, the developer may have

chosen to ignore the supplied symbol and used
the custom feature’s own symbology.

All feature renderers implement the
IFeatureRenderer interface; it is used by the

framework to draw features from a feature
class.

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

The feature renderer determines how a
feature class is drawn. A renderer object

describes the process of matching
features and attributes to symbols.

FEATURERENDERER ABSTRACT CLASS

To get to a feature renderer object in ArcMap from a layer, QI to IGeo-
FeatureLayer and get the Renderer property. A simple renderer is the
default renderer object when a new feature class is loaded.

  ' Check if the layer is a feature layer

  If Not TypeOf pLayer Is IGeoFeatureLayer Then Exit Sub

  Set pGeoFeatureLayer = pLayer

  ' Check if there is a simple renderer and get a reference to it

  If Not TypeOf pGeoFeatureLayer.Renderer Is ISimpleRenderer Then Exit Sub

  Set pSimpleRenderer = pGeoFeatureLayer.Renderer

 IFeatureRenderer : IUnknown Provides access to members that control functionality
common to all feature renderers.

ExclusionSet: IFeatureIDSet Sets an object reference to a temporary drawing exclusion set.
RenderPhase (in drawPhase:

tagesriDrawPhase) : Boolean
Indicates if renderer uses the specified draw phase.

SymbolByFeature (in Feature: IFeature)
: ISymbol

Symbol used to draw the specified feature.

CanRender (in featClass:
IFeatureClass, in Display: IDisplay) :
Boolean

Indicates if the specified feature class can be rendered on the given
display.

Draw (in Cursor: IFeatureCursor, in
drawPhase: tagesriDrawPhase, in
Display: IDisplay, in trackCancel:
ITrackCancel)

Draws features from the specified cursor on the given display.

PrepareFilter (in fc: IFeatureClass, in
QueryFilter: IQueryFilter)

Prepares the query filter for the rendering process.

The ExclusionSet is a list of feature IDs to be excluded from a drawing.

The PrepareFilter is called prior to the Draw method and gives the
renderer a chance to adjust the query filter to incorporate extra con-
straints. For example, if a particular field is required for the renderer, it
would add this field to the filter to ensure it is accessible during a draw.

The Draw method is typically called by the framework to renderer features
to a display. This could be in response to a Refresh on the Map. The
Draw method will iterate through all the features and render each feature
with an appropriate symbol. The actual draw of the feature is normally
performed by calling the Draw method on the feature’s IFeatureDraw
interface; it simply uses the symbol created by the renderer.

To allow complex rendering to be canceled halfway through a draw, the
renderer will typically check the TrackCancel object after each feature.
If a cancel action has occurred, the renderer will exit.

SymbolByFeature is called to return the symbol corresponding to a fea-
ture. This is used to turn features into graphics.

If the renderer is not applicable to a feature layer, then it can return
False in response to a CanRender method. For example, the dot-density
renderer is only applicable to polygon feature layers and returns False in
response to other feature layers. Similarly, if the renderer is not appli-
cable to a particular draw phase, this can be indicated by returning False
to the RenderPhase property. Typically, all renderers draw in the geogra-
phy phase.

There are two drawing phases: annotation and
geography. For example, consider a proportional

renderer for drawing a polygon layer. The
proportional renderer draws the polygons with a
fill symbol in the geography drawing phase and

the proportional symbol in the annotation
drawing phase.The renderer indicates in the

RenderPhase method that it wants to draw
both phases. Subsequently, the Draw method

gets called twice.

For more discussion on drawing phases, refer to
the topic ‘Refreshing a map versus partial

refresh’ in Chapter 4.



Chapter 5 • Displaying graphics • 453

D
is

p
la

y

legend class 0
legend class 1
legend class 2

legend class 0
legend class 1

country

POP_CNTRY
56-4341090
4341091-25883300
25883301-128100838

LANDLOCKED
N
Y

legend group 0

legend group 1

symbol
label

heading

Example of legend groups and classes for a
bi-unique value renderer

The ILegendInfo interface is used by
the ArcMap framework to generate the

symbols and labels for each layer shown
in the table of contents and the

Legend object.

Remember that after changing symbology for a layer to update the
display for that layer with code like this:

  Dim pDoc As IMxDocument

  pDoc.ActiveView.PartialRefresh esriDPGeography, pLayer, Nothing

Additionally, the table of contents needs to be updated, too.

  pDoc.UpdateContents

After you have set up a new renderer object and assigned it to a feature
layer, you will need to associate the correct property page (Layer properties/
Symbology in ArcMap) with the renderer. The IGeoFeatureLayer::-
RendererPropertyPageClassID property needs to be initialized to the
GUID of the appropriate property page.

One way to do this is to use the UID object and give it the GUID of the
property page. The ProgID is not used because it is not guaranteed to
be unique.

  Dim pUID As New UID ' Create a new UID object

  'ProgID is "esricore.BarChartPropertyPage"

  pUID.Value = "{98DD7040-FEB4-11D3-9F7C-00C04F6BC709}"

  pGeofeaturelayer.RendererPropertyPageClassID = pUID

 ILegendInfo : IUnknown Provides access to members that control legend
information provided by a renderer.

LegendGroup (Index: Long) :
ILegendGroup

Number of legend groups contained by the object.

LegendGroupCount: Long Number of legend groups contained by the object.
LegendItem: ILegendItem Optional.  Defines legend formatting for layer rendered with this

object.
SymbolsAreGraduated: Boolean Indicates if symbols are graduated.

The ILegendInfo interface is implemented by several layer types: feature,
raster, and TIN. Although the feature layer object implements this interface,
it just defers all methods and properties to the feature renderer’s ILegendInfo
interface.

Legend and other related objects such as LegendItem and LegendFormat are
discussed in Chapter 4, ‘Composing maps’.

The ILegendInfo interface has a property array of LegendGroup objects. The
number of groups is determined by the implementation of the renderer.
Consequently, these properties are read-only. For example, the simple ren-
derer always has one group, but the biunique renderer can have any number
of groups.

The simple, class breaks, and unique value renderers will update the legend
class objects for you when you set the renderer’s symbols. In fact, these
renderers store their symbols there. However, with the proportional-symbol,
chart, dot-density, and biunique renderers, you must call CreateLegend for the
legend class objects to be set up and placed into appropriate groups.

The property SymbolsAreGraduated indicates whether the symbols used for
the legend of this particular renderer vary by size. For example, the propor-
tional-symbol renderer will return True for this property.

A renderer can override the legend appearance of a layer’s legend by return-
ing an ILegendItem.

FEATURERENDERER ABSTRACT CLASS



454 • Exploring ArcObjects • Volume 1

The LegendGroup object contains a collection of LegendClass objects.

 ILegendGroup : IUnknown Provides access to members that control the collection of
legend classes provided by a renderer.

Class (in Index: Long) : ILegendClass Legend class at the specified index.
ClassCount: Long Number of legend classes in the group.
Editable: Boolean Indicates if the group can be edited. Default is editable.
Heading: String String heading.
Visible: Boolean Indicates if the group is displayed.

AddClass (in LegendClass:
ILegendClass)

Adds a new legend class to the group at the end of list.

ClearClasses Removes all classes from the group.
InsertClass (in Index: Long, in

LegendClass: ILegendClass)
Inserts a new legend class into the group at the specified index.

RemoveClass (in Index: Long) Removes the legend class from the group at the specified index.

The ILegendGroup interface manages a property array of LegendClass
objects. Inside a LegendClass object is one Symbol object. Classes can be
looked up, but modifying the number of classes through addition, inser-
tion, and deletion is the job of the renderer object. Some properties of
the legend group can be retrieved.

The Editable property returns whether the symbols and text strings in the
LegendClass objects of the group can be edited individually. You can
see this in ArcMap by double-clicking the symbol in the table of con-
tents. If the Symbol Properties dialog box appears, then the group has
Editable set to True.

For example, a pie chart symbol in a group by itself returns False, and
its symbol can’t be edited. However, the fill symbols for each pie slice
(this is in a second group) has Editable set to True, the fill symbol can
be changed, and this is picked up by the renderer for all pie charts.

The Visible property controls if the group can be seen. Typically, this is
in the table of contents. For example, setting Visible to False for all the
legend groups of a layer will collapse and hide the symbols for a layer
in the table of contents.

The Heading property of a group is a piece of text to describe what the
group represents. For example, the field name is used when using the
unique-value renderer.

There are many LegendClass objects in a LegendGroup. The legend class
contains a symbol and some text in the form of a Label and Description
to describe what that symbol represents. If the legend group is editable,
then the symbol can be modified and the renderer will pick this up at
the next draw phase.

However, the typical route for modifying renderer appearance is to go to
the renderer objects themselves. For example, to change the simple
renderer symbol, label and description fields, use the methods and
properties of ISimpleRenderer in preference to the legend class object.

LEGENDGROUP AND LEGENDCLASS COCLASSES

Legend-
Group

ILegendGroup
IPersist

IPersistStream

A legend group represents a collection of
related symbols stored in legend classes.

Typically, all the symbols used in a group are of
the same type. For example, a chart renderer

that is being used to create pie charts has two
groups—the first contains a single pie chart

symbol, the second group contains fill symbols for
each slice of the pie chart.

Legend-
Class

ILegendClass
IPersist

IPersistStream

A legend class stores a symbol and text
pair that is used in making legends.



Chapter 5 • Displaying graphics • 455

D
is

p
la

y

 ILegendClass : IUnknown Provides access to members that control the legend/TOC
entry for a renderer class.

Description: String Legend class description.
Format: ILegendClassFormat Optional. If non-null, then layer specifies class formatting information.
Label: String Legend class label.
Symbol: ISymbol Legend class symbol.

Setting the Format property allows the appearance of the symbol to
override the settings of the legend object.

LEGENDGROUP AND LEGENDCLASS COCLASSES



456 • Exploring ArcObjects • Volume 1

SIMPLERENDERER COCLASS

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

Simple-
Renderer

IDisplayAdmin
ILevelRenderer
ILookupSymbol

IRotationRenderer
IPropertySupport
ISimpleRenderer

ITransparency-
Renderer

SimpleRenderer draws each feature
using a single symbol.

In the Layer Proper-
ties/Symbology/Show

list in ArcMap, the
simple renderer
corresponds to

SingleSymbol under
the type of Features.

The SimpleRenderer coclass draws each feature using a single symbol.

The symbol typically matches the geometry of the layer so that fill sym-
bols are used for drawing polygons, line symbols for drawing lines, and
marker symbols for drawing points. One exception is that a marker
symbol can also be used with a polygon layer—this will draw a marker
at the center of the polygon.

A symbol can also be rotated if it is a marker symbol (IRotationRenderer)
or made transparent (ITransparencyRenderer) if it is a fill symbol. The
amount of transparency or rotation is specified by attribute values associ-
ated with each feature.

 ISimpleRenderer : IUnknown Provides access to members that control a renderer which
draws the same symbol for each feature.

Description: String Renderer description.
Label: String Renderer label.
Symbol: ISymbol Symbol used to draw each feature.

By getting or setting the symbol property of ISimpleRenderer, the symbol-
ogy of the whole layer can be changed. The label property states what
that symbol means. For example, a black circular marker symbol repre-
sents “Cities”. The description property provides further explanatory text.
The symbol, label, and description can all appear and be arranged in a
legend.

The simple renderer symbol is also accessible in the legend. It is the
only symbol in the first legend class.

Here is an example VBA script to change the fill symbol of a simple
renderer. (For code samples to get and refresh a simple renderer, see the
documentation for the FeatureRenderer abstract class.)

  'Set the color of Lilac

  Set pColor = New RgbColor

  pColor.Red = 235

  pColor.Green = 202

  pColor.Blue = 250

  Set pFillSymbol = New SimpleFillSymbol

  pFillSymbol.Color = pColor

  Set pSimpleRenderer.Symbol = pFillSymbol

  pSimpleRenderer.Label = "Label"

  pSimpleRenderer.Description = "Description"

 IDisplayAdmin : IUnknown Provides access to members that control display
administration.

UsesFilter: Boolean Indicates if the current object draws using a filter.

The IDisplayAdmin interface is called by the framework to determine if
the renderer is using a display filter. For the simple renderer, this will
return True if a transparency field has been specified.

A map drawn with the simple renderer
and its legend.



Chapter 5 • Displaying graphics • 457

D
is

p
la

y

 ILevelRenderer : IUnknown Provides access to members that control the drawing of
symbols for features, where symbols are separated into
levels, and each level drawn separately.

CurrentDrawLevel: Long The current draw level, (set to -1 to draw all levels).
LevelArray (out levels: Variant) Array that contains all levels used by the symbols, (symbols without a

level get a level of 0).

The ILevelRenderer interface draws symbols on different levels. The
renderers that support ILevelRenderer are ClassBreaksRenderer,
SimpleRenderer coclass, and UniqueValueRenderer.

This interface is used by the framework to draw multilevel symbols. This
only happens if the property IMap::UseSymbolLevels is true. Multilevel
symbols are enabled through the Advance Drawing Options dialog box
on the data frame in ArcMap. This dialog box is also accessible through
the SymbolLevelDialog object.

The LevelArray property returns an array of long integers listing all the
levels of the symbols used by the render. The framework will iterate
through all the available levels across all feature layers, thus ensuring
that symbols of the same level will appear to join or merge.

The CurrentDrawLevel is set by the framework at draw time to specify
which level of symbols the renderer is to draw.

 IRotationRenderer: IUnknown Provides access to members that control the drawing of
rotated marker symbols based on field values.

RotationField: String Rotation field.
RotationType: esriSymbolRotationType Rotation type.

The IRotationRenderer interface can be used in a renderer when apply-
ing marker symbols. The amount of rotation can be specified using an
attribute field in the feature class specified with the RotationField prop-
erty. The value in the attribute field should be in degrees and in the
direction set by the RotationType property.

For an example of applying IRotationRenderer to making maps of wind
direction, look in the ArcObjects Developer Help under ArcMap/Sym-
bology/Renderers.

Enumeration esriSymbolRotationType Marker symbol rotation options.

0 - esriRotateSymbolGeographic Clockwise rotation with 0 at the positive y-axis.
1 - esriRotateSymbolArithmetic Counter clockwise rotation with 0 at the positive x-axis.

The esriSymbolRotationType enumeration defines which one of two
conventions for rotation angles is used.

The renderers that support IRotationRenderer are Proportional-
SymbolRenderer, ClassBreaksRenderer, UniqueValueRenderer, and Simple-
Renderer coclass.

The rotation renderer is very effective for
displaying maps of wind direction. If combined

with a proportional symbol renderer and arrow
markers, locations of wind direction and magni-

tude can be clearly mapped.

esriRotateSymbolGeographic esriRotateSymbolArithmetic

90

0

270

180

0

90

180

270

SIMPLERENDERER COCLASS

For more information on multilevel symbols,
refer to the discussion on the IMapLevel

interface under the Symbol abstract class
documented later in this chapter.



458 • Exploring ArcObjects • Volume 1

 IPropertySupport : IUnknown Provides access to members that set a default property on
an object.

Current (in pUnk: IUnknown Pointer) :
IUnknown Pointer

The object currently being used.

Applies (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at any given time.

Apply (in NewObject: IUnknown Pointer)
: IUnknown Pointer

Applies the given property to the receiver and returns the old object.

CanApply (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at that particular
moment.

IPropertySupport is a generic interface implemented by most graphic
elements and a few other objects. IPropertySupport is used for updating
generic properties of an object. Through IPropertySupport, you can ask
an object if another object, such as a color object, applies to it. If the
object does apply, you can apply a new object of that type or ask for
the current object.

 ITransparencyRenderer : IUnknown Provides access to members that control the drawing of
features with varying transparency, where transparency is
determined by feature values.

TransparencyField: String Transparency field.

The ITransparencyRenderer interface is only used on layers that are
based on polygon feature classes. The values in the TransparencyField
modify the fill symbols (if they are of type ISimpleFillSymbol) such that
the transparency of each symbol used to render each feature corre-
sponds with the value in the field. The field values should range from 0
to 100. An attribute value of 100 is opaque, and a value of 0 is invisible.

If a transparency field is specified, the simple renderer will use the
aggregated TransparencyDisplayFilter object to perform the changes to
the display to achieve the transparency effect.

SIMPLERENDERER COCLASS



Chapter 5 • Displaying graphics • 459

D
is

p
la

y

The ClassBreaksRenderer object can be set to break up one field of
numeric data into arbitrary classes—for example, to separate population
values into three classes of low, medium, and high. Classes are defined
by specifying the break values between the classes; you can set these to
be any values you like. However, you can use the Classify and
TableHistogram objects to help calculate some useful breaks, such as
“equal intervals”.

A symbol is associated with each class, and this is used to draw fea-
tures. For example, with a polygon feature class, a yellow fill symbol
can represent low population, orange fill can represent medium, and
red fill can represent high. The ClassBreaksRenderer works well with
other feature types, too. For example, a line feature class representing
roads with associated numeric values for traffic density can be rendered
using different colors for high, medium, and low traffic. Cities, repre-
sented as points, could be classified with a range of circular marker
symbols with different sizes and colors reflecting population.

 IClassBreaksRenderer : IUnknown Provides access to members that control a renderer which
is used to draw graduated color (choropleth) and
graduated symbol maps.

BackgroundSymbol: IFillSymbol Background fill symbol used when graduated marker symbols are
draw on polygon features.

Break (in Index: Long) : Double Break value at the specified index. Break(0) is the lowest break and
represents the upper bound of the lowest class.

BreakCount: Long Number of class breaks (equal to the number of classes).
Description (in Index: Long) : String Description at the specified index.
Field: String Classification field.
Label (in Index: Long) : String Label at the specified index.
MinimumBreak: Double Minimum break, i.e. the lower bound of the first class.
NormField: String Normalization field.
SortClassesAscending: Boolean Indicates if classes are displayed in increasing order in legends/TOC.
Symbol (in Index: Long) : ISymbol Symbol at the specified index (used to draw features in the specified

class).

The Field property specifies to which field in the feature class the class
breaks apply. This field must be numeric.

To initialize some breaks, you just need to know how many breaks to
set. This is set in BreakCount and corresponds to the number of classes.
Once the BreakCount is set, the breaks, description, label, and symbol
properties are initialized with the first index of 0 and the last index of
BreakCount -1.  Increasing BreakCount preserves existing breaks, but
decreasing BreakCount removes excess break values.

  Dim pClassBreaksRenderer As IClassBreaksRenderer

  Set pClassBreaksRenderer = New ClassBreaksRenderer

  pClassBreaksRenderer.Field = "POP1997"

  pClassBreaksRenderer.BreakCount = 3

Before setting break values it is important to determine some characteris-
tics of the data. If the field values have predefined intervals and related
symbols, then these can be set without inspecting the data. For example,
a temperature classification from freezing to boiling could be set up
with breaks every 10 degrees Celsius.

If the classes are relative to the data (for example, classifying the data
into equal intervals), then the data must be inspected to determine the

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

Class-
Breaks-

Renderer

IBarrierProperties2
IClassBreaksRenderer

IClassBreaksUI-
Properties

IDataExclusion
IDataNormalization

IDataSampling
ILevelRenderer
ILookupSymbol

IRotationRenderer

Use the class-breaks renderer to display
data based on an attribute with values
that represent ordinal, interval, or ratio

data.

The class-breaks
renderer corresponds
to GraduatedValues

under the type of
Quantities.

CLASSBREAKSRENDERER COCLASS



460 • Exploring ArcObjects • Volume 1

classes. This could be done by iterating through the dataset and keeping
a tally of the values found so far. Alternatively, the TableHistogram
object can be used to extract data values and frequencies. These can
then be passed to a Classify object to determine the breaks. These
breaks may then be retrieved and set into the ClassBreaksRenderer
object.

The lowest value in the dataset is specified via the MinimumBreak
property. Values less than this will be considered outside the lowest
class. Typically, this is set to the minimum data value. The value in
Break(0) represents the upper value in the lowest class, and the break
value is included. The highest value class is bounded by, and includes,
the last break (breakCount-1). This is typically set to the maximum value.

Symbols are initialized and placed in indices corresponding to the
breaks using the symbol property array. Consequently, the lowest class
bounded by Break(0) will be depicted using Symbol(0). Data values
that are left out of the class breaks are drawn using the BackgroundFill
symbol. The BackgroundFill symbol is also used to fill the polygon if
the polygons are drawn with marker symbols.

The code below illustrates the setting up of three class breaks. The
maximumPopulation variable has been previously calculated, and the
function GetRGBColor is not shown, but it is used to return a color
object with the supplied red, green, and blue values.

  pClassBreaksRenderer.MinimumBreak = 0

  ' Low population class in yellow

  Set pFillSymbol = New SimpleFillSymbol

  pFillSymbol.Color = GetRGBColor(245, 245, 0)

  pClassBreaksRenderer.Symbol(0) = pFillSymbol

  pClassBreaksRenderer.Break(0) = maximumPopulation / 3

  pClassBreaksRenderer.Label(0) = "Low"

  ' Medium population class in orange

  Set pFillSymbol = New SimpleFillSymbol

  pFillSymbol.Color = GetRGBColor(245, 122, 0)

  pClassBreaksRenderer.Symbol(1) = pFillSymbol

  pClassBreaksRenderer.Break(1) = maximumPopulation * (2 / 3)

  pClassBreaksRenderer.Label(1) = "Medium"

  ' High population in red

  Set pFillSymbol = New SimpleFillSymbol

  pFillSymbol.Color = GetRGBColor(245, 0, 0)

  pClassBreaksRenderer.Symbol(2) = pFillSymbol

  pClassBreaksRenderer.Break(2) = maximumPopulation

  pClassBreaksRenderer.Label(2) = "High"

CLASSBREAKSRENDERER COCLASS



Chapter 5 • Displaying graphics • 461

D
is

p
la

y

Break index

Break(2)

Break(1)

Break(0)

Minimum break

Corresponding Class

High (California)

Medium (Texas and five others)

Low (all other states, Wyoming at minimum)

Fill symbol colorBreak value

32,197,302

21,026,670

11,066,153

484,520

The Label and Description fields are used to associate text with each
class. These are used by the table of contents and map legends.

If SortClassesAscending is set to False (its default is True) the symbols
used to draw the features are reversed in order. In the previous ex-
ample, low population would be drawn in red.

The NormField allows a field to be specified to divide into the field
specified for classification. Setting this property is the same as setting
IDataNormalization::NormalizationType = esriNormalizeByField and
setting IDataNormalization::NormalizationField equal to the field name.

 IDataNormalization : IUnknown Provides access to members that control the data
normalization properties of a renderer.

NormalizationField: String Normalization field.
NormalizationFieldAlias: String Normalization field alias.
NormalizationTotal: Double Total of all values (used when normalizing by percent of total).
NormalizationType:

esriDataNormalization
Normalization type.

The IDataNormalization interface is used to map ratio data. This is used
if you want to minimize differences based on the size of areas or num-
bers of features in each area. Ratios are created by dividing two data
values; this is referred to as normalizing the data. For example, dividing
the 18- to 30-year-old population by the total population yields the ratio
of people aged 18 to 30. Similarly, dividing a value by the area of the
feature yields a value-per-unit area, or density.

You can normalize your data in several ways by applying one of the
following esriDataNormalization constants to the NormalizationType
property.

Enumeration esriDataNormalization Data normalization type.

0 - esriNormalizeByField Normalize by field.
1 - esriNormalizeByLog Normalize by Log.
2 - esriNormalizeByPercentOfTotal Normalize by percent of total.
3 - esriNormalizeByArea Normalize by area.
4 - esriNormalizeByNothing Do not Normalize.

esriNormalizeByField requires the NormalizationField property to be set
to a valid field name. This field is then divided into the data value.

esriNormalizeByLog will take a base 10 logarithm of the data values.

esriNormalizeByPercentageOfTotal requires the NormalizationTotal field
to be set to the total data value. This is used to calculate percentage
values by dividing the total into each data value and multiplying by 100.

esriNormalizeByArea is not implemented.

CLASSBREAKSRENDERER COCLASS



462 • Exploring ArcObjects • Volume 1

 IDataExclusion: IUnknown Provides access to members that control the exclusion of
data values from a renderer.

ExclusionClause: String Data exclusion where clause.
ExclusionDescription: String Description for the excluded data.
ExclusionLabel: String Label for the excluded data.
ExclusionSymbol: ISymbol Symbol used to draw excluded values.
ShowExclusionClass: Boolean Indicates if the exclusion symbol is used.

The IDataExclusion interface is implemented by ChartRenderer, Class-
BreaksRenderer, DotDensityRenderer, and ProportionalSymbolRenderer.

This interface can be used to eliminate features from the renderer. These
features may have erroneous attributes associated with them. An SQL
expression set to the property ExclusionClause identifies these values—
be careful to ensure the SQL syntax is valid, otherwise no features will
be drawn.

Values that are excluded can optionally be symbolized with the symbol
in exclusionSymbol. If this is not set, the feature will not be drawn.

If ShowExclusionClass is set to False, then excluded features will not be
drawn with the ExclusionSymbol. This property controls the display of
the map and the legend.

 IClassBreaksUIProperties: IUnknown Provides access to members that control some user
interface properties of a ClassBreaksRenderer.  The
properties set through this interface do NOT affect what
is drawn on the map.

ColorRamp: String File and path name of the color ramp.
DeviationInterval: Double Deviation interval (0-1), where 0 means that no deviation is used.
LowBreak (in Index: Long) : Double Lower bound of the class at the specified index.
Method: IUID Classification method.
NumberFormat: INumberFormat Number format for class labels.
ShowClassGaps: Boolean Indicates if each lower bound is adjusted up to the nearest existing

data value.

The IClassBreaksUIProperties interface is used by the Layer/Properties/
Symbology dialog box to store additional values reflecting what the user
has chosen in the dialog box. The properties of this interface are not
parameters to rendering features. Keeping these values up-to-date helps
keep the standard ArcMap dialog boxes consistent with the current
settings. For example, when you set values into the LowBreak property,
they will appear in the Range column of the classes.

 IDataSampling: IUnknown Provides access to members that control the data sampling
properties of a renderer.

MaxSampleSize: Long Maximum sample size.
SamplingMethod: esriDataSampling Data sampling method.

The IDataSampling interface is similarly used by the Layer/Properties/
Symbology dialog box to reflect values the user has chosen. If you
programmatically update corresponding values in ArcObjects, update
the values in this interface to keep the dialog box in synch with your
application.

For documentation on the IRotationRenderer interface, see the previous
topic on SimpleRenderer.

CLASSBREAKSRENDERER COCLASS



Chapter 5 • Displaying graphics • 463

D
is

p
la

y

Use the UniqueValueRenderer to display data that falls into distinct cat-
egories based on attribute values. If you have parcel data with land use
types of residential, agriculture, and retail, you can use a different sym-
bol to represent each unique land use type.

More than one category can be combined to give unique values. This is
useful for differentiating features that are ambiguous in the individual
categories but unique in their combination. When more than one at-
tribute is specified, the combinations of unique values are used. Combi-
nations of fields can be depicted, such as A|X, A|Y, A|Z, B|X, B|Y,
B|Z, where | is a field delimiter.

 IUniqueValueRenderer : IUnknown Provides access to members that control a renderer where
symbols are assigned to features based on unique
attribute values.

ColorScheme: String Color scheme (user interface property only).
DefaultLabel: String Label used for unspecified values.
DefaultSymbol: ISymbol Symbol used to draw any unspecified values (may be NULL).
Description (in Value: String) : String Desription for the specified label.
Field (in Index: Long) : String Field at the specified index that is used to categorize features.
FieldCount: Long Number of fields used by the renderer (0-3).
FieldDelimiter: String Delimiter used to separate field values.
FieldType (in Index: Long) : Boolean Indicates if the field at the specified index is a string.
Heading (in Value: String) : String Heading that contains the specified value.
Label (in Value: String) : String Label for the specified value.
LookupStyleset: String Style used for matching (user interface property only).
ReferenceValue (in Value: String) :

String
Reference value for the specified value.

Symbol (in Value: String) : ISymbol Symbol associated with the specified value.
UseDefaultSymbol: Boolean Indicates if DefaultSymbol is used for drawing unspecified values.
Value (in Index: Long) : String Value at the specified index.
ValueCount: Long Number of unique values used to categorize the data.

AddReferenceValue (in Value: String, in
refValue: String)

Adds a value to the renderer to be grouped with refValue, which has
already been added to the renderer.

AddValue (in Value: String, Heading:
String, in Symbol: ISymbol)

Adds a value and corresponding symbol to the list.  For multivariate
cases, the specified value is a delimitted list of individual values.

RemoveAllValues Removes all values from the renderer.
RemoveValue (in Value: String) Removes a value from the renderer.

Use the IUniqueValueRenderer interface to specify the fields and then
your unique values and corresponding symbols. Typically, you would
specify one field as shown in this VBA code.

  pUniqueValueRenderer.FieldCount = 1

  pUniqueValueRenderer.Field(0) = "NAME"

You may also specify additional fields, which is valuable when a feature
is ambiguous in the categories of the first field. For example, in the
United States there are many counties in each state, and the county
names are ambiguous to the United States as a whole. There are 26
counties called “Jefferson”, and these would all get the same symbol
unless they were distinguished by state name.
  pUniqueValueRenderer.FieldCount = 2
  pUniqueValueRenderer.Field(0) = "NAME"
  pUniqueValueRenderer.Field(1) = "STATE_NAME"
  pUniqueValueRenderer.FieldDelimiter = ","

Having set up the fields, the next step is to populate the unique values.
The AddValue method creates a new value with a corresponding symbol
and heading in the renderer object. You can retrieve and change the
symbol at a later date by using the value as a lookup parameter to the
Symbol property array.

In the Layer Proper-
ties/Symbology/Show

list in ArcMap,  the
unique-value renderer

corresponds to Unique
Values under the type

of Categories.

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

Unique-
Value-

Renderer

ILevelRenderer
ILookupSymbol

IRotationRenderer
ITransparencyRenderer
IUniqueValueRenderer

UniqueValueRenderer is a way to
symbolize the features of a layer based

on the unique values of one or more
attributes.

UNIQUEVALUERENDERER COCLASS

These two bitmaps show a
map of two of the

“Jefferson” counties distin-
guished by state name and

the table of contents.



464 • Exploring ArcObjects • Volume 1

This also applies to the legend texts specified through the lookup pa-
rameter of Label, Heading, and Description property arrays. If a Label is
not supplied, then it defaults to the same text as the value parameter.
Heading defaults to the field name. The Description property is empty
by default.

If a value and a new symbol are passed into AddValue and the value
already exists in the renderer, then the symbol is replaced with the new
symbol. The ValueCount property returns the number of unique values
set up so far. The Value property array can be used to iterate through the
existing values; the maximum index is ValueCount -1.

If multiple fields are involved, then the unique value must contain the two
attribute values separated by the string specified in the FieldDelimiter
property. This is typically set to a character that does not occur in the
attribute string, for example, a comma.

  pUniqueValueRenderer.AddValue "Jefferson,Montana", "", pSym1

  pUniqueValueRenderer.AddValue "Jefferson,Idaho", "", pSym2

Values that have not been added to the renderer object can be drawn
according to the symbol set in the DefaultSymbol property; remember to
set the UseDefaultSymbol property to True first. The label for the default
symbol is set in the DefaultLabel property.

If you would like two or more values to be in the same category and
drawn with the same symbol, you can call the AddReferenceValue
method, passing in the new value as the first parameter and an existing
refValue as the second parameter. This will create a new unique value,
but this value will not directly have an associated symbol—the symbol
of the refValue is used to render the feature.

For example, the code below “Freeway” will be drawn using the symbol
pSymbol. “Highway” is added as a reference to “Freeway” and will be
drawn using the same symbol. Note that you cannot retrieve a symbol
using Symbol(“Highway”) property—this will result in a VBA error ex-
ception. You can retrieve the reference value using the Reference-
Value(“Highway”) property. In this case, “Freeway” will be returned.

  pUniqueValueRenderer.FieldCount = 1

  pUniqueValueRenderer.Field(0) = "DESC"

  pUniqueValueRenderer.AddValue "Freeway", "", pSymbol

  pUniqueValueRenderer.AddReferenceValue "Highway", "Freeway"

The code snippets shown above put the values directly into
UniqueValueRenderer. However, it is more likely you will scan the feature
class for values and put them into the renderer object. Symbol colors to
match the values can also be generated by iterating through a color
ramp object. The VBA code below illustrates this loop.

  Do While Not pNextRow Is Nothing

    Set pNextRowBuffer = pNextRow  'Get a value

    codeValue = pNextRowBuffer.Value(fieldNumber)

    Set pNextUniqueColor = pEnumRamp.Next 'Get a color

    If pNextUniqueColor Is Nothing Then 'Reset the ramp if  out of colors

pNextRow is a cursor to the current row.
fieldNumber is the index of the field you are

collecting values from. pEnumRamp enumerates
colors from a color ramp object. codeValue is a

string to hold the value read from the feature
class.

Sample ArcMap display of the
UniqueValueRenderer

It is also possible to use the
IDataStatistics::UniqueValues method on the
DataStatistics object to gather all the unique

values in memory and then iterate through
them.

UNIQUEVALUERENDERER COCLASS



Chapter 5 • Displaying graphics • 465

D
is

p
la

y

      pEnumRamp.Reset

      Set pNextUniqueColor = pEnumRamp.Next

    End If

    Set pSym = New SimpleFillSymbol 'Set the symbol to the new Color

    pSym.Color = pNextUniqueColor

    pUniqueValueRenderer.AddValue codeValue, "", pSym ' Add value and symbol

    Set pNextRow = pCursor.NextRow ' Advance to the next row

  Loop

UNIQUEVALUERENDERER COCLASS



466 • Exploring ArcObjects • Volume 1

You can use the ProportionalSymbolRenderer to represent data values
more precisely; the size of a proportional symbol reflects the actual data
value.

 IProportionalSymbolRenderer :
 IUnknown

Provides access to members that control the drawing of
varying size symbols for each feature, each sized in
proportion to a field value.

BackgroundSymbol: IFillSymbol Background fill symbol used when proportional marker symbols are
draw on polygon features.

Field: String Value field.
FlanneryCompensation: Boolean Indicates if Flannery Compensation is applied.
LegendSymbolCount: Long Number of symbols displayed in the TOC and legend.
MaxDataValue: Double Normalized maximum data value.
MinDataValue: Double Normalized minimum data value.
MinSymbol: ISymbol Symbol used to draw feature with the normalized minimum data

value.
NormField: String Normalization field.
ValueRepresentation:

esriValueRepresentations
Representation type of the value field.

ValueUnit: esriUnits Units of the value field.

CreateLegendSymbols Creates the legend. Call after all properties have been set.

The symbol used to display the data is set with the property MinSymbol.
This can be a marker or line symbol. Marker symbols can be used with
polygon features. In this case, they are placed at the center of the poly-
gon. An additional BackgroundSymbol property can also be specified to
fill the polygons.

The Field property specifies the name of a numeric field; this is used to
calculate each symbol’s size on the map.

The ValueUnit specifies what distance units the data in the field repre-
sents (feet, meters, or other), or, for units that are not a distance (popu-
lation counts, velocity, or other), this should be set to esriUnknownUnits.

If the ValueUnit is a distance, then the proportional-symbol renderer can
take these values and change the size of the symbol supplied in
MinSymbol to reflect this. There is no need to set the MinDataValue in
this case. However, you should set the ValueRepresentation to specify
how the symbol relates to the measurement. Marker symbols can be
proportional by radius or area, whereas lines can be proportional by
width or distance from the center line (half the width). Additionally,
marker symbols should be circular or square for the radius and area
settings to apply. If the ValueRepresentation is esriValueRepUnknown,
then the symbol is proportional by width in both marker and lines.

Enumeration esriValueRepresentations Value representation type.

0 - esriValueRepUnknown Value represents Unknown.
1 - esriValueRepRadius Value represents Radius.
2 - esriValueRepArea Value represents Area.
3 - esriValueRepDistance Value represents Distance from Center.
4 - esriValueRepWidth Value represents Width.

These are the values that can be set in the ValueRepresentation property.

If the ValueUnit is not known, then the proportional-symbol renderer
must calculate an accurate scale for the symbols. In this case, the
MinDataValue property must be set to the data value that relates to the
size of the symbol set in MinSymbol. The symbols increase in

PROPORTIONALSYMBOLRENDERER COCLASS

An example of using the proportional-value
renderer is where you have map tree locations
as points and an attribute reflecting the radius
of the tree canopy. By using proportional circles,

the trees can be depicted by circles reflecting the
actual ground covered by the tree.

Another application is a population map; the
area of a circular marker can directly relate to
the population value. Proportional symbols also

apply well to line symbology; a river could be
symbolized with a network of lines with
different widths reflecting the river flow.

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

Proportional-
Symbol-
Renderer

IBarrierProperties2
IDataExclusion

IDataNormalization
IRotationRenderer

IProportional-
SymbolRenderer

The proportional-symbol renderer draws
symbols of varying size for each feature.
The size is in proportion to a field value.

In the Layer Proper-
ties/Symbology/Show

list in ArcMap, the
proportional-symbol

renderer corresponds
to Proportional

symbol under the type
of Categories.



Chapter 5 • Displaying graphics • 467

D
is

p
la

y

proportion to the data values, with marker symbols increasing by the
area and lines by width. So a value that is twice as big as the
MinDataValue will have a marker twice the area of the smallest marker.
In this case, the area is computed as if the marker was a square. With
line symbols, a value that is twice the smallest value will have a line
symbol twice as wide.

For marker symbols with unknown units, an appearance compensation
can be specified. This will increase the marker size and is enabled by
setting the FlanneryCompensation to True; this increase is an empirically
derived result.

Similar to the class breaks renderer, you can specify a normalization
field through the NormField property. This is exactly the same as setting
the field in the IDataNormalization::NormalizationField property. Data
is normalized before any calculations to set the symbol sizes are carried
out. Normalization types for the proportional-symbol renderer can be by
field value or by a base 10 logarithm.

As the proportional-symbol renderer does not use a fixed set of sym-
bols, the symbols used in the legend must be created. Call Create-
LegendSymbols to do this. If ValueUnit is set to a distance, then one
symbol is used in the legend, and this is taken from MinSymbol.

If the units are unknown, then a range of symbols are generated. The
MaxDataValue should be set to represent the largest possible data value;
this will correspond to the biggest symbol. LegendSymbolCount should
be set to the number of required symbols in the legend. Be sure to set
these two properties before calling CreateLegendSymbols. The symbols
will be generated at powers of ten between the minimum and maximum
values and then half- and quarter-values.

The VBA sample below illustrates setting up a proportional symbol
renderer object for a population field for polygons of the United States.
The units of population are not distance units; therefore, the valueUnit is
set to be unknown. The MinSymbol is set to be a circular marker symbol
and the BackgroundSymbol is a fill symbol. The minimum and maxi-
mum data values are calculated using a DataStatistics object that iterates
a field and puts the results into the IStatisticsResult object.

  Set pProportionalSymbolRenderer = New ProportionalSymbolRenderer

  With pProportionalSymbolRenderer

    .ValueUnit = esriUnknownUnits

    .ValueRepresentation = esriValueRepUnknown

    .Field = "POP1990"

    .FlanneryCompensation = False

    .MinDataValue = pStatisticsResult.Minimum

    .MaxDataValue = pStatisticsResult.Maximum

    .BackgroundSymbol = pFillSymbol

    .MinSymbol = pSimpleMarkerSymbol

    .LegendSymbolCount = 3

    .CreateLegendSymbols

  End With

This is a 1990 population map of the United
States. The size area of the marker is in

proportion to the population.

PROPORTIONALSYMBOLRENDERER COCLASS



468 • Exploring ArcObjects • Volume 1

The proportional symbol renderer also supports the IDataExclusion
interface—using this to exclude spurious data values can be an essential
step for attributes that have unknown units.

For example, the population of the world has a large variation, from
over a billion for China and India to some population values that are
zero or unknown (-99999). In this case, even if the minimum symbol is
one point in size, the maximum symbol can be huge. One way to avoid
this problem is to exclude all countries with a population of less than a
million persons.

PROPORTIONALSYMBOLRENDERER COCLASS



Chapter 5 • Displaying graphics • 469

D
is

p
la

y

CHARTRENDERER COCLASS

The ChartRenderer object provides the ability to compare multiple at-
tributes of a feature by depicting the attributes as elements of either a
pie chart or bar chart.

Bar charts are available in two styles: a conventional bar chart, with a
series of bars on a horizontal axis, and a stacked bar chart, where each
bar is placed one above another. With pie charts, you can compare one
feature to another by the relative size of the pie chart.

All the charts require a list of fields that are to be used in the chart; this
is specified in the IRendererFields interface.

The chart renderers require specific marker symbols; these symbols
implement IChartSymbol. A chart symbol contains further symbols that
describe how each component of the chart is to be drawn.

For example, if a BarChartSymbol consists of two bars, then the object
contains two fill symbols for each bar, and these correspond to two
fields specified in IRendererFields in the ChartRenderer.

The available chart symbols are BarChartSymbol, PieChartSymbol, and
StackedBarChartSymbol. By default, the chart symbols have a 3D ap-
pearance. For more information, see the section on chart symbols in this
chapter.

Setting up a chart requires some properties to be set in IChartRenderer;
additionally, there are some options for pie charts in IPieChartRenderer
that can be set to size the pie chart.

The IDataExclusion and IDataNormalization interfaces are available in a
similar way to the ProportionalSymbolRenderer object.

The VBA code below illustrates setting up a typical chart renderer
object.

  'Set up the chart marker symbol to use with the renderer

  Dim pBarChartSymbol As IBarChartSymbol, pFillSymbol As IFillSymbol

  Dim pMarkerSymbol As IMarkerSymbol, pSymbolArray As ISymbolArray

  Dim pChartSymbol As IChartSymbol, pChartRenderer As IChartRenderer

  Dim pRendererFields As IRendererFields

  ' Create a new bar chart symbol

  Set pBarChartSymbol = New BarChartSymbol

  ' Set the width of each bar - units are points

  pBarChartSymbol.Width = 6

  Set pMarkerSymbol = pBarChartSymbol ' QI to marker symbol interface

  Set pChartSymbol = pBarChartSymbol ' QI to chart symbol interface

  pChartSymbol.maxValue = maxValue ' This is the biggest value of all bars

  pMarkerSymbol.Size = 30 ' This is the maximum height of the biggest bar

  Set pSymbolArray = pBarChartSymbol

  Set pFillSymbol = New SimpleFillSymbol

  pFillSymbol.Color = GetRGBColor(213, 212, 252) ' pastel green

  pSymbolArray.AddSymbol pFillSymbol

  Set pFillSymbol = New SimpleFillSymbol

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

Chart-
Renderer

IBarrierProperties2
IChartRenderer
IDataExclusion

IDataNormalization
IIdentify

IPieChartRenderer
IRendererFields

Charts are marker symbols and are
placed at the center of polygons.

In the Layer Properties/Symbology/Show list in
ArcMap, the chart renderer produces pie, bar,
and stacked charts under the type of Charts.



470 • Exploring ArcObjects • Volume 1

  pFillSymbol.Color = GetRGBColor(193, 252, 179) ' pastel purple

  pSymbolArray.AddSymbol pFillSymbol

  Set pChartRenderer = New ChartRenderer ' Create a new chart renderer

  ' Set up the fields that comprise the components of a chart; a bar in

  ' a bar chart or a slice of a pie chart

  Set pRendererFields = pChartRenderer

  pRendererFields.AddField "MALES"

  pRendererFields.AddField "FEMALES"

  ' Set the chart symbol into the renderer. This could also be a stacked

  ' bar or pie chart

  Set pChartRenderer.ChartSymbol = pBarChartSymbol

  Set pFillSymbol = New SimpleFillSymbol

  pFillSymbol.Color = GetRGBColor(239, 228, 190)

  Set pChartRenderer.BackgroundSymbol = pFillSymbol

  ' Disable so that charts appear in polygon centers

  pChartRenderer.UseOverposter = False

  pChartRenderer.CreateLegend ' Create the legend symbols

  pChartRenderer.Label = "Population by Gender"

 IRendererFields : IUnknown Provides access to members that work with the list of fields
for renderers that use multiple value fields.

Field (in Index: Long) : String Field at the specified index.
FieldAlias (in Index: Long) : String Field alias at the specified index.
FieldCount: Long Number of fields.

AddField (in Name: String, Alias: String) Adds a field to the renderer.
ClearFields Removes all fields from the renderer.
DeleteField (in Name: String) Removes the specified field from the renderer.

The IRendererFields interface allows you to specify the fields from the
feature class that make up the chart. You can add in additional fields with
AddField and then access and change individual fields using the Field
property array. If you would like the text for the legend to be different
from the field name, then set the FieldAlias array to the desired text.

 IChartRenderer : IUnknown Provides access to members that control the drawing of
chart symbols (pie, bar, stacked bar) on a map to
represent features.

BaseSymbol: ISymbol Background fill symbol, (used when chart symbols are drawn for
polygon features).

ChartSymbol: IChartSymbol Chart symbol object.
ColorScheme: String Color scheme (user interface property only).
FieldTotal (in Index: Long) : Double Field total for the field at the specified index.
Label: String Chart label.
UseOverposter: Boolean Indicates if the overposter is used for positioning the chart symbols.

CreateLegend Creates the legend.  Call after all properties are set.

The IChartRenderer interface specifies properties for pie, bar, and
stacked bar charts. Pie charts require some additional properties to be
set—see the IPieChartRenderer interface.

Charts are marker symbols and are placed at the center of polygons, so
setting the BackgroundSymbol is a good idea so you can see the poly-
gon shapes. The ChartSymbol property can be set to one of BarChart-

U.S. population by gender rendered with bar
chart symbols

U.S. population by gender rendered with stacked
bar chart symbols

CHARTRENDERER COCLASS



Chapter 5 • Displaying graphics • 471

D
is

p
la

y

Symbol, PieChartSymbol, or StackedBarChartSymbol. The chart
symbol’s ISymbolArray::SymbolCount must match the number of fields
specified in the renderer’s IRendererFields::FieldCount.

Setting UseOverposter to False will place the charts in the center of poly-
gons; if this is set to True, the charts will be moved so that they do not
overlap each other.

The symbols for the legend need to be explicitly created with the
CreateLegend method. The Legend is composed of the chart symbol
sized and labeled for half the maximum data value, followed by each
fill symbol making up the chart with the text from ISymbolArray::-
FieldAlias (if this is empty, the field name is used). The Label property
specifies what text appears above the chart in the legend; this must be
set after calling CreateLegend.

If the normalization type is esriNormalizeByPercentOfTotal, the sum of
the attribute values in a field has to be supplied in the FieldTotal
property array.

 IPieChartRenderer : IUnknown Provides access to members that work with additional
chart renderer properties specific to pie charts.

FlanneryCompensation: Boolean Indicates if Flannery Compensation is applied.
MinSize: Double Symbol size (points) corresponding to the minimum value.
MinValue: Double Minimum value (used for proportional sizing).
ProportionalBySum: Boolean Indicates if the size of pie chart symbols is determined by the sum of

the values.
ProportionalField: String Field used to determine size of the pie chart symbols.
ProportionalFieldAlias: String Field alias for the proportional field.

The pies can be sized by the sum of the values making up the pie. Set
the ProportionalBySum property to True for this option to apply. Alter-
natively, the pie can be sized by a data value from another field. To do
this, set the field name to ProportionalField. As with other data values,
this field is normalized before the pie is sized. The legend text against
the pie chart is taken from ProportionalFieldAlias, or, if this is empty, the
proportional field name is used.

For both these options, you must set the MinSize property, which is the
size in points of the width of the smallest pie chart. Additionally, you
must set the minimum data value into MinValue property. Appearance
compensation can also be specified to increase the size of the markers
by setting FlanneryCompensation to True. For example, if the individual
slices in a pie reflect population of males and population of females in
a state, then the radius of the pie can represent the sum of the fields or
population of the states as a whole.

  Dim pPieChartRenderer As IPieChartRenderer

  Set pPieChartRenderer = pChartRenderer

  pPieChartRenderer.ProportionalBySum = True

  pPieChartRenderer.MinSize = 6

  pPieChartRenderer.MinValue = minFieldValue

U.S. population by gender rendered with pie
symbols

CHARTRENDERER COCLASS

The overall size of a pie chart can be adjusted in
a similar way to marker symbols with the

proportional symbol renderer. If you want all the
pies to appear as the same size, then leave all

the properties in this interface set to their
default values.



472 • Exploring ArcObjects • Volume 1

DOTDENSITYRENDERER COCLASS

The DotDensityRenderer object requires a DotDensityFillSymbol. It fills a
polygon layer with a scattering of marker symbols. The markers are
randomly placed. The density of the marker symbols is determined by
specifying the DotValue, or how much each dot represents.

Multiple attributes may be specified in one dot density fill symbol,
where each attribute has a different marker symbol. However, this can
lead to some confusing maps, so typically only one attribute is used.

Additionally, a mask layer of polygons can be specified, which can limit
the areas where dots are placed.

The following sample code exercises a DotDensityRenderer:

  Dim pDotDensityRenderer As IDotDensityRenderer

  Dim pDotDensityFillSymbol As IDotDensityFillSymbol

  Dim pRendererFields As IRendererFields, pSymbolArray As ISymbolArray

  Dim pColor As IColor, pMarkerSymbol As ISimpleMarkerSymbol

  Set pDotDensityRenderer = New DotDensityRenderer

  Set pRendererFields = pDotDensityRenderer 'QI to the fields

  pRendererFields.AddField "POP1999" 'Add in the one population field

  ' Set up a new dot density fill symbol

  Set pDotDensityFillSymbol = New DotDensityFillSymbol

  ' this is the size of each dot in points

  pDotDensityFillSymbol.DotSize = 3

  ' The fill only has dots, the outline and background fill are removed

  Set pColor = New RgbColor

  pColor.NullColor = True

  pDotDensityFillSymbol.BackgroundColor = pColor

  pDotDensityFillSymbol.Outline = Nothing

  ' Put one circular marker into the dot density symbol

  ' use default color (black)

  Set pSymbolArray = pDotDensityFillSymbol

  Set pMarkerSymbol = New SimpleMarkerSymbol

  pMarkerSymbol.Style = esriSMSCircle

  pSymbolArray.AddSymbol pMarkerSymbol

  ' Put the dot density fill symbol into the renderer

  Set pDotDensityRenderer.DotDensitySymbol = pDotDensityFillSymbol

  pDotDensityRenderer.DotValue = 50000 'Each dot represents 50,000 people

  pDotDensityRenderer.CreateLegend 'Create the symbols for the legend

The features of a polygon feature class are
displayed with a number of dots corresponding

to a value. This renderer is suitable for distribu-
tion throughout an area. For instance, a dot map

depicting population will most likely have the
strongest concentrations of dots along rivers and

roads and near coastlines.

Map of the west coast of the U.S. Population
density is drawn by county.

DotDensity-
Renderer

IDataExclusion
IDotDensityRenderer

IDotDensityUIRenderer
IRendererFields

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

A dot-density renderer places varying
densities of dots within polygon features.

In the Layer Proper-
ties/Symbology/Show

list in ArcMap, the
dot-density renderer
corresponds to Dot
Density under the
type of Quantities.



Chapter 5 • Displaying graphics • 473

D
is

p
la

y

 IDotDensityRenderer : IUnknown Provides access to members that control the drawing of
varying densities of dots within polygon features to
represent different quantities.

ColorScheme: String Color scheme, (user interface property only).
ControlLayer: IFeatureLayer Control layer used for masking.
DotDensitySymbol:

IDotDensityFillSymbol
The dot density symbol.

DotValue: Double Value of each dot.
MaintainSize: Boolean Indicates if dot size is preserved when zooming (the alternative is

that density is preserved).

CreateLegend Creates the legend. Call after all properties are set.

The dot-density fill symbol is set into DotDensitySymbol. Additionally,
you must set the DotValue, which represents the quantity of each dot. In
combination with the area of the polygon, this value relates to the den-
sity of the dots. To increase the density of the dots, decrease the
DotValue.

The symbols used in the legend must be explicitly created with a call to
the CreateLegend method; the legend will contain a single marker sym-
bol for each field, added using IRendererFields::AddField.

 IDotDensityUIRenderer : IUnknown Provides access to members that work with additional
renderer properties which appear on the user interface.

maxArea: Double Area in map units of the polygon with maximum density.
maxValueArea: Double Maximum density.
meanArea: Double Mean area in map units.
meanValueArea: Double Mean density.
minArea: Double Area in map units of the polygon with minimum density.
minValueArea: Double Minimum density.

Set values in the IDotDensityUIRenderer interface if you wish to keep the
settings in the renderer object consistent with the property page.

The IRendererFields interface stores a list of attribute field names used to
draw dot densities, for example, population. The number of marker
symbols in the DotDensityFillSymbol must match the number of renderer
fields. See the description of this interface under the ChartRenderer
coclass.

DOTDENSITYRENDERER COCLASS



474 • Exploring ArcObjects • Volume 1

BIUNIQUEVALUERENDERER COCLASS

The biunique value renderer is used to produce multivariate maps. Unlike
maps that display one attribute, or characteristic, of the data—for example,
a name or an amount—multivariate maps display two or more attributes at
the same time. A multivariate map could use color to show the unique
habitats of Africa and also display biodiversity of each region using a
graduated symbol, where a larger symbol represents a greater diversity.

 IBivariateRenderer : IUnknown Provides access to members that control the rendering of
bivariate symbology based on two constiuent renderers.

MainRenderer: IFeatureRenderer Main renderer of a bivariate renderer.
VariationRenderer: IFeatureRenderer Variation renderer of a bivariate renderer.

CreateLegend Creates the legend.  Call after all properties are set.

The MainRenderer property must be set to a UniqueValueRenderer, and
the VariationRenderer must be a ClassBreaksRenderer. The
BiUniqueValueRenderer takes the symbols of the unique value renderer
and alters it by the size or color of the class-breaks renderer.

The VariationRenderer would typically be set up with a symbol type that
matches the MainRenderer, for example, marker symbols in the main
renderer and marker symbols in the variation renderer. The only excep-
tion to this is where the main renderer uses a fill symbol of varying
colors for polygons, and the variation renderer uses markers varying in
size. In this case, markers are placed at the polygon centers with varying
background fills.

If variation renderer symbols vary in size, then the color of the main
renderer is used and this is subdivided by size for the second attribute.

If the variation renderer symbols vary in color, then the colors of the main
render are modified by the hue and saturation of the symbols of the
variation renderer. In this case, it is wise to have your main renderer sym-
bols colors, which have different hue values but the value and saturation
do not really matter. The opposite applies to the variation renderer.

The CreateLegend method will generate legend symbols from both ren-
derers that are related to the one layer. The legend typically consists of
combinations of all possible values from the two renderers, unless
different-sized maker symbols are used with polygon fills, in which case
the marker sizes and fills are shown separately.

This map shows landlocked countries illustrated
as two colors and population as a circular

marker.
This map shows cities of the world sized by

population—capital cities are in a different color
than other cities.

This map shows cities of the world with a uniform
circular marker, capital cities distinguished by color,

and population distinguished by lightness.

In the Layer Proper-
ties/Symbology/Show

list in ArcMap, the
biunique value

renderer corresponds
to Quantity by

Category under the
type of Multiple

Attributes.

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

BiUnique-
Value-

Renderer

IBivariateRenderer

The biunique value renderer creates
maps of multiple attributes.



Chapter 5 • Displaying graphics • 475

D
is

p
la

y

SCALEDEPENDENTRENDERER COCLASS

The ScaleDependentRenderer is a renderer that contains other renderers.
Its purpose is to allow you to specify different renderers for scale
ranges. For example, when a user views a layer at its full extent, it will
draw with one set of basic symbols, and when the user zooms in far
enough, the symbols will change to become more detailed.

You can specify as many renderers and scale ranges as you need. One
example would be showing road networks—when zoomed out to view
a country, then roads would be drawn as simple lines with a
SimpleRenderer coclass. But when zoomed in, the roads may be drawn
using detailed line symbols reflecting the road type using a
UniqueValueRender.

 IScaleDependentRenderer : IUnknown Provides access to members that control a renderer which
is composed of mulitple renderers, of which only one is
enabled within a particular scale range.

Break (in Index: Long) : Double Scale value at which to break for the specified index.
Renderer (in Index: Long) : IUnknown

Pointer
The renderer at the specified index.

RendererCount: Long Number of renderers.

AddRenderer (in Renderer:
IFeatureRenderer)

Adds a renderer to the end of the list.

MoveRenderer (in Renderer:
IFeatureRenderer, in toIndex: Long)

Moves renderer to the specified location in the list.

RemoveRenderer (in Renderer:
IFeatureRenderer)

Removes the specified renderer from the list.

The AddRenderer method adds a feature renderer to the scale renderer.
You must then set a corresponding Break array property to indicate map
scale below which the renderer is used. For example, a renderer that
displays at less than 1:10,000 would have a break value set to 10,000.

The following VBA sample combines the renderers from the second
and third map layers into a scale-dependent renderer and sets this into
the first map layer. Typically, you would add the same layer three times
to ArcMap first, set some symbology on the second and third layers,
then run this macro to set up the first layer.

   Dim pDoc As IMxDocument, pLayer0 As IGeoFeatureLayer
  Dim pLayer1 As IGeoFeatureLayer, pLayer2 As IGeoFeatureLayer

  Dim pScaleDependentRenderer As IScaleDependentRenderer

  Set pDoc = Document

  Set pLayer0 = pDoc.FocusMap.Layer(0) ' Get a handle on each layer

  Set pLayer1 = pDoc.FocusMap.Layer(1)

  Set pLayer2 = pDoc.FocusMap.Layer(2)

  Set pScaleDependentRenderer = New ScaleDependentRenderer

  With pScaleDependentRenderer

    .AddRenderer pLayer1.Renderer ' Add in the detail renderer

    .Break(0) = 12000000

    .AddRenderer pLayer2.Renderer ' Add in the less detailed renderer

    .Break(1) = 1000000000

  End With

  ' Set the scale break renderer into the first layer.

  Set pLayer0.Renderer = pScaleDependentRenderer

In the Layer Properties/
Symbology/Show list in
ArcMap, the dot-density
renderer corresponds to
Dot Density under the

type of Quantities.

Feature-
Renderer

IFeatureRenderer
ILegendInfo

IPersist
IPersistStream

IScaleDependent-
Renderer Scale-

Dependent-
Renderer

The scale-dependent renderer is made of
multiple renderers, each operating within

a scale range.



476 • Exploring ArcObjects • Volume 1

The CalcRendererValues object is a utility object that can be used in
combination with a chart renderer and a feature layer. It is used to
calculate minimum and maximum data values and field totals.

First, set up your chart renderer object. You can set data exclusion and
normalization properties, but do not set the MinValue or FieldTotals yet.
Next, call the ICalcRendererValues::SetData method. This points the
CalcRendererValues object at the chart renderer and feature layer ob-
jects. To simply calculate the maximum and minimum values, use the
CalcMinMax method. This will do the job of iterating the feature layer,
taking into account normalization and data exclusion to determine the
minimum and maximum values.

 ICalcRendererValues: IUnknown Provides access to members that are used to calculate the
renderer statistics required for some uses of a
ChartRenderer.

CalcMinMax (out MinValue: Double, out
MaxValue: Double)

Calculates minimum and maximum values.

GetFieldTotals: Variant Gets totals for all fields.
SetData (in Layer: IFeatureLayer, in

Renderer: IFeatureRenderer)
Sets data for calculation.

SetDirty Sets object to state where values will be recalculated.
SetMinMax (MinValue: Double,

MaxValue: Double)
Manually sets minimum and maximum values.

You can set your own minimum and maximum values with SetMinMax.
If you call CalcMinMax a second time, the same minimum and maxi-
mum values will then be returned without rescanning the feature layer.
To force a recalculation, call SetDirty before calling CalcMinMax.

If your chart renderer requires field totals (the normalization type is
esriNormalizeByPercentOfTotal) and your chart renderer is for bar or
stacked bar charts, you can call GetFieldTotals to work these out and
return a safe array of the double values. You can then set the IChart-
Renderer::FieldTotal property array based on this array of doubles. Again,
the SetDirty method is required to force a rescan of the feature layer.

The following VBA code illustrates how to calculate minimum and
maximum values for a pie chart renderer where the pies are sized in
proportion to the sum attribute values of the pie slices. In this code,
pFeatureLayer is a feature layer, pPieChartRenderer is set to be a
IPieChartRenderer and has ProportionalBySum = True. Because of this,
using the CalcRendererValues object works out the minimum to be the
sum of the data values of the smallest pie.

  Dim pCalcRendererValues As ICalcRendererValues

  Set pCalcRendererValues = New CalcRendererValues

  ' Point the CalcRendererValues at the feature layer

  pCalcRendererValues.SetData pFeatureLayer, pPieChartRenderer

  Dim minVal As Double, maxVal As Double

  ' This will scan all the features and return minimum and maximum values

  pCalcRendererValues.CalcMinMax minVal, maxVal

  ' Now set the smallest pie value, other pies will be drawn in proportion

  pPieChartRenderer.minValue = minVal

CALCRENDERERVALUES COCLASS

ICalcRendererValues Calc-
Renderer-

Values

CalcRendererValues is a utility object
used to perform simple statistical calcula-

tions on a feature layer for use by
renderers.

CalcMinMax also takes into account what
minimum and maximum values the chart

renderer requires. There are three possibilities.

1.   When you are sizing pie charts in proportion
to a single field, then the minimum and

maximum value of the attribute values of this
field are returned. This is the case when

IChartRenderer::ProportionalField has been
set.

2.   When you are sizing a pie chart by the sum
of all fields, then the minimum and maximum
sums of all fields are returned. This is the case

when IChartRenderer::ProportionalBySum is
set to True.

3.   When you are using a bar (or stacked bar)
chart and you want to get the maximum and

minimum attribute values, not caring which field
these come from, then these values will be used

to set into IChartSymbol::MaxValue to size
the biggest bar in all the charts.



Chapter 5 • Displaying graphics • 477

D
is

p
la

y

The minimum interface you are required to implement for a functioning
custom renderer is the IFeatureRenderer interface. However, it is usually
recommended to implement additional interfaces. This topic is a sum-
mary of the typical interfaces that are implemented.

 IFeatureRenderer : IUnknown Provides access to members that control functionality
common to all feature renderers.

ExclusionSet: IFeatureIDSet Sets an object reference to a temporary drawing exclusion set.
RenderPhase (in drawPhase:

tagesriDrawPhase) : Boolean
Indicates if renderer uses the specified draw phase.

SymbolByFeature (in Feature: IFeature)
: ISymbol

Symbol used to draw the specified feature.

CanRender (in featClass:
IFeatureClass, in Display: IDisplay) :
Boolean

Indicates if the specified feature class can be rendered on the given
display.

Draw (in Cursor: IFeatureCursor, in
drawPhase: tagesriDrawPhase, in
Display: IDisplay, in trackCancel:
ITrackCancel)

Draws features from the specified cursor on the given display.

PrepareFilter (in fc: IFeatureClass, in
QueryFilter: IQueryFilter)

Prepares the query filter for the rendering process.

The IFeatureRenderer interface is the core of the renderer. The main
method that will be called by the framework is Draw. It is the job of
your renderer to draw the feature layer anyway you specify. Your ren-
derer is passed a feature cursor as well as a display on which to draw.

Before a Draw occurs, you are given an opportunity with PrepareFilter
to modify the filter used to produce the feature cursor. At a minimum,
you must add into the filter any fields you need for your renderer.

In response to a IFeatureRenderer::Draw method, a renderer will typi-
cally iterate through the feature cursor, taking each feature in turn. For
each feature, the renderer works out a symbol to represent the feature
and passes this off to IFeatureDraw::Draw for display. Calling the
feature’s IFeatureDraw::Draw allows custom features to use their own
drawing methods.

If you want to restrict which layers your custom renderer can be applied
to, such as being applicable only to line layers, then in your implemen-
tation of IFeatureRenderer::CanRender, you can test properties of the
feature layer and return True if your renderer supports it and False if it
does not.

 IPersistStream : IUnknown

GetSizeMax (out pcbSize:
_ULARGE_INTEGER)

IsDirty
Load (in pstm: IStream)
Save (in pstm: IStream, in fClearDirty:

Long)

Implement IPersistStream to preserve the symbology of your renderer in
map documents (.mxd), layer files (.lyr), or anything else that persists
object state. This gives you the opportunity to load and save any objects
(typically symbols) you are using in your renderer. If the objects you are
using also implement the IPersistStream mechanism (as do symbols),
you can call on those objects to persist themselves.

CREATING A CUSTOM RENDERER

You can create your own renderer COM
object. This is useful if you want complete
control over drawing all the features for a

feature layer.

There are several examples of custom
renderers in the ArcObjects Developer

Help under ArcMap/Symbology/Renderers.

Custom feature drawing can be used to achieve
a similar effect to custom renderers. However,
custom features are more powerful. They can

encapsulate behavior that is not related to
symbology. Additionally, unlike custom renderers,

the link between the custom feature and the
behavior is stored in the geodatabase, not in

map documents.

Another way to integrate a custom renderer and
property page within the ArcGIS framework is by

writing a FeatureClassExtension. Your class
extension must implement IFeatureClass-

Extension and IFeatureClassDraw.

In brief, the GUID of the
FeatureClassExtension object is stored as an

entry in the geodatabase. Then, when the
FeatureClass draws, it looks to the

FeatureClassExtension and uses the renderer
defined there (IFeatureClassDraw::

CustomRenderer), which can be either a
custom renderer or one of the standard ESRI

renderers. You can also associate a custom
renderer property page through IFeatureClass-

Draw:: CustomRendererPropertyPageCLSID.

For more information about writing feature class
extensions, see Volume 2, Chapter 8, ‘Accessing
the geodatabase’, as well as the sample code

under Geodatabase/Class Extensions.

The IFeatureRenderer interface is more fully
documented with the FeatureRenderer

abstract class at the beginning of this chapter
section.



478 • Exploring ArcObjects • Volume 1

 IPersistVariant : IUnknown Provides access to members used for storage of an object
through VARIANTs.

ID: IUID The ID of the object.

Load (in Stream: IVariantStream) Loads the object properties from the stream.
Save (in Stream: IVariantStream) Saves the object properties to the stream.

When programming in Visual Basic, use IPersistVariant instead of
IPersistStream because IPersistStream contains types not supported in
VB.

 ILegendInfo : IUnknown Provides access to members that control legend
information provided by a renderer.

LegendGroup (Index: Long) :
ILegendGroup

Number of legend groups contained by the object.

LegendGroupCount: Long Number of legend groups contained by the object.
LegendItem: ILegendItem Optional.  Defines legend formatting for layer rendered with this

object.
SymbolsAreGraduated: Boolean Indicates if symbols are graduated.

Implement ILegendInfo to ensure the table of contents and legends
show a list of what symbols, labels, and headings your renderer is us-
ing. Typically, you reuse the existing LegendGroup and LegendClass
objects and use these to hold the symbols for your renderer. Implement
your own interface to allow your renderer settings to be modified by a
caller of your renderer. This could well be by a custom renderer prop-
erty page.

To make your custom renderer object active on a layer, you could run a
VBA script that creates your renderer object (you will need to add a
reference in the VBA environment to your custom renderer’s DLL), then
replace an existing renderer in a particular layer.

  ' pGeoFeatureLayer is an interface pointer to the IGeoFeatureLayer

  ' interface on a Feature Layer object.

  ' Create a your custom renderer

   Set pMyRenderer = New CustomRenderer.clsMyRenderer

  ' You could set some properties here

  ' Now set the custom renderer into the feature layer

   Set pGeoFeatureLayer.Renderer = pMyRenderer

  ' Now refresh the active view and update the contents of the doc to _

  ' reflect the new symbology

CREATING A CUSTOM RENDERER



Chapter 5 • Displaying graphics • 479

D
is

p
la

y

CREATING A CUSTOM RENDERER PROPERTY PAGE

Description Settings for renderer

Name

Type

Preview

100

Priority

200

210

300

310

320

330

400

410

420

500

Single symbol

Name

Unique values

Unique values, many fields

Match to symbols in a style

Graduated symbols

Proportional symbols

Dot density

Pies

Bars

Stacked

Quantity by category

Features

Type

Categories

Charts

Multiple Attributes

This table lists standard renderer property pages
and their priorities.

Creating a custom property page pro-
vides a user interface for working with
the settings of a custom object that is
fully integrated within the ArcMap
framework. This section provides an
overview of how to implement a cus-
tom renderer property page that allows
users to interact with the settings of a
custom renderer. By registering the
property page in the “ESRI Renderer
Property Pages” component category,
your custom user interface will appear
in the Layer/Properties/Symbology
page along with all of the standard
symbology options. While this section
provides a good overview, you should
also look at the developer sample
code before embarking on a custom
property page implementation.

Define your custom renderer property page as a class that implements
three interfaces: IRendererPropertyPage, IComPropertyPage (essentially a
Visual Basic compatible version of the Microsoft interface IProperty-
Page), and IComEmbeddedPropertyPage. Design your GUI on a form,
placing all controls and descriptive text either directly on the form or on
another object that supports a window handle, such as a Picture box
control. Also, it is good practice to always reference this form through a
private data member in your class module.

 IRendererPropertyPage : IUnknown Provides access to members that control renderer property
pages.

ClassID: IUID Property page class id (unique identifier object).
Description: String Renderer description.
Name: String Name of the renderer.
PreviewImage: Long Preview bitmap for the renderer that appears on the page.
RendererClassID: IUID Renderer class id (unique identifier object).
Type: String Renderer type. Used to group renderers into categories.

CanEdit (in obj: IFeatureRenderer) :
Boolean

Indicates if the property page can modify the properties of the
specified renderer.

Some properties in IRendererPropertyPage will appear on the ArcMap
symbology property page (your page’s parent) to help guide users when
accessing your custom page. These include the Description, which will
appear at the top of the page, and the PreviewImage, which will appear
in the bottom left.

Name appears in the tree view on the left side of the symbology prop-
erty page.

If you use an already existing Type, then your renderer will appear
under that category. Or, you can use a new Type, in which case a new
category will be created for your renderer.

Use IComPropertyPage::Priority to control where your renderer appears
in the tree. Use a lower number to have your renderer and category



480 • Exploring ArcObjects • Volume 1

CREATING A CUSTOM RENDERER PROPERTY PAGE

appear toward the top of the list. Note that the priority of the first page
in a category controls where that category fits in the list.

In CanEdit you should check the in parameter to make sure your cus-
tom page can edit the specified renderer. Typically, your custom prop-
erty page will only edit your custom renderer. Follow similar logic in
IComPropertyPage::Applies.

 IComPropertyPage : IUnknown COM Property Page

Height: Long Returns the height of the page in pixels.
HelpContextID (in controlID: Long) :

Long
Returns the help context ID for the specified control on the page.

HelpFile: String Returns the help file name for the page.
IsPageDirty: Boolean Check if the page made any changes to the object(s).
PageSite: IComPropertyPageSite Sets the sheet that contains the page.
Priority: Long Sets or returns the page priority.  The higher the priority, the sooner

the page appears in the containing property sheet.
Title: String Sets or returns the title of the property page.
Width: Long Returns the width of the page in pixels.

Activate: Long Called on page creation.  Return the hWnd of the page here.
Applies (in Objects: ISet) : Boolean Check if the page applies to the specified objects.
Apply Apply any changes to the object(s).
Cancel Cancel changes to the object(s).
Deactivate Destroy the page.
Hide Hide the page.
SetObjects (in Objects: ISet) Supply the page with the object(s) to be edited.
Show Show the page.

IComPropertyPage works with general property page settings. The
typical behavior for a property page is to allow changes to a temporary
object (that is, a renderer). Then if the Apply or Ok button is pressed,
the temporary renderer replaces the “live” renderer object on the
feature layer. If the Cancel button is pressed, then the temporary
renderer is discarded. (In an alternate implementation, there is no
temporary renderer object. Instead, the property page stores temporary
changes to the renderer’s settings. Then, if OK or Apply is clicked, the
settings are applied to the renderer, and if Cancel is clicked, these
settings are discarded.)

SetObjects is called by the framework as a renderer property page is
opened. In this method you are passed a set of objects (map, feature
layer, feature class, and feature renderer). You should find the renderer
in this list, check for the proper type, and pass it to your page (that is,
your form) for editing. The framework automatically handles cloning
of the renderer object, so it is not necessary to make a copy before
passing it to your page. (In the alternate implementation, instead of
passing the renderer to your page for editing, simply initialize your
page’s controls using the renderer properties.)

Conversely, the Apply method is triggered when the user presses Apply
or Ok on the layer properties property sheet. In this method, call
IComEmbeddedPropertyPage::QueryObject, passing your renderer. If
your page is directly editing the renderer, then do nothing in
QueryObject, as the framework will automatically make all changes to
the renderer permanent. (In the alternate implementation, you must
instead manually update the renderer properties based on the settings
from your page.)

For renderer property pages, the framework
handles the cloning of the renderer as the page
is opened and also the apply and cancel opera-

tions as the page is dismissed. This behavior
holds true for renderers, but it can vary for other

types of objects.



Chapter 5 • Displaying graphics • 481

D
is

p
la

y

CREATING A CUSTOM RENDERER PROPERTY PAGE

Activate is called as your page gains focus. Load the form here, and
return your page’s window handle (that is, either the handle of your
form or your Picture box). Unload your form in Deactivate, which is
called when the page loses focus. In ArcMap, this occurs when the
user switches to another symbology option or to another tab on the
Layer Properties dialog box or when this dialog box is closed. Cancel
is triggered when the user presses Cancel on the layer properties prop-
erty sheet.

PageSite allows your page to call back to its parent, telling it that a
change has been made. In ArcMap, this gives a renderer property page
control over the enabling of the Apply button on the layer properties
property sheet. For a custom page, one implementation is to have a
data member of type IComPropertyPageSite on your form, and set this
in PageSite. In your form code, call
IComPropertyPageSite::PageChanged on this member anytime a control
changes. This will enable the Apply button.

Similarly, the framework also checks IsPageDirty to determine if your
page needs to be redrawn. Avoid unnecessary redrawing by only
conditionally returning True.

IComEmbeddedPropertyPage: IUnknown Methods needed for embedded property pages.

CreateCompatibleObject (in kind: Variant)
: Variant

Create a new object using the specified object as a template.  The
kind argument may be NULL if the page interacts with only a
single object.

QueryObject (in theObject: Variant) Apply the property page settings to the specified object.

Custom renderer property pages fall into the class of embedded prop-
erty pages and thus must implement IComEmbeddedPropertyPage.
Embedded property pages (as opposed to simple property pages)
reside in the framework in a configuration that, as the property page is
loaded, allows for the retention of properties from a previously edited
object. IComEmbeddedPropertyPage::CreateCompatibleObject is used to
manage the preservation of properties from the old object to the new
object, which may or may not be of the same type.

For example, in ArcMap, users pick from different symbology options
from the tree view on the Layer properties symbology tab. Because the
internal representation of each option is a different renderer object, as
the user picks a new option, a new renderer is being edited. In some
cases, properties are preserved during this transition. For example,
when a user switches between the Bar chart and Pie chart options, the
renderer fields and symbols are preserved from the old to the new
renderer. Other examples of embedded property pages in ArcMap
include the ColorBrowser and NumberFormatDialog.

In addition to managing the retention of properties from an old ren-
derer, you should also use CreateCompatibleObject to avoid unneces-
sary, excessive cloning of renderers. In this method check to see if the
in parameter is an object of the type your page should edit. If so,
return that same object. If not, create and return a new renderer object
of the proper type, setting properties on the new object if you wish.



482 • Exploring ArcObjects • Volume 1

CREATING A CUSTOM SYMBOL PROPERTY PAGE

Designing a custom symbol property page provides an integrated user
interface for working with the custom symbol settings. The implementa-
tion strategy for this page will be similar to that followed when designing
a custom renderer property page.

Define your custom symbol property page as a class that implements
four interfaces: ISymbolPropertyPage, IComPropertyPage,
IComPropertyPage2, and IPropertyPageContext. Register your custom
symbol object in the proper custom symbol category, for example,
“Marker Symbols”.

Register your custom property page object in the category “Symbol
Property Pages”. Your custom property page will then become available
in the “Type” pulldown menu on the ArcMap symbol property editor
property sheet.

 ISymbolPropertyPage : IUnknown Provides a dialog for managing properties associated with
Symbol property methods

Units: esriUnits Units to display symbol properties in.

The ISymbolPropertyPage interface controls the measurement units that
will appear on the page.

 IComPropertyPage : IUnknown COM Property Page

Height: Long Returns the height of the page in pixels.
HelpContextID (in controlID: Long) :

Long
Returns the help context ID for the specified control on the page.

HelpFile: String Returns the help file name for the page.
IsPageDirty: Boolean Check if the page made any changes to the object(s).
PageSite: IComPropertyPageSite Sets the sheet that contains the page.
Priority: Long Sets or returns the page priority.  The higher the priority, the sooner

the page appears in the containing property sheet.
Title: String Sets or returns the title of the property page.
Width: Long Returns the width of the page in pixels.

Activate: Long Called on page creation.  Return the hWnd of the page here.
Applies (in Objects: ISet) : Boolean Check if the page applies to the specified objects.
Apply Apply any changes to the object(s).
Cancel Cancel changes to the object(s).
Deactivate Destroy the page.
Hide Hide the page.
SetObjects (in Objects: ISet) Supply the page with the object(s) to be edited.
Show Show the page.

For more information about implementing IComPropertyPage and
IPropertyPageContext, see the section on implementing a custom ren-
derer property page.

 IComPropertyPage2 : IUnknown Provides access to members that control a COM property
page.

QueryCancel: Boolean Returns VARIANT_FALSE to prevent the cancel operation or
VARIANT_TRUE to allow it.

The IComPropertyPage2 interface controls the Cancel operation on your
page.



Chapter 5 • Displaying graphics • 483

D
is

p
la

y

CmykColor
ICmykColor

IPostScriptColor

GrayColor
IGrayColor

HlsColor
IHlsColor

HsvColor
IHsvColor

RgbColor
IRgbColor

     Color objects

A CMYK color is composed of
cyan, magenta, yellow, and black

for optimum print reproduction

A gray color is defined
as a percentage of black

An HLS color is defined with hue,
lighting, and saturation

components

An HSV Color is defined with
hue, saturation, and value

components

A RGB color is composed of
red, green, and blue for
optimum screen display

*

CieLab-
Conversion

ICieLabConversion

Color-
Selector

IColorSelector

ColorRamp
IClone

IColorRamp

Random-
ColorRamp

IRandomColorRamp

PresetColor-
Ramp

IPresetColorRamp

MultiPart-
ColorRamp

IMultiPartColorRamp

Algorithmic-
ColorRamp

IIAlgorithmicColorRamp

A color ramp is a series
of colors

An algorithmic color
ramp is a sequential
series of colors

A multipart color
ramp is a collection
of other color ramps

A preset color ramp
is a series of 13
specific colors

A random color
ramp is a series of
randomized colors
within certain limits

A CIELabConversion is used to
convert colors from different
color models to the CIELab

color model

A ColorPalette displays the
colors which are held in the

current Styles on a popup
menu

A ColorSelector allows you to
edit a color according to the
RGB, CMYK, or HSV color

model

IClone
IColor Color

Color-
Browser

IColorBrowser

Monitor settings can be used to get
white point, red point, green point,

and blue point values for the monitor

ColorPalette
IColorPalette

ICustomColorPalette

Monitor-
Settings

IMonitorSettings

The color browser dialog allows
a color to be selected by setting

individual color properties



484 • Exploring ArcObjects • Volume 1

Color can be represented using a number of different models, which
often reflect the ways in which colors can be created in the real world.

You may be familiar with the RGB color model, which is based on the
primary colors of light—red, green, and blue. When red, green, and
blue rays of light coincide, white light is created. The RGB color model
is therefore termed additive, as adding the components together creates
light.

By displaying pixels of red, green, and blue light, your computer moni-
tor is able to portray hundreds, thousands, and even millions of differ-
ent colors. To define a color as an RGB value, you give a separate value
to the red, green, and blue components of the light. A value of 0 indi-
cates no light, and 255 indicates the maximum light intensity.

Here are a few rules for RGB values:

• If all RGB values are equal, then the color is a gray tone.

• If all RGB values are 0, the color is black (an absence of light).

• If all RGB values are 255, the color is white.

Another common way to represent color, the CMYK model, is modeled
on the creation of colors by spot printing. Cyan, magenta, yellow, and
black inks are mingled on paper to create new colors. The CMYK
model, unlike RGB, is termed subtractive, as adding all the components
together creates an absence of light (black).

Cyan, magenta, and yellow are the primary colors of pigments—in
theory you can create any color by mixing different amounts of cyan,
magenta, and yellow. In practice, you also need black, which adds
definition to darker colors and is better for creating precise black lines.

HSV, or the hue, saturation, and value color model, describes colors
based around a color wheel that arranges colors in a spectrum.

The hue value indicates where the color lies on this color wheel and is
given in degrees. For example, a color with a hue of 0 will be a shade
of red, whereas a hue of 180 will indicate a shade of cyan.

Saturation describes the purity of a color. Saturation ranges from 0 to
100; therefore, a saturation of 20 would indicate a neutral shade,
whereas a saturation of 100 would indicate the strongest, brightest color
possible.

The value of a color determines its brightness, with a range of 0 to 100.
A value of 0 always indicates black; however, a value of 100 does not
indicate white, it just indicates the brightest color possible.

Hue is simple to understand, but saturation and value can be confusing.
It may help to remember these rules:

• If value = 0, the color is black.

• If saturation = 0, the color is a shade of gray.

• If value = 255 and saturation = 0, the color is white.

COLOR CONCEPTS

Cyan, magenta, yellow (CMY) color model

255,255,
255

255,0,255255,255,0

255,0,0

0,255,255 0,0,2550,255,0

Red

BlueGreen

0,0,0,100

100,100,0,0100,0,100,0

100,0,0,0

0,100,
100,0

0,100,0,00,0,100,0

Cyan

Yellow Magenta

Color wheel for hue, saturation, and value
(HSV) color model

Red, green, blue (RGB) color model

120

180

60

240 300

0/360



Chapter 5 • Displaying graphics • 485

D
is

p
la

y

Sample color values

Orange

Yellow
Bright green
Cyan

Blue
Violet
Magenta
White

Mid-gray
Black

Red
255 128 0 0 50 100 0 30 50 100 30 100 100

255 255 0 0 0 100 0 60 50 100 60 100 100

0 255 0 100 0 100 0 120 50 100 120 100 100

0 255 255 100 0 0 0 180 50 100 180 100 100

0 0 255 100 100 0 0 240 50 100 240 100 100

128 0 255 50 100 0 0 270 50 100 270 100 100

255 0 255 0 100 0 0 300 50 100 300 100 100

255 255 255 0 0 0 0 NA 100 NA NA 0 100

128 128 128 0 0 0 50 NA 50 NA NA 0 50

0 0 0 0 0 0 100 NA 0 NA NA NA 0

Cyan BlackYellowMagenta Hue, lightness, saturation Hue, saturation, value

255 0 0 0 100 100 0 0 50 100 0 100 100

Red Green Blue

-

-

-

-

-

-

-

0

50

100

-

Value
CMYK HLS HSVRGB Gray

The HLS, or hue, lightness, and saturation model, has similarities with
the HSV model. Hue again is based on the spectrum color wheel, with a
value of 0 to 360. Saturation again indicates the purity of a color, from 0
to 100. However, instead of value, a lightness indicator is used, again
with a range of 0 to 100. If lightness is 100, white is produced, and if
lightness is 0, black is produced.

The last color model is grayscale. 256 shades of pure gray are indicated
by a single value. A grayscale value of 0 indicates black, and a value of
255 indicates white.

The CIELAB color model is used internally by ArcObjects, as it is device
independent. The model, based on a theory known as opponent pro-
cess theory, describes color in terms of three “opponent channels”. The
first channel, known as the 1 channel, traverses from black to white.
The second, or 2 channel, traverses red to green hues. The last channel,
or 3 channel, traverses hues from blue to yellow.

Grayscale color model

0 255

COLOR CONCEPTS



486 • Exploring ArcObjects • Volume 1

COLOR ABSTRACT CLASS

Color
IClone
IColor

The color objects allow you to define
colors simply and precisely. They also
control color-related effects such as

transparency.

You can convert any color object to its represen-
tative value in the CIELAB color model, which is

used internally by ArcObjects.

Objects that support the IColor interface allow precise control over any
color used within the ArcObjects model. You can get and set colors
using a variety of standard color models—RGB, CMYK, HSV, HLS, and
Grayscale.

Color is used in many places in ArcGIS applications—in feature and
graphics symbols, as properties set in renderers, as the background for
ArcMap or ArcCatalog windows, and as properties of a raster image.

The type of color model used in each of these circumstances will vary.
For example, a window background would be defined in terms of an
RGB color because display monitors are based on the RGB model. A
map made ready for offset-press publication could have CMYK colors
to match printer’s inks.

 IColor : IUnknown Provides access to members that control the basic color
interface.

CMYK: Long The CMYK value of color.
NullColor: Boolean The Null Color Flag
RGB: Long The RGB value of color.
Transparency: Unsigned Char The Alpha Blending value. (0 for transparent, 255 for opaque)
UseWindowsDithering: Boolean Indicates if colors should be dithered to simulate colors that aren't

supported by the display.  This only applies on displays that have
256 or fewer colors.

GetCIELAB (out l: Double, out a:
Double, out b: Double)

The CIELAB value of color.

SetCIELAB (in l: Double, in a: Double, in
b: Double)

The CIELAB value of color.

The properties available on the IColor interface define the common
functionality of all color objects. Representations of colors are held
internally as CIELAB colors, described in the color theory topic. The
CIELAB color model is device independent, providing a frame of refer-
ence to allow faithful translation of colors between one color model
and another. You can use the GetCIELAB and SetCIELAB methods of the
IColor interface to interact directly with a color object using the CIELAB
model.

Although colors are held internally as CIELAB colors, you don’t need to
deal directly with the CIELAB color model—you can use the IColor
interface to simply read and define colors. For example, the RGB prop-
erty can be used to read or write a Long integer representing the red,
green, and blue values for any color object. You can use the Visual
Basic RGB function to set the RGB property of a color object as follows.

  colMyColor.RGB = RGB(intMyRedValue, intMyGreenValue, intMyBlueValue)

Or, you could use the following function, which essentially performs the
same action but lets you see how the conversion is performed.

Public Function RGBToLong(lngRed As Long, lngGreen As Long, _

   lngBlue As Long) As Long

  RGBToLong = lngRed + (&H100 * lngGreen) + (&H10000 * lngBlue)

End Function

“CMYK” stands for cyan, magenta, yellow, and
black, the colors of the four inks used by offset
presses. “RGB” stands for red, green, and blue,
the three colors emitted in a monitor display.

One important point to note when reading the
RGB property: the UseWindowsDithering
property should generally be set to True. If
UseWindowsDithering is False, the RGB

property returns a number with a high byte of 2,
indicating the use of a system color, and the

RGB property will return a value outside of the
range you would expect. If you write to the RGB

property, the UseWindowsDithering property
will be set to True for you.

For more information on converting individual
byte values to long integer representation, look

for topics on color models and hexadecimal
numbering in your development environment’s

online Help system.



Chapter 5 • Displaying graphics • 487

D
is

p
la

y

If you are reading the RGB property, you can break down the RGB
value into its component red, green, and blue values with an inverse
function of the previously defined RGBToLong function, as follows:

Public Function ReturnRGBBytes(ByVal lngRGB As Long) As Byte()

  Dim bytArray(2) As Byte

  bytArray(0) = lngRGB Mod &H100

  bytArray(1) = (lngRGB \ &H100) Mod &H100

  bytArray(2) = (lngRGB \ &H10000) Mod &H100

  ReturnRGBBytes = bytArray

End Function

The IColor interface also provides access to colors through another color model—
CMYK. The CMYK property can be used in a similar way as RGB to read or
write a Long integer representing the cyan, magenta, yellow, and black compo-
nents of a particular color—the difference being that the CMYK color model
requires four values to define a color. Visual Basic does not have a function for
creating a CMYK Long integer value, but the RGBToLong function can be adapted
as shown.

Public Function CMYKToLong(lngBlack As Long, lngYellow As Long, _

                  lngMagenta As Long, lngCyan As Long) As Long

  CMYKToLong = lngBlack + (&H100 * lngYellow) + _

                  (&H10000 * lngMagenta) + (&H1000000 * lngCyan)

End Function

Setting the NullColor property to True will result in the set color being
nullified. All items with color set to Null will not appear on the display.
This only applies to the specific color objects—not all items with the
same apparent color; therefore, you can have different null colors in
one Map or PageLayout.

IColor also has two methods to convert colors to and from specific
CIELAB colors, using the parameters of the CIELAB color model. You
can set a color object to a specific CIELAB color by using SetCIELab, or
read CIELAB parameters from an existing color by using GetCIELab. See
also the CieLabConversion coclass.

Color transparency does not get used by the feature renderers; instead, a
display filter is used. Setting the transparency on a color has no effect,
unless the objects using the color honor this setting.

The Color class is only an abstract class—when dealing with a color
object, you always interact with one of the color coclasses, which are
described below. RGBColor, CMYKColor, GrayColor coclass, HSVColor,
and HLSColor are all creatable classes, allowing new colors to be cre-
ated programmatically according to the most appropriate color model.

COLOR ABSTRACT CLASS



488 • Exploring ArcObjects • Volume 1

RGBCOLOR AND CMYKCOLOR COCLASSES

CmykColor
ICmykColor

IPostScriptColor

Color
IClone
IColor

CMYK colors are defined in terms of the
amount of cyan, magenta, yellow, and

black.

RgbColor
IRgbColor

Color
IClone
IColor

RGB colors are defined in terms of the
amount of red, green, and blue.

The RGBColor coclass defines a simpler way to get and set the red,
green, and blue components of a color, compared to using the RGB
property of the IColor interface.

 IRgbColor : IColor Provides access to members that control the RGB color
values.

Blue: Long The blue component of an IRgbColor (0-255)
Green: Long The green component of an IRgbColor (0-255)
Red: Long The red component of an IRgbColor (0-255)

The IRGBColor interface defines colors by using 3 properties, Red,
Green, and Blue, which may all be set to values between 0 and 255.

The IRGBColor interface defines a simpler way to get and set the red,
green, and blue components of a color, compared to using the RGB
property of the IColor interface as discussed earlier. The Red, Green, and
Blue properties may all be set to values between 0 and 255.

For example, from the color theory discussed previously, you can see
that if you mix red and green, you get yellow. Therefore, to create a
new color that is bright yellow, you might do the following.

  Dim pRGB As IRgbColor

  Set pRGB = New RgbColor

  pRGB.Red = 255 'Use the maximum amount of Red

  pRGB.Green = 255 'Use the maximum amount of Green

There’s no need to set the Blue property in this example, as the Red,
Green, and Blue properties all default to zero. A darker yellow would be
created by using equal, but smaller, values for Red and Green.

The CMYKColor coclass represents colors by using the CMYK color
model, described on the color theory page. Colors can be specified for
output in terms of Cyan, Magenta, Yellow, and Black.

 ICmykColor : IColor Provides access to members that control the CMYK color
values.

Black: Long The black component of an ICmykColor (0-255)
Cyan: Long The cyan component of an ICmykColor (0-255)
Magenta: Long The magenta component of an ICmykColor (0-255)
Yellow: Long The yellow component of an ICmykColor (0-255)

The ICMYKColor interface allows you to define colors in terms of the
CMYK color model by setting its four properties—Cyan, Magenta, Yel-
low, and Black—to values between 0 and 100. A value of 0 indicates the
lack of a color, and a value of 100 indicates a maximum of a color.
From the color theory, mixing magenta and yellow creates red; there-
fore, to create a red CMYKColor, you could write code like this:

  Dim pCMYKCol As ICmykColor

  Set pCMYKCol = New CmykColor

  pCMYKCol.Yellow = 100

  pCMYKCol.Magenta = 100

The CMYKColor coclass also includes the IPostScriptColor interface, but
this interface is not supported at ArcGIS 8.1.



Chapter 5 • Displaying graphics • 489

D
is

p
la

y

HlsColor
IHlsColor

Color
IClone
IColor

HLSColors are defined based on the
HLS color model, similar to the HSV

model, which defines colors in terms of
hue (color), lightness, and saturation

(purity).

HsvColor
IHsvColor

Color
IClone
IColor

HSVColors are defined based on the
HSV color model, which defines colors in

terms of hue (color), saturation (purity),
and value (brightness).

HSVCOLOR, HLSCOLOR, AND GRAYCOLOR COCLASSES

GrayColor
IGrayColor

Color
IClone
IColor

Gray colors are expressed as simple
values from 0 to 255.

The HSVColor coclass represents colors by using the hue, saturation,
and value color model described on the color theory page. HSVColors
may be returned, for example, by a RandomColorRamp class.

 IHsvColor : IColor Provides access to members that control the HSV color
values

Hue: Long The hue component of an IhsvColor (0-360)
Saturation: Long The saturation component of an IhsvColor (0-100)
Value: Long The value component of an IhsvColor (0-100)

The HSVColor coclass supports the IHSVColor interface. Colors are de-
fined by three read–write properties: Hue, Saturation, and Value. The
Hue property may be set to a number between 0 and 360, indicating in
degrees where the hue lies on the color wheel. The Saturation property
is a number between 0 and 100 indicating the saturation, or purity, of
the color, and the Value property is a number between 0 and 100 indi-
cating the value, or brightness, of a color. All of the properties have a
default value of 0; therefore, the default HSVColor is black.

Using these properties, you can create a bright yellow HSVColor like this:

  Dim pHSV As IHSVColor

  Set pHSV = New HSVColor

  pHSV.Hue = 60 'Yellow lies at 60 degrees on the color wheel

  pHSV.Saturation = 100 'Use the maximum saturation for a bright color

The HLSColor coclass represents colors by using the hue, saturation,
and lightness—a similar color model to HSV. However, HLS colors use
Lightness instead of Value.

 IHlsColor : IColor Provides access to members that control the HLS color
model

Hue: Long The hue component of an IHlsColor (0-360)
Lightness: Long The lightness component of an IHlsColor (0-100)
Saturation: Long The saturation component of an HlslColor (0-100)

The IHLSColor interface defines colors by three read–write properties,
Hue, Saturation, and Lightness. The Hue property may be set to a num-
ber between 0 and 360, indicating in degrees where the hue lies on the
color wheel. The Saturation property is a number between 0 and 100
indicating the saturation, or purity, of the color, and the Lightness prop-
erty is a number between 0 and 100 indicating the lightness, or paleness,
of a color. Regardless of the other properties, a lightness of 0 is always
black, and a lightness of 100 is always white. All of the properties have
a default value of 0; therefore, the default HSVColor is black.

The GrayColor class represents the simplest of all the color models.
Gray colors may be encountered, for example, in a grayscale bitmap.

 IGrayColor : IColor Provides access to members that control the gray color.

Level: Long The level of grayness of an IGrayColor (0 = White - 255 = Black)

The Level property can be set to a value representing a pure shade of
gray, from 0, which is black, to 255, which is white.



490 • Exploring ArcObjects • Volume 1

ColorPalette
IColorPalette

ICustomColorPalette

The ColorPalette is a popup menu
displaying a choice of the colors defined

by your currently selected Styles or,
alternatively, a set of colors you specify.

The ColorPalette coclass defines a popup menu that can be used to
allow interactive selection of colors. The colors included in the menu
include all the colors in the Styles currently referenced by the Style-
Gallery. By selecting the More Colors option on the menu, the
ColorSelector will be displayed.

 IColorPalette : IUnknown Color Palette interface.

Color: IColor Get Selected Color

TrackPopupMenu (in rect: tagRECT, in
currentColor: IColor, in Orientation:
Boolean, in hParentWnd: Long) :
Boolean

Show Color Palette

The IColorPalette interface allows you to display the ColorPalette to
users, allowing them to select the colors they wish. The TrackPopup-
Menu method controls the display of the palette with four parameters.
The first parameter defines a rectangle, a tagRect structure, in screen
coordinates (pixels) that the menu will align itself with—for example, the
coordinates of the button that displays the popup menu. For more
information about getting the onscreen coordinates of controls, see your
development environment’s documentation.

The third parameter is a Boolean, which affects the orientation and
location of the menu. If False, the menu will align beneath the rectangle
specified; if True, the menu will appear to the right of the rectangle.

The second parameter is a color object, which allows you to specify the
current color. If the color exactly matches a color on the menu, that
color will be displayed as selected initially. If the user cancels the palette
rather than selecting a color, the read-only Color property will reflect the
color passed in this parameter.

If the user selects a specific color, the Color property will return that
selected color. If the user selects the More Colors option and selects a
color from the ColorSelector that is then displayed, the IColorPalette
Color property will return that color.

 ICustomColorPalette : IUnknown Interface for Setting or Creating a Custom Color Palette

ColorSet: ISet Set the Color Objects

The ColorPalette coclass also supports the ICustomColorPalette interface.
This interface allows you to determine exactly which colors will be
shown on the ColorPalette menu, instead of displaying the colors de-
fined in the current Styles. To use the ICustomColorPalette interface, set
the write-only property ColorSet to a Set coclass. The Set coclass, which
supports the ISet interface required by the ColorSet property, should
contain the Color objects you wish to display. For example, you could
display a ColorPalette with four simple colors like this:

  Dim pColorSet As ISet, pColor As IColor

  Set pColorSet = New esriCore.Set

  Set pColor = New RgbColor

TrackPopupMenu, Orientation = False

TrackPopupMenu, Orientation = True

COLORPALETTE COCLASS



Chapter 5 • Displaying graphics • 491

D
is

p
la

y

  pColor.RGB = 255      ' Red

  pColorSet.Add pColor

  Set pColor = New RgbColor

  pColor.RGB = 65535    ' Yellow

  pColorSet.Add pColor

  Set pColor = New RgbColor

  pColor.RGB = 65280    ' Green

  pColorSet.Add pColor

  Set pColor = New RgbColor

  pColor.RGB = 16711680 ' Blue

  pColorSet.Add pColor

  Dim pCustomPalette As ICustomColorPalette, pPalette As IColorPalette, _

      pRect As tagRECT

  Set pCustomPalette = New ColorPalette

  Set pCustomPalette.ColorSet = pColorSet

  Set pPalette = pCustomPalette

  pPalette.TrackPopupMenu pRect, pColor, False, Me.hWnd

Note that since the ISet Add method passes the item by reference, you
must create a new color object to pass into the method each time.

The code produces this dialog box display.

COLORPALETTE COCLASS



492 • Exploring ArcObjects • Volume 1

Use the ColorBrowser coclass to display the ArcMap color browser
dialog box. Note that this coclass should only be used from within the
ArcMap framework.

 IColorBrowser : IUnknown Custom Color Dialog interface.

Color: IColor Color edited by the browser.

DoModal (in hWnd: Long) : Boolean Show the browser.

First, set the Color property to an existing IColor object—the type of
coclass you use will determine what options the dialog displays for
editing the color (see the pictures to the left).

Use the DoModal method as shown with the ColorSelector coclass, pass-
ing in the hWnd of the Application object of the ArcMap framework as
this method’s parameter.

COLORBROWSER COCLASS

    

Edit a color by specifying red, green, and blue
proportions or by specifying cyan, magenta,

yellow, and black proportions.

    

Edit a color by specifying hue, saturation, and value
proportions or by specifying the degree of grayness.

Edit a color by specifying a name selected from
all the available colors in your selected Styles.

Color-
Browser

IColorBrowser

The ColorBrowser allows the user to
select a color by specifying individual RGB,
CMYK, HSV, HLS, or gray color properties.



Chapter 5 • Displaying graphics • 493

D
is

p
la

y

The ColorSelector coclass contains a popup menu that can be used to
allow interactive selection of a range of colors.

 IColorSelector : IColorBrowser Custom Color Dialog interface.

InitPopupPosition (in parentLeft: Long,
parentTop: Long, parentRight: Long,
parentBottom: Long, aboveParent:
Boolean)

Initialize Popup Position

 IColorBrowser : IUnknown Custom Color Dialog interface.

Color: IColor Color edited by the browser.

DoModal (in hWnd: Long) : Boolean Show the browser.

Using the IColorSelector interface and the inherited IColorBrowser inter-
face, you can present users with the Color Selector dialog box.

First, you may want to specify the color that is already displayed by the
dialog box when the user first sees it—you can do this by setting the
read–write Color property to any color object, as shown in the following
code.

  Dim pColor As IColor

  Set pColor = New RgbColor

  pColor.RGB = 255  'Red

  Dim pSelector As IColorSelector

  Set pSelector = New ColorSelector

  pSelector.Color = pColor

The InitPopupPosition method can be used to set the initial display
location of the dialog box in screen coordinates.

To display the dialog box, you should call the DoModal method. The
method takes one parameter, a handle to the parent Form, which is used
to ensure the dialog box displays modally. The DoModal method returns
a Boolean—you should check the result to determine if the user in-
tended to cancel the action (the result is False) or click OK (the result is
True). For example:

  If Not pSelector.DoModal(Me.hWnd) Then

    Dim pOutColor As IColor

    Set pOutColor = pSelector.Color

    Me.BackColor = pOutColor.RGB

  End If

To determine which color was selected, simply read the Color property.

Color-
Selector

IColorSelector

The ColorSelector is a dialog box that
can be used to create new color objects.

The dialog presents slider bars and check
boxes that can be used to precisely set

the properties of the new color.

COLORSELECTOR COCLASS



494 • Exploring ArcObjects • Volume 1

Monitor-
Settings

IMonitorSettings

The monitor settings object can be used
in conjunction with a device called a

colorimeter to adjust the display of colors
on a monitor.

The MonitorSettings coclass is not commonly used. It can be set to get
and set WhitePoint, RedPoint, GreenPoint, and BluePoint values for the
Monitor.

 IMonitorSettings : IUnknown Provides access to members that control the monitor
settings.

Gamma: Double The gamma value of the monitor. ( 1 <= gamma value <= 3).
MonitorName: String The name of the monitor.
PhosphorName: String The phosphor name of the monitor.
WhitePointName: String The white point name of the monitor.

GetBluePoint (out X: Double, out Y:
Double)

The blue point of the monitor (0 <= x <= 1, 0 <= y <= 1.

GetGreenPoint (out X: Double, out Y:
Double)

The green point of the monitor (0 <= x <= 1, 0 <= y <= 1.

GetRedPoint (out X: Double, out Y:
Double)

The red point of the monitor (0 <= x <= 1, 0 <= y <= 1.

GetWhitePoint (out X: Double, out Y:
Double)

The white point of the monitor (0 <= x <= 1, 0 <= y <= 1.

SetBluePoint (in X: Double, in Y:
Double)

The blue point of the monitor (0 <= x <= 1, 0 <= y <= 1.

SetGreenPoint (in X: Double, in Y:
Double)

The green point of the monitor (0 <= x <= 1, 0 <= y <= 1.

SetRedPoint (in X: Double, in Y:
Double)

The red point of the monitor (0 <= x <= 1, 0 <= y <= 1.

SetWhitePoint (in X: Double, in Y:
Double)

The white point of the monitor (0 <= x <= 1, 0 <= y <= 1.

After using the SetBluePoint, SetGreenPoint, SetRedPoint, or SetWhitePoint
methods to change monitor settings, the monitor settings should be
reloaded.

MONITORSETTINGS COCLASS



Chapter 5 • Displaying graphics • 495

D
is

p
la

y

The CieLabConversion coclass provides information about the location
of colors within the CIELAB color space, the device independent color
model used internally by ArcObjects. Colors can be converted from
RGB and HSV models to the CIELAB model. It can also be used to
compare the visual difference between two colors.

 ICieLabConversion : IUnknown Provides access to members that control the CIE Lab
conversion.

SettingsVersion: Long Gets monitor settings version

GetDistance (in l1: Double, a1: Double,
b1: Double, l2: Double, a2: Double, b2:
Double) : Double

Gets visual difference between two CIELAB colors

HsvToLab (in h: Integer, in s: Unsigned
Char, in v: Unsigned Char, out l:
Double, a: Double, b: Double)

Converts an RGB color to a CIELAB color

LabToHsv (out h: Integer, in s:
Unsigned Char, in v: Unsigned Char,
in l: Double, a: Double, b: Double)

Converts a CIELAB color to an RGB color

LabToRgb (out RGB: Long, in l: Double,
a: Double, b: Double)

Converts a CIELAB color to an RGB color

ReloadSettings Reloads the monitor settings from the registry
RgbToLab (in RGB: Long, out l: Double,

a: Double, b: Double)
Converts an RGB color to a CIELAB color

The ICieLabConversion interface provides four methods for converting
colors to and from the CIELAB color model (these methods are the ones
used by the IColor interface’s SetCIELab and GetCIELab methods). The
methods RGBtoLab, LabToRGB, HSVToLab, and LabToHSV all take in
parameters with which to populate the new converted values, as well as
the value to convert. For example, to convert an HSV color representing
yellow to CIELAB values, you might do the following:

  Dim l As Double, a As Double, b As Double

  Dim h As Integer, s As Byte, v As Byte

  h = 60

  s = 100

  v = 100

  Dim gConversion As ICieLabConversion

  Set gConversion = New CieLabConversion

  Call gConversion.HsvToLab(h, s, v, l, a, b)

  MsgBox "L=" & l & " a=" & a & "  b=" & b, 64, "CIELAB conversion from HSV"

The GetDistance function provides a useful indication of the visual
difference of two colors by passing in two colors via their l, a, and b
values. A distance of 4–10 may be indicative of two very similar but
distinguishable colors—lighter colors tend to be more distinguishable. A
distance of 20–30 may produce distinct but similar colors, whereas
distances of > 30 indicate quite different colors.

Bear in mind that the difference between two colors will be affected by
your monitor settings—if you have less than 24-bit color, two internally
similar colors may be displayed exactly the same. If you have changed
your monitor settings, call the ReloadSettings method to update your
CieLabConversion object.

CieLab-
Conversion

ICieLabConversion

CieLabConversion provides information
about colors within the CIELAB color

space and can also be used to compare
colors.

CIELABCONVERSION COCLASS



496 • Exploring ArcObjects • Volume 1

ColorRamp
IClone

IColorRamp

The color ramp objects offer a simple
way to create a coherent or random

range of colors. You may wish to use a
color ramp as the fill when drawing

polygons or to define the colors used by
a renderer.

The objects supporting the IColorRamp interface offer a simple way to
define a series of colors for use elsewhere in ArcObjects. For example,
you can set a color ramp directly onto the ColorRamp property of the
IGradientFillSymbol interface of a FillSymbol, or you might wish to cre-
ate a color ramp to define the colors used in a ClassBreaksRenderer.

The individual ColorRamp objects offer different ways of defining the
criteria that determine which colors will comprise the ColorRamp. Ran-
dom colors can be created using the RandomColorRamp, and sequential
colors can be created using the AlgorithmicColorRamp. The PresetColor-
Ramp coclass contains 13 colors, allowing the creation of ramps mim-
icking ArcView GIS 3.x color ramps. In addition, the
MultiPartColorRamp allows you to create a single color ramp that con-
catenates other color ramps, providing unlimited color ramp capabilities.

 IColorRamp : IUnknown Provides access to the methods and properties common to
all color ramp objects.

Color (in Index: Long) : IColor The color at the given index position.  Call CreateRamp before calling
this method.

Colors: IEnumColors The list of colors.  Call CreateRamp before calling this method.
Name: String The name of the color ramp.
Size: Long The number of colors that will be generated by the CreateRamp

method.

CreateRamp (out ok: Boolean) Generates a color ramp with length determined by Size value.

ColorRamps are used in two different ways in ArcObjects: by accessing
the individual colors in a ramp or by using the ramp object directly as a
property or, in a method, of another object.

First, a color ramp can be set up and its individual colors accessed. For ex-
ample, when a UniqueValueRenderer is created, each symbol in its symbol
array should be set individually, perhaps using colors from a color ramp.

To retrieve individual colors from a color ramp, first set the Size prop-
erty according to the number of Color objects you wish to retrieve from
the ramp. The CreateRamp method should then be called, which popu-
lates both the Color and the Colors properties. The Color property holds
a read-only, zero-based array of Color objects, returned by index. The
code fragment below shows the creation of a RandomColorRamp and
the generation of 10 color objects from that ramp. Note that the Boolean
parameter used in the CreateRamp method is checked after the method
is called to ensure the colors were generated correctly.

  Dim pColorRamp As esriCore.IRandomColorRamp

  Set pColorRamp = New esriCore.RandomColorRamp

  pColorRamp.Size = 10

  Dim bOK As Boolean

  pColorRamp.CreateRamp bOK

  If bOK = True Then

    Dim i As Integer

    For i = 0 To pColorRamp.Size - 1

      ' Access the Color array here, for example, set the colors

      ' for an array of symbols, or map layers etc...

    Next i

  End If

COLORRAMP ABSTRACT CLASS

Note that if you set the Size property, then read
it back before calling CreateRamp, you will find

that Size = 0. This indicates that no Colors
have been created. After calling CreateRamp,

the Size property will equal 5.



Chapter 5 • Displaying graphics • 497

D
is

p
la

y

The Colors property returns an enumeration of colors and is useful as a
lightweight object to pass around between procedures.

Second, a color ramp object may be used directly—for example, the
ColorRamp property of the IGradientFillSymbol can be set to a specific
color ramp object. The MultiPartColorRamp also uses color ramp ob-
jects directly by passing the object as a parameter in the AddRamp
method. Below you can see a GradientFillSymbol object being created
with an AlgorithmicColorRamp as its fill. The IntervalCount is set, which
decides the amount of colors in the gradient fill.

  Dim pAlgoRamp As IAlgorithmicColorRamp

  Set pAlgoRamp = New AlgorithmicColorRamp

  pAlgoRamp.FromColor = myFromColorObject

  pAlgoRamp.ToColor = myToColorObject

  Dim pGFill As esriCore.IGradientFillSymbol

  Set pGFill = New esriCore.GradientFillSymbol

  pGFill.ColorRamp = pAlgoRamp

  pGFill.IntervalCount = 5

If the ramp will be used directly, as above, it is not necessary to set the
Size property or to call the CreateRamp method yourself. In these cases,
the parent object uses the information contained in the color ramp
object to generate the number of colors it requires. The Size property
will be ignored.

The name property simply stores a string, which you may want to use to
keep track of your color ramps—it is not used internally by ArcObjects.

Each of the color ramp coclasses has one interface that inherits from
the IColorRamp interface, allowing access to all of the IColorRamp prop-
erties and methods from the interface specific to the coclass you are
using. The following pages detail each of these coclasses, with example
code demonstrating their use.

COLORRAMP ABSTRACT CLASS



498 • Exploring ArcObjects • Volume 1

The AlgorithmicColorRamp class offers a way to produce a series of
sequential colors and therefore is ideal for creating colors to represent
sequential data in a layer—for example, when data is displayed using a
ClassBreaksRenderer.

 IAlgorithmicColorRamp : IColorRamp Provides access to members that control the
AlgorithmicColorRamp. A color ramp defined by two
colors and the algorithm used to traverse the intervening
color space between them.

Algorithm: esriColorRampAlgorithm The algorithm used to ramp between the first and last colors.
FromColor: IColor The first color in the color ramp.
ToColor: IColor The last color in the color ramp.

The IAlgorithmicColorRamp interface allows you to specify how the
series of colors is created using three properties. Colors created are
HSVColor objects.

The read–write FromColor and ToColor properties specify the starting
and ending color of the ramp using an object that supports the IColor
interface. You can use any object that supports the IColor interface to
set the FromColor or ToColor properties, although returning the
FromColor or ToColor always gives an HSVColor object. For example, a
simple color ramp starting at red and fading to white could be created
as shown below. Note that the FromColor and ToColor properties are set
by value; therefore, you cannot change the RGB values directly from the
IColor interface returned by the IAlgorithmicColorRamp interface.

  Dim pCol As IRgbColor

  Set pCol = New RgbColor

  Dim pAlgoRamp As esriCore.IAlgorithmicColorRamp

  Set pAlgoRamp = New esriCore.AlgorithmicColorRamp

  pCol.RGB = 255  'Red

  pAlgoRamp.FromColor = pCol

  pCol.RGB = 0    'White

  pAlgoRamp.ToColor = pCol

The Algorithm property can be set to one of the three esriColorRamp-
Algorithm constants. There is little to choose between the algorithms if
the FromColor and ToColor are similar—the different algorithms may
produce a color ramp slightly weighted to one end or the other. If the
hues are significantly different, the algorithms produce very different
results, as you can see in the diagrams to the left.

Enumeration esriColorRampAlgorithm ESRI ColorRamp Algorithm.

0 - esriHSVAlgorithm Use the HSV colorramp algorithm.
1 - esriCIELabAlgorithm Use the CIE Lab colorramp algorithm.
2 - esriLabLChAlgorithm Use the LabLCh colorramp algorithm.

The advantage of the CIELAB algorithm is that the colors of the ramp
are visually equidistant, which produces a better ramp.

ColorRamp
IClone

IColorRamp

Algorithmic-
ColorRamp

IIAlgorithmicColor-
Ramp

The algorithmic color ramp provides a
series of sequential colors. After start and

end colors are specified, intervening
colors are interpolated by a choice of

three different algorithms, providing an
intuitive series of colors.

Using the esriHSVAlgorithm can often give the
most vibrant or distinct results. The algorithm

used to interpolate intervening colors traverses
hues based on the HSV color model; therefore, if

the FromColor and ToColor have very
different hue values, the ramp will contain a

large variety of hues. If the FromColor is red
and the ToColor is the reddest PurpleRed, the
result will look like the full spectrum of colors.

The other algorithms interpolate the FromColor
and ToColor using other color models, producing

results similar to those you might expect if you
were mixing two colors of paint.

The CIELAB algorithm uses a shortest path
between the FromColor and ToColor, based

on the CIELAB color space. The result is an
apparent blending of the start and end colors

with no intervening colors.

LabLCh is also a shortest path type of algo-
rithm but does not mute the intervening colors,

often resulting in a brighter color ramp.

ALGORITHMICCOLORRAMP COCLASS



Chapter 5 • Displaying graphics • 499

D
is

p
la

y

Random-
ColorRamp

IRandomColorRamp

ColorRamp
IClone

IColorRamp

The random color ramp provides a series
of randomly created colors. You can
specify limits on the range of hues,

values, and saturations possible to create
“themed” random colors.

The RandomColorRamp class offers a way to produce a series of
pseudo-random colors and therefore is ideal for creating a series of
colors to represent nominal data based on unique values, for example,
when a layer is displayed using a UniqueValueRenderer.

 IRandomColorRamp : IColorRamp Provides access to members that control the properties of a
RandomColorRamp. A color ramp that is a list of
randomly picked colors.

EndHue: Long The end hue (0-360).
MaxSaturation: Long The maximum saturation (0-100).
MaxValue: Long The maximum value (0-100).
MinSaturation: Long The minimum saturation (0-100).
MinValue: Long The minimum value (0-100).
Seed: Long The seed of the random number generator.
StartHue: Long The start hue (0-360).
UseSeed: Boolean Indicates if a seed is used when the ramp is generated.  Set this

property to True without changing the Seed to generate identical
color ramps in succession.

The IRandomColorRamp interface allows you to control, to some de-
gree, the randomness of the colors within a random color ramp. The
RandomColorRamp is designed around the HSV color model and there-
fore the colors in a random color ramp may be restricted in terms of
hue, saturation, and value. Setting the StartHue and EndHue properties
to values between 0 and 360 will restrict the colors that may appear in
the ramp. Setting MinValue and MaxValue to between 0 and 100 will
restrict the brightness, and setting MinSaturation and MaxSaturation to
between zero and 100 will restrict the purity of the colors in the ramp.
Colors created are HSVColor objects.

You may wish to restrict the colors in the ramp to bright, light red, and
yellow tones, creating a randomized color scheme of vibrant, warm col-
ors. To achieve this effect, you could create a new RandomColorRamp
and set the StartHue property to red (on the color wheel, red is zero), and
the EndHue property to yellow (yellow has a Hue of 60, based on the
color wheel). Then, you could restrict the Saturation and Value ranges.
Here is some code to create a random color ramp:
  Dim pRandomRamp As esriCore.IRandomColorRamp
  Set pRandomRamp = New esriCore.RandomColorRamp
  With pRandomRamp
    .StartHue = 0
    .EndHue = 60
    .MinSaturation = 60
    .MaxSaturation = 100
    .MinValue = 90
    .MaxValue = 100
  End With

The code above produces a color ramp with warm colors like this:

If you wish to create a color scheme of dark, muted colors, try restrict-
ing the hue range to 160–240, the saturation range to 20–40, and the
value range to 30–50, which produces a color ramp like this:

RANDOMCOLORRAMP AND PRESETCOLORRAMP COCLASSES



500 • Exploring ArcObjects • Volume 1

Perhaps a range of pastel colors would be more appropriate. Try using
the full hue range of 0–360, a saturation range of 10–20, and a value
range of 80–95. These values will produce a color ramp like this:

The RandomColorRamp creates colors based on a seed value, which is
used to set the state of the pseudorandom number generator. For a
specific seed value, the colors created are always the same.

Remember when you are setting your ranges that StartHue must always
be less than the EndHue, MinSaturation less than MaxSaturation, and
MinValue less than MaxValue. If the values are set incorrectly, the
RandomColorRamp will use the full range of hue, saturation, or value.

By default, the UseSeed property of the IRandomColorRamp is False. In
this case, the RandomColorRamp creates a new random number to use
as the seed value for each call to CreateRamp, ensuring that the Colors
created are random and different each time CreateRamp is called. If the
UseSeed property is set to True, the seed used for the RandomColorRamp
is taken from the Seed property, and therefore each time you call Create-
Ramp with a specific Seed value, the sequence of colors created is
unchanged.

The PresetColorRamp class offers a way to store a series of 13 specific
colors, which allows you to mimic ArcView GIS 3.x color ramps in
order to preserve your symbology from older systems.

 IPresetColorRamp : IColorRamp Provides access to members that control the
PresetColorRamp. A color ramp that must contain
exactly 13 preset colors.

NumberOfPresetColors: Long The number of valid colors in the color ramp.  This must equal 13
before you can get values from the ramp.

PresetColor (in Index: Long) : IColor The color at the index position.

The IPresetColorRamp interface provides simple access to the 13 colors
in the ramp—the NumberOfPresetColors property always returns 13. By
default, a PresetColorRamp contains 13 RGBColor objects ranging from
red to green. The PresetColor property provides read–write access to the
13 colors in the ramp. For example, you might wish to use 13 random
colors as your PresetColorRamp, which you could achieve like this:

  Dim pRandomRamp As esriCore.IRandomColorRamp

  Set pRandomRamp = New esriCore.RandomColorRamp

  pRandomRamp.Size = 13

  pRandomRamp.CreateRamp True

  Dim pPresetRamp As esriCore.IPresetColorRamp

  Set pPresetRamp = New esriCore.PresetColorRamp

  Dim i As Integer

  For i = 0 To 12

    'Here you set each PresetColor

    pPresetRamp.PresetColor(i) = pRandomRamp.Color(i)

  Next i

PresetColor-
Ramp

IPresetColorRamp

ColorRamp
IClone

IColorRamp

The algorithmic color ramp holds a series
of 13 specific colors, which can be used
to mimic ArcView GIS 3.x color ramps.

RANDOMCOLORRAMP AND PRESETCOLORRAMP COCLASSES

To re-create ArcView predefined color ramps, you
can use the Import ArcView ColorRamps
sample from the ArcObjects Developer Help

system.



Chapter 5 • Displaying graphics • 501

D
is

p
la

y

MultiPart-
ColorRamp

IMultiPartColorRamp

ColorRamp
IClone

IColorRamp

The multipart color ramp offers a simple
way to create more complex color ramps
by adding together algorithmic, random,

preset, or other multipart color ramps.

Although the algorithmic, preset, and random color ramp coclasses offer
a wide range of options for defining color ramps, you may need to
create specific ramps that cannot be created using these coclasses. By
concatenating existing color ramps, the MultiPartColorRamp coclass
offers a way to create highly complex color ramp schemes.

 IMultiPartColorRamp : IColorRamp Provides access to members that control the
MultiPartColorRamp. A color ramp defined by a list of
constituent color ramps.

NumberOfRamps: Long The number of constituent color ramps.
Ramp (in Index: Long) : IColorRamp The color ramp at the index position.

AddRamp (in ColorRamp: IColorRamp) Adds a color ramp to the list.
RemoveRamp (in Index: Long) Removes the color ramp located at the index position.

The IMultiPartColorRamp interface provides the framework for concat-
enating color ramps. After creating a MultiPartColorRamp object, you
can add color ramps to it with the AddRamp method. You can add
existing algorithmic, preset, random, or even other multipart color
ramps.

As discussed in the IColorRamp section, member ramps are used here
as properties of another object, and therefore you do not need to set a
Size and call CreateRamp for any ramp set as a member of a
MultiPartColorRamp—it is the MultiPartColorRamp itself that will create
the colors when its Size property is set. A MultiPartColorRamp will try to
use an equal number of colors from each member ramp to create its
colors. In the illustrated code below, two different color ramps are
added to a new MultiPartColorRamp, which is used to create 10 colors.

  Dim pMPRamp As esriCore.IMultiPartColorRamp

  Set pMPRamp = New esriCore.MultiPartColorRamp

  With pMPRamp

    .AddRamp pAlgoRamp ' added: 

    .AddRamp pRandomRamp ' added: 

    .Size = 10

    .CreateRamp True     'results in: 

  End With

You can check the number of ramps in a MultiPartColorRamp by read-
ing the NumberOfRamps property. You can access individual ramps by
using the Ramp property array, which returns an individual ramp. You
can also remove specfic ramps using the RemoveRamp method, which
removes a ramp at a specific index, for example, to remove the last
ramp in a MultiPartColorRamp:

  pMPRamp.RemoveRamp pMPRamp.NumberOfRamps - 1

MULTIPARTCOLORRAMP COCLASS



502 • Exploring ArcObjects • Volume 1

ArcObjects uses three categories of symbols to draw geographic fea-
tures: marker symbols, line symbols, and fill symbols. These same basic
symbols are also used to draw graphic elements, such as neatlines and
North arrows, on a Map or PageLayout. A fourth symbol, the Text-
Symbol, is used to draw labels and other textual items. A fifth symbol,
the 3DChartSymbol, is used for drawing charts.

The size of a symbol is always specified in points (such as the width of
a line), but the size of their geometry (such as the path of a line) is
determined by the item they are used to draw. Most items, when cre-
ated, have a default symbol, so instead of creating a new symbol for
every item, you can modify the existing one.

Another way to get a symbol is to use a style file. ArcObjects uses style
files, which are distributable databases, to store and access symbols and
colors. Many standard styles, offering thousands of predefined symbols,
are available during the installation process. Using the StyleGallery and
StyleGalleryItem classes, you can retrieve and edit existing symbols,
which may be more efficient than creating symbols from scratch.

You might also wish to use the standard symbol editors found in
ArcMap, which can be opened programmatically using the SymbolEditor
coclass. The following pages describe how to create all the different
symbols from first principles.

The Symbol abstract class provides high-level functionality for all sym-
bols. It allows you to draw any symbol directly to a device context (DC).
A device context is an internal Windows structure—each window has a
device context handle, or hDC.

Symbol
IClone

IPersist
IPersistStream

ISymbol

A symbol determines how any item is
drawn on a map or page layout. Every
item on a page  layout or map has to

have a symbol in order to be drawn.

D

In the case of a graphic element, a symbol is set
as a property of each element. Layers, however,

are drawn with a renderer, which has one or
more symbols associated with it.

Symbol objects

TextSymbol

IFormattedTextSymbol
IMapLevel

IMask
IPropertySupport

ISimpleTextSymbol
ISymbolRotation

ITextSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

Symbol-
Selector

ISymbolSelector Symbol-
Editor

ISymbolEditor The Symbol Editor dialog box is
used to edit the definition of any
symbol

The Symbol Selector dialog
box presents all symbols in
referenced style files

Symbols are used for drawing
features and elements on a map and
have attributes such as color and size

Symbology-
Environment

IClassFactory
ISymbologyEnvironment

The symbology environment controls
certain details of symbology display

The geometry draw can be used to
draw any geometry to a display

Geometry-
Draw

IGeometryDraw
ISupportErrorInfo



Chapter 5 • Displaying graphics • 503

D
is

p
la

y

 ISymbol : IUnknown Provides access to members that control symbols.

ROP2: tagesriRasterOpCode Raster operation code for pixel drawing.

Draw (in Geometry: IGeometry) Draws the specified shape.
QueryBoundary (in hDC: Long, in

displayTransform: ITransformation, in
Geometry: IGeometry, in Boundary:
IPolygon)

Fills an existing polygon with the boundary of the specified symbol.

ResetDC Restores DC to original state.
SetupDC (in hDC: Long, in

Transformation: ITransformation)
Prepares the DC for drawing the symbol.

The SetupDC, Draw, and ResetDC methods can be used in conjunction
with the ROP2 property to draw a symbol to a device context, providing
a familiar procedure for those who have worked with device context
drawing before. Calling the SetupDC method selects the Symbol into the
specified DC, and setting the ROP2 property to one of the esriRaster-
OpCodes specifies how the Symbol is drawn (see below). Subsequently
calling the Draw method will draw the Symbol, using the Geometry
parameter from the Draw method, to the DC.

The following code demonstrates drawing to a device context, where
pDisplay is a valid Display object, pPoint is a valid Point in display coor-
dinates, and pSymbol is any valid Symbol. There are two important
points to note:

• Call StartDrawing on the Display before using the Draw method, as
this sets up the Display’s device context. Always ensure you call
FinishDrawing on the Display after you have finished.

• Always make sure you call ResetDC after you finish drawing with a
particular symbol, which restores the DC to its original state.

Sub DrawSymbol

  pDisplay.StartDrawing pDisplay.hDC, esriNoScreenCache

  pSymbol.SetupDC pDisplay.hDC, pDisplay.DisplayTransformation

  pSymbol.Draw pPoint

  pSymbol.ResetDC

  pDisplay.FinishDrawing

End Sub

Try setting the ROP2 property to a different raster operation than the
default, esriROPCopyPen, in which the color of each pixel is the color
determined by the Symbol. A careful choice of pen can give many
different results, for example, flashing symbols, drawing and erasing,
silhouettes, and negative effects.

The example below demonstrates the use of this raster operation, where
the Symbol is drawn twice in the MouseMove event, the first Draw erasing
the existing symbol and the second Draw drawing the symbol in a new
location. The MouseUp event erases the final symbol. The m_Symbol
variable indicates any existing symbol.

Private m_Display As IDisplay

Private m_Symbol As ISymbol

Private m_newPoint As IPoint

Private m_DrawPhase As Boolean

The esriROPXOrPen or esriROPNotXOrPen
are ideal for use in events where an item with a

Symbol is being dragged around, as a repeat
Draw at the same location will in effect erase

the previous Draw.

SYMBOL ABSTRACT CLASS



504 • Exploring ArcObjects • Volume 1

Private Sub UIToolControl1_MouseDown(ByVal button As Long, ByVal shift As
Long, ByVal x As Long, ByVal y As Long)

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Set m_Display = pMxDoc.ActiveView.ScreenDisplay

  Set m_newPoint = m_Display.DisplayTransformation.ToMapPoint(x, y)

  m_DrawPhase = True

  DrawSymbol

End Sub

Private Sub UIToolControl1_MouseMove(ByVal button As Long, ByVal shift As
Long, ByVal x As Long, ByVal y As Long)

  If m_DrawPhase Then

    DrawSymbol

    Set m_newPoint = m_Display.DisplayTransformation.ToMapPoint(x, y)

    DrawSymbol

  End If

End Sub

Private Sub UIToolControl1_MouseUp(ByVal button As Long, ByVal shift As
Long, ByVal x As Long, ByVal y As Long)

  If m_DrawPhase Then

    Set m_newPoint = m_Display.DisplayTransformation.ToMapPoint(x, y)

    DrawSymbol

    m_DrawPhase = False

  End If

End Sub

Enumeration tagesriRasterOpCode Binary Raster op-codes for symbol drawing.

 1 - esriROPBlack Pixel is always 0.
 2 - esriROPNotMergePen Pixel is the inverse of the esriROPMergePen color.
 3 - esriROPMaskNotPen Pixel is a combination of the colors common to both the screen and

the inverse of the pen.
 4 - esriROPNotCopyPen Pixel is the inverse of the pen color.
 5 - esriROPMaskPenNot Pixel is a combination of the colors common to both the pen and the

inverse of the screen.
 6 - esriROPNot Pixel is the inverse of the screen color.
 7 - esriROPXOrPen Pixel is a combination of the colors in the pen and in the screen, but

not in both.
 8 - esriROPNotMaskPen Pixel is the inverse of the esriROPMaskPen color.
 9 - esriROPMaskPen Pixel is a combination of the colors common to both the pen and the

screen.
10 - esriROPNotXOrPen Pixel is the inverse of the esriROPXOrPen color.
11 - esriROPNOP Pixel remains unchanged.
12 - esriROPMergeNotPen Pixel is a combination of the screen color and the inverse of the pen

color.
13 - esriROPCopyPen Pixel is the pen color.
14 - esriROPMergePenNot Pixel is a combination of the pen color and the inverse of the screen

color.
15 - esriROPMergePen Pixel is a combination of the pen color and the screen color.
16 - esriROPWhite Pixel is always 1.

You can select a value for the ROP2 property from the esriRasterOpCode
enumeration.

SYMBOL ABSTRACT CLASS



Chapter 5 • Displaying graphics • 505

D
is

p
la

y

 IMapLevel : IUnknown Provides access to memebers that control the map level.

MapLevel: Long Current map level for drawing multi-level symbols.

Using the IMapLevel interface allows you to alter the draw order of the
symbols used to draw feature layers. This functionality was originally
designed for drawing cased roads and similar symbols but has been
designed to offer flexibility and can be used on any symbol used by a
renderer except 3D chart symbols. Graphic elements ignore MapLevels, as
do ISymbol::Draw calls.

To draw layers in a map using map levels, first set the
IMap::UseSymbolLevels property to True. Then, set up each individual
symbol to have a MapLevel. Any symbols with MapLevel equal to 0 draw
first (at the bottom), then any symbols with MapLevel equal to 1, until
the highest MapLevel is reached. If more than one symbol has the same
MapLevel, then when that MapLevel is reached those symbols are drawn
in the normal layer order. A MapLevel of -1 on a multilayer symbol
indicates that each of its symbol layers are drawn with their individual
MapLevel.

The following code example demonstrates how you could “merge” a
MultiLayerLineSymbol that belongs to a SimpleRenderer on the top map
layer by setting the MapLevel symbols in the MultiLayerLineSymbol. The
SetMapLevel function is called on each Symbol in the
MultiLayerLineSymbol.
  pMap.UseSymbolLevels = True

  If TypeOf pMap.Layer(0) Is IGeoFeatureLayer Then
    Dim pFeatLyr As IGeoFeatureLayer
    Set pFeatLyr = pMap.Layer(0)

    If TypeOf pFeatLyr.Renderer Is ISimpleRenderer Then
      Dim pSimpleRend As ISimpleRenderer
      Set pSimpleRend = pFeatLyr.Renderer

      If TypeOf pSimpleRend.Symbol Is IMultiLayerLineSymbol Then
        Dim pMulti As IMultiLayerLineSymbol
        Set pMulti = pSimpleRend.Symbol
        SetMapLevel pMulti, -1
       Dim i As Long
        For i = 0 To pMulti.LayerCount - 1
          SetMapLevel pMulti.Layer(i), pMulti.LayerCount - (i + 1)
        Next i
      End If
    End If
  End If

  Sub SetMapLevel(pMapLevel As IMapLevel, lngLevel As Long)
    If Not pMapLevel Is Nothing Then
      pMapLevel.MapLevel = lngLevel
    End If
  End Sub

The IMapLevel interface was designed for use by
the Advanced Drawing Options dialog box in
ArcMap, which allows you to join and merge

multilayer symbols.

SYMBOL ABSTRACT CLASS



506 • Exploring ArcObjects • Volume 1

The GeometryDraw coclass is used to draw an IGeometry object to an
IDisplay object.

 IGeometryDraw : IUnknown Converts a geometry into a sequence of Win32 drawing
instructions.

Draw (hDC: Long, pGeometry:
IGeometry, pTransformation:
ITransformation, pVisibleBounds:
IEnvelope)

Draws the geometry.

QueryGeometryFromWin32Path (in
hDC: Long, in Transform:
ITransformation, in Geometry:
IPolygon)

Queries the geometry.

Use the Draw method to draw a Geometry to a Display, as shown below.

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Dim pDisplay As IDisplay

  Set pDisplay = pMxDoc.ActiveView.ScreenDisplay

  pDisplay.StartDrawing 0, esriNoScreenCache

  Dim pGeomDraw As IGeometryDraw

  Set pGeomDraw = New GeometryDraw

  'pGeom is an existing Geometry object

  pGeomDraw.Draw pDisplay.hDC, pGeom, pDisplay.DisplayTransformation, _

   pGeom.Envelope

  pDisplay.FinishDrawing

The Geometry is drawn using the current symbol set on the Display,
which you can set by calling IDisplay::SetSymbol. Note the call to
StartDrawing, which is necessary to set up the Display with a valid
hDC.

Geometry-
Draw

IGeometryDraw
ISupportErrorInfo

The geometry draw can be used to draw
any geometry to a display.

The GeometryDraw object provides an
alternative to using the ISymbol::Draw method,
which draws a Symbol to a device context using

a particular Geometry to provide the location.

GEOMETRYDRAW COCLASS



Chapter 5 • Displaying graphics • 507

D
is

p
la

y

The SymbolSelector coclass is ideal for presenting the user with a choice
of symbols, either marker, line, fill, or text symbols. The symbols in the
selector are taken from all the currently referenced style files.

 ISymbolSelector : IUnknown Provides a dialog for Symbol Selection

AddSymbol (in Symbol: ISymbol) :
Boolean

Provides a dialog for Adding a symbol

GetSymbolAt (in Index: Long) : ISymbol Gets the symbol at the given index
SelectSymbol (hWnd: Long) : Boolean Displays a dialog that lets the user select a symbol

The AddSymbol method is used to define which type of symbols should
be displayed in the SymbolSelector. For example, passing a Marker-
Symbol will display all available MarkerSymbols. The AddSymbol method
also determines which symbol is shown in the initial Preview frame
when the dialog box opens.

The SelectSymbol method is used to display the dialog box; check the
return value to determine if the user clicked OK (True) or Cancel (False).

Finally, the GetSymbolAt method is used to retrieve the selected symbol
using an index of zero.

  Dim pSymbolSelector As ISymbolSelector

  Set pSymbolSelector = New SymbolSelector

  Dim pMarker As ISimpleMarkerSymbol

  Set pMarker = New SimpleMarkerSymbol

  If Not pSymbolSelector.AddSymbol(pMarker) Then

    MsgBox "Could not add symbol"

  Else

    If  pSymbolSelector.SelectSymbol(0) Then

      Dim pSymbol As ISymbol

      Set pSymbol = pSymbolSelector.GetSymbolAt(0)

    End If

SYMBOLSELECTOR COCLASS

Symbol-
Selector

ISymbolSelector

The Symbol Selector dialog box presents
all the symbols in the currently refer-

enced style files.



508 • Exploring ArcObjects • Volume 1

The SymbolEditor provides an ideal way to allow a user to edit all the
properties of a specific, preexisting symbol.

 ISymbolEditor : IUnknown Symbol Editor

ShowUnits: Boolean Indicates whether to display the Units combo box.
Title: String The title of the Symbol Editor dialog.

EditSymbol (Symbol: ISymbol, hWnd:
Long) : Boolean

Displays the Symbol Editor dialog for the given symbol and returns a
flag indicating if the symbol changed.

The EditSymbol method takes an ISymbol parameter, which must be an
existing object that supports ISymbol. This object is passed by reference
and will be directly changed depending on the selections made in the
dialog box. Its coclass may even change.

The EditSymbol method call will open the SymbolEditor dialog box. To
determine if the user clicked Cancel or OK, check the return value.

  Dim pSymbol As IMarkerSymbol

  Set pSymbol = New SimpleMarkerSymbol

  Dim pSymbolEditor As ISymbolEditor

  Set pSymbolEditor = New SymbolEditor

  pSymbolEditor.Title = "Edit My Marker"

  If Not pSymbolEditor.EditSymbol(pSymbol, 0) Then

    MsgBox "Use pressed Cancel"

  Else

    'Do something with the edited Symbol

  End If

Symbol-
Editor

ISymbolEditor

The SymbolEditor is the dialog box
shown by ArcMap to edit the details of

any given Symbol.

The pages shown on the dialog box will depend
on the type of symbol used. For example, a

cartographic line symbol has a slightly different
dialog box than a marker line symbol.

SYMBOLEDITOR AND SYMBOLOGYENVIRONMENT COCLASSES

The SymbologyEnvironment coclass is a Singleton and controls certain
details of how symbols are drawn as Graphical Device Interface (GDI)
objects. Most developers will find it unnecessary to change the default
SymbologyEnvironment properties, as the coclass is used primarily by
ArcMap to set symbology options for exporting and printing.

 ISymbologyEnvironment : IUnknown Controls the environment for certain Symbol operations

GeometryClipping: Boolean Indicates if all geometry is clipped on output.
OutputGDICommentForCMYKColor:

Boolean
Indicates if a GDI comment is output for CMYK colors.

OutputGDICommentForGroupings:
Boolean

Indicates if a GDI comment is output for groupings.

OutputGDICommentForLayers: Boolean Indicates if a GDI comment is output for layers.
OutputGDICommentForText: Boolean Indicates if a GDI comment is output for text.
StrokeTrueTypeMarkers: Boolean Indicates if TrueType markers are stroked.

Symbology-
Environment

IClassFactory
ISymbology-
Environment

The symbology environment object is
used internally by ArcMap when output-

ting maps.



Chapter 5 • Displaying graphics • 509

D
is

p
la

y

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

A MarkerSymbol represents how a
point or multipoint feature or graphic is

drawn.

The MarkerSymbol abstract class represents the properties all types of
MarkerSymbol have in common. These are Angle, Color, Size XOffset,
and YOffset.

 IMarkerSymbol : IUnknown Provides access to members that control marker symbols.

Angle: Double Marker symbol angle.
Color: IColor Marker symbol color.
Size: Double Marker symbol size.
XOffset: Double Symbol X-axis offset from point location.
YOffset: Double Symbol Y-axis offset from point location.

IMarkerSymbol is the primary interface for all marker symbols in
ArcMap. All other marker symbol interfaces inherit the properties and
methods of IMarkerSymbol. The interface has five read–write properties
that allow you to get and set the basic properties of any MarkerSymbol.

The Color property can be set to any IColor object, and its effects will be
dependent on the type of coclass you are using.

Marker symbol objects

ICartographicMarkerSymbol
ICharacterMarkerSymbol

IMarkerMask
Character-

MarkerSymbol

Simple-
MarkerSymbol

IMarkerMask
ISimpleMarkerSymbol

Arrow-
MarkerSymbol

IArrowMarkerSymbol
IMarkerMask

Picture-
MarkerSymbol

ICartographicMarkerSymbol
IMarkerMask

IPictureMarkerSymbol

A character marker symbol is a
single glyph from a TrueType font

A simple marker symbol is a
square, circle, diamond, cross, or x

An arrow marker symbol is a
triangular arrow head

A picture marker symbol is a bitmap
image or enhanced metafile

A multilayer marker symbol is an ordered
collection, or stack, of other marker symbols

TextSymbol

IFormattedTextSymbol
IMapLevel

IMask
IPropertySupport

ISimpleTextSymbol
ISymbolRotation

ITextSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

MultiLayer-
MarkerSymbol

IMultiLayerMarkerSymbol
ILayerVisible

ILayerColorLock
IMarkerBackgroundSupport

IMask



510 • Exploring ArcObjects • Volume 1

color property sets

the fill color of the marker

the fill color of the arrow head

the fill color of the text symbol

parts of the boolean image which contain a color

no effect

dependent on ILayerColorLock

default color

black

black

black

black

not set

none

coclass

SimpleMarkerSymbol

ArrowMarkerSymbol

CharacterMarkerSymbol

PictureMarkerSymbol 1 bit

PictureMarkerSymbol n bits

MultiLayerMarkerSymbol

The Size property sets the overall height of the symbol if the symbol is a
SimpleMarkerSymbol, CharacterMarkerSymbol, PictureMarkerSymbol, or
MultiLayerMarkerSymbol. For an ArrowMarkerSymbol, Size sets the
length. The units are points. The default size is eight for all marker
symbols except the PictureMarkerSymbol—its default size is 12.

The Angle property sets the angle in degrees to which the symbol is
rotated counterclockwise from the horizontal axis; and its default is 0.
The XOffset and YOffset properties determine the distance to which the
symbol is drawn offset from the actual location of the feature. The
properties are both in printer’s points, both have a default of zero, and
both can be negative or positive; positive numbers indicate an offset
above and to the right of the feature, and negative numbers indicate an
offset below and to the left.

Below, you create an ArrowMarkerSymbol and set only the properties
inherited from IMarkerSymbol. This results in the symbol shown.

  Dim pArrow As IMarkerSymbol

  Set pArrow = New ArrowMarkerSymbol

  With pArrow

    .Angle = 60

    .Size = 50

    .XOffset = 20

    .YOffset = 30

    .Color = pColor

  End With

To the left are some examples of each of the marker symbol types.

Simple marker symbols

Arrow marker symbols

Character marker symbols

Picture marker symbols

Multilayer marker symbols

The Size, XOffset, and YOffset of a marker
symbol is in printer’s points—1/72 of an inch.

Character marker symbol

Simple marker symbol

Arrow marker symbol

Picture marker symbol

Multilayer marker symbol90

The types of marker symbols.

MARKERSYMBOL ABSTRACT CLASS



Chapter 5 • Displaying graphics • 511

D
is

p
la

y

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

Simple-
MarkerSymbol

IMarkerMask
ISimpleMarkerSymbol

The simple marker symbol draws a circle,
square, cross, x, or diamond.

This is the ArcMap dialog box for editing simple
marker symbols.

The SimpleMarkerSymbol coclass can be used to display a point with
simple characteristics. The SimpleMarkerSymbol determines the shape of
the simple symbol and also its outline characteristics.

 ISimpleMarkerSymbol : IMarkerSymbol Provides access to members that control the simple marker
symbol.

Outline: Boolean Indicates if the symbol outline will draw.
OutlineColor: IColor Outline color.
OutlineSize: Double Outline diameter.
Style: tagesriSimpleMarkerStyle Marker style.

The ISimpleMarkerSymbol interface inherits from the IMarkerSymbol
interface and has four read–write properties.

The Style property determines the basic shape of the symbol and can be
set to one of five basic shapes using the esriSimpleMarkerStyle con-
stants.

Enumeration tagesriSimpleMarkerStyle Simple marker styles.

0 - esriSMSCircle The marker is a circle.
1 - esriSMSSquare The marker is a square.
2 - esriSMSCross The marker is a cross.
3 - esriSMSX The marker is an X.
4 - esriSMSDiamond The marker is a diamond.

These simple shapes can be enhanced with outlines. Try setting the
Outline property to True and setting an IColor onto the OutlineColor
property.

The OutlineSize property determines the thickness of the outline in
printer’s points. Bear in mind that the outline is drawn on top of the
symbol and will overlap the symbol by half its thickness. By default, a
simple marker symbol will be a circle with no outline.

The default OutlineColor is black, and the default OutlineSize is 0.

SIMPLEMARKERSYMBOL COCLASS



512 • Exploring ArcObjects • Volume 1

ARROWMARKERSYMBOL COCLASS

The ArrowMarkerSymbol coclass can be used to display a point as the
head of an arrow.

 IArrowMarkerSymbol : IMarkerSymbol Provides access to members that control the arrow marker
symbol.

Length: Double Arrow marker length.
Style: tagesriArrowMarkerStyle Arrow marker style.
Width: Double Arrow marker width.

The IArrowMarkerSymbol interface inherits from the IMarkerSymbol
interface and allows you to set characteristics of the arrow marker. There
is currently one style, a simple triangular arrowhead—the Style property
therefore is always equal to the esriArrowMarkerStyle constant
esriAMSPlain.

The Length and Width properties set the dimensions of the arrow. Note
that the Length property equals the inherited Size property, so you can
set the relative length and width of the arrow using the Length and
Width properties and then scale the arrow marker using the Size
property.

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

Arrow-
MarkerSymbol

IArrowMarkerSymbol
IMarkerMask

The ArrowMarkerSymbol displays a
feature as an arrowhead.

The ArcMap dialog box for editing arrow marker
symbols.



Chapter 5 • Displaying graphics • 513

D
is

p
la

y

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

ICartographic-
MarkerSymbol

ICharacter-
MarkerSymbol

IMarkerMask

Character-
MarkerSymbol

The CharacterMarkerSymbol displays
a feature as a character from a font. You

can use any font on your system and
specify which glyph from the font should

be used as the symbol.

To display a point as a glyph from a font, use the CharacterMarker-
Symbol coclass.

 ICharacterMarkerSymbol :
 IMarkerSymbol

Provides access to members that control the character
marker symbol.

CharacterIndex: Long Character index within font.
Font: Font Font used for character symbol.

The ICharacterMarkerSymbol interface inherits from the IMarkerSymbol
interface and allows you to specify the characteristics of your chosen
glyph. To choose a font from which to pick your glyph, create a stan-
dard OLE font object and set this onto the Font property. This is shown
in the following code:

  Dim pFont As New stdole.StdFont

  With pFont

    .Name = "Arial"

    .Bold = True

    .Italic = True

  End With

  Dim pMarker As esriCore.ICharacterMarkerSymbol

  Set pMarker = New esriCore.CharacterMarkerSymbol

  pMarker.Font = pFont

  pMarker.Size = 12.0

Now that you have set up the font to use, you should pick which
glyph you require. Set the CharacterIndex property to the required
glyph number. Each font has up to 256 glyphs. To work out which
glyph you require, you may wish to use the Windows NT
CharacterMap accessory. You can also use the CharacterIndex sample
to work out all the character indices for a selected font. Use the
IMarkerSymbol interface’s Size property to set the size of the symbol,
not the Size property of the font itself.

 ICartographicMarkerSymbol: IUnknown Provides access to members that control the cartographic
marker symbol.

XScale: Double Symbol scale along X-axis.
YScale: Double Symbol scale along Y-axis.

To stretch a PictureMarkerSymbol or CharacterMarkerSymbol, use the
ICartographicMarkerSymbol interface. The ICartographicMarkerSymbol
interface inherits from the IMarkerSymbol interface and allows you to
scale a marker symbol in the x and y directions independently by
setting the XScale and YScale properties. For example, setting XScale
and YScale to 1 (the default) indicates the symbol should remain at its
original proportions; an XScale of 2 indicates the symbol is stretched to
twice its original width.

A glyph is a single character from a font.

The ArcMap dialog box for editing character
marker symbols.

CHARACTERMARKERSYMBOL COCLASS



514 • Exploring ArcObjects • Volume 1

The PictureMarkerSymbol coclass draws a point as a bitmap or
Windows metafile. Pictures can be 1-bit up to 24-bit (true color) images.

 IPictureMarkerSymbol : IMarkerSymbol Provides access to members that control the raster
(bitmap) marker symbol.

BackgroundColor: IColor Background color of the picture for 1 bit images.
BitmapTransparencyColor: IColor Color within bitmap indicating transparency.
Picture: Picture Picture used for marker symbol.
SwapForeGroundBackGroundColor:

Boolean
Indicates if foreground and background colors are swapped on 1 Bit

Images Only.

CreateMarkerSymbolFromFile (in Type:
tagesriIPictureType, in FileName:
String)

Create symbol from picture file.

There are two ways to set the Picture of a PictureMarkerSymbol—calling
CreateMarkerSymbolFromFile or setting the Picture property directly.

The CreateMarkerSymbolFromFile method has two parameters that specify
a picture type and file path. Set the FileName parameter to the full path
name of the picture you wish to use—an error is generated if the file path
is incorrect. Set the Type parameter to one of the esriPictureType constants.

Enumeration tagesriIPictureType IPicture Data Types.

0 - esriIPictureEMF EMF.
1 - esriIPictureBitmap BITMAP.

  Dim pPicMarker As IPictureMarkerSymbol

  Set pPicMarker = New PictureMarkerSymbol

  pPicMarker.CreateMarkerSymbolFromFile esriIPictureBitmap, _

     "C:\Data\MyImage.bmp"

If you already have a reference to an OLE picture, you can directly set
the Picture property—note the Picture property is by reference. Below,
the VB LoadPicture function returns an IPictureDisp interface.

  Set pPicMarker.Picture = LoadPicture("C:\Data\MyImage.bmp")

The Picture property of a standard VBA Image control also returns an
IPictureDisp interface.

  Set pPicMarker.Picture = UserForm1.ImageControl1.Picture

Your picture may have a solid filled background. You can display your
marker without this background by setting the BitmapTransparencyColor
property to the color of the background fill (or any other color in the
image you wish to be transparent). You can decide to fill in any unfilled
areas of your picture with a different color by setting the
BackgroundColor property. If you have set the BitmapTransparencyColor,
the background will be drawn in the transparent areas.

To remove these color effects from your marker, set the
BitmapTransparencyColor and BackgroundColor properties to Nothing.

The SwapForeGroundBackGroundColor property only affects the draw-
ing of 1-bit images, where each pixel will either have a value of 0 or 1.
When a 1-bit image is used as a PictureMarkerSymbol, the foreground
equates to the “0” pixels, and the background equates to the “1” pixels.

By default, the Color property is black, the BackgroundColor is also
black but is a NullColor, and SwapForeGroundBackGroundColor is True.

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

Picture-
MarkerSymbol

ICartographic-
MarkerSymbol

IMarkerMask
IPictureMarkerSymbol

The PictureMarkerSymbol displays a
feature as a bitmap. Use a

PictureMarkerSymbol when you
require a specific kind of symbol that

cannot be created using the other marker
types.

PICTUREMARKERSYMBOL COCLASS

Bitmap plus purple  mask
color (matching the sea color

in the original)

The original bitmap

Bitmap plus purple mask plus
cyan background, which

effectively replaces the purple

The ArcMap dialog box for editing picture
marker symbols



Chapter 5 • Displaying graphics • 515

D
is

p
la

y

The MultiLayerMarkerSymbol coclass can be used to display a point by
drawing a number of different marker symbols together, so complex
marker symbols can be built up from simple marker symbols.

 IMultiLayerMarkerSymbol :
 IMarkerSymbol

Provides access to members that control the multiLayer
marker symbol.

Layer (in Index: Long) : IMarkerSymbol Marker symbol per index position.
LayerCount: Long Symbol layer count.

AddLayer (in markerLayer:
IMarkerSymbol)

Add marker symbol layer.

ClearLayers Remove all symbol layers.
DeleteLayer (in markerLayer:

IMarkerSymbol)
Delete marker symbol layer.

DrawLayer (in Index: Long, in
Geometry: IGeometry)

Draw a symbol layer.

MoveLayer (in markerLayer:
IMarkerSymbol, in toIndex: Long)

Change layer index position.

The IMultiLayerMarkerSymbol interface refers to each symbol in the
collection as a layer and provides a read-only LayerCount property
summing the number of layers currently present.

The Layer property provides read-only access to each symbol within the
MultiLayerMarkerSymbol.

Marker symbols can be added to the collection by passing the required
symbol to the AddLayer method, which adds the symbols by value, for
example:

  Dim pMultiMarker As esriCore.IMultiLayerMarkerSymbol

  Set pMultiMarker = New MultiLayerMarkerSymbol

  pMultiMarker.AddLayer pSimpleMarker 'passing a valid SimpleMarkerSymbol

  pMultiMarker.AddLayer pArrowMarker 'passing a valid ArrowMarkerSymbol

Now you have a MultiLayerMarkerSymbol with a SimpleMarkerSymbol
and an ArrowMarkerSymbol—the ArrowMarkerSymbol was the last to be
added, and therefore has an index of zero, and will be drawn last on
top of the SimpleMarkerSymbol.

Each symbol can be moved to a different index by calling the
MoveLayer method. For example, you may wish to move the largest
symbols to the bottom of the MultiLayerMarkerSymbol. You can remove
a symbol entirely from the MultiLayerMarkerSymbol by calling
DeleteLayer, as shown in the following code:

  Dim pRemove As IMarkerSymbol

  Dim lngLayer As Long

  Do While lngLayer < pMultiMarker.LayerCount

    If TypeOf pMultiMarker.Layer(lngLayer ) Is IArrowMarkerSymbol Then

      Set pRemove = pMultiMarker.Layer(lngLayer )

      pMultiMarker.DeleteLayer pRemove

      lngLayer = 0

    End If

    lngLayer = lngLayer + 1

  Loop

To remove all the symbols from a MultiLayerMarkerSymbol, simply call
the ClearLayers method. It’s also possible to draw an individual layer

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

MultiLayer-
MarkerSymbol

IMultiLayer-
MarkerSymbol

ILayerVisible
ILayerColorLock

IMarkerBackground-
Support

IMask

A MultiLayerMarkerSymbol is a
collection of MarkerSymbols, all of

which are used to display a single point
feature.

Simple marker symbols are added to form a
multilayer marker symbol.

MULTILAYERMARKERSYMBOL COCLASS

Note the use of the Do…While loop. This is
especially useful when removing an item from

the collection that is being looped through—you
could not use a For…Each here.

The ArcMap dialog box for editing multilayer
marker symbols.



516 • Exploring ArcObjects • Volume 1

from the MultiLayerMarkerSymbol straight to a specific device context
by using the DrawLayer method. The use of this method is similar to
the ISymbol::Draw method; you must call SetupDC before and ResetDC
after your draw method. You may wish to use this capability, for ex-
ample, if you are implementing your own multilayer symbol editor.

 ILayerColorLock : IUnknown Provides access to members that control the layer color
locking.

LayerColorLock (in LayerIndex: Long) :
Boolean

Color lock state per layer index.

SetAllColorLocked (allLocked: Boolean) Indicates if the color is locked for all layers.

The ILayerColorLock interface determines which layers will be affected
by setting the IMultiLayerMarkerSymbol::Color property. Layers with
LayerColorLock equal to True will not be affected. Layers with Layer-
ColorLock equal to False will have their Color property set to the color
assigned in IMultiLayerMarkerSymbol::Color.

If you wish to set only the topmost layer of a MultiLayerMarkerSymbol
(pMultiLayerMarker) to a new color (pColor), you could write code like
this:

    Dim pColorLock As ILayerColorLock

    Set pColorLock = pMultiLayerMarker

    pColorLock.SetAllColorLocked True

    pColorLock.LayerColorLock(0) = False

    pMultiLayerMarker.Color = pColor

Each symbol in the MultiLayerMarkerSymbol has a visibility property
that determines whether or not each individual layer is drawn. This
visibility property can be accessed by using the ILayerVisible interface.

 ILayerVisible : IUnknown Provides access to members that control the layer visibility.

LayerVisible (in LayerIndex: Long) :
Boolean

Visibility of layer per layer index.

SetAllVisible (allVisible: Boolean) Indicates if all the layers are visible or invisible.

You can alter a given MultiLayerMarkerSymbol by “turning off” every
alternate symbol. You can set all the layers visible or invisible in one
command by calling the SetAllVisible method.

  Dim pLayerVisible As ILayerVisible, pLyr As Long

  Set pLayerVisible = pMultiLayerMarker   'Existing Marker

  For pLyr = 0 To pMultiLayerMarker.LayerCount - 1 Step 2

    pLayerVisible.LayerVisible(pLyr) = False

  Next pLyr

 IMask : IUnknown Provides access to members that control the symbol mask.

MaskSize: Double The mask size.
MaskStyle: tagesriMaskStyle The mask style.
MaskSymbol: IFillSymbol The mask symbol.

The IMask interface provides a simple and efficient way to draw a sym-
bol around the edge of your Marker. Set the MaskStyle property to an
esriMaskStyle constant.

Use a contrasting color mask to highlight items
that are a similar color to the features or their

outlines underneath it.

MULTILAYERMARKERSYMBOL COCLASS



Chapter 5 • Displaying graphics • 517

D
is

p
la

y

Enumeration tagesriMaskStyle Text mask styles.

0 - esriMSNone No mask.
1 - esriMSHalo The text mask style is halo.

You can either fill the mask with a solid color by setting the Color prop-
erty or with any other kind of FillSymbol by setting the MaskSymbol
property. The MaskSize property indicates the width of the mask in
points, measured from the marker edge.

MULTILAYERMARKERSYMBOL COCLASS



518 • Exploring ArcObjects • Volume 1

Line symbol objects

Cartographic-
LineSymbol

ICartographicLineSymbol
ILineProperties MultiLayer-

LineSymbol

IMultiLayerLineSymbol
ILayerVisible

ILayerColorLock

SimpleLine-
Symbol

ISimpleLineSymbol

A cartographic line symbol has flexible
properties to create dot-dash patterns,
decorations such as arrowheads, and

line join and cap styles

A multilayer line symbol is a
stack of other line symbols

A simple line symbol is
a solid line or one with
predefined series of
dots and dashes

SimpleLine-
Decoration-

Element

IClone
ILineDecorationElement

IPersist
IPersistStream

ISimpleLineDecorationElement

A template defines the series of
dots, dashes, and gaps along a
cartographic line

A line decoration maintains a set of
line decoration elements, which are
symbols drawn along a line

A simple line decoration element
draws marker decorations on the
top of a line symbol, such as
arrowheads

Line-
Decoration-

Editor

ILineDecorationEditor
The line decoration editor edits the
properties of a line decoration

TextSymbol

IFormattedTextSymbol
IMapLevel

IMask
IPropertySupport

ISimpleTextSymbol
ISymbolRotation

ITextSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

PictureLine-
Symbol

IPictureLineSymbol
MarkerLine-

Symbol

IMarkerLineSymbol

A hash-line symbol is a series of lines
running at an angle to the original line

A marker line symbol is a series of marker
symbols following the path of a line

Line-
Decoration

IClone
ILineDecoration

IPersist
IPersistStream

Template
IClone

IPersistStream
ITemplate

HashLine-
Symbol

IHashLineSymbol

*

A picture line
symbol draws a
line by filling it with
a tiled image



Chapter 5 • Displaying graphics • 519

D
is

p
la

y

The LineSymbol abstract class represents the two properties—Color and
Width—all types of line symbols have in common.

 ILineSymbol : IUnknown Provides access to members that control line symbols.

Color: IColor Line symbol color.
Width: Double Line symbol width.

ILineSymbol is the primary interface for all line symbols, which all inherit
the properties and methods of ILineSymbol. The interface has two read–
write properties that allow you to get and set the basic properties of any
line symbol. The Color property controls the color of the basic line (it
does not affect any line decoration that may be present—see the
ILineProperties interface) and can be set to any IColor object. The Color
property is set to black by default except for the SimpleLineSymbol,
which has a default of mid-gray.

The Width property sets the overall width of a line, and its units are
points. Note that for a HashLineSymbol, the Width property sets the
length of each hash—see HashLineSymbol for more information. The
default width is 1 for all line symbols except MarkerLineSymbol, which
has a default width of 8.

To create a new symbol for a line, use one of the line symbol coclasses
detailed in the following pages.

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

A line symbol represents how a one-
dimensional feature or graphic is drawn.

Straight lines, polylines, curves, and
outlines can all be drawn with a line

symbol. There are five different types of
line symbols you can use.

Cartographic line symbol

Hash line symbol

Marker line symbol

Multilayer line symbol

The width of a line symbol
is in printer’s points—

about 1/72 of an inch.

LINESYMBOL ABSTRACT CLASS



520 • Exploring ArcObjects • Volume 1

The SimpleLineSymbol coclass can be used to display a line as a basic
series of dots and dashes or as a solid line.

 ISimpleLineSymbol : ILineSymbol Provides access to members that control the simple line
symbol.

Style: tagesriSimpleLineStyle The style of the line symbol.

The ISimpleLineSymbol interface inherits from the ILineSymbol interface,
and its read–write Style property determines which style of line is used. It
can be set to one of seven basic line patterns by using the esriSimple-
LineStyle constants.

Enumeration tagesriSimpleLineStyle Simple line styles.

0 - esriSLSSolid The line is solid.
1 - esriSLSDash The line is dashed -------
2 - esriSLSDot The line is dotted .......
3 - esriSLSDashDot The line has alternating dashes and dots _._._._
4 - esriSLSDashDotDot The line has alternating dashes and double dots _.._.._
5 - esriSLSNull The line is invisible.
6 - esriSLSInsideFrame The line will fit into it's bounding rectangle, if any.

The default Style is esriSLSSolid. You should use only the esriSLSSolid
style to draw lines with a Width greater than 1. Due to limitations of the
Windows GDI routines used, dashed or dotted lines with a Width
greater than 1 will be drawn as solid lines. In these cases, cartographic
line symbols can be used instead to achieve the same effect.

SimpleLine-
Symbol

ISimpleLineSymbol

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

The simple line symbol displays a line
with a simple symbol such as a solid line

or a series of dots and/or dashes.

SIMPLELINESYMBOL COCLASS

The ArcMap dialog box for editing simple line
symbols.



Chapter 5 • Displaying graphics • 521

D
is

p
la

y

The CartographicLineSymbol coclass can be used to display one-dimen-
sional features with a more complex symbology than SimpleLineSymbol.
The ICartographicLineSymbol and ILineProperties interfaces offer precise
control over the characteristics of the line.

 ICartographicLineSymbol: ILineSymbol Provides access to members that control the cartographic
line symbol.

Cap: tagesriLineCapStyle Line end cap style.
Join: tagesriLineJoinStyle Line join style.
MiterLimit: Double Size threshold for showing mitered line joins.

The ICartographicLineSymbol interface controls the attributes of line
symbol vertices.

The MiterLimit property determines the shape of a mitered join but does
not affect lines with round or beveled joins. A miter length is defined as
the distance from the intersection of the line walls on the inside of the
join to the intersection of the line walls on the outside of the join. The
MiterLimit property returns or sets the maximum allowed ratio of miter
length to the line width. If a miter join exceeds the limit, the corner is
not pointed but is cut off at the limit point. The default miter limit
is 10.0.

The Cap property controls the appearance of line ends: butt, round, or
square.

Enumeration tagesriLineCapStyle Line cap styles.

0 - esriLCSButt Line ends do not extend passed the end points.
1 - esriLCSRound Line ends are rounded at the end points.
2 - esriLCSSquare Line ends are squared off at the end points.

The esriLineCapStyle constants are used to set the line ends in the Cap
property.

The Join property controls the appearance of any vertices of a line.

Enumeration tagesriLineJoinStyle Line join styles.

0 - esriLJSMitre Line joins are mitred.
1 - esriLJSRound Line joins are round.
2 - esriLJSBevel Line joins are beveled.

The esriJoinCapStyle constants are used to set the line join styles in the
Join property.

 ILineProperties: IUnknown Provides access to members that control the properties
common to several line types.

DecorationOnTop: Boolean Indicates if the decoration is drawn on top.
Flip: Boolean Indicates if the line symbol is flipped.
LineDecoration: ILineDecoration Line decoration element collection.
LineStartOffset: Double The line start offset.
Offset: Double The line offset value.
Template: ITemplate The line template.

The ILineProperties interface precisely controls the dash–dot pattern of
any line, where a dash may be a MarkerSymbol in the case of a
MarkerLineSymbol coclass, a LineSymbol in the case of a

Cartographic-
LineSymbol

ICartographicLine-
Symbol

ILineProperties

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

The cartographic line symbol is a gen-
eral-purpose symbol used to display line
features. More complex than the simple

line symbol, it allows custom line patterns,
offsets, and other characteristics to be set

according to your requirements.

CARTOGRAPHICLINESYMBOL COCLASS



522 • Exploring ArcObjects • Volume 1

HashLineSymbol coclass, or a simple dash in the case of a
CartographicLineSymbol coclass. This interface also controls line pattern
properties, such as offsets and line decoration elements.

The Template property sets or returns, by reference, a Template object
that stores the pattern of dashes and dots along a cartographic line
symbol.

CARTOGRAPHICLINESYMBOL COCLASS



Chapter 5 • Displaying graphics • 523

D
is

p
la

y

TEMPLATE COCLASS

The Template framework lets you design a common template for mul-
tiple LineSymbol objects in a MultiLayerLineSymbol, allowing you to
synchronize multiple line patterns. You can use the same template to
stack and center line dashes with markers or reverse the template to
center a marker in each gap of a dashed line.

 ITemplate : IUnknown Provides access to members that control the template.

Geometry: IGeometry The pattern geometry.
Interval: Double The interval.
PatternElementCount: Long Returns the number of pattern elements.

AddPatternElement (in mark: Double, in
Gap: Double)

Adds a pattern element.

ClearPatternElements Clears all pattern elements.
DeletePatternElement (in Index: Long) Removes the pattern element at the given index.
GetPatternElement (in Index: Long, out

mark: Double, out Gap: Double)
Gets pattern element properties for a given index.

MovePatternElement (in fromIndex:
Long, in toIndex: Long)

Moves a pattern element.

QueryNextLine (in pGeometry:
IGeometry)

Queries for the next line in the pattern.

QueryNextPoint (in pPoint: IPoint, in
pAngle: Double)

Queries for the next point in the pattern.

Reset Resets the enumerator.
Setup (in hDC: Long, in Transformation:

ITransformation, in lineSym:
ILineSymbol)

Set up items needed by template.

A Template is built up by calling the AddPatternElement method. This
method determines the size of an individual line dash and the following
gap, measured in points. Together, each mark and following gap are
known as a pattern element. Pattern elements can be any length, and
setting the first mark to zero indicates the line starts with a gap.

  Dim pTemplate as ITemplate

  Set pTemplate = New Template

  pTemplate.AddPatternElement 5,2

  pTemplate.AddPatternElement 5,5

  pTemplate.AddPatternElement 2,5

There is no specific limit to the number of elements you add, but you
don’t need to repeat the same one over and over again—the entire
template is repeated over and over again, as required.

The Interval property affects the length that each element is drawn. The
mark value times the interval equals the length of the mark. The gap
value times the interval equals the length of the gap.

The Interval property defaults to zero, so always make sure to set this
property greater than zero if you have a MarkerLineSymbol or
HashLineSymbol (a CartographicLineSymbol will draw a solid line if
Interval is zero). You can use Interval to produce similar patterns with
one template or to scale up a template when the LineSymbol’s Width is
altered to maintain the proportions of the line pattern.

  Dim pLineSymbol As ILineSymbol

  ' Set the LineSymbol here as required

  Dim pLineProperties As ILineProperties

  Set pLineProperties = pLineSymbol

  pLineProperties.Template.Interval = pLineSymbol.Width * 0.7

Template
IClone

IPersistStream
ITemplate

A template defines the series of dots,
dashes, and gaps along a cartographic

line. It also determines where lines and
markers appear on a hash line symbol

and a marker line symbol.

321



524 • Exploring ArcObjects • Volume 1

Use ClearPatternElement, DeletePatternElement, GetPatternElement,
PatternElementCount, and MovePatternElement to maintain your template.

The code below takes one Template and produces a complementary
Template containing the opposite gaps and marks, allowing you to create
a MultiLayerLineSymbol with alternating colors or a dashed line with
markers in the gaps.

  Dim pTemplateNew As ITemplate

  Set pTemplateNew = New Template

  pTemplateNew.Interval = pTemplateOld.Interval

  Dim i As Integer, dblMark As Double

  Dim dblGap As Double, dblSaveGap As Double

  pTemplateOld.GetPatternElement i, dblMark, dblGap

  If dblMark > 0 Then

    pTemplateNew.AddPatternElement 0, dblMark

    For i = 1 To pTemplateOld.PatternElementCount - 1

      dblSaveGap = dblGap

      pTemplateOld.GetPatternElement i, dblMark, dblGap

      pTemplateNew.AddPatternElement dblSaveGap, dblMark

    Next i

    pTemplateNew.AddPatternElement dblGap, 0

  End If

Note that this code only works where the template does not begin with a
gap (that is, the first mark is zero), but this algorthim could be adapted
to cover this.

The Geometry, QueryNextPoint, QueryNextLine, Setup, and Reset methods
and properties can be used together to find out the actual location of
each individual marker, hash, or line.

These methods are used internally by the CartographicLineSymbol
coclasses but can also be called directly. The mechanism is similar to
the TextPath::Next method, which is discussed later in this chapter.

TEMPLATE COCLASS



Chapter 5 • Displaying graphics • 525

D
is

p
la

y

The LineDecoration property of the ILineProperties interface, set by
reference, stores symbols that are drawn on top of a marker line, hash
line, or cartographic line. By default, no decoration is present on a line,
so the first step to adding line decorations is to create a new line deco-
ration coclass in this property:

    Set pLineProperties.LineDecoration = New LineDecoration

 ILineDecoration : IUnknown Provides access to members that control the line
decoration.

Element (in Index: Long) :
ILineDecorationElement

Returns the element at the given position.

ElementCount: Long Returns the number of line decoration elements.

AddElement (in lineDecorationElement:
ILineDecorationElement)

Adds an element.

ClearElements Clears all line decoration elements.
DeleteElement (in Index: Long) Deletes the element at the given index.
Draw (in hDC: Long, in Transform:

ITransformation, in LineGeometry:
IGeometry)

Draws the given line geometry.

MoveElement (in Element:
ILineDecorationElement, in toIndex:
Long)

Moves a line decoration element to the given index.

QueryBoundary (in hDC: Long, in
Transform: ITransformation, in
LineGeometry: IGeometry, in
Boundary: IPolygon)

Queries for the boundary of the given line geometry.

The ILineDecoration interface maintains a collection of line decoration
elements for a LineSymbol. Line decorations are symbols that display at
certain locations along a line. Many decorations can be added to the
collection by passing an ILineDecorationElement to the AddElement
method—the most recently added elements display on top.

Use the ClearElements, DeleteElement, Element, ElementCount, and
MoveElement methods to maintain the list of decorations like any other
collection. To find out the boundary of the collection of line decora-
tions, call the QueryBoundary method. You may wish to use this
method to refresh specific areas of your display.

LINEDECORATION COCLASS

Line-
Decoration

IClone
ILineDecoration

IPersist
IPersistStream

Line decorations are used for placing decorations
such as arrowheads at particular places along a

line symbol. A line decoration belongs to a
cartographic line symbol and is not used as a

line symbol itself.

A LineSymbol with LineDecorations has
advantages over a MultiLayerLineSymbol for

producing arrows or similar symbols, as you can
specify decorations to appear only at the ends, in

the center of a line, or at any other proportion
along a line. Therefore, if your line geometry

changes, you do not need to update the location
of any decoration element, as they are calculated

internally.



526 • Exploring ArcObjects • Volume 1

SimpleLine-
Decoration-

Element

IClone
ILineDecoration-

Element
IPersist

IPersistStream
ISimpleLine-

DecorationElement

A simple line decoration element draws
marker decorations on the top of a line

symbol. It’s ideal for pleacing arrowheads
at the start or end of a line.

The SimpleLineDecorationElement stores the decorations that are drawn
on the top of a line symbol and defines how they appear. The
SimpleLineDecorationElement is the only type of line decoration avail-
able currently in ArcObjects.

 ISimpleLineDecorationElement :
 ILineDecorationElement

Provides access to members that control the simple line
decoration.

FlipAll: Boolean Indicates if all symbols are flipped 180 degrees.
FlipFirst: Boolean Indicates if marker symbol in '0' position is flipped 180 degrees.
MarkerSymbol: IMarkerSymbol The marker symbol.
Rotate: Boolean Indicates if marker symbols are rotated to follow the line.

The ISimpleLineDecorationElement allows you to specify any
MarkerSymbol as a line decoration. For each
SimpleLineDecorationElement, this MarkerSymbol can be repeated at
different positions along the line.

If Rotate is False, the decorations are drawn at a constant angle to the
container. If it is True, they are rotated to follow the axis of the line. The
default value is True.

The FlipAll and FlipFirst properties are particularly useful when generat-
ing arrow line symbols. Consider a LineDecoration with arrowheads as
decorations. If Rotate is True, the arrows are rotated along the axis of the
line and will point toward the ToPoint of the line. If FlipAll is True, the
arrows will point toward the FromPoint. Setting FlipFirst to True will
make the first arrow point to the FromPoint and the rest point toward
the ToPoint. Combining both would create arrows pointing toward the
center of the line.

 ILineDecorationElement : IUnknown Provides access to members that control the line
decoration element.

Position (in Index: Long) : Double Returns the element position at the given index.
PositionAsRatio: Boolean Indicates if positions represent percentage or absolute distance along

the line.
PositionCount: Long Returns the number of positions.

AddPosition (in elementPosition:
Double)

Adds a position.

ClearPositions Clears all positions.
DeletePosition (in Index: Long) Deletes a position.
Draw (in hDC: Long, in Transform:

ITransformation, in LineGeometry:
IGeometry)

Draws the given line geometry.

QueryBoundary (in hDC: Long, in
Transform: ITransformation, in
LineGeometry: IGeometry, in
Boundary: IPolygon)

Queries for the boundary of a given line geometry.

Because of interface inheritance, all members of the
ILineDecorationElement interface are available when working with the
ISimpleLineDecorationElement interface.

If the PositionAsRatio property is True, then a Position of 1 indicates a
decoration at the end of the line, and a Position of 0.5 indicates a deco-
ration halfway along the line. If PositionAsRatio is False, positions are set
as specific lengths along the line. Any decorations that have a position
greater than the line length will not be displayed; if the line is subse-
quently edited to an even greater length, the decorations will then
appear.

SIMPLELINEDECORATIONELEMENT COCLASS

These lines with simple line decorations have
Rotate to True, Positions equal to 0 and 1, and

PositionsAsRatio equal to True.

FlipAll = False,
FlipFirst = False

FlipAll = True,
FlipFirst = False

FlipAll = False,
FlipFirst = True

FlipAll = True,
FlipFirst = True

begin point

end  point



Chapter 5 • Displaying graphics • 527

D
is

p
la

y

The code that follows creates a basic CartographicLineSymbol with
small red circles repeated every quarter of the way along the line and
larger green squares at the first whole unit along the line.

  Dim pLineProperties As ILineProperties

  Set pLineProperties = New CartographicLineSymbol

  Set pLineProperties.LineDecoration = New LineDecoration

  Dim pColor As IColor

  Set pColor = New RgbColor

  pColor.RGB = 255

  Dim pMarker As ISimpleMarkerSymbol

  Set pMarker = New SimpleMarkerSymbol

  pMarker.Style = esriSMSCircle

  pMarker.Size = 8

  pMarker.Color = pColor

  Dim pSimpleLineDec As ISimpleLineDecorationElement

  Set pSimpleLineDec = New SimpleLineDecorationElement

  With pSimpleLineDec

    .MarkerSymbol = pMarker

    .PositionAsRatio = True

    .AddPosition 0

    .AddPosition 0.25

    .AddPosition 0.5

    .AddPosition 0.75

    .AddPosition 1

  End With

  pLineProperties.LineDecoration.AddElement pSimpleLineDec

  pColor.RGB = 655280

  Set pMarker = New SimpleMarkerSymbol

  pMarker.Style = esriSMSSquare

  pMarker.Size = 12

  pMarker.Color = pColor

  Set pSimpleLineDec = New SimpleLineDecorationElement

  With pSimpleLineDec

    .MarkerSymbol = pMarker

    .PositionAsRatio = False

    .AddPosition 1

  End With

  pLineProperties.LineDecoration.AddElement pSimpleLineDec

SIMPLELINEDECORATIONELEMENT COCLASS

The cartographic line symbol created using the
neighboring script



528 • Exploring ArcObjects • Volume 1

LINEDECORATIONEDITOR COCLASS

The LineDecorationEditor shows the dialog box used by ArcMap to
allow a user to edit the properties of a LineDecoration of a
CartographicLineSymbol, HashLineSymbol, or MarkerLineSymbol.

 ILineDecorationEditor : IUnknown Provides a dialog for managing properties associated with
Line Decoration.

ShowUnits: Boolean Indicates whether to display the Units combo box.
Title: String The title of the Line Decoration Editor dialog.

EditLineDecoration (LineDecoration:
ILineDecoration, in previewLine:
ILineSymbol, hWnd: Long) : Boolean

Displays the Line Decoration Editor dialog for the given symbol and
returns a flag indicating if the symbol changed.

The EditLineDecoration method takes an ILineDecoration and an
ILineSymbol parameter. The LineDecoration parameter, passed by refer-
ence, has its properties edited by the user. The LineSymbol is required to
correctly display the line in the Preview frame of the dialog box.

  Dim pLineDec As ILineDecoration

  Set pLineDec = pLineSymbol.LineDecoration

  ' pLineSymbol is a preexisting line symbol

  Dim pLineDecEditor As ILineDecorationEditor

  Set pLineDecEditor = New LineDecorationEditor

  pLineDecEditor.Title = "Edit My Text Background"

  pLineDecEditor.ShowUnits = False

  If Not pLineDecEditor.EditLineDecoration(pLineDec, pLineSymbol, 0) Then

    MsgBox "User pressed Cancel"

  Else

    'Do something with the edited Line Decoration

  End If

Line-
Decoration-

Editor

ILineDecorationEditor

The LineDecorationEditor is the dialog
box used by ArcMap to allow the user to

edit the properties of line decorations.

If a user clicks the LineProperties button in the
LineSymbolEditor, they can access the

LineDecorationEditor and add decorations to
the LineSymbol. However, using the

LineDecorationEditor directly restricts the
user to setting the properties of the decorations

only for a specific LineSymbol object.

The ArcMap dialog box for editing simple line
decoration elements



Chapter 5 • Displaying graphics • 529

D
is

p
la

y

Using the HashLineSymbol, a line feature can be symbolized by a re-
peated line symbol, or hash, drawn across the path of the line feature.

 IHashLineSymbol: ILineSymbol Provides access to members that control the hash line
symbol.

Angle: Double Hash line angle.
HashSymbol: ILineSymbol Line symbol used for hash pattern.

The IHashLineSymbol interface has two simple properties.

The HashSymbol property is used to return or set a LineSymbol that
draws the hashes across the line path. The property is set by reference,
so be careful with your object references.

The Angle property sets or returns the angle at which the hashes are
drawn, relative to the path of the line feature. An angle of 90 degrees
will draw all the hashes perpendicular to the path, angles of 0 to
89 degrees will tilt the hash toward the end vertex of the path, and
angles of 91 to 180 degrees will tilt the hash toward the start vertex of
the path.

The Width property, inherited from ILineSymbol, refers to the length of
each hash line, and therefore the actual width of the symbol will be a
function of both the Width and Angle properties.

Below, you set a HashLineSymbol’s Width by calculating the LineSymbol
Width required to produce a symbol with an actual width of 20 points.
The SymbolWidth function converts a value from a required perpen-
dicular width to the required LineSymbol Width.

  Dim pHashLineSym As IHashLineSymbol

  Set pHashLineSym = New HashLineSymbol

  pHashLineSym.Angle = 45

  pHashLineSym.Width = SymbolWidth(20, 45)

  Function SymbolWidth(dblPerpendicularWidth As Double, _

      pAngle As Double) As Double

    Const dblPi = 3.14159265

    SymbolWidth = dblPerpendicularWidth / Sin(pAngle * (dblPi / 180))

  End Function

The default HashSymbol is a SimpleLineSymbol with a width of 1 and an
angle of 90, but you could use any LineSymbol, even another
HashLineSymbol.

Use the ILineProperties interface to set the pattern of the hashes, dis-
cussed in the CartographicLineSymbol abstract class. Note that for a
HashLineSymbol, the Template marks how many dashes will occur in the
pattern segment.

Cartographic-
LineSymbol

ICartographicLine-
Symbol

ILineProperties

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

HashLine-
Symbol

IHashLineSymbol

A HashLineSymbol is a line symbol
made up of many short lines crossing the
path of the line feature, such as part of a

railroad symbol.

HASHLINESYMBOL COCLASS

from to

hash angle = 45

from to

hash angle = 135

hash angle

from point to point



530 • Exploring ArcObjects • Volume 1

Using the MarkerLineSymbol, a line feature can be drawn as a repeated
MarkerSymbol.

 IMarkerLineSymbol : ILineSymbol Provides access to members that control the marker line
symbol.

MarkerSymbol: IMarkerSymbol Symbol used for marker line.

The IMarkerLineSymbol interface has one property, which sets the
MarkerSymbol used to symbolize the line. Set this property to any
MarkerSymbol, but be careful with your object references, as this prop-
erty is set by reference.

  Dim pMarkerLine As IMarkerLineSymbol

  Set pMarkerLine = New MarkerLineSymbol

  Dim pMarker As ISimpleMarkerSymbol

  Set pMarker = New SimpleMarkerSymbol

  Set pMarkerLine.MarkerSymbol = pMarker

  pMarker.Size = 20

Note that the MarkerSymbol’s Size property equals the
MarkerLineSymbol’s Width property.

You can set the pattern of the markers on your line by using the
ILineProperties interface, discussed in the CartographicLineSymbol ab-
stract class.

Cartographic-
LineSymbol

ICartographicLine-
Symbol

ILineProperties

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

MarkerLine-
Symbol

IMarkerLineSymbol

A line can be drawn as a repeated
marker symbol by using a

MarkerLineSymbol. For example, the
path of a bus through a town may be

shown as a repeated bus symbol.

MARKERLINESYMBOL COCLASS



Chapter 5 • Displaying graphics • 531

D
is

p
la

y

The MultiLayerLineSymbol coclass can be used to display a line by
stacking a number of different line symbols together, allowing more
complex line symbols to be created from the basic building blocks
provided. This is shown below.

 IMultiLayerLineSymbol: ILineSymbol Provides access to members that control the multilayer line
symbol.

Layer (in Index: Long) : ILineSymbol Line symbol per index value.
LayerCount: Long The number of layers in the symbol.

AddLayer (in lineLayer: ILineSymbol) Adds a layer to the line symbol.
ClearLayers Removes all line symbol layers.
DeleteLayer (in lineLayer: ILineSymbol) Deletes a layer from the line symbol.
DrawLayer (in Index: Long, in

Geometry: IGeometry)
Draws a line symbol layer.

MoveLayer (in lineLayer: ILineSymbol,
in toIndex: Long)

Move line symbol layer to different layer position.

The IMultiLayerLineSymbol interface performs similar functions to the
IMultiLayerMarkerSymbol interface. For more information, refer to the
MultiLayerMarkerSymbol section earlier in this chapter.

The MultiLayerLineSymbol also supports the ILayerColorLock and
ILayerVisible interfaces, also discussed earlier in this chapter.

MultiLayer-
LineSymbol

IMultiLayerLineSymbol
ILayerVisible

ILayerColorLock

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

A multilayer line symbol allows a collec-
tion of different line symbols to be used

to draw a single line feature.

MULTILAYERLINESYMBOL COCLASS

The ArcMap dialog box for editing multilayer
line symbols.



532 • Exploring ArcObjects • Volume 1

PICTURELINESYMBOL COCLASS

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

PictureLine-
Symbol

IPictureLineSymbol

The PictureLineSymbol draws a line by
filling it with a tiled image.

The PictureLineSymbol coclass provides a way to fill a LineSymbol with a
tiled image, as if the boundary of the LineSymbol was a filled Polygon.
This coclass can be used in preference to a MarkerLineSymbol using a
PictureMarkerSymbol.

 IPictureLineSymbol: ILineSymbol Provides access to members that control the picture line
symbol.

BackgroundColor: IColor Line background color.
BitmapTransparencyColor: IColor Color within bitmap indicating transparency.
Offset: Double Picture offset from center of line.
Picture: Picture Picture used for line.
Rotate: Boolean Indicates if the picture is rotated to follow the line.
SwapForeGroundBackGroundColor:

Boolean
Indicates if the foreground and background colors are swapped on

1 Bit Images Only.
XScale: Double Scale of picture along X-axis.
YScale: Double Scale of picture along Y-axis.

CreateLineSymbolFromFile (in Type:
tagesriIPictureType, in FileName: String)

Create line symbol from picture file.

Use the CreateLineSymbolFromFile method to set the picture that is to be
used for the fill. This method sets the Picture property (note that this
property is set by reference).

  Dim pPictureLine As IPictureLineSymbol

  Set pPictureLine = New PictureLineSymbol

  pPictureLine.CreateLineSymbolFromFile esriIPictureBitmap,_

   "C:\MyIcons\Pattern.bmp"

Set the Width property to control the thickness of the line. The Picture is
tiled to entirely fill the thickness of the line, but the size of each tile can
be scaled using the XScale and YScale properties. For more information
on the use of the BackgroundColor, BitmapTransparencyColor, and
SwapForeGroundBackGroundColor properties, see the
PictureMarkerSymbol coclass.



Chapter 5 • Displaying graphics • 533

D
is

p
la

y

Fill symbol objects

MultiLayer-
FillSymbol

IMultiLayerFillSymbol
ILayerColorLock

ILayerVisible

LineFill-
Symbol

ILineFillSymbol

GradientFill-
Symbol

IGradientFillSymbol

MarkerFill-
Symbol

IFillProperties
IMarkerFillSymbol

PictureFill-
Symbol

IFillProperties
IPictureFillSymbol

SimpleFill-
Symbol

ISimpleFillSymbol

A gradient fill symbol is a
series of colors

A line fill symbol is a
regular series of lines at

any angle

A marker fill symbol is a grid of marker
symbols

A picture fill symbol is a grid of pictures

A simple fill symbol is a solid or hatched
fill

A multilayer fill symbol is a stack of other fill
symbols

A dot-density fill symbol is  a data driven
symbol commonly used with the dot-density
renderer

DotDensity-
FillSymbol

IDotDensityFillSymbol
IDotDensityMasking

ISymbolArray

TextSymbol

IFormattedTextSymbol
IMapLevel

IMask
IPropertySupport

ISimpleTextSymbol
ISymbolRotation

ITextSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray



534 • Exploring ArcObjects • Volume 1

The FillSymbol abstract class represents the two properties—Color and
Outline—all types of fill symbols have in common.

 IFillSymbol : IUnknown Provides access to members that control fill symbols.

Color: IColor Fill color.
Outline: ILineSymbol Line symbol of fill outline.

The IFillSymbol interface, inherited by all the specialist fill symbols in
ArcObjects, has two read–write properties.

The Color property controls the color of the basic fill as described be-
low and can be set to any IColor object.

Coclass

SimpleFillSymbol

MarkerFillSymbol

GradientFillSymbol

LineFillSymbol

PictureFillSymbol, 1 bit image

PictureMarkerSymbol, >1 bit image

MultiLayerFillSymbol

Default color

black

black

blue

mid-gray

black

not set

black

Color property

color of the solid fill or pattern

Color property of MarkerSymbol, see IMarkerSymbol for more details

not used, set ColorRamp property instead

Color property of the LineSymbol - See ILineSymbol for more details

the parts of the boolean image which contain a color

no effect

dependent on ILayerColorLock

The Outline property sets an ILineSymbol object, which is drawn as the
outline of the fill symbol. By default, the outline is a solid
SimpleLineSymbol, but you can use any type of line symbol as your
outline.

Note that the outline is centered on the boundary of the feature; there-
fore, an outline with a width of 5 will overlap the fill symbol by a visible
amount.

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

A fill symbol specifies how the area and
outline of any polygon is to be drawn.

Simple fill symbol

Line fill symbol

Marker fill symbol

Gradient fill symbol

Picture fill symbol

Multilayer fill symbol

FILLSYMBOL ABSTRACT CLASS

outline width = 1 pt outline width = 5 pt



Chapter 5 • Displaying graphics • 535

D
is

p
la

y

SimpleFill-
Symbol

ISimpleFillSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

An areal feature can be filled with a solid
flood fill or a simple pattern, such as

cross-hatching or vertical lines.

SIMPLEFILLSYMBOL COCLASS

The SimpleFillSymbol coclass is used to fill an areal shape with either a
solid flood fill, a hollow fill (only the outline is drawn), or one of six
simple line patterns.

 ISimpleFillSymbol : IFillSymbol Provides access to members that control the simple fill
symbol.

Style: tagesriSimpleFillStyle Fill style.

The ISimpleFillSymbol interface allows you to specify the type of fill by
setting the Style property to one of the esriSimpleFillStyle constants listed
below.

Enumeration tagesriSimpleFillStyle Simple fill styles.

0 - esriSFSSolid Solid fill.
1 - esriSFSHollow Hollow fill (same as esriSFSNull).
1 - esriSFSNull Empty fill.
2 - esriSFSHorizontal Horizontal hatch fill ------
3 - esriSFSVertical Vertical hatch fill ||||||
4 - esriSFSForwardDiagonal 45-degree downward, left-to-right hatch fill  \\\
5 - esriSFSBackwardDiagonal 45-degree upward, left-to-right hatch fill //////
6 - esriSFSCross Horizontal and vertical crosshatch ++++++
7 - esriSFSDiagonalCross 45-degree crosshatch xxxxxx

The esriSimpleFillStyle constants are used to set a simple fill style.

The ArcMap dialog box for editing simple fill
symbols



536 • Exploring ArcObjects • Volume 1

MARKERFILLSYMBOL COCLASS

MarkerFill-
Symbol

IFillProperties
IMarkerFillSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

An areal feature can be filled by drawing
MarkerSymbols in a regular grid or in
random locations throughout the area.

The MarkerFillSymbol coclass can be used to fill a polygon, rectangle,
ellipse, or other two-dimensional shape with a repeated pattern of
marker symbols.

 IMarkerFillSymbol: IFillSymbol Provides access to members that control the marker fill
symbol.

GridAngle: Double Angle of marker position grid.
MarkerSymbol: IMarkerSymbol Marker symbol used for fill.
Style: tagesriMarkerFillStyle Fill style.

The MarkerSymbol property returns or sets the marker symbol that will
be repeated throughout the fill—note that this property is set by refer-
ence, so watch your object references. You can use any MarkerSymbol
for your fill, but note that the PictureFillSymbol may be more appropri-
ate for your needs than using a PictureMarkerSymbol as the
MarkerSymbol.

The GridAngle property is not yet functional.

The Style property offers options for the distribution of markers through-
out the fill and can be set to one of the esriMarkerFillStyle constants.

Enumeration tagesriMarkerFillStyle Marker fill styles.

0 - esriMFSGrid Fill symbol markers are placed in a grid.
1 - esriMFSRandom Fill symbol markers are placed randomly.

If the grid style is chosen, then the Marker objects will be aligned on a
grid starting at the origin of the containers coordinate system, with the
center of a marker at (0,0); therefore, if the same fill is applied to many
shapes in one container, the markers within every shape will align to-
gether.

 IFillProperties : IUnknown Provides access to members that control the general fill
properties.

XOffset: Double Fill offset along X-axis.
XSeparation: Double Fill element separation along X-axis.
YOffset: Double Fill offset along Y-axis.
YSeparation: Double Fill element separation along Y-axis.

The IFillProperties interface provides control over the distribution of
MarkerSymbol objects within the fill shape. The XOffset and YOffset
properties alter the alignment of grid-distributed symbols as defined
above by shifting the start of the grid. The XSeparation and YSeparation
properties determine the spacing of the markers on the grid. Remember
that Marker objects represent zero-dimensional shapes, so a separation
less than the marker size would result in overlapping markers. All four
properties use points for units, and the default separation is 12 points.
Setting separation values also determines the average spacing of Marker
objects if the Style is esriMFSRandom.

The ArcMap dialog box for editing
marker fill symbols



Chapter 5 • Displaying graphics • 537

D
is

p
la

y

PICTUREFILLSYMBOL COCLASS

PictureFill-
Symbol

IFillProperties
IPictureFillSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

An areal feature can be filled with a
repeated bitmap, which is ideal for

adding a textural or pictorial fill to your
map.

The PictureFillSymbol coclass allows you to specify the properties of a
picture that is used to fill an areal feature.

 IPictureFillSymbol : IFillSymbol Provides access to members that control the picture fill
symbol.

Angle: Double Angle of picture fill.
BackgroundColor: IColor Fill background color.
BitmapTransparencyColor: IColor Color within bitmap indicating transparency.
Picture: Picture Picture used for fill.
SwapForeGroundBackGroundColor:

Boolean
Indicates if the foreground and background colors are swapped on 1

Bit Images Only.
XScale: Double Scale of picture fill along X-axis.
YScale: Double Scale of picture fill along Y-axis.

CreateFillSymbolFromFile (in Type:
tagesriIPictureType, in FileName:
String)

Create fill symbol from picture file.

The first property you should set when creating a PictureFillSymbol is
Picture, which you can set directly to an existing OLE picture. Note that
the Picture property is set by reference. You may prefer to call the
CreateFillSymbolFromFile method, which sets the Picture property for
you. Using this method, you can set either an EMF or a BMP file as the
Picture by using the correct esriIPictureType constant.

Enumeration tagesriIPictureType IPicture Data Types.

0 - esriIPictureEMF EMF.
1 - esriIPictureBitmap BITMAP.

You could use code like this:

  Dim pPictureFill As IPictureFillSymbol

  Set pPictureFill = New PictureFillSymbol

  If UCase(Right(filename, 3)) = "EMF" Then

    pPictureFill.CreateFillSymbolFromFile esriIPictureEMF, filename

  ElseIf UCase(Right(filename, 3)) = "BMP" Then

    pPictureFill.CreateFillSymbolFromFile esriIPictureBitmap, filename

  End If

If the filename referenced is not a valid file and path, an error is raised
by the CreateFillSymbolFromFile method.

After the Picture is set, the other properties can be set to adjust the
appearance and pattern of the picture within the fill. The Picture is
repeated on a grid, starting at the top left of the Geometry to which the
fill is applied. The angle of the grid can be adjusted by setting the Angle
property. A value of 45 will rotate the grid 45 degrees clockwise.

You can stretch the Picture in size by setting the XScale and YScale
properties. For example, to make each picture in the fill twice as big as
the original, set both properties to 2. XScale and YScale may also be set
to values less than 1 to shrink the original image.

The PictureFillSymbol coclass also implements the IFillProperties inter-
face, discussed previously with the MarkerFillSymbol coclass. Remember
that a picture is two-dimensional; therefore, the XSeparation and
YSeparation properties refer to the separation from the edge of one
picture to the start of another. A separation of 0 (the default separation
for a PictureFillSymbol) will result in a contiguous picture fill.

The ArcMap dialog box for editing picture fill
symbols

For information on the BackgroundColor,
BitmapTransparencyColor, and

SwapForeGroundBackGroundColor
properties, refer to these properties on the

IPictureMarkerSymbol interface.



538 • Exploring ArcObjects • Volume 1

LINEFILLSYMBOL COCLASS

LineFill-
Symbol

ILineFillSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

An areal feature can be filled with a
repeated line.

Setting the Offset property affects how overlap-
ping line fill symbols are drawn.

The LineFillSymbol coclass can be used to fill an areal shape with a
repeated line, symbolized by any LineSymbol in ArcObjects.

 ILineFillSymbol : IFillSymbol Provides access to members that control the line fill
symbol.

Angle: Double Line symbol angle within fill.
LineSymbol: ILineSymbol Line symbol used for fill.
Offset: Double Line fill offset.
Separation: Double Line symbol separation within fill.

The ILineFillSymbol interface is used to specify the type of LineSymbol
used for a fill, its Angle, Offset, and Separation.

The LineSymbol property should be set to any LineSymbol object (see
the section in this chapter on line symbols). Be careful with your object
references, as this property is set by reference.

The Angle property indicates the number of degrees between the
LineSymbol and a horizontal line and defaults to 0.

The first line will always be drawn through the origin (0, 0) of the
container’s coordinate system, unless the Offset property is set to a value
other than zero. This means that line fill symbols can be aligned or
offset as required between multiple shapes.

The Separation property, which is in points, determines the frequency of
the line symbols within the areal feature. If the Separation is less than
the LineSymbol’s Width, the lines will overlap, but a Separation greater
than the Width will leave a transparent area between the LineSymbols,
through which underlying symbols’ elements can be seen.

The ArcMap dialog box for editing line fill
symbols



Chapter 5 • Displaying graphics • 539

D
is

p
la

y

The GradientFillSymbol coclass can be used to fill an areal shape with
colors from a ColorRamp.

 IGradientFillSymbol : IFillSymbol Provides access to members that control the gradient fill
symbol.

ColorRamp: IColorRamp Color ramp property.
GradientAngle: Double Direction of fill gradient.
GradientPercentage: Double Gradient percentage - controls the bleeding effect of the fill.
IntervalCount: Long Interval count - controls number of colors in the color ramp.
Style: tagesriGradientFillStyle Gradient fill style.

Set any IColorRamp onto the ColorRamp property and it will be used to
fill the areal feature. A graded effect can best be achieved by using an
AlgorithmicColorRamp (see the topics in this chapter on ColorRamps).

You should note that you don’t need to set a Size or call CreateRamp on
your ColorRamp. Instead, the IntervalCount property defines the number
of color steps required. Set the IntervalCount property depending on
what kind of effect you wish to achieve.

You may wish to use the GradientFillSymbol to produce a smooth gra-
dation of color in an area and therefore need an appropriate
IntervalCount. The average computer screen has a resolution at least
three times as coarse as the average printer at 300 dpi, as a rough guide.
Although your printer may have a resolution of 600 or more dpi, an
average person may not be able to distinguish between output at
300 dpi and 600 dpi when viewing regions of shifting color.

Therefore, a smooth fill on the screen may appear banded in the printed
output. To produce a smooth progression of color in your fill for output
to a printer, first set the 1:1 scale on the PageLayout view to account for
differences in printed scale and onscreen scale. Next, experiment to find
the IntervalCount at which the fill appears smooth on the screen—this will
be dependent on the characteristics of your ColorRamp, the size of the
area to be filled, and the GradientPercentage (see below). Then, multiply
the IntervalCount by at least 3 times and try your output.

Decide how you want the gradient to fill your shape by setting the Style
to one of the esriGradientFillStyle constants.

Enumeration tagesriGradientFillStyle Gradient fill styles.

0 - esriGFSLinear Linear Gradient Fill Style.
1 - esriGFSRectangular Rectangular Gradient Fill Style.
2 - esriGFSCircular Circular Gradient Fill Style.
3 - esriGFSBuffered Buffered Gradient Fill Style.

For the esriGFSLinear or esriGFSRectangular styles, you can alter the fill
by setting a GradientAngle. This is an angle, in degrees, between the
vertical and the lines of fill.

You can also determine the percentage of the fill that has a gradient fill
by setting GradientPercentage to a value between 0 and 1. A value of
one indicates that the entire shape should be filled with the color ramp,
but a value of 0.5 indicates only half the shape should be filled with the
color ramp; the first half of the area is filled by the first color in the
color ramp, and the remaining area is filled with the color ramp.

GRADIENTFILLSYMBOL COCLASS

GradientFill-
Symbol

IGradientFillSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

An areal feature can be filled with a
series of colors, creating many different

effects.

The ArcMap dialog box for editing
gradient fill symbols



540 • Exploring ArcObjects • Volume 1

The MultiLayerFillSymbol coclass can be used to create a complex fill
pattern by stacking a number of different fill symbols together.

 IMultiLayerFillSymbol : IFillSymbol Provides access to members that control the multilayer fill
symbol.

Layer (in Index: Long) : IFillSymbol Fill symbol per layer position.
LayerCount: Long Symbol layer count.

AddLayer (in fillLayer: IFillSymbol) Add fill symbol layer.
ClearLayers Remove all symbol layers.
DeleteLayer (in fillLayer: IFillSymbol) Delete fill symbol layer.
DrawLayer (in Index: Long, Geometry:

IGeometry)
Draw a symbol layer.

MoveLayer (in fillLayer: IFillSymbol, in
toIndex: Long)

Change symbol layer position index.

The IMultiLayerFillSymbol interface performs similar functions to the
IMultiLayerMarkerSymbol interface discussed earlier in this chapter.

The MultiLayerFillSymbol also supports the ILayerColorLock and
ILayerVisible interfaces, also discussed previously.

MULTILAYERFILLSYMBOL COCLASS

MultiLayer-
FillSymbol

IMultiLayerFillSymbol
ILayerColorLock

ILayerVisible

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

A MultiLayerFillSymbol allows a collec-
tion of different fill symbols to be used to

fill a single area feature, with lower fill
patterns showing through the gaps in

higher fill symbols.

The ArcMap dialog box for editing
multilayer fill symbols



Chapter 5 • Displaying graphics • 541

D
is

p
la

y

The DotDensityFillSymbol is a data-driven symbol typically used in con-
junction with the DotDensityRenderer coclass. A DotDensityFillSymbol fills a
shape with MarkerSymbols placed in random locations. The number of
marker symbols drawn per unit area is calculated by the DotDensity-
Renderer, giving a representation of the density of an attribute value.

In addition to the interfaces detailed below, DotDensitySymbol implements
the ISymbolArray interface, discussed further with the 3D chart symbols.
DotDensitySymbols can be filled with more than one type of dot, and the
symbol array is used to store a MarkerSymbol for each type of dot.

If you intend to use the DotDensitySymbol in a DotDensityRenderer to
draw dots of two types, indicating two different attributes, you might use
code like this:

  Dim pMarker As ISimpleMarkerSymbol, pSymArray As ISymbolArray

  Set pSymArray = New DotDensityFillSymbol

  Set pMarker = New SimpleMarkerSymbol

  pMarker.Style = esriSMSDiamond

  pSymArray.AddSymbol pMarker

  Set pMarker = New SimpleMarkerSymbol

  pMarker.Style = esriSMSCross

  pSymArray.AddSymbol pMarker

You can also set other properties of each individual MarkerSymbol here,
but you don’t need to set the Size property, as the size of each marker is
controlled by the IDotDensityFillSymbol::DotSize property.

 IDotDensityFillSymbol: IFillSymbol Provides access to the main properties of a data driven
symbol commonly used with a dot density renderer.

BackgroundColor: IColor The background color.
DotCount (in Index: Long) : Long The number of dots used to fill.
DotSize: Double The size of dots used to fill.
DotSpacing: Double The distance between dot centers, expressed as a percentage of

dot size.
FixedPlacement: Boolean Indicates if the dots are always placed at the same location (the

alternative is random placement).

IDotDensityFillSymbol controls the appearance of the marker symbols
within the dot-density fill.

BackgroundColor reflects the color used to fill areas that are not cov-
ered by dots—use a NullColor if you wish the underlying layers to be
visible through the dots.

Color indicates the color of the dots, and Outline can be used to alter
the appearance of the boundary of the shape.

Set FixedPlacement to True if you wish the dots to be always placed in the
same location. The DotSize property indicates the size of each dot in
points—using a small size, such as 1 to 3 points, is usually most suitable.

The DotCount property contains a zero-based array of values that deter-
mine the number of dots drawn in a filled shape. The DotCount at array
index 0 indicates the number of dots drawn by ISymbolArray::Symbol(0),

DotDensity-
FillSymbol

IDotDensityFillSymbol
IDotDensityMasking

ISymbolArray

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Dot-density fill symbols fill an areal shape
with dots. When used in conjunction with

a dot-density renderer, the density of dots
is calculated from an attribute field.

The Symbol at index 0 is the first symbol to be
added—it will be drawn first in the fill, below

any other dots that may be specified.

Many different dots can be used in
a DotDensityFillSymbol.

DOTDENSITYFILLSYMBOL COCLASS



542 • Exploring ArcObjects • Volume 1

and the size of the array is determined by the number of symbols that
have been added to the DotDensitySymbol. If you are using a
DotDensityRenderer, you do not need to set this property, as it will be set
by the DotDensityRenderer to an appropriate value for each Feature, based
on the specified attribute and the IDotDensityRenderer::DotValue property.

If you are using the DotDensitySymbol independently of a DotDensity-
Renderer, then the array should be set as required. You may wish to set
the DotCount proportionally to the shape’s area, and remember to scale
up the DotCount if the item that uses the fill changes area.

DotSpacing is not implemented at ArcGIS 8.1.

 IDotDensityMasking: IUnknown Provides access to the masking properties of a dot density
fill symbol.

ExcludeMask: Boolean Indicates if the dots are to be excluded from the mask area.
MaskGeometry: IGeometry The geometry used for masking (can be a geometry collection).
UseMasking: Boolean Indicates if masking is used.

DotDensityFillSymbols can be slower to display than other fill symbols—
a DotDensityRenderer must recalculate a new DotCount for each Feature
whenever the Map is changed. Therefore, masking may be appropriate.

DotDensityMasking allows you to exclude certain areas of a fill when
drawing—for example, you may wish to exclude all areas that are cov-
ered by another MapLayer.

If UseMasking is True then the ExcludeMask property should be set as
required. ExludeMask equal to False indicates that only areas inside the
specified MaskGeometry will be drawn with dots, while True indicates
that only areas outside of the MaskGeometry will be drawn with dots.

The MaskGeometry property is set from the IDotDensityRenderer::-
ControlLayer property. If using the DotDensityFillSymbol independently,
you should set the MaskGeometry property yourself.

The code below specifies that only areas inside features in the
pControlLayer are drawn with dots in a DotDensityRenderer.

  Dim pDotDenSymbol As IDotDensitySymbol, pMasking As IDotDensityMasking

  Set pDotDenSymbol = New DotDensityFillSymbol

  ' Set the properties of the symbol here

  Set pMasking = pDotDensitySymbol

  With pMasking

    .UseMasking = True

    .ExcludeMask = False

  End With

  Dim pDotDenRenderer As IDotDensityRenderer,

  Set pDotDenRenderer = New DotDensityRenderer

  Set pDotDenRenderer.DotDensitySymbol = pDotDenSymbol

  pDotDenRenderer.ControlLayer = pControlLayer

Note that masking is only supported for DotDensityFillSymbols that are
used in DotDensityRenderers.

DOTDENSITYFILLSYMBOL COCLASS



Chapter 5 • Displaying graphics • 543

D
is

p
la

y

Text symbol objects

SimpleText-
Path

BezierText-
Path

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

MarkerText-
Background

IMarkerTextBackground

Callout
ICallout

IQueryGeometry

Balloon-
Callout

IBalloonCallout
ITextMargins

LineCallout
ILineCallout

IMarkerBackground
ITextMargins

TextPath
IPersist

ITextPath

Overposter-
TextPath

IOverposterTextPath

A Bezier text path is used to draw
text along a curve, from its start to
endpoints

An overposter text path is
used internally by the
ArcObjects label engine

A simple text path is
used to draw text that
follows a straight or
curved line

A text path defines a line along
which a piece of text is placed

A marker text background is a marker
symbol drawn as a background to a piece of

text

A callout draws a background
behind a piece of text, with a
leader line to an anchor point

A balloon callout draws a
balloon behind a piece of

text

A line callout draws a line from
an anchor point to a piece of

text, and draws a rectangular
background behind the text

A text symbol defines a Font and many
formatting properties of a piece of text

Text-
Background-

Editor

ITextBackgroundEditor

Text-
Symbol-
Editor

ITextSymbolEditor The text symbol editor is a dialog
box used for editing the properties
of an existing text symbol

The text background editor is a
dialog box used for editing the
properties of text backgrounds like
a callout

TextSymbol

IFormattedTextSymbol
IMapLevel

IMask
IPropertySupport

ISimpleTextSymbol
ISymbolRotation

ITextSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

SimpleLine-
Callout

ISimpleLineCallout

A simple line callout draws a custom
line shape as a leader line to a

TextSymbol

FontSize
IClone

IFontSize
IPersist

IPersistStream

The font size object is used by
ArcMap to determine the default

size for new text



544 • Exploring ArcObjects • Volume 1

Each font may include different character sets
to allow for different alphabets and symbology.
For most applications, you won’t need to swap

character sets from the default.

The StdFont object is defined in the stdole2.tlb
type library, a reference to which is included, by

default, in all standard VB projects. Other
development environments should provide a

similar implementation.

The TextSymbol coclass provides the object that is used to symbolize
text in graphic elements, annotation, labels, and other places.

A TextSymbol defines much more than just a font. Its three main inter-
faces, ITextSymbol, ISimpleTextSymbol, and IFormattedTextSymbol, con-
trol exactly how the text appears and how the individual characters are
displayed. Extended ASCII characters are supported by the TextSymbol.

 ITextSymbol : IUnknown Provides access to members that control text symbols.

Angle: Double Text baseline angle.
Color: IColor Text color.
Font: Font Text font.
HorizontalAlignment:

tagesriTextHorizontalAlignment
Horizontal alignment style.

RightToLeft: Boolean Indicates if the text is drawn from right to left.
Size: Double Text size.
Text: String Text to draw.
VerticalAlignment:

tagesriTextVerticalAlignment
Vertical alignment style.

GetTextSize (in hDC: Long, in
Transformation: ITransformation, in
Text: String, out xSize: Double, out
ySize: Double)

Gets the x and y dimensions of 'text' in points (1/72 inch).

The ITextSymbol interface is the primary interface for defining the char-
acteristics of a text and is inherited by the ISimpleTextSymbol and
IFormattedTextSymbol interfaces and therefore may not need to be de-
clared specifically. It contains the Font property, which is the first logical
step to defining a new TextSymbol. To set a Font, you should first create
a COM font object. Using the IFontDisp interface of your font, you
should set the Name of the font. You should also set whether or not
your IFontDisp is italic, bold, strike-through, or underlined and set its
CharacterSet and weight. In Visual Basic, you can use the StdFont ob-
ject, which provides VB’s standard implementation of the COM font
object.
  Dim pFnt As stdole.IFontDisp
  Set pFnt = New stdole.StdFont
  pFnt.Name = "ESRI Cartography"
  pFnt.Bold = True

Now you can set the Font and also set the Color (as any coclass sup-
porting IColor) and a Size (in points). The Text property is used for a
standalone TextSymbol object only (such as a TextSymbol in a style file);
a TextElement will draw text according to the Text property of the
TextElement coclass. Set the HorizontalAlignment and VerticalAlignment
relative to the text anchor as shown below.

Enumeration
tagesriTextHorizontalAlignment

Horizontal text alignment options.

0 - esriTHALeft The text is left justified.
1 - esriTHACenter The text is center justified.
2 - esriTHARight The text is right justified.
3 - esriTHAFull The text is fully justified.

Symbol
IClone

IPersistStream
ISymbol

IMapLevel

TextSymbol
IFormattedTextSymbol

IMask
IPropertySupport

ISimpleTextSymbol
ITextSymbol

A text symbol is used for rendering
cartographic and marginal text, such as
annotation, labels, titles, text blocks, key

legends, scale bars, graphs, graticule
labels, and reports.

TEXTSYMBOL COCLASS



Chapter 5 • Displaying graphics • 545

D
is

p
la

y

Enumeration
tagesriTextVerticalAlignment

Vertical text alignment options.

0 - esriTVATop The text is aligned at the top.
1 - esriTVACenter The text is aligned at the center.
2 - esriTVABaseline The text is aligned at the baseline.
3 - esriTVABottom The text is aligned at the bottom.

If the TextSymbol is used to draw text to a point, not along a line (see
TextPath), you can use the Angle property to rotate the text string. The
Angle property specifies the angle of the text baseline, in degrees from
the horizontal, and defaults to zero. For Hebrew and Arabic fonts, set
the RightToLeft property to True to lay the text string out in a right-to-left
reading order.

For any existing TextSymbol, the actual size in x and y directions can be
calculated using the GetTextSize method. Having set a Size that defines
the font height, the GetTextSize method will calculate the actual height
and length of the symbol in points. Note that the GetTextSize method
ignores the TextPath property if it is set through the ISimpleTextSymbol
interface.

The use of this method is shown below, where pDisplay is the IDisplay
of the PageLayout or Map that the TextSymbol belongs to, and
pTextSymbol is a valid TextSymbol. Note that the StartDrawing and
FinishDrawing calls are necessary to make sure the hDC of the display
is valid. The dblX and dblY variables are populated respectively with the
height and length of the text parameter when drawn with the
pTextSymbol symbol.

    Dim dblX As Double, dblY As Double

    pDisplay.StartDrawing 0, esriNoScreenCache

    pTextSymbol.GetTextSize pDisplay.hDC, pDisplay.DisplayTransformation,_

      "My Text", dblX, dblY

    pDisplay.FinishDrawing

 ISimpleTextSymbol : ITextSymbol Provides access to members that control the simple text
symbol.

BreakCharacter: Long Character to be interpreted as text line end.
Clip: Boolean Indicates if the text will be clipped per geometry.
TextPath: ITextPath Path of text baseline.
XOffset: Double Text offset along X-axis.
YOffset: Double Text offset along Y-axis.

The ISimpleTextSymbol interface defines a further set of properties to
graphically alter the appearance of a TextSymbol. The BreakCharacter
property can be used to set the character code, which is interpreted as a
line break character and is particularly useful if you are working with
text from a different operating system. For example, the ASCII character
code for “A” is 65; therefore, if you set BreakCharacter to 65, the text
“My ArcMap and my ArcInfo” would appear as:

My

rcMap and my

rcInfo

Note that BreakCharacter objects are not used for splined text (for
example, if a TextElement’s Geometry is of type Line).

GetTextSize is useful for calculating text
placements on a PageLayout or whether a text
string should be truncated to fit within a certain

space.

Remember that many properties, such as
XOffset and YOffset, are set in Points—if the
size is changed, you may want to change these

properties to a percentage of the new size.

TEXTSYMBOL COCLASS



546 • Exploring ArcObjects • Volume 1

The XOffset property sets a horizontal offset in points for the placement
of the text from the text anchor, and the YOffset performs a similar func-
tion in the vertical direction.

The Boolean Clip property, if True, will clip the text string to fit inside an
Envelope geometry. Note that at ArcGIS 8.1, there are no TextElements
that support the Envelope geometry; however, this functionality will work
with the ISymbol::Draw method.

The TextPath property is set by reference. For more information about
this property, see the TextPath abstract class.

 IFormattedTextSymbol: ITextSymbol Provides access to members that control the formatted text
symbol.

Background: ITextBackground The text background object.
Case: tagesriTextCase The text case.
CharacterSpacing: Double The character spacing.
CharacterWidth: Double The character width.
Direction: tagesriTextDirection The text direction.
FillSymbol: IFillSymbol The fill symbol.
FlipAngle: Double The flip angle.
Kerning: Boolean Indicates if kerning is on.
Leading: Double The character leading.
Position: tagesriTextPosition The text position.
ShadowColor: IColor The shadow color.
ShadowXOffset: Double The shadow X offset.
ShadowYOffset: Double The shadow Y offset.
TypeSetting: Boolean Indicates if typesetting is used.
WordSpacing: Double The word spacing.

The IFormattedTextSymbol interface defines a further set of properties,
relating mainly to details of exact character placement and the back-
ground properties of a TextSymbol. Many of the properties on
IFormattedTextSymbol will be familiar to those with a background in
printing or those who have used the Windows API for working with
fonts.

Change the spread of characters in the text string by setting the
CharacterSpacing property, which indicates the spacing between each
character as a percentage. The default is 0, which indicates the standard
character spacing, but values of -200 to 200 are valid. Lines of text can
be spaced by setting the Leading property, whose units are Points.

You can change the case of every alphabetic character in the text string
by setting the Case property to one of the esriTextCase constants.

Enumeration tagesriTextCase Text case options.

0 - esriTCNormal The text draws normally.
1 - esriTCLowercase The text draws as all lowercase.
2 - esriTCAllCaps The text draws as all capitals.
3 - esriTCSmallCaps The text draws as small capitals.

You can also create subscript and superscript text by setting the Position
property.

Examples of text symbols with various back-
grounds and fill symbols

TEXTSYMBOL COCLASS



Chapter 5 • Displaying graphics • 547

D
is

p
la

y

Enumeration tagesriTextDirection Text direction options.

0 - esriTDHorizontal The text draws horizontally.
1 - esriTDAngle The text draws along an angle.
2 - esriTDVertical The text draws vertically.

A TextSymbol’s appearance can be changed dramatically by using a
background or drawing with a FillSymbol instead of a simple Color. The
BackGround and FillSymbol properties are both set by reference and are
null by default (if the FillSymbol property is null, the ITextSymbol’s Color
property is used to draw the symbol). For more information, see the
TextBackground and FillSymbol abstract classes, respectively.

In addition to the background properties, you can add a shadow by
using the ShadowColor, ShadowXOffset, and ShadowYOffset properties.
For example, to create a gray shadow like in the graphic to the left, you
could set the properties like this:

      Dim pCOl As IColor

      Set pCOl = New RgbColor

      pCOl.RGB = 8421504

      pFTS.ShadowColor = pCOl

      pFTS.ShadowXOffset = pFTS.Size / 10

      pFTS.ShadowYOffset = -pFTS.ShadowXOffset

To remove a shadow, simply set the ShadowColor to null.

The CharacterWidth, WordSpacing, Kerning, FlipAngle, TypeSetting, and
Direction properties are not implemented at ArcGIS 8.1.

 IMask : IUnknown Provides access to members that control the symbol mask.

MaskSize: Double The mask size.
MaskStyle: tagesriMaskStyle The mask style.
MaskSymbol: IFillSymbol The mask symbol.

The IMask interface provides a simple and efficient way to draw a sym-
bol around the edge of your Text. For more information about masks,
see the IMask interface remarks under the MarkerSymbol coclass.

A Mask differs from a TextBackground in that it immediately surrounds
the characters in the text string in a limited and predefined way, whereas
the TextBackground draws behind the entire text string in an extensible
manner.

Set the MaskStyle property to an esriMaskStyle constant.

Enumeration tagesriMaskStyle Text mask styles.

0 - esriMSNone No mask.
1 - esriMSHalo The text mask style is halo.

You can either fill the mask with a solid color by setting the Color prop-
erty, or you can fill it with any other kind of FillSymbol by setting the
MaskSymbol property.

To create a rectangular block around your text,
try a LineCallout with no leader line or accent

bar.

Use a contrasting color Mask to highlight text
that is a similar color to the features or their

outlines underneath it.

TEXTSYMBOL COCLASS



548 • Exploring ArcObjects • Volume 1

 IPropertySupport : IUnknown Provides access to members that set a default property on
an object.

Current (in pUnk: IUnknown Pointer) :
IUnknown Pointer

The object currently being used.

Applies (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at any given time.

Apply (in NewObject: IUnknown Pointer)
: IUnknown Pointer

Applies the given property to the receiver and returns the old object.

CanApply (in pUnk: IUnknown Pointer) :
Boolean

Indicates if the receiver can apply the given object at that particular
moment.

The IPropertySupport interface can be used to determine which inter-
faces are supported as properties of the TextSymbol interfaces. This
interface was designed for use by the ArcMap Drawing toolbar.
ArcObjects developers should use this interface with caution, as certain
interfaces may not be supported by the Applies and CanApply methods.

TEXTSYMBOL COCLASS



Chapter 5 • Displaying graphics • 549

D
is

p
la

y

FontSize
IClone

IFontSize
IPersist

IPersistStream

The font size object is used by ArcMap
to determine the default size for new

text.

The FontSize coclass is used by the IMxDocument::DefaultTextFontSize
property to determine a default font size for ArcMap tools, such as the
New Text tool on the Draw toolbar.

 IFontSize : IUnknown Provides access to members that control the font size
object.

Size: Double The font size in points.

For example, if you wish text added with the New Text tool to have a
size of 30 points, use the following VBA code:

  Dim pFontSize As IFontSize

  Set pFontSize = New FontSize

  pFontSize.Size = 30

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  pMxDoc.DefaultTextFontSize = pFontSize

FONTSIZE COCLASS



550 • Exploring ArcObjects • Volume 1

The TextPath abstract class defines the common functionality of the text
path coclasses and provides the primary interface for creating splined
text. Once a valid text path object is set as the TextPath property of the
ISimpleTextSymbol interface, the text will be drawn splined along the
path.

 ITextPath : IUnknown Provides access to members that control the text path.

Geometry: IGeometry The geometry used for the path.
XOffset: Double The X offset value.
YOffset: Double The Y offset value.

Next (out X: Double, out Y: Double, out
Angle: Double)

Returns the next coordinate.

Reset Resets the coordinate enumerator.
Setup (in hDC: Long, in Transformation:

ITransformation, in textSym:
ITextSymbol)

Set up items needed by text path.

The ITextPath interface provides methods to calculate the exact location
of each character along a text path, allowing you to investigate the exact
placement of text and find out at which point the text string turns a
corner or reaches a certain location. First, set the Geometry property to
an object supporting the ICurve interface. Set the XOffset and YOffset
properties if you want to offset your text from this curve (the units are
points). Call the Setup method, passing parameters based on the Display
to which the Symbol belongs. Then, call the Next method repeatedly to
calculate the angle and x,y coordinates of each successive character in
the text string.

The code below demonstrates the drawing of a symbol at the coordi-
nates of each character in the TextSymbol, where pPath is its TextPath,
pDisplay is a valid ScreenDisplay, and pMark is the MarkerSymbol used
to draw the coordinates.

  Dim i As Integer

  Dim dblX As Double, dblY As Double, dblAngle As Double

  Dim pPoint As IPoint

  Set pPoint = New esriCore.Point

  pDisplay.StartDrawing pDisplay.hDC, esriNoScreenCache

  pDisplay.SetSymbol pMark

  pPath.Setup pDisplay.hDC, pDisplay.DisplayTransformation, pSimpleTxtSym

  pPath.Reset

  For i = 1 To Len(strTheTextString)

    pPath.Next dblX, dblY, pAngle

    pPoint.PutCoords dblX, dblY

    pMark.angle = dblAngle

    pDisplay.DrawPoint pPoint

  Next i

  pDisplay.FinishDrawing

The SimpleTextPath coclass can be used to spline text along the path of
any ICurve. Simply set a SimpleTextPath as the TextPath of a TextSymbol

TEXT PATH COCLASSES

SimpleText-
Path

BezierText-
Path

Overposter-
TextPath

IOverposterTextPath

TextPath
IPersist

ITextPath

A piece of text can follow along a path
(a series of connected lines) and is often
known as splined text. A TextPath is the

object used to calculate the position of
each glyph along the path.

The ITextPath::Setup method sets the TextPath
and its TextSymbol into the display device

context, which allows it to calculate the coordi-
nates based on the DisplayTransformation.



Chapter 5 • Displaying graphics • 551

D
is

p
la

y

and ensure that the Geometry used to draw the Symbol is a type of Ge-
ometry that supports ICurve. For example, if you wish to use splined text
as a graphics element on a PageLayout, the Geometry property of the
IElement interface of the TextElement must support ICurve. The code
below demonstrates how to create splined text, from an existing
TextSymbol (pTextSymbol) and BezierCurve (pCurve). Note that you set
the required Geometry onto the TextElement.

    Dim pTextPath As ITextPath

    Set pTextPath = New SimpleTextPath

    Set pTextSymbol.TextPath = pTextPath

    pTextElement.Symbol = pTextSymbol

    Dim pElement As IElement

    Set pElement = pTextElement

    pElement.Geometry = pCurve

Experimenting with ITextSymbol::VerticalAlignment will result in text
above, below, or on the line.

The BezierTextPath coclass has been superseded by the SimpleTextPath,
which should generally be used in preference. It provided an early
implementation of splined text along a Bézier curve before the Bezier-
Curve class in geometry was introduced to ArcObjects. For a Bezier-
Curve, a BezierTextPath takes the first, last, and midpoint of the given
geometry and splines text along a Bézier curve calculated from those
three points.

The OverPosterTextPath is used internally by the ArcObjects label en-
gine. It is impractical for developers to use as it requires a specialized
Geometry that is used within the label engine itself.

 IOverposterTextPath : IUnknown Provides access to members that control the overposter
text path.

The IOverPosterTextPath is present only as a type-check mechanism; the
coclass is used in a similar way to the SimpleTextPath. The specialized
geometry required is a PointCollection, which contains two points for
every character to be drawn. The first point of the two-point pair is the
location at which the given character draws; the second point is used
along with the first to determine the angle each character should be
drawn at.

TEXT PATH COCLASSES

If you’re creating a splined TextElement or
AnnotationElement, make sure you set the

IElement’s Geometry property to the required
curve, as the Geometry of the Element is used

to place the text.



552 • Exploring ArcObjects • Volume 1

The TextBackground abstract class defines the common properties of
the different types of background—MarkerTextBackground,
BalloonCallout, and LineCallout. Use a MarkerTextBackground to draw
text over a single glyph from a font (for example, a highway shield and
number). A BalloonCallout draws a rectangular- or balloon-shaped
background for a text string with a predefined leader line. A LineCallout
is similar to a BalloonCallout but has a different leader line with a user-
defined style and an accent bar.

Callout text backgrounds can be used for TextSymbol objects with a
TextPath set, but note that the callout will produce a background to the
envelope of the text, not one following the path.

 ITextBackground : IUnknown Provides access to members that control the text
background.

TextBox: IEnvelope Sets the text box.
TextSymbol: ITextSymbol The text symbol.

Draw (in hDC: Long, in Transform:
ITransformation)

Draws the text background.

QueryBoundary (in hDC: Long, in
Transform: ITransformation, in
Boundary: IPolygon)

Queries for the boundary of the text background.

The Draw method is used in a similar way to the ISymbol::Draw
method. Note that ISymbol::Draw called on a TextSymbol coclass will
also call ITextBackground::Draw, if a Background is set, thus drawing
both the background and the text. Note that there is no Geometry re-
quired in this method; the location and size of the TextBackground is
determined by the TextSymbol.

Use the QueryBoundary method to find the shape of a callout. This
method populates a Polygon with the boundary of the callout. For a
LineCallout, this is the minimum bounding rectangle of the leader line
and text background box. For a BalloonCallout, this is the shape of the
balloon. For a MarkerTextBackground, this is the union of the bounding
box of the Marker and the Text.

The TextBox property is write-only. It is set by a TextSymbol before a call
to ITextBackground::Draw or ITextBackground::QueryBoundary. For
this reason, the ITextBackground also has a TextSymbol property, which
is the TextSymbol of which the Background is a property.

 IQueryGeometry : IUnknown Provides access to members that control geometry query.

GetGeometry (in hDC: Long, in
displayTransform: ITransformation, in
drawGeometry: IGeometry) : IGeometry

Gets the actual geometry of the boundary of the object (which
may or may not be a polygon).

QueryEnvelope (in hDC: Long, in
displayTransform: ITransformation, in
drawGeometry: IGeometry, in Envelope:
IEnvelope)

Queries the envelope of the boundary of the object.

Use the IQueryGeometry to find out the exact boundary of a callout. The
GetGeometry method returns the polygon boundary of a BalloonCallout,
or a Polyline of the leader line, accent bar, and border for a LineCallout
coclass. QueryEnvelope is not implemented at ArcGIS 8.1; instead, you
can return the Envelope of the result of GetGeometry.

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

A background can be used to emphasize
text or to aid clarity where text is ob-
scured by features or other symbols. A

background can also be part of the text
symbology—for example, a highway
feature can be labeled by a number

drawn within a highway shield. Callouts
can be applied to label features in

cluttered areas of a map or layout by
using a leader line. All of these examples

are types of TextBackground.

TEXTBACKGROUND ABSTRACT CLASS

Examples of the three types of text
background: marker text background,

balloon callout, and line callout.

A leader line is a line from a piece of text that
draws the viewer’s eye from the label toward a

specific place on the layout or map.

A text background will automatically grow to
account for text size and shadows and move to

account for offsets.



Chapter 5 • Displaying graphics • 553

D
is

p
la

y

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

MarkerText-
Background

IMarkerText-
Background

A MarkerTextBackground draws a
single glyph as the background to a piece

of text. This class is ideal for drawing
highway shields as labels.

MARKERTEXTBACKGROUND COCLASS

This symbol is created by the code sample.

Earlier in this chapter, you saw that a MultiLayerMarkerSymbol provides
the ability to draw one glyph on top of another but limits each layer to
containing a single glyph. However, using a MarkerTextBackground
coclass allows you to draw a string of text (many glyphs) with a single
glyph as its background.

 IMarkerTextBackground :
 ITextBackground

Provides access to members that control the marker text
background.

ScaleToFit: Boolean Indicates if the marker symbol is scaled to fill the text box.
Symbol: IMarkerSymbol The marker symbol.

The IMarkerTextBackground interface provides two additional properties
to the ITextBackground interface from which it inherits. Set the
MarkerSymbol you wish to use as a background using the Symbol prop-
erty—note that it is set by reference. The ScaleToFit property defaults to
False—set this property to True if you want the Symbol to draw large
enough to fit the entire text string. The Symbol object’s Size property
does not actually change, only its appearance when drawn.

The code below demonstrates how to create a TextSymbol resembling a
highway route marker for Route 66 with a MarkerTextBackground. A
TextSymbol is first created, then a CharacterMarkerSymbol is created to
resemble a highway shield using the ESRI Transportation and Civic font.
A MarkerTextBackground is created, and its Symbol property is set to the
CharacterMarkerSymbol. Finally, the MarkerTextBackground is set as the
TextSymbol object’s Background property.
    Dim pFTS As IFormattedTextSymbol
    Set pFTS = New TextSymbol
    pFTS.Size = 50
    pFTS.Text = "66"

    Dim pFont As stdole.IFontDisp
    Set pFont = New stdole.StdFont
    pFont.Name = "ESRI Transportation & Civic"

    Dim pCharMarker As ICharacterMarkerSymbol
    Set pCharMarker = New CharacterMarkerSymbol
    pCharMarker.Font = pFont
    ' The highway shield is the 33rd Glyph in the font
    pCharMarker.CharacterIndex = 33
    ' Below you set any properties which need to be based on the
    ' size of the TextSymbol
    pCharMarker.XOffset = pFTS.Size / 7

    Dim pMarkerBack As IMarkerTextBackground
    Set pMarkerBack = New MarkerTextBackground
    Set pMarkerBack.Symbol = pCharMarker
    ' Setting the ScaleToFit property means you don't need
    ' to set a Size on the MarkerSymbol
    pMarkerBack.ScaleToFit = True
    Set pFTS.Background = pMarkerBack



554 • Exploring ArcObjects • Volume 1

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

Callout
ICallout

IQueryGeometry

A callout is a graphic drawn behind a
string of text that includes a leader line,

indicating a particular area.

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

Callout
ICallout

IQueryGeometry

Balloon-
Callout

IBalloonCallout
ITextMargins

A balloon callout draws a background
graphic behind text and includes a

predefined leader line.

CALLOUT COCLASSES

Creating a TextSymbol with a Callout background is done in much the
same way:

    Dim pBalloonCallout as IBalloonCallout

    Set pBalloonCallout = New BalloonCallout

    Set pFTS.Background = pBalloonCallout

The Callout abstract class defines the common properties of the
BalloonCallout and LineCallout backgrounds.

 ICallout : IUnknown Provides access to members that control the callout.

AnchorPoint: IPoint The anchor point.
LeaderTolerance: Double The closest distance to the text the anchor point can be for the

callout to draw.

Use the ICallout interface to define an anchor point for a callout by
setting the AnchorPoint property to an ESRI Point object. The Leader-
Tolerance property indicates the minimum distance between the Text-
Background and the AnchorPoint for which to display a leader line.
Remember that an anchor point is independent of any geometry used to
draw the TextBackground. An anchor point is the location at which a
leader line begins.

 IQueryGeometry : IUnknown Provides access to members that control geometry query.

GetGeometry (in hDC: Long, in
displayTransform: ITransformation, in
drawGeometry: IGeometry) : IGeometry

Gets the actual geometry of the boundary of the object (which
may or may not be a polygon).

QueryEnvelope (in hDC: Long, in
displayTransform: ITransformation, in
drawGeometry: IGeometry, in Envelope:
IEnvelope)

Queries the envelope of the boundary of the object.

The BalloonCallout coclass draws a rectangular graphic behind a Text-
Symbol coclass. It has a leader line that ends by joining the callout at a
predefined point.

 IBalloonCallout : ICallout Provides access to members that control the balloon
callout.

Style: tagesriBalloonCalloutStyle The balloon callout style.
Symbol: IFillSymbol The fill symbol.

The Style property defines the shape of the graphic drawn behind a
TextSymbol and should be set to one of the esriBalloonCalloutStyle
constants.

Enumeration tagesriBalloonCalloutStyle Balloon callout styles.

0 - esriBCSRectangle The balloon callout is a rectangle.
1 - esriBCSRoundedRectangle The balloon callout is a rounded rectangle.
2 - esriBCSOval The balloon callout is an oval.

Note that the oval callout style is not implemented in ArcGIS 8.1.



Chapter 5 • Displaying graphics • 555

D
is

p
la

y

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

Callout
ICallout

IQueryGeometry

LineCallout
ILineCallout

IMarkerBackground
ITextMargins

A line callout draws a background
graphic behind text, consisting of a user-

defined leader line, accent bar, and
border.

 ITextMargins : IUnknown Provides access to members that control the text margins.

BottomMargin: Double Value for the bottom margin.
LeftMargin: Double Value for the left margin.
RightMargin: Double Value for the right margin.
TopMargin: Double Value for the top margin.

PutMargins (in Left: Double, in Top:
Double, in Right: Double, in bottom:
Double)

Sets the margins.

QueryMargins (out Left: Double, out
Top: Double, out Right: Double, out
bottom: Double)

Returns the margins.

Use the ITextMargins interface to define the margins of a callout. The
margins indicate the gap, in points, between the minimum bounding
box of the text and the boundary of the TextBackground. The default
value is 5 points for each margin. You can either write to the margin
properties or use the PutMargins method to set all the margins with a
single method call.

The callout balloon can be filled by setting the Symbol property to any
class implementing IFillSymbol.

The LineCallout coclass draws a rectangular graphic behind a
TextSymbol coclass and includes an optional leader line, accent bar, and
border.

 ILineCallout : ICallout Provides access to members that control the line callout.

AccentBar: ILineSymbol The line symbol used to render the accent bar.
Border: IFillSymbol The fill symbol used to render the border.
Gap: Double The gap.
LeaderLine: ILineSymbol The line symbol used to render the leader line.
Style: tagesriLineCalloutStyle The line callout style.

The Style property defines the shape of the leader line and should be set
to one of the esriLineCalloutStyle constants.

Enumeration tagesriLineCalloutStyle Line callout styles.

0 - esriLCSBase The line callout leader is a single line originating from the base or top
of the accent bar.

1 - esriLCSMidpoint The line callout leader is a single line originating from the midpoint of
the accent bar.

2 - esriLCSThreePoint The line callout leader is a 3-point line originating from the midpoint
of the accent bar.

3 - esriLCSFourPoint The line callout leader is a 4-point line originating from the midpoint
of the accent bar.

4 - esriLCSUnderline The line callout underlines the text.
5 - esriLCSCustom A user defined line callout style.

Note that the custom callout style is not implemented at ArcGIS 8.1.

The LeaderLine property sets the symbol used to draw the leader line
and can be set to any LineSymbol object. For more information, see the
LineSymbol abstract class. Similarly, you can change the appearance of
the accent bar by setting the AccentBar property. Note that both proper-
ties are set by reference.

The spacing between the Border and AccentBar can be adjusted by
setting the Gap property. This property indicates the separation between
the center of the AccentBar and the edge of the Border as a distance in
points and does not account for thick outlines on either the AccentBar

An accent bar is a line drawn at the start or
end of a line callout’s border, separated from the

border by a user-defined gap. The leader line
starts from a point on the accent bar.

Examples of each of the line callout styles.

CALLOUT COCLASSES



556 • Exploring ArcObjects • Volume 1

CALLOUT COCLASSES

or Border. To get the AccentBar to just touch the Border, you can use
the following formula:

pLineCallout.Gap = (pLineCallout.Border.Outline.Width / 2) + _

                        (pLineCallout.AccentBar.Width / 2)

The Border property represents the rectangular background of the
callout and can be filled by setting the Border property to any class
implementing IFillSymbol.

The SimpleLineCallout coclass allows you to add a simple leader line to
a TextSymbol. A SimpleLineCallout inherits from ICallout and is set onto
a TextSymbol in the same way as the other callouts by setting the Back-
ground property of the FormattedTextSymbol.

 ISimpleLineCallout : ICallout Provides access to members that control the Simple Line
Callout.

AutoSnap: Boolean Indicates if the auto-snap property is enabled.
LineGeometry: IGeometry The geometry used for the Callout.
LineSymbol: ILineSymbol The line symbol used for the Callout.

To determine the appearance of the leader line, set the LineSymbol
property to any existing ILineSymbol object. Set the LineGeometry to a
Polyline object—this will determine the shape of your leader line. The
last vertex in your Polyline will be replaced by the existing AnchorPoint
of the callout.

Use the AutoSnap property, in conjunction with the LineGeometry prop-
erty, to determine if the LineGeometry will automatically change. If set to
True, the first vertex of the LineGeometry will be drawn aligned to the
current location of the TextSymbol. The existing vertex in the
LineGeometry is not actually changed—only its position upon drawing.

Text-
Background

IClone
ITextBackground

IPersist
IPersistStream

Callout
ICallout

IQueryGeometry

SimpleLine-
Callout

ISimpleLineCallout

A simple line callout draws a custom
leader line to a text symbol.

You can use any shape of Polyline as your leader
line by using the SimpleLineCallout. For more

information on creating Polyline objects, see
Volume 2, Chapter 9, ‘Shaping features with

geometry’.



Chapter 5 • Displaying graphics • 557

D
is

p
la

y

TEXTSYMBOLEDITOR AND TEXTBACKGROUNDEDITOR

The TextSymbolEditor provides an ideal way to allow a user to edit all
the properties of a specific, preexisting TextSymbol.

 ITextSymbolEditor : IUnknown Text Symbol Editor

ShowUnits: Boolean Indicates whether to display the Units combo box.
Title: String The title of the Text Symbol Editor dialog.

EditTextSymbol (TextSymbol:
ITextSymbol, hWnd: Long) : Boolean

Displays the Text Symbol Editor dialog for the given text symbol and
returns a flag indicating if it changed.

The EditTextSymbol method takes an ITextSymbol parameter, which must
be an existing TextSymbol object. This object is passed by reference and
will be directly changed depending on the selections made in the dialog
box. The EditTextSymbol method call will open the TextSymbolEditor
dialog box. The Title property sets the title of the dialog box displayed,
and the ShowUnits property determines if the Units option is shown to
the user, allowing them to set size properties in units other than points.
  Dim pTxtSym As ITextSymbol
  Set pTxtSym = New TextSymbol
  Dim pTextSymbolEditor As ITextSymbolEditor
  Set pTextSymbolEditor = New TextSymbolEditor
  pTextSymbolEditor.Title = "Edit My TextSymbol"
  pTextSymbolEditor.ShowUnits = False
  If Not pTextSymbolEditor.EditTextSymbol(pTxtSym, 0) Then
    MsgBox "User pressed Cancel"
  Else
    'Do something with the edited TextSymbol, pTxtSym
  End If

The TextBackgroundEditor lets you edit all the properties of a pre-
existing TextBackground object, for example, a BalloonCallout or a
LineCallout coclass.

 ITextBackgroundEditor : IUnknown Provides a dialog for managing properties associated with
Text Background.

ShowUnits: Boolean Indicates whether to display the Units combo box.
Title: String The title of the Text Background Editor dialog.

EditTextBackground (textBackground:
ITextBackground, in previewSymbol:
ITextSymbol, hWnd: Long) : Boolean

Displays the Text Background Editor dialog for the given text
background and returns a flag indicating if it changed.

The EditTextBackground method takes an ITextSymbol parameter and an
ITextBackground parameter. The TextBackground parameter, passed by
reference, has its properties edited by the user. The TextSymbol is re-
quired to correctly display the TextBackground in the dialog box.
  Dim pTxtBack As ITextBackground
  Set pTxtBack = New BalloonCallout
  Set pTxtBack.TextSymbol = pTxtSym ' pTxtSym is a pre-existing TextSymbol
  Dim pTextBackgroundEditor As ITextBackgroundEditor
  Set pTextBackgroundEditor = New TextBackgroundEditor
  pTextBackgroundEditor.Title = "Edit My Text Background"
  pTextBackgroundEditor.ShowUnits = False
  If Not pTextBackgroundEditor.EditTextBackground(pTxtBack, pTxtSym, 0) Then
    MsgBox "User pressed Cancel"
  Else  'Do something with the edited TextBackground
  End If

Text-
Symbol-
Editor

ITextSymbolEditor

The text symbol editor is the dialog box
shown by ArcMap for editing the details

of a text symbol.

Text-
Background-

Editor

ITextBackgroundEditor

The text background editor is the dialog
box shown by ArcMap to edit the details

of a text symbol’s background.

If a user clicks the Text Background button in
the text symbol editor, they can access the text

background editor and add a text background to
the text symbol. However, using the text

background editor directly restricts the user to
setting the properties of the background for a

specific text symbol object only.

The ArcMap dialog box for editing text symbols.

The ArcMap dialog box for editing text
backgrounds



558 • Exploring ArcObjects • Volume 1

3D chart symbol objects

Stacked-
Chart-

Symbol

IStackedChartSymbol

PieChart-
Symbol

IPieChartSymbol

BarChart-
Symbol

IBarChartSymbol

The stacked chart symbol draws a stacked bar chart

Chart-
Symbol-
Editor

IChartSymbolEditor

The pie chart symbol draws a pie chart

The bar chart symbol draws a bar chart

The chart symbol editor is the ArcMap
dialog which can be used to allow users
to edit the properties of a chart symbol

A 3D chart symbol is a symbol
used by a chart renderer

TextSymbol

IFormattedTextSymbol
IMapLevel

IMask
IPropertySupport

ISimpleTextSymbol
ISymbolRotation

ITextSymbol

FillSymbol
IFillSymbol
IMapLevel

IPropertySupport

LineSymbol
ILineSymbol

IMapLevel
IPropertySupport

Symbol
IClone

IPersist
IPersistStream

ISymbol

Marker-
Symbol

IMapLevel
IMarkerSymbol

IPropertySupport
ISymbolRotation

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray



Chapter 5 • Displaying graphics • 559

D
is

p
la

y

A 3DChartSymbol is an abstraction of the three types of chart symbol. It
represents a marker symbol, which can be used by a ChartRenderer to
symbolize geographical data by multiple attributes. Although they are
generally used by a ChartRenderer, if all the properties are set appropri-
ately you can also use the symbol as a MarkerSymbol to symbolize an
individual Feature or Element.

The following sections describe how to set up the different coclasses
that implement I3DChartSymbol. For more information on using these
coclasses as part of a ChartRenderer, see the sections on feature render-
ers in this chapter.

 IChartSymbol : IUnknown Provides access to properties common to all type of chart
symbols.

MaxValue: Double The maximum value.
Value (in Index: Long) : Double The value at the index position.

IChartSymbol is used to calculate the size of bars or pie slices in a chart
symbol.

The maximum attribute value that can be represented on the chart is
used to scale the other attribute values in a chart. You should always set
this property when creating a 3DChartSymbol. When creating a
ChartRenderer, you should have access to the statistics of your
FeatureClass—you can use these statistics to set the MaxValue property
to the maximum value of the attribute or attributes being rendered.

For example, if there are two fields rendered with a chart symbol, one
containing attribute values from 0 to 5 and one containing attribute
values from 0 to 10, set MaxValue to 10.

  Dim pChartSymbol as IShartSymbol

  Set pChartSymbol = New BarChartSymbol

  pChartSymbol.MaxValue = 10

The Value property contains an array of values indicating the relative
height of each bar or width of each pie slice. If using the ChartSymbol
in a ChartRenderer, you do not need to set this property. The Value
array is populated repeatedly during the draw process by the
ChartRenderer, using attribute values from the specified attribute Fields
from the FeatureClass coclass to create a slightly different symbol for
each Feature. All Values are set back to 0 after the draw has completed.

If you wish to use the symbol independently of a ChartRenderer, you
should set the Value array with the values you wish to use in the bar or
pie chart.

 I3DChartSymbol : IUnknown Provides access to 3D properties of chart symbols.

Display3D: Boolean Indicates if the chart symbol is 3D.
Thickness: Double 3D thickness of the chart symbol.
Tilt: Long Tilt of 3D Display (0-90 degrees)

I3DChartSymbol controls the characteristics of a chart symbol’s 3D
appearance. By default, Display3D is True, indicating that the chart will

Symbol
IClone

IPersist
IPersistStream

ISymbol

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

3D chart symbols are used by
ChartRenderers to render

FeatureClasses by drawing a pie chart,
bar chart, or stacked bar chart for each

Feature.

3DCHARTSYMBOL ABSTRACT CLASS



560 • Exploring ArcObjects • Volume 1

appear in 3D. Use Thickness and Tilt to control the 3D characteristics of
the symbol.

 ISymbolArray : IUnknown Provides access to members that work with an array of
symbols.

Symbol (in Index: Long) : ISymbol The symbol at the index position.
SymbolCount: Long Returns the number of symbols.

AddSymbol (in Symbol: ISymbol) Adds a symbol to the array.
ClearSymbols Removes all symbols from the array.
DeleteSymbol (in Symbol: ISymbol) Delete the given symbol.
MoveSymbol (in Symbol: ISymbol, in

toIndex: Long)
Moves the given symbol to new index position.

ISymbolArray stores the FillSymbols used to fill each bar or pie slice.

SymbolCount returns the number of symbols that have been added to the
chart symbol using AddSymbol. Add a symbol for each attribute you
intend to use in the ChartRenderer—check the IRendererFields::FieldCount
property for the correct number of symbols to add. If you add too
many symbols, these will be displayed by a bar chart as empty bars or
by a pie chart as slices with zero thickness and may be visible in the
Legend.

The code below demonstrates how you might use a RandomColorRamp
to set the color of the symbols in a chart symbol, where pRendererFields
is the IRendererFields interface of an existing ChartRenderer.

  Dim pRandomCR As IRandomColorRamp, pFillSymbol as ISimpleFillSymbol

  Set pRandomCR = New RandomColorRamp

  pRandomCR.Size = 5

  pRandomCR.CreateRamp True

  Dim i As Integer

  For i = 0 To pRendererFields.FieldCount - 1

    Set pFillSymbol = New SimpleFillSymbol

    pFillSymbol.Color = pRandomCR.Color(0)

    pSymbolArray.AddSymbol pFillSymbol

  Next i

Use ClearSymbols, DeleteSymbol, and MoveSymbol to edit existing symbol
arrays.

The chart symbols also implement IMarkerSymbol, which is discussed
earlier in this chapter.

The Size property is used to specify the maximum height (or width if the
bars are horizontal), in points, of the bar, stacked bar symbol, or the
diameter of a pie chart symbol.

Note that if the symbols are scaled by the ChartRenderer (check
IStackedChartSymbol::Fixed, IPieChartRenderer::ProportionalBySum, or
ProportionalByField), the larger symbols may be larger than Size.

3DCHARTSYMBOL ABSTRACT CLASS



Chapter 5 • Displaying graphics • 561

D
is

p
la

y

A BarChartSymbol is most commonly used by a ChartRenderer to draw
a bar chart for each Feature rendered, where the bar heights are derived
from attribute fields.

 IBarChartSymbol : IUnknown Provides access bar chart symbol properties.

Axes: ILineSymbol The axis symbol.
ShowAxes: Boolean Indicates if the axis are shown.
Spacing: Double The spacing between bars in points.
VerticalBars: Boolean Indicates if the bars are oriented vertically.
Width: Double The width of each bar in points.

Bars can be oriented either vertically or horizontally using the
VerticalBars property.

The thickness of each bar and the spacing between bars can be altered
as shown using the Width and Spacing properties—you may wish to set
these properties proportional to IMarkerSymbol::Size.

The axes for each BarChartSymbol can also be displayed using the
ShowAxes property—set a LineSymbol as the Axes property to determine
their appearance.

Symbol
IClone

IPersist
IPersistStream

ISymbol

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

BarChart-
Symbol

IBarChartSymbol

Features can be symbolized with a bar
chart, each bar of which can represent

the value of a different attribute.

           

VerticalBars = False        VerticalBars = True

            

Thickness = 20 and          Thickness = 5 and
Spacing = 0                 Spacing = 5

Bar axes drawn for a bar chart symbol

The ArcMap property page for the bar chart
symbol

BARCHARTSYMBOL COCLASS



562 • Exploring ArcObjects • Volume 1

A PieChartSymbol is most commonly used by a ChartRenderer to draw a
pie chart for each Feature rendered, where the proportion of each pie
slice is derived from attribute fields.

 IPieChartSymbol : IUnknown Provides access to pie chart symbol properties.

Clockwise: Boolean Indicates if the slices are drawn in a clockwise direction.
Outline: ILineSymbol The chart outline symbol.
UseOutline: Boolean Indicates if the outline symbol is drawn.

Use the properties of IPieChartSymbol to control the appearance of the
pie chart. The pie chart symbol shown to the left was created by apply-
ing a CartographicLineSymbol, which had LineDecorations at each
quarter length along the line.

You can also alter the orientation of the chart using the Clockwise prop-
erty—use the IMarkerSymbol::Angle property to change the position of
the first pie slice, if you wish.

Symbol
IClone

IPersist
IPersistStream

ISymbol

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

PieChart-
Symbol

IPieChartSymbol

Features can be symbolized with a pie
chart, where each slice can represent the

value of a different attribute.

Pie chart symbol drawn with an outline

           

Clockwise = True       Clockwise = False

Pie chart symbol with background

The ArcMap property page for the pie chart
symbol

PIECHARTSYMBOL COCLASS



Chapter 5 • Displaying graphics • 563

D
is

p
la

y

A StackedChartSymbol is most commonly used by a ChartRenderer to
draw a stacked bar chart for each Feature rendered, where the propor-
tion of each section of the bar is derived from attribute fields.

 IStackedChartSymbol : IUnknown Provides access to stacked chart symbol properties.

Fixed: Boolean Indicates if the bars are of a fixed length (the alternative is graduated
length bars).

Outline: ILineSymbol The symbol for the chart outline.
UseOutline: Boolean Indicates if the outline symbol is drawn.
VerticalBar: Boolean Indicates if the bar is oriented vertically.
Width: Double The width of the bar in points.

Use IStackedChartSymbol to specify the appearance of the stacked bar
chart.

The Outline and UseOutline properties are similar to those on the
PieChartSymbol.

The Width and VerticalBar properties are similar to those on the Bar-
ChartSymbol.

If the Fixed property is False, a ChartRenderer will scale the stacked bar
chart according to the total of the attributes for each feature. If True,
each bar chart has the same height; if VerticalBar is False, each bar
chart has the same width.

Stacked-
Chart-

Symbol

IStackedChartSymbol

Symbol
IClone

IPersist
IPersistStream

ISymbol

3DChart-
Symbol

I3DChartSymbol
IChartSymbol

IMarkerSymbol
ISymbolArray

Features can be symbolized with a
stacked bar chart, where each section of

the bar can represent the value of a
different attribute.

The ArcMap property page for the stacked chart
symbol

STACKEDCHARTSYMBOL COCLASS



564 • Exploring ArcObjects • Volume 1

CHARTSYMBOLEDITOR COCLASS

The ChartSymbolEditor provides an ideal way to allow a user to edit all
the properties of a specific, preexisting ChartSymbol. It is very similar to
the SymbolEditor coclass.

 IChartSymbolEditor : IUnknown Provides access to members that control a dialog used to
manage chart symbol properties .

ShowUnits: Boolean Indicates if the units combo box is displayed.
Title: String Title of the chart symbol editor dialog.

EditChartSymbol (Symbol:
IChartSymbol, hWnd: Long) : Boolean

Displays the chart symbol editor dialog for the given chart symbol and
returns a value describing whether the symbol was changed.

The EditChartSymbol method takes an IChartSymbol parameter, which
must be an existing object that supports IChartSymbol interface. This
object is passed by reference and will be directly changed depending
on the selections made in the dialog box—its coclass may even change.

The EditChartSymbol method call will open the ChartSymbolEditor
dialog. To determine if the user clicked Cancel or OK, check the return
value.

  Dim pBarSymbol As IBarChartSymbol, pChartSymEditor As IChartSymbolEditor

  Set pBarSymbol = New BarChartSymbol

  Set pChartSymEditor = New ChartSymbolEditor

  If Not pChartSymEditor.EditChartSymbol(pBarSymbol, 0) Then

    'Do something with the edited Symbol

  End If

Chart-
Symbol-
Editor

IChartSymbolEditor

The ArcMap Chart Symbol Editor dialog
box edits the details of a chart symbol.

The pages shown on the dialog box
depend on the type of chart symbol used.

For example, a bar chart symbol has a
slightly different dialog box than a pie

chart symbol.

This is the Chart Symbol Editor dialog box for
editing a pie chart symbol.



Chapter 5 • Displaying graphics • 565

D
is

p
la

y

Frame decorations are used to determine how frame elements are dis-
played. You might use a frame decoration to alter the background of an
active view, add a shadow to a group of graphic elements, or draw a
neatline around a map.

Careful use of frame decorations can create a coherent and neat page
layout for your maps. Use similar decorations to visually group related
frames or try using shadows and fills to emphasize other frames.

A FrameDecoration is either a SymbolBackground, SymbolBorder, or
SymbolShadow coclass used to draw a frame element. Use a
FrameDecoration on any object supporting IFrameProperties, such as
map surround frames or group elements.

 IFrameDecoration : IUnknown Provides access to members that control frame
decorations.

Color: IColor Color of the frame decoration.
CornerRounding: Integer Amount of corner rounding.  0 = fully square.  100 = fully round.
HorizontalSpacing: Double Horizontal offset or gap between the decoration and the subject in

points.
Name: String Name of the frame decoration.
VerticalSpacing: Double Vertical offset or gap between the decoration and the subject in

points.

Draw (in Display: IDisplay, in Geometry:
IGeometry)

Draws the decoration into the given display object.

GetGeometry (in Display: IDisplay, in
Shape: IGeometry) : IGeometry

Geometry used to draw the decoration.

QueryBounds (in Display: IDisplay, in
Geometry: IGeometry, in Bounds:
IEnvelope)

Bounding rectangle of the geometry including the area covered by the
border.

Setting the Color property will fill a frame with a single color. The
CornerRounding property alters the frame from its default rectangle
shape to a rounded shape; the maximum value of 100 indicates that
along the shorter edge of the frame, the corners will be rounded to the
center of the edge. The Name property corresponds to the name of the
style of the border, background, or shadow if it was set from a style file.

VerticalSpacing and HorizontalSpacing refer to the gap, in points, be-
tween the frame and its subject, positive values indicating the frame
draws outside the subject, and negative values indicating that it draws
inside the subject.

The code that follows uses the IFrameDecoration properties to change
each frame in a graphics container (pGraphics) to a rounded frame

The Draw and QueryBounds methods can be
used in a similar way to the ISymbol::Draw

method, which should be referred to for further
information. For more information on the

GetGeometry method, refer to the
IQueryGeometry interface, described with the

Callout classes.

Frame-
Decoration

IClone
IFrameDecoration

IGraphicsComposite
IPersist

IPersistStream

A frame decoration is used to draw a
frame element.

Frame decoration dialog box in ArcMap

Frame decoration objects
Frame decorations are adornments to
frame elements, such as backgrounds,
shadows, and neatlines

The symbol shadow draws a
shadow around a frame element

The symbol border draws an
outline for a frame element

The symbol background draws a
background fill for a frame element

Symbol-
Background

IBackground
ISymbolBackground Symbol-

Border

IBorder
ISymbolBorder Symbol-

Shadow

IShadow
ISymbolShadow

Frame-
Decoration

IClone
IFrameDecoration

IGraphicsComposite
IPersist

IPersistStream



566 • Exploring ArcObjects • Volume 1

filled with the color pColor. We use a SymbolBackground coclass to
make the FrameDecoration, although we only use the IFrameDecoration
properties.

  Dim pElement As IElement

  pGraphics.Reset

  Set pElement = pGraphics.Next

  Do While Not pElement Is Nothing

    If TypeOf pElement Is IFrameElement Then

      Dim pFrameElement As IFrameElement

      Set pFrameElement = pElement

      Dim pFrameDec As IFrameDecoration

      Set pFrameDec = New SymbolBackground

      pFrameDec.Color = pColor

      pFrameDec.CornerRounding = 50

      pFrameElement.Background = pFrameDec

      pGraphics.UpdateElement pElement

    End If

    Set pElement = pGraphics.Next

  Loop

A SymbolBackground is used to define how any frame element is filled.
Set a SymbolBackground by value, as the Background property of any
IFrameElement interface.

  Dim pSymbolBackground as ISymbolBackground

  Set pSymbolBackground = New SymbolBackground

  pFrameElement.Background = pSymbolBackground

Alternatively, you can set a SymbolBackground using the
IFrameProperties::Background property, which has the same effect.

 IBackground : IUnknown Provides access to members that control frame
backgrounds.

Gap: Double Gap between the frame background and the subject in points.
Name: String Name of the frame background.

Draw (in Display: IDisplay, in Geometry:
IGeometry)

Draws the background into the given display object.

GetGeometry (in Display: IDisplay, in
Shape: IGeometry) : IGeometry

Geometry used to draw the frame background.

QueryBounds (in Display: IDisplay, in
Geometry: IGeometry, in Bounds:
IEnvelope)

Bounding rectangle of the geometry including area covered by the
border.

The Gap property reflects the HorizontalSpacing and VerticalSpacing
properties of the IFrameDecoration interface, with HorizontalSpacing
taking preference if the properties contain different values. This provides
a simple way to set an equal horizontal and vertical gap for the frame.

Symbol-
Background

IBackground
ISymbolBackground

Frame-
Decoration

IClone
IFrameDecoration

IGraphicsComposite
IPersist

IPersistStream

SymbolBackgrounds can be used to
change the appearance of the interior of

a frame.

FRAME DECORATION COCLASSES

A MapFrame will only draw with unrounded
corners, regardless of the CornerRounding

property. However, the MapSurroundFrame
can draw with a rounded frame.



Chapter 5 • Displaying graphics • 567

D
is

p
la

y

 ISymbolBackground : IBackground Provides access to members that control the
SymbolBackground object.

CornerRounding: Integer Amount of corner rounding.  0 = fully square.  100 = fully round.
FillSymbol: IFillSymbol Symbol used to draw the background.

Set the FillSymbol property to any IFillSymbol object to draw a frame
filled with the pattern of your choice, as shown in this example:

  Dim pSimpleFill As ISimpleFillSymbol

  Set pSimpleFill = New SimpleFillSymbol

  pSimpleFill.Style = esriSFSCross

  pSymbolBackground.FillSymbol = pSimpleFill

A SymbolShadow is used to create a dropped shadow. Set a
SymbolShadow as the Shadow property on the IFrameProperties inter-
face.

  Dim pSymbolShadow as ISymbolShadow

  Set pSymbolShadow = New SymbolShadow

  pFrameElement.Shadow = pSymbolShadow

 IShadow : IUnknown Provides access to members that control frame drop
shadows.

HorizontalSpacing: Double Horizontal offset between the drop shadow and the subject in points.
Name: String Name of the drop shadow.
VerticalSpacing: Double Vertical offset between the drop shadow and the subject in points.

Draw (in Display: IDisplay, in Geometry:
IGeometry)

Draws the drop shadow into the given display object.

GetGeometry (in Display: IDisplay, in
Shape: IGeometry) : IGeometry

Geometry used to draw the drop shadow.

QueryBounds (in Display: IDisplay, in
Geometry: IGeometry, in Bounds:
IEnvelope)

Bounding rectangle of the geometry including the area covered by the
border.

 ISymbolShadow : IShadow Provides access to members that control the SymbolBorder
object.

CornerRounding: Integer Amount of corner rounding.  0 = fully square.  100 = fully round.
FillSymbol: IFillSymbol Symbol used to draw the shadow.

Setting the HorizontalSpacing and VerticalSpacing properties determines
the offset, in points, of the shadow from the frame, with positive values
indicating a shadow to the top-right corner of the frame.

Ideally, a suitable FillSymbol for a shadow is a simple fill used for em-
phasis, not for elaborate decoration.

A SymbolBorder is used to define the appearance of the line drawn
around a frame, as shown in this code example:

  Dim pSymbolBorder as ISymbolBorder

  Set pSymbolBorder = New SymbolBorder

  pFrameElement.Border = pSymbolBorder

Symbol-
Shadow

IShadow
ISymbolShadow

Frame-
Decoration

IClone
IFrameDecoration

IGraphicsComposite
IPersist

IPersistStream

You can draw shadows around a frame
by using a SymbolShadow object.

FRAME DECORATION COCLASSES

Symbol-
Border

IBorder
ISymbolBorder

Frame-
Decoration

IClone
IFrameDecoration

IGraphicsComposite
IPersist

IPersistStream

Neatlines can be drawn around frames
using a SymbolBorder object.



568 • Exploring ArcObjects • Volume 1

 IBorder : IUnknown Provides access to members that control frame borders.

Gap: Double Gap between the frame border and the subject in points.
Name: String Name of the frame border.

Draw (in Display: IDisplay, in Geometry:
IGeometry)

Draws the frame border into the given display object.

GetGeometry (in Display: IDisplay, in
Shape: IGeometry) : IGeometry

Geometry used to draw the frame border.

QueryBounds (in Display: IDisplay, in
Geometry: IGeometry, in Bounds:
IEnvelope)

Bounding rectangle of the geometry including the area covered by the
border.

 ISymbolBorder : IBorder Provides access to members that control the SymbolBorder
object.

CornerRounding: Integer Amount of corner rounding.  0 = fully square.  100 = fully round.
LineSymbol: ILineSymbol Symbol used to draw the border.

Set any ILineSymbol object as the LineSymbol property of a
SymbolBorder coclass to emphasize the frame. This is shown in the
following code example.

  Dim pSimpleLine As ISimpleLineSymbol

  Set pSimpleLine = New SimpleLineSymbol

  pSimpleLine.Style = esriSLSSolid

  pSymbolBorder.LineSymbol = pSimpleLine

To achieve a consistent look to your maps, you may wish to apply
similar borders to related frame elements in a PageLayout. Remember
that using too many elaborate and varied lines makes a layout look
cluttered or confusing.

FRAME DECORATION COCLASSES



Chapter 5 • Displaying graphics • 569

D
is

p
la

y

The display objects allow application developers to easily draw graphics
on a variety of output devices. These objects allow you to render shapes
stored in real-world coordinates to the screen, the printer, and export files.
Application features such as scrolling, backing store, print “tiling”, and
printing to a frame can be easily implemented. If some desired behavior is
not supported by the standard objects, custom objects can be created by
implementing one or more of the standard display interfaces.

There are two standard display objects: ScreenDisplay and
SimpleDisplay. The ScreenDisplay object abstracts a normal application
window and implements scrolling and backing store. The SimpleDisplay
abstracts all other devices that can be rendered to using a Windows De-
vice Context, such as printers and metafiles.

 IDisplay : IUnknown Provides access to members that control the Display.

ClipEnvelope: IEnvelope The bounds of the clipping region. Use after StartDrawing and before
FinishDrawing.

ClipEnvelopes: ISet The clipping region as a set of envelopes. Use after StartDrawing and
before FinishDrawing.

ClipGeometry: IGeometry User-specified clip shape.  This shape is merged with the invalid
region to arrive at the actual clip region.  Must be specified before
StartDrawing.

DisplayTransformation:
IDisplayTransformation

The transformation used by the display.

Filter: IDisplayFilter Display filter.  Must call while in a StartDrawing-FinishDrawing
sequence.  Set Filter to 0 to resume normal drawing.

hDC: Long Current device context.  Only use this between calls to StartDrawing
and FinishDrawing.

hPalette: Long Palette.
IlluminationProps: IIlluminationProps Illumination properties used by the display.
SuppressEvents: Boolean Indicates if display object suppresses events.

DrawMultipoint (in Multipoint:
IGeometry)

Draws specified multipoint on the display.

DrawPoint (in Point: IGeometry) Draws specified point on the display.
DrawPolygon (in Polygon: IGeometry) Draws specified polygon on the display
DrawPolyline (in Polyline: IGeometry) Draws specified line on the display
DrawRectangle (in rectangle:

IEnvelope)
Draws specified rectangle on the display.

DrawText (in Shape: IGeometry, in Text:
String)

Draws specified text on the display

FinishDrawing Completes drawing.
Progress (in VertexCount: Long) Call frequently during drawing process.
SetSymbol (in sym: ISymbol) Sets the symbol used for drawing.  Four different symbols can be

specified simultaneously: Marker, Line, Fill, Text.
StartDrawing (in hDC: Long, in cacheID:

Integer)
Prepare the display for drawing.  Specify the device context and the

cache to draw to (normally esriNoScreenCache).

Display

IConnectionPoint-
Container

IDisplay
IDisplayEvents

IDraw

The Display object abstracts a drawing
surface. A drawing surface is any hard-

ware device, export file, or memory
bitmap that can be represented by a

Windows Device Context.

Simple-
Display

Display

IConnectionPoint-
Container

IDisplay
IDisplayEvents

IDraw

The SimpleDisplay object abstracts
devices such as printers and metafiles.

The Display objects are a set of objects
that allow application developers to easily

draw graphics on a variety of output
devices. These objects allow you to render

shapes stored in real-world coordinates
to a screen, printer, or export file.

Display objects

Simple-
Display

A display transformation manages the map to
device transformation for each type of display

A screen display object abstracts a normal application
window and implements scrolling and backing store

A simple display object abstracts all
other devices that can be rendered to

using a Windows Device Context
such as printers and metafiles

Display objects are used to draw graphics
on a variety of output devices

Screen-
Display

IScreenDisplay
ITransformEvents

Display-
Trans-

formation

IConnectionPointContainer
IDelayEvents

IDisplayTransformation
IRasterOutputSettings

ITransformation
ITransformEvents

Display
IConnectionPointContainer

IDisplay
IDisplayEvents

IDraw



570 • Exploring ArcObjects • Volume 1

Use the IDisplay interface to draw points, lines, polygons, rectangles,
and text on a device. Access to the display object’s
DisplayTransformation object is provided by this interface.

 IDisplayEvents : IUnknown Provides access to members that control Display Events.

DisplayFinished (in Display: IDisplay) Notifies clients when drawing completes.
DisplayInvalidated (in Display: IDisplay,

in rect: IEnvelope, erase: Boolean,
cacheID: Integer)

Notifies clients when display is invalidated.

DisplayScrolled (in Display: IDisplay, in
deltaX: Long, in deltaY: Long)

Notifies clients when display is scrolled.

DisplayStarted (in Display: IDisplay) Notifies clients when drawing starts.

IDisplayEvents is the outbound interface of the Display abstract class. This
interface enables developers to listen for specific events occurring inside a
display. For example, you may wish to know whenever a particular dis-
play is scrolled. This is the case for the Map object that needs to perform
some redrawing operations whenever its screen display is scrolled.

Several objects manage (cocreate) a ScreenDisplay object to help control
their associated window. For example, both Map and PageLayout have
their own associated ScreenDisplay, and so does the MapInsetWindow.
The AppDisplay object does not instantiate a new ScreenDisplay object;
instead, this object implements the IScreenDisplay interface. That is also
what the ScreenDisplay object does.

A reference to a ScreenDisplay object is typically obtained via
IActiveView::ScreenDisplay for the active views or
ILensWindow::ScreenDisplay for the MapInsetWindow. IAppDisplay also
has methods for returning a reference to the main screen of the applica-
tion, the screen currently with focus, or any screen based on an index.

The ScreenDisplay object is cocreateable; one instance when you may
have to create a new ScreenDisplay object is when creating a custom
active view. However, as discussed above, this object is typically created
by another object, such as the Map or PageLayout objects.

To learn about working with all of the ScreenDisplay objects in an
ArcMap application simultaneously, see the section on AppDisplay in
Chapter 4, ‘Composing maps’.

 ITransformEvents : IUnknown Provides access to members that control Transform Events.

BoundsUpdated (sender:
IDisplayTransformation)

Notifies clients when the bounds is updated.

DeviceFrameUpdated (sender:
IDisplayTransformation, sizeChanged:
Boolean)

Notifies clients when the device frame is updated.

ResolutionUpdated (sender:
IDisplayTransformation)

Notifies clients when the resolution is updated.

RotationUpdated (sender:
IDisplayTransformation)

Notifies clients when the rotation angle is updated.

UnitsUpdated (sender:
IDisplayTransformation)

Notifies clients when the units are updated.

VisibleBoundsUpdated (sender:
IDisplayTransformation, sizeChanged:
Boolean)

Notifies clients when the visible bounds is updated.

ITransformEvents is an outbound interface on the ScreenDisplay and
DisplayTransformation objects. Use this interface to respond to changes
made to these objects.

DISPLAY COCLASSES

Screen-
Display

IScreenDisplay
ITransformEvents

Display

IConnectionPoint-
Container

IDisplay
IDisplayEvents

IDraw

The ScreenDisplay object is a display
device that abstracts a normal application

window. In addition to managing the
display attributes for the screen, a

ScreenDisplay also manages other
issues specific to Microsoft Windows,

including backing stores (caches),
scrolling, and invalidation.



Chapter 5 • Displaying graphics • 571

D
is

p
la

y

The IScreenDisplay interface manages
the display attributes of a screen. 

IScreenDisplay also handles other
issues specific to Windows, including the
backing store, scrolling, and invalidation.

Use IScreenDisplay to pan or rotate the
display, invalidate the display, and access

or draw the caches created by the
application.

Two objects currently implement
IScreenDisplay: AppDisplay and Screen-

Display. Both objects’ implementation of
IScreenDisplay is slightly different. For more

details, see the component help for a particular
member.

DISPLAY COCLASSES

 IScreenDisplay : IDisplay Provides access to members that control Screen Display.

ActiveCache: Integer Screen cache where drawing occurs. Use rarely.  Change cache inside
StartDrawing/FinishDrawing sequence.

CacheCount: Integer Number of screen caches.
CacheMemDC (in Index: Integer) : Long Memory device context for the specified screen cache.
CancelTracker: ITrackCancel Cancel tracker that is associated with the display.
hWnd: Long Associated window handle.
IsFirstCacheTransparent: Boolean Indicates if the bottom cache is transparent.
IsFramed: Boolean Indicates if drawing occurs in a frame rather than on the whole

window.
ScaleContents: Boolean Indicates if the contents of the screen scale when a resize occurs.

True means scale contents to fit new window size.  False means
contents stays the same with more or less of it showing.

SuppressResize: Boolean Indicates if display resizing is suppressed.  True means the display
doesn't resize with the window.  False ensures that the display is the
same size as the window.

UseScrollbars: Boolean Indicates if scrollbars should appear.
WindowDC: Long Device context that was specified to StartDrawing.  Only use this

between calls to StartDrawing and FinishDrawing.

AddCache: Integer Creates a new cache and return its ID.  The ID can be specified to
StartDrawing to direct output to the cache.  It can also be used
with a number of other methods such as DrawCache and Invalidate.

DoScroll (in xDelta: Long, in yDelta:
Long, in updateScreen: Boolean)

Scrolls the screen by the specified amount.

DrawCache (in hDC: Long, in Index:
Integer, in deviceRect: tagRECT, in
cacheRect: tagRECT)

Draws the specified screen cache to the specified window device
context. Pass an empty rectangle to copy the full bitmap to the DC
origin

Invalidate (in rect: IEnvelope, in erase:
Boolean, in cacheIndex: Integer)

Indicates if the specified rectangle is refreshed.

IsCacheDirty (in cacheIndex: Integer) :
Boolean

Indicates if the specified cache needs refreshing.

PanMoveTo (in mouseLocation: IPoint) Pans to a new point.
PanStart (in mouseLocation: IPoint) Prepares display for panning.
PanStop: IEnvelope Stops panning and returns new visible bounds.
RemoveAllCaches Removes all caches.
RemoveCache (in cacheID: Integer) Removes the specified cache.
RotateMoveTo (in pPoint: IPoint) Rotates to new point.
RotateStart (in mousePt: IPoint, in

centerPt: IPoint)
Prepares display for rotating.  If centerPt is NULL, the center of the

visible bounds is used.
RotateStop: Double Stops rotating and returns new angle.
RotateTimer Draws the rotated display. Call in response to WM_TIMER.
SetScrollbarHandles (in

hWndHorzScrollbar: Long, in
hWndVertScrollbar: Long)

Optionally specify application supplied scrollbars.

StartRecording Starts recording all output to the recording cache.
StopRecording Stops recording to the recording cache.
TrackPan Interactively pans the screen.
TrackRotate Interactively rotates the screen.
UpdateWindow Forces a redraw.

IScreenDisplay inherits from IDisplay. This means that all properties and
methods on IDisplay are callable directly from IScreenDisplay.

This simple VBA script for a UIToolControl MouseDown event pans the
map display.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pScreenDisplay As IScreenDisplay

  Dim pActiveView As IActiveView

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  Set pActiveView = pMxDoc.FocusMap

  Set pScreenDisplay = pActiveView.ScreenDisplay

  pScreenDisplay.TrackPan

End Sub



572 • Exploring ArcObjects • Volume 1

As noted before, each Display object keeps a DisplayTransformation
object to manage the map-to-device transformation. For example, units
along the x-axis on the device actually represent map units along the
y-axis. The DisplayTransformation also looks after the bounds of all the
data loaded in the display as well as the visible bounds, which are used
to pan and zoom the display.

In turn, each Map’s DisplayTransformation has a SpatialReference
object that manages the Map’s current coordinate system. A reference
to the SpatialReference object is set through IDisplayTransformation::-
SpatialReference. Other objects with a DisplayTransformation coclass,
such as the PageLayout, do not cocreate a SpatialReference object; in
this case, the SpatialReference property returns nothing.

The DisplayTransformation object is cocreateable, but there is rarely a
case when this is necessary. If you are creating your own ScreenDisplay
or DisplayTransformation, see the steps under the
IDisplayTransformation discussion for preparing a transform for use.
Obtain a reference to a DisplayTransformation via
IDisplay::DisplayTransformation. Since IScreenDisplay inherits from
IDisplay, you can also use IScreenDisplay::DisplayTransformation.

 IDisplayTransformation :
 ITransformation

Provides access to members that control Display
Transformation.

Bounds: IEnvelope Full extent in world coordinates.
ConstrainedBounds: IEnvelope Intersection of Bounds and VisibleBounds.
DeviceFrame: tagRECT Visible extent in device coordinates.
FittedBounds: IEnvelope Device frame in world coordinates.
ReferenceScale: Double Reference scale for computing scaled symbol sizes.
Resolution: Double Resolution of the device in dots (pixels) per inch.
Rotation: Double Rotation angle in degrees.
ScaleRatio: Double Scale between FittedBounds and DeviceFrame.
SpatialReference: ISpatialReference Current spatial reference.
SuppressEvents: Boolean Indicates if transformation object suppresses events.
Units: esriUnits Units used by world coordinates.
VisibleBounds: IEnvelope Visible extent in world coordinates.
ZoomResolution: Boolean Indicates if resolution is tied to visible bounds.  If true, zooming in

magnifies contents (i.e., zoom in on page).

FromMapPoint (in mapPoint: IPoint, out
X: Long, out Y: Long)

Calculates device coordinates corresponding to the map point.

FromPoints (in pointDistance: Double) :
Double

Calculates a map distance corresponding to a point (1/72) distance.

ToMapPoint (in X: Long, in Y: Long) :
IPoint

Calculates a point in map coordinates corresponding to the device
point.

ToPoints (in mapDistance: Double) :
Double

Calculates a distance in points (1/72 inch) corresponding to the map
distance.

TransformCoords (in mapPoints:
_WKSPoint, in devPoints: tagPOINT,
in numPoints: Long, in options: Long)

Transforms a set of points or measurements from device to world
space or vice versa.  Use the flags specified by
esriDisplayTransformEnum.

TransformRect (in mapRect: IEnvelope,
in devRect: tagRECT, in options: Long)

Transforms a rectangle from device to world space or vice versa.  Use
the flags specified by esriDisplayTransformEnum.

Use IDisplayTransformation for converting coordinates between real-
world and device space and back.

To prepare a transform for use, follow these steps:

1. Set the full map extent with the Bounds property.

2. Set the visible map extent (zoom rectangle) with the VisibleBounds
property.

DISPLAYTRANSFORMATION COCLASS

Display-
Trans-

formation

IConnectionPoint-
Container

IDelayEvents
IDisplayTransformation
IRasterOutputSettings

ITransformation
ITransformEvents

The display transformation defines how
real-world coordinates are mapped to an

output space.

Three rectangles define the transformation. The
Bounds specifies the full extent in real-world
coordinates. The VisibleBounds specifies what

extent is currently visible. And the DeviceFrame
specifies where the VisibleBounds appears on
the output device. Since the aspect ratio of the

DeviceFrame may not always match the aspect
ratio of the specified VisibleBounds, the

transformation calculates the actual visible
bounds that fits the DeviceFrame. This is called

the FittedBounds and is in real-world coordi-
nates. All coordinates can be rotated about the

center of the visible bounds by simply setting the
transformation’s Rotation property.



Chapter 5 • Displaying graphics • 573

D
is

p
la

y

3. Set the output area of the device using the DeviceFrame property.

4. Set the resolution of the output device using the Resolution property.

The Map and PageLayout objects follow these steps after creating their
display objects.

The transform is based on the ratio between the VisibleBounds and the
DeviceFrame. Normally, the DeviceFrame is simply the full extent of the
device with the origin equal to (0,0). The transform object calculates the
FittedBounds automatically, which is the visible map extent adjusted to
fit the device.

Public Sub ZoomInCenter()

  Dim pMxDocument As IMxDocument

  Dim pActiveView As IActiveView

  Dim pDisplayTransform As IDisplayTransformation

  Dim pEnvelope As IEnvelope

  Dim pCenterPoint As IPoint

  Set pMxDocument = Application.Document

  Set pActiveView = pMxDocument.FocusMap

  Set pDisplayTransform = pActiveView.ScreenDisplay.DisplayTransformation

  Set pEnvelope = pDisplayTransform.VisibleBounds

  'In this case, we could have set pEnvelope to IActiveView::Extent

  'Set pEnvelope = pActiveView.Extent

  Set pCenterPoint = New Point

  pCenterPoint.x = ((pEnvelope.XMax - pEnvelope.XMin) / 2) + pEnvelope.XMin

  pCenterPoint.y = ((pEnvelope.YMax - pEnvelope.YMin) / 2) + pEnvelope.YMin

  pEnvelope.width = pEnvelope.width / 2

  pEnvelope.height = pEnvelope.height / 2

  pEnvelope.CenterAt pCenterPoint

  pDisplayTransform.VisibleBounds = pEnvelope

  pActiveView.Refresh

End Sub

DISPLAYTRANSFORMATION COCLASS



574 • Exploring ArcObjects • Volume 1

DISPLAY APPLICATION PATTERNS

To help you understand how the various display objects work together
to solve common development requirements, several application sce-
narios are given along with details on their implementation. Use these
patterns as a starting point for working with the display objects.

THE APPLICATION WINDOW

One of the most common tasks is to draw maps in the client area of an
application window with support for scrolling and backing store. The
display objects are used as follows to make this possible.

Initialization
Start by creating a ScreenDisplay when the window is created. You’ll
also need to create one or more symbols to use for drawing shapes.
Forward the application’s hWnd to pScreenDisplay.hWnd. Obtain from
the ScreenDisplay its IDisplayTransformation interface and set the full
and visible map extents using pTransformation.Bounds and
pDisplayTransform.VisibleBounds. The visible bounds determines the
current zoom level. ScreenDisplay takes care of updating the display
transformation’s DeviceFrame. The ScreenDisplay monitors the window’s
messages and automatically handles common events such as window
resizing or scrolling.

Private m_pScreenDisplay As IScreenDisplay

Private m_pFillSymbol As ISimpleFillSymbol

Private Sub Form_Load()

  Set m_pScreenDisplay = New ScreenDisplay

  m_pScreenDisplay.hWnd = Picture1.hWnd

  Set m_pFillSymbol = New SimpleFillSymbol

  Dim pEnv As IEnvelope

  Set pEnv = New Envelope

  pEnv.PutCoords 0, 0, 50, 50

  m_pScreenDisplay.DisplayTransformation.bounds = pEnv

  m_pScreenDisplay.DisplayTransformation.VisibleBounds = pEnv

End Sub

Drawing
The display objects define a generic IDraw interface, which makes it
easy to draw to any display. As long as you use IDraw or IDisplay to
implement your drawing code, you don’t have to worry about what kind
of device you’re drawing to. A drawing sequence starts with
StartDrawing and ends with FinishDrawing.

The DeviceFrame specifies the device rectangle
where drawing takes place. Normally, it’s the full
pixel extent of the device or window, although it

can be set to just a portion of the full device
extent if desired.

Create a Visual Basic Standard EXE project. Add
a reference to the ESRI Object Library, add a
picture box control to the form, then open up
the code window and enter the code opposite.

This code initializes the screen display object and
attaches it to the form’s window.



Chapter 5 • Displaying graphics • 575

D
is

p
la

y

For example, create a routine that builds one polygon in the center of
the screen and draws it. The shape is drawn using the default symbol.
Here are the sample routines:

Private Function GetPolygon() As IPolygon

  Set GetPolygon = New Polygon

  Dim pPointCollection As IPointCollection

  Set pPointCollection = GetPolygon

  Dim pPoint As IPoint

  Set pPoint = New Point

  pPoint.PutCoords 20, 20

  pPointCollection.AddPoint pPoint

  pPoint.PutCoords 30, 20

  pPointCollection.AddPoint pPoint

  pPoint.PutCoords 30, 30

  pPointCollection.AddPoint pPoint

  pPoint.PutCoords 20, 30

  pPointCollection.AddPoint pPoint

  GetPolygon.Close

End Function

Private Sub MyDraw(pDisplay As IDisplay, hDC As esriCore.OLE_HANDLE)

  ' Draw from Scratch

  Dim pDraw As IDraw

  Set pDraw = pDisplay

  pDraw.StartDrawing hDC, esriNoScreenCache

  Dim pPoly As IPolygon

  Set pPoly = GetPolygon()

  pDraw.SetSymbol m_pFillSymbol

  pDraw.Draw pPoly

  pDraw.FinishDrawing

End Sub

This routine can be used to draw polygons to any device context. The
first place we need to draw, however, is to a window. To handle this,
write some code in the Paint method of the Picture Box that passes the
application’s ScreenDisplay pointer and Picture Box HDC to the yDraw
routine.

DISPLAY APPLICATION PATTERNS

You may want to add a Beep function call in
order to signal each time the MyDraw method
is called. This will be useful when experimenting

with caches later.



576 • Exploring ArcObjects • Volume 1

Notice that the routine takes both a display pointer and a Windows
device context.

Private Sub Picture1_Paint()

  MyDraw m_pScreenDisplay, Picture1.hDC

End Sub

Forwarding the DC allows the display to honor the clipping regions that
Windows sets into the paint HDC.

ADDING DISPLAY CACHING

Some drawing sequences can take a while to complete. A simple way to
optimize your application is to enable display caching. This refers to
ScreenDisplay’s ability to record your drawing sequence into a bitmap
and then use the bitmap to refresh the picture box’s window whenever
Paint method is called. The cache is used until your data changes and
you call IScreenDisplay::Invalidate to indicate that the cache is invalid.

There are two kinds of caches: recording caches and user-allocated
caches. Use recording to implement a display cache in the sample
application’s Paint method.

Private Sub Picture1_Paint()

  If (m_pScreenDisplay.IsCacheDirty(esriScreenRecording)) Then

    m_pScreenDisplay.StartRecording

    MyDraw m_pScreenDisplay, Picture1.hDC

    m_pScreenDisplay.StopRecording

  Else

    Dim rect As tagRECT

    m_pScreenDisplay.DrawCache Picture1.hDC, esriScreenRecording, rect, rect

  End If

End Sub

When you execute this code, you will see that nothing is drawn on the
screen. This is due to the ScreenRecording cache not having its dirty flag
set. To ensure that the MyDraw function is called when the first paint
message is received, you must invalidate the cache. Add the following
line at the end of the Form_Load method.

  m_pScreenDisplay.Invalidate Nothing, True, esriScreenRecording

Some applications, ArcMap for example, may require multiple display
caches. To utilize multiple caches, follow these steps:

1. Add a new cache using IScreenDisplay::AddCache. Save the cache
ID that is returned.

2. To draw to your cache, specify the cache ID to StartDrawing.

3. To invalidate your cache, specify the cache ID to Invalidate.

4. To draw from your cache, specify the cache ID to DrawCache.

DISPLAY APPLICATION PATTERNS



Chapter 5 • Displaying graphics • 577

D
is

p
la

y

To change the sample application to support its own cache, make the
following changes:

• Add a member variable to hold the new cache.

      Private m_lCacheID As Long

• Create the cache in the Form_Load method.

      m_lCacheID = m_pScreenDisplay.AddCache

• Change the appropriate calls to use the m_lCacheID variable and
remove the start and stop recording from the Paint method.

Pan, zoom, and rotate
A powerful feature of the display objects is the ability to zoom in and
out on your drawing. It’s easy to implement tools that let users zoom in
and out or pan. Scrolling is handled automatically. To zoom in and out
on your drawing, simply set your display’s visible extent.

For example, add a command button to the form and place the follow-
ing code, which zooms the screen by a fixed amount, in the Click event
of the button.

Private Sub Command1_Click()

  Dim pEnv As IEnvelope

  Set pEnv = m_pScreenDisplay.DisplayTransformation.VisibleBounds

  pEnv.Expand 0.75, 0.75, True

  m_pScreenDisplay.DisplayTransformation.VisibleBounds = pEnv

  m_pScreenDisplay.Invalidate Nothing, True, esriAllScreenCaches

End Sub

ScreenDisplay implements TrackPan, which can be called in response to
a mouse down event to let users pan the display. You can also rotate
the entire drawing about the center of the screen by setting the
DisplayTransformation’s Rotation property to a nonzero value. Rotation
is specified in degrees. ScreenDisplay implements TrackRotate, which
can be called in response to a mouse down event to let users interac-
tively rotate the display.

Printing
Printing is very similar to drawing to the screen. Since you don’t have to
worry about caching or scrolling when drawing to the printer, a
SimpleDisplay can be used. Create a SimpleDisplay object and initialize
its transform by copying the ScreenDisplay’s transform. Set the printer
transformation’s DeviceFrame to the pixel bounds of the printer page.
Finally, draw from scratch using the SimpleDisplay and the printer’s
HDC.

Output to a metafile
The GDIDisplay object can be used to represent a metafile. There’s
hardly any difference between creating a metafile and printing. If you
specify 0 as the lpBounds parameter to CreateEnhMetaFile, the

DISPLAY APPLICATION PATTERNS



578 • Exploring ArcObjects • Volume 1

MyDraw routine can be used. Just substitute hMetafileDC for
hPrinterDC. If you want to specify a bounds to CreateEnhMetafFile (in
HIMETRIC units), set the DisplayTransformation’s DeviceFrame to the
pixel version of the same rectangle.

Print to a frame
Some projects may require output to be directed to some subrectangle
of the output device. It’s easy to handle this by setting the
DisplayTransformation’s device frame to a pixel bounds that is less than
the full device extent.

Filters
Very advanced drawing effects, such as color transparency, can be
accomplished using display filters. Filters work along with a display
cache to allow a rasterized version of your drawing to be manipulated.
When a filter is specified to the display (using
IDisplay::putref_DisplayFilter), the display creates an internal filter cache
that is used along with the recording cache to provide raster info to the
filter. Output is routed to the filter cache until the filter is cleared (that is,
putref_DisplayFilter(0)). At that point, the display calls
IDisplayFilter::Apply. Apply receives the current background bitmap
(recording cache), the drawing cache (containing all of the drawing that
happened since the filter was specified), and the destination HDC. The
transparency filter performs alpha blending on these bitmaps and draws
them to the destination HDC to achieve color transparency. New filters
can be created to realize other effects.

DISPLAY APPLICATION PATTERNS



Chapter 5 • Displaying graphics • 579

D
is

p
la

y

This group of closely related objects can be used to group numeric
values into classes. There are five types of classification objects:
DefinedInterval, EqualInterval, NaturalBreaks, Quantile, and Standard-
Deviation coclass.

The job of all classification objects is to take histogram data (values
and frequencies) and, given a desired number of classes, compute
appropriate break values between the classes. The breaks are in in-
creasing value and, except for the first break, represent the highest
value in the class. The range of values that a class covers can vary; this
range is the class’ interval.

If the values were from the attribute values of a feature layer, then,
after determining the class breaks, you would typically setup a Class-
BreaksRenderer. Also, the task of gathering the values and frequency
counts from an attribute field can be made a lot easier by using the
TableHistogram to retrieve the histogram data.

The histogram data is in the form of two arrays. The first of these is a
sorted array of numeric values, and the second is a corresponding
array of frequency counts of the values.

Natural-
Breaks

Classify
IClassify

Defined-
Interval

IClassifyMinMax
IIntervalRange

Equal-
Interval

IClassifyMinMax

Quantile

Standard-
Deviation

IDeviationInterval

The defined interval classification produces classes
that are divided by regular fixed numeric increments

The equal interval classification is similar to defined interval,
except that the first interval starts at the lowest value

The natural breaks classification produces classes which
highlight natural groupings by minimizing variance within
a class and maximizing variance between classes

The standard deviation classification creates classes
that represent dispersion about the mean value

The quantile classification creates as close as
possible to equal numbers of values in each class

Table-
Histogram

IDataNormalization
IHistogram

IStatisticsResults
ITableHistogram

The table histogram is a data
structure used to set data to a

data classification

Classify objects



580 • Exploring ArcObjects • Volume 1

The Classify abstract class defines the IClassify interface shared by all
classify objects.

 IClassify : IUnknown Defines an interface for the classification methods.

ClassBreaks: Variant The array of class breaks (double).  ClassBreaks(0) is the minimum
value in the dataset, and subsequent breaks represent the upper
limit of each class.

ClassID: IUID The CLSID for the classification object.
MethodName: String The name of the classification method (based on choice of

classification object).

Classify (NumClasses: Long) Classifies data into the specified number of classes.
SetHistogramData (in

doubleArrayValues: Variant, in
longArrayFrequencies: Variant)

Adds data in form of a histogram (array of values (doubles) and a
paired array of frequencies (longs)) to the classification.

The IClassify interface is implemented by all the data classification ob-
jects; this is the interface used to pass in histogram data and then clas-
sify it into breaks. The ClassID and MethodName properties are used by
user interface dialog boxes to identify the classification object and es-
tablish what the classification is called.

To pass numeric data into the classify object, the SetHistogramData
method is used. This takes two safe arrays that must have the same
number of elements and an index of zero for their first element. The
first array is the numeric data values, defined as an array of double.
This array must be sorted in increasing value order. The second array
represents the frequency of occurrence of the values, that is, an integer
count of the number of times a value occurs.

For example, if the two arrays were called DataValues and
DataFrequency, the lowest value would be stored in DataValue(0), and
the number of times this value occurred would be stored in
DataFrequency(0).

You could populate these arrays in code yourself, but if the data is
available through the attribute field of a table, you can utilize the
TableHistogram object to gather the data values and frequencies for
you.

This VBA example illustrates populating a NaturalBreaks classify object
with the numeric values from the 1997 population field of a feature
class; this field is called “POP1997”. The variable pFeatureLayer is initial-
ized to an object implementing IFeatureLayer.

  Dim pTable As ITable

  Dim pClassify As IClassify

  Dim pTableHistogram As ITableHistogram

  Dim pHistogram As IHistogram

  ' QI to a ITable from a feature layer

  Set pTable = pFeatureLayer

  ' Create and setup a table histogram object to point at the table and

  ' attribute field

  Set pTableHistogram = New TableHistogram

  pTableHistogram.Field = "Pop1997"

CLASSIFY ABSTRACT CLASS

Classify
IClassify

Classify objects apply one of several
methods to statistically subdivide a set of

numeric values into classes.



Chapter 5 • Displaying graphics • 581

D
is

p
la

y

  Set pTableHistogram.Table = pTable

  ' Dim some variants, these will hold the safe arrays

  Dim DataValues As Variant

  Dim DataFrequencies As Variant

  ' QI to the table histogram interface and go and retrieve the data values

  Set pHistogram = pTableHistogram

  pHistogram.GetHistogram DataValues, DataFrequencies

  ' Create a classify object of our choice - equal interval in this case

  Set pClassify = New EqualInterval

  ' Put the values and frequencies into the classify object

  pClassify.SetHistogramData DataValues, DataFrequencies

Having obtained the data values and frequencies, the next step is to
compute some class breaks. Do this by calling the Classify method and
specifying the number of classes you would like. You must supply the
number of desired classes as a variable defined as a Long. Some classi-
fication algorithms will return a different number of class breaks to what
you specified. The number of classes will be written back to the variable
you supplied, so it is always best to recheck the number of class breaks
after calling Classify.

  Dim ClassBreaksArray() As Double ' Array to hold break values

  Dim ClassCount As Long ' Now classify the data into 5 classes

  ClassCount = 5

  pClassify.Classify ClassCount

  ' ClassCount could have been modified so recheck this if necessary

  ' Retrieve the array of break values

  ClassBreaksArray = pClassify.ClassBreaks

The array returned from the ClassBreaks method contains the break
values between the classes. The first break value is the minimum break
or lowest value in the lowest class, and other break values will be the
last value in their class.

The following VBA code sets up a ClassBreaksRenderer object.

  ' Initialise a new class breaks renderer and supply the number of

  ' class breaks and the field to perform the class breaks on.

  Dim pClassBreaksRenderer As IClassBreaksRenderer

  Set pClassBreaksRenderer = New ClassBreaksRenderer

  pClassBreaksRenderer.Field = "POP1997"

  ' First class break is the minimum value for the class breaks renderer

  pClassBreaksRenderer.MinimumBreak = ClassBreaksArray(0)

  ' Set number of breaks to be number of classes returned from classification

  pClassBreaksRenderer.BreakCount = ClassCount

ClassBreak(0)

ClassBreak(1)

ClassBreak(2)

ClassBreak(3)

class 1

class 2

class 3

Classify
objects

MinimumBreak

Break(0)

Break(1)

Break(2)

Class breaks
renderer object

Take care when using the ClassBreak property
array against the Break and MinimumBreak

properties in the ClassBreaksRenderer object.

CLASSIFY ABSTRACT CLASS



582 • Exploring ArcObjects • Volume 1

Note that the Breaks property array on the ClassBreaksRenderer
has one less entry than the array returned from Classify. The
first break value in the array returned from Classify is put into
the ClassBreakRenderers’ MinimumBreak property. Next, copy
the break values into the ClassBreaksRenderer object. You can
set up the symbol property of the classes at the same time.

In this VBA example, breakIndex is a Long, pColor is an IColor,
pFillSymbol is an ISimpleFillSymbol, and pEnumColors is a cursor from a
color ramp.

  ' Iterate through each class break, setting values and corresponding

  ' fill symbols for each polygon,

  For breakIndex = 0 To pClassBreaksRenderer.BreakCount - 1

    ' Retrieve a color and set up a fill symbol,

    ' put this in the symbol array corresponding to the class value

    Set pColor = pEnumColors.Next

    Set pFillSymbol = New SimpleFillSymbol

    pFillSymbol.Color = pColor

    pClassBreaksRenderer.Symbol(breakIndex) = pFillSymbol

    ' Set the break value - note this is the highest value in the class

    pClassBreaksRenderer.Break(breakIndex) = ClassBreaksArray(breakIndex +1)

  Next breakIndex

CLASSIFY ABSTRACT CLASS



Chapter 5 • Displaying graphics • 583

D
is

p
la

y

The EqualInterval coclass subdivides the data range by the number of
classes to produce the equal value intervals for each class. Optionally,
you can use the IClassifyMinMax interface to specify just minimum and
maximum values instead of setting the data values using
IClassify::SetHistogramData.

This classification emphasizes how data values fall within uniform
ranges of values. In practice, it is similar to defined intervals but has the
advantage that the lowest and highest classes span the same range of
values as the rest of the classes. An example of an application of this
classification is a map that depicts homes for sale divided into equal
ranges of purchase costs.

 IClassifyMinMax : IUnknown Defines an interface for classification methods that require
only a minimum and maximum value to classify.

Maximum: Double The maximum value.
Minimum: Double The minimum value.

The EqualInterval object can additionally generate class breaks given
only Minimum and Maximum values. In this case, you do not have to
call IClassify::SetHistogramData. However, to be consistent with other
classify objects, you can also call IClassify::SetHistogramData, which
will override the minimum and maximum values. The Minimum and
Maximum properties are write-only, and you must set both properties if
you can use IClassifyMinMax.

The DefinedInterval coclass represents a defined interval classification;
this divides a set of attribute values into classes that are divided by
precise numeric increments, such as 10, 100, or 500.

This classification works well for values that people are accustomed to
seeing in rounded numbers, such as age distribution, income level, or
elevation ranges. The disadvantage is that some of the classes, particu-
larly the first and last, may contain a disproportionate number of values.

Use the IIntervalRange interface to retrieve a default interval or to set a
different interval. When you are calling IClassify::Classify, the number of
classes returned depends on the maximum data value divided by the
interval.

 IIntervalRange : IUnknown Interface for Methods that need an interval range

Default: Double The Default Range for the data. Data must be added before calling
IntervalRange: Double The Interval Range. Call before Classify.

First, set up the data values with IClassify::SetHistogramData. After this,
you can use the Default property to retrieve the default interval. This
would typically be the maximum data value divided by five, so by de-
fault you will have five classes. To override this, set a different interval
into the IntervalRange property.

Classify
IClassify

Defined-
Interval

IClassifyMinMax
IIntervalRange

The defined interval classification pro-
duces classes that are divided by regular

fixed numeric increments.

Classify
IClassify

Equal-
Interval

IClassifyMinMax

The equal interval classification is similar
to defined interval, except that the first

interval starts at the lowest value.

This map illustrates areas where there is
differing population of infants relative to the

population of the area. It is produced using an
equal interval classification, where the minimum

is 3 percent of the population being under 5,
and then in bands of 3 percent, shows increasing

numbers of under 5 (up to 18 percent of the
population).

This uses a defined interval classification to
illustrate average house prices in different

counties. The interval is $50,000, and so the
class breaks are at multiples of this amount.

EQUALINTERVAL AND DEFINEDINTERVAL COCLASSES



584 • Exploring ArcObjects • Volume 1

The NaturalBreaks coclass uses a statistical formula to determine natural
clusters of attribute values. The formula is known as Jenk’s method. This
attempts to minimize the variance within a class and to maximize the
variance between classes. The natural-breaks classification is well suited
to uneven distributions of attributes. Distinct natural groupings of at-
tributes can be isolated and highlighted.

This classification only uses the IClassify interface, so there is nothing to
set up other than calling IClassify::SetHistogramData.

The Quantile coclass creates an equal (or close to equal) number of
values in each class. For example, if there were 12 values, then three
classes would represent four values each.

This classification is particularly effective for ranked values. A company
can measure sales performance of business locations and draw the
respective businesses in their rank of sales performance. This classifica-
tion yields visually attractive maps because all of the classes have the
same number of features.

However, this classification might obscure the natural distribution of
values; clusters of values may be split or combined with other values.
This classification is best applied to values that have a linear distribu-
tion. If you have an even number of classes, the value delimiting the
middle classes is the same as the median of statistical sampling.

Because features are grouped by the number in each class, the resulting
map can be misleading. Similar features can be placed in adjacent
classes, or features with widely different values can be put in the same
class. You can minimize this distortion by increasing the number of
classes.

Classify
IClassify

Natural-
Breaks

The natural breaks classification produces
classes that highlight natural groupings by

minimizing variance within a class and
maximizing variance between classes.

This map illustrates classes divided by the Jenks
method into natural intervals. Since 6 percent to

8 percent of the population is infants under 5,
this range has been split into two classes.

Conversely, in only a few areas are infants more
than 10 percent of the population, hence one

class covers 10 percent to 18 percent.

Classify
IClassify

Quantile

The quantile classification creates as
close as possible to equal numbers of

values in each class.

This map illustrates classes that contain equal
numbers of features from the quantile

classification.

NATURALBREAKS AND QUANTILE COCLASSES



Chapter 5 • Displaying graphics • 585

D
is

p
la

y

Standard-
Deviation

IDeviationInterval

Classify
IClassify

The standard deviation classification
creates classes that represent dispersion

about the mean value.

This classification scheme shows classes gener-
ated by the standard deviation classification. The
class breaks are generated by successively adding

or subtracting the standard deviation from the
mean. A two-color ramp helps emphasize values
above (shown in blue) and below (shown in red)

the mean.

The StandardDeviation coclass represents dispersion about the mean,
and this classification creates classes that represent this dispersion. The
classes mainly have an interval that is either one whole or part (for
example, a half or quarter) of a standard deviation. There will be one
class (often labeled “the mean”) that will straddle the mean value by the
class interval. Other classes will be adjacent to this on either side, repre-
senting increasingly disperse values from the mean. The classes will all
have the same interval except for the lowest and highest classes that
cover the endpoints of the data range.

As with other classification objects, you put values into the classification
with IClassify::SetHistogramData. Then you must use the
IDeviationInterval interface to specify the mean and standard deviation
values. Again, the TableHistogram object can be used here to calculate
these values. Finally, you can produce the classes using the
IClassify::Classify method.

The number of classes generated by IClassify::Classify is determined by
the settings of the properties on IDeviationInterval, not by the value of
the parameter passed to IClassify::Classify. However, you should still
supply the parameter, as it will be modified to reflect the number of
classes actually created.

This classification is intended for generally symmetric distributions of
values that have a broad peak near the mean with the density of values
diminishing away from the peak.

An example of a suitable map for this classification could be a popula-
tion density or accident rates map. You would expect these values to
have their greatest data density near a mean value, and values that vary
significantly are scarce. The classic shape of this type of distribution is
the bell curve.

 IDeviationInterval : IUnknown Defines an interface for classification methods that require
a standard deviation based range.

DeviationInterval: Double The deviation interval (1/4 <= value <= 1).
Mean: Double The mean value.
StandardDev: Double The standard deviation.

When setting up a StandardDeviation classify object, you must set the
Mean and StandardDev properties to be used for the class breaks before
you call IClassify::Classify. By default, the classes will have an interval
of one standard deviation. However, you can set the DeviationInterval
property to give you more classes. The DeviationInterval property speci-
fies what fraction of a standard deviation you want the class intervals to
be. Typically, you would set this to be a half or quarter to give you
twice or four times as many classes.

STANDARDDEVIATION COCLASS



586 • Exploring ArcObjects • Volume 1

This example VBA code uses the IStatisticsResults interface on the table
histogram to get the mean and standard deviation values to populate the
StandardDeviation classify object ready for classification.

In this example, pTableHistogram is an ITableHistogram. The data has
already been gathered with ITableHistogram::GetHistogramData and
placed into two arrays, DataValues and DataFrequencies.

    ' Create a classify object of our choice - StandardDeviation

    Set pClassify = New StandardDeviation

    ' QI to the IDeviationInterval interface

    Dim pDeviationInterval As IDeviationInterval

    Set pDeviationInterval = pClassify

    ' DataValues and DataFrequencies are arrays that have already been

    ' populated using the TableHistogram object.

    ' Put the collected data into the classify object

    pClassify.SetHistogramData DataValues, DataFrequencies

    ' QI to get the statistics result interface from the table

    ' histogram interface

    Dim pStatisticsResult As IStatisticsResults

    Set pStatisticsResult = pTableHistogram

    ' Set the mean and standard deviation into the classify object

    pDeviationInterval.Mean = pStatisticsResult.Mean

    pDeviationInterval.StandardDev = pStatisticsResult.StandardDeviation

    ' Our classes will be one standard deviation wide

    pDeviationInterval.DeviationInterval = 1

    ' Now classify the data …

STANDARDDEVIATION COCLASS



Chapter 5 • Displaying graphics • 587

D
is

p
la

y

TABLEHISTOGRAM COCLASS

Generally, a histogram consists of two arrays, where the first array is an
ordered list of values and the second is a paired list of frequencies.
Though you can manually manage these arrays when working with a
Classify object, typically it is easier to use a histogram object, especially
when mapping normalized data, excluding features, or working with a
sample of features.

Use a TableHistogram object if your data is contained in an object that
supports the ITable interface. Alternatively, use a DataHistogram object
if your data is stored in an array or in another histogram object. Finally,
a third type of histogram, TinHistogram coclass, can be used if your
data source is a TIN.

This section provides an overview of how to prepare and use a
TableHistogram object to set data to a Classify object.

 ITableHistogram : IUnknown Provides access to members that control a histogram
created from tablular data.

Exclusion: IDataExclusion Data exclusion options.
Field: String Value field.
NormField: String Normalization field.
Sampling: IDataSampling Data sampling options.
Table: ITable The associated table.

Use ITableHistogram::Table and ITableHistogram::Field to specify the
table and field that the histogram is based on.

Optionally, set NormField if you want to normalize by a field. Note that
setting this property is equivalent to setting IDataNormalization::-
NormalizationField.

Set the Exclusion object if you want to use a where clause to specify
features that will not be included when the histogram is generated.

The Sampling property is also optional. Use this to specify a method for
using only a subset of the features from the source table for the
histogram.

 IHistogram : IUnknown Provides access to members that control histogram objects
created from different data sources.

CustomMax: Double Custom maximum.
CustomMin: Double Custom minimum.

ExclusionDoModal (in parentHWnd: Long,
ok: Boolean)

Shows the exclusion dialog for the histogram.

GetHistogram (out doubleArrayValues:
Variant, out longArrayFrequencies:
Variant)

Histogram as an array of values (doubles) and a paired array of
frequencies (longs).

HasExclusion (Flag: Boolean) Indicates if the histogram uses exclusion.
HasSampling (Flag: Boolean) Indicates if the histogram uses data sampling.
ResetCustomMinMax Resets custom minimum and maximum.
SamplingDoModal (in parentHWnd: Long,

ok: Boolean)
Shows the sampling dialog for the histogram.

IHistogram has properties and methods common to all histograms.

For a TableHistogram, use GetHistogram to generate the histogram based
on the properties you set up via ITableHistogram. The method returns
two arrays: the first is the values array (that is, the ordered list of values),
and the second array contains the frequencies.

Table-
Histogram

IDataNormalization
IHistogram

IStatisticsResults
ITableHistogram

A histogram is a data structure mainly
used to set data to a Classify object.



588 • Exploring ArcObjects • Volume 1

You can choose to use CustomMin and CustomMax to enforce end
constraints on the data range.

HasExclusion and HasSampling provide feedback about whether or not
a histogram is using exclusion or sampling, while ExclusionDoModal
and SamplingDoModal open ArcGIS dialog boxes that allow users to
work with exclusion and sampling properties, respectively.

 IDataNormalization : IUnknown Provides access to members that control the data
normalization properties of a renderer.

NormalizationField: String Normalization field.
NormalizationFieldAlias: String Normalization field alias.
NormalizationTotal: Double Total of all values (used when normalizing by percent of total).
NormalizationType:

esriDataNormalization
Normalization type.

Use IDataNormalization to set the normalization properties for your
histogram.

As mentioned above, for a TableHistogram object, NormalizationField is
the same as ITableHistogram::NormField.

Use NormalizationType to set the normalization flavor for your
histogram.

 IStatisticsResults : IUnknown Provides access to members used for reporting statistics.

Count: Long The count of the values.
Maximum: Double The maximum value.
Mean: Double The arithmetic mean.
Minimum: Double The minimum value.
StandardDeviation: Double The standard deviation, based on sample flag.
Sum: Double The sum of the values.

Once you have set up a TableHistogram, you can use IStatisticsResults to
calculate some values that are needed when working with some Classify
objects.

For example, to set up a StandardDeviation object, use this interface to
calculate IDeviationInterval::Mean and IDeviationInterval::Standard-
Deviation.

TABLEHISTOGRAM COCLASS



Chapter 5 • Displaying graphics • 589

D
is

p
la

y

The RubberPoint, RubberEnvelope, RubberLine, RubberPolygon,
RubberRectangularPolygon, and RubberCircle coclasses, all implementing
the IRubberBand interface, allow the user to digitize geometries on the
display using the mouse—either to create whole new geometry objects
or to update existing ones. As such, they can be viewed as simple ver-
sions of the feedback objects that are covered later in this chapter.

Some examples of uses for these rubberbanding objects include drag-
ging an envelope, forming a new polyline, or moving a point. Each of
the above classes supports the IRubberBand interface, but the behavior
depends on the class used.

 IRubberBand : IUnknown Provides access to members that control simple
rubberbanding.

TrackExisting (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol, in
Geometry: IGeometry) : Boolean

Indicates if to move or reshape an existing shape on the specified
screen in response to a mouse down event.

TrackNew (in ScreenDisplay:
IScreenDisplay, in Symbol: ISymbol) :
IGeometry

Call in response to mouse down event to rubberband a new shape on
the specified screen.

The IRubberband interface has two methods, TrackExisting and
TrackNew, which are used to move existing geometries and create new
geometries, respectively. These methods would normally be called from
within the code for a tool’s Mouse_Down event, and they would then
handle all subsequent mouse events themselves. They would capture
subsequent mouse and keyboard events, such as Mouse_Move,
Mouse_Up, and Key_Down events, and would complete when they re-
ceived a Mouse_Up event or abort if the Esc key was pressed. Because
the events are being trapped by the rubberband objects, no events will
be raised in VBA.

This means that very little code is required to use them, although this
comes at the expense of flexibility. Typically, these objects would be
used for simple tasks such as dragging a rectangle or creating a new
line. Operations that involve moving the vertices of existing geometries
would require the feedback objects to be used instead.

IRubberBand allows the user to interact with
the display and either create new geometry

objects using TrackNew or move existing ones
with TrackExisting. Typically, this interface would

be used in the Mouse_Down event of a tool.

Rubber band objects

A rubber circle object allows the user to
input circles on the display

A rubber envelope object allows the user
to input and move envelopes on the display

A rubber line object allows the user to
input and move polylines on the display

A rubber point object allows the user to
input and move points on the display

A rubber polygon object allows the user to
input and move polygons on the display

A rubber rectangular object allows the user
to input and move polygons, which are
constrained to be rectangular, on the display

Rubber-
Envelope

RubberPoint

RubberLine

Rubber-
Polygon

RubberBand
IRubberBand

Rubber-
Rectangular

-Polygon

Rubber-
Circle



590 • Exploring ArcObjects • Volume 1

The TrackNew method takes two parameters: an IScreenDisplay object
representing the ScreenDisplay to draw the Rubberband and an ISymbol
object to use for drawing the rubberband. If no symbol is given, then the
default symbol is used. The method returns a new geometry object—the
type of geometry returned depends on which class was used.
RubberPolygon class returns a Polygon object. If the method fails to com-
plete (that is, if the user presses the Esc key), then Nothing is returned.

The following code shows how to use the TrackNew method of
IRubberBand with a RubberLine object.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pRubberLine As IRubberBand

  Dim pGeom As IGeometry

  Dim pMXDoc As IMxDocument

  ' QI for the MXDocument interface

  Set pMXDoc = ThisDocument

  ' Create a new Rubber Line object

  Set pRubberLine = New RubberLine

  ' Track new polyline on current document's display using default symbol

  Set pGeom = pRubberLine.TrackNew(pMXDoc.ActiveView.ScreenDisplay, Nothing)

End Sub

The TrackExisting method also takes ScreenDisplay and Symbol param-
eters as well as an IGeometry representing the input Geometry. This last
parameter represents the geometry to move on the screen and is passed
by reference so that it may be altered by the rubberband operation. The
method returns a Boolean, which will be True unless the operation was
interrupted by the user pressing the Esc key. The method will do noth-
ing if the Geometry that is passed in does not intersect the current mouse
location.

The following code illustrates how to move an existing polygon using
the TrackExisting method of IRubberBand with a RubberPolygon object.
pGeomPoly is declared as an IPolygon and is used to represent the Poly-
gon to be moved.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pRubberPoly As IRubberBand

  Dim pMXDoc As IMxDocument

  Dim Success As Boolean

  ' QI for the MXDocument interface

  Set pMXDoc = ThisDocument

  ' Create a new Rubber Polygon object

  Set pRubberPoly = New RubberPolygon

  ' Move an existing Polygon on current doc's display using default symbol

  Success = pRubberPoly.TrackExisting(pMXDoc.ActiveView.ScreenDisplay, _

    Nothing, pGeomPoly)

End Sub

The types of geometry that are returned for
TrackNew by each of the rubber objects are as

follows:

RubberCircle—ICircularArc

RubberEnvelope—IEnvelope

RubberLine—IPolyline

RubberPoint—IPoint

RubberPolygon—IPolygon

RubberRectangularPolygon—IPolygon

The types of geometry that are expected by
TrackExisting for each of the rubber objects are

as follows:

RubberCircle—Not implemented

RubberEnvelope—IEnvelope

RubberLine—IPolyline

RubberPoint—IPoint

RubberPolygon—IPolygon

RubberRectangularPolygon—IPolygon

RUBBERBAND COCLASSES



Chapter 5 • Displaying graphics • 591

D
is

p
la

y

There are three kinds of selection trackers; these can all be seen in
ArcMap:

• An envelope tracker allows the user to move and resize the element.
This functionality is implemented by the EnvelopeTracker object for
all element types, including point, line, polygon, and group elements.

• A vertex edit tracker allows the user to move vertices of lines, poly-
gons, curves, and curved text. This functionality is implemented by
the LineTracker and PolygonTracker objects.

• A callout tracker allows the user to move a text callout. This function-
ality is implemented by the CalloutTracker objects.

The PointTracker object is not currently useful. Moving and resizing of
point elements is handled by envelope trackers, the size of the envelope
corresponding to the symbolized point.

Although the selection trackers are coclasses, you would only cocreate
one if you were building your own custom element when implementing
IElement::SelectionTracker.

          

The envelope tracker operates on all element
types.

   

The line tracker and polygon tracker lets the
user manipulate the vertices of polylines and

polygons.

The callout tracker lets the user manipulate
text callouts.

Selection tracker objects

Envelope-
Tracker LineTracker Point-

Tracker
Polygon-
Tracker

Selection-
Tracker

ISelectionTracker

Callout-
Tracker

ICalloutTracker

AnchorPoint
IAnchorPoint Rotate-

Tracker

IRotateTracker

Scale-
Tracker

IScaleTracker

An anchor point is useful for
rotating elements and features

Selection trackers manage the
handles of selected elements

A rotate tracker manages the user
interface for rotating features or elements

A scale tracker controls the user interface
for scaling features or elements

Cancel-
Tracker

ITrackCancel

A cancel tracker provides a mechanism
for the user to stop a process



592 • Exploring ArcObjects • Volume 1

 ISelectionTracker : IUnknown Provides access to members that control the managing of
selection handle tracking.

Bounds (in Display: IDisplay) :
IEnvelope

The area covered by the tracker including handles.

Display: IScreenDisplay The display used by the tracker.
Geometry: IGeometry Geometry used for tracking feedback.
Locked: Boolean Indicates if the tracker is locked or not.  Locked means nodes cannot

be moved.
ShowHandles: Boolean Indicates if the tracker is showing handles or not.

Deactivate: Boolean Cancel tracking.
Draw (in Display: IDisplay, in hDC:

Long, in Style: tagesriTrackerStyle)
Draw selection indicater.  Usually a color outline with selection

handles.
HitTest (in Point: IPoint) :

tagesriTrackerLocation
Check if mouse is over tracker.  Return a TrackerLocation to indicate

which handle mouse is over.
OnKeyDown (in keyCode: Long, in Shift:

Long) : Boolean
Special keypress processing while tracking.

OnKeyUp (in keyCode: Long, in Shift:
Long) : Boolean

Special keypress processing while tracking.

OnMouseDown (in Button: Long, in
Shift: Long, in X: Long, in Y: Long)

Begin tracking move or resize based on the location of the mouse
over the tracker handles.

OnMouseMove (in Button: Long, in
Shift: Long, in X: Long, in Y: Long)

In process move or resize tracking.

OnMouseUp (in Button: Long, in Shift:
Long, in X: Long, in Y: Long)

Finish move or resize tracking.

QueryCursor (in Point: IPoint) : Long If the mouse is over the tracker, return an HCURSOR to indicate
legal operations based on mouse's relation to selection handles:
move resize, etc.  Return 0 if mouse isn't over tracker.

QueryMoveFeedback (in
moveFeedback: IDisplayFeedback)

The move feedback for the selection tracker.

QueryResizeFeedback (in
resizeFeedback: IDisplayFeedback)

The resize feedback for the selection tracker.

The ISelectionTracker interface controls the selection handle user inter-
face. You might use ISelectionTracker in order to provide different
behavior than that of the standard ArcMap interface, for example, the
Element Movement tool that snaps elements to a grid. However, it is
more likely that you will use this interface when building a custom
object such as an element.

You can gain access to selection trackers with IElement::SelectionTracker,
IElementEditVertices::GetMoveVerticesSelectionTracker, or
IGraphicsContainerSelect::SelectionTracker. When using IElement, you will
get either an envelope tracker or edit vertices tracker, depending on the
state of the element. This code example ensures that an envelope tracker
is returned—if the element has a vertex edit tracker, it is changed to a
envelope tracker and the document is refreshed.
Public Sub EnsureEnvelopeTracker(pElement As IElement)
  Dim pMxDoc As IMxDocument
  Set pMxDoc = ThisDocument

  Dim pScreenDisplay As IScreenDisplay
  Set pScreenDisplay = pMxDoc.ActiveView.ScreenDisplay

  If TypeOf pElement Is IElementEditVertices Then
    Dim pElemVert As IElementEditVertices
    Set pElemVert = pElement
    If pElemVert.MovingVertices Then
      pElemVert.MovingVertices = False
      pMxDoc.ActiveView.PartialRefresh esriViewGraphicSelection, Nothing, _
        pElement.SelectionTracker.Bounds(pScreenDisplay)
    End If
  End If
End Sub

SELECTION TRACKER OBJECTS



Chapter 5 • Displaying graphics • 593

D
is

p
la

y

After obtaining a reference to a selection tracker, always set the Display
property before using it.

The Geometry property of a selection tracker applies to the tracker, not
the element: for envelope trackers, the geometry is a polygon created
from the envelope shape; for vertex edit trackers, the geometry is a
polygon or polyline as appropriate. The Geometry property is updated
when the user finishes reshaping the element with the selection tracker.

The HitTest method provides information about the position of the
mouse. The returned values are defined by esriTrackerLocation:

Enumeration esriTrackerLocation ESRI mouse tracking location

0 - LocationNone Outside of tracker
1 - LocationInterior Within tracker envelope
2 - LocationTopLeft At top left tracker handle
3 - LocationTopMiddle At top middle tracker handle
4 - LocationTopRight At top right tracker handle
5 - LocationMiddleLeft At middle left tracker handle
6 - LocationMiddleRight At middle right tracker handle
7 - LocationBottomLeft At bottom left tracker handle
8 - LocationBottomMiddle At bottom middle tracker handle
9 - LocationBottomRight At bottom right tracker handle

The enumeration names are most relevant to envelope trackers, but
HitTest can also be used with vertex edit trackers and callout trackers. In
these cases, the returned values are LocationNone, LocationInterior, and
LocationTopLeft.

Many of the ISelectionTracker methods—for example, OnMouseDown—
correspond to user interface events. When controlling a selection tracker
with a user interface tool, pass on the tool events to the selection
tracker, for example:

Private Sub UIToolControl1_MouseMove(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  If Not m_pSelTracker Is Nothing Then

    ' Pass on the mouse move event to selection tracker

    m_pSelTracker.OnMouseMove button, shift, x, y

  End If

End Sub

QueryMoveFeedback and QueryResizeFeedback return the feedback
objects that the selection tracker is using.

Draw is called by ArcMap if the element is selected, so normally you do
not need to use this method (though it is important if you implement
your own custom selection tracker).

 ICalloutTracker : ISelectionTracker Provides access to members that control the callout
feedback.

Symbol: ISymbol The symbol containing the callout the tracker will use.
SymbolGeometry: IGeometry Geometry used for drawing the symbol.

You would normally only use the ICalloutTracker interface when build-
ing custom elements since the symbol and its geometry can be obtained
from the element or the ISelectionTracker::Geometry method.

SELECTION TRACKER OBJECTS



594 • Exploring ArcObjects • Volume 1

Rotate-
Tracker

IRotateTracker

The rotate tracker object manages the
user interface for rotating features or

elements.

Note that the rotate tracker does not provide
facilities for manipulation of the rotation

origin—use the AnchorPoint object to do this.

RotateTracker manages the user interface for rotating features or elements.

 IRotateTracker : IUnknown Provides access to members that control the rotation
tracker.

Angle: Double The angle.
Cursor: Long If the mouse is over the tracker, return an HCURSOR to indicate

legal operations based on mouse's relation to selection handles:
move resize, etc.  Return 0 if mouse isn't over tracker.

Display: IScreenDisplay The display used by the tracker.
Origin: IPoint The rotation origin.

AddGeometry (in Geometry: IGeometry) Adds a geometry to be rotated.
AddPoint (in Geometry: IGeometry, in

sym: IMarkerSymbol)
Adds a point and symbol to be rotated.

ClearGeometry Clears all the geometries.
Deactivate: Boolean Cancel tracking.
OnKeyDown (in keyCode: Long) :

Boolean
Special keypress processing while tracking.

OnMouseDown Begin tracking move or resize based on the location of the mouse
over the tracker handles.

OnMouseMove (mapPoint: IPoint) In process move or resize tracking.
OnMouseUp: Boolean Finish move or resize tracking.
Refresh Invalidate the portion of the screen covered by the tracker.

The IRotateTracker interface controls the rotation user interface. After
cocreating a RotateTracker object, use the members in the following
order: Display, Origin, ClearGeometry, and then one or more calls to
either AddGeometry or AddPoint. If you were rotating a single polygon
element, you would need just one call to AddGeometry for the element
geometry; however, a rotation tracker can handle a group of elements.
Use AddPoint for features with marker symbology.

When using AddGeometry with elements whose size is determined by
symbology, for example, text and marker elements, use the geometry of
the element outline to get the correct feedback. This example function,
given an element, returns a geometry suitable for AddGeometry:
Public Function GetElementGeometry(pElement As IElement, _
                                   pScreenDisplay As IScreenDisplay)
   Set GetElementGeometry = pElement.Geometry
   If TypeOf pElement Is IBoundsProperties Then
     Dim pBoundsProps As IBoundsProperties
     Set pBoundsProps = pElement
     If pBoundsProps.FixedSize Then
       Dim pPolygon As IPolygon
       Set pPolygon = New Polygon
       pElement.QueryOutline pScreenDisplay, pPolygon
       Set GetElementGeometry = pPolygon
     End If
   End If
End Function

The OnMouseDown, OnKeyDown, OnMouseMove, OnMouseUp, and
Deactivate are all event handlers. Call these methods from the corre-
sponding events in your tool. The OnMouseMove method will provide
user interface feedback for the rotation.

Typically, you will choose to update the feature or element in question in
conjunction with the OnMouseUp method. This returns a boolean indicat-
ing whether the element or feature was rotated. Get the amount of rotation
from the Angle property; this can then be passed to ITransform2D::Rotate.
For features, you may find IFeatureEdit::RotateSet useful.

You can QI directly from most elements to
ITransform2D, which can be used to move,

scale, and rotate them.

ROTATETRACKER COCLASS

If you pass on the Key_Down event to
OnKeyDown, pressing “a” will prompt the user

for an angle.



Chapter 5 • Displaying graphics • 595

D
is

p
la

y

Scale-
Tracker

IScaleTracker

The scale tracker manages the user
interface for expansion or contraction of

geometries by a scale ratio.

You can add the ArcMap Editor Scale Tool from
the Customize dialog box.

In a similar way to the rotation tracker, the scale tracker can be applied
to one or more elements or features.

 IScaleTracker : IUnknown Provides access to members that control the scale tracker.

Cursor: Long If the mouse is over the tracker, return an HCURSOR to indicate
legal operations based on mouse's relation to selection handles:
move resize, etc.  Return 0 if mouse isn't over tracker.

Display: IScreenDisplay The display used by the tracker.
Origin: IPoint The scale origin.
ScaleFactor: Double The scale factor.

AddGeometry (in Geometry: IGeometry) Adds a geometry to be scaled.
ClearGeometry Clears all the geometries.
Deactivate: Boolean Cancel tracking.
OnKeyDown (in keyCode: Long) :

Boolean
Special keypress processing while tracking.

OnMouseDown Begin tracking move or resize based on the location of the mouse
over the tracker handles.

OnMouseMove (mapPoint: IPoint) In process move or resize tracking.
OnMouseUp: Boolean Finish move or resize tracking.
Refresh Invalidate the portion of the screen covered by the tracker.

The IScaleTracker interface controls the user interface for scaling ob-
jects. It works in a similar way to IRotateTracker.

The ScaleFactor property can be used to find out what scaling ratio was
defined. If you pass on the key down event to OnKeyDown, pressing
“F” will prompt the user for the scale factor.

When working with elements, anchor points can be considered a helper
object, rather than an essential. You will first need to cocreate the an-
chor point and then manipulate it. This is useful when implementing
your own tools and objects, for example, a custom rotation tool.

 IAnchorPoint : IUnknown Provides access to members that control the tracker anchor
point.

Cursor: Long Cursor displayed when mouse is over anchor.
Point: IPoint Location of anchor point.
Symbol: ISymbol Anchor point symbol.

Draw (in Display: IDisplay) Draw the anchor.
HitTest (in Point: IPoint, in tol: Double) :

Boolean
Check if mouse is over anchor.

MoveTo (in pPoint: IPoint, in Display:
IDisplay)

Move the anchor.

The IAnchorPoint interface provides facilities for controlling anchor
points.

IEditor::SelectionAnchor will return the anchor point being used by the
editor, which you can subsequently manipulate.

AnchorPoint
IAnchorPoint

The anchor point represents a point that
can be used when manipulating ele-

ments and features.

    

Anchor points can be useful in many situations—
for rotating elements and features and moving

the origin of a text callout.

SCALETRACKER AND ANCHORPOINT COCLASSES



596 • Exploring ArcObjects • Volume 1

The CancelTracker object is the favorite class of many users, though
most probably don’t realize it. Have you ever started a process and
realized as soon as you did that it wasn’t what you wanted? If the pro-
cess employed the CancelTracker object, then you would be able to hit
the escape key and halt the process before it had completed. The
CancelTracker object is the object used by ArcObjects to monitor the
Esc key (optionally, the space bar and mouse clicks as well) and termi-
nate processes at the request of the user.

A CancelTracker is typically handed into or created just prior to func-
tions that execute a lengthy operation. Just before such operations be-
gin, ITrackCancel::Reset must be called; Reset sets the state of the
CancelTracker to uncancelled and returns the internal counter, which is
used to update progression to zero.

Within the innermost loop of the operation, ITrackCancel::Continue
should be called to check whether the user has canceled the operation.
By default, a cancellation occurs under the following circumstances:

• The Esc key has been pressed.

• The space bar has been pressed (disable with CancelOnKeyPress
property).

• The left mouse button has been pressed (disable with CancelOnClick
property).

• The right mouse button has been pressed (disable with
CancelOnClick property).

If any of these actions occurs, the ITrackCancel::Continue method will
return false and the operation’s logic should then use this indicator to
exit the loop.

Any object that exposes IProgressor or IStepProgressor, such as the
ProgressDialog object, can be bound to the CancelTracker so that it will
be updated correctly and efficiently and with no additional code within
the operation itself. Once the progressor is connected to the
CancelTracker via the Progressor property, it will be updated automati-
cally as the operation is executed. If the progressor is a step progressor,
the MaxRange should be set to equal the number of iterations that the
operation will progress through; this number should also match the
number of times Continue will be called in the operation’s innermost
loop.

In order for COM and various other parts of Windows to work correctly
and responsively, Windows messages must be processed at regular inter-
vals. For this reason, the CancelTracker’s implementation will process
noninput (mouse, keyboard)-related messages every second during the
operation if any such messages are pending. This default frequency may
be changed utilizing the ITrackCancel::CheckTime property.

As a developer, you may use the CancelTracker several ways. Some
ArcObjects commands (such as IActiveView::Output) take a

CANCELTRACKER COCLASS

Cancel-
Tracker

ITrackCancel

A cancel tracker provides a mechanism
for the user to stop a process.



Chapter 5 • Displaying graphics • 597

D
is

p
la

y

CancelTracker object as an input parameter as the following code snip-
pet demonstrates:

  Dim pCancel as ITrackCancel

  Set pCancel = New CancelTracker

  IActiveView::Output <OLE_handle>, <screen resolution>, <pixel bounds>, _

    <visible bounds>, pCancel

In this case, you can provide cancel capabilities by simply creating a
CancelTracker object and passing it in to the Output method. The Out-
put method will then take care of monitoring the Esc button and cancel-
ing the process if the user chooses to.

Another way to use a CancelTracker object is similar to the process
above, but you as the developer are responsible for monitoring the
object. An approach of this type would be used when the execution of
your code could take a considerable amount of time and you want to
give the user the option of canceling out of the process. The following
VBA code demonstrates this process. The code is designed to loop
through a set of selected network features and run the Connect method
on them to ensure they are connected to the network. The
CancelTracker object is included for aborting the process if the user
accidentally selects too many features or just wants the process to stop.

Dim m_pTrackCancel As ITrackCancel

Sub testCancel()

  Dim pEd As IEditor, pEnumSel As IEnumFeature, pFeat As IFeature

  Dim pNetFeat As INetworkFeature, pUID As New UID

  pUID = “esricore.editor”

  Set pEd = Application.FindExtensionByCLSID(pUID)

  Set pEnumSel = pEd.EditSelection

  Set pFeat = pEnumSel.Next

  Set m_pTrackCancel = New CancelTracker

  pEd.StartOperation

  Do While Not pFeat Is Nothing

    If TypeOf pFeat Is INetworkFeature Then

      Set pNetFeat = pFeat

      pNetFeat.Connect

    End If

    ‘Check for a cancel

    If Not m_pTrackCancel.Continue Then

      MsgBox “Canceled!”

      pEd.StopOperation “Connect network features.”

      Exit Sub

    End If

    Set pFeat = pEnumSel.Next

  Loop

CANCELTRACKER COCLASS



598 • Exploring ArcObjects • Volume 1

  pEd.StopOperation “Connect network features.”

End Sub

This code could also be used in conjunction with a ProgressDialog
object to provide a dialog box with a Cancel button to the user. For an
example of how to use a ProgressDialog object with a CancelTracker
object, see the Developer Sample ‘Convert AV3 to AV8 Attribute In-
dexes’.

A CancelTracker object can be retrieved through a couple of different
methods (IAppDisplay::CancelTracker, IScreenDisplay::CancelTracker,
and others), but it is not recommended that you attempt to use the
object when obtained in this manner. The CancelTracker object used
with these interfaces is for internal use.

 ITrackCancel : IUnknown Cancel tracking interface

CancelOnClick: Boolean Indicates if mouse button clicks should be ignored when drawing.
CancelOnKeyPress: Boolean Indicates if keypresses should be ignored when drawing.
CheckTime: Long The amount of time to wait before Continue actually checks for

user input.
ProcessMessages: Boolean Obsolete.
Progressor: IProgressor The progressor used to show progress during lengthy operations.
TimerFired: Boolean Indicates if the timer has fired since last time TimerFired was

checked.

Cancel Cancels the associated operation.
Continue: Boolean Called frequently while associated operation is progressing. A

return value of false indicates that the operation should stop.
Reset Resets the manager after the associated operation is finished.
StartTimer (in hWnd: Long, in

milliseconds: Long)
Causes the tracker to watch for timer events.

StopTimer Stops watching for timer events.

The ITrackCancel interface is the only interface implemented by the
CancelTracker object and provides access to the properties of that
object. Through this interface, the developer can monitor the Cancel-
Tracker object to determine if a cancellation has been executed by the
user. The ITrackCancel also allows the developer to specify what ac-
tions constitute a cancellation.

The Continue property is the key property of the interface. When writing
code with an ITrackCancel object, you should check the Continue
property often to know when the operation should be halted (a value of
False indicates the operation should be ended).

CancelOnClick and CancelOnKeyPress are the properties that allow the
developer to specify the user actions that constitute a cancellation (a
cancellation changes the Continue property to False).

The Progressor property can be used with a progress object
(ProgressAnimation, ProgressBar, or ProgressDialog) to display the
progress of a lengthy operation.

CANCELTRACKER COCLASS



Chapter 5 • Displaying graphics • 599

D
is

p
la

y

Display-
Feedback

IDisplayFeedback

Display feedback objects

Creates a feedback on the display
for moving an envelope

Creates a feedback on the
display for moving a point on a

line

Creates a feedback on the
display for a group of

feedback objects

Creates a feedback
on the display for

moving a point on a
Bezier curve

Creates a feedback on the display for
moving a geometry by reference

Creates a feedback on the display for
moving a line

Creates a feedback on the display for moving a
point

Creates a feedback on the display for moving a
polygon

Creates a feedback on the display
for adding a new Bezier curve

Creates a feedback on the display for
adding a new envelope

Creates a feedback on the display
for adding a new line

Creates a feedback on the display
for adding a new multipoint

Creates a feedback on the display
for adding a new polygon

Creates a feedback on the display
for moving a point in a polygon

Creates a feedback on the display for
reshape

Creates a feedback on the display for
resizing an envelope

Creates a feedback on the  display for
stretching all the vertices on a polyline

Creates a feedback on the display for
editing vertices of a geometry by reference

Creates a feedback on the display for
moving an image of symbolized elements

or features

BezierMove-
Point-

Feedback

ILineMovePointFeedback

Group-
Feedback

ISet

LineMove-
Point-

Feedback

ILineMovePointFeedback

Move-
Envelope-
Feedback

IMoveEnvelopeFeedback

Move-
Geometry-
Feedback

IMoveGeometryFeedback

MoveImage-
Feedback

IMoveImageFeedback
IMoveImageFeedback2

MoveLine-
Feedback

IMoveLineFeedback

MovePoint-
Feedback

IMovePointFeedback

Move-
Polygon-
Feedback

IMovePolygonFeedback

NewBezier-
Curve-

Feedback

INewBezierCurveFeedback

New-
Envelope-
Feedback

INewEnvelopeFeedback
INewEnvelopeFeedback2

NewLine-
Feedback

INewLineFeedback

New-
MultiPoint-
Feedback

INewMultiPointFeedback

Creates a feedback on
the display for a callout

Callout-
Feedback

ICalloutFeedback

Creates a feedback on the display
for adding a new circle

NewCircle-
Feedback

INewCircleFeedback

New-
Dimension-
Feedback

INewDimensionFeedback

Modify-
Dimension-
Feedback

IModifyDimensionFeedback

NewPolygon-
Feedback

INewPolygonFeedback

Polygon-
MovePoint-
Feedback

IPolygonMovePointFeedback

Reshape-
Feedback

IReshapeFeedback

Resize-
Envelope-
Feedback

IResizeEnvelopeFeedback
IResizeEnvelopeFeedback2

StretchLine-
Feedback

IStretchLineFeedback

Vertex-
Feedback

IVertexFeedback

Creates a feedback on the display
for modifying a dimension shape

Creates a feedback on the display
for adding new dimension shapes



600 • Exploring ArcObjects • Volume 1

DISPLAY FEEDBACK COCLASSES

Display

IConnectionPoint-
Container

IDisplay
IDisplayEvents

IDraw

The display feedback objects and inter-
faces are used to digitize new and
existing geometries, such as points,

polylines, envelopes, or polygons, on a
map or page layout. These objects are

used internally within the ArcMap appli-
cation in the drawing and editing tools as

well as being available to developers.

The set of objects that implement the IDisplayFeedback interface gives
you fine-grained control over customizing the visual feedback when
using the mouse to form shapes on the screen display. You can direct
the precise visual feedback for tasks, such as adding, moving, or re-
shaping features or graphic elements. The objects can also be used
without creating any features or elements for a task, such as measuring
the distance between two points.

Typically, you would use the display feedback objects within code that
handles the mouse events of a tool based on the ITool or IUIToolControl
interfaces, such as Mouse_Down and Mouse_Move.

Which mouse events to program depends on the task at hand. For
example, when adding a new envelope, you would program the display
feedback objects in the Mouse_Down, Mouse_Move, and Mouse_Up
events. Or, when digitizing a new polygon, you would program the
Mouse_Down, Mouse_Move, and Mouse_DblClick events. When you are
collecting points with the mouse to pass to the display feedbacks, you
can use the ToMapPoint method on IDisplayTransformation to convert
the current mouse location from device coordinates to map coordinates.

Although the feedback objects (excluding the GroupFeedback object) all
have common functionality, their behavior does vary. These variations
can be divided as follows:

1. Feedbacks that return a new geometry. The interfaces for these ob-
jects have a Stop method that returns the new geometry. These ob-
jects are NewEnvelopeFeedback, NewBezierCurveFeedback, New-
DimensionFeedback, NewLineFeedback, NewPolygonFeedback, Modify-
DimensionFeedback, MoveEnvelopeFeedback, MoveLineFeedback,
MovePointFeedback, MovePolygonFeedback, BezierMovePointFeedback,
LineMovePointFeedback, PolygonMovePointFeedback, Reshape-
Feedback, ResizeEnvelopeFeedback, and StretchLineFeedback.

2. Feedbacks that are for display purposes only. The developer is required
to calculate the new geometry. For example, you can use the start and
end mouse locations and calculate the delta x and delta y shifts, and
then you can update or create the geometry from this. These feedback
objects are MoveGeometryFeedback, MoveImageFeedback, NewMulti-
PointFeedback, and VertexFeedback.

The objects are used within the ArcMap application to allow graphic
elements to be digitized and modified within the map (data view) and
layout (layout view) and are also used by the ArcMap feature editing
tools.

Some of the feedback objects have a Constraint property that deter-
mines how the feedback behaves. These constraints can specify, for
example, that a ResizeEnvelopeFeedback maintains the aspect ratio of the
input Envelope. The details of these constraints are given with the indi-
vidual feedbacks.

The display feedback objects also provide some
of the base functionality for the rubberband
objects described earlier. You should use the

rubberband objects first if they suit your require-
ments; select the display feedback objects if you

want greater control over the user interface
when modifying graphics or features. This greater

control comes at the cost of more code.

Most of the interfaces contained in the display
feedback objects are derived from the

IDisplayFeedback interface.



Chapter 5 • Displaying graphics • 601

D
is

p
la

y

 IDisplayFeedback : IUnknown Provides access to members that control the base display
feedback.

Display: IScreenDisplay The display the feedback object will use.
Symbol: ISymbol The symbol the feedback object will use.

MoveTo (in Point: IPoint) Move to the new point.
Refresh (in hDC: Long) Call this after a refresh to show feedback again.

The IDisplayFeedback interface is used to define the common opera-
tions on all of the display feedback operations. These include moving,
symbolizing, and refreshing the display feedbacks as well as setting a
display feedback object’s Display property (for example, setting it to
IActiveView::ScreenDisplay).

The IDisplayFeedback interface is useful only in combination with one of
the display feedback objects and its derived interfaces, for example, the
NewPolygonFeedback object and its INewPolygonFeedback interface. Nearly
all of the display feedback interfaces employ interface inheritance from
IDisplayFeedback; hence, there is no need to use QueryInterface to access
its methods and properties.

Typically, the Display and Symbol properties would be set when a dis-
play feedback object is initialized, while the MoveTo method would be
called in a mouse move event. Setting the Symbol property is optional. If
not set, a default symbol is used.

The Refresh method is used to redraw the feedback after the window
has been refreshed (for example, when it is activated again), and it
should be called in response to the Tool’s Refresh event. This would be
UIToolControl_Refresh for UIToolControl in VBA, or ITool_Refresh if you
are implementing ITool in VB or VC++. The hDC parameter, which is
required by the Refresh method, is actually passed into the subroutine
for you.

In the following example, a check is first made to see if
m_pNewPolyFeedback, which is a member variable NewPolygonFeedback
object, has been instantiated yet, that is, if the user is currently using the
feedback. If it has been instantiated, then the Refresh method is called.

  Private Sub UIToolControl1_Refresh(byVal hDC As Long)

    If Not m_pNewPolyFeedback Is Nothing Then

      m_pNewPolyFeedback.Refresh hDC

    End If

  End Sub

The following code example shows how to use the IDisplayFeedback
interface with the INewEnvelopeFeedback interface to create a display
feedback that will allow the user to add a new polygon. Note that this
code simply demonstrates the visual feedback; further code is required
if you wish to add that drawn shape as a map element or feature.

The new envelope feedback object is declared as a member variable as
follows:

  Private pNewEnvFeed As INewEnvelopeFeedback

DISPLAYFEEDBACK ABSTRACT CLASS



602 • Exploring ArcObjects • Volume 1

Other objects are locally declared—pEnv as IEnvelope, pScreenDisp as
IScreenDisplay, pLineSym as ISimpleLineSymbol, and pStartPoint and
pMovePoint as IPoint.

The following code would be placed in the Mouse_Down event to set
up the Display and Symbol properties and to call
INewEnvelopeFeedback::Start with the current mouse location in map
units.

  Set pNewEnvFeed = new NewEnvelopeFeedback

  Set pNewEnvFeed.Display = pScreenDisp

  Set pNewEnvFeed.Symbol = pLineSym

  pNewEnvFeed.Start pStartPoint

The following line of code would be placed in the Mouse_Move event to
move the display feedback to the current mouse location in map units,
using the MoveTo method from IDisplayFeedback.

  pNewEnvFeed.MoveTo pMovePoint

The following line of code would be placed in the Mouse_Up event to
return the result using the Stop method from INewEnvelopeFeedback.

  Set pEnv = pNewEnvFeed.Stop

DISPLAYFEEDBACK ABSTRACT CLASS



Chapter 5 • Displaying graphics • 603

D
is

p
la

y

DISPLAY FEEDBACKS FOR SHAPING NEW GEOMETRIES

The NewLineFeedback, NewBezierCurveFeedback, and
NewPolygonFeedback coclasses would normally be used in a similar way.
To form one of these new geometries, the user would use the mouse to
click on the shape’s starting point, move to a new location, click for any
intermediate vertices, then move to the endpoint and double-click to
finish. Therefore, to support this behavior, three different mouse
events—Mouse_Down, Mouse_Move, and Mouse_DblClick—would be
handled. An outline of how the feedback’s methods typically relate to
these events is given below.

• Mouse_Down—Start adds the starting Point, or Addpoint, which adds
subsequent Points and Segments.

• Mouse_Move—MoveTo is inherited from IDisplayFeedback, which
moves the feedback onscreen.

• Mouse_DblClick—Stop returns the resulting single-part shape. For
NewLineFeedback and NewBezierCurveFeedback, this would be a
Polyline with one Path. For NewPolygonFeedback, this would be a
Polygon with one Ring.

When the Mouse_DblClick event is fired, the Mouse_Down event is also
fired only once, thus by simply clicking, moving, then double-clicking
the mouse, a user will actually be firing Mouse_Down (Start),
Mouse_Move (MoveTo), Mouse_Down (AddPoint), and Mouse_DblClick
(Stop). Therefore, assuming that the convention shown above is used, a
point will be added at the double-click location by the Mouse_Down
event, even though the Stop method does not itself add a new point to
the geometry.

The NewLineFeedback coclass allows the user to form a new Polyline
geometry on the display. While the feedback is being used, the line
shown on the screen is a series of segments made up of straight lines
between each of the points clicked by the user. If the user opts to add
no intermediate vertices, that is, they simply click at the start point
(Start), move the mouse (MoveTo), and double-click at the end
(AddPoint and Stop), then a polyline with only one segment will be
generated.

 INewLineFeedback : IDisplayFeedback Provides access to members that control the new line
display feedback.

Constraint: tagesriLineConstraints The constraint on this rubberbander.

AddPoint (in Point: IPoint) Creates a node at the given point.
Start (in Point: IPoint) Begins a normal feedback at the given point.
Stop: IPolyline Stops the feedback and returns the shape.

This coclass uses INewLineFeedback to Start, Stop, AddPoints, and
optionally apply a movement constraint. All other functionality is ac-
cessed through IDisplayFeedback.

The Constraint property is not functional at ArcGIS 8.1.

The new line feedback
can be used to create a
new single-part polyline

object with as many
vertices and segments

as required.

Display-
Feedback

IDisplayFeedback

NewLine-
Feedback

INewLineFeedback



604 • Exploring ArcObjects • Volume 1

The NewBezierCurveFeedback coclass behaves in the same basic way as
a NewLineFeedback in that the user is required to digitize a start point
and endpoint, as well as any intermediate vertices. However, the differ-
ence is the geometry of the line that is first displayed and then returned
by the feedback.

In a case where the same user input was supplied for both a
NewLineFeedback and a NewBezierCurveFeedback, both return geom-
etries would be PolyLine objects with the same vertices. However, the
segments forming these Polyline objects would be of type Line and
BezierCurve, respectively.

 INewBezierCurveFeedback :
 IDisplayFeedback

Provides access to members that control the new bezier
curve display feedback.

Constraint: tagesriLineConstraints The constraint on this rubberbander.

AddPoint (in Point: IPoint) Creates a node at the given point.
Start (in Point: IPoint) Begins a normal feedback at the given point.
Stop: IPolyline Stops the feedback and returns the shape.

Enumeration tagesriLineConstraints ESRI line constraint.

0 - esriLineConstraintsNone No line constraint.
1 - esriLineConstraintsVertical Constrain line to vertical.
2 - esriLineConstraintsHorizontal Constrain line to horizontal.

INewBezierCurveFeedback is used to Start, Stop, and AddPoints to a
NewBezierCurveFeedback object. Constraint is not yet implemented at
ArcGIS 8.1.

The use and behavior of the NewPolygonFeedback is again similar to the
NewLineFeedback; however, the geometry that is displayed and returned
is a closed Polygon. This means that when Stop is called, the start point
will be added again as the finish point, thus closing the shape. At least
three points should be added to the Feedback. AddPoint must be called
a minimum of twice after the first point has been added using Start;
otherwise a Null Pointer (Nothing in VB) is returned.

 INewPolygonFeedback :
 IDisplayFeedback

Provides access to members that control the new polygon
display feedback.

AddPoint (in Point: IPoint) Creates a node at the given point.
Start (in Point: IPoint) Begins a normal feedback at the given point.
Stop: IPolygon Stops the feedback and returns the shape.

Start, Stop, and AddPoint are the only three methods on this interface.
Start will add the first point, while AddPoint will add subsequent points
and segments, and Stop will return a Polygon if valid input, as described
above, has been given.

start point

last point

The new Bézier curve
feedback can be used

to create a new single-
path polyline object in a

similar manner to the
new line feedback. The
segments of this polyline will be Bézier

curves rather than simple line segments.

The new polygon
feedback is used to

create a new polygon in
the same way as

NewLineFeedback.
The feedback will automatically close the
polygon by adding a segment to join the

first and last points entered.

DISPLAY FEEDBACKS FOR SHAPING NEW GEOMETRIES

Display-
Feedback

IDisplayFeedback

NewBezier-
Curve-

Feedback

INewBezierCurve-
Feedback

Display-
Feedback

IDisplayFeedback

New-
Polygon-
Feedback

INewPolygon-
Feedback



Chapter 5 • Displaying graphics • 605

D
is

p
la

y

The new envelope
feedback is perhaps the

most useful and sim-
plest of the feedbacks.
It is used to allow the
user to create a new

envelope on the display, known as
“dragging a rectangle”.

The way in which INewEnvelopeFeedback2’s
methods would typically relate to mouse events

is given below.

MouseDown—Start (adds first corner point)

MouseMove—MoveTo (inherited from
IDisplayFeedback, moves the feedback

onscreen)

MouseUp—Stop (returns the resulting
geometry)

DISPLAY FEEDBACKS FOR SHAPING NEW GEOMETRIES

In an application using the NewEnvelopeFeedback coclass, a user would
typically define one corner of the envelope by pressing the mouse
button down and then, while holding the mouse button down, move
the mouse to the opposite corner and release it. This involves three
events being handled (Mouse_Down, Mouse_Move, and Mouse_Up) and is
a mechanism that is used in many areas with ArcMap, including the
Zoom In, Zoom Out, and Select Features tools.

 INewEnvelopeFeedback2 : IUnknown Provides access to members that control the creation of a
new envelope.

AspectRatio: Double The aspect ratio for the custom constraint type.
Constraint: esriEnvelopeConstraints The constraint on this rubberbander.

Start (in Point: IPoint) Begins a normal feedback at the given point.
Stop: IGeometry Stops the feedback and returns the shape.

INewEnvelopeFeedback2 has two methods, Start and Stop, and two proper-
ties, AspectRatio and Constraint. Other members, such as Display, MoveTo,
and Symbol, which are common to all of the feedbacks, are inherited
from IDisplayFeedback.

Start begins the feedback operation and takes the starting mouse loca-
tion, while Stop completes the operation.

The inherited MoveTo method should typically be called for each
MouseMove event between Start and Stop.

When the Stop method is called, it will return an IGeometry representing
a rectangular polygon, that is, a polygon with four segments in a
rectangle.

The maximum and minimum of this rectangle come from the coordi-
nates of the point given with Start and the point from the last MoveTo
method to be called. As a result, if MoveTo is never called, then an
empty geometry will be returned; the IsEmpty property from IGeometry
will return True.

The Constraint property allows you to specify how the feedback will
behave and whether or not the feedback is forced to have a particular
shape. The default value is zero, or no constraint.

If esriEnvelopeConstraintsSquare is applied, the feedback will be drawn
with its width equal to its height, and only vertical movement of the
mouse will affect the feedback’s shape.

Alternatively, if esriEnvelopeConstraintsAspect is used, the feedback will
be drawn using the current aspect ratio. In this case, if AspectRatio is
greater than 1, only horizontal movement of the mouse will affect the
feedback’s shape, while if AspectRatio is less than or equal to 1, then the
feedback’s shape will be altered by vertical mouse movement only.

The Constraint property can be set at any time but will not have any
effect until MoveTo is called.

INewEnvelopeFeedback2 supersedes INew-
EnvelopeFeedback since it takes into consider-

ation cases where the map’s display is rotated. It
does this by returning a rectangular IPolygon

instead of an IEnvelope when Stop is called—
when used with a rotated display it will return a

polygon with sides parallel to the axes of the
DisplayTransformation.

INewEnvelopeFeedback being used to track a
rectangle on a map display that is rotated by 45º

Display-
Feedback

IDisplayFeedback

New-
Envelope-
Feedback

INewEnvelope-
Feedback

INewEnvelope-
Feedback2



606 • Exploring ArcObjects • Volume 1

The new circle feed-
back is used to drag a

Circle on the display by
specifying a center

point and a radius. It
returns an

ICircularArc.

Enumeration
tagesriEnvelopeConstraints

ESRI envelope constraint.

0 - esriEnvelopeConstraintsNone No envelope constraint.
1 - esriEnvelopeConstraintsSquare Constrain envelope to square.
2 - esriEnvelopeConstraintsAspect Constrain envelope aspect ratio.

AspectRatio sets or returns the width-to-height ratio of a feedback that
has an AspectRatio constraint, esriEnvelopeConstraintsAspect. AspectRatio
is calculated as width divided by height, the default value is 1 (square),
and it can only be altered by using the AspectRatio property.

For example, if you wished to constrain your feedback to show an
envelope that is three times as long as it is high, you would first set the
feedback’s AspectRatio property to three, then set its Constraint property
to esriEnvelopeConstraintsAspect. Note that this property is only useful
with feedbacks that have their Constraint property set to
esriEnvelopeConstraintsAspect; it will not set or return the aspect ratio of
a feedback that has a constraint property set to either
esriEnvelopeConstraintsNone or esriEnvelopeConstraintsSquare.

The NewCircleFeedback allows the user to create a circular geometry on
the display. Typically, this would be done by clicking at the point where
the circle’s center is to be and then moving the mouse to specify the
circle’s radius.

 INewCircleFeedback : IDisplayFeedback Provides access to members that control the new circle
feedback object.

Start (in Point: IPoint) Begins a circular feedback at the given point.
Stop: ICircularArc Stops the feedback and returns the circle.

This very simple interface has only two methods of its own: Start and
Stop. Like the other feedback interfaces, all other functionality is inher-
ited from IDisplayFeedback. The Start method is used to specify the
circle’s center point, and Stop returns a new ICircularArc. The radius of
the circle created depends on the distance between the Start point and
the last point used in the inherited MoveTo method.

Note that the ICircularArc, which is returned from Stop, can be con-
verted into an IPolygon by creating a new Polygon object, then adding
the ICircularArc using the AddSegment method on the
ISegmentCollection interface.

DISPLAY FEEDBACKS FOR SHAPING NEW GEOMETRIES

Display-
Feedback

IDisplayFeedback

NewCircle-
Feedback

INewCircleFeedback



Chapter 5 • Displaying graphics • 607

D
is

p
la

y

DISPLAY FEEDBACKS FOR MOVING POINTS

The polygon move
point feedback is for
use with an existing

polyline or polygon
geometry. This feed-
back allows an indi-

vidual point (vertex) to be moved along
with its connecting segments.

The BezierMovePointFeedback and LineMovePointFeedback coclasses
allow the individual vertex of a Polyline object to be interactively moved
on the display. They take an input Polyline and return a copy altered
with the new vertex location. When the feedback is moved, the new
vertex location is drawn along with the new locations of the adjacent
segments—the type of segment used varies depending on which coclass
is used.

With the LineMovePointFeedback object, these segments are simple Line
objects, while with the BezierMovePointFeedback object, these segments
are BezierCurve objects. This difference affects both the way in which
the feedback is drawn and the returned geometry. Both of these
coclasses use the ILineMovePointFeedback interface to Start and Stop the
feedback. This interface inherits from IDisplayFeedback, which it uses
for all other behavior.

 ILineMovePointFeedback :
 IDisplayFeedback

Provides access to members that control the line move
point display feedback.

Start (in Polyline: IPolyline, in
pointIndex: Long, in Point: IPoint)

Begins a move point feedback of the given shape.  PointIndex is a
zero based index into the polyline.

Stop: IPolyline Stops the feedback and returns the shape.

This interface is implemented by both LineMovePointFeedback and
BezierMovePointFeedback. The Start method is used to initiate the feed-
back operations, taking the input polyline, the index of the vertex to be
moved, and the starting point (mouse location from which to calculate
the movement). If the vertex index is invalid, then an error will be
raised. Each time MoveTo is called, the vertex in question will be posi-
tioned at the MoveTo point, and the segments immediately adjacent to
the vertex will also be redrawn. As stated above, the type of segments
that are created, and therefore the way in which these segments both
move and are drawn, depend on the coclass being used.

Like the LineMovePointFeedback and BezierMovePointFeedback
coclasses, the PolygonMovePointFeedback coclass allows the user to
move a vertex within an existing geometry—in this case, the geometry is
a polygon. When the vertex is moved, the two adjoining segments are
moved to use the new vertex location and are redrawn as lines.

 IPolygonMovePointFeedback :
 IDisplayFeedback

Provides access to members that control the polygon move
point display feedback.

Start (in Polygon: IPolygon, in
pointIndex: Long, in Point: IPoint)

Begins a move point feedback of the given shape.  PointIndex is a
zero based index into the polygon.

Stop: IPolygon Stops the feedback and returns the shape.

The IPolygonMovePointFeedback interface is very similar to
ILineMovePointFeedback. It is used to start the feedback, which requires
an input polygon, vertex index, and start location. It has a Stop method
that stops the feedback and returns the new polygon geometry.

BezierMovePoint-
Feedback and Line-

MovePointFeedback
allow a vertex within an

existing polyline object
to be moved interac-

tively and the line to be
updated with the new
vertex and segments.

The updated segments
will either be Line or BezierCurve

objects depending on the coclass used.

ILineMovePoint-
Feedback

LineMove-
Point-

Feedback

ILineMovePoint-
Feedback

Display-
Feedback

IDisplayFeedback

BezierMove-
Point-

Feedback

Polygon-
MovePoint-
Feedback

IPolygonMovePoint-
Feedback

Display-
Feedback

IDisplayFeedback



608 • Exploring ArcObjects • Volume 1

DISPLAY FEEDBACKS FOR MOVING ENTIRE GEOMETRIES

The feedbacks MovePointFeedback, MoveLineFeedback,
MoveEnvelopeFeedback, and MovePolygonFeedback are used for moving
existing geometries without altering their shapes. The geometries are
offset from the current position, but no relative coordinates are altered.

Each of these feedbacks implements its own interface; these interfaces
are very similar to one another among this set of feedbacks.

Each interface has two methods, Start and Stop, but like the other feed-
back interfaces, they make use of the methods and properties inherited
from IDisplayFeedback, such as MoveTo and Display.

To Start a feedback requires an input shape, which is a geometry object
of the correct type, and a starting mouse location, which is a Point
object.

Each time MoveTo is called, the feedback draws a wireframe representa-
tion of the geometry, which is offset from the input shape by the differ-
ence between the starting location of the mouse and current location of
the mouse.

When Stop is called, a new object is returned, which is the geometry of
the wireframe drawn by the previous MoveTo.

These are the interfaces for moving entire geometries:

 IMovePointFeedback :
 IDisplayFeedback

Provides access to members that control the move point
feedback.

Start (in Point: IPoint, in clickPoint:
IPoint)

Begins a move feedback of the given shape.

Stop: IPoint Stops the feedback and returns the shape.

The IMovePointFeedback interface is used for moving points.

 IMoveLineFeedback : IDisplayFeedback Provides access to members that control move line
feedback.

Start (in Polyline: IPolyline, in Point:
IPoint)

Begins a move feedback of the given shape.

Stop: IPolyline Stops the feedback and returns the shape.

The IMoveLineFeedback interface is used for moving lines.

 IMoveEnvelopeFeedback :
 IDisplayFeedback

Provides access to members that control the move
envelope feedback.

Start (in Envelope: IEnvelope, in Point:
IPoint)

Begins a move feedback of the given shape.

Stop: IEnvelope Stops the feedback and returns the shape.

The IMoveEnvelopeFeedback interface is used for moving rectangles.

 IMovePolygonFeedback :
 IDisplayFeedback

Provides access to members that control the move polygon
feedback.

Start (in Polygon: IPolygon, in Point:
IPoint)

Begins a move feedback of the given shape.

Stop: IPolygon Stops the feedback and returns the shape.

The IMovePolygonFeedback interface is used for moving polygons.

IMovePoint-
Feedback MovePoint-

Feedback

IMoveLine-
Feedback MoveLine-

Feedback

IMoveEnvelope-
Feedback

Move-
Envelope-
Feedback

IMovePolygon-
Feedback

Move-
Polygon-
Feedback

Display-
Feedback

IDisplayFeedback

The move point, line, envelope, and
polygon feedbacks are used to allow

users to move a geometry on the display.
Upon completion, the feedback objects
will return a copy of the moved shape.

Applying the move
point feedback

Applying the move line
feedback

Applying the move
envelope feedback

Applying the move
polygon feedback



Chapter 5 • Displaying graphics • 609

D
is

p
la

y

You can use a MoveGeometryFeedback to interactively move multiple
geometry objects on the display at the same time. Each geometry that is
added to the feedback is drawn using a wireframe and is moved (along
with any other geometry objects that have been added) in a similar way
to the individual “Move” feedbacks, such as MovePointFeedback and
MoveLineFeedback.

The objects that are added to the feedback may have different
GeometryTypes so that a Point object may be moved along with Polygon
objects and Envelope objects. However, the behavior of the feedback
differs from the simple “Move” feedbacks since it does not return a new
object on completion. Therefore, if you wished to move the elements’
or features’ geometries, you would have to calculate the offset of the
feedback (difference between the start and end mouse locations) and
apply this offset to each of the geometries in turn.

For example, this could be done by caching the starting mouse location,
comparing this to the final mouse location to calculate the delta x and
delta y, and moving each of the geometries in question using the Move
method on the ITransform2d interface.

 IMoveGeometryFeedback :
 IDisplayFeedback

Provides access to members that control feedback for
moving a group of geometry.

AddGeometry (in Geometry: IGeometry) Adds a geometry to be moved.
ClearGeometry Clears all the geometries.
Start (in Anchor: IPoint) Starts a move.

IMoveGeometryFeedback is implemented by the MoveGeometryFeedback
coclass and has three methods, AddGeometry, Start, and ClearGeometry.
Other functionality is handled by the inherited IDisplayFeedback inter-
face and its members, MoveTo, Refresh, Display, and Symbol.

AddGeometry is used to add an IGeometry to an existing
MoveGeometryFeedback and should be called for each geometry object
that you wish to include in the feedback operation.

Start begins the feedback process, taking a starting anchor point (IPoint).
This anchor point is used to calculate the delta x and delta y offset the
first time MoveTo is called—subsequent offsets being calculated using
the current and previous MoveTo points. Geometries cannot be added
after Start has been called.

ClearGeometry simply removes any previously added geometries from
the feedback but does not remove the feedback itself.

MOVEGEOMETRYFEEDBACK COCLASS

Display-
Feedback

IDisplayFeedback

Move-
Geometry-
Feedback

IMoveGeometry-
Feedback

Allows multiple geometry objects of
different types to be displayed and

moved at the same time. This feedback is
for display purposes only, and no objects

are returned upon completion.

The feedback display from moving multiple
geometries



610 • Exploring ArcObjects • Volume 1

The move image
feedback allows the

creation of a feedback
that shows map

elements (or features)
being moved along

with their symbolization by drawing these
objects into an offscreen display and then

drawing this display each time the
feedback is moved to a new location.

The MoveImageFeedback coclass is used to interactively move a symbol-
ized version of a geometry or geometries on the display. The feedback
has its own offscreen display into which you can draw your symbolized
geometries. Each time the feedback is moved, this offscreen display is
drawn centered at the new location. This means that to the user, the
geometries will appear to be moving, for example, a Tree or a Pipe rather
than simply a Point or a Line. Features, map elements, and selections
may all be added to the feedback.

  IMoveImageFeedback2 : IUnknown Provides access to members that control feedback for
moving an image.

Bounds: IEnvelope Sets the bounds of the image.
Display: IDisplay Returns the display to draw into.
PolygonBounds: IPolygon Sets the bounds of the image.

ClearImage Clears the image.
Start (in Anchor: IPoint) Starts a move.

IMoveImageFeedback2 is implemented by the MoveImageFeedback
coclass, and it has three properties, Display, Bounds, and
PolygonBounds and two methods, Start and ClearImage.

Display is a Get property that allows access to the feedback’s offscreen
display. When a new MoveImageFeedback is created, it automatically
creates a new one of these displays—it is to this that the various things
to be moved (elements, features, and others) are drawn.

The feedback’s offscreen display can be accessed as shown below,
where pDisp is an object declared as IDisplay and pMvImageFeed is an
IMoveImageFeedback.

    Set pDisp = pMvImageFeed.Display

Then, the mechanism for drawing to this display depends on what is to
be drawn.

For map elements, the Draw method on the IElement interface may be
used as  follows, where pDrawElem is an IElement that you wish to add
to the feedback:

    pDrawElem.Draw pDisp, Nothing

For features, it is slightly more complex since a Symbol should be pro-
vided and a QI will be required for IFeatureDraw on the Feature so that
the Draw method may be called. In the following code example, pFeat
is an IFeature that is to be added to the feedback.

    Dim pFeatDraw As IFeatureDraw

    Dim pSimpleFillSym As ISimpleFillSymbol

    Set pSimpleFillSym = New SimpleFillSymbol

    Set pFeatDraw = pFeat

    pFeatDraw.Draw 1, pDisp, pSimpleFillSym, False, Nothing, esriDSNormal

The Bounds and PolygonBounds properties define the area to be cov-
ered by the feedback on the screen when the feedback operation be-
gins. These are also used to determine the size of the offscreen display
in map units. These two properties serve a similar purpose, so only one
or the other should be used.

MOVEIMAGEFEEDBACK COCLASS

Care should be taken when using the Display
property since there is also a Display property

on the inherited IDisplayFeedback interface
that serves a very different purpose. In order to

access the Display property for the
IDisplayFeedback interface, you should explicitly
QI for that interface; otherwise, it will default to

the IMoveImageFeedback version of
the property.

IMoveImageFeedback2 supersedes IMove-
ImageFeedback since it has all of the methods
and properties provided by the original interface

as well as providing one additional
property itself.

Display-
Feedback

IDisplayFeedback

MoveImage-
Feedback

IMoveImageFeedback
IMoveImageFeedback2



Chapter 5 • Displaying graphics • 611

D
is

p
la

y

Bounds is the more simplistic of the two since it expects the input
bounds as an IEnvelope and is therefore less suited for a situation where
the map display is rotated.

PolygonBounds effectively supersedes Bounds and takes an IPolygon,
thus allowing the bounds of geometries to be used, even if they are
rotated.

For situations where multiple geometries are to be added to the feed-
back, the shapes or envelopes of these can be combined in a union to
create a larger polygon or envelope that covers all of them. If neither of
these properties is set, then an offscreen display will be created that
corresponds in size to the whole of the Map object’s Display; this may
adversely affect performance and therefore is not recommended.

IMoveImageFeedback2 supersedes IMoveImageFeedback since it has all
of the methods and properties provided by the original interface as well
as providing one additional property itself.

Start begins the feedback operation. It should be called once all of the
drawing has been done to the feedback’s display. Once Start has been
called, the feedback can be moved using the inherited MoveTo method,
which causes it to be redrawn at a new location.

The ClearImage method clears the offscreen display of the
MoveImageFeedback object. Once this has been called, the feedback will
no longer be visible but will still accept MoveTo requests. It is often used
in combination with the inherited Refresh method, which is useful if the
user has cancelled the feedback operation (for example, by pressing the
Esc key) or when the feedback operation is complete.

The following code shows how a MoveImageFeedback might be used to
show the movement of an IElement using the MouseDown and
MouseMove events of a UIToolControl. This code does not actually move
the element itself—this could be done in the MouseUp event by compar-
ing the start and finish mouse locations to calculate the delta x and
delta y and using the Move method on the IGraphicElement interface.

These objects are member variables: m_pMvImageFeed as IMoveImage-
Feedback. The feedback itself, m_pSelElem As IElement, is assumed to be
a valid element that you wish to show in the feedback, such as from the
ActiveView’s BasicGraphicsLayer.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

   ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pPnt As IPoint ' The current mouse location in map units

  Dim pMXDoc As IMxDocument ' The current document

  Dim pEnvBnds As IEnvelope ' Bounds of the element (including symbology)

  Dim pDispFeed As IDisplayFeedback, pDisp As IDisplay

  Set pMXDoc = ThisDocument ' QI for the MXDocument interface

  ' Transform the current mouse location into map coordinates

  Set pPnt = _

   pMXDoc.ActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

MOVEIMAGEFEEDBACK COCLASS



612 • Exploring ArcObjects • Volume 1

  ' Create a new feedback object

  Set m_pMvImageFeed = New MoveImageFeedback

  ' QI for the IDisplayFeedback interface (because of ambiguity between

  ' the Display property of IMoveImageFeedback and IDisplayFeedback)

  Set pDispFeed = m_pMvImageFeed

  ' Use this interface to set the Display property to point to the

  ' ActiveView’s Screendisplay

  Set pDispFeed.Display = pMXDoc.ActiveView.ScreenDisplay

  ' Now we can get a handle on the new feedback’s Display. This display is

  ' then used to draw the element into (causing the element to be drawn

  ' when moving the feedback)

  Set pDisp = m_pMvImageFeed.Display

  ' Create a new envelope and use this to get the element’s bounds

  ' (includes symbology) based upon the feedback’s display

  Set pEnvBnds = New Envelope

  m_pSelElem.QueryBounds pDisp, pEnvBnds

  m_pMvImageFeed.Bounds = pEnvBnds ' Set the feedback’s bounds

  m_pSelElem.Draw pDisp, Nothing ' Draw the element into off-screen display

  m_pMvImageFeed.Start pPnt ' Start at the current mouse location

End Sub

Private Sub UIToolControl1_MouseMove(ByVal button As Long, _

   ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  ' Check that we are using a feedback

  If Not m_pMvImageFeed Is Nothing Then

    Dim pPnt As IPoint

    Dim pMXDoc As IMxDocument

    Set pMXDoc = ThisDocument ' QI for the MXDocument Interface

    ' Transform the current mouse location into map coordinates

    Set pPnt = _

     pMXDoc.ActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

    m_pMvImageFeed.MoveTo pPnt ' Move the feedback to the current location

  End If

End Sub

MOVEIMAGEFEEDBACK COCLASS



Chapter 5 • Displaying graphics • 613

D
is

p
la

y

RESHAPEFEEDBACK COCLASS

The ReshapeFeedback allows the user to reshape an object that supports
the IPath interface. Such objects are the Path and Ring objects, which
can represent one part of a Polyline or Polygon, respectively. The reshap-
ing process can behave in two quite separate ways depending on how
the Stretch parameter is set.

 IReshapeFeedback : IDisplayFeedback Provides access to members that control the reshape
display feedback.

Start (in Path: IPath, in Index: Long, in
stretch: Boolean)

Begins a feedback operation at the point.

Stop: IPath Finishes a reshape feedback operation.

The IReshapeFeedback interface has two methods, Start and Stop.

The Start method takes the input geometry as an IPath, the in-
dex of the vertex that is being used, and a Boolean describing
how the feedback should behave. The Stop method returns an
IPath, which is a new object.

Both Path and Ring objects, which represent single parts of
Polyline objects and Polygon objects, respectively, support the
IPath interface. Therefore, the object underlying the returned
IPath will be either a Ring or a Path, depending on the input
object’s class. Like the other feedback interfaces, IReshape-
Feedback inherits from IDisplayFeedback, which it uses for mov-
ing, refreshing, symbolizing, and setting up the display. The
behavior of the feedback depends on the combined factors of
vertex index, stretch parameter, and whether the input object is a
Path or a Ring.

If stretching is set (a True value for the Stretch parameter), then
the whole shape may be scaled or rotated by the feedback and
all of the segments may be altered. Conversely, if Stretch is False,
then only one vertex and its adjacent segments may be altered.
If stretching is used, then the shape is rotated and/or scaled
around the start and endpoints of the path. For a Ring, these two
points will be coincident and the shape can therefore only un-
dergo a translation—it will maintain its relative shape. For a
Path, however, this may not be the case and, as a result, the
shape may become transformed or have its actual “shape”
changed.

Display-
Feedback

IDisplayFeedback

Reshape-
Feedback

IReshapeFeedback

The reshape feedback reshapes an
IPath by either rotating and shifting the

whole shape or just the segments
adjacent to a given vertex.

Reshaping feedback with the stretch option set

Reshaping feedback with the stretch option off



614 • Exploring ArcObjects • Volume 1

A ResizeEnvelopeFeedback is used for resizing an existing IGeometry that
is either an IEnvelope or a (rectangular) IPolygon. These geometries can
be resized by moving their edges and corners. The corner or edge to be
moved by the feedback operation must be specified, and you can also
optionally apply a movement constraint, such as forcing the feedback’s
shape to be square.

 IResizeEnvelopeFeedback2 :  IUnknown Provides access to members that control the resize of an
envelope.

AspectRatio: Double The aspect ratio for the custom constraint type.
Constraint: tagesriEnvelopeConstraints The constraint on this rubberbander.
ResizeEdge: tagesriEnvelopeEdge The edge to rubberband.

Start (in Envelope: IGeometry, in Point:
IPoint)

Begins a resize feedback of the given shape.

Stop: IGeometry Stops the feedback and returns the shape.

The IResizeEnvelopeFeedback2 interface has two methods, Start and Stop.

Start is used to begin the feedback operation onscreen; it takes the
starting mouse location as an IPoint and an input geometry as either an
IEnvelope or a rectangular IPolygon (an IPolygon with four segments and
a rectangular shape).

The Stop method completes the operation and returns an IGeometry that
represents a rectangular Polygon coclass. The interface also has three
properties: ResizeEdge, Constraint, and AspectRatio.

Enumeration tagesriEnvelopeEdge ESRI envelope edge location.

0 - esriEnvelopeEdgeTopLeft Top left envelope edge.
1 - esriEnvelopeEdgeTopMiddle Top middle envelope edge.
2 - esriEnvelopeEdgeTopRight Top right envelope edge.
3 - esriEnvelopeEdgeMiddleLeft Middle left envelope edge.
4 - esriEnvelopeEdgeMiddleRight Middle right envelope edge.
5 - esriEnvelopeEdgeBottomLeft Bottom left envelope edge.
6 - esriEnvelopeEdgeBottomMiddle Bottom middle envelope edge.
7 - esriEnvelopeEdgeBottomRight Bottom right envelope edge.

ResizeEdge simply allows you to specify which edge or corner is to be
moved by the feedback.

The Constraint property allows you to specify how the feedback will
behave and whether or not the feedback is forced to have a particular
shape. The default value is no constraint, or esriEnvelopeConstraintsNone.

If esriEnvelopeConstraintsSquare is applied, the feedback will be drawn
with its width equal to its height, and only vertical movements of the
mouse will affect the feedback’s shape.

Alternatively, if esriEnvelopeConstraintsAspect is used, the feedback will
be drawn, maintaining the aspect ratio of the input IGeometry. The
Constraint property can be set at any time but will not have any effect
until MoveTo is called. Note that the AspectRatio property is not fully
implemented at this release, and therefore its value will not affect the
feedback operation.

Display-
Feedback

IDisplayFeedback

Resize-
Envelope-
Feedback

IResizeEnvelope-
Feedback

IResizeEnvelope-
Feedback2

The resize envelope feedback is used for
resizing an existing Envelope object.

Use the ResizeEdge property to specify
which edge or corner to move. Con-

straints may optionally be used to further
control the behavior of the feedback.

RESIZEENVELOPEFEEDBACK COCLASS

IResizeEnvelopeFeedback2 supersedes IResize-
EnvelopeFeedback since it takes into consider-

ation cases where either the map’s display or
the input geometry is rotated and allows the

rotation of the input geometry to be maintained.
As a result, some of the interfaces used as input

and return types differ from those used in
IResizeEnvelopeFeedback. For example, the

Stop method returns an IGeometry represent-
ing an IPolygon, rather than an IEnvelope.

IResizeEnvelopeFeedback being used to resize
a RectangleElement that is rotated by 60º



Chapter 5 • Displaying graphics • 615

D
is

p
la

y

Enumeration
tagesriEnvelopeConstraints

ESRI envelope constraint.

0 - esriEnvelopeConstraintsNone No envelope constraint.
1 - esriEnvelopeConstraintsSquare Constrain envelope to square.
2 - esriEnvelopeConstraintsAspect Constrain envelope aspect ratio.

Like other feedback interfaces, IResizeEnvelopeFeedback inherits from
IDisplayFeedback and uses that interface for common feedback func-
tionality, such as symbolizing, moving, and setting the display property.

RESIZEENVELOPEFEEDBACK COCLASS



616 • Exploring ArcObjects • Volume 1

The stretch line feed-
back can be used to

scale and rotate a
polyline object about its
FromPoint or ToPoint.

The new multi-
point feedback

draws a line
between each

point of
multipoint and the mouse location.

STRETCHLINEFEEDBACK AND NEWMULTIPOINTFEEDBACK

You can use a StretchLineFeedback object to scale or rotate an existing
Polyline object. The scaling and rotation is done about an anchor point.
The feedback is moved by shifting the nonanchored end of the polyline
by the difference (delta x and delta y) between the current and original
mouse locations. The whole polyline is moved to match up with this
using a rigid stretch and, as a result, may be both scaled and rotated.

 IStretchLineFeedback :
 IDisplayFeedback

Provides access to members that control the stretch line
display feedback.

Anchor: IPoint Sets the anchor point of the curve.

Start (in Polyline: IPolyline, in Point:
IPoint)

Begins a move of the given shape (a polyline).

Stop: IPolyline Stops the feedback and returns the polyline.

The IStretchLineFeedback  interface has two methods, Start and Stop, and a
write-only property, Anchor. Like other feedbacks, Start begins the feed-
back operation and takes an input Polyline object and a Point, which
represents the starting mouse location in map units. Stop simply completes
the feedback operation and returns a new Polyline object, which is a copy
of the input that has been scaled and rotated as necessary.

The Anchor property is used to specify which end to use as the fixed
point and can be set to either the Polyline object’s FromPoint or
EndPoint. If this property is not specified, then the default is to use the
FromPoint as the anchor. The Anchor property should only be set after
the Start method has been called. Other functionality is inherited from
the IDisplayFeedback interface.

A NewMultiPointFeedback, unlike many other feedback objects, does
not return a new geometry or alter the input geometry. Instead, it is used
for visual feedback only and relies on you to update a geometry when
appropriate. It takes a multipoint object as input and then, when MoveTo
is called, it draws a line segment between the current mouse location
and each of the points in the multipoint. It should not be confused with
the other “New” feedbacks, such as NewLineFeedback, as it serves a very
different purpose.

 INewMultiPointFeedback :
IDisplayFeedback

Provides access to members that control the new multi-
point display feedback.

Start (in Points: IPointCollection, in
Point: IPoint)

Begins a normal feedback at the given point.

Stop Stops the feedback and returns the shape.

INewMultiPointFeedback has only two methods, Start and Stop.

Start takes two input parameters: an object that supports IMultipoint and
a starting location as an IPoint. When Start is called, a series of line
segments are drawn onto the display, joining each point within the
IMultipoint to the starting location. Each time MoveTo (inherited from
IDisplayFeedback) is called, these lines are updated to join the
multipoint points to the new mouse location. The Stop method does not
return any objects but simply tells the feedback that operation is com-
plete and to stop drawing and moving.

Display-
Feedback

IDisplayFeedback

StretchLine-
Feedback

IStretchLineFeedback

Display-
Feedback

IDisplayFeedback

New-
MultiPoint-
Feedback

INewMultiPoint-
Feedback



Chapter 5 • Displaying graphics • 617

D
is

p
la

y

A VertexFeedback object allows one or more individual segments to be
moved on the display by the user. Like the NewMultiPointFeedback, the
VertexFeedback does not return an object at the end of the operation
and is used for visual feedback only. The segments in question don’t
need to belong to the same geometry or even type of geometry. This
allows, for example, a segment from a polygon to be moved along with
some segments from a polyline or, alternatively, the moving of vertices
(and segments) that are part of a shared polygon boundary.

 IVertexFeedback : IDisplayFeedback Provides access to members that control the vertex
feedback.

AddSegment (in Segment: ISegment, in
fromPointIsAnchor: Boolean)

Adds an edge to rubberband.

The IVertexFeedback interface has only one member, the AddSegment
method, which adds the segments and specifies which end to use as the
anchor point.

Each time AddSegment is called, a check is made to see if the segment
has already been added; if it has, then it is not added a second time.
The methods used to move, symbolize, refresh, and setup the display
are accessed through the inherited IDisplayFeedback interface. Since
there is no Start method, the first call to MoveTo will begin the feedback
operation, that is, draw the feedback, and the feedback will be redrawn
with each subsequent MoveTo. To finish the operation, the feedback
object should be cleared and the display refreshed.

The following Visual Basic example shows how you can use the
IVertexFeedback interface to move segments from two different Polyline
geometries. m_pVertexFeed represents the feedback object itself and is a
member variable declared as IVertexFeedback, so it can be accessed in
all of the tool’s mouse events. The code assumes that you already have
two pairs of segments (one pair from each of polylines A and B) that
you wish to add to the feedback. These are represented by pLnASeg1,
pLnASeg2, pLnBSeg1, and pLnBSeg2, which are declared as ISegment.

The following code would be placed in a tool’s Mouse_Down event to
initiate the feedback operation.

  Dim pMXDoc As IMxDocument

  Dim pPnt As IPoint

  ' QI for the IMXDocument interface

  Set pMXDoc = ThisDocument

  ' Get the current mouse location in Map Units

  Set pPnt = _

      pMXDoc.ActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

  ' Create a new VertexFeedback

  Set m_pVertexFeed = New VertexFeedback

  ' Set the Feedback's display property (to the ActiveView's ScreenDisplay)

Vertex feedbacks are
used to alter paths

and rings by moving
their vertices and any

adjacent segments.
Segments are added

one by one with either their FromPoint
or ToPoint as an anchor. Multiple

segments, which may come from differ-
ent geometry objects, can be moved at

the same time. No geometry objects are
returned on completion.

VERTEXFEEDBACK COCLASS

Display-
Feedback

IDisplayFeedback

Vertex-
Feedback

IVertexFeedback



618 • Exploring ArcObjects • Volume 1

VERTEXFEEDBACK COCLASS

In this example, the user has hit point X, which
is the endpoint of four different segments (two

each from polylines A and B). Two of these
segments are identical, while the other two are

different.

The two different segments are both added to
the feedback and become 1 and 2 in the
feedback. Conversely, one of the duplicate

segments is automatically rejected by
AddSegment, the remaining one becoming 3 in

the feedback object. This rejection is useful
because if two identical segments were added,

the feedback would not draw correctly. However,
care should still be taken when adding segments

that are the reverse of one another, as these
will not be rejected.

  Set m_pVertexFeed.Display = pMXDoc.ActiveView.ScreenDisplay

  ' Add the required segments to the feedback...

  ' Line A, Segment 1, using FromPt as anchor

  m_pVertexFeed.AddSegment pLnASeg1, True

  ' Line A, Segment 2, using ToPt as anchor

  m_pVertexFeed.AddSegment pLnASeg2, False

  ' Line B, Segment 1, using FromPt as anchor

  m_pVertexFeed.AddSegment pLnBSeg1, True

  ' Line B, Segment 2, using ToPt as anchor

  m_pVertexFeed.AddSegment pLnBSeg2, False

  ' Start the feedback operation by moving to the start point

  m_pVertexFeed.MoveTo pPnt

The code below is used to move the feedback and should be placed in
the Mouse_Move event of a tool.

  If Not m_pVertexFeed Is Nothing Then ' Check that user is using feedback

    Dim pMXDoc As IMxDocument

    Dim pPnt As IPoint

    ' QI for the IMXDocument interface

    Set pMXDoc = ThisDocument

    ' Get the current mouse location in Map Units and move the feedback

    Set pPnt = _

      pMXDoc.ActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

    m_pVertexFeed.MoveTo pPnt

  End If

The Mouse_Up event of the tool would be used to complete the feed-
back operation using the following code:

  If Not m_pVertexFeed Is Nothing Then 'Check that user is using feedback

    Dim pMXDoc As IMxDocument

    ' QI for the IMXDocument interface

    Set pMXDoc = ThisDocument

    ' Refresh the ActiveView

    pMXDoc.ActiveView.Refresh

    ' Clear feedback object

    Set m_pVertexFeed = Nothing

  End If



Chapter 5 • Displaying graphics • 619

D
is

p
la

y

The GroupFeedback is different from the other Feedback objects—rather
than being a feedback in its own right, it is simply a holder for one or
more member Feedback objects.

The GroupFeedback supports the ISet interface, which allows these mem-
ber feedbacks to be added, removed, found, and iterated through. All of
the Feedback objects themselves support the IDisplayFeedback, which is
used to handle common areas of functionality, such as refreshing, mov-
ing, and symbolizing. The GroupFeedback also supports the
IDisplayFeedback interface, but when one of these methods or properties
is called, the GroupFeedback simply passes this on to its member objects.

For example, if the MoveTo method was called on a GroupFeedback, then
it would in turn call MoveTo on each of its member Feedback objects. This
avoids having to call the method multiple times (once for each feedback)
and can be very useful if two or more feedbacks are being used in con-
junction—for example, if you wished to show two Envelope objects being
resized simultaneously or to move a vertex that was shared by multiple
geometries. The Feedback objects that can be added to the GroupFeedback
should be instantiated before they are added.

The following code shows a new GroupFeedback being created along with
two member feedbacks (a NewLineFeedback and a
NewBezierCurveFeedback). The two member feedbacks are started indi-
vidually and then added to the GroupFeedback, which is then used to
collectively set up their Display and Symbology properties. This same
mechanism could be used for applying the MoveTo method in the
MouseMove event. In this code, pPnt is an IPoint representing the starting
point in map units, and pDisp is an IDisplay representing the ActiveView’s
ScreenDisplay.

  Dim pGrpFeedDisp As IDisplayFeedback

  Dim pGrpFeedSet As ISet

  Dim pNewLineFeedback As INewLineFeedback

  Dim pNewBzFeedback As INewBezierCurveFeedback

  ' Create a new GroupFeedback object (with the IDisplayFeedback interface)

  Set pGrpFeedDisp = New GroupFeedback

  Set pGrpFeedSet = pGrpFeedDisp ' QI for the ISet interface

  ' Create 2 new feedbacks to add to GroupFeedback

  Set pNewLineFeedback = New NewLineFeedback

  Set pNewBzFeedback = New NewBezierCurveFeedback

  ' Set the new member Feedback's StartPoints

  pNewLineFeedback.Start pPnt

  pNewBzFeedback.Start pPnt

  ' Add the new member Feedbacks to the GroupFeedback

  pGrpFeedSet.Add pNewLineFeedback

  pGrpFeedSet.Add pNewBzFeedback

  Set pGrpFeedDisp.Display = pDisp

GROUPFEEDBACK COCLASS

Display-
Feedback

IDisplayFeedback

Group-
Feedback

ISet

The group feedback is a special feed-
back that allows many different feed-

backs to be controlled together. Any
properties set or methods called through

IDisplayFeedback are passed on to
every member, thus reducing the amount

of code.



620 • Exploring ArcObjects • Volume 1

CALLOUTFEEDBACK COCLASS

A callout is a graphic that may be drawn as a background behind a
TextElement. The Callout may also have a leader line to an anchor point.

A CalloutFeedback may be used to move either the Callout itself or the
AnchorPoint. It returns a Polyline representing the new outline of the
callout. This Polyline can be useful; however, in order to move the
Callout, it is simpler to calculate the shift in x and y between the start
and endpoints of the feedback operation, then move the callout by the
specified amount.

 ICalloutFeedback : IDisplayFeedback Callout feedback object.

MoveAnchorTo (in Point: IPoint) Moves the anchor point to the given point.
Start (in Symbol: ISymbol, in Geometry:

IGeometry, in Point: IPoint)
Begins a feedback of the given symbol.

Stop: IPolyline Stops the feedback and returns the shape.

The ICalloutFeedback interface has three methods: Start, Stop, and
MoveAnchorTo, as well as all of those that it inherits from
IDisplayFeedback interface. As mentioned above, the CalloutFeedback
can be used in two distinct ways—moving the Callout itself and moving
the AnchorPoint.

The Start and Stop methods are used for both types of operation, while
MoveAnchorTo is only used as an alternative to MoveTo when manipu-
lating the AnchorPoint. Typically, an application detects whether or not
a user has hit the Callout or its AnchorPoint, and this determines what
operation is carried out.

The code below demonstrates how to use the ICalloutFeedback inter-
face. The variables m_pCalloutfeedback and m_PtStart are declared as
ICalloutFeedback and IPoint, respectively. m_pSelElem is declared as an
IElement and represents a TextElement with an IPoint geometry and a
Callout background that you wish to move. m_BoolHitAnchor represents
a Boolean that specifies whether to move the Callout or the
AnchorPoint.

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pMxDoc As IMxDocument

  Dim pTxtElem As ITextElement

  Dim pGeom As IGeometry

  Dim pHitTest As IHitTest

  Dim pFormTextSym As IFormattedTextSymbol

  'Get the document's BasicGraphicsLayer

  Set pMxDoc = ThisDocument

  ' Get the current mouse location in Map Units

  Set m_PtStart = _

      pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

  ' QI for ITextElement from IElement

  Set pTxtElem = m_pSelElem

  ' Get the TextSymbol and QI for IFormattedTextSymbol

  Set pFormTextSym = pTxtElem.Symbol

Display-
Feedback

IDisplayFeedback

Callout-
Feedback

ICalloutFeedback

A callout feedback is used to modify a
callout object. For example, you can

modify the display of a TextElement by
moving either the body of the callout or

the AnchorPoint.

Using a CalloutFeedback object to move the
anchorpoint of a TextElement’s Callout

Using a CalloutFeedback object to move the
body of Callout box



Chapter 5 • Displaying graphics • 621

D
is

p
la

y

  ' Get the Element's geometry (either an IPoint or IPolyline)

  Set pGeom = m_pSelElem.Geometry

  ' Create a new CalloutFeedback

  Set m_pCalloutfeedback = New CalloutFeedback

  'Set the feedback's display

  Set m_pCalloutfeedback.Display = pMxDoc.ActiveView.ScreenDisplay

  ' Start the feedback, supplying the Callout's TextSymbol,

  ' Geometry and Starting location

  m_pCalloutfeedback.Start pFormTextSym, pGeom, m_PtStart

End Sub

Private Sub UIToolControl1_MouseMove(ByVal button As Long, _

        ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  If Not m_pCalloutfeedback Is Nothing Then

    Dim pPnt As IPoint

    Dim pMxDoc As IMxDocument

    ' QI for MXDocument

    Set pMxDoc = ThisDocument

    ' Get the current mouse location in Map Units and...

    Set pPnt = _

      pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

    If m_BoolHitAnchor Then ' Move the AnchorPoint

      m_pCalloutfeedback.MoveAnchorTo pPnt

    Else ' Move the Feedback itself

      m_pCalloutfeedback.MoveTo pPnt

    End If

  End If

End Sub

The MouseUp event of the UIToolControl can be used to modify the
TextElement with the updated Callout.

CALLOUTFEEDBACK COCLASS



622 • Exploring ArcObjects • Volume 1

DIMENSION FEEDBACK COCLASSES

The following dimension feedback objects are used to create and modify
DimensionShape objects. They are similar in some respects to other feed-
back objects, such as the NewPolylineFeedback and PolygonMovePoint-
Feedback, but differ in other ways, including the following:

• The dimension feedback interfaces do not inherit from IDisplay-
Feedback. Instead, the coclasses support this interface; therefore, a
QueryInterface is required when moving between the interfaces.

• The dimension feedback objects and interfaces are useful only in
creating modifying (dimension) Features in a FeatureClass.

• The dimension feedback objects require knowledge of dimension
objects rather than of geometry objects; therefore, reference should
be made to the section covering IDimensionShape in
Volume 2, Chapter 9, ‘Shaping features with geometry’.

The NewDimensionFeedback is used for creating new DimensionShape
objects. It is shown as a dimension object, which changes dynamically as
the mouse is moved. Also, the text for the dimension is updated with
each movement to reflect the size of the dimension in map units.

The NewDimensionFeedback coclass supports the INewDimensionFeedback
interface, which has members specifically used for creating dimensions.
This coclass also supports the IDisplayFeedback interface, which it uses
for general feedback operations, specifically the Display property and
the MoveTo and Refresh methods. Unlike many other feedback interfaces,
INewDimensionFeedback does not inherit from IDisplayFeedback, and so a
QueryInterface is required when switching between both interfaces.

 INewDimensionFeedback : IUnknown Provides access to memebers to control the display
feedback for creating new dimension features.

DimensionType: esriDimensionType The dimension type of the display feedback.
ReferenceScale: Double The reference scale of the display feedback.
ReferenceScaleUnits: esriUnits The reference scale units of the display feedback.
Style: IDimensionStyle The dimension style for the display feedback.

AddPoint (in Point: IPoint) Adds a point to the display feedback.
Start (in begin: IPoint) Starts the display feedback.
Stop: IDimensionShape Stops the display feedback and returns the points.

INewDimensionFeedback uses the Start method to add the
BeginDimensionPoint, taking an IPoint in MapUnits. AddPoint should
then be used for each subsequent point to be added.

Stop ends the feedback operation and returns an IDimensionShape,
which can then be added to a FeatureClass.

The DimensionType property can be set to either aligned (the default) or
linear. The type chosen affects the resulting geometry. The linear type
constrains the angle of the dimension line to 0 or 90 degrees.

If the DimensionType is aligned (esriDimensionTypeAligned), then the
required number of points is either two or three. The order in which the
feedback expects these points to be added is BeginDimensionPoint,
EndDimensionPoint, and optionally a DimensionLinePoint (to indicate
the length of the extension lines).

Display-
Feedback

IDisplayFeedback

New-
Dimension-
Feedback

INewDimension-
Feedback

New dimension feedbacks allow the user
to create a new DimensionShape object

by entering points on the display using
the mouse. As the points are entered, a
representation of the dimension being
created is shown on the display—this

dimension is dynamically updated with
each mouse movement or click, including

the value of the dimension’s text.



Chapter 5 • Displaying graphics • 623

D
is

p
la

y

For linear dimensions (esriDimensionTypeLinear), the required number
of points is three. These are the BeginDimensionPoint,
EndDimensionPoint, and DimensionLinePoint. Optionally, a fourth
point may be added to represent the ExtensionLineAngle. If entered,
this fourth point is taken in combination with the third point to calcu-
late a new DimensionLinePoint—length of the extension line coming
from the third point and the angle from the fourth.

The feedback’s ReferenceScale and ReferenceScaleUnits properties deter-
mine at what map scale the text and symbology will be set (at which
scale it will appear as intended). If this property is not set, then the
reference scale of the Map will be used if set. If you are unable to see
the symbology or text for your feedback, then it is likely that the refer-
ence scale properties are not correctly set.

Below is some VB code illustrating one method of creating a (simple)
LinearDimensionFeedback. The code requires the Mouse_Down event to
start the feedback (BeginDimensionPoint), Mouse_Move to move the
feedback, and Mouse_Down again to complete the feedback
(EndDimensionPoint). The variable m_pNewDimFeed is a member vari-
able declared as an INewDimensionFeedback.

The following code should be placed in the Mouse_Down event of a
ITool or UIToolControl.

  Dim pPnt As IPoint

  Dim pDispFeed As IDisplayFeedback

  Dim pMXDoc As IMxDocument

  Dim pDimShp As IDimensionShape

  ' QI for MXDocument

  Set pMXDoc = ThisDocument

  ' Get the current mouse location in Map Units

  Set pPnt = pMXDoc.ActiveView.ScreenDisplay. _

    DisplayTransformation.ToMapPoint(x, y)

  ' If user is not currently using the feedback then...

  If m_pNewDimFeed Is Nothing Then

    ' Create a new NewDimensionFeedback object

    Set m_pNewDimFeed = New NewDimensionFeedback

    ' Set up the NewDimensionFeedback

    m_pNewDimFeed.DimensionType = esriDimensionTypeLinear

    m_pNewDimFeed.ReferenceScale = 100000

    m_pNewDimFeed.ReferenceScaleUnits = esriMeters

    ' QI for IDisplayFeedback

    Set pDispFeed = m_pNewDimFeed

    'Set the Feedback's Display

    Set pDispFeed.Display = pMXDoc.ActiveView.ScreenDisplay

    ' Then start at the current mouse location (BeginDimensionPoint)

    m_pNewDimFeed.Start pPnt

  Else

    ' If the user is already using the feedback then...

DIMENSION FEEDBACK COCLASSES

1
mouse click

2
mouse click

Dimension type of esriDimensionTypeAligned

Simple aligned (two points)

Aligned (three points)1
mouse click

2
mouse click

3
mouse click

Dimension type of esriDimensionTypeLinear

Rotated linear (four points)

1
mouse click

2
mouse click

3
mouse click

4
mouse click

BeginDimensionPoint EndDimensionPoint

Linear (three points)

1
mouse click

2
mouse click

3
mouse click

BeginDimensionPoint

EndDimensionPoint

BeginDimensionPoint

EndDimensionPoint

BeginDimensionPoint

EndDimensionPoint



624 • Exploring ArcObjects • Volume 1

    ' Add the current mouse location (EndDimensionPoint)

    m_pNewDimFeed.AddPoint pPnt

    ' Stop the feedback and get the DimensionShape returned

    Set pDimShp = m_pNewDimFeed.Stop

    ' TODO: Now the result can be added to a Dimension FeatureClass

    ' Set the feedback to nothing for the next use

    Set m_pNewDimFeed = Nothing

  End If

This code is for the Mouse_Move event.

  ' Check that the user is currently using the feedback

  If Not m_pNewDimFeed Is Nothing Then

    Dim pMXDoc As IMxDocument

    Dim pPnt As IPoint

    Dim pDispFeed As IDisplayFeedback

    ' QI for MXDocument

    Set pMXDoc = ThisDocument

    ' Get the current mouse location in map units

    Set pPnt = pMXDoc.ActiveView.ScreenDisplay _

    .DisplayTransformation.ToMapPoint(x, y)

    ' QI for IDisplayFeedback and use this to move the feedback

    Set pDispFeed = m_pNewDimFeed

    pDispFeed.MoveTo pPnt

  End If

The Style property takes and returns an IDimensionStyle that determines
how the feedback should be drawn when it is being used. If this property
is not set, the default style is used. Typically, if you were to set this prop-
erty, you would set it to match the dimension style of the FeatureClass (if a
feature class is being used). For example, the following function retrieves
the default DimensionStyle for the Editor’s current layer.

Private Function GetFCDefaultStyle() As IDimensionStyle

  ' This function assumes that the current

  ' edit layer is a Dimension FeatureClass

  Dim pEditLyrs As IEditLayers

  Dim pFClass As IFeatureClass

  Dim pDimClassExt As IDimensionClassExtension

  Dim StyleId As Integer

  Set pEditLyrs = Application.FindExtensionByName("ESRI Object Editor")

  Set pFClass = pEditLyrs.CurrentLayer.FeatureClass

  Set pDimClassExt = pFClass.Extension

  StyleId = pDimClassExt.DimensionStyles.DefaultStyleID

  Set GetFCDefaultStyle = pDimClassExt.DimensionStyles.GetStyle(StyleId)

End Function

DIMENSION FEEDBACK COCLASSES



Chapter 5 • Displaying graphics • 625

D
is

p
la

y

Display-
Feedback

IDisplayFeedback

Modify-
Dimension-
Feedback

IModifyDimension-
Feedback

You can use a ModifyDimensionFeed-
back to change an existing Dimension-

Shape by moving one of its handles:
BeginDimensionPoint,

EndDimensionPoint,
DimensionLinePoint, or TextPoint.

DIMENSION FEEDBACK COCLASSES

The ModifyDimensionFeedback coclass is similar to the
NewDimensionFeedback in that it allows you to move a dynamic repre-
sentation of a Dimension on the display and return the DimensionShape
at the end of the operation. However, it differs in that it is used for
editing an existing dimension shape object.

The ModifyDimensionFeedback coclass supports the
IModifyDimensionFeedback and IDisplayFeedback interfaces and uses
the latter for general feedback behavior—setting the Display and calling
MoveTo and Refresh.

 IModifyDimensionFeedback : IUnknown Provides access to memebers to control the display
feedback for modifying existing dimension features.

DimensionShape: IDimensionShape The Dimension shape
DimensionType: esriDimensionType The dimension type of the display feedback.
ReferenceScale: Double The reference scale of the display feedback.
ReferenceScaleUnits: esriUnits The reference scale units of the display feedback.
Style: IDimensionStyle The dimension style for the display feedback.

GetHandles: IPointCollection The display feedback's handles.
Start (in Handle: IPoint) Starts the feedback
Stop: IDimensionShape Stops the feedback and returns the points.

The IModifyDimensionFeedback shares several of the members of the
INewDimensionFeedback, namely DimensionType, ReferenceScale,
ReferenceScaleUnits, Stop, and Style. For information on these members,
refer to the INewDimensionFeedback interface earlier in this chapter.

IModifyDimensionFeedback has the following members, which differ
from INewDimensionFeedback: DimensionShape, GetHandles, and Start.

The DimensionShape property is used to specify the input dimension. It
takes an IDimensionShape and needs to be set before starting the feed-
back operation.

GetHandles returns an IPointsCollection representing all four of the
editable points in the input DimensionShape. These points are the
BeginDimensionPoint, EndDimensionPoint, DimensionLinePoint, and
TextPoint. Note that this method can only be used once the
IDisplayFeedback::Display property is set to a valid IDisplay.

The Start method allows the feedback method to commence and takes
one of the IPoint objects from GetHandles. The behavior of the feed-
back depends on which member of the PointsCollection is used. For
example, the following VB code fragment shows how a
ModifyDimensionFeedback could be used to move the
EndDimensionPoint of an existing DimensionShape by using the second
IPoint returned from the GetHandles method.

The following code is extracted from the Mouse_Down event of a
UIToolControl or ITool. pModDimFeed is a member variable declared as
an IModifyDimensionFeedback, and pDimShp is locally declared as
IDimensionShape representing an existing dimension that is being used
as input to the feedback operation.

  Dim pDispFeed As IDisplayFeedback

  Dim pPtHndl As IPoint

Meaning

BeginDimensionPoint

EndDimensionPoint

DimensionLinePoint

TextPoint

Handle index

0

1

2

3



626 • Exploring ArcObjects • Volume 1

DIMENSION FEEDBACK COCLASSES

  Dim pMXDoc As IMxDocument

  ' QI for IMXdocument

  Set pMXDoc = ThisDocument

  ' Create a new ModifyDimensionFeedback

  Set m_pModDimFeed = New ModifyDimensionFeedback

  ' Set the ReferenceScale, ReferenceScaleUnits

  m_pModDimFeed.ReferenceScale = 100000

  m_pModDimFeed.ReferenceScaleUnits = esriMeters

  ' Set the DimensionType, and input DimensionShape

  m_pModDimFeed.DimensionType = esriDimensionTypeAligned

  Set m_pModDimFeed.DimensionShape = m_pDimShp

  ' QI for the IDisplayFeedback and set the Display

  Set pDispFeed = m_pModDimFeed

  Set pDispFeed.Display = pMXDoc.ActiveView.ScreenDisplay

  ' Now get the second handle (EndDimensionPoint)

  Set pPtHndl = m_pModDimFeed.GetHandles.Point(1)

  ' Start the feedback operation to move the EndDimensionPoint

  m_pModDimFeed.Start pPtHndl

Like the INewDimensionFeedback example in the previous section, the
Mouse_Move event of the tool would be used to move the feedback by
calling MoveTo on the associated IDisplayFeedback interface, and the
operation would be completed by calling the Stop method to return an
IDimensionShape representing the new shape.



627

Directing map
output

One of the primary tasks of a GIS professional is to make maps. The common

requirement of these maps is to present information from geographic databases

on a printed page. These printed maps range from large wall plots for display to

smaller prints for inclusion into reports, magazines, and textbooks.

The ArcMap objects are used to display data and other information on the page;

the Output objects are used to direct the information on that page to an output

device or file.

This chapter discusses how to apply the Output

objects to a hardcopy device—a plotter or

printer—or to a file in formats such as JPEG,

PostScript, and Enhanced Metafile. The two key

Output objects are Printer, which supports

output to hardcopy devices, and Exporter, which

controls output to a file. Files are used when the

goal is to incorporate that information into

another document or Web page.

Larry Young

6



628 • Exploring ArcObjects • Volume 1

Paper
IClone
IPaper

IPersistStream

FontMap-
Environment

IFontMapEnvironment

Application in
ArcMap

*

IColorCorrection
IPsDriver

ISpotPlateCollection
PsDriver

Printer objects

The font map environment
supports the PS printer by setting

font information to be used during
the creation of PostScript output

The PS driver supports the PS printer
by setting general PostScript variables,

including color information

The spot plate allows for the creation
of separate plates (images) based on

the specified color

An EMF printer serves as a driver for
the creation of output through the

Windows Enhanced Metafile format

Printer
IClone

IPersistStream
IPrinter

EmfPrinter
IEmfPrinter ArcPress-

Printer

IArcPressPrinter
IArcPressPrinterDriver

IColorCorrection

FontMap-
Collection

IFontMapCollection

ArcPress-
Printer-
Driver

IArcPressPrinterDriver
IColorCorrection

*

PsPrinter

IColorCorrection
IFontMapEnvironment

IPsDriver
IPsPrinter

ISpotPlateCollection

SpotPlate
ISpotPlate

IFontMap
FontMap

The printer abstract class defines the
common interfaces for controlling the

output of data to hardcopy devices

The PS printer is used to
create output through a

PostScript driver

The font map collection
houses the set of font maps

used by the PS printer or
PS exporter objects

A font map creates associations
between TrueType fonts and

the mapped font

The paper object defines the
printer and tray designations for
use with the printer object

The ArcPress printer driver
supports the ArcPress printer by

setting ArcPress parameters

The ArcPress printer serves as a
driver for the creation of output

through ArcPress



Chapter 6 • Directing map output • 629

O
u

tp
u

t

Three printer objects inherit from the Printer abstract class: EmfPrinter,
ArcPressPrinter, and PsPrinter object. Each object supports printing to a
hardcopy device, but they all have different methods for achieving that
goal.

The printer object you select to send output depends on the type of
printing device you wish to use and what drivers you have available.

 IPrinter : IUnknown Provides access to members that control the Printer Driver
Interface.

DriverName: String Indicates the name of Windows Printer Driver.
FileExtension: String Indicates the File Extension associated with the Printer Driver.
Filter: String Indicates the Filter used in CFileDialog.
Name: String Indicates the Name of the IPrinter Driver.
Paper: IPaper Provides access to members that control the IPaper interface.
PrintableBounds: IEnvelope Indicates the area of the printer page that can be printed on.
PrintToFile: String Indicates the named used for Print to File.
Resolution: Integer Indicates the Printer Driver Resolution.
SpoolFileName: String Indicates the Spool File Name which is from the Print Manager.
StepProgressor: IStepProgressor Indicates that Updates to the Progress Bar is set.
Units: esriUnits Indicates the units for PaperSize and PrintableBounds.

DoesDriverSupportPrinter (in
PrinterName: String) : Boolean

Indicates if the Printer Name passed into function is supported by the
IPrinter Driver.

FinishPrinting Finishes Printing.
QueryPaperSize (out Width: Double, out

Height: Double)
Returns the Page Size for the Printer.

StartPrinting (in PixelBounds:
IEnvelope, in hDcPrinter: Long) : Long

Initializes Printing.

VerifyDriverSettings: Boolean Indicates if the Printer Driver should validate the Printer Driver's local
settings.

The IPrinter interface is implemented by all printer objects.

The Paper property is initialized to the default printer of the system
upon application startup. Create your own Paper object to use a differ-
ent printer.

The PrintToFile property makes it possible to send output to a file.

The DoesDriverSupportPrinter method allows the developer to determine
if the specified printer can be used with the current driver object.

Use the StartPrinting method to return an hDC (handle to the device
context of the printer) that can then be used with IActiveView::Output to
send output to a printer. IPrinter::FinishPrinting should then be issued
to flush everything out to the printer or plotter.

This sample VBA code demonstrates the use of the EmfPrinter object to
produce output.

Public Sub PrintLayout ()

  'To test, add a layer to the map, and run procedure

  Dim pMxApp As IMxApplication

  Dim pMxDoc As IMxDocument

  Set pMxApp = Application

  Set pMxDoc = ThisDocument

  Dim pPrinter As IPrinter

  Dim pPaper As IPaper

  Dim pPageLayout As IPageLayout

  Set pPrinter = pMxApp.Printer

  Set pPrinter.Paper = pMxApp.Paper

PRINTER ABSTRACT CLASS

Printer
IClone

IPersistStream
IPrinter

The Printer abstract class specifies
interfaces that control the output of data

to hardcopy devices.



630 • Exploring ArcObjects • Volume 1

  Set pPageLayout = pMxDoc.PageLayout

  Dim pActiveView As IActiveView
  Set pActiveView = pMxDoc.ActiveView

  Dim deviceframe As tagRECT
  Dim pDeviceFrame As IEnvelope

  ' Now set the printer object with the correct properties
  Set pDeviceFrame = New Envelope
  pPageLayout.Page.GetDeviceBounds pPrinter, 1, 0, pPrinter.Resolution, _
    pDeviceFrame
  deviceframe.Left = pDeviceFrame.xmin
  deviceframe.top = pDeviceFrame.ymin
  deviceframe.Right = pDeviceFrame.XMax
  deviceframe.bottom = pDeviceFrame.YMax

  ' Get the Visible Bounds if we are in Page Layout View
  Dim pVisibleBounds As IEnvelope
  Dim pPageLayoutView As IActiveView
  Set pPageLayoutView = pPageLayout
  If TypeOf pActiveView Is IPageLayout Then
    Set pVisibleBounds = New Envelope
    pPageLayout.Page.GetPageBounds pPrinter, 0, 0, pVisibleBounds
  End If

  Dim pEmfPrinter As IEmfPrinter
  Set pEmfPrinter = pPrinter

  ' Need to offset deviceBounds by xmin and ymin margins only for EmfPrinter
  If TypeOf pPrinter Is IEmfPrinter Then
    Dim pPrintableBounds As IEnvelope
    Set pPrintableBounds = pPrinter.PrintableBounds

    Dim dXmin As Double
    Dim dYmin As Double
    dXmin = pPrintableBounds.xmin
    dYmin = pPrintableBounds.ymin

    deviceframe.Left = deviceframe.Left - (dXmin * pPrinter.Resolution)
    deviceframe.top = deviceframe.top - (dYmin * pPrinter.Resolution)
    deviceframe.Right = deviceframe.Right - (dXmin * pPrinter.Resolution)
    deviceframe.bottom = deviceframe.bottom - (dYmin * pPrinter.Resolution)
  End If

  Dim lHDC As Long
  lHDC = pPrinter.StartPrinting(pDeviceFrame, 0)
  pActiveView.Output lHDC, pPrinter.Resolution, deviceframe, _
    pVisibleBounds, Nothing

  ' finishing the printing will flush everything out to the print spooler
  pPrinter.FinishPrinting
End Sub

PRINTER ABSTRACT CLASS



Chapter 6 • Directing map output • 631

O
u

tp
u

t

The EmfPrinter coclass is a type of printer object that serves as a driver
for the Windows Enhanced Metafile format.

 IEmfPrinter : IUnknown Provides access to members that control the EMF
(Enhanced Windows Metafile) Printer Driver.

IEmfPrinter is the only interface for the EmfPrinter coclass. The inter-
face has no properties or methods; it is used to identify whether or not
your printer object is of type EmfPrinter.

The following VBA code demonstrates that process. pPrinter is an object
of type IPrinter.

  If TypeOf pPrinter is IEmfPrinter then

    Dim pEmf as IEmfPrinter

    Set pEmf = pPrinter

  End If

Printer
IClone

IPersistStream
IPrinter

EmfPrinter
IEmfPrinter

An EMF printer serves as a driver for the
creation of output through the Windows

Enhanced Metafile format.

EMFPRINTER COCLASS



632 • Exploring ArcObjects • Volume 1

The ArcPressPrinter coclass is a type of printer object that represents the
ArcPress™ printer driver.

ArcPress is ESRI’s graphics rasterizer. ArcPress is composed of three
basic modules: a graphics interpreter, a rasterizer, and several output
filters.

The graphics interpreter accepts PostScript files, CGM files, and all ESRI
formats. The graphics interpreter translates the input to intermediate
PostScript metafiles. The rasterizer then takes the intermediate files and
converts them into a pure raster metafile. This raster metafile is then
filtered through the printer driver or bitmap export driver (these are
listed under the Exporter object) of your choice.

Do not attempt to use this object unless you have ArcPress installed on
your system. The ArcPressPrinter coclass provides access to the driver
but offers little control over the process. The ArcPressPrinterDriver
(discussed next) can be used with the ArcPressPrinter object to set
additional input parameters.

 IArcPressPrinter : IUnknown Provides access to members that control the ArcPress
printer driver.

Driver: esriArcPressDriverPrinters Provides access to members that control the ArcPress Printer Driver.

The IArcPressPrinter interface lets you identify a printer object as type
ArcPressPrinter.

The lone property on the interface, Driver, allows you to set and retrieve
which driver to use when outputting through ArcPress.

 ARCPRESSPRINTER COCLASS

Printer
IClone

IPersistStream
IPrinter

ArcPress-
Printer

IArcPressPrinter
IArcPressPrinter-

Driver
IColorCorrection

The ArcPress printer serves as a driver for
the creation of output through ArcPress.



Chapter 6 • Directing map output • 633

O
u

tp
u

t

ArcPressPrinterDriver is the coclass that does the work when you direct
output through ArcPress. Through the supported interfaces on the ob-
ject, you can set all the necessary parameters, from color to resolution,
to ensure proper output from the ArcPress object. Use this object in
conjunction with ArcPressPrinter when you want to control the param-
eters used by ArcPress to create hardcopy output.

 IArcPressPrinterDriver: IUnknown Provides access to members that control the ArcPress
printer driver formats.

ArcPressSeparateImage: Boolean Indicates if the ArcPress Driver is using the Separate Image option.
DitherDescription (in dither:

esriArcPressDriverDithers) : String
Indicates a description of the selected dither pattern.

DitherDescriptionHelpText (in dither:
esriArcPressDriverDithers) : String

Indicates the help text description of the selected dither.

DriverDescription (in Driver:
esriArcPressDriverPrinters) : String

Indicates a description of the ArcPress Printer Driver.

DriverDescriptionHelpText (in Driver:
esriArcPressDriverPrinters) : String

Indicates the help text description of the ArcPress Printer Driver.

DriverDither: esriArcPressDriverDithers Indicates the dither pattern of the ArcPress Printer Driver.
DriverResolution (in Driver:

esriArcPressDriverPrinters, in Index:
Integer) : Integer

Indicates the resolution of the selected ArcPress Printer Driver at the
specified index.

DriverResolutionCount (in Driver:
esriArcPressDriverPrinters) : Integer

Indicates the number of resolutions available for the selected ArcPress
Printer Driver.

InternalDriverName (in Driver:
esriArcPressDriverPrinters) : String

Indicates the internal ArcPress Printer Driver name.

Orientation: Integer Indicates whether the page orientation is 1 = portrait or 2 =
landscape.

PaperSizeHeight: Double Indicates the height of the selected paper size.
PaperSizeWidth: Double Indicates the width of the selected paper size.
PrintableBounds: IEnvelope Indicates the Printer Margins.
Resolution: Integer Indicates the resolution of the ArcPress Printer Driver.
StepProgressor: IStepProgressor Indicates the progress bar to update.

CreateRaster (in Driver:
esriArcPressDriverPrinters, in
InputFileName: String, in
OutputFileName: String)

Creates a Printer Format file from a PostScript input file.

The IArcPressPrinterDriver interface sets a variety of input parameters
for use with the ArcPress driver.

CreateRaster is used to create a printer format file based on an input
PostScript file. The file that is created can then be sent to a plotter for
output.

DitherDescription, DitherDescriptionHelpText, and DriverDither pertain
to the method of dithering when the output device does not support as
many colors as you are sending. Dithering refers to the display of col-
ors, specifically, any color that should be solid but looks like it has
small spots of another color. Use the DriverDither parameter to specify
the type of dithering algorithm to apply when the output device does
not support a sufficient number of colors (as is the case with a black-
and-white printer).

Use the Resolution and PrintableBounds properties with the
IActiveView::Output statement to match the resolution and page size of
the output to the device.

ArcPress-
Printer-
Driver

IArcPressPrinter-
Driver

IColorCorrection

The ArcPress printer driver supports the
ArcPress printer by setting ArcPress

parameters.

ARCPRESSPRINTERDRIVER COCLASS



634 • Exploring ArcObjects • Volume 1

 IColorCorrection : IUnknown Provides access to members that control the Color
Correction Interface.

CMYKCorrection (in dataType:
esriColorCorrectionDataType, in Index:
esriCMYKIndex) : Integer

Indicates the Color Correction for the CMYK color model.

Lightness (in dataType:
esriColorCorrectionDataType) : Integer

Indicates the Lightness Value of the HLS Color Model.

Saturation (in dataType:
esriColorCorrectionDataType) : Integer

Indicates the Saturation Value of the HLS Color Model.

SupportedColorCorrections: Integer Indicates the dataType supported: 1 Total, 2 Raster, and 4 Vector.
UnderColorRemoval (in dataType:

esriColorCorrectionDataType) : Integer
Indicates the Under Color Removal Value.

The IColorCorrection interface is implemented by the
ArcPressPrinterDriver coclass and several other classes. It lets you ma-
nipulate the color parameters within the ArcPress driver through the
CMYK and HLS models. Use this interface when you want to adjust the
default color settings for the ArcPress driver.

SupportedColorCorrections returns which data types are supported by the
current object. The other properties use this value as input, so it is good
practice to check this value before trying to access any other values.

ARCPRESSPRINTERDRIVER COCLASS



Chapter 6 • Directing map output • 635

O
u

tp
u

t

The PsPrinter coclass is a type of printer object used to create output
through a PostScript device driver. The coclass is an aggregation of the
PsDriver and FontMapEnvironment classes. Use this coclass when you
want to create hardcopy output through a PostScript driver.

 IPsPrinter : IUnknown Provides access to members that control the PostScript
Printer Driver.

PPDFile: String Indicates the PPD file used for the PostScript file.

The IPsPrinter interface allows you to identify a printer object as type
PsPrinter and allows for the setting of a filename to receive output (as
opposed to sending output directly to a hardcopy device).

The VBA code that follows sends map data to an output device using
the PsPrinter and Printer objects. The ConvertRWToPixels routine con-
verts from the current units to pixels.

  Dim pPsPrinter As IPsPrinter

  Dim pPrinter As IPrinter

  Dim lScreenResolution As Long

  Dim hDc As OLE_HANDLE

  Dim userRECT As tagRECT

  Dim pMxDoc As IMxDocument

  Dim pPaper As IPaper

  Dim lDrvResolution As Long

  Dim pMxApp As IMxApplication

  Dim pDriverBounds As IEnvelope, pEnv As IEnvelope

  Set pMxApp = Application

  Set pMxDoc = ThisDocument

  Set pPsPrinter = New PsPrinter

  Set pPrinter = pPsPrinter

  Set pPrinter.Paper = pMxApp.Paper

  lScreenResolution = _

    pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

  lDrvResolution = lScreenResolution

  pPrinter.Resolution = ldrvResolution

  Set pEnv = pMxDoc.ActiveView.Extent

  userRECT.Top = 0

  userRECT.Left = 0

  userRECT.Right = ConvertRWToPixels(pEnv.Width)

  userRECT.bottom = ConvertRWToPixels(pEnv.Height)

  Set pDriverBounds = New Envelope

  pDriverBounds.PutCoords userRECT.Left, userRECT.bottom, _

                             userRECT.Right, userRECT.Top

  hDc = pPrinter.StartPrinting(pDriverBounds, 0)

  pMxDoc.ActiveView.Output hDc, lScreenResolution, userRECT, pEnv, Nothing

  pPrinter.FinishPrinting

Printer
IClone

IPersistStream
IPrinter

PsPrinter

IColorCorrection
IFontMap-

Environment
IPsDriver

IPsPrinter
ISpotPlateCollection

The PsPrinter is used to create output
through a PostScript driver.

PSPRINTER COCLASS



636 • Exploring ArcObjects • Volume 1

 ISpotPlateCollection : IUnknown Provides access to members that control the Collection of
Spot Plates.

Count (Count: Long) Indicates the count of the Spot Plate collection.
SpotPlate (Index: Long, SpotPlate:

ISpotPlate)
Indicates an ISpotPlate from the Spot Plate collection.

Add (SpotPlate: ISpotPlate) Adds an ISpotPlate to the Spot Plate collection.
Insert (Index: Long, SpotPlate:

ISpotPlate)
Inserts an ISpotPlate into the Spot Plate collection at position index.

Remove (Index: Long) Removes ISpotPlate at index from the Spot Plate collection.
RemoveAll Removes all ISpotPlates from the Spot Plate collection.

Spot plates are used for color separation to produce CMYK plates.

The ISpotPlateCollection makes it possible to create plates based on the
individual colors in the CMYK color model. The plates can then be used
by publishers in the generation of printed material.

The ISpotPlateCollection interface contains a collection of individual
SpotPlate objects. You can use this interface to add, remove, and gener-
ally keep track of the SpotPlate objects that have been defined. For more
information, see the topic SpotPlate and FontMapEnvironment later in
this chapter.

The IFontMapEnvironment interface is documented with the
FontMapEnvironment coclass.

PSPRINTER COCLASS



Chapter 6 • Directing map output • 637

O
u

tp
u

t

The PSDriver coclass, along with FontMapEnvironment, is aggregated
into the PsPrinter coclass. This class provides access to all of the differ-
ent parameters that can be set when outputting through a PostScript
driver (excluding Font control).

Since the PsPrinter coclass aggregates the PSDriver coclass, the inter-
faces from PSDriver can be accessed from the PsPrinter.

For example, if you have an object named pPsPrinter defined as an
IPSPrinter, the following VBA code allows you to access the IPsDriver
interface on the PSDriver coclass.

  Dim pPsDriver as IPSDriver

  Set pPsDriver = pPsPrinter

 IPSDriver : IUnknown Provides access to members that control the PostScript
Driver.

ArcPressSeparateImage: Boolean Indicates the ArcPress Separate Image File flag to create a separate
Image file for ArcPress.

ArcPressSeparateImageRotate:
Boolean

Indicates the ArcPress Separate Image Rotate flag to Rotate Image
90 degress for ArcPress.

Emulsion: esriPSDriverEmulsion Indicates the Emulsion setting for the PostScript Driver.
FontMapCollection: IFontMapCollection Provides access to members that control the Font Map Collection for

Font Mapping.
FormName: String Indicates the printer page form. Uses Win32 DMPAPER_xxx

constants.
HalfTone (in HalfTone:

esriPSDriverHalfTone) : Long
Indicates the HalfTone DPI / LPI is being used.

Image: esriPSDriverImage Indicates whether the Image setting for the PostScript Driver is
Positive or Negative.

ImageCompression:
esriPSDriverImageCompression

Provides access to members that control the Image Compression of
the PostScript Driver.

Marks: Integer Indicates if the PostScript Marks are being used.
OneBitImageTransparency: Boolean Indicates the 1 Bit Image Transparency setting for the PostScript

Driver.
Orientation: Integer Indicates whether the printer page orientation is either 1 = portrait

or 2 = landscape.
PPDFile: String Indicates the PPD file to be used.
PrintableBounds: IEnvelope Indicates the printers Printable Bounds that are used for Marks.
PSLanguageLevel:

esriPSDriverPSLanguageLevel
Indicates the PostScript Driver Language Level.

StepProgressor: IStepProgressor Indicates that the PostScript Driver will update a Progress Bar.
UseEMFFrameBoxForPSBoundingBox:

Boolean
Indicates the PostScript Driver to use the ENHMETAHEADER

rclFrame instead of rclBounds for the PostScript Bounding Box.

CreatePS (in InputFileName: String, in
OutputFileName: String)

Indicates the Conversion of the EMF file to a EPS File.

Through aggregation, the IPSDriver interface is also supported by the
PsPrinter object. The interface provides access to the set of parameters
that can be used to alter the output being produced by the PostScript
driver.

The ArcPressSeparateImage and ArcPressSeparateImageRotate properties
can be used to create separate images for use with ArcPress.

CreatePS takes an EMF file as input and outputs a PostScript file.

The IColorCorrection interface is documented with the
ArcPressPrinterDriver coclass.

PSDRIVER COCLASS

IColorCorrection
IPsDriver

ISpotPlateCollection
PsDriver

The PsPrinter is used to create output
through a PostScript driver.



638 • Exploring ArcObjects • Volume 1

The SpotPlate coclass allows for the creation of separate plates (images)
based on the specified color. Each plate contains the plotting informa-
tion for a single specified color.

The SpotPlate objects are managed by the ISpotPlate interface object on
the PSDriver coclass. Use this coclass when you need to create color
separates of your plots for publishing purposes.

 ISpotPlate : IUnknown Provides access to members that control the Spot Color
Plate.

Color: IPostScriptColor Indicates the Color for Separation.
ScreenAngle: Double Indicates the Screen Angle for the Separation.
Separate: esriPSDriverSeparates Indicates that the Separation will be used.

ISpotPlate is the only interface supported by the SpotPlate coclass. This
interface allows specification of the color separation (cyan, yellow,
magenta, or black) to create with the PostScript driver.

The Color property takes an IPostScriptColor object, which sets saturation
and overprint parameters for the separation.

Enumeration esriPSDriverSeparates Provides access to members that control the PostScript
Driver Color Separation settings.

1 - esriPSDriverSeparateCyan Provides access to members that control the Cyan Plate.
2 - esriPSDriverSeparateMagenta Provides access to members that control the Magenta Plate.
3 - esriPSDriverSeparateYellow Provides access to members that control the Yellow Plate.
4 - esriPSDriverSeparateBlack Provides access to members that control the Black Plate.
5 - esriPSDriverSeparateCustom Provides access to members that control the Custom Spot Color Plate.

The FontMapEnvironment coclass is one of the aggregated coclasses
(along with PSDriver) that make up the PsPrinter coclass. The object is
used to determine the set of fonts used by the PostScript driver to pro-
duce the desired output.

 IFontMapEnvironment : IUnknown Provides access to members that control the Font Mapping
Environment.

ApplyDefaultMappingDesc: String Indicates the Font Mapping checkbox description string.
DefaultMapping: String Indicates the Default Font Mapping string.
DefaultMappingsChoices: Variant Indicates the Default Mapping Choices for Font Substitution.
FontMapCollection: IFontMapCollection Provides access to members that control the FontMap Collection.
SaveMappings: Boolean Indicates whether to save font mappings.

The IFontMapEnvironment interface tracks the collection of FontMap
objects that have been defined and allows for additional settings for the
default font mapping to use with the PostScript driver. Use this interface
when you want to control the set of fonts used by the PostScript driver.

The FontMapCollection property returns a collection object to allow the
developer to add and remove FontMap objects. Since the
FontMapCollection property is read-only, you cannot create your own
FontMapCollection object; you must instead manipulate the existing one.

SPOTPLATE AND FONTMAPENVIRONMENT COCLASSES

SpotPlate
ISpotPlate

The spot plate allows for the creation of
separate plates (images) based on the

specified color.

FontMap-
Environment

IFontMap-
Environment

The font map environment supports the
PS printer by setting font information to

be used during the creation of PostScript
output.



Chapter 6 • Directing map output • 639

O
u

tp
u

t

FONTMAPCOLLECTION AND FONTMAP COCLASSES

FontMap-
Collection

IFontMapCollection

The font map collection houses the set
of font maps used by the PS printer or PS

exporter objects.

IFontMap
FontMap

A font map creates associations between
TrueType™ fonts and the mapped font.

The FontMapCollection is a collection object whose life cycle is tied to
that of the object that created it, such as PsPrinter or PsExporter. This
object controls the set of FontMap objects defined for use with the
PostScript driver. An object of this type is returned by
IFontMapEnvironment::FontMapCollection. Use this object to make your
adjustments to the font mapping environment.

By default, the collection returned by IFontMapEnvironment::-
FontMapCollection will have some values in it. These default values are
defined by the system. You can then add additional FontMap objects to
the collection.

 IFontMapCollection : IUnknown Provides access to members that control the Collection of
Font Map Objects.

Count: Long Indicates the count of the FontMap collection.
FontMap (in Index: Long) : IFontMap Indicates an IFontMap from the FontMap collection.

Add (in FontMap: IFontMap) Adds an IFontMap to the FontMap collection.
Insert (in Index: Long, in FontMap:

IFontMap)
Inserts an IFontMap into the FontMap collection at position index.

Remove (in Index: Long) Removes IFontMap at index from the FontMap collection.
RemoveAll Removes all IFontMaps from the FontMap collection.

IFontMapCollection is the only interface implemented by the
FontMapCollection object. This interface is a typical collection interface
that allows FontMap objects to be added and removed from the collec-
tion. The interface also provides a count of and access to the individual
objects contained in the collection.

FontMap objects are created for inclusion in a FontMapCollection object.
The life cycle of the FontMap object is based on the life cycle of the
FontMapCollection object (which, in turn, has its life cycle based on that of
the object that created it). The purpose of the object is to allow for the
setting of font mapping properties for individual fonts. These properties
are then used by the PostScript driver to create the hardcopy output.

Objects of this type are creatable, but the developer does not have the
ability to set the necessary parameters for the object that is created.

 IFontMap : IUnknown Provides access to members that control the Font Map
Object.

MappedFont: String Creates an association between the True Type Font and the Mapped
Font.

Mapping (in TrueTypeFont: String) :
String

Creates an association between the True Type Font and the Mapped
Font.

TrueTypeFont: String Creates an association between the True Type Font and the Mapped
Font.

IFontMap is the only interface implemented by the FontMap object. This
interface allows the developer to examine the font mapping that has been
defined. The C++ programmer can define additional mapping through the
IFontMap::Mapping property. The VB programmer will need to use the
IFontMap2::SetMapping method to define additional font mapping.

 IFontMap2 : IUnknown Provides access to members that control the Font Map 2
Object.

SetMapping (in TrueTypeFont: String, in
MappedFont: String)

Creates an association between the True Type Font and the Mapped
Font.



640 • Exploring ArcObjects • Volume 1

The Paper object is a key object required by the Printer object. The
Paper object is responsible for maintaining properties related to the
paper and printer used with the Printer object.

When the application is started, a Paper object is automatically created
based on the default printer for the system. To use another printer on
the system, you must define a new Paper object and set it to the printer
or plotter through the PrinterName property. The Paper object can then
be associated with the Printer object through the IPrinter::Paper
property.

The Paper object is basically a wrapper for the Microsoft DevMode and
DevNames parameters. These two operating system wrappers define the
printing environment through application programming interface (API)
structures.

The DevNames structure contains strings that identify the driver, device,
and output port names for a printer. The DevMode data structure con-
tains information about the device initialization and environment of a
printer.

The PrinterInfo property and Attach method use these structures in the
form of pointers to OLE_HANDLEs. Because of the nature of these two
parameters, VB developers cannot take advantage of them.

The following VBA code demonstrates how to create a Paper object,
assign it to a particular device, then pass that object to a printer object.

  Dim pPaper As IPaper

  Dim pPrinter As IPrinter

  Dim pPsPrinter As IPsPrinter

  Set pPaper = New Paper

  pPaper.PrinterName = "\\OMNI\Oakland"

  Set pPsPrinter = New PsPrinter

  Set pPrinter = pPsPrinter

  Set pPrinter.Paper = pPaper

 IPaper : IUnknown Accesses the default printer page settings.

FormID: Integer Indicates the printer page form. Uses Win32 DMPAPER_xxx
constants.

FormName (FormName: String) Gets the Form Name.
Forms: IEnumNamedID Enumerates the forms supported by the printer.
Orientation: Integer Indicates whether the printer page orientation is 1 = portrait or 2 =

landscape.
PrintableBounds: IEnvelope Indicates the area of the printer page that can be printed on.
PrinterInfo (out hDevMode: Long) :

Long
Displays the Print Setup Dialog.

PrinterName: String Indicates the Printer Name.
TrayID: Integer Indicates the printer tray. Uses Win32 DMBIN_xxx constants.
Trays: IEnumNamedID Enumerates the trays supported by the printer.
Units: esriUnits Indicates the units used by the other properties.

Attach (in hDevMode: Long, in
hDevNames: Long)

Attaches an object to specified DEVMODE and DEVNAMES
structures. This must be called before using other properties and
methods.

QueryPaperSize (out Width: Double, out
Height: Double)

Returns the size of the printer paper. The units property specifies the
measurement units.

The IPaper interface allows the developer to create an association be-
tween the Paper object and the hardcopy device. Once that association

PAPER COCLASS

Paper
IClone
IPaper

IPersistStream

The paper object defines the printer and
tray designations to use with the printer

object.



Chapter 6 • Directing map output • 641

O
u

tp
u

t

is created, form and paper properties can be retrieved and set through
the interface.

Use the PrinterName property to specify which printer you want to use
with the Paper object (see the coding example on the previous page).

The PrinterInfo property returns the information that serves as input to
the Attach method. However, the parameters returned by PrinterInfo are
not handled correctly by Visual Basic at this time. Do not try to use the
PrinterInfo property with Visual Basic.

PAPER COCLASS



642 • Exploring ArcObjects • Volume 1

ExportDialog
IExportDialog

IExportDialog2

IEmfExporter
EmfExporter

Exporter
IExporter

IBmpExporter
IDibExporter

IWorldFile-
Settings

DibExporter

IFontMapEnvironment
IPsExporter PsExporter

IJpegExporter Jpeg-
Exporter

ArcPress-
ExporterPNG

ArcPress-
ExporterJPEG

ArcPress-
ExporterPCX

ArcPress-
ExporterTIFF

ArcPress-
Exporter

IArcPressExporter
IArcPressExporter-

DescriptionEnum

Exporter objects

The exporter abstract class defines the
common interface for controlling the

output of map data to files

The export dialog box lets users
enter the filename and desired
format for outputting map data

IFontMapEnvironment
IPDFDriver PDFDriver

IPdfExporter
PdfExporter

ArcPress-
Exporter-

Driver

IArcPress-
ExporterDriver

The CGM driver is created by the
CGM exporter object during the
output of map data to a CGM file

The ArcPress exporter driver
uses ArcPress to convert a

PostScript file to one of the
supported formats

The ArcPress export
abstract class supports
the output of map data

to the different file
formats of ArcPress

The DIB exporter creates output in the
Device-Independent Bitmap format

The CGM exporter creates output in the
Computer Graphics Metafile format

The PDF driver is created by
the PDF exporter object
during the output of map
data to a PDF file

The PDF exporter creates output in
the Portable Document format

The PS exporter creates
output in the PostScript format

The JPEG exporter creates output
in the format set by the Joint
Photographic Experts Group

The EMF exporter creates output in
the Microsoft Enhanced Metafile format

ICGMDriver CGM-
Driver

ICGMExporter CGM-
Exporter



Chapter 6 • Directing map output • 643

O
u

tp
u

t

The Exporter object class controls the production of softcopy output
(files of different formats). The main purpose of the object is to support
the coclasses underneath it.

There are seven file formats supported through specific drivers (DIB,
CGM, EMF, JPEG, PostScript, PDF, and TIFF), and four formats sup-
ported through the ArcPress driver (JPEG, PCX, PNG, and TIFF). Each of
these creatable subclasses inherits from the Exporter object.

It is possible to create file output from the descendants of the Printer
abstract class, but you should only use this method when you plan to
send the file to an output device at a later time. The printer objects
create some printer-dependent files that you do not need unless you are
going to direct the file to an output device.

 IExporter : IUnknown Provides access to members that control the Base Exporter
Interface.

ClipToGraphicExtent: Boolean Indicates if the Output will be clipped to the Graphics Extent.
ExportFileName: String Indicates the Export File Name.
FileExtension: String Indicates the File Extension associated with Exporter.
Filter: String Indicates the Filter String used in the CFileDialog class.
Name: String Indicates the Name of Exporter.
PixelBounds: IEnvelope Indicates the Pixel Bounds of the Exporter.
Resolution: Integer Indicates the Resolution of the Exporter.

FinishExporting Shuts down the Exporter.
StartExporting: Long Initializes the Exporter.

The IExporter interface is supported by all of the exporter objects, such
as CGMExporter. The interface provides all the common parameters
(such as filename and resolution) needed to export map data to a file. It
will be necessary to use this interface to complete any exporting
procedures.

The FileExtension, Filter, and Name properties are based on the type of
exporter object you create. For example, if you create a JpegExporter
object, the FileExtension will be “.jpg”.

PixelBounds specifies a destination rectangle in the output file.

StartExporting must be run during an exporting procedure, and it returns
an hDC value that should be used with subsequent IActiveView::Output
operations.

Here is some sample VBA code for using the IExporter interface through
a JpegExporter object.

Sub Export()

  Dim pExporter As IExporter

  Dim pDriverBounds As IEnvelope

  Dim lScreenResolution As Long

  Dim hDc As OLE_HANDLE

  Dim userRECT As tagRECT

  Dim pMxDoc As IMxDocument

  Dim pActive As IActiveView

  Dim pEnv As IEnvelope

  Set pMxDoc = ThisDocument

EXPORTER ABSTRACT CLASS

Exporter
IExporter

The exporter abstract class defines the
common interface for controlling the

output of map data to files.



644 • Exploring ArcObjects • Volume 1

  Set pEnv = pMxDoc.ActiveView.Extent

  lScreenResolution = _

    pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

  Set pExporter = New JpegExporter

  pExporter.ExportFileName = "C:\temp\ArcMapExport.jpg"

  pExporter.Resolution = lScreenResolution

  userRECT.top = 0

  userRECT.Left = 0

  userRECT.Right = ConvertRWToPixels(pEnv.Width)

  userRECT.bottom = ConvertRWToPixels(pEnv.Height)

  Set pDriverBounds = New Envelope

  pDriverBounds.PutCoords userRECT.Left, _

                          userRECT.bottom, _

                          userRECT.Right, _

                          userRECT.top

  pExporter.PixelBounds = pDriverBounds

  hDc = pExporter.StartExporting

  pMxDoc.ActiveView.Output hDc, lscreenResolution, userRECT, pEnv, Nothing

  pExporter.FinishExporting

End Sub

Private Function ConvertRWToPixels(RWUnits As Double) As Double

  Dim realWorldDisplayExtent As Double

  Dim pixelExtent As Long

  Dim sizeOfOnePixel As Double

  Dim pDT As IDisplayTransformation

  Dim deviceRECT As tagRECT

  Dim pEnv As IEnvelope

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Set pDT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation

  deviceRECT = pDT.DeviceFrame

  pixelExtent = deviceRECT.Right - deviceRECT.Left

  Set pEnv = pDT.VisibleBounds

  realWorldDisplayExtent = pEnv.Width

  sizeOfOnePixel = realWorldDisplayExtent / pixelExtent

  ConvertRWToPixels = RWUnits / sizeOfOnePixel

End Function

EXPORTER ABSTRACT CLASS



Chapter 6 • Directing map output • 645

O
u

tp
u

t

The ArcPressExporter abstract class supports the file formats that are
supported through the ArcPress driver, which are JPEG, PCX, PNG, and
TIFF.

 IArcPressExporter: IUnknown Provides access to members that control the ArcPress
Exporter Driver.

Driver: esriArcPressDriverExporters Indicates the Driver for the ArcPress Exporter.
DriverResolution: Integer Indicates the ArcPress Printer Driver Resolution.

The IArcPressExporter interface is supported by all of the ArcPress
coclasses that produce output files through the ArcPress driver. The
purpose of this interface is to provide generic properties (Driver and
DriverResolution) for the ArcPress driver.

The Driver property sets or retrieves the output option for the type of
driver you have. Use IExporter::Name to determine the type of object
you have, then use the Driver property to determine the format option
within the output object.

 IArcPressExporterDescriptionEnum :
IUnknown

Provides access to an enumeration of descriptions of
ArcPress Exporters.

NextDescription (out pDriver:
esriArcPressDriverExporters, out
driverDesc: String)

Returns an ArcPress Export Driver description.

Reset Resets the enumerator.

The IArcPressExporterDescriptionEnum interface is also supported by all
of the file format-specific ArcPress drivers. This interface provides an
enumeration of the supported file formats for the specific object.

For example, if you have an ArcPressExporterTiff object, then the enu-
meration will include the supported TIFF formats (TIFF3_BW,
TIFF4_BW, and TIFF6_RGB). This interface would commonly be used
when the developer wished to create a dialog box to allow the user to
specify the type of output desired. To do this, choose between the
object types (JPEG, PCX, PNG, and TIFF), then use this interface to
display the available options within that format.

The NextDescription method returns a driver that can be plugged into
the IArcPressExporter::Driver property to produce output in the desired
format.

Each of these ArcPress coclasses—ArcPressExporterJPEG, ArcPressExporter-
PCX, ArcPressExporterPNG, and ArcPressExporterTIFF—are used to create
output files in the respective formats. They only support the interfaces
inherited from the Exporter and ArcPressExporter abstract classes. Use the
IExporter::Name property to determine if you have a class of this type.

This is a summary of each of the formats supported by ArcPress:

Tag Image File Format (TIFF), developed by Aldus® Corporation, is an
industry standard for data storage and data transfer across operating
system environments and applications. It is one of the most versatile
bitmaps available. At this time, ArcPress supports groups 3 and 4, which
use CCITT Encoding for compression to encode 1-bit image data. The

ARCPRESS EXPORTER OBJECTS

ArcPress-
ExporterPNG

ArcPress-
ExporterJPEG

ArcPress-
ExporterPCX

ArcPress-
ExporterTIFF

Exporter
IExporter

ArcPress-
Exporter

IArcPressExporter
IArcPressExporter-

DescriptionEnum

The ArcPress export abstract class
supports the output of map data to the

different file formats of ArcPress.



646 • Exploring ArcObjects • Volume 1

TIFF 3 and TIFF 4 formats provide an excellent format for the transmis-
sion of high-quality monochrome images in modem and facsimile pro-
tocol used in machines and modems. TIFF 6 is an uncompressed group
6 for 24-bit RGB color images. ArcPress can generate:

• 1-bit (Monochrome)—Group 3 TIFF

• 1-bit (Monochrome)—Group 4 TIFF

• 24-bit (True Color)—Group 6 TIFF

The Joint Photographic Experts Group (JPEG) is a combined committee
of researchers from ISO and ANSI. Their goal is to set industry standards
“for the transmission of graphics and image data over digital communi-
cations networks.” Their result is “a compression method that is capable
of compressing continuous-tone image data with pixel depth of 6 to 24
bits with reasonable speed and efficiency.” (Encyclopedia of Graphics
File Formats, 1994). The ArcPress-created JPEG format does not have
any legal restrictions.

ArcPress can generate:

• 8-bit (Grayscale) JPEG

• 24-bit (True Color) JPEG

PCX (PC Paintbrush File Format), developed by Z-soft, also known as
DCX and PCC, is a common exchange and storage format for MS–DOS®

and Microsoft Windows applications. It is used with PC Paintbrush and
Microsoft Paintbrush for Windows. It is also commonly used for clip art
in many desktop publishing applications. PCX provides hardware-de-
pendent formats designed for specific types of display hardware. Image
data is compressed using a variation of Run Length Encoding (RLE),
which is quick and efficient at file size reduction.

ArcPress can generate:

• 1-bit (Monochrome) PCX

• 8-bit (Grayscale) PCX

• 8-bit (256 Colors) PCX

• 24-bit (True Color) PCX

The Portable Network Graphics (PNG) format was originally developed
to replace GIF to overcome the legal entanglements of the LZW com-
pression scheme; it is rising in popularity. The PNG, or “ping”, format
provides several useful features that include stream ability, progressive
display, and 100 percent loss-less compression. PNG is also completely
hardware and platform independent.

ArcPress can generate:

• 1-bit (Monochrome) PNG

• 8-bit (Grayscale) PNG

• 8-bit (256 Colors) PNG

• 24-bit (True Color) PNG

ARCPRESS EXPORTER OBJECTS



Chapter 6 • Directing map output • 647

O
u

tp
u

t

ArcPress-
Exporter-

Driver

IArcPressExporter-
Driver

The ArcPress exporter driver uses
ArcPress to convert a PostScript file to

one of the supported formats.

The ArcPressExporterDriver class is a standalone class (does not inherit
from any other class) used to convert a PostScript file to one of the
supported ArcPress file formats. This object is cocreated internally by
the core functionality as part of the output process through the ArcPress
drivers.

 IArcPressExporterDriver: IUnknown Provides access to members that control the ArcPress
exporter driver formats.

Resolution: Integer Indicates the Resolution of the ArcPress Exporter Driver.

CreateRaster (in Driver:
esriArcPressDriverExporters, in
InputFileName: String, in
OutputFileName: String)

Creates an Export Format file from the PostScript input file.

The purpose of the IArcPressExporterDriver interface is to allow you to
set a resolution, then use the CreateRaster method to convert a
PostScript file to one of the supported ArcPress file formats (JPEG, PCX,
PNG, and TIFF).

ARCPRESSEXPORTERDRIVER COCLASS



648 • Exploring ArcObjects • Volume 1

The CgmExporter coclass creates output files in the Computer Graphics
Metafile (CGM) format. Create an object of this type when you want to
generate your map output as a CGM file. The CgmExporter coclass
internally cocreates the CgmDriver coclass. The CgmDriver coclass does
all the work in producing an output file in the CGM format.

 ICGMExporter : IUnknown Provides access to members that control the CGM
(Computer Graphics Metafile) Exporter Interface.

QueryCGMDriver: ICGMDriver Returns Interface ICGMDriver.

The ICgmExport interface provides the ability to query for the CGM
driver being used with the object. The CgmDriver object can then be
used to set additional parameters to use when outputting to the CGM
format.

The CgmDriver coclass is creatable by the developer, but it is also inter-
nally created by the CgmExporter object. The CgmDriver object does all
the work in producing CGM files as output.

 ICGMDriver : IUnknown Provides access to members that control the CGM
(Computer Graphics Metafile) Driver.

CGMProfile: esriCGMProfile Indicates the CGM profile.
CGMVersion: esriCGMVersion Indicates the CGM version.
PolygonizeText: Boolean Indicates whether text is to be converted to polygons.

CreateCGM (in InputFileName: String,
in OutputFileName: String)

Indicates the Conversion of the EMF file to a CGM File.

ICGMDriver is the only interface supported by the CgmDriver coclass.
This interface allows the developer to set additional parameters before
outputting map data to the CGM format.

CreateCGM requires the input of an EMF file to produce the CGM output
file. The developer can avoid having to create the EMF file by using the
CgmExporter object (and the inherited IExporter interface) to generate
output.

This is some VBA code for exporting through the CGMExporter object.
The ConvertRWToPixels routine can be found with the IExporter sample
code.

Sub CGMExport()

  Dim pExporter As IExporter, pCGMDriver As ICGMDriver

  Dim pDriverBounds As IEnvelope, pCGMExporter As ICGMExporter

  Dim screenResolution As Long

  Dim hDc As OLE_HANDLE

  Dim userRECT As tagRECT

  Dim pMxDoc As IMxDocument

  Dim pActive As IActiveView

  Dim pEnv As IEnvelope

  Set pMxDoc = ThisDocument

  Set pEnv = pMxDoc.ActiveView.Extent

  screenResolution = _

    pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

CGMEXPORTER AND CGMDRIVER COCLASSES

Exporter
IExporter

ICGMExporter CGM-
Exporter

The CGM exporter creates output in the
Computer Graphics Metafile format.

ICGMDriver CGM-
Driver

The CGM driver is created by the CGM
exporter object during the output of map

data to a CGM file.



Chapter 6 • Directing map output • 649

O
u

tp
u

t

  Set pExporter = New CGMExporter

  pExporter.ExportFileName = "C:\temp\ArcMapExport2.cgm"

  pExporter.Resolution = screenResolution

  Set pCGMExporter = pExporter

  Set pCGMDriver = pCGMExporter.QueryCGMDriver

  pCGMDriver.PolygonizeText = True

  userRECT.top = 0

  userRECT.Left = 0

  userRECT.Right = ConvertRWToPixels(pEnv.Width)

  userRECT.bottom = ConvertRWToPixels(pEnv.Height)

  Set pDriverBounds = New Envelope

  pDriverBounds.PutCoords userRECT.Left, userRECT.bottom, _

                             userRECT.Right, userRECT.top

  pExporter.PixelBounds = pDriverBounds

  hDc = pExporter.StartExporting

  pMxDoc.ActiveView.Output hDc, screenResolution, userRECT, pEnv, Nothing

  pExporter.FinishExporting

End Sub

CGMEXPORTER AND CGMDRIVER COCLASSES



650 • Exploring ArcObjects • Volume 1

Exporter
IExporter

IBmpExporter
IDibExporter

IWorldFileSettings
DibExporter

The DIB exporter creates output in the
device-independent bitmap format.

The DibExporter coclass creates output files in the DIB (device-indepen-
dent bitmap) format. BMP files store graphics in the DIB format; the de-
fault file extension for this object type is .bmp. Create an object of this
type when you want to generate your map as a BMP file.

The IExporter::Resolution property cannot be set when using an object
of this type.

 IDibExporter : IUnknown Provides access to members that control the DIB (Windows
Device Independent Bitmap) Exporter Interface.

BackgroundColor: IColor Indicates the background color of the DIB.
BitsPerPixel: Integer Indicates the color depth of the DIB.
HDIB: Long Indicates the Handle to in-memory DIB. Valid only after ReleaseDC

has been called.
Height: Integer Indicates the height of the DIB. If width or height is zero, screen size

is used.
IsInMemory: Boolean Indicates if the bitmap should be written to memory. If false, file

writes to Path specified. If true, uses HDIB to get the memory
handle after ReleaseDC has been called.

Width: Integer Indicates the width of the DIB. If width or height is zero, screen size
is used.

IDibExporter is implemented only by the DibExporter coclass and the
only object that implements this interface. This interface provides DIB-
or BMP-specific properties the developer can set before outputting map
data to files in this format.

 IBmpExporter : IUnknown Provides access to members that control the BMP (Bitmap)
Exporter Interface.

Bitmap: Long Indicates the Windows Bitmap handle.
Palette: Long Indicates the Windows Bitmap color palette.

The IBmpExporter interface provides access to the OLE_Handles used
during the export process. These handles can be used to send addi-
tional information to the BMP file.

 IWorldFileSettings : IUnknown Provides access to members that control the World File
Exporter Interface.

MapExtent: IEnvelope Indicates the Map Extent.
OutputWorldFile: Boolean Indicates if a World File will be created.

The IWorldFileSettings interface is implemented exclusively by the
DibExporter and TiffExporter coclasses. The interface allows the devel-
oper to specify whether a world file (a file containing information about
the spatial extent of the data within the file) will be created during the
output process.

The MapExtent property sets the spatial extent of the map data being
outputted.

This VBA code uses the DibExporter object and its IDibExport and
IWorldFileSettings interfaces to output a BMP file with a related world
file:

Sub BMPExport()

  Dim pExporter As IExporter, pDibExporter As IDibExporter

  Dim pDriverBounds As IEnvelope, pWorldFile As IWorldFileSettings

DIBEXPORTER COCLASS



Chapter 6 • Directing map output • 651

O
u

tp
u

t

  Dim hDc As OLE_HANDLE

  Dim userRECT As tagRECT

  Dim pMxDoc As IMxDocument

  Dim pActive As IActiveView

  Dim pEnv As IEnvelope

  Set pMxDoc = ThisDocument

  Set pEnv = pMxDoc.ActiveView.Extent

  Set pExporter = New DibExporter

  pExporter.ExportFileName = "C:\temp\ArcMapExport.bmp"

  Set pDibExporter = pExporter

  pDibExporter.IsInMemory = False

  Set pWorldFile = pExporter

  pWorldFile.OutputWorldFile = True

  pWorldFile.MapExtent = pEnv

  userRECT.top = 0

  userRECT.Left = 0

  userRECT.Right = ConvertRWToPixels(pEnv.Width)

  userRECT.bottom = ConvertRWToPixels(pEnv.Height)

  Set pDriverBounds = New Envelope

  pDriverBounds.PutCoords userRECT.Left, _

                          userRECT.bottom, _

                          userRECT.Right, _

                          userRECT.top

  pExporter.PixelBounds = pDriverBounds

  hDc = pExporter.StartExporting

  pMxDoc.ActiveView.Output hDc, pExporter.Resolution, userRECT, pEnv, _

    Nothing

  pExporter.FinishExporting

End Sub

DIBEXPORTER COCLASS



652 • Exploring ArcObjects • Volume 1

The EmfExporter coclass creates output files in the EMF format. Create
an object of this type when you want to generate your map output as
an EMF file.

 IEmfExporter : IUnknown Provides access to members that control the EMF
(Enhanced Windows Metafile) Exporter Interface.

Description: String Indicates a description string to embed in the file.
HENHMETAFILE: Long Indicates the Handle to in-memory metafile. Valid only after

ReleaseDC has been called.
IsInMemory: Boolean Indicates if the metafile will be written to memory.

TakeHENHMETAFILE: Long Returns the handle to the in-memory metafile. Valid only after
ReleaseDC has been called. Ownership of the handle is transferred
to the client who must call DeleteEnhMetafile on the returned
handle. Subsequent calls to this routine will return 0.

IEmfExporter is implemented only by the EmfExporter coclass and the
only object that implements this interface. This interface provides EMF-
specific properties the developer can set or retrieve before outputting
map data in this format.

The IsInMemory property sets or returns whether the Metafile will be
written to memory. Be sure this property is set to True before trying to
use the HENHMETAFILE or TakeHENHMETAFILE properties.

The JpegExporter coclass will create output files in the JPEG format.
Create an object of this type when you want to generate your map
output as a JPG file.

 IJpegExporter : IUnknown Provides access to members that control the JPEG (Joint
Photographic Experts Goup) Exporter Interface.

BackgroundColor: IColor Indicates the background color of the JPEG.
Height: Integer Indicates the height of the JPEG. If width or height is zero, screen size

is used.
Quality: Integer Indicates the JPEG compression / image quality.
Width: Integer Indicates the width of the JPEG. If width or height is zero, screen size

is used.

IJpegExporter is implemented only by the JpegExporter coclass and the
only object that implements this interface. This interface provides JPEG-
specific properties the developer can set or retrieve before outputting
map data in this format.

EMFEXPORTER AND JPEGEXPORTER COCLASSES

Exporter
IExporter

IEmfExporter
EmfExporter

The EMF exporter creates output in the
Microsoft Enhanced Metafile format.

Exporter
IExporter

IJpegExporter Jpeg-
Exporter

The JPEG exporter creates output in the
format set by the Joint Photographic

Experts Group.



Chapter 6 • Directing map output • 653

O
u

tp
u

t

The PsExporter coclass creates output files in the PostScript format.
Create an object of this type when you want to generate your map
output in the PostScript format.

 IPsExporter : IUnknown Provides access to members that control the EPS
(Encapsulated PostScript) Exporter Interface.

QueryPSDriver: IPSDriver Returns Interface IPSDriver.

IPsExporter is implemented only by the PsExporter coclass. PsExporter is
the only object that implements this interface. The interface provides the
ability to query for the PostScript driver being used by the object.

The IFontMapEnvironment interface is documented with the
FontMapEnvironment coclass.

The PsDriver coclass is internally created by the PsExporter coclass and
is documented earlier in this chapter.

PSEXPORTER COCLASS

Exporter
IExporter

IFontMap-
Environment
IPsExporter

PsExporter

The PsExporter creates output in the
PostScript format.



654 • Exploring ArcObjects • Volume 1

The PDFExporter coclass generates output files in the Portable Docu-
ment Format (PDF). Create an object of this type when you want to
generate your map output in PDF.

This object internally creates the PDFDriver coclass to generate output
in PDF.

 IPDFExporter : IUnknown Provides access to members that control the PDF (Portable
Document Format) Exporter Interface.

IPDFExporter is implemented only by the PDFExporter coclass. This
interface doesn’t support any properties or methods, but you can use it
to identify the object as being type PDFExporter.

The PDFDriver coclass is creatable by the developer, but it is also inter-
nally created by the PDFExporter object. The PDFDriver object does all
the work in producing PDF files as output.

 IPDFDriver : IUnknown Provides access to members that control the PDF (Portable
Document Format) Driver.

FontMapCollection: IFontMapCollection Provides access to members that control the Font Map Collection for
Font Mapping.

CreatePDF (in InputFileName: String, in
OutputFileName: String)

Indicates the Conversion of the EMF file to a EPS File.

IPDFDriver is implemented only by the PDFDriver coclass. This inter-
face allows the developer to set additional parameters before outputting
map data to PDF.

CreatePDF requires the input of an EMF file to produce the PDF output
file. The developer can avoid having to create the EMF file by using the
PDFExporter object (and the inherited IExporter interface) to generate
output.

The IFontMapEnvironment interface is documented with the
FontMapEnvironment coclass.

PDFEXPORTER AND PDFDRIVER COCLASSES

Exporter
IExporter

IPdfExporter
PdfExporter

The PDFExporter creates output in the
Portable Document Format.

IFontMap-
Environment

IPDFDriver
PDFDriver

The PDF driver is created by the
PDFExporter object during the output

of map data to a PDF file.



Chapter 6 • Directing map output • 655

O
u

tp
u

t

The ExportDialog coclass creates a dialog box for the user to enter in
the export filename and desired format. After qualified entries have
been made in the dialog box, the appropriate exporter object is created;
you can get that object through the IExportDialog::Exporter property for
further processing.

As the VBA code below demonstrates, the ExportDialog object presents
the simplest method for the developer to write code to allow the user to
produce output in the desired file format.

Sub OutputInFileFormat()

  Dim pDialog As IExportDialog, bOut As Boolean, pEnv As Ienvelope

  Dim hDc As OLE_HANDLE, pMxDoc As IMxDocument

  Dim pExporter As IExporter, pDriverBounds As IEnvelope

  Dim userRECT As tagRECT, lRes As Long, screenResolution As Long

  Set pEnv = New Envelope

  Set pMxDoc = ThisDocument

  Set pDialog = New ExportDialog

  bOut = pDialog.DoModal(pEnv, lRes)

  If Not bOut Then Exit Sub

  Set pEnv = pMxDoc.ActiveView.Extent

  userRECT.top = 0

  userRECT.Left = 0

  userRECT.Right = ConvertRWToPixels(pEnv.Width)

  userRECT.bottom = ConvertRWToPixels(pEnv.Height)

  screenResolution = _

    pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation.Resolution

  Set pExporter = pDialog.Exporter

  pExporter.Resolution = screenResolution

  Set pDriverBounds = New Envelope

  pDriverBounds.PutCoords userRECT.Left, userRECT.bottom, _

                             userRECT.Right, userRECT.top

  pExporter.PixelBounds = pDriverBounds

  hDc = pExporter.StartExporting

  pMxDoc.ActiveView.Output hDc, screenResolution, userRECT, pEnv, Nothing

  pExporter.FinishExporting

End Sub

Private Function ConvertRWToPixels(RWUnits As Double) As Double

  Dim realWorldDisplayExtent As Double

  Dim pixelExtent As Long

  Dim sizeOfOnePixel As Double

  Dim pDT As IDisplayTransformation

  Dim deviceRECT As tagRECT

  Dim pEnv As IEnvelope

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

EXPORTDIALOG COCLASS

ExportDialog
IExportDialog

IExportDialog2

The Export dialog box displays a dialog
box for users to enter filename and

desired format for outputting map data.



656 • Exploring ArcObjects • Volume 1

  Set pDT = pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation

  deviceRECT = pDT.DeviceFrame

  pixelExtent = deviceRECT.Right - deviceRECT.Left

  Set pEnv = pDT.VisibleBounds

  realWorldDisplayExtent = pEnv.Width

  sizeOfOnePixel = realWorldDisplayExtent / pixelExtent

  ConvertRWToPixels = RWUnits / sizeOfOnePixel

End Function

 IExportDialog : IUnknown Provides access to members that export a map to another
file format.

ClipToGraphicExtent: Boolean Indicates if Clip To Graphic Extent option is selected.
DisableClipGrahicsCheckBox: Boolean Indicates if Clip To Graphic Extent checkbox is enabled.
DocumentName: String Name of the Active Document.
Exporter: IExporter The Exporter to be used.

DoModal (in pPixelBounds: IEnvelope,
in res: Integer) : Boolean

Displays Export Dialog.

IExportDialog is implemented only by the ExportDialog object. The
interface provides a method for capturing user input specifying output
file parameters.

The Exporter property returns the IExporter interface on the object cre-
ated based on the user selection in the dialog box. Be sure to determine
the type of exporter before trying to perform specific operations on the
object.

 IExportDialog2 : IUnknown Provides access to members that Additional Settings for the
standard Export Dialog.

MapExtent: IEnvelope The Map Extent which gets passed to IWorldFileSettings.

The IExportDialog2 interface was added at ArcGIS 8.1 to allow for the
setting and retrieval of the map extent. The map extent gets passed to
the IWorldFileSettings::MapExtent property when output is being sent
through the TiffExporter and DibExporter objects and is ultimately saved
with the file.

EXPORTDIALOG COCLASS



657

Working with
the Catalog

Larry Young, Aleta Vienneau, Keith Ludwig

7
The Catalog is the place where you can assemble connections to all the data

you need to use. When you choose a connection, you can

access the data to which it’s linked, whether it’s a folder

on a local disk or a database on the network. Together,

your connections create a catalog of geographic data

sources.

This chapter reveals how the ArcObjects components let

you: browse for maps and data • inspect features with

the contents view • explore the data through thumbnails

• look at geographic data with geography view • inspect

the attributes of a geographic data source with a table

view • view and create metadata • search for maps and

data • use data in ArcMap and ArcToolbox • manage

data sources • create layers with the Catalog



658 • Exploring ArcObjects • Volume 1

ArcCatalog is the application you use to browse and manage all of your
local and remote GIS data. It is patterned after Windows Explorer to
promote rapid familiarity and ease of use.

The user interface consists of three main elements: a tree view, a tabbed
view, and a set of toolbars and menus. The tree view depicts your data
holdings in a hierarchical structure of names and icons. The tabbed
view is really a set of data views, each of which appears on its own tab,
and one of which is active at any given time. These data views let you
visualize your data in a variety of ways. The toolbars and menus con-
tain all the tools and commands that enable you to manipulate and
work with your data.

The three primary data views are contents view, metadata view, and
preview view:

• Contents view displays an iconic list of all the children of the selec-
tion location, just like its counterpart in Windows Explorer. By de-
fault, this is the active view when you start up ArcCatalog.

• Metadata view shows all the metadata associated with the current
selection. By default, the format comes from an ESRI style sheet, but
this can be customized.

• Preview view is a set of data views, one of which may be active at
any given moment (just like the tabbed view). By default, preview
chooses whichever data view is most natural and appropriate for
displaying the current selection. For example, if you’ve selected a
shapefile, Preview will show you its geography by default. However,
a dropdown menu at the bottom of the preview allows you to over-
ride this and explicitly pick the view you wish to use.

ARCHITECTURE

The object model for ArcCatalog closely mirrors the actual user interface
experience. The running application is represented by the GxApplication
object. Its major purpose is to manage the three main interface ele-
ments—the tree view (GxTreeView), the active tabbed view
(IGxApplication::View), and the toolbars and menus. It also represents
the starting point for developers that wish to customize or augment the
standard application behavior. From the application object, you can
navigate to all the objects within ArcCatalog and execute methods on
them.

The object model consists of three separate but related tiers of function-
ality—the object tier, the view tier, and the application tier.

Object tier
The object tier is the bottom level in the object model. GxObjects repre-
sent individual data items and are as they appear in the tree view and
the contents view. Different types of GxObjects are used for different
types of data. For example, the GxLayer object represents layer files,

Toolbars
and menus

Tree view Tabbed view

ARCCATALOG CONCEPTS

When you select an item in the tree view, that
becomes the selection location—the items you

select in the contents view become the selected
set of objects at that location.

The Gx prefix through ArcCatalog refers to an
early internal prerelease name of ArcCatalog:

“GX”, short for the “geographic explorer”.

ArcCatalog object model

Object tier

View tier

Application tier



Chapter 7 • Working with the Catalog • 659

A
rc

C
at

al
o

g

whereas the GxMap object encapsulates map documents. Within the
GxObject tier, two objects are of supreme importance: the catalog object
(GxCatalog) and the current selection (GxSelection).

The Catalog represents your actual tree of data, as is shown in the tree
view. From the GxCatalog object, you can navigate to any of its descen-
dants to access and manipulate them. Most often, however, you will
work with the selection, which is composed of two parts: a location and
a set of selected objects at that location. When you select an item in the
tree view, that becomes the selection location; the items you select in
the contents view become the selected set of objects at that location.
Most operations in ArcCatalog work on the current selection.

The object tier is extensible. To add custom GxObjects, create an object
that supports at least IGxObject. (Typically, you’ll also want to implement
IGxObjectUI and IGxObjectEdit.) You also need to write a
GxObjectFactory that knows how to manufacture your custom GxObjects.
This factory is used by ArcCatalog as folders are expanded to detect
what objects exist within that folder.

View tier
The view tier is the middle tier. Its views display individual GxObjects in
a host of different ways. They represent different user interfaces on the
GxObjects. Different GxViews are used for different tasks. For example, to
rapidly browse for a data set, you might use the GxContentsView be-
cause it has different list styles. To look for data with certain attributes,
use the GxDocumentationView. GxGeographicView is extremely useful
for seeing what the dataset actually looks like before you use it.

ArcCatalog offers a simple framework for hosting GxViews. The tree view
is always available (even though it can be shown and hidden by the
user as desired). It is the primary navigation tool within ArcCatalog and
is used to establish the current selection location. The selection location
governs what is shown by the other GxViews.

ArcCatalog offers two ways to show the other views: as tabbed views or
as previews. Tabbed views show up as individual tabs within the main
ArcCatalog window. By default, there are three: Contents, Preview, and
Metadata. However, a developer can add as many as they want.

Previews show up as combo box choices within the Preview tab and
are generally used for those views that show static views of the data
(such as geography, table, 3D, and so on). Regardless of the view style
chosen, the actual implementation of the GxView is not affected. It is the
same for either. However, other than the visual differentiation, there is a
minor functional difference between the two view types.

Tabbed views can only be chosen manually. However, previews are
automatically chosen depending on what kind of object is currently
selected. If the Preview tab is active, when the user changes the selec-
tion location, ArcCatalog uses the IGxView::Applies method to ask each
registered preview if it can handle the type of object selected. If the

OVERVIEW OF THE ARCCATALOG OBJECT MODEL

IGxFile
IMetadata

IGxObject

IGxCatalog
IGxPasteTarget

Gx-
Selection

IGxSelection
IGxSelectionEvents

GxFile

GxObject

GxCatalog

Behind the user interface, two objects serve as
the heart and soul of ArcCatalog—the catalog
object, GxCatalog, and the current selection
object, GxSelection. The Catalog represents

your actual tree of data and is shown through
the tree view. The selection itself is really

composed of two parts: a location and a set of
objects at that location.



660 • Exploring ArcObjects • Volume 1

current preview supports it, no switching occurs. However, if the current
preview does not support it, the first view that says that it can support it
is chosen as the active preview. Users may, of course, switch the pre-
view to a different one afterwards, but the automatic switching logic still
occurs when the selection changes.

Application tier
The top tier of ArcCatalog, the application tier, is dominated by the
GxApplication and its associated menus and toolbars. It manages the
lifetime of the GxCatalog and its descendants and manages all the
GxViews.

OVERVIEW OF THE ARCCATALOG OBJECT MODELOVERVIEW OF THE ARCCATALOG OBJECT MODEL



Chapter 7 • Working with the Catalog • 661

A
rc

C
at

al
o

g

When the application starts up, ArcCatalog creates GxDisk-
Connection objects for each folder connected at the root and popu-
lates the Catalog tree.

If this is the first time you’ve started ArcCatalog, it will add all your
local drives as folder connections to get you started. Also at this
level, ArcCatalog creates and adds any GxObject objects that are
registered in the CATID_GxRootObjects (“ESRI Gx Root Objects”) com-
ponent category.

Several root objects are supplied by default—the Database Connec-
tions folder, the Coordinate Systems folder, the Geocoding Services
folder, the Internet Servers folder, and the Search Results folder.
Typically, these root objects act as containers of other objects and
therefore implement IGxObjectContainer, but this is not a require-
ment.

When any container object is expanded in ArcCatalog, its children
are retrieved via the Children property of IGxObjectContainer and
are then shown in the tree view (and possibly the contents view).
Most container objects have hardwired knowledge about what their
children are. A notable exception is the GxFolder. It discovers its list
of children dynamically using a set of GxObjectFactory objects.

When a GxFolder is first asked for its children, it loops over all the
registered GxObjectFactory objects (in the CATID_GxObjectFactories
component category) and calls their GetChildren methods, passing
in the directory path and a list of filenames. The object factory
responds by returning an enumeration of GxObject objects for ev-
erything that it recognizes within that folder. For example, the
GxObjectFactory for shapefiles looks for all files that have a .shp
extension and creates and returns GxShapefile objects for each one
of them.

As an optimization, ArcCatalog actually calls HasChildren first on
the factory before calling GetChildren—in response, the factory
should do a quick scan of the folder first to see if there are any
children. This saves looping over all the filenames, since
HasChildren can return True once the first valid file is found.

Then, using the IGxObjectUI interface, ArcCatalog asks each child
for an icon to use for display purposes. If the object doesn’t sup-
port this interface, a default icon is used instead. Its name is shown
next to the icon, and, in details view, its type information (derived
from the IGxObject::Category property) is also displayed.

DATA TRANSFER (VIA DRAG/DROP AND COPY/PASTE)

ArcCatalog uses the standard OLE data transfer mechanism for both
drag and drop and copy and paste. This is always the case, whether
or not it is acting as the source of the operation, the destination, or
both. To fully understand how drag/drop and copy/paste works, it
is best to look at how ArcCatalog behaves when it is both the
source and destination.

GXCATALOG INITIALIZATION AND OBJECT DETECTION



662 • Exploring ArcObjects • Volume 1

GXCATALOG INITIALIZATION AND OBJECT DETECTION

DRAG/DROP WITHIN ARCCATALOG

When it detects that a drag operation has started, ArcCatalog pack-
ages the selected GxObjects into a data object (IDataObject) and
passes this to OLE.

ArcCatalog packages the selected GxObjects up as follows. First,
the current selection of GxObjects is identified (via the Gx-
Selection object). Then, each GxObject in the selection is asked
for its internal name object via the InternalNameObject property.
Those that return nothing for this property aren’t considered. All
of the internal Name objects are then persisted into a stream that
is placed into an OLE data object. To persist them into this
stream, ArcCatalog creates a NameFactory utility object, then
invokes its PackageNames method. This data object is then
passed over to OLE to let it proceed with the operation.

Transfer Source
Always the GxSelection

OLE Data Object
A stream of persisted

Name objects

Transfer Target
Any GxObject that

supports IGxPasteTarget

Then OLE takes over. If the operation is a drag/drop, OLE enters
a modal event loop while the drag takes place. During this event
loop, OLE checks to see where the mouse is currently located. If
the mouse enters an hWnd that is registered as a drop target,
OLE invokes the IDropTarget interface on it, first calling
DragEnter, then DragOver, and DragLeave as necessary. (To
register an hWnd as a potential drop target, call the Win32
method RegisterDragDrop.) If the user releases the mouse over
the hWnd, OLE calls the Drop method.

Since ArcCatalog is the destination for the data transfer in this
example, ArcCatalog handles the IDropTarget requests from OLE.
It does so as follows. As the mouse moves within the tree or
contents view, ArcCatalog checks to see if target GxObject is a
valid recipient for the data transfer. Any object that supports
IGxPasteTarget is considered. Here’s that interface:

interface IGxPasteTarget:

Function CanPaste(names as IEnumName, moveOperation as Boolean) as Boolean

Function Paste(names as IEnumName, moveOperation as Boolean) as Boolean

ArcCatalog transforms the drag data into a more usable form, namely, an
enumeration of Name objects (IEnumName). It then calls CanPaste to deter-
mine if the drop target can accept the Names being dragged. In response, the
potential target enumerates through the list of Names to see if it can handle
them. For example, the GxDatabase object checks to make sure all the Name
objects are actually DatasetNames (that is, they support IDatasetName).
Other objects might check to make sure the Name objects support IFile-
Name. If the target GxObject decides it can accept a drop, it returns True. If
the data isn’t supported, it returns False. The GxObject must also indicate if
the drag operation represents a move or a copy. It does so by setting the
value of the moveOperation parameter to True or False.



Chapter 7 • Working with the Catalog • 663

A
rc

C
at

al
o

g

GXCATALOG INITIALIZATION AND OBJECT DETECTION

When the user releases the mouse button, OLE calls IDropTarget::Drop.
ArcCatalog responds by calling the IGxPasteTarget::Paste method on the
GxObject, again passing in the list of Names. It also passes in True or
False for moveOperation to indicate if the operation is to be a move or
just a copy. At this point, the target GxObject must carry out the actual
data transfer operation in whatever fashion makes sense for the data.
(For example, GxDatabase handles data transfers by issuing
geodatabase schema changes and cursor requests to physically move
rows from one place to another. Other transfer targets might behave
similarly, or do something entirely different, depending on the kind of
data involved.)  If the data transfer involves changes that should be
reflected in the ArcCatalog tree or contents views, be sure to call Re-
fresh to make those changes visible.

The target GxObject also needs to indicate whether or not an actual
move was carried out if moveOperation was initially True. It does so by
setting this parameter to True or False before returning. Finally, if the
data transfer operation succeeded, the function returns True; otherwise
it returns False.

COPY/PASTE IN ARCCATALOG

If the transfer operation is a copy/paste instead of a drag/drop, the
situation is very similar—only a few things are different. First, when the
copy is initiated, ArcCatalog packages up the selected GxObjects into a
data object as before (by asking them for their internal Names). It then
places this data object onto the OLE clipboard, where it remains avail-
able for other applications to paste it.

Whenever the current selection location changes in ArcCatalog (either
manually or programmatically), ArcCatalog needs to check to see if the
Paste command should be enabled. It does this by calling IGxPaste-
Target::CanPaste on the current location. The desirable aspect of this
behavior is that the implementation for IGxPasteTarget is the same for
the target, regardless of the type of data transfer operation (copy/paste
or drag/drop). It responds in exactly the same way as it does for the
drag/drop case. If the user selects the Paste command, ArcCatalog
invokes the Paste method on the current location.



664 • Exploring ArcObjects • Volume 1

GxView objects

GxDocumentationView
represents the metadata
view in ArcCatalog

EnumGxView
IEnumGxView IGxViewContainer GxView-

Container

ApplicationGxPreview
IGxPreview

ApplicationGxTableView
IGxCatalogEvents

IGxTableView

GxTreeView
IGxCatalogEvents

IGxTreeView

The GxViewContainer object permits a
GxView object to be a container for additional

views

GxPreview shows
previews of the selected
object

*

Gx-
Document-
ationView

IGxCatalogEvents
IGxDocumentationView

IGxViewPrint

Gx-
Geographic-

View

IGxCatalogEvents
IGxGeographicView

IGxGeographicView2
ITransformEvents

GxContents-
ViewColumn

IGxContentsViewColumn
IClone

IPersistStream

Objects in the GxContentsViewColumn
collection represent the columns in the
tabbed display area of the view (when
Contents is the active tab)

GxTreeView shows a
hierarchical organization of your
data holdings

GxTableView is used to
preview the table
associated with the
selected object

The GxGeographic-View
lets you preview your
data

GxContentsView is the
Explorer-style iconic view
available in ArcCatalog

GxView is an abstract
class representing all
possible ArcCatalog

views

IGxSelectionEvents
IGxView GxView

GxContents-
View

IGxCatalogEvents
IGxContentsView

IGxContentsViewColumns
IPersistStream

*



Chapter 7 • Working with the Catalog • 665

A
rc

C
at

al
o

g

GxExtension
IGxExtension

IExtension
IExtensionAccelerators

IExtensionConfig

Extension
See chapter 3,

'Customizing the user
interface'

Application
See chapter 3,

'Customizing the user
interface'

IApplication
IDockableWindowManager

IExtensionManager
IMultiThreadedApplication

IVBAApplication
IWindowPosition

GxDocument
IDocument

IGxDocumentEvents
IGxDocumentEventsDisp

Enum-
GxObject

IEnumGxObject

GxObject-
Array

IGxObjectArray

GxSelection
IConnectionPointContainer

IGxSelection
IGxSelectionEvents

GxApplication
IGxApplication

IGxCatalogAdmin
IGxCatalogEvents

IGxCatalogEventsDisp

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxCatalog

IComPropertySheetEvents
IConnectionPoint

IConnectionPointContainer
IGxCatalog

IGxCatalogEventsDisp
IGxCatalogEvents

IGxFile
IMetadataEdit

GxApplication and related objects

GxDocument represents the
document object in the VBA

class ThisDocument contained
in each VBA project

GxApplication represents the running ArcCatalog executable

GxObjectArray object
holds a set of GxObjects

GxSelection keeps track of the items chosen in
the tree and tabbed views of the data

Metadata-
Extension

IConnectionPointContainer
IMetadataHelper
IMetadataEvents

IPersistStream



666 • Exploring ArcObjects • Volume 1

GxApplication is the object that represents the running ArcCatalog ex-
ecutable. It creates and manages the user interface—the tree view, the
tabbed views, and the menus and toolbars—and initializes the Catalog
tree by creating the GxCatalog root object.

Typically, developers will start their navigation of the object model from
GxApplication and work their way down to the object they need to
manipulate. All commands and tools are passed a reference to the
GxApplication in their OnCreate method.

GxApplication supports IApplication and IGxApplication. IApplication is
common to both ArcMap and ArcCatalog and is described in detail in
Chapter 3, ‘Customizing the user interface’.

 IGxApplication : IUnknown Gx Application object.

AreaOfInterest: IEnvelope The default area of interest for the application.
CanDeleteSelection: Boolean Indicates if the current selection can be deleted.
CanRenameSelection: Boolean Indicates if the current selection can be renamed.
Catalog: IGxCatalog The current catalog.
Location: String The location to the specified path.  If the path isn't yet part of the

catalog, it is added as a folder connection.
SelectedObject: IGxObject The first selected object, or the location if no objects are selected.
Selection: IGxSelection The selection.
TreeView: IGxTreeView The tree view.
View: IGxView The current view.
ViewClassID: IUID The current view's class ID.

DeleteSelection Deletes the current selection.
ExpandSelection Expands the current selection.
Refresh (in startingPath: String) Refreshes the catalog tree starting at the specified path.  If

startingPath is 0 or the empty string, the entire catalog is refreshed.
RenameSelection Renames the current selection.
ShowContextMenu (in X: Long, in Y:

Long)
Displays a context menu for the current selection.

The IGxApplication interface is unique to ArcCatalog and is used to
control certain aspects of its behavior. For example, through the
IGxApplication interface, you can delete or expand the current selection
(through DeleteSelection and ExpandSelection) or force a refresh of a
certain part of the Catalog tree (through Refresh).

The Catalog property returns the GxCatalog object, which represents the
root of the Catalog data tree. From there, you can use IGxObject-
Container::Children to enumerate through the Catalog’s descendants.

The TreeView property gives you access to ArcCatalog’s tree view. From
this GxTreeView, you can ensure that a certain descendant is visible or
initiate a renaming operation.

The View property gives you access to the active GxView, whatever it
happens to be. It might be one of the built-in views—for example,
GxContentsView, GxPreview, or GxMetadataView—or it might be a devel-
oper-added one. From here, you can manipulate the active view in
whatever fashion is native to it.

GXAPPLICATION COCLASS

Application
See chapter 3,

'Customizing the user
interface'

IApplication
IDockableWindow-

Manager
IExtensionManager

IMultiThreaded-
Application

IVBAApplication
IWindowPosition

GxApplication
IGxApplication

IGxCatalogAdmin
IGxCatalogEvents

IGxCatalogEventsDisp

GxApplication represents the running
ArcCatalog application.



Chapter 7 • Working with the Catalog • 667

A
rc

C
at

al
o

g

 IGxCatalogEvents : IUnknown Provides access to events that the catalog can fire.

OnObjectAdded (Object: IGxObject) Called when an object has been added to some part of the catalog.
OnObjectChanged (Object: IGxObject) Called when an object in some part of the catalog has been changed.
OnObjectDeleted (Object: IGxObject) Called when an object has been deleted from some part of the

catalog.
OnObjectRefreshed (Object: IGxObject) Called when an object in some part of the catalog has been

refreshed.
OnRefreshAll Called when the whole catalog has changed.

IGxCatalogEvents interface is the events interface implemented by
GxApplication. This interface allows developers to attach code to the
various events fired by ArcCatalog, such as when objects are added or
deleted.

When a refresh is performed on ArcCatalog (when the user clicks the
View menu and clicks Refresh), only the Location object (the selected
object in the tree view) is passed to the OnObjectRefreshed event. How-
ever, everything underneath this object is refreshed.

GXAPPLICATION COCLASS



668 • Exploring ArcObjects • Volume 1

The GxSelection object keeps track of the items chosen in the tree and
tabbed views of the data. A GxSelection object can be created, but more
commonly it is retrieved from the GxApplication (IGxApplication::-
Selection). What is selected is key in determining what context menus to
display when the user right-clicks and in determining copy/paste capa-
bilities of the objects.

Here is some VBA code that uses the GxSelection object to loop through
the selected set of objects and display their categories:

  Dim pApp As IGxApplication, pGxSel As IGxSelection, _

    pEnumGxObj As IEnumGxObject

  Dim pGxObj As IGxObject

  Set pApp = Application

  Set pGxSel = pApp.Selection

  Set pEnumGxObj = pGxSel.SelectedObjects

  Set pGxObj = pEnumGxObj.Next

  Do While Not pGxObj Is Nothing

    Debug.Print pGxObj.Category

    Set pGxObj = pEnumGxObj.Next

  Loop

 IGxSelection : IUnknown Provides access to members that manages the selection
within the catalog.

Count: Long The number of selected objects.
DelayEvents: Boolean Delays or resumes selection event firing.  If the selection changed

while events were being delayed, a single event is fired when events
are resumed.

FirstObject: IGxObject The first object in the selection.
Location: IGxObject The location of the selection.
SelectedObjects: IEnumGxObject The objects in the selection.

Clear (in initiator: IUnknown Pointer) Unselects all objects.
IsSelected (in Object: IGxObject) :

Boolean
Checks if an object is selected.

Select (in Object: IGxObject, in
appendToExistingSelection: Boolean,
in initiator: IUnknown Pointer)

Selects an object, optionally appending it to the existing selection.

SetLocation (in Location: IGxObject,
pInitiator: IUnknown Pointer)

Clears the selection and sets a new location.

Unselect (in Object: IGxObject, in
initiator: IUnknown Pointer)

Unselects an object.

The IGxSelection interface is implemented by the GxSelection object and
provides access to the objects selected in the tree and tabbed views of
ArcCatalog. Use this interface when you want to determine what is se-
lected or make changes to what is selected.

The Location method returns the IGxObject selected in the tree view
(there can be only one), while the SelectedObjects method returns an
enumeration of objects selected in the tabbed view.

FirstObject returns the first object selected in the tabbed view.

The methods that change the selection require an initiator parameter,
which can be set to nothing. Calling one of these methods will fire the
SelectionChanged event, and SelectionChanged will pass on the initiator
parameter. The initiator is the object initiating the change.

The selection methods (Clear, IsSelected, Select, and Unselect) all operate
on the selected objects in the tabbed view.

GXSELECTION AND GXOBJECTARRAY COCLASSES

GxSelection
IConnectionPoint-

Container
IGxSelection

IGxSelectionEvents

GxSelection keeps track of items
chosen in the tree view.



Chapter 7 • Working with the Catalog • 669

A
rc

C
at

al
o

g

The following VBA code demonstrates how to use the SetLocation
method to change the selection in tree view:

  Dim pApp As IGxApplication

  Dim pSel As IGxSelection

  Dim pObject As IGxObject

  Dim ln As Long

  Set pApp = Application

  Set pObject = pApp.Catalog.GetObjectFromFullName _

   ("d:\tools\various\labeling.txt", ln)

  Set pSel = pApp.Selection

  pSel.SetLocation pObject, Nothing

The GxObjectArray object holds a set of GxObjects. The object is not
returned by a method on any other object; therefore, it is up to the
developer to create and manipulate an object of this type.

A few of the methods in the ArcCatalog object model take IEnumGx-
Object variables as input. Without the GxObjectArray class, developers
would need to create their own custom class to implement IEnumGx-
Object.

 IGxObjectArray : IUnknown Provides access to members that manage an array of GX
objects.

Count: Long The number of objects in the array.

Empty Removes all objects from the array.
Insert (in Index: Long, in gxObject:

IGxObject)
Inserts an object into the array before the specified index.  If index

is -1, the object is inserted at the end.
Item (in Index: Long) : IGxObject The object at the given index in the array.
Remove (in Index: Long) Removes the object at the specified index in the array.

The IGxObjectArray interface is implemented by the GxObjectArray class
and provides the ability to manipulate the set of GxObjects maintained
by the class. Through this interface, the developer can insert, remove,
and retrieve the objects within the array.

GXSELECTION AND GXOBJECTARRAY COCLASSES

Enum-
GxObject

IEnumGxObject

GxObject-
Array

IGxObjectArray

The GxObjectArray object holds a set
of GxObjects.



670 • Exploring ArcObjects • Volume 1

There are two types of views: tabbed views and previews. They are
implemented exactly the same but are registered in separate component
categories depending on the look and feel desired.

Tabbed views show up as individual tabs in the ArcCatalog main win-
dow. They are always available regardless of the type of the current
selection.

Previews are different—they are only available under the Preview tab
and only show up if they are appropriate for the type of the current
selection. The Applies property determines this. If the view does apply, it
shows up as a possible choice in the preview dropdown combo box. If
it doesn’t apply, it does not show up. Applies has no effect when the
view is registered as a tabbed view.

At the appropriate times, ArcCatalog calls Activate and Deactivate on the
GxView to inform it that it is becoming active or inactive. In response,
the view typically should refresh itself and establish or release refer-
ences to any resources that it needs for interaction with the user.

 IGxView : IUnknown Provides access to members that control the GxView.

ClassID: IUID The class ID of the view.
DefaultToolbarCLSID: IUID The class ID of the view's default toolbar.  Not currently used.
hWnd: Long The view's window handle.
Name: String The name of the view.
SupportsTools: Boolean Indicates if the view supports tools.

Activate (in Application: IGxApplication,
in Catalog: IGxCatalog)

Activates the view.

Applies (in Selection: IGxObject) :
Boolean

Indicates if the view can display the given object.

Deactivate Deactivates the view.
Refresh Refreshes the view.
SystemSettingChanged (in Flag: Long,

in section: String)
Informs the view that a system setting has changed.

A GxView must minimally support the IGxView interface, which ArcCata-
log uses to negotiate with the view. It asks the view for an hWnd to
display through the hWnd property. It reparents this hWnd so that it is a
child of an ArcCatalog hWnd. It also guarantees events are passed to the
hWnd correctly and that it is resized when the ArcCatalog window is
resized. Developers that wish to create their own custom views must
implement this interface.

Use the Activate property to hold on to the GxApplication and
GxCatalog objects that are passed in as parameters. The Deactivate
property releases these references.

DefaultToolbarCLSID provides a reference to the default toolbar for the
particular view. The default toolbar for a view contains tools that are
appropriate for the current type of GxView.

If the SupportsTools property returns True, ArcCatalog will intercept
mouse events normally destined for the view and instead send them to
the active tool.

GXVIEW ABSTRACT CLASS

IGxSelectionEvents
IGxView GxView

GxView is an abstract class that repre-
sents all possible ArcCatalog views. There

are five types of GxViews: Gx-
ContentsView, GxGeographicView,

GxPreview, GxTableView, and
GxTreeView.



Chapter 7 • Working with the Catalog • 671

A
rc

C
at

al
o

g

GXVIEW ABSTRACT CLASS

The following VBA code uses the Name property of the IGxView inter-
face to determine if you are looking at a preview. If you are, then the
class ID of the preview is changed to a table view.

  Dim pApp As IGxApplication, pGxView As IGxView

  Set pApp = Application

  Set pGxView = pApp.View

  If UCase(pGxView.Name) = "PREVIEW" Then

  'The above line could be replaced with "If TypeOf pGxView Is IGxPreview  Then"

    Dim pPrev As IGxPreview, pUID As New UID

    Set pPrev = pGxView

    Debug.Print pPrev.ViewClassID

    pUID = "{9C34344D-99DC-11D2-AF6A-080009EC734B}"

    pPrev.ViewClassID = pUID

  End If

 IGxViewPrint : IUnknown Provides access to members that control the printing of a
GxView object.

IsPrintable: Boolean Indicates if the view can be printed.

Print Prints the view.

GxViews optionally support the IGxViewPrint interface to allow the user
to print the current display. This is especially handy for the metadata
view, as it allows users to create scripts to print nicely formatted
metadata for a batch of objects at once.



672 • Exploring ArcObjects • Volume 1

The GxContentsView coclass shows the children of the current selection
location in a variety of styles: large icons, list, report, and thumbnails.
You can set the style it uses by changing the DisplayStyle property on
IGxContentsView.

Here is some VBA code for checking the current view to determine if it
is a GxContentsView. This code also accesses properties associated with
that view.

Sub test1()

  Dim pApp As IGxApplication, pView As IGxView

  Dim pContView As IGxContentsViewColumns, pCol As IGxContentsViewColumn

  Set pApp = Application

  Set pView = pApp.View

  If TypeOf pView Is IGxContentsViewColumns Then

    Set pContView = pView

    Set pCol = pContView.ColumnByIndex(0)

    Debug.Print pCol.Caption & ", " & pCol.PropertyName

  End If

End Sub

 IGxContentsView : IUnknown Provides access to members that control the
GxContentsView.

AllowMultiSelect: Boolean Indicates if multiple objects can be selected.
DisplayStyle: tagesriContentsViewStyle The current display style.
ObjectFilter: IGxObjectFilter The object filter used for controlling what objects are displayed.

BeginRename Starts a rename operation on the current selection.

The IGxContentsView interface is implemented by the GxContentsView
object. It provides the ability to change how users interact with a view
of that type. What types of files are displayed, how they are displayed,
and whether more than one can be selected at a time are all controlled
through the interface.

Constrain the set of objects displayed by supplying an object filter
through the ObjectFilter property. For a discussion of what filters are
available and how to create your own, see the introductory section in
this chapter on GxDialog and GxObjectFilters.

 IGxContentsViewColumns : IUnknown Provides access to members that control the columns of
GxContentsView.

ColumnByIndex (in Index: Long) :
IGxContentsViewColumn

Get a column by its index.

ColumnByProperty (in Property: String) :
IGxContentsViewColumn

Get a column by its property.

ColumnCount: Long Get the total number of columns (include both visible and invisible
columns)

InsertColumn (in Index: Long, in
pColumn: IGxContentsViewColumn)

Inserts a GxContentsViewColumn before the specified index.  If index
is -1, the column is inserted at the end.

RemoveAllColumns Removes all columns except Name and Type column (they are
always shown).

RemoveColumn (in pColumn:
IGxContentsViewColumn)

Removes a GxContentsViewColumn.

UpdateColumns Refresh columns in contents view after insert or remove columns.

The IGxContentsViewColumns interface serves as a container for the
GxContentsViewColumn objects contained within the GxContentsView
object. The objects in the collection represent the columns in the tabbed
display area of the view (when Contents is the active tab).

GxContents-
View

IGxCatalogEvents
IGxContentsView

IGxContentsView-
Columns

IPersistStream

IGxSelectionEvents
IGxView GxView

The Explorer-style iconic view available in
ArcCatalog is the GxContentsView.

GXCONTENTSVIEW AND GXCONTENTSVIEWCOLUMN



Chapter 7 • Working with the Catalog • 673

A
rc

C
at

al
o

g

After using the InsertColumn method to add your new column, execute
the UpdateColumn method to refresh the column list.

RemoveAllColumns will not remove the Name and Type columns. These
columns cannot be removed. Keep in mind that removal of columns is
not just for that session, it is permanent.

GxContentsViewColumn objects represent the columns of information
displayed when the Contents tab is the active view. The developer has
the ability to create and add additional columns of information to cus-
tomize the contents view for displaying specific information.

 IGxContentsViewColumn : IUnknown Provides access to members that control the
GxContentsViewColumn.

Caption: String The caption.
Intrinsic: Boolean Indicates if intrinsic.
PropertyName: String The property name.
Visible: Boolean Indicates if visible.
Width: Long The width.

The IGxContentsViewColumn interface provides access to the properties
of the columns contained within the GxContentsView object. The column
properties allow you to set the width, visibility, and caption of the col-
umn.

Intrinsic properties (Intrinsic property set to True) are properties such as
Name, Category, and Size. These are not really useful unless you add
your own GxObject through a new workspace factory; if you do this,
you have the ability to add object-specific special properties.

The PropertyName property is based on keywords within the metadata
for the object. Make sure you have metadata with the specific keyword
before using it as a PropertyName.

GXCONTENTSVIEW AND GXCONTENTSVIEWCOLUMN

GxContents-
ViewColumn

IGxContentsView-
Column
IClone

IPersistStream

GxContentsViewColumn objects
represent the columns of information

displayed when the Contents tab is the
active view.



674 • Exploring ArcObjects • Volume 1

The metadata view in ArcCatalog is represented by GxDocumentation-
View. Since it is a GxView, it naturally supports IGxView. However, to
manipulate it, you will want to work with IGxDocumentationView. This
interface allows you to do three things: edit the metadata using a custom
editor through Edit, edit the metadata properties with a default editor via
EditProperties, and force the metadata to be updated with respect to the
object’s current attributes through Synchronize.

To build a custom editor, create an object that implements IMetadata-
Editor interface, then inform the metadata extension object to use it
through its IMetadataHelper::Editor property.

GxDocumentationView also implements IGxViewPrint to enable you to
print the well-formatted metadata.

 IGxDocumentationView : IUnknown Provides access to members that edit metadata.

Edit Opens the current metadata editor.
EditProperties Opens the Metadata Properties dialog box.
Synchronize Writes the current property values to the metadata.

The IGxDocumentationView is implemented by GxDocumentationView. It
provides a set of methods for manipulating the metadata associated with
an object. Through this interface, the developer can open the editor
associated with the metadata, access the metadata properties, or apply
the edits made to the metadata.

The following VBA code brings up the default editor for the metadata
associated with the selected object:

  Dim pApp As IGxApplication, pGxView As IGxView, _

    pDocView As IGxDocumentationView

  Set pApp = Application

  Set pGxView = pApp.View

  If TypeOf pGxView Is IGxDocumentationView Then

    Set pDocView = pGxView

    pDocView.Edit

  End If

GXDOCUMENTATIONVIEW COCLASS

Gx-
Document-
ationView

IGxCatalogEvents
IGxDocumentationView

IGxViewPrint

IGxSelectionEvents
IGxView GxView

The GxDocumentationView object
opens the Metadata Properties dialog

box.



Chapter 7 • Working with the Catalog • 675

A
rc

C
at

al
o

g

When you want to preview your data, use GxGeographicView. It is
available through the Preview tab in ArcCatalog. It displays the geogra-
phy of the selected dataset in its window. By default, the
GxGeographicView object shows up on the Preview tab page; however,
the object implements IGxView like the other GxView objects and can be
used as its own tab.

A set of standard manipulation tools is provided for zooming, panning,
and performing identify. However, you can easily add your own tools,
which can work with this view in whatever fashion you would like. You
can do this by accessing the map or map display objects from the
IGxGeographicView interface. Internally, the view uses the services of
these two objects to display the selected item, and you can manipulate
them as well.

The following VBA method accesses the geographic view’s map (as an
IActiveView) and zooms in a fixed amount:

Public Sub ZoomIn()

    Dim pApp As IGxApplication

    Set pApp = Application

    If Not TypeOf pApp.View Is IGxPreview Then Exit Sub

    Dim pPreview As IGxPreview

    Set pPreview = pApp.View

    If Not TypeOf pPreview.View Is IGxGeographicView Then Exit Sub

    Dim pGeoView As IGxGeographicView

    Set pGeoView = pPreview.View

    Dim pActiveView As IActiveView

    Set pActiveView = pGeoView.Map

    Dim pExtent As IEnvelope

    Set pExtent = pActiveView.Extent

    pExtent.Expand 0.75, 0.75, True

    pActiveView.Extent = pExtent

    pActiveView.Refresh

End Sub

Newer versions of ArcCatalog also support previewing a map document’s
page layout within the geographic view. In these cases, you can use the
new IGxGeographicView2 interface and access its ActiveView property. It
will contain a reference to a page layout object if the selected item refers
to a map document (GxMap). You can manipulate this object in any way
you desire.

 IGxGeographicView : IUnknown Provides access to members that control the
GxGeographicView.

DisplayedLayer: ILayer The layer object currently being displayed.
Map: IMap The map object that is used to draw the layer.
MapDisplay: IScreenDisplay The display object that is used to draw the layer.

The IGxGeographicView interface is implemented by the
GxGeographicView object. It provides access to the map and screen

GXGEOGRAPHICVIEW COCLASS

Gx-
Geographic-

View

IGxCatalogEvents
IGxGeographicView

IGxGeographicView2
ITransformEvents

IGxSelectionEvents
IGxView GxView

The GxGeographicView appears on
the Preview tab.



676 • Exploring ArcObjects • Volume 1

display that preview the currently selected object. Through this interface,
the developer can retrieve the layer being displayed, then use the map
and screen display properties to show additional information within the
view.

The DisplayedLayer property is set to Nothing when the selected object
cannot be previewed in the GxGeographicView. The following VBA
code demonstrates how you might check for this condition:

Sub GxGeographicViewDisplayLayer()

  Dim pApp As IGxApplication

  Dim pView As IGxView

  Dim pPreview As IGxPreview

  Dim pGeo As IGxGeographicView

  Set pApp = Application

  Set pView = pApp.View

  If TypeOf pView Is IGxPreview Then

    Set pPreview = pView

    If TypeOf pPreview.View Is IGxGeographicView Then

      Set pGeo = pPreview.View

      If pGeo.DisplayedLayer Is Nothing Then

        Debug.Print "nothing is displayed"

      Else

        Debug.Print "something is there"

      End If

    End If

  End If

End Sub

 IGxGeographicView2 : IUnknown Provides access to more members that control the
GxGeographicView.

ActiveView: IActiveView The active view object(either map or page layout).

The IGxGeographicView2 interface provides access to the IActiveView of
the map being used to preview the current selection.

GXGEOGRAPHICVIEW COCLASS



Chapter 7 • Working with the Catalog • 677

A
rc

C
at

al
o

g

The GxTableView object is similar to the GxGeographicView in that it is
used to preview data. By default, it is accessed through the Preview tab.
As the name implies, the GxTableView coclass is used to preview the
table associated with the selected object. The coclass is a type of
GxView, so it implements the IGxView interface, but it does not imple-
ment any additional interfaces.

The tree view is represented by GxTreeView; it shows a hierarchical
organization of your data holdings as parents and children. It is unlikely
you will need to interact programmatically with the tree view other than
to force it to reveal a particular GxObject (through the
IGxTreeView::EnsureVisible method) or to initiate a renaming operation
(through BeginRename).

 IGxTreeView : IUnknown Provides access to members that control the GxTreeView.

BeginRename Starts a rename operation on the current selection.
EnsureVisible (Object: IGxObject) Ensures that the current selection is visible, scrolling/expanding if

necessary.
ExpandSelection (in Selection:

IGxSelection)
Instructs the tree view to expand the current selection.

The IGxTreeView interface is implemented only by the GxTreeView ob-
ject. It provides the ability to manipulate the object selected in the tree
view. Through this interface, the developer can begin a rename process,
ensure the visibility of the object, or expand the node in the tree view.

The following VBA code begins the rename process for the selected
object in the tree view:

  Dim pApp As IGxApplication, pTreeView As IGxTreeView

  Set pApp = Application

  Set pTreeView = pApp.TreeView

  pTreeView.BeginRename

GXTABLEVIEW AND GXTREEVIEW COCLASSES

IGxSelectionEvents
IGxView GxView

ApplicationGxTableView
IGxCatalogEvents

GXTableView is accessed via the
preview viewer. It shows a table view of

the class.

IGxSelectionEvents
IGxView GxView

GxTreeView
IGxCatalogEvents

IGxTreeView

The tree view displays your data holdings
in a parent–child structure.



678 • Exploring ArcObjects • Volume 1

The GxViewContainer object permits a GxView object to be a container
for additional views. The GxPreview coclass is the only type of
GxViewContainer object currently implemented in ArcCatalog. Out of the
box, the GxPreview object contains the GxGeographicView and
GxTableView objects. This functionality is exposed in the user interface
through the Geography and Table options on the Preview tab in
ArcCatalog.

 IGxViewContainer : IUnknown Provides access to members that control the
GxViewContainer.

Views: IEnumGxView All gx views in the application.

FindView (in pUID: IUID, bRecursive:
Boolean) : IGxView

Finds a view by CLSID. If recursive is true, it will return views in a
container view.

The IGxViewContainer interface provides access to the views within the
container. It is not possible to add additional views to the container
through this interface. Additional views must be added by registering a
component in the ESRI GxPreviews category.

The Views property returns an enumeration of all the valid views in the
container for the currently selected object.

The following VBA code demonstrates how to find the table view
through the IGxViewContainer interface when the Preview tab is active:

  Dim pApp As IGxApplication, pGxView As IGxView

  Set pApp = Application

  Set pGxView = pApp.View

  If TypeOf pGxView Is IGxViewContainer Then

    Dim pViewCont As IGxViewContainer, pUID As New UID, pView As IGxView

    Set pViewCont = pGxView

    pUID = "{9C34344D-99DC-11D2-AF6A-080009EC734B}"

    Set pView = pViewCont.FindView(pUID, False)

    If pView Is Nothing Then

      MsgBox "could not find it"

    End If

  End If

GXVIEWCONTAINER ABSTRACT CLASS

IGxViewContainer GxView-
Container

The GXViewContainer supports
holding more than one GXView

within it.



Chapter 7 • Working with the Catalog • 679

A
rc

C
at

al
o

g

The GxPreview coclass is the only type of GxView that is also a type of
GxViewContainer. The class is implemented as a tab within ArcCatalog,
but within that tab is a container for additional views. These views pro-
vide previews of the selected object, depending on which ones are
applicable. For example, the geography and table previews are available
for a shapefile, while only the table preview is available for a table.

 IGxPreview : IUnknown Provides access to members that control the GxPreview.

SupportedViewClassIDs: ISet A list of the class IDs for the views that are supported given the
current selection.

View: IGxView The current view.
ViewClassID: IUID The class ID of the current view.

The IGxPreview interface is implemented by the GxPreview object. It
provides access to the supported views for the selected object. Use this
interface when you want to find out what the supported views are, or to
retrieve or set the current view.

The ViewClassID property sets and retrieves the current view through its
UID. Setting the UID is the only way to change the current view within
the GxPreview object.

The following VBA code updates the ViewClassID to the GxTableView
preview (your code should make sure the GxTableView view is one of
the support views before setting the property):

Sub UpdateViewClassID()

  Dim pApp As IGxApplication, pGxView As IGxView

  Set pApp = Application

  Set pGxView = pApp.View

  If TypeOf pGxView Is IGxPreview Then

    Dim pPrev As IGxPreview, pUID As New UID

    Set pPrev = pGxView

    Debug.Print pPrev.ViewClassID

    pUID = "{9C34344D-99DC-11D2-AF6A-080009EC734B}" 'GUID for GxTableView

    pPrev.ViewClassID = pUID

  End If

End Sub

GXPREVIEW COCLASS

ApplicationGxPreview
IGxPreview

IGxSelectionEvents
IGxView GxView

The GXPreview coclass contains the
geographic and table views as well as

any user-defined views.



680 • Exploring ArcObjects • Volume 1

GxDatabase-
Extension

IGxDatabaseExtension
IGxDatabaseExtensionCompare

GxDatabase-
Extensions

IGxDatabaseExtensions

Search-
Results

IGxObjectSort
IMetadata

IMetadataEdit
ISearchResults

GxRemote-
Database-

Folder

IGxCachedObjects
IGxObjectProperties

IGxRemoteContainer
IGxRemoteDatabaseFolder

GxSpatial-
References-

Folder

IGxCachedObjects
IGxObjectProperties

IGxSpatialReferencesFolder

GxDataset

IGxCachedObjects
IGxDataset

IGxObjectInternalName
IGxObjectProperties

IGxThumbnail
IMetadata

IMetadataEdit
INativeTypeInfo

IObjectClassSchemaEvents

GxFileFilter
IGxFileFilter

IGxFileFilterEvents
IPersistStream

GxCatalog

IComPropertySheetEvents
IConnectionPoint

IConnectionPointContainer
IGxCatalog

IGxCatalogEventsDisp
IGxCatalogEvents

IGxFile
IGxObjectFactories

IMetadataEdit

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObjectFactory objects help ArcCatalog
generate GxObjects based on the object type

IGxObjectFactory
IGxObjectFactoryMetadata GxObject-

Factory

GxLayer-
Factory

GxMap-
Factory

GxShortcut-
Factory

GxDatabase-
Factory

GxFile-
Factory

GxCoverage-
Factory

IGxObject-
FactoryEdit GxTextFile-

Factory

IGxObject-
FactoryEdit

GxPrjFile-
Factory

IGxObject-
FactoryPriority

GxMetadata-
Factory

IGxObject-
FactoryPriority

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxObject and

GxDatabase holds
a workspace within

ArcCatalog

GxDataset holds a dataset
object within ArcCatalog

GxObjects represent
individual data items and they

are what appear in the tree
view and the contents view

GxRemoteDatabaseFolder
represents only the top level
remote connections folder

GxSpatialReferencesFolder
represents only the top level
of the spatial reference
information accessible
through ArcCatalog

SearchResults stores a query

GxCatalog object represents
your actual tree of data, as

is shown in the tree view

GxDatabase

IGxCachedObjects
IGxDatabase

IGxDatabase2
IGxObjectInternalName

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxDatabaseExtensions is a collection
object for the set of GxDatabaseExtension

objects

GxDatabaseExtension is an abstract class
whose purpose is to provide a starting
point for those developers who want to
create extensions to a GxDatabase

GxFileFilter object
maintains the file

filter used by
ArcCatalog to

determine which file
types to display



Chapter 7 • Working with the Catalog • 681

A
rc

C
at

al
o

g

GxDisk-
Connection

IGxDiskConnection

GxNew-
Database

IGxBasicObject
IGxNewDatabase

IGxObjectProperties

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternalName (optional)
IGxObjectProperties

IMetadata
IMetadataEdit

INativeTypeInfo

GxMetadata
IGxFile

IGxObjectInternalName
IMetadata

IMetadataEdit
INativeTypeInfo

GxObject-
Wizard

IGxObjectWizard

Shortcut-
Name

IFileName
IName

IPersistStream
IShortcutName

GxLayer
IComPropertySheetEvents

IGxCachedObjects
IGxLayer

IGxObjectInternalName
IGxThumbnail

GxMap
IGxMap

IGxMapPageLayout
IGxObjectInternalName

IGxThumbnail

GxPrjFile
IGxFileSetup

IGxObjectInternalName
IGxPrjFile

GxTextFile
IGxCachedObjects

IGxDataset
IGxFileSetup

IObjectClassSchemaEvents
IGxObjectInternalName

GxShortcut
IGxShortcut

related objects

GxNewDatabase is the
shortcut used to create

a new remote
connection

GxFile represents any file type
that has been defined in

ArcCatalog

GxPrjFile represents
projection files with
GxSpatialReferences-Folder
objects

GxLayer
represent
s layer
files

GxMap encapsulates
map documents

When ArcCatalog starts,
it creates

GxDiskConnection
objects for each folder
connected at the root

GxMetadata represents XML files

GxTextFile represents text
files within ArcCatalog

GxShortcut represents
shortcuts to objects

returned from a catalog
search

ShortcutName is a name
object describing a

GxShortcut

GxDialog
IGxDialog

IGxObjectFilter-
Collection

IGxSelectionEvents

GxDialog represents a
browser that allows you to
open and save GIS datasets.

GxFolder

IGxCachedObjects
IGxFile

IGxFolder
IGxObjectInternalName

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxFolder
represents system

level folders

GxFilterAnnotationFeatureClasses
GxFilterBasicTypes
GxFilterCadDrawingDatasets
GxFilterCoverageAnnotationClasses
GxFilterDatasets
GxFilterDatasetsAndLayers
GxFilterFeatureClasses
GxFilterFeatureDatasets
GxFeatureDatasetsAndFeatureClasses
GxFilterFiles
GxFilterGeodatasets
GxFilterLayers
GxFilterMaps
GxFilterPointFeatureClasses
GxFilterPolygonFeatureClasses
GxFilterPolylineFeatureClasses
GxFilterRasterDatasets
GxFilterSpatialReference
GxFilterTables
GxFilterTablesAndFeatureClasses
GxFilterTINDatasets
GxFilterWorkspaces

GxObject-
Filter

IGxObjectFilter

The GxObjectFilter objects are used in
conjunction with the GxDialog object to

limit the types of data the user can
browse when selecting objects to open

or save



682 • Exploring ArcObjects • Volume 1

Using the IGxObject interface, ArcCatalog calls Attach to initialize the
object, passing in references to its parent and the GxCatalog object. The
object should hold onto these references, then release them when
ArcCatalog calls the Detach method. This behavior is necessary to guar-
antee that no circular dependencies develop between the object and its
parent, or the GxCatalog coclass.

ArcCatalog relies on three separate properties to retrieve information
about the textual name of the object:

•  Name indicates the short name of the object including its extension (if
any).

•  BaseName returns the name without the filename extension (if it has
one).

•  FullName returns a string identifying the fully qualified pathname of
the object starting at the root level. This is not necessarily a path to a
file on disk since the object might exist within a database hierarchy
somewhere. It is a fully qualified path within the context of
ArcCatalog. It is made up of the names of all its GxObjects parents,
each separated from the other with a backslash (“\”) character.

The easiest way for an object to assemble and return this path is to call
the ConstructFullName utility method on the GxCatalog object, passing in
itself as a parameter.

 IGxObject : IUnknown Provides access to members that are common to all
GxObjects.

BaseName: String The base name of the object (i.e. no extension).
Category: String The category of the object.
ClassID: IUID The class ID of this object.
FullName: String The full name of the object.
InternalObjectName: IName The Name for the internal object that this GxObject represents.
IsValid: Boolean Indicates if the object is still valid.
Name: String The short name of the object.
Parent: IGxObject The parent of the object.

Attach (in Parent: IGxObject, in
pCatalog: IGxCatalog)

Attaches the object to its parent and the catalog.

Detach Instructs the object to detach itself from its parent and the catalog.
Refresh Updates the object and any children of the object.

In order to be a GxObject, an object only needs to support IGxObject,
though it will usually implement a number of other interfaces as well.
To start with, however, it must support IGxObject since ArcCatalog uses
this interface to set up and tear down the object, as well as to retrieve
certain critical information from it during its lifetime. The IGxObject
interface provides read-only access to the description of the object,
such as name, parent, and category.

InternalObjectName is used for data-transfer operations. If you want
your object to participate in drag-and-drop or copy-and-paste opera-
tions, you need to return something for this property. This property
represents the actual data object that your GxObject manages. For ex-
ample, database objects, such as GxDatabase and GxDataset, wrap
underlying geodatabase entities, such as workspaces and datasets. It is
these underlying objects that InternalObjectName references, not the

GXOBJECT ABSTRACT CLASS

If you want to create your own custom
GxObject, you need to first implement

IGxObjectFactory, which actually returns
GxObjects. Then, you need to implement the

IGxObject and IGxObjectUI interfaces to
show the GxObject within ArcCatalog.

You can implement various methods under the
IGxObject interface to provide specific opera-

tions on this object. For example, the Category
property would show the category in the Type

column in details view.

The IGxObjectUI interface allows you to specify
a bitmap for your custom GxObject so that it

shows up in the tree view. There are methods to
show small icons and large icons so that they

show up accordingly in the details/list/icons view
types in the contents view.

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxObject is perhaps the most impor-
tant abstract class in ArcCatalog. Every
item that shows up in the tree and list

views is a GxObject of one sort or
another. There are several dozen types of
GxObjects, ranging from GxDatabase

to GxPrjFile.

GxObjects should be viewed as a means to an
end, meaning you should always work with the
objects that they are encapsulating. This is very

important if objects are to be stored in data
structures for later use. For example, when using
the GxDialog to access datasets on a disk, you

should not store the GxObjects returned for
later use; instead, store the dataset objects that

are encapsulated by the GxObject.



Chapter 7 • Working with the Catalog • 683

A
rc

C
at

al
o

g

GxObject itself. Moreover, this property indirectly references these under-
lying objects via a Name object (sometimes also called a moniker).

ArcCatalog calls Refresh on your object whenever it needs to ensure
your state is up to date. Mostly, this happens as a direct result of the
user forcing a refresh of a part of the GxCatalog tree. It is your object’s
responsibility to release and re-create its internal state, then propagate
the Refresh call onto any children it has.

IsValid is called periodically by ArcCatalog to verify that your object is in
a legitimate state. Typically, it does so prior to performing critical opera-
tions involving your object, such as data transfer or the like.

Here is some VBA code to loop through the selected objects in the
tabbed view and print their categories.

  Dim pApp As IGxApplication, pGxSel As IGxSelection, _

    pEnumGxObj As IEnumGxObject

  Dim pGxObj As IGxObject

  Set pApp = Application

  Set pGxSel = pApp.Selection

  Set pEnumGxObj = pGxSel.SelectedObjects

  Set pGxObj = pEnumGxObj.Next

  Do While Not pGxObj Is Nothing

    Debug.Print pGxObj.Category

    Set pGxObj = pEnumGxObj.Next

  Loop

 IGxObjectUI : IUnknown Provides access to members that represent the icons and
menus for a GxObject.

ContextMenu: IUID The class ID of the context menu for this object.
LargeImage: Long The large image that represents the object.
LargeSelectedImage: Long The large image that represents the object when it is selected.
NewMenu: IUID The class ID of the New menu for this object.
SmallImage: Long The small image that represents the object.
SmallSelectedImage: Long The small image that represents the object when it is selected.

During an object’s lifetime, ArcCatalog uses the SmallImage,
SmallSelectedImage, LargeImage, and LargeSelectedImage properties of
the optional IGxObjectUI interface to determine what images to use
when displaying the object in the tree and contents views. Your object
should return HBITMAPs for these properties.

Since these properties are requested frequently, you should load the
images only once and cache them for later retrieval, rather than loading
them each time they are requested. If you choose not to implement
IGxObjectUI, ArcCatalog can still display and work with your object, but
it will use a generic icon in the various views.

ContextMenu and NewMenu return GUIDs that indicate the menus that
will display when the user attempts to manipulate the object through the
ArcCatalog user interface.

GXOBJECT ABSTRACT CLASS



684 • Exploring ArcObjects • Volume 1

 IGxObjectEdit : IUnknown Provides access to members that edit/modify a GxObject.

CanCopy: Boolean Indicates if the object can be copied.
CanDelete: Boolean Indicates if the object can be deleted.
CanRename: Boolean Indicates if the object can be renamed.
Delete Deletes the object.
EditProperties (in hParent: Long) Presents a modal dialog to allow editing the object's properties.
Rename (in newShortName: String) Renames the object.

An object should implement the IGxObjectEdit interface if its properties
can be edited by the user within the context of ArcCatalog. This inter-
face consists of several important properties and methods.

Rename assigns a new short name to the object (if you return True for
the CanRename property).

If you return True for the CanDelete property, Delete physically deletes
the object and all its associated underlying data—ArcCatalog handles
deleting the GxObject, but it is the object’s responsibility to delete all
underlying and associated data that the object represents or wraps.

CanCopy indicates if the object is a valid source for a copy operation; a
return value of True enables the Copy command/menu item in
ArcCatalog. (However, to fully enable an object to participate in data-
transfer operations, you also need to implement the
IGxObject::InternalObjectName property as described in the earlier dis-
cussion on data transfer.)

The EditProperties method brings up a dialog box appropriate to the
object that allows the user to manipulate its internal properties and state.
It is entirely up to you to decide what can and cannot be manipulated
through this dialog box, but a good rule of thumb is that properties
about the object, not the actual data contained by the object, should
appear here.

For example, if the object is a table, this dialog box might show a list of
all the columns present and their data types and permit the user to edit
this information. However, the actual rows of data in the table would
not be presented in this dialog box.

 IGxPasteTarget : IUnknown Provides access to members for pasting objects.

CanPaste (in names: IEnumName, out
moveOperation: Boolean) : Boolean

Indicates if the specified names may be pasted into this object.  On
output, moveOperation indicates if a subsequent paste operation
would represent a move, or merely a copy, operation.

Paste (in names: IEnumName,
moveOperation: Boolean) : Boolean

Pastes the specified names into this object.  On input, moveOperation
indicates if this is a move operation.  On output, it indicates if the
objects have been moved, or merely copied.

The IGxPasteTarget interface is implemented by those GxObjects that can
have other objects pasted into them. For example, the GxDataset imple-
ments IGxPasteTarget because it is possible to paste feature classes into
an object of this type through the ArcCatalog user interface. The inter-
face provides methods for testing whether or not a set of name objects
can be pasted and methods to actually perform the paste.

Use CanPaste to determine if at least one object in the current set can be
pasted before executing the Paste method.

GXOBJECT ABSTRACT CLASS



Chapter 7 • Working with the Catalog • 685

A
rc

C
at

al
o

g

 IGxObjectInternalName : IUnknown Provides access to members that manage the name object
that the GX object represents.

InternalObjectName: IName Returns a Name for the internal object that this GxObject represents.

IGxObjectInternalName is an optional interface for the different types of
GxObjects. This interface provides access to the internal name of the
object that implements it through the InternalObjectName interface.

GXOBJECT ABSTRACT CLASS



686 • Exploring ArcObjects • Volume 1

Some types of GxObjects may also be supported by the GxObjectCon-
tainer abstract class. This container class is for GxObjects that contain
other GxObjects within them. For example, the GxDatabase object can
contain GxDataset objects (among other things), so the GxDatabase
object is also a type of GxObjectContainer.

 IGxObjectContainer : IUnknown Provides access to members that manage child GxObjects.

AreChildrenViewable: Boolean Indicates if the objects children are available for viewing in the tree-
view.

Children: IEnumGxObject An enumeration of the child objects.
HasChildren: Boolean Indicates if the object has any children.

AddChild (in child: IGxObject) :
IGxObject

Adds a new child and returns a reference to it.  However, if a
duplicate already exists, the function returns the existing child
instead.

DeleteChild (in child: IGxObject) Deletes the specified child object.

If an object can contain other objects as children, it must implement the
IGxObjectContainer interface. This interface exposes methods and prop-
erties to access and manipulate the children of the object.

The HasChildren property indicates if the object presently has any chil-
dren.

Children returns an enumeration of the current set of children.

AreChildrenViewable indicates if the children should show up as items
in the tree view within ArcCatalog; usually, this makes sense, but in
certain cases you might want to prevent this from happening.

The last two methods, AddChild and DeleteChild, do not have to be
implemented—they are only used when a container is up and running
in ArcCatalog and the user wishes to either create new items in that
container or remove items from it. They aren’t required since doing a
Refresh on the container (or one of its ancestors) will refresh its set of
children as well.

The following VBA code demonstrates how to loop through the chil-
dren of a GxObjectContainer object:

  Dim pApp As IGxApplication, pGxSel As IGxSelection, pGxObj As IGxObject

  Set pApp = Application

  Set pGxSel = pApp.Selection

  Set pGxObj = pGxSel.Location

  If TypeOf pGxObj Is IGxObjectContainer Then

    Dim pGxObjCont As IGxObjectContainer, pEnum As IEnumGxObject

    Dim pObject As IGxObject

    Set pGxObjCont = pGxObj

    Set pEnum = pGxObjCont.Children

    Set pObject = pEnum.Next

    Do While Not pObject Is Nothing

      Debug.Print pObject.Category

      Set pObject = pEnum.Next

    Loop

  End If

GXOBJECTCONTAINER ABSTRACT CLASS

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxObjectContainer provides access to
members that manage child GxObjects.



Chapter 7 • Working with the Catalog • 687

A
rc

C
at

al
o

g

 IGxRemoteContainer : IUnknown Identifies an object that contains objects from a remote
source.

GxObjectContainer objects that are based on remote connections imple-
ment the IGxRemoteContainer interface. The GxRemoteDatabaseFolder
object is an example of a container object for remote database connec-
tions. The interface has no properties or methods, but it does identify
the implementing object as a remote container object.

GXOBJECTCONTAINER ABSTRACT CLASS



688 • Exploring ArcObjects • Volume 1

The GxDataset object holds an IDatabase object within ArcCatalog. The
coclass is a descendant of both GxObject and GxObjectContainer.

 IGxDataset : IUnknown Provides access to members that manages the properties of
a GX dataset object.

Dataset: IDataset The associated dataset.
DatasetName: IDatasetName The associated dataset name.
Type: esriDatasetType The type of the associated dataset.

The IGxDataset interface provides access to the dataset itself. Through
this interface, the developer can retrieve the IDataset or the
IDatasetName object along with the type of dataset. This interface is
implemented by several different types of dataset objects including
GxCadDataset, GxCoverageDataset, GxShapefileDataset, and GxVpf-
Dataset.

The GxDatabase object holds an IWorkspace object within ArcCatalog.
The coclass is a descendant of both GxObject and GxObjectContainer.
The GxDatabase object pertains to a geodatabase database.

 IGxDatabase : IUnknown Provides access to members that manage the properties of
a GX database object.

IsConnected: Boolean Indicates if the database is connected.
IsRemoteDatabase: Boolean Indicates if the database is remote.
Workspace: IWorkspace The associated workspace.
WorkspaceName: IWorkspaceName The workspace name.

Disconnect Disconnects or releases the connection to the underlying database.

The IGxDataset interface provides access to the workspace itself.
Through this interface, the developer can retrieve the IWorkspace or the
IWorkspaceName object along with the type of dataset. This interface is
implemented by several different types of database objects including
GxCoverageDatabase, GxPcCoverageDatabase, and GxPre70Coverage-
Database.

 IGxDatabase2 : IUnknown Provides access to members that manage the properties of
a GX database object.

IsEnterpriseGeodatabase: Boolean Indicates if the database is an enterprise geodatabase.

The IGxDatabase2 is implemented by the GxDatabase object. It provides
access to the IsEnterpriseGeodatabase property. As the name implies, the
property indicates whether or not the database is an enterprise database
(an ArcSDE database).

GXDATASET AND GXDATABASE COCLASSES

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxDataset

IGxCachedObjects
IGxDataset

IGxObjectInternalName
IGxObjectProperties

IGxThumbnail
IMetadata

IMetadataEdit
INativeTypeInfo

IObjectClassSchema-
Events

GxDataset holds a dataset object within
ArcCatalog.

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxDatabase

IGxCachedObjects
IGxDatabase

IGxDatabase2
IGxObjectInternalName

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxDatabase represents a database in
ArcCatalog.



Chapter 7 • Working with the Catalog • 689

A
rc

C
at

al
o

g

Each geodatabase can have a set of extensions associated with it (such
as the GxGeocodingServiceExtension). The IGxDatabaseExtensions inter-
face allows access to those extensions.

To obtain a GxDatabaseExtensions object, simply create one. The follow-
ing VBA code shows you how to do that.

  Dim pGxDataExts As IGxDatabaseExtensions

  Set pGxDataExts = New GxDatabaseExtensions

  Debug.Print pGxDataExts.Count

 IGxDatabaseExtensions : IUnknown Provides access to members that return GX database
extensions.

Count: Long The number of database extensions.

GetExtension (in Index: Long) :
IGxDatabaseExtension

Get an extension.

The IGxDatabaseExtensions interface is implemented by the
GxDatabaseExtensions object. It provides access to the extensions held
within the collection.

GxDatabaseExtension is an abstract class that provides a starting point
for those developers who want to create extensions to a GxDatabase.
The Geocoding service (GxGeocodingServiceExtension) is an example of
a GxDatabaseExtension that supports the creation of address-matching
services for use with ArcMap. Developers might want to develop their
own extensions to support custom services.

 IGxDatabaseExtension : IUnknown Provides access to members that manage a GX database
extension.

Catalog: IGxCatalog Attach the catalog to the database extension.
Name: String The name of the extension.

Compare (in gxObject1: IGxObject, in
gxObject2: IGxObject, in Ascending:
Boolean) : Long

Check if the objects are children and if yes compare them.

GetChildren (in Workspace:
IWorkspace) : IEnumGxObject

Get children.

HasChildren (in Workspace:
IWorkspace) : Boolean

Verify if this extension has children.

All GxDatabaseExtension objects implement the IGxDatabaseExtension
interface. The GxGeocodingServiceExtension object is an example of an
extension that allows the creation of address-matching services. The
interface provides the ability to check whether or not an extension has
children defined for it and to compare selected objects.

The Compare method determines whether or not objects are being
displayed in the correct order. If the Long value returned is positive, then
item one should be listed before item two; if zero, then the items are the
same item; if negative, then item two should be listed before item one.
As an example, if the only difference between two objects is the name,
then the result will be positive if item one’s name is alphabetically be-
fore item two’s; otherwise, the result will be negative (unless reverse
sorting—Ascending is True—is turned on).

GXDATABASEEXTENSIONS AND GXDATABASEEXTENSION

GxDatabase-
Extensions

IGxDatabase-
Extensions

The GxDatabaseExtensions object is a
collection object for the set of

GxDatabaseExtension objects.

GxDatabase-
Extension

IGxDatabaseExtension
IGxDatabase-

ExtensionCompare

GxDatabaseExtension provides a
starting point for developers who want to

create extensions to a GxDatabase.



690 • Exploring ArcObjects • Volume 1

The GxFolder object represents system-level folders (directories). These
folders represent workspaces if they contain ArcCatalog-supported data
(such as coverages, shapefiles, or CAD drawings).

 IGxFolder : IUnknown Provides access to members that return file system
workspaces represented by this folder.

FileSystemWorkspaceNames:
IEnumName

The Name objects for all file system workspaces represented by this
folder.

The GxFolder object implements the IGxFolder interface. The purpose of
the interface is to provide access to the workspace Name objects that
may be part of the folder.

FileSystemWorkspaceNames returns an enumeration of Name objects.
Name objects only apply when the folder contains coverages. For more
information on Name objects, see Volume 2, Chapter 8, ‘Accessing the
geodatabase’.

The following sample VBA code uses the IGxFolder interface to display
the Name objects within a selected folder:

  Dim pApp As IGxApplication, pGxSel As IGxSelection, _

    pEnumGxObj As IEnumGxObject

  Dim pGxObj1 As IGxObject, pGxFolder As IGxFolder, pEnumName As IEnumName

  Dim pName As IName

  Set pApp = Application

  Set pGxSel = pApp.Selection

  If pGxSel.Count > 0 Then

    Set pEnumGxObj = pGxSel.SelectedObjects

    Set pGxObj1 = pEnumGxObj.Next

    If Not TypeOf pGxObj1 Is IGxFolder Then Exit Sub

    Set pGxFolder = pGxObj1

    Set pEnumName = pGxFolder.FileSystemWorkspaceNames

    Set pName = pEnumName.Next

    Do While Not pName Is Nothing

      Debug.Print pName.NameString

      Set pName = pEnumName.Next

    Loop

  End If

The GxSpatialReferencesFolder object represents the top level of the
spatial reference information that is accessible through ArcCatalog. The
Type of folder, as listed in ArcCatalog, is Coordinate Systems Folder. This
is a root-level folder that contains additional folders that hold the differ-
ent types of supported spatial references.

 IGxSpatialReferencesFolder : IUnknown Provides access to members that manages the properties of
a spatial reference folder.

Path: String The full path for the spatial references folder.

The GxSpatialReferencesFolder object implements the
IGxSpatialReferencesFolder interface. The interface allows for the retrieval
and setting of the path to the spatial reference files on the system.

GXFOLDER AND GXSPATIALREFERENCESFOLDER COCLASSES

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxObject-
Container

IGxObject-
Container
IGxPaste-

Target

GxFolder

IGxCachedObjects
IGxFile

IGxFolder
IGxObjectInternalName

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxFolder represents system-level
folders.

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxSpatial-
References-

Folder

IGxCachedObjects
IGxObjectProperties

IGxSpatial-
ReferencesFolder

GxSpatialReferencesFolder represents
the top level of the spatial reference

information that is accessible through
ArcCatalog.



Chapter 7 • Working with the Catalog • 691

A
rc

C
at

al
o

g

The GxDiskConnection object represents the top-level disk connections.
For example, the c:\ and d:\ drives on your local machine are
GxDiskConnection objects (as well as GxObjects). Also, any additional
remote folders the user adds with the Connect to Folder button are
GxDiskConnection objects.

 IGxDiskConnection : IUnknown Identifies an object that represents a connection to disk.

Only the GxDiskConnection object implements the IGxDiskConnection
interface. The interface does not support any properties or methods but
allows the developer to determine whether or not the current GxObject is
also a GxDiskConnection object. This can be accomplished through the
following VBA code:

  Dim pApp As IGxApplication, pGxSel As IGxSelection, pGxObj As IGxObject

  Set pApp = Application

  Set pGxSel = pApp.Selection

  Set pGxObj = pGxSel.FirstObject

  If TypeOf pGxObj Is IGxDiskConnection Then

    Debug.Print "The user picked a GxDiskConnection object"

  End If

GXDISKCONNECTION AND GXREMOTEDATABASEFOLDER

The GxRemoteDatabaseFolder object represents the top-level remote
connections folder. There is only one object of this type. The Type of
folder, as listed in ArcCatalog, is Database Connections Folder. This is a
root-level folder that contains connection files to remote databases (for
example, SDE® or OLE DB). The remote part is intended to correspond
to the Feature Database Object (FDO) remote database type,
esriRemoteDatabaseWorkspace, but it’s possible to create an OLE DB
connection to something local on your machine, as well as a remote
machine.

 IGxRemoteDatabaseFolder : IUnknown Provides access to members that defines the remote
databases folder.

Path: String The value of the Path property.

The GxRemoteDatabaseFolder object implements the
IGxRemoteDatabaseFolder interface. The interface allows for the retrieval
and setting of the path to the connection files for the remote databases.

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxObject-
Container

IGxObject-
Container
IGxPaste-

Target

GxFolder

IGxCachedObjects
IGxFile

IGxFolder
IGxObjectInternalName

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxDisk-
Connection

IGxDiskConnection

When ArcCatalog starts, it creates
GxDiskConnection objects for each

folder connected at the root.

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxRemote-
Database-

Folder

IGxCachedObjects
IGxObjectProperties

IGxRemoteContainer
IGxRemoteDatabase-

Folder

GxRemoteDatabaseFolder represents
the top-level remote connections folder.



692 • Exploring ArcObjects • Volume 1

The user can define file types that they want to have displayed in Arc-
Catalog through the File Types tab on the Options dialog box (or
through IGxFileFilter::AddFileType). The files that are then displayed in
the Catalog are GxFile objects.

For example, you may choose to have .txt files displayed within
ArcCatalog. Using the IGxFile interface, GxFile objects can be manipu-
lated based on the application associated with the file. For example,
.doc files could be opened inside of Microsoft Word.

The following VBA code creates a new GxFile object and opens it in
edit mode based on the application associated with the file (Microsoft
Word, in the case of a .doc file):

  Dim pFile As IGxFile

  Set pFile = New GxFile

  pFile.Path = "d:\tools\various\labeling.doc"

  pFile.Edit

 IGxFile : IUnknown Provides access to members that manages a file object.

Path: String The full path for the file.

Close (in saveChanges: Boolean) Closes the file, optionally saving changes.
Edit Opens an editor to modify the file.
New Creates a new file.
Open Opens the file.
Save Saves changes without closing the file.

The GxFile object and several other types of GxObjects implement the
IGxFile interface. The interface allows for the writing of information onto
disk. Be sure methods that you attempt to apply to the selected object
are valid for that object. For example, IGxFile::Open has no effect on a
.txt file associated with the NotePad application, while IGxFile::Edit
opens the file in edit mode.

Updating the Path property changes the file associated with the current
instance of the GxObject, but it does not change what is selected in
ArcCatalog.

The Close, Edit, New, Open, and Save methods have varying affects on
the object, depending on the application associated with it. Be sure you
are applying the correct methods based on the IGxFile you are manipu-
lating. Use error checking to ensure your application will not fail when
one of the methods does.

GXFILE COCLASS

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternal-
Name (optional)

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

A GxFile object represents any file type
that has been defined in ArcCatalog.



Chapter 7 • Working with the Catalog • 693

A
rc

C
at

al
o

g

The GxShortcut objects represent shortcuts to objects returned from a
Catalog search; they do not represent system shortcut files. GxShortcut
objects are found under the Search Results heading in tree view.

These objects provide a way to access the GxObjects returned by a
search without having to copy the data to a new location. The
GxShortcut objects provide a path to the location of the real object and
allow you to access the object directly.

 IGxShortcut : IUnknown Provides access to members that manages the target of a
shortcut object.

Target: IGxObject The value of the Target property.
TargetLocation: String The location of the target.

The IGxShortcut interface is implemented by the GxShortcut object. It
provides access to the path and the actual object associated with the
shortcut. Use this interface when you want to access the object returned
by a search or when you want to determine the path to the object.

A ShortcutName is a name object that describes a GxShortcut. If you call
IGxObject::InternalObjectName on a GxShortcut, you will get a
ShortcutName coclass.

GxShortcuts have a special name object because the layer factories need
to know how to deal with them. The CanCreate and Create methods on
a layer factory take a name object. In the case of a shortcut, this name
object needs to delegate to the target’s name object so that a layer is
created on the GxObject to which the shortcut is pointing.

 IShortcutName : IUnknown Provides access to members that define the target for the
shortcut name.

TargetName: IName The value of the TargetName property.

The IShortcutName interface is implemented by the ShortcutName ob-
ject. It provides access to the Name object for the layer to which the
shortcut points. The majority of developers will not use this object and
interface.

GXSHORTCUT AND SHORTCUTNAME

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternal-
Name (optional)

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxShortcut
IGxShortcut

GxShortcut represents shortcuts to
objects returned from a Catalog search.

Shortcut-
Name

IFileName
IName

IPersistStream
IShortcutName

ShortcutName is a name object that
describes a GxShortcut.



694 • Exploring ArcObjects • Volume 1

The GxLayer object represents a layer file that points to a data source.
Layer files do not represent the data source itself but instead, the layer
file created for that data source. Through the GxLayer object, the devel-
oper can access the layer and the system path to that layer
(IGxFile::PathName).

The following VBA code demonstrates how to create a GxLayer object
(in this case pointing to a CAD file) from the selected item:

  Dim pLayerFactory As ILayerFactory, pApp As IGxApplication, _

    pGxObject As IGxObject

  Dim pName As IName

  Set pLayerFactory = New CadLayerFactory

  Set pApp = Application

  Set pGxObject = pApp.SelectedObject

  ' Use GetObjectFromFullName if you want to specify a path to a file on disk

  Set pName = pGxObject.InternalObjectName

  If Not pLayerFactory.CanCreate(pName) Then

    MsgBox "Cannot create layer"

    Exit Sub

  End If

  Dim pEnum As IEnumLayer, pLayer As ILayer, pGxLayer As IGxLayer, _

    pFile As IGxFile

  Set pEnum = pLayerFactory.Create(pName)

  Set pGxLayer = New GxLayer

  Set pFile = pGxLayer

  pFile.Path = "C:\temp\mylayer.lyr"

  Set pGxLayer.layer = pEnum.Next

  pFile.Save

 IGxLayer : IUnknown Provides access to members that manage a GX layer
object.

Layer: ILayer The associated layer.

The GxLayer object implements the IGxLayer interface. It provides ac-
cess to the ILayer the object represents. Use this interface when you
want to access or update the properties of the layer.

The following VBA code demonstrates how to update the renderer for a
layer through the IGxLayer interface:

  Sub ChangeLayerProps()

    Dim pGxCat As IGxCatalog

    Dim pGxLayer As IGxLayer

    Dim pGxObj As IGxObject

    Dim pEnumGxObj As IEnumGxObject

    Set pGxCat = New GxCatalog

    Dim lNum As Long

GXLAYER COCLASS

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternal-
Name (optional)

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxLayer

IComPropertySheet-
Events

IGxCachedObjects
IGxLayer

IGxObjectInternal-
Name

IGxThumbnail

GxLayer encapsulates a map layer.



Chapter 7 • Working with the Catalog • 695

A
rc

C
at

al
o

g

    Dim v As Variant

    Set v = pGxCat.GetObjectFromFullName("d:\data\uslakes layer.lyr", lNum)

    If TypeOf v Is IEnumGxObject Then

      Set pEnumGxObj = v

      Set pGxObj = pEnumGxObj.Next

    Else

      Set pGxObj = v

    End If

    Set pGxLayer = pGxObj

    Dim pGFLayer As IGeoFeatureLayer

    Set pGFLayer = pGxLayer.Layer

    Set pGFLayer.Renderer = MakeFillRenderer

    Dim pEvent As IComPropertySheetEvents

    Set pEvent = pGxLayer

    pGxLayer.Layer.Visible = True

    pEvent.OnApply

  End Sub

The last three lines of the routine (use of IComPropertySheetEvents) are
important because they force Save to be called for the layer. Without
them, the changes to the renderer would not be persisted.

GXLAYER COCLASS



696 • Exploring ArcObjects • Volume 1

The GxMap object represents a map document that has been stored to a file
(.mxd). The object provides browsing support for map documents within
ArcCatalog and provides access to the page layout within the document. The
page layout can be displayed as a thumbnail when browsing map documents.

 IGxMap : IUnknown Identifies a GX object that corresponds to an ArcMap
document.

The GxMap object implements the IGxMap interface. This interface doesn’t
have any properties or methods, but it can be used to identify an object as
type GxMap. The following VBA code demonstrates how this can be accom-
plished:

  Dim pApp As IGxApplication, pSel As IGxSelection, pObj As IGxObject

  Set pApp = Application

  Set pSel = pApp.Selection

  Set pObj = pSel.FirstObject

  If pSel.Count < 1 Then Exit Sub

  If TypeOf pObj Is IGxMap Then

    MsgBox "You selected a map!!"

  End If

 IGxMapPageLayout : IUnknown Provides access to members that returns the page layer
for a map document.

PageLayout: IPageLayout The page layout object in the map document.

The GxMap object implements the IGxMapPageLayout interface. The interface
provides access to the page layout within the map document. The page layout
can then be examined to determine the data within it and the extent of the
data.

The GxPrjFile object represents projection files with GxSpatialReferencesFolder
objects. While browsing in ArcCatalog, you will find GxPrjFile objects within
folders under the Coordinate Systems heading. These files represent one de-
fined projection.

 IGxPrjFile : IUnknown Provides access to members that returns the properties of a
PRJ file.

SpatialReference: ISpatialReference The spatial reference property of the PRJ file.

The IGxPrjFile interface is implemented by the GxPrjFile object. It provides
access to the projection information for the file. The projection information is
returned as an ISpatialReference. The following VBA code demonstrates one
method for determining if a GxPrjFile object is selected:

  Dim pApp As IGxApplication, pSel As IGxSelection, pObj As IGxObject

  Set pApp = Application

  Set pSel = pApp.Selection

  Set pObj = pSel.FirstObject

  If pSel.Count < 1 Then Exit Sub

  If TypeOf pObj Is IGxPrjFile Then

    MsgBox "You selected a project file!!"

  End If

GXMAP AND GXPRJFILE COCLASSES

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternal-
Name (optional)

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxMap
IGxMap

IGxMapPageLayout
IGxObjectInternalName

IGxThumbnail

GxMap encapsulates map documents.

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternal-
Name (optional)

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxPrjFile
IGxFileSetup

IGxObjectInternal-
Name

IGxPrjFile

GxPrjFile represents projection files with
GxSpatialReferencesFolder objects.



Chapter 7 • Working with the Catalog • 697

A
rc

C
at

al
o

g

The GxTextFile object represents .txt files within ArcCatalog. GxTextFile
objects are also a type of GxFile object, but this type of object must
have the .txt extension.

The following VBA code creates a new GxTextFile object and opens it in
edit mode based on the application associated with the file (NotePad, in
the case of a .txt file):

  Dim pFile As IGxFile

  Set pFile = New GxTextFile

  pFile.Path = "d:\tools\various\labeling.txt"

  pFile.Edit

The following VBA code demonstrates one method for determining
whether or not a GxTextFile object is selected:

  Dim pApp As IGxApplication, pSel As IGxSelection, pObj As IGxObject

  Set pApp = Application

  Set pSel = pApp.Selection

  Set pObj = pSel.FirstObject

  If pSel.Count < 1 Then Exit Sub

  If TypeOf pObj Is IGxTextFile Then

    MsgBox "You selected a text file!!"

  End If

In general, metadata for the different types of objects is stored in XML
files associated with the object. For example, metadata for a parcels
shapefile (parcels.shp) is stored in a file called parcels.shp.xml. Metadata
files of this type (associated with a data type supported by ArcCatalog)
will not show up in the tree and tabbed views of ArcCatalog. In order to
see metadata objects within ArcCatalog, they cannot be associated with
another support object.

 IMetadata : IUnknown Provides access to members that manage and update
metadata.

Metadata: IPropertySet The PropertySet containing metadata.

Synchronize (in Action:
tagesriMetadataSyncAction, in
Interval: Long)

Updates metadata with the current properties; may create metadata
if it doesn't already exist.

The GxMetadata object implements the IMetadata interface and all other
objects that support metadata (the majority of GxObject types). Use this
interface when you want to access the set of metadata associated with
an object or when you want to create new metadata for the object.

The Synchronize method updates metadata for an object after changes
have been made, but it also generates a new set of metadata if it doesn’t
already exist.

GXTEXTFILE AND GXMETADATA COCLASSES

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxMetadata
IGxFile

IGxObjectInternalName
IMetadata

IMetadataEdit
INativeTypeInfo

The GxMetadata object represents
XML files.

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxFile

IGxFile
IGxFileSetup (optional)

IGxObjectInternal-
Name (optional)

IGxObjectProperties
IMetadata

IMetadataEdit
INativeTypeInfo

GxTextFile

IGxCachedObjects
IGxDataset

IGxFileSetup
IObjectClassSchema-

Events
IGxObjectInternal-

Name

GxTextFile represents text files within
ArcCatalog.



698 • Exploring ArcObjects • Volume 1

The GxNewDatabase object is the shortcut used to create a new remote
connection. There’s one instance of this object for each type of FDO
remote workspace factory (for example, ArcSDE™ or OLE DB). It’s the
icon that invokes the wizard to create a new connection file.

 IGxNewDatabase : IUnknown Provides access to members that defines a new database
shortcut.

WorkspaceFactory: IWorkspaceFactory The value of the workspace factory property.

The IGxNewDatabase interface is implemented by the GxNewDatabase
object. It provides the ability to specify the WorkspaceFactory object to
use. Developers only use this interface when they want to create a
shortcut in ArcCatalog for users to create a connection to a custom data
type.

GXNEWDATABASE COCLASS

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxNew-
Database

IGxBasicObject
IGxNewDatabase

IGxObjectProperties

GxObject-
Wizard

IGxObjectWizard

GxNewDatabase provides funtionality
to define the workspace factory object to

use when creating a workspace.



Chapter 7 • Working with the Catalog • 699

A
rc

C
at

al
o

g

The GxCatalog object represents your actual tree of data, as is shown in
the tree view (the top-level object in the tree view). From the GxCatalog
object, you can navigate to any of its descendants to access and ma-
nipulate them. The GxCatalog object is a type of GxObject and a type of
GxObjectContainer because it is an item in the tree view and it contains
additional GxObjects.

The GxCatalog object is also an event source, as it monitors the adding,
deleting, and changing of the GxObjects within the Catalog through the
IGxCatalogEvents interface.

 IGxCatalog : IUnknown Provides access to members that manages a GX catalog.

FileFilter: IGxFileFilter The file filter.
Location: String The location to the specified path.  If the path isn't yet part of the

catalog, it is added as a folder connection.
SelectedObject: IGxObject The first selected object, or the location if no objects are selected.
Selection: IGxSelection The selection.

Close Closes the catalog object.  Clients that create a catalog object must
call this method when they are finished using it.

ConnectFolder (in folderPath: String) :
IGxFolder

Adds a folder connection to the catalog and returns the folder object.

ConstructFullName (in Object:
IGxObject) : String

Constructs the full name for an object.

DisconnectFolder (in folderPath: String) Removes a folder connection from the catalog.
GetObjectFromFullName (in FullName:

String, out numFound: Long) : Variant
Finds an object in the catalog tree given its full name.  Returns a

Variant containing an IGxObject or IEnumGxObject (if duplicate
names were encountered), along with the number of objects found.

ObjectAdded (in Object: IGxObject) Called when a new object has been added to part of the catalog.
ObjectChanged (in Object: IGxObject) Called when an existing object from part of the catalog has been

changed.
ObjectDeleted (in Object: IGxObject) Called when an existing object has been deleted from part of the

catalog.
ObjectRefreshed (in Object: IGxObject) Called when an existing object has been refreshed.

The GxCatalog object implements the IGxCatalog interface. It lets you
connect and disconnect folder objects. It also maintains the file filter
associated with ArcCatalog.

GetObjectFromFullName returns a variant because it is possible to get
more than one GxObject back from this method. For example, if you use
this method on a CAD file, it returns two objects: one for the CAD file
and one for the CAD dataset.

The SelectedObject method returns the first selected object in the tabbed
view of ArcCatalog.

The following VBA code uses the Location property to change the se-
lected folder in the tree view to “d:\tools”:

  Dim pApp As IGxApplication, pCat As IGxCatalog

  Set pApp = Application

  Set pCat = pApp.Catalog

  pCat.Location = "d:\tools"

GXCATALOG COCLASS

GxObject-
Container

IGxObjectContainer
IGxPasteTarget

GxObject
IGxObject

IGxObjectEdit
IGxObjectUI

GxCatalog

IComPropertySheet-
Events

IConnectionPoint
IConnectionPoint-

Container
IGxCatalog

IGxCatalogEventsDisp
IGxCatalogEvents

IGxFile
IMetadataEdit

The GxCatalog object represents your
actual tree of data, as is shown in the

tree view.



700 • Exploring ArcObjects • Volume 1

 IGxObjectFactories : IUnknown Provides access to members that manage a collection of
GX object factories.

Count: Long The number of registered Gx object factories.
EnabledGxObjectFactories:

IEnumGxObjectFactory
The enabled Gx object factories (sorted by priority).

GxObjectFactory (in Index: Long) :
IGxObjectFactory

The specified Gx object factory.

GxObjectFactoryCLSID (in Index: Long) :
IUID

The CLSID of the specified Gx object factory.

IsEnabled (in Index: Long) : Boolean Indicates if a specific Gx object factory is enabled.

EnableGxObjectFactory (Index: Long,
bEnabled: Boolean)

Enables or disables a Gx object factory.

The IGxObjectFactories interface is implemented by the GxCatalog ob-
ject. It provides access to the GxObjectFactory objects registered in the
ESRI GX Object Factories category. Developers use this interface when
they want to enable or disable an object factory or simply get access to
one of the defined object factories.

The EnableGxObjectFactory method can enable or disable an object
factory based on the value that is passed in.

The following VBA code demonstrates how to loop through the defined
object factories and display their enabled properties:

  Dim pObjFactories As IGxObjectFactories, lLoop As Long

  Dim pObjFact As IGxObjectFactory

  Set pObjFactories = New GxObjectFactories

  For lLoop = 0 To pObjFactories.Count - 1

    Set pObjFact = pObjFactories.GxObjectFactory(lLoop)

    If pObjFact Is Nothing Then

      Debug.Print "Nothing at Index " & lLoop

    Else

      Debug.Print pObjFact.Name & " - " & pObjFactories.IsEnabled(lLoop)

    End If

  Next lLoop

GXCATALOG COCLASS



Chapter 7 • Working with the Catalog • 701

A
rc

C
at

al
o

g

The GxFileFilter object maintains the file filter used by ArcCatalog to
determine which file types to display. Use this object when you want to
manipulate the file types being displayed. The GxFileFilter object moni-
tors changes made to the file filter through the IGxFileFilterEvents inter-
face.

 IGxFileFilter : IUnknown Provides access to members that manages the properties
for filtering file types.

FileTypeCount: Long The number of file types for the filter.

AddFileType (in Extension: String, in
Description: String, in filePathImage:
String)

Add the file type to the collection.

DeleteFileType (in Index: Long) Remove the file type.
Filter (in FilePath: String) : Boolean Checks to see if the indicated file passes the filter.
FindFileType (in Extension: String) :

Long
The index of the file filter or -1.

GetFileType (in Index: Long, out
Extension: String, out Description:
String, out imageFile: String, out
SmallBitmap: Long, out largeBitmap:
Long)

Returns a file type information by index.

The GxFileFilter object implements the IGxFileFilter interface. It lets you
manipulate the file types displayed by ArcCatalog. Through this inter-
face, you can add additional file types to the filter, remove file types,
and determine whether or not a particular file will be displayed.

The Filter method returns a Boolean that indicates whether or not the
specified file will be displayed in ArcCatalog based on the current file
filter.

The FindFileType method returns an index that indicates the position of
the specified file extension within the filter list. A value of -1 indicates
the extension was not found. Do not include the “.” when passing in
the extension.

The following VBA code demonstrates how to use the AddFileType
method to add the “.aml” file type to the filter. The file type is displayed
with the default icon since you are not specifying one with the last
parameter of AddFileType.

  Dim pApp As IGxApplication, pCat As IGxCatalog, pFileFilter As IGxFileFilter

  Set pApp = Application

  Set pCat = pApp.Catalog

  Set pFileFilter = pCat.FileFilter

  pFileFilter.AddFileType "aml", "Workstation ArcInfo Macro files", " "

 IGxFileFilterEvents : IUnknown Provides access to events that the ArcCatalog file filter can
fire.

OnDefinitionChanged Called when the file filter definition has changed.

The GxFileFilter object implements the IGxFileFilterEvents interface. It
monitors when the file filter is changed. Developers might want to attach
code to this event based on what file types have been added or re-
moved from the filter.

GXFILEFILTER COCLASS

GxFileFilter
IGxFileFilter

IGxFileFilterEvents
IPersistStream

The GxFileFilter object maintains the
file filter used by ArcCatalog to determine

which file types to display.



702 • Exploring ArcObjects • Volume 1

The GxDialog object controls the browser functionality of ArcCatalog.
For example, when a user right-clicks a dataset, points to Import, then
clicks Coverage to Geodatabase, the GxDialog object is employed in the
browser that pops up, allowing the user to select a coverage.

The GxDialog object can be used within ArcCatalog and ArcMap to
provide browser capabilities. The Intersect sample tool provides the
capability to intersect two layers in the map and create a new
geodatabase layer or a shapefile. The GxDialog object is used in that
tool to allow the user to browse to a location for the layer or shapefile
to create.

What the user can select or specify when using a GxDialog browser is
based on the filters (GxObjectFilter) held by the object. The GxDialog
object maintains a collection of these filters, and the developer has the
ability to create his or her own filter to add to the collection. As an
example, the Intersect sample tool uses a custom filter to specify that
output must go to a geodatabase layer or a shapefile.

 IGxDialog : IUnknown Provides access to members that control the GxDialog.

AllowMultiSelect: Boolean Indicates if multiple items may be selected.  False, by default.
ButtonCaption: String The caption to use for the Open or Save button.
FinalLocation: IGxObject The dialog's final location.
InternalCatalog: IGxCatalog The catalog object used internally by the GxDialog.
Name: String The text in the Name text box (only for DoModalSave).
ObjectFilter: IGxObjectFilter The object filter.
RememberLocation: Boolean Indicates if the dialog should use the final location as the next

starting location. True, by default.
ReplacingObject: Boolean Indicates if an object already exists with the name supplied by the

user, and is being replaced.
StartingLocation: Variant The dialog's starting location. This can be an IGxObject or a text-

string containing the full name of an object.
Title: String The dialog's title.

DoModalOpen (in parentWindow: Long,
out Selection: IEnumGxObject) : Boolean

Opens the dialog to choose data.

DoModalSave (in parentWindow: Long) :
Boolean

Opens the dialog to save data.

The IGxDialog interface is implemented by the GxDialog object and
provides access to the properties of the dialog box object and methods
for displaying the dialog box during open or save operations. Use this
interface when you want to access the properties of the dialog box or
when you wish to display the dialog box for input from the end user.

ObjectFilter returns the filter that is currently active in the dialog box. If
the dialog box is not currently open (through DoModalOpen or
DoModalSave), this property will return the default filter.

 IGxObjectFilterCollection : IUnknown Provides access to members that manages a collection of
GX object filters.

AddFilter (in Filter: IGxObjectFilter, in
defaultFilter: Boolean)

Add a filter to the filter collection, and specify if it is to selected by
default.

RemoveAllFilters Remove all filters from the filter collection.

The GxDialog object implements the IGxObjectFilterCollection interface.
It provides access to the set of filters used by the GxDialog object. Even
though a collection of filters can be attached to a GxDialog object, only
one filter is actually active at a time. The active filter is specified through

GXDIALOG COCLASS

GxDialog
IGxDialog

IGxObjectFilter-
Collection

IGxSelectionEvents

GxDialog allows you to bring up a “mini-
catalog” browser that allows you to open or save

GIS datasets.



Chapter 7 • Working with the Catalog • 703

A
rc

C
at

al
o

g

the dialog box when DoModalOpen or DoModalSave is executed
through the IGxDialog interface. Use the IGxObjectFilterCollection inter-
face when you want to remove all of the filters or when you want to
add an additional filter to the object.

The following VBA code demonstrates how to use the
IGxObjectFilterCollection interface to add existing filters to a GxDialog
object:

  Dim pGxDialog As IGxDialog

  Dim pShpFilter As IGxObjectFilter

  Dim pLyrFilter As IGxObjectFilter

  Dim pFilterCol As IGxObjectFilterCollection

  Dim pEnumGx As IEnumGxObject

  Set pShpFilter = New GxFilterShapefiles

  Set pLyrFilter = New GxFilterLayers

  Set pGxDialog = New GxDialog

  Set pFilterCol = pGxDialog

  pFilterCol.AddFilter pShpFilter, False

  pFilterCol.AddFilter pLyrFilter, True 'pLyrFilter is the default filter.

  pGxDialog.Title = "Browse Data"

  pGxDialog.DoModalOpen 0, pEnumGx

GXDIALOG COCLASS



704 • Exploring ArcObjects • Volume 1

There are over thirty types of GxObjectFilter objects the developer can
use in the code. They can also create their own code depending on
how they want their users to apply the GxDialog object. Through the
use of objects of this type, the developer can determine which types of
objects the user can choose for open and save operations when brows-
ing data.

 IGxObjectFilter : IUnknown Provides access to members that defines a GX object
filter.

Description: String A string that describes what this filter does.
Name: String A user-friendly name identifying this filter.

CanChooseObject (in Object: IGxObject,
result: tagesriDoubleClickResult) :
Boolean

Indicates if the given object can be chosen.

CanDisplayObject (in Object: IGxObject) :
Boolean

Indicates if the given object can be displayed.

CanSaveObject (in Location: IGxObject, in
newObjectName: String,
objectAlreadyExists: Boolean) : Boolean

Indicates if a new object named newObjectName could be saved
in the specified location.  If objectAlreadyExists is set to True, a
confirmation dialog will appear asking if the existing object
should be replaced.

All GxObjectFilter objects implement the IGxFileFilter interface. The inter-
face allows for the specification of the file types that can be chosen for
open and save operations when using a GxDialog browser object. De-
velopers normally only access this interface when they are implementing
it as part of a custom object filter. (Review the Intersect sample for an
example of a custom GxObjectFilter.)

The following Visual Basic code demonstrates how to create a custom
filter within a class:

  Option Explicit

  Implements IGxObjectFilter

  Dim basicFilter As IGxObjectFilter

  Private Sub Class_Initialize()

    Set basicFilter = New GxFilterBasicTypes

  End Sub

  Private Sub Class_Terminate()

    Set basicFilter = Nothing

  End Sub

  Private Function IGxObjectFilter_CanChooseObject(ByVal Object As _

    esriCore.IGxObject, result As esriCore.esriDoubleClickResult) As Boolean

    Dim canChoose As Boolean

    canChoose = False

    If TypeOf Object Is IGxFile Then

      Dim ext As String

      ext = GetExtension(Object.Name)

      If LCase(ext) = ".shd" Or LCase(ext) = ".pal" Then canChoose = True

    End If

    IGxObjectFilter_CanChooseObject = canChoose

  End Function

GXOBJECTFILTER COCLASSES

GxFilterAnnotationFeatureClasses
GxFilterBasicTypes
GxFilterCadDrawingDatasets
GxFilterCoverageAnnotationClasses
GxFilterDatasets
GxFilterDatasetsAndLayers
GxFilterFeatureClasses
GxFilterFeatureDatasets
GxFeatureDatasetsAndFeatureClasses
GxFilterFiles
GxFilterGeodatasets
GxFilterLayers
GxFilterMaps
GxFilterPointFeatureClasses
GxFilterPolygonFeatureClasses
GxFilterPolylineFeatureClasses
GxFilterRasterDatasets
GxFilterSpatialReference
GxFilterTables
GxFilterTablesAndFeatureClasses
GxFilterTINDatasets
GxFilterWorkspaces

GxObject-
Filter

IGxObjectFilter

The GxObjectFilter objects are used in
conjunction with the GxDialog object to

limit the types of data the user can
browse when selecting objects to

open or save.



Chapter 7 • Working with the Catalog • 705

A
rc

C
at

al
o

g

  Private Function IGxObjectFilter_CanSaveObject(ByVal Location As _

    esriCore.IGxObject, ByVal newObjectName As String, _

    objectAlreadyExists As Boolean) As Boolean

  End Function

  Private Property Get IGxObjectFilter_Name() As String

    IGxObjectFilter_Name = "Custom filter"

  End Property

  Private Property Get IGxObjectFilter_Description() As String

    IGxObjectFilter_Description = "Browses for .shd and .pal files."

  End Property

  Private Function IGxObjectFilter_CanDisplayObject(ByVal Object As _

    esriCore.IGxObject) As Boolean

    Dim canDisplay As Boolean

    canDisplay = False

    If basicFilter.CanDisplayObject(Object) Then

      canDisplay = True

    ElseIf TypeOf Object Is IGxFile Then

      Dim ext As String

      ext = GetExtension(Object.Name)

      If LCase(ext) = ".shd" Or LCase(ext) = ".pal" Then canDisplay = True

    End If

    IGxObjectFilter_CanDisplayObject = canDisplay

  End Function

  Private Function GetExtension(fileName As String) As String

   Dim extPos As Long

    extPos = InStrRev(fileName, ".")

    If extPos > 0 Then

      GetExtension = Mid(fileName, extPos)

    Else

      GetExtension = ""

    End If

  End Function

GXOBJECTFILTER COCLASSES



706 • Exploring ArcObjects • Volume 1

At the top level, the Catalog object is made up of a set of GxObjects. All
these objects support the IGxObject interface along with some other
interfaces.

There are a core set of GxObjects within ArcCatalog, such as catalog,
disk connections, folders, and files. Basically, whenever a folder is
asked for its children, it iterates over all registered GxObjectFactories to
return GxObjects. Object factories know what types of files to return as
GxObjects. These returned GxObjects are then populated in the Catalog
by implementing IGxObject interface. Developers can easily extend the
core set of GxObjects by implementing their own GxObjectFactories. After
creating your own GxObjectFactory, the class must be registered under
ESRI GX Object Factories for it to be considered.

The implementation of a custom GxObjectFactory class for .txt files may
look something like this in Visual Basic:

  Option Explicit

  Implements IGxObjectFactory

  Private Property Set IGxObjectFactory_Catalog(ByVal RHS As _

    esriCore.IGxCatalog)

  End Property

  Private Function IGxObjectFactory_GetChildren(ByVal parentDir As String, _

    ByVal fileNames As esriCore.IFileNames) As esriCore.IEnumGxObject

    Dim f As String

    Dim children As IGxObjectArray

    Set children = New GxObjectArray

    Do

      f = fileNames.Next

      If f <> "" Then

         If UCase(Right(f, 4)) = ".TXT" Then

           Dim child As IGxObject

           Set child = New GxTextFile

           f = child.Name

           children.Insert -1, child

           Set child = Nothing

           fileNames.Remove

         End If

      End If

    Loop Until f = ""

    Set IGxObjectFactory_GetChildren = children

  End Function

  Private Function IGxObjectFactory_HasChildren(ByVal parentDir As String, _

    ByVal fileNames As esriCore.IFileNames) As Boolean

    Dim f As String

    Do

      f = fileNames.Next

GXOBJECTFACTORY COCLASSES

IGxObjectFactory
IGxObject-

FactoryMetadata
GxObject-

Factory

GxLayer-
Factory

GxMap-
Factory

GxShortcut-
Factory

GxDatabase-
Factory

GxFile-
Factory

GxTextFile-
Factory

IGxObject-
FactoryEdit

GxPrjFile-
Factory

IGxObject-
FactoryPriority

GxMetadata-
Factory

IGxObject-
FactoryPriority

GxCoverage-
Factory

IGxObject-
FactoryEdit

GxObjectFactory objects help
ArcCatalog generate GxObjects based

on the object type.



Chapter 7 • Working with the Catalog • 707

A
rc

C
at

al
o

g

      If f <> "" Then

         If UCase(Right(f, 4)) = ".TXT" Then

            IGxObjectFactory_HasChildren = True

          Exit Do

        End If

      End If

    Loop Until f = ""

  End Function

  Private Property Get IGxObjectFactory_Name() As String

    IGxObjectFactory_Name = "GxMyCustomFactory"

  End Property

 IGxObjectFactory : IUnknown Provides access to members that define a GX object
factory.

Catalog: IGxCatalog Attach the catalog to the object factory.
Name: String The name of the object factory.

GetChildren (in parentDir: String, in
fileNames: IFileNames) :
IEnumGxObject

Returns an enumeration of objects corresponding to one or more
of the given file names supported by the object factory.

HasChildren (in parentDir: String, in
fileNames: IFileNames) : Boolean

Indicates if any of the specified files are supported by the object
factory.

All GxObjectFactory classes implement the IGxObjectFactory interface.
The interface allows GxObjectFactory objects to return the name of the
factory and information about the potential children of the object.

 IGxObjectFactoryMetadata : IUnknown Provides access to members that returns a GX object from
some metadata.

GetGxObjectFromMetadata (in
metadataPath: String) : IGxObject

Given a path to some metadata, constructs the corresponding gx
object.

All GxObjectFactory classes that support metadata implement the
IGxObjectFactoryMetadata interface. The interface allows
GxObjectFactory objects to return GxObjects when metadata paths are
sent in. When creating your own GxObjectFactory, implement this inter-
face if you want to support the defining of metadata on your custom
objects.

GXOBJECTFACTORY COCLASSES



708 • Exploring ArcObjects • Volume 1

Spatial-
Reference-

Dialog

ISpatialReferenceDialog

Table-
Definition-

Dialog

ITableDefinitionDialog

Projected-
Coordinate-

SystemDialog

IProjectedCoordinateSystemDialog

Geographic-
Coordinate-

SystemDialog

IGeographicCoordinateSystemDialog

FindDialog and related objects

Catalog-
Search-
Engine

FileSystem-
XmlSearch-

Engine

IFileSystemQuery

Search-
Engine

IConnectionPointContainer
ISearchEngine

ISearchEngineEvents
ISearchEngineProperties

FindDialog
IDllThreadManager

IDockableWindowDef
IFindDialog

IGxSelectionEvents
ISearchEngineEvents

FileSystem-
Query

IFindDialogSettings
IQuery

IXmlQuery

The geographic coordinate system dialog is a
standalone object used to create a new
geographic coordinate system object

The projected coordinate system dialog is a
standalone object used to create a new projected
coordinate system object

The spatial reference dialog object is a
standalone object used to create a new spatial
reference object

The table definition dialog object is a standalone
object used to create new tables and feature
classes within the specific workspace or dataset

FileSystemXmlSearchEngine lets you
search for file-based objects stored on
disk for which metadata has been created

The CatalogSearchEngine lets
you search for any object that

appears in ArcCatalog

FindDialog provides access to
ArcCatalog’s search dialog box

FileSystemQuery lets you modify
an existing search’s parameters or
define a new query



Chapter 7 • Working with the Catalog • 709

A
rc

C
at

al
o

g

The ProjectedCoordinateSystemDialog object is a standalone object used
to create a new IProjectedCoordinateSystem object. As a developer, you
should create an object of this type when you need to create a custom
projection under the Projected Coordinate System category.

 IProjectedCoordinateSystemDialog :
 IUnknown

Provides access to members that control the Projected
Coordinate System Dialog.

DoModalCreate (in hParent: Long) :
IProjectedCoordinateSystem

Prompts the user to define a new projected coordinate system.

The IProjectedCoordinateSystemDialog interface is implemented by the
ProjectedCoordinateSystemDialog object. It displays a dialog box for
creating a new custom projection.

The following VBA code demonstrates how to use the dialog box to
create a new projection and store it in the appropriate folder:

  Dim pProjD As IProjectedCoordinateSystemDialog

  Dim pProj As IProjectedCoordinateSystem

  Set pProjD = New ProjectedCoordinateSystemDialog

  Set pProj = pProjD.DoModalCreate(0)

  Dim spRefEnviron As ISpatialReferenceFactory

  Set spRefEnviron = New SpatialReferenceEnvironment

  Dim pSpatialReference As ISpatialReference

  Set pSpatialReference = pProj

  spRefEnviron.ExportESRISpatialReferenceToPRJFile & "c:\arcgis\arcexe81" &_

     "\Coordinate Systems\projected coordinate systems\polar\abc.prj", _

     pSpatialReference

PROJECTEDCOORDINATESYSTEMDIALOG COCLASS

Projected-
Coordinate-

SystemDialog

IProjectedCoordinate-
SystemDialog

The projected coordinate system dialog
box is a standalone object that creates a
new projected coordinate system object.



710 • Exploring ArcObjects • Volume 1

The GeographicCoordinateSystemDialog object is a standalone object
used to create a new IGeographicCoordinateSystem object. As a devel-
oper, you should create an object of this type when you need to create
a custom projection under the Project Coordinate System category.

 IGeographicCoordinateSystemDialog :
 IUnknown

Provides access to members that control the Geographic
Coordinate System Dialog.

DoModalCreate (in hParent: Long) :
IGeographicCoordinateSystem

Prompts the user to define a new geographic coordinate system.

The IGeographicCoordinateSystemDialog interface is implemented only
by the GeographicCoordinateSystemDialog object. It displays a dialog
box for creating a new custom projection.

The following VBA code demonstrates how to use the dialog box:

  Dim pGeoD As IGeographicCoordinateSystemDialog

  Dim pGeo As IGeographicCoordinateSystem0

  Set pGeoD = New GeographicCoordinateSystemDialog

  Set pGeo = pGeoD.DoModalCreate(0)

GEOGRAPHICCOORDINATESYSTEMDIALOG COCLASS

Geographic-
Coordinate-

SystemDialog

IGeographicCoordinate-
SystemDialog

The geographic coordinate system dialog
box is a standalone object used to create

a new geographic coordinate system
object.



Chapter 7 • Working with the Catalog • 711

A
rc

C
at

al
o

g

The SpatialReferenceDialog object is a standalone object that creates a
new ISpatialReference object. As a developer, you should create an
object of this type when you need to generate or edit a spatial reference
object.

As an example, ISpatialReference objects are needed in ArcCatalog when
creating a new feature dataset, as the following VBA code demonstrates:

  Dim pApp As IGxApplication, pSel As IGxSelection, pGxObj As IGxObject

  Set pApp = Application

  Set pSel = pApp.Selection

  Set pGxObj = pSel.Location

  'Make sure object selected in the tree view is a database object

  If Not TypeOf pGxObj Is IGxDatabase Then Exit Sub

  Dim pFeatWork As IFeatureWorkspace

  Dim pSpatDiag As ISpatialReferenceDialog

  Dim pSpat As ISpatialReference, pGxData As IGxDatabase2

  Set pGxData = pGxObj

  Set pFeatWork = pGxData.Workspace

  Set pSpatDiag = New SpatialReferenceDialog

  Set pSpat = pSpatDiag.DoModalCreate(True, False, False, 0)

  If Not pSpat Is Nothing Then

    pFeatWork.CreateFeatureDataset "My New Dataset", pSpat

  End If

 ISpatialReferenceDialog : IUnknown Provides access to members that control the Spatial
Reference Dialog.

DoModalCreate (in hasXY: Boolean, in
HasZ: Boolean, in HasM: Boolean, in
hParent: Long) : ISpatialReference

Prompts the user to define a new spatial reference.

DoModalEdit (in inputSpatialReference:
ISpatialReference, in hasXY: Boolean,
in HasZ: Boolean, in HasM: Boolean,
in coordPageReadOnly: Boolean, in
domainPageReadOnly: Boolean, in
hParent: Long) : ISpatialReference

Displays/edits the properties of the given spatial reference.

The ISpatialReferenceDialog interface is implemented by the
SpatialReferenceDialog object. It displays dialog boxes for editing and
creating ISpatialReference objects. Use this interface when you want to
present your users with the standard dialog box for manipulating a
spatial reference.

DoModalEdit and DoModalCreate arguments limit the pages of the wiz-
ard that will be displayed. For example, passing a HasZ value of True
displays the page that sets z-values.

SPATIALREFERENCEDIALOG COCLASS

Spatial-
Reference-

Dialog

ISpatialReference-
Dialog

The spatial reference dialog box object is
a standalone object used to create a new

spatial reference object.



712 • Exploring ArcObjects • Volume 1

The TableDefinitionDialog object is a standalone object that creates new
tables (ITable) and feature classes (IFeatureClass) within the specific
workspace or dataset. As a developer, you should create an object of
this type when you want to give your users the capability to create new
tables or feature classes through the standard dialog box.

 ITableDefinitionDialog : IUnknown Provides access to members that control the Table
Definition Dialog.

DoModalCreateFeatureClass (in Parent:
IUnknown Pointer, in hParent: Long) :
IFeatureClass

Displays the dialog to define a new feature class.

DoModalCreateTable (in Workspace:
IFeatureWorkspace, in hParent: Long)
: ITable

Displays the dialog to define a new table.

The ITableDefinitionDialog interface is implemented by the Table-
DefinitionDialog object. It displays a dialog box for creating a new table
of a feature class.

For the first parameter of DoModalCreateFeatureClass, pass in an
IFeatureDataset or an IFeatureWorkspace, depending on whether or not
you want the feature class to be created within a dataset.

The following VBA code demonstrates how to create a new feature
class within the dataset selected in the tree view of ArcCatalog:

  Dim pApp As IGxApplication, pSel As IGxSelection, pGxObj As IGxObject

  Set pApp = Application

  Set pSel = pApp.Selection

  Set pGxObj = pSel.Location

  If Not TypeOf pGxObj Is IGxDataset Then Exit Sub

  Dim pDataset As IDataset, pGxData As IGxDataset

  Dim pTableDiag As ITableDefinitionDialog, pFeatClass As IFeatureClass

  Set pGxData = pGxObj

  Set pDataset = pGxData.Dataset

  Set pTableDiag = New TableDefinitionDialog

  Set pFeatClass = pTableDiag.DoModalCreateFeatureClass(pDataset, 0)

TABLEDEFINITIONDIALOG COCLASS

Table-
Definition-

Dialog

ITableDefinitionDialog

The table definition dialog box object is a
standalone object used to create new
tables and feature classes within the

specific workspace or dataset.



Chapter 7 • Working with the Catalog • 713

A
rc

C
at

al
o

g

FINDDIALOG COCLASS

The FindDialog provides access to the ArcCatalog Search dialog box.

 IFindDialog : IUnknown IFindDialog.

IsVisible: Boolean Determines if the find dialog is visible.

DoSearch (in pQuery: IQuery) Start the search given the query.
GetNumSearchEngines (in num: Long) Get the number of search engines.
GetSearchEngine (in Index: Long) :

ISearchEngine
Get the nth search engine.

Initialize (in pQuery: IQuery) Initialize the Find Dialog UI using a query.
Show (in bShow: Boolean) Show the find dialog.
StopSearch Stop the search.

The IFindDialog interface lets you execute a search programmatically.

The IsVisible property indicates whether or not the Search dialog box is
open.

The Show method lets you open and close the Search dialog box. On
opening, the dialog box is initialized based on the selected object in
ArcCatalog; if the object is a search result, the dialog box represents its
search criteria. The Initialize method can be used to initialize the dialog
box to represent the search parameters defined by a separate query (the
use of FileSystemQuery is discussed in detail later in this section). The
example below shows how to open the Search dialog box.

  Dim pFindDialog As IFindDialog

  Set pFindDialog = New FindDialog

  pFindDialog.Show true

You can change the query’s parameters by setting its properties with the
IQuery and IFindDialogSettings interfaces, with the exception of the
search engine used and the location in which the search should begin.
You must set those properties separately by enabling the appropriate
search engine and then setting its location string (use of SearchEngine is
discussed later in this chapter).

The Search dialog box must have been shown once before the available
search engines can be retrieved; however, if the Show command is used
with the parameter False, the dialog box will be initialized but will not
appear. The following example shows how this can be accomplished:

  Dim pSearchEngine As ISearchEngine

  Dim pSEProperties As ISearchEngineProperties

  Dim i As Long

  pFindDialog.Show False

  For i = 0 To (pFindDialog.GetNumSearchEngines - 1)

    Set pSearchEngine = pFindDialog.getSearchEngine (i)

    Select Case pSearchEngine.Name

      Case "Catalog"

        pSearchEngine.Enabled = True

        Set pSEProperties = pSearchEngine

        pSEProperties.LocationString = "C:\Temp\data"

      Case "File system"

        pSearchEngine.Enabled = False

      End Select

    Next

FindDialog
IDllThreadManager

IDockableWindowDef
IFindDialog

IGxSelectionEvents
ISearchEngineEvents

FindDialog provides access to the
ArcCatalog Search dialog box.



714 • Exploring ArcObjects • Volume 1

FINDDIALOG COCLASS

The DoSearch method initiates a search using the parameters defined by
the input FileSystemQuery object. Before the search starts, the query is
saved as a SearchResults object in the Search Results folder in
ArcCatalog. The new search is selected in the Catalog tree, and when
objects are found, shortcuts to those objects are automatically added to
the search results, which are listed in the Contents tab. The Search dia-
log box must have been opened once before the search will execute
successfully.

It is important to note that when one search engine is enabled, other
search engines are not disabled automatically. If more than one search
engine is enabled, the search will be executed once with each enabled
search engine. The results from all search engines will appear in the
Contents tab.

You can use StopSearch to halt the search at any point in time after the
search has started. If StopSearch immediately follows DoSearch, the
query is saved but the search does not execute.



Chapter 7 • Working with the Catalog • 715

A
rc

C
at

al
o

g

Metadata can be created for folders, folder connections, and
geodatabases themselves manually or programmatically, but they don’t
support synchronization. Metadata can be edited manually in ArcCatalog
using a metadata editor, a metadata importer, or the Metadata Properties
dialog box. The contents of standalone XML documents can be modi-
fied the same way. For example, you might use a metadata editor to
describe the project for which a folder or personal geodatabase was
created.

ArcCatalog organizational objects—the root of the Catalog tree and the
Database Connections, Internet Servers, Geocoding Services, Coordinate
Systems, and Search Results folders—don’t support metadata. The ob-
jects you use to create database and Internet server connections and
new geocoding services don’t support metadata either.

Most objects that appear in ArcCatalog
can have metadata. However, you cannot

create metadata or read metadata that
already exists for datasets accessed
using an OLE DB, ArcSDE 3, or an

ArcSDE for Coverages database connec-
tion. For all other datasets and files

(except standalone XML documents),
ArcCatalog will by default create and

update metadata automatically when you
view metadata in the Metadata tab in

ArcCatalog; this process, known as
synchronization, is described in detail in

Volume 2, Chapter 8, ‘Accessing the
geodatabase’. The only requirement is

that the location of the data is writable.
For example, you can create metadata

for a coverage that is stored on your
computer but not for one that resides on
a CD–ROM. Within a geodatabase, you

must be the owner of an object to be
able to create or update its metadata.

Metadata objects

The metadata import
objects add or replace
metadata from an input file

IMetadataImport Metadata-
Import

Import-
MPSGML

Import-
MP

Import-
XML

Import-
MPTXT

The metadata export
objects output a dataset's
metadata to a file

IMetadataExport

Export-
MPSGML

Export-
MPTXT

Export-
XML

Export-
MPFAQ

Export-
MPHTML

Export-
MP

Export-
HTML

Metadata-
Export

IMetadataEditor The metadata editor objects
provide a user interface for
editing metadata

DefaultEditorFGDCEditor

Metadata-
Editor



716 • Exploring ArcObjects • Volume 1

IMetadataEditor

DefaultEditor

FGDCEditor

Metadata-
Editor

A MetadataEditor object provides a
user interface for editing metadata. You
can create your own custom metadata

editor.

METADATA EDITOR COCLASSES

Two metadata editors are supplied with ArcCatalog: the FGDCEditor and
the DefaultEditor.

The FGDCEditor allows you to create metadata following the FGDC
standard; it is the metadata editor that is available by default when you
click the Edit Metadata button in ArcCatalog.

The DefaultEditor is the Options page in the Metadata Properties dialog
box; it works differently from other metadata editors.

You can build your own custom metadata editor, which can be opened
in place of the FGDCEditor when the Edit Metadata button is clicked.
You might do this to allow users to create metadata following a different
metadata standard or to add specific information used by your organi-
zation to the metadata, such as the current state of a data-creation
project. To build your own editor, create a class that implements
IMetadataEditor and register it with the Component Categories Manager
utility in the Metadata Editors category. There is an example of a custom
metadata editor in the ArcObjects Developer Samples.

 IMetadataEditor : IUnknown Provides access to members that define a metadata editor.

Name: String Name of the metadata editor.

Edit (in props: IPropertySet, in hWnd:
Long) : Boolean

Shows the metadata editor and indicates if the metadata property
set was modified.

The IMetadataEditor interface controls a metadata editor.

When using a metadata editor, the Name property is read-only. This
property is defined when the IMetadataEditor interface is implemented.
The name value will appear in the Metadata Editors dropdown list in the
Metadata tab in the ArcCatalog Options dialog box.

One way to open a metadata editor programmatically is to use
IMetadataHelper::Editor to control which editor will appear, then
IGxDocumentationView::Edit to show the editor.
IGxDocumentationView::Edit in turn calls the Edit method on the
IMetadataEditor interface.

When using the Edit method directly, two parameters must be passed in:
an XML property set whose contents will be modified and the number
zero. Edit also returns a value indicating whether or not the contents of
the XML property set were modified; if this value is true, the changes
should be saved to the original object. The DLL that contains the
metadata editor must be referenced as part of your project. This ex-
ample opens the FGDC editor.

  Dim pPS As IPropertySet

  Set pPS = pMetadata.Metadata

  Dim pMetaEdit As IMetadataEditor

  Set pMetaEdit = New MetaEditor.MetaEdit

  Dim bModified As Boolean

  bModified = pMetaEdit.edit(pPS, 0)

If bModified Then pMetadata.Metadata = pPS



Chapter 7 • Working with the Catalog • 717

A
rc

C
at

al
o

g

The MetaEditor DLL contains the class named MetaEdit, which imple-
ments the IMetadataEditor interface. An XML property set containing
metadata is retrieved from a GxObject or a Name object, and then
passed to the Edit method, which opens a form. If you modify any
values with the form, a flag is set. When the dialog box is closed, the
Edit method’s return value is set to the value of the flag. Your code
should check the return value and then act accordingly; if the return
value is true, save the changes to the metadata with the original object.

When the Edit method is implemented, you define how the editor will
modify the XML property set. It may open a form where each control
on the form lets users set the value of a specific metadata element. It
may also set the value of several additional elements automatically, such
as the time when the changes were saved or the name of the user who
made the changes.

METADATA EDITOR COCLASSES



718 • Exploring ArcObjects • Volume 1

IMetadataImport Metadata-
Import

Import-
MPSGML

Import-
MP

Import-
XML

Import-
MPTXT

The metadata import objects are used to
replace the existing metadata with new

definitions from a file.

METADATA IMPORT COCLASSES

The MetadataImport objects work in the same way as the Import Meta-
data button in ArcCatalog, with one exception. The Import Metadata
dialog box provides the option to synchronize imported metadata with
the dataset after the importing is complete. When importing is initiated
programmatically, this option isn’t available; setting the appropriate Sync
attributes and initiating synchronization must also be accomplished
programmatically.

Each MetadataImport coclass corresponds to a different format of
metadata in the input file. The following table summarizes the supported
metadata import and export formats.

ImportMP

ImportMPSGML

ImportMPTXT

ImportXML

ExportMP

ExportMPSGML

ExportMPTXT

ExportXML

ExportMPHTML

ExportMPFAQ

ExportHTML

FGDC CSDGM (XML): the XML format that can be imported and
exported by the FGDC metadata parser utility.

FGDC CSDGM (SGML): the SGML format that can be imported
and exported by mp; mp is used to generate the result.

FGDC CSDGM (TXT): the text format that can be imported and
exported by mp; mp is used to generate the result.

XML: imports and exports XML documents as-is; essentially creates
a copy of the XML document.

FGDC CSDGM (HTML): the HTML output that can be generated
by mp; mp is used to generate the result.

FGDC CSDGM (FAQ): the FAQ-style HTML output that can be
generated by mp; mp is used to generate the result.

HTML: HTML output is created by using ArcCatalog's current
stylesheet to transform the metadata.

Export coclassImport coclass Metadata format

There are more export than import formats because XML can be readily
presented as HTML, but not vice versa. For more information about the
FGDC’s metadata parser utility, mp, see http://geology.usgs.gov/tools/
metadata/tools/doc/mp.html.

You can build your own custom metadata importer by creating a class
that implements IMetadataImport, then registering it with the Component
Categories Manager utility in the Metadata Importers category. There is
an example custom metadata importer in the ArcObjects Developer
Samples.

 IMetadataImport : IUnknown Provides access to members that define a metadata
importer.

DefaultFilename: String Default filename (including the file extension) from which to import.
Name: String Name of the metadata importer.

Import (in source: String, in destination:
IMetadata)

Imports metadata from the specified location.

The IMetadataImport interface lets you import existing metadata from a
file.



Chapter 7 • Working with the Catalog • 719

A
rc

C
at

al
o

g

When using a metadata importer, the properties DefaultFileName and
Name are read-only. These properties are defined when the IMetadata-
Import interface is implemented.

The Name value appears in the Format dropdown list in the Import
Metadata dialog box. If an importer’s default filename is “aFile.abc”, for
example, then after choosing an importer in the Format list, the exten-
sion of the filename in the Location text box changes to match the
extension of the default filename, which in this example is “abc”. Also,
when you click the Browse button, the default filename of the selected
metadata format appears in the File name text box, and its file extension
appears as the default option in the Files of type dropdown list.

The default location in which to look for input files is initially C:\Temp
and thereafter is the ArcCatalog current working directory.

When the Import method is used, two parameters must be passed in: the
path of the file whose contents will be imported and the IMetadata
interface, which provides access to the metadata that should be modi-
fied as a result of importing metadata. The following example imports
metadata for an ArcCatalog object from a text file that is formatted ac-
cording to mp’s requirements.

  Dim pApp As IGxApplication

  Dim pGxObject As IGxObject

  Set pApp = Application

  Set pGxObject = pApp.SelectedObject

  Dim pMetadata as IMetadata

  Set pMetadata = pGxObject

  Dim pMetadataImport as IMetadataImport

  Set pMetadataImport = New ImportMPTXT

  pMetadataImport.Import "C:\stuff\fgdc_metadata.txt", pMetadata

  MsgBox "Finished import in format: " & pMetadataImport.Name

When the Import method is implemented, it defines exactly what is
recorded in the metadata when the importer is used. For example, it
may open a file, extract some information, set specific elements in the
original metadata document, then save the results.

Or, the importer may set specific elements in the metadata without open-
ing a file at all; this is one possible method for adding standard blocks
of information, such as contact information, to metadata documents.
The metadata importers that are provided replace all existing metadata
with the contents of the imported file.

METADATA IMPORT COCLASSES



720 • Exploring ArcObjects • Volume 1

IMetadataExport

Export-
MPSGML

Export-
MPTXT

Export-
XML

Export-
MPFAQ

Export-
MPHTML

Export-
MP

Export-
HTML

Metadata-
Export

The MetadataExport objects are used
to make an output file of a dataset’s

metadata.

METADATA EXPORT COCLASSES

The MetadataExport objects work in the same way as the Export Meta-
data button in ArcCatalog. Each MetadataExport coclass corresponds to
a different format for the output file (see the table in the MetadataImport
section).

You can build your own custom metadata exporter by creating a class
that implements IMetadataExport, then registering it with the Component
Categories Manager utility in the “Metadata Exporters” category. There is
an example custom metadata importer in the ArcObjects Developer
Samples.

 IMetadataExport : IUnknown Provides access to members that define a metadata
exporter.

DefaultFilename: String Default filename (including the file extension) to create on export.
Name: String Name of the metadata exporter.

Export (in source: IMetadata, in
destination: String)

Exports metadata to the specified location.

The IMetadataExport interface lets you export information in the meta-
data document to an output file.

When using a metadata exporter, the properties DefaultFileName and
Name are read-only. These properties are defined when the
IMetadataExport interface is implemented. The name value appears in
the Format dropdown list in the Export Metadata dialog box. The default
filename defines the filename and extension, which are used by default
in the same way as is described for the IMetadataImport interface. The
default location in which output files will be placed is initially C:\Temp
and thereafter is the ArcCatalog current working directory.

When the Export method is used, two parameters must be passed in: the
IMetadata interface, which references the information that will be ex-
ported, and the path of the output file that will be created. The follow-
ing example exports metadata for an ArcCatalog object to an XML file
that satisfies mp’s requirements.

  Dim pApp As IGxApplication

  Set pApp = Application

  Dim pGxObject As IGxObject

  Set pGxObject = pApp.SelectedObject

  Dim pMetaData As IMetadata

  Set pMetaData = pGxObject

  Dim pMetadataExport As IMetadataExport

  Set pMetadataExport = New ExportHTML

  pMetadataExport.Export pMetaData, pMetadataExport.DefaultFilename

  MsgBox "Finished export in format: " & pMetadataExport.Name

ExportMP uses IXmlPropertySet::SaveAsFile to create an output XML file
in the manner that they are created by mp. The _MPXML stylesheet is
used to transform the elements in the original metadata XML property



Chapter 7 • Working with the Catalog • 721

A
rc

C
at

al
o

g

set. It orders the metadata elements according to the hierarchy defined
by the FGDC standard and removes the elements defined in the ESRI
Profile. ExportMP also specifies a header that adds the XML version
notation and a reference to the FGDC’s DTD to the top of the output
file. For the resulting XML to be valid, its elements must be ordered and
their values must conform to the rules defined by the DTD. Since the
ESRI profile elements are not defined in the FGDC’s DTD, their presence
would cause validation to fail. The other MP exporters also transform
the metadata using the _MPXML style sheet. They pass the resulting XML
file to mp. In turn, mp processes the XML and then writes an output file
in the appropriate format to disk.

When exporting with the ExportMP, ExportXML, ExportMPHTML, Export-
MPFAQ, and ExportHTML coclasses, do not use their default filenames,
“metadata.xml” and “metadata.htm”, respectively. When files with these
names are placed inside a folder, they are assumed to contain metadata
for that folder; their contents appear in the Metadata tab when the folder
is selected in the Catalog tree, and incorrect assumptions may be made.

When the Export method is implemented, it defines exactly what is
recorded in the output file. For example, it might create a new file,
extract some information from the metadata, store it in an appropriate
format within that file, then save the results.

METADATA EXPORT COCLASSES



722 • Exploring ArcObjects • Volume 1

The FileSystemQuery coclass lets you modify an existing search’s param-
eters or define a new query. The FileSystemQuery coclass has three
interfaces: IFindDialogSettings, IQuery, and IXmlQuery. The IXmlQuery
interface builds the XSL Patterns expressions that correspond to the
query parameters that are used to evaluate whether or not a dataset’s
metadata satisfies the search criteria. Typically, you would not use this
interface.

You can build your own custom query object by creating a class that
implements IQuery. You might do this to support a custom searching
application in which additional properties or methods are required to
define the search parameters.

 IFindDialogSettings : IUnknown IFindDialogSettings Interface.

BackgroundMap: String The full name of the background map associated with this query.

The IFindDialogSettings interface lets you specify which dataset will be
used as a map when the geographic extent of the search is defined
using the Search dialog box.

The BackgroundMap property specifies the complete path that identifies
the dataset.

 IQuery : IUnknown IQuery Interface.

ClassID: IUID The class ID of this object.
DatasetName: String The name of the dataset to be searched for.
DatasetType: INativeType The type of the dataset to be searched for.
Date1: String The start date or first date.
Date2: String The end date or second date.
DateOperator: tagesriFindDateOperator The type of the date operator.
DateType: tagesriFindDateType The type of the date to be searched for.
EngineProperties: IPropertySet The set of search engine properties.
Envelope: IEnvelope The envelope of the dataset to be searched for in decimal degrees.
EnvelopeOperator:

tagesriFindEnvelopeOperator
The spatial operator on the envelope.

IsCaseSensitive: Boolean Indicates if the comparison of the name property is case sensitive.
NameOfQuery: String The name of the query.
NativeEnvelope: IEnvelope The envelope of the dataset to be searched for in the dataset's

coordinate system.
NumFieldQueries: Long The number of field queries.

AddFieldQuery (in Type:
tagesriFindFieldType, in op:
tagesriFindFieldOperator, in Value:
String, in Tag: String)

Adds a field query.

GetFieldQuery (in Index: Long, out Type:
tagesriFindFieldType, out op:
tagesriFindFieldOperator, out Value:
String, out Tag: String)

Returns the nth field query.

Load (in pPropertySet: IPropertySet) Loads the query from the given PropertySet.
Save (in pPropertySet: IPropertySet) Saves the query from the given PropertySet.

The IQuery interface lets you access and modify the search parameters.

The ClassID property is read-only. It identifies the type of query object
that is represented by the search parameters. This information is essen-
tial if parameters are being retrieved from a query that was saved to
disk. For example, if you define a new query using the FileSystemQuery
coclass, the ClassID property reflects the UID of that coclass. If the
query was instead defined using a custom query object, the appropriate
object would be indicated by the ClassID property.

FILESYSTEMQUERY COCLASS

FileSystem-
Query

IFindDialogSettings
IQuery

IXmlQuery

FileSystemQuery lets you modify an
existing search’s parameters or define a

new query.



Chapter 7 • Working with the Catalog • 723

A
rc

C
at

al
o

g

When creating a new FileSystemQuery, you are required to set only two
parameters using the IQuery interface: DatasetName, which establishes
the name of the object you want to find, and NameQuery, which de-
fines the name of the query itself; all other properties are set to their
default values. The dataset name may include an asterisk (*) as a
wildcard character; use the dataset name “*” to select objects with any
name. The following code demonstrates how to create a new query.

  Dim pQuery As IQuery

  Set pQuery = New FileSystemQuery

  pQuery.DatasetName = "*"

  pQuery.NameOfQuery = "My Search"

In addition to the DatasetName and FileSystemQuery properties, the
query’s search engine properties must be set or the search will not run.
The query’s EngineProperties property returns a property set. Modify the
property set in order to change which search engine will be used to
execute the query or how the search engine operates.

When a new query object is created, its EngineProperties property set
doesn’t contain any properties. An easy way to define the property set’s
contents is by creating the appropriate search engine, setting its proper-
ties, and then saving them to the EngineProperties property set. The
example below shows how to change the location where the search will
begin.

  Dim pCatalogSE As ISearchEngineProperties

  Set pCatalogSE = New CatalogSearchEngine

  pCatalogSE.LocationString = “D:\Data”

  pCatalogSE.Save pPS

The Catalog search engine adds the “EngineCLSID” and
“CatalogLocation” properties. The file system XML search engine adds
the “EngineCLSID”, “FileSystemLocation”, and “IncludeSubFolders”
properties. The Catalog location property can identify any location in the
Catalog, such as a database connection, for example, “Database
Connections\My ArcSDE Connection.sde”. The file system location
property can identify any disk location on the network, for example,
“\\aComputer\public”.

The methods defined in the IPropertySet interface can also be used to
add and remove properties and modify their values. The example below
shows how to retrieve a previously defined query from an existing
SearchResults object, modify its start location, and then execute the
query.

Dim pGxApp As IGxApplication

Dim pGxObject As IGxObject

Set pGxApp = Application

Set pGxObject = pGxApp.SelectedObject

Dim pSearchResults As ISearchResults

Dim pQuery As IQuery

FILESYSTEMQUERY COCLASS



724 • Exploring ArcObjects • Volume 1

Set pSearchResults = pGxObject

Set pQuery = pSearchResults.Query

Dim pPropSet As IPropertySet

Set pPropSet = pQuery.EngineProperties

pPropSet.SetProperty “FileSystemLocation”, “C:\mystuff”

pFindDialog.DoSearch pQuery

Other properties of the IQuery interface may optionally be set. For key-
word-style searches, use NumFieldQueries—it returns the current num-
ber of field queries that have been defined. GetFieldQuery returns the
parameters of the appropriate field query. Use the AddFieldQuery
method to add to the list of field queries.

To search for a value in one of the predefined query fields, specify the
appropriate field type, operator, and value and provide an empty string
for the Tag parameter. To search for a value in another metadata ele-
ment that isn’t in the predefined list, specify the user-defined field type
and the appropriate operator and value, and for the Tag parameter,
specify the name string that identifies the metadata element.

The example below adds two field queries, one that looks for “roads” in
the abstract and another that looks for the name of the project, “My
Project”, in the supplemental information element. For information
about how to construct your own name string, see Volume 2, Chapter 8,
‘Accessing the geodatabase’.

  pQuery.AddFieldQuery esriFindFieldTypeAbstract, _

    esriFindFieldOperatorIncludes, "roads", ""

  pQuery.AddFieldQuery esriFindFieldTypeUserDefined, _

    esriFindFieldOperatorIncludes, "My Project", "idinfo/descript/supplinf"

To search using date information in the metadata, set the DateType,
DateOperator, Date1, and Date2 properties appropriately. The date type
defines whether you are looking for a date, how current the data is,
when the metadata was last updated, or when the data was published.

The date operator defines how to compare the date in the metadata with
the dates provided; for example, you might want to look for objects
whose metadata was updated during the previous 30 days. For after,
before, during, and equal date comparisons, dates must be specified in
the format yyyymmdd; for example, “20000601” refers to the date
June 1, 2000. For after, before, and equal comparisons, only the
Date1 property is used. For previous searches, Date1 should be the
appropriate number of days, such as “30”.

Set the DatasetType property if you want to search for specific objects or
data formats. To search by the geographic location of the dataset, you
need to set the Envelope and NativeEnvelope properties appropriately.

The Envelope property defines the search extent in decimal degrees,
while the NativeEnvelope property defines the search extent in a dataset’s
projected coordinates. Both search extents should be defined. If

FILESYSTEMQUERY COCLASS



Chapter 7 • Working with the Catalog • 725

A
rc

C
at

al
o

g

appropriate, both the native search extent and the decimal degrees
search extent may contain decimal degrees values.

These extent values will be compared against the Bounding Coordinate
and Local Bounding Coordinate metadata elements, which contain
decimal degrees extent and native extent values, respectively.

FILESYSTEMQUERY COCLASS



726 • Exploring ArcObjects • Volume 1

Two search engines are supplied with ArcCatalog: the CatalogSearch-
Engine and the FileSystemXmlSearchEngine.

The CatalogSearchEngine lets you search for any object that appears in
ArcCatalog including objects that are stored within geodatabases and
are available on ArcIMS services. It is the default search engine. When
searching by the dataset’s name, type, and extent, metadata need not
be created.

The FileSystemXmlSearchEngine lets you search for file-based objects
stored on disk for which metadata has been created. It is faster than
the CatalogSearchEngine.

Use the search engine object directly rather than through the Find
dialog box if you want to define and run the search using a custom
search interface or if you want to customize how the search results are
compiled. For example, a custom search interface might use terminol-
ogy that is specific to your organization. Similarly, you might create an
HTML page listing the search results, rather than have ArcCatalog gen-
erate shortcuts to the datasets that were found.

You can build your own custom search engine by creating a class that
implements ISearchEngine and registering it with the Component Cat-
egories Manager utility in the ESRI GX Search Engines category. You
might do this to support a custom searching application that communi-
cates with metadata stored within a relational database rather than with
XML files on disk.

 ISearchEngine : IUnknown ISearchEngine Interface.

Enabled: Boolean Indicates if this search engine is enabled.
IsExecuting: Boolean Indicates if the find operation is currently executing.
Name: String The name of the search engine.
Query: IQuery <<< No help string specified >>>

ExecuteAsynchronous Executes the query asynchronously.
Stop Stops the query from executing (if it is currently executing).

The ISearchEngine interface provides access to the search engine itself.

The Enabled property lets you enable or disable a search engine that
has been retrieved from the Find dialog box.

The Name property returns the name of the search engine.

IsExecuting indicates whether or not the search engine is currently
working.

If you are using the search engine independently from the Find dialog
box, Query lets you set the query that will be executed,
ExecuteAsynchronous starts the query, and Stop ends it. The query’s
engine properties must be set to use this search engine object.

CATALOGSEARCHENGINE AND FILESYSTEMXMLSEARCHENGINE

Catalog-
Search-
Engine

FileSystem-
XmlSearch-

Engine

IFileSystemQuery

Search-
Engine

IConnectionPoint-
Container

ISearchEngine
ISearchEngineEvents

ISearchEngineProperties

The CatalogSearchEngine lets you
search for any object that appears in

ArcCatalog.

FileSystemXmlSearchEngine lets you
search for file-based objects stored on

disk for which metadata has been
created.



Chapter 7 • Working with the Catalog • 727

A
rc

C
at

al
o

g

 ISearchEngineEvents : IUnknown ISearchEngineEvents Interface.

ObjectFound (in anObject: IGxObject, in
Location: String)

Called when the find operation has found an object.

SearchCanceled Called when the find operation was explicitly canceled.
SearchFailed Called when the find operation has terminated prematurely.
SearchFinished Called when the find operation has finished executing.
SearchLocationChanged (in Location:

String)
Called when the find operation searches a new folder/container.

While the search is continuing, you may listen and respond to events
using the ISearchEngine interface.

The ObjectFound event occurs when an object is found whose proper-
ties or metadata satisfies the search criteria.

The SearchCancelled event occurs when the search is stopped.

The SearchFailed event occurs when an error has occurred.

The SearchFinished event occurs when the search is complete.

The SearchLocationChanged event occurs when the search begins
looking inside a new folder.

 ISearchEngineProperties : IUnknown ISearchEngineProperties Interface.

LocationString: String A string describing the starting location of a search.

Edit (in parentHWnd: Long) Returns the name of the search engine.
Load (in pPropertySet: IPropertySet) Loads the search engine properties from the given PropertySet.
Save (in pPropertySet: IPropertySet) Saves the search engine properties to the given PropertySet.

The SearchEngineProperties interface can set a search engine’s proper-
ties after the search engine has been retrieved from the Find dialog box.

The LocationString property can set the location in which the search
should begin.

Alternatively, the Edit method can be used to open a dialog box that
provides an interactive method for defining the search engine’s proper-
ties. For the Catalog search engine, a GxDialog appears that lets you
define its location string. For the file system XML search, a dialog ap-
pears; in addition to letting you set the location string, you can check a
box indicating whether or not subfolders should be searched.

Save will record all of the search engine’s properties in a property set
(not an XML property set), which can then be modified using the
IPropertySet interface.

Load will set the search engine’s properties using the parameters defined
in an existing property set.

CATALOGSEARCHENGINE AND FILESYSTEMXMLSEARCHENGINE





GIS by ESRI ª

Exploring ArcObjectsTM

Vol. 2—Geographic Data Management

Edited by Michael Zeiler

Vol2Copyright.p65 9/27/01, 3:26 PM781



Copyright © 2001 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of
ESRI. This work is protected under United States copyright law and the
copyright laws of the given countries of origin and applicable international
laws, treaties, and/or conventions. No part of this work may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, or by any information
storage or retrieval system, except as expressly permitted in writing by
ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

The information contained in this document is subject to change without
notice.

�����������	
������

Julio Andrade, Eleanor Blades, Patr ick Brennan, Tom Brown,
Euan Cameron, Scott Campbell, Jillian Clark, Jim Clarke, Chris Davies,
Cory Eicher, Ryan Gatti, Shelly Gill, Erik Hoel, Melita Kennedy,
Allan Laframboise, Russell Louks, Keith Ludwig, Gary MacDougall,
Glenn Meister, Sud Menon, Jason Pardy, Bruce Payne, Ghislain Prince,
Sentha Shanmugam, Brad Taylor, Steve Van Esch, Aleta Vienneau,
Michael Waltuch, Steve Wheatley, Larry Young, Michael Zeiler

���������	
��
�����	�������������������

Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall
the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in FAR
§52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19
(JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical
Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202
(Computer Software), as applicable. Contractor/Manufacturer is ESRI,
380 New York Street, Redlands, California 92373-8100, USA.

PUBLISHED BY

ESRI
380 New York Street

Redlands, California 92373-8100

ESRI, ArcView, ArcIMS, SDE, and the ESRI globe logo are trademarks of
ESRI, registered in the United States and cer tain other countries;
registration is pending in the European Community. ArcObjects, ArcGIS,
ArcMap, ArcCatalog, ArcScene , ArcInfo, ArcEdit , ArcEditor,
ArcToolbox, 3D Analyst, ArcPress, ArcSDE, GIS by ESRI, and the
ArcGIS logo are trademarks and Geography Network, www.esri.com,
and @esri.com are service marks of ESRI.

Other companies and products mentioned herein are trademarks or
registered trademarks of their respective trademark owners.

ESRI
   Exploring ArcObjects
    Volume 1—Applications and cartography
    ISBN: 1-58948-001-5 (Volume 1)
    Volume 2—Geographic Data Management
    ISBN: 1-58948-002-3 (Volume 2)
    ISBN: 1-58948-000-7 (Set)

Attribution.p65 9/28/01, 11:26 AM2



729

Accessing the
geodatabase

Jim Clarke, Sud Menon, Erik Hoel, Brad Taylor, Gary MacDougall,
Patrick Brennan, Glenn Meister, Larry Young, Tom Brown

8
The geodatabase is a repository of geographic data

built on standard industry-relational and object-

relational database technology. You can access and

manage your organization’s data through the

geodatabase data access objects in ArcObjects™.

The topics covered in this chapter include: controlling data

through the workspace and name objects • partitioning data with

the dataset objects • grouping like data with table, object class, and

feature class objects • accessing discrete entities with rows, objects, and

features • selecting and querying features • establishing relationships

among features and objects • customizing with class extensions • working

with annotation and dimension features • organizing linear data with

geometric networks • using versions to provide multiuser access to editing

geographic data • converting geographic data • joining tables • referencing

linear events with dynamic segmentation • using x,y events



730 • Exploring ArcObjects • Volume 2

Core geodatabase model

0..*

Graph
IDataset

IGraph
IFeatureClassContainer

Row
IRow

IRowEvents
IValidate GeoDataset

IGeodataSchemaEdit
IGeoDataset

IGeometricNetwork Geometric-
Network

Attributed-
Relationship

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Relationship
Class

IRelationshipClass

ObjectClass

IClassSchemaEdit
IModelInfo

IObjectClass
ISubtypes
IValidation

Table
IClass
ITable

Relationship
IRelationship

IFeatureDataset
INetworkCollection

IFeatureClassContainer
IRelationshipClassContainer

Feature-
Dataset

Feature
IFeature

IFeatureBuffer
IFeatureDraw

IFeatureEdit
IFeatureEvents

Dataset
IDataset

IDatasetEdit
ISchemaLock

0..*

0..*

0..*
Feature-

Class

IFeatureClass
IGeoDataset

INetworkClass 1..*

0..*

Workspace

IDatabaseCompact
IDataset

IFeatureWorkspace
IFeatureWorkspaceAnno

ISpatialCacheManager
ITransactions

IWorkspace
IWorkspaceDomains

IWorkspaceEdit

0..*

INetworkFeature
INetworkFeatureEvents Network-

Feature

Attributed-
Relationship-

Class

The basic elements of a
geodatabase

1..*

geodatabase
OID

object class

object

 attributed relationship

OID

attributed
relationship class

database
table

row

OID Geom

feature class

feature

attributed
relationship



Chapter 8 • Accessing the geodatabase • 731

G
eo

d
at

ab
as

e

CORE GEODATABASE MODEL

This chapter presents the developer’s view of the geodatabase data
access objects in ESRI® ArcGIS™ 8.1. The diagram is a simplified view
of the most important geodatabase objects, which are summarized as
follows:

• A workspace in the geodatabase data model corresponds to a geoda-
tabase, an ArcInfo™ coverage workspace, or a folder with shapefiles.

• A dataset is the highest-level container of data.

• A geodataset is a dataset that contains geographic data.

• A feature dataset is composed of graphs and feature classes.

• A graph represents a set of topologically related feature classes.

• A geometric network is a type of graph that represents a one-dimen-
sional network such as a utility or transportation system.

• A table is a collection of rows that have attributes stored in columns.

• A row is a record in a table. All rows in a table share the same set of
fields.

• An object class is a type of table that stores nonspatial objects.

• An object is an entity with attributes and an object identifier.

• A feature class is a type of object class that stores spatial objects.

• A feature is an object with a geometric shape.

• A network feature is a feature that participates in a linear network,
called a geometric network.

• A relationship class represents relationships through embedded for-
eign keys.

• A relationship is an association between objects or features; it con-
trols behavior when objects or features are moved or deleted.

• An attributed relationship class is a type of table that stores relation-
ships.

• An attributed relationship can represent many-to-many relationships
as well as attributes on relationships.



732 • Exploring ArcObjects • Volume 2

Workspace and name objects

1..*

Name
IName

A workspace
name specifies

a workspace
object and can

be used to
instantiate it

0..1

A workspace helper holds a
back-reference from a workspace

extension to a workspace

A workspace extension
extends the functionality

of a workspace

Feature-
ClassName

IFeature-
ClassName

TinName
IMetadata

The dataset name objects identify and
locate datasets within a workspace

Workspace-
Extension

IWorkspaceExtension
IWorkspaceExtensionControl

A name object identifies and locates a
database or map object and supports
methods to instantiate the actual object

IWorkspaceHelper Workspace-
Helper

A workspace property
provides information

about a workspace

A configuration parameter specifies a
physical storage parameter for data created

in an ArcSDE database

A configuration keyword specifies a set of
storage parameters in an ArcSDE database

IConfigurationKeyword Configuration-
Keyword

IConfigurationParameter Configuration-
Parameter

IWorkspaceProperty Workspace-
Property

*

IMetadata

Object-
ClassName

Relationship-
ClassName

IRelationshipClassName
IMetadataFeature-

DatasetName

IFeatureDatasetName
IMetadata

Geometric-
Network-

Name

IGeometricNetworkName

CadDrawing-
Name TableName

IModelInfo
IObjectClassName

ISupportErrorInfo
ITableName

Raster-
DatasetName

IDatasetFileNameStat
IRasterDatasetName

Workspace-
Name

IWorkspaceName

Dataset-
Name

IDatasetName
ISQLPrivilege

A workspace is a
container of spatial and

nonspatial datasets, such
as feature classes, raster

datasets, and tables

A workspace factory is a dispenser
of workspaces and allows a client
to connect to a workspace

ArcInfo-
Workspace-

Factory

Shapefile-
Workspace-

Factory

Workspace-
Factory

IWorkspaceFactory
IWorkspaceFactory2

Cad-
Workspace-

Factory

IMS-
Workspace-

Factory

OLEDB-
Workspace-

Factory

Access-
Workspace-

Factory

ILocalDatabaseCompact

Workspace

IDatabaseCompact (optional)
IDatabaseConnectionInfo (optional)

IDataset
IDatasetContainer

IFeatureWorkspace
IFeatureWorkspaceAnno (optional)

IFeatureWorkspaceManage
IFeatureWorkspaceSchemaEdit

IGeodatabaseRelease (optional)
ISpatialCacheManager

ISQLSyntax
ITransactions (optional)

ITransactionsOptions (optional)
IWorkspace

IWorkspaceConfiguration (optional)
IWorkspaceDomains (optional)

IWorkspaceDomains2 (optional)
IWorkspaceEdit

IWorkspaceEvents
IWorkspaceExtensionManager (optional)

IWorkspaceProperties (optional)
IWorkspaceSpatialReferenceInfo

Sde-
Workspace-

Factory

IRemoteDatabase-
WorkspaceFactory

ISetDefault-
ConnectionInfo

ISetDefault-
ConnectionInfo2

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)



Chapter 8 • Accessing the geodatabase • 733

G
eo

d
at

ab
as

e

Workspace-
Factory

IWorkspaceFactory
IWorkspaceFactory2

ArcInfo-
Workspace-

Factory

Shapefile-
Workspace-

Factory

Sde-
Workspace-

Factory

IRemoteDatabase-
WorkspaceFactory

ISetDefault-
ConnectionInfo

ISetDefault-
ConnectionInfo2

Cad-
Workspace-

Factory

IMS-
Workspace-

Factory

OLEDB-
Workspace-

Factory

Access-
Workspace-

Factory

ILocalDatabase-
Compact

A workspace factory allows a client to
connect to a specified workspace.

A WorkspaceFactory is a dispenser of workspaces and allows a client to
connect to a workspace specified by a set of connection properties. A
workspace represents a database or a data source that contains one or
more datasets. Examples of datasets include tables, feature classes, and
relationship classes.

A WorkspaceFactory is a cocreatable, singleton object. (A singleton
object can only be instantiated once in a process.) A WorkspaceFactory
maintains a pool of currently connected, active workspaces that are
being referenced by the application. Connection properties are specified
using a PropertySet object and can be saved to a connection file.

A WorkspaceFactory also supports methods that can be used to browse
and manage file system workspaces and methods to manage connection
files for remote database workspaces.

 IWorkspaceFactory : IUnknown Provides access to members that create and open
workspaces and supply workspace factory information.

WorkspaceDescription (in plural:
Boolean) : String

A singular or plural description of the type of workspace the
workspace factory opens/creates.

WorkspaceType: esriWorkspaceType The type of workspace the workspace factory opens/creates.

ContainsWorkspace (in parentDirectory:
String, in fileNames: IFileNames) :
Boolean

Indicates if parentDirectory contains a valid workspace, or is a valid
file-system workspace.

Copy (in WorkspaceName:
IWorkspaceName, in
destinationFolder: String, out
workspaceNameCopy:
IWorkspaceName) : Boolean

Copies a workspace to the specified destination folder.

Create (in parentDirectory: String, in
Name: String, in
ConnectionProperties: IPropertySet, in
hWnd: Long) : IWorkspaceName

Creates a new workspace specified by the directory, file name, and
connection properties.

GetClassID: IUID The class ID of the WorkspaceFactory.
GetWorkspaceName (in

parentDirectory: String, in fileNames:
IFileNames) : IWorkspaceName

Retrieves the workspace name of a workspace from the given list of
file names.

IsWorkspace (in FileName: String) :
Boolean

True if the specified file identifies a workspace supported by the
workspace factory.

Move (in WorkspaceName:
IWorkspaceName, in
destinationFolder: String) : Boolean

Moves a workspace to the specified destination folder.

Open (in ConnectionProperties:
IPropertySet, in hWnd: Long) :
IWorkspace

Opens the workspace specified by the connection properties.

OpenFromFile (in FileName: String, in
hWnd: Long) : IWorkspace

Opens the workspace specified by the given file name.

ReadConnectionPropertiesFromFile (in
FileName: String) : IPropertySet

The connection properties from the specified file.

The WorkspaceType property returns information on the type of Work-
space managed by the WorkspaceFactory.

Workspaces are classified into the following types specified by the
esriWorkspaceType enumeration:

Enumeration esriWorkspaceType Workspace types.

0 - esriFileSystemWorkspace File system Workspace.
1 - esriLocalDatabaseWorkspace Local database Workspace.
2 - esriRemoteDatabaseWorkspace Remote database Workspace.

Shapefiles and ArcInfo workspaces are examples of
esriFileSystemWorkspace. A personal geodatabase stored in Microsoft®

Access is an example of an esriLocalDatabaseWorkspace. An enterprise
geodatabase stored in an RDBMS, such as Oracle®, DB2®, SQL Server™,

WORKSPACE FACTORY COCLASSES



734 • Exploring ArcObjects • Volume 2

or Informix®, and accessed via ArcSDE™ is an example of an
esriRemoteDatabaseWorkspace.

The connection properties for an esriRemoteDatabaseWorkspace specify
the server and instance to connect to, and may be saved in a connec-
tion file on the file system.

The Open and OpenFromFile methods are the primary methods in this
interface. The Open method takes as input a property set of connection
properties that specify to which workspace to connect.

In the case of file system workspaces and local database workspaces, a
single property named DATABASE, whose value is the pathname to the
workspace, is usually all that is required.

In the case of remote database workspaces accessed via ArcSDE, the
properties usually include the USER, PASSWORD, DATABASE, SERVER,
INSTANCE, and VERSION properties of the database being connected to.
The DATABASE property is optional and is required for ArcSDE in-
stances that manage multiple databases (for example, SQL Server). The
VERSION property specifies the version to connect to in the case of a
multiversioned database. If no version is supplied, then a connection to
the default version will be returned.

This example connects to an ArcSDE for Oracle geodatabase.

  Dim pWorkspace As IWorkspace

  Dim pWorkspaceFactory As IWorkspaceFactory

  Dim pPropSet As IPropertySet

  Set pPropSet = New PropertySet

  With pPropSet

    .SetProperty "SERVER", "cuillin"

    .SetProperty "INSTANCE", "esri_sde"

    .SetProperty "USER", "scott"

    .SetProperty "PASSWORD", "tiger"

    .SetProperty "VERSION", "SDE.DEFAULT"

  End With

  Set pWorkspaceFactory = New SdeWorkspaceFactory

  Set pWorkspace = pWorkspaceFactory.Open(pPropSet, 0)

The OpenFromFile method takes the pathname of a file or directory that
represents either an esriFileSystemWorkspace, an
esriLocalDatabaseWorkspace, or a connection file to an
esriRemoteDatabaseWorkspace and returns an interface on the specified
workspace. Clients of these methods can then proceed to open and
access datasets in the workspace. If these methods are called with insuf-
ficient properties, then the user will be presented with a connection
dialog box that will prompt for the required properties.

The ContainsWorkspace and GetWorkspaceName methods are useful
when browsing the file system for workspaces. The ContainsWorkspace
method is given a parent directory and the list of filenames in the direc-
tory to be examined. It returns True if the parent directory represents a

WORKSPACE FACTORY COCLASSES

To connect to an enterprise geodatabase, use
IWorkspaceFactory::Open. To access other

workspaces, IWorkspaceFactory::OpenFromFile
is usually easiest.



Chapter 8 • Accessing the geodatabase • 735

G
eo

d
at

ab
as

e

workspace covered by this factory or if the parent directory contains a
workspace or a connection file to a workspace covered by this factory.
The GetWorkspaceName method is given a parent directory and the list
of filenames in the directory to be examined. It returns a Workspace-
Name object representing the workspace and removes any filenames
representing the workspace or its datasets from the input list of
filenames.

The Copy and Move methods can be used to copy or move workspaces
or connection files between folders in the file system. The Boolean
result indicates if the operation was successful. In the case of remote
database workspaces, these operations work on the connection file
representing the workspace.

The Create method can be used to create a new esriFileSystemWorkspace
or esriLocalDatabaseWorkspace or to create a connection file to an
esriRemoteDatabaseWorkspace. The optional connectionProperties param-
eter specifies any additional connection properties needed, such as the
server, instance, user, and password, in the case where a connection file
to a remote database workspace is being created. If no connection
properties are specified, then this method will result in a dialog box
being displayed that prompts the user for the required properties.

 IRemoteDatabaseWorkspaceFactory :
 IUnknown

Provides access to members that manage remote database
connection information.

DeleteConnectionFile (in PathName:
String)

Deletes the remote database workspace connection file.

EditConnectionFile (in PathName:
String, in hWnd: Long) :
IWorkspaceName

Edits the properties of a remote database workspace connection file.

RenameConnectionFile (in
oldPathName: String, in newName:
String) : IWorkspaceName

Renames the remote database workspace connection file.

The IRemoteDatabaseWorkspaceFactory is an optional interface, sup-
ported by remote database workspaces, that contains additional meth-
ods for connection file management.

 ISetDefaultConnectionInfo : IUnknown Provides default connection information for a remote
database.

SetParameters (in server: String, in
instance: String, in user: String, in
Password: String, in versName: String)

Sets SDE connection property parameters.

ISetDefaultConnectionInfo is an optional interface supported by the
SDEWorkspaceFactory. It allows you to set default values for the user,
such as a password and version connection properties on a per-server
and -instance basis. These default values will be used by the Open
method in those cases where the caller of the method does not supply
values for these properties at call time and by the OpenFromFile method
in those cases where the connection file contains partial connection
information.

WORKSPACE FACTORY COCLASSES

IRemoteWorkspaceFactory manages
connection files for enterprise geodatabases.



736 • Exploring ArcObjects • Volume 2

 IWorkspaceFactory2 : IUnknown Provides access to members that create and open
workspaces and supply workspace factory information.

Open (in connectStr: String, in hWnd:
Long) : IWorkspace

Opens the workspace specified by a connection string.

The IWorkspaceFactory2 interface allows you to open a workspace
using a string that describes the connection properties. Compare this
example with the previous example for IWorkspaceFactory.

  Dim pWorkspaceFactory2 As IWorkspaceFactory2

  Set pWorkspaceFactory2 = New SdeWorkspaceFactory

  Dim pWorkspace As IWorkspace

  Dim strConnect As String

  strConnect = "SERVER=cuillin;INSTANCE=esri_sde;USER=scott; _

    PASSWORD=tiger;VERSION=SDE.DEFAULT"

  Set pWorkspace = pWorkspaceFactory2.Open(strConnect, 0)

WORKSPACE FACTORY COCLASSES

You can get a workspace’s connection string
using the ConnectionString property on

IWorkspaceName2.



Chapter 8 • Accessing the geodatabase • 737

G
eo

d
at

ab
as

e

Workspace

IDatabaseCompact
(optional)

IDatabaseConnection-
Info (optional)

IDataset
IDatasetContainer

IFeatureWorkspace
IFeatureWorkspace-

Anno (optional)
IFeatureWorkspace-

Manage
IFeatureWorkspace-

SchemaEdit
IGeodatabaseRelease

(optional)
ISpatialCacheManager

ISQLSyntax
ITransactions

(optional)
ITransactionsOptions

(optional)
IWorkspace

IWorkspaceConfig-
uration (optional)

IWorkspaceDomains
(optional)

IWorkspaceDomains2
(optional)

IWorkspaceEdit
IWorkspaceEvents

IWorkspaceExtension
Manager (optional)

IWorkspaceProperties
(optional)

IWorkspaceSpatial-
ReferenceInfo

A workspace is a container of datasets.

A Workspace is a container of spatial and nonspatial datasets such as
feature classes, raster datasets, and tables. It provides methods to instan-
tiate existing datasets and to create new datasets.

Workspaces are classified into types specified by the esriWorkspaceType
enumerator: esriFileSystemWorkspace, esriLocalDatabaseWorkspace, and
esriRemoteDatabaseWorkspace.

Shapefiles and ArcInfo workspaces are examples of esriFileSystem-
Workspace. A personal geodatabase stored in Microsoft Access is an
example of an esriLocalDatabaseWorkspace. An enterprise geodatabase
stored in an RDBMS, such as Oracle, DB2, SQL Server, or Informix, and
accessed via ArcSDE is an example of an esriRemoteDatabaseWorkspace.

A Workspace hands out a WorkspaceName name object as the value of
its FullName property. The WorkspaceName for a workspace can be
persisted, for example, in a map document. An application can call the
Open method on the workspace name after loading it from persistent
storage in order to connect to and get an object reference to the work-
space.

 IWorkspace : IUnknown Provides access to members that have information about
the workspace.

ConnectionProperties: IPropertySet The connection properties of the workspace.
DatasetNames (in DatasetType:

esriDatasetType) :
IEnumDatasetName

The DatasetNames in the workspace.

Datasets (in DatasetType:
esriDatasetType) : IEnumDataset

The datasets in the workspace.

PathName: String The file system full path of the workspace.
Type: esriWorkspaceType The Type of the Workspace.
WorkspaceFactory: IWorkspaceFactory The factory that created the workspace.

ExecuteSQL (in sqlStmt: String) Executes the specified SQL statement.
Exists: Boolean Checks if the workspace exists.
IsDirectory: Boolean TRUE if the workspace is a file system directory.

The WorkspaceFactory property can be used to get a reference back to
the workspace factory for this workspace.

The ConnectionProperties property of a workspace returns the set of
named connection properties for this workspace.

This example greets the user of the selected dataset in the ArcMap table
of contents (if the dataset belongs to an ArcSDE geodatabase).

Public Sub GetUser()

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  If pMxDoc.SelectedItem Is Nothing Then

    Exit Sub

  End If

  If TypeOf pMxDoc.SelectedItem Is IDataset Then

    Dim pDataset As IDataset

    Set pDataset = pMxDoc.SelectedItem

    Dim pWorkspace As IWorkspace

    Set pWorkspace = pDataset.Workspace

    If pWorkspace.Type = esriRemoteDatabaseWorkspace Then

WORKSPACE CLASS

Though a workspace is a container of datasets,
all workspaces support the IDataset interface
and return a workspace name as the value of

the FullName property; in addition, the value of
the DatasetType property for a workspace is

esriDTContainer.



738 • Exploring ArcObjects • Volume 2

      Dim pPropSet As IPropertySet

      Set pPropSet = pWorkspace.ConnectionProperties

      MsgBox "Hello " & pPropSet.GetProperty("USER")

    End If

  End If

End Sub

The Datasets and the DatasetNames methods can be used by an applica-
tion to enumerate over the set of datasets in a workspace. The Datasets
method returns an enumerator over the datasets in the workspace of the
specified dataset type. The DatasetNames method returns an enumerator
over the dataset names in the workspace for the specified dataset type.

Browsing applications should use the DatasetNames method to obtain
name objects. These dataset name objects contain the essential proper-
ties of the corresponding dataset objects and are faster to retrieve. If the
actual dataset specified by a name object is required (for example,
because the user selected it), then it can easily be instantiated by calling
the Open method on the name object.

Using a dataset type of esriDTAny will return all the datasets or dataset
names in the workspace across all dataset types. Note that only the top-
level datasets in the workspace are returned by these methods. In par-
ticular, if a workspace contains both standalone feature classes and
additional feature classes that are part of a feature dataset, then getting
Datasets or DatasetNames properties on the workspace with a dataset
type of esriDTFeatureClass will return only the standalone feature
classes. In order to get the feature class names within a feature dataset,
the application needs to get the FeatureClassNames property on the top-
level feature dataset name returned by the workspace.

The ExecuteSQL method can be used to send an arbitrary SQL statement
to the underlying database for execution. The statement can be any
DDL or DML statement but cannot return any result sets. The syntax for
the SQL is as required by the underlying database. The workspace sup-
ports an optional ISQLSyntax interface that provides information to
applications on aspects of the SQL syntax for the underlying database.

To determine if a workspace supports the ExecuteSQL method, an appli-
cation can check the value of the canExecuteSQL workspace property
via the optional IWorkspaceProperties interface. In general, ExecuteSQL is
supported only on local and remote database workspaces.

WORKSPACE CLASS

The Datasets and DatasetNames methods let
you find out what datasets are in the

workspace. Use DatasetNames if possible for
better performance.



Chapter 8 • Accessing the geodatabase • 739

G
eo

d
at

ab
as

e

 IFeatureWorkspace : IUnknown Feature Workspace Interface.

CreateFeatureClass (in Name: String, in
Fields: IFields, in CLSID: IUID, in
EXTCLSID: IUID, in FeatureType:
esriFeatureType, in ShapeFieldName:
String, in ConfigKeyword: String) :
IFeatureClass

Creates a new standalone FeatureClass under the workspace.

CreateFeatureDataset (in Name: String,
in SpatialReference:
ISpatialReference) : IFeatureDataset

Creates a new feature dataset.

CreateQueryDef: IQueryDef Creates a query definition object.
CreateRelationshipClass (in

relClassName: String, in OriginClass:
IObjectClass, in DestinationClass:
IObjectClass, in forwardLabel: String,
in backwardLabel: String, in
Cardinality: esriRelCardinality, in
Notification: esriRelNotification, in
IsComposite: Boolean, in IsAttributed:
Boolean, in relAttrFields: IFields, in
OriginPrimaryKey: String, in
destPrimaryKey: String, in
OriginForeignKey: String, in
destForeignKey: String) :
IRelationshipClass

Creates a new relationship class.

CreateTable (in Name: String, in Fields:
IFields, in CLSID: IUID, in EXTCLSID:
IUID, in ConfigKeyword: String) :
ITable

Creates a new table.

OpenFeatureClass (in Name: String) :
IFeatureClass

Opens an existing feature class.

OpenFeatureDataset (in Name: String) :
IFeatureDataset

Opens an existing feature dataset.

OpenFeatureQuery (in queryName:
String, in pQueryDef: IQueryDef) :
IFeatureDataset

Opens a FeatureDataset containing a single FeatureClass defined by
the specified query.

OpenRelationshipClass (in Name:
String) : IRelationshipClass

Opens an existing relationship class.

OpenRelationshipQuery (in pRelClass:
IRelationshipClass, in joinForward:
Boolean, in pSrcQueryFilter:
IQueryFilter, in pSrcSelectionSet:
ISelectionSet, in TargetColumns:
String, in DoNotPushJoinToDB:
Boolean) : ITable

Table of a relationship join query.

OpenTable (in Name: String) : ITable Opens an existing table.

The IFeatureWorkspace interface is used to access and manage datasets
that are a key component of a feature-based geodatabase: Tables and
ObjectClasses, FeatureClasses, FeatureDatasets, and RelationshipClasses.

All of the Open methods (such as OpenTable) take a dataset name as
input. When working with an enterprise geodatabase, the name may be
fully qualified (for example, “database.owner.tablename” or
“owner.tablename”) using the qualification character appropriate to the
underlying database (see ISQLSyntax). If the input name is not fully
qualified, then it is qualified using the currently connected user for the
workspace.

When working with geodatabases (personal or enterprise), the
workspace keeps a running object table of instantiated datasets. Multiple
calls to open an already instantiated dataset will return a reference to the
already instantiated dataset.

The OpenTable method can be used to open any existing table or object
class in the workspace given its fully qualified name. The table object
returned will always support the ITable interface. The returned table

WORKSPACE CLASS

IFeatureWorkspace provides access to feature
classes, feature datasets, and tables, and also to

methods to create them.



740 • Exploring ArcObjects • Volume 2

object will support additional interfaces depending on the type of
table—for example, ObjectClasses will additionally support the IObject-
Class interface.

The OpenFeatureClass method can be used to open any existing feature
class in the workspace given its fully qualified name. Note that every
feature class in a geodatabase has a unique fully qualified name, and
the OpenFeatureClass method can be used to directly open
FeatureClasses that are part of a FeatureDataset.

This example opens a shapefile as a feature class.

Public Sub OpenFeatureClass_Example()

  Dim pWorkspaceFactory As IWorkspaceFactory

  Set pWorkspaceFactory = New ShapefileWorkspaceFactory

  Dim pFeatureWorkspace As IFeatureWorkspace

  Set pFeatureWorkspace = _

    pWorkspaceFactory.OpenFromFile("D:\Data\Esridata\USA", 0)

  Dim pFeatureClass As IFeatureClass

  Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("States")

  MsgBox "There are " & pFeatureClass.FeatureCount(Nothing) & " states"

End Sub

The OpenFeatureDataset method can be used to open any existing fea-
ture dataset in the workspace given its fully qualified name. At
ArcGIS 8.1, opening a feature dataset does not automatically instantiate
all the feature classes in the feature dataset.

The OpenRelationshipClass method can be used to open any existing
relationship class in the workspace, given its fully qualified name.

The OpenFeatureQuery method can be used to open a virtual feature
class whose definition is based on a QueryDef created using the
CreateQueryDef method. The QueryDef can involve multiple tables as
long as one of them is a feature class; the resulting virtual feature class
can be used to construct a feature layer that can be added to Map.

The CreateQueryDef method can be used to create a new query defini-
tion object that can be evaluated returning a cursor. For more informa-
tion, see the section on QueryFilters, QueryDefs, and Cursors.

The CreateTable method can be used to create a new table or object
class in the workspace. The optional CLSID and EXTCLSID parameters
allow the calling application to specify the GUIDs for the COM coclasses
that implement the instance and the class extension behavior for an
object class. If no CLSID is passed in, then the resulting table is not
registered in the geodatabase object class data dictionary (it will support
the IObjectClass interface but will have an ObjectClassID of -1). Valid
values for CLSID are esriCore.Object or any nonspatial COM object that
aggregates esriCore.Object. CLSID must be set if EXTCLSID is set. The
optional configurationKeyword parameter allows the application to
control the physical layout for this table in the underlying RDBMS—for

WORKSPACE CLASS



Chapter 8 • Accessing the geodatabase • 741

G
eo

d
at

ab
as

e

example, in the case of an Oracle database, the configuration keyword
controls the tablespace in which the table is created, the initial and next
extents, and other properties. The configurationKeywords for an ArcSDE
instance are set up by the ArcSDE data administrator; the list of available
keywords supported by a workspace may be obtained using the
IWorkspaceConfiguration interface at ArcGIS 8.1. For more information
on configuration keywords, refer to the ArcSDE documentation. For an
example of applying CreateTable, see the Field object.

The CreateFeatureClass method can be used to create a standalone
feature class that is not part of a FeatureDataset. It takes, in addition to
all the parameters that CreateTable takes, a featureType parameter that
specifies the category of features to be stored in this feature class (such
as esriFTSimple, esriFTComplexEdgeFeature, and others) and a
shapeFieldName. The shapeFieldName identifies the name of the field in
the input fields collection, of type Geometry, that represents the shape
field for the feature class. The GeometryDef object associated with the
shape Field object must be fully set up with information on both the
spatial reference (the projected or geographic coordinate system and the
coordinate domain and the coordinate precision) and the spatial index
for the shape Field.

The CreateFeatureDataset method can be used to create a new Feature-
Dataset. Methods supported by the returned feature dataset allow the
creation of feature classes in the feature dataset.

The CreateRelationshipClass method can be used to create a new
standalone relationship class that is not part of a FeatureDataset. For a
description of the various parameters, see the discussion of relationship
classes. If the cardinality is many-to-many or if the relationship class is
attributed, the relationship class is implemented as a separate data table
whose name is the name of the relationship class. The relAttrFields
parameter is optional—a value of 0 or Nothing may be passed in for
nonattributed relationship classes.

Many-to-many or attributed relationship classes require specification of
all four key fields—the OriginPrimaryKey and the
DestinationPrimaryKey are the primary key fields for the origin and
destination object classes. OriginForeignKey and the
DestinationForeignKey are the names of the corresponding foreign keys
created in the data table that represent the relationship class.

If the relationship class is one-to-one or one-to-many and not attributed,
then the relationship class is implemented as a foreign key field in the
destination object class (the OriginForeignKey) that references the pri-
mary key field in the origin object class (the OriginPrimaryKey).
In this case, the OriginPrimaryKey and the OriginForeignKey
must be supplied.

WORKSPACE CLASS

 For an example of how to create a shape field,
see the documentation on GeometryDef.

Relationship classes associate objects through
foreign key attribute values. They have their own

section later in this chapter.



742 • Exploring ArcObjects • Volume 2

 IFeatureWorkspaceAnno : IUnknown Feature Workspace Annotation Helper Interface.

AddSymbolCollection (in Name: String,
in SymbolCollection: IUnknown
Pointer)

Updates the symbol collection in the class extension.

CreateAnnotationClass (in Name:
String, in Fields: IFields, in CLSID:
IUID, in EXTCLSID: IUID, in
ShapeFieldName: String, in
ConfigKeyword: String, in
dstFeatureDataset: IFeatureDataset, in
srcFeatureClass: IFeatureClass, in
AnnoProperties: IUnknown Pointer, in
ReferenceScale: IUnknown Pointer, in
SymbolCollection: IUnknown Pointer,
in AutoCreate: Boolean) :
IFeatureClass

Creates a new annotation feature class in the workspace.

ReplaceSymbolCollection (in Name:
String, in SymbolCollection: IUnknown
Pointer)

Replaces the symbol collection in the class extension.

IFeatureWorkspaceAnno is an optional interface supported by
workspaces that represent geodatabases; it contains specialized methods
for creating geodatabase annotation feature classes.

The CreateAnnotationClass method creates a new annotation feature
class that may or may not be feature linked via a relationship class to
features in a source feature class (the feature class being annotated).
The CLSID property must be set to esriCore.AnnotationFeature, and the
EXTCLSID property must be set to esriCore.AnnotationFeature-
ClassExtension. The srcFeatureClass parameter specifies the source fea-
ture class and may be set to zero or Nothing for nonfeature-linked an-
notation. The AnnoProperties parameter specifies the labeling properties
to be used for the annotation and must support the IAnnotateLayer-
PropertiesCollection interface. The ReferenceScale parameter specifies the
reference scale to be used for the annotation. The SymbolCollection
parameter specifies the symbols that will be referenced by the annota-
tion elements for the annotation features in this feature class and must
support the ISymbolCollection interface. The autoCreate parameter ap-
plies to feature-linked annotation; setting it to True results in a new
annotation feature being automatically created when a new feature in
the source feature class is created.

The AddSymbolCollection and ReplaceSymbolCollection may be used to
augment and replace the symbol collection associated with an annota-
tion feature class. Use extreme caution when using these methods—
there may be existing annotation features in the annotation feature class
that have annotation elements that may reference symbols by ID. Delet-
ing the symbol for such an ID or replacing it with a different symbol
may leave the geometry of the annotation feature out of phase with its
symbol, resulting in subsequent problems during drawing and selection.
These methods are for use by specialized data loaders that can
guarantee the integrity of referenced symbols.

WORKSPACE CLASS

IFeatureWorkspaceAnno is used to create
geodatabase annotation feature classes.

Annotation has its own section later in this
chapter.

Symbol collections are an alternative to storing a
symbol with each individual annotation.



Chapter 8 • Accessing the geodatabase • 743

G
eo

d
at

ab
as

e

 IFeatureWorkspaceManage : IUnknown Feature Workspace Manage Interface.

AnalyzeIndex (in TableName: String, in
Index: String)

Analyzes the index to generate DBMS statistics.

AnalyzeTable (in TableName: String, in
tableComponents: Long)

Analyzes the table to generate DBMS statistics.

CanDelete (in aName: IName) :
Boolean

Checks if an object can be deleted.

CanRename (in aName: IName) :
Boolean

True if an object can be renamed.

DeleteByName (in aName:
IDatasetName)

Deletes an object by its name.

IsRegisteredAsObjectClass (in Name:
String) : Boolean

Checks if an object is registered as an object class.

IsRegisteredAsVersioned (in aName:
IName) : Boolean

Checks if an object is registered as versioned.

ValidateField (in pInField: IField) : IField Validates a field, performing type conversion if necessary.

The IFeatureWorkspaceManage interface contains utility methods that
help in the management of feature workspaces.

The AnalyzeTable and AnalyzeIndex methods can be used to acquire
DBMS statistics on tables and table indexes. Having up-to-date statistics
on a table is key to efficient query performance on the table and a key
requirement for efficient queries against versioned tables. Note that
datasets that are based on tables support the IDatasetAnalyze method; to
analyze all of the tables in a feature dataset, use the
IDatasetAnalyze::Analyze method on the feature dataset.

The DeleteByName method can be used to delete a dataset given its
name object. It can be useful when cleaning up partially loaded datasets
that cannot be instantiated because of incomplete information. It is
controlled through the ArcCatalog Delete command. Note that
IDataset::Delete is directly available as a method on instantiated datasets.

 IFeatureWorkspaceSchemaEdit :
 IUnknown

Feature Workspace Schema Edit Interface.

AlterClassExtensionCLSID (in Name:
String, in ClassExtensionCLSID: IUID,
in classExtensionProperties:
IPropertySet)

Changes the class extension COM class associated with this database
class.

AlterInstanceCLSID (in Name: String, in
InstanceCLSID: IUID)

Changes the instance COM class associated with this database class.

The IClassSchemaEdit interface on an instantiated object class allows an
application to change the behavior associated with an object class by
changing the GUIDs, specifying the class instance and class extension
COM classes. There are times where instantiation of an object class may
fail such as when one or more necessary COM classes referenced by
the object class are not installed or available. In these cases, the meth-
ods in IFeatureWorkspaceSchemaEdit can be used to alter the GUIDs,
specifying the class instance and class extension COM classes for an
object class, given only the name of the object class.

WORKSPACE CLASS

DeleteByName will remove damaged datasets.

IFeatureWorkspaceSchemaEdit can be useful
when recovering from an error in opening a

custom feature class.



744 • Exploring ArcObjects • Volume 2

 IWorkspaceSpatialReferenceInfo :
 IUnknown

Provides access to spatial reference information for the
workspace.

SpatialReferenceInfo:
IEnumSpatialReferenceInfo

The defined Spatial References in the Workspace.

IWorkspaceSpatialReferenceInfo is an optional interface that can be used
by an application to retrieve the set of spatial references that are refer-
enced by geodatasets in a geodatabase (ArcSDE or Access workspace).
It has a read-only property, SpatialReferenceInfo, that returns an enu-
merator that supports the IEnumSpatialReferenceInfo interface. The latter
has a Next method that can be used to iterate over the spatial references
and their spatial reference IDs (SRID) within the geodatabase.

 ISQLSyntax : IUnknown Provides access to members that supply information about
SQL functionality.

GetDelimitedIdentifierCase: Boolean True if DBMS's quoted identifiers are case sensitive.
GetFunctionName (in sqlFunc:

esriSQLFunctionName) : String
DBMS dependent SQL function names.

GetIdentifierCase: Boolean True if DBMS's identifiers are case sensitive.
GetInvalidCharacters: String The list of invalid characters used in literals (if any).
GetInvalidStartingCharacters: String The list of invalid characters used in literals (if any).
GetKeywords: IEnumBSTR The list of DBMS-specific reserved keywords.
GetSpecialCharacter (in sqlSC:

esriSQLSpecialCharacters) : String
Special DBMS dependent SQL characters.

GetStringComparisonCase: Boolean True if string comparisons are case sensitive.
GetSupportedClauses: Long Supported SQL clauses.
GetSupportedPredicates: Long Supported SQL predicates.
ParseColumnName (in FullName:

String, out dbName: String, out
ownerName: String, out TableName:
String, out ColumnName: String)

Given a column name, determine its qualification parts.

ParseTableName (in FullName: String,
out dbName: String, out ownerName:
String, out TableName: String)

Given a table name, determine its qualification parts.

QualifyColumnName (in TableName:
String, in ColumnName: String) : String

Given a table name and column name, returns its fully qualified
name.

QualifyTableName (in dbName: String,
in ownerName: String, in TableName:
String) : String

Given a database, owner, and table name, returns its fully qualified
name.

Applications can use the ISqlSyntax interface to help them construct SQL
queries and where clauses that are database-system independent.

The GetSpecialCharacter can be used to return the DBMS-dependent
character that represents an SQL special character, including the follow-
ing:

• esriSQL_WildcardManyMatch ( % in SQL_92, * in Jet 4.0)

• esriSQL_WildcardSingleMatch ( _ in SQL_92, ? in Jet 4.0)

• esriSQL_DelimitedIdentifierPrefix ( “ in SQL-92, [ in Jet 4.0)

• esriSQL_DelimitedIdentifierSuffix (“ in SQL-92, ] in Jet 4.0)

Applications should use the ParseTableName and ParseColumnName
methods to split the fully qualified name for a dataset or for a column
in a table into its components (database, owner, table, column). Applica-
tions that wish to be RDBMS independent should not assume that “.” is
the delimiter used to separate the components of a fully qualified
dataset name. Note that both the IDataset::Name property for a dataset in
a geodatabase and the IDatasetName::Name property for a dataset name

WORKSPACE CLASS

ISQLSyntax helps to avoid making assump-
tions about your database environment, leading
to code that is more portable and generic. For
example, you will be able to write queries that

work against both personal and enterprise
geodatabases.



Chapter 8 • Accessing the geodatabase • 745

G
eo

d
at

ab
as

e

object return the fully qualified name for the dataset (the name object
for the dataset, obtained using the IDataset::FullName property itself).

Applications should use the QualifyTableName and
QualifyColumnName methods to construct fully qualified dataset
and column names.

 ITransactions : IUnknown Transaction management interface.

InTransaction (pInTransaction: Boolean) Returns true if there is already a transaction in progress.

AbortTransaction Aborts the current transaction.
CommitTransaction Commits the current transaction.
StartTransaction Begins a new transaction.

ITransactions is an optional interface that allows an application
to explicitly control database transactions. The interface does
not support nested transactions. The InTransaction property
should be used to test if the workspace is already within a trans-
action. Applications are responsible for starting a new transac-
tion (using the StartTransaction method) on the workspace only
if the workspace is not already within a transaction. An applica-
tion is responsible for stopping only those transactions (using
CommitTransaction or AbortTransaction) that were started by the
application.

Applications can use transactions to manage direct updates, for
example, updates made outside of an edit session on object and
feature classes that are tagged as not requiring an edit session.

When using transactions to manage direct updates, applications
are responsible for discarding any cached row objects at
transaction boundaries.

Applications should not use transactions when performing up-
dates within an edit session (for information on edit sessions,
see the documentation on IWorkspaceEdit below). In the context
of an edit session, transactions are managed by the workspace
and automatically started and stopped as needed.

Applications should be aware that DDL operations made through
the ArcObjects geodatabase data access objects (for example,
deleting a feature dataset or creating a new feature class) use
database transactions to ensure integrity of the data dictionary
tables and commit the transaction at the end of the operation.
Applications should not invoke DDL operations within an appli-
cation transaction—application transactions should be restricted
to DML operations (such as data updates).

 ITransactionsOptions : IUnknown Transaction options interface.

AutoCommitInterval: Long The autocommit interval is the number of modification operations
before a database commit is executed.

The ITransactionOptions is an optional interface on SDE
workspaces that can be used to control the autocommit interval

WORKSPACE CLASS

ITransactions is not the normal way of handling
geodatabase updates. Only use this interface

outside of edit sessions.

As in most database environments, your
transaction will be committed if you make

schema modifications.



746 • Exploring ArcObjects • Volume 2

for application-begun transactions. Setting the
AutoCommitInterval to 0 turns auto-commit off and ensures that
the transaction will not commit until the application calls
CommitTransaction.

 IWorkspaceDomains : IUnknown Workspace Domain Interface.

CanDeleteDomain (in DomainName:
String) : Boolean

True if the user can delete the domain.

DomainByName (in DomainName:
String) : IDomain

The domain with the given name from the workspace.

Domains: IEnumDomain Returns all the domains in the workspace.
DomainsByFieldType (in Type:

esriFieldType) : IEnumDomain
The domain with the given name from the workspace.

AddDomain (in Domain: IDomain) :
Long

Adds the given domain to the workspace.

DeleteDomain (in DomainName: String) Deletes the given domain from the workspace.

The IWorkspaceDomains interface is used for managing the collection of
domains found within a workspace. Domains may be shared between
fields in different object classes, thus they are managed (that is, created
and deleted) at the workspace level. It is important to keep in mind
that a domain may not be deleted from a workspace if any field in an
object class currently uses it. Domain names are also unique across a
workspace; if you attempt to add a domain to a workspace and the
specified name is already associated with an existing domain, an error
will be returned.

Three of the four properties on the IWorkspaceDomain interface are used
for returning to the user the domains that are currently associated with
the workspace. The user can either request all of the domains (Do-
mains), a particular domain by name (DomainByName), or all the domains
that may be associated with a given field type (DomainsByFieldType).

The fourth property on the IWorkspaceDomains interface,
CanDeleteDomain, is used in conjunction with the DeleteDomain method.
If the user attempts to delete a domain from a workspace rather than
handling errors that may result during DeleteDomain (that is, the domain
is in use), the user may first test whether the domain can be deleted via
this property.

The AddDomain method is used when adding a new domain to a work-
space. An error will be returned if the domain name already exists on an
existing domain within the workspace. AddDomain will return the iden-
tifier of the domain once it is added to the workspace. DeleteDomain
will delete the domain from the workspace if the domain is not associ-
ated with any fields.

 IWorkspaceDomains2 : IUnknown Workspace Domain 2 Interface.

AlterDomain (in Domain: IDomain) Alters an existing domain in the workspace.

The IWorkspaceDomains2 interface was added to enable a user to modify
an existing domain. Without this interface, in order to modify an exist-

WORKSPACE CLASS

Domains constrain the valid values for a field.
Since a single domain can be applied to fields in

many different object classes, domains are
managed at the workspace level.

Domains are applied to fields via attribute rules.
See the section on domains and validation later

in this chapter.



Chapter 8 • Accessing the geodatabase • 747

G
eo

d
at

ab
as

e

ing domain, it would first be necessary to disassociate it with all
fields, delete the domain, create a new (and modified) domain,
then reassociate it with the appropriate fields. Note that schema
locks are acquired when altering a domain.

The AlterDomain method allows the user to take an existing
domain, modify it, then call AlterDomain, passing it as an argu-
ment. Alternatively, the user may create a new instance of a
domain with the same name, owner, and field type as an existing
domain. The existing domain would be replaced with the new
domain. The identifier of the new domain would be modified to
match that of the existing domain that is being altered.

 IWorkspaceEdit : IUnknown Workspace Editing Interface.

AbortEditOperation Aborts an edit operation.
DisableUndoRedo Disables Undo and Redo of edit operations.
EnableUndoRedo Enables Undo and Redo of edit operations.
HasEdits (pHasEdits: Boolean) True if there are any completed edit operations that need to be

saved.
HasRedos (pHasRedos: Boolean) True if there are any completed undos that can be redone.
HasUndos (pHasUndos: Boolean) True if there are any completed edit operations that can be undone.
IsBeingEdited: Boolean True if the workspace is being edited.
RedoEditOperation Causes a Redo to be performed on the last undo.
StartEditing (withUndoRedo: Boolean) Starts editing the workspace.
StartEditOperation Begins an edit operation.
StopEditing (in saveEdits: Boolean) Stops editing the workspace.
StopEditOperation Ends an edit operation.
UndoEditOperation Causes an Undo to be performed on the last edit operation.

The IWorkspaceEdit interface allows the application to start and stop edit
sessions during which the objects in a geodatabase can be updated. An
edit session corresponds to a long transaction. The only changes to data
that an application sees within an edit session are changes that are
made by the application. Changes made by other concurrently executing
applications (if allowed) are not seen until the edit session is saved or
discarded.

An edit session is begun using the StartEditing method. The
withUndoRedo parameter can be used to suppress undo/redo logging if
the workspace supports such suppression.

If undo/redo facilities are required, all related changes to objects in the
database within an edit session should be grouped into edit operations.
An edit operation is begun using the StartEditOperation method. An edit
operation may be thought of as a short transaction nested within the
long transaction corresponding to the edit session.

Applications are responsible for calling the AbortEditOperation method
to abort an edit operation if errors are detected within the methods
executed for an edit operation.

Applications are responsible for calling StopEditOperation to mark the
end of a successfully completed edit operation. Completed edit opera-
tions can be thought of as being pushed onto an undo stack.

The UndoEditOperation can be used to roll the state of the edit session
back to what it was prior to the execution of the edit operation at the

WORKSPACE CLASS

Use IWorkspaceEdit to manage editing
sessions when the editing tools in ArcMap™ are

unavailable or not required.

Edit operations provide undo/redo functionality.



748 • Exploring ArcObjects • Volume 2

top of the undo stack. Undoing an edit operation pops the edit opera-
tion from the Undo stack and adds it to a Redo stack.

The RedoEditOperation rolls the state of the edit session forward to what
it was after the execution of the edit operation at the top of the Redo
stack, pops the redone edit operation from the Redo stack, and pushes
it back onto the Undo stack. Performing a new edit operation clears the
Redo stack.

The StopEditing method is used to end an edit session. The
saveEdits parameter controls whether or not edits are saved or dis-
carded. A multiversioned database can support multiple concurrent
edit sessions on the same version of the database. In such a sce-
nario, StopEditing will return an error code of
FDO_E_VERSION_REDEFINED if it detects that the database state
associated with the version being edited is no longer the same as it
was at the beginning of the edit session (indicating that the version
was modified by some other edit session). In this case, the applica-
tion is responsible for calling the IVersionEdit::Reconcile method to
reconcile the edit session against the current state of the version
being edited. StopEditing may be called again after reconciliation.

The geodatabase guarantees “unique instancing” of row objects
retrieved from the database within an edit session. Any data access
call that retrieves a nonrecycling object with a particular object ID
will return the in-memory instance of the object if the object has
already been instantiated by the application. Such behavior is
needed to ensure application correctness when updating complex
object models—for example, models with relationship-based mes-
saging or models with network features where updates to the geom-
etry of a feature affect the geometry of topologically related fea-
tures.

The example below shows a simple edit session on a workspace.
Note that if the user chooses to undo the edit operation, there will
be no outstanding edits, so the prompt to save the work will not
appear. For this reason, all object editing should be done within an
edit session. The geodatabase data access APIs (such as IRow::Store,
ITable::Update, and ITable::Insert) will fail if you attempt to use them
outside of an edit session on object and feature classes that are
marked as requiring an edit session to ensure unique instancing
semantics. Use IObjectClassInfo2::CanBypassEditSession to determine
the situation.

Public Sub WorkspaceEdit()

  Dim pWorkspaceFactory As IWorkspaceFactory

  Set pWorkspaceFactory = New AccessWorkspaceFactory

  Dim pFeatureWorkspace As IFeatureWorkspace

  Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("D:\Usa.mdb", 0)

  Dim pFeatureClass As IFeatureClass

WORKSPACE CLASS

The FDO_E_VERSION_REDEFINED error
corresponds to the message you get in ArcMap
when trying to save edits after another person
has been editing the same version, even when

there are no conflicts.  ArcMap merges the other
person’s edits into your edit session (by using
IVersionEdit::Reconcile). You can make this

happen automatically in ArcMap by clicking the
Tools menu and clicking Options.



Chapter 8 • Accessing the geodatabase • 749

G
eo

d
at

ab
as

e

  Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("States")

  Dim pWorkspaceEdit As IWorkspaceEdit

  Set pWorkspaceEdit = pFeatureWorkspace

  Dim pFeature As IFeature

  Dim iResponse As Integer

  Dim bHasEdits As Boolean

  pWorkspaceEdit.StartEditing True

  pWorkspaceEdit.StartEditOperation

  Set pFeature = pFeatureClass.GetFeature(1)

  pFeature.Delete

  pWorkspaceEdit.StopEditOperation

  iResponse = MsgBox("Undo operation?", vbYesNo)

  If iResponse = vbYes Then

    pWorkspaceEdit.UndoEditOperation

  End If

  pWorkspaceEdit.HasEdits bHasEdits

  If bHasEdits Then

    pWorkspaceEdit.StopEditing MsgBox("Save edits?", vbYesNo)

  End If

End Sub

The rules for correct object editing on a geodatabase are summarized
below:

1. All object editing should be done within an edit session.

2. Group changes into edit operations.

3. Discard all references to row objects retrieved at the edit session
boundary (on StartEditing). If references to row objects will be main-
tained across edit operations, then discard all references and refetch
objects in response to the undo, redo, and abort edit operation calls
made by the application, as well as the reconcile call made within an
edit session on versioned databases. In the context of ArcMap, these
calls are made by the editor, which broadcasts corresponding editor
events via the IEditorEvents and IEditorEvents2 interfaces. Personal
and enterprise geodatabase workspaces support the IWorkspaceEdit-
Events and the IVersionEvents outbound interfaces and directly broad-
cast these events.

4. Use nonrecycling search cursors to fetch objects that are to be up-
dated (using any of the Search, GetRow, or GetRows methods sup-
ported by tables, feature classes, and selection sets). Recycling cur-
sors should only be used for drawing and read-only access to object
states.

5. Always fetch all properties of the objects to be edited. Query filters
should always use “*” for the subfields property (attempts to instan-

WORKSPACE CLASS

Following the editing rules on this page will help
ensure geodatabase integrity, particularly where

custom objects and geodatabase behavior is
concerned.



750 • Exploring ArcObjects • Volume 2

tiate nonrecycling cursors with less than all fields will still
result in all row object fields being hydrated).

6. After changing a row object, call the IRow::Store method to
mark the object as changed and trigger propagation of the
OnChanged message; propagate messages to related objects
by calling the IRow::Store method on the object. Delete ob-
jects by calling the IRow::Delete method on the object, which
triggers the OnDelete message. Stored and deleted objects
within an edit operation are automatically and periodically
flushed to the underlying database as needed to ensure read/
query consistency and update efficiency. Use the set versions
of these methods (for example, IRowEdit::DeleteSet) if updates
or deletions are being made to a set of objects in order to
increase performance.

7. Update and insert cursors are bulk data-loading and data-update
APIs designed to perform direct updates and inserts outside of an
edit session on simple data during the data-loading phase of a
project. Avoid using these APIs in editing applications. Using these
APIs within an edit session or on complex objects (objects with
nonsimple row or feature behavior, or on objects participating in
composite relationships or relationships with notification) negates
any performance advantages they may have.

For more information related to the above rules, see the documentation
in this chapter on rows, objects, features tables, object classes, and
feature classes.

 IWorkspaceEditEvents : IUnknown Provides access to events that occur to a workspace in the
context of editing it

OnAbortEditOperation This event is fired after an edit operation is aborted. Any cached row
objects must be discarded/refreshed.

OnRedoEditOperation This event is fired after an undone edit operation is redone. Any
cached row objects must be discarded/refreshed.

OnStartEditing (in withUndoRedo:
Boolean)

This event is fired after editing is started on a workspace.

OnStartEditOperation This event is fired after an edit operation is started.
OnStopEditing (in saveEdits: Boolean) This event is fired after editing is stopped on a workspace.
OnStopEditOperation This event is fired after an edit operation is stopped (successfully

completed).
OnUndoEditOperation This event is fired after a (completed) edit operation is undone. Any

cached row objects must be discarded / refreshed.

IWorkspaceEditEvents is an outbound interface supported by personal
and enterprise geodatabase workspaces. Clients can listen for and be
notified of all the significant editing events (such as OnStartEditing and
OnUndoEditOperation) via this interface. In response to these events,
clients should discard or refresh (that is, discard and refetch) cached
row objects within the application. Clients should also listen for and
respond to the notifications in IVersionEdit events.

This example of edit event handling shows the code from a very simple

WORKSPACE CLASS

Trapping workspace edit events can simplify your
code since one procedure can handle a situation

that can be caused in several different ways.



Chapter 8 • Accessing the geodatabase • 751

G
eo

d
at

ab
as

e

form with a button to start editing:

Dim m_pWorkspace As IWorkspace

Dim WithEvents m_pWEditEvents As WorkspaceEditEvents

Private Sub Form_Load()

  Dim pWSF As IWorkspaceFactory

  Set pWSF = New AccessWorkspaceFactory

  Set m_pWorkspace = pWSF.OpenFromFile("D:\Usa.mdb", 0)

  Set m_pWEditEvents = m_pWorkspace

End Sub

Private Sub cmdStart_Click()

  Dim pWorkspaceEdit As IWorkspaceEdit

  Set pWorkspaceEdit = m_pWorkspace

  pWorkspaceEdit.StartEditing False

End Sub

Private Sub m_pWEditEvents_OnStartEditing(ByVal withUndoRedo As Boolean)

  MsgBox "Editing started"

End Sub

 ISpatialCacheManager : IUnknown Spatial Cache Management Interface.

CacheExtent: IEnvelope The extent of the spatial cache.
CacheIsFull: Boolean True if the spatial cache is full.

EmptyCache Empties the spatial cache.
FillCache (pExtent: IEnvelope) Fills the spatial cache using the specified extent.

ISpatialCacheManager is an optional interface that can be used
to enable and disable feature caching within a specified spatial
envelope. Enabling feature caching improves the performance of
all spatial searches whose query geometry lies within the cached
area and improves the performance of all queries that retrieve
features by object ID (for example, GetRow, GetFeature, GetRows,
and GetFeatures). At the release of ArcGIS 8.1, caching of fea-
tures using ISpatialCacheManager requires that there be an ac-
tive edit session.

The CacheExtent property returns the envelope that represents
the current boundary of the cached area. An empty envelope is
returned if the cache is empty (the cache is not active).

The CacheIsFull property returns True if the cache is full (the
cache is active).

The FillCache method is used to make the cache active and to
set the boundary of the cache. Calling this method causes the
workspace to fetch objects from the database and fill the cache.
The time to fill the cache and the amount of memory consumed
with the cache depend on the extent of the cache and the den-
sity and size of features in the feature classes being cached.

WORKSPACE CLASS

The edit cache in ArcMap



752 • Exploring ArcObjects • Volume 2

The EmptyCache method empties the cache and makes it inac-
tive.

Use of the cache is transparent to editing applications. Objects
retrieved using nonrecycling cursors may be updated and stored
by the editing application as in the uncached case; the
geodatabase takes care of ensuring read/query consistency when
queries are issued against updated objects. The cache is ex-
posed to end users as the edit cache in ArcMap (available on
the Object Editors menu at ArcGIS 8 and in the Edit Cache
toolbar at ArcGIS 8.1). The cache improves performance signifi-
cantly for network editing when working with remote databases.

 IDatabaseCompact : IUnknown Provides access to members for compacting an Access
database.

CanCompact: Boolean True if this dataset can be compacted.
Compact Compacts the database.

IDatabaseCompact is an optional interface supported by per-
sonal geodatabases (Microsoft Access workspaces) that allows
compaction of an Access database using the services of the Jet
Engine.

 IWorkspaceProperties : IUnknown Provides mechanism to get/set properties on an object.

Property (in propertyGroup:
tagesriWorkspacePropertyGroupType,
in PropertyType: Long) :
IWorkspaceProperty

Information about this particular property.

A workspace may have a set of properties that may be queried
using the optional IWorkspaceProperties interface.

Properties are organized into property groups identified by an
enumeration. Within a property group, each property is identi-
fied by an enumeration. The property groups supported at
ArcGIS 8.1 are esriWorkspacePropertyGroup and
esriWorkspaceTablePropertyGroup.

The following are the properties in WorkspacePropertyGroup.

esriWorkspacePropCanExecuteSQL is True if the workspace sup-
ports the IWorkspace:: ExecuteSQL method. Note that all feature
workspaces accept some form of the SQL where clause.

esriWorkspacePropCanEdit is True if the workspace supports edit
sessions that are managed with the IWorkspaceEdit interface.

esriWorkspacePropIsReadonly is True if the workspace cannot be
updated.

esriWorkspacePropSupportsQualifiedNames is True if the
workspace supports qualified names.

esriWorkspacePropSupportsMetadata is True if the workspace
supports user metadata accessed via the IMetadata interface and

WORKSPACE CLASS

Workspace properties provide a generic way of
storing a variety of information about a

workspace’s capabilities.



Chapter 8 • Accessing the geodatabase • 753

G
eo

d
at

ab
as

e

exposed to the user in ArcCatalog.

esriWorkspacePropCanAnalyze is True if the workspace supports
the Analyze method on tables in the workspace.

The following are the properties in the esriTablePropertyGroup.

esriTablePropRowCountIsCalculated is True if the
ITable::RowCount method requires calculation, that is, True if
getting the row count is an expensive operation.

esriTablePropCanAddField is True if this workspace supports
adding fields to tables. Note that if True, the ITable::AddField
method may still fail on specific tables, for example, because of
a lack of privileges.

esriTablePropCanDeleteField is True if this workspace supports
deleting fields from tables. The method may still fail on a spe-
cific table, for example, because of a lack of privileges.

esriTablePropCanAddIndex is True if this workspace supports
adding indexes to tables. The method may still fail on a specific
table, for example, because of a lack of privileges.

esriTablePropCanDeleteIndex is True if this workspace supports
deleting indexes for tables. The method may still fail on a spe-
cific table, for example, because of a lack of privileges.

Applications can use the above properties to determine the ca-
pability of the workspace they are working with. Note that if the
optional IWorkspaceProperties interface is not implemented,
applications should assume that the above capabilities are sup-
ported.

Applications should always be prepared to deal with the absense
of optional interfaces or with failure when executing methods on
mandatory interfaces, for example, because of privileges or li-
censing issues.

The IWorkspaceProperties::Property method takes as input the enumera-
tions for the desired property group and the property type and returns
the value of the requested property as a WorkspaceProperty object.

This ArcCatalog-based example enables a button if the selected dataset
can be quickly row counted (this is true for personal geodatabases).

Private Function UIButtonControl1_Enabled() As Boolean

  Dim pGxApp As IGxApplication

  Set pGxApp = Application

  Dim pGxObject As IGxObject

  Set pGxObject = pGxApp.SelectedObject

  If pGxObject Is Nothing Then Exit Function

  If TypeOf pGxObject Is IGxDataset Then

WORKSPACE CLASS

Although the workspace property may indicate
an operation is supported by the workspace, the

operation may still fail on a particular dataset,
for example, due to a lack of privileges.



754 • Exploring ArcObjects • Volume 2

    Dim pDatasetName As IDatasetName

    Dim pName As IName

    Dim pWorkspace As IWorkspace

    Set pDatasetName = pGxObject.InternalObjectName

    Set pName = pDatasetName.WorkspaceName

    Set pWorkspace = pName.Open

    If TypeOf pWorkspace Is IWorkspaceProperties Then

      Dim pWProps As IWorkspaceProperties

      Dim pWProp As IWorkspaceProperty

      Set pWProps = pWorkspace

      Set pWProp = pWProps.Property(esriWorkspaceTablePropertyGroup, _

                                    esriTablePropRowCountIsCalculated)

      UIButtonControl1_Enabled = pWProp.PropertyValue

    Else

      UIButtonControl1_Enabled = True

    End If

  End If

End Function

 IWorkspaceConfiguration : IUnknown Provides access to configuration keywords.

ConfigurationKeywords:
IEnumConfigurationKeyword

The available configuration keywords.

IWorkspaceConfiguration is an optional interface that allows you to get
an enumeration of the configuration keywords for an ArcSDE
workspace. You can determine if the workspace supports the reporting
of configuration keywords by using the IWorkspaceProperties interface.
Many data creation methods make use of configuration keywords, for
example, IFeatureWorkspace::CreateFeatureClass.

 IGeodatabaseRelease : IUnknown Provides access to members that provide information
about the release version of a geodatabase.

BugfixVersion: Long Geodatabase bugfix version level.
CanUpgrade: Boolean Indicates if the geodatabase can be upgraded with this interface. If

not, then another utility must be used to upgrade it.
CurrentRelease: Boolean Indicates if the geodatabase is at the current release level.
MajorVersion: Long Geodatabase major version level.
MinorVersion: Long Geodatabase minor version level.

Upgrade Upgrade the database to the current release level.

IGeodatabaseRelease is an optional interface that determines which ver-
sion of the geodatabase system tables a particular geodatabase has.

For personal geodatabases, IGeodatabaseRelease can both check and
upgrade the geodatabase release version. For ArcSDE geodatabases, you
can check the current release, but you cannot upgrade. A separate utility
is required for upgrading the geodatabase release version for ArcSDE
geodatabases.

 IWorkspaceExtensionManager :
 IUnknown

Provides access to members that manage a workspace
extension.

Extension (in Index: Long) :
IWorkspaceExtension

The workspace extension at this index.

ExtensionCount: Long The number of workspace extensions.

FindExtension (in pGUID: IUID, out
ppWorkspaceExtension:
IWorkspaceExtension)

Finds the specified workspace extension by its globally unique ID.

WORKSPACE CLASS

If the geodatabase is not at the current release,
it may not support all of the functionality of the

geodatabase at the software release you are
running.

Configuration keywords are used by ArcSDE
databases.



Chapter 8 • Accessing the geodatabase • 755

G
eo

d
at

ab
as

e

IConfigurationKeyword Configuration-
Keyword

A ConfigurationKeyword object
specifies a set of storage parameters in

an ArcSDE database.

IConfiguration-
Parameter Configuration-

Parameter

A ConfigurationParameter object
specifies a physical storage parameter for

data created in an ArcSDE database.

WORKSPACE-RELATED OBJECTS

IWorkspaceProperty
Workspace-

Property

A WorkspaceProperty object provides
information about a workspace.

A WorkspaceProperty class provides information about a workspace.

 IWorkspaceProperty : IUnknown The Workspace property object.

IsReadOnly: Boolean Indicates this property is read-only.
IsSupported: Boolean Indicates this property is supported.
PropertyValue: Variant The value of this property.

The IWorkspaceProperty interface is supported by WorkspaceProperty
objects that are returned by the IWorkspaceProperties::Property method.
If the IsSupported property returns False, then the workspace does not
support determination of the specified property (the property group/
property type was added at a later release than the component with
which the application is working). The PropertyValue is returned as a
Variant. Applications are responsible for checking the type of the vari-
ant and accessing the appropriate member value.

Configuration keywords can be of two types:

• esriConfigurationKeywordGeneral, which references storage param-
eters for creating feature classes and tables

• esriConfigurationKeywordNetwork, which references storage param-
eters for creating geometric networks

An enumeration of ConfigurationKeyword objects for an ArcSDE work-
space is returned by the IWorkspaceConfiguration interface.

 IConfigurationKeyword : IUnknown Provides access to members to supply information about
configuration keywords.

Comments: String Any additional comments about the keyword.
ConfigurationParameters:

IEnumConfigurationParameter
Configuration parameters included in this keyword.

Description: String The description of the keyword.
KeywordType:

esriConfigurationKeywordType
The type of the keyword.

Name: String The name of the keyword.

The IConfigurationKeyword interface provides information about a
configuration keyword. For example, through this interface, you can
retrieve a name, description, and the set of configuration parameters that
this keyword represents.

An enumeration of ConfigurationParameter objects is returned by the
IConfigurationKeyword interface.

 IConfigurationParameter : IUnknown Provides access to members to supply information about
configuration paramters.

ConfigurationString: String The configuration string defined by the parameter.
Name: String The name of the parameter.

The IConfigurationParameter interface provides access to the string for
a configuration parameter.

A workspace property value is typically a
Boolean that indicates whether an action is

feasible.



756 • Exploring ArcObjects • Volume 2

WORKSPACE EXTENSIONS

The Workspace instantiates all WorkspaceExtensions that are registered in
the component category CATID_GeodatabaseWorkspaceExtensions at
connect time. An application extension can find a workspace extension
by its well-known GUID and invoke methods supported by the exten-
sion as appropriate.

 IWorkspaceExtension : IUnknown Provides access to members that supply workspace
extension information.

DataDictionaryTableNames (out
ppPrivateNames: IEnumBSTR)

Returns any data dictionary tables that should not be exposed to
browsers and should not participate in edit sessions.

GUID: IUID The GUID that identifies this WorkspaceExtension.
Name: String The Name for this WorkspaceExtension.
PrivateDatasetNames (in dtype:

esriDatasetType, out ppPrivateNames:
IEnumBSTR)

The private datasets that should not be exposed to browsers.

IWorkspaceExtension is a mandatory interface that must be supported by
all workspace extensions.

The GUID property returns the well-known GUID for the extension and
is guaranteed to be unique.

The Name property is the name of the extension.

The PrivateDatasetNames and DataDictionaryNames properties return
the names of tables and datasets that are private to the extension and
will not be exposed to browsing clients by the workspace.

 IWorkspaceExtensionControl :
 IUnknown

Provides access to members that manage the life of a
workspace extension.

Init (in pWorkspaceHelper:
IWorkspaceHelper)

Initializes the  extension, passing in a reference to its workspace
helper.

Shutdown Informs the extension that its workspace helper (and workspace) are
going away.

IWorkspaceExtensionControl is a mandatory interface that must be sup-
ported by all workspace extensions. This interface is used by the work-
space to manage the lifetime of the workspace extension. The work-
space cocreates the workspace extension and calls the Init method,
handing it a back reference to the workspace via the workspace helper
argument. The workspace helper implements a weak reference on the
workspace. The extension can keep a strong reference on the
workspace helper (for example, in a member variable) but should not
keep a strong reference on the workspace. Extensions should get the
workspace from the workspace helper in order to make any method
calls on the workspace and release the reference after making the
method calls.

The Shutdown method informs the workspace extension that the work-
space has been released by all clients and is about to go away. In re-
sponse, the workspace extension should release its reference on the
workspace helper. Any subsequent calls by the application to the work-
space extension should return an error.

Workspace-
Extension

IWorkspaceExtension
IWorkspaceExtension-

Control

A workspace representing a geodatabase
can have one or more workspace exten-

sions. A workspace extension extends the
functionality of a workspace in some way,
for example, by managing a new type of

custom dataset or by maintaining custom
data dictionary information on datasets.

A workspace extension is usually used in
conjunction with an application or editor

extension that acts as the client of the work-
space extension.



Chapter 8 • Accessing the geodatabase • 757

G
eo

d
at

ab
as

e

 IWorkspaceHelper : IUnknown

Workspace: IWorkspace The workspace for this workspace helper.

The IWorkspaceHelper interface is implemented by a WorkspaceHelper
object. A WorkspaceHelper object holds a weak reference to a Work-
space. Use of a workspace helper object allows a Workspace to hold
references to a set of workspace extensions, each of which can hold a
back reference to the workspace via a workspace helper.

IWorkspaceHelper Workspace-
Helper

A workspace helper holds a weak
reference to a workspace, forming a back
reference from a workspace extension to

a workspace.

WORKSPACE EXTENSIONS



758 • Exploring ArcObjects • Volume 2

Name
IName

A Name object identifies and locates a
database or map object and supports

methods to instantiate the actual named
object.

A Name object is a persistable software object that identifies and locates
a geodatabase object, such as a dataset or a workspace, or a map object
such as a layer.

A Name object supports an Open method that allows the client to get an
instance of the actual object (for example, the dataset or workspace)
given the name object. A name object thus acts as a moniker that sup-
ports binding to the named object.

The geodatabase supports methods on workspaces that hand out name
objects that can be used by browsing clients to display the names of
datasets in the workspace and to instantiate any specific dataset.

Name objects may also carry properties that describe the object being
named. A browsing client can use these properties to display additional
information about the object being named. A Name object may also
support methods to access metadata, or methods to change permissions
on the actual object. In these cases, a name object can be used as a
lightweight surrogate of the actual object until such time as further prop-
erties of the object are needed or additional methods on the object
need to be called.

 IName : IUnknown Provides access to members that work with Name objects.

NameString: String The name string of the object.

Open: IUnknown Pointer Opens the object referred to by this name.

The Open method lets you instantiate the actual object given the name
object. This example takes a feature class name and instantiates the
corresponding feature class.

  Dim pName as IName

  Set pName = pFeatureClassName

  Set pFeatureClass = pName.Open

The NameString property is reserved for future use. When implemented,
it will return a string representation of the locational component of the
name object that may be persisted by applications.

ArcCatalog™ uses name objects intensively for browsing data. This
example gets a name object for the currently selected item and, if it is a
dataset, shows its category.

  Dim pGxApp As IGxApplication

  Set pGxApp = Application

  Dim pGxObject As IGxObject

  Set pGxObject = pGxApp.SelectedObject

  Dim pName As IName

  Set pName = pGxObject.InternalObjectName

  If TypeOf pName Is IDatasetName Then

    Dim pDatasetName As IDatasetName

    Set pDatasetName = pName

    MsgBox pDatasetName.Category

  End If

NAME ABSTRACT CLASS

Name objects may be persisted (serialized)
using the IPersistStream interface. Name

objects are the mechanism used to save
references to the datasets corresponding to the

layers in a map when the map is saved as a
map document.

Name objects are cocreatable and can also be
used to specify datasets that are yet to be

created, for example, the output dataset to be
created by a geoprocessing operation. There are

several kinds of Name objects, for example,
workspace, table, feature class, feature dataset,

raster, and relationship class name objects.



Chapter 8 • Accessing the geodatabase • 759

G
eo

d
at

ab
as

e

A workspace name is a key component of any dataset name for datasets
in the workspace.

 IWorkspaceName : IUnknown Provides access to members that supply workspace name
information.

BrowseName: String The browse name of the WorkspaceName.
Category: String The category of the WorkspaceName.
ConnectionProperties: IPropertySet The connection properties of the WorkspaceName.
PathName: String The pathname of the WorkspaceName.
Type: esriWorkspaceType The type of the associated workspace.
WorkspaceFactory: IWorkspaceFactory The workspace factory of the WorkspaceName.
WorkspaceFactoryProgID: String The ProgID of the WorkspaceName's workspace factory.

The IWorkspaceName interface lets you access the properties of a work-
space name.

To create a new workspace name, you must set the
WorkspaceFactoryProgID property followed by either PathName or
ConnectionProperties. This example creates a new workspace name for a
personal geodatabase.

  Dim pWorkspaceName As IWorkspaceName

  Set pWorkspaceName = New WorkspaceName

  pWorkspaceName.WorkspaceFactoryProgID = "esricore.AccessWorkspaceFactory"

  pWorkspaceName.PathName = "D:\data\geodatabases\Usa.mdb"

At the end of the example above, the name object could be referring to
an existing workspace or one that is to be created. If the workspace
already exists, it can be opened with IName::Open—effectively, this
procedure is equivalent to opening a workspace using Open or
OpenFromFile on IWorkspaceFactory. If the workspace does not exist
and is to be created, use IWorkspaceFactory::Create.

In some circumstances, you may already have a full workspace object
but require a workspace name instead. The code below shows you
how.

  Dim pWorkspaceName As IWorkspaceName

  Dim pDataset As IDataset

  Set pDataset = pWorkspace ' Workspaces implement IDataset

  Set pWorkspaceName = pDataset.FullName

The Type, Category, WorkspaceFactoryProgID, and BrowseName proper-
ties all return information on the workspace; for more information, refer
to the documentation on Workspace in this chapter.

Workspace-
Name

IWorkspaceName

Name
IName

A workspace name specifies a
workspace object and can be used to

instantiate it. The workspace is specified
using the connection properties for the

workspace.

WORKSPACENAME CLASS



760 • Exploring ArcObjects • Volume 2

DatasetName is an abstract class that covers Name objects for datasets in
a workspace.

DatasetName objects identify and locate datasets within a workspace. In
addition, they may carry additional properties that describe the named
dataset.

DatasetName objects support methods to access metadata for the named
object (via the optional IMetadata interface) and to manage privileges
for the dataset (via the ISQLPriveleges interface).

The DatasetName object for any existing dataset can be obtained by
reading the IDataset::FullName property. DatasetName objects may also
be created to specify new datasets that are to be created by some
operation.

 IDatasetName : IUnknown Provides access to members that supply dataset name
information.

Category: String The category of the dataset.
Name: String The name of the dataset.
SubsetNames: IEnumDatasetName Subset names contained within this dataset name.
Type: esriDatasetType The type of the dataset.
WorkspaceName: IWorkspaceName The WorkspaceName of the DatasetName.

The IDatasetName interface provides access to the basic properties of a
dataset name object.

The Name property returns the identifier for the dataset within the
context of its workspace. Note that the value of the name property of
the dataset name object (IDatasetName::Name) is the same as the value
of the name property for the dataset (IDataset::Name).

The WorkspaceName property returns the workspace name object for the
workspace containing the dataset being specified by this dataset name
object.

You can use the IDataset::FullName interface to get a dataset name
object from the actual dataset object. This example goes from a feature
class to a feature class name.

  Dim pFeatureClassName As IFeatureClassName

  Dim pDataset As IDataset

  Set pDataset = pFeatureclass

  Set pFeatureClassName = pDataset.FullName

A dataset name can also refer to a dataset that does not yet exist. This is
useful when creating new data, for example, with feature data convert-
ers. This code makes a new feature class name—the key properties to
set are Name and WorkspaceName.

  Dim pWorkspaceName As IWorkspaceName

  Set pWorkspaceName = New WorkspaceName

  pWorkspaceName.WorkspaceFactoryProgID = "esricore.AccessWorkspaceFactory"

  pWorkspaceName.PathName = "D:\data\geodatabases\Usa.mdb"

  Dim pFeatureClassName As IFeatureClassName

  Set pFeatureClassName = New FeatureClassName

DATASET NAME CLASSES

Name
IName

Dataset-
Name

IDatasetName
ISQLPrivilege

Dataset name objects identify and locate
datasets within a workspace.



Chapter 8 • Accessing the geodatabase • 761

G
eo

d
at

ab
as

e

  Dim pDatasetName As IDatasetName

  Set pDatasetName = pFeatureClassName

  pDatasetName.Name = "Land_use"

  Set pDatasetName.WorkspaceName = pWorkspaceName

 ISQLPrivilege : IUnknown Provides access to members for granting and revoking
privileges to database users.

SQLPrivileges: Long The database privileges.

Grant (in UserName: String, in
privileges: Long, in withGrant:
Boolean)

Grants privileges for the database user.

Revoke (in UserName: String, in
privileges: Long)

Revokes privileges for the database user.

The ISQLPrivilege optional interface provides information about the
permissions you have on a database object; it also provides information
about how to change the permissions for other users. It only applies to
those datasets that are stored within a multiuser SQL environment, most
typically an ArcSDE geodatabase. ISQLPrivilege controls access to data-
base objects.

Enumeration esriSQLPrivilege SQL Privileges.

1 - esriSelectPrivilege Select.
2 - esriUpdatePrivilege Update.
4 - esriInsertPrivilege Insert.
8 - esriDeletePrivilege Delete.

The esriSQLPrivilege enumeration defines values that can be used with
ISQLPrivilege.

The values may be bitwise OR’d together if more than one privilege
applies (note that this is equal to summing the integer values). For ex-
ample, if the SQLPrivileges property returns a value of 9, this would
mean that you have select and delete permission on the dataset but not
insert or update. A value of 15 indicates full privileges.

The following example grants select and update privileges to a user
called Scott. The dataset name could be a feature dataset, in which case
Scott would receive the privileges on all the contents of the feature
dataset.

  If TypeOf pDatasetName Is ISQLPrivilege Then

    Dim pSQLPriv As ISQLPrivilege

    Set pSQLPriv = pDatasetName

    pSQLPriv.Grant "Scott", _

      esriSelectPrivilege + esriUpdatePrivilege, False

  End If

A FeatureDatasetName object is a name object that identifies and locates
a feature dataset.

Name
IName

Dataset-
Name

IDatasetName
ISQLPrivilege

Feature-
DatasetName

IFeatureDatasetName
IMetadata

A feature dataset name identifies and
locates a feature dataset.

DATASET NAME CLASSES



762 • Exploring ArcObjects • Volume 2

Name
IName

Dataset-
Name

IDatasetName
ISQLPrivilege

ObjectClass-
Name

Feature-
ClassName

IFeature-
ClassName

TableName
IModelInfo

IObjectClassName
ISupportErrorInfo

ITableName

These name objects identify tables,
object classes, and feature classes.

 IFeatureDatasetName : IUnknown Provides access to members that hand out enumerated
subset names in the feature dataset.

FeatureClassNames:
IEnumDatasetName

An enumerator over the feature class names in this FeatureDataset.

GeometricNetworkNames:
IEnumDatasetName

An enumerator over the geometric network names in this
FeatureDataset.

RelationshipClassNames:
IEnumDatasetName

An enumerator over the relationship class names in this
FeatureDataset.

TableNames: IEnumDatasetName An enumerator over the table (non spatial object class) names in this
FeatureDataset.

The IFeatureDatasetName interface supports methods to get the name objects
identifying the feature classes, relationship classes, and geometric networks within
the named feature dataset without opening the feature dataset.

A TableName object is a name object that identifies and locates a table or object
class.

 ITableName : IUnknown Table Name Interface.

ITableName is an identity interface with no methods.

 IObjectClassName : IUnknown Provides access to the objects class ID.

ObjectClassID: Long The object class ID.

The ObjectClassID property can be used to obtain the ID for this object
class within a workspace that represents a geodatabase (for example,
within an Access or ArcSDE workspace). A value of -1 is returned if the
table is not registered as an object class.

A FeatureClassName identifies and locates a feature class in a workspace
and supports obtaining some key properties of the feature class without
having to open (instantiate) it.

 IFeatureClassName : IUnknown

FeatureDatasetName: IDatasetName The Feature Dataset Name object.
FeatureType: esriFeatureType The feature type for this feature class name.
ShapeFieldName: String The spatial column name for this feature class name.
ShapeType: tagesriGeometryType The feature class shape type.

The IFeatureClassName includes the FeatureType, the ShapeType, the
ShapeFieldName, and the name object for the parent feature dataset in
the case of feature classes that are contained within a feature dataset.
Note that this last property is null for standalone feature classes.

A GeometricNetworkName object identifies and locates a geometric
network in a workspace.

 IGeometricNetworkName : IUnknown Geometric Network Name Interface.

FeatureDatasetName: IDatasetName The Feature Dataset Name that the network belongs to.

Name
IName

Dataset-
Name

IDatasetName
ISQLPrivilege

Geometric-
Network-

Name

IGeometricNetwork-
Name

A geometric network name identifies a
geometric network in a workspace.

DATASET NAME CLASSES



Chapter 8 • Accessing the geodatabase • 763

G
eo

d
at

ab
as

e

The FeatureDatasetName property in the IGeometricNetworkName interface returns
the name object for the feature dataset containing the geometric network.

A RelationshipClassName identifies and locates a relationship class in a workspace
and supports obtaining some key properties of the feature class without having to
open (instantiate) it.

 IRelationshipClassName : IUnknown Feature Class Name Interface.

Cardinality: esriRelCardinality The Cardinality.
FeatureDatasetName: IDatasetName The Feature Dataset Name object.
IsAttributed: Boolean True if Attributed.
IsComposite: Boolean True if Composite.
Notification: esriRelNotification The Notification.

The IRelationshipClassName interface includes the Cardinality, Notifica-
tion, IsAttributed, and IsComposite properties, and also the name object
for the parent feature dataset in the case of relationship classes that are
contained within a feature dataset.

Name
IName

Dataset-
Name

IDatasetName
ISQLPrivilege

Relationship-
ClassName

IRelationship-
ClassName

A relationship class name identifies a
relationship class in a workspace.

DATASET NAME CLASSES



764 • Exploring ArcObjects • Volume 2

Dataset is an abstract class that represents a named collection of data in
a workspace.

Datasets may contain other datasets. All datasets support the IDataset
interface and may optionally support other interfaces, including
IDatasetEdit, ISchemaLock, and IMetadata.

 IDataset : IUnknown Provides access to members that supply dataset
information.

BrowseName: String The browse name of the dataset.
Category: String The category of the dataset.
FullName: IName The associated name object.
Name: String The name of the dataset.
PropertySet: IPropertySet The set of properties for the dataset.
Subsets: IEnumDataset Datasets contained within this dataset.
Type: esriDatasetType Returns the type of the dataset.
Workspace: IWorkspace The workspace containing this dataset.

CanCopy: Boolean True if this dataset can be copied.
CanDelete: Boolean True if this dataset can be deleted.
CanRename: Boolean True if this dataset can be renamed.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this dataset to a new dataset with the specified name.

Delete Deletes this dataset.
Rename (in Name: String) Renames this dataset.

The IDataset interface provides information about datasets and high-
level management facilities such as Copy, Delete, and Rename.

The Type property returns the enumerated type for the dataset, such as
esriDTTable or esriDTFeatureDataset. This code example shows IDataset
in use on three different objects: FeatureClass, FeatureDataset, and
Workspace coclass. It assumes a valid IFeatureClass pointer.

  Dim pDataset As IDataset

  Set pDataset = pFeatureClass

IDataset is also available from Workspace,
FeatureLayer, TIN, RasterBand, and Graph

objects, as well as those objects covered by the
Dataset abstract class. Use the Type property
to determine what kind of Dataset you have.

This can greatly simplify code compared to the
alternative of using the Typeof operator. The

esriDatasetType enumeration lists the
possibilities.

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

A workspace is a container of named
datasets. Examples of datasets include

tables, feature classes, relationship
classes, feature datasets, and geometric

networks.

Dataset objects

GeoDataset
IGeodataSchemaEdit

IGeoDataset

A geodataset is a type of dataset
that stores geographic data

A dataset is a collection of
data in a workspace

A feature dataset stores vector
data in feature classes

A property set is a generic
class that is used to hold a set
of properties for anything

*

0..*Workspace

IDatabaseCompact (compact)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspaceAnno (optional)
IFeatureWorkspaceManage

IFeatureWorkspaceSchemaEdit
IGeodatabaseRelease (optional)

ISpatialCacheManager
ISQLSyntax

ITransactions (optional)
ITransactionsOptions (optional)

IWorkspace
IWorkspaceConfiguration (optional)

IWorkspaceDomains (optional)
IWorkspaceDomains2 (optional)

IWorkspaceEdit
IWorkspaceProperties (optional)

IWorkspaceSpatialReferenceInfo

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Table
IClass
ITable

ITable2

PropertySet
IPropertySet

IPropertySet2

IDatasetContainer
IFeatureDataset

INetworkCollection
INetworkCollection2

IFeatureClassContainer
IRelationshipClassContainer

Feature-
Dataset

IRasterDataset Raster-
Dataset

See chapter 13,
'Integrating raster

data'



Chapter 8 • Accessing the geodatabase • 765

G
eo

d
at

ab
as

e

  Debug.Print pDataset.Name & " " & pDataset.Type

  If Not pFeatureClass.FeatureDataset Is Nothing Then

    Set pDataset = pFeatureClass.FeatureDataset

    Debug.Print pDataset.Name & " " & pDataset.Type

  End If

  Set pDataset = pDataset.Workspace

  Debug.Print pDataset.Name & " " & pDataset.Type

The Copy, Delete, and Rename methods are not available in all circum-
stances. For example, you may not copy a FeatureDataset coclass. You
should normally use the CanCopy, CanDelete, and CanRename proper-
ties in conjunction with these methods.

The FullName property returns a Name object for the dataset. The Name
object can be persisted, and provides a way to get back to the dataset in
a future session of the application via the Open method on the Name
object. The Subsets property returns other Dataset objects contained in
this dataset. The Workspace property returns the containing workspace
for this dataset.

The PropertySet property is used to return any additional intrinsic prop-
erties (but not metadata properties) that may apply to the dataset. Ex-
amples of intrinsic properties for which explicit methods exist include
the SpatialReference and Extent methods, both of which are available on
the IGeoDataset interface. In most cases, this PropertySet will be empty.

 IDatasetEdit : IUnknown Provides access to members about the status of datasets
being edited.

IsBeingEdited: Boolean True if the dataset is being edited.

An edit session is begun on a Workspace using the IWorkspaceEdit::
StartEditing method. Once an edit session has been started on a work-
space, the IsBeingEdited method on the IDatasetEdit interface can be
used to determine if a particular Dataset is participating in the edit ses-
sion. The reasons why a dataset may not participate include: the con-
nected user has no privileges or permission to edit the dataset, the con-
nected user is not licensed to edit this type of dataset, or the dataset is
not versioned.

 IDatasetEditInfo : IUnknown Provides access to members that maintain dataset editing
information.

CanEdit: Boolean True if the dataset supports edit sessions with the ability to discard
edits on save.

CanRedo: Boolean True if the dataset supports edit sessions with the ability to redo
undone operations.

CanUndo: Boolean True if the dataset supports edit sessions with the ability to undo
individual edit operations.

The IDatasetEditInfo interface can be used to determine the editing
capabilities of a dataset before an edit session is begun.

DATASET ABSTRACT CLASS

IDatasetEdit::IsBeingEdited will be true even if
no changes have yet been made to the dataset,
as long as that dataset can be edited within the

session.



766 • Exploring ArcObjects • Volume 2

 ISchemaLock : IUnknown Provides access to members for accessing schema locking
functionality.

ChangeSchemaLock (in schemaLock:
esriSchemaLock)

Changes a schema lock.

GetCurrentSchemaLocks (out
schemaLockInfo:
IEnumSchemaLockInfo)

The list of current locks.

The ISchemaLock interface is used to establish an exclusive lock on a
dataset when changing its schema (that is, the dataset structure rather
than the data itself) or when performing other operations that require
exclusive access to the data.

There are two kinds of locks, exclusive and shared. You would normally
only use ISchemaLock to gain exclusive locks since shared locks are
applied automatically when you access the object. A shared lock pre-
vents another user from gaining an exclusive lock.

Examples of operations that should acquire a schema lock include
adding a field to a feature class, associating a new class extension with
a feature class, and building a geometric network on a set of feature
classes.

This function tries to get an exclusive lock on a dataset:

Public Function GetExclusiveLock(pDataset As IDataset) As Boolean

On Error GoTo ErrorHandle

  Dim pWorkspaceFactory As IWorkspaceFactory

  Dim pWorkspace As IWorkspace

  Dim pFeatureWorkspace As IFeatureWorkspace

  Set pWorkspaceFactory = New AccessWorkspaceFactory

  Set pWorkspace = pWorkspaceFactory.OpenFromFile("D:\Maps\water.mdb", 0)

  Set pFeatureWorkspace = pWorkspace

  Dim pFeatureClass As IFeatureClass

  Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("streams")

  Set pDataset = pFeatureClass

  Dim pSchLock As ISchemaLock

  Set pSchLock = pDataset

  pSchLock.ChangeSchemaLock esriExclusiveSchemaLock

  GetExclusiveLock = True

  Exit Function

ErrorHandle:

  MsgBox "Failed to get exclusive lock on " & pDataset.Name _

        & vbCr & Err.Description

  GetExclusiveLock = False

End Function

DATASET ABSTRACT CLASS

Schema locks prevent clashes with other users
when you are changing the structure of your

geodatabase.



Chapter 8 • Accessing the geodatabase • 767

G
eo

d
at

ab
as

e

 ISchemaLockInfo : IUnknown Provides access to members that supply schema lock
information.

SchemaLockType: esriSchemaLock The schema lock type.
TableName: String The name of the table with the schema lock.
UserName: String The user who has the schema lock.

The ISchemaLockInfo interface provides information about a schema
lock, for example, whether it is shared or exclusive and, for ArcSDE
geodatabases, the name of the user who has the lock. You can access
ISchemaLockInfo through ISchemaLock::GetCurrentSchemaLocks and
then by stepping through the returned schema lock enumerator object.

 IDatasetAnalyze : IUnknown Analyze Interface.

AllowableComponents: Long Return the allowable components to be analyzed.

Analyze (in tableComponents: Long) Analyze the dataTo update/generate DBMS statistics.

IDatasetAnalyze is an optional interface that updates database table and
index statistics for the dataset.

When applied to a feature dataset, Analyze updates the statistics for all
of the tables.

The AllowableComponents property indicates which parts of the table or
feature class can be analyzed. The returned value is based on the
esriTableComponents enumeration. Members from this enumeration can
be bitwise or’d together in a similar way to esriSQLPrivilege Constants.

DATASET ABSTRACT CLASS

DBMS statistics are important for efficient
query performance—this is most relevant to
enterprise geodatabases. You can determine
whether your geodatabase supports DBMS

statistics with IWorkspaceProperties.



768 • Exploring ArcObjects • Volume 2

PropertySet is a generic class that is used to hold a set of properties for
anything.

 IPropertySet : IUnknown Provides access to members for managing a PropertySet.

Count: Long The number of properties contained in the property set.

GetAllProperties (out names: Variant,
out Values: Variant)

The name and value of all the properties in the property set.

GetProperties (in names: Variant, out
Values: Variant)

The values of the specified properties.

GetProperty (in Name: String) : Variant The value of the specified property.
IsEqual (in PropertySet: IPropertySet) :

Boolean
True if the property set is the same as the input property set.

RemoveProperty (in Name: String) Removes a property from the set.
SetProperties (in names: Variant, in

Values: Variant)
The values of the specified properties.

SetProperty (in Name: String, in Value:
Variant)

The value of the specified property.

IPropertySet contains one property for the number of properties and
several methods to set and retrieve properties.

 IPropertySet2 : IUnknown Provides access to members for managing a PropertySet.

IsEqualNoCase (in PropertySet:
IPropertySet) : Boolean

True if the property set is the same as the input property set.

IPropertySet2 has a method to compare an input property set to the
current property set.

One example for the use of a property set is to hold the properties
required for opening up an SDE® workspace, as shown in the example
code below.

  'Example of how to use a property set to open an SDE workspace.

  Dim pPropset As IPropertySet

  Set pPropset = New PropertySet

  With pPropset

    .SetProperty "Server", m_SDEServerName

    .SetProperty "Instance", m_SDEServerInst

    .SetProperty "user", m_SDEServerUserName

    .SetProperty "password", m_SDEServerPass

    .SetProperty "version" , m_SDEVersionName

  End With

  Dim pFactSDE As IWorkspaceFactory

  Set pFactSDE = New SdeWorkspaceFactory

  Dim pWorkSpaceSDE As IWorkspace

  Set pWorkSpaceSDE = pFactSDE.Open(pPropset, Me.hWnd)

PROPERTYSET CLASS

PropertySet
IPropertySet

IPropertySet2

A property set holds a set of properties
for a variety of objects.



Chapter 8 • Accessing the geodatabase • 769

G
eo

d
at

ab
as

e

GeoDataset is an abstract class representing geographic datasets, which
may also be referred to as spatial datasets. Examples of GeoDatasets
include FeatureDatasets, FeatureClasses, Tins, and RasterDatasets. Ex-
amples of Datasets that are not GeoDatasets include nonspatial
ObjectClasses and RelationshipClasses. A key property of a GeoDataset is
the SpatialReference in which it is defined.

 IGeoDataset : IUnknown GeoDataset Interface.

Extent: IEnvelope The extent of the GeoDataset.
SpatialReference: ISpatialReference The spatial reference of the GeoDataset.

The IGeoDataset interface provides information about spatial datasets—
in particular, their spatial reference and geographic extent.

This code zooms to the extent of a layer:

  Dim pGeoDataset As IGeoDataset

  Set pGeoDataset = pLayer

  pActiveView.Extent = pGeoDataset.Extent

  pActiveView.Refresh

 IGeoDatasetSchemaEdit : IUnknown Interface to change the schema of a GeoDataset.

CanAlterSpatialReference: Boolean True if the spatial reference of the dataset can be altered.

AlterSpatialReference (in
SpatialReference: ISpatialReference)

Alters the spatial reference of the dataset to match the coordinate
system of the input spatial reference, does not reproject the data.

The IGeoDatasetSchemaEdit interface is an optional interface that allows
you to change the spatial reference associated with an existing dataset.

Note that the AlterSpatialReference method does not project or otherwise
modify the existing data in the dataset—this method merely rewrites the
spatial reference associated with the dataset. The caller is responsible for
ensuring the correctness and appropriateness of the supplied spatial
reference. Its most common use is to supply a spatial reference for a
dataset whose spatial reference is currently tagged as Unknown.

GEODATASET ABSTRACT CLASS

GeoDataset
IGeodataSchemaEdit

IGeoDataset

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

A geodataset is a geographic dataset.



770 • Exploring ArcObjects • Volume 2

FEATUREDATASET CLASS

Feature classes that store simple features can be organized either inside
or outside a feature dataset. Those outside a feature dataset are called
standalone feature classes. Feature classes that store topological features,
for example, those participating in geometric networks, must be con-
tained within a feature dataset to ensure a common spatial reference.

A FeatureDataset is a dataset that exists only in a geodatabase work-
space; all the datasets contained in the FeatureDataset are also part of
the same geodatabase.

When programming with feature classes, you need to remember that the
feature class may or may not belong to a feature dataset. This code to
get the workspace for a feature class assumes a feature dataset exists
and therefore may fail.

  ' This excerpt won't work for standalone feature classes

  Dim pFeatureDataset As IFeatureDataset

  Set pFeatureDataset = pFeatureClass.FeatureDataset

  Dim pWorkspace As IWorkspace

  Set pWorkspace = pFeatureDataset.Workspace

This piece of code will work for both standalone feature classes and
those in feature datasets.

  Dim pDataset As IDataset

  Set pDataset = pFeatureClass

  Dim pWorkspace As IWorkspace

  Set pWorkspace = pDataset.Workspace

Each dataset in a geodatabase must have a unique name. In particular,
each feature class in a geodatabase must have a unique name indepen-
dent of the feature dataset that contains it. Note that this is different from
a file system model, where two folders may contain files with the same
local name within the folder.

The OpenFeatureClass method available in the IFeatureWorkspace inter-
face on a workspace may be used to open any feature class in the
workspace, including both standalone feature classes and feature
classes within a feature dataset, given the (unique) name of the feature
class.

 IFeatureDataset : IDataset Provides access to create a new feature class in a feature
dataset.

CreateFeatureClass (in Name: String, in
Fields: IFields, in CLSID: IUID, in
EXTCLSID: IUID, in FeatureType:
esriFeatureType, in ShapeFieldName:
String, in ConfigKeyword: String) :
IFeatureClass

Creates a new FeatureClass in this FeatureDataset.

Use the CreateFeatureClass method in the IFeatureDataset interface to
create a new feature class within a FeatureDataset. The arguments to this
method are the same as to the CreateFeatureClass method in IFeature-
Workspace interface. However, this method requires that the spatial
reference specified for the feature class to be created matches the spa-
tial reference of the feature dataset. Note that the spatial reference for

GeoDataset
IGeodataSchemaEdit

IGeoDataset

IDatasetContainer
IFeatureDataset

INetworkCollection
INetworkCollection2

IFeatureClassContainer
IRelationshipClass-

Container

Feature-
Dataset

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

A feature dataset is a dataset that
contains feature classes that share the
same spatial reference as the feature

dataset. Feature datasets can also
contain geometric networks and relation-

ship classes.



Chapter 8 • Accessing the geodatabase • 771

G
eo

d
at

ab
as

e

the feature class to be created is specified in the GeometryDef property
of the Field object for the Shape field in supplied Fields collection.

This bit of code lists the feature classes in a feature dataset.

  Dim pEnumDataset As IEnumDataset

  Dim pDataset As IDataset

  pEnumDataset = pFeatureDataset.Subsets

  ' Loop through each dataset, checking if it is a feature class

  Set pDataset = pEnumDataset.Next

  Do Until pDataset Is Nothing

    If pDataset.Type = esriDTFeatureClass Then

      Debug.Print pDataset.Name

    End If

    Set pDataset = pEnumDataset.Next

  Loop

If you just need to browse the available datasets, an alternative interface
to use is IFeatureDatasetName. For more details, see the section on
Name objects.

 IFeatureClassContainer : IUnknown Provides access to members that return feature classes by
name, ID and index.

Class (in ClassIndex: Long) :
IFeatureClass

The FeatureClass associated with the specified index value.

ClassByID (in ID: Long) : IFeatureClass Retrieves a FeatureClass given its ID.
ClassByName (in Name: String) :

IFeatureClass
Retrieves a FeatureClass given its name.

ClassCount: Long The number of FeatureClasses in this container.
Classes: IEnumFeatureClass An enumerator over the FeatureClasses.

The IFeatureClassContainer interface provides access to feature classes.
For feature datasets, it can be seen as an alternative to the functionality
available from other interfaces. However, IFeatureClassContainer is also
implemented by Graphs (and hence GeometricNetworks), for which it is
more essential—it returns the feature classes participating in the network,
which can’t be done with Name objects.

Each object class in a geodatabase has a unique ID accessible via the
ObjectClassID method in the IObjectClass interface or the FeatureClassID
method in the IFeatureClass interface. The ClassByID method finds a
feature class in a feature dataset given its object class ID.

 INetworkCollection : IUnknown Provides access to members that create and maintain
information about geometric networks.

GeometricNetwork (in Index: Long) :
IGeometricNetwork

The GeometricNetwork associated with the specified index value.

GeometricNetworkByName (in Name:
String) : IGeometricNetwork

Retrieves a GeometricNetwork given its Name.

GeometricNetworkCount: Long The number of GeometricNetworks in this FeatureDataset.

CreateGeometricNetwork (in Name:
String, in NetworkType:
esriNetworkType, in
BuildNormalizedTables: Boolean) :
IGeometricNetwork

Creates a new GeometricNetwork in this FeatureDataset.

The INetworkCollection interface provides access to the geometric net-
works in the feature dataset and also lets you create them.

FEATUREDATASET CLASS



772 • Exploring ArcObjects • Volume 2

If your intention is only to browse for the set of networks in a
feature dataset, then it is not necessary to open the feature
dataset and invoke methods on INetworkCollection. The
GeometricNetworkNames method on a FeatureDatasetName object
can be used to efficiently obtain this information.

 INetworkCollection2 : INetworkCollection Provides access to members that create and maintain
information about geometric networks.

CreateGeometricNetworkEx (in Name:
String, in NetworkType:
esriNetworkType, in
BuildNormalizedTables: Boolean, in
ConfigKeyword: String) :
IGeometricNetwork

Creates a new GeometricNetwork with a configuration keyword in
this FeatureDataset.

The INetworkCollection2 interface provides access to members that
create and maintain information about geometric networks.

 IRelationshipClassContainer : IUnknown Provides access to members that create, add and hand
out relationship classes.

RelationshipClasses:
IEnumRelationshipClass

An enumerator over the RelationshipClasses in this container.

AddRelationshipClass (in pRelClass:
IRelationshipClass)

Transfers ownership of a relationship class to this container.

CreateRelationshipClass (in
relClassName: String, in OriginClass:
IObjectClass, in DestinationClass:
IObjectClass, in forwardLabel: String, in
backwardLabel: String, in Cardinality:
esriRelCardinality, in Notification:
esriRelNotification, in IsComposite:
Boolean, in IsAttributed: Boolean, in
relAttrFields: IFields, in
OriginPrimaryKey: String, in
destPrimaryKey: String, in
OriginForeignKey: String, in
destForeignKey: String) :
IRelationshipClass

Creates a new relationship class in this container.

The IRelationshipClassContainer interface lets you create a relationship
class within a feature dataset rather than a workspace. The
AddRelationshipClass method is effectively superseded by
IDatasetContainer::AddDataset.

 IDatasetContainer : IUnknown Provides access to adding datasets to the dataset
container.

AddDataset (in pDatasetToAdd: IDataset) Adds a dataset to the dataset collection.

The IDatasetContainer interface lets you move datasets between feature
datasets and workspaces—both objects implement the interface.

Note that when moving feature classes into a feature dataset, the spatial
reference of the source feature class must match the spatial reference of
the target feature dataset into which it is being moved.

The following example changes a dataset (for example, a feature class
or relationship class) from a feature dataset to being standalone in a
workspace or vice versa.

Public Sub MoveDataset(pFeatureDataset As IFeatureDataset, _

                       pDataset As IDataset, bRequireStandalone As Boolean)

  Dim pDatasetContainer As IDatasetContainer

FEATUREDATASET CLASS

IDatasetContainer will let you move a
standalone feature class into a feature dataset

and vice versa.



Chapter 8 • Accessing the geodatabase • 773

G
eo

d
at

ab
as

e

  If bRequireStandalone Then

    Set pDatasetContainer = pFeatureDataset.Workspace

  Else

    Set pDatasetContainer = pFeatureDataset

  End If

  pDatasetContainer.AddDataset pDataset

End Sub

FEATUREDATASET CLASS



774 • Exploring ArcObjects • Volume 2

Table
IClass
ITable

ITableCapabilities

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

A table has one or more columns and a
collection of unordered rows.

A Table object has one or more columns, referred to as fields, and
contains an unordered collection of rows. For each field, each row has
exactly one value in the data type of the field.

A Table is a Dataset; properties such as the name of the table, the
persistable name object for the table, and the workspace containing the
table may be obtained via the IDataset interface. In relational terms, a
Table object represents an RDBMS table or view. In objected-oriented
terms, a Table object represents an ObjectClass or a RelationshipClass in a
geodatabase. A Table object hands out Row objects that support applica-
tion-callable methods, depending on the type of data stored in the table.

The Name property of a Table, accessible via the IDataset interface,
returns its fully qualified name. The level of qualification may vary
depending on the host DBMS. For example, a table named “pipes”
owned by a user named “gas” may be called “pipes” on Access,
“gas.pipes” on Oracle, and “mydb.gas.pipes” on SQL Server. The
ParseTableName method on the ISqlSyntax interface supported by the
table’s workspace can be used to split the fully qualified name into its
components.

Table, object class, and feature class objects

A feature class is a type of
object class that stores

geographic features

A table is a collection of
rows with attributes

stored in columns

An object class stores
non-geographic entities

0..1

IClassExtension Class-
Extension

Table
IClass
ITable

ITableCapabilities

1..*1..*

Fields
IFields

IFields2
IFieldsEdit

Field
IField

IFieldEdit
IModelInfo

Geometry-
Def

0..1
IGeometryDef

IGeometryDefEdit

Indexes
IIndexes

IIndexesEdit

Index
IIndex

IIndexEdit

1..*

Each table has a set of fields, which describe the
data format of attributes. If a field represents a

geometry, GeometryDef specifies its particulars.
An index can be optionally specified on a field

TableSort
ITableSort

A table sort controls the
order in which rows are
returned from a table or

feature class

Attributed-
Relationship-

Class
ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Feature-
Class

IFeatureClass
IFeatureClassLoad (optional)

IFeatureClassWrite
IGeoDataset

INetworkClass

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)



Chapter 8 • Accessing the geodatabase • 775

G
eo

d
at

ab
as

e

 IClass : IUnknown Provides access to members that return information about
and manage the class.

CLSID: IUID The GUID for the COM Class (CoClass) corresponding to instances of
this object class.

EXTCLSID: IUID The GUID for the COM Class (CoClass) corresponding to the class
extension for this object class.

Extension: IUnknown Pointer The extension for this object class.
ExtensionProperties: IPropertySet The extension properties for this object class.
Fields: IFields The fields collection for this object class.
HasOID: Boolean True if the class has an object identity (OID) field.
Indexes: IIndexes The indexes collection for this object class.
OIDFieldName: String The name of the field corresponding to the OID.

AddField (in Field: IField) Adds a field to this object class.
AddIndex (in Index: IIndex) Adds an index to this object class.
DeleteField (in Field: IField) Deletes a field from this object class.
DeleteIndex (in Index: IIndex) Deletes an index from this  object class.
FindField (in Name: String) : Long The index of the field with the specified name.

All tables support the IClass interface. Since the ITable interface (de-
scribed next) inherits from IClass, applications usually do not have to
explicitly perform a QueryInterface for this interface.

The CLSID property returns the globally unique identifier for the soft-
ware component (COM coclass) that represents the row objects stored
and handed out by this table. Examples of the value of this property
include the CLSIDs representing esricore.Row, esriCore.Object,
esricore.Feature, and esricore.AttributedRelationship.

The EXTCLSID property returns the globally unique identifier for the
software component (COM coclass) that represents the class extension
associated with this Table. Class extensions are a mechanism whereby a
developer can associate additional class-level methods written in COM
with an ObjectClass in the database.

The CLSID and EXTCLSID and other similar properties for a Table are
stored in the geodatabase as part of the data dictionary information for
the database. These properties link the behavior of the class (as imple-
mented by software components in a DLL) with the data in the table.

The Extension property returns an interface on the ClassExtension associ-
ated with this Table.

The HasOID property may be used to test if this table has an ObjectId
column. Tables representing object classes and attributed relationship
classes in a geodatabase will have an ObjectId column whose unique
values are assigned by the geodatabase when new objects and attrib-
uted relationships are created. The Register With Geodatabase command
available on the context menu of a table in ArcCatalog can be used to
register a preexisting table in an RDBMS as an object class; this process
will add an ObjectId column to the table if needed.

The IClass interface also contains methods (inherited by ITable) to man-
age the collection of fields and indexes for a Table.

This code finds the number of indexes on an object class.

  Dim pIndexes As IIndexes

  Set pIndexes = pTable.Indexes

  MsgBox "There are " & pIndexes.IndexCount & " indexes"

TABLE CLASS

You don’t need to QI to use IClass—ITable,
IObjectClass, and IFeatureClass inherit its

members.

The EXTCLSID and CLSID properties return
the GUIDs for the COM classes associated with

the table and its objects. This is useful with
custom objects and features. See the section on

class extensions later in this chapter.



776 • Exploring ArcObjects • Volume 2

 ITable : IClass Provides access to members that return information about
and manage tables.

CreateRow: IRow Creates a row in the database with a system assigned object ID and
null property values.

CreateRowBuffer: IRowBuffer Creates a row buffer that can be used with an insert cursor.
DeleteSearchedRows (in QueryFilter:

IQueryFilter)
Delete the rows in the database selected by the specified query

GetRow (in OID: Long) : IRow The row from the database with the specified object ID.
GetRows (in oids: Variant, in Recycling:

Boolean) : ICursor
The cursor of rows based on a set of object IDs.

Insert (in useBuffering: Boolean) :
ICursor

Returns a  cursor that can be used to insert new rows.

RowCount (in QueryFilter: IQueryFilter)
: Long

The number of rows selected by the specified query.

Search (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : ICursor

An object cursor that can be used to fetch row objects selected by the
specified query.

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

A selection that contains the object ids selected by the specified
query.

Update (in QueryFilter: IQueryFilter, in
Recycling: Boolean) : ICursor

Returns a cursor that can be used to update rows selected by the
specified query.

UpdateSearchedRows (in QueryFilter:
IQueryFilter, in Buffer: IRowBuffer)

Update the Rows in the database selected by the specified query.

The ITable interface is the principal interface for working with tables. It
inherits from IClass and provides additional methods that allow you to
query, select, insert, update, and delete rows from the table.

All modifications to rows in the table through this interface will preserve
object behavior associated with the table. For example, deleting rows
from a table that represents a “parent” object class that participates in a
composite relationship with a “part” object class, using any of the sup-
ported methods for deleting objects, will delete rows from the related
“part” object class.

The CreateRow method creates a new row in the underlying database with
a system-assigned object ID value. A row object representing the created
row is returned to the caller. The row object returned has the system as-
signed object ID as the value of the OIDField. All other fields are initial-
ized to null values if they can be made null, and to built-in default values
appropriate to the type of the field if they cannot be made null. The caller
is responsible for setting the desired field values into the row and calling
the Store method on the row. If the table represents an object class with
subtypes, then it is the caller’s responsibility to set the default subtype
code into the row and call the InitDefaultValues method on the row before
storing (if that is the desired result). For tables without object behavior,
insert cursors offer a more efficient way for inserting new rows. For more
information, see the documentation on the Insert method below.

The CreateRowBuffer method creates a new row buffer object in
memory and returns it to the caller. No row is created in the database.
The returned row buffer does not have an object ID value. The caller
can set values into the row buffer and use it as an argument to the
InsertRow method on an insert cursor; the latter is obtained by calling
the Insert method on the Table.

The GetRow method returns an existing row object given its object ID
value. The caller can query the returned row object for additional
object-specific interfaces. The retrieved row may be modified; calling

You can delete an object through the API by
getting a row object from a table and calling the

Delete method on the row object, getting an
update cursor from a table and calling the

DeleteRow method when positioned on the
row object to be deleted, or calling the

DeleteSearchedRows method on the table
using a where clause that includes the row

object.

TABLE CLASS

ITable is the main interface for working with
tables.



Chapter 8 • Accessing the geodatabase • 777

G
eo

d
at

ab
as

e

Store on the row object after changing it will trigger messages to related
objects and will mark the row for committing to the database.

The GetRows method returns a cursor that may be used to retrieve a set
of rows specified by the input array of object ID values. To understand
the meaning of the recycling parameter, see the description of the
Search method below. It is far more efficient to retrieve a set of rows
using the GetRows method than it is to retrieve each individual row using
the GetRow method.

The Search method returns a “search” cursor that can be used to re-
trieve rows specified by a query filter. The recycling parameter controls
row object allocation behavior. Recycling cursors rehydrate a single row
object on each fetch and can be used to optimize read-only access, for
example, when drawing. It is illegal to maintain a reference on a row
object returned by a recycling cursor across multiple calls to NextRow on
the cursor. Row objects returned by a recycling cursor should not be
modified. Nonrecycling cursors return a separate row object on each
fetch. The objects returned by a nonrecycling cursor may be modified
and stored with polymorphic behavior. The geodatabase guarantees
“unique instance semantics” on nonrecycling row objects fetched dur-
ing an edit session. If the row object to be retrieved by a call to search
has already been instantiated and is being referenced by the calling
application, then a reference to the existing row object is returned.

The Insert method returns an “insert” cursor that can be used to bulk
insert rows. It offers significantly faster performance than multiple calls
to CreateRow and Store for tables storing simple rows and simple fea-
tures (that is, for tables whose CLSID is esriCore.Row, esricore.Object, or
esricore.Feature). Insert cursors on tables containing custom rows and
objects use the CreateRow and Store methods to achieve polymorphism,
and there is no difference in performance in these cases.

The Update method returns an “update” cursor that can be used to
update or delete rows. It offers somewhat faster performance than mul-
tiple calls to Store or Delete on row objects fetched using a nonrecycling
search cursor for tables storing simple rows and simple features. There
is no difference in performance for custom features.

The Select method returns a selection set that holds either row IDs or
row objects from the Table, depending on the selection option. Multiple
selection sets can be created on the same table. It is up to a client appli-
cation or object to keep a reference on created selections and use them
as appropriate. For example, a FeatureLayer creates and uses selections
on a FeatureClass (a type of Table).

 ITableCapabilities : IUnknown Provides access to members that return information about
and manage tables.

CanSelect: Boolean True if the table supports selection.

The ITableCapabilities interface complements ITable. Use CanSelect to
determine if you can open a selection set on the table. A situation where
CanSelect will be False is a standalone database table without an OID column.

TABLE CLASS

The Search, Insert, and Update methods
create different kinds of cursors for operating on
individual rows. See the section on cursors later

in this chapter.



778 • Exploring ArcObjects • Volume 2

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Table
IClass
ITable

ITableCapabilities

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

An object class is a type of table contain-
ing row objects that represent entities,

each of which is modeled as an individual
object with properties and behavior.

In this sense, the table must be registered with
the geodatabase to be an object class since the

geodatabase is responsible for linking object
behavior with database rows.

Exceptions to the notion that object classes are
registered in the geodatabase are coverages,

INFO™ tables, shapefiles, nonregistered ArcSDE
layers, and nonregistered DBMS tables. These
are also considered as valid object classes in
order to keep a simple object model while

providing rich functionality in ArcGIS applications.
A subset of intrinsic geodatabase behavior, such

as subtypes and relationships, may be unavailable
with these nonregistered object classes.

An object class is a table whose rows represent entities, modeled as
objects with properties and behavior. The row objects handed out by an
object class support the IRow and the IObject interfaces.

An object class may participate in any number of relationship classes
that relate its instances to objects (entities) in other object classes.

An object class may contain a discriminating field, referred to as the
subtype field, that may be used to partition its instances into a number
of subtypes. All subtypes share the same field definition and are stored
in the same table; however, individual subtypes may differ in the de-
fault values and domains assigned to fields. The subtyping mechanism
can also be used in defining attribute and connectivity rules that apply
to the instances of the object class. The subtyping mechanism is a light-
weight alternative to creating multiple subclasses, and each is repre-
sented by its own object class.

An object class has a nonnegative object class ID that is unique within
the geodatabase. This ID is assigned to the object class at the time that
it is created or at the time that an existing table in the RDBMS is regis-
tered with the geodatabase as an object class. The Name of the object
class is the same as the name of the table in the DBMS in which the
objects in the object class are stored; it follows the same fully qualified
naming conventions.

An object class may have an AliasName property that is stored as part
of its definition by the geodatabase. The AliasName may be retrieved
and used for display purposes by applications.

An object class may have a ModelName property that is stored as part of
its definition by the geodatabase. The model name is not exposed to end
users and, if defined, can be used as a search key to find an object class
by a standard model name that is adhered to across databases. A model
name must be unique across the workspace.

 IObjectClass : IClass Provides access to members that return information about
an object class.

AliasName: String The alias name of the object class.
ObjectClassID: Long The unique ID for the object class.
RelationshipClasses (in role:

esriRelRole) : IEnumRelationshipClass
The relationship classes in which this object class participates in for

the specified role.

All object classes support the IObjectClass interface; this interface in-
herits from the IClass interface. The CLSID, EXTCLSID, and Extension
for an ObjectClass may be obtained via the corresponding methods inher-
ited from IClass.

For programming convenience, preexisting tables in the host RDBMS
also support the IObjectClass interface even if they have not been regis-
tered with the geodatabase. Such tables can be distinguished from regis-
tered object classes because they return an ObjectClassID of -1 and
return False to the HasOID method. New object classes in a geodatabase
that are created using the CreateTable method on the IFeatureWorkspace

OBJECTCLASS CLASS



Chapter 8 • Accessing the geodatabase • 779

G
eo

d
at

ab
as

e

interface are automatically registered with the geodatabase and assigned an
object class ID.

If no AliasName has been defined for an object class, then the
AliasName is equal to the Name.

The RelationshipClasses property can be used to retrieve the relationship
classes in which the ObjectClass participates with a specified role (ori-
gin, destination, or both). The following example illustrates its use.

  Dim pRelClass As IRelationshipClass

  Dim pEnumRelClass As IEnumRelationshipClass

  Set pEnumClass = pObjectClass.RelationshipClass (esriRelRoleAny)

  Set pRelClass = pEnumRelClass.Next

  Do Until pRelClass Is Nothing

    MsgBox pRelClass.OriginClass.AliasName & ":" & _

       pRelClass.DestinationClass.AliasName

    Set pRelClass = pEnumRelClass.Next

  Loop

 IClassSchemaEdit : IUnknown Provides access to member to modify an object class
schema.

AlterAliasName (in Name: String) The alias name of the object class.
AlterClassExtensionCLSID (in

ClassExtensionCLSID: IUID, in
classExtensionProperties:
IPropertySet)

Changes the class extension COM class associated with this database
class.

AlterDefaultValue (in FieldName: String,
in Value: Variant)

The default value of the object class field.

AlterDomain (in FieldName: String, in
Domain: IDomain)

The default domain of the object class field.

AlterFieldAliasName (in FieldName:
String, in AliasName: String)

The alias name of the object class field.

AlterFieldModelName (in FieldName:
String, in ModelName: String)

The model name of the object class field.

AlterInstanceCLSID (in InstanceCLSID:
IUID)

Changes the instance COM class associated with this database class.

AlterModelName (in Name: String) The model name of the object class.
RegisterAsObjectClass (in

suggestedOIDFieldName: String, in
ConfigKeyword: String) : Long

Registers this class with the database, assigning it a class ID and
creating an object ID column.

 IClassSchemaEdit2 : IUnknown Provides access to modify an object class's extension
properties.

AlterClassExtensionProperties (in
classExtensionProperties:
IPropertySet)

Changes the class extension properties associated with this object
class.

The IClassSchemaEdit and IClassSchemaEdit2 interfaces are used to
modify the properties of an object class, such as the class extension,
model name, and so on. You can use the RegisterAsObjectClass method
in this interface to register a preexisting table with the geodatabase. This
process assigns the table an object class ID and creates an entry for the
object class in the geodatabase data dictionary.

Note that a table must be registered as an object class with the geodata-
base before schema properties, such as the CLSID, may be assigned
or modified.

OBJECTCLASS CLASS

IClassSchemaEdit modifies the properties of
an object class. Use ISchemaLock in conjunc-

tion with this interface.



780 • Exploring ArcObjects • Volume 2

When using these interfaces to alter an object class, you should first
acquire an exclusive lock using the ISchemaLock interface. This will
ensure that another application or user does not have the class open
while you are trying to modify its schema.

 IModelInfo : IUnknown Provides access to the model name of the field.

ModelName: String The model name of the field.

The IModelInfo interface can be used to access the model name of the
object class. You can alter the model name with either IModelInfo or
IClassSchemaEdit. Note that IModelInfo is also available on the light-
weight TableName object.

 ISubtypes : IUnknown Provides access to members that return and modify subtype
information.

DefaultSubtypeCode: Long The default subtype associated with the class.
DefaultValue (in SubtypeCode: Long, in

FieldName: String) : Variant
The default value for the associated attribute.

Domain (in SubtypeCode: Long, in
FieldName: String) : IDomain

The domain given the subtype and field.

HasSubtype: Boolean True if the table has subtypes.
SubtypeFieldIndex: Long The subtype field index.
SubtypeFieldName: String The subtype field name.
SubtypeName (in SubtypeCode: Long) :

String
The subtype name.

Subtypes: IEnumSubtype The subtypes associated with the class.

AddSubtype (in SubtypeCode: Long, in
SubtypeName: String)

Adds the subtype to the set of associated subtypes.

DeleteSubtype (in SubtypeCode: Long) Deletes the subtype from the set of associated subtypes.

The ISubtypes interface is used to manage and query the subtypes, do-
mains, and default values associated with an object class. Some of these
properties can also be set—default subtype codes, the field containing
the subtype code, default values, and the domain associated with a field
subtype pair. Domains are discussed later in this chapter.

Every ObjectClass has a default subtype code. If the user has not explic-
itly specified a default subtype or a subtype field, then
DefaultSubtypeCode will return a subtype code of 0. Additionally, you
can query the HasSubtype property—a value of False indicates an ab-
sence of a default subtype code, True indicates the presence of a de-
fault subtype code.

If the client instead asks for the enumeration of subtypes associated
with an ObjectClass and no subtype has been previously added to the
ObjectClass, then the enumerator will contain a single entry with a code
of 0. The subtype field index value will be -1 if a default subtype has
not been previously specified. Subtypes may only be short or long
integers (esriFieldTypeSmallInteger or esriFieldTypeInteger). If a subtype
code already exists when you set the default subtype code, it will be
deleted. A subtype field must have been specified prior to setting the
subtype code value.

OBJECTCLASS CLASS

Although all objects in a feature class or object
class must have the same behavior and

attributes, not all objects have to share the
same default values and validation rules. You can

group features and objects into subtypes.
Subtypes differentiate objects based on their

rules.



Chapter 8 • Accessing the geodatabase • 781

G
eo

d
at

ab
as

e

Every type of field, except for esriFieldTypeShape, may have a default
value. When setting the default value (which may be assigned on a
subtype basis), it will be checked against the field’s associated Domain
(if one exists) for validity.

 IValidation : IUnknown Provides access to members that manage rules and validate
them.

Rules: IEnumRule The rules associated with the class.
RulesByField (in FieldName: String) :

IEnumRule
The rules associated with the attribute.

RulesBySubtypeCode (in SubtypeCode:
Long) : IEnumRule

The rules associated with the subtype.

AddRule (in rule: IRule) Adds the rule to the set of associated rules.
DeleteRule (in rule: IRule) Deletes the rule from the set of associated rules.
Validate (in Selection: IQueryFilter, in

Workspace: IWorkspace) :
ISelectionSet

Validates the selection.

ValidateSelection (in Selection:
ISelectionSet, in Workspace:
IWorkspace) : ISelectionSet

Validates the selection.

ValidateSet (in Selection: ISet) : ISet Validates the set.

 IValidation2 : IUnknown Validation Interface

AlterRule (in rule: IRule) Alters the existing validation rule.

The IValidation and IValidation2 interfaces are used when triggering the
validation process on an ObjectClass.

The IValidation interface serves two primary roles. First, all rule manage-
ment behavior is exposed. Second, methods are provided for triggering the
validation process on either sets of objects, selection sets of objects, or by
objects that are specified via a QueryFilter. Note that it is also possible to
trigger validation on a single object via the IValidate interface found on the
Row object. If the QueryFilter is null, then validation is across all objects in
the class. Objects found to be invalid are returned in either Sets or
SelectionSets, depending on the validation method being called. Validation is
only supported on SQL-based datasets.

Error messages indicating why the returned objects are invalid are not pro-
vided. In order to determine why the object is invalid, you must call
IValidate::Validate on the object. A string containing the reason why the
object is invalid is returned. Only the first of possibly many reasons is pro-
vided. This is a side effect of the validation process—once an object is
determined to be invalid, continued validation on the object ceases and it is
added to the returned collection of invalid objects.

The AlterRule method is used to change the characteristics of an existing
rule. At ArcGIS 8.1 it can only be used to change connectivity rules.

The following VBA code fragment validates all the objects in the object
class, then displays a message box indicating why each of the invalid objects
is considered invalid.

  Dim pValidation as IValidation, pSelectionSet as ISelectionSet

  Set pValidation = pObjectClass

  'Validate all of the objects in the object class

OBJECTCLASS CLASS

IValidation provides methods to carry out
validation and also to manage rules.

There are two similarly named interfaces:
IValidation validates sets of objects, whereas
IValidate validates a single object and returns

the reason for invalidity.



782 • Exploring ArcObjects • Volume 2

  Set pSelectionSet = pValidation.Validate(nothing, pWorkspace)

  If pSelectionSet.Count = 0 Then Exit Sub

  Dim pIDs as IEnumIDs

  Set pIDs = pSelectionSet.IDs

  'Iterate through each of the invalid objects in the selection set

  Dim i as Long, lID as Long, pRow as IRow, pValidate as IValidate

  For i = 0 To (pSelectionSet.Count – 1)

    lID = pIDs.Next

    Set pRow = pTable.GetRow(lID)

    Set pValidate = pRow

    MsgBox "Invalid Object:" & lID & vbCr & "Reason: " & _

      pValidate.Validate

  Next i

 IObjectClassInfo : IUnknown Object Class Information.

CanBypassStoreMethod: Boolean True if updates to objects can bypass the Store method and
OnChange notifications for efficiency.

 IObjectClassInfo2 : IUnknown Provides access to method that indicates whether an
object can be modified outside of an edit session.

CanBypassEditSession: Boolean Indicates if updates to objects can be safely made outside of an
edit session.

CanBypassStoreMethod: Boolean Indicates if updates to objects can bypass the Store method and
OnChange notifications for efficiency.

The IObjectClassInfo and IObjectClassInfo2 interfaces provide some
additional information on object classes that may be of interest to some
applications.

CanBypassStoreMethod is a convenience method that returns True if the
instances of this object class have no custom behavior associated with
creating or updating objects, and if the object class does not participate
in composite relationship classes or in relationship classes that require
object notification.

A return value of True implies that insert cursors handed out by the
geodatabase will internally bypass the CreateRow and Store mechanisms
when creating objects. A return value of False indicates that insert cur-
sors will not bypass custom Store or OnChanged behavior implemented
by the custom row object for this class.

By default, this method returns False for custom object classes. The
developer of a custom object class can change this behavior by imple-
menting this interface on the class extension associated with the class,
then returning True for the method.

CanBypassEditSession is a convenience method that returns True if the
instances of this object class can be created or updated outside of a
geodatabase edit session (an edit session is begun using the StartEditing
method on the IWorkspaceEdit interface supported by a workspace).

OBJECTCLASS CLASS

CanBypassStore indicates whether or not it is
essential to use IRow::Store when changing an

object.



Chapter 8 • Accessing the geodatabase • 783

G
eo

d
at

ab
as

e

OBJECTCLASS CLASS

If True is returned, then applications may update the data in this object class
using any of the data-updating interfaces and methods described here without
starting an edit session. In this case, applications are responsible for starting host
database transactions as appropriate, and for discarding cached object states
across transaction boundaries when running on a multiuser database.

If False, then applications should make modifications to the data in this object
class within an edit session for correct multiuser behavior, and for correct man-
agement of database states internally cached by the geodatabase for the objects in
this object class.

This method returns False for network feature classes. By default, this method
returns True for nonnetwork custom object classes. The developer of a
nonnetwork custom object class can change this behavior by implementing this
interface on the class extension associated with the class, then returning True for
the method.



784 • Exploring ArcObjects • Volume 2

FEATURECLASS CLASS

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Table
IClass
ITable

ITableCapabilities

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Feature-
Class

IFeatureClass
IFeatureClassLoad

(optional)
IFeatureClassWrite

IGeoDataset
INetworkClass

A feature class is an object class whose
objects are features.

Typically, features in a feature class are closely
related thematically. That is, a hydrology feature

class would have features  such as permanent
streams, intermittent streams, and rivers. For
guidance on structuring feature types within a
geodatabase, see Modeling Our World: The

ESRI Guide to Geodatabase Design.

A FeatureClass is an ObjectClass whose objects are features, that is, a
feature class is a collection of spatial entities, modeled as objects with
properties and behavior. All of the features in a feature class share the
same attribute schema (they have the same set of named fields). The
row objects handed out by a feature class support the IRow, IObject, and
IFeature interfaces.

A feature class has a distinguished field of type Geometry, referred to as
the shape field. The shape field stores the geometry (referred to as the
shape property) for the features in the FeatureClass.

 IFeatureClass : IObjectClass Controls the behavior and properties of a feature class.

AreaField: IField The geometry area field.
FeatureClassID: Long The unique ID for the Feature Class.
FeatureDataset: IFeatureDataset The feature dataset that contains the feature class.
FeatureType: esriFeatureType The type of features in this feature class.
LengthField: IField The geometry length field.
ShapeFieldName: String The name of the default shape field.
ShapeType: tagesriGeometryType The type of the default shape for the features in this feature class.

CreateFeature: IFeature Create a new feature, with a system-assigned object ID and null
property values.

CreateFeatureBuffer: IFeatureBuffer Create a feature buffer that can be used with an insert cursor.
FeatureCount (in QueryFilter:

IQueryFilter) : Long
The number of features selected by the specified query.

GetFeature (in ID: Long) : IFeature Get the feature with the specified object ID.
GetFeatures (in fids: Variant, in

Recycling: Boolean) : IFeatureCursor
Get a cursor of rows given a set of object IDs.

Insert (in useBuffering: Boolean) :
IFeatureCursor

Returns a cursor that can be used to insert new features

Search (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Returns an object cursor that can be used to fetch feature objects
selected by the specified query.

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Returns a selection That contains the object ids selected by the
specified query.

Update (in Filter: IQueryFilter, in
Recycling: Boolean) : IFeatureCursor

Returns a cursor that can be used to update features selected by the
specified query

The properties exposed in the IFeatureClass interface can be used to
obtain key information about a FeatureClass.

The ShapeField property returns the name of the Field that stores the
shape values for features in the class. The AreaField and LengthField
properties return the names of the fields that store the area and length
of the feature as derived from the value of its shape if the underlying
spatial database maintains such fields.

The ShapeType property returns the geometry type of the ShapeField.

The FeatureType property returns the enumerated base type for the
features stored in this feature class, such as esriFTSimple,
esriFTAnnotation, or esriFTComplexEdge. A custom feature with complex
behavior will return a feature type based on the base class from which it
is derived.

The FeatureClassID for a feature class is identical to the ObjectClassID
for the feature class obtained via the IObjectClass interface.

The FeatureDataset property returns a reference to the containing feature
dataset if this feature class is not a standalone feature class.

Many of the IFeatureClass methods are
equivalent to ITable methods, except feature-

based interfaces, rather than row-based
interfaces, are returned.



Chapter 8 • Accessing the geodatabase • 785

G
eo

d
at

ab
as

e

Note that some of the above properties are directly available on the
feature class name object and can be used by browsing applications
without instantiating a feature class object.

This code example uses the table of contents in ArcMap to get a
FeatureClass object.

  Dim pFeatcls As IFeatureClass

  Dim pFeatLayer As IFeatureLayer

  Dim pDoc As IMxDocument

  Dim pMap As IMap

  Dim pDoc As ThisDocument

  Set pMap = pDoc.Maps.Item(0)

  Set pFeatLayer = pMap.Layer(0)

  Set pFeatcls = pFeatLayer.FeatureClass

This code example uses the Workspace object to return a FeatureClass
object.

  Dim pFact As IWorkspaceFactory

  Dim pWorkspace As IWorkspace

  Dim pFeatws As IFeatureWorkspace

  Dim pFeatcls As IFeatureClass

  Set pFact = New AccessWorkspaceFactory

  Set pWorkspace = pFact.OpenFromFile("C:\data\usa.mdb", 0)

  Set pFeatws = pWorkspace

  Set pFeatcls = pFeatws.OpenFeatureClass("states")

The IFeatureClass interface also has additional methods (described
below) that allow you to query, select, insert, update, and delete features
from the feature class. These methods are redundant given the corre-
sponding methods in ITable but are provided for convenience. For a
more complete description, see the documentation of the corresponding
methods in ITable.

Calling the CreateFeature and GetFeature methods on a feature class (via
the IFeatureClass interface on the feature class) has the same effect as
calling the CreateRow and GetRow methods on the FeatureClass (via the
ITable interface on the feature class), except that the IFeatureClass meth-
ods return IFeature interfaces on the returned row object.

Calling the CreateFeatureBuffer method in IFeatureClass has the same
effect as calling the CreateRowBuffer interface in ITable, except that the
IFeatureClass methods return an IFeatureBuffer interface on the created
row buffer.

Calling the GetFeatures method in IFeatureClass has the same effect as
calling the GetRows method in ITable, except that the IFeatureClass
method returns the IFeatureCursor interface on the returned cursor.

Calling the Search, Update, and Insert methods in IFeatureClass has the
same effect as calling the corresponding methods in ITable except that
the IFeatureClass methods return the IFeatureCursor interface on the
returned cursor.

FEATURECLASS CLASS



786 • Exploring ArcObjects • Volume 2

Calling the Select method in IFeatureClass has the same effect as calling
the corresponding method in ITable.

 INetworkClass : IFeatureClass Provides access to members that return information about
geometric networks, field weighting, and ancillary roles.

FieldToWeightMapping (in FieldIndex:
Long) : Long

The specified field to Weight mapping for the logical network.

GeometricNetwork: IGeometricNetwork The geometric network in which this class participates.
NetworkAncillaryRole:

esriNetworkClassAncillaryRole
The possible network ancillary roles of the contained Features.

The INetworkClass interface is supported by feature classes that partici-
pate in a geometric network. The FeatureType property of such feature
classes will be either esriFTSimpleJunction, esriDTSimpleEdge,
esriFTComplexJunction, or esriFTComplexEdge.

The GeometricNetwork property returns a reference back to the geomet-
ric network in which this network feature class participates.

The NetworkAncillaryRole property returns the network ancillary role
played by this feature class in the geometric network.

Enumeration
esriNetworkFeatureAncillaryRole

NetworkFeature Ancillary Role types.

0 - esriNFARNone Ancillary Role None.
1 - esriNFARSource Ancillary Role Source.
2 - esriNFARSink Ancillary Role Sink.

These are the valid constants for the NetworkAncillaryRole property.

The FieldToWeightMapping property returns the numeric index of the
network weight to which the specified input field in the feature class is
mapped. A value of -1 indicates that the specified field is not a network
weight field.

 IFeatureClassLoad : IUnknown Provides access to the load mode of a GDB feature class.

LoadOnlyMode: Boolean True if the feature class is in load-only mode.

IFeatureClassLoad is an optional interface that is supported by feature
classes in an ArcSDE database and can be used to improve the perfor-
mance of data loading.

Putting a feature class in load-only mode drops the spatial index on the
feature class prior to data loading.

Taking a feature class out of load-only mode rebuilds the spatial index
after data loading.

While a feature class is in load-only mode, other applications cannot
work with the feature class. A feature class should be placed in load-
only mode only after acquiring an exclusive schema lock on the feature
class via the ISchemaLock interface.

FEATURECLASS CLASS

INetworkClass can be used on feature classes
taking part in a geometric network.

IFeatureClassLoad will toggle load-only mode
for a feature class.



Chapter 8 • Accessing the geodatabase • 787

G
eo

d
at

ab
as

e

 IFeatureClassWrite : IUnknown Provides access to low level.

RemoveFeature (in Feature: IFeature) Deletes a feature from the database, does not trigger OnDelete
event.

RemoveFeatures (in features: ISet) Deletes a set of features from the database, does not trigger
OnDelete events.

WriteFeature (in Feature: IFeature) Stores a feature to the database, does not trigger OnStore event.
WriteFeatures (in features: ISet) Stores a set of features to the database, does not trigger OnStore

events.

The IFeatureClassWrite interface provides low-level write access to fea-
ture class data. Any associated object behavior is not triggered.

FEATURECLASS CLASS

In general, IFeatureClassWrite should only be
used when implementing custom features that

bypass IFeature::Store.



788 • Exploring ArcObjects • Volume 2

Each table in a database has an ordered collection of fields; there is
always at least one field in a table. The ordered collection behaves like
a list, so it is possible to access individual fields by a numbered position
(or index) in the list.

A Fields collection can also exist independently of a table; for example,
when creating an index on a table you need to define which fields take
part in the index. There are many interfaces that either require or return
a Fields collection; these include IClass (therefore also IObjectClass and
IFeatureClass), ICursor, IIndex, IFeatureClassDraw, IRowBuffer, ISimple-
DataConverter, ITableSort, and IValidate.

 IFields : IUnknown Provides access to members that return information about
the fields.

Field (in Index: Long) : IField The field at the specified index in the fields collection.
FieldCount: Long The number of fields in the fields collection.

FindField (in Name: String) : Long Finds the index of the named field in the fields collection.
FindFieldByAliasName (in Name: String)

: Long
Finds the index of the field with the alias name in the fields collection.

The IFields interface provides information about a Fields collection and
provides access to individual fields. This example finds any fields in a
feature class that have a distinct alias name.

  Set pFields = pFeatureClass.Fields

  For i = 0 To (pFields.FieldCount - 1)

    Set pField = pFields.Field(i)

    If (pField.Name <> pField.AliasName) Then

      Debug.Print pField.Name & ":" & pField.AliasName

    End If

  Next i

When using IFields::FindField, remember that there are equivalent meth-
ods on IClass and ICursor—they are shortcuts that save you from having
to get the Fields collection.

When programming with ArcMap, there is a distinction between IFields
and two other interfaces, ILayerFields and ITableFields. ILayerFields is
particular to an ArcMap layer so, for example, an alias name belongs to
the field as defined in that layer rather than being stored with the under-
lying table.

 IFieldsEdit : IFields Provides access to members that modify a fields collection.

Field (in Index: Long) : IField The field at the specified position.
FieldCount: Long The number of fields in this field collection.

AddField (in Field: IField) Add a field to the fields collection.
DeleteAllFields Delete all the fields from the fields collection.
DeleteField (in Field: IField) Delete a field from the fields collection.

The IFieldsEdit interface is used when creating a fields collection. You
cannot use it to insert a new field in the middle of a Fields collection
that belongs to an existing table.

Fields
IFields

IFields2
IFieldsEdit

The Fields object represents a collection
of columns in a table. The term field is

synonymous with column.

FIELDS AND FIELD CLASSES

When changing the schema of a table in a
multiuser environment, for example, by adding or

deleting fields, you should first gain an exclusive
schema lock on the table. For more details, see

the section on ISchemaLock.



Chapter 8 • Accessing the geodatabase • 789

G
eo

d
at

ab
as

e

A field has many properties, the most obvious ones being name and
datatype. The esriFieldType enumeration lists the possible datatypes.

This table shows the equivalent field data types in the ArcCatalog user
interface, ArcObjects™, Visual Basic®, and a selection of DBMSs.

image

int

int

datetime

varchar

float(8), or numeric
if precision and scale

specified

float(8), or numeric
if precision and scale

specified

int

smallint

Blob

Geometry

Object ID

Date

Text

Double

Float

Long Integer

Short Integer

LONG RAW or BLOB,
dependent on configuration

NUMBER(9) ) or
SDO_GEOMETRY,

dependent on configuration

NUMBER(9)

DATE

VARCHAR2

NUMBER

NUMBER

NUMBER

NUMBER

esriFieldTypeBlob

esriFieldTypeGeometry

esriFieldTypeOID

esriFieldTypeDate

esriFieldTypeString

esriFieldTypeDouble

esriFieldTypeSingle

esriFieldTypeInteger

esriFieldTypeSmallInteger

OLE Object

OLE Object

AutoNumber
(Long Integer)

Date/Time

Text

Number
(Double)

Number
(Single)

Number (Long
Integer)

Number
(Integer)

vbObject

vbDataObject

vbLong

vbDate

vbString

vbDouble

vbSingle

vbLong

vbInteger

ArcCatalog
IFields::Type

(esriFieldType)
IFields::VarType

(VBA variable type) Access SQL Server Oracle

Field objects are not appropriate for use with INFO-based data such as
coverages. The equivalent object is an ArcInfoItem. For more details, see
the section on coverage-specific interfaces.

 IField : IUnknown Provides access to members that return information about
the field.

AliasName: String The alias name of the field.
DefaultValue: Variant The default value of the field.
Domain: IDomain The default domain of the field.
DomainFixed: Boolean True if the field's domain is fixed.
Editable: Boolean True if the field is editable.
GeometryDef: IGeometryDef The geometry definition for the field if IsGeometry is TRUE.
IsNullable: Boolean True if the field can contain null values.
Length: Long The maximum length, in bytes, for values described by the field.
Name: String The name of the field.
Precision: Long The precision for field values.
Required: Boolean True if the field is required.
Scale: Long The scale for field values.
Type: esriFieldType The type of the field.
VarType: Long The VARTYPE of the field (e.g. VT_I4).

CheckValue (in Value: Variant) :
Boolean

True if the value is valid given the field definition.

This example adds all the editable, nonshape fields to a combobox.

  Dim i As Long

  Dim pField As IField

  For i = 0 To (pFields.FieldCount - 1)

    Set pField = pFields.Field(i)

    If (pField.Editable And pField.Type <> esriFieldTypeGeometry) Then

        Form1.myComboBox.AddItem (pField.AliasName)

    End If

  Next i

Field
IField

IFieldEdit
IModelInfo

The field object represents a column in a
table.

The IField interface is used for read-only access
to the field’s properties.

FIELDS AND FIELD CLASSES



790 • Exploring ArcObjects • Volume 2

 IFieldEdit : IField Provides access to members that edit the field properties.

AliasName: String The alias name of the field.
DefaultValue: Variant The default value of the field.
Domain: IDomain The default domain of the field.
DomainFixed: Boolean True if the field's domain cannot be modified.
Editable: Boolean Determines if the field can be edited. This should always be set to

True.
GeometryDef: IGeometryDef The geometry definition if IsGeometry is True.
IsNullable: Boolean True if field values can be null.
Length: Long The maximum length, in bytes, for field values.
Name: String The name of the field.
Precision: Long The precision for field values.
Required: Boolean True if the field is required.
Scale: Long The scale for field values.
Type: esriFieldType The type for the field.

This example creates a new table with two fields. Note the use of
IFieldsEdit::FieldCount to set the number of fields that are to be added.

Public Sub CreateNewTable(sName As String, pFeatWorkspace As IFeatureWorkspace)

    Dim pTable As ITable

    Dim pField As IField

    Dim pFields As IFields

    Dim pFieldEdit As IFieldEdit

    Dim pFieldsEdit As IFieldsEdit

    'Create new Fields collection

    Set pFields = New Fields

    Set pFieldsEdit = pFields

    pFieldsEdit.FieldCount = 2

    'Create Object ID Field

    Set pField = New Field

    Set pFieldEdit = pField

    With pFieldEdit

        .Name = "OBJECTID"

        .AliasName = "FID"

        .Type = esriFieldTypeOID

    End With

    Set pFieldsEdit.Field(0) = pField

    'Create text Field

    Set pField = New Field

    Set pFieldEdit = pField

    With pFieldEdit

        .Length = 30

        .Name = "Owner"

        .Type = esriFieldTypeString

    End With

    Set pFieldsEdit.Field(1) = pField

    Set pTable = pFeatWorkspace.CreateTable(sName, pFields, _

                        Nothing, Nothing, "")

End Sub

The IFieldEdit interface is used when creating
new fields. You should not use it to modify fields;

use IClassSchemaEdit for that purpose. In
general, when modifying fields, the restrictions

that apply in ArcCatalog also apply in ArcObjects;
for example, you cannot change the name or

type of a field.

When a Field is created, the Editable property
is set to True by default. If the Editable

property has been set to False, it may not be
reset to True. However, an Editable property

set to True can be reset to False.

FIELDS AND FIELD CLASSES



Chapter 8 • Accessing the geodatabase • 791

G
eo

d
at

ab
as

e

The GeometryDef coclass can be accessed from a shape field, a field of
type esriFieldTypeGeometry. The actual geometry type is defined by the
esriGeometryType enumeration, although currently only four values are
acceptable with respect to GeometryDef objects: esriGeometryPoint,
esriGeometryMultipoint, esriGeometryPolyline, and esriGeometryPolygon.

Beware of confusion between the esriGeometryType enumeration and
the similarly named esriFeatureType and esriShapeType.

IFeature::FeatureType
IFeatureClass::FeatureType
IFeatureClassDescription::FeatureType
IFeatureWorkspace::CreateFeatureClass
IFeatureDataset::CreateFeatureClass

also, IGeometricNetwork and
INetworkLoader

IFeatureClass::ShapeType
IGeometry::GeometryType
IGeometryDef::GeometryType

also
IGeometryDefEdit,
IGeometryFactory,
IEditSketchExtension,
IGridConversionOp,
IDimensionConstructor

see ArcObjects help for full list IESRIShape, IGeometryFactory

esriFTSimple
esriFTSimpleJunction
esriFTSimpleEdge
esriFTComplexJunction
esriFTComplexEdge
esriFTAnnotation
esriFTCoverageAnnotation
esriFTDimension

esriGeometryPoint
esriGeometryMultipoint
esriGeometryPolyline
esriGeometryPolygon
esriGeometryNull
esriGeometryAny
esriGeometryBag
esriGeometryLine
esriGeometryCircularArc
esriGeometryEllipticArc
esriGeometryBezier3Curve
esriGeometryPath
esriGeometryRing
esriGeometryEnvelope
esriGeometryMultiPatch
esriGeometryTriangleStrip
esriGeometryTriangleFan
esriGeometryRing3D
esriGeometryRay
esriGeometrySphere

esriFeatureType

Feature types defined by
feature class extensions

esriGeometryType

Type of geometry in a
geodatabase. Those in bold
are valid for feature classes,
others are component
geometry types.

esriShapeType

Type of geometry in a
shapefile

ArcObjects Enumeration Values Interfaces that use the enumeration

This table shows the different roles of these enumerations:

 IGeometryDef : IUnknown Provides access to members that return information about
the geometry definition.

AvgNumPoints: Long Estimated average number of points per feature.
GeometryType: tagesriGeometryType The enumerated geometry type.
GridCount: Long The number of spatial index grids.
GridSize (in Index: Long) : Double The size of a spatial index grid.
HasM: Boolean True if the feature class has measure (m) values.
HasZ: Boolean True if the feature class has z-values.
SpatialReference: ISpatialReference The spatial reference for the dataset.

The IGeometryDef interface provides read-only access to the Geometry-
Def properties. The code below shows how to get to IGeometryDef from
a feature class.

  Dim lGeomIndex As Long

  Dim sShpName As String

  Dim pFields As IFields

  Dim pField As IField

  Dim pGeometryDef As IGeometryDef

Geometry-
Def

IGeometryDef
IGeometryDefEdit

The GeometryDef object defines the
spatial qualities of a feature class. The
most fundmental spatial quality is the

Geometry type, for example, point, line,
and polygon. Other information necessary

to define the feature class includes the
spatial referencing system, whether the

vertices have height or measure data,
and, for geodatabases, the spatial index

parameters.

GEOMETRYDEF CLASS



792 • Exploring ArcObjects • Volume 2

  sShpName = pFeatureClass.ShapeFieldName

  Set pFields = pFeatureClass.Fields

  lGeomIndex = pFields.FindField(sShpName)

  Set pField = pFields.Field(lGeomIndex)

  Set pGeometryDef = pField.GeometryDef

The AvgNumPoints, GridCount, and GridSize properties are all attributes
of the geodatabase spatial index. Shapefiles will return 0 for GridCount.

 IGeometryDefEdit : IGeometryDef Provides access to members that modify the geometry
definition.

AvgNumPoints: Long The estimated average number of points per feature.
GeometryType: tagesriGeometryType The geometry type.
GridCount: Long The number of spatial index grids.
GridSize (in Index: Long) : Double The size of a spatial index grid.
HasM: Boolean True if the feature class will support m-values.
HasZ: Boolean True if the feature class will support z-values.
SpatialReference: ISpatialReference The spatial reference of the dataset.

The IGeometryDefEdit interface is used when creating a GeometryDef
object. You would normally use this interface when defining a new
feature class.

You cannot use IGeometryDefEdit to modify an existing GeometryDef that
is attached to a feature class. Use IGeoDatasetSchemaEdit to make
changes in this way.

This code fragment shows IGeometryDefEdit being used in the creation
of a new shape field. Note that the spatial reference is not set, so the
resulting feature class will either have an unknown spatial reference or
be inherited from a feature dataset.

  Dim pField As IField, pFields As IFields

  Dim pFieldEdit As IFieldEdit, pFieldsEdit As IFieldsEdit

  'Create new Fields collection

  Set pFields = New Fields

  Set pFieldsEdit = pFields

  pFieldsEdit.FieldCount = 1

  Dim pGeoDef As IGeometryDef, pGeoDefEdit As IGeometryDefEdit

  Set pGeoDef = New GeometryDef

  Set pGeoDefEdit = pGeoDef

  With pGeoDefEdit

    .GeometryType = esriGeometryPolyline

    .GridCount = 1

    .GridSize(0) = 200

  End With

  'Create Shape Field

  Set pField = New Field

  Set pFieldEdit = pField

  With pFieldEdit

    .Name = "SHAPE"

    .Type = esriFieldTypeGeometry

  Set .GeometryDef = pGeoDef

  End With

GEOMETRYDEF CLASS

IGeometryDefEdit is used to initialize a
GeometryDef object.



Chapter 8 • Accessing the geodatabase • 793

G
eo

d
at

ab
as

e

The Indexes collection object operates in a very similar way to the Fields
collection object.

 IIndexes : IUnknown Provides access to members that return information about
the index collection.

Index (in pos: Long) : IIndex The index at the specified position in the indexes collection.
IndexCount: Long The number of indexes in the indexes collection.

FindIndex (in Name: String, out pos:
Long)

Finds the position of the named index in the indexes collection.

FindIndexesByFieldName (in
FieldName: String) : IEnumIndex

The set of indexes for a given field name (if any).

The IIndexes interface provides access to individual indexes. It is ob-
tained from a table or feature class by using IClass::Indexes.

  Dim pIndexes as IIndexes

  Set pIndexes = pTable.Indexes

  MsgBox pIndexes.IndexCount

 IIndexesEdit : IIndexes Provides access to members that modify the indexes
collection.

Index (in pos: Long) : IIndex The index at the specified position.
IndexCount: Long The number of indexes in this indexes collection.

AddIndex (in Index: IIndex) Add an index to the indexes collection.
DeleteAllIndexes Delete all the indexes from the indexes collection.
DeleteIndex (in Index: IIndex) Delete an index from the indexes collection.

Although IIndexEdit inherits members from IIndex, Visual Basic requires
that you QI to IIndex to use those members that have the same name as
a member of IIndexEdit.

Spatial indexes exist on the shape field of a feature class. Some of the
spatial index parameters, for example, the grid size, are only accessible
through the GeometryDef object available from the shape field. The
spatial index is created automatically when a geodatabase feature class
is created, so you do not have to create the spatial index with
ArcObjects. However, it is possible to delete and re-create the spatial
index.

Attribute indexes are based on an ordered list of one or more fields in a
table. The order of the list determines which field is used first when
resolving data queries. There is a limit of ten fields in a geodatabase
attribute index.

For geodatabases, there is one attribute index that is automatically cre-
ated. This is the index on the Object ID. Another point to note is that
you can access indexes created in the native environment of the DBMS.

For shapefiles, both spatial and attribute indexes can be manipulated,
though note the usual limit of one field in an attribute index.

Index objects are not appropriate for use with INFO-based data such as
coverages. The equivalent functionality is available from the IArcInfo-
Table interface. For more details, see the section on
coverage-specific interfaces.

INDEXES AND INDEX CLASSES

Indexes
IIndexes

IIndexesEdit

The Indexes object represents a collec-
tion of indexes on a table.

Index
IIndex

IIndexEdit

The Index object represents an index on
a table. There are two types of indexes:

spatial and attribute.

Each of the IFieldEdit, IGeometryDefEdit, and
IIndexEdit objects have a similar relationship to
their shorter-named companion interfaces. With

Visual Basic, you cannot rely on the inherited
members when the member name is the same

in both interfaces.



794 • Exploring ArcObjects • Volume 2

 IIndex : IUnknown Provides access to members that return information about
the index.

Fields: IFields The fields collection for this index.
IsAscending: Boolean True if the index is based on ascending order.
IsUnique: Boolean True if the index is unique.
Name: String The name of the index.

This code extract shows a check on whether the index is spatial or
based on the geodatabase object ID. If not, it prints out the list of field
names.

  Dim j As Long

  Dim pFields As IFields

  Dim pField As IField

  Set pFields = pIndex.Fields

  Set pField = pFields.Field(0)

  If (pField.Type <> esriFieldTypeGeometry _

  And pField.Type <> esriFieldTypeOID) Then

    For j = 0 To pFields.FieldCount - 1

      Set pField = pFields.Field(j)

      Debug.Print pField.name

    Next

  End If

 IIndexEdit : IIndex Provides access to members that modify the index.

Fields: IFields The fields collection for this index.
IsAscending: Boolean True if the index is to be ascending.
IsUnique: Boolean True if the index is to be unique.
Name: String The name of the index.

IIndexEdit operates in a similar way to IFieldEdit. This code extract adds
a new index to a table.

Public Sub AddIndex(pTable As ITable, sFieldName As String)

  'Set up fields

  Dim pFields As IFields

  Dim pFieldsEdit As IFieldsEdit

  Dim pField As IField

  Dim i As Long

  Set pFields = New Fields

  Set pFieldsEdit = pFields

  pFieldsEdit.FieldCount = 1

  i = pTable.FindField(sFieldName)

  If (i = -1) Then

    MsgBox sFieldName & " not found"

    Exit Sub

  End If

  Set pField = pTable.Fields.Field(i)

  Set pFieldsEdit.Field(0) = pField

IIndex interface is used for read-only access to
the properties of an index.

The IIndexEdit interface is used when creating
new indexes. You cannot use IIndexEdit to

modify an existing index—to do this, delete and
re-create it.

INDEXES AND INDEX CLASSES



Chapter 8 • Accessing the geodatabase • 795

G
eo

d
at

ab
as

e

  Dim pIndex As IIndex

  Dim pIndexEdit As IIndexEdit

  Set pIndex = New Index

  'QI for IIndexEdit

  Set pIndexEdit = pIndex

  With pIndexEdit

    Set .Fields = pFields

    .name = "Idx_1"

  End With

  'Add index to table

  pTable.AddIndex pIndex

End Sub

When changing indexes on a table in a multiuser environment, you
should first gain an exclusive schema lock on the table. For more de-
tails, see the section on ISchemaLock.

INDEXES AND INDEX CLASSES



796 • Exploring ArcObjects • Volume 2

TABLESORT CLASS

The TableSort class allows control over the order in which rows are
returned from a table or feature class. To use TableSort, an instance of
the class is first created, then properties are set to specify the data and
the sort options, and finally a method is executed to perform the sort.
Once this is done, you can open a cursor or retrieve a sorted list of row
IDs.

 ITableSort : IUnknown Table Sorting Object.

Ascending (in Field: String) : Boolean Field sort order.
CaseSensitive (in Field: String) :

Boolean
Character fields case sensitive. Default: False.

Compare: ITableSortCallBack Compare call back interface. Specify Null (default) for normal
behavior.

Cursor: ICursor The cursor of the data to sort on. Ensure that sorting fields are
available. Cancels SelectionSet.

Fields: String Comma list of field names to sort on.
IDByIndex (in Index: Long) : Long Get an ID by its index value.
IDs: IEnumIDs List of sorted IDs.
QueryFilter: IQueryFilter Set query filter on table or selection set.
Rows: ICursor Cursor of sorted rows.
SelectionSet: ISelectionSet The selection set as a source of the data to sort on. Cancels Cursor.
SortCharacters (in Field: String) : Long Number of characters to sort on, for string fields. A null (default) sorts

on the whole string.
Table: ITable The table as a source of the data to sort on.

Sort (in pTrackCancel: ITrackCancel) Sort rows.

The ITableSort interface allows you to set properties, perform the sort,
and retrieve the data in sorted order.

The Fields and Table properties must always be set, but the rest are
optional.

The Fields property is a comma-delimited list of the fields to be sorted.
When the sort method is called, the first field is sorted, then the second
field, and so on. The Table property specifies the table or object class
on which the sort is to be performed. Alternatively, the Cursor property
may be used to indicate the data to be sorted. If you use the Cursor
property, you must also set the Table property to the table referenced by
the cursor.

The Ascending, CaseSensitive, Compare, QueryFilter, SelectionSet, and
SortCharacters properties may also be used to further define how the
data is to be sorted.

Once the desired sorting properties have been set, the sort method must
be called to order the rows. Either the Rows property or the IDs property
can then be used to access the data in sorted order. The following
example shows how to perform a sort on a Table from a personal geo-
database.

  Dim pTableSort As ITableSort

  Set pTableSort = New esriCore.TableSort

  Dim pQueryFilter As IQueryFilter

  Set pQueryFilter = New QueryFilter

  pQueryFilter.WhereClause = "[LAST_NAME] like 'A*'"

TableSort
ITableSort

A table sort controls the order in which
rows are returned from a table or object

class.



Chapter 8 • Accessing the geodatabase • 797

G
eo

d
at

ab
as

e

  With pTableSort

    .Fields = "last_name, first_name"

    .Ascending("last_name") = False

    .Ascending("first_name ") = True

    .CaseSensitive("last_name") = True

    .CaseSensitive("first_name ") = True

    Set .QueryFilter = pQueryFilter

    Set .Table = pTable

  End With

  pTableSort.sort Nothing

  Dim pCursor As ICursor

  Set pCursor = pTableSort.Rows

  Dim pRow As IRow

  Set pRow = pCursor.NextRow

  Do While Not pRow Is Nothing

    Debug.Print pRow.Value(2) & ",  " & pRow.Value(1)

    Set pRow = pCursor.NextRow

  Loop

A custom class that implements ITableSortCallBack can be used to
apply a user-defined sorting algorithm instead of the default. The Com-
pare property gives the TableSort object access to an instance of this
custom class.

TABLESORT CLASS

Using customization, you can sort objects on any
criteria.



798 • Exploring ArcObjects • Volume 2

A RowBuffer is a transient object that is capable of holding the state of a
row but has no object identity. It is used primarily during data loading
as the argument to the InsertRow method on an insert cursor. A Row-
Buffer is obtained from a Table using the CreateRowBuffer method.

 IRowBuffer : IUnknown Row Buffer Interface.

Fields: IFields The Fields collection for this row buffer.
Value (in Index: Long) : Variant Return the value of the field with the specified  index.

The IRowBuffer interface contains methods to access the state (the set of
field values) for a row buffer. These methods take as an argument the
numeric index of the field to be accessed.

RowBuffer
IRowBuffer

A row buffer is an object that is capable
of holding the state of a row. Row

buffers are used primarily during data
loading.

Row, object, and feature objects

A row buffer is used for data loading with cursors

A row is a record in a table. All rows in a
table have the same set of fields

An object is a row in a geodatabase table

A feature is a geographic object with a
geometric shape

RowBuffer
IRowBuffer

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

IFeatureSimplify

Object
IObject

IRowSubtypes

Row

IRelatedObjectEvents
IRow

IRowChanges
IRowCompare

IRowEdit
IRowEvents

IrowSubtypes
ISupportErrorInfo

IValidate



Chapter 8 • Accessing the geodatabase • 799

G
eo

d
at

ab
as

e

A Row object is an instantiated software object that represents a persis-
tent row in a Table. A row object is normally obtained from a cursor on
a table (for example, ICursor::NextRow) or fetched directly given its
object ID (for example, ITable::GetRow).

Once retrieved, clients may query the row object for additional inter-
faces and invoke methods on the row object. The CLSID property of a
Table determines the type of row object returned by the Table.

A new persistent row object is created using the ITable::CreateRow
method. The act of creating the row assigns it identity. Note that applica-
tions should use the CreateRow method to create new persistent row
objects, as opposed to directly cocreating the row objects. The latter will
not create a row in the underlying persistent store.

A Row has a set of Fields. The set of Fields for a Row is the same as the
set of Fields for its Table. In particular, the numeric index of a field in
the Fields collection of its table is the same as the numeric index of the
field in the Fields collection of the row, which is the same as the nu-
meric index used to access the value of the field from the row. This
means that application programs can and should cache field numeric
indexes using the FindField method on the Table object, rather than
invoking the FindField method once per row returned by a Cursor.

 IRow : IRowBuffer Row  Interface.

HasOID: Boolean True if the row has an OID.
OID: Long The OID for the row.
Table: ITable The table for the row.

Delete Deletes the row.
Store Stores the row.

The IRow interface inherits from IRowBuffer and includes methods to
get and set the values for the Fields in the Row, given the numeric index
of the Field for the Row, which is the same as the numeric index of the
Field in the Table for the Row (see note above).

The OID property returns the unique object identifier for the Row that
distinguishes it from other rows in the Table. If the HasOID property
returns False, then this row was returned from a Table that lacked a
geodatabase-managed OIDField.

The Store method is called by an application once it has modified the
values of a Row. Calling the Store method triggers the following actions:

1. The IRowEvents::OnChanged method is called for the Row being
stored (the OnNew method is called if this is a newly created row
being stored for the first time). A custom row object can implement
the IRowEvents::OnChanged method and take some special action
when it is called—for example, update a special column in the row.

2. The IRelatedObjectEvents::RelatedObjectChanged method is called for
related objects in a related object class if the table for this row is an
object class that participates in relationship classes with notification.

RowBuffer
IRowBuffer

Row

IRelatedObjectEvents
IRow

IRowChanges
IRowCompare

IRowEdit
IRowEvents

IrowSubtypes
ISupportErrorInfo

IValidate

The row object represents a persistent
row in a table that is being made avail-
able to application programs as a soft-

ware object that can be manipulated.

ROW CLASS



800 • Exploring ArcObjects • Volume 2

Once Store is called on a Row object, all subsequent queries against the
Table within the same edit session using the geodatabase API will reflect
the modified state of the row object.

The Delete method is called by an application to delete a row object from
the database. Calling the Delete method triggers the following actions:

1. The IRowEvents::OnDelete method is called for the Row being deleted.
A custom row object can implement the IRowEvents::OnDelete method
and take some special action when it is called.

2. All relationships in which the row object participates are automati-
cally deleted.

Once Delete is called on a Row object, all subsequent queries against the
Table within the same edit session using the geodatabase API will reflect
the deleted state of the row object.

The changes made to a row object using the Store and Delete methods
will be committed to persistent store if the containing edit session is
saved and no conflicts are detected. If the changes were made outside
of an edit session, then the application program is responsible for di-
rectly managing underlying database transactions using the ITransactions
interface on the Workspace.

This example shows the creation of a row, then an update, followed by
the deletion of the row.

  Dim pRow As IRow

  Dim i As Long

  i = pTable.FindField("Name")

  ' Insert Row

  Set pRow = pTable.CreateRow

  pRow.Value(i) = "Exploits"

  pRow.Store

  ' Update Row

  pRow.Value(i) = "Badger"

  pRow.Store

  ' Delete Row

  pRow.Delete

 
 IRowEdit : IUnknown Implement this interface to customize object editing.

DeleteSet (in Rows: ISet) Deletes the set of rows.

The DeleteSet method can be used to delete a set of rows from a Table.
The application program is responsible for collecting the set of row
objects to be deleted into a Set object. A single member of the set is
then arbitrarily picked and the DeleteSet method is invoked on the
picked row, passing the entire set (including the picked row) as
argument.

ROW CLASS

IRowEdit contains additional methods to edit
row objects. The IRowEdit interface contains

additional methods to edit row objects.

Calling IRow::Delete will also delete any
relationships the row has.



Chapter 8 • Accessing the geodatabase • 801

G
eo

d
at

ab
as

e

It is more efficient to call this method once rather than calling the Delete method
multiple times when the deleted row objects participate in relationships that need
to be automatically deleted.

 IRowEvents : IUnknown Row Events.

OnChanged An after event that is fired when a custom object is changed.
OnDelete An after event that is fired when a custom object is deleted.
OnInitialize An after event that is fired when a custom object is initialized.
OnNew An after event that is fired when a custom object is stored for the

first time.
OnValidate An after event that is fired when a custom object is validated.

The IRowEvents interface allows implementers of custom row objects to
take special action in response to changes made to the state of a row
object. The geodatabase calls the methods in the IRowEvents interface as
changes are made to the state of a row object (see the description of the
IRow::Store and IRow::Delete methods above).

The OnChanged method is called by the geodatabase when an applica-
tion program calls Store on an existing Row object.

The OnNew method is called by the geodatabase when an application
program calls Store on a newly created Row object.

The OnDelete method is called by the geodatabase when an application
program calls Delete on a Row object. In the case of network features,
the OnDelete method is called after any necessary connectivity updates
have been made. (For example, deleting a junction deletes the edge
features for which it serves as an endpoint junction.) Thus, it is not
possible, from within OnDelete, to navigate to other network features that
were connected prior to the initial Delete operation being called.

The OnInitialize method is called by the geodatabase after hydrating a
cocreated Row object with its state (its set of field values) but before
handing the Row to an application program. This is an opportunity for
the Row object to initialize further state and derived member variables.

The OnValidate method is unused (deprecated).

 IRowChanges : IUnknown Row Changes.

OriginalValue (in Index: Long) : Variant
ValueChanged (in Index: Long) :

Boolean

The IRowChanges interface allows clients of a row object to determine
the values that were changed for the row object within a Store cycle.
Once the Store method call returns to the calling application program,
the information regarding the values that were changed is cleared and is
no longer available. A custom object in its OnChanged or OnNew imple-
mentation and a related object in its implementation of the
RelatedObjectChanged method may make use of this information.

The ValueChanged method returns True if the value for the specified
field was changed since the last call to Store on the row object.

ROW CLASS

Use IRowEvents to implement custom row
objects.

IRowChanges lets you read the field values as
they were after the previous call to Store.



802 • Exploring ArcObjects • Volume 2

The OriginalValue method returns the value for the specified field as it existed
prior to the first update made to the row object since the last call to Store on the
row object.

 IValidate : IUnknown Provides access to members to validate individual features.

GetInvalidFields: IFields Returns all invalid fields.
GetInvalidRules: IEnumRule The set of all invalid rules.
GetInvalidRulesByField (in FieldName:

String) : IEnumRule
The set of all invalid rules for the specified field.

Validate (out errorMessage: String) :
Boolean

Validates the row.

The IValidate interface is used to test a row against the geodatabase
rules defined for its object class. While the IValidation interface will
validate a whole set of rows at once, IValidate operates on just one row;
this can be useful if you want to validate the row immediately. IValidate
also offers more detailed information on the failures; the Validate
method returns an error message; and the other methods help identify
what is wrong.

ROW CLASS

IValidate tests a row against its geodatabase
rules. See the section on domains and validation

rules later in this chapter.



Chapter 8 • Accessing the geodatabase • 803

G
eo

d
at

ab
as

e

An ObjectClass is a Table whose Row objects represent entities. The Row
objects handed out by an ObjectClass support the IRow and the IObject
interface and are referred to as Object objects or simply as Objects. An
alternative name for Object object in this context is Entity object.

 IObject : IRow Object Interface.

Class: IObjectClass The object class for the row.

The IObject interface is almost identical to IRow, from which it inherits.
The only additional property is a direct link to the object class. For
information on how to use this interface, see the discussion for IRow.

 IRowSubtypes : IUnknown Row Subtypes Interface.

SubtypeCode: Long The subtype for the row.

InitDefaultValues The default values of the row.

The instances of an ObjectClass may be partitioned into a number of
subtypes. The IRowSubtypes interface on an Object contains methods that
allow determination and modification of the Subtype to which an Object
belongs and allow initialization or resetting of the field values of an
Object to the default values defined for its subtype. For a description of
how these default values are set up during data definition, see the
ISubtypes interface on ObjectClass.

It is important to note that when Objects are programmatically created via
the CreateRow method on the ITable interface (or for features with the
CreateFeature method on the IFeatureClass interface), the default subtype
is not automatically set, nor are the default values initialized. When
using ArcMap, these tasks are automatically performed. However, if you
are programmatically creating an Object (or Feature) that has default
values, the following VBA code fragment indicates the proper sequence
that should be followed.

  'Assume that we have an IFeatureClass pointer

  Dim pFeature As IFeature

  Set pFeature = pFeatureClass.CreateFeature

  'Get the default subtype code for the feature class

  Dim defaultSubtype As Long, pSubtypes As ISubtypes

  Set pSubtypes = pFeatureClass

  defaultSubtype = pSubtypes.DefaultSubtypeCode

  'Set the subtype and initialize the default values for the feature

  Dim pRowSubtypes As IRowSubtypes

  Set pRowSubtypes = pFeature

  pRowSubtypes.SubtypeCode = defaultSubtype

  pRowSubtypes.InitDefaultValues

RowBuffer
IRowBuffer

Object
IObject

IRowSubtypes

Row

IRelatedObjectEvents
IRow

IRowChanges
IRowCompare

IRowEdit
IRowEvents

IrowSubtypes
ISupportErrorInfo

IValidate

An object is an instance of an object
class and represents an entity.

OBJECT CLASS



804 • Exploring ArcObjects • Volume 2

 IRelatedObjectEvents : IUnknown Provides access to events that occur when related objects
change, move, or rotate.

RelatedObjectChanged (in
RelationshipClass: IRelationshipClass,
in objectThatChanged: IObject)

Notifies this object that a related object changed.

RelatedObjectMoved (in
RelationshipClass: IRelationshipClass,
in objectThatChanged: IObject, in
MoveVector: ILine)

Notifies this object that a related object moved.

RelatedObjectRotated (in
RelationshipClass: IRelationshipClass,
in objectThatChanged: IObject, Origin:
IPoint, Angle: Double)

Notifies this object that a related object rotated.

RelatedObjectSetMoved (in
RelationshipClass: IRelationshipClass,
in objectsThatNeedToChange: ISet, in
objectsThatChanged: ISet,
MoveVector: ILine)

Notifies this object that a set of objects with relationships to the input
set of objects moved.

RelatedObjectSetRotated (in
RelationshipClass: IRelationshipClass,
in objectsThatNeedToChange: ISet, in
objectsThatChanged: ISet, Origin:
IPoint, Angle: Double)

Notifies this object that a set of objects with relationships to the input
set of objects rotated.

The IRelatedObjectEvents interface is relevant only to developers of
custom objects and features. It is similar to IRowEvents except that the
methods are called by the geodatabase in response to events on a re-
lated object.

A custom object can implement this interface in order to respond to
these events, for example, if a change in the attribute of a related object
needs to trigger a change in the attributes of this object.

The RelatedObjectChanged method is called when a related object has
changed.

The RelatedObjectMoved method is called when a related object has
moved.

The RelatedObjectRotated method is called when a related object has
rotated.

The RelatedObjectSetMoved method is called when a set of objects in the
related object class has moved. The objectsThatChanged argument repre-
sents the set of objects in the related object classes that have moved.
The objectsThatNeedToChange argument represents the set of objects in
the object class of this object that are related to the objects that moved.
This object is itself a member of the objectsThatNeedToChange.

The RelatedObjectSetRotated method is called when a set of objects in
the related object class has moved. Its arguments are similar to the
arguments for RelatedObjectSetMoved.

A custom object developer wishing to respond to related object events
must implement all the methods in this interface. When any method in
this interface is invoked, the custom object receiving the message can
determine what it was about the related object that changed using the
IRowChanges and the IFeatureChanges interfaces on the related object.
Note that in the case of the RelatedObjectChanged message, any of the
field values of the related object might have changed, including the
value of the shape field.

OBJECT CLASS

IRelatedObjectEvents is relevant only to
developers of custom objects and features.



Chapter 8 • Accessing the geodatabase • 805

G
eo

d
at

ab
as

e

A Feature is a spatial Object. It is also a member of a feature class, being
a row in the feature class table. A feature has an associated shape, the
type of which is defined by the feature class. The possible shape ob-
jects are Point, Multipoint, Polyline, and Polygon—these are all objects in
the Geometry object model. For more details, see the discussion on the
GeometryDef object.

Mostly you will deal with simple features, but there are various special
kinds as defined by the esriFeatureType enumeration. These include
annotation, dimension, and various network features.

Enumeration esriFeatureType Feature Types.

 1 - esriFTSimple Simple Feature.
 7 - esriFTSimpleJunction Simple Junction Feature.
 8 - esriFTSimpleEdge Simple Edge Feature.
 9 - esriFTComplexJunction Complex Junction Feature.
10 - esriFTComplexEdge Complex Edge Feature.
11 - esriFTAnnotation Annotation Feature.
12 - esriFTCoverageAnnotation Coverage Annotation Feature.
13 - esriFTDimension Dimension Feature.

Using C++, you can also define your own custom features with special-
ized behavior. One thing to note is that all features still have the same
core geometry types of point, multipoint, line, and polygon; an example
of this is the annotation feature, whose geometry type is polygon—this
represents the envelope of the text element.

All the discussion for Row and Object is appropriate to Feature objects.
In fact, because you will normally be dealing with geographic data, you
will deal with features much more than simple rows.

 IFeature : IObject Feature Interface.

Extent: IEnvelope The extent of the feature.
FeatureType: esriFeatureType The type of the feature.
Shape: IGeometry Returns a reference to the default shape for the feature.
ShapeCopy: IGeometry Returns a cloned copy of the default shape for the feature.

The IFeature interface extends IObject and IRow, from which it inherits.
The additional facilities are to do with the shape of the feature. You can
use the Shape property to get or set the shape. This can be much more
convenient than the alternative of using the Value property since you
don’t have to work out the index of the shape field.

The Shape property is the main link in ArcObjects between the geometry
and geodatabase object models.

The ShapeCopy property is a cloned copy of the feature’s Shape. It is
commonly used when modifying the geometry of a set of features.

FEATURE CLASS

RowBuffer
IRowBuffer

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

IFeatureSimplify

Object
IObject

IRowSubtypes

Row

IRelatedObjectEvents
IRow

IRowChanges
IRowCompare

IRowEdit
IRowEvents

IrowSubtypes
ISupportErrorInfo

IValidate

A feature is an object with a geometric
shape.



806 • Exploring ArcObjects • Volume 2

 IFeatureBuffer : IRowBuffer Feature Buffer Interface.

Shape: IGeometry The default shape in the feature buffer.

The IFeatureBuffer interface is the same as IRowBuffer except it applies
to feature buffers rather than row buffers. It is for use primarily with
insert and update-feature cursors.

 IFeatureDraw : IUnknown Interface for custom drawing by a feature.

InvalidArea: IInvalidArea The area to be drawn.

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in Symbol: ISymbol, in
symbolInstalled: Boolean, in
Geometry: IGeometry, in DrawStyle:
esriDrawStyle)

Draws the feature on the display.

The IFeatureDraw interface is only relevant to custom features and so is
currently limited to C++ programmers. You would implement IFeature-
Draw in order to provide customised display for a feature, for example,
displaying buildings as points when zoomed out to a small scale and as
polygons at larger scales.

 IFeatureEdit : IRowEdit Implement this interface to customize feature editing.

BeginMoveSet (in features: ISet, in
Start: IPoint) : IDisplayFeedback

Prepares the set of features for a move operation.

MoveSet (in features: ISet, in
MoveVector: ILine)

Moves the set of features through a distance and direction specified
by moveVector.

RotateSet (in features: ISet, in Origin:
IPoint, in Angle: Double)

Rotates the set of features according to the specified origin and
angle.

Split (in Point: IGeometry) : ISet Splits the feature.
SplitAttributes (baseFeature: IFeature) Splits the feature attributes.

The IFeatureEdit interface offers specialized editing facilities on features.

The MoveSet, RotateSet, and IRowEdit::DeleteSet methods are unusual in that
they are applied to a single feature, but they operate on a whole set. There
is no need to call these methods for each separate feature in the set.

In the case of simple features, you need to call this method once for
every feature class contained in the set. Thus, if the selection contains
ten simple features, five from class A and five from class B, you will
need to call this method on one member of the set from class A and on
one member of the set from class B. When you call these methods on a
feature, the method will be applied to all other features contained in the
set that are also in the same feature class.

In the case of network features, it is only necessary to call these meth-
ods on one network feature found in a given geometric network. Thus,
if all of the network features found in the set are contained in a single
geometric network, you will only need to call these methods on
one network feature. However, if there are two (or more) geometric
networks represented in the network features contained in the set, then
the call will need to be made two (or more) times—once for each
geometric network.

FEATURE CLASS

Use IFeatureDraw to implement custom
features with special display qualities.

Use IFeatureEdit to split features or to operate
on sets of features.



Chapter 8 • Accessing the geodatabase • 807

G
eo

d
at

ab
as

e

In practice, it is actually quite simple to implement the appropriate call-
ing behavior because the set that is passed as the first argument is win-
nowed (that is, features contained in the set that are processed are
removed from the set), and the set is automatically reset. Thus, you can
effectively Next through the set and achieve the proper behavior.

The following VBA code fragment illustrates this behavior.

  'Assume p_Set (ISet) and pMoveVector (ILine) already exist.

  Dim pUnknown As IUnknown, pFeatureEdit As IFeatureEdit

  Set pUnknown = p_Set.Next

  Do While Not pUnknown Is Nothing

    Set pFeatureEdit = pUnknown

    pFeatureEdit.MoveSet p_Set, pMoveVector

    Set pUnknown = p_Set.Next

  Loop

Split and SplitAttributes operate on single features. Split divides polylines
by points or polygons by polylines. Other kinds of split geometries are
not currently supported. The new features are automatically stored and
the old features deleted. SplitAttributes implements the split policy for
attributes belonging to domains. It is not necessary to call SplitAttributes
after using Split—this is done automatically.

Here is how you would split the selected polygon features by a polyline:

Public Sub SplitFeatures(pSelectionSet As ISelectionSet, _

                             pPolyLine As IPolyline)

  ' open a feature cursor on the selected features that

  ' intersect the splitting geometry

  Dim pFeatCursor As IFeatureCursor

  Dim pSpatialFilter As ISpatialFilter

  Set pSpatialFilter = New SpatialFilter

  Set pSpatialFilter.Geometry = pPolyLine

  pSelectionSet.Search pSpatialFilter, True, pFeatCursor

  ' Clean up the splitting geometry

  ' This is necessary because, for polygons, IFeatureEdit::Split

  ' relies internally on ITopologicalOperator::Cut

  Dim pTopoOpo As ITopologicalOperator

  Set pTopoOpo = pPolyLine

  pTopoOpo.Simplify

  ' Loop through the features and split them

  Dim pFeature As IFeature

  Set pFeature = pFeatCursor.NextFeature

  Do Until pFeature Is Nothing

    Dim pFeatureEdit As IFeatureEdit

    Set pFeatureEdit = pFeature

    pFeatureEdit.Split pPolyLine

FEATURE CLASS

When a feature is split, two new features are
created. You can define a policy on how the

attribute values of the new features are
populated—this can be done with ArcCatalog or
by using the domain and attribute rule objects.



808 • Exploring ArcObjects • Volume 2

   Set pFeature = pFeatCursor.NextFeature

  Loop

End Sub

An equivalent method to Split for merging features is not currently avail-
able in ArcObjects; you have to program it the long way using
ITopologicalOperator::Union, IFeature::Delete, and, if necessary,
IDomain::MergePolicy.

 IFeatureEvents : IUnknown Feature Events.

InitShape Initialize the shape.
OnMerge An after event that is fired when features have been merged, on

each deleted input feature.
OnSplit An after event that is fired when a feature is split, on the deleted

input feature.

The IFeatureEvents interface is only relevant to custom features and so is
currently limited to C++ programmers. For simple features, these meth-
ods are triggered by the geodatabase, but no action is taken. If you
create a custom feature, you may choose to reimplement IFeatureEvents
to achieve certain functionality. IRowEvents complements this interface.

FEATURE CLASS

Use IFeatureEvents to implement custom
features.



Chapter 8 • Accessing the geodatabase • 809

G
eo

d
at

ab
as

e

Table
IClass
ITable

ITable2

RowBuffer
IRowBuffer

Cursor
ICursor

Feature-
Cursor

IFeatureCursor

A feature cursor references a
set of features

A query definition represents
a database query on one or

more tables or feature classes

QueryDef
IQueryDef

SpatialFilter
ISpatialFilter

A cursor can iterate over
a set of rows in a table
or insert new rows

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

A query filter restricts the set of
rows retrieved from a table

A selection set references a set
of rows by a selection criteria

A spatial filter is a query filter that
includes spatial and attribute constraints

EnumIDs
IEnumIDs

SelectionSet
ISelectionSet

ISelectionSet2

QueryFilter
IQueryFilter

IQueryFilter2

Query, cursor, and selection objects

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Feature-
Class

IFeatureClass
IFeatureClassLoad (optional)

IFeatureClassWrite
IGeoDataset

INetworkClass

An enumeration of
IDs represents a set
of object identifiers



810 • Exploring ArcObjects • Volume 2

QUERYDEF CLASS

A QueryDef object represents a database query on one or more tables
or feature classes.

A QueryDef may be evaluated, resulting in the execution of the query
on the database server. The results of the query are returned to the
application as a cursor. The application can iterate over the cursor to
fetch the row objects in the result set of the query. The row objects
returned by a cursor on a QueryDef are always of type esriCore.Row—
they never have custom behavior or support additional interfaces, even
if the table names specified in the QueryDef correspond to tables repre-
senting ObjectClasses with behavior. The row objects returned by evaluat-
ing a QueryDef are read-only—these row objects do not reference a
parent table, and the Store method may not be called on them. Attempt-
ing to Store a row object returned by evaluating a QueryDef will result in
an error.

The primary use of QueryDefs is to directly evaluate database queries on
arbitrary tables. They can be used to join tables with the assurance that
the join query will execute in the underlying RDBMS. All of the tables in
a QueryDef must belong to the same workspace (RDBMS). A QueryDef
may include geometry fields in the specification of the list of fields to be
returned but may not include geometry fields in the where clause speci-
fication unless the underlying DBMS is a spatially extended DBMS that
supports geometric types, and unless the geometry fields for feature
classes are using those native DBMS geometry types for storage.

 IQueryDef : IUnknown Defines an attribute based query.

SubFields: String The comma-delimited list of field names for the query.
Tables: String The comma-delimited list of table names for the query.
WhereClause: String The where clause for the query.

Evaluate: ICursor Evaluate the query and return a cursor on the result set.

The IQueryDef interface is used to set up and define the query and also
provides an Evaluate method that is used to execute the query, returning
a cursor.

This example shows how to create a QueryDef that defines a join be-
tween USA counties and states. A valid pointer to the workspace con-
taining the data is assumed.

  Dim pQueryDef As IQueryDef

  Set pQueryDef = pFeatureWorkspace.CreateQueryDef

  pQueryDef.Tables = "Counties, States"

  pQueryDef.SubFields = "COUNTIES.Shape, COUNTIES.NAME, _

   STATES.STATE_ABBR"

  pQueryDef.WhereClause = "COUNTIES.STATE_FIPS = STATES.STATE_FIPS"

Note that QueryDef objects cannot be cocreated. They can only be
created from the IFeatureWorkspace interface. This guarantees that all
tables in the query are within the same workspace.

The SubFields property is optional when creating QueryDef objects. The
default value is “*”, which means that all fields are returned.

QueryDef
IQueryDef

A QueryDef object represents a data-
base query on one or more tables or

feature classes.

Since QueryDef objects rely on SQL, they are
not supported for shapefile and coverage data.

The ExecuteSQL method available on the
IWorkspace interface can be used to send an

arbitrary SQL statement to the database server
(for example, an INSERT or an UPDATE
statement); however, unlike evaluation of

QueryDefs, the ExecuteSQL method does not
return a result set.



Chapter 8 • Accessing the geodatabase • 811

G
eo

d
at

ab
as

e

The OpenFeatureQuery method on a workspace (available in the IFeature-
Workspace interface) can be used to create a FeatureClass that is based on
a QueryDef. Such a feature class may be added to a Map (as a Feature-
Layer) and may be used to visually represent the results of a database
join query. Such a FeatureClass is similar in concept to an ArcSDE view.

The following example adds a new layer to a map based on the Query-
Def created in the previous example. The IQueryDef::SubFields property
must define one and only one spatial field in order to create the feature
class.

  Dim pFeatureClass As IFeatureClass

  Dim pFeatureClassContainer As IFeatureClassContainer

  Set pFeatureClassContainer = pFeatureWorkspace.OpenFeatureQuery _

        ("My counties join", pQueryDef)

  If (pFeatureClassContainer.ClassCount <> 1) Then

    MsgBox "Failed to create feature class by query"

  Else

    Set pFeatureClass = pFeatureClassContainer.Class(0)

  End If

  ' Add feature class as layer to the map

  Dim pMap As IMap, pDoc As IMxDocument

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  Dim pFeatureLayer As IFeatureLayer

  Set pFeatureLayer = New FeatureLayer

  Set pFeatureLayer.FeatureClass = pFeatureClass

  pFeatureLayer.Name = pFeatureClass.AliasName

  pMap.AddLayer pFeatureLayer

The SQL syntax used with QueryDef objects is the same as that of the
underlying database holding the data. An application can use the
ISqlSyntax interface on a Workspace to determine information about the
SQL syntax for the database, such as the delimiter character used in
qualifying table and field names and the identifier quote character.
Additional notes on SQL syntax may be found in the discussion on
query filters later in this chapter.

QueryDefs represent a subset of the queries that may be made against
an SQL database using the SQL SELECT statement. QueryDefs  map onto
simple SQL select statements of the form:  SELECT  <field names >
FROM  <list of table names>  WHERE <where-clause referencing only
tables in from list of tables>.

QueryDefs do not guarantee to support SQL statements that do not map
onto the above simple form. In particular, QueryDefs do not guarantee to
support ORDER BY and GROUP BY clauses embedded within the
WhereClause property, nested SELECT statements or correlated subqueries
in the WhereClause property, AS keywords embedded in the SubFields
property, the use of table aliases in the Tables property, the use of Aggre-
gate functions (for example, MIN, MAX, and SUM), or the use of DIS-
TINCT clauses. Support for such capabilities is not guaranteed across all
configurations, and applications that rely on such capabilities risk failure.

QUERYDEF CLASS



812 • Exploring ArcObjects • Volume 2

SELECTIONSET CLASS

SelectionSet
ISelectionSet

ISelectionSet2

A selection set allows an application to
reference a set of rows from a table or

feature class that matches some applica-
tion-specified criteria.

A SelectionSet object allows an application to reference a selected set of
rows all belonging to a single table or feature class.

Selection sets are normally used throughout ArcObjects when a tempo-
rary subset of rows or features is required for some operation. It is
important to note that the selection set only applies to a single table; you
cannot sensibly combine two selection sets from different tables.

A selection set can be based on either a set of ObjectIDs that correspond
to the selected rows, or on an actual set of row objects, instantiated and
referenced by the selection set. In either case, the selection set provides
methods to iterate over the set of row objects in the selection. The
SelectionType property of a selection set, specified by an application at
the time that it creates the selection set, determines the type of represen-
tation (object IDs or Row object references) used by the SelectionSet.

Enumeration esriSelectionType Selection Type.

1 - esriSelectionTypeIDSet ID set.
2 - esriSelectionTypeSnapshot Snapshot.
3 - esriSelectionTypeHybrid Snapshot if small, else an ID set.

A SelectionSet of type esriSelectionTypeIDSet represents the selection
using a set of object IDs. The object IDs may be physically stored either
in a separate database table or in memory (as a hash table or bitmap),
depending on the type of data source.

A SelectionSet of type esriSelectionTypeSnapshot represents the selection
as a set of instantiated Row objects in memory.

A SelectionSet of type esriSelectionTypeHybrid represents the selection as
Row objects in memory for small selections and as a set of object IDs
for large selections.

ID set selections are capable of representing very large selections and
are usually the best choice for an application. The data source is
requeried each time the selected rows are iterated over (using the
Search method on the selection set). This ensures that the selection is
dynamic and responds automatically to changes in the data made by
this or other applications.

Snapshot selections are very fast to iterate over, as no further queries are
issued against the data source once the selection is created. They can
be memory intensive and should be used only for small sets of rows.
The data in a snapshot selection is a snapshot of the rows in the data-
base at the time the selection is created. The “unique instance seman-
tics” guaranteed by the geodatabase during an edit session will ensure
that snapshot selection sets instantiated after editing is begun will see
any changes made to the row objects by any part of the application.
The editing application is responsible for refreshing the selection (using
the Refresh method on the selection) whenever it calls an Undo, Redo,
or Abort edit operation during an edit session or whenever it calls the
RefreshVersion method on a version outside an edit session.



Chapter 8 • Accessing the geodatabase • 813

G
eo

d
at

ab
as

e

Hybrid selections combine the benefits of snapshot and ID set selec-
tions and can be used if both cases are likely to occur. The SelectionSet
internally switches between using a snapshot and ID set representation,
depending on the size of the selection; the choice of size parameter is
internal to the SelectionSet and cannot be controlled by the application.

A selection set is typically created from a table or feature class using the
Select method on the table. A query filter is used to specify the subset of
rows to include in the selection set:

  Dim pSelectionSet As ISelectionSet

  Set pSelectionSet = pFeatureClass.Select(pQueryFilter, _

    esriSelectionTypeHybrid, esriSelectionOptionNormal, Nothing)

An application can create multiple SelectionSets on a Table or Feature-
Class coclass. The SelectionSets reference their target table, but the latter
have no knowledge of the selection sets that reference them. Applica-
tions are responsible for associating the created selection sets with the
target table as appropriate. For example, a FeatureLayer in ArcMap holds
a reference to a geodatabase FeatureClass and also to a SelectionSet that
it creates on the feature class—at draw time the selected features are
retrieved and drawn in a distinguished manner.

 ISelectionSet : IUnknown Manages a set of selected table rows or features.

Count: Long The number of OIDs in the selection set.
FullName: IName The full name of the selection set.
IDs: IEnumIDs Enumerates the object IDs in the selection set.
Target: ITable The Table or FeatureClass over which the selection set is defined.

Add (in OID: Long) Adds an object id to the selection set.
AddList (in Count: Long, in OIDList:

Long)
Adds a list of object id's to the selection set.

Combine (in otherSet: ISelectionSet, in
setOp: esriSetOperation, out resultSet:
ISelectionSet)

Combines this selection set with another selection set using the
specified set operation.

MakePermanent Makes the SelectionSet permanent. By default SelectionSets are
deleted when released.

Refresh Refreshes the state of a snapshot selection.
RemoveList (in Count: Long, in OIDList:

Long)
Removes a list of  object IDs from the selection set.

Search (in pQueryFilter: IQueryFilter, in
Recycling: Boolean, out ppCursor:
ICursor)

Returns a cursor that can be used to retrieve the objects specified by
a query over this selection set.

Select (in QueryFilter: IQueryFilter, in
selType: esriSelectionType, in
selOption: esriSelectionOption, in
selectionContainer: IWorkspace) :
ISelectionSet

Returns a new selection that contains the object IDs selected by a
query over this selection set.

The ISelectionSet interface is used to manage and query the selection set.

The Search method is used to iterate over the rows in the selection set
and returns a cursor. Note that the Search method takes a query filter
that can be used to further restrict the set of rows in the selection that
are returned for ID set selections. Using a query filter with hybrid selec-
tions will force the representation of the selection to become an ID set
selection.

The Select method is used to create a new selection based on a subset
of the current selection using a query filter to specify the restriction.

The Add, AddList, and RemoveList methods can be used to alter the
selection set by adding and removing rows specified by object IDs.

The last parameter in the code sample is set to
Nothing. This parameter can be used to pass in

an alternative workspace in which to store the
ID set selection as a scratch table, but can

usually be safely set to Nothing at the release
of ArcGIS 8.1. The default for ID set selections
on tables in a database workspace is to store

them in a scratch table in the same database as
the feature class or table being selected from.
The default for ID set selections on tables in a

file-based workspace is to store the selection
sets in memory. In both cases, passing in
Nothing for the last parameter suffices.

SELECTIONSET CLASS



814 • Exploring ArcObjects • Volume 2

The Combine method can be used to combine two SelectionSets using
the standard set operations of union, intersection, difference, and sym-
metric difference. Only use Combine on two selection sets from the
same target—it doesn’t make sense to mix lists of IDs from different
datasets.

The MakePermanent method and the FullName property are placehold-
ers for a future release when persistent selection sets may be supported,
but they are not currently implemented. An application wishing to per-
sist a selection set should extract the set of object IDs for the rows in
the selection set (reading the IDs property) and persist them.

 ISelectionSet2 : IUnknown Manages a set of selected table rows or features

Update (in pQueryFilter: IQueryFilter, in
Recycling: Boolean, out ppCursor:
ICursor)

Returns a cursor that can be used to update the objects specified
by a query over this selection set

The ISelectionSet2 interface provides a method Update that creates an
update cursor on the selection set; this can be used to update and
delete rows from the table or feature class of the selection set. For more
information about update cursors, see the section on cursor objects.

This example returns the average population of the selected features in
a counties feature layer; it illustrates a transition from using ArcMap
objects to using the geodatabase data-access objects.

  Dim pFeatureSelection As IFeatureSelection

  Set pFeatureSelection = pFeatureLayer

  Dim pSelectionSet As ISelectionSet

  Set pSelectionSet = pFeatureSelection.SelectionSet

  Dim pFeatureCursor As IFeatureCursor

  pSelectionSet.Search Nothing, True, pFeatureCursor

  Dim pDataStats As IDataStatistics

  Set pDataStats = New DataStatistics

  Set pDataStats.Cursor = pFeatureCursor

  pDataStats.Field = "POP1990"

  MsgBox pDataStats.Statistics.Mean

SelectionSets are geodatabase data-access
objects and are user-interface independent, but
they are put to work within the context of the

ArcMap object model. Use the
IFeatureSelection::SelectionSet method on a
FeatureLayer to get or set the selection set

associated with a FeatureLayer. Use the
ITableSelection::SelectionSet to get or set the

selection set associated with a
StandAloneTable object. Note that a

StandAloneTable is an ArcMap object similar to
a FeatureLayer and references a [geodatabase]

Table just as a FeatureLayer references a
FeatureClass.

SELECTIONSET CLASS

You don’t have to use selection sets in order to
select features in ArcMap. There are simpler

ways, such as IFeatureSelection::
SelectFeatures. Selection sets are most useful
when operating on already selected features or
when working completely independently of the

ArcMap selection.



Chapter 8 • Accessing the geodatabase • 815

G
eo

d
at

ab
as

e

As described in this section, the main interface for geodatabase selec-
tion sets is ISelectionSet. There are, however, some other similarly named
interfaces in ArcObjects—the following table summarizes these other
interfaces.

ISelection

IFeatureSelection

ITableSelection

ISelectFeaturesOperation

ISelectionEnvironment

ISelectionSetBarriers

ISelectionTracker

None

Can return or take SelectionSet

Can return or take SelectionSet

Takes SelectionSet as input

None

None

None

Provides clipboard facilities, for example, cut
and paste of features.

Controls selection on an ArcMap feature layer.

Controls selection on an ArcMap table.

Makes a selection with Undo/Redo facilities.

Defines tolerances and other parameters for
selecting objects with ArcMap.

Defines a set of barrier features in network
solving.

Manages selection handle tracking for graphic
elements.

Interface Relation to SelectionSet Notes

SELECTIONSET CLASS

ArcObjects has many interfaces with “selection”
in their name. Only some of them are related to

selection sets.



816 • Exploring ArcObjects • Volume 2

A Cursor is a data-access object that can either be used to iterate over
the set of rows in a table or query or insert new rows into a table.

There are three forms of Cursor, referred to as search, insert, and update
cursors. Each of these types of cursors is returned by the corresponding
method (Search, Insert, or Update) on a Table or FeatureClass object. The
Search and Update methods take a QueryFilter as input, which can be
used to restrict the set of rows returned.

A Search cursor can be used to retrieve rows specified by a query filter;
it supports a NextRow method. An Update cursor can be used to posi-
tionally update and delete rows specified by a query filter; it supports
the NextRow, UpdateRow, and DeleteRow method. An Insert cursor is used
to insert rows into a table and supports the InsertRow method. All of
these methods are available in the single ICursor interface—it is your
responsibility to make the calls appropriate to the type of cursor.

 ICursor : IUnknown Cursor Interface.

Fields: IFields Return the Fields collection for this cursor.

DeleteRow Delete the existing row in the database corresponding to the current
position of the cursor

FindField (in Name: String) : Long The index of the field with the specified name.
Flush Flush any outstanding buffered writes to the database.
InsertRow (in Buffer: IRowBuffer) :

Variant
Insert a new row into the database using the property values in the

input buffer. The object ID of the new row, if there is one, is
returned

NextRow: IRow Advance the position of the cursor by one and return the Row object
at that position.

UpdateRow (in Row: IRow) Update the existing row in the database corresponding to the current
position of the cursor

The type of row objects returned by a cursor (the interfaces and meth-
ods supported by the row object) depends on the type of Table (Object-
Class, FeatureClass, or AttributedRelationship class) and its associated
behavior. Search cursors returned by evaluating a QueryDef always
return simple row objects.

The NextRow method on a search or update cursor returns the next row
in the result set to the application. The row object returned is allocated
and hydrated by the cursor, and a reference to it is handed to the appli-
cation. To retrieve all rows in a result set containing N rows, the applica-
tion must make N calls to NextRow. In VB, a call to NextRow after the last
row in the result set has been retrieved returns Nothing. In C++, a call to
NextRow after the last row in the result set has been retrieved returns a
value of S_FALSE and sets the output row reference to 0.

Cursors are forward only; they do not support backing up and retrieving
rows that have already been retrieved or making multiple passes over
data. If an application needs to make multiple passes over the data, the
application needs to reexecute the query that returned the cursor. If
both executions of the query are made within the same edit session (or
database transaction with the appropriate level of isolation), the applica-
tion is guaranteed not to see any changes made to the data by other
concurrently executing applications.

CURSOR AND FEATURECURSOR CLASSES

Cursor
ICursor

A cursor is a data-access object that can
be used to either iterate over the set of

rows in a table or query, or insert new
rows into a table.

For more information on rules for programming
against the geodatabase, see the database

considerations topic in Volume 1, Chapter 2,
‘Developing with ArcObjects’.



Chapter 8 • Accessing the geodatabase • 817

G
eo

d
at

ab
as

e

This example shows a very simple cursor operation. It prints out the
value of the first field for each row in a table.

  Dim pCursor As ICursor

  Dim pRow As IRow

  Set pCursor = pTable.Search(Nothing, False)

  Set pRow = pCursor.NextRow

  Do Until pRow Is Nothing

    Debug.Print pRow.Value(0)

    Set pRow = pCursor.NextRow

  Loop

Note that no data is fetched from the database until the NextRow method
is called.

When you are using a cursor and changing the underlying data at the
same time, you may be concerned about the cursor operation and
positioning. The situation, summarized by the table below, is actually
quite simple.

Update

Insert

Search
Change values, followed by

IRow::Store

IRow::Delete

DeleteRow

NextRow

UpdateRow

ITable::CreateRow followed by
IRow::Store

InsertRow

NextRow

Advances position by one

No effect

Moves position back by one

Moves position back by one

No effect

No effect (the new row does not
belong to the cursor)

Not applicable—insert cursors do not
have position, you may not use NextRow

Advances position by one

Cursor type Method Effect on position

A Cursor has a recycling property that controls how it allocates row
objects. Recycling cursors allocate a single row object and rehydrate it
on each fetch. They can be used to optimize read-only access, for
example, when drawing. It is illegal to maintain a reference on a row
object returned by a recycling cursor across multiple calls to NextRow on
the cursor. Row objects returned by a recycling cursor should not be
modified. Nonrecycling cursors return a separate row object on each
fetch. The objects returned by a nonrecycling cursor may be modified
(setting the IRow::Value property or any other custom accessor sup-
ported by the Row) and stored with polymorphic behavior. The geodata-
base guarantees “unique instance semantics” on nonrecycling row
objects fetched during an edit session. If the row object to be retrieved
by a call to NextRow has already been instantiated in the calling applica-
tion, then a reference to the existing row object will be returned.

All Row objects retrieved from a Table using a Cursor logically contain
the same ordered set of fields, and this set is the same as the ordered
set of fields for the Cursor and the Table. In particular, the numeric

CURSOR AND FEATURECURSOR CLASSES

Cursors are of either the recycling or
nonrecycling kind. Recycling cursors offer

performance advantages, but should only be
used for reading data, not for writing.

Rows always have the same set of fields as the
table. If the query filter specifies subfields, then

the other fields in the row will have values of
VT_EMPTY.



818 • Exploring ArcObjects • Volume 2

index of a field in the Fields collection of the table is the same as the
numeric index of the field in the Fields collection of the cursor, which is
the same as the numeric index of the field for the row. So, the FindField
method needs to be used only once per table or cursor. If the query
filter used in generating a cursor does not include certain fields, then
the resulting row objects will still logically contain these fields; however,
they will not have hydrated values for these fields. If an application
accesses these field values for the row, a variant of type empty
(VT_EMPTY) will be returned. Note that this value is different from the
Null value (VT_NULL) that is returned when the value of a fetched field
is null.

The UpdateRow method can be used to update the row at the current
position of an update cursor (making a call to NextRow on a cursor
returns a Row and positions the cursor on that Row). After fetching a
Row object using NextRow, the application can modify the Row as
needed and then call UpdateRow, passing in the modified Row. This is
an alternative to calling Store on the retrieved row. Using a recycling
update cursor can be faster than calling Store on the rows returned by a
search cursor when performing direct updates outside an edit session
on simple data. If the row objects for the table are not simple (they
don’t have custom behavior or participate in composite relationships or
relationships with notification), then calling UpdateRow on the cursor
will generate a call to Store on the row object to trigger the custom be-
havior, and there will be no performance gain.

The DeleteRow method can be used to delete the row at the current
position of an Update cursor (that is, to delete the Row returned by the
last call to NextRow on this cursor). After fetching the Row object using
NextRow, the application should call DeleteRow on the cursor to delete
the row. The application is responsible for discarding the husk deleted
row object. Using a recycling update cursor to delete rows can be faster
then calling Delete on the rows returned by a Search cursor when per-
forming direct updates outside an edit session on simple data. If the row
objects for the table are not simple (they don’t have custom behavior)
or participate in composite relationships or relationships with notifica-
tion, then DeleteRow on the cursor will generate a call to Delete on the
row object in order to trigger custom behavior, and there will be no
performance gain.

Insert cursors are used to bulk insert rows. Using an insert cursor offers
significantly faster performance for data loading into simple tables and
feature classes (tables whose CLSID is esriCore.Row, esricore.Object, or
esricore.Feature) than the alternative: making multiple calls to CreateRow
on the table followed by calling Store on the created row.

Insert cursors on tables that contain custom rows and objects internally
use the CreateRow and Store methods to achieve polymorphism, and
there is no difference in performance in these cases. The InsertRow
method takes a RowBuffer as an argument.

CURSOR AND FEATURECURSOR CLASSES

The UpdateRow and DeleteRow methods are
only used with update cursors.

Insert cursors can be used for fast data loading.



Chapter 8 • Accessing the geodatabase • 819

G
eo

d
at

ab
as

e

Applications obtain a RowBuffer using the CreateRowBuffer method on
the Table object into which rows are to be inserted. Each call to
InsertRow on the cursor creates a new row in the database whose initial
values are set to the values in the input row buffer. The object ID for
the created row is returned by the InsertRow method.

The UseBuffering method argument to the Insert method on a table
returns an insert cursor that buffers rows on the clients and sends them
to the server in batches for increased performance. The application is
responsible for calling Flush on the insert cursor after all rows have
been inserted. If a call to Flush is not made, the cursor will flush its
buffers on destruction (when the application releases all references on
the cursor). However, relying on the destructor to flush the insert cursor
does not give the application the chance to detect errors that may arise
on the call to flush (for example, if the tablespace [disk] for the Table in
the underlying database fills up).

CURSOR AND FEATURECURSOR CLASSES



820 • Exploring ArcObjects • Volume 2

ICursor
ITable
IRow

IRowBuffer

IFeatureCursor
IFeatureClass
IFeature
IFeatureBuffer

All the discussion for Cursor objects is
appropriate to feature cursors—there is

a direct correspondence between the
methods on the various interfaces.

Cursor
ICursor

Feature-
Cursor

IFeatureCursor

A feature cursor is a cursor that refer-
ences features.

The FeatureCursor object is a kind of Cursor object. It performs in the
same way, except it is based on a feature class rather than a generic
table.

 IFeatureCursor : IUnknown Feature Cursor Interface.

Fields: IFields Return the Fields collection for this cursor.

DeleteFeature Delete the existing Feature in the database corresponding to the
current position of the cursor

FindField (in Name: String) : Long The index of the field with the specified name.
Flush Flush any outstanding buffered writes to the database.
InsertFeature (in Buffer: IFeatureBuffer)

: Variant
Insert a new Feature into the database using the property values in

the input buffer. The ID of the new Feature is returned
NextFeature: IFeature Advance the position of the cursor by one and return the Feature

object at that position.
UpdateFeature (in Object: IFeature) Update the existing Feature in the database corresponding to the

current position of the cursor

The IFeatureCursor interface provides access to a set of features in a
feature class. It operates in the same way as ICursor, although it does
not inherit from that interface. This saves you from having to use Query-
Interface when dealing with features rather than rows.

Feature cursors can be used as an input to IFeatureCursorBuffer, which
lets you spatially buffer the features by a distance. Don’t confuse this
interface with IFeatureBuffer, which applies to data buffers used with
insert and update feature cursors. You can draw the features from a
cursor on the display. For more information, see the
IFeatureRenderer::Draw method.

FEATURECURSOR CLASS



Chapter 8 • Accessing the geodatabase • 821

G
eo

d
at

ab
as

e

A QueryFilter object specifies a filter for tabular data based on attribute
values. It is used to restrict the set of rows or the set of columns re-
trieved from a single table or feature class. The primary use of a query
filter is to specify the set of rows to be returned when opening a cursor
on a Table. It is also used in a number of other cases where a subset of
the data in a table needs to be specified.

Some scenarios of using a QueryFilter include opening a cursor on
some of the rows in a table, selecting features in ArcMap, deleting some
features meeting certain criteria, counting the number of features satisfy-
ing a condition, and defining which features will be rendered on the
map.

 IQueryFilter : IUnknown Filters data based on attribute values and or relationships.

OutputSpatialReference (in FieldName:
String) : ISpatialReference

Gets the spatial reference in which to output geometry for a given
field.

SubFields: String The comma-delimited list of field names for the filter.
WhereClause: String The where clause for the filter.

AddField (in subField: String) Appends a single field name to the list of subfields.

The IQueryFilter interface is used to define a filter to make a subset of
tabular data. AddField and SubFields control which columns will belong
to the resulting subset. WhereClause controls which rows or features will
be returned.

If the desired fields specified in the SubFields property include a Geom-
etry Field, then the OutputSpatialReference property can be used to
specify the SpatialReference in which the geometries for that field should
be returned. The FieldName argument should be set to the name of the
Geometry Field. If no output spatial reference is specified, then the ge-
ometries for features are returned in the native spatial reference.

The example below shows how to select features for the State of Califor-
nia. This code will work on any feature layer with a STATE_NAME at-
tribute—QueryFilters are not specific to any particular dataset.

  Dim pQueryFilter As IQueryFilter

  Set pQueryFilter = New QueryFilter

  pQueryFilter.WhereClause = "STATE_NAME = 'California'"

  Dim pFeatureSelection As IFeatureSelection

  Set pFeatureSelection = pFeatureLayer

  pFeatureSelection.SelectFeatures pQueryFilter, _

    esriSelectionResultNew, False

There is no need to specify a WhereClause if you just want to filter the
fields of data. You can also normally use the VB keyword “Nothing” in
place of a QueryFilter for those methods that require one—for example,
to count the features in a feature class.

  MsgBox "num features:" & pFeatureClass.FeatureCount(Nothing)

You can use the SubFields property to improve performance when using
query filters. The performance gain comes from just fetching the field
values that you require rather than all the data for each row. The default
value for SubFields is “*”, which indicates that all field values will be

QUERYFILTER COCLASS

QueryFilter
IQueryFilter

IQueryFilter2

A query filter specifies a filter for tabular
data based on attribute values.



822 • Exploring ArcObjects • Volume 2

returned. It isn’t necessary to set the subfields when the query filter is
used in a context in which no attribute values are fetched, for example,
when selecting features.

A QueryFilter has properties named SubFields and WhereClause and repre-
sents a subset of the single table queries that may be made against a
table in a SQL database using the SQL SELECT statement. QueryFilters
map on to simple SQL select statements of the form SELECT <field
names > FROM <table name> WHERE <where-clause that references
only table name>.

QueryFilters do not support ORDER BY or GROUP BY clauses embed-
ded within the WhereClause property, nested SELECT statements or
correlated subqueries in the WhereClause property, AS keywords embed-
ded in the SubFields property, Aggregate functions (for example, MIN,
MAX, SUM), or DISTINCT clauses.

The SQL syntax used to specify the WhereClause of QueryFilter objects
is the same as that of the underlying database holding the data. An
application can use the ISqlSyntax interface on a Workspace to determine
information about the SQL syntax used, such as the delimiter character
used in qualifying table and field names and the identifier quote charac-
ter. This information is available for the different types of workspaces
(ArcSDE:Oracle, ArcSDE:SqlServer, Access, shapefile, coverage, and
others). Unlike QueryDef objects, QueryFilter objects are supported
across all the workspace types, including shapefiles and coverages.

There are two differences in WhereClause syntax that are particular to
Microsoft® Access. These differences are noted below:

Single character
match

‘?’

‘_’

Access

ArcSDE, shapefile, coverage

Example: Find states
beginning with an ‘M’

State_Name like ‘M*’

State_Name like ‘M%’

Multiple character
match

‘*’

‘%’

1. Access is case insensitive to field values, whereas ArcSDE and
shapefiles are case sensitive. For example, “State_name = ‘florida’”
returns one USA state in Access but none with shapefiles and
ArcSDE. The example “State_name = ‘Florida’” returns one feature in
all cases.

2. The wildcards for the Like predicate are different in Access.

 IQueryFilter2 : IUnknown Filters data based on attribute values and or relationships.

SpatialResolution: Double The spatial resolution in which to output geometry.

The IQueryFilter2 interface allows specification of the desired
SpatialResolution as part of the query. It can be used as a filter criteria
for data sources (ArcIMS® feature classes) that support filtering of
feature data based on spatial resolution. Features whose geometry ex-
tent is smaller than the specified spatial resolution will not be returned.

QUERYFILTER COCLASS

Not all SQL SELECT statements can be made
into query filters.

Query filters are supported across all the
workspace types, including shapefiles and

coverages. Use the ISqlSyntax interface to make
generic code.

Personal geodatabases use different wildcard
characters because they are based on Microsoft

Access.



Chapter 8 • Accessing the geodatabase • 823

G
eo

d
at

ab
as

e

A SpatialFilter is a QueryFilter that includes both spatial and attribute
constraints. A SpatialFilter can be used to restrict the set of features
retrieved from a feature class using both spatial and attribute restrictions.

A spatial filter has a single query geometry that specifies the geometry
against which the features in the feature class will be tested. Because
ArcObjects supports a number of different geometry types, including
both single and multipart geometries and geometry collections, one way
of expressing a complex spatial query is by building an appropriate
query geometry to pass as input to the spatial filter.

A spatial filter has a single geometric shape that is used in the query.
You can form more complicated spatial queries by using several spatial
filters in succession.

You can use spatial filters everywhere that query filters are used, as long
as the dataset to be queried has a spatial field. Some example tasks
might be:

• Selecting features that overlap a search area

• Finding features near another feature

• Defining a limited geographic area for feature display

 ISpatialFilter : IQueryFilter Filters data based on a spatial relationship.

FilterOwnsGeometry: Boolean Return the state of the owner of the query geometry.
Geometry: IGeometry The query geometry used to filter results.
GeometryEx (in Geometry: IGeometry) :

Boolean
The the query geometry used to filter results.

GeometryField: String The name of the Geometry field to which the filter applies.
SearchOrder: tagesriSearchOrder The search order used by the filter.
SpatialRel: esriSpatialRelEnum The spatial relationship  checked by the filter.
SpatialRelDescription: String The array elements which describe the spatial relation between the

query geometry and the requested geometries. There are 9 chars in
this string which can be either 'F', 'T' or '*'; for example, 
'FF*TTT***' represents CONTAIN.

The ISpatialFilter interface is used to define a query with geographic
criteria.

You must always set these three properties: Geometry, GeometryField, and
SpatialRel. The GeometryEx method may be used to set the query geom-
etry in the case of large query geometries where the application is will-
ing to surrender ownership of the geometry to the filter. In this case, the
filter may modify (project) the query geometry in place if the spatial
reference of the query geometry is different from the native spatial
reference of the feature class or the requested output spatial reference.
The spatial reference in which the features should be returned by the
query is specified using the OutputSpatialReference property in the
IQueryFilter interface.

This simple example shows a simple selection of features that intersect a
given shape. It assumes an existing feature layer and a valid geometry
pointer (perhaps derived from end user input).

  Dim pSpatialFilter As ISpatialFilter

  Set pSpatialFilter = New SpatialFilter

SPATIALFILTER COCLASS

SpatialFilter
ISpatialFilter

QueryFilter
IQueryFilter

IQueryFilter2

A spatial filter is a query filter that
includes both spatial and attribute

constraints.



824 • Exploring ArcObjects • Volume 2

  With pSpatialFilter

    Set .Geometry = pGeometry

    .GeometryField = pFeatureLayer.FeatureClass.ShapeFieldName

    .SpatialRel = esriSpatialRelIntersects

  End With

  Dim pFeatureSelection As IFeatureSelection

  Set pFeatureSelection = pFeatureLayer

  pFeatureSelection.SelectFeatures pSpatialFilter, _

     esriSelectionResultNew, False

ISpatialFilter inherits the members of IQueryFilter—the example above
could be extended by setting the WhereClause property on the spatial
filter.

Enumeration esriSpatialRelEnum Queryable Spatial Relationships.

0 - esriSpatialRelUndefined No defined spatial relationship.
1 - esriSpatialRelIntersects Query geometry intersects target geometry.
2 - esriSpatialRelEnvelopeIntersects Envelope of query geometry intersects envelope of target geometry.
3 - esriSpatialRelIndexIntersects Query geometry intersects index entry for target geometry (primary

index filter).
4 - esriSpatialRelTouches Query geometry touches target geometry.
5 - esriSpatialRelOverlaps Query geometry overlaps target geometry.
6 - esriSpatialRelCrosses Query geometry crosses target geometry.
7 - esriSpatialRelWithin Query geometry is within target geometry.
8 - esriSpatialRelContains Query geometry contains target geometry.
9 - esriSpatialRelRelation Query geometry IBE(Interior-Boundary-Exterior) relationship with

target geometry.

The SpatialRel property takes an enumeration that defines the relation-
ship between the query geometry and the target feature geometry; this
must be satisfied for the target feature to be returned by the query. The
spatial relationships supported are the basic Clementini relationships,
specified as part of the OpenGIS® Simple Feature data-access standard.

The five basic Clementini relationships are Disjoint, Touches, Overlaps,
Crosses, and Within. For documentation on IRelationalOperator, see
Chapter 9, ‘Shaping features with geometry’. For more details on these
five spatial relationships, see Modeling Our World.

esriSpatialRelIntersects, esriSpatialRelTouches, esriSpatialRelCrosses,
esriSpatialRelOverlaps, esriSpatialRelWithin, and esriSpatialRelContains
map to the corresponding Clementini relationships. Intersects maps to
Not(Disjoint), Contains(a,b) maps to Within(b,a), and the rest correspond
directly to the Clementini relationship.

esriSpatialRelEnvelopeIntersects is True if the envelope of the query ge-
ometry intersects the envelope of the target geometry.

esriSpatialRelIndexIntersects may be specified as the filter spatial relation-
ship if the application is prepared to deal with features that do not
intersect the query geometry, as long as all features that do intersect the
query geometry are returned. This is a hint to the database that only the
primary filter based on the spatial index needs to be applied; this results
in faster query execution. This can be appropriate for drawing applica-
tions that rely on clipping to do the secondary filtering.

SPATIALFILTER COCLASS



Chapter 8 • Accessing the geodatabase • 825

G
eo

d
at

ab
as

e

esriSpatialRelRelate may be specified as the filter spatial relationship if
the application wishes to directly specify the relationships between the
topological interior, boundary, and exterior of the query geometry and
the topological interior, boundary, and exterior of the target geometry,
using the dimensionally extended nine-intersection model. The spatial
relationships between the components are specified using a string of
nine characters that is set as the value for the esriSpatialRelDescription
property of the filter.

The characters are drawn from the alphabet {T, F, *} and indicate the
dimension of the point set resulting from the intersection of the
two components that map to that character position. F indicates no
intersection, T indicates intersection, and * indicates don’t care. The
mapping of components to character position in the string is shown in
the diagram to the left. The character string is constructed by reading
out the entries in the 3 x 3 matrix in the order left to right and top to
bottom.

Some of the spatial relationships exposed to the end user in the ArcMap
Select By Location dialog box do not correspond directly to the basic
Clementini relationships described above. These spatial relationships can
be implemented using the Clementini spatial filter relationships com-
bined with preprocessing and postprocessing. Preprocessing is used to
assemble the appropriate query geometry (for example, in the case of
distance-based relationships, using buffer). Postprocessing can be used
to further restrict retrieved geometries returned by the Clementini opera-
tor. The following table shows examples of such processing:

intersect …the query
geometry

all esriSpatialRelIntersectsSelect features that…

are within a
distance of

…the query
geometry all

pre-process of buffering followed by
esriSpatialRelIntersectsSelect features that…

contain …the query
geometry

all esriSpatialRelWithinSelect features that…

are contained by
…the query

geometry all esriSpatialRelContainsSelect features that…

completely
contain

…the query
geometry all

esriSpatialRelWithin, followed by postprocess to
remove polygons whose boundaries touch or overlapSelect features that…

are completely
within

…the query
geometry

all esriSpatialRelContains, followed by postprocess to
remove polygons whose boundaries touch or overlap

Select features that…

have their
center in

…the query
geometry all

esriSpatialRelIntersects, followed by postprocess using
IArea::Centroid and IRelationalOperator::DisjointSelect features that…

share a line
segment with

…the query
geometry

query and target
geometries linear

esriSpatialRelOverlapsSelect features that…

share a line
segment with

…the query
geometry

other cases esriSpatialRelTouchesSelect features that…

share a point
with

…the query
geometry all esriSpatialRelTouchesSelect features that…

are identical to …the query
geometry

all
esriSpatialRelIntersects , followed by postprocess using

IRelationalOperator::Equals
Select features that…

are crossed by
the outline of

…the query
geometry

query and target
geometries
polygonal

esriSpatialRelOverlapsSelect features that…

are crossed by
the outline of

…the query
geometry other cases esriSpatialRelCrossesSelect features that…

Select by
location dialog Context Equivalent constant

T T *

Interior Boundary Exterior

Target
 feature

class

Interior

Boundary

Exterior

Query geometry

T T *

* * *

The values in this diagram translate into the
nine-character string reading from left to right

and top to bottom (TT*TT***).

SPATIALFILTER COCLASS

Spatial filters support the five basic Clementini
relationships between the query and target

geometries.



826 • Exploring ArcObjects • Volume 2

The SpatialRelDescription property is only used when SpatialRel is set to
esriSpatialRelRelation. You can use it to define various complex spatial
relationships.

The SearchOrder property determines whether the spatial part of the
query is performed before the attribute part of the query. By default, the
spatial relationship is tested first, but in the case of queries where the
attribute criteria are much more specific than the spatial, it is better to
change the SearchOrder. An example of this kind of query might be
“find all worldwide cities with population greater than a million that are
not in Spain”.

If you want to want to query a feature class based on a collection of
shapes, for example, “select the cities that are within the selected states”,
you have several different options. One option is to apply successive
spatial filters for each query shape. Another option is to make a single
multipart query shape from the collection of original query shapes, then
use a single spatial filter. The following example shows how to form a
single geometry from the selected features in a layer.

  Dim pFeatureSelection As IFeatureSelection

  Set pFeatureSelection = pFeatureLayer

  Dim pSelectionSet As ISelectionSet

  Set pSelectionSet = pFeatureSelection.SelectionSet

  Dim pEnumGeom As IEnumGeometry

  Dim pEnumGeometryBind As IEnumGeometryBind

  Set pEnumGeom = New EnumFeatureGeometry

  Set pEnumGeometryBind = pEnumGeom

  pEnumGeometryBind.BindGeometrySource Nothing, pSelectionSet

  Dim pGeomFactory As IGeometryFactory

  Set pGeomFactory = New GeometryEnvironment

  Dim pGeom As IGeometry

  Set pGeom = pGeomFactory.CreateGeometryFromEnumerator(pEnumGeom)

SPATIALFILTER COCLASS

The SearchOrder property can have a big
effect on performance.



Chapter 8 • Accessing the geodatabase • 827

G
eo

d
at

ab
as

e

Relationship objects

A relationship defines
a general association
between two objects
or features.

Attributed-
Relationship

Simple-
Relationship

An attributed relationship stores
attributes on a relationship and
also represents many-to-many
relationships.

Relationship
IRelationship

*

RowBuffer
IRowBuffer

Row
IRow

IRowEdit
IRowEvents

IValidate

2

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

Attributed-
Relationship-

Class

Table
IClass
ITable

Dataset
IDataset

IDatasetEdit
IDatasetEditInfo

ISchemaLock

Relationship
Class

IDataset
IRelationshipClass

IRelationshipClass2
IRelClassSchemaEdit0..*

0..*

A simple relationship
represents one-to-one or
one-to-many relationships
without attributes.

An attributed relationship class is
a table that stores relationships.
Many-to-many relationships can
be stored in this class.

A relationship class
represents relationships
through embedded foreign
keys.



828 • Exploring ArcObjects • Volume 2

You can create a relationship class with either IRelationshipClass-
Container or IFeatureWorkspace. RelationshipClass objects implement
IDataset (useful for getting the name or the workspace), but they do not
implement IClass (unless they are attributed). This is because a
nonattributed relationship class does not have any fields of its own.

 IRelationshipClass : IUnknown Provides access to members that return information about
the relationship class, create relationships, relationship
rules, and get related objects.

BackwardPathLabel: String The backward path label for the relationship class.
Cardinality: esriRelCardinality The cardinality for the relationship class.
DestinationClass: IObjectClass The destination object olass.
DestinationForeignKey: String The relationship destination foreign key.
DestinationPrimaryKey: String The relationship destination primary key.
FeatureDataset: IFeatureDataset The feature dataset, if any, to which this relationship class belongs.
ForwardPathLabel: String The forward path label for the relationship class.
IsAttributed: Boolean True if the relationships in this relationship class have attributes.
IsComposite: Boolean True if the relationship class represents a composite relationship in

which the origin object class represents the composite object.
Notification: esriRelNotification The notification direction for the relationship class.
OriginClass: IObjectClass The origin object class.
OriginForeignKey: String The relationship origin foreign key.
OriginPrimaryKey: String The relationship origin primary key.
RelationshipClassID: Long The relationship class ID.
RelationshipRules: IEnumRule Gets the relationship rules that apply to this relationship class.

AddRelationshipRule (in rule: IRule) Adds a relationship rule to this relationship class.
CreateRelationship (in OriginObject:

IObject, in DestinationObject: IObject) :
IRelationship

Creates a new relationship between the two specified objects.

DeleteRelationship (in OriginObject:
IObject, in DestinationObject: IObject)

Deletes the relationship that associates the two specified objects.

DeleteRelationshipRule (in rule: IRule) Deletes a relationship rule from this relationship class.
DeleteRelationshipsForObject (in

anObject: IObject)
Deletes all relationships that apply to a specified object.

DeleteRelationshipsForObjectSet (in
anObjectSet: ISet)

Deletes all relationships that apply to the specified origin or
destination object set.

GetObjectsMatchingObjectSet (in
pSrcObjectSet: ISet) :
IRelClassEnumRowPairs

Gets rows pairs of objects that are related to the specified origin or
destination object set.

GetObjectsRelatedToObject (in
anObject: IObject) : ISet

Gets the objects that are related to the specified object.

GetObjectsRelatedToObjectSet (in
anObjectSet: ISet) : ISet

Gets the objects that are related to the specified origin or destination
object set.

GetRelationship (in OriginObject:
IObject, in DestinationObject: IObject) :
IRelationship

Gets the relationship that associates the two specified objects.

GetRelationshipsForObject (in
anObject: IObject) : IEnumRelationship

Gets all relationships that apply to a specified object.

GetRelationshipsForObjectSet (in
anObjectSet: ISet) :
IEnumRelationship

Gets all relationships that apply to the specified origin or destination
object set.

The IRelationshipClass interface provides information about a relation-
ship class, functionality to create and delete individual relationships,
and methods to find related objects. The members of this interface can
be split into three logical groups: the properties that correspond to how
the relationship class was created, the object-to-object methods that
deal with individual relationships, and the relationship rules methods.

The OriginPrimaryKey, OriginForeignKey, DestinationPrimaryKey, and
DestinationForeignKey properties can be somewhat confusing—their uses
are different depending on whether the relationship class is attributed.

The object-to-object methods, such as GetObjectsRelatedToObjectSet,
make use of the ISet interface, which manipulates a set of generic
objects. When adding objects to a set with a cursor, make sure that the

Relationship
Class

IDataset
IRelationshipClass

IRelationshipClass2
IRelClassSchemaEdit

A RelationshipClass is an association
between two object classes; one is the

origin class and the other the destination
class. The relationship class represents a
set of relationships between the objects

belonging to two classes.

RELATIONSHIPCLASS AND ATTRIBUTEDRELATIONSHIPCLASS

origin class destination class

21

23

27

21

27

27

62

64

65

Nonattributed relationship class

Attributed relationship class

origin class
relation-
ship class

21

23

27

62

62

64

65

destination
class

62

64

65

21

27

27

27

origin primary key origin foreign key

The destination primary key and destination foreign key
are not relevant to nonattributed relationship classes

origin primary key

origin foreign key destination foreign key

destination
primary key

Comparing the implementation of
relationships between nonattributed and

attributed relationship classes



Chapter 8 • Accessing the geodatabase • 829

G
eo

d
at

ab
as

e

cursor recycling is turned off, as shown in this example (which deletes
all the relationships for features with areas less than a certain value).

  Dim pQueryFilter As IQueryFilter

  Set pQueryFilter = New QueryFilter

  pQueryFilter.WhereClause = "Shape_Area < 25"

  Dim pFCursor As IFeatureCursor

  Set pFCursor = pFeatureClass.Search(pQueryFilter, False)

  Dim pFeature As IFeature

  Set pFeature = pFCursor.NextFeature

  Dim pFeatSet As ISet

  Set pFeatSet = New esriCore.Set

  Do While Not pFeature Is Nothing

    pFeatSet.Add pFeature

    Set pFeature = pFCursor.NextFeature

  Loop

  pFeatSet.Reset

  MsgBox pFeatSet.count

  pRelClass.DeleteRelationshipsForObjectSet pFeatSet

When using CreateRelationship, remember that this operation will write a
value into the foreign key field. Therefore, it is possible that you could
overwrite, and therefore delete, an existing relationship. Similarly,
DeleteRelationship will remove the foreign key value, so that field must
allow null values unless you want to ensure that all objects in the class
belong to relationships.

 IRelationshipClass2 : IUnknown Provides access to members that get related object row
pairs within a query filter specification.

GetObjectsMatchingObjectArray (in
pSrcObjectArray: IArray, in
pQueryFilterAppliedToMatchingObject
s: IQueryFilter) :
IRelClassEnumRowPairs

Gets row pairs of objects that are related to the specified origin or
destination object array that also meet the query filter expression.

GetObjectsMatchingObjectSetEx (in
pSrcObjectSet: ISet, in
pQueryFilterAppliedToMatchingObject
s: IQueryFilter) :
IRelClassEnumRowPairs

Gets row pairs of objects that are related to the specified origin or
destination object set that also meet the query filter expression.

The IRelationshipClass2 interface was added to provide a method to get
matching objects.

An AttributedRelationshipClass is a special kind of relationship class and
is also a kind of table known as the relationship table. For nonattributed
relationship classes, the relationships are stored with the objects them-
selves in the foreign key values. For attributed relationship classes, the
relationships are defined by the objects in conjunction with the rows in
the relationship table.

A good way of testing whether you have an AttributedRelationshipClass
object is as follows:

  If TypeOf pRelClass Is ITable Then

    Debug.Print "Attributed Relationship Class"

  End If

RELATIONSHIPCLASS AND ATTRIBUTEDRELATIONSHIPCLASS

Table
IClass
ITable

Attributed-
Relationship-

Class

Dataset
IDataset

IDatasetEdit
ISchemaLock

Relationship
Class

IDataset
IRelationshipClass

IRelationshipClass2
IRelClassSchemaEdit

An attributed relationship class stores
many-to-many relationships and relation-

ships with attributes.



830 • Exploring ArcObjects • Volume 2

RELATIONSHIPCLASS AND ATTRIBUTEDRELATIONSHIPCLASS

The IRelationshipClass::IsAttributed property only returns True if there are extra
relationship attributes beyond those required to relate the objects. The
IRelationshipClass::GetRelationship method is useful for accessing the relationship
attributes.



Chapter 8 • Accessing the geodatabase • 831

G
eo

d
at

ab
as

e

Relationship is an abstract class that covers SimpleRelationship and
AttributedRelationship objects. A relationship represents a pair of related
objects or features. For more details, see the RelationshipClass topic.

 IRelationship : IUnknown Provides access to members that return information about
the relationship.

DestinationObject: IObject The destination object.
OriginObject: IObject The origin object.
RelationshipClass: IRelationshipClass The relationship class to which this relationship belongs.

The IRelationship interface provides read-only information about a
relationship. It is most useful with attributed relationships since it can
form a bridge between the attribute information, which is in row form,
and the related objects.

When dealing with relationships, you will normally use the
IRelationshipClass interface rather than IRelationship.

The SimpleRelationship object represents a pair of related geodatabase
objects or features. There are no attribute values associated with the
relationship.

You should not cocreate a simple relationship. Instead, use
IRelationshipClass::CreateRelationship.

The AttributedRelationship object is a kind of row that represents a pair
of related objects or features with extra information about the pairing.
The extra information is stored in the row.

You should not cocreate an attributed relationship. Instead, use
IRelationshipClass::CreateRelationship.

RELATIONSHIP OBJECTS

Attributed-
Relationship

Relationship
IRelationship

Simple-
Relationship

Simple relationships relate two objects or
features through a foreign key. Attributed
relationships are required to store many-

to-many relationships and to keep
attributes on a relationship.



832 • Exploring ArcObjects • Volume 2

Class extension objects

0..1
IClassExtension Class-

Extension

ClassHelper
IClassHelper

IConfirmSendRelatedObjectEvents (optional)
IObjectClassExtension

IObjectInspector (optional)
IObjectClassDescription (optional)

IObjectClassEvents (optional)
IObjectClassValidation (optional)

IRelatedObjectClassEvents (optional)
IRelatedObjectClassEvents2 (optional)

ObjectClass-
Extension

Feature-
Class-

Extension

IFeatureClassExtension
IFeatureClassCreation (optional)

IFeatureClassDescription (optional)
IFeatureClassDraw (optional)

IFeatureClassEdit (optional)
INetworkClassDescription (optional)

Table
IClass
ITable

ITable2

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Feature-
Class

IFeatureClass
IFeatureClassLoad (optional)

IFeatureClassWrite
IGeoDataset

INetworkClass

0..1

0..1

IObjectClassDescription ObjectClass-
Description

IFeatureClassDescription FeatureClass-
Description

INetworkClassDescription Network-
Class-

Description

A class helper is an intermediate object
used to avoid circular references between

an object class and a class extension

A class extension is a way
for a programmer to add
class-wide customization,
such as a custom form for
data inspection

An object class description
helps automate the creation
of new object classes

A feature class description
helps automate the creation
of new feature classes

A network class description
helps automate the creation
of new network feature
classes



Chapter 8 • Accessing the geodatabase • 833

G
eo

d
at

ab
as

e

A ClassExtension allows developers to implement optional interfaces to
customize geodatabase behavior. A ClassExtension can also be used to
add additional behavior to an ObjectClass or FeatureClass by supporting
custom interfaces.

 IClassExtension : IUnknown Class Extension Interface.

Init (in pClassHelper: IClassHelper, in
pExtensionProperties: IPropertySet)

Initializes the  extension, passing in a reference to its class helper.

Shutdown Informs the extension that its class helper is going away.

The IClassExtension interface is the main interface required for imple-
menting a ClassExtension.

The Init method provides a pointer to the ClassHelper object that should
be used to access the Extension object’s ObjectClass. A ClassExtension
should not maintain a reference to the ObjectClass directly, but rather
should access it via the ClassHelper as necessary. In addition to the
ClassHelper, a PropertySet contains any data stored with the ObjectClass.

The value of PropertySet can be modified by using IClassSchemaEdit::
AlterClassExtensionCLSID or IClassSchemaEdit2::
AlterClassExtensionProperties. If the properties do not exist for the Exten-
sion, the pExtensionProperties argument will be Nothing.

The Init method is called when the ObjectClass is opened for the first
time. Before the ObjectClass is closed, the Shutdown method is called.

This code demonstrates how to implement a simple ClassExtension that
utilizes ClassExtension properties to store a symbol that may be used for
custom feature drawing.

Implements IClassExtension

Private m_pClassHelper As esriCore.IClassHelper

Private m_pSymbol As ISymbol

Private Sub IClassExtension_Init(ByVal pClassHelper As _

  esriCore.IClassHelper, ByVal pExtensionProperties As _

  esriCore.IPropertySet)

    Set m_pClassHelper = pClassHelper

    If Not pExtensionProperties Is Nothing Then

        Set m_pSymbol = pExtensionProperties.GetProperty("Symbol")

    End If

End Sub

Private Sub IClassExtension_Shutdown()

    Set m_pClassHelper = Nothing

End Sub

CLASSEXTENSION ABSTRACT CLASS

IClassExtension Class-
Extension

A ClassExtension is an object that gives
developers the ability to customize and

extend advanced Geodatabase
functionality.

A class helper prevents circular references from
occurring in Visual Basic.



834 • Exploring ArcObjects • Volume 2

An ObjectClassExtension is any ClassExtension associated with an ObjectClass
coclass.

 IObjectClassExtension : IUnknown Object Class Extension Identity Interface.

The IObjectClassExtension interface is a required identity interface.

 IObjectInspector : IUnknown Custom object/feature property inspector.

hWnd: Long The window handle for the inspector.

Clear Clears the inspector before inspecting another object.
Copy (in srcRow: IRow) Copies the values from srcRow to the row being edited.
Inspect (in Objects: IEnumRow, in

Editor: IEditor)
Inspects the properties of the features.

The IObjectInspector interface is an optional interface that provides the
ability to replace the ArcMap default ObjectInspector with a custom one.
Custom ObjectInspectors are easily implemented using a Form that imple-
ments IObjectInspector.

The ObjectClassExtension delegates method calls directly to the Form as
necessary.

The hWnd property provides a window handle to the form that will be
displayed. This value could come from a Form’s hWnd property.

The Inspect method passes in the currently selected objects in the
ObjectInspector tree and a pointer to the Editor.

If the Objects parameter enumeration contains more than one Row, the
edits should be applied to all Objects passed in. The Copy method should
create a new Object and set its attributes equal to those in the Row
parameter. The Clear method should clear the display of the current
values.

 IObjectClassValidation : IUnknown Object Class Validation Interface.

ValidateField (in Row: IRow, in
FieldName: String) : String

Validates the row's specified attribute.

ValidateRow (in Row: IRow) : String Validates the row.

The IObjectClassValidation interface is an optional interface that pro-
vides custom validation of Objects. This validation is in addition to
geodatabase validation of domains, relationship rules, and connectivity
rules. After successfully completing all native validation within the
geodatabase, the ValidateRow method is called. Effectively, this is the
last type of validation performed when validating an object.

The ValidateField method is called when IValidate::GetInvalidFields is called on an
Object of the associated ObjectClass.

The ValidateRow method is called by an Object’s IValidate::Validate and
by the Validate methods on the IValidation interface of the associated
ObjectClass. ValidateRow should be used to validate database or spatial
relationships in addition to field values. If the field or row is invalid,

OBJECTCLASSEXTENSION ABSTRACT CLASS

IClassExtension Class-
Extension

IConfirmSendRelated-
ObjectEvents (optional)
IObjectClassExtension

IObjectInspector
(optional)

IObjectClassDescription
(optional)

IObjectClassEvents
(optional)

IObjectClassValidation
(optional)

IRelatedObjectClass-
Events (optional)

IRelatedObjectClass-
Events2 (optional)

ObjectClass-
Extension

An object class extension is any class
extension associated with an object class.



Chapter 8 • Accessing the geodatabase • 835

G
eo

d
at

ab
as

e

an appropriate error string should be returned. Otherwise, a zero-length
string is returned.

The following code demonstrates simple custom validation that requires the value
of the field to be divisible by two.

Implements IClassExtension

Implements IObjectClassExtension

Implements IObjectClassValidation

Private m_pClassHelper As esriCore.IClassHelper

Private m_lValueIndex As Long

Private Const MYVALUE_FIELDNAME As String = "MyValue"

Private Sub IClassExtension_Init(ByVal pClassHelper _

  As esriCore.IClassHelper, ByVal pExtensionProperties As
esriCore.IPropertySet)

  Set m_pClassHelper = pClassHelper

  Dim pClass As esriCore.IClass

  Set pClass = m_pClassHelper.Class

  m_lValueIndex = pClass.FindField(MYVALUE_FIELDNAME)

End Sub

Private Sub IClassExtension_Shutdown()

  'Release helper here.

  Set m_pClassHelper = Nothing

End Sub

Private Function IObjectClassValidation_ValidateField(ByVal Row As _

  esriCore.IRow, ByVal FieldName As String) As String

  Dim sErrStr As String

  sErrStr = ""

  If FieldName = MYVALUE_FIELDNAME Then

    Dim lMyvalue As Long

    lMyvalue = Row.Value(m_lValueIndex)

    Dim lModValue As Long

    lModValue = lMyvalue Mod 2

    If lModValue > 0 Then

      sErrStr = "Field value is not divisable by 2."

    End If

    IObjectClassValidation_ValidateField = sErrStr

  End If

End Function

Private Function IObjectClassValidation_ValidateRow(ByVal Row _

  As esriCore.IRow) As String

  IObjectClassValidation_ValidateRow = _

    IObjectClassValidation_ValidateField(Row, MYVALUE_FIELDNAME)

End Function

OBJECTCLASSEXTENSION ABSTRACT CLASS



836 • Exploring ArcObjects • Volume 2

 IRelatedObjectClassEvents : IUnknown Provides access to events that occur when related objects
are created.

RelatedObjectCreated (in
RelationshipClass: IRelationshipClass,
in objectThatWasCreated: IObject)

Notifies this object class that a related object was created.

The IRelatedObjectClassEvents interface is an optional interface that is imple-
mented to receive messages about newly created objects in related ObjectClasses.

The only method on this interface is RelatedObjectCreated. The RelationshipClass
argument is useful for establishing new relationships. Since an ObjectClass often
participates in many relationships, the properties of RelationshipClass can be used
to modify behavior of this method.

This code demonstrates how to automatically create a new object and relate it to
the new related object.

Implements IClassExtension

Implements IObjectClassExtension

Implements IRelatedObjectClassEvents

Private m_pClassHelper As esriCore.IClassHelper

Private Sub IClassExtension_Init(ByVal pClassHelper As _

  esriCore.IClassHelper, ByVal pExtensionProperties As _

  esriCore.IPropertySet)

  Set m_pClassHelper = pClassHelper

End Sub

Private Sub IClassExtension_Shutdown()

  'Release helper here.

  Set m_pClassHelper = Nothing

End Sub

Private Sub IRelatedObjectClassEvents_RelatedObjectCreated(ByVal _

  RelationshipClass As esriCore.IRelationshipClass, ByVal _

  objectThatWasCreated As esriCore.IObject)

  Dim pTable As ITable

  Set pTable = m_pClassHelper.Class

  Dim pObject As esriCore.IObject

  Set pObject = pTable.CreateRow

  pObject.Store

  Dim pRelationship As IRelationship

  Set pRelationship = _

  RelationshipClass.CreateRelationship(objectThatWasCreated, _

  pObject)

End Sub

OBJECTCLASSEXTENSION ABSTRACT CLASS



Chapter 8 • Accessing the geodatabase • 837

G
eo

d
at

ab
as

e

 IConfirmSendRelatedObjectEvents :
 IUnknown

Provides access to events that occur when related objects
change, move, or rotate, and confirms that the event 
should be sent.

ConfirmSendRelatedObjectChanged (in
RelationshipClass: IRelationshipClass,
in objectThatChanged: IObject) :
Boolean

Notifies this object that a related object changed and asks if events
should be sent.

ConfirmSendRelatedObjectMoved (in
RelationshipClass: IRelationshipClass,
in objectThatChanged: IObject, in
MoveVector: ILine) : Boolean

Notifies this object that a related object moved and asks if events
should be sent.

ConfirmSendRelatedObjectRotated (in
RelationshipClass: IRelationshipClass,
in objectThatChanged: IObject, Origin:
IPoint, Angle: Double) : Boolean

Notifies this object that a related object rotated and asks if events
should be sent.

ConfirmSendRelatedObjectSetMoved
(in RelationshipClass:
IRelationshipClass, in
objectsThatChanged: ISet,
MoveVector: ILine) : Boolean

Notifies this object that a set of objects with relationships to the input
set of objects moved and asks if events should be sent.

ConfirmSendRelatedObjectSetRotated
(in RelationshipClass:
IRelationshipClass, in
objectsThatChanged: ISet, Origin:
IPoint, Angle: Double) : Boolean

Notifies this object that a set of objects with relationships to the input
set of objects rotated and asks if events should be sent.

The IConfirmSendRelatedObjectEvents is an optional interface used to
confirm the messaging of related objects.

When an Object that participates in a Relationship is modified, moved, or
rotated (alone or in a set), its related objects will be messaged if relation-
ship notification is set in that direction. Typically, a related object is only
interested in certain changes on an object. The properties of this inter-
face allow an ObjectClassExtension to prevent or confirm that messages
should be sent.

Each property on IConfirmSendRelatedObjectEvents corresponds to a
method on IRelatedObjectEvents (for example,
ConfirmSendRelatedObjectChanged corresponds to
RelatedObjectChanged).

The decision to confirm the sending of messages is based on criteria,
such as a particular field being changed. An object can be analyzed for
which fields have been modified by accessing the IRowChanges inter-
face or the IFeatureChanges interface for shape information.

Eliminating unnecessary calls to IRelatedObjectEvents optimizes editing
performance.

The following code demonstrates how to use IFeatureChanges to con-
firm the sending of the RelatedObjectChanged message when the shape
field is modified.

Private Function _

  IConfirmSendRelatedObjectEvents_ConfirmSendRelatedObjectChanged _

  (ByVal RelationshipClass As esriCore.IRelationshipClass, ByVal _

  objectThatChanged As esriCore.IObject) As Boolean

  Dim pFeatureChanges As IFeatureChanges

  Set pFeatureChanges = objectThatChanged

  IConfirmSendRelatedObjectEvents_ConfirmSendRelatedObjectChanged = _

   pFeatureChanges.ShapeChanged

End Function

OBJECTCLASSEXTENSION ABSTRACT CLASS



838 • Exploring ArcObjects • Volume 2

 IObjectClassEvents : IUnknown Provides access to events that occur with an object class.

OnChange (in obj: IObject) This event is fired when an object's attributes or geometry is updated.
OnCreate (in obj: IObject) This event is fired when a new object is created in the object class.
OnDelete (in obj: IObject) This event is fired when an object is deleted from the object class.

The IObjectClassEvents interface is an optional interface for an
ObjectClassExtension, implemented for monitoring changes to the Objects
in the ObjectClass.

The methods on this interface will be called by an ObjectClass before
notifying other related and external objects. The OnCreate method is
called when a new object is created. The OnChange method is called
when an existing object is modified. The OnDelete method is called
when objects in that class are deleted.

OBJECTCLASSEXTENSION ABSTRACT CLASS



Chapter 8 • Accessing the geodatabase • 839

G
eo

d
at

ab
as

e

A FeatureClassExtension is a ClassExtension related to a FeatureClass.

 IFeatureClassExtension : IUnknown Feature Class Extension Identity Interface.

The IFeatureClassExtension interface is a required identity interface. It
has no properties or methods, but it identifies a feature class extension.

 IFeatureClassCreation : IUnknown Feature Class Creation Interface.

CanCreateFromPoint: Boolean True if the features in this feature class know how to create their
shapes given an input point geometry.

The IFeatureClassCreation interface is an optional interface used to
specify that new Features of this class can be created with a single point.
If Features can be created from a point, the CanCreateFromPoint prop-
erty returns True.

 IFeatureClassDraw : IUnknown Feature Class Drawing Information Interface.

CustomRenderer: Variant The custom renderer for the FeatureClass.
CustomRendererPropPageCLSID: IUID The custom renderer's property page CLSID.
ExclusiveCustomRenderer: Boolean Returns whether the custom renderer is exclusive or not.
RequiredFieldsForDraw: IFields The required fields for drawing a Feature.

DoesCustomDrawing: Boolean Returns whether the FeatureClass does custom drawing.
HasCustomRenderer: Boolean Returns whether the FeatureClass has a custom renderer.

The IFeatureClassDraw interface is an optional interface used to specify
custom drawing behavior in ArcMap.

Before a FeatureLayer draws Features in a FeatureClass, it checks the
FeatureClassExtension for support of this interface. Custom drawing can
be achieved through the use of a custom Renderer or through the use
of a custom Feature that implements IFeatureDraw::Draw.

If using a custom Renderer, the ExclusiveCustomRenderer property can
be used to restrict the available Renderers to the custom one for the
FeatureClass. If the custom Renderer is configurable, a configuration
property page can be specified with the CustomRendererPropPageCLSID
property. If you are using a custom Feature that utilizes extra fields
beyond the Shape for drawing, you must specify those fields in the
RequiredFieldsForDraw property or they will not be returned in the
FeatureLayer’s FeatureCursor.

 IFeatureClassEdit : IUnknown Feature Class Extension Editing Properties Interface.

CanEditWithProjection: Boolean Returns whether or not the associated feature class can be edited in
projected spaces.

CustomSplitPolicyForRelationship (in
Row: IRow, in relClass:
IRelationshipClass) :
esriRelationshipSplitPolicy

The custom split policy for handling relationships.

HasCustomSplitPolicyForRelationship:
Boolean

Returns whether the feature class has a custom split policy for
handling relationships.

The IFeatureClassEdit interface is an optional interface used for specify-
ing advanced editing configuration.

FEATURECLASSEXTENSION ABSTRACT CLASS

Feature-
Class-

Extension

IFeatureClassExtension
IFeatureClassCreation

(optional)
IFeatureClass-

Description (optional)
IFeatureClassDraw

(optional)
IFeatureClassEdit

(optional)
INetworkClass-

Description (optional)

IClassExtension Class-
Extension

IConfirmSendRelated-
ObjectEvents (optional)
IObjectClassExtension

IObjectInspector
(optional)

IObjectClassDescription
(optional)

IObjectClassEvents
(optional)

IObjectClassValidation
(optional)

IRelatedObjectClass-
Events (optional)

IRelatedObjectClass-
Events2 (optional)

ObjectClass-
Extension

A feature class extension is a class
extension related to a feature class.



840 • Exploring ArcObjects • Volume 2

ArcMap supports the editing of simple Features in a different
SpatialReference than that of the FeatureDataset. If the associated
FeatureClass is of type esriFTSimple, editing of the FeatureClass from
within a different SpatialReference can be prevented by implementing
the CanEditWithProjection property and returning False.

When a Feature with related objects is split, the geodatabase automati-
cally maintains or deletes the related objects, depending on the type of
relationship.

In the case of simple relationships, the related objects will be preserved
and a new relationship is created with the Feature containing the larger
part of the Shape. In the case of composite relationships, the related
objects are deleted. If this is not the desired behavior, return True for the
HasCustomSplitPolicy method.

Through the CustomSplitPolicyForRelationship property, a custom split
policy can be specified according to Subtype and Relationship. The
supported split policies are defined in the esriRelationshipSplitPolicy
enumeration and described in the following table.

The default behavior, which is EsriRSPPreserveOnLargest for simple relationships and
esriRSPDeleteParts for composite relationships.

Preserve related objects and create a relationship with the Feature with the largest part of the
split geometry.

Preserve related objects and create a relationship with the Feature with the smallest part of
the split geometry.

Preserve related objects and create a relationship with both Features. This option is not valid
with relationships with 1..1 cardinality or composite relationships.

Delete the relationship.

Delete the related Objects.

esriRSPUseDefault

esriRSPPreserveOnLargest

esriRSPPreserveOnSmallest

esriRSPPreserveOnAll

esriRSPDeleteRelationship

esriRSPDeleteParts

Enumeration value Behavior

FEATURECLASSEXTENSION ABSTRACT CLASS



Chapter 8 • Accessing the geodatabase • 841

G
eo

d
at

ab
as

e

ClassHelper
IClassHelper

The class helper is an intermediate
object used to prevent circular references

between an ObjectClass and a
ClassExtension.

A ClassHelper is passed as an argument to the Init method on IClass-
Extension interface.

 IClassHelper : IUnknown Class Helper Interface.

Class: IClass The class for this class helper.

The Class property should be used by the ClassExtension to get a pointer
to the current ObjectClass. A ClassExtension should not keep the pointer
in a class level variable, but rather should retrieve it from the ClassHelper
as needed.

CLASSHELPER CLASS



842 • Exploring ArcObjects • Volume 2

CLASS DESCRIPTION ABSTRACT CLASSES

IObjectClass-
Description ObjectClass-

Description

IFeatureClass-
Description FeatureClass-

Description

INetworkClass-
Description

Network-
Class-

Description

An object class description helps auto-
mate the creation of new object classes

in ArcCatalog.

A feature class description helps auto-
mate the creation of new feature classes

in ArcCatalog.

A network class description helps auto-
mate the creation of new network

classes in ArcCatalog.

An ObjectClassDescription allows developers to implement configuration
interfaces that automate the creation of new ObjectClasses by predefining
required information for ObjectClasses, FeatureClasses, and
NetworkFeatureClasses.

 IObjectClassDescription : IUnknown Object Class Description Interface.

AliasName: String The alias name of this class.
ClassExtensionCLSID: IUID The CLSID of the class extension Com Class that implements  class

level behavior.
InstanceCLSID: IUID The CLSID of the Com Class that implements  instance level

behavior.
ModelName: String The model name of this class.
ModelNameUnique: Boolean True the model name of this class is unique.
Name: String The name for this class, for example, ESRI Simple Junction Feature.
RequiredFields: IFields Returns descriptions of the set of required fields for this  class.

The IObjectClassDescription interface is an optional interface that pro-
vides configuration information for ArcCatalog to use when creating a
new ObjectClass or FeatureClass. This interface can be implemented on a
ClassExtension or a separate coclass. Regardless of where the interface is
implemented, the implementing coclass must be registered to the ESRI
GeoObject Class Descriptions category using the Component Category
Manager. If a FeatureClass is being created, the ClassDescription (or
ClassExtension) must also implement IFeatureClassDescription.

When implementing the RequiredFields property, it is necessary to in-
clude an OID field, a geometry field (if a FeatureClass), subtype field,
ancillary role, or enabled field (if a NetworkFeature type), in addition to
any other attributes.

The following code example demonstrates a simple implementation of
IObjectClass.

Implements IObjectClassDescription

Private Property Get IObjectClassDescription_AliasName() As String

    IObjectClassDescription_AliasName = "My Object Class"

End Property

Private Property Get IObjectClassDescription_ClassExtensionCLSID() As _

  esriCore.IUID

  Dim pUID As UID

  Set pUID = New UID

  pUID.Value = "{82D4EA61-72F6-11d4-80EA-00C04F601565}"

  Set IObjectClassDescription_ClassExtensionCLSID = pUID

End Property

Private Property Get IObjectClassDescription_InstanceCLSID() As _

  esriCore.IUID

  Dim pUID As UID

  Set pUID = New UID

  pUID.Value = "{82D4EA60-72F6-11d4-80EA-00C04F601565}"

  Set IObjectClassDescription_InstanceCLSID = pUID

End Property



Chapter 8 • Accessing the geodatabase • 843

G
eo

d
at

ab
as

e

CLASS DESCRIPTION ABSTRACT CLASSES

Private Property Get IObjectClassDescription_ModelName() As String

  IObjectClassDescription_ModelName = "MyObjectClass"

End Property

Private Property Get IObjectClassDescription_ModelNameUnique() As _

  Boolean

  IObjectClassDescription_ModelNameUnique = True

End Property

Private Property Get IObjectClassDescription_Name() As String

  IObjectClassDescription_Name = "MyObjectClass"

End Property

Private Property Get IObjectClassDescription_RequiredFields() As _

  esriCore.IFields

    Dim pFieldsEdit As IFieldsEdit

    Dim pFieldEdit As IFieldEdit

    Set pFieldsEdit = New Fields

    pFieldsEdit.FieldCount = 3

    'Add OID Field

    Set pFieldEdit = New Field

    pFieldEdit.Name = "OID"

    pFieldEdit.Type = esriFieldTypeOID

    Set pFieldsEdit.Field(0) = pFieldEdit

    'Add Shape Field

    Set pFieldEdit = New Field

    pFieldEdit.Name = "SHAPE"

    Dim pGeoDef As IGeometryDef

    Dim pGeoDefEdit As IGeometryDefEdit

    Set pGeoDef = New GeometryDef

    Set pGeoDefEdit = pGeoDef

    pGeoDefEdit.GeometryType = esriGeometryPolygon

    pFieldEdit.Type = esriFieldTypeGeometry

    Set pFieldEdit.GeometryDef = pGeoDefEdit

    Set pFieldsEdit.Field(1) = pFieldEdit

    'Add other Fields

    Set pFieldEdit = New Field

    pFieldEdit.Name = "MyValue"

    pFieldEdit.Type = esriFieldTypeString

    Set pFieldsEdit.Field(2) = pFieldEdit

    Set IObjectClassDescription_RequiredFields = pFieldsEdit

End Property



844 • Exploring ArcObjects • Volume 2

CLASS DESCRIPTION ABSTRACT CLASSES

 IFeatureClassDescription : IUnknown Feature Class Description Interface.

FeatureType: esriFeatureType The esriFeatureType for the instances of this class.
ShapeFieldName: String The name of the field containing the shape.

The IFeatureClassDescription interface provides additional information to
ArcCatalog for the creation of FeatureClasses.

The interface’s two properties define the FeatureType and
ShapeFieldName for the FeatureClass.

The ShapeFieldName is the name of the field defined with
esriFieldTypeGeometry in the RequiredFields property of IObjectClass-
Description.

 INetworkClassDescription : IUnknown Network Class Description Interface.

EnabledFieldName: String
NetworkAncillaryRoleFieldName: String

The INetworkClassDescription interface provides additional information
to ArcCatalog for the creation of NetworkFeatureClasses. The names of
the Enabled field and the AncilliaryRole field can be specified with the
two properties of this interface. These fields should be included in the
RequiredFields property of IObjectClassDescription.

Note that this interface is not yet available in ArcCatalog at ArcGIS 8.1,
but you can implement it.



Chapter 8 • Accessing the geodatabase • 845

G
eo

d
at

ab
as

eAnnotation and dimension objects

INetworkFeature
INetworkFeatureEvents Network-

Feature
Dimension-

Feature

IDimensionFeature Annotation-
Feature

IAnnotationFeature

Dimension-
Shape

IDimensionShape
Dimension-

Graphic

IDimensionGraphic

IClassExtension Class-
Extension

1..*

Dimension-
Styles

IDimensionStyles

Dimension-
Style

IDimensionStyle
IDimensionStyleDisplay

IDimensionStyleText

Dimension-
Class-

Extension

IDimensionClassExtension Annotation-
FeatureClass-

Extension

IAnnoClass
IAnnoClassAdmin

An annotation feature
class extension manages
the drawing of
annotation features

A dimension class extension manages
the drawing of dimension features

The dimension styles object
manages a collection of
dimension style objects

A dimension style defines
properties for controlling the

symbology of dimensions

An annotation feature
persists and draws
annotation in a geodatabase

A dimension graphic
draws dimensions

A dimension shape
stores the geometry
for a dimension

A dimension feature persists and
draws dimensions in a geodatabase

RowBuffer
IRowBuffer

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

IConfirmSendRelatedObjectEvents (optional)
IObjectClassExtension

IObjectInspector (optional)
IObjectClassDescription (optional)

IObjectClassEvents (optional)
IObjectClassValidation (optional)

IRelatedObjectClassEvents (optional)
IRelatedObjectClassEvents2 (optional)

ObjectClass-
Extension

Feature-
Class-

Extension

IFeatureClassExtension
IFeatureClassCreation (optional)

IFeatureClassDescription (optional)
IFeatureClassDraw (optional)

IFeatureClassEdit (optional)
INetworkClassDescription (optional)



846 • Exploring ArcObjects • Volume 2



Chapter 8 • Accessing the geodatabase • 847

G
eo

d
at

ab
as

e

Annotation features persist and draw text or graphic elements stored in
the geodatabase. An annotation feature class (AnnoClass) can be fea-
ture-linked or standalone. Feature-linking allows the text of the annota-
tion to be derived from the value of a related feature. The lifetime of the
annotation is also controlled by the lifetime of the related feature.

Annotation feature classes are created using methods on the IFeature-
WorkspaceAnno interface on a geodatabase workspace.

Annotation features can persist (store) either an entire symbol inline or
an ID for a group symbol. These two persistence mechanisms balance
performance with flexibility.

Storing the symbol inline allows the modification of the symbol on a
Feature-instance basis. Unfortunately, this method increases the size of a
Row dramatically and may cause performance degradation when draw-
ing large numbers of features in a multiuser environment.

A more efficient but less flexible alternative is to use group symbols.
Group symbols are stored as properties of the AnnotationFeatureClass-
Extension. The AnnotationFeature stores an ID that references a symbol
in the extension’s SymbolCollection. Group symbol IDs are set using the
IGroupSymbolElement interface on an AnnotationFeature’s TextElement. A
small number of commonly changed attributes can be overridden with
no performance penalties using the IGroupSymbolElement interface.
Once an AnnotationFeature has an element with a group symbol, it is
important that the symbol is not removed or modified in the Symbol-
Collection.

The AnnotationFeatureClassExtension is used to configure the drawing
properties and symbology for annotation features. The IAnnoClass inter-
face is used to access the AnnotationLayerProperties and group symbols.
The IAnnoClassAdmin interface is used to update the properties of the
class. ArcMap and ArcCatalog primarily use these interfaces.

 IAnnoClass : IUnknown Provides access to members that control the annotation
class.

AnnoProperties:
IAnnotateLayerPropertiesCollection

The labeling properties annotation classes.

ElementFieldIndex: Long The element field index.
FeatureClass: IFeatureClass The feature class.
FeatureIDFieldIndex: Long The feature ID field index.
ReferenceScale: Double The reference scale.
ReferenceScaleUnits: esriUnits The units of the reference scale.
Symbol (in SymbolID: Long) : ISymbol The symbol associated with the given ID.
SymbolCollection: ISymbolCollection The symbol collection.
Version: Integer The version of the annotation class.

Draw (annoFeature:
IAnnotationFeature, Display: IDisplay,
Symbol: ISymbol)

Draws the given annotation feature.

The IAnnoClass interface provides access to the properties that control
drawing and placement of annotation.

The ReferenceScale property is the scale at which the annotation’s sym-
bol will be drawn at its configured point size. The drawing of symbols is
then scaled proportionally based on the reference scale and the current
scale of the display’s transformation.

ANNOTATIONFEATURECLASSEXTENSION CLASS

Annotation-
FeatureClass-

Extension

IAnnoClass
IAnnoClassAdmin

Feature-
Class-

Extension

IFeatureClassExtension
IFeatureClassCreation

(optional)
IFeatureClass-

Description (optional)
IFeatureClassDraw

(optional)
IFeatureClassEdit

(optional)
INetworkClass-

Description (optional)

IClassExtension Class-
Extension

IConfirmSendRelated-
ObjectEvents (optional)
IObjectClassExtension

IObjectInspector
(optional)

IObjectClassDescription
(optional)

IObjectClassEvents
(optional)

IObjectClassValidation
(optional)

IRelatedObjectClass-
Events (optional)

IRelatedObjectClass-
Events2 (optional)

ObjectClass-
Extension

The annotation feature class extension
manages the drawing of annotation

features.



848 • Exploring ArcObjects • Volume 2

The ReferenceScaleUnits property is only required when the
SpatialReference of the annotation feature class is unknown.

The Draw method provides optimized drawing of a single Annotation-
Feature coclass.

 IAnnoClassAdmin : IUnknown Provides access to members that control the annotation
class admin interface.

AnnoProperties:
IAnnotateLayerPropertiesCollection

The labeling properties annotation class.

AutoCreate: Boolean Indicates if an annotation is to be automatically created when a
feature is created.

ReferenceScale: Double The reference scale.
ReferenceScaleUnits: esriUnits The units of the reference scale.
SymbolCollection: ISymbolCollection The symbol collection.

UpdateProperties Updates the property set.

The IAnnoClassAdmin interface is used to modify the drawing properties
of the AnnotationFeatureClass.

In a versioned geodatabase, these properties apply to all versions and
are not versioned. After creating an AnnotationFeatureClass, modifying
these properties may cause problems with the drawing and selection of
AnnotationFeatures.

Adding new symbols to the SymbolCollection or changing the AutoCreate
property are the only recommended modifications. Deleting or modify-
ing symbols in the SymbolCollection requires updating all
AnnotationFeatures whose elements reference the group symbol.

When adding new symbols to the SymbolCollection, it is necessary to
assign an ID that is not already in use.

As with any schema-related change, an exclusive schema lock should
be obtained before calling the UpdateProperties method.

ANNOTATIONFEATURECLASSEXTENSION CLASS



Chapter 8 • Accessing the geodatabase • 849

G
eo

d
at

ab
as

e

ANNOTATIONFEATURE CLASS

RowBuffer
IRowBuffer

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

Row
IRow

IRowEdit
IRowEvents

IValidate

Annotation-
Feature

IAnnotationFeature

An annotation feature object persists and
draws annotation in the geodatabase.

The AnnotationFeature persists and draws GraphicElements that are
stored in the geodatabase. For labeling, a TextElement is used.
AnnotationFeatures can be linked to Features in a related FeatureClass.

 IAnnotationFeature : IUnknown Provides access to members that control the annotation
feature.

Annotation: IElement The annotation element for the feature.
LinkedFeatureID: Long Feature ID.

The IAnnotationFeature interface is used for relating AnnotationFeatures
to other features or updating the graphic of the Annotation.

The Annotation property accepts any GraphicElement. If a TextElement is
used, a group symbol can be assigned by using the IGroupSymbol inter-
face. A TextElement that does not use a group symbol will have a group
symbol ID of -1.

To relate an AnnotationFeature to another Feature (a RelationshipClass
must already exist), assign the OID of the related feature to the
LinkedFeatureID property. If the AnnotationFeature is not linked, the
LinkedFeatureID property is -1. After updating either of these properties,
the IFeature::Store methods must be called.

The following code sample demonstrates how to update the text of an
AnnotationFeature:

Public Sub UpdateText(pAnnoFeature As IAnnotationFeature)

  Dim pElement As IElement

  Set pElement = pAnnoFeature.Annotation

  If TypeOf pElement Is ITextElement Then

    Dim pTextElement As ITextElement

    Set pTextElement = pElement

    pTextElement.Text = InputBox("Replace '" & pTextElement.Text & "' with:")

    pAnnoFeature.Annotation = pElement

    Dim pFeature As IFeature

    Set pFeature = pAnnoFeature

    pFeature.Store

  End If

End Sub



850 • Exploring ArcObjects • Volume 2

IClassExtension Class-
Extension

Dimension-
Class-

Extension

IDimensionClass-
Extension

IObjectClassExtension
IObjectInspector

IObjectClassDescription
IObjectClassValidation

IRelatedObjectClass-
Events

ObjectClass-
Extension

Feature-
Class-

Extension

IFeatureClassExtension
IFeatureClassCreation

IFeatureClassDescription
IFeatureClassDraw

IFeatureClassEdit

The dimension class extension manages
the drawing of dimension features.

The DimensionClassExtension is used to configure the drawing proper-
ties and symbology for DimensionFeatures.

 IDimensionClassExtension : IUnknown Provides access to members that control the dimension
class extension for a dimension feature class.

DimensionStyles: IDimensionStyles The collection of dimension styles associated with the dimension
feature class.

NativeTransformation: ITransformation The native display transformation of the dimension feature class.
ReferenceScale: Double The reference scale of the dimension feature class.
ReferenceScaleUnits: esriUnits The reference scale units of the dimension feature class.

ResetProperties Resets the in state of the dimension feature class properties.
UpdateProperties Updates the dimension featrue class' properties.

The IDimensionClassExtension interface provides access to the
DimensionStyles collection and the reference scale drawing properties.

The ReferenceScale property defines the scale at which symbols are
drawn (at their defined size).

The ReferenceScaleUnits property is only used when the
DimensionFeatureClass’s spatial reference is Unknown. Changing the
ReferenceScale after the FeatureClass contains Features is not recom-
mended, as those Features’ geometries are controlled by the
ReferenceScale property.

After making changes to any of the IDimensionClassExtension properties,
it is necessary to call the UpdateProperties method. Changes can also be
discarded by calling the ResetProperties method if UpdateProperties has
not been called. As with any schema-related modification, an exclusive
schema lock should be obtained on the FeatureClass before calling
UpdateProperties.

DIMENSIONCLASSEXTENSION ABSTRACT CLASS



Chapter 8 • Accessing the geodatabase • 851

G
eo

d
at

ab
as

e

The DimensionStyles coclass is used to retrieve, create, and delete the
DimensionStyles coclass.

 IDimensionStyles : IUnknown Provides access to memebers that control a collection of
dimension styles for a dimension feature class.

DefaultStyleID: Long The ID of the defualt dimension style.

AddStyle (in Style: IDimensionStyle) Adds a style to the collection.
DeleteStyle (in ID: Long) Deletes a dimension style.
FindStyle (in Name: String) :

IDimensionStyle
Find a dimension style by name.

GetStyle (in ID: Long) : IDimensionStyle A dimension style.
GetStyles: IEnumDimensionStyle All the dimension styles in the collection.
RenameStyle (in ID: Long, in Name:

String)
Renames a dimension style.

The DimensionStyles interface provides methods and properties for
managing DimensionStyle objects.

In order to add a new DimensionStyle object, create a new Dimension-
Style coclass, modify it, and call the Add method. When a style is added,
a StyleID is automatically assigned to that Style.

The DefaultStyleID property specifies which style should be used by
default in ArcMap. DimensionStyle objects can be retrieved by ID or
name using the GetStyle and FindStyle methods.

Existing DimensionStyle objects can be renamed using the Rename
method. Styles can only be deleted and not modified.

If a DimensionStyle is deleted, it is important to reassign a new
DimensionStyle to existing DimensionFeatures that reference the deleted
style.

Dimension-
Styles

IDimensionStyles

The DimensionStyles object manages a
collection of DimensionStyle objects.

DIMENSIONSTYLES COCLASS



852 • Exploring ArcObjects • Volume 2

Dimension-
Style

IDimensionStyle
IDimensionStyleDisplay

IDimensionStyleText

A dimension style defines properties for
controlling the symbology of dimensions.

The DimensionStyle coclass supports three interfaces for managing the
symbology, behavior, and text of a Dimension.

 IDimensionStyle : IUnknown Provides access to members that control the properties of
a dimension style

ID: Long ID of the style
Name: String Name of the style

The IDimensionStyle interface provides properties for identifying
DimensionStyles coclass.

The ID property is read-only; it is assigned to a DimensionStyle when it
is added to a DimensionStyles collection.

The Name property provides a label for the style and is set before add-
ing a DimensionStyle to the DimensionStyles collection. The Name prop-
erty must be unique within a DimensionStyles collection.

 IDimensionStyleDisplay : IUnknown Provides access to members that control a dimension
style's display

BaselineHeight: Double Height of the construction for creating baseline dimensions with this
style.

BeginMarkerSymbol: IMarkerSymbol Symbol used for the begin arrow.
DimensionLineDisplay:

esriDimensionDisplay
Dimension line display of the style.

DimensionLineSymbol: ILineSymbol Symbol used for the dimension line.
DrawLineOnFit: Boolean Indicates if a dimension line should be drawn between the extension

lines for an inward dimension.
EndMarkerSymbol: IMarkerSymbol Symbol used for the end arrow.
ExtensionLineDisplay:

esriDimensionDisplay
Extension line display of the style.

ExtensionLineOffset: Double Length of the extension line offset.
ExtensionLineOvershot: Double Length of the extension line overshot.
ExtensionLineSymbol: ILineSymbol Symbol used for the extension lines.
MarkerDisplay: esriDimensionDisplay Arrow display of the style.
MarkerFit: esriDimensionMarkerFit Arrow fit policy of the style.
MarkerFitTolerance: Double Arrow fit tolerance of the style.

The IDimensionStyleDisplays interface is used to control the display
properties of the various parts of a Dimension.

The esriDimensionDisplay enumeration defines four values for use with
several properties.

Enumeration esriDimensionDisplay Dimension display options

0 - esriDimensionDisplayBoth Display both dimension parts.
1 - esriDimensionDisplayBegin Only display the beginning dimension part.
2 - esriDimensionDisplayEnd Only display the end dimension part.
3 - esriDimensionDisplayNone Do not display any dimension parts.

The MarkerFit property controls a Dimension’s behavior for fitting the
text and label.

Enumeration esriDimensionMarkerFit Dimension Marker Fit Options

0 - esriDimensionMarkerFitNone Do not fit markers with text.
1 - esriDimensionMarkerFitTolerance Fit markers with text using the length of the dimension line.
2 - esriDimensionMarkerFitText Fit markers when overlapping the text.

The esriDimensionMarkerFit enumeration defines three values.

DIMENSIONSTYLE COCLASS



Chapter 8 • Accessing the geodatabase • 853

G
eo

d
at

ab
as

e

Setting MarkerFit to esriDimensionMarkerFitTolerance moves markers
outside of extension lines if the MarkerFitTolerance is exceeded.

Setting MarkerFit to esriDimensionMarkerFitText moves markers to the
outside if colliding with text. This option does not apply to custom text
positions.

When the markers are moved because of a fit, a line will be drawn
between the markers based on the DrawLineOnFit property.

The BaselineHeight property specifies the height above the selected
Dimension at which new Dimensions will be created when using the
Baseline Dimension tool in ArcMap.

 IDimensionStyleText : IUnknown Privides access to members that control a dimension style's
text.

Align: Boolean Indicates if the text should be aligned with the dimension line.
ConvertUnits: Boolean Indicates if the length of the dimension needs to be converted for

display.
DisplayPrecision: Long Precision for the value displayed by the dimension text.
DisplayUnits: esriUnits Units the length of the dimension text is displayed in.
Expression: String Text expression for the style.
ExpressionParserName: String Text expression parser for the text expression for the style.
ExpressionSimple: Boolean Indicates if the text expression is simple or custom for the style.
ExtendLineOnFit: Boolean Indicates if the dimension line will be extended to underline the text

on inward dimensions.
prefix: String Prefix for the text expression for the style.
Suffix: String Suffix for the text expression for the style.
TextDisplay: esriDimensionTextDisplay Text display setting for the style.
TextFit: esriDimensionTextFit Text fit policy for the style.
TextSymbol: ITextSymbol Symbol used for the text.

The IDimensionStyleText interface contains properties that control how
the text of a Dimension is displayed.

The Align property forces the text to align to the angle of the
DimensionLine. If the Align property is False, the TextSymbol’s angle is
used.

The ConvertUnits property specifies whether or not the value of the text
will be converted from the FeatureClass’s native units to the units of the
DisplayUnits property.

The text can be formatted using the DisplayPrecision property and the
TextDisplay property.

The esriDimensionTextDisplay enumeration defines four values for
formatting the text string.

Enumeration esriDimensionTextDisplay Dimension Text Display Options

0 - esriDimensionTDValueOnly Only display the value of the dimension length.
1 - esriDimensionTDPrefixSuffix Display the value of the dimension length with a prefix and suffix.
2 - esriDimensionTDExpression Display a text string derived from a custom expression.
3 - esriDimensionTDNone Do not display any text.

The text string can also be determined from an expression specified in
the Expression property. The expression can be a simple concatenation
of column values and strings or a function written in scripting language.

DIMENSIONSTYLE COCLASS



854 • Exploring ArcObjects • Volume 2

The name of the parser for the expression is specified in the
ExpressionParserName property. The currently available parsers are “VB
Script” and “Java Script”.

The TextFit property determines where the text will be placed if it does
not fit between the markers after they have been moved (due to marker
fit settings).

The esriDimensionTextFit enumeration defines three values for this
behavior.

Enumeration esriDimensionTextFit Dimension Text Fit Options

0 - esriDimensionTextFitNone Do not fit the text
1 - esriDimensionTextFitMoveBegin Move the text outside the begin extension line
2 - esriDimensionTextFitMoveEnd Move the text outside the end extension line

When the markers are moved because of a fit, a line will be drawn
between the markers based on the DrawLineOnFit property.

DIMENSIONSTYLE COCLASS



Chapter 8 • Accessing the geodatabase • 855

G
eo

d
at

ab
as

e

The DimensionFeature coclass draws dimensions using a DimensionStyle
coclass. The feature’s DimensionShape determines the placement and
length of the Dimension.

 IDimensionFeature : IUnknown Provides access to members that control a dimension
feature.

CustomLength: Double The dimension feature's custom or user-defined length.
DimensionLineDisplay:

esriDimensionDisplay
The dimension line display for the feature.

DimensionShape: IDimensionShape The dimension feature's shape.
DimensionType: esriDimensionType The dimension type of the feature.
ExtensionLineDisplay:

esriDimensionDisplay
The extension line display of the feature.

Length: Double The dimension feature's length.
MarkerDisplay: esriDimensionDisplay The arrow display of the feature.
StyleID: Long The dimension feature's style ID.
UseCustomLength: Boolean Indicates if this dimension feature displays the dimension length or a

custom length.

The IDimensionFeature provides properties for setting the style and
placement of a DimensionFeature.

The StyleID property should be a valid ID from the class’ Dimension-
Styles collection. If the current ID is invalid, the DimensionFeature will
draw its boundary in red.

The DimensionShape property defines the placement of the elements of
a Dimension. The location and size of the DimensionFeature are deter-
mined entirely by the DimensionShape; it is not necessary to use the
IFeature::Shape property.

The DimensionType property defines the type of the Dimension as linear
or aligned and affects how the Edit tool behaves with the Dimension-
Feature during shape modification.

The DimensionLineDisplay, ExtensionLineDisplay, and MarkerDisplay
properties are values that override the values of the current Dimension-
Style coclass.

A custom value for the DimensionFeature’s text can be set using the
CustomLength property and by setting the UseCustomLength property to
True.

The following code demonstrates how to set a custom value for the
DimensionFeature’s text.

Public Sub SetCustomLength(pDimensionFeature As IDimensionFeature, _

      dValue As Double)

  pDimensionFeature.CustomLength = dValue

  pDimensionFeature.UseCustomLength = True

  Dim pFeature As IFeature

  Set pFeature = pDimensionFeature

  pFeature.Store

End Sub

RowBuffer
IRowBuffer

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

Row
IRow

IRowEdit
IRowEvents

IValidate

Dimension-
Feature

IDimensionFeature

The DimensionFeature object persists
and draws dimensions in the

geodatabase.

DIMENSIONFEATURE COCLASS



856 • Exploring ArcObjects • Volume 2

The DimensionShape coclass stores points for a dimension’s measure-
ments. The DimensionFeature and DimensionGraphic use
DimensionShapes to draw and store dimensions.

 IDimensionShape : IUnknown Provides access to members that control a dimension
shape.

BeginDimensionPoint: IPoint The begin dimension point.
DimensionLinePoint: IPoint The point which describes the height of the dimension line.
EndDimensionPoint: IPoint The end dimension point.
ExtensionLineAngle: Double The angle of the extension lines in radians.
TextAngle: Double The angle of the text in radians.
TextPoint: IPoint The point for the text placement.

The IDimensionShape interface supports properties for the definition of
a dimension’s location and measurement.

The BeginDimensionPoint and EndDimensionPoint properties define the
dimension’s measurement point.

The DimensionLinePoint property determines the height of the dimen-
sion line above the baseline.

To create a two-point dimension, the DimensionLinePoint must be the
same value as the BeginDimensionPoint.

The ExtensionLineAngle property defines the angle between the dimen-
sion line and the extension line in degrees. The default angle is
90 degrees; oblique dimensions have angles less than or greater than
90 degrees.

The DimensionShape supports a custom text location using the TextPoint
property.

For the default location of the dimension text, the TextPoint’s
IGeometry::IsEmpty property should be True.

Dimension-
Shape

IDimensionShape

The DimensionShape object stores the
geometry for a Dimension.

1"

text point

begin dimension point end dimension point

dimension 
line point

extension line angle

The components of a DimensionShape

DIMENSIONSHAPE COCLASS



Chapter 8 • Accessing the geodatabase • 857

G
eo

d
at

ab
as

e

The DimensionGraphic is used for dynamically rendering dimensions
using a DimensionStyle and DimensionShape.

 IDimensionGraphic : IUnknown Provides access to members that control a dimension
graphic.

CustomLength: Double The custom length of the dimension graphic.
DimensionShape: IDimensionShape The begin dimension point.
Length: Double The length of the dimension graphic.
NativeTransformation: ITransformation The native transformation for the dimension graphic.
NativeUnits: esriUnits The native units of the dimension graphic.
Style: IDimensionStyle The dimension style.
UseCustomLength: Boolean Indicates if a custom length is displayed for the dimension graphic.

Draw (in hDC: Long, in Transformation:
ITransformation)

Draws the dimension style.

GetDefaultTextPoint: IPoint The default location of the dimension text placement.
GetMask (in hDC: Long, in

Transformation: ITransformation, in
Mask: IGeometry)

The dimension graphic mask.

QueryBoundary (in hDC: Long, in
Transformation: ITransformation, in
Boundary: IPolygon)

The boundary of the dimension style.

UpdateShape (in hDC: Long, in
Transformation: ITransformation, in
pFeature: IFeature)

Updates the dimension geometries for the dimension graphic.

The IDimensionGraphic interface provides methods and properties for
drawing dimensions.

The Style property sets the DimensionStyle for the DimensionGraphic.

The DimensionShape defines the location of the dimension’s measure-
ments and text.

The Length property returns the current calculated length for the Dimen-
sion. A custom length value can be specified using the CustomLength
and UseCustomLength properties.

If the current DimensionShape contains a nonempty TextPoint, the de-
fault location for the text is available through the GetDefaultTextPoint
method.

If the current DimensionStyle supports text value conversion, the native
units and transformation can be set with the NativeUnits and
NativeTransformation properties.

The Draw method draws a dimension on the device context specified
by the hDC parameter using the transformation specified in the
pTransformation parameter.

The QueryBoundary method returns the Envelope of the dimension.

The GetMask method returns the outline polygon of the dimension.

If the properties of the DimensionGraphic are changed, it is necessary to
call the UpdateShape method to recalculate the dimension. The pFeature
parameter of the UpdateShape method is only necessary when the cur-
rent style uses a text expression.

Dimension-
Graphic

IDimensionGraphic

The DimensionGraphic object draws
dimensions.

DIMENSIONGRAPHIC CLASS



858 • Exploring ArcObjects • Volume 2

Domain and validation rule objects

2

*

Relationship-
Rule

IRelationshipRule

*

Attribute-
Rule

IAttributeRule

Rule
IRule

Rules are associated with feature
classes or object classes and are

used to validate features or objects.

Connectivity-
Rule

IConnectivityRule

Attributed-
Relationship-

Class

Range-
Domain

IRangeDomain

Domain
IDomain

ISchemaLock

A domain is used to specify the
permissible values that a field in an

object class may take

A coded-value domain is
used to specify a set of

permissible values that a
field may take

A range domain is used to specify the legal
minimum and maximum values that a field

may have

*

Coded-
ValueDomain

ICodedValueDomain

An attribute rule is the
application of an

attribute domain to an
attribute.

A relationship rule constrains
the cardinality of a relationship. Edge-

Connectivity-
RuleIEdgeConnectivityRule

Junction-
Connectivity-

Rule

IJunctionConnectivityRule
IJunctionConnectivityRule2

Relationship
Class

IDataset
IRelationshipClass

IRelationshipClass2

Table
IClass
ITable

ITable2

1..*

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Workspace

IDatabaseCompact (compact)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspaceAnno (optional)
IFeatureWorkspaceManage

IFeatureWorkspaceSchemaEdit
IGeodatabaseRelease (optional)

ISpatialCacheManager
ISQLSyntax

ITransactions (optional)
ITransactionsOptions (optional)

IWorkspace
IWorkspaceConfiguration (optional)

IWorkspaceDomains (optional)
IWorkspaceDomains2 (optional)

IWorkspaceEdit
IWorkspaceProperties (optional)

IWorkspaceSpatialReferenceInfo

Feature-
Class

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

IFeatureClass
IFeatureClassLoad (optional)

IFeatureClassWrite
IGeoDataset

INetworkClass



Chapter 8 • Accessing the geodatabase • 859

G
eo

d
at

ab
as

e

Coded-
ValueDomain

ICodedValueDomain

Domain
IDomain

ISchemaLock

Range-
Domain

IRangeDomain

A domain is used to specify the permis-
sible values that a field in an object class

may take.

A Domain is an abstract class that defines an interface used by Range-
Domain and CodedValueDomain coclasses to constrain the permissible
values that may be associated with a particular field on an object or
feature class. Domains are assigned on a subtype basis.

Domains are used by the ArcMap property inspector to constrain the
values that the user can enter for a field, as well as during the validation
process within the geodatabase.

A Domain may be shared by any number of fields. Domains are associ-
ated with a Field object. Domains are added to a dataset at the work-
space level through IWorkspaceDomains::AddDomain.

 IDomain : IUnknown Provides access to members that return and modify
domains and their merge and split policies.

Description: String The description of the domain.
DomainID: Long The ID of the domain.
FieldType: esriFieldType The field type of the field.
MergePolicy: esriMergePolicyType The merge policy.
Name: String Gets the name of the domain.
Owner: String Gets the owner of the domain.
SplitPolicy: esriSplitPolicyType The split policy.
Type: esriDomainType The domain type.

MemberOf (in Value: Variant) : Boolean Returns whether the value is a valid member of the domain.

The IDomain interface provides access to the common properties
shared across both types of Domains. Each of the properties are read–
write except for the Type property. When creating and assigning a Do-
main to a particular field, the client is required to set the Name and
FieldType properties.

For information on the ISchemaLock interface, see the documentation
on the Dataset abstract class.

RangeDomains may be associated with fields that are either numeric
fields (such as esriFieldTypeSmallInteger or esriFieldTypeDouble) or date
fields. RangeDomains may not be associated with string or character
fields (esriFieldTypeString).

 IRangeDomain : IUnknown Provides access to members that return and modify range
domain values.

MaxValue: Variant The maximum value for the associated attribute.
MinValue: Variant The minimum value for the associated attribute.

The IRangeDomain interface allows the client to either examine the
minimum and maximum range values of an existing object or set the
range values in a new RangeDomain that they are in the process of
creating.

CodedValueDomains store a set of (value, name) pairs that represent the
discrete values that a field may take. The value is what is actually per-
sisted inside a field; the name is what is displayed by the ArcMap prop-
erty inspector. The name can be considered to be a human-readable
string that describes what the value represents. In contrast to
RangeDomains, CodedValueDomains may also be associated with string
fields (esriFieldTypeString)—the value may be a string.

A range domain is used to specify the legal
minimum and maximum values that a field may

have.

A coded value domain is used to specify a set of
permissible values that a field may take.

DOMAIN COCLASSES



860 • Exploring ArcObjects • Volume 2

 ICodedValueDomain : IUnknown Provides access to members that return and modify coded
value domain values.

CodeCount: Long The number of codes for the associated attribute.
Name (in Index: Long) : String The code name for the specified code index.
Value (in Index: Long) : Variant The value for the specified code index.

AddCode (in Value: Variant, in Name:
String)

Adds a (value, name) code.

DeleteCode (in Value: Variant) Deletes a code with the specified value.

The ICodedValueDomain interface provides the mechanism for adding
and removing the (value, name) pairs from a CodedValueDomain. In
addition, it provides properties that allow users to examine the (value,
name) pairs on an index basis. Thus, this index value must be between
0 and CodeCount -1 or an error will be returned.

The following VBA® code fragment demonstrates how a user could use
these properties in order to display all the (value, name) pairs associated
with a CodedValueDomain.

  Dim pCodedValueDomain as ICodedValueDomain

  Set pCodedValueDomain = pDomain  'assume an existing domain

  Dim lCount as Long

  lCount = pCodedValueDomain.CodeCount

  'Iterate through the coded value pairs

  Dim i As Long, vValue As Variant, sName As String

  For i = 0 To lCount - 1

    vValue = pCodedValueDomain.Value(i)

    sName = pCodedValueDomain.Name(i)

    MsgBox "value: " & vValue & vbCr & "name: " & sName

  Next i

DOMAIN COCLASSES



Chapter 8 • Accessing the geodatabase • 861

G
eo

d
at

ab
as

e

Rules are associated with object classes and are used during the process
of validating objects within an object class. There are three categories of
rules that are subclassed from the Rule abstract class. They are attribute
rules (AttributeRule), relationship rules (RelationshipRule), and connectiv-
ity rules (ConnectivityRule), further broken down into Junction-
ConnectivityRule and EdgeConnectivityRule.

Associating a rule with a class does not guarantee that all objects within
the class will always be valid; the validation process still needs to be run
through the Editor toolbar or with IValidation::Validate. Through the
IValidation interface (found on the Object class), the set of currently
defined rules can be accessed, new rules can be added, and objects
can be validated.

Creating a class extension can extend the types of rules that can be
defined for an object class. By implementing IObjectClassValidation
(along with IClassExtension), any type of custom validation rule can be
coded.

 IRule : IUnknown Provides access to members that return information about
rules.

Category: Long The name associated with the validation rule.
Helpstring: String The helpstring associated with the validation rule.
ID: Long The ID of the validation rule.
Type: esriRuleType The type associated with the validation rule.

IRule is a generic interface that supports validation rules on an object
class. Use this interface when you want to determine the type of rule
and the helpstring associated with it.

Helpstring displays the message associated with the rule. This message is
displayed during the process of validating a single feature when that
feature is found to be invalid. The helpstring of the first (of possibly
many) validation rule that is found to be invalid is displayed through the
ArcMap user interface.

Type specifies the type of rule (attribute, relationship, or connectivity)
and can be used to determine what validation rule object you are hold-
ing. Alternatively, you can attempt to probe for the appropriate inter-
faces (for example, if the Rule supports IAttributeRule, then it is an
AttributeRule).

The following VBA code extracts the rules defined for a layer called
“pipes” and prints the type of the rule and helpstring associated with the
rule.

Private Sub GetRules()

  Dim pDoc As IMxDocument, pMap As IMap, pFLayer As IFeatureLayer

  Dim lLoop As Long

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  'Find the feature layer containing "pipes"

  For lLoop = 0 To pMap.LayerCount - 1

Rule
IRule

 A rule is used during the process of
validation.

RULE ABSTRACT CLASS



862 • Exploring ArcObjects • Volume 2

  For lLoop = 0 To pMap.LayerCount - 1

    If pMap.Layer(lLoop).Name = "pipes" Then

      Set pFLayer = pMap.Layer(lLoop)

      Exit For

    End If

  Next lLoop

  If pFLayer Is Nothing Then Exit Sub

  Dim pObjClass As IValidation, pEnumRule As IEnumRule, pRule As IRule

  Set pObjClass = pFLayer.FeatureClass

  Set pEnumRule = pObjClass.Rules

  Set pRule = pEnumRule.Next

  Do While Not pRule Is Nothing

    If TypeOf pRule Is IAttributeRule Then

      Debug.Print "Attribute rule - " & pRule.Type & " - " & _

        pRule.Helpstring

    ElseIf TypeOf pRule Is IRelationshipRule Then

      Debug.Print "Relationship rule - " & pRule.Type & " - " & _

        pRule.Helpstring

    ElseIf TypeOf pRule Is IJunctionConnectivityRule Then

      Debug.Print "JunctionConnectivity rule - " & pRule.Type & " - " & _

        pRule.Helpstring

    ElseIf TypeOf pRule Is IEdgeConnectivityRule Then

      Debug.Print "EdgeConnectivity rule - " & pRule.Type & " - " & _

        pRule.Helpstring

    End If

    Set pRule = pEnumRule.Next

  Loop

End Sub

RULE ABSTRACT CLASS



Chapter 8 • Accessing the geodatabase • 863

G
eo

d
at

ab
as

e

Relationship-
Rule

IRelationshipRule

Rule
IRule

A RelationshipRule constrains the
cardinalities between two subtypes that

participate in a RelationshipClass.

DestinationMaximumCardinality and
DestinationMinimumCardinality are only
applicable in 1–M and M–N relationships.

OriginMaximumCardinality and
OriginMinimumCardinality are only applicable

in M–N relationships.

Attribute-
Rule

IAttributeRule

Rule
IRule

An attribute rule applies an attribute
domain to a field of an object class.

ATTRIBUTERULE AND RELATIONSHIPRULE COCLASSES

The AttributeRule class is used to define attribute-specific rules on an
object class. This type of rule applies a specified domain to a field
name with a specific subtype. Domains can be used to limit the attribute
values to a set of valid values or to a range of values. Domains can also
define how values in the field are distributed during a split or merge.
The process of associating a domain with a field in an object class
creates an AttributeRule as a side effect—thus, it is generally not the case
that users must explicitly create AttributeRules.

 IAttributeRule : IRule Provides access to members that return, modify, and
validate attribute rules.

DomainName: String The domain name associated with the attribute rule.
FieldName: String The field name associated with the attribute rule.
SubtypeCode: Long The subtype code.

Validate (in Row: IRow, out
errorMessage: String) : Boolean

Validates the rule.

IAttributeRule is an interface that inherits directly from IRule. This inter-
face provides access to the characteristics of the attribute rule, such as
the field name, domain name, and subtype code.

The RelationshipRule class further constrains the relationship cardinalities
associated with pairs of subtypes between the two object classes that
participate in a RelationshipClass. Thus, if the RelationshipClass is a one-
to-many relationship, a RelationshipRule may, for example, constrain the
cardinalities between two subtypes to be one–three. The
RelationshipRule may not conflict with the RelationshipClass. For ex-
ample, a one-to-many RelationshipClass may not have any associated
relationship rules that constrain the cardinalities to be two to two. One
RelationshipRule is necessary for each subtype pair that participates in
the RelationshipClass.

 IRelationshipRule : IRule Provides access to members that supply information about,
modify, and manage relationship rules.

DestinationClassID: Long The ID of the destination ObjectClass.
DestinationMaximumCardinality: Long The maximum cardinality value of the destination ObjectClass.
DestinationMinimumCardinality: Long The minimum cardinality value of the destination ObjectClass.
DestinationSubtypeCode: Long The subtype value of the destination ObjectClass.
OriginClassID: Long The ID of the origin ObjectClass.
OriginMaximumCardinality: Long The maximum cardinality value of the origin ObjectClass.
OriginMinimumCardinality: Long The minimum cardinality value of the origin ObjectClass.
OriginSubtypeCode: Long The subtype value of the origin ObjectClass.

The IRelationshipRule interface inherits from IRule. This interface pro-
vides access to the various parameters of a relationship rule that are
used to refine the cardinalities between subtypes participating in the
RelationshipClass. Use this interface when you want to set or retrieve
these parameters.

DestinationMaximumCardinality and DestinationMinimumCardinality
are only applicable in one-to-many and many-to-many relationships.

OriginMaximumCardinality and OriginMinimumCardinality are only
applicable in many-to-many relationships.



864 • Exploring ArcObjects • Volume 2

Within a geometric network, any edge may connect to any junction.
ConnectivityRules are used to constrain the permissible connectivity
between edges and junctions. There are two types of connectivity rules
that can be applied. JunctionConnectivityRules are placed on junction
object classes and determine the valid types of edges that can be con-
nected. EdgeConnectivityRules are placed on edge object classes and
determine the valid types of junction or edges (through a junction) that
can be connected. Connectivity rules can only be established between
network feature classes.

It is important to note that if one ConnectivityRule is specified, then they
all must be specified. Otherwise, the validation process on
NetworkFeatures will report a very large number of invalid features. You
must also remember to include the default (or orphan) junction when
specifying all the ConnectivityRules.

 IConnectivityRule : IRule Identity interface for connectivity rules.

The IConnectivityRule interface inherits from IRule. This interface cur-
rently has no properties or methods; it serves only to identify an object
as being of type ConnectivityRule.

The JunctionConnectivityRule class is a type of ConnectivityRule that
constrains the possible valid network connections that may exist be-
tween a pair of edge and junction subtypes. It may also constrain the
cardinalities of the connectivity relationships.

 IJunctionConnectivityRule :
 IConnectivityRule

Provides access to members that supply information about,
modify, and manage junction-edge connectivity rules.

EdgeClassID: Long The ID of the NetworkEdge FeatureClass.
EdgeMaximumCardinality: Long The maxnimum cardinality value of the NetworkEdge FeatureClass.
EdgeMinimumCardinality: Long The minimum cardinality value of the NetworkEdge FeatureClass.
EdgeSubtypeCode: Long The subtype value of the NetworkEdge FeatureClass.
JunctionClassID: Long The ID of the NetworkJunction FeatureClass.
JunctionMaximumCardinality: Long The maximum cardinality value of the NetworkJunction FeatureClass.
JunctionMinimumCardinality: Long The minimum cardinality value of the NetworkJunction FeatureClass.
JunctionSubtypeCode: Long The subtype value of the NetworkJunction FeatureClass.

The IJunctionConnectivityRule interface inherits from IConnectivityRule.
This interface defines the junction connectivity properties and the valid
types of edges that can connect to them. Use this interface when you
want to define or manipulate rules between an edge and a junction.

All ConnectivityRules are specified on a class subtype basis; thus,
EdgeSubtypeCode and JunctionSubtypeCode must be specified when
subtypes have been defined for the object class. The cardinality proper-
ties may be optionally specified.

CONNECTIVITY RULE COCLASSES

Rule
IRule

Connectivity-
Rule

IConnectivityRule

A connectivity rule constrains the type of
network connectivity that may be estab-

lished between edges and junctions in
the geometric network.

Rule
IRule

Connectivity-
Rule

IConnectivityRule

Junction-
Connectivity-

Rule

IJunctionConnectivity-
Rule

Junction connectivity rules specify which
edges can connect to a junction.



Chapter 8 • Accessing the geodatabase • 865

G
eo

d
at

ab
as

e

 IJunctionConnectivityRule2 :
 IJunctionConnectivityRule

Provides access to members that supply information about,
modify, and manage junction-edge connectivity rules.

DefaultJunction: Boolean True if the junction corresponds to the default junction.

The IJunctionConnectivityRule2 interface on the JunctionConnectivity-
Rule class is used to specify whether or not the associated
JunctionFeature serves as the default junction for the associated
EdgeFeature. Among all the junction connectivity rules that are associ-
ated with a particular edge class and subtype pair, only one junction
connectivity rule may serve as the default.

When the EdgeFeature is created during the edit session, the default
junction (as specified in the associated JunctionConnectivityRule) will be
placed at either of the possible two freestanding endpoints (for example,
the end of a cul-de-sac). If a default junction has not been specified in
this manner, then the standard system default junction (or orphan junc-
tion) will be connected at the freestanding endpoint.

DefaultJunction returns True when the defined junction (class ID and
subtype) is the default junction to be added with the defined edge (class
ID and subtype).

The following VBA code checks the validity of the nodes at the end of
the selected edge feature based on JunctionConnectivityRules.

Public Sub CheckConnectivityRules()

  Dim pMxDoc As IMxDocument, pMap As IMap

  Set pMxDoc = ThisDocument

  Set pMap = pMxDoc.FocusMap

  Dim pFeatures As IEnumFeature, pFeature As IFeature, _

    sValidationResult As String

  Set pFeatures = pMap.FeatureSelection

  Set pFeature = pFeatures.Next

  Do While Not pFeature Is Nothing

    If TypeOf pFeature Is IEdgeFeature Then

      Dim pValidation As IValidation, pRules As IEnumRule, _

        pRule As IRule, i As Long

      Dim pJuncFeature As IFeature, pJuncSubtype As IRowSubtypes

      Dim pEdgeFeature As IEdgeFeature

      Dim bFromValid As Boolean, bToValid As Boolean

      Set pEdgeFeature = pFeature

      Set pValidation = pFeature.Class

      Set pRules = pValidation.Rules

      bFromValid = False

      bToValid = False

      For i = 0 To 1

        If i = 0 Then 'Get from Junction

          Set pJuncFeature = pEdgeFeature.FromJunctionFeature

CONNECTIVITY RULE COCLASSES



866 • Exploring ArcObjects • Volume 2

        Else 'Get to Junction

          Set pJuncFeature = pEdgeFeature.ToJunctionFeature

        End If

        Set pJuncSubtype = pJuncFeature

        pRules.Reset

        Set pRule = pRules.Next

        Do While Not pRule Is Nothing

          If TypeOf pRule Is IJunctionConnectivityRule Then

            Dim pJuncConnRule As IJunctionConnectivityRule

            Set pJuncConnRule = pRule

            If pJuncConnRule.JunctionClassID = _

              pJuncFeature.Class.ObjectClassID And _

              pJuncConnRule.JunctionSubtypeCode = _

              pJuncSubtype.SubtypeCode Then

                If i = 0 Then

                  bFromValid = True

                Else

                  bToValid = True

                End If

              End If

            End If

            Set pRule = pRules.Next

          Loop

        Next i

      End If

      'Compose the message

      If bFromValid Then

        sValidationResult = "Junctiion on FROM end is valid."

      Else

        sValidationResult = "Junction on FROM end is not valid."

      End If

      If bToValid Then

        sValidationResult = _

          sValidationResult & "- Junction on TO end is valid."

      Else

        sValidationResult = _

          sValidationResult & "- Junction on TO end is not valid."

      End If

      MsgBox sValidationResult

      Set pFeature = pFeatures.Next

  Loop

End Sub

CONNECTIVITY RULE COCLASSES



Chapter 8 • Accessing the geodatabase • 867

G
eo

d
at

ab
as

e

The EdgeConnectivityRule class is a type of ConnectivityRule that defines
the permissible relationship between two edge features. In addition, it
specifies all the valid junctions that may exist at the connection point
between the two edges. It is also possible to specify the default junction
that will be placed at the point of connectivity between the two edges.

 IEdgeConnectivityRule :
 IConnectivityRule

Provides access to members that supply information about,
modify, and manage edge-edge connectivity rules.

DefaultJunctionClassID: Long The ID of the default junction feature class.
DefaultJunctionSubtypeCode: Long The subtype value of the default junction feature class.
FromEdgeClassID: Long The ID of the source NetworkEdge feature class.
FromEdgeSubtypeCode: Long The subtype value of the source NetworkEdge feature class.
JunctionClassID (in Index: Long) : Long The specified permissible value for the associated attribute.
JunctionCount: Long The number of valid junctions.
JunctionSubtypeCode (in Index: Long) :

Long
The specified permissible value for the associated attribute.

ToEdgeClassID: Long The ID of the destination NetworkEdge feature class.
ToEdgeSubtypeCode: Long The subtype value of the target NetworkEdge feature class.

AddJunction (in ClassID: Long, in
SubtypeCode: Long)

The permissible values for the associated attribute.

ContainsJunction (in ClassID: Long, in
SubtypeCode: Long) : Boolean

Returns whether the specified junction class ID is in the valid junction
list.

GetJunctionInfo (in Index: Long, out
ClassID: Long, out SubtypeCode:
Long)

The specified permissible value for the associated attribute.

The IEdgeConnectivityRule interface inherits from IConnectivityRule. This
interface defines the two types of edges (they can be of the same type)
and the valid junctions that can exist between them.

DefaultJunctionClassID and DefaultJunctionSubtypeCode define the
default junction that will be added at the location where connectivity is
established between two edges of the specified type.

The number of junctions associated with the EdgeConnectivityRule is
unlimited. Junctions are managed through this interface and are ac-
cessed on an index basis (the JunctionCount property and the
JunctionClassID and JunctionSubtypeCode index-based properties). It is
not possible to remove a junction from the rule; if this is required, the
rule must be deleted and then re-created, less the junction, to
be deleted.

EDGECONNECTIVITYRULE CLASS

Rule
IRule

Connectivity-
Rule

IConnectivityRule

Edge-
Connectivity-

Rule

IEdgeConnectivityRule

An edge connectivity rule constrains to
what type of edge a particular edge

may connect.



868 • Exploring ArcObjects • Volume 2

Complex-
EdgeFeature

IComplexEdgeFeature
IComplexNetworkFeature

Simple-
EdgeFeature

ISimpleEdgeFeature
ISimpleNetworkFeature

EdgeFeature
IEdgeFeatureJunction-

Feature

IJunctionFeature

Feature-
Element

IFeatureElement
IFeatureElementEdit

A simple edge feature has one
edge element in the logical
network

Junction features represent the
nodes in a geometric network

Simple-
Junction-
Feature

ISimpleJunctionFeature
ISimpleNetworkFeature

A simple junction
feature has one

junction element in
the logical network

Edge features
represent the lines in
a geometric network.

A complex junction
feature has one to
many junction and
edge elements in
the logical network

A complex edge
feature has one to
many edge
elements in the
logical network

Feature elements
encapsulate the geometry
of connection points on
complex junction features

Geometric network objects

1..*

GeoDataset
IGeodataSchemaEdit

IGeoDataset

1..*

Junction-
Connectivity-

Rule

IJunctionConnectivityRule

Edge-
Connectivity-

Rule

IEdgeConnectivityRule

Connectivity-
Rule

IConnectivityRule

*

Rule
IRule

A geometric network is a type of graph that
is uniquely associated with a logical network,

which represents network topology

Connectivity rules constrain which
network features can be connected

Graph
IDataset

IGraph
IFeatureClassContainer

Complex-
Junction-
Feature

IComplexJunctionFeature
IComplexNetworkFeature

IFeatureConnect
IFeatureSnap

A graph is a set of
topologically related

feature classes

IDatasetEdit
IGeometricNetwork

IGeometricNetworkConnectivity
IGeometricNetworkErrorDetection

IMetadata
IMetadataEdit

Geometric-
Network

Network features participate in a
geometric network. Each feature
is associated with one or many
elements in a logical network

IDatasetContainer
IFeatureDataset

INetworkCollection
INetworkCollection2

IFeatureClassContainer
IRelationshipClassContainer

Feature-
Dataset

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Table
IClass
ITable

ITable2

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Feature-
Class

IFeatureClass
IFeatureClassLoad (optional)

IFeatureClassWrite
IGeoDataset

INetworkClass

INetworkFeature
INetworkFeatureEvents Network-

Feature

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

Object
IObject

IRowSubtypes
IRelatedObjectEvents

RowBuffer
IRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate



Chapter 8 • Accessing the geodatabase • 869

G
eo

d
at

ab
as

e

Graph
IDataset

IGraph
IFeatureClassContainer

A graph is a set of topologically related
feature classes.

A Graph is an abstract class that factors behavior and attribution com-
mon to the different types of topological collections within the
geodatabase. (At this release, the geometric network is the only type of
graph.)

 IGraph : IUnknown ESRI graph interface.

FeatureDataset: IFeatureDataset The FeatureDataset associated with the graph.
VertexBasedStretching: Boolean The stretching model to nearest vertex- (True) or junction- (False) based

stretching.

Add (in NewFeature: IFeature) Adds the preexisting feature to the graph.
AddFeatureClass (in FeatureClass:

IFeatureClass, in EnabledFieldName:
String, in role:
esriNetworkClassAncillaryRole, in
ancillaryRoleFieldName: String)

Add the FeatureClass to this graph.

DeleteSet (in featuresToDelete: ISet) Removes the set of feature from the graph.
GetDisplayFeedback (in Feature:

IFeature, in features: ISet, in Point:
IPoint) : IDisplayFeedback

The DisplayFeedback.

Init (in Dataset: IFeatureDataset, in
graphID: Long, in graphName: String,
in BuildNormalizedTables: Boolean, in
createGraph: Boolean)

Initializes the graph.

Merge (in mergingFeatures:
IEnumFeature) : IEnumFeature

Merges the features together, returning the newly created feature.

Split (in splittingEdge: IEdgeFeature, in
Point: IGeometry) : ISet

Split the feature.

TransformSet (in features: ISet, in Type:
esriTransformType, in tranformation:
IAffineTransformation2D)

Repositions all specified NetworkFeatures and any topologically
connected NetworkFeatures.

The IGraph interface specifies the attributes and properties expected on
all the different types of topological collections within the geodatabase.
These attributes and methods are not unique to a particular type of
topology. It is not expected that third-party client applications will call
many of these methods. The primary clients of these methods on this
interface are the CASE Tool Schema Generator, ArcMap, ArcCatalog, and
the polymorphic implementations of the features managed by the
Graph.

The VertexBasedStretching attribute is directly utilized by ArcMap in
order to establish which stretching model is to be used for geometry
updates. If VertexBasedStretching is False, then all updates to topological
features containing polyline geometries are proportional stretches to the
nearest connected zero-dimensional topological feature (for example,
junctions, in the case of geometric networks). If VertexBasedStretching is
True, then the polyline geometry is only proportionally stretched to the
nearest vertices on the polyline—only the segment is effectively up-
dated. This directly affects both updating the feature’s geometry and the
result returned by GetDisplayFeedback.

The Add method is called whenever a new topological feature is created
and added to the collection. This method is typically not called by client
applications—it is automatically invoked in the polymorphic implemen-
tations of Store on the features managed in the topological collection.

The Merge operation is not supported at ArcGIS 8.1.

In the Init method, the fourth argument (a Boolean named
BuildNormalizedTables) is ignored.

GRAPH ABSTRACT CLASS

In addition to supporting the IGraph interface,
the Graph abstract class also supports the

IDataset and IFeatureClassContainer inter-
faces. These two interfaces are described in

this chapter.

For an explanation of geometric networks and
logical networks, see Chapter 12, ‘Solving linear

networks’, and Modeling Our World.



870 • Exploring ArcObjects • Volume 2

Graph
IDataset

IGraph
IFeatureClassContainer

IDatasetEdit
IGeometricNetwork

IGeometricNetwork-
Connectivity

IGeometricNetwork-
ErrorDetection

IMetadata
IMetadataEdit

Geometric-
Network

A geometric network is a type of graph
that is uniquely associated with a logical

network, which represents network
topology.

GeometricNetworks are responsible for detecting and maintaining net-
work connectivity among a set of feature classes that participate in the
network. When new network features are created, the GeometricNetwork
is responsible for detecting endpoint coincidence (in the case of edge
features) with other network features, then communicating with the
logical network in order to establish network connectivity.

The GeometricNetwork is also responsible for managing and validating
all connectivity rules.

 IGeometricNetwork : IGraph ESRI geometric network interface.

ClassesByNetworkAncillaryRole (in role:
esriNetworkClassAncillaryRole) :
IEnumFeatureClass

The FeatureClasses with the specified ancillary role.

ClassesByType (in Type:
esriFeatureType) : IEnumFeatureClass

The FeatureClasses containing Features of the specified type.

EdgeElement (in Location: IPoint) :
Long

The EdgeElement EID at the specified location.

GeometryForEdgeEID (in EdgeEID:
Long) : IGeometry

The geometry of the EdgeElement.

GeometryForJunctionEID (in
JunctionEID: Long) : IGeometry

The geometry that corresponds to the JunctionElement (a point).

InvalidArea: IInvalidArea The area to be drawn.
JunctionElement (in Location: IPoint) :

Long
The JunctionElement EID at the specified location.

Network: INetwork The associated logical network.
NetworkFeature (in networkElement:

INetElementDescription) :
INetworkFeature

The NetworkFeature that corresponds to the NetworkElement.

NetworkType: esriNetworkType The type of associated logical network.
OrphanJunctionFeatureClass:

IFeatureClass
The FeatureClass containing the OrphanJunctionFeatures.

Rules: IEnumRule Returns all the connectivity rules associated with the network.
RulesByClassAndSubtype (in ClassID:

Long, in SubtypeCode: Long) :
IEnumRule

The connectivity rules associated with the class and subtype.

ValidFlowDirection: Boolean Returns whether the current flow directions are valid.

AddJunctionWithSubsumption (in
pJunction: ISimpleJunctionFeature, in
JunctionEID: Long, in
pSubsumedJunction:
ISimpleJunctionFeature)

AddRule (in rule: IConnectivityRule) Adds the constraint to the set of connectivity rules.
CreateOrphanFeature (in Location:

IPoint, out orphanEID: Long) :
ISimpleJunctionFeature

Creates an orphan JunctionFeature.

DeleteRule (in rule: IConnectivityRule) Removes the rule from the set of rules.
EstablishFlowDirection Establishes the flow direction in the LogicalNetwork.
SearchForNetworkFeature (in Location:

IPoint, in Type: esriFeatureType) :
IEnumFeature

The NetworkFeatures found at the point.

SpliceSimpleJunction (in junction:
ISimpleJunctionFeature, in
JunctionEID: Long, in Geometry:
IGeometry, in forceConnectivity:
Boolean)

As is the case with the IGraph interface on the abstract Graph class, this
interface, as well as the internal implementations found within the
NetworkFeatures, will primarily be consumed by ArcMap. The methods
related to validation rules should not be used (for example, AddRule
and DeleteRule); client applications should instead use the IValidation
interface supported by object classes.

The most common type of third-party client applications that will con-
sume the IGeometricNetwork interface are custom network solvers. The
associated logical network may be accessed through the Network prop-
erty. The direct accessibility of the logical network obviates the need to

GEOMETRICNETWORK CLASS



Chapter 8 • Accessing the geodatabase • 871

G
eo

d
at

ab
as

e

expose the functionality of the logical network through redundant con-
venience methods at the geometric network level. Functionality that is
related to the mapping between geometry (found at the feature level)
and network elements (found at the logical network level) is necessarily
supported outside of the logical network. This is because the logical
network does not have any understanding of feature geometry, only
logical connectivity.

You can determine the network elements associated with a network
feature at a given location through the EdgeElement and JunctionElement
properties. If there is more than one network feature of the appropriate
type at the location, then the edge or junction element that corresponds
to the first one encountered is returned.

Complementary functionality is also provided where, for a given edge or
junction element, the associated feature geometry is returned via the
GeometryForEdgeEID and GeometryForJunctionEID properties,
respectively.

In contrast to the results returned by the EdgeElement and
JunctionElement methods, the GeometryForEdgeEID and
GeometryForJunctionEID properties return an unambiguous result, as only
one piece of geometry corresponds to a given EID.

A final method found on IGeometricNetwork that may commonly be
called by third-party client applications is SearchFor-
NetworkFeature. This method, given a point location and a fea-
ture type, will return all the network features that are found
within the machine precision of this point. If more than one
network feature is coincident with the point, then all are re-
turned. The returned network features may span different feature
classes; the only restriction is that all features must be of the
same feature type.

Thus, in order to return all network features found at a given
location, this routine will be called four times—once for each of
the four different network feature types. This is demonstrated in
the following VBA code fragment.

  'Assume we already have a point pPoint and a geometric network pGN pointer

  Dim pSimpleJuncs As IEnumFeature, pSimpleEdges As IEnumFeature

  Dim pComplexJuncs As IEnumFeature, pComplexEdges As IEnumFeature

  'Query for each of the network feature types

  Set pSimpleJuncs = pGN.SearchForNetworkFeature(pPoint, _

    esriFTSimpleJunction)

  Set pSimpleEdges = pGN.SearchForNetworkFeature(pPoint, esriFTSimpleEdge)

  Set pComplexJuncs = pGN.SearchForNetworkFeature(pPoint, _

    esriFTComplexJunction)

  Set pComplexEdges = pGN.SearchForNetworkFeature(pPoint, esriFTComplexEdge)

GEOMETRICNETWORK CLASS

An EID is an element ID for an element in a
logical network.



872 • Exploring ArcObjects • Volume 2

IGeometricNetworkErrorDetection :
IUnknown

ESRI geometric network error detection interface.

ErrorTable: ITable

CreateErrorTable (in Name: String, out
ErrorTable: ITable)

Creates a nonversioned table that can be used to persist error
information.

CreateSelectionSetFromErrorTable: ISet
DeleteNetworkElements (in selectionSets:

ISet)
Deletes the network elements associated with the specified

network features.
DetectNetworkErrors (in errorType:

esriNetworkErrorType, in AreaOfInterest:
IEnvelope, in selectionSets: ISet, out
problemSelectionSets: ISet)

The features in the geometric network with connectivity problems.

The IGeometricNetworkErrorDetection interface identifies errors between
a geometric network and its logical network.

In order to maintain correct network connectivity in large production
environments, it is necessary to have a collection of tools that will en-
able the user to detect a variety of connectivity problems within a geo-
metric network. In production environments, it is often impractical to
drop the network and rebuild when connectivity problems are encoun-
tered during general editing of the network. For this reason, it is neces-
sary to provide a set of tools that will enable the end user to detect and
repair such problems.

Philosophically, there should not be any need for such tools—the net-
work should always be correct. From this standpoint, the geodatabase
will not waver. However, there are certain circumstances where this may
be violated:

• The end user attempts to build a geometric network from data that
has illegal geometry.

• Logic errors in the software implementation (as the software matures,
this will become less and less likely).

• Applications or tools that do not correctly abort edit operations that
the geometric network returns as an error.

• Third-party tools that attempt to manipulate the geometric network at
a low level (for example, at the logical network level) and have logic
errors in their software implementation.

The CreateErrorTable method is used to create a table that can be used
to persist information related to corrupt network features (using a fixed
table schema) with the specified name. Such network error information
can only be persisted by the geometric network in a table with this
schema. This table is user managed and should remain unversioned.

Once the error table is created, it can be associated with, or retrieved
from, a geometric network via the ErrorTable property. However, this
association will not be persisted—the association is only for the lifetime
of the geometric network component instance. Again, the user is re-
sponsible for managing this error table.

A set of selection sets may be created from all the entries found in the
error table that are currently associated with a geometric network via the
CreateSelectionSetFromErrorTable method. This is a mechanism that can

GEOMETRICNETWORK CLASS



Chapter 8 • Accessing the geodatabase • 873

G
eo

d
at

ab
as

e

be used to create instances of the network features that are listed in the
error table.

The DeleteNetworkElements method takes an ISet of ISelectionSets. All of
the network features contained in the various selection sets will have
their network elements deleted from the logical network. The primary
reason why one would want to do this is to correct the geometry of an
edge feature that was loaded (prior to ArcGIS 8.1) with corrupt polyline
geometry.

The DetectNetworkErrors method is used to detect the different possible
types of network connectivity and geometry problems.

IGeometricNetworkConnectivity:IUnknown ESRI geometric network connectivity interface.

RebuildConnectivity (in
pIncrementalRebuildArea: IEnvelope)

The FeatureClasses with the specified ancillary role.

If network connectivity errors are found in the geometric network, they
can generally be corrected through the use of the RebuildConnectivity
method on the IGeometricNetworkConnectivity interface. This method
takes an envelope that should contain all the network features for which
connectivity should be rebuilt.

Any network feature that intersects the envelope will have its connectiv-
ity rebuilt, regardless of whether or not there are any connectivity prob-
lems. This is computationally a very expensive operation and should be
used only when necessary. The envelope should also be as small as
possible—it is faster to call RebuildConnectivity on two small areas
rather than one large area that encompasses both smaller areas.

GEOMETRICNETWORK CLASS



874 • Exploring ArcObjects • Volume 2

Object
IObject

IRowSubtypes
IRelatedObjectEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

INetworkFeature
INetworkFeatureEvents Network-

Feature

NetworkFeature is an abstract compo-
nent that supports network connectivity

and participates in a geometric network.

A NetworkFeature is an abstract class that factors common functionality
found in all network features. A NetworkFeature cannot be cocreated.

 INetworkFeature : IUnknown General interface common to all features in a
GeometricNetwork.

Enabled: Boolean Returns whether the NetworkFeature is open or not (that is, closed).
GeometricNetwork: IGeometricNetwork The containing GeometricNetwork.

Connect Connect the Feature to the geometrically coincident NetworkFeature.
CreateNetworkElements: IEnumNetEID Create the necessary NetworkElements in the associated Logical

Network.
Disconnect Disconnect the Feature from all connected NetworkFeatures.
OnDisconnect Preparation for disconnecting the NetworkFeature.

The INetworkFeature interface is supported at the NetworkFeature level
within the geodatabase; all features participating in a GeometricNetwork
support this interface. Because each NetworkFeature may either be en-
abled (can trace through) or disabled (cannot trace through) within the
logical network, the Enabled property is read–write. It is important to
note that although a complex edge or a complex junction may corre-
spond to one or more network elements, setting the Enabled property
will either enable or disable all associated network elements. It is not
possible to individually set the enabled or disabled status of an indi-
vidual network element associated with a complex network feature
through this interface.

When a NetworkFeature is being created and added to a
GeometricNetwork coclass, the GeometricNetwork will call the
CreateNetworkElements method on the NetworkFeature. If a developer is
creating a complex junction custom feature, it may be necessary for
them to implement this method if the complex junction has an irregular
connection topology. Otherwise, it will not be necessary for a custom
feature developer to override this method in their implementation.

It is important to note that if network features are being programmatically
created (for example, using a sequence similar to IFeatureClass::
CreateFeature, setting the feature’s Shape, then calling Store on the feature),
the network feature’s spatial reference must match that of the containing
FeatureClass. More specifically, if you call IGeometry::Project on the geom-
etry prior to it being set as the feature’s Shape, you must take care to
ensure that the SpatialReference that is being passed as an argument to
Project match that of the FeatureClass. It is not always the case that the
Map’s SpatialReference is the correct one to use (for example, the Map
may contain two FeatureDatasets with differing SpatialReferences).

 INetworkFeatureEvents : IUnknown NetworkFeature Events.

OnConnect Preparation for connecting a NetworkFeature to another.
OnDisconnect Preparation for disconnecting a NetworkFeature from another.

The INetworkFeature interface contains the two types of events that are
common to all four network features. With ArcGIS 8.1, none of these
events are triggered by the system, thus their present utility is negligible.
It is expected that with future releases of ArcGIS, these events will be
triggered by the geodatabase.

NETWORKFEATURE ABSTRACT CLASS



Chapter 8 • Accessing the geodatabase • 875

G
eo

d
at

ab
as

e

Junction-
Feature

IJunctionFeature

Object
IObject

IRowSubtypes
IRelatedObjectEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

INetworkFeature
INetworkFeatureEvents Network-

Feature

A junction feature is a type of network
feature that corresponds to a connection

point between two or more edge fea-
tures in a geometric network.

Junction features are used to maintain network integrity within a geomet-
ric network. They are found at the locations that correspond to the
endpoints of edge features. They may also be freestanding (uncon-
nected to any edge feature) or connected to complex edges at midspan.
JunctionFeature is an abstract class.

 IJunctionFeature : IUnknown General interface common to all features in a
GeometricNetwork.

GeometryForJunctionElement (in
SubID: Long) : IGeometry

The geometry (point) corresponding to the junction with the given
subID.

NetworkAncillaryRole:
esriNetworkFeatureAncillaryRole

Programmatic update of the NetworkFeature.

OriginalGeometryForJunctionElement
(in SubID: Long) : IGeometry

The geometry (point) corresponding to the junction with the given
subID.

Update (in callingFeature:
INetworkFeature, in Transformation:
IAffineTransformation2D, in
rigidEdges: ISet, in Group:
ITransformGroup)

Programmatic update of the NetworkFeature.

The IJunctionFeature interface contains the properties and methods that
are common to both simple and complex junction features. Among the
four methods and properties, only two will commonly be implemented
by custom feature developers—GeometryForJunctionElement and
OriginalGeometryForJunctionElement. The other two,
NetworkAncillaryRole and Update, are used internally and are not in-
tended for use by application developers; they are consumed by net-
work solvers when displaying the results of a network trace operation.

For simple junctions that commonly have point geometry,
GeometryForJunctionElement and OriginalGeometryForJunctionElement
are of little interest. When implementing complex junctions, however, it
may be desirable to associate geometry with network elements
contained in the complex junction.

JUNCTIONFEATURE ABSTRACT CLASS



876 • Exploring ArcObjects • Volume 2

Simple-
Junction-
Feature

ISimpleJunctionFeature
ISimpleNetworkFeature

Junction-
Feature

IJunctionFeature

Object
IObject

IRowSubtypes
IRelatedObjectEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

INetworkFeature
INetworkFeatureEvents Network-

Feature

A simple junction feature is a junction
feature that is associated with a single

junction element within the logical
network.

The SimpleJunctionFeature class represents simple junctions on a net-
work that may be added to GeometricNetworks.

The SimpleJunctionFeature class can be aggregated, and possibly over-
ridden, by custom feature developers.

Simple junction features have point geometry and may be connected to
any number of other edge features.

A simple junction feature may not be directly connected to another
junction feature without an intervening edge feature.

 ISimpleJunctionFeature : IUnknown NetworkFeature representing the junction of two
EdgeFeatures.

EdgeFeature (in Index: Long) :
IEdgeFeature

The EdgeFeature associated with the specified index value.

EdgeFeatureCount: Long The number of EdgeFeatures associated with this junction.
EID: Long The logical network element ID of this junction.

The ISimpleJunctionFeature interface contains three properties that are
unique to simple junctions.

The EdgeFeatureCount property and EdgeFeature property array are used
to specify the connected edge features to the client. The index for
EdgeFeature is zero-based.

The following VBA code fragment shows how a client might use this
information to display the object IDs of the connected edge features.

  'Assume we already have a pointer to a junction feature.

  Dim pSimpleJunction As ISimpleJunctionFeature

  Set pSimpleJunction = pJunction

  Dim i As Long, pEdgeFeature As IEdgeFeature, pRow as IRow

  For i = 0 To (pSimpleJunction.EdgeFeatureCount – 1)

    Set pEdgeFeature = pSimpleJunction.EdgeFeature(i)

    Set pRow = pEdgeFeature

    MsgBox "EdgeFeature [" & i & "]: " & pRow.OID

  Next i

 ISimpleNetworkFeature : IUnknown General interface common to all features in a
GeometricNetwork.

The ISimpleJunctionFeature interface does not contain any properties or
methods; it is an indicator interface used to differentiate simple and
complex network features.

SIMPLEJUNCTIONFEATURE CLASS



Chapter 8 • Accessing the geodatabase • 877

G
eo

d
at

ab
as

e

Complex-
Junction-
Feature

IComplexJunction-
Feature

IComplexNetwork-
Feature

IFeatureConnect
IFeatureSnap

Junction-
Feature

IJunctionFeature

Object
IObject

IRowSubtypes
IRelatedObjectEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

INetworkFeature
INetworkFeatureEvents Network-

Feature

A complex junction feature is a junction
feature that can contain a subnetwork.

The ComplexJunctionFeature class represents network features at junc-
tions that contain internal topology as collections of edge and junction
network elements in a logical network.

Objects from the ComplexJunctionFeature class cannot be directly added
to a GeometricNetwork; it is necessary for the application developer to
provide a custom implementation of a ComplexJunctionFeature.
ComplexJunctionFeature objects are designed to be aggregated within a
custom feature—there are methods and properties that do not have a
default implementation. These properties and methods must be imple-
mented within the custom feature.

Complex junction features may have any geometric representation,
although polygons are the most common, followed by polylines. Point
geometries do not make much sense for complex junction features.

Complex junction features are connected to other edge features via
geometric coincidence at their connection points. (These connection
points are not to be confused with the IConnectionPoint interface found
elsewhere in the ArcObjects architecture—this interface is used in the
context of event notification.)

It is critical to note that when implementing custom features, such as a
complex junction, certain guidelines must be followed in order for the
custom feature to behave correctly in the versioned environment. First,
during reconciliation, all conflicts are detected on the basis of attributes
and geometry found at the feature level. The logical network is not
employed as a primary mechanism for detecting network feature differ-
ences. Thus, it is critical that any weights that are associated with a
network element also be persisted at the network feature level (this is the
default system behavior). It is possible (though strongly discouraged) to
develop a custom network feature that, as a side effect of another op-
eration, will also update the logical network weights (directly via the
logical network interfaces) without also updating the corresponding
network feature attribute. This would lead to integrity problems during
version reconciliation and posting under certain circumstances.

The easiest way to avoid such problems is to consider the logical net-
work nothing more than a high-performance index on the network
features. Being an index, all information in the index must be derivable
from the associated network features. Effectively, all states in the logical
network must be derivable from a sequence of setting the Value and
Shape attributes, in addition to an OnChanged message. If any logical
network state cannot be re-created by setting the Values and Shape, and
handling the OnChanged message, then the custom feature implementa-
tion will be incorrect from the versioning perspective.

COMPLEXJUNCTIONFEATURE CLASS



878 • Exploring ArcObjects • Volume 2

 IComplexNetworkFeature : IUnknown Interface for a Complex Network Feature.

EdgeElementCount: Long The number of edge elements associated with this Feature.
EnabledByIndex (in edgeIndex: Long) :

Boolean
Returns whether the NetworkFeature is open or not (i.e., closed).

FindEdgeEID (in Point: IPoint) : Long The EID associated with the EdgeElement at the specified point.

The IComplexNetworkFeature interface is supported on both Complex-
JunctionFeature objects and ComplexEdgeFeature objects. It provides a
mechanism to determine the number of edge elements in the logical
network that are associated with the complex network feature; it also
sets their Enabled properties and finds the edge element ID (or EID) that
is associated with the portion of the geometry found at the specified
location.

The INetworkFeature interface (described previously) also has a property
for examining and setting the enabled fields of the associated network
elements in the logical network. The difference with this index-based
property is that with the ComplexJunctionFeature, the client has control
over the enabled fields on each individual edge element. If the client
sets the Enabled property at the INetworkFeature level, then all edge
elements are set. If the client uses the index-based property in this inter-
face, then the edge elements can be individually controlled.

If one or more of the associated network elements is disabled when
examining the status of the Enabled property via the INetworkFeature
interface, then False is returned. If all of the edge elements are enabled,
then True is returned.

The EnabledByIndex property can be used to set the enabled value for
an individual edge element associated with the complex network fea-
ture. The index is actually the subID of the edge element. This is appro-
priate for complex junctions where the set of edge elements generally
remains static and ranges from 1 to n with no gaps in the sequence of
subIDs. However, this is inappropriate for complex edges as the collec-
tion of edge elements (and consequently subIDs) will vary over the
lifetime of a complex edge. Additionally, you should not assume that
the subIDs associated with a complex edge do not have gaps in the
sequence.

The FindEdgeEID method does not have a default implementation
within the ComplexJunctionFeature. This is because, by default, the edge
elements do not correspond to a geometry. However, the custom feature
developer can associate geometry with an edge element within a
ComplexJunctionFeature. In order to utilize the FindEdgeEID method, the
specified point must be within the numerical precision (that is, the recip-
rocal of the XYscale found on the SpatialReference) of the portion of the
geometry that corresponds to the edge element. This search tolerance is
not an absolute rule; it is a suggestion that will allow the search to be-
have in a manner similar to the rest of the GeometricNetwork.

COMPLEXJUNCTIONFEATURE CLASS



Chapter 8 • Accessing the geodatabase • 879

G
eo

d
at

ab
as

e

The following VBA code fragment shows how a client might use this
information to display the enabled status of all the edge elements asso-
ciated with the ComplexJunction.

  'Assume we already have a pointer to a junction feature.

  Dim pComplexJunction As IComplexJunctionFeature

  Set pComplexJunction = pJunction

  Dim pComplexNetworkFeature As IComplexNetworkFeature

  Set pComplexNetworkFeature = pComplexJunction

  Dim i As Long

  For i = 0 To (pComplexNetworkFeature.EdgeElementCount - 1)

    MsgBox "Edge element [" & i & "]: " _

    & pComplexNetworkFeature.EnabledByIndex(i)

  Next i

 IComplexJunctionFeature : IUnknown Interface for ComplexJunctionFeature.

EdgeFeature (in connectionPointIndex:
Long, in Index: Long) : IEdgeFeature

The EdgeFeature associated with the specified index value and the
indexed connection point.

EdgeFeatureCount (in
connectionPointIndex: Long) : Long

The number of EdgeFeatures associated with the indexed connection
point.

FieldToEIDMapping (in FieldIndex:
Long) : Long

The EID associated with the specified field index.

GeometryForEdgeElement (in SubID:
Long) : IGeometry

The geometry corresponding to the element with the given subID.

JunctionElementCount: Long The number of junctions associated with this Feature.
RotationAngle: Double The rotation angle of this Feature.
TopologicalConfiguration:

esriTopoConfiguration
The configuration of this Feature.

FindJunctionEID (in Point: IPoint) : Long The EID associated with the JunctionElement at the specified point.

The GeometryForEdgeElements index-based property for the generic
ComplexJunctionFeature does not have any associated geometric repre-
sentation. This does not preclude the custom feature developer from
implementing the accessor of this index-based property and returning a
piece of geometry. This geometry could then be used by the network
solvers in order to represent a trace that goes through either all of or a
portion of the ComplexJunctionFeature. Network solvers are supposed to
query for this when displaying the results of the trace operation. If there
is no geometric representation for the edge elements in the
ComplexJunctionFeature, then there is no need to override the default
implementation, which will return an E_FAIL.

The TopologicalConfiguration property takes an enumeration
(esriTopoConfiguration Constants) that is used in conjunction with the
JunctionElementCount property to create the associated network elements
(both junctions and edges) in the logical network when the complex
junction is initially created and stored. The complex junction supports four
such parametrically specifiable configurations: esriTCChain, esriTCLoop,
esriTCStar, and esriTCMesh.

Enumeration esriTopoConfiguration Topological configuration.

0 - esriTCChain Chain topology.
1 - esriTCLoop Loop topology.
2 - esriTCStar Star [radial] topology.
3 - esriTCMesh Mesh [complete graph] topology.

COMPLEXJUNCTIONFEATURE CLASS

esriTCChain

Value

esriTCLoop

esriTCStar

esriTCMesh

A chain or linear sequence of n junction
and n - 1 edge elements, beginning and
ending with a junction with edge
elements in between.

Description

A loop or ring of n junction and n edge
elements, with edge elements positioned
between each pair of sequential junction
elements in the loop.

A star or radial configuration of network
elements where there is one central
junction, n connected edge elements,
and n junction elements at the end of
each of the connected edge elements
(n + 1 junctions and n edges).

A complete graph consisting of n
junction elements, and (n * (n - 1))/2
edge elements.



880 • Exploring ArcObjects • Volume 2

Note that the JunctionElementCount property corresponds to the n value
in the table to the left. Additionally, the JunctionElementCount property
will correspond to the number of connection points that the Complex-
JunctionFeature will expose (that is, the ConnectionPointCount property
on the IFeatureConnect interface). In the case of the esriTCStar configu-
ration, the central junction element will not have an associated connec-
tion point (it is in effect and internal, an externally unconnectable junc-
tion element).

When developing ComplexJunctionFeature objects, you are free to sup-
port a topological configuration that is not found in the
esriTopoConfiguration enumeration. In this case, you would not specify
a TopologicalConfiguration, but you would be required to implement
the CreateNetworkElements method on the INetworkFeature interface. If
you choose to employ a supported topological configuration, then there
is no need to implement the CreateNetworkElements method.

The FieldToEIDMapping property is not currently consumed by any
client within the ArcGIS 8.1 architecture; thus, it is unnecessary to imple-
ment this property. In addition, the RotationAngle property is not cur-
rently consumed either.

 IFeatureConnect : IUnknown Implement this interface to expose connector points and
connection points.

ConnectionPoint (in
connectionPointIndex: Long) :
IFeatureElement

The specified connection point.

ConnectionPointByName (in
ConnectionPointName: String) :
IFeatureElement

The specified named connection point.

ConnectionPointCount: Long The number of connection points associated with the Feature.
ConnectionPointName (in

connectionPointIndex: Long) : String
The name of the specified connection point.

IFeatureConnect contains properties that must be implemented by any
ComplexJunctionFeature custom feature. The implementation inside the
ComplexJunctionFeature class merely delegates to the aggregating custom
feature. Because there is no general mechanism to completely para-
metrically specify the internal interconnection topology of a
ComplexJunctionFeature or the position of all the connection points, it is
not possible for the default ComplexJunctionFeature to implement these
methods.

The purpose of these methods is to serve up connection points (that is,
positions where edge features may be connected, thereby establishing
network connectivity with the ComplexJunctionFeature) to clients. Con-
nection points may be retrieved either in an index basis or by their
logical names. Connection points are returned as FeatureElements.

The IFeatureConnect interface is not currently consumed by any client
within ArcGIS 8.1. Third-party clients are free, however, to implement
and utilize this interface in their custom features and applications.

COMPLEXJUNCTIONFEATURE CLASS



Chapter 8 • Accessing the geodatabase • 881

G
eo

d
at

ab
as

e

The following VBA code shows how a client might probe for the geom-
etry of all connection points associated with a ComplexJunctionFeature.
  'Assume we already have a pointer to a junction feature.
  Dim pFeatureConnect As IFeatureConnect
  Set pFeatureConnect = pJunction
  Dim i As Long, pFeatureElement as IFeatureElement
  Dim pGeometry as IGeometry, pPoint as IPoint

  For i = 0 To (pFeatureConnect.ConnectionPointCount – 1)
    Set pFeatureElement = pFeatureConnect.ConnectionPoint(i)
    Set pGeometry = pFeatureElement.Geometry
    Set pPoint = pGeometry
    MsgBox "Connection point (" & i & ") location : (" & pPoint.X & ", " & _
         pPoint.Y & ")"
  Next i

 IFeatureSnap : IUnknown Facility for features to do custom snapping.

Snap (in Point: IPoint, in Tolerance:
Double) : Boolean

Snap the feature based on the arguments.

The Snap method in the IFeatureSnap interface is not implemented by
the ComplexJunctionFeature class that the custom feature must aggregate.
ArcMap will call this method on all complex junctions within snapping
distance of the cursor if custom feature snapping is selected in the
Snapping dialog box.

The custom feature is responsible for returning a Boolean value indicat-
ing whether or not the cursor can snap to one of the connection points.
If the cursor can snap (the IPoint is within the tolerance distance of a
connection point), then the inbound IPoint is modified to match the
location of the connection point.

COMPLEXJUNCTIONFEATURE CLASS



882 • Exploring ArcObjects • Volume 2

Feature-
Element

IFeatureElement
IFeatureElementEdit

A feature element is a lightweight class
that encapsulates the geometry corre-

sponding to a connection point found on
a complex junction feature.

FEATUREELEMENT OBJECT

Feature elements are returned by several properties in the
IFeatureConnect interface (described previously).

 IFeatureElement : IUnknown Interface for getting Feature Element properties.

ElementType: esriFeatureElementType The type of feature element.
Geometry: IGeometry The geometry of the feature element.
Owner: IFeature The feature that owns the feature element.
Parent: IFeatureElement The parent of the feature element.

The IFeatureElement interface contains four read-only properties for
FeatureElement objects. At present, the Parent property is not functional.

 IFeatureElementEdit : IUnknown Interface for setting Feature Element properties.

ElementType: esriFeatureElementType The Type of Feature Element.
Geometry: IGeometry The Geometry of the Feature Element.
Owner: IFeature The Feature that owns the Feature Element.
Parent: IFeatureElement The Parent of the Feature Element.

The IFeatureElementEdit interface enables the custom complex junction
feature to set the various properties found on the FeatureElement. The
Owner property should be the ComplexJunctionFeature.



Chapter 8 • Accessing the geodatabase • 883

G
eo

d
at

ab
as

e

INetworkFeature
INetworkFeatureEvents Network-

Feature

EdgeFeature
IEdgeFeature

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

An edge feature is a type of network
feature that corresponds to a connection

(or link) between two or more junction
features in a geometric network.

Edge features correspond to features with polyline geometry that are
part of the network topology within a geometric network. They have two
or more connected junction features—one at each location correspond-
ing to the endpoints of their polyline geometries. Complex edges may
also have any number of connected mid-span junction features. An
EdgeFeature is an abstract class.

 IEdgeFeature : IUnknown General interface common to all features in a
GeometricNetwork.

FromJunctionEID: Long The junction element EID that corresponds to the from endpoint.
FromJunctionFeature: IJunctionFeature The junction that corresponds to the from endpoint.
FromToJunctionEIDs: IEnumNetEID The FROM and TO junction element EIDs (the first is the FROM, the

second is the TO).
GeometryForEdgeElement (in SubID:

Long) : IGeometry
The geometry corresponding to the element with the given subID.

ToJunctionEID: Long The junction element EID that corresponds to the to endpoint.
ToJunctionFeature: IJunctionFeature The junction that corresponds to the to endpoint.

DisconnectAtEndpoint (in EID: Long, in
fromEID: Long, in toEID: Long, in
disconnectFrom: Boolean, in
disconnectTo: Boolean)

Perform the disconnection at either or both of the endpoints.

DisconnectAtJunction (in EID: Long, in
JunctionEID: Long)

Perform the disconnection at the specified junction.

Update (in callingFeature:
INetworkFeature, in
oldJunctionLocation: IPoint, in
newJunctionLocation: IPoint, in
rigidEdges: ISet, in Group:
ITransformGroup)

Programmatic update of the NetworkFeature.

The IEdgeFeature interface must be supported by both simple and com-
plex edges. This interface is found on the EdgeFeature abstract class.
The various properties found on this interface are intended to facilitate
network feature navigation for client applications.

The FromToJunctionEIDs property hands back both the FROM and TO
junction EIDs; it is more efficient to access this property than to call
FromJunctionEID and ToJunctionEID. It is important to note that these
properties are generally computationally expensive. For certain clients
(that is, those that do not require access to the geometry, attributes, or
feature class associated with the network feature), it may prove more
advantageous to directly utilize the logical network when performing
navigation between large numbers of network features. For example, this
is the case with network solvers.

The Update method is reserved for internal consumption (during the
process of updating the shape and storing the result); there is no need
for clients to call this method directly.

EDGEFEATURE ABSTRACT CLASS



884 • Exploring ArcObjects • Volume 2

INetworkFeature
INetworkFeatureEvents Network-

Feature

EdgeFeature
IEdgeFeature

Simple-
EdgeFeature

ISimpleEdgeFeature
ISimpleNetworkFeature

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

A simple edge feature is an edge feature
that can connect two junction features.

SIMPLEEDGEFEATURE OBJECT

Simple edge features correspond to features with polyline geometry that
are part of the network topology within a geometric network. They have
two connected junction features—one at each location corresponding to
the endpoints of their polyline geometries. Junction features connected
at mid-span are not allowed. If you attempt to connect a junction at
mid-span on a SimpleEdgeFeature, a split operation occurs (the original
SimpleEdgeFeature is deleted and replaced by two new
SimpleEdgeFeatures that are commonly connected at the junction feature
that caused the subdivision).

 ISimpleEdgeFeature : IUnknown General interface common to all features in a
GeometricNetwork.

EID: Long The logical network element ID of this edge.

The ISimpleEdgeFeature interface is supported on a SimpleEdgeFeature.
The only property, EID, simply returns the Element ID associated with
the SimpleEdgeFeature.



Chapter 8 • Accessing the geodatabase • 885

G
eo

d
at

ab
as

e

COMPLEXEDGEFEATURE OBJECT

INetworkFeature
INetworkFeatureEvents Network-

Feature

EdgeFeature
IEdgeFeature

Complex-
EdgeFeature

IComplexEdgeFeature
IComplexNetwork-

Feature

Object
IObject

IRowSubtypes
IRelatedObjectEvents

Feature

IFeature
IFeatureBuffer

IFeatureChanges
IFeatureDraw

IFeatureEdit
IFeatureEvents

RowBufferIRowBuffer

Row
IRow

IRowChanges
IRowEdit

IRowEvents
IValidate

A complex edge feature is an edge
feature that can connect a collection of

two or more junction features in a linear
manner.

Complex edge features correspond to features with polyline geometry
that are part of the network topology within a geometric network. They
have two or more connected junction features—one at each location
corresponding to the endpoints of their polyline geometries. They may
also have any number of connected mid-span junction features.

Connecting a junction feature to a ComplexEdgeFeature does not result
in a physical subdivision of the edge; instead, it results in a logical
subdivision (that is, new edge elements in the logical network that are
associated with the complex edge).

The geometry of ComplexEdgeFeatures may not be self-intersecting; there
may be discontinuities with the geometry (they may be multipart), and
the geometry may not have the same start and stop vertex (that is, a
closed loop).

 IComplexEdgeFeature : IUnknown General interface common to all features in a
GeometricNetwork.

GeometryByPoints (in FromPoint:
IPoint, in ToPoint: IPoint) : IGeometry

The geometry associated with the two points.

GeometryForEID (in EdgeEID: Long) :
IGeometry

The geometry (point) corresponding to the edge EID.

JunctionFeature (in Index: Long) :
IJunctionFeature

The JunctionFeature associated with the index.

JunctionFeatureCount: Long The number of connected JunctionFeatures.

ConnectAtIntermediateVertices Attempt to connect at the locations corresponding to intermediate
vertices.

SplitEdgeElement (in Point: IPoint, in
newJunctionEID: Long)

Inserts the specified JunctionElement into an edge at the point.

The IComplexEdgeFeature interface is supported on a
ComplexEdgeFeature. The GeometryForEID property allows clients to
obtain the portion of the complex edge’s geometry that corresponds to a
specified EID. This is useful for network solvers in particular. The
JunctionFeature property array is a mechanism for clients to obtain all
the junction features that are associated with the complex edge.

The ConnectAtIntermediateVertices method takes the geometry associ-
ated with the complex edge and performs a spatial query at each vertex
on the polyline. The spatial query obtains any coincident junction fea-
tures. If any junction feature is found to be coincident at a vertex, con-
nectivity between the junction and the complex edge is established. This
is an expensive method; the cost is linearly related to the number of
vertices found in the polyline. Thus, it takes longer on longer complex
edges.



886 • Exploring ArcObjects • Volume 2

Versioning allows multiple users to edit spatial and tabular data simulta-
neously in a long transaction environment. Users can directly modify the
database without having to extract data or lock features in advance. The
object model provides functionality to create and administer versions,
register and unregister classes as versioned, detect differences between
versions, and reconcile and post versions.

Versioning objects

Enum-
VersionInfo

IEnumVersionInfo

VersionInfo
IVersionInfo

Difference-
Cursor

IDifferenceCursor

Versioned-
Workspace

IVersion
IVersion2

IVersionEdit
IVersionedWorkspace

A versioned workspace supports
multiuser editing and multiple

representations of features classes and
tables in a relational database system

A version information enumerator
contains available versions for

obtaining properties

Version information contains read-only
information to describe version properties A difference cursor

returns all the differences
between two versions
based on a difference type

A conflict class enumerator
returns all classes containing
conflicts after performing a
reconcile

Conflicts-
Window

IConflictDisplay
IConflictsWindow

IExtension

Version-
Manager

IVersionManager

The conflicts window
provides access to the editor

conflicts window

The version manager provides a user
interfaces to create and manage version
properties

Enum-
ConflictClass

IEnumConflictClass

Workspace

IDatabaseCompact (compact)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspaceAnno (optional)
IFeatureWorkspaceManage

IFeatureWorkspaceSchemaEdit
IGeodatabaseRelease (optional)

ISpatialCacheManager
ISQLSyntax

ITransactions (optional)
ITransactionsOptions (optional)

IWorkspace
IWorkspaceConfiguration (optional)

IWorkspaceDomains (optional)
IWorkspaceDomains2 (optional)

IWorkspaceEdit
IWorkspaceProperties (optional)

IWorkspaceSpatialReferenceInfo

Dataset

IDataset
IDatasetAnalyze (optional)

IDatasetEdit
IDatasetEditInfo

ISchemaLock (optional)
IVersionedObject

IVersionedObject2

Table
IClass

IConflictClass
ITable

ITable2
IVersionedTable



Chapter 8 • Accessing the geodatabase • 887

G
eo

d
at

ab
as

e

A VersionedWorkspace is a Workspace that supports versioning. It pro-
vides the ability to set the version that the workspace will reference.

 IVersionedWorkspace : IUnknown Provides access to members that manage versions.

DefaultVersion: IVersion Retrieves the default version.
Versions: IEnumVersionInfo Retrieves all versions the user owns and those which are public or

protected.

Compress Compresses the database by removing states not referenced by a
version.

FindVersion (in Name: String) : IVersion Finds a specific version given its name.

A list of all versions to which the user has permissions can be retrieved
using the Versions property. The versions returned are either owned by
the connected user or have public access.

The DefaultVersion property can be used to retrieve the DEFAULT ver-
sion of the database. There is always a DEFAULT version owned by the
ArcSDE user.

Versions returns an enumeration of all public versions and those owned
by the connected user.

The FindVersion method can be used to retrieve other versions by
name. Version names are case-sensitive and limited to 32 characters.

Versioned workspace compression is available using the Compress
method. Compressing a VersionedWorkspace will remove those database
states not referenced by a version. Only the ArcSDE administrator user
can execute the Compress method.

FindVersion finds a specific version provided its name.

The following example demonstrates how to use the FindVersion
method to set an IVersion. The version is fully qualified with the version
owner’s name.

Dim pSdeWs As IVersionedWorkspace

Set pSdeWs = pWorkspace

Dim pVersion As IVersion

Set pVersion = pSdeWs.FindVersion("STEVE.Emily Subdivision Design")

 IVersion : IUnknown Provides access to members for managing a version.

Access: esriVersionAccess The version's access permission.
Description: String The version's description.
VersionInfo: IVersionInfo Retrieve this version's information.
VersionLocks: IEnumLockInfo Retrieves this version's locks.
VersionName: String The name of the version.

CreateVersion (in newName: String) :
IVersion

Creates a new version equivalent to this version.

Delete Permanently deletes the version from the database.
HasParent: Boolean True if this version has a parent version.
RefreshVersion Refreshes the version with the corresponding database state.

The IVersion interface is used to manage the properties of a version as
well as create new versions. Creating a new version requires an existing
version to be the parent of the new version. When the new version is
created, the parent and child versions are identical.

VERSIONEDWORKSPACE CLASS

Workspace

IDatabaseCompact
(compact)

IDataset
IDatasetContainer

IFeatureWorkspace
IFeatureWorkspace-

Anno (optional)
IFeatureWorkspace-

Manage
IFeatureWorkspace-

SchemaEdit
IGeodatabaseRelease

(optional)
ISpatialCacheManager

ISQLSyntax
ITransactions

(optional)
ITransactionsOptions

(optional)
IWorkspace

IWorkspaceConfig-
uration (optional)

IWorkspaceDomains
(optional)

IWorkspaceDomains2
(optional)

IWorkspaceEdit
IWorkspaceProperties

(optional)
IWorkspaceSpatial-

ReferenceInfo

Versioned-
Workspace

IVersion
IVersion2

IVersionEdit
IVersionedWorkspace

A versioned workspace supports
multiuser editing and multiple represen-

tations of features classes and tables in a
relational database system.



888 • Exploring ArcObjects • Volume 2

Access can only be updated by the owner of the version, so be sure to
check the IsOwner method on the IVersionInfo returned from the
VersionInfo property.

The Description property is a user-defined textual description of the
version and is limited to sixty-four characters.

The VersionInfo property returns a descriptor object that contains more
information about the version.

The VersionLocks property returns a list of outstanding locks currently on
the version. These locks help determine how a version is currently being
used and who is using it.

The VersionName property is the name of the version. This name will be
qualified appropriately and is case-sensitive. The name of a version can
be changed using this property.

CreateVersion creates a new version based on this version.

Delete permanently removes the version from the database.

HasParent returns a Boolean if this version has a parent version.

RefreshVersion refreshes the version to correspond with the database
state the version references.

Enumeration esriVersionAccess Version Access Permissions.

0 - esriVersionAccessPrivate The version's access permission is private.
1 - esriVersionAccessPublic The version's access permission is public.
2 - esriVersionAccessProtected The version's access permission is protected.

There are three types of access privileges: private, public, and protected.
Private versions are only accessible by the version’s owner. All users can
view and update public versions, while protected versions can only be
viewed.

Here is some sample VBA code for updating the Access property of the
version associated with the first layer in the map.

  Dim pDoc As IMxDocument, pMap As IMap, pFLayer As IFeatureLayer

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  If TypeOf pMap.Layer(0) Is IFeatureLayer Then

    Set pFLayer = pMap.Layer(0)

    Dim pDataset As IDataset, pVersion As IVersion

    Set pDataset = pFLayer.FeatureClass

    Set pVersion = pDataset.Workspace

    If pVersion.VersionInfo.IsOwner Then

      pVersion.Access = esriVersionAccessPublic

    End If

  End If

VERSIONEDWORKSPACE CLASS



Chapter 8 • Accessing the geodatabase • 889

G
eo

d
at

ab
as

e

 IVersionEdit : IUnknown VersionEdit Interface.

CommonAncestorVersion: IVersion The common ancestor of this version and the reconcile version.
ConflictClasses: IEnumConflictClass Returns all objects that contain conflicts between the current and

reconciled versions.
ModifiedClasses: IEnumBSTR Returns all objects modified by the current and reconciled versions.
PreReconcileVersion: IVersion The version prior to reconciliation.
ReconcileVersion: IVersion The version against which the current version is reconciling.
StartEditingVersion: IVersion The version prior to any edits.

CanPost: Boolean Returns a Boolean if the version can be posted to the reconcile
version.

Post (in VersionName: String) Posts the current version to the reconcilled version.
Reconcile (in VersionName: String) :

Boolean
Reconciles the current version with a target version.

The IVersionEdit interface is used to reconcile a version with a target
version. Once reconciled, the object provides the ability to work with
representations of the version prior to start editing, the prereconcile
version, the reconcile version, and the common ancestor version. The
common ancestor version represents the state of the database when the
start editing version was originally created from the reconcile version (at
the time when each version was identical).

You can only post a version that has first been reconciled with any of
its ancestor versions. You are not limited to simply reconciling a version
with its immediate parent version. Once you have performed the recon-
cile, the CanPost method will return True. But, if you perform an Undo
operation, CanPost will become False.

CommonAncestorVersion returns the common ancestor version of this
version and the reconcile version.

ConflictClasses returns an enumeration of all classes containing conflicts.

ModifiedClasses returns an enumeration of all the classes modified in the
version.

PreReconcileVersion returns the version prior to reconciliation.

ReconcileVersion returns the version against which this version is cur-
rently reconciling.

StartEditingVersion returns the version before any edits were made.

CanPost returns a Boolean if the version can be posted to the reconcile
version.

Post applies the changes in the current version to the reconciled version.

Reconcile merges the current edit version with a target version.

The example below shows how an application can reconcile the current
version with the DEFAULT version. If conflicts are detected, the user will
have to interactively perform conflict resolution. If not, then the applica-
tion can verify that it can perform the post operation, and then it can
perform the post.

  Dim pVersionEdit As IVersionEdit

  Set pVersionEdit = pCurrentVersion

  Dim pconflicts As Boolean

VERSIONEDWORKSPACE CLASS



890 • Exploring ArcObjects • Volume 2

VERSIONEDWORKSPACE CLASS

  pconflicts = pVersionEdit.Reconcile("SDE.DEFAULT")

  If pconflicts Is True Then

   MsgBox _

     "Conflicts have been detected, review and resolve prior to   posting."

  Else

     MsgBox "The version has been successful reconciled with the " & _

              "target version, no conflicts were detected."

  End If

  ' Handle conflicts if necessary

  If pVersionEdit.CanPost = True Then

    pVersionEdit.Post "SDE.DEFAULT"



Chapter 8 • Accessing the geodatabase • 891

G
eo

d
at

ab
as

e

Objects of this type are created through the IVersionEdit::ConflictClasses
property. The enumeration contains a set of IConflictClass objects that
specify the conflict classes that were found during the execution of
IVersionEdit::Reconcile.

 IEnumConflictClass : IUnknown Conflict Class Enumeration Interface.

Next: IConflictClass Retrieves the next conflict class in the enumeration sequence.
Reset Resets the enumeration sequence to the beginning.

Use the IEnumConflictClass interface when you want to do further pro-
cessing on the conflicts that were found during the execution of
IVersionEdit::Reconcile.

Next returns an IConflictClass object that contains all of the conflicts for
a particular object class in the dataset.

Reset resets the enumeration sequence to the beginning.

Objects of this type are created through the IVersionWorkspace::Versions
property. The enumeration contains a set of IVersionInfo objects that
specify the characteristics of the versions contained in the database.

 IEnumVersionInfo : IUnknown Provides access to members that enumerate version
information.

Next: IVersionInfo Retrieves the next version info.
Reset Resets the enumeration sequence to the beginning.

Use the IEnumVersionInfo interface when you need to access the read-
only characteristics (such as access setting, children, and parents) of the
versions defined on the workspace.

Next retrieves the next version’s properties.

Reset resets the enumeration sequence to the beginning.

ENUMCONFLICTCLASS AND ENUMVERSIONINFO CLASSES

Enum-
ConflictClass

IEnumConflictClass

A conflict class enumerator returns all
classes containing conflicts after perform-

ing a reconcile.

Enum-
VersionInfo

IEnumVersionInfo

A version information enumerator con-
tains available versions for obtaining

properties.



892 • Exploring ArcObjects • Volume 2

The VersionInfo interface is a read-only collection of methods used to
obtain the different properties of a version. If you need to set the prop-
erties of a version, use the IVersion interface.

 IVersionInfo : IUnknown Provides access to members that supply version
information.

Access: esriVersionAccess The version's access permission.
Ancestors: IEnumVersionInfo Retrieves the version's ancestors.
Children: IEnumVersionInfo The version's children.
Created: Variant The date and time the version was created.
Description: String The version's description.
Modified: Variant The date and time the version was last modified.
Parent: IVersionInfo The version's parent.
VersionName: String The version's name.

IsOwner: Boolean True if the current connected user is the owner of this version.

The IVersionInfo object is created from the IEnumVersionInfo::Next
property. The properties returned are all read-only; if you need to up-
date a value, use the appropriate IVersion method.

Access returns the version access.

Ancestors returns the version’s ancestors, for example, its parent version.

Children returns all child versions.

Created returns the date the version was created.

Description returns the version’s description.

Modified returns the date the version was last modified.

Parent returns the parent version’s properties.

VersionName returns the version’s name.

IsOwner returns a Boolean whether or not the connected user is the
owner.

The DifferenceCursor returns a cursor of object IDs and IRows based on
the difference type used with IVersionedTable.

The set of object IDs returned is dependent on the difference type
category. For example, if the difference type DeleteNoChange is applied,
the cursor will be empty for the table that has deleted the rows. In this
case, the application will have to change the table the version references
in the IVersionedTable interface.

 IDifferenceCursor : IUnknown Version Difference Cursor.

Next (out OID: Long, out differenceRow:
IRow)

Retruns the object identifier or difference row.

Next returns an object ID of an IRow.

VERSIONINFO AND DIFFERENCECURSOR CLASSES

VersionInfo
IVersionInfo

Version information contains read-only
information used to describe version

properties.

Difference-
Cursor

IDifferenceCursor

A difference cursor returns all the differ-
ences between two versions based on a

difference type.



Chapter 8 • Accessing the geodatabase • 893

G
eo

d
at

ab
as

e

DATASET ABSTRACT CLASS IN A VERSIONED WORKSPACE

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock

(optional)
IVersionedObject

IVersionedObject2

The IVersionedObject interface is used
to register and unregister feature

datasets and classes as versioned.

The IVersionedObject interface is used to register and unregister feature
datasets and classes as versioned. It will also return the current version
that a dataset or table references.

Using the RegisterAsVersioned method on a feature dataset will register all
classes in the dataset as versioned or, alternatively, one could
RegisterAsVersioned an individual feature class. Only the feature dataset
or feature class owner can register an object as versioned. The process
will create two additional tables in the database.

 IVersionedObject : IUnknown Provides access to members that manage a versioned
object.

IsRegisteredAsVersioned: Boolean Is the object registered as versioned?
Version: IVersion The object's current version.

RegisterAsVersioned (in isVersioned:
Boolean)

Register/Unregister the object as versioned.

The IsRegisterAsVersioned method returns a Boolean if the dataset or
class is registered in the database as versioned. When called on a fea-
ture dataset, if any class is not registered as versioned, False will be
returned.

The Version method returns the current version the object references.
This ensures that the application is working with the correct version of
the database.

RegisterAsVersioned provides the ability to register and unregister a fea-
ture dataset as versioned. A true value will register the dataset or class as
versioned, and a false value will unregister the dataset or class as
versioned.

 IVersionedObject2 : IVersionedObject Provides access to members that manage a versioned
object.

HasUncompressedEdits: Boolean Does the object have edits that haven't been compressed yet?

HasUncompressedEdits returns whether or not there are edits that have
not yet been compressed.



894 • Exploring ArcObjects • Volume 2

A table in a versioned workspace implements two additional interfaces.

 IConflictClass : IUnknown Conflict Class Interface.

DeleteUpdates: ISelectionSet The selection set of all the objects that are delete/update conflicts.
HasConflicts: Boolean True if the conflict class contains conflicts.
UpdateDeletes: ISelectionSet The selection set of all the objects that are update/delete conflicts.
UpdateUpdates: ISelectionSet The selection set of all the objects that are update/update conflicts.

RestoreRow (in rowID: Long) : IRow Restores the row from either the reconcile version or the prereconcile
version.

IConflictClass is obtained from the IEnumConflictClass enumeration. It is
provided as a mechanism to work with the conflicting rows from each
conflict class after performing a reconcile. If IVersionEdit::Reconcile has
not been called prior to this, the classes will not be available.

The DeleteUpdates method returns an ISelectionSet of all the object IDs of
rows that have been deleted in the edit version and updated in the target
reconcile version. If no conflicts were detected, the selection set is null.

HasConflicts returns a Boolean if the reconcile detects conflicts.

The UpdateDeletes method returns an ISelectionSet of all the object IDs of
rows that have been updated in the edit version and deleted in the target
reconcile version. If no conflicts were detected, the selection set is null.

The UpdateUpdate method returns an ISelectionSet of all the object IDs of
rows that have been updated in the edit version and updated in the target
reconcile version. If no conflicts were detected, the selection set is null.

 IVersionedTable : IUnknown Versioned Table Interface.

Differences (in differenceTable: ITable,
in differenceType: esriDifferenceType,
in QueryFilter: IQueryFilter) :
IDifferenceCursor

Returns an object cursor that can be used to retrieve rows by
difference type.

The IVersionedTable interface can be used to detect the different conflict
categories without first performing an IVersionEdit::Reconcile. By speci-
fying the appropriate esriDifferenceType, such as TypeDeleteUpdate or
TypeInsert, an IDifferenceCursor is returned with a set of OIDs and IRows
for differences.

Differences returns a cursor that can be used to retrieve the rows by the
difference type.

Enumeration esriDifferenceType Difference Types.

0 - esriDifferenceTypeInsert Row was inserted in this version.
1 - esriDifferenceTypeDeleteNoChange Row has been deleted in this version and not changed in the

difference version.
2 - esriDifferenceTypeUpdateNoChange Row has been updated in this version and not changed in the

difference version.
3 - esriDifferenceTypeUpdateUpdate Row has been updated in both versions.
4 - esriDifferenceTypeUpdateDelete Row has been updated in this version but deleted in the difference

version.
5 - esriDifferenceTypeDeleteUpdate Row has been deleted in this version but updated in the difference

version.

The esriDifferenceType enumeration contains the type of differences
possible in a conflict.

Table
IClass

IConflictClass
ITable

ITable2
IVersionedTable

IConflictClass lets you work with
conflicting rows after a reconcile.
IVersionedTable detects conflict

categories.

TABLE CLASS IN A VERSIONED WORKSPACE



Chapter 8 • Accessing the geodatabase • 895

G
eo

d
at

ab
as

e

The ConflictsWindow class allows you to manage the conflict display
environment after performing a reconcile in the Editor, if conflicts were
detected.

 IConflictDisplay : IUnknown Provides access to the Conflict display environment.

FillSymbol (in vers: esriVersion) :
IFillSymbol

Display symbol used to draw polygon features.

LineSymbol (in vers: esriVersion) :
ILineSymbol

Display symbol used to draw line features.

MarkerSymbol (in vers: esriVersion) :
IMarkerSymbol

Display symbol used to draw point features.

VersionVisible (in vers: esriVersion) :
Boolean

The start editing, prereconcile, or reconcile version used for display.

The IConflictDisplay class provides the ability to define the display
symbology for the three representations of the conflicting feature, the
start editing version, the prereconcile version, and the conflict version.
Setting the visible version enables or disables the display for each of the
three versions.

FillSymbol sets the fill symbol for displaying polygon conflicts.

LineSymbol sets the line symbol for displaying line conflicts.

MarkerSymbol sets the marker symbol for displaying point conflicts.

VersionVisible enables or disables the display of the start editing, recon-
cile, and conflict versions.

Enumeration esriVersion ESRI Version type.

0 - esriReconcileVersion The version against which the edit session is reconciling.
1 - esriPreReconcileVersion The version prior to reconciliation.
2 - esriStartEditingVersion The version prior to start editing.

The following diagram shows the three types of versions.

 IConflictsWindow : IUnknown Provides access to Conflicts Display Window.

Class (in Index: Long) : IConflictClass Class by index.
ClassCount: Long The number of classes with conflicts.
CurrentClass: IConflictClass Class of the selected feature, or 0 if no ConflictClass.
CurrentRow: Long ID of the selected row or feature, or -1 if no current row.
IDs (in conflictClass: IConflictClass) :

IEnumIDs
Enumerate the feature IDs for a ConflictClass.

Visible: Boolean Indicates if Conflicts window is visible.

FindTable (in conflictClass:
IConflictClass, in vers: esriVersion) :
ITable

Finds a cached table corresponding to the conflict class and version.

HasConflicts: Boolean Indicates if conflicts have been detected.
Reset Resets the conflicts.

The IConflictsWindow contains methods to manage the Conflicts dialog
box in the Editor. If further postprocessing of conflicts is required, the
interface provides the methods to work with the classes that contain
conflicts and the individual rows that are conflicts. Removing conflicting
rows from the selection sets and resetting the conflicts window allow
you to programmatically remove rows from the dialog box.

Class returns the conflict class by its index value.

CONFLICTSWINDOW COCLASS

Conflicts-
Window

IConflictDisplay
IConflictsWindow

IExtension

The conflicts window provides access to
the editor conflicts window.

The Conflicts dialog box contains a list of
all feature classes and their features or

rows in conflict.



896 • Exploring ArcObjects • Volume 2

ClassCount returns the number of classes that contain conflicts.

CurrentClass returns the class of the selected feature, or 0 when nothing
is selected.

CurrentRow returns the objected of the selected row, or -1 when no
rows are selected.

FindTable finds a cached table corresponding to the conflict class and
version.

HasConflicts returns True if conflicts have been detected for the class.

IDs returns an enumeration of feature IDs.

Reset resets the conflict class window.

Visible sets the conflicts window visibility.

CONFLICTSWINDOW COCLASS



Chapter 8 • Accessing the geodatabase • 897

G
eo

d
at

ab
as

e

VERSIONMANAGER COCLASS

The VersionManager coclass provides the ability to create new versions,
rename existing versions, delete versions, and modify version properties.
The dialog box is the model, and the title bar contains the username
and server name in which the version manager is connected. Only
versions that the user owns and those that are public or protected are
listed.

 IVersionManager : IUnknown Provides access to members that control the Version
Management dialog for a versioned geodatabase.

DoModal (in vw: IVersionedWorkspace) Displays the dialog box used to manage versions for a versioned
geodatabase.

The following code example shows how to quickly launch the version
manager.

  Dim pSdeWs As IVersionedWorkspace

  Set pSdeWs = pWorkspace

  Dim pVersion_mngr As IVersionManager

  Set pVersion_mngr = New VersionManager

  pVersion_mngr.DoModal pSdeWs

Enumeration esriVersion ESRI Version type.

0 - esriReconcileVersion The version against which the edit session is reconciling.
1 - esriPreReconcileVersion The version prior to reconciliation.
2 - esriStartEditingVersion The version prior to start editing.

The esriVersion Enumeration defines which version’s representation
should be set as visible in IConflictDisplay::VersionVisible, FillSymbol,
LineSymbol, and MarkerSymbol.

Enumeration esriDifferenceType Difference Types.

0 - esriDifferenceTypeInsert Row was inserted in this version.
1 - esriDifferenceTypeDeleteNoChange Row has been deleted in this version and not changed in the

difference version.
2 - esriDifferenceTypeUpdateNoChange Row has been updated in this version and not changed in the

difference version.
3 - esriDifferenceTypeUpdateUpdate Row has been updated in both versions.
4 - esriDifferenceTypeUpdateDelete Row has been updated in this version but deleted in the difference

version.
5 - esriDifferenceTypeDeleteUpdate Row has been deleted in this version but updated in the difference

version.

The esriDifferenceType enumeration is used by IVersionedTable to define
the category of differences to be returned in the cursor.

Each category is self-explanatory. For example, difference type
UpdateNoChange returns all rows updated in the version but not
changed in the target version.

Version-
Manager

IVersionManager

The version manager provides a user
interface to create and manage version

properties.

The VersionManager command
launches the Version Manager dialog box

that connects to the database as the
user running the process.



898 • Exploring ArcObjects • Volume 2

The two central data converter objects are FeatureDataConverter and
ObjectLoader.

FeatureDataConverter will be familiar to users of ArcCatalog; the import
facilities make extensive use of this coclass.

ObjectLoader corresponds to the ArcMap object loader, which can be
used in an edit session to import data into an existing feature class.

Some other objects and interfaces are useful in support of
FeatureDataConverter and ObjectLoader and perform the following
functions:

• Check for potential problems in your field names with IFieldChecker.

• Inspect data that is rejected during the conversion process with
IEnumInvalidObject.

• Keep the end user informed with IFeatureProgress.

Data converter objects

Field-
Checker

IFieldChecker

Enum-
FieldError

IEnumFieldError

FieldError
IFieldError

Object-
LoaderUI

IObjectLoaderUI
IObjectLoaderUIProperties

Object-
Loader

IObjectLoader
IFeatureProgress

EnumInvalid-
Object

IEnumInvalidObject

InvalidObject-
Info

IInvalidObjectInfo

A field error provides information
about a field problem

A field error enumerator stores the
problems found by a field checker

A field checker will find potential
problems in field names

An invalid object enumerator
represents a set of objects that
failed a data conversion process

Invalid object information explains
why data could not be loaded

The object loader user interface is the
same as that of the ArcMap object loader

An object loader appends
data to existing feature

classes or tables

FeatureData-
Converter

IFeatureDataConverter
IFeatureDataConverter2

IFeatureProgress

A feature data converter lets you
convert data between geodatabases,

shapefiles, and coverages



Chapter 8 • Accessing the geodatabase • 899

G
eo

d
at

ab
as

e

FeatureData-
Converter

IFeatureDataConverter
IFeatureDataConverter2

IFeatureProgress

A feature data converter lets you effi-
ciently load data into a geodatabase.

The FeatureDataConverter object lets you convert data between geoda-
tabases, shapefiles, and coverages. Most types of feature data are cur-
rently supported (except for annotation).

FeatureDataConverter is suitable for loading large amounts of data.
When importing to a geodatabase, you can specify an interval for com-
mitting data; you can also specify an ArcSDE configuration keyword to
control specific storage parameters.

The ExportOperation coclass offers similar functionality to the feature
data converter but in a simplified form. It corresponds to the export data
function available in ArcMap by right-clicking on a layer in the table of
contents.

 IFeatureDataConverter: IUnknown Provides access to members that are used to convert from
one personal geodatabase/geodatabase dataset to another.

ConvertFeatureClass (in
InputDatasetName:
IFeatureClassName, in
InputQueryFilter: IQueryFilter, in
outputFDatasetName:
IFeatureDatasetName, in
outputFClassName:
IFeatureClassName, in
OutputGeometryDef: IGeometryDef, in
OutputFields: IFields, in configKey:
String, in FlushInterval: Long, in
parantHWnd: Long) :
IEnumInvalidObject

Converts a FeatureClass to a personal geodatabase/geodatabase
FeatureClass.

ConvertFeatureDataset (in
inputFDatasetName:
IFeatureDatasetName, in
outputFDatasetName:
IFeatureDatasetName, in
OutputGeometryDef: IGeometryDef, in
configKey: String, in FlushInterval:
Long, in parentHWnd: Long)

Converts a FeatureDataset to a personal geodatabase/geodatabase
FeatureDataset.

ConvertTable (in InputDatasetName:
IDatasetName, in InputQueryFilter:
IQueryFilter, in OutputDatasetName:
IDatasetName, in OutputFields:
IFields, in configKey: String, in
FlushInterval: Long, in parentHWnd:
Long) : IEnumInvalidObject

Converts a table to a personal geodatabase/geodatabase table.

The IFeatureDataConverter interface provides methods to convert data
between different formats. This example shows conversion of a feature
class to a new feature class in a given workspace.
Public Sub ConvertFeatureClass(pFeatureClass As IFeatureClass, _
                               pOutWorkspace As IWorkspace)
  ' Get input FeatureClassName and Workspace
  Dim pInFCName As IFeatureClassName
  Dim pDataset As IDataset
  Set pDataset = pFeatureClass
  Set pInFCName = pDataset.FullName
  Dim pInWorkspace As IWorkspace
  Set pInWorkspace = pDataset.Workspace

  ' Set output WorkspaceName
  Set pDataset = pOutWorkspace
  Dim pOutWorkspaceName As IWorkspaceName
  Set pOutWorkspaceName = pDataset.FullName

  ' Set output FeatureClassName

ArcCatalog uses FeatureDataConverter to
implement many of its import and export

facilities.

IFeatureDataConverter can convert data to a
new spatial reference.

FEATUREDATACONVERTER COCLASS



900 • Exploring ArcObjects • Volume 2

  Dim pOutFCName As IFeatureClassName
  Set pOutFCName = New FeatureClassName
  Dim pDatasetName As IDatasetName
  Set pDatasetName = pOutFCName
  pDatasetName.Name = "NewFeatClass1"
  Set pDatasetName.WorkspaceName = pOutWorkspaceName

  ' Get fields for input feature class and run them through field checker
  Dim pFieldChecker As IFieldChecker
  Dim pFields As IFields
  Set pFields = pFeatureClass.Fields
  Dim pOutFields As IFields
  Set pFieldChecker = New FieldChecker
  pFieldChecker.InputWorkspace = pInWorkspace
  Set pFieldChecker.ValidateWorkspace = pOutWorkspace
  pFieldChecker.Validate pFields, Nothing, pOutFields

  ' Convert the data
  Dim pFeatureDataConverter As IFeatureDataConverter
  Set pFeatureDataConverter = New FeatureDataConverter
  pFeatureDataConverter.ConvertFeatureClass pInFCName, Nothing, _
             Nothing, pOutFCName, Nothing, pOutFields, "", 100, 0

End Sub

The ConvertFeatureDataset method can import whole feature datasets.

When using ConvertFeatureClass and ConvertFeatureDataset, if you specify
Nothing for the OutputGeometryDef parameter, then the spatial reference
will be taken from the input data or the destination feature dataset, and
default spatial index data will be created. The InputQueryFilter parameter
allows you to just import a subset of the input data.

 IFeatureDataConverter2 : IUnknown Interface used to convert one dataset to another,
optionally using a selection set.

ConvertFeatureClass (in
inputFClassName: IDatasetName, in
InputQueryFilter: IQueryFilter, in
InputSelectionSet: ISelectionSet, in
outputFDatasetName:
IFeatureDatasetName, in
outputFClassName:
IFeatureClassName, in
OutputGeometryDef: IGeometryDef, in
OutputFields: IFields, in configKey:
String, in FlushInterval: Long, in
parantHWnd: Long) :
IEnumInvalidObject

Converts a FeatureClass to a personal geodatabase/geodatabase
FeatureClass.

ConvertTable (in InputDatasetName:
IDatasetName, in InputQueryFilter:
IQueryFilter, in InputSelectionSet:
ISelectionSet, in OutputDatasetName:
IDatasetName, in OutputFields:
IFields, in configKey: String, in
FlushInterval: Long, in parentHWnd:
Long) : IEnumInvalidObject

Converts a table to a Personal Geodatabase/Geodatabase table.

The IFeatureDataConverter2 interface is the same as
IFeatureDataConverter, except that you can additionally specify a selec-
tion set on the input data. This lets you load just those features that
might have been selected by a user or any other subset that cannot be
defined by a single query.

IFeatureDataConverter2 lets you specify a
selection set on the source data.

FEATUREDATACONVERTER COCLASS



Chapter 8 • Accessing the geodatabase • 901

G
eo

d
at

ab
as

e

The IFeatureProgress interface handles events that are fired by a data-
conversion or object-loading process.

 IFeatureProgress : IUnknown Provides members that handle events from converting
feature class/table.

FeatureClassName: String Input FeatureClass name.
IsCancelled: Boolean Status of the Cancel button: the data conversion will be cancelled if

the user press the Cancel button.
MaxFeatures: Long Maximum number of features/rows in the input object class.
MinFeatures: Long Minimum number of features/rows in the input objectclass.
Position: Long Current feature/row that are currently converted by the converter.
StepValue: Long Current position of conversion.

Step Step the progressor interval.

The various properties, other than IsCancelled, are automatically initial-
ized when data conversion starts. You can get these values, but you
cannot set them.

The Step method is fired automatically for every x number of features,
where x is the value of StepValue. You can use this event to keep a
count of how many features have been converted. The IsCancelled
property is fetched by the converter after every call to Step.

This example shows the code for a form with a command button to
cancel the conversion.

Private WithEvents m_Converter As FeatureDataConverter

Private m_IsCancel As Boolean

Private Sub Form_Load()

  m_IsCancel = False

End Sub

Private Sub cmdCancel_Click()

  m_IsCancel = True

End Sub

Private Property Get m_Converter_IsCancelled() As Boolean

  m_Converter_IsCancelled = m_IsCancel

  DoEvents

End Property

Public Property Set m_FeatureProgressEvents(ByRef pFDConverter As
IFeatureDataConverter)

  Set m_Converter = pFDConverter

End Property

'The event handling can be initialized in the module containing the data
'converter code before starting the conversion:

  Set frmCancel.m_FeatureProgressEvents = pFeatureDataConverter

  frmCancel.Show vbModeless

  DoEvents

IFEATUREPROGRESS INTERFACE

Use IFeatureProgress to keep the user
informed about the conversion process.



902 • Exploring ArcObjects • Volume 2

EnumInvalidObject is a standard enumerator like many others in
ArcObjects. It represents a set of objects that failed a data-conversion
process.

 IEnumInvalidObject: IUnknown IEnumInvalidFeature interface

Next: IInvalidObjectInfo Retrieves the next invalid feature/row in the enumeration sequence.
Reset Resets the enumeration sequence to the beginning.

The IEnumInvalidObject interface lets you step through the objects that
failed conversion and gain access to InvalidObjectInfo.

InvalidObjectInfo tells you why a particular row or feature could not be
loaded.

 IInvalidObjectInfo: IUnknown Return an info about the features that did not convert.

ErrorDescription: String Returns the description of the error in converting the feature/row.
InvalidObjectID: Long Retrieves the object ID that did not get converted.

The IInvalidObjectInfo interface returns information about an object that
could not be loaded. One example of ErrorDescription is: “The coordi-
nates or measures are out of bounds.”

The InvalidObjectID will be -1 unless the source data is in a
geodatabase.

EnumInvalid-
Object

IEnumInvalidObject

EnumInvalidObject represents a set of
objects that failed a data conversion

process.

InvalidObject-
Info

IInvalidObjectInfo

Invalid object information explains why
data could not be loaded.

ENUMINVALIDOBJECT AND INVALIDOBJECTINFO CLASSES



Chapter 8 • Accessing the geodatabase • 903

G
eo

d
at

ab
as

e

Field-
Checker

IFieldChecker

Field checker will find potential problems
in field names when converting data

between different formats.

FIELDCHECKER COCLASS

A FieldChecker object is used to validate a Fields collection. It is most
often used in conjunction with FeatureDataConverter.

FieldChecker is particularly useful when you are creating a new feature
class based on an existing feature class and the input and output data
are in different formats. For example, a shapefile field name of “UID”
would be invalid in an Oracle geodatabase since it is a reserved word in
that database.

As well as reporting the problems it finds, FieldChecker also generates a
new fields collection with standard fixes for the field name problems. In
the previous example, a new field name of “UID_” would be generated.

The kinds of errors that the field checker detects are listed by
esriFieldNameErrorType.

Enumeration esriFieldNameErrorType Error enumeration in FieldName.

0 - esriNoFieldError No field error.
1 - esriSQLReservedWord Field name is a SQL Reserved word.
2 - esriDuplicatedFieldName Field name is a duplicate of another field name.
3 - esriInvalidCharacter Field name containes invalid character.
4 - esriInvalidFieldNameLength Field name is too long.

When converting to a geodatabase, the field checker will also rename
geometry fields to “Shape” and object ID fields to “OBJECTID”. No field
errors are returned in this situation.

 IFieldChecker : IUnknown FieldChecker interface

InputWorkspace: IWorkspace Input workspace of the FieldChecker.
ValidateDictionary:

ISqlKeywordDictionary
FieldChecker dictionary.

ValidateWorkspace: IWorkspace Workspace of the FieldChecker.

Validate (in inputField: IFields, out error:
IEnumFieldError, out fixedFields:
IFields)

Checks the validity of a list of field names.

ValidateField (in FieldIndex: Long, in
InputFields: IFields, out error:
IEnumFieldError, out fixedFields:
IFields)

Checks the validity of a field.

ValidateTableName (in TableName:
String, out fixedName: String) : Long

Checks the validity of a table name.

The IFieldChecker interface validates field names and table names rela-
tive to a particular workspace.

If you do not set ValidateWorkspace and InputWorkspace before validat-
ing the fields, then FieldChecker assumes a default set of reserved words
and invalid characters. This may cause you to rename fields unneces-
sarily if the problem does not apply to the data format to which you are
converting.

An example of the Validate method is shown in the
FeatureDataConverter section in this chapter.

The ValidateTableName method will check a proposed table name
against reserved words and invalid characters. It will not check to see if
that table name is already being used in the workspace.



904 • Exploring ArcObjects • Volume 2

EnumFieldError is a standard enumerator like many others in
ArcObjects. It represents a set of field names that would cause problems
in a data-conversion process.

 IEnumFieldError : IUnknown IEnumFieldError interface.

Next: IFieldError Retrieves the next field error in the enumeration sequence.
Reset Resets the enumeration sequence to the beginning.

The IEnumFieldError interface lets you step through the field errors
found by the field checker. Each element returned is a FieldError object.

A FieldError object provides information about a problem with a field.

 IFieldError : IUnknown IFieldError interface.

FieldError: esriFieldNameErrorType Resets the enumeration sequence to the beginning.
FieldIndex: Long Field index for the current field error.

The IFieldError interface tells you what kind of error was found and to
what field it applies.

Enum-
FieldError

IEnumFieldError

EnumFieldError stores the problems
found by FieldChecker.

ENUMFIELDERROR AND FIELDERROR CLASSES

FieldError
IFieldError

A field error provides information about a
field problem.



Chapter 8 • Accessing the geodatabase • 905

G
eo

d
at

ab
as

e

An ObjectLoader is used within an edit session to append features into
existing feature classes or to append rows into existing tables. Like the
feature data converter, the object loader fires feature progress events,
which lets you feed information back to the user. Also, the data that fails
to be loaded is referenced by an EnumInvalidObject enumerator. The
object loader currently supports most types of feature data (except for
annotation).

Unlike the feature data converter, the object loader requires an edit
session to be in progress. Geodatabase behavior, such as composite
relationships, is honored.

 IObjectLoader: IUnknown Provides access to members that are used to load an object
to an existing feature class or table.

LoadObjects (in Editor: IEditor, in
InputTable: ITable, in InputQueryFilter:
IQueryFilter, in OutputTable: ITable, in
OutputFields: IFields, in SetSubType:
Boolean, in SubtypeCode: Long, in
snapToFeatures: Boolean, in
applyValidation: Boolean, in
FlushInterval: Long, out
ppInvalidObjectEnum:
IEnumInvalidObject) : ISelectionSet

Loads an object into an existing object class.

LoadObjects returns a selection set of the features that were loaded but
failed validation (that is, if the validation flag was specified). This is the
same kind of validation as IValidation does—don’t confuse it with the
EnumInvalidObject, which identifies the data that could not be loaded.

The most complex part of using LoadObjects is specifying the fields to
be used. The number of subfields in the input query filter must match
the number of fields in the collection specified by the OutputFields
parameter, and the fields must be in the same order. This gives you the
flexibility to map input fields to output fields with different names. The
input query filter parameter can be specified as Nothing, in which case
you must adjust the output fields to match the fields in the source table.
Field values are not copied for noneditable fields, such as the object ID.

Object-
Loader

IObjectLoader
IFeatureProgress

Use ObjectLoader to append data to
existing feature classes or tables.

The object loader operates within an edit
session.

The IObjectLoader interface is used to control
the Object Loader.

OBJECTLOADER COCLASS



906 • Exploring ArcObjects • Volume 2

OBJECTLOADERUI COCLASS

The ObjectLoaderUI is the same user interface as the object loader in
ArcMap. It lets the user pick multiple data sources for loading and also
match the input fields to the output fields. Use ObjectLoaderUI if you
want the user to be able to control what data gets loaded.

 IObjectLoaderUI : IUnknown Provides access to members that control the Object Loader
UI.

Application: Object Application of the Object/Simple data loader.
Editor (in Editor: IEditor) Editor extension.

Show (in Show: Boolean, in
simpleLoader: Boolean, in
parantHWnd: Long)

Show or hide the object loader window.

The IObjectLoaderUI interface opens the Object Loader dialog box in
your application. You can choose between the full user interface and a
simplified version.

 IObjectLoaderUIProperties : IUnknown Provides access to the members that control the properties
of the object loader.

InputFields: IFields Source fields that will be loaded into the target object class.
LoadWithSnap: Boolean Snap state of the loader.
LoadWithValidation: Boolean Validation state of the loader.
ObjectLoaderQueryFilter: IQueryFilter Query filter to use on the source data.
OutputFields: IFields Fields in the target object class that will be loaded from the source.
SetSubTypeCode: Boolean State of the loader subtype code.
SourceFullName: IName Data source to be loaded into the target object class.
TargetSubTypeCode: Long Target object class subtype code.
TargetTable: ITable Loader target object class.

DataSourceCount: Long Data source count that will be loaded into the target object class.
DeleteAllSources Clear the data sources list.
DeleteSourceFullName (in

sourceName: IName)
Delete a data source from the list of sources.

GetSourceFullName (in Index: Long) :
IName

Data source at specific index.

The IObjectLoaderUIProperties interface lets you specify the default
information that appears in the Object Loader dialog box and then get
the settings that the end user decided on.

Object-
LoaderUI

IObjectLoaderUI
IObjectLoaderUI-

Properties

ObjectLoaderUI lets you use the same
user interface as the object loader in

ArcMap.



Chapter 8 • Accessing the geodatabase • 907

G
eo

d
at

ab
as

eArcInfo coverage objects

1..*

*

IWorkspaceFactory
IWorkspaceFactory2

ArcInfo-
Workspace-

Factory
IWorkspaceName Workspace-

Name

ICoverageFeatureClassName
IFeatureClassName

IMetadata

Coverage-
Feature-

ClassName

ICoverageName
IFeatureDatasetName

IMetadata
Coverage-

Name

Dataset-
Name

IDatasetName

IArcInfoItems
IArcInfoItemsEdit ArcInfoItems

IArcInfoItem
IArcInfoItemEdit ArcInfoItem

Feature-
Class

ICoverageFeatureClass
ICoverageFeatureClass2

IFeatureClass
IFeatureClassLoad
IFeatureClassWrite

IGeoDataset
INetworkClass

Name
IName

The ArcInfoWorkspaceFactory is the
entry point to access the geodatabase
for ArcInfo coverages and tables

A CoverageFeatureClassName identifies and locates
a feature class in a coverage and is used for

obtaining some basic properties of the feature class

The IArcInfoTable interface is used
to access and manage the items in

an INFO table

The ICoverage interface provides
information about coverages and
processing operations specific to

ArcInfo coverages

The ICoverageFeatureClass
interface provides information

on an individual feature class of
an ArcInfo coverage

The ArcInfoItems object is used to
manage the item set, or collection

of items in an INFO table

The IArcInfoWorkspace
interface is used to create new

coverages or INFO tables

The ArcInfoItem object represents a
field of the INFO table, and is used to

create and manage individual fields

A CoverageName identifies and
locates a dataset object and

supports methods to instantiate
the actual named object

Workspace

IArcInfoWorkspace
IDatabaseCompact (compact)

IDataset
IDatasetContainer

IFeatureWorkspace
IFeatureWorkspaceAnno (optional)

IFeatureWorkspaceManage
IFeatureWorkspaceSchemaEdit

IGeodatabaseRelease (optional)
ISpatialCacheManager

ISQLSyntax
ITransactions (optional)

ITransactionsOptions (optional)
IWorkspace

IWorkspaceConfiguration (optional)
IWorkspaceDomains (optional)

IWorkspaceDomains2 (optional)
IWorkspaceEdit

IWorkspaceProperties (optional)
IWorkspaceSpatialReferenceInfo

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Table
IArcInfoTable

IClass
ITable

ITable2

ICoverage
ICoverage2

IFeatureDataset
INetworkCollection

IFeatureClassContainer
IRelationshipClassContainer

Feature-
Dataset



908 • Exploring ArcObjects • Volume 2

There are two ways of working with ArcInfo™ coverage objects: using
the coverage-specific objects, such as ArcInfoworkspacefactory, or using
the lightweight name objects, such as WorkspaceName. While these
objects are used to represent similar things, the name objects are smaller
and faster, although they have less functionality.

Since these two groups of objects are similar, which one you decide to
use will depend on what functionality, memory usage, and processing
speed you require. To retrieve information about a coverage or feature
class, such as name, type, or metadata, use the name objects. To
retrieve more detailed information, such as the items in a table or the
tolerances of a coverage, use the coverage-specific objects. The cover-
age-specific objects also perform management operations, such as
creating, copying, renaming, deleting, or building topology for cover-
ages.

For information on Name objects and their appropriate uses, see the
‘Workspace and name objects’ topic at the beginning of this chapter.

ARCINFO COVERAGE OBJECTS



Chapter 8 • Accessing the geodatabase • 909

G
eo

d
at

ab
as

e

Workspace factory classes are the entry point for accessing data with the
geodatabase objects for any data format. The type of workspace factory
you instantiate dictates the type of data that can be handled by the
workspace factory object and its derivatives.

To work with ArcInfo coverage or table data, you must create a
workspace factory using the ArcInfoWorkspaceFactory class. After creat-
ing a new instance of the ArcInfoWorkspaceFactory object, use the Open
or OpenFromFile method to get a Workspace object that is used to actu-
ally work with the data.

The IWorkSpaceFactory::Copy and IWorkSpaceFactory::Move methods
cannot be used with an ArcInfoWorkspaceFactory.

Here are some values specific to ArcInfoWorkspaceFactory:

• IWorkspaceFactory::WorkspaceDescription returns “ARC/INFO
Workspace”.

• IWorkspaceFactory::WorkspaceType returns “0” or
esriFileSystemWorkspace.

• IWorkspaceFactory::IsWorkspace returns True or False depending on
whether or not there is an INFO™ subdirectory present.

• IWorkspaceFactory::ReadconnectionPropertiesFromFile returns a
PropertySet object, with the only property being DATABASE, which is
set to the pathname.

This code demonstrates the use of the ArcInfoWorkspaceFactory.

  Dim pWorkspaceFact as IWorkSpaceFactory

  Dim pWorkspace as IWorkspace

  Set pWorkspaceFact = New ArcInfoWorkspaceFactory

  'Now assign a workspace folder to the objects

  Set pWorkspace = pWorkspaceFact.OpenFromFile("D:\data", 0)

  'or

  Dim pPropSet As IPropertySet

  Set pPropSet = New PropertySet

  pPropSet.SetProperty "DATABASE", "D:\canada"

  Set pWorkspace = pWorkspaceFact.Open(pPropSet, 0)

IWorkspaceFactory
IWorkspaceFactory2

ArcInfo-
Workspace-

Factory

The ArcInfo workspace factory is the
entry point to access the geodatabase

classes for ArcInfo coverages and tables.
Use ArcInfoWorkspaceFactory to

open a coverage workspace or create a
new ArcInfo coverage workspace.

ARCINFOWORKSPACEFACTORY COCLASS



910 • Exploring ArcObjects • Volume 2

The Workspace object is created by the ArcInfoWorkspaceFactory when
the Open or OpenFromFile methods are used. The class has interfaces
with methods that include creating new ArcInfo coverages or INFO table
data, renaming workspaces, and deleting ArcInfo coverages. This class
is cocreatable, but it should only be created by the workspace factory
class.

 IArcInfoWorkspace : IUnknown Provides access to members that create ArcInfo coverages
and tables.

CreateCoverage (in Name: String, in
templateCoverage: String, in
Precision:
tagesriCoveragePrecisionType) :
IFeatureDataset

Creates a new coverage.

CreateInfoTable (in Name: String, in
ItemSet: IArcInfoItems) : ITable

Creates a new INFO table.

The IArcInfoWorkspace interface is used to create new coverages or
INFO tables.

  Dim pWorkSp As IArcInfoWorkspace

  Dim pWSfact As IWorkspaceFactory

  Dim pPropertyset As IPropertySet

  Set pWSfact = New ArcInfoWorkspaceFactory

  Set pPropertyset = New PropertySet

  'canada is an ArcInfoWorkspace

  pPropertyset.SetProperty "DATABASE", "D:\canada"

  'pWorkSp is a pointer to the IArcInfoWorkspace

  Set pWorkSp = pWSfact.Open(pPropertyset, 0)

  'Now use the methods on IArcInfoWorkspace

  pWorkSp.CreateCoverage "NewCover", "D:\canada\Water", _

     esriCoveragePrecisionDouble

CreateCoverage creates a new ArcInfo coverage in the workspace that is
being referenced. The IFeatureDataset that is returned can be used to
create new feature classes within the coverage.

If a template coverage is not specified or the name is not a valid cover-
age, the new coverage will only have an empty .tic file. When a template
coverage is used, the new coverage will have the same tics: bnd
(boundary) and prj (projection).

Enumeration
tagesriCoveragePrecisionType

ArcInfo Coverage Precision Types.

1 - esriCoveragePrecisionSingle Single Precision.
2 - esriCoveragePrecisionDouble Double Precision.

The precision enumerator is used to specify whether the coverage has
single precision (7 significant digits for each coordinate) or double
precision (15 significant digits for each coordinate).

The CreateCoverage method returns an error if CoverageName is a path
(such as “D:\data\canada”), if it is longer than 13 characters, or if it
exists.

WORKSPACE CLASS FOR COVERAGES

Workspace

IArcInfoWorkspace
IDatabaseCompact

(compact)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspace-
Anno (optional)

IFeatureWorkspace-
Manage

IFeatureWorkspace-
SchemaEdit

IGeodatabaseRelease
(optional)

ISpatialCacheManager
ISQLSyntax

ITransactions
(optional)

ITransactionsOptions
(optional)

IWorkspace
IWorkspaceConfig-

uration (optional)
IWorkspaceDomains

(optional)
IWorkspaceDomains2

(optional)
IWorkspaceEdit

IWorkspaceProperties
(optional)

IWorkspaceSpatial-
ReferenceInfo

Like an ArcInfo workspace, the
workspace object is a container of

datasets.



Chapter 8 • Accessing the geodatabase • 911

G
eo

d
at

ab
as

e

CreateInfoTable creates a new INFO table in the workspace that is being
referenced. The ITable pointer that is returned can be used to add and
delete items in the table.

The name argument for the name of the new table can be up to
32 characters long, inclusive of the extension. The name cannot be an
existing INFO table. The table will be created in the workspace used by
the IArcInfoWorkspace; pathnames are recognized by this method.

The ItemSet object must be given, although it does not have to contain
any items. If the ItemSet contains items, they will be created in the new
table. The following example creates a new table named “newtest”.

Public Sub testcreateinfo()

  Dim pwfact As IWorkspaceFactory

  Dim pAIWorksp As IArcInfoWorkspace

  Dim pPropertyset As IPropertySet

  'Open the arcinfo workspace

  Set pwfact = New ArcInfoWorkspaceFactory

  Set pPropertyset = New PropertySet

  pPropertyset.SetProperty "DATABASE", "D:\canada2"

  Set pAIWorksp = pwfact.Open(pPropertyset, 0)

  'Create a new info table

  Dim pTableNew As ITable

  Dim pAIItems As IArcInfoItems

  Set pAIItems = New ArcInfoItems

  Set pTableNew = pAIWorksp.CreateInfoTable("newtest", pAIItems)

End Sub

The Workspace coclass also implements other interfaces, although not
all of the properties and methods of each interface are supported. A full
discussion of these interfaces along with their properties and methods
can be found earlier in this chapter. The following review of each of the
interfaces is a highlight of how the properties and methods are applied
to ArcInfo workspace data for each interface.

 IDataset : IUnknown Provides access to members that supply dataset
information.

BrowseName: String The browse name of the dataset.
Category: String The category of the dataset.
FullName: IName The associated name object.
Name: String The name of the dataset.
PropertySet: IPropertySet The set of properties for the dataset.
Subsets: IEnumDataset Datasets contained within this dataset.
Type: esriDatasetType Returns the type of the dataset.
Workspace: IWorkspace The workspace containing this dataset.

CanCopy: Boolean True if this dataset can be copied.
CanDelete: Boolean True if this dataset can be deleted.
CanRename: Boolean True if this dataset can be renamed.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this dataset to a new dataset with the specified name.

Delete Deletes this dataset.
Rename (in Name: String) Renames this dataset.

The IDataset interface provides information about datasets and high-
level management facilities, such as Copy, Delete, and Rename.

WORKSPACE CLASS FOR COVERAGES



912 • Exploring ArcObjects • Volume 2

CanDelete

CanRename

FullName

Copy

Delete

CanCopy

Category

BrowseName

Name

Rename

Subsets

PropertySet

Type

Workspace

Object doesn't support this action. If you try to use this method, an error will be returned

Returns True, indicating it can be deleted

Returns True, indicating it can be renamed

Returns Name object with NameString property such as "ARCINFO: Workspace = \\Petra\D$\Canada;"

Deletes coverages and INFO tables in the workspace. Will not delete other types of data or the workspace

Returns False, indicating it cannot be copied

Returns the string "Coverage Workspace"

Returns the string "ARC/INFO Data"

Returns the name of the workspace, such as "Canada"

Renames the workspace to the name given

Returns an enumerator containing only the coverage and INFO table datasets in the workspace

Object doesn't support this action. If you try to use this method, an error will be returned

Returns 2 or esriDTContainer indicating the type of dataset

This method is not usable

Method Action in an ArcInfo workspace

The table above summarizes which properties and methods in IDataset
are supported and what happens with a coverage workspace.

 IFeatureWorkspace : IUnknown Feature Workspace Interface.

CreateFeatureClass (in Name: String, in
Fields: IFields, in CLSID: IUID, in
EXTCLSID: IUID, in FeatureType:
esriFeatureType, in ShapeFieldName:
String, in ConfigKeyword: String) :
IFeatureClass

Creates a new standalone FeatureClass under the workspace.

CreateFeatureDataset (in Name: String,
in SpatialReference:
ISpatialReference) : IFeatureDataset

Creates a new feature dataset.

CreateQueryDef: IQueryDef Creates a query definition object.
CreateRelationshipClass (in

relClassName: String, in OriginClass:
IObjectClass, in DestinationClass:
IObjectClass, in forwardLabel: String,
in backwardLabel: String, in
Cardinality: esriRelCardinality, in
Notification: esriRelNotification, in
IsComposite: Boolean, in IsAttributed:
Boolean, in relAttrFields: IFields, in
OriginPrimaryKey: String, in
destPrimaryKey: String, in
OriginForeignKey: String, in
destForeignKey: String) :
IRelationshipClass

Creates a new relationship class.

CreateTable (in Name: String, in Fields:
IFields, in CLSID: IUID, in EXTCLSID:
IUID, in ConfigKeyword: String) :
ITable

Creates a new table.

OpenFeatureClass (in Name: String) :
IFeatureClass

Opens an existing feature class.

OpenFeatureDataset (in Name: String) :
IFeatureDataset

Opens an existing feature dataset.

OpenFeatureQuery (in queryName:
String, in pQueryDef: IQueryDef) :
IFeatureDataset

Opens a FeatureDataset containing a single FeatureClass defined by
the specified query.

OpenRelationshipClass (in Name:
String) : IRelationshipClass

Opens an existing relationship class.

OpenRelationshipQuery (in pRelClass:
IRelationshipClass, in joinForward:
Boolean, in pSrcQueryFilter:
IQueryFilter, in pSrcSelectionSet:
ISelectionSet, in TargetColumns:
String, in DoNotPushJoinToDB:
Boolean) : ITable

Table of a relationship join query.

OpenTable (in Name: String) : ITable Opens an existing table.

The IFeatureWorkspace interface provides information about feature
classes and tables along with management facilities such as Create,
Open, and Query. For information about which methods are supported
and what happens with a coverage workspace, see the following table.

WORKSPACE CLASS FOR COVERAGES



Chapter 8 • Accessing the geodatabase • 913

G
eo

d
at

ab
as

e

Opens an existing feature class

Not supported with a coverage workspace

Creates a new relationship class

Opens a feature dataset containing a single feature class defined by the specified query

Opens an existing feature dataset

Creates a new feature dataset

Creates a new table

This method is not applicable

Opens an existing relationship class

Works with INFO table

Table of a relationship join query

CreateQueryDef

CreateRelationshipClass

OpenFeatureQuery

OpenFeatureClass

OpenFeatureDataset

CreateFeatureDataset

CreateTable

CreateFeatureClass

OpenRelationshipClass

OpenTable

OpenRelationshipQuery

Method Action in an ArcInfo workspace

The table above summarizes which properties and methods in IFeature-
Workspace are supported, and what happens with a coverage
workspace.

 IWorkspace : IUnknown Provides access to members that have information about
the workspace.

ConnectionProperties: IPropertySet The connection properties of the workspace.
DatasetNames (in DatasetType:

esriDatasetType) :
IEnumDatasetName

The DatasetNames in the workspace.

Datasets (in DatasetType:
esriDatasetType) : IEnumDataset

The datasets in the workspace.

PathName: String The file system full path of the workspace.
Type: esriWorkspaceType The Type of the Workspace.
WorkspaceFactory: IWorkspaceFactory The factory that created the workspace.

ExecuteSQL (in sqlStmt: String) Executes the specified SQL statement.
Exists: Boolean Checks if the workspace exists.
IsDirectory: Boolean TRUE if the workspace is a file system directory.

The IWorkspace interface provides information about feature classes and
tables along with management facilities such as Create, Open, and
Query. For information about which methods are supported and what
happens with a coverage workspace, see the following table.

ConnectionProperties

DatasetNames

Datasets

ExecuteSQL

Exists

IsDirectory

PathName

Type

WorkspaceFactory

Returns the information used with the PropertySet object properties, such as “WORKSPACE” + “D:\canada”.

Returns an enumation of dataset name objects in the workspace.

Returns an enumation of dataset objects in the workspace.

Object doesn’t support this action. If you try to use this method, an error will be returned.

True, if the workspace exists.

True, if the workspace is a file system directory.

Returns the file system full pathname of the workspace.

Returns 0, esriFilesystemWorkspace, the type of workspace.

Returns the workspace factory that created the workspace. The IArcInfoWorkspaceUtil interface is used to get an
INFO table name.

Method Action in an ArcInfo workspace

The table above summarizes which properties and methods in IWorkspace
are supported, and what happens with a coverage workspace.

 IArcInfoWorkspaceUtil : IUnknown Provides access to members that retrieves ArcInfo INFO
table information.

GetInfoTableName (in prefix: String) :
String

Maps a prefix to a table name.

The IArcInfoWorkspaceUtil interface is used to get an INFO table name.

Maps a prefix to a table nameGetInfoTableName

Method Action in an ArcInfo workspace

WORKSPACE CLASS FOR COVERAGES



914 • Exploring ArcObjects • Volume 2

 IDataset : IUnknown Provides access to members that supply dataset
information.

BrowseName: String The browse name of the dataset.
Category: String The category of the dataset.
FullName: IName The associated name object.
Name: String The name of the dataset.
PropertySet: IPropertySet The set of properties for the dataset.
Subsets: IEnumDataset Datasets contained within this dataset.
Type: esriDatasetType Returns the type of the dataset.
Workspace: IWorkspace The workspace containing this dataset.

CanCopy: Boolean True if this dataset can be copied.
CanDelete: Boolean True if this dataset can be deleted.
CanRename: Boolean True if this dataset can be renamed.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this dataset to a new dataset with the specified name.

Delete Deletes this dataset.
Rename (in Name: String) Renames this dataset.

The IDataset interface provides information about datasets and high-
level management facilities such as Copy, Delete, and Rename.

Returns the coverage name

Returns True

Returns True

Returns True

Returns “Coverage”  or  “INFO TABLE”

Copies the dataset

Deletes the coverage

Returns name object with namestring property, such as “ARCINFO: Workspace = \\PASCHA\D$\
canada;Coverage = canada99”

Returns a name such as “canada”

Works

Renames

For coverages, returns INFO tables. For tables, enumeration is nothing

Returns 4 for coverages or 10 for tables

Returns the workspace

BrowseName

CanCopy

CanDelete

CanRename

Category

Copy

Delete

FullName

Name

PropertySet

Rename

Subsets

Type

Workspace

Method Action on an ArcInfo coverage or INFO table

The above table lists which properties and methods in IDataset are
supported, and what happens with an ArcInfo coverage dataset object.

 IDatasetEdit : IUnknown Provides access to members about the status of datasets
being edited.

IsBeingEdited: Boolean True if the dataset is being edited.

The IDatasetEdit interface only has one method, which returns a Bool-
ean indicating whether the dataset ArcInfo coverage is being edited.

Indicates if object is being editedIsBeingEdited

Method Action in an ArcInfo workspace

The above table lists which properties and methods in IDatasetEdit are
supported, and what happens with an ArcInfo coverage dataset object.

WORKSPACE CLASS FOR COVERAGES



Chapter 8 • Accessing the geodatabase • 915

G
eo

d
at

ab
as

e

The FeatureDataset is similar to an ArcInfo coverage.

 ICoverage : IUnknown Provides access to members that modifies ArcInfo
coverages.

Tolerance (in toleranceType:
tagesriCoverageToleranceType) :
Double

Value of the specified tolerance.

ToleranceStatus (in toleranceType:
tagesriCoverageToleranceType) :
Boolean

Indicates if the specified tolerance has been verified.

Build (in FeatureClassType:
tagesriCoverageFeatureClassType,
subclassName: String)

Performs a BUILD operation.

Clean (in dangleTolerance: Double, in
fuzzyTolerance: Double, in
FeatureClassType:
tagesriCoverageFeatureClassType)

Performs a CLEAN operation.

CreateFeatureClass (in
FeatureClassType:
tagesriCoverageFeatureClassType,
subclassName: String) : IFeatureClass

Creates an empty feature class in the coverage.

The ICoverage interface provides information about coverages and
processing operations specific to ArcInfo coverages. This interface can
be used to create or update the topology of a coverage and set various
tolerances that are used in coverage editing and processing. Tolerance
values are considered to be verified if the specified tolerance value has
actually been used to process the coverage, with the exception of the
ArcEdit™ tolerances. EDIT, NODESNAP, WEED, GRAIN, and SNAP are
verified as soon as they have been explicitly set.

Enumeration
tagesriCoverageFeatureClassType

ArcInfo Coverage Feature Class types.

  1 - esriCFCTPoint Point Feature Class
  2 - esriCFCTArc Arc Feature Class
  3 - esriCFCTPolygon Polygon Feature Class
  4 - esriCFCTNode Node Feature Class
  5 - esriCFCTTic Tic Feature Class
  6 - esriCFCTAnnotation Annotation Feature Class
  7 - esriCFCTSection Section Feature Class
  8 - esriCFCTRoute Route Feature Class
  9 - esriCFCTLink Link Feature Class
 11 - esriCFCTRegion Region Feature Class
 51 - esriCFCTLabel Label Feature Class
666 - esriCFCTFile File Feature Class

The esriCoverageFeatureClassType enumeration contains the possible
ArcInfo feature class types.

Enumeration
tagesriCoverageToleranceType

Coverage Tolerance Types

1 - esriCTTFuzzy Fuzzy
10 - esriCTTSnap Snap
2 - esriCTTGeneralize Generalize
3 - esriCTTNodeMatch Node Match
4 - esriCTTDangle Dangle
5 - esriCTTTicMatch Tic Match
6 - esriCTTEdit Edit
7 - esriCTTNodeSnap Node Snap
8 - esriCTTWeed Weed
9 - esriCTTGrain Grain

The esriCoverageToleranceType enumeration contains the possible
ArcInfo tolerance class types.

FEATUREDATASET CLASS FOR COVERAGES

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

ICoverage
ICoverage2

IFeatureDataset
INetworkCollection

IFeatureClassContainer
IRelationshipClass-

Container

Feature-
Dataset

Like an ArcInfo coverage, the feature
dataset is a container of feature classes.



916 • Exploring ArcObjects • Volume 2

The Table object is a collection of ArcInfo items (columns) and rows.

 IArcInfoTable : IUnknown Provides access to members that modify ArcInfo tables.

ItemSet: IArcInfoItems Item collection for this feature class or INFO table.

AddIndex (in itemName: String) Adds an index for the specified Item.
AddItem (in Item: IArcInfoItem, in

startItem: String)
Adds an item to this table.

AlterItem (in itemName: String, in Item:
IArcInfoItem)

Changes the properties of the specified Item.

DeleteIndex (in itemName: String) Deletes an index from the specified item.
DeleteItem (in itemName: String) Deletes an item from this table.
FindItem (in Name: String) : Long Index of the item with the specified name.

All types of data use tables to store information about its features, but with
ArcInfo the data is stored in an INFO table. The IArcInfoTable interface is used
to access and modify the items in the INFO table. With this interface, you can
add or delete items, add or delete an index for an item, and change the prop-
erties of an item (alteritem). This interface is used to get the items collection,
with which you can get or set information for individual items.

A FeatureClass object is a collection of features that have the same feature type
and set of attributes.

 ICoverageFeatureClass : IUnknown Provides access to members that retrieve ArcInfo coverage
feature class information.

FeatureClassType:
tagesriCoverageFeatureClassType

Type of the feature class.

HasFAT: Boolean Indicates if the feature class has a feature attribute table.
Topology: tagesriFeatureClassTopology Topology of the feature class.

The ICoverageFeatureClass interface provides information on an individual
feature class of an ArcInfo coverage.

This code checks the properties of a feature class:

Public Sub FeatClassType2()

'this will open a featureclass and get info

  Dim pWorksp As IArcInfoWorkspace, pWSfact As IWorkspaceFactory

  Dim pPropertyset As IPropertySet

  Set pWSfact = New ArcInfoWorkspaceFactory

  Set pPropertyset = New PropertySet

  'canada is an arcinfoworkspace

  pPropertyset.SetProperty "DATABASE", "D:\canada"

  'pWorkSp is a pointer to the IArcInfoWorkspace

  Set pWorksp = pWSfact.Open(pPropertyset, 0)

  'open the feature class

  Dim pFeatWS As IFeatureWorkspace

  Dim pFeatClass As IFeatureClass

  Dim pCoverFeatClass As ICoverageFeatureClass

  Set pFeatWS = pWorksp

  Set pFeatClass = pFeatWS.OpenFeatureClass("canada:arc")

  Set pCoverFeatClass = pFeatClass

  MsgBox pCoverFeatClass.HasFAT

 End Sub

TABLE AND FEATURECLASS CLASSES FOR COVERAGES

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Table
IArcInfoTable

IClass
ITable

ITable2

A table is a collection of ArcInfo items
(columns) and rows.

Feature-
Class

ICoverageFeature-
Class

IFeatureClass
IFeatureClassLoad
IFeatureClassWrite

IGeoDataset
INetworkClass

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Table
IArcInfoTable

IClass
ITable

ITable2

A feature class is a collection of features
that have the same feature type and set

of attributes.



Chapter 8 • Accessing the geodatabase • 917

G
eo

d
at

ab
as

e

Enumeration
tagesriFeatureClassTopology

ArcInfo coverage feature class topology types.

0 - esriFCTNotApplicable Topology is not supported by this feature class.
1 - esriFCTPreliminary Topology is preliminary.
2 - esriFCTExists Topology exists.
3 - esriFCTUnknown Topology status is unknown.

TABLE AND FEATURECLASS CLASSES FOR COVERAGES



918 • Exploring ArcObjects • Volume 2

COVERAGENAME AND COVERAGEFEATURECLASSNAME

A CoverageName object identifies and locates a dataset object and sup-
ports methods to instantiate the actual named object.

As noted in the section on name objects, a name object can be used as
a lightweight surrogate of the actual object until further properties of the
object are needed or additional methods on the object need to be
called.

Name objects are cocreatable and can be used to specify datasets that
are yet to be created, for example, the output dataset to be created by a
geoprocessing operation.

The CoverageName object can be used to retrieve information on the
type of the coverage, what is contained in the coverage, and the
metadata for the coverage.

 ICoverageName : IUnknown Provides access to members that maintains ArcInfo
coverage feature dataset information.

CoverageType: tagesriCoverageType Type of the coverage.

ICoverageName can be used to find the coverage type, which is based
on the highest level of dimension, for the feature classes contained.
Levels of dimensions refer to how many dimensions are used to mea-
sure the features; in other words, a point has an x- and y-value; a line
has length in addition to these values; and polygons, in addition, have
area.

Enumeration tagesriCoverageType ArcInfo coverage types

0 - esriEmptyCoverage Empty coverage—no feature classes are present
1 - esriAnnotationCoverage Annotation coverage—only annotation features are present
2 - esriPointCoverage Points are the highest dimension feature class
3 - esriLineCoverage Lines are the highest dimension feature class
4 - esriPolygonCoverage Polygons are the highest dimension feature class
5 - esriPreliminaryPolygonCoverage Polygon topology is incomplete

A CoverageFeatureClassName object identifies and locates a feature class
in a coverage; it is used for obtaining some basic properties of the
feature class without having to open (instantiate) it.

 ICoverageFeatureClassName :
 IUnknown

Provides access to members that maintains ArcInfo
coverage feature class information.

FeatureClassType:
tagesriCoverageFeatureClassType

Type of feature class.

HasFAT: Boolean Indicates if the feature class has a feature attribute table.
Topology: tagesriFeatureClassTopology Topology of the feature class.

The ICoverageFeatureClassName has the same properties as the
ICoverageFeatureClass interface, which is the FeatureClassType if there is
an attribute table, and the topology status.

Dataset-
Name

IDatasetName

ICoverageFeature-
ClassName

IFeatureClassName
IMetadata

Coverage-
Feature-

ClassName

A CoverageFeatureClassName object
can be used to retrieve basic information
on an ArcInfo coverage’s feature classes.

IWorkspaceName
IFeatureDatasetName

IMetadata
Coverage-

Name

Dataset-
Name

IDatasetName

A CoverageName object can be used
to retrieve basic information on an

ArcInfo coverage.



Chapter 8 • Accessing the geodatabase • 919

G
eo

d
at

ab
as

e

The ArcInfoItems coclass represents the item set, or collection of items,
in an INFO table. This coclass is similar to the Fields object used with
tables from other data types. The ArcInfoItems object is an ordered
collection of items, and the collection behaves like a list, so it is possible
to access individual fields by a numbered position (or index) in the list.

This class contains two interfaces: the IArcInfoItems interface, which is
used to get information, and the IArcInfoItemsEdit interface, which is
used to modify the items collection.

 IArcInfoItems : IUnknown Provides access to members that retrieve ArcInfo items
collection information.

Item (in Index: Long) : IArcInfoItem Item at the specified index in the items collection.
ItemCount: Long Number of items in the items collection.

FindItem (in Name: String, out Index:
Long)

Finds the index of the specified item in the items collection.

The IArcInfoItems interface is used to get the number of items, the index
of an item, or an item object.

 IArcInfoItemsEdit : IArcInfoItems Provides access to members that create the ArcInfo Items
Collection.

Item (in Index: Long) : IArcInfoItem Item at the specified position.
ItemCount: Long Number of Items in this Item Collection.

AddItem (in Item: IArcInfoItem) Adds an Item to the Items Collection.
DeleteAllItems Deletes all the Items from the Items Collection.
DeleteItem (in Item: IArcInfoItem) Deletes an Item from the Items Collection.

The IArcInfoItemsEdit interface is used when creating or modifing an
ArcInfoItems collection. For example, you can create a new ArcInfoItem
object and add items to it, or you can get an item collection from an
ArcInfo feature class and add or remove items from it.

ARCINFOITEMS COCLASS

IArcInfoItems
IArcInfoItemsEdit ArcInfoItems

The ArcInfoItems object is a collection
of the ArcInfo items (columns) in a table.



920 • Exploring ArcObjects • Volume 2

An ArcInfoItem has many properties, the most obvious ones being its
name and its data type.

 IArcInfoItem : IUnknown Provides access members that retrieve ArcInfo item
information.

AlternateName: String Alternate name of the item.
IsIndexed: Boolean Indicates if the item is indexed.
IsPseudo: Boolean Indicates if the item is a pseudo item.
IsRedefined: Boolean Indicates if the item is a redefined item.
Name: String Name of the item.
NumberDecimals: Long Number of decimals for item values.
OutputWidth: Long Output width, in bytes, for values stored in the Item.
StartPosition: Long Start position of the item.
Type: tagesriArcInfoItemType Type of the item, as an enumeration.
Width: Long Storage width, in bytes, for values stored in the item.

Use the IArcInfoItemsEdit interface to get the properties of an ArcInfo
item.

Enumeration tagesriArcInfoItemType ArcInfo Item Datatypes

 1 - esriItemTypeDate Date
 2 - esriItemTypeCharacter Character
 3 - esriItemTypeInteger Integer
 4 - esriItemTypeNumber Number
 5 - esriItemTypeBinary Binary
 6 - esriItemTypeFloat Float
 7 - esriItemTypeLeadFill LeadFill
 8 - esriItemTypePacked Packed
 9 - esriItemTypeZeroFill ZeroFill
10 - esriItemTypeOverpunch Overpunch
11 - esriItemTypeTrailingSign TrailingSign
12 - esriItemTypeOID Long Integer representing an object identifier
13 - esriItemTypeGeometry Geometry
14 - esriItemTypeBlob Binary large object

The esriItemType enumeration lists the possible data types for an ArcInfo
item.

 IArcInfoItemEdit : IArcInfoItem Provides access to members that control ArcInfo item
editing.

AlternateName: String Alternate name of the item.
IsIndexed: Boolean Indicates if the item is indexed.
IsPseudo: Boolean Indicates if the item is a pseudo item.
IsRedefined: Boolean Indicates if the item is redefined.
Name: String Name of the item.
NumberDecimals: Long Number of decimals for item values.
OutputWidth: Long Output width, in bytes, for values stored in the item.
StartPosition: Long Start position of the item.
Type: tagesriArcInfoItemType Type of the item, as an enumeration.
Width: Long Storage width, in bytes, for values stored in the item.

Use IArcInfoItemEdit to set the properties of an ArcInfo item.

ARCINFOITEM COCLASS

IArcInfoItem
IArcInfoItemEdit ArcInfoItem

An ArcInfo item represents a field of the
INFO table that is the coverage attribute

table.

blank string

False

False

False

blank string

-1

0

0

0

0

AlternateName

IsIndexed

IsPseudo

IsRedefined

Name

NumberOfDecimals

OutputWidth

StartPosition

Type

Width

Item property Default value

When a new item is created, the properties in
IArcInfoItem have default values displayed in

the table.



Chapter 8 • Accessing the geodatabase • 921

G
eo

d
at

ab
as

e

Metadata is stored in XML format. You
can use the ArcCatalog XML stylesheet

to inspect the structure of the data.

Most datasets can have metadata. For datasets accessed using an OLE
DB, ArcSDE 3, or an SDE for Coverages database connection, you can
neither create metadata nor read metadata that already exists. For all
other datasets, ArcCatalog will by default create and update metadata
automatically when you view metadata in the Metadata tab (not when
the properties or content of the dataset are changed) if you have write
permission to the location where the metadata is stored. This process is
referred to as synchronization; the Catalog extracts properties from the
dataset, calculates values, and then stores the information in the
dataset’s metadata.

Metadata is stored in an XML document. For file-based datasets, the
XML document resides in an appropriately named XML file on the file
system. For example, a shapefile’s metadata is stored in a file that has
the same name as the shapefile such as “myShapefile.shp.xml”. A
coverage’s metadata is stored in a “metadata.xml” file within the cover-
age directory.

For personal geodatabases, connections to a multiuser geodatabase, and
objects stored within any geodatabase, the metadata XML document is
stored within a BLOB column in the geodatabase administration table
called “GDB_User_Metadata”. To manage metadata with ArcObjects you
need some basic knowledge of XML, which is assumed for this section.

Metadata objects

An XML property set stores the
metadata for a dataset Xml-

PropertySet-
Edit

IXmlPropertySetEdit

FGDC-
Synchroni-

zationHelper

ISynchronizationHelper

XML property set edit is an alternative
to using an XML property set for

changing metadata

The FGDC synchronization helper
helps translate dataset properties into
metadata properties

GxObject,
Name,

Dataset, TIN,
Geometric-
Network,

other objects

IMetadata
IMetadataEdit

Xml-
PropertySet

IPropertySet
IXmlPropertySet

IXmlPropertySet2



922 • Exploring ArcObjects • Volume 2

The key to working with metadata is understanding its structure. By
default, when metadata is synchronized it complies with version 2 of the
Federal Geographic Data Committee (FGDC) Content Standard for Digital
Geospatial Metadata, which will be referred to elsewhere in this docu-
ment as the FGDC standard.

This means that when the extent of a shapefile’s features is recorded
within the metadata, the extent coordinates are placed within the appro-
priate elements as defined by the FGDC standard. The document lo-
cated at www.fgdc.gov/metadata/contstan.html defines the meaning and
organization of the FGDC metadata elements. A workbook with addi-
tional explanations and examples is available at www.fgdc.gov/
metadata/meta_workbook.html. How to create and update following
other metadata standards is discussed later in this section.

ESRI has extended the FGDC standard to describe new ESRI data for-
mats such as geometric networks stored in a multiuser geodatabase. This
also allows us to include metadata terminology that ESRI users will be
familiar with. The ESRI Profile of the Content Standard for Digital
Geospatial Metadata, which describes these extended elements and how
they fit into an FGDC metadata document, is located at www.esri.com/
metadata/esriprof80.html. This document will be referred to as the ESRI
Profile.

Knowing the structure of the metadata is critical for identifying specific
metadata elements. Elements in XML documents are organized hierar-
chically. For example, a metadata document containing the name of a
coverage and the names of the coverages from which it was derived
might store all names within a “title” element. Each title element can be
uniquely identified by its context within the document. Consider a sim-
plified metadata document:

  <metadata>

  <citation>

  <title>Proposed site</title>

  </citation>

  <srccite>

  <title>Acceptable soil types</title>

  </srccite>

  <srccite>

  <title>Area excluding 500m buffer zone around sensitive sites</title>

  </srccite>

  </metadata>

In this example, the “citation” element describes the coverage itself.
Each “srccite” element describes one of the sources that were used to
create the coverage.

To change an element’s content in ArcObjects, the name you provide
must be an XSL Patterns expression that uniquely identifies the element.
The name is constructed similar to the path name for a file on disk; it
tells how to find the appropriate element in the XML file starting from
the document’s root element.

WORKING WITH METADATA



Chapter 8 • Accessing the geodatabase • 923

G
eo

d
at

ab
as

e

To refer to the title of the coverage, use the element name “citation/
title”. To refer to the titles of all of the sources of the coverage, you
would use the element name “srccite/title”. To refer to a specific source,
the name must select a single element by referring to its index number
or value, for example, “srccite[0]/title” or “srccite/title[. = ‘Acceptable soil
types’]”. For ArcObjects, the root element is not included in the name.
You must include the root element in the name when creating an XSL
stylesheet.

In the metadata documents created by ArcCatalog, each XML element
corresponds to a metadata element defined in either the FGDC standard
or the ESRI Profile. The metadata elements defined in those standards
have both a long name and a short name. The short name is used as
the XML tag in the metadata document. You can derive the name of the
metadata element you want to work with using the standards them-
selves.

Also, the ESRI Profile Notes document, www.esri.com/metadata/
ESRI_Profile_Notes.html, provides a quick reference with the long and
short names of all elements in the FGDC standard and the ESRI Profile.
You could also inspect the metadata in ArcCatalog using the XML
stylesheet, locate the element you want to change, then construct its
name by seeing how to navigate the document to that element. All tag
names and values in an XML file are case-sensitive.

SYNCHRONIZING METADATA

When synchronization occurs, metadata is created if it doesn’t already
exist. A new XML document is created with the root element “metadata”,
the “Esri” group of elements is added, then the appropriate metadata
elements and their values are immediately added through the synchroni-
zation process.

The information in the Esri group is used by ArcGIS software to main-
tain metadata. Under some circumstances, for example, when you create
a thumbnail for a dataset, metadata may be created but synchronization
will not occur. You can trigger synchronization manually by clicking the
Create/Update Metadata button on the Metadata toolbar in ArcCatalog
and programmatically.

The elements added to the metadata by synchronization fall into
three categories: documentation hint elements, metadata template ele-
ments, and specific elements for each type of dataset. Documentation
hints are only added the first time synchronization occurs.

The FGDC standard has several mandatory elements that require docu-
mentation, such as a description of the dataset’s contents, to be typed in
by a person. If these elements aren’t already present in the metadata,
they will be added; their values will be the text “REQUIRED:”, followed
by the FGDC standard’s description for that element. These hints are
intended to assist people in satisfying the minimum requirements of the
FGDC standard; the hints appear red in the metadata editor to make
them more visible.

WORKING WITH METADATA



924 • Exploring ArcObjects • Volume 2

The metadata template elements are added for all objects that support
synchronization. This list of elements includes the object’s name and
type, information about the standards to which the metadata is created,
and the date when the metadata was last updated. In addition to these,
each type of dataset has its own list of elements that can be derived and
added to the metadata. For example, a feature class’ metadata would
have a count of its features, their extent and coordinate system, its loca-
tion, and a list of its attributes and their data types. Metadata for raster
datasets would include a description of properties such as the number
of rows and columns of cells, the size of each cell, and whether or not
pyramid layers are present. The ESRI Profile Notes document provides a
quick reference for which elements can be maintained using synchroni-
zation. If the template and dataset-specific elements are removed from
the metadata, they will be added again the next time synchronization
occurs.

In ArcCatalog, you can control when synchronization occurs by chang-
ing the default options. You might choose not to create metadata auto-
matically, but to update metadata automatically if it already exists. Ac-
cess to these options is provided using the IMetadataHelper interface,
which is described in Volume 1, Chapter 7, ‘Working with the Catalog’.
Similarly, you can choose to turn off synchronization for individual
datasets such as when the data and its metadata have been published.
This is accomplished by adding a “Sync” element to the Esri group with
the value false.

Synchronization can also be managed for individual elements within a
metadata document. When synchronization adds elements to the
metadata, their XML tag will have a Sync attribute whose value is set to
true. When synchronization updates elements, it locates the template
and dataset-specific elements, then checks the Sync attribute and its
value. If the value is not true, the element’s value won’t be modified. If
you use the metadata editor to manually edit the value of an element
that was automatically added to the metadata by the Catalog, the Sync
attribute is removed. The software won’t overwrite values that were
typed by a person.

For example, the Catalog automatically adds a title element to the
metadata if it doesn’t already exist. Its value will be the object’s name,
and the Sync attribute is set to true: <title Sync=”TRUE”>prpsite</title>.
Because the Sync attribute’s value is true, after renaming the object the
next time metadata is synchronized the title element’s value will change
to reflect the new name. However, if you provide a more descriptive title
using the metadata editor the Sync attribute will be removed, and the
next time synchronization occurs the Catalog won’t overwrite your title:
<title>Proposed site</title>.

You can change the value of XML attributes programmatically. Also,
each of the methods that can be used to modify an element’s value
behaves differently with respect to the Sync attribute; they are discussed
in detail later in this section.

WORKING WITH METADATA



Chapter 8 • Accessing the geodatabase • 925

G
eo

d
at

ab
as

e

IMETADATA AND IMETADATAEDIT INTERFACES

Metadata can be accessed from most dataset objects, geodatabase name
objects, and ArcCatalog GxObjects.

 IMetadata : IUnknown Provides access to members that manage and update
metadata.

Metadata: IPropertySet The PropertySet containing metadata.

Synchronize (in Action:
tagesriMetadataSyncAction, in
Interval: Long)

Updates metadata with the current properties; may create metadata
if it doesn't already exist.

The IMetadata interface provides access to an object’s metadata. The
Metadata property returns an XML property set that contains the
metadata for the dataset. Any changes you make are only saved when
the Metadata property is subsequently set.

This example changes the metadata title for the selected object in
ArcCatalog (use of IPropertySet is discussed later in this section):

  Dim pGxApp as IGxApplication

  Set pGxApp = Application

  Dim pGxObj as IGxObject

  Set pGxObj = pGxApp.SelectedObject

  Dim pMetadata as IMetadata

  Set pMetadata = pGxObj

  Dim pPropSet as IPropertySet

  Set pPropSet = pMetadata.Metadata

  pPropSet.SetProperty "idinfo/citation/citeinfo/title", "My New Title"

  pMetadata.Metadata = pPropSet

Similarly, the following example gets the selected layer in ArcMap, then
gets the metadata associated with its data source using its Name object:

  Dim pMapDoc As IMxDocument

  Dim vSelection As Variant

  Set pMapDoc = Application.Document

  Set vSelection = pMapDoc.CurrentContentsView.SelectedItem

  If TypeOf vSelection Is IDataLayer Then

    Dim pDLayer As IDataLayer

    Dim pName As IName

    Set pDLayer = vSelection

    Set pName = pDLayer.DataSourceName

    If TypeOf pName Is IMetadata Then

      Dim pMetadata As IMetadata

      Dim pPS As IPropertySet

      Set pMetadata = pName

      Set pPS = pMetadata.Metadata

    End If

  End If



926 • Exploring ArcObjects • Volume 2

The Synchronize method initiates synchronization. This is the method
used behind the scenes by the Create/Update Metadata button in
ArcCatalog and by IGxDocumentationView::Synchronize, which is dis-
cussed in Volume 1, Chapter 7, ‘Working with the Catalog’.

Synchronize uses the options defined in esriMetadataSyncAction to
specify whether metadata will be created and elements will be modified
based on whether or not the metadata already exists. For example, you
may not want a new metadata document to be created if one doesn’t
already exist, but when one does exist you want its contents to be up-
dated.

The Interval parameter can be used to control how frequently the infor-
mation in the metadata should be updated in the metadata. Its value is
the amount of time in seconds that must have passed since the
metadata was last updated before the metadata will be updated again.
Use an Interval of zero to update the metadata now. With a value of
3600, calling the method will have no effect until the current time is at
least one hour past the time recorded in the “Esri/SyncDate” and “Esri/
SyncTime” elements.

 IMetadataEdit : IUnknown Provides information about whether metadata can be
edited.

CanEditMetadata: Boolean Indicates if metadata can be edited.

The IMetadataEdit interface lets you know whether or not the metadata
can be edited. The CanEditMetadata property returns false for file-
based objects only if metadata exists and is read-only. For objects in a
geodatabase, the CanEditMetadata property returns true only if you are
the owner of the dataset.

IMETADATA AND IMETADATAEDIT INTERFACES



Chapter 8 • Accessing the geodatabase • 927

G
eo

d
at

ab
as

e

Xml-
PropertySet

IPropertySet
IXmlPropertySet

IXmlPropertySet2
IXmlPropertySetError

An XML property set stores the
metadata for a dataset.

IPropertySet is a simpler alternative to
IXMLPropertySet, though its GetProperty

method is more powerful.

XMLPROPERTYSET COCLASS

The XMLPropertySet object stores a set of XML elements—in this section
we will discuss its use with respect to metadata, though an XML prop-
erty set could be created and used wholly independently of metadata.

Although it implements IPropertySet, the XMLPropertySet is a different
object to a PropertySet. It also provides generalized storage of informa-
tion but is much more flexible, offering the power of XML.

 IPropertySet : IUnknown Provides access to members for managing a PropertySet.

Count: Long The number of properties contained in the property set.

GetAllProperties (out names: Variant,
out Values: Variant)

The name and value of all the properties in the property set.

GetProperties (in names: Variant, out
Values: Variant)

The values of the specified properties.

GetProperty (in Name: String) : Variant The value of the specified property.
IsEqual (in PropertySet: IPropertySet) :

Boolean
True if the property set is the same as the input property set.

RemoveProperty (in Name: String) Removes a property from the set.
SetProperties (in names: Variant, in

Values: Variant)
The values of the specified properties.

SetProperty (in Name: String, in Value:
Variant)

The value of the specified property.

The IPropertySet interface can be applied to an XMLPropertySet as a
simple way of accessing and changing metadata.

The following example gets a description of the dataset from the ab-
stract element:

  Dim vValues as Variant

  vValues = pPropSet.GetProperty "idinfo/descript/abstract"

  MsgBox vValues(0)

GetProperty returns a Variant containing an array. If the name string
identifies a single element (as above), then there will be just one value
in the array. If the name string identifies a group element (that contains
other elements), then an array containing the XML tags associated with
the child elements is returned. For example, with the name string
“idinfo/descript” you would get XML tags associated with elements that
describe the dataset, such as “abstract” and “purpose”.

Some metadata elements, such as the dataset’s attributes, can repeat in
the metadata. When the name string identifies several elements in the
metadata, GetProperty will return an array that contains the value in each
element. If the element identified by the name string doesn’t exist in the
metadata, the Variant is set to Empty. This example checks to see if any
values were returned and then prints the names of the
dataset’s attributes.

  vValues = pPropSet.GetProperty "eainfo/detailed/attr/attrlabl"

  If Not IsEmpty( vValues ) Then

    For Each v In vValues

      Debug.Print v

    Next

  End If

If an external file describes the contents of a dataset, you might enclose
a copy of the file within the metadata until the metadata document has
been completed. The name string “Binary/Enclosure/Data” identifies all



928 • Exploring ArcObjects • Volume 2

The IXMLPropertySet interface provides
methods to read and write metadata.

XMLPROPERTYSET COCLASS

enclosures in the metadata. To identify a specific enclosure, refer to its
associated description, such as “Binary/Enclosure[Descript = ‘Data
Dictionary’]/Data”. When enclosures are specified with GetProperty, a
copy of the enclosure is written to a new file in your computer’s Temp
directory, and the array returned will contain strings that provide the
paths to those files.

Similarly, the name string “Binary/Thumbnail/Data” identifies the
dataset’s thumbnail, if one exists. For thumbnails, GetProperty returns a
standard picture with the IPicture interface; it may contain images in
Windows® Bitmap, Metafile, GIF, JPEG Icon, or Cursor format. Thumb-
nails generated in ArcCatalog are in Windows bitmap format. When
looping through the array of values returned by GetProperty, it may be
useful to confirm that the value is not a picture before attempting to
display the value in a message box.

SetProperty can only be used to set text values for metadata elements. If
an element doesn’t already exist in the metadata, a new one will be
added; the new element will not have a Sync attribute. SetProperty also
removes the Sync attribute from existing metadata elements if it previ-
ously existed. Use IXMLPropertySet::SetPropertyX if you want to add
enclosures and thumbnails or if you want more control when updating
elements.

GetProperties is much like GetProperty except that you provide an array
of element names for which you want to retrieve values and, instead of
returning a single Variant containing an array, it contains an array of
arrays. The following example will retrieve the dataset’s title, its list of
authors, and a description of why the dataset was created:

  Dim sNames(2) As String

  sNames(0) = "idinfo/citation/citeinfo/title"

  sNames(1) = "idinfo/citation/citeinfo/origin"

  sNames(2) = "idinfo/descript/purpose"

  Dim vValues As Variant

  Dim v1 As Variant

  Dim v2 As Variant

  pPropSet.GetProperties sNames, vValues

  For Each v1 In vValues

    For Each v2 In v1

      If Not (TypeOf v2 Is Picture) Then Debug.Print v2

    Next

  Next

SetProperties is similar to GetProperties. You provide a String array with
the names of elements whose values you want to change and a Variant
containing an array with one value for each element name. The ex-
ample below shows a method for adding two authors to the metadata.
The FGDC standard specifies that the Originator element, origin, may be
repeating; each origin element would contain a different author’s name.
Here, index numbers are used to clearly identify which origin element is



Chapter 8 • Accessing the geodatabase • 929

G
eo

d
at

ab
as

e

XMLPROPERTYSET COCLASS

assigned which author’s name. If index numbers weren’t specified as
part of the element’s name string, the value of all existing origin ele-
ments would be overwritten by the first author and then the second
author.

  Dim pMetadata As IMetadata

  Set pMetadata = pGxObj

  Dim pPropSet As IPropertySet

  Set pPropSet = pMetadata.Metadata

  Dim sNames(1) As String

  sNames(0) = "idinfo/citation/citeinfo/origin[0]"

  sNames(1) = "idinfo/citation/citeinfo/origin[1]"

  Dim vValues As Variant

  vValues = Array("Author1", "Author2")

  pPropSet.SetProperties sNames, vValues

  pMetadata.Metadata = pPropSet

GetAllProperties provides a list of all metadata elements that contain
values in the order in which they appear in the metadata document.
Group elements are not included in the list. GetAllProperties returns two
Variants, each of which contains an array. One contains the element
names, and the other contains the element values. For repeating ele-
ments, there will be one entry in both arrays for each occurrence of the
element.

The RemoveProperty method will delete all metadata elements identified
by the name string. This might be useful for removing information that
is no longer appropriate, for example, you might delete the entire exist-
ing contact information section before adding in new contact informa-
tion elements. A previous list of contact numbers by region may be
replaced by one new toll-free phone number, or different addresses
may be used for different types of orders. When the name string identi-
fies a group element such as the distributor’s contact information sec-
tion, which is identified in the example below, the group element and
all of the elements it contains are deleted.

  pPropSet.RemoveProperty "distinfo/distrib/cntinfo"

The Count property and IsEqual method should not be used to analyze
and compare XML property sets. Count always returns the number 1,
and IsEqual always returns False.



930 • Exploring ArcObjects • Volume 2

 IXmlPropertySet : IUnknown Provides access to members that manage metadata.

CountX (in Name: String) : Long Number of occurrances of an element in the metadata.
IsNew: Boolean Indicates if a new XmlPropertySet was created on retrieving the

metadata.

DeleteProperty (in Name: String) Deletes the specified elements.
DeletePropertyByAttribute (in Attribute:

String, in Value: String, in
deleteParent: Boolean)

Deletes the elements which have the specified attribute value.

GetPropertiesByAttribute (in Attribute:
String, in Value: String, in noValues:
Boolean, out pTags: Variant, out
pValues: Variant)

Returns the set of names and values for elements which have the
specified attribute value.

InitExisting Initializes an XmlPropertySet and adds the ESRI group of elements.
SaveAsFile (in xslPath: String, in

header: String, in outputANSI:
Boolean, outPath: String)

Transforms the metadata using an XSL stylesheet if specified, writes
out the header if specified, and saves it in a file.

SetAttribute (in Name: String, in
Attribute: String, in Value: Variant, in
Action: tagesriXmlSetPropertyAction)

Sets the attribute of the specified element.

SetPropertyX (in Name: String, in Value:
Variant, in propType:
tagesriXmlPropertyType, in Action:
tagesriXmlSetPropertyAction, syncing:
Boolean)

Sets the value of the specified element.

SimpleGetProperty (in Name: String) :
String

The values of the specified property.

TransformImages (in Path: String, out
pFileNames: Variant)

Transforms encoded thumbnail and image enclosures to files and
links them into the metadata.

The CountX property returns the number of elements matching the
name string. The line of code below counts the number of theme key-
words that have been entered. If the name string identifies a group
element instead, CountX returns the number of elements it contains.

  pXMLPropSet.CountX "idinfo/keywords/theme/themekey"

SetPropertyX gives you greater control than IPropertySet::SetProperty. The
propType parameter uses the esriXmlPropertyType enumeration to define
the type of value that is being assigned. The Action parameter uses the
esriXmlSetPropertyAction enumeration to define how the element should
be added to the metadata document.

In the example below, a theme keyword is added, and its value is the
String “county”.

  pXMLPropSet.SetPropertyX "idinfo/keywords/theme/themekey", "county", _

    esriXPTText, esriXSPAAddDuplicate, False

There are two choices for adding a dataset’s thumbnail to the metadata
programmatically. One is to use SetPropertyX, providing a picture object
and specifying the picture property type. The other alternative is to
provide the picture to the IGxThumbnail.Thumbnail property. To add
an enclosure you would provide a path to the appropriate file and
specify the property type for either a regular (binary) or an image enclo-
sure. When adding a new enclosure, it should be contained within a
new, empty “Enclosure” element. The following example illustrates how
to use SetPropertyX to add a thumbnail and a new enclosure to the
metadata.

  pXMLPropSet.SetPropertyX "Binary/Thumbnail/Data", _

    LoadPicture("C:\stuff\myImage.jpg"), _

    esriXPTImage,     esriXSPAAddOrReplace, False

dim i as Integer

XMLPROPERTYSET COCLASS



Chapter 8 • Accessing the geodatabase • 931

G
eo

d
at

ab
as

e

  i = pXMLPropSet.CountX "Binary/Enclosure"

  pXMLPropSet.SetPropertyX "Binary/Enclosure[" & i & "]/Description", _

    "New!", esriXPTText, esriXSPAAddIfNotExists, False

    pXMLPropSet.SetPropertyX "Binary/Enclosure[" & i & "]/Data", _

    "c:\stuff\myFile.txt", esriXPTBinaryEnclosure, _

    esriXSPAAddIfNotExists, False

In addition to providing more control over how elements are added,
SetPropertyX lets you set an element’s value with respect to the Sync
attribute. When the syncing parameter is False, new elements are added
without a Sync attribute (the same behavior as IPropertySet::SetProperty),
and the Sync attribute is removed from existing elements. When the
syncing parameter is True, new elements will get the Sync attribute with
the value True.

For existing elements, their values are modified if the value of their Sync
attribute is true, but that value will change again the next time synchro-
nization occurs; otherwise, the element’s value won’t be changed, and
the Sync attribute won’t be added. The behavior of SetPropertyX can be
changed using the IXmlPropertySet2::OverwriteSyncAttribute property.

The DeleteProperty method works exactly the same as the
IPropertySet::RemoveProperty method.

The SetAttribute, GetPropertiesByAttribute, and DeletePropertiesByAttribute
methods all perform actions based on an element’s XML attributes.
SetAttribute will most often be used to set the Sync property for a spe-
cific element to True. For example, when importing an existing metadata
document you may want only the bounding coordinate and coordinate
system information to be synchronized with the dataset. The example
below shows how to set the Sync attribute for these elements. The first
name string selects all elements contained within the Bounding Coordi-
nates group element; they contain the west, east, north, and south
bounding coordinates, respectively. The second name string selects all
elements contained anywhere within the Spatial Reference group that
have a value and sets their Sync attribute to True. After setting the Sync
attribute, the changes are saved and then the metadata is synchronized.
The existing values in those elements will be updated with current infor-
mation derived from the dataset.

  pXMLPropSet.SetAttribute "idinfo/spdom/bounding/*", _

    "Sync", "TRUE", esriXSPAAddOrReplace

  pXMLPropSet.SetAttribute "spref//*[text()]", _

    "Sync", "TRUE", esriXSPAAddOrReplace

    pMetadata.Metadata = pXMLPropSet

    pMetadata.Synchronize esriMSAAccessed, 0

ArcGIS software maintains a few XML attributes in addition to Sync. The
elements that contain thumbnails and enclosures have the XML attribute
“EsriPropertyType”. For thumbnails, its value is “Picture”; for enclosures
that contain images (samples of those images can be viewed in the ESRI
stylesheet in ArcCatalog), its value is “Image”; and for all other enclo-
sures, its value is “Base64”. When using GetPropertiesByAttribute with
enclosures, the noValues parameter must be set to false for the files to be

XMLPROPERTYSET COCLASS



932 • Exploring ArcObjects • Volume 2

decoded and then written to the locations identified. When using
DeletePropertiesByAttribute with thumbnails or enclosures, the
deleteParent parameter should be true so that the entire group of ele-
ments associated with the thumbnail or enclosure is removed, as shown
below.

  pXMLPropSet.DeletePropertiesByAttribute "EsriPropertyType", "Base64", True

TransformImages is used to display thumbnails and samples of image
enclosures in ArcCatalog. As discussed above, they are contained in
elements with the EsriPropertyType attribute. When you access metadata
programmatically, these elements are intact. TransformImages decodes
the data for all of these elements, saves their contents to files in the
folder you have specified, and returns a Variant that contains an array
of file names representing the files that were created. Also, each original
element is replaced with an HTML IMG element whose source attribute
is set to the appropriate output file path. If you save the metadata after
running this method, this change will be permanent. TransformImages is
always used before showing metadata in the Metadata tab.

The SaveAsFile method lets you apply an XSL stylesheet to the metadata
and export the results. A stylesheet might generate a text, XML, or HTML
file. With SaveAsFile you can place a header at the top of a file, for
example, placing the text “<?xml version=’1.0'?>” above the root element
in an XML file. TransformImages is not automatically used before the
stylesheet is applied; if the ESRI stylesheet is specified but you don’t
transform the metadata first, the thumbnail and bitmaps of enclosed
images won’t appear in the resulting HTML file.

When you retrieve a dataset’s metadata using the IMetadata::Metadata
property, metadata will be created if it did not previously exist. If this
has happened, the IsNew property will return True. When metadata is
created it is initialized, then InitExisting is called to add the ESRI group
of elements. In addition to when the metadata was created, they record
when the metadata was last synchronized and modified manually, and
provide a unique identifier to the document. Another element,
“SyncOnce”, is also added; it is the element that indicates metadata has
not yet been synchronized and is removed when synchronization oc-
curs. Typically, you would not use the InitExisting method unless you
wanted to add the ESRI group of elements to an existing XML metadata
document; the next time synchronization occurs after doing so, the
appropriate documentation hint elements will be added to the metadata.

XMLPROPERTYSET COCLASS



Chapter 8 • Accessing the geodatabase • 933

G
eo

d
at

ab
as

e

 IXmlPropertySet2 : IUnknown Provides access to members that manage metadata.

CountX (in Name: String) : Long Number of occurrances of an element in the metadata.
IsNew: Boolean Indicates if a new XmlPropertySet was created on retrieving the

metadata.
OverwriteSyncAttribute: Boolean Indicates if the Sync attribute will be ignored when setting an

element's value.

DeleteProperty (in Name: String) Deletes the specified elements.
DeletePropertyByAttribute (in Attribute:

String, in Value: String, in
deleteParent: Boolean)

Deletes the elements which have the specified attribute value.

DeletePropertyByNameAndAttribute (in
Name: String, in Attribute: String, in
Value: String, in deleteParent:
Boolean)

Deletes the specified elements which have the specified attribute
value.

GetAttribute (in Name: String, in
Attribute: String, out pValue: Variant)

Returns the set of values for the specified attribute from the specified
elements.

GetPropertiesByAttribute (in Attribute:
String, in Value: String, in noValues:
Boolean, out pTags: Variant, out
pValues: Variant)

Returns the set of names and values for elements which have the
specified attribute value.

GetXml (in Name: String) : String Returns the XML corresponding to the specified element as a string.
InitExisting Initializes an XmlPropertySet and adds the ESRI group of elements.
InitGeneric (in rootName: String) Initializes an XmlPropertySet without adding the ESRI group of

elements.
SaveAsFile (in xslPath: String, in

header: String, in outputANSI:
Boolean, outPath: String)

Transforms the metadata using an XSL stylesheet if specified, writes
out the header if specified, and saves it in a file.

SetAttribute (in Name: String, in
Attribute: String, in Value: Variant, in
Action: tagesriXmlSetPropertyAction)

Sets the attribute of the specified element.

SetPropertyX (in Name: String, in Value:
Variant, in propType:
tagesriXmlPropertyType, in Action:
tagesriXmlSetPropertyAction, syncing:
Boolean)

Sets the value of the specified element.

SetXml (in xml: String) Replaces existing metadata with the content defined in the XML.
SimpleGetProperty (in Name: String) :

String
The values of the specified property.

TransformImages (in Path: String, out
pFileNames: Variant)

Transforms encoded thumbnail and image enclosures to files and
links them into the metadata.

The IXMLPropertySet2 interface extends the functionality available in
IXMLPropertySet. It provides access to all the methods defined in the
IXMLPropertySet interface in addition to a few new methods.

The OverwriteSyncAttribute property lets you modify the behavior of the
IXmlPropertySet::SetPropertyX method. By default, this property’s value is
false. If you set it to True before using IXmlPropertySet::SetPropertyX and
if its syncing parameter is True, the value of existing elements will al-
ways be modified, and if the Sync attribute doesn’t exist, it will be added
with the value True.

The GetXML and SetXML methods deal with entire chunks of XML,
which can be a powerful way of manipulating the metadata. This code
excerpt shows the XML containing the contact information describing
who to contact to find out more about the dataset. That information is
contained within the point of contact group element, “idinfo/ptcontac”.

  Dim pXPS2 as IXMLPropertySet2

  Set pXPS2 as pMetadata.Metadata

  pXPS2.GetXML "idinfo/ptcontac/cntinfo"

SetXML replaces the entire metadata document with the specified XML.

GetAttribute returns a Variant that contains an array value for the speci-
fied attribute for all elements identified by the name string. The example
below will return a list of all feature classes whose attributes are

XMLPROPERTYSET COCLASS



934 • Exploring ArcObjects • Volume 2

described in a coverage’s metadata document. The metadata should
contain one Detailed Description group of elements for each feature
class that has attributes. When the metadata is synchronized, the XML
attribute Name is added to each Detailed Description group element; its
value is the name of the feature attribute table that associated with the
feature class it described.

  Dim vValues As Variant

  pXPS2.GetAttribute "eainfo/detailed", "Name", vValues

The DeletePropertyByNameAndAttribute method removes specific ele-
ments that have specific attribute values from the metadata. For ex-
ample, you might use this to remove the attribute information associated
with a coverage’s feature class. In the example below, the Detailed
Description group that describes the route feature class named “roads”
will be deleted from the metadata. You might do this after deleting the
feature class from the coverage. Here the deleteParent parameter is false
because you don’t want to remove all attribute information from the
metadata, only the information describing one feature class.

pXPS2.DeletePropertyByNameAndAttribute "eainfo/detailed", _

"Name", "myCoverage.ratroads", False

When metadata is created in Visual Basic, IXmlPropertySet::InitExisting
runs automatically to initialize metadata by adding the ESRI group of
elements. InitGeneric allows more control for C++ programmers to ini-
tialize a new XML property set without having to add the ESRI group of
elements.

XMLPROPERTYSET COCLASS



Chapter 8 • Accessing the geodatabase • 935

G
eo

d
at

ab
as

e

Xml-
PropertySet-

Edit

IXmlPropertySetEdit

The XMLPropertySetEdit object
provides access to members that edit

metadata.

XMLPROPERTYSETEDIT COCLASS

The XMLPropertySetEdit object provides a simple, convenient interface
for editing metadata.

 IXmlPropertySetEdit : IUnknown Provides access to members that edit metadata.

Dataset: IDataset Dataset whose metadata will be edited.

GetProperty (in Name: String) : Variant Returns the set of values for the specified element.
SetProperty (in Name: String, in Value:

Variant, in propType:
tagesriXmlPropertyType, in Action:
tagesriXmlSetPropertyAction)

Sets the value of the specified element.

The IXMLPropertySetEdit interface is used for setting up an
XMLPropertySetEdit object and using it to read and write metadata. This
example changes the metadata title for the selected dataset in
ArcCatalog:

  Dim pGxApp As IGxApplication

  Dim pGxObj As IGxObject

  Dim pName As IName

  Dim pDataset As IDataset

  Dim pXPSE As IXmlPropertySetEdit

  Set pGxApp = Application

  Set pGxObj = pGxApp.SelectedObject

  Set pName = pGxObj.InternalObjectName

  Set pDataset = pName.Open

  Set pXPSE = New XmlPropertySetEdit

  Set pXPSE.Dataset = pDataset

  pXPSE.SetProperty "idinfo/citation/citeinfo/title", "My New Title", _

    esriXPTText, esriXSPAddOrReplace

SetProperty is similar to IXmlPropertySet::SetPropertyX in that it lets you
add thumbnails and enclosures to the metadata in addition to text val-
ues, and it offers excellent control over exactly how and when new
elements are added to the metadata document. Note that unlike
XMLPropertySet there is no need to save the changes back to the
metadata after using SetProperty; the changes are applied when the XML
property set edit object is destroyed.

However, like IPropertySet::SetProperty, there is no ability to control new
and existing elements with respect to the Sync attribute. New elements
added with this method will not have a Sync attribute, and for existing
elements the Sync attribute will be removed from the element. After
changing a dataset’s title using the example above, it will not automati-
cally be updated by the synchronization process to reflect the current
name of the dataset. ArcGIS software will not overwrite documentation
that was typed by a user using a metadata editor.



936 • Exploring ArcObjects • Volume 2

METADATASYNCHRONIZER COCLASS

You can build your own custom metadata synchronizer by creating a
class that implements IMetadataSynchronizer and registering it with the
Component Categories Manager utility. It is possible to create and use
many metadata synchronizers. The effect of doing this is that when
synchronization occurs, metadata for the same dataset property may be
written in many different ways. You might want to do this to support
multiple metadata standards, although this will make the metadata docu-
ments large. One metadata synchronizer object is currently supplied
with ArcCatalog: the FGDCSynchronizer.

The MetadataSynchronizer coclass manages the entire synchronization
process. It has two interfaces: IMetadataSynchronizer and IMetadata-
SynchronizerManager. The IMetadataSynchronizerManager interface is
used to manage the metadata synchronizer objects that have been regis-
tered with the ESRI Metadata Synchronizers component category.

 IMetadataSynchronizer : IUnknown IMetadataSynchronizer interface.

ClassID: IUID The class ID of this object.
Name: String The name of the object.

Update (in pPropertySet: IXmlPropertySet,
in itemDesc: String, in Value: Variant)

Updates the metadata item using the value passed in.

The IMetadataSynchronizer interface controls what happens when
synchronization occurs.

When using a metadata synchronizer, the properties ClassID and Name
are read-only. They identify the synchronizer by its UID and name.
These properties are defined when the IMetadataSynchronizer interface
is implemented.

The Update method is called many times by the MetadataSynchronizer
during the synchronization process. When the interface is implemented,
it defines exactly what is recorded in the metadata document when
synchronization occurs. Each time the Update method is called, three
parameters are passed in: an XML property set containing the metadata
that is being updated, an item description, and an object that is derived
from the dataset. The item description is a String that identifies the type
of object being passed in.

The following table summarizes the item descriptions and associated
objects that may be passed to the Update method.



Chapter 8 • Accessing the geodatabase • 937

G
eo

d
at

ab
as

e

METADATASYNCHRONIZER COCLASS

Description

A special case which is called when the SyncOnce element is present in the Esri group of metadata elements;
generally, this happens only the first time synchronization occurs. This may be used to add boilerplate text such as
documentation hints or fixed contact information for your organization that should not be changed again by
synchronization.

Provides access to INFO tables and a coverage feature class's feature attribute table. Used to record attribute
information and to count the number of records or features.

Provides information about the coverage feature class, including the type of feature class, and whether it has an
attribute table or topology. Used to record feature information.

Provides access to a feature class. Used to record feature information such as feature and geometry type.

Operating system and software name and version of the computer.

Provides access to an object class such as a table or feature class. Used to record full attribute information.

Provides access to an object class such as a table or feature class. Used to record brief entity information for the
feature classes contained in a feature dataset.

Envelope containing the dataset's geographic data. Used to record its extent in decimal degrees.

Size of the dataset on disk. Not used for objects stored within a geodatabase.

Name of the dataset: either derived from the filename or the table name.

Location of dataset on disk, or the connection information for accessing an ArcSDE geodatabase.

Value

Nothing

IArcInfoTable

ICoverageFeature-
Class

IFeatureClass

String

IClass

IClass

IEnvelope

String

String

String

itemDesc

Boilerplate

CoverageEntity[i]

CoverageFeatureClass
[i]

FeatureClass[i]

Environment

Entity[i]

EntityBrief[i]

DDExtent

DatasetSize

DatasetName

DatasetLocation

One of: "raster digital data", "remote-sensing image", "tabular digital data", "vector digital data" Mode in which the
spatial data is represented.

StringGeoForm

Language of the data and the metadata. Derived from the operating system's default input locale.StringLanguage

The name of the metadata standard supported by ArcCatalog: version 2 of the CSDGM. Used to record information
about the standard to which the metadata was created.

StringMetadataStandard

The current date. Used to record when the metadata was last updated.StringMetadataDate

Type of dataset.
String, either

"Vector" or "Raster"
GeometryType

Envelope containing the dataset's geographic data. Used to record its actual extent, either in projected or decimal
degrees coordinates.

IEnvelopeNativeExtent

Provides information about the connectivity rules in a geometric network.IRuleNetworkRule[i]

The name of the operating system on the computer used to create or update the metadata (duplicated in
Environment).

StringOperatingSystem

Provides information about the schema of a geometric network such as element classes, ancillary roles, and weights.INetSchemaNetworkSchema

Type of dataset such as "Shapefile", "Personal Geodatabase Table", or "Raster Dataset". ArcCatalog's Search tool
expects to find this information in "idinfo/natvform" when searching for specific objects.

StringNativeForm

Provides access to information about a raster band, including its attribute table and colormap.IRasterBandRasterBand

The name and version of the software used to create or update the metadata (duplicated in Environment).StringSoftware

Provides information about a relationship. Used to record brief relationship information for objects that participate
in a relationship.

IRelationshipClassRelationshipBrief[i]

Provides information about a raster dataset such as its format and compression type.
IRasterDataset (may

also support
IRasterBandCollection)

RasterDataset

Provides access to the dataset's spatial reference.ISpatialReferenceSpatialReference

Provides access to information about a TIN dataset.ITinTin

Provides information about a relationship such as its origin, destination, and cardinality. Used to record detailed
information about a relationship.

IRelationshipClassRelationship[i]



938 • Exploring ArcObjects • Volume 2

Each type of dataset is associated with a specific list of items that will be
passed to the Update method. For example, if the dataset is a dBASE®

table, the following list of item descriptions will be passed: Boilerplate,
DatasetLocation, DatasetName, DatasetSize, Entity[i], Environment,
GeoForm, Language, MetadataDate, MetadataStandard, NativeForm,
OperatingSystem, and Software. For a shapefile, the DDExtent,
FeatureClass[i], GeometryType, NativeExtent, and SpatialReference objects
would also be passed.

Note that for item descriptions that are shown in the table with an index
number such as itemDesc[i], several different objects may be sent to the
metadata synchronizer. For example, a coverage has several feature
classes. To record the coverage’s attributes, Update will be called once
for each feature class that has a feature attribute table. Each time, the
itemDesc parameter will be CoverageEntity[i], and the Value parameter
will be the IArcInfoTable object. If the coverage has one polygon and
two region feature classes, Update will be called, with the itemDesc
values CoverageEntity[0], CoverageEntity[1], and CoverageEntity[2], the
appropriate different IArcInfoTable objects.

When the IMetadataSynchronizer interface is implemented, you specify
which properties will be retrieved from each object and any calculations
that must occur. For example, the Update method might query the
IArcInfoTable object for column names in the table, but it might ignore
properties indicating whether those columns have indexed values. Then
the appropriate metadata element must be added or updated in the XML
property set with the derived value.

The FGDCSynchronizer adds and updates metadata elements following
the metadata structure described by the FGDC standard. This is the
metadata synchronizer that will be used when ArcGIS software is in-
stalled. The stylesheets used in ArcCatalog are based on queries that rely
on the presence of FGDC metadata elements. If you create a custom
metadata synchronizer following a different standard, you must create
custom stylesheets as well for ArcCatalog.

IMetadataSynchronizerManager :
IUnknown

IMetadataSynchronizerManager interface.

NumSynchronizers: Long Gets the number of available synchronizers.

GetEnabled (in Index: Long) : Boolean Gets whether the nth synchronizer is enabled.
GetSynchronizer (in Index: Long) :

IMetadataSynchronizer
Gets the nth synchronizer.

SetEnabled (in Index: Long, in Enabled:
Boolean)

Sets whether the nth synchronizer is enabled.

The IMetadataSynchronizerManager interface is used to manage all of
the available metadata synchronizer objects.

The NumSynchronizers property returns the number of registered
metadata synchronizers. Each of these can be enabled or disabled using
the SetEnabled method; when disabled, the synchronizer will not write

METADATASYNCHRONIZER COCLASS



Chapter 8 • Accessing the geodatabase • 939

G
eo

d
at

ab
as

e

any information to the metadata document. You can test the status of a
synchronizer with GetEnabled. Finally, GetSynchronizer will return a
metadata synchronizer object such as the FGDCSynchronizer.

When synchronization occurs, ArcGIS software sends the appropriate
parameters to the Update method of the MetadataSynchronizer coclass.
The MetadataSynchronizer iterates through all of the metadata synchro-
nizers such as the FGDCSynchronizer, which are registered in the com-
ponent category. For each metadata synchronizer that is enabled, the
MetadataSynchronizer coclass calls its Update method.

If you create your own custom metadata synchronizer following a dif-
ferent metadata standard, you may wish to disable the
FGDCSynchronizer coclass so that the metadata document will only
contain elements according to your standard; this is illustrated in the
example below.

  Dim pMDSync As IMetadataSynchronizer

  Set pMDSync = New esriCore.MetadataSynchronizer

  Dim pSyncManager As IMetadataSynchronizerManager

  Set pSyncManager = pMDSync

  Dim i As Long

  For i = 0 To pSyncManager.NumSynchronizers - 1

    If (pSyncManager.GetSynchronizer(i).Name = "FGDC CSDGM") And _

      (pSyncManager.GetEnabled(i)) Then

        pSyncManager.SetEnabled i, False

    End If

  Next i

You can find more details about creating your own metadata synchro-
nizer in the white paper “Creating a Custom Metadata Synchronizer” at
http://arconline.esri.com.

METADATASYNCHRONIZER COCLASS



940 • Exploring ArcObjects • Volume 2

The FGDCSynchronizationHelper coclass was created at version 8 to
retrieve properties from a dataset, calculate values, and then record that
information in the metadata. This class always records information in
metadata elements that are defined in the FGDC standard; it could not
be adapted to support other metadata standards. This coclass was ren-
dered obsolete by the introduction of the MetadataSynchronizer and
FGDCSynchronizer coclasses. However, for ArcGIS 8.1, the
FGDCSynchronizationHelper is still used to record some information in
the metadata; therefore, even if the FGDCSynchronizer is disabled, some
FGDC metadata tags will still appear in the metadata as a result of the
synchronization process.

 ISynchronizationHelper : IUnknown Provides helper functions for metadata synchronization.

ExtractBriefEntityAttrProperties (in
pGeoDataset: IClass, in Index: Long,
in pProperties: IPropertySet)

Extracts brief entity attribute properties from a FeatureClass.

ExtractBriefRelationshipProperties (in
pRelationship: IRelationshipClass, in
Index: Long, in pProperties:
IPropertySet)

Extracts brief entity attribute properties from a RelationshipClass.

ExtractEntityAttrProperties (in
pGeoDataset: IClass, in Index: Long,
in pProperties: IPropertySet)

Extracts entity attribute properties from a FeatureClass.

ExtractFeatureClassProperties (in
pGeoDataset: IFeatureClass, in Index:
Long, in pProperties: IPropertySet)

Extracts properties from a FeatureClass.

ExtractRelationshipProperties (in
pRelationship: IRelationshipClass, in
Index: Long, in pProperties:
IPropertySet)

Extracts entity attribute properties from a RelationshipClass.

ExtractSpatialProperties (in
pGeoDataset: IGeoDataset, in
pProperties: IPropertySet)

Extracts spatial properties from a GeoDataset.

FinishSynchronization (in pProperties:
IPropertySet)

Call this after synchronizing.

PopulateDistributionProperties (in
FileName: String, in fileType: String, in
pProperties: IPropertySet)

Populates distribution properties given a file name.

PopulateDistributionPropertiesForDatab
ase (in pDataset: IDataset, in
pProperties: IPropertySet)

Populates distribution properties given a file name.

PopulateStaticProperties (in
pProperties: IPropertySet)

Fills in required properties.

StartSynchronization (in pProperties:
IPropertySet, in Action:
tagesriMetadataSyncAction, in
Interval: Long, out pOK: Boolean)

Call this before synchronizing.

ISynchronizationHelper may still be used to write FGDC format meta-
data, if desired. You may use any of the Populate or Extract methods to
force specific aspects of the metadata to be synchronized. The methods
whose names begin Populate… write information into the metadata that
relates to the processing environment, such as the version of ArcGIS
software that is being used. The Extract… methods take an input object
such as IRelationshipClass and write properties of this object into the
metadata. Calls to the Extract or Populate methods should be preceded
by StartSynchronization and proceeded by FinishSynchronization.

As with the IMetadata::Synchronize method, StartSynchronization uses
the options defined in esriMetadataSyncAction to specify whether
metadata will be created and elements will be modified based on
whether or not the metadata already exists. Set the Interval parameter to
zero to ensure that the metadata is updated when

FGDCSYNCHRONIZATIONHELPER COCLASS

FGDCSynchronizationHelper is an advanced
object that you would not normally use.

FGDC-
Synchroni-

zationHelper

ISynchronizationHelper

The FGDCSynchronizationHelper
helps translate dataset properties into

metadata properties.



Chapter 8 • Accessing the geodatabase • 941

G
eo

d
at

ab
as

e

synchronization occurs. Check the value of the pOK parameter before
proceeding to modify the metadata; StartSynchronization sets this
parameter after checking several criteria that define whether metadata
can be created or updated.

FinishSynchronization indicates that the synchronization process is
complete. Changes to the XML property set that occurred during
synchronization are saved in the metadata document.

FGDCSYNCHRONIZATIONHELPER COCLASS



942 • Exploring ArcObjects • Volume 2

On-the-fly table join objects

Table
IClass

IDataset
ITable

A RelQueryCursor is a cursor that
references the rows in a RelQueryTable

SelectionSet
ISelectionSet

ISelectionSet2

QueryFilter
IQueryFilter

IQueryFilter2

Cursor
ICursor

SpatialFilter
ISpatialFilter

A RelQueryRow is a record
in a RelQueryTable

A RelQueryTable is a
table with rows and

columns derived from
a joined pair of tables

IFeatureClass (optional)
IObjectClass

IRelQueryTable
IRelQueryTableInfo

IRelQueryTableManage
IVirtualTable

RelQuery-
Table

DatasetName
IDatasetName

Name
IName

Relationship-
ClassName

IRelationshipClassName

Memory-
Relationship-
ClassName

IMemoryRelationshipClassName

RelQuery-
TableName

IRelQueryTableName

A RelQueryTable name is an object that
represents a RelQueryTable. A RelQueryTable

can be created from a RelQueryTable name

A memory relationship class name is an object that represents
a memory relationship class. A memory relationship class can

be created from a memory relationship class name

RelQueryRow

IFeature (optional)
IFeatureBuffer (optional)
IFeatureDraw (optional)

IObject
IRow

IRowBuffer

RelQuery-
TableFactory

IRelQueryTableFactory

RelQuery-
Cursor

IFeatureCursor (optional)

Relationship-
Class

IDataset
IRelationshipClass

IRelationshipClass2

Memory-
Relationship-

Class

Memory-
Relationship-
ClassFactory

IMemoryRelationship-
ClassFactory

A memory relationship class is
a type of simple relationship

class where the origin and
destination classes can be from

different workspaces

A memory relationship class
factory manages the memory
relationship classes that exist

in the application

A RelQueryTableFactory
manages the RelQueryTables

that exist in the application



Chapter 8 • Accessing the geodatabase • 943

G
eo

d
at

ab
as

e

MEMORYRELATIONSHIPCLASSFACTORY COCLASS

Memory-
Relationship-
ClassFactory

IMemoryRelationship-
ClassFactory

A memory relationship class factory
manages the memory relationship

classes that exist in the application.

A MemoryRelationshipClassFactory is an object that manages the
memory relationship classes that exist in an application. You must use
either a MemoryRelationshipClassFactory or a MemoryRelationshipClass-
Name object to create new memory relationship classes.

Like workspace factory objects, a MemoryRelationshipClassFactory is a
singleton object. This means that you can have only one instance of this
object in a process.

IMemoryRelationshipClassFactory :
IUnknown

Provides access to members that open a memory
relationship class.

Open (in Name: String, in
originPrimaryClass: IObjectClass, in
originPrimaryKeyField: String, in
originForeignClass: IObjectClass, in
originForeignKeyField: String, in
ForwardPathLabel: String, in
BackwardPathLabel: String, in
Cardinality: esriRelCardinality) :
IRelationshipClass

Opens the memory relationship class specified by the given
properties.

The IMemoryRelationshipClassFactory interface provides an Open
method that creates a new MemoryRelationshipClass.

When creating a MemoryRelationshipClass, much of the same informa-
tion that is required for a RelationshipClass in the geodatabase is
needed. However, memory relationship classes are always simple and
nonattributed, so only two tables and two fields need to be specified.
The originPrimaryKeyField refers to the field in the originPrimaryClass,
while the originForeignKeyField refers to the field in the
originForeignClass.



944 • Exploring ArcObjects • Volume 2

MEMORYRELATIONSHIPCLASS CLASS

A MemoryRelationshipClass is a simple (noncomposite), nonattributed
RelationshipClass that does not support relationship rules.

A MemoryRelationshipClass inherits from a RelationshipClass and, al-
though it implements the same interfaces, not all properties and meth-
ods are supported. The following section reviews each of these inter-
faces and describes which properties and methods behave differently or
are not supported with memory relationship classes.

To create a Relate in ArcMap, a MemoryRelationshipClass must first be
created and then assigned to a Layer or StandaloneTable using the
IRelationshipClassCollectionEdit interface.

 IRelationshipClass : IUnknown Provides access to members that return information about
the relationship class, create relationships, relationship
rules, and get related objects.

BackwardPathLabel: String The backward path label for the relationship class.
Cardinality: esriRelCardinality The cardinality for the relationship class.
DestinationClass: IObjectClass The destination object olass.
DestinationForeignKey: String The relationship destination foreign key.
DestinationPrimaryKey: String The relationship destination primary key.
FeatureDataset: IFeatureDataset The feature dataset, if any, to which this relationship class belongs.
ForwardPathLabel: String The forward path label for the relationship class.
IsAttributed: Boolean True if the relationships in this relationship class have attributes.
IsComposite: Boolean True if the relationship class represents a composite relationship in

which the origin object class represents the composite object.
Notification: esriRelNotification The notification direction for the relationship class.
OriginClass: IObjectClass The origin object class.
OriginForeignKey: String The relationship origin foreign key.
OriginPrimaryKey: String The relationship origin primary key.
RelationshipClassID: Long The relationship class ID.
RelationshipRules: IEnumRule Gets the relationship rules that apply to this relationship class.

AddRelationshipRule (in rule: IRule) Adds a relationship rule to this relationship class.
CreateRelationship (in OriginObject:

IObject, in DestinationObject: IObject) :
IRelationship

Creates a new relationship between the two specified objects.

DeleteRelationship (in OriginObject:
IObject, in DestinationObject: IObject)

Deletes the relationship that associates the two specified objects.

DeleteRelationshipRule (in rule: IRule) Deletes a relationship rule from this relationship class.
DeleteRelationshipsForObject (in

anObject: IObject)
Deletes all relationships that apply to a specified object.

DeleteRelationshipsForObjectSet (in
anObjectSet: ISet)

Deletes all relationships that apply to the specified origin or
destination object set.

GetObjectsMatchingObjectSet (in
pSrcObjectSet: ISet) :
IRelClassEnumRowPairs

Gets rows pairs of objects that are related to the specified origin or
destination object set.

GetObjectsRelatedToObject (in
anObject: IObject) : ISet

Gets the objects that are related to the specified object.

GetObjectsRelatedToObjectSet (in
anObjectSet: ISet) : ISet

Gets the objects that are related to the specified origin or destination
object set.

GetRelationship (in OriginObject:
IObject, in DestinationObject: IObject) :
IRelationship

Gets the relationship that associates the two specified objects.

GetRelationshipsForObject (in
anObject: IObject) : IEnumRelationship

Gets all relationships that apply to a specified object.

GetRelationshipsForObjectSet (in
anObjectSet: ISet) :
IEnumRelationship

Gets all relationships that apply to the specified origin or destination
object set.

The IRelationshipClass interface provides information on how the rela-
tionship class was defined, functionality to create and delete individual
relationships, and methods to find related objects.

For more information on RelationshipClasses in general, see the
RelationshipClass topic.

Relationship-
Class

IDataset
IRelationshipClass

IRelationshipClass2

Memory-
Relationship-

Class

A MemoryRelationshipClass is a type of
RelationshipClass in which the origin and

destination classes can be from different
workspaces and do not need to persist in a

geodatabase. For example, the origin class can
represent a shapefile, while the destination class
can represent a table in a personal geodatabase.

It is stored in memory instead of within a
geodatabase like other RelationshipClasses. You

can use the MemoryRelationshipClassName
object to save and restore a Memory-

RelationshipClass.

For more information on relationship classes in
general, see the RelationshipClass topic in this

chapter.



Chapter 8 • Accessing the geodatabase • 945

G
eo

d
at

ab
as

e

DestinationPrimaryKey

FeatureDataSet

RelationshipClassID

IsComposite

Notification

DestinationForeignKey

IsAttributed

DestinationClass

RelationshipRules

AddRelationshipRule

CreateRelationship

DeleteRelationship

DeleteRelationshipRule

DeleteRelationshipsforObject

DeleteRelationshipsforObjectSet

GetRelationship

GetRelationshipForObject

GetRelationshipForObjectSet

Returns False since it can't be composite.

Returns an empty string since a MemoryRelationshipClass is not attributed.

Property is not supported. An error will be returned if you try to use this property.

Returns -1. This does not need to be set to a meaningful value since a MemoryRelationshipClass is
not stored in a geodatabase.

Returns esriRelNotificationNone.

Returns an empty string since a MemoryRelationshipClass is not attributed.

Returns False since it can't be attributed.

Returns the OriginForeignClass object specified in the IMemoryRelationshipClassFactory::Open method.

Property is not supported. An error will be returned if you try to use this property.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Method is not supported. An error will be returned if you try to use this method.

Member Behavior with a MemoryRelationshipClass

OriginClass Returns the OriginPrimaryClass object specified in the IMemoryRelationshipClassFactory::Open method.

Since the origin and destination classes may belong to different
workspaces, the methods in IRelationshipClass that involve editing are
not available.

The following code example creates a MemoryRelationshipClass between
the us_states feature class and the us_counties feature class. It then uses
the MemoryRelationshipClass to print the counties that appear in the
State of California.

  Dim pRelationshipClass As IRelationshipClass

  Dim pMemRelationshipClassFact As IMemoryRelationshipClassFactory

  Set pMemRelationshipClassFact = New MemoryRelationshipClassFactory

  Set pRelationshipClass = pMemRelationshipClassFact.Open("test", _

    pFOBClass, "state_fips", pFOBClass2, "state_fips", "forward", _

    "backward", esriRelCardinalityOneToMany)

  Dim pQFilter As IQueryFilter

  Set pQFilter = New QueryFilter

  pQFilter.WhereClause = """STATE_NAME"" = 'California'"

  Dim pFeatureClass As IFeatureClass

  Dim pFCursor As IFeatureCursor

  Dim pFeature As IFeature

  Set pFeatureClass = pFOBClass

  Set pFCursor = pFeatureClass.Search(pQFilter, True)

  Set pFeature = pFCursor.NextFeature

  Dim pRelateSet As ISet

  Dim pRowBuff As IRowBuffer

  Set pRelateSet = pRelationshipClass.GetObjectsRelatedToObject(pFeature)

  Set pRowBuff = pRelateSet.Next

  Do While Not pRowBuff Is Nothing

    Debug.Print pRowBuff.Value(2)

The properties and methods of IRelationship-
Class not listed in the table behave the same

way with memory relationship classes as they do
with other relationship classes.

MEMORYRELATIONSHIPCLASS CLASS



946 • Exploring ArcObjects • Volume 2

    Set pRowBuff = pRelateSet.Next

  Loop

 IDataset : IUnknown Provides access to members that supply dataset
information.

BrowseName: String The browse name of the dataset.
Category: String The category of the dataset.
FullName: IName The associated name object.
Name: String The name of the dataset.
PropertySet: IPropertySet The set of properties for the dataset.
Subsets: IEnumDataset Datasets contained within this dataset.
Type: esriDatasetType Returns the type of the dataset.
Workspace: IWorkspace The workspace containing this dataset.

CanCopy: Boolean True if this dataset can be copied.
CanDelete: Boolean True if this dataset can be deleted.
CanRename: Boolean True if this dataset can be renamed.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this dataset to a new dataset with the specified name.

Delete Deletes this dataset.
Rename (in Name: String) Renames this dataset.

The IDataset interface provides information about datasets and some
management facilities, such as Copy, Delete, and Rename.

BrowseName
You can get but not set the BrowseName. The BrowseName will be the name given the
MemoryRelationshipClass when initialized. If you try to set it, an error is returned.

Category Returns the string "Memory relationship class"

FullName Returns a MemoryRelationshipClassName object.

Name Like BrowseName, returns the name given the MemoryRelationshipClass when initialized

PropertySet Property is not supported. An error will be returned if you try to use this property.

Subsets Returns a Null or a Nothing object in Visual Basic.

Type Returns esriDTRelationshipClass.

Workspace Returns a Null or a Nothing object in Visual Basic.

CanCopy Returns False, indicating that it can't be copied.

CanDelete Returns False, indicating that it can't be deleted.

CanRename Returns True, indicating that it can be renamed.

Copy Method is not supported. An error will be returned if you try to use this method.

Delete Method is not supported. An error will be returned if you try to use this method.

Rename Renames the MemoryRelationshipClass to the name given.

Member Behavior with a MemoryRelationshipClass

The table above describes how the methods and properties from
IDataset are implemented by a memory relationship class.

 IRelationshipClass2 : IUnknown Provides access to members that get related object row
pairs within a query filter specification.

GetObjectsMatchingObjectArray (in
pSrcObjectArray: IArray, in
pQueryFilterAppliedToMatchingObject
s: IQueryFilter) :
IRelClassEnumRowPairs

Gets row pairs of objects that are related to the specified origin or
destination object array that also meet the query filter expression.

GetObjectsMatchingObjectSetEx (in
pSrcObjectSet: ISet, in
pQueryFilterAppliedToMatchingObject
s: IQueryFilter) :
IRelClassEnumRowPairs

Gets row pairs of objects that are related to the specified origin or
destination object set that also meet the query filter expression.

The IRelationshipClass2 interface provides methods that allow a
QueryFilter to be applied to the group of rows that match a specified
group of rows in the related table. For example, if a method from this
interface had been used in the example above, a QueryFilter could have
been used to limit the California counties returned to those with a popu-
lation of over 1 million.

MEMORYRELATIONSHIPCLASS CLASS



Chapter 8 • Accessing the geodatabase • 947

G
eo

d
at

ab
as

e

RELQUERYTABLEFACTORY COCLASS

A RelQueryTableFactory is an object that manages the RelQueryTables in
the application. You must use either a RelQueryTableFactory or a Rel-
QueryTableName object to create new RelQueryTables.

Like the workspace factory objects, a RelQueryTableFactory is a single-
ton object. This means that you can only have one instance of this
object in a process.

 IRelQueryTableFactory : IUnknown Provides access to members that open a join table.

Open (in pRelClass: IRelationshipClass, in
joinForward: Boolean, in pQueryFilter:
IQueryFilter, in pSrcSelectionSet:
ISelectionSet, in target_Columns: String,
in DoNotPushJoinToDB: Boolean, in
openAsLeftOuterJoin: Boolean) :
IRelQueryTable

Opens a join table specified by the given properties.

The IRelQueryTableFactory interface provides an Open method to define
the data a RelQueryTable represents and how that data is accessed. The
following table describes in more detail the meaning of each of the
input parameters.

pRelClass

PQueryFilter

pSrcSelectionSet

target_Columns

DoNotPushJoinToDB

openAsLeftOuterJoin

This is the RelationshipClass used to define the join tables and join fields as well as the cardinality.

You can further define the data that will be returned by a RelQueryTable by applying a QueryFilter. The
WhereClause of pQueryFilter is added to the WhereClause of the QueryFilter specified when you use the
ITable::Search method using the And operator. The SubFields of pQueryFilter define which fields will include
data when a cursor is opened. The other fields are included but will be empty.

This parameter is not exposed and should always be set to Nothing.

This is a comma-delimited string that defines the fields returned from the destination table. This is
different from the SubFields of pQueryFilter since in this case, fields not included in target_columns are not
included at all in a cursor.

If this is True, the join is always processed on the client; otherwise it is processed on the server if
possible. If all datasets involved are stored on the same ArcSDE or personal geodatabase server, the
processing can be performed by the server, which is normally faster. The openAsLeftOuterJoin parameter
must also be set to False in order for processing to occur on the server. In any other case, processing
occurs on the client regardless of how this parameter is set.

A left outer join is performed if this is True, otherwise a left inner join is performed. For more
information, see IRelQueryTableInfo::JoinType below.

JoinForward

If joinForward is True, the origin table from pRelClass is the source in the RelQueryTable, otherwise the
destination table in pRelClass becomes the source. If the cardinality is many-to-one, you can define your
relationship as one-to-many and set this parameter to false in order to make the many side the source.
You will need to do this since you can't set the cardinality to many-to-one for a RelationshipClass.

Parameter Meaning

RelQuery-
TableFactory

IRelQueryTableFactory

A RelQueryTableFactory manages the
RelQueryTables that exist in the

application.



948 • Exploring ArcObjects • Volume 2

A RelationshipClass is used when creating a RelQueryTable to specify the
tables involved and the fields on which the join is based. The
RelationshipClass can be stored in a geodatabase or created in memory.
Memory relationship classes can include tables that belong to different
data sources. Therefore, a RelQueryTable can join tables from different
data sources.

A RelQueryTable includes a source table or feature class and a destina-
tion table or feature class. If you step through a cursor opened from a
RelQueryTable, each row includes the columns from both input tables.
The fields from the source appear on the left, while the fields from the
destination appear on the right. Each row from the table is composed of
the primary and foreign keys from IRelationshipClass to produce a single
row.

Shapes can only be retrieved from the source table. If the destination
table has a geometry field, it will not be included in the RelQueryTable.

When you perform a join in ArcMap, a RelQueryTable object is created
and used as the table or layer’s data source for all display purposes. In
ArcMap, you can use the IDisplayTable::DisplayTable property to get a
joined table or layer’s RelQueryTable.

Since a RelQueryTable implements IObjectClass and IFeatureClass and
inherits from Table, it can be treated like any other Table or FeatureClass.
The IFeatureClass interface is implemented only when the source is a
FeatureClass. A RelQueryTable cursor is read-only, so you must edit the
source and destination to change the data.

A RelQueryTable is designed to work with relationships that have one-to-
one or many-to-one cardinality. If the cardinality is one-to-many, a row
from the source will be associated with the first matching row in the
destination—any other matching rows are ignored. A RelationshipClass
with a many-to-many cardinality is not supported and will cause an
error. If the relationship has a cardinality of one-to-many or many-to-
many, use RelationshipClass objects to access the data. If the cardinality
is really one-to-one but the Relationship is defined as one-to-many, the
RelQueryTable will still process correctly.

A RelQueryTable will have an ObjectID if the source has an ObjectID.
When initialized, the RelQueryTable uses the values from the source’s
ObjectID field to define its ObjectIDs. If the source is a nonObjectID
object class, the RelQueryTable can still access the data, but there will be
limitations, such as an inability to select rows.

By definition, ObjectIDs must be unique. The reason relationships with
one-to-many cardinalities match one row from the source to only one
row in the destination is to prevent repeating ObjectIDs in the
RelQueryTable. Repeating ObjectIDs will cause many objects, such as
SelectionSets and table windows, to behave incorrectly.

RELQUERYTABLE CLASS

Table
IClass

IDataset
ITable

IFeatureClass (optional)
IObjectClass

IRelQueryTable
IRelQueryTableInfo

IRelQueryTableManage
IVirtualTable

RelQuery-
Table

A RelQueryTable is a class that repre-
sents a joined pair of tables or

feature classes.

Point

Point

Point

Point

Source Destination RelQueryTable

Polygon

Polygon

Polygon

Polygon

1

2

3

4

1

2

3

4

A

B

C

D

Polygon

Polygon

Polygon

Polygon

1

2

3

4

A

B

C

D

This diagram shows the results of joining two
feature classes.



Chapter 8 • Accessing the geodatabase • 949

G
eo

d
at

ab
as

e

 IRelQueryTableManage : IUnknown Provides access to members that manage the query tables.

Init (in pRelClass: IRelationshipClass, in
joinForward: Boolean, in pQueryFilter:
IQueryFilter, in pSrcSelectionSet:
ISelectionSet, in target_Columns:
String, in DoNotPushJoinToDB:
Boolean, in openAsLeftOuterJoin:
Boolean)

Initializes the RelQueryTable instance

VersionChanged (in
pSelectedWorkspace: IVersion, in
pTargetVersion: IVersion, in
pTablesRequiringMapEventFiring:
IEnumTableVersionChanges)

Updates all children tables to use new version of the workspace.

The IRelQueryTableManage interface provides an Init method to define
what data a RelQueryTable represents and how that data is accessed.
The following table describes in more detail the meaning of each of the
input parameters.

The following example uses a MemoryRelationshipClass and a RelQuery-
Table to join country demographic data to a countries feature class. The
field names are then printed:

  Dim pMemRelClassFact As IMemoryRelationshipClassFactory

  Set pMemRelClassFact = New MemoryRelationshipClassFactory

  Dim pRelClass As IRelationshipClass

  Set pRelClass = pMemRelClassFact.Open(“Country_Demog”, _

    FeatureObjectClass, “fips_code”, pTableObjectClass, “fips_code”, _

    “forward”, “backward”, esriRelCardinalityOneToMany)

  Dim pRelQueryTableFact As IRelQueryTableFactory

  Dim pRelQueryTab As ITable

  Set pRelQueryTableFact = New RelQueryTableFactory

  Set pRelQueryTab = pRelQueryTableFact.Open(pRelClass, True, Nothing, _

   Nothing, “”, True, True)

  Dim pCursor As ICursor

  Set pCursor = pRelQueryTab.Search(Nothing, True)

  Dim pField As IField

  Dim pFields As IFields

  Dim intI As Integer, intJ As Integer

  Set pFields = pCursor.Fields

  intI = pFields.FieldCount - 1

  For intJ = 0 To intI

    Set pField = pFields.Field(intJ)

    Debug.Print pField.Name

  Next intJ

The VersionChanged method is called internally when the database
version is changed. This method allows a RelQueryTable to update the
internal workspaces of the underlying data sources.

RELQUERYTABLE CLASS



950 • Exploring ArcObjects • Volume 2

 IRelQueryTable : IUnknown Provides access to members that define the datasets and
relationship used in a join.

DestinationTable: ITable The fields that appear on the right side of the join belong to the
destination table.

RelationshipClass: IRelationshipClass Relationship class used in the table join.
SourceTable: ITable The fields that appear on the left side of the join belong to the source

table.

The IRelQueryTable interface allows you to get the source and destina-
tion as well as the RelationshipClass or MemoryRelationshipClass used to
define the RelQueryTable. The source and destination can be tables,
feature classes, or even other RelQueryTables.

For example, if you wanted to join two tables to a feature class, you
would first create a RelQueryTableA to join one of the tables to the
feature class. You would then create a RelQueryTableB to join the sec-
ond table to RelQueryTableA. RelQueryTableA would be the source for
RelQueryTableB. The diagram to the left illustrates how this works.

The following code example shows how to step through a
RelQueryTable’s source and destination and prints the names of the
joined tables and feature classes. This list is similar to the list of joined
tables and feature classes that you see in the Joins and Relates tab in the
Layer or Table Properties dialog boxes in ArcMap.

  Dim pFeatureLayer As IFeatureLayer

  Set pFeatureLayer = GetLayer(0)

  Dim pTable As ITable, pDisplayTable As IDisplayTable

  Set pDisplayTable = pFeatureLayer

  Set pTable = pDisplayTable.DisplayTable

  Dim pRelQueryTable As IRelQueryTable, pDestTable As ITable

  Dim pDataset As IDataset, sOut As String

  Do While TypeOf pTable Is IRelQueryTable

    Set pRelQueryTable = pTable

    Set pDestTable = pRelQueryTable.DestinationTable

    Set pDataset = pDestTable

    sOut = sOut & pDataset.Name & vbNewLine

    Set pTable = pRelQueryTable.SourceTable

  Loop

  MsgBox "The joined tables include:" & vbNewLine & sOut

The first four lines of the code example show how to use the
IDisplayTable interface to get the RelQueryTable from a feature layer in
ArcMap. The FeatureLayer class in ArcMap implements ITable, but
changing to this returns the FeatureLayer object’s implementation of
ITable, not a RelQueryTable object. You must use the IDisplayTable
interface to get a layer or standalone table object’s RelQueryTable in
ArcMap.

RELQUERYTABLE CLASS

The source is on the left and the
destination is on the right.

RelQueryTableB

RelQueryTableA TableB

FeatureClass TableA

Joins TableA to
the FeatureClass

Joins TableB to the
FeatureClass and
TableA



Chapter 8 • Accessing the geodatabase • 951

G
eo

d
at

ab
as

e

 IRelQueryTableInfo : IUnknown Provides access to members that provide information
about joins.

HasDirectAccessLookup (pDirectAccess:
Boolean)

Indicates if direct access lookup is used by a RelQueryTable to
match records between the source and destination tables.

JoinType: esriJoinType Type of table join.
QueryDef: IQueryDef QueryDef used to create the join. This property will be null if the

join is done on the client.

GetBaseTableOfField (in dbColumn:
String) : ITable

Returns the base table for a particular field.

The IRelQueryTableInfo interface returns the join type, which can be
either esriLeftInnerJoin or esriLeftOuterJoin. A left outer join ensures that
all records in the source are returned. A left inner join only returns rows
that have matching key field values. The diagram to the left illustrates
the difference.

The QueryDef property returns the query that is used to retrieve the
joined data when processing is done on the server. If the join is pro-
cessed on the client as opposed to a server, the QueryDef property
returns a Null or a Nothing object in Visual Basic.

If all tables involved are stored on the same ArcSDE server of the per-
sonal geodatabase, the processing can be performed by the server,
which is normally faster. The JoinType property must also be
esriLeftInnerJoin in order for processing to occur on the server. In any
other case, processing occurs on the client.

The GetBaseTableOfField method returns the underlying table object that
is associated with a field in a RelQueryTable. To ensure that the column
will be found, provide a fully qualified field name when executing this
method.

HasDirectAccessLookup returns True if the destination table supports the
IRandomAccessCursor interface and the source table has an ObjectID
field. This interface allows for faster data access and therefore better
join performance. Tables from shapefile and ArcInfo Workspace facto-
ries support this interface.

 IVirtualTable : IUnknown Identity interface for temporary memory tables.

A class that implements IVirtualTable represents an abstract representa-
tion of data. The data returned by this class is modified or enhanced in
some way. RelQueryTables are virtual because they return rows that are a
join of two other rows. Event layers are also virtual, as they return a
feature class from a simple table. The IVirtualTable interface does not
have any properties or methods. The pure presence of the interface tells
you that it’s a virtual table.

RELQUERYTABLE CLASS

Left outer join

1

2

3

A

B

C

D

E

B

F

D

A

B

C

D

E

1

2

Left inner join

1

2

3

A

B

C

D

E

B

F

D

B

D

1

2



952 • Exploring ArcObjects • Volume 2

A RelQueryCursor is created when you open a cursor on a RelQuery-
Table. You can use methods such as Search from ITable and IFeatureClass
to open the cursor. Since it inherits from cursor, it implements ICursor and
will implement IFeatureCursor if the RelQueryTable has geometry.

A RelQueryCursor is read-only; therefore, performing edits using the
IRow::Delete and IRow::Store methods is not supported. Also, trying to
open an insert or update cursor will result in an error since there is no
insert or update RelQueryCursor.

 ICursor : IUnknown Cursor Interface.

Fields: IFields Return the Fields collection for this cursor.

DeleteRow Delete the existing row in the database corresponding to the current
position of the cursor

FindField (in Name: String) : Long The index of the field with the specified name.
Flush Flush any outstanding buffered writes to the database.
InsertRow (in Buffer: IRowBuffer) :

Variant
Insert a new row into the database using the property values in the

input buffer. The object ID of the new row, if there is one, is
returned

NextRow: IRow Advance the position of the cursor by one and return the Row object
at that position.

UpdateRow (in Row: IRow) Update the existing row in the database corresponding to the current
position of the cursor

The ICursor interface provides access to a set of rows.

Fields Returns the fields of RelQueryTable.

DeleteRow Method is not supported since update cursors are not supported. An error will be returned if
you try to use this method.

FindField
Returns the index of field with the given name. If the field does not exist, -1 is returned. It is
good practice to provide a fully qualified field name (tablename.fieldname) with this method. If it
is not fully qualified, it may not be found in the RelQueryTable.

Flush Method is not supported since update and insert cursors are not supported. An error will be
returned if you try to use this method.

InsertRow Method is not supported since update cursors are not supported. An error will be returned if
you try to use this method.

NextRow Moves the cursor to the next row and returns the Row object at that position.

UpdateRow Method is not supported since update cursors are not supported. An error will be returned if
you try to use this method.

Member Behavior with a MemoryRelationshipClass

The table above outlines how the properties and methods of ICursor
behave when used on a RelQueryCursor.

 IFeatureCursor : IUnknown Feature Cursor Interface.

Fields: IFields Return the Fields collection for this cursor.

DeleteFeature Delete the existing Feature in the database corresponding to the
current position of the cursor

FindField (in Name: String) : Long The index of the field with the specified name.
Flush Flush any outstanding buffered writes to the database.
InsertFeature (in Buffer: IFeatureBuffer)

: Variant
Insert a new Feature into the database using the property values in

the input buffer. The ID of the new Feature is returned
NextFeature: IFeature Advance the position of the cursor by one and return the Feature

object at that position.
UpdateFeature (in Object: IFeature) Update the existing Feature in the database corresponding to the

current position of the cursor

The IFeatureCursor interface provides access to a set of features in a
RelQueryTable and operates the same way as ICursor. The information
provided in the above text for ICursor can also be applied to IFeature-
Cursor interface. As with ICursor, the InsertFeature, UpdateFeature,
DeleteFeature, and Flush methods are not supported by RelQueryTable.

RELQUERYCURSOR CLASS

Cursor
ICursor

RelQuery-
Cursor

IFeatureCursor
(optional)

A RelQueryCursor is a tool that
references the rows in a RelQuery-

Table.

Each row returned by the cursor includes fields
from both the source and destination tables with
the source fields on the left. Each row from the

source and destination tables is matched
according to the join fields to create a single

row.

For more information on cursors in general, see
the Cursor and FeatureCursor objects topic.



Chapter 8 • Accessing the geodatabase • 953

G
eo

d
at

ab
as

e

A RelQueryRow can be obtained from a cursor (ICursor::NextRow) or
methods, such as ITable::GetRow. The ITable::CreateRow method is not
supported and will return an error if used.

 IRow : IRowBuffer Row  Interface.

HasOID: Boolean True if the row has an OID.
OID: Long The OID for the row.
Table: ITable The table for the row.

Delete Deletes the row.
Store Stores the row.

 IRowBuffer : IUnknown Row Buffer Interface.

Fields: IFields The Fields collection for this row buffer.
Value (in Index: Long) : Variant Return the value of the field with the specified  index.

The IRow and IRowBuffer interfaces are always implemented by a
RelQueryRow. The IFeature, IFeatureBuffer, and IFeatureDraw interfaces
are only implemented if the RelQueryTable has a geometry field. A
RelQueryRow is read-only; therefore, some of the properties and meth-
ods may not be supported.

For more information on rows in general, see the RowBuffer and Row
objects topic as well as the Object and Feature object topics. The inter-
faces implemented by RelQueryRow are documented with those objects.

The IRowBuffer interface can be used to retrieve values from the
RelQueryRow; the same can be done with IRow since IRow inherits this
interface. The IRowBuffer::Value set method is not supported and will
return an error if used with a RelQueryRow.

The IRow interface provides methods and properties to read and write
data as well as delete rows. A RelQueryRow does not support the mem-
bers that allow the data to be changed. An error is returned if the set
value property or the store and delete methods are used. The hasOID,
OID, and Table properties return valid results.

 IObject : IRow Object Interface.

Class: IObjectClass The object class for the row.

The IObject interface inherits from IRow and IRowBuffer. It also includes
a class property that returns an IObjectClass reference to the
RelQueryTable.

RELQUERYROW CLASS

RelQueryRow

IFeature (optional)
IFeatureBuffer (optional)
IFeatureDraw (optional)

IObject
IRow

IRowBuffer

A RelQueryRow represents a row of
data in a RelQueryTable.



954 • Exploring ArcObjects • Volume 2

 IFeature : IObject Feature Interface.

Extent: IEnvelope The extent of the feature.
FeatureType: esriFeatureType The type of the feature.
Shape: IGeometry Returns a reference to the default shape for the feature.
ShapeCopy: IGeometry Returns a cloned copy of the default shape for the feature.

The IFeature interface inherits from IObject and IRow, plus has addi-
tional properties that apply to a shape in a RelQueryRow. All properties
are valid except for the IFeature::Shape set method, which will return an
error.

 IFeatureBuffer : IRowBuffer Feature Buffer Interface.

Shape: IGeometry The default shape in the feature buffer.

The IFeatureBuffer interface inherits from and performs the same opera-
tions as the IRowBuffer, plus it allows the shape to be retrieved indepen-
dently from a RelQueryRow. All properties are valid except the
IFeatureBuffer::Shape set method, which returns an error.

 IFeatureDraw : IUnknown Interface for custom drawing by a feature.

InvalidArea: IInvalidArea The area to be drawn.

Draw (in drawPhase:
tagesriDrawPhase, in Display:
IDisplay, in Symbol: ISymbol, in
symbolInstalled: Boolean, in
Geometry: IGeometry, in DrawStyle:
esriDrawStyle)

Draws the feature on the display.

For more information on IFeatureDraw, see the Feature object topic.

RELQUERYROW CLASS



Chapter 8 • Accessing the geodatabase • 955

G
eo

d
at

ab
as

e

A MemoryRelationshipClassName object is a representation of a Memory-
RelationshipClass object. A MemoryRelationshipClassName can be used
to create new, work with existing, or persist MemoryRelationshipClasses.

 IMemoryRelationshipClass : IUnknown Provides access to members that initialize a memory
relationship class.

Init (Name: String, pOriginPrimaryClass:
IObjectClass, originPrimaryKeyField:
String, pOriginForeignClass:
IObjectClass, originForeignKeyField:
String, ForwardPathLabel: String,
BackwardPathLabel: String,
Cardinality: esriRelCardinality)

Initializes an in-memory relationship class

The IMemoryRelationshipClassName interface contains properties that
correspond to the parameters used with the IMemoryRelationshipClass-
Factory::Open method. These include the Origin and Destination tables,
the fields, and the forward and backward pathnames.

The only parameters from the IMemoryRelationshipClassFactory::Open
method that don’t have a corresponding property in IMemoryRelationship-
ClassName are the name and the cardinality. The name can be set using
the IDatasetName interface, and the cardinality can be set using the
IRelationshipClassName interface. Both of these interfaces are inherited by
MemoryRelationshipClassName.

When creating a new MemoryRelationshipClass using a
MemoryRelationshipClassName object, only the properties described
above need to be set. The example below creates a new
MemoryRelationshipClass from a MemoryRelationshipClassName.
  Dim pMemoryRelationshipClassName As IMemoryRelationshipClassName
  Set pMemoryRelationshipClassName = New MemoryRelationshipClassName
  With pMemoryRelationshipClassName
    Set .OriginName = pOriginName
    Set .DestinationName = pDestinationName
    .OriginPrimaryKey = "STATE_FIPS"
    .OriginForeignKey = "STATE_FIPS"
    .ForwardPathLabel = "forward"
    .BackwardPathLabel = "backward"
  End With

  Dim pRelationshipClassName As IRelationshipClassName
  Set pRelationshipClassName = pMemoryRelationshipClassName
  pRelationshipClassName.Cardinality = esriRelCardinalityOneToOne
  Dim pDatasetName As IDatasetName
  Set pDatasetName = pRelationshipClassName
  pDatasetName.Name = "New_MemRC"

  Dim pName As IName
  Set pName = pRelationshipClassName
  Dim pMemoryRelationshipClass As IMemoryRelationshipClass
  Set pMemoryRelationshipClass = pName.Open
  Dim pRelationshipClassCollectionEdit as IRelationshipClassCollectionEdit
  Dim pRelationshipClassCollectionEdit = pFeatureLayer
  pRelationshipClassCollectionEdit.AddRelationshipClass _
    pMemoryRelationshipClass

Since a MemoryRelationshipClass implements
IDataset, you can use the IDataset::FullName

property to get a
MemoryRelationshipClassName object that

corresponds to an existing
MemoryRelationshipClass.

MEMORYRELATIONSHIPCLASSNAME  COCLASS

For more information on Name objects in
general, see the Name objects topics.

Name
IName

DatasetName
IDatasetName

Relationship-
ClassName

IRelationshipClass-
Name

Memory-
Relationship-
ClassName

IMemoryRelationship
-ClassName

A memory relationship class name can
be used to create new, or work with

existing, memory relationship classes.



956 • Exploring ArcObjects • Volume 2

A RelQueryTableName is a representation of a RelQueryTable. A
RelQueryTableName can be used to create new, work with existing, or
persist RelQueryTables.

For more information on name objects in general, see the Name objects
topics.

 IRelQueryTableName : IUnknown Provides access to members that define a relationship
query table name.

DoNotPushJoinToDB: Boolean Indicates if the join is processed on the client.
ForwardDirection: Boolean Indicates if the originPrimaryClass of the RelationshipClass is the

SourceTable.
LeftOuterJoin: Boolean Indicates if the type of join will be a left outer join.
RelationshipClassName: IName The name object for the RelationshipClass that defines the

RelQueryTable.
SrcQueryFilter: IQueryFilter A QueryFilter applied to a cursor opened from the RelQueryTable.
SrcSelectionSet: ISelectionSet A SelectionSet applied to a cursor opened from the RelQueryTable.
TargetColumns: String The destination dataset columns available in a cursor opened from

the RelTableTable.

The IRelQueryTableName interface contains properties that correspond
to the parameters used with the IRelQueryTableFactory::Open method
described above.

The following code shows how to create a new RelQueryTable from a
RelQueryTableName object. In this example, the
MemoryRelationshipClassName has already been created.

  Dim pRelQueryTableName As IRelQueryTableName

  Set pRelQueryTableName = New RelQueryTableName

  With pRelQueryTableName

    Set .RelationshipClassName = pMemoryRelationshipClassName

    .ForwardDirection = True

    .DoNotPushJoinToDB = True

    .TargetColumns = ""

    .LeftOuterJoin = True

    Set .SrcQueryFilter = Nothing

    Set .SrcSelectionSet = Nothing

  End With

  Dim pName As IName

  Set pName = pRelQueryTableName

  Dim pRelQueryTable As IRelQueryTable

  Set pRelQueryTable = pName.Open

The IDataset::FullName method can be used on an existing
RelQueryTable object to get a corresponding RelQueryTableName object.

RELQUERYTABLENAME COCLASS

Name
IName

DatasetName
IDatasetName

RelQuery-
TableName

IRelQueryTableName

A RelQueryTable name can be used to
create new, and work with existing,

RelQueryTables and memory relation-
ship classes.



Chapter 8 • Accessing the geodatabase • 957

G
eo

d
at

ab
as

e

Dynamic segmentation objects

A locator knows how to transform
a spatial description into a shape

A route locator knows how to
transform a route location into a shape

A route measure
locator is a specific

kind of route locator
that requires a route
identifier and one or
two measure values

A route event source
serves an event table
as a dynamic feature

class

A route location describes either
a precise location along a route or

a portion of a route between a
from- and to-measure

Route event properties
describe the characteristics

of an event table

IEventSourceErrors
IRouteEventSource RouteEvent-

Source
*

**

IRouteMeasureLineLocation Route-
Measure-

LineLocation

Route-
Measure-
Locator

LocatorName
ILocatorName

Route-
Measure-

LocatorName

IRouteLocatorName
RouteEvent-
SourceName

IFeatureClassName
IRouteEventSourceName

DatasetName
IDatasetName

Name
IName

A route measure locator name
refers to a route measure locator

A locator name refers to a
locator

Route-
Measure-

Geoprocessor

IRouteMeasureEventGeoprocessor
A route measure event geoprocessor facilitates
event overlay, dissolve and concatenation

A route event
source name object
refers to a route
event source

IRouteMeasure-
PointProperties

Route-
MeasurePoint-

Properties

IRouteMeasureLine-
Properties

Route-
MeasureLine-

Properties
IRouteMeasurePointLocation Route-

Measure-
PointLocation

Route-
Measure-
Location

IRouteLocation

RouteEvent-
Properties

IRouteEvent-
Properties

Table
IClass
ITable

ITable2

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Dataset
IDataset

IDatasetAnalyze (optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Feature-
Class

IFeatureClass
IFeatureClassLoad (optional)

IFeatureClassWrite
IGeoDataset

INetworkClass

Locator
ILocator

ILocatorFullName

RouteLocator
IRouteLocator



958 • Exploring ArcObjects • Volume 2

Dynamic segmentation concepts

An event is a row in an
event table. An event has
a route location (either

point or line).

51A1011
97A1012
2015A1013

OID RID From_M To_M

12A1011
7.5A1012

OID RID Mile

0.0

20.0

A point event table contains many point events.
Each point event has a route location.

A route is a polyline feature with m-values

A line event table contains many line events.
Each line event has a route location.

Route A101

The identifier for each route is stored in any
numeric or text field.

A calibrated linear feature, or route, is simply a polyline feature
that has m- (measure) values and an identifier.

Route locations can be organized into tables based on a common theme. These are called event tables. For example, five event
tables containing information on speed limits, year of resurfacing, present condition, signs, and accidents can reference a route
feature class representing highways.

An event table is any table that contains a route identifier field and at least one measure field. Tables containing point route
locations have one measure field while tables containing line route locations have two. The route identifier field matches the
route identifier in the route feature class (does not have to have the same name).

Dynamic segmentation is the process of computing the shape of route locations along calibrated
linear features at runtime based on event tables for which distance measures are available.

In a route event source, there
is one feature for every row of

the original event table.
Sometimes, however, the

features have empty shapes.
This is because there was

some reason the event could
not be properly located.

Other times, an event can only
be partially located (this

happens for line events only).
These are some sample errors

codes.

A route event source serves an event table as a "dynamic" feature class. Every row in the table is served
as a feature whose shape is calculated on the fly every time it is asked for. This is dynamic segmentation.

1A1011
-5A1012

OID RID From_M

15A1013
35A1013

LOCATING_OK
LOCATING_E_FROM_PARTIAL_MATCH

Error

LOCATING_E_TO_PARTIAL_MATCH
LOCATING_E_CANT_FIND_EXTENT

5
9

To_M

25
45

1A1011
-5A1012

OID RID
LOCATING_OK
LOCATING_E_CANT_FIND_LOCATION

ErrorMile



Chapter 8 • Accessing the geodatabase • 959

G
eo

d
at

ab
as

e

Locator is an abstract class that specifies the interfaces common to all types of
locator objects. Types of locators include addresses, x,y coordinates, routes,
and place names. Locators combine reference data and a location method.

 ILocator : IUnknown Provides access to members that describe general locator
properties.

Category: String Category of the locator.
Description: String Description of the locator.
Name: String Name of the locator.
UserInterface: ILocatorUI User interface for the locator.

The ILocator interface provides access to the properties of a locator.

 ILocatorFullName : IUnknown Provides access to the Name object for the locator.

FullName: ILocatorName The Name object for the locator.

The ILocatorFullName interface provides access to the name property of
a Locator so that it may be persisted.

RouteLocator is an abstract class. A RouteLocator knows how to trans-
form a route location into a shape that can be displayed on a map.

Route locations describe either a precise location along a route or a
portion of a route between a from- and to-measure (see the discussion
on RouteMeasureLocator on the next page).

 IRouteLocator : IUnknown Provides access to properties and methods of a route
locator.

Extent: IEnvelope The route locator's extent (same as a route feature class' extent).
HasSpatialIndex: Boolean Indicates if the route feature class has a spatial index.
MeasureUnit: esriUnits The unit of the route measures.
RouteFeatureClass: IFeatureClass The route feature class (Polyline with m feature class).
RouteIDFieldIndex: Long The field index of the route identifier.
RouteIDFieldName: String The route identifier field from the route feature class.
RouteIDFieldNameDelimited: String The delimited route identifier field of the route feature class.
RouteIDIsString: Boolean Indicates if the route identifier field type is string.
RouteIDIsUnique: Boolean Indicates the uniqueness of each route identifer in the route feature

class.
RouteWhereClause: String The where clause that limits the routes on which events can be located.
SpatialReference: ISpatialReference The route locator's spatial reference (same as route feature class'

spatial reference).

GetRouteGeometry (in routeLocation:
IRouteLocation, out routeGeometry:
IGeometry, out locatingError:
tagesriLocatingError)

The routes corresponding to the route location.

Locate (in routeLocation:
IRouteLocation, out result: IGeometry,
out locatingError: tagesriLocatingError)

Locates a point or line route location.

LocateRow (in EventProperties:
IRouteEventProperties, in Row: IRow,
out result: IGeometry, out
locatingError: tagesriLocatingError)

Locates an event table row containing a point or line route location.

The IRouteLocator interface is useful for retrieving the properties of a
RouteLocator object and for determining the shape of route locations
and events (see example following the discussion on route locations).

For route locators, the RouteFeatureClass class can be a coverage route
system, a PolyLineM shapefile, or a PolyLine feature class (with m-values)
in a geodatabase (Access or ArcSDE). This means routes are stored in a
feature class where IGeometryDef::GeometryType = esriGeometryPolyLine
and IGeometryDef::HasM = True.

Locator
ILocator

ILocatorFullName

Locators know how to transform a
spatial description into a shape that can

be placed on a map.

Locator
ILocator

ILocatorFullName

RouteLocator
IRouteLocator

A route locator knows how to transform
a route location into a shape.

LOCATOR AND ROUTELOCATOR ABSTRACT CLASSES



960 • Exploring ArcObjects • Volume 2

A RouteMeasureLocator is one type of RouteLocator. It determines the
shape of a route location by matching the route location’s measure
values to those stored in a route feature. A RouteMeasureLocator is cre-
ated via its Name object counterpart, RouteMeasureLocatorName.

The IRouteLocatorName interface is used to retrieve the properties of a
RouteLocator object.

Locator
ILocator

ILocatorFullName

RouteLocator
IRouteLocator

Route-
Measure-
Locator

A route measure locator is a type of
route locator that determines that a

route location’s position is by the mea-
sure values along a route.

ROUTEMEASURELOCATOR COCLASS



Chapter 8 • Accessing the geodatabase • 961

G
eo

d
at

ab
as

e

LocatorName is an abstract class that can be used to refer to a Locator
object.

RouteLocatorName is an abstract class that can be used to refer to a
RouteLocator object.

RouteMeasureLocatorName is a class that can be used to refer to a
RouteMeasureLocator object. It is a specific implementation of
LocatorName and RouteLocatorName.

 IRouteLocatorName : IUnknown Provides access to route locator name properties.

RouteFeatureClassName: IName The route feature class name (Polyline with m feature class name).
RouteIDFieldName: String The route identifier field of the route feature class.
RouteIDIsUnique: Boolean Indicates the uniqueness of each route identifer in the route feature

class.
RouteMeasureUnit: esriUnits The route measure unit.
RouteWhereClause: String The where clause that limits the routes on which events can be located.

All route locator name classes implement the IRouteLocatorName inter-
face. This interface is used for setting and retrieving the properties of a
RouteLocatorName object. Some things to note about this interface:

• RouteFeatureClassName is a polyline feature class with m-values.

• RouteIDFieldName is any numeric or text field containing the route
identifiers. This field relates to a similar field in an event table

• RouteIDIsUnique is set to True if every route feature has a unique ID.
Dynamic segmentation runs faster when this is True.

• RouteMeasureUnits are the units of the m-values stored in the routes.
The default is esriUnknownUnits.

• RouteWhereClause is a string that limits the number of routes on
which route locations can be found.

The RouteIDIsUnique property is particularly important. If you set this to
False and the route IDs are unique, then the dynamic segmentation
process will produce the correct results (but will be slower). However, if
you set this to True and the route IDs are not unique, the dynamic
segmentation process will only look for one occurrence of a particular
RouteID and could produce erroneous results. The default is False. This
setting is only applicable to route feature classes in a geodatabase (per-
sonal or ArcSDE).

The following example shows how to create a RouteMeasureLocator via
a RouteMeasureLocatorName.

  Dim pName As IName

  Dim pDS As IDataset

  Dim pRtLocatorName As IRouteLocatorName

  Dim pRtLocator As IRouteLocator

  Set pDS = pRouteFC   ' A PolyLineM feature class

  Set pName = pDS.FullName

  Set pRtLocatorName = New RouteMeasureLocatorName

LOCATORNAME AND ROUTEMEASURELOCATORNAME

LocatorName
ILocatorName

Route-
Measure-

LocatorName

IRouteLocatorName

Name
IName

A locator name refers to a locator object.

A route measure locator name refers to
a route measure locator object.



962 • Exploring ArcObjects • Volume 2

  With pRtLocatorName

    Set .RouteFeatureClassName = pName

    .RouteIDFieldName = "rKey"

    .RouteIDIsUnique = True

    .RouteMeasureUnit = esriMeters

  End With

  Set pName = pRtLocatorName

  Set pRtLocator = pName.Open

LOCATORNAME AND ROUTEMEASURELOCATORNAME



Chapter 8 • Accessing the geodatabase • 963

G
eo

d
at

ab
as

e

A RouteMeasureLocation describes a portion of a route or a single posi-
tion along a route.

 IRouteLocation : IUnknown Provides access to route location properites.

LateralOffset: Double The route location's lateral offset (default 0.0).
MeasureUnit: esriUnits The route location's measure units.
RouteID: Variant The route identifier (string, integer, or double).

The IRouteLocation interface lets you define the properties of a route
location. For example, route locations occur along a single route, so you
set that value here. Additionally, you identify the units in which the
route location was collected and specify whether you want the route
location’s shape offset from its route when it is located.

Offsets are in the spatial reference units of the route feature class (and
not necessarily the same units as the route feature class’ measures).
Therefore, an offset on route data stored in geographic units might
produce inconsistent results. Offsets are used for rendering purposes
only.

Setting the IRouteLocation::MeasureUnit property enables you to do on-
the-fly measure conversion. This property corresponds to
IRouteLocator::RouteMeasureUnit. For example, you may know the posi-
tion of a route location in miles, but your route feature class has its
measures stored in meters. By setting these values accordingly, you can
achieve measure conversion.

RouteMeasureLineLocation is a class that describes portions of a route
using from and to measure locations.

 IRouteMeasureLineLocation : IUnknown Provides access to point specific route-measure location
properties.

FromMeasure: Double The from measure value.
ToMeasure: Double The to measure value.

The IRouteMeasureLineLocation interface is where you set the route
location’s from- and to-measure values. For example, say you wanted to
find a location from 2,500 meters to 3,500 meters along route 10. Fur-
thermore, you want this location to be offset 25 meters from the route.
Your code would look like this:

  Dim pRouteLoc As IRouteLocation

  Dim pRMLineLoc As IRouteMeasureLineLocation

  Set pRouteLoc = New RouteMeasureLineLocation

  With pRouteLoc

    .MeasureUnit = esriMeters

    .RouteID = 10

    .LateralOffset = 25

  End With

  Set pRMLineLoc = pRouteLoc

  pRMLineLoc.FromMeasure = 2500

  pRMLineLoc.ToMeasure = 3500

ROUTE MEASURE LOCATION CLASSES

IRouteMeasure-
LineLocation

Route-
Measure-

LineLocation

IRouteMeasure-
PointLocation

Route-
Measure-

PointLocation

Route-
Measure-
Location

IRouteLocation

A route measure location describes a
portion of a route or a single position

along a route.

A route measure line location uses from
and to measure values to describe a

portion of a route.

A route measure point location uses a
single measure value to describe a single

position along a route.



964 • Exploring ArcObjects • Volume 2

A RouteMeasurePointLocation is a class that uses a single m-value to
describe a single position along a route.

 IRouteMeasurePointLocation :
 IUnknown

Provides access to point specific route-measure location
properties.

Measure: Double The measure value.

The IRouteMeasurePointLocation interface is where you set the route
location’s m-value. For example, if you wanted to find a location
565.5 meters along route 10, your code would look like this:

  Dim pRouteLocation As IRouteLocation

  Dim pRMPointLoc As IRouteMeasurePointLocation

  Set pRouteLocation = New RouteMeasurePointLocation

  With pRouteLocation

    .MeasureUnit = esriMeters

    .RouteID = 10

    .LateralOffset = 0

  End With

  Set pRMPointLoc = pRouteLocation

  pRMPointLoc.Measure = 565.5

Once you have created a route location, determine its geometry by
calling the IRouteLocator::Locate method (refer to the examples above to
see how the RouteLocator object was created).

  Dim pGeom As IGeometry

  Dim LocError As esriLocatingError

  pRtLocator.Locate pRMPointLoc, pGeom, LocError

ROUTE MEASURE LOCATION CLASSES



Chapter 8 • Accessing the geodatabase • 965

G
eo

d
at

ab
as

e

An event table is a table that stores route locations and associated
attributes. An event, therefore, is a row from an event table. For ex-
ample, an event may be a speed limit of 110 km/h on route 50 from
km 92 to 138. In this case, the route location information of route 50
between km 92 and 138 is used to reference an attribute to a particular
portion of a route in a route feature class.

You need to create RouteEventProperties in order to identify certain
characteristics of the table so that it can be recognized as an event
table. RouteEventProperties are helper objects for a RouteEventSource.

 IRouteEventProperties : IUnknown Provides access to the properties of an event table.

EventMeasureUnit: esriUnits The units of the event measures.
EventRouteIDFieldName: String The route identifier field name.
IsALineEvent: Boolean Is a line event.
LateralOffsetFieldName: String The lateral offset field name.

GetSettingError The state of the object (see if all the required field names have been
set).

The IRouteEventProperties interface establishes the route key field, the
measure units the events were collected in, and (optionally) the lateral
offset field.

Note that the route key (EventRouteIDFieldName) defined on this inter-
face is related to the RouteIDFieldName property on both IRouteLocator
and IRouteLocatorName. This is how events are located along their
respective routes.

The EventRouteIDFieldName does not have to have the same name as
the RouteIDFieldName, but it must store similar data.

RouteMeasureLineProperties is a class used to specify the characteristics
of a line event table.

 IRouteMeasureLineProperties :
 IUnknown

Provides access to the route measure properties unique to
line event tables.

FromMeasureFieldName: String The from-measure field name.
ToMeasureFieldName: String The to-measure field name.

The IRouteMeasureLineProperties interface is where you identify the line
event table’s from- and to-measure fields. Each line event’s measures
reflect the distance from the lowest measure along its route. To set up
line event properties where your table has an offset field, your code
would look like this:

  Dim pRtProp As IRouteEventProperties

  Dim pRMLineProp As IRouteMeasureLineProperties

  Set pRtProp = New RouteMeasureLineProperties

  With pRtProp

    .EventMeasureUnit = esriMeters

    .EventRouteIDFieldName = "rKey"

    .LateralOffsetFieldName = "Offset"

  End With

  Set pRMLineProp = pRtProp

ROUTE EVENT PROPERTIES CLASSES

IRouteMeasure-
PointProperties

RouteEvent-
Properties

IRouteEvent-
Properties

IRouteMeasureLine-
Properties

Route-
MeasureLine-

Properties

Route-
MeasurePoint-

Properties

Route event properties are used to
identify the characteristics of an

event table.

Route-measure line properties are used
to specify the characteristics of a line

event table.

Route-measure point properties are used
to specify the characteristics of a point

event table.



966 • Exploring ArcObjects • Volume 2

ROUTE EVENT PROPERTIES CLASSES

  pRMLineProp.FromMeasureFieldName = "fmp"

  pRMLineProp.ToMeasureFieldName = "tmp"

RouteMeasurePointProperties is a class used to specify the characteristics
of a point event table.

 IRouteMeasurePointProperties :
 IUnknown

Provides access to the route measure properties unique to
point event tables.

MeasureFieldName: String The measure field name.

The IRouteMeasurePointProperties interface is where you identify the
point event table’s measure field. Each point event’s measure reflects the
distance from the lowest measure along its route. To set up point event
properties on a table where you have no offset field, your code would
look like this:

  Dim pRtProp As IRouteEventProperties

  Dim pRMPointProp As IRouteMeasurePointProperties

  Set pRtProp = New RouteMeasurePointProperties

  With pRtProp

    .EventMeasureUnit = esriMeters

    .EventRouteIDFieldName = "rKey"

  End With

  Set pRMPointProp = pRtProp

  pRMPointProp.MeasureFieldName = "mile"



Chapter 8 • Accessing the geodatabase • 967

G
eo

d
at

ab
as

e

ROUTEEVENTSOURCE COCLASS

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Table
IClass
ITable

ITable2

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Feature-
Class

IFeatureClass
IFeatureClassLoad

(optional)
IFeatureClassWrite

IGeoDataset
INetworkClass

IEventSourceErrors
IRouteEventSource RouteEvent-

Source

A route event source serves an event
table as a “dynamic” feature class.

A RouteEventSource serves an event table as a “dynamic” feature class.
Every row in the table is served as a feature whose shape is calculated
on the fly every time it is asked for. This is dynamic segmentation.

 IRouteEventSource : IUnknown Provides access to the route event source properties.

EventProperties: IRouteEventProperties The route event properties.
EventTable: ITable The table of containing route events.
ExpandDistance: Double The distance used to expand spatial searches for laterally offset

events.
RouteLocator: IRouteLocator The route locator.

In order to serve an event table as a feature class, a RouteEventSource
needs to know things such as the event table, the RouteEventProperties,
and the RouteLocator. The IRouteEventSource interface retrieves this
information.

Just like the locator objects outlined earlier, a RouteEventSource is cre-
ated via its name object counterpart, RouteEventSourceName.



968 • Exploring ArcObjects • Volume 2

A RouteEventSourceName specifies a RouteEventSource object and can
be used to instantiate it.

 IRouteEventSourceName : IUnknown Provides access to the route event source name properties.

EventProperties: IRouteEventProperties The route event properties.
EventTableName: IName The name object for the table containing route events.
RouteLocatorName:

IRouteLocatorName
The name object of the route locator.

The IRouteEventSourceName interface sets the event table, the
RouteEventProperties, and the RouteLocator. The following example
shows how to create a RouteEventSource via a RouteEventSourceName.
Here, the RouteMeasurePointProperties and the RouteLocatorName are
already created. These values are set using IRouteEventSourceName.
  Dim pDS As IDataset
  Dim pName As IName
  Set pDS = pEventTable
  Set pName = pDS.FullName

  Dim pRESN As IRouteEventSourceName
  Set pRESN = New RouteEventSourceName
  Set pRESN.EventTableName = pName
  Set pRESN.EventProperties = pRMPtProp
  Set pRESN.RouteLocatorName = pRtLocatorName

  Dim pRES As IRouteEventSource
  Set pName = pRESN
  Set pRES = pName.Open

ROUTEEVENTSOURCENAME COCLASS

Name
IName

DatasetName
IDatasetName

RouteEvent-
SourceName

IFeatureClassName
IRouteEventSource-

Name

A route event source name specifies a
route event source object and can be

used to instantiate it.

Enumeration tagesriRouteEventError

 -2147220968 - ROUTEEVENT_E_ROUTEFEATURECLASS_TOO_LARGE

 -2147220969 - ROUTEEVENT_E_CANT_CREATE_ROUTECURSOR

 -2147220970 - ROUTEEVENT_E_CANT_SELECT

 -2147220971 - ROUTEEVENT_E_EVENTPROPERTY_NOT_CORRECTLY_SETUP

 -2147220972 - ROUTEEVENT_E_NOT_DATASETNAME

 -2147220973 - ROUTEEVENT_E_SOURCENAME_NOT_CORRECTLY_SETUP

 -2147220974 - ROUTEEVENT_E_CANT_CONVERT_RID_STRING

 -2147220975 - ROUTEEVENT_E_INVALID_EVT_LOFIELD
 -2147220976 - ROUTEEVENT_E_CANT_FIND_EVT_LOFIELD

 -2147220977 - ROUTEEVENT_E_INVALID_EVT_TMFIELD

 -2147220978 - ROUTEEVENT_E_CANT_FIND_EVT_TMFIELD

 -2147220979 - ROUTEEVENT_E_INVALID_EVT_FMFIELD

 -2147220980 - ROUTEEVENT_E_INVALID_EVT_MFIELD

 -2147220981 - ROUTEEVENT_E_CANT_FIND_EVT_FMFIELD

 -2147220982 - ROUTEEVENT_E_CANT_FIND_EVT_MFIELD

 -2147220983 - ROUTEEVENT_E_INVALID_EVT_RIDFIELD

 -2147220984 - ROUTEEVENT_E_CANT_FIND_EVT_RIDFIELD

 -2147220985 - ROUTEEVENT_E_INVALID_EVENTPROPERTY_OBJECT

 -2147220986 - ROUTEEVENT_E_NOT_POLYLINEM_FEATURECLASS

 -2147220987 - ROUTEEVENT_E_INVALID_RIDFIELD

 -2147220988 - ROUTEEVENT_E_CANT_FIND_RIDFIELD

 -2147220989 - ROUTEEVENT_E_NOT_POLYLINE_FEATURECLASS

 -2147220990 - ROUTEEVENT_E_LOCATORNAME_NOT_CORRECTLY_SETUP

 -2147220991 - ROUTEEVENT_E_NOT_FEATURECLASSNAME

Error codes used by route event classes.

The route feature class is too large.

Cannot open a cursor on the route feature class.

The RouteEventSource doesn't have an OID column.

One or more missing event properties.

The Name must be a dataset name object.

The RouteSourceName object has not been correctly setup.

The route identifier value could not be converted to a string.

Invalid lateral offset field type.
The lateral offset field does not exist in the source table.

Invalid to-measure field type.

The to-measure field does not exist in the source table.

Invalid from-measure field type.

Invalid measure field type.

The from-measure field does not exist in the source table.

The measure field does not exist in the source table.

Invalid event route identifier field type.

The event route identifier field does not exist in the source table.

The route event property object is invalid.

The route feature class is not a Polyline with m's feature class.

Invalid route identifier field type.

The route identifer field does not exist in the route feature class.

The route feature class is not a Polyline feature class.

The RouteLocatorName object has not been correctly setup. Can't create the
RouteLocator object.

The name must be a feature class name object.

The esriRouteEventError enumeration
represents the errors you can get when trying to

open a route event source object.



Chapter 8 • Accessing the geodatabase • 969

G
eo

d
at

ab
as

e

Because a RouteEventSource is a subclass of a feature class, it can be
used anywhere a feature class can be. For example, a RouteEventSource
can act as the basis of a feature layer in ArcMap, and its attributes can
be edited directly with the editing tools in ArcMap.

There may be some limitations imposed by the event table, however. For
example, you will not be able to directly edit a feature class created
from a delimited text file table since the Editor does not allow text files
to be edited directly.

In a RouteEventSource, there is one feature for every row of the original
event table. In some cases, however, the features have empty shapes.
This is because there was some reason the event could not be properly
located. Other times, an event can only be partially located (this hap-
pens for line events only).

 IEventSourceErrors : IUnknown Provides access to members that deal with event source
errors.

GetErrorCursor (in Filter: IQueryFilter) :
ICursor

The cursor of the events with locating errors.

GetErrors: IEnumEventError The enumerator of the event source errors.
GetLocatingErrorOID (in OID: Long) :

tagesriLocatingError
The locating error associated with an event's OID.

GetLocatingErrorRow (in Row: IRow) :
tagesriLocatingError

The locating error associated with a row.

The IEventSourceErrors interface exposes some methods that allow you
to determine the locating errors of events.

The following example uses IEventSourceErrors::GetErrors to create an
enumeration of the event rows that did not locate properly.

Sub TestGetErrors(pRES As IRouteEventSource)

  Dim pESErrors As IEventSourceErrors

  Dim pEnum As IEnumEventError

  Dim pRow As IRow

  Dim LocError As esriLocatingError

  Set pESErrors = pRES

  Set pEnum = pESErrors.GetErrors

  pEnum.Next pRow, LocError

  Do While Not pRow Is Nothing

    Select Case LocError

      Case 0

        Debug.Print pRow.OID & ": LOCATING_OK"

      Case 1

        Debug.Print pRow.OID & ": LOCATING_E_INVALIDRID"

      Case 2

        Debug.Print pRow.OID & ": LOCATING_E_INVALIDMEASURE"

      Case 3

        Debug.Print pRow.OID & ": LOCATING_E_CANT_FIND_ROUTE"

      Case 4

        Debug.Print pRow.OID & ": LOCATING_E_ROUTE_SHAPE_EMPTY"

      Case 5

        Debug.Print pRow.OID & ": LOCATING_E_CANT_FIND_LOCATION"

      Case 6

ROUTEEVENTSOURCE COCLASS

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IValidation2

Table
IClass
ITable

ITable2

Dataset

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock (optional)

Feature-
Class

IFeatureClass
IFeatureClassLoad

(optional)
IFeatureClassWrite

IGeoDataset
INetworkClass

IEventSourceErrors
IRouteEventSource RouteEvent-

Source

A route event source serves an event
table as a dynamic feature class.



970 • Exploring ArcObjects • Volume 2

ROUTEEVENTSOURCE COCLASS

        Debug.Print pRow.OID & ": LOCATING_E_CANT_FIND_EXTENT"

      Case 7

        Debug.Print pRow.OID & ": LOCATING_E_FROM_PARTIAL_MATCH"

      Case 8

        Debug.Print pRow.OID & ": LOCATING_E_TO_PARTIAL_MATCH"

      Case 9

        Debug.Print pRow.OID & ": LOCATING_E_ROUTE_MS_NULL"

      Case 10

        Debug.Print pRow.OID & ": LOCATING_E_ROUTE_NOT_MAWARE"

      Case 11

        Debug.Print pRow.OID & ": LOCATING_E_ROUTE_FROM_TO_PARTIAL_MATCH"

      Case Else

        Debug.Print pRow.OID & ": INVALID_LOCATING_ERROR"

      End Select

      pEnum.Next pRow, LocError

  Loop

End Sub

Enumeration tagesriLocatingError Locating error codes.

0 - LOCATING_OK Locating was successful.
1 - LOCATING_E_INVALIDRID The route location's route ID is invalid (null, empty or invalid

value).
10 - LOCATING_E_ROUTE_NOT_MAWARE The route is not a polyline m aware.
2 - LOCATING_E_INVALIDMEASURE At least one of the route location's measure values is invalid.
3 - LOCATING_E_CANT_FIND_ROUTE The route does not exist.
4 - LOCATING_E_ROUTE_SHAPE_EMPTY The route does not have a shape or the shape is empty.
5 - LOCATING_E_CANT_FIND_LOCATION Could not find route location's shape (the route has no m values 

or the route location's measures don't exist on the route).
6 - LOCATING_E_CANT_FIND_EXTENT Could not find route location's shape, the from-measure and the

to-measure are outside of the route measures.
7 - LOCATING_E_FROM_PARTIAL_MATCH Could not find the entire route location's shape, the from-measure

was outside of the route measure range.
8 - LOCATING_E_TO_PARTIAL_MATCH Could not find the entire route location's shape, the to-measure

was outside of the route measure range.
9 - LOCATING_E_ROUTE_MS_NULL The route does not have m values or m values are null.



Chapter 8 • Accessing the geodatabase • 971

G
eo

d
at

ab
as

e

As mentioned previously, a RouteEventSource behaves like any other
feature class. As such, you can do things like apply spatial queries and
perform spatial analysis. Other types of event processing operations
include dissolving events, concatenating events, and event overlay
(line on line and point on line).

 IRouteMeasureEventGeoprocessor :
 IUnknown

Provides access to the route measure event geoprocessor
properties and methods.

BuildOutputIndex: Boolean Indicates whether an index is going to be built on the route ID field on
the output result.

InputEventProperties:
IRouteEventProperties

The input table's route event properties.

InputSelection: ISelectionSet The input table's selection set.
InputTable: ITable The input table.
KeepZeroLengthLineEvents: Boolean Indicates whether zero length events should be included in the

overlay result (line-on-line overlays only).
OverlayEventProperties:

IRouteEventProperties
The overlay table's route event properties.

OverlaySelection: ISelectionSet The overlay table's selection set.
overlayTable: ITable The table to overlay with the input table.

Concatenate (in concatenateFields:
Variant, in OutputName:
IDatasetName, in trackCancel:
ITrackCancel, in ConfigKeyword:
String) : ITable

Concatenate events.

Dissolve (in dissolveFields: Variant, in
OutputName: IDatasetName, in
trackCancel: ITrackCancel, in
ConfigKeyword: String) : ITable

Dissolve events.

Intersect (in outputProperties:
IRouteEventProperties, in
OutputName: IDatasetName, in
trackCancel: ITrackCancel, in
ConfigKeyword: String) : ITable

Intersect events.

Union (in outputProperties:
IRouteEventProperties, in
OutputName: IDatasetName, in
trackCancel: ITrackCancel, in
ConfigKeyword: String) : ITable

Union events.

The IRouteMeasureEventGeoprocessor interface provides access to the
event geoprocessing operations.

Dissolve

Concatenate

Input table

0.0 10.0 20.0 30.0 40.0 50.0

Concatenating and dissolving events

A
A

A
A

A

A

A
A

A

Event dissolving and event concatenating both involve combining
records in line event tables if they are on the same route and have the
same value for specified fields. The results are written to a new line
event table. The difference between dissolving and concatenating is that
concatenating only combines events in situations where the to-measure
of one event matches the from-measure of the next event. Dissolving
events will combine events when there is measure overlap.

ROUTEMEASUREGEOPROCESSOR COCLASS

Route-
Measure-

Geoprocessor

IRouteMeasure-
EventGeoprocessor

A route measure event geoprocessor
provides access to geoprocessing opera-

tions on route measure events.

Concatenating and dissolving events both
combine adjacent records in linear event tables if
they are on the same route and have the same

value for the dissolve fields. This is useful for
breaking up one large (many fields) event table

into many skinny tables.



972 • Exploring ArcObjects • Volume 2

0.0 10.0 20.0 30.0 40.0 50.0
Line-on-line overlay

Input table

Overlay table

Union

Intersect

A
B

AA
BB

B
A

A/AA
B/AA

A/BB
A

A/AA
B/AA

A/BB

B/BB

A line-on-line overlay involves the overlay of two line event tables to
produce a line event table. For example, you might want to take an
event table that describes pavement cracking and overlay it with pave-
ment resurfacing dates. The results of such an overlay could be used to
find the characteristics of the oldest paved sections.

When performing a line-on-line overlay, the results may contain events
that have no length (for example, the from- and to-measure values are
the same). The IRouteMeasureEventGeoprocessor::
KeepZeroLengthLineEvents property can be used to indicate whether you
want such events in your result set.

Line-on-point overlay

Input table

Overlay table

Union

Intersect

0.0 10.0 20.0 30.0 40.0 50.0
A

B

AA BB

B
B

A
C

C

C

CC

B/AA A/BB A/CC
B/BB C/CC

B/AA
A/BB
B/BB

A/CC
C/CC

A line-on-point overlay involves the overlay of a point event table with a
line event table to produce either a point or line event table. The inter-
section of a point and a line event table produces a point event table.
The union of a point and a line event table produces a line event table.

Point-on-point overlay

Input table

Overlay table

Union

Intersect

0.0 10.0 20.0 30.0 40.0 50.0

A B

AA BB CC

C/BB D/CC

C D

DD

AA C/BB D/CC DDA B

ROUTEMEASUREGEOPROCESSOR COCLASS

A line-on-line overlay involves the overlay of two
linear event tables to produce a single linear

event table.

A line-on-point overlay involves the overlay of a
point event table with a linear event table to

produce a single point event table.

A point-on-point overlay involves the overlay of
two point event tables to produce a single point

event table.



Chapter 8 • Accessing the geodatabase • 973

G
eo

d
at

ab
as

e

The following code shows the intersection of a point event table con-
taining highway accident data and a linear event table containing pave-
ment cracking information. The results of such an overlay could be
used to analyze the pavement characteristics of accident locations.

Public Sub OE_PointOnLineIntersect()

  ' The input table and properties

  Dim pFact As IWorkspaceFactory

  Dim pFeatWS As IFeatureWorkspace

  Dim pPointTable As ITable

  Set pFact = New AccessWorkspaceFactory

  Set pFeatWS = pFact.OpenFromFile("\\rockytop\data\dyndata\oe.mdb", 0)

  Set pPointTable = pFeatWS.OpenTable("accidents")

  Dim pPointProp As IRouteEventProperties

  Dim pPointRMProp As IRouteMeasurePointProperties

  Set pPointProp = New RouteMeasurePointProperties

  With pPointProp

    .EventMeasureUnit = esriUnknownUnits

    .EventRouteIDFieldName = "RKEY"

  End With

  Set pPointRMProp = pPointProp

  pPointRMProp.MeasureFieldName = "location"

  ' The overlay table and properties

  Dim pLineTable As ITable

  Set pLineTable = pFeatWS.OpenTable("pavement")

  Dim pLineProp As IRouteEventProperties

  Dim pLineRMProp As IRouteMeasureLineProperties

  Set pLineProp = New RouteMeasureLineProperties

  With pLineProp

    .EventMeasureUnit = esriUnknownUnits

    .EventRouteIDFieldName = "RKEY"

  End With

  Set pLineRMProp = pLineProp

  With pLineRMProp

    .FromMeasureFieldName = "fmp"

    .ToMeasureFieldName = "tmp"

  End With

  ' Create some output event properties. They must be point because we

  ' are doing an Intersect. They would be line if we were doing a Union.

  Dim pOutputProp As IRouteEventProperties

  Dim pOutputRMProp As IRouteMeasurePointProperties

  Set pOutputProp = New RouteMeasurePointProperties

  With pOutputProp

    .EventMeasureUnit = esriUnknownUnits

    .EventRouteIDFieldName = "RKEY"

  End With

ROUTEMEASUREGEOPROCESSOR COCLASS



974 • Exploring ArcObjects • Volume 2

  Set pOutputRMProp = pOutputProp

  pOutputRMProp.MeasureFieldName = "location"

  ' Create a new table name for the output. We'll write the results out to

  ' the same workspace as the input event table

  Dim pTempDS As IDataset

  Dim pTempWs As IWorkspace

  Dim pOutDSN As IDatasetName

  Dim pOutWSN As IWorkspaceName

  Set pTempDS = pPointTable

  Set pTempWs = pTempDS.Workspace

  Set pOutWSN = New WorkspaceName

  pOutWSN.ConnectionProperties = pTempWs.ConnectionProperties

  If pTempWs.Type = esriRemoteDatabaseWorkspace Then

    pOutWSN.WorkspaceFactoryProgID = "esriCore.SdeWorkspaceFactory.1"

  ElseIf pTempWs.Type = esriLocalDatabaseWorkspace Then

    pOutWSN.WorkspaceFactoryProgID = "esriCore.AccessWorkspaceFactory.1"

  Else

    pOutWSN.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory.1"

  End If

  Set pOutDSN = New TableName

  Set pOutDSN.WorkspaceName = pOutWSN

  pOutDSN.Name = "Accident_Cracking2"

  ' Set up a RouteMeasureGeoprocessor

  Dim pRMEvtProc As IRouteMeasureEventGeoprocessor

  Set pRMEvtProc = New RouteMeasureGeoprocessor

  With pRMEvtProc

    Set .InputEventProperties = pPointProp

    Set .InputTable = pPointTable

    Set .OverlayEventProperties = pLineProp

    Set .OverlayTable = pLineTable

  End With

  ' Perform the overlay

  Dim pOutTable As ITable

  Set pOutTable = pRMEvtProc.Intersect(pOutputRMProp, pOutDSN, Nothing, "")

End Sub

ROUTEMEASUREGEOPROCESSOR COCLASS



Chapter 8 • Accessing the geodatabase • 975

G
eo

d
at

ab
as

e

A table that contains a field with x-coordinates and a field with y-coor-
dinates can be used to dynamically create a point feature class using the
classes described below.

The feature class is dynamic in that the shapes are generated as needed
from data in a source table, rather than accessed from a physical data
source.

The source table that contains the coordinates is called the XY event
table.

XY Event objects

Dataset
IDataset

IDatasetEdit
IDatasetEditInfo

ISchemaLock

Table
IClass
ITable

Feature-
Class

IFeatureClass
IFeatureClassLoad
IFeatureClassWrite

IGeoDataset
INetworkClass

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

An XYEventSource is a point feature class
with features dynamically generated from
coordinates in a table

An XYEventProperties provides
information about an

XYEventSource

An XYEvent2FieldsProperties specifies the fields needed to generate geometry for
an XYEventSource where at least two fields are required

IXYEventSource XYEvent-
Source*

Name
IName

DatasetName
IDatasetName

XYEvent-
SourceName

IFeatureClassName
IXYEventSourceName

An XYEventSourceName
represents an XYEventSource. An

XYEventSource can be created
from an XYEventSourceName

IXYEvent2FieldsProperties

XYEvent-
Properties

IXYEventProperties

XYEvent2-
Fields-

Properties



976 • Exploring ArcObjects • Volume 2

XYEVENT2FIELDSPROPERTIES CLASS

XYEventProperties is an abstract class that provides information about an
XY event table. This information is needed in order to transform the
x,y coordinates to point features.

 IXYEventProperties : IUnknown Provides access to members that define the XY event
properties (x,y) of an event table.

The IXYEventProperties interface is implemented by XYEventProperties
but provides no properties or methods. To access or set this informa-
tion, you must use the XYEvent2FieldsProperties class, which inherits
from XYEventProperties.

The XYEvent2FieldsProperties class provides information for an x,y event
table that has fields with x,y (and optionally z) coordinates.

 IXYEvent2FieldsProperties :
 IXYEventProperties

Provides access to members that define the fields needed to
create an XY event layer. A minimum of two fields (x and
y) are required.

XFieldName: String The name of the x field.
YFieldName: String The name of the y field.
ZFieldName: String The name of the z field (optional).

The IXYEvent2FieldsProperties interface has properties for specifying the
x field name, the y field name, and the z field name. The x and y field
name properties are required and must always return valid field names,
but the z field name is optional. The number “2” appears in both the
class name and the interface name because two of the three fields are
required.

This information is used when creating a new feature class and can be
returned from an existing dynamic XY feature class.

The fields must have numeric data types. For example, if your coordi-
nates are stored in degrees, minutes, and seconds, you need to convert
them to decimal degrees and store them in numeric fields. These nu-
meric fields can then be used to create an XY feature class.

IXYEvent2Fields-
Properties

XYEvent-
Properties

IXYEventProperties

XYEvent2-
Fields-

Properties

XY event properties provide information
about an XY event table.



Chapter 8 • Accessing the geodatabase • 977

G
eo

d
at

ab
as

e

The XYEventSource class generates a dynamic feature class from an XY
event table. A point, based on the coordinates in the fields specified by
XYEvent2FieldsProperties, is created for each row in the XY event table.

 IXYEventSource : IUnknown Provides access to members that allow interaction with an
existing XY Event Layer.

EventProperties: IXYEventProperties Property object used to define the x, y, and z location fields.
EventTable: ITable Table used to initialize the XYEventSource.

RefreshExtent Resets the extent of the XYEventSource layer.

In order to create an XYEventSource, you must first create an
XYEventSourceName object (see the example with XYEventSourceName).

Since XYEventSource inherits from FeatureClass, an XYEventSource ob-
ject can be treated like any other point feature class. It can be added to
ArcMap as a point feature layer and even edited directly with the editing
tools in ArcMap.

There are some limitations imposed by the XY event table, however. For
example, you will not be able to directly edit a feature class created
from a delimited text file table since the editing tools don’t allow text
files to be edited directly. Also, you cannot add or move points using
the editing tools. To add or move points, you must edit the coordinates
or add new records to the table.

XYEVENTSOURCE CLASS

Dataset
IDataset

IDatasetEdit
IDatasetEditInfo

ISchemaLock

Table
IClass
ITable

Feature-
Class

IFeatureClass
IFeatureClassLoad
IFeatureClassWrite

IGeoDataset
INetworkClass

ObjectClass

IClassSchemaEdit
IClassSchemaEdit2

IModelInfo
IObjectClass

IObjectClassInfo
IObjectClassInfo2

ISubtypes
IValidation

IXYEventSource XYEvent-
Source

An XYEventSource generates a
dynamic feature class from an XY event

table.



978 • Exploring ArcObjects • Volume 2

XYEVENTSOURCENAME CLASS

The XYEventSourceName class is used to persist and create new
XYEventSource objects.

 IXYEventSourceName : IUnknown Provides access to the XY event source name properties.

EventProperties: IXYEventProperties The XY event properties.
EventTableName: IName The name object for the XY event table.
SpatialReference: ISpatialReference The spatial reference of the XYEventSource.

When creating a new XYEventSource, you must specify the XY event
table name and the field names. If the spatial reference is not set and
the coordinates are within range, the coordinate system will be assumed
to be geographic. Otherwise, it will be unknown. The field names are
specified using the XYEvents2FieldsProperties object.

The following code shows how to create a new XYEventSource from an
XYEventSourceName.

  Dim pXYEvent2FieldsProperties As IXYEvent2FieldsProperties

  Set pXYEvent2FieldsProperties = New XYEvent2FieldsProperties

  With pXYEvent2FieldsProperties

    .XFieldName = "longitude"

    .YFieldName = "latitude"

    .ZFieldName = ""

  End With

  Dim pSpatialReferenceFactory As ISpatialReferenceFactory

  Dim pProjectedCoordinateSystem As IProjectedCoordinateSystem

  Set pSpatialReferenceFactory = New SpatialReferenceEnvironment

  Set pProjectedCoordinateSystem = pSpatialReferenceFactory._

      CreateProjectedCoordinateSystem (esriSRProjCS_NAD1983UTM_11N)

  Dim pXYEventSourceName As IXYEventSourceName

  Set pXYEventSourceName = New XYEventSourceName

  With pXYEventSourceName

    Set .EventProperties = pXYEvent2FieldsProperties

    Set .SpatialReference = pProjectedCoordinateSystem

    Set .EventTableName = pTableName

  End With

  Dim pname As IName

  Dim pXYEventSource As IXYEventSource

  Set pname = pXYEventSourceName

  Set pXYEventSource = pname.Open

Name
IName

DatasetName
IDatasetName

XYEvent-
SourceName

IFeatureClassName
IXYEventSourceName

An XYEventSourceName is used to
persist and create new

XYEventSource objects.



979

Shaping features
with geometry

One of the primary data representation models of

geography is the vector data model. Discrete features

are stored in a geodatabase with a geometry field

that contains a precise and compact description of the

shape. You can use the geometry object model to

manipulate and create features and map elements.

The topics covered in this chapter include: defining

shapes with lines, circular arcs, elliptic arcs, and Bézier

curves • constructing simple and multipart polylines

and polygons with paths and rings • creating points

and multipoints • spanning features and sets of

features with envelopes • managing the geometry

environment and handling collections • adding

elevation and measure attributes on geometries •

applying spatial and topological operators • using 3D

geometry objects

Shelly Gill

9



980 • Exploring ArcObjects • Volume 2

Line
IConstructLine

ILine
ILine2

Curve
ICurve

Geometry

An envelope is the rectangular
bounding box of a geometry defined

by maximum and minimum
coordinate and attribute values

A feature is associated with one of
these types of geometry: points,
multipoints, polylines, or polygons

A geometry environment is a
singleton object that stores global
variables used by other geometry
objects. It lets you create
geometry objects from different
kinds of input

A geometry bag is a
heterogeneous collection of

points, multipoints, polylines,
and polygons

A curve is an abstract segment-based
geometry.  Curves may be single

segments, single paths, a collection of
paths, single rings, or a collection of rings

A circular arc is part of a
circle. It is commonly used
for road curb lines at
street intersections

An elliptic arc is part of an
ellipse. It is commonly
used for the geometry of a
transitional feature such as
a highway ramp

A line is a straight segment
between two points. Lines
are used for straight
constructions, such as a
road segment or a parcel
boundary

A Bézier curve is a
parametric curve defined
by a set of third-order
polynomials through four
control points

CircularArc
ICircularArc
IConstruct-
CircularArc
IConstruct-

CircularArc2

EllipticArc
IEllipticArc
IConstruct-
EllipticArc BezierCurve

IBezierCurve
IConstruct-

BezierCurve

Segments are the parametric
curves between two endpoints.
Segments may be linear lines or

true nonlinear circular arcs,
elliptic arcs, or Bézier curves

Geometry-
Bag

IClone
IConstructGeometryCollection

IEnumGeometry
IGeometry

IGeometry2
IGeometryBag

IGeometryCollection
IRelationalOperator

ISpatialIndex
ISupportErrorInfo

ITopologicalOperator

Segment

ICurve2
IProximityOperator

ISegment
ISegmentID
ISegmentM
ISegmentZ

Geometry-
Environment

IConstructAngle
IConstructDomainExtent

IEncode3DProperties
IExtrude

IGeometryEnvironment
IGeometryEnvironment2

IGeometryFactory
IGeometryFactory2

ISupportErrorInfo Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Envelope

IArea
IEnvelope

IEnvelope2
IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator
IZAware



Chapter 9 • Shaping features with geometry • 981

G
eo

m
et

ry

*

object model

Geometry-
Collection

IGeometryCollection

A point is a zero-dimensional
geometry. Points are defined with
x,y coordinate pairs with optional

altitudes, measures, and point IDs.

A geometry collection is a collection
of part geometries used to construct
a single high-level geometry

A 2D affine transformation
defines a two-dimensional
affine transformation matrix
and is used to create an
arbitrary two-dimensional
transformation

A path is a sequence of
connected segments.

Paths make up polylines

A ring is a closed path; the
begin and endpoints are the

same. Rings make up
polygons

A polyline is an ordered collection of paths that can be
disjoint or connected. Polylines are used to represent

the geometry of all linear features

A polygon is a collection of rings that are partially
ordered by their containment relationship. Polygons
are used to represent the geometry of areal features

A polycurve is an abstract
multipart curve

*

*

Polyline
IMSegmentation

IPolyline
IPolyline2

Polygon
IArea

IPolygon
IPolygon2

Ring
IArea
IRing

Path
IConstructPath

IPath
IPointCollection

ISegmentCollection

A multipoint is an unordered collection of points.
Features with multipoint geometries represent a set

of points that share a common set of attributes

*

AffineTrans-
formation2D

IAffineTransformation2D
IAffineTransformation2D2

IClone
ISupportErrorInfo

ITransformation

Multipoint

IConstructMultipoint
IGeometry2

IGeometryCollection
IHitTest

IMAware
IMCollection

IMultipoint
IPersist

IPersistStream
IPointCollection

IPointCollection2
IPointIDAware

IProximityOperator
IRelationalOperator

ISpatialIndex
ITopologicalOperator

ITopologicalOperator2
IZAware

IZCollection

MultiPatch

documented with
3D geometry

objects

IConstructMultiPatch
IGeometryCollection

IHitTest
IMAware

IMCollection
IMultiPatch

IPersist
IPersistStream

IPointCollection
IPointIDAware
ITransform2D
ITransform3D

IZAware
IZCollection

Point

IConstructPoint
IConstructPoint2

IGeometry2
IHitTest

IMAware
IPoint

IPointIDAware
IProximityOperator

IRelationalOperator
ITopologicalOperator

ITransform3D
IZAware

Polycurve

IConstructCurve
IGeometry2

IGeometryCollection
IHitTest

IMAware
IMCollection

IMSegmentation
IPersist

IPersistStream
IPointCollection

IPointIDAware
IPolycurve

IPolycurve2
IProximityOperator

IRelationalOperator
ISegmentCollection

ISpatialIndex
ITopologicalOperator

ITopologicalOperator2
IZ

IZAware
IZCollection



982 • Exploring ArcObjects • Volume 2

Geometry in ArcObjects is essential when you create, draw, edit, select,
and analyze your vector-based geographic data.

These tasks rely on concepts from plane geometry. Those concepts
such as “point” and “line” are represented as a set of classes known
collectively as geometries. Concepts such as “intersect” and “distance to”
are represented as methods and properties on those classes.

Geometries are used throughout other areas of the ArcObjects model,
notably geodatabase, spatial reference, symbology, and the editor. Famil-
iarity with these areas will aid the effective use of geometry within
ArcObjects.

The following sections will introduce you to the classes that comprise
the geometry model. You will be introduced to some common concepts,
such as geometric attributes and geometric simplicity, that apply to all
geometries. Each topic is covered in more depth later in this chapter.

THE GEOMETRY COCLASSES

Certain geometry coclasses, representing elements of Cartesian geometry,
are considered to be “top-level” geometries. These coclasses can be
persisted to a FeatureClass and may be composed of other geometries.
The top-level geometries are:

• A Point is a single location in the x,y plane.

• A Multipoint is a finite set of locations in the x,y plane.

• An Envelope is a rectangle with sides orthogonal to the axes of the x,y
plane. It is used to provide a rough but useful approximation of the
spatial extent of another geometry. Any given point in the x,y plane is
either “in” the Envelope or “out” of the Envelope.

• A Polyline is a sequence of Points, called vertices, connected pairwise
using Segments. A Segment is a function that describes a curve from
one vertex to the next. For example, a Line is a linear Segment be-
tween two endpoints, and a CircularArc is a different kind of Seg-
ment, as are EllipticArcs and BezierCurves. The Segments of a single
Polyline do not have to be all of the same kind. A Polyline can have
multiple parts, that is, there may be gaps between some of its Seg-
ments. Any given point in the x,y plane is either “on” or “off” the
Polyline.

• A Polygon is a part of the x,y plane cut off from the rest of the plane
by a distinguished Polyline called its boundary. Any given point in
the x,y plane can always be classified as being “inside” the Polygon,
“outside” the Polygon, or “on the boundary” of the Polygon. The
boundary of a Polygon does not have to be contiguous. For example,
a multipart Polygon representing a “donut” with a hole has a multipart
Polyline defining its boundary. As with Polylines, Segments define the
boundary of a Polygon.

The GeometryBag coclass is not considered to be a top-level geometry; it
is a collection of any kind of object that supports the IGeometry inter-

INTRODUCTION TO GEOMETRY



Chapter 9 • Shaping features with geometry • 983

G
eo

m
et

ry

face, which is just about every object in the geometry object model
including other GeometryBags. Geometry bags are used for various
operations within ArcObjects, but some operations assume that only
certain classes of Geometry objects are in the bag. You might find a
GeometryBag useful as a place to hold a group of shapes during the
execution of your code.

Although the geometries discussed above are plane geometries,
ArcObjects also implements other geometries that can be classified as
2.5D or spaghetti 3D geometries—these geometries are discussed later in
this chapter.

CREATING, CONSTRUCTING, AND USING GEOMETRIES

The geodatabase object model organizes vector-based geographic data
as a set of Features. A Feature is a geographic phenomenon that has a
location. The location is represented as an instance of a Point,
Multipoint, Polyline, or Polygon. Note that Envelopes, Segments, Rings, and
Paths cannot represent the location of a Feature. When you create a
Feature, you also need to create a Geometry object and associate it with
that Feature.

Geometry objects are also essential for purposes other than representing
GIS data. They are used in spatial selections (the selection rectangle is
an Envelope), sophisticated cartographic rendering (a thick dashed offset
neatline may be defined by a Polygon or Polyline), annotation editing
(the path of splined text is defined by a Polyline containing Bézier curve
segments), and many other procedures.

When a geometry is first created, it is empty (IGeometry::IsEmpty =
True)—the object has been instantiated in memory and is of the speci-
fied coclass but as yet has no location in the x,y plane. Empty geom-
etries may also be returned from certain functions. For example, an
empty Polygon returned by performing an intersection on two Polygons
indicates that the shapes do not overlap. Once created, a Geometry may
have its location defined and redefined repeatedly and may also be-
come empty.

Throughout this chapter, to “define” a Geometry means to give it a loca-
tion in the x,y plane. For each geometrical coclass, working with existing
shapes and creating and defining new shapes is described.

DRAWING GEOMETRIES

All top-level Geometry objects can be drawn and printed, either within
the ArcObjects framework or outside it. The ArcObjects framework uses
Symbol objects to draw geometries to a display. You can use a Symbol
directly whenever you need to redraw the Geometry.

Alternatively, you may wish to create a GraphicElement to display the
Geometry, which is persistable and will automatically redraw when the
display is refreshed. For more details, refer to Volume 1, Chapter 5,
‘Displaying graphics’.

INTRODUCTION TO GEOMETRY



984 • Exploring ArcObjects • Volume 2

You may wish to use a Geometry outside the context of ArcObjects and
draw it directly to a Win32 device context. All geometries provide sup-
port for this by implementing the IWin32Shape interface, which can be
used to produce a list of drawing instructions that can be efficiently
turned into Win32 GDI method calls; however, this interface is not avail-
able to VB or VBA users. Therefore, the GeometryDraw coclass (part of the
symbology object model) provides an alternative method.

SELECTIONS, GEODATABASE CURSORS, AND GEOMETRIES

Geometry is an essential component of a FeatureClass, telling each
Feature where it is located. You can perform a spatial query on a
FeatureClass using a Geometry as the spatial criteria and indicating the
type of spatial relationship the query Geometry and the returned Feature
Geometry should have. For example, you can specify that all returned
Features intersect the query Geometry. Selecting features is discussed
further in Chapter 8, ‘Accessing the geodatabase’.

In addition to a query Geometry, a SpatialFilter also has an Output-
SpatialReference property. Features resulting from a SpatialFilter will
have their geometries projected into this specified
OutputSpatialReference. Furthermore, the query Geometry can be defined
relative to a third SpatialReference. In this case, a projected version of
the Geometry will be used in order to process the query. Effectively, if
you are a client of the geodatabase, you will rarely need to project your
data into another SpatialReference in order to perform a task.

SPATIAL OPERATIONS

Spatial operations, such as buffer, intersect, union, difference, distance-
to, contains, touches, snapping, and so on, should be familiar concepts
to any GIS user. Spatial operations such as these can be performed
using the topological, relational, proximity, and hit-test functions pro-
vided by the Geometry object model. These operations are generally
performed by comparing or combining two Geometry objects, although
a spatial operation on many geometries can be performed using special
methods such as ITopologicalOperator::ConstructUnion, which con-
structs a union of numerous Geometry objects at once.

THE SPATIAL REFERENCE

ArcObjects Geometry uses a Cartesian planar model. Each Geometry
object is associated with another COM object, called a SpatialReference,
which anchors it to a location on the earth and may describe how the
geometry has been distorted in order to represent it in a flat Cartesian
plane.

The SpatialReference has another important responsibility. The location
of a geometry cannot be known perfectly on the earth—the coordinates
of each vertex contain some imprecision. A simple model for managing
this imprecision is to say that all vertices must snap to a finite set of
locations, arranged in a grid on a section of the earth’s surface (mapped
to a plane). A SpatialReference describes this grid, and the IGeometry

INTRODUCTION TO GEOMETRY



Chapter 9 • Shaping features with geometry • 985

G
eo

m
et

ry

interface provides a method (SnapToSpatialReference) to move or snap
vertices to their closest SpatialReference grid locations.

When attempting to perform a spatial operation using two or more
geometries—for example, an intersection—the map projection portions
of the two associated SpatialReferences must be equal. Currently, the
precision of the left operand geometry is used in the comparison or
operation.

GEOMETRY PARTS

Some geometries are defined as collections of references to other geom-
etries. For example, a Polyline is a collection of references to Path objects,
each of which is a part of the Polyline. In turn, Paths are composed of
references to Segment objects. The table below summarizes this collection/
part relationship and also indicates which interface should primarily be
used to access the items of a collection or geometry.

Path

Coclass

Ring

Multipoint

Polyline

Polygon

TriangleFan

TriangleStrip

MultiPatch

ISegmentCollection

Use this interface to create and edit the shape

ISegmentCollection

IPointCollection or IGeometryCollection

IGeometryCollection

IGeometryCollection

IPointCollection or IGeometryCollection

IPointCollection or IGeometryCollection

IGeometryCollection

Segment

Each part of this shape is a ...

Segment

Point

Path

Ring

Point

Point

TriangleFan, TriangleStrip, or Ring

ATTRIBUTES

Geometries may have z-, m-, and/or ID attributes, each of which is a
numerical value. M-attributes are used mainly by Polyline geometries to
define relative positions along a line and are used in dynamic segmenta-
tion routines. Z-attributes can be interpreted as height coordinates for
three-dimensional display. The use of the ID attribute is up to the
ArcObjects developer, but it can be used to store a foreign key, linking the
vertices of geometries to further attribution information in a database.

Topological operations, such as union or intersection, use the following
rules to define attributes on the result of the operation. For topological
operation C = A.Operation(B), the result geometry C will have the same
attributes defined for it that are defined for geometry A. The values of
those attributes are determined by linear interpolation from A, where
possible. Vertices in C that came strictly from geometry B will have B’s
attribute values. For example, consider the operation:

  pMultipoint = pPolyline1.Intersect(pPolyline2)

If pPolyline1 has m-attributes defined, and pPolyline2 has m- and ID
attributes defined, then pMultipoint will have m-attributes defined. Each
Point in the Multipoint will have an m-value assigned to it that represents
an m-value linearly interpolated from m-attributes on pPolyline1.

INTRODUCTION TO GEOMETRY



986 • Exploring ArcObjects • Volume 2

SIMPLICITY

Points, Multipoints, Polylines, and Polygons can be either simple or
nonsimple. A simple geometry is one that meets its definition unambigu-
ously. Geometry objects used in topological operations must be simple.

The rules of simplicity are:

• A Point is always simple.

• A Multipoint is simple if no two of its points have the same x-, y-, z-,
m-, and ID values.

• A Polyline is simple if each of its Paths is not self-intersecting and
only touches other Paths at Path endpoints.

A coverage with constructed arc topology and no pseudonodes is an
example of a simple, multipart Polyline. It is not always useful for
Polylines to meet this definition of simplicity. A bus-route, for ex-
ample, can have multiple self-intersecting and overlapping parts.
Thus, instead of planar simplicity, a Polyline can also have “network”
simplicity. Such a Polyline has no zero length Segments, no empty
parts, and the ToPoint of the ith Segment in a part shares the same
location as the FromPoint of the i+1th Segment in the same part. In
addition, if only two parts share a common endpoint, those parts are
merged into one part. However, all manner of intersections within
and between parts is permitted.

• A Polygon is simple if each of its Rings forms a closed, nonself-inter-
secting loop and is disjoint from other Rings.

ANGLES

Angular properties of geometries are set and returned as radians. Fol-
lowing the standard for Cartesian and polar coordinates, angles are
measured from the positive horizontal axis toward the arc. Angles are
therefore positive if they define a counterclockwise direction. For ex-
ample, a horizontal line with a ToPoint to the right of the FromPoint will
have an Angle of 0 degrees.

INTRODUCTION TO GEOMETRY



Chapter 9 • Shaping features with geometry • 987

G
eo

m
et

ry

GEOMETRY ABSTRACT CLASS

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

A geometry defines a shape and its
spatial location.

A Geometry is an abstraction of all the ArcObjects geometrical classes; it
defines properties and behavior common to all geometries. The
IGeometry interface is inherited by all the shape coclasses in ArcObjects.

 IGeometry : IUnknown Provides access to members that describe properties and
behavior of all geometric objects.

Dimension: tagesriGeometryDimension Returns the dimension of this geometry.
Envelope: IEnvelope Creates a copy of this geometry's envelope and returns it.
GeometryType: tagesriGeometryType Returns the type of this geometry.
IsEmpty: Boolean Indicates when this geometry defines an empty point set.
SpatialReference: ISpatialReference The spatial reference associated with this geometry.

GeoNormalize Shift longitudes, if need be, into a continuous range of 360 degrees.
GeoNormalizeFromLongitude

(Longitude: Double)
Normalize longitudes into a continuous range containing the

longitude.
Project (newReferenceSystem:

ISpatialReference)
Projects this geometry into a new spatial reference.

QueryEnvelope (outEnvelope:
IEnvelope)

Copies this geometry's envelope properties into the specified
envelope.

SetEmpty Makes this geometry equivalent to an empty point set.
SnapToSpatialReference Moves points of this geometry so that they can be represented in the

precision of the geometries associated spatial reference system..

In ArcObjects, geometries are most commonly passed in and out of
functions by the IGeometry interface, allowing the methods and proper-
ties to function with any type of shape. For an unknown IGeometry
object, you might first check to see if the Geometry is empty, indicating it
is an object that has been created but holds no actual shape yet.

  If Not pGeometry Is Nothing Then

    If Not pGeometry.IsEmpty Then

      ' Use the Geometry here.

    End If

  End If

A Geometry is empty when first created; its shape has not yet been set.
You can delete an existing Geometry object’s spatial properties by calling
SetEmpty, which removes the geometric shape of an object but retains
the SpatialReference (if this has been previously set).

After checking if your Geometry has a shape, you might check the Di-
mension to see what class of shape you have.

Enumeration
tagesriGeometryDimension

The topological dimension of a geometry.

1 - esriGeometry0Dimension A zero dimensional geometry (such as a point or multipoint).
-1 - esriGeometryNoDimension The dimension is unknown or unspecified.
2 - esriGeometry1Dimension A one dimensional geometry (such as a polyline).
4 - esriGeometry2Dimension A two dimensional geometry (such as a polygon).
5 - esriGeometry25Dimension A 2.5D geometry (such as a surface mesh).
6 - esriGeometry3Dimension A 3D geometry (such as a multipatch).

Alternatively, you could check the GeometryType.

IGeometry is used to provide general informa-
tion about what kind of shape you have. It is not

used to create or define geometries.

Dimension gives a higher-level view of the type
of Geometry you hold. For example, both a

Point and a Multipoint can be symbolized by a
MarkerSymbol and have a Dimension of

esriGeometry0Dimension. Instead of checking
for each case individually, you can use the

Dimension property to check for both cases
together.

Alternatively, you can also try a QueryInterface
to check for a particular geometry interface. For

example, a successful QI for IPolycurve
indicates you have a Polyline or Polygon. The

GeometryType property provides a more exact
check, telling you exactly what coclass you have.



988 • Exploring ArcObjects • Volume 2

Enumeration tagesriGeometryType The available kinds of geometry objects

 0 - esriGeometryNull A geometry of unknown type.
 1 - esriGeometryPoint A single zero dimensional geometry.
 2 - esriGeometryMultipoint An ordered collection of points.
 3 - esriGeometryPolyline An ordered collection of paths.
 4 - esriGeometryPolygon A collection of rings ordered by their containment relationship.
 5 - esriGeometryEnvelope A rectangle indicating the spatial extent of another geometry.
 6 - esriGeometryPath A connected sequence of segments.
 7 - esriGeometryAny Any of the geometry coclass types.
 9 - esriGeometryMultiPatch A collection of surface patches.
11 - esriGeometryRing An area bounded by one closed path.
13 - esriGeometryLine A straight line segment between two points.
14 - esriGeometryCircularArc A portion of the boundary of a circle.
15 - esriGeometryBezier3Curve A third degree bezier curve (four control points).
16 - esriGeometryEllipticArc A portion of the boundary of an ellipse.
17 - esriGeometryBag A collection of geometries of arbitrary type.
18 - esriGeometryTriangleStrip A surface patch of triangles defined by three consecutive points.
19 - esriGeometryTriangleFan A surface patch of triangles defined by the first point and two

consecutive points.
20 - esriGeometryRay An infinite, one-directional line extending from an origin point.
21 - esriGeometrySphere A complete 3 dimensional sphere.

The Envelope property returns the spatial extent of a shape, which is its
minimum bounding box. For a single Point object, the Envelope property
has zero area.

The SpatialReference property of a Geometry holds a reference to an
ISpatialReference object, which acts as metadata for the Geometry, indi-
cating the coordinate system used by the coordinates of the Geometry.
Changing the SpatialReference property will not change the coordinates
of the Geometry.

Your spatial data may involve geometries with different coordinate sys-
tems, in which case you may wish to actually convert the coordinates of
a Geometry from one coordinate system to another. Use the Project
method, which changes the spatial coordinates of your Geometry to the
new system and sets the SpatialReference property to the new system.

To use the Project method, first ensure the SpatialReference of your
Geometry is set. Next, create a new SpatialReference object indicating the
destination coordinate system or use an appropriate existing
SpatialReference. Then, simply call the Project method, and your shape
is changed. The code below projects the shape, pGeometry, into the
Mercator projection.

  Dim pGeometry As IGeometry

  ' Set pGeometry's shape and SpatialReference here.

  Dim pFactory As ISpatialReferenceFactory2

  Set pFactory = New SpatialReferenceEnvironment

  Dim pNewSR As ISpatialReference

  Set pNewSR = _

      pFactory.CreateProjectedCoordinateSystem(esriSRProjCS_World_Mercator)

  pGeometry.Project pNewSR

Note that a projected Geometry retains its characteristics. For example, an
Envelope remains rectangular, a Line remains linear, a CircularArc re-
mains circular, and so on. You may wish to create a different shape

All spatial coordinates have a SpatialReference
as their frame of reference that tells you what

those coordinates mean. If a Geometry object is
part of a Feature, the SpatialReference

property will already hold a reference to the
SpatialReference of the FeatureClass (if set).

When creating a Geometry from scratch, you
can create an appropriate SpatialReference

object and set the SpatialReference property.

For more information on coordinate systems, see
Chapter 10, ‘Managing the spatial reference’.

Try using the code on the right to convert a
simple Point geometry from one coordinate

system to another. You will see how its
coordinates have changed after the Project

method is called.

Project

This simple polygon retains its number of
vertices and straight line segments after

projection.

GEOMETRY ABSTRACT CLASS



Chapter 9 • Shaping features with geometry • 989

G
eo

m
et

ry

after a projection, for example, turn an Envelope into a Polygon by creat-
ing a Polygon that has the same shape as the Envelope and then using
the Polygon to perform the projection.

The SpatialReference model used by ArcObjects includes a precision
value. You can correct a geometry’s coordinates to account for this
precision by calling SnapToSpatialReference. This method can only be
called if the Geometry has a SpatialReference that has a precision set (see
the HasXYPrecision property and SetDomain method in Chapter 10,
‘Managing the spatial reference’).

Geonormalize and GeonormalizeFromLongitude are methods used inter-
nally by the Project method for horizon-line clipping on geometries in a
geographical coordinate system.

 IGeometry2 : IGeometry Provides access to members that extend the IGeometry
interface.

ProjectWithGeoTransformation
(newReferenceSystem:
ISpatialReference, Direction:
tagesriTransformDirection,
pGeoTransformation:
IGeoTransformation)

Project geometry and apply a GeoTransformation.

The IGeometry2 interface provides a more powerful version of the
IGeometry::Project method. ProjectWithGeoTransformation projects a
geometry by using a geographic transformation, also known as a datum
shift. If the current and destination spatial references involved in a
Project method are based on different geographic coordinate systems,
you can use this method to incorporate a datum shift into the projection
operation. This datum shift will increase the accuracy of the operation.

This method is still applicable if the SpatialReference is a projected
coordinate system, as each projected coordinate system is based on an
underlying geographic coordinate system.

GEOMETRY ABSTRACT CLASS

Before projecting a shape, you may wish to
densify it. Densification is a process that adds

additional vertices to a shape, without changing
the characteristics of the shape. You may find that

projecting the densified shape gives the effect
you  require.



990 • Exploring ArcObjects • Volume 2

GEOMETRY ERROR CONSTANTS

Invalid property and method calls may raise the following errors. Con-
stants beginning with S indicate that although the function succeeded in
producing a result, that result is invalid or unexpected in some way.
Constants beginning with E indicate that the operation could not be
performed at all.

Note that geometry errors are returned
as a Long integer, where the lowest bits
indicate the geometry error number and

the highest bits indicate a COM error
constant.

Enumeration tagesriGeometryError
  0 - S_GEOMETRY_OK
513 - S_GEOMETRY_DEGENERATE
514 - E_GEOMETRY_EMPTYGEOMETRY
515 - E_GEOMETRY_INCONSISTANT_PARAMS
516 - E_GEOMETRY_INVALID_RADIUS
517 - E_GEOMETRY_INVALID_CHORD
518 - E_GEOMETRY_NONENVELOPE
519 - E_GEOMETRY_NONPART
520 - E_GEOMETRY_ROTATEENVELOPE
521 - E_GEOMETRY_TRANSFORMENVELOPE
522 - E_GEOMETRY_WRONGTYPE
523 - E_GEOMETRY_UNKNOWNTYPE
524 - E_GEOMETRY_UNDERCONSTRAINED
525 - E_GEOMETRY_INVALID_ANGLE
526 - E_GEOMETRY_NONPATH
527 - E_GEOMETRY_NONSEGMENT
528 - E_GEOMETRY_NONPOINT
533 - E_GEOMETRY_INCONSISTANT_SPATIAL_REFERENCE
535 - E_GEOMETRY_PARTNOTFOUND
536 - E_GEOMETRY_NOTSIMPLE
537 - E_GEOMETRY_INTERIORPART
540 - E_GEOMETRY_BAD_SPLIT_DISTANCE
541 - E_GEOMETRY_NULL
542 - E_GEOMETRY_CANT_RESHAPE
543 - E_GEOMETRY_NONPOLYGON
544 - E_GEOMETRY_NONPOLYLINE
545 - E_GEOMETRY_NONGEOMETRY
547 - E_GEOMETRY_EQUAL_VERTEX_ATTRIBUTES
549 - E_GEOMETRY_CANT_QUERY_ON_VERTEX_ATTRIBUTES
550 - E_GEOMETRY_NO_VALID_VERTEX_ATTRIBUTES
551 - E_GEOMETRY_UNDEFINED_SPATIAL_REFERENCE
553 - E_GEOMETRY_INCONSISTANT_DIMENSIONS
556 - E_GEOMETRY_SIMPLIFYFAILED
558 - E_GEOMETRY_PROJECTDATUM
559 - E_GEOMETRY_FILLET_FAILED
560 - E_GEOMETRY_INVALID_AXES
561 - E_GEOMETRY_CANT_CUT_POLYGON
562 - E_GEOMETRY_BADRELATION
563 - S_GEOMETRY_HAS_NL_SEGMENTS
564 - E_GEOMETRY_NOT_Z_AWARE
565 - E_GEOMETRY_NOT_M_AWARE
566 - E_GEOMETRY_SEGMENTGRAPH_CANTLOAD
567 - E_GEOMETRY_SEGMENTGRAPH_CONSTRUCTERROR
568 - E_GEOMETRY_OUT_OF_BOUNDS
569 - E_GEOMETRY_INTERNALERROR
570 - E_GEOMETRY_TOOMANYPOINTS
571 - E_GEOMETRY_BUFFEROUTOFBOUNDS
572 - E_GEOMETRY_OUTOFMEMORY
573 - E_GEOMETRY_RELATIONSYNTAXERROR
574 - E_GEOMETRY_UNKNOWNERROR
575 - E_GEOMETRY_NOPENDINGMOVETO
576 - E_GEOMETRY_NOT_ID_AWARE
577 - E_GEOMETRY_ILLEGALWIN32EXPORT
578 - E_GEOMETRY_CONSTRUCTPOINTUNION
579 - E_GEOMETRY_BEZIER_EXTEND_EMBEDDED
580 - E_GEOMETRY_NOT_Z_SIMPLE
581 - E_GEOMETRY_NOT_M_SIMPLE
582 - E_GEOMETRY_INVALIDCONSTRUCTION
583 - S_GEOMETRY_DATUMCONVERSIONATTEMPTED
584 - S_GEOMETRY_EMPTY_GEOMETRY
585 - E_GEOMETRY_NONMULTIPATCH
586 - E_GEOMETRY_UNDEFINEDRING
587 - E_GEOMETRY_INVALIDRINGTYPE
588 - E_GEOMETRY_AMBIGUOUSPARTTYPE
589 - E_GEOMETRY_INVALIDRINGORDER
590 - E_GEOMETRY_INVALIDCOUNT
591 - E_GEOMETRY_EXTERIORPART
592 - E_GEOMETRY_NONTRIANGLESTRIP
593 - E_GEOMETRY_NONTRIANGLEFAN
594 - E_GEOMETRY_NONVECTOR3D
595 - E_GEOMETRY_DEGENERATEGEOMETRY
596 - S_GEOMETRY_GEOMETRY_NOT_PROJECTED

Describes why a parameter to a method is incorrect, or why a method could not be completed.

A geometric construction succeeded but the resulting geometry is degenerate in some way.
An operation on an empty geometry was attempted.
The operation could not be completed with the information furnished.
An arc construction operation was given an invalid radius.
An arc construction operation was given an invalid chord distance.
The method expected to receive an Envelope object.

Envelopes cannot be rotated.
Envelopes cannot have arbitrary transformations applied to them.
The geometry parameter was of the wrong type for the method.
An unrecognized geometry or segment type was encountered.
The parameters to a geometric construction did not provide enough information to complete.
An arc construction operation was given an invalid angle.
Something other than a path or ring was added to the parts collection of a polygon or polyline.

Something other than a point was added to the points collection of a multipoint.
Input geometries do not have same spatial reference.
The part could not be found in the geometry.
The operation cannot be performed on a non-simple geometry.
An exterior part must be specified.
The specified splitting distance is not included in the curve to be split.
A null geometry does not correspond to any ESRI geometry type.
The geometry cannot be reshaped using the specified polyline.
Something other than a polygon was encountered.
Something other than a polyline was encountered.
Something other than a geometry was encountered.
The From and To attributes of the segment are equal.
Can't query based on the given attribute values.
No vertex attributes of the specified type or attribute is NaN.
Both spatial references must exist.
Input geometries do not have same spatial reference.
Something went wrong in Polygon/Polyline simplification.
The project method cannot do a datum transformation.
The fillet could not be constructed according to specs.
An elliptic arc construction operation was given invalid axes.
A cut operation could not classify all parts of the polygon as being left or right of the cutting polyline.
The Relate operator couldn't evalute the specified relation expression.
Non linear segments were detected while exporting this geometry to an ESRI shapefile buffer.
The geometry is not Z-aware.
The geometry is not M-aware.
A SegmentGraph can only organize polyline and polygon objects.
The geometries could not be topologically structured.
The coordinates of this geometry are out of bounds.
An internal error has occurred in the geometry system.
This operation produced too many points.
The buffer coordinates are out of bounds.
There is not enough memory.
The relation expression string has a syntax error.
An unknown error has occurred in the geometry system.
The SegmentGraphCursor has no unfinished MoveTo operation.
The geometry is not ID-aware.
get_Win32ShapeSize was not called first on this geometry.
Can't use ConstructUnion on a point.
ExtendEmbedded not implemented for Bezier curves.
The geometry has some Z values that are empty (NaN).
The geometry has some M values that are empty (NaN).
The same segment or part has been added to this geometry more than once.
The source and destination coordinate systems of a Project were different geographic systems.
A (successful) operation on an empty geometry was performed.
Something other than a multipatch was encountered.
The multipatch contains a ring that is invalid or has an undefined type.
The given ring is not of the required type within the multipatch. (For example an inner ring may be used where an outer ring is required.)
The operation would result in the creation of a new part, but the type of part was ambiguous.
The ordering of rings and types is invalid. (For example, an inner ring may not have an outer ring.)
The number of items specified is too high or too low in the given context.
An interior part must be specified.
The input interface does not belong to a triangle strip object.
The input interface does not belong to a triangle fan object.
The input interface does not belong to a 3-dimensional vector.
The operation could not be performed because the object was geometrically degenerate.
The geometry could not be projected, it has been set empty.

Something other than a segment (line, circular arc, bezier curve, etc) was added to the segments collection of a path or ring.

Something other than a geometry part (point, path, ring) was added to a multipart geometry.

You can use the following function to
return the geometry error constant
number from a Long integer error
number (reported by the VB Err object)

Function ErrorNo(lErrorNumber) _
    as Long
  ErrorNo = (lErrorNumber Mod _
    &H10000) - &HFFFF0000
End Function



Chapter 9 • Shaping features with geometry • 991

G
eo

m
et

ry

CURVE ABSTRACT CLASS

Curve
ICurve

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

A curve returns information about an
ArcObjects one-dimensional shape or the

boundary of a two-dimensional shape.

A Curve abstract class represents a high-level view of a one-dimen-
sional, or boundary of a two-dimensional, geometry. The Polygon,
Polyline, Ring, Path, Line, BezierCurve, EllipticArc, and CircularArc
coclasses can all be represented by curves and therefore implement the
ICurve interface.

 ICurve : IGeometry Provides access to members that control properties of
curves which describe how to get from a 'from' point to a
'to' point.

FromPoint: IPoint The 'from' point of the curve.
IsClosed: Boolean Indicates when 'from' and 'to' points (of each part) are identical.
Length: Double The length of the curve.
ToPoint: IPoint The 'to' point of the curve.

GetSubcurve (fromDistance: Double,
toDistance: Double, asRatio: Boolean,
out outSubcurve: ICurve)

Extracts a portion of this curve into a new curve.

QueryFromPoint (from: IPoint) Copies this curve's 'from' point to the input parameter.
QueryNormal (Extension:

tagesriSegmentExtension,
distanceAlongCurve: Double, asRatio:
Boolean, Length: Double, Normal:
ILine)

Constructs a line normal to a curve from a point at a specified
distance along the curve.

QueryPoint (Extension:
tagesriSegmentExtension,
distanceAlongCurve: Double, asRatio:
Boolean, outPoint: IPoint)

Copies to outPoint the properties of a point on the curve at a
specified distance from the beginning of the curve.

QueryPointAndDistance (Extension:
tagesriSegmentExtension, inPoint:
IPoint, asRatio: Boolean, outPoint:
IPoint, distanceAlongCurve: Double,
distanceFromCurve: Double,
bRightSide: Boolean)

Finds the point on the curve closest to inPoint, then copies that point
to outPoint; optionally calculates related items.

QueryTangent (Extension:
tagesriSegmentExtension,
distanceAlongCurve: Double, asRatio:
Boolean, Length: Double, tangent:
ILine)

Constructs a line tangent to a curve from a point at a specified
distance along the curve.

QueryToPoint (to: IPoint) Copies the curve's 'to' point into the input parameter.
ReverseOrientation Reverses the parameterization of the curve ('from' point becomes 'to'

point, etc).

The ICurve interface provides information and functionality common to
any one-dimensional shape or boundary of a two-dimensional shape. It
is not used to create a new Curve.

The full Length of the constituent parts of the Curve can be read. The
end vertices of the whole geometry can be found from the FromPoint
and ToPoint properties or from the QueryFromPoint or QueryToPoint
methods. To avoid potential problems with Polygons or Rings, it is rec-
ommended that the FromPoint and ToPoint properties are used for read-
only access for these coclasses.

Use the ReverseOrientation method to change the order of vertices in a
Curve. The IsClosed property indicates if the FromPoint and ToPoint
share an identical location and applies to all types of geometries, not
just Polygons. Polygons may have disjoints in their constituent geometries, for
example, a gap between two segments in a Ring. IsClosed does not check
for cases like this. To ensure a Polygon or Ring has no disjoints throughout
its entire length, you must ensure it is simple (see the ITopologicalOperator
interface).

When working with the methods of ICurve, note the methods that con-
tain an esriSegmentExtension parameter. These parameters allow the

Reverse-
Orientation

"to" point

"from" point

"from" point

"to" point

"from" and "to" point"from" and "to" point

ReverseOrientation changes the
direction of polylines and rings.

"from" and "to" point

It is possible to construct a polygon or
ring that may be closed but not simple. In
this case, two segments have “from” and

“to” points that join correctly, but there
remains a gap. When you construct a

geometry like this, test for both IsClosed
and IsSimple.



992 • Exploring ArcObjects • Volume 2

methods to act on a Curve as if it was extended according to the seg-
ment extension parameter, without actually changing the geometry.

The QueryPoint method allows you to retrieve the location of a Point at
any specified distance or ratio along a Curve or along the extension to
the curve if the distance specified is longer than the curve. To return the
Point at two units along the curve, write code like this:

  Dim pOutPoint As IPoint

  Set pOutPoint = New Point

  pCurve.QueryPoint esriNoExtension, 2, False, pOutPoint

If you call QueryPoint using a distance or ratio longer than the curve
using the esriExtendTangentAtTo constant, you are returned a Point
location along the Tangent at the ToPoint of the Curve.

  pCurve.QueryPoint esriExtendTangentAtTo, 1.2, True, pOutPoint

You can also call QueryPoint using a negative distance or ratio and an
extension that extends the Curve from its FromPoint, like this code
shows:

  pCurve.QueryPoint esriExtendTangentAtFrom, -0.2, True, pOutPoint

The embedded extensions extend a CircularArc or EllipticArc along the
circle or ellipse defined by the Segment.

   pCurve.QueryPoint esriExtendEmbedded, 1.2, True, pOutPoint

Enumeration tagesriSegmentExtension Describes if, how, and where to extend segments.

 1 - esriExtendTangentAtFrom The segment is extended infinitely far along the line tangent to its
'from' point.

 2 - esriExtendEmbeddedAtFrom The segment is extended by producing its embedding geometry at its
'from' point (an arc segment's embedding geometry is a complete
circle; a line segment's embedding geometry is an infinite line.).

 3 - esriExtendAtFrom The segment is extended at its 'from' point, either by tangent or by its
embedding geometry).

 4 - esriExtendTangentAtTo The segment is extended infinitely far along the line tangent to its 'to'
point.

 5 - esriExtendTangents The segment is extended infinitely far along lines tangent to both
endpoints.

 8 - esriExtendEmbeddedAtTo The segment is extended by producing its embedding geometry at its
'to' point (an arc segment's embedding geometry is a complete
circle; a line segment's embedding geometry is an infinite line.).

0 - esriNoExtension The segment is not extended.
10 - esriExtendEmbedded The segment is extended by producing its embedding geometry at

both endpoints (an arc segment's embedding geometry is a
complete circle; a line segment's embedding geometry is an infinite
line.).

12 - esriExtendAtTo The segment is extended at its 'to' point, either by tangent or by its
embedding geometry).

Extension constants esriExtendAtFrom and esriExtendAtTo are only used
to check the extension type internally and are not valid input extension
methods, although you can use these constants as bit masks if required.

 Extension parameters are also used in methods on ICurve, IConstruct-
Line, IConstructPoint, and IProximityOperator.

Use the GetSubcurve method to duplicate a particular section of any
curve based on distance along the curve. For example, for a Curve
representing a road ten miles long, you can get a second Curve, repre-
senting that road from five to eight miles, as the following code shows:

  Dim pNewCurve as ICurve

  Set pNewCurve = New Polyline

  pCurve.GetSubcurve 5, 8, True, pNewCurve

"to" point

tangent

"from" point

normal

The tangent and normal to a curve

The esriSegmentExtension constants can be
used with the QueryPoint method to return

points lying on a Curve or on an imaginary
extension of the Curve. Some examples are

shown below.

to point

query point
from point

"to" point

query point
"from" point

When you use QueryPoint with
esriNoExtension, the returned point is forced

to lie on the actual Curve shape, nearest to the
specified distance.

"to" point

query point

"from" point

When you use QueryPoint with
esriExtendTangentAtTo, the returned point can

lie on the tangent of the ToPoint.

"to" point

query point

"from" point

When you use QueryPoint with
esriExtendTangentAtFrom and a negative

distance, the returned point can lie on the
tangent of the FromPoint.

"to" point

query point"from" point

When you use QueryPoint with
esriExtendEmbedded on an EllipticArc or

CircularArc, the point can lie along the
embedded ellipse or circle.

CURVE ABSTRACT CLASS



Chapter 9 • Shaping features with geometry • 993

G
eo

m
et

ry

A tangent line touches a curve at one single point and has the same
slope as the curve at that point. A normal line is perpendicular to a
tangent at that point. Tangents and normals at any location on a curve
can be identified. The code below sets the shape of a new Line object
to the tangent and then to the normal of a Curve at its start, or
FromPoint.

  Dim pGeometry() As IGeometry

  GetAllSelectedGeometries pGeometry 'Function in Util.bas

  If UBound(pGeometry) > -1 Then

    Dim i As Integer

    Dim pCurve As ICurve

    For i = 0 To UBound(pGeometry)

      Set pCurve = pGeometry(i)

    Next i

  End If

  Dim pLine as ILine

  Set pLine = New Line

  pCurve.QueryTangent esriNoExtension, 0, True, 1, pLine

  pCurve.QueryNormal esriNoExtension, 0, True, 1, pLine

CURVE ABSTRACT CLASS



994 • Exploring ArcObjects • Volume 2

Geometry
IClone

IGeometry
IProximityOperator

ISupportErrorInfo
ITransform2D

Curve
ICurve

Polycurve

IConstructCurve
IGeometry2

IGeometryCollection
IHitTest

IMAware
IMCollection

IMSegmentation
IPersist

IPersistStream
IPointCollection

IPointIDAware
IPolycurve

IPolycurve2
IProximityOperator

IRelationalOperator
ISegmentCollection

ISpatialIndex
ITopologicalOperator

ITopologicalOperator2
IZ

IZAware
IZCollection

A Polycurve represents a Polyline or
the outline of a Polygon.

The Polycurve abstract class represents the common functionality of a
Polygon and Polyline and is inherited by both coclasses, which have
much in common conceptually. Both a Polygon and Polyline reference a
collection of parts, each part being a collection of Segments. In the case
of a Polyline, each part is a valid Path, and in the case of the Polygon, each
part is a Ring.

 IPolycurve : ICurve Provides access to members that define operations
common to the polylines and the boundaries of polygons.

Densify (maxSegmentLength: Double,
maxDeviation: Double)

Converts this polycurve into a piecewise linear approximation of itself.

Generalize (maxAllowableOffset:
Double)

Generalizes this polycurve using the Douglas-Poiker algorithm.

Smooth (maxAllowableOffset: Double) Converts this curve into a smooth curve containing only Bezier curve
segments.

SplitAtDistance (Distance: Double,
asRatio: Boolean, createPart: Boolean,
out SplitHappened: Boolean, out
newPartIndex: Long, out
newSegmentIndex: Long)

Introduces a new vertex into this polyline at a specified distance from
the beginning of the polyline.

SplitAtPoint (splitPoint: IPoint,
projectOnto: Boolean, createPart:
Boolean, out SplitHappened: Boolean,
out newPartIndex: Long, out
newSegmentIndex: Long)

Introduces a new vertex into this polyline at the location on it closest
to the input point.

Weed (maxAllowableOffsetFactor:
Double)

Generalizes using a small tolerance based upon either the system
units of the geometry's spatial reference, or the shape's bounding
box.

The IPolycurve interface provides generic shape editing and correction
functionality. The SplitAtDistance and SplitAtPoint methods add a new
vertex into a Polycurve at the specified distance or Point, as shown below.
These methods alter the object’s shape (unlike the more primitive
SplitAtDistance and SplitDivideLength methods on ISegment).
  Dim bSplit As Boolean, lPart As Long, lSeg As Long
  If pPolycurve.GeometryType = esriGeometryPolygon Then
    pPolycurve.SplitAtPoint pSplitPoint, False, False, bSplit, lPart, lSeg
  Else
    pPolycurve.SplitAtPoint pSplitPoint, False, True, bSplit, lngPart, lSeg
  End If
  If bSplit Then
    MsgBox "Split at " & lPart & "(" & lSeg & ")"
  Else
    MsgBox "Polycurve not split"
  End If

Generalization has a general aim of retaining as much information as
possible while reducing the amount of raw data needed to convey that
information; this improves data access time.

The Generalize method removes vertices from a Polycurve according to
the Douglas–Peucker generalization algorithm. It is appropriate for thin-
ning those vertices that contribute least to the shape of the line while
retaining the characteristics of the shape and is based on a maximum
offset value. A generalized line contains only linear segments.

The offset value should be chosen with care, as too large a value can
change the shape significantly. Choosing an offset value depends on the
characteristics of the line, the “wiggliness”, length, shape, and so on,
and may be a matter of trial and error. The examples below show a

POLYCURVE ABSTRACT CLASS

SplitPoint does not need to lie exactly on the
Polycurve if the second parameter,

projectOnto, is True.

The third parameter determines if a new part is
created in the Polycurve at the split point.

Note that CreatePart should not be True for a
Polygon, as this would result in two open Rings.

1 2 3
Generalization with the Douglas-Poiker Algorithm

1.  A temporary line is constructed joining the
“from” point and “to” point of the original line.

The distance from each vertex to the temporary
line is measured.

2.  The vertex farthest away from the original
line is added to the temporary line. The distance
of each vertex to the temporary line is recalcu-

lated.

3.  This process is repeated until the distance to
the vertex farthest away is smaller than the

offset parameter. At this point, the original line
is set to equal the temporary line.



Chapter 9 • Shaping features with geometry • 995

G
eo

m
et

ry

Polycurve generalized, using as an offset a factor of the Polycurves
Length:

  pPolycurve.Generalize pPolycurve.Length / dblOffset

If all the Segments are linear and the offset is equal to zero, the
Polycurve is unchanged. For a Polycurve containing nonlinear Segments,
the Generalize method can be used to produce a linear approximation
of the Polycurve. In this case, Generalize may actually increase the
amount of vertices in the line, especially for small offset values—which
may be the opposite of your aim.

The Weed method is similar to the Generalize method. However, the
offset you specify is multiplied by a “zero-equivalence” tolerance value
based on the geometry’s SpatialReference units; effectively, this method
removes virtually collinear points from a Polycurve. It is inappropriate
for use on nonlinear Segments, as the number of Segments may greatly
increase.

The Smooth method converts each Segment in a Polycurve into a Bezier-
Curve coclass, retaining the original number of Segments. If the offset
parameter is zero, the FromPoints and ToPoints of each Segment will also
be preserved. The control points of each curve will be complementary
to those of the neighboring Segments, which produces a smooth flowing
shape. In the graphic to the left, a lake feature is smoothed, reducing
the number of Segments, retaining the shape characteristics, and gaining
a smooth appearance. The code used is below.

  pPolycurve.Smooth pPolycurve.Length / dblOffset

The Smooth method has a maximum offset parameter, which is used in
the same way as the offset parameter in Weed and Generalize. An offset
of zero produces a Polycurve that has exactly one BezierCurve segment
for every Segment in the original Polycurve; greater offset values may
change the number of Segments in the smoothed Polycurve.

If calling Smooth on a Polycurve that contains nonlinear Segments, using
a small offset parameter may greatly increase the number of Segments in
the Polycurve.

 IPolycurve2 : IPolycurve Provides access to members that extend operations
common the polylines and the boundaries of polygons.

SplitAtDistances (distanceCount: Long,
distances: Double, asRatios: Boolean,
createParts: Boolean) :
IEnumSplitPoint

Introduces new vertices into this polyline at specified distances from
the beginning of the polyline.

SplitAtPoints (splitPoints: IEnumVertex,
projectOnto: Boolean, createParts:
Boolean) : IEnumSplitPoint

Introduces new vertices into this polyline at the locations on it closest
to the input points.

The IPolycurve2 interface provides SplitAtDistances and SplitAtPoints
methods, which allow you to add multiple vertices to a Polycurve in one
method call.

The Polygon and Polyline coclasses both implement the
IGeometryCollection interface, which lets you add, change, or remove
parts of a Polyline or Polygon. This interface is the primary interface for
defining the shape of a Polycurve.

You can find details on the algorithm behind the
Generalize method at Douglas, D.H., and
Peucker, T.K. (1973):  Algorithms for the

Reduction of the Number of Points Re-
quired to Represent a Line or Its Character,

The American Cartographer,
10(2), pp. 112–123.

Smoothing is often used to produce a more
aesthetically pleasing shape for a line but will

necessarily warp the original shape. Used
appropriately, it is a useful method. For example,

a lake feature consisting of lines may offer a
more realistic shape if smoothed since the actual

geographic feature has a curved shape.

For more information on using the
IGeometryCollection, ISegmentCollection,

and IPointCollection interfaces, see the
geometry collection interfaces section in this

chapter.

Note that if you’re using the offset parameter at
a constant value, you only need to call one of the

following methods: Weed, Generalize, or
Smooth. For example, there is no need to call

Weed before calling Generalize with the same
offset value, as Generalize will remove all the

vertices that a preceding call to Weed would
have removed.

The Generalize method reduced the number of
vertices in this shape from 427 to 29.

POLYCURVE ABSTRACT CLASS



996 • Exploring ArcObjects • Volume 2

IGeometryCollection allows multipart shapes to be correctly constructed.
Each Geometry in the IGeometryCollection corresponds to a single part of
the shape and is referenced in a particular order. The order of parts may
affect the result of methods such as QueryPoint, which traverses each
part in turn to find the point at a specified distance along the Polycurve.

The ISegmentCollection interface is implemented by the Path, Ring,
Polyline, and Polygon coclasses and allows access to each Segment of
any Polycurve. The IPointCollection interface is also implemented by
these coclasses and allows access to each individual vertex of any
Polycurve. However, neither interface has a concept of multipart shapes,
which is an essential concept of Polygons and Polylines. Therefore, it is
recommended that you generally make use of the ISegmentCollection or
IPointCollection interface of a Polycurve to query Segments or vertices
and not add new ones or remove or edit existing ones. The most effi-
cient way to iterate through the constituent parts of a multipart Polycurve
is to use one of the enumerator classes. A Segment enumerator can be
obtained from the ISegmentCollection interface using the EnumSegments
method. A vertex enumerator can be obtained from the IPointCollection
interface using the EnumVertices method.

POLYCURVE ABSTRACT CLASS



Chapter 9 • Shaping features with geometry • 997

G
eo

m
et

ry

Polyline
IMSegmentation

IPolyline
IPolyline2

Geometry
IClone

IGeometry
IProximityOperator

ISupportErrorInfo
ITransform2D

Curve
ICurve

Polycurve

IConstructCurve
IGeometry2

IGeometryCollection
IHitTest

IMAware
IMCollection

IMSegmentation
IPersist

IPersistStream
IPointCollection

IPointIDAware
IPolycurve

IPolycurve2
IProximityOperator

IRelationalOperator
ISegmentCollection

ISpatialIndex
ITopologicalOperator

ITopologicalOperator2
IZ

IZAware
IZCollection

A polyline is a collection of path objects.
Polylines are used for feature shapes in

networks and routes and for graphic
element shapes.

Polyline with
one path

Polyline with multiple 
connected paths

Polyline with multiple 
disjoint paths

A polyline may consist of many different combi-
nations of connected and disjoint paths.

original polyline

reshape path

Reshape

reshaped polyline

The Reshape method modifies a simple, valid
polyline to remove intersections with an input

path.

A Polyline holds an ordered collection of references to Path objects,
each Path constituting a part of the Polyline. A Polyline may contain a
single Path, multiple disjoint Paths, or multiple connected Paths.

A topologically correct Polyline (IsSimple = True) satisfies the following
criteria:

• Each Path is valid.

• Paths do not overlap, cross themselves, or cross each other.

• Multiple Paths may result in a continuous or a disjoint Polyline shape.

• Paths may contain both curved and linear Segments.

• Zero-length Paths are not permitted.

For information on network simplicity, see also the SimplifyNetwork
method.

 IPolyline : IPolycurve Provides access to members that identify a polyline object.

Reshape (reshapeSource: IPath) :
Boolean

Modifies this polyline by replacing some of its segments with some
segments from reshapeSource.

SimplifyNetwork Performs a simplification that preserves network properties and
creates a consistent network geometry.

The SimplifyNetwork method provides a polyline-specific routine, similar
to the ITopologicalOperator::Simplify method, which implements rules
for simplicity more suitable for network applications. Unlike Simplify,
SimplifyNetwork allows Paths to intersect and overlap each other and
themselves, but will:

• Remove empty or zero-length Segments and empty Paths.

• Ensure Segment orientation is consistent with order (the ToPoint of a
segment is equal to the FromPoint of the succeeding Segment).

• Create a new path for discontiguous Segments or Segments with differ-
ent attributes, ensuring each Path is contiguous.

• Merge parts where exactly two Paths share an endpoint.

• For two contiguous Segments in a Path with a common endpoint
(FromPoint or ToPoint), if one endpoint has nonNaN (“not a num-
ber”) z-, m-, or ID attributes, and the other has NaN attributes, these
values will be copied to the attributes of the other endpoint. If the
endpoints have unequal nonNaN values, the path will be split into
two paths at this point.

A Polyline can be constructed from scratch by creating a Path and add-
ing a reference to this Path to the Polyline coclass using the
IGeometryCollection interface. This sequence is repeated until the
Polyline is complete. When adding Paths to a Polyline using
IGeometryCollection, remember these facts:

• Each Path must be valid or be made valid by a later call to Sim-
plify—for information on creating a valid Path, see the Path coclass.

POLYLINE COCLASS



998 • Exploring ArcObjects • Volume 2

• A Polyline is an ordered collection of Paths—think about the order in
which you add your Paths and the direction they travel.

• To ensure the Polyline is topologically valid as a whole, call Simplify
after creating the shape; for a network application, a call to
SimplifyNetwork would be more appropriate.

For example, if you have four points and want to build up a Polyline
shape with two parts, you could write code like this:

    Dim pPoint1 As iPoint, pPoint2 As iPoint

    Dim pPoint3 As iPoint, pPoint4 As iPoint

    Set pPoint1 = New Point

    pPoint1.PutCoords 1, 2

    Set pPoint2 = New Point

    pPoint2.PutCoords 2, 3

    Set pPoint3 = New Point

    pPoint3.PutCoords 4, 5

    Set pPoint4 = New Point

    pPoint4.PutCoords 5, 6

    Dim pGeometryColl As IGeometryCollection

    Set pGeometryColl = New Polyline

    Dim pSegmentColl As ISegmentCollection

    Set pSegmentColl = New Path

    Dim pLine As ILine

    Set pLine = New Line

    pLine.PutCoords pPoint1, pPoint2

    pSegmentColl.AddSegment pLine

    pGeometryColl.AddGeometry pSegmentColl

    Dim pPathSegments As ISegmentCollection

    Set pPathSegments = New Path

    Set pLine = New Line

    pLine.PutCoords pPoint3, pPoint4

    pSegmentColl.AddSegment pLine

    pGeometryColl.AddGeometry pPathSegments

POLYLINE COCLASS

Note that if you’re creating a Polyline with
numerous parts and/or vertices, the array based

methods (for example, AddSegments,
AddPoints) are much more efficient than

repeated calls to AddSegment.

If you are holding references to any members of the Polyline, note the
use of the IGeometryCollection::GeometriesChanged method, discussed in the
geometry collection interfaces section later in this chapter.



Chapter 9 • Shaping features with geometry • 999

G
eo

m
et

ry

Geometry
IClone

IGeometry
IProximityOperator

ISupportErrorInfo
ITransform2D

Curve
ICurve

Polycurve

IConstructCurve
IGeometry2

IGeometryCollection
IHitTest

IMAware
IMCollection

IMSegmentation
IPersist

IPersistStream
IPointCollection

IPointIDAware
IPolycurve

IPolycurve2
IProximityOperator

IRelationalOperator
ISegmentCollection

ISpatialIndex
ITopologicalOperator

ITopologicalOperator2
IZ

IZAware
IZCollection

Polygon
IArea

IPolygon
IPolygon2

A polygon defines a shape that has an
area. It may be composed of a single ring

or several separate rings.

In ArcObjects, a Polygon is an ordered series of Rings. A topologically
correct Polygon (IsSimple = True) satisfies the following criteria:

• Each Ring is valid.

• Ring boundaries do not overlap.

• Exterior Rings (those defining the outside of a region) are oriented in
a clockwise direction. Traveling from the FromPoint to the ToPoint of
the Ring, the interior of the Polygon is always on the right-hand side.

• Interior Rings, which define a hole in a Polygon, are oriented in a
counterclockwise direction. Traveling from the FromPoint to the
ToPoint of the Ring, the interior of the Polygon is always on the left-
hand side.

• Rings with zero area are not permitted.

• Dangling Segments or Paths are not permitted.

A Polygon can be constructed with incorrect topology, and that shape
may be used in many circumstances, but not in others. For example, a
self-overlapping Polygon may be drawn as a graphic element and can
also be added as a feature to a shapefile. However, it cannot be added
as a feature to a geodatabase because ArcSDE specifies strict rules
about Feature geometry. Also, it cannot be used in a topological
method, as these methods require a simple shape.

 IPolygon : IPolycurve Provides access to members that identify a polygon and
permit controlled access to its inner and outer rings.

ExteriorRingCount: Long Returns the number of exterior rings.
InteriorRingCount (exteriorRing: IRing) :

Long
Returns the number of rings interior to the specified exterior ring.

Close Closes all rings in this polygon. The resulting polygon may not be
simple.

FindExteriorRing (interiorRing: IRing) :
IRing

Returns the exterior ring containing the specified interior ring.

QueryExteriorRings (exteriorRings:
IRing)

Returns an array of references to all exterior rings.

QueryInteriorRings (exteriorRing: IRing,
interiorRings: IRing)

Returns an array of references to rings that are interior to the
specified exterior ring.

SimplifyPreserveFromTo Simplify polygon and preserve the 'from' and 'to' points of each ring.

The IPolygon interface presents methods and properties that permit
controlled access to a Polygon’s Rings.

 IPolygon2 : IPolygon Provides access to members that extend the IPolygon
interface.

GetConnectedComponents
(numComponentsRequested: Long,
out components: IPolygon)

Returns an array of polygons that represent contiguous components
of the original. The rings of the output polygons are references to
rings in the original.

GetOutermostComponents
(numComponentsRequested: Long,
out numComponentsReturned: Long,
out components: IPolygon, out
moreComponentsExist: Boolean)

Returns an array of polygons, each of which represents a component
of the original and all components within. The rings of the outputs
are references to rings in the caller. The number of polygons
returned is at most the number of exterior rings.

QueryExteriorRingsEx
(numExteriorRingsRequested: Long,
out exteriorRings: IRing)

Returns an array of references to all exterior rings, along with a count
of the number of rings returned.

QueryInteriorRingsEx (exteriorRing:
IRing, numInteriorRingsRequested:
Long, out interiorRings: IRing)

Returns an array of references to rings that are interior to the
specified exterior ring, along with a count of the number of rings
returned.

The IPolygon2 interface inherits from the IPolygon interface, providing
improved implementations of some IPolygon methods as well as addi-

POLYGON COCLASS



1000 • Exploring ArcObjects • Volume 2

tional methods. The QueryExteriorRingsEx and QueryInteriorRingsEx
should be used in preference to the inherited QueryExteriorRings and
QueryInteriorRings methods.

The ExteriorRingCount provides a total count of the exterior Rings, while
InteriorRingCount provides a total of the number of Rings that are inte-
rior to a particular exterior Ring. Below, this method is used with the
QueryExteriorRings method to find out how many interior Rings exist for
each exterior Ring of a Polygon (pGeom).

  Dim pPoly As IPolygon2

  Set pPoly = pGeometry

  Dim pExtRings() As IRing

  ReDim pExtRings(pPoly.ExteriorRingCount - 1) As IRing

  Dim lNumRings As Long

  lNumRings = pPoly.ExteriorRingCount

  pPoly.QueryExteriorRingsEx lNumRings, pExtRings(0)

  Dim i As Long

  Dim lCount As Long

  For i = 0 To UBound(pExtRings)

    lCount = pPoly.InteriorRingCount(pExtRings(i))

    Debug.Print "ExteriorRing " & i & " has " & lCount & " InteriorRings."

  Next i

QueryInteriorRings can be used to find the actual interior Rings inside
each exterior Ring; conversely, FindExteriorRing returns the exterior
Ring enclosing the specified interior Ring.

The Close method calls IRing::Close for each part of the Polygon. The
SimplifyPreserveFromTo method provides a polygon-specific implemen-
tation similar to ITopologicalOperator::Simplify (it applies exactly the
same topological rules as Simplify) but preserves existing FromPoint and
ToPoint locations on each Ring in the Polygon.

 IArea : IUnknown Provides access to members that return properties of a
closed, two dimensional point set.

Area: Double Returns the area.
Centroid: IPoint Returns a copy of the center of gravity (centroid).
LabelPoint: IPoint Returns a copy of a point guaranteed to be inside this area.

QueryCentroid (Center: IPoint) Copies the centroid of this area to the specified point.
QueryLabelPoint (LabelPoint: IPoint) Copies to the input point a point guaranteed to be inside this area.

The IArea interface provides information relating to two-dimensional
shapes. The area property gives the total area of all the parts of the
shape. The Centroid and LabelPoint properties both return weighted
center points. Centroid gives the true centroid of a single or multipart
Polygon, which may lie outside of the actual shape. The LabelPoint gives an
approximate center point that is guaranteed to always lie within the
boundary of the shape. It is based on only the first outer Ring (and any
enclosed inner Rings) in a multipart Polygon.

A polygon may be a donut, having an interior
ring that defines a hole in the polygon. Interior

rings are said to be “embedded” in the exterior
ring.  A donut polygon may have an island ring,

or many islands, within a hole. This “nested” ring
relationship may be repeated as required and is

referred to as the containment relationship.

Polygon with 
one ring

Polygon with interior 
ring and island ring

Polygon with multiple
disjoint rings

When constructing shapes to add as features to
a feature class, bear in mind that each separate
island could be a separate polygon. If you are in

doubt as to whether to construct a donut
polygon with an island, or two separate polygons,

look at their attribution. If the two parts must
have the same attributes, they can be con-

structed as one single polygon feature; if not,
construct them as two separate polygon

features.

dangle

Dangling segments are those that form a dead-
end within a shape and are often produced from
processes such as digitizing. Dangling segments
are not permitted in simplified polygons since

adjacency for the segment cannot be calculated
correctly.

label point

centroid

The Centroid and LabelPoint of a polygon may
be  identical or different, depending on the exact

shape.

POLYGON COCLASS



Chapter 9 • Shaping features with geometry • 1001

G
eo

m
et

ry

A Polygon can be constructed by creating a valid Ring and adding a refer-
ence to this Ring to the Polygon coclass using the IGeometryCollection
interface. This sequence is repeated until the Polygon is complete.

When constructing a Polygon from Rings, you could consider the fol-
lowing:

• Each Ring must be valid or be made valid by a later call to Simplify.
For information on creating valid Rings, see the Ring coclass.

• After completing a Polygon, call Simplify or SimplifyPreserveToFrom
to ensure interior and exterior Rings are oriented correctly, Rings do
not overlap, and Rings are closed.

• If you expect a call to Simplify to have preserved the number of
Rings and vertices, check these by using the IPolygon and IPoint-
Collection interfaces.

The code below demonstrates one possible way of building a Polygon by
taking all the Polygon or Path geometries from an existing geometry enu-
meration, pEnumGeom.

  pEnumGeom.Reset

  Dim pPolyGeomColl As IGeometryCollection

  Set pPolyGeomColl = New Polygon

  Dim pGeometry As IGeometry

  Set pGeometry = pEnumGeom.Next

  Do While Not pGeometry Is Nothing

    If pGeometry.GeometryType = esriGeometryRing Then

      pPolyGeomColl.AddGeometry pGeometry

    ElseIf pGeometry.GeometryType = esriGeometryPolygon Then

      pPolyGeomColl.AddGeometryCollection pGeometry

    End If

    Set pGeometry = pEnumGeom.Next

  Loop

  Dim pPolygon As IPolygon

  Set pPolygon = pPolyGeomColl

  pPolygon.SimplifyPreserveFromTo

If you are holding references to any members of the Polygon, note the
use of the IGeometryCollection::GeometriesChanged method, discussed in
the geometry collection interfaces section later in this chapter.

In this code structure, there are references to
the same Geometry objects from both the

pEnumGeom and the new Polygon,
pPolygon. If it is necessary for these variables to

hold references to entirely separate objects, you
should clone the enumeration and then iterate

the clone.

POLYGON COCLASS

If you decide that you need to preserve the
locations of the FromPoint and ToPoint of the

parts of a simplified Polygon, you can use the
SimplifyPreserveToFrom method instead of

Simplify. Note, however, that this method may
take longer to complete than the Simplify

method.



1002 • Exploring ArcObjects • Volume 2

Curve
ICurve

Path
IConstructPath

IPath
IPointCollection

ISegmentCollection

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

A Path is a collection of continuous
Segments. Path objects are the building

blocks of Polylines.

A Path holds an ordered collection of references to Segment objects. A
valid Path should have Segments that form a continuous shape (the
ToPoint of the first Segment should equal the FromPoint of the following
Segment) and may be a combination of any or all of the ISegment ob-
jects: Line, EllipticArc, CircularArc, and BezierCurve.

 IPath : ICurve Provides access to members that define the properties and
specific behavior of a path; a piecewise continuous one
dimensional curve.

Generalize (maxAllowableOffset:
Double)

Generalizes this path using the Douglas-Poiker algorithm.

QueryChordLengthTangents
(pointIndex: Long, pPrevTangent:
IPoint, pbPrevSetByUser: Boolean,
pNextTangent: IPoint,
pbNextSetByUser: Boolean)

Returns tangent vectors (relative to corresponding endpoint) at both
sides of a Bezier end point; and whether they have been set by user
or by smoothing process.

SetChordLengthTangents (pointIndex:
Long, pPrevTangent: IPoint,
pNextTangent: IPoint)

Sets tangent vectors (relative to corresponding endpoint) at both sides
of a Bezier end point; if either is Nothing, they will be set by
smoothing process.

Smooth (maxAllowableOffset: Double) Converts this path into a smooth approximation of itself that contains
only Bezier curve segments.

SmoothLocal (pointIndex: Long) Converts this path near pointIndex into a smooth path of Bezier
curve segments.

The IPath interface has Generalize and Smooth methods that function
similarly to those methods on the Polycurve interface but are imple-
mented for a Path instead of an entire Polycurve. The IPath interface
also offers the SmoothLocal method, which smoothes a Path around a
certain vertex, changing the existing Segments to BezierCurves with
complementary control points. Below, SmoothLocal is applied to a vertex
in the center of a Path, pPath.
    Dim pPointColl As IPointCollection
    Set pPointColl = pPath

    Dim iPoint As Integer
    iPoint = CInt(pPointColl.PointCount / 2)

    Dim dPoint As Double
    dPoint = 1.2
    pPath.SmoothLocal CInt(dPoint)

The shape of a Path can be defined by adding Segment objects to a Path
object, using the ISegmentCollection interface. For more information on this
interface, see the section on geometry collection interfaces in this chap-
ter.

 IConstructPath : IUnknown Provides access to members that construct a path using
other geometries and measures.

ConstructRigidStretch (srcPath: IPath,
stretchStartIndex: Long, startAnchor:
Long, endAnchor: Long, stretchEnd:
IPoint)

Constructs a version of the input path that has been rotated and
scaled. The point at stretchStartIndex will end up at stretchEnd.

For an existing Path, the ConstructRigidStretch method can be used to
rotate and scale the shape of a Path, or just a section of the Path, to a
certain point. This method is ideal for use in interactive rubber-sheeting
operations. ArcMap, for example, makes use of this method in the
‘Stretch geometry proportionally when moving a vertex’ option.

PATH CLASS

Smoothing a certain section of a path is
achieved using SmoothLocal. Up to two

Segments on either side of the indicated vertex
may be changed.

     stretch 
endpoint

   "from" point of 
 existing path

"to" point of 
  existing path

existing path
constructed path

Scale and rotate a path using
ConstructRigidStretch.

     stretch 
endpoint

   "from" point of 
 existing path

"to" point of 
  existing path

existing pathconstructed path

ConstructRigidStretch can also be used on
only part of the path.

Although invalid Paths may be created, you will
have problems using other ArcObjects methods

and properties if you are working with an invalid
Path.



Chapter 9 • Shaping features with geometry • 1003

G
eo

m
et

ry

This example scales and rotates an entire path to pPoint, pExistingPath.
    Dim pConstructPath As IConstructPath
    Set pConstructPath = New Path

    Dim pPointColl As IPointCollection
    Set pPointColl = pExistingPath

    pConstructPath.ConstructRigidStretch pExistingPath, _
       pPointColl.PointCount - 1, 0, 0, pPoint

To create a Path where the first Segment is unchanged, the code could
be modified like this:

    pConstructPath.ConstructRigidStretch pExistingPath, _

       pPointColl.PointCount - 1, 0, 1, pPoint

PATH CLASS



1004 • Exploring ArcObjects • Volume 2

Curve
ICurve

Path
IConstructPath

IPath
IPointCollection

ISegmentCollection

Ring
IArea
IRing

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

A ring is a collection of contiguous
segments but, unlike a path, its “from”

point and “to” point must share an
identical location, creating a closed loop.

Ring objects are the building blocks of
polygons.

A Ring holds an ordered collection of references to Segment objects and
inherits from IPath. However, a Ring is only valid if the FromPoint and
ToPoint of the Ring share an identical location, creating a closed-loop
shape. Invalid Rings may be created, particularly while a Ring is being
constructed. However, you may find problems working with other meth-
ods and properties if you leave a Ring in an invalid state permanently. A
valid Ring satisfies the following criteria:

• It consists of a series of connected segments that are all oriented in
the same direction (the FromPoint of one Segment is the same as the
ToPoint of the Segment before it).

• It is closed (its FromPoint and ToPoint are identical).

• It does not intersect itself.

 IRing : IPath Provides access to members that identify a ring; the
boundary of a closed, two dimensional point set.

IsExterior: Boolean Indicates when this ring functions as the exterior ring in a polygon.

Close Makes sure that this ring is closed by adding a line segment between
the ring's 'to' and 'from' points if necessary.

GetSubcurveEx (fromDistance: Double,
toDistance: Double, asRatio: Boolean,
isCCW: Boolean, useRingOrientation:
Boolean) : ICurve

Extracts a portion of this curve, which may extend past origin, into a
new curve.

Reshape (reshapeSource: IPath) :
Boolean

Modifies this ring by replacing some of its segments with some
segments from reshapeSource.

The segments in a Ring can be oriented either clockwise or counter-
clockwise. The IsExterior property, generally used in conjunction with
multipart Polygons, returns True if the Ring is oriented clockwise. The
Close method adds a new Line object to an open Ring, connecting the first
and last points in the Ring.

The shape of a Ring can be defined by adding Segment objects to a Ring
object using the ISegmentCollection interface, as shown in this code.

  Dim pSegments As ISegmentCollection, pLine As ILine, pRing as IRing

  Set pSegments = New Ring

  Set pLine = New Line

  pLine.PutCoords pPoint1, pPoint2

  pSegments.AddSegment pLine

  Set pLine = New Line

  pLine.PutCoords pPoint2, pPoint3

  pSegments.AddSegment pLine

  Set pRing = pSegments

  pRing.Close

The GetSubcurveEx method provides a path-specific method similar to
the inherited GetSubcurve but that allows the orientation of the resultant
Curve to be specified. This may mean that the resultant Curve straddles
the FromPoint and ToPoint of the Ring.

The Reshape method provides a similar method to the IPolyline::Reshape
method, allowing you to reshape a Polygon one Ring at a time.

RING COCLASS

The ISegmentCollection interface is discussed
further in the geometry collection interfaces

section in this chapter.



Chapter 9 • Shaping features with geometry • 1005

G
eo

m
et

ry

SEGMENT ABSTRACT CLASS

Curve
ICurve

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Segment

ICurve2
IProximityOperator

ISegment
ISegmentID
ISegmentM
ISegmentZ

A Segment is a one-dimensional shape
consisting of a single parameterized line
joining a start and endpoint. It can exist

by itself but is more commonly used as a
part of a Polyline or Polygon. For

example, a Feature in a line
FeatureClass contains Polylines, and
each Polyline may have one or more

Segments.

The Segment abstract class also provides
primitive line splitting and densification methods,

although it is most likely that the line splitting
and densification functionality available on the

high-level geometry classes may be more
suitable for the average user.

A Segment represents a single-part primitive line shape joining two verti-
ces. It is defined by a start point, endpoint, and a formula describing the
line between the two points.

The Segment may be linear, based on a Line coclass, or nonlinear
(curved), based on a BezierCurve, CircularArc, or EllipticArc coclass.
Each of the Segment coclasses can exist as a standalone object. They
can also be used as building blocks to create a Path, Ring, or Polycurve.

A Segment may have z-coordinates, measures, or IDs, which are dis-
cussed throughout this section and in the geometry attributes section of
this chapter.

 ISegment : ICurve Provides access to members that identify a segment; a
non-piecewise function which defines how to travel from
a 'from' point to a 'to' point.

VertexAttributeAware (attributeType:
esriGeometryAttributes) : Boolean

Indicates the segment's awareness of the specified attribute type.

ConvertDistanceMeasureToRatio (in
distanceMeasure: Double, pRatio:
Double)

Converts the distance measure to a ratio of the total distance.

Densify (cNewSegments: Long,
maxDeviation: Double, cOutSegments:
Long, ppSegments: ILine)

Densify segment into the specified number of smaller segments.

EnvelopeIntersection (pEnvelope:
IEnvelope, boundaryOverlap: Boolean,
segmentParams: Double,
envelopeDistances: Double,
pcIntersection: Long, out pOutcode:
Long)

Finds intersections with clipping envelope; boundaryOverlap is
ignored for non-linear segments.

GeographicShift (splitLongitude: Double) Shift longitudes to the right of splitLongitude.
GetDistanceAtVertexAttribute

(attributeType: esriGeometryAttributes,
attributeValue: Double, asRatio:
Boolean) : Double

Gets the distance corresponding to the attribute value along the
segment.

GetPointsAtVertexAttribute (attributeType:
esriGeometryAttributes, attributeValue:
Double, LateralOffset: Double, outPoints:
IPointCollection)

Gets the point at the location corresponding to the attribute value.

GetSubSegmentBetweenVertexAttributes
(attributeType: esriGeometryAttributes,
fromAttribute: Double, toAttribute:
Double, out outSegment: ISegment)

Gets the segment corresponding to the extent along the segment
between the 'from' and 'to' attribute values.

GetVertexAttributeAtDistance
(attributeType: esriGeometryAttributes,
Distance: Double, asRatio: Boolean) :
Double

Gets the attribute value corresponding to the distance along the
segment.

HasVertexAttributes (attributeType:
esriGeometryAttributes, out
hasFromAttribute: Boolean, out
hasToAttribute: Boolean)

Returns two booleans telling if the segment as from attribute and
to attribute values.

HorizontalIntersectionCount (p:
_WKSPoint, out pointOnLine: Boolean) :
Long

Returns the number of horizontal intersections.

InterpolateVertexAttributes
(distanceAlongSegment: Double,
asRatio: Boolean, atPoint: IPoint)

Interpolates Z and M values at distanceAlongSegment and stores
the results at point.

MaxDistanceFromLine (pBaseFrom:
_WKSPoint, pBaseTo: _WKSPoint,
minOffset: Double, fromArcDistance:
Double, toArcDistance: Double,
pMaxOffset: Double, pAtArcDistance:
Double, pFarPoint: _WKSPoint)

Returns the maximum distance from the line.

PutAttributes (PutAttributes: Boolean,
putAwareness: Boolean, from:
_esriPointAttributes, to:
_esriPointAttributes)

Sets some attributes from this point and copies them to another
point. Awareness is not considered.

PutVertexAttributes (attributeType:
esriGeometryAttributes, fromAttribute:
Double, toAttribute: Double)

Sets the 'from' and the 'to' attribute values.

QueryAreaCorrection (out areaCorrection:
Double)

Queries the area correction value.



1006 • Exploring ArcObjects • Volume 2

 ISegment : ICurve, continued
QueryAttributes (getAttributes: Boolean,

getAwareness: Boolean, from:
_esriPointAttributes, to:
_esriPointAttributes)

Gets some attributes from this point and copies them to another
point. Awareness is not considered.

QueryCentroidCorrection
(pWeightedCentroidx: Double,
pWeightedCentroidy: Double,
pAreaCorrection: Double)

Queries the centroid correction value.

QueryCurvature (distanceAlongCurve:
Double, asRatio: Boolean, pCurvature:
Double, pUnitVector: ILine)

Finds curvature and unit vector starting at point on segment and
directed to embedded circle center.

QueryVertexAttributes (attributeType:
esriGeometryAttributes, out
fromAttribute: Double, out toAttribute:
Double)

Gets the 'from' and the 'to' attribute values.

QueryWKSEnvelope (Envelope:
_WKSEnvelope)

Queries the WKS Envelope.

QueryWKSFromPoint (p: _WKSPoint) Query the WKSPoint at the 'from' point.
QueryWKSToPoint (p: _WKSPoint) Query the WKSPoint at the 'to' point.
ReturnTurnDirection (otherSegment:

ISegment) : Long
Finds turn direction between two connected segments.

SplitAtDistance (distances: Double,
asRatio: Boolean, ppFromSegment:
ISegment, ppToSegment: ISegment)

Split segment at specified distance.

SplitAtVertexAttribute (attributeType:
esriGeometryAttributes, attributeValue:
Double, out fromSegment: ISegment, out
toSegment: ISegment)

Splits the segment in two segments at the location corresponding
to the attribute value.

SplitDivideLength (Offset: Double, Length:
Double, asRatio: Boolean,
cSplitSegments: Long, ppSegments:
ISegment)

Divide segment into smaller segments of the specified length.

SynchronizeEmptyAttributes
(pToSegment: ISegment)

Synchronize Empty Attributes.

VertexAttributeOn (attributeType:
esriGeometryAttributes, attributeValue:
Double) : Long

Indicates if attributeValue is located on this segment.

You can use the Densify method to split any curve into an approxima-
tion of itself, consisting of a series of connected lines. Densification is
an important topic if you intend to project a shape (using the
IGeometry::Project method) to a different SpatialReference. Projecting a geom-
etry from one coordinate system to another may distort its shape, for
example, a projected line may become curved in shape.

An ArcObjects Line coclass must remain linear in shape; therefore,
project the Line results in a linear shape, where the FromPoint and
ToPoint have been projected. Depending on the effect you wish to
achieve, you may wish to project a densification of that shape instead.

The number of resultant lines from a Densify method call will be, at
most, the number of segments specified in the cNewSegments parameter.
If the maxDev parameter is greater than zero, the number of segments
that results will be the minimum number that can satisfy the maximum-
deviation criteria. Therefore, if the maximum deviation specified is
greater than the maximum possible deviation, the method will return
only one line. The code below creates a new Polyline from the result of a
Densify (where the pInSegment is an existing Segment).

  Dim lNewSegments As Long, lOutSegments As Long

  lNewSegments = 4

  Dim pLine() As ILine

  ReDim pLine(lNewSegments - 1) As ILine

  pInSegment.Densify lNewSegments, 0, lOutSegments, pLine(0)

  Dim pNewLine As ISegmentCollection

1. For an existing Polyline, you can choose to
perform densification before a projection,

depending on the effect you require.

2. Here, the Polyline is projected.

3. Here, you densify the Polyline before project-
ing it.

You can use IPolycurve::Densify as an alterna-
tive method—this densifies the actual input

Geometry.

You can set the size of the array of returned
segments at runtime. By making use of the

ReDim keyword in VB, you can set the size of
the array according to the number of new

segments requested, although the entire array
may not be filled by the Densify operation.

SEGMENT ABSTRACT CLASS



Chapter 9 • Shaping features with geometry • 1007

G
eo

m
et

ry

  Set pNewLine = New Polyline

  Dim i As Long

  For i = 0 To lOutSegments - 1

    If not pLine(i) is Nothing then

      pNewLine.AddSegment pLine(i)

    End If

  Next i

The ISegment interface provides two methods to split a segment into two
or more new segments, leaving the original segment unaffected. In
contrast to the Densify method, the coclass of the resultant segments is
the same as the original geometry. The SplitAtDistance method splits a
curve into two at a specified distance or a ratio along the line’s length.
The SplitDivideDistance splits a curve into an unspecified number of
curves of a specified length. This method returns a pointer to the first
Segment in an array—for more information on dealing with returned
arrays, see Volume 1, Chapter 2, ‘Developing with ArcObjects’.

The code below creates five equal Segments by calling
SplitDivideLength. There are five segments because the distance is split
as a ratio, using a split length of 0.2. Therefore, the result array is de-
clared as pSegments(4), as the array is zero-based.

    Dim pSegments(4) As ISegment

    Dim lNumSegs As Long

    pInSegment.SplitDivideLength 0, 0.2, True, lNumSegs, pSegments(0)

    Dim i As Long

    For i = 0 To (lNumSegs - 1)

      pNewLine.AddSegment pSegments(i)

    Next i

The QueryCurvature method returns the direction and magnitude of
curvature at any specified point along a segment. Curvature is the rate of
change of the line slope. The direction of the curvature vector is always
either normal or opposite normal to the segment.

The ReturnTurnDirection method calculates the turn direction between two
connected segments. For example, the ToPoint of the first Segment equals
the FromPoint of the second Segment. At ArcGIS 8.1, only Line and Circular-
Arc coclasses support the ReturnTurnDirection method.
ReturnTurnDirection is ideal for producing driving directions from a map.

 ISegmentM : IUnknown Provides access to members that allow simple
manipulations of Ms at the segment level.

GetMs (out fromM: Double, out toM:
Double)

Get the Ms on the segment's endpoints.

SetMs (fromM: Double, toM: Double) Set the Ms on the segment's endpoints.

Measure values are stored as the Measure property of a Point object and
can be any number in the M domain of the geometry’s SpatialReference
or in the range of a Double if the geometry has no SpatialReference. For
a measured segment, that is, a segment that has measure values set at its
FromPoint and ToPoint, these values are interpolated on the fly as required
for locations along the Segment.

segment

curvature vector

curve distance

Given a segment and curve distance,
QueryCurvature returns a curvature vector,
which is calculated by deriving the equation of
the line and solving the derived equation at a

specific point.

"to" point"from" point

split distance

split point

two split segments

"to" point"from" point

three split points

 four split segments

divide distance

Split by distance

Split by divide distance

The SplitAtDistance method splits a segment
into two segments at the curve length.

The SplitDivideDistance method splits a
segment into multiple segments by the divide
distance. Typically, the last segment is shorter

than the rest because it has the remainder
length.

SEGMENT ABSTRACT CLASS



1008 • Exploring ArcObjects • Volume 2

In the code below, you set pSegmentM to have measure values from 0
to 100.

  pSegmentM.SetMs 0,100

 ISegmentZ : IUnknown Provides access to members that allow simple
manipulations of Zs at the segment level.

GetZs (out fromZ: Double, out toZ:
Double)

Get the Zs on the segment's endpoints.

SetZs (fromZ: Double, toZ: Double) Set the Zs on the segment's endpoints.

Z-values are another attribute of a Point. In some ArcObjects methods,
z-values are used as a vertical height coordinate with units the same as
the Point’s x,y coordinates. Other methods work regardless of the z-
attribute. In the code below, you set pSegmentZ to have z-values from
10.2 to 12.3.

  pSegmentZ.SetZs -10.2,12.3

 ISegmentID : IUnknown Provides access to members that allow simple
manipulations of IDs at the segment level.

GetIDs (out fromID: Long, out toID:
Long)

Get the IDs on the segment's endpoints.

SetIDs (fromID: Long, toID: Long) Set the IDs on the segment's endpoints.

ID values are an attribute of a Point geometry. Where points are used
programmatically, it may be useful to “track” them using an ID. For
example, the input from a roving GPS unit could be encoded with IDs
to keep track of each point it reports. The IDs could correspond to a
time or to an entry in a database. In this way, a Polyline object in a Feature-
Class could have its own attributes, and each of its vertices could have
their own separate attributes. In the code below, pSegmentID is set to have
a FromPoint::ID of 23987 and a ToPoint::ID of 23988.

  pSegmentID.SetIDs 23987,23988

SEGMENT ABSTRACT CLASS

A Segment may be part of a Polyline or
Polygon, in which case the measure values may

be more conveniently set onto the Polyline or
Polygon as a whole. For more information, see

the Geometry Attributes section later in the
chapter.

Note that z-, m-, and ID values can only be
returned and set depending on the object’s

attribute awareness, which can be determined
via the IZAware, IMAware, or IPointIDAware

interfaces.



Chapter 9 • Shaping features with geometry • 1009

G
eo

m
et

ry

Line
IConstructLine

ILine
ILine2

Curve
ICurve

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Segment

ICurve2
IProximityOperator

ISegment
ISegmentID
ISegmentM
ISegmentZ

A Line is a one-dimensional shape that
links two points by a direct route. It may

represent a geographical feature too
narrow to depict as an area, or it may

define the shape of a graphic element.

"to" point

"from" point

Line segment

A Line is the simplest type of Segment.

The Line coclass defines a direct route between two vertices, either by
specifying the vertices or by other constructor methods. It is the simplest
and most common kind of segment and can be the building block of
Polylines, Polygons, Rings, and Paths.

 ILine : ICurve Provides access to members that identify a straight line
segment and defines its properties.

Angle: Double The angle between this line and the positive x-axis.

PutCoords (from: IPoint, to: IPoint) Sets this line's endpoints to be 'from' and 'to'.
QueryCoords (from: IPoint, to: IPoint) Copies the endpoints of this line to 'from' and 'to'.

Use the ILine interface to find out line-specific properties of a Line
segment. The QueryCoords property will return any existing coordinates
by populating two valid Point objects (make sure both points are de-
clared as New objects before passing them to QueryCoords). If the Line
is an empty geometry, error 514 is raised. The Angle property will indi-
cate the angle between the positive x-axis and the line in radians.

The ILine interface also provides the simple PutCoords method, which
allows you to construct a line. Below, the code constructs a line and
then checks its coordinates.

  Dim pLine As ILine, pFromPoint As IPoint, pToPoint As IPoint

  Set pFromPoint = New Point

  pFromPoint.PutCoords 0, 0

  Set pToPoint = New Point

  pToPoint.PutCoords 10, 10

  Set pLine = New esriCore.Line

  pLine.PutCoords pFromPoint, pToPoint

  MsgBox "From: " & pLine.FromPoint.X & ", " & pLine.FromPoint.Y & _

    vbNewLine & "To: " & pLine.ToPoint.X & ", " & pLine.ToPoint.Y & _

    vbNewLine & "Angle: " & pLine.Angle

 IConstructLine : IUnknown Provides access to members that construct a line segment
using other geometries and measures.

ConstructAngleBisector (from: IPoint,
through: IPoint, to: IPoint, Length:
Double, bUseAcuteAngle: Boolean)

Constructs a line segment being the bisector through the angle
defined by the three input points.

ConstructExtended (InLine: ILine,
extendHow: tagesriSegmentExtension)

Extends a line segment in either or both of its 'to' or 'from' direction.

The IConstructLine interface provides more complex ways to define a
Line. Given a “from” point, a “through” point, and a “to” point, the
ConstructAngleBisector method bisects the angle defined by the three
points and creates a line of the specified length. The line is constructed
through the right-hand-side angle but can be forced to go through the
left-hand-side angle if it is the smaller angle and the last parameter is set
to True.

The third way to construct a Line is with the ConstructExtended method,
where an existing Line is extended to the limit of the SpatialReference;
therefore, the SpatialReference of both lines must be set and have Do-
main information (HasXYPrecision = True). For more information, see
the esriSegmentExtension list documented with the ICurve interface.

LINE COCLASS

1/2α

1/2α

"from"
point"through" point

"to" point

length

ConstructAngleBisector can be used to create
a new Line from three existing Points.



1010 • Exploring ArcObjects • Volume 2

Curve
ICurve

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Segment

ICurve2
IProximityOperator

ISegment
ISegmentID
ISegmentM
ISegmentZ

CircularArc
ICircularArc

IConstructCircularArc
IConstructCircularArc2

A CircularArc is a Segment that
describes a portion of a circle. A

CircularArc that describes an entire
circle will have a CentralAngle of 2�

radians, and its FromPoint and ToPoint
will be equal.

A CircularArc is an object that describes a portion of a circle or a com-
plete circle. In geometric terms, a CircularArc is a special case of an
EllipticArc, where the major and minor axes are equal. Consequently,
every point on the arc is equidistant from the CenterPoint, this distance
being the Radius.

 ICircularArc : ICurve Provides access to members that control properties of
circular arcs.

CenterPoint: IPoint A copy of the center point of this circular arc.
CentralAngle: Double The included (or central) angle.
ChordHeight: Double The chord height (assigning preserves endpoints, and orientation

unless chord height is < 0).
FromAngle: Double The angle, measured from a horizontal line through this circular arc's

center point, that defines where this arc starts.
IsCounterClockwise: Boolean Indicates when this circular is oriented counter-clockwise from its

'from' point to its 'to' point.
IsLine: Boolean Indicates when the arc has degenerated to a line (radius is infinite).
IsMinor: Boolean Indicates whether this circular arc is a minor arc or a major arc.
IsPoint: Boolean Indicates when the arc has degenerated to a point (radius is 0).
Radius: Double The uniform distance, the radius, from the center point to the arc.
ToAngle: Double The angle, measured from a horizontal line through this circular arc's

center point, that defines where this arc ends.

Complement Produces circle complement of arc; 'from' and 'to' points are
unchanged.

PutCoords (cp: IPoint, sp: IPoint, ep:
IPoint, arcOrientation:
tagesriArcOrientation)

Defines this circular by a center point, 'from' and 'to' points, and
orientation.

PutCoordsByAngle (cp: IPoint,
FromAngle: Double, CentralAngle:
Double, arcRadius: Double)

Defines this circular arc by a center point, 'from' angle, signed central
angle, and radius.

PutRadiusByPoint (pInP: IPoint) Defines the radius of this circular arc to be the distance from the
arc's center point to the input point; other properties remain
unchanged.

QueryCenterPoint (Center: IPoint) Copies the center point of this circular arc to the input point.
QueryCoords (cp: IPoint, sp: IPoint, ep:

IPoint, isCCW: Boolean, IsMinor:
Boolean)

Copies the center, 'from' and 'to' points, orientation and major/minor
property into the input parameters.

QueryCoordsByAngle (cp: IPoint,
FromAngle: Double, centerAngle:
Double, arcRadius: Double)

Returns the center point, 'from' angle, signed central angle, and
radius.

The defining properties of an existing CircularArc, as shown to the left,
can be obtained individually from the FromAngle, ToAngle, CentralAngle,
CenterPoint, ChordHeight, and Radius properties. The QueryCoord and
QueryCoords methods can also be used to retrieve parameters from an
existing CircularArc.

The FromAngle and ToAngle of an arc can be changed directly by writ-
ing to the FromAngle and ToAngle properties. You can also write to the
CentralAngle property of a CircularArc, which will alter the ToAngle as
necessary, preserving the FromAngle of the arc. The ChordHeight prop-
erty can be used to return this property of an arc, and its maximum
value is twice the radius (the diameter). It is also possible to alter the
shape of a CircularArc by changing the ChordHeight of an existing
CircularArc, which will retain the FromPoint and ToPoint but adjust the
CenterPoint, CentralAngle, and Radius, accordingly.

Some properties that provide checks for certain special cases are:

• IsLine—if True, the Radius is infinite.

• IsPoint—if True, the Radius is zero.

• IsCounterClockwise—if True, the CentralAngle is positive.

• IsMinor—if True, the arc is less than a semicircle (CentralAngle < �
radians).

CIRCULARARC COCLASS

central point

"from" angle

Circular arc

"to" angle

central angle

radius
chord height

These are the main properties of a circular arc
set and returned in ICircularArc.

A CircularArc is defined by its FromPoint,
ToPoint, CenterPoint, and Orientation. The
Radius and CentralAngle provide information
and can also be used to adjust the shape of an

arc.



Chapter 9 • Shaping features with geometry • 1011

G
eo

m
et

ry

An existing CircularArc can be altered by calling the Complement
method, changing the CircularArc to its “other” part. The Complement
method defines a CircularArc as the arc that creates a full circle when
combined with the original geometry; the FromPoint and ToPoint of the
arc are preserved. Setting either the IsCounterClockwise or the IsMinor
property to their alternate value also changes the arc to the complement
of the original shape.

Both the ICircularArc and IConstructCircularArc interfaces offer ways
of defining a new CircularArc. The method by which you create a
CircularArc should be chosen according to which parameters of the arc
you can define in advance.

You should generally define a new CircularArc using one of the de-
scribed all-in-one methods, rather than setting the FromAngle, ToAngle,
Radius, and IsCounterClockwise properties separately.

The PutCoords method requires the CenterPoint, FromPoint, and ToPoint to be
known in advance, in addition to specifying the orientation of the arc—
an empty geometry may be created if the FromPoint and ToPoint are not
equal distances from the CenterPoint. The PutCoordsByAngle method, which
requires the CenterPoint, FromAngle, CentralAngle, and Radius, is strongly
recommended in preference to the PutCoords method (if such parameters
are known), as using PutCoords requires the exact location of the FromPoint
and ToPoint to be known in advance.

 IConstructCircularArc : IUnknown Provides access to members that construct a circular arc
using other geometries and measures.

ConstructArcDistance (Center: IPoint,
from: IPoint, isCCW: Boolean,
arcDistance: Double)

Constructs an arc from a center point, a starting point, and an arc
length.

ConstructBearingAngleArc (from: IPoint,
inAngle:Double, isCCW: Boolean, Central-
Angle: Double, arcDistance: Double)

Constructs an arc with the given chord bearing, central angle and
arc distance).

ConstructBearingAngleChord (from:
IPoint, inAngle: Double, isCCW:
Boolean, CentralAngle: Double,
chordDistance: Double)

Constructs an arc with the given chord bearing, central angle and
chord distance).

ConstructBearingAngleTangent (from:
IPoint, inAngle: Double, isCCW: Boolean,
CentralAngle: Double, tangentDistance:
Double)

Constructs an arc with the given chord bearing, central angle and
tangent distance).

ConstructBearingArcTangent (from:
IPoint, inAngle: Double, isCCW:
Boolean, arcDistance: Double,
tangentDistance: Double)

Constructs an arc with the given chord bearing, arc distance and
tangent distance).

ConstructBearingChordArc (from: IPoint,
inAngle: Double, isCCW: Boolean,
chordDistance: Double, arcDistance:
Double)

Constructs an arc with the given chord bearing, chord distance and
arc distance (negative for clockwise orientation)).

ConstructBearingChordTangent (from:
IPoint, inAngle: Double, isCCW:
Boolean, chordDistance: Double,
tangentDistance: Double)

Constructs an arc with the given chord bearing, chord distance and
tangent distance).

ConstructBearingRadiusAngle (pStart:
IPoint, inAngle: Double, isCCW:
Boolean, inRadius: Double,
CentralAngle: Double)

Constructs an arc with the given chord bearing, radius and central
angle).

ConstructBearingRadiusArc (from: IPoint,
inAngle: Double, isCCW: Boolean,
inRadius: Double, arcDistance: Double)

Constructs an arc with the given chord bearing, radius and arc
distance).

ConstructBearingRadiusChord (from:
IPoint, inAngle: Double, isCCW: Boolean,
inRadius: Double, chordDistance: Double,
IsMinor: Boolean)

Constructs an arc with the given chord bearing, radius and chord
distance).

Circular arc

Complement

A circular arc and its complement combine to
form a full circle.

start point

center point

arc distance

ConstructArcDistance

CIRCULARARC COCLASS



1012 • Exploring ArcObjects • Volume 2

IConstructCircularArc : IUnknown,
continued

ConstructBearingRadiusTangent (from:
IPoint, inAngle: Double, isCCW:
Boolean, inRadius: Double,
tangentDistance: Double)

Constructs an arc with the given chord bearing, radius and tangent
distance).

ConstructChordDistance (Center: IPoint,
from: IPoint, isCCW: Boolean,
chordDistance: Double)

Constructs an arc from a center point, a starting point, and a
chord length.

ConstructCircle (pCenter: IPoint, Radius:
Double, isCCW: Boolean)

Constructs a circle of a given radius and orientation.

ConstructEndPointsAngle (from: IPoint, to:
IPoint, isCCW: Boolean, CentralAngle:
Double)

Constructs an arc from the given endpoints and central angle.

ConstructEndPointsArc (from: IPoint, to:
IPoint, isCCW: Boolean, arcDistance:
Double)

Constructs an arc from the given endpoints and arc distance.

ConstructEndPointsChordHeight (from:
IPoint, to: IPoint, isCCW: Boolean,
ChordHeight: Double)

Constructs an arc from a starting point, endpoint and the height of
circle segment.

ConstructEndPointsRadius (from: IPoint,
to: IPoint, isCCW: Boolean, inRadius:
Double, IsMinor: Boolean)

Constructs an arc from the given endpoints and radius.

ConstructEndPointsTangent (from: IPoint,
to: IPoint, isCCW: Boolean,
tangentDistance: Double)

Constructs an arc from the given endpoints and tangent distance.

ConstructFilletPoint (s1: ISegment, s2:
ISegment, from: IPoint, hintPoint: IPoint)

Constructs an arc of given start point near first segment and
tangent to two segments.

ConstructFilletRadius (s1: ISegment, s2:
ISegment, inRadius: Double, hintPoint:
IPoint)

Constructs an arc of given radius and tangent to two segments.

ConstructTangentAndPoint (s: ISegment,
AtStart: Boolean, p: IPoint)

Constructs an arc tangent to a given segment.

ConstructTangentAngleArc (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, CentralAngle: Double,
arcDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given central angle and an arc length).

ConstructTangentAngleChord (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, CentralAngle: Double,
chordDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given central angle and a chord length).

ConstructTangentAngleTangent
(Segment: ISegment, AtStart: Boolean,
isCCW: Boolean, CentralAngle: Double,
tangentDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given central angle and a tangent length).

ConstructTangentArcTangent (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, arcDistance: Double,
tangentDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given arc length and a tangent length).

ConstructTangentChordArc (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, chordDistance: Double,
arcDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given chord length and an arc length).

ConstructTangentChordTangent
(Segment: ISegment, AtStart: Boolean,
isCCW: Boolean, chordDistance: Double,
tangentDistance: Double)

Constructs an arc with a common tangent to input segment, a
given chord length and a tangent length).

ConstructTangentDistance (Center: IPoint,
from: IPoint, isCCW: Boolean,
tangentDistance: Double)

Constructs an arc from a center point, a starting point, and an
tangent length.

ConstructTangentRadiusAngle (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, inRadius: Double,
CentralAngle: Double)

Constructs an arc with a common tangent to the input segment, a
given radius and a central angle).

ConstructTangentRadiusArc (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, inRadius: Double, arcDistance:
Double)

Constructs an arc having a common tangent to the input segment,
a given radius and an arc length).

ConstructTangentRadiusChord (Segment:
ISegment, AtStart: Boolean, isCCW:
Boolean, inRadius: Double,
chordDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given radius and a chord length).

ConstructTangentRadiusTangent
(Segment: ISegment, AtStart: Boolean,
isCCW: Boolean, inRadius: Double,
tangentDistance: Double)

Constructs an arc with a common tangent to the input segment, a
given radius and a tangent length).

ConstructThreePoints (from: IPoint,
middle: IPoint, to: IPoint,
bUseExistingCenter: Boolean)

Constructs an arc from three points.

QueryFilletRadiusRange (s1: ISegment,
s2: ISegment, hintPoint: IPoint,
minRadius: Double, maxRadius: Double)

Returns minimum and maximum radius for fillet to touch both
input segments.

start 
point

center point

chord
distance

ConstructChordDistance

start point

radius

endpoint

ConstructEndPointsRadius

segment 1
segment 2

radius

ConstructFilletRadius

point

segment

ConstructTangentAndPoint

When constructing an arc using a FromAngle
and ToAngle, the FromPoint and ToPoint

calculated may be slightly different from the
exact point you may expect due to the limits of

accuracy in floating-point numbers and the
methods by which arcs are calculated. Remem-
ber this when creating connected Segments for

a Polyline or Polygon, and always get the
FromPoint and ToPoint from the arc.

CIRCULARARC COCLASS



Chapter 9 • Shaping features with geometry • 1013

G
eo

m
et

ry

The IConstructCircularArc interface contains numerous alternative
methods for constructing a CircularArc, often based on other existing
geometries. Selecting the most appropriate method should provide a
convenient way to define a CircularArc no matter what factors you
know. Below, the most common methods of construction are discussed
in more detail.

The ConstructCircle method is the simplest way to define a complete
CircularArc coclass, using a CenterPoint and a Radius. The code below
uses an existing Segment (for example, a Line) with the ConstructCircle
method, as if the Line was the span of a compass that draws a circle. Its
FromPoint becomes the CenterPoint of the circle, its Length defines the
Radius, and its ToPoint inscribes the circumference.

  Dim pCircularArc As IConstructCircularArc

  Set pCircularArc = New CircularArc

  pCircularArc.ConstructCircle pSegment.FromPoint, pSegment.Length, True

The ConstructArcDistance method constructs a CircularArc based on a
FromPoint, a CenterPoint, and the desired length along the arc, which
must be less than 2�. You must also specify the orientation of the arc.

    pCircularArc.ConstructCircle pSegment.FromPoint, pSegment.Length, True

The ConstructThreePoints method makes use of the fact that there is
only one single possible circle for any given three points. You must
define the FromPoint and ToPoint of the arc along with a through point,
which will lie somewhere between the FromPoint and ToPoint on the
constructed arc. The useExistingCenter parameter is applicable only to
existing arcs. If True, the CircularArc will be constructed using the
previous center. For example, this method can be used where an exist-
ing CircularArc is edited and the FromPoint and ToPoint approach each
other.

   pCircularArc.ConstructThreePoints pFrom, pMiddle, pTo, bUseExistingCenter

The ConstructTangentAndPoint method may be useful if you have an
existing Segment and require a smooth, connecting CircularArc to be
constructed to a known point. Specifically, the CircularArc is con-
structed so that the tangent at its FromPoint is the same as the tangent of
the Segment. If the AtStart parameter is True, the arc is constructed from
the specified point to the FromPoint of the Segment to the specified
point; if False, the arc goes from the ToPoint of the segment to the speci-
fied point.

Other ConstructTangent methods construct a CircularArc based on
tangent segments in conjunction with other parameters.

The ConstructEndPointsChordHeight is ideal for connecting two known
geometries with a circular arc that is not necessarily tangential to those
geometries. Specifically, the FromPoint and ToPoint of the arc are speci-
fied, along with the ChordHeight. Specify the ChordHeight according to
how “curvy” you wish the segment to be—a ChordHeight of half the
distance between the FromPoint and ToPoint creates a semicircle, while
a value less than this would create a less curved arc.

CIRCULARARC COCLASS

center point
radius

constructed 
circle

ConstructCircle

center point

"from" point

arc length

ConstructArcDistance

"from" point

through-point

"to" point

ConstructThreePoints

segment

tangent

segment from- 
or to-point 

 input point 

ConstructTangentAndPoint

"from" point

"to" point

chord
  height

ConstructEndPointsChordHeight



1014 • Exploring ArcObjects • Volume 2

Other ConstructEndPoints methods construct a CircularArc based on the
FromPoint and ToPoint in conjunction with other circular parameters.

The ConstructBearingChordArc method is suitable for constructing an
arc where the FromPoint is known, the ToPoint must be at a certain
angle from that FromPoint, and the arc must be a certain length. Specifi-
cally, the arc is constructed in terms of its FromPoint, bearing, chord
distance, and arc distance. In addition, the direction of the arc is speci-
fied as clockwise or counterclockwise.

Other ConstructBearing methods construct a CircularArc based on the
bearing along the chord, in conjunction with other circular parameters.

CIRCULARARC COCLASS

tangent 
     distance

radius

chord
distance

   tangent 
intersection

center
point

ConstructBearingChordArc



Chapter 9 • Shaping features with geometry • 1015

G
eo

m
et

ry

EllipticArc
IEllipticArc

IConstructEllipticArc

Curve
ICurve

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Segment

ICurve2
IProximityOperator

ISegment
ISegmentID
ISegmentM
ISegmentZ

An elliptic arc is a segment that describes
a portion of an ellipse.

An elliptic arc that describes an entire ellipse
will have a central angle of 2� radians, and its

“from” point and “to” point will be equal.

"to" point

"from" point

central
 point

central
angle 

elliptic arc

semiminor axis

semimajor axis

An axis traverses from one side of an ellipse,
through the center point, to the opposite side of
the ellipse. The major axis is the longest axis of

an ellipse. The semimajor axis is half this
distance.

The minor axis is the shortest axis of an ellipse.
It is perpendicular to the major axis. The

semiminor axis is half this distance.

If you require an embedded ellipse that is
rotated, look for methods that have the

ellipseStd parameter.

An EllipticArc is an object that describes any portion of an ellipse or a
complete ellipse. An ellipse is defined by its Semimajor and Semiminor
axes, CenterPoint, and a Rotation value. An EllipticArc is defined by
these parameters as well as a FromAngle and ToAngle, as shown below.

Although the EllipticArc and CircularArc coclasses share some similar
geometrical concepts, properties, and methods, the underlying coclasses
are different, and the shapes are constructed in different ways.

The positive horizontal axis is defined as an angle of 0 radians, and the
CenterPoint, ToPoint, and FromPoint are all defined from this vector.
When working with an EllipticArc, if you are using a method that re-
quires an ellipseStd parameter, you have the opportunity to change the
position defined as 0 radians. If ellipseStd is False, the standard Cartesian
coordinates apply. If ellipseStd is True, two things are different. First, all
angles are specified relative to the embedded ellipse that the arc is
based on, and you can specify by how much the ellipse is rotated.  An
angle of 0 becomes the semimajor axis of the ellipse. Also, coordinates
of the FromPoint and ToPoint are specified relative to the CenterPoint.

Setting this parameter to True may make it easier for you to calculate the
parameters required by the construction methods. Using the ellipseStd
parameter only affects angles and coordinates in that same method call.

 IEllipticArc : ICurve Provides access to members that control properties of
elliptic arc segments.

CenterPoint: IPoint A copy of the center point of the arc.
CentralAngle: Double The included (or central) angle.
FromAngle (ellipseStd: Boolean) :

Double
The start angle (measured from a horizontal line through the center

point) defining where the arc starts.
IsCircular: Boolean Indicates when the embedded ellipse is a circle.
IsCounterClockwise: Boolean Indicates when this elliptic arc is oriented counter-clockwise from its

'from' point to its 'to' point.
IsLine: Boolean Indicates when the arc is degenerated to a line.
IsMinor: Boolean Indicates whether the arc is a minor arc or a major arc.
IsPoint: Boolean Indicates when the arc is degenerated to a point.
ToAngle (ellipseStd: Boolean) : Double The end angle (measured from a horizontal line through the center

point) defining where the arc ends.

Complement Produces ellipse complement of arc; 'from' and 'to' points are
unchanged.

GetAxes (semiMajor: Double,
semiMinor: Double, minorMajorRatio:
Double)

Gets the semi-major and semi-minor axes.

PutAxes (semiMajor: Double,
minorMajorRatio: Double)

Sets the semi-major and semi-minor axes.

PutCoords (ellipseStd: Boolean, Center:
IPoint, from: IPoint, to: IPoint,
RotationAngle: Double,
minorMajorRatio: Double, Orientation:
tagesriArcOrientation)

Sets the center point, starting point, endpoint, angle of rotation, focal
distance, and orientation.

PutCoordsByAngle (ellipseStd: Boolean,
Center: IPoint, FromAngle: Double,
CentralAngle: Double, RotationAngle:
Double, semiMajor: Double,
minorMajorRatio: Double)

Sets the center point, starting angle, signed central angle, angle of
rotation, ratio of the minor axis to the major axis, and axes.

QueryCenterPoint (Center: IPoint) Copies the center of this arc to the input point.
QueryCoords (ellipseStd: Boolean,

Center: IPoint, from: IPoint, to: IPoint,
RotationAngle: Double,
minorMajorRatio: Double, isCCW:
Boolean, minor: Boolean)

Copies coordinates of the center, starting and endpoints, angle of
rotation, focal distance, orientation and major/minor property.

QueryCoordsByAngle (ellipseStd:
Boolean, Center: IPoint, FromAngle:
Double, CentralAngle: Double,
RotationAngle: Double, semiMajor:
Double, minorMajorRatio: Double)

Returns the center point, starting angle, signed central angle, angle of
rotation, ratio of the minor axis to the major axis, and axes.

ELLIPTICARC COCLASS



1016 • Exploring ArcObjects • Volume 2

An EllipticArc with a rotation other than zero
or pi/2 can only be defined by using the

PutCoords, PutCoordsByAngle, or
ConstructUpToFivePoints methods, but it is

not recommended to use the PutAxes method
on a rotated ellipse.

The defining properties of an existing EllipticArc can be obtained from
the FromAngle, CentralAngle, and ToAngle properties and the GetAxes
method (for details of the ellipseStd parameter, see previous section).

  dblFromAngle = pEllipticArc.FromAngle (bEllipseStd)

  dblToAngle = pEllipticArc.ToAngle (bEllipseStd)

  pEllipticArc.GetAxes(dblSemiMajor, dblSemiMinor, dblMinorMajorRatio)

The PutAxes method can be used to scale an existing EllipticArc by
changing the length of the axis while retaining all other properties. The
FromAngle, CenterPoint, and ToAngle propeties of the arc will be pre-
served, although the FromPoint and ToPoint will be altered as necessary.

Other properties of the IEllipticArc allow you to check certain special
cases:

• IsCircular—major axis = minor axis

• IsLine—if True, minor axis/major axis = 0 (or minor axis = 0)

• IsPoint—if True, major axis = minor axis = 0

• IsCounterClockwise—if True, the CentralAngle is positive

• IsMinor—if True, arc is less than half and ellipse (CentralAngle < 2 pi
radians)

The IEllipticArc interface also has Complement, PutCoord, PutCoords,
QueryCoords, QueryCoordsByAngle, and QueryCenterPoint methods, with
definitions similar to those methods on ICircularArc, except that they
return appropriate properties for the ellipse.

The PutCoords and PutCoordsByAngle methods are similar to their coun-
terpoints on the ICircularArc interface but use different parameters.
PutCoordsByAngle is recommended over the PutCoords method.

The IEllipticArc and IConstructEllipticArc interfaces both offer ways of
defining a new EllipticArc and, like a CircularArc, the method used
should be chosen according to which parameters of the ellipse you can
define in advance. Again, it is recommended that you create an Elliptic-
Arc from one of the described all-in-one methods, rather than by setting
separate properties.

 IConstructEllipticArc : IUnknown Provides access to members that construct an elliptic
segment using other geometries and measures.

ConstructEnvelope (boundingEnvelope:
IEnvelope)

Constructs the inscribed ellipse of the given envelope. The ellipse is
oriented counterclockwise.

ConstructQuarterEllipse (FromPoint:
IPoint, ToPoint: IPoint, CCW: Boolean)

Construct an elliptic arc that starts at fromPoint, goes to toPoint, and
spans an angle of pi/2. The rotation of the ellipse will be either 0 or
pi/2.

ConstructTwoPointsEnvelope
(FromPoint: IPoint, ToPoint: IPoint,
suggestedEnvelope: IEnvelope,
Orientation: tagesriArcOrientation)

Construct an elliptic arc that starts at fromPoint, goes to toPoint, and
tries to have the embedded ellipse inscribed in the
suggestedEnvelope. The result will have rotation of 0 or pi/2.

ConstructUpToFivePoints (from: IPoint,
to: IPoint, thru: IPoint, point4: IPoint,
point5: IPoint)

Given up to 5 points, construct an elliptic arc such that the
embedded ellipse passes through as many as possible. The arc will
start at the first point and end at the second, passing through the
third.

The IConstructEllipticArc interface offers alternative ways to define a
new EllipticArc using other geometries. The ConstructEnvelope method

ELLIPTICARC COCLASS

Constructing an 
elliptic arc with 
up to five points

"to" point

"from" point

additional point
through-point

additional point

Constructing an ellipse by 
envelope

Constructing a quarter ellipse 
by envelope

Constructing an elliptic arc by 
an envelope and two points

"from" point

"to" point

Construct your arc by selecting the most
appropriate construction method.



Chapter 9 • Shaping features with geometry • 1017

G
eo

m
et

ry

generates a full counterclockwise ellipse to precisely fit a known
Envelope.

ConstructQuarterEllipse defines an ellipse where the FromPoint and
ToPoint are known, and the arc returned has a CentralAngle of pi/2
radians. If ConstructEnvelope does not give the result you require, try the
ConstructTwoPointsEnvelope method, where a FromPoint and ToPoint,
along with a suggested envelope, are precisely specified. The result is an
unrotated ellipse that has the nearest envelope to the envelope sug-
gested but has the specified orientation and can still retain the
FromPoint and ToPoint specified. The CentralAngle will be determined
by these factors.

The ConstructUpToFivePoints method uses a similar principle to the
IConstructCircularArc::ConstructThreePoints method; it constructs an arc
only from a FromPoint, a ToPoint, and any other known points on the
arc. It can be used to construct an ellipse from up to five known points,
as there is only one possible ellipse for five points. It is recommended
that you use at least three known points, the FromPoint, ToPoint, and a
“through” point, as only providing one or two points will create an
ellipse for which IsPoint or IsLine is True. The additional two point
parameters can be specified to identify the shape of the ellipse. Pass an
empty point Geometry, or Nothing, for any points you do not know. If
the fourth or fifth parameters do not lie on a convex hull identified by
the first three points, then the parameter will not be used.

ELLIPTICARC COCLASS



1018 • Exploring ArcObjects • Volume 2

BezierCurve
IBezierCurve

IConstructBezierCurve

Curve
ICurve

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Segment

ICurve2
IProximityOperator

ISegment
ISegmentID
ISegmentM
ISegmentZ

A Bézier curve links two points by a
curve. The curve is defined by a start

point, an endpoint, and two additional
control points.

control point 0

control point 1

control point 2

control point 3
Bézier curve

A Bézier curve produces a smooth, flowing curve
and may be preferable to a series of numerous

straight lines approximating a curve.

The BezierCurve coclass defines a curved line between two vertices (the
FromPoint and ToPoint). A further two points define the tangents at the
start and end of the curve.

These four points are known as control points, and together they char-
acterize the equation used to define a BezierCurve. The curve starts at
control point zero, the FromPoint, and ends at control point three, the
ToPoint. Control points zero and one define the tangent at the FromPoint,
and control points two and three define the tangent at the ToPoint.

 IBezierCurve : ICurve Provides access to members that identify third degree
bezier curve segments and defines their properties.

Degree: Long The degree of the Bezier curve.  For third degree Beziers, this is
always 3.

PutCoord (Index: Long, controlPoint:
IPoint)

Sets the specified (0 <= index < 4) control point of this Bezier curve.

PutCoords (cPoints: Long, in
controlPoints: IPoint)

Sets this Bezier curve's control points from an array of cPoints input
points.

PutWKSCoords (in controlPoints:
_WKSPoint)

Sets this Bezier curve's control points from the array of 4 input point
structures.

QueryChordLengthTangentAtFrom
(pTangent: IPoint, pbSetByUser:
Boolean)

Returns tangent vector at 'from' point, based on chord length
parametrization; and whether it has been set by user or by
smoothing process.

QueryChordLengthTangentAtTo
(pTangent: IPoint, pbSetByUser:
Boolean)

Returns tangent vector at 'to' point, based on chord length
parametrization; and whether it has been set by user or by
smoothing process.

QueryCoord (Index: Long, controlPoint:
IPoint)

Copies the specified control point of this Bezier curve into the input
point.

QueryCoords (controlPoints: IPoint) Copies this Bezier curve's control points into the array of 4 existing
points.

QueryInflectionPoint (pInflectionPoint:
IPoint)

Finds inflection point; sets it empty if none exists.

QueryWKSCoords (out controlPoints:
_WKSPoint)

Copies this Bezier curve's control points into the array of 4 existing
point structures.

SetChordLengthTangentAtFrom
(pTangent: IPoint, bSetByUser:
Boolean)

Establishes tangent vector at 'from' point, based on chord length
parametrization; and sets flag whether it has been set by user or by
smoothing process.

SetChordLengthTangentAtTo
(pTangent: IPoint, bSetByUser:
Boolean)

Establishes tangent vector at 'to' point, based on chord length
parametrization; and sets flag whether it has been set by user or by
smoothing process.

The IBezierCurve interface allows you to define and query the proper-
ties of the curve. The PutCoord method can be used to alter an existing
BezierCurve by changing one point at a time; for example, the code
below updates the tangent point of the ToPoint of the BezierCurve,
pBezier:

  Dim pBezier As IBezierCurve

  Set pBezier = New BezierCurve

  Dim pPoint as IPoint

  Set pPoint = New Point

  pPoint.PutCoords 20, 30

  pBezier.PutCoord 2, pPoint

Use the QueryCoord and QueryCoords methods to retrieve control points
from an existing BezierCurve. The QueryInflectionPoint returns an inflection
point of a BezierCurve (which is defined mathematically as the point at
which the rate of change of the curvature is zero).

BEZIERCURVE COCLASS

Bézier curves generally have zero or one
inflection point. It is unlikely, however, that the

average ArcObjects developer will require a
knowledge of inflection points, as they are

accounted for internally in relevant ArcObjects
functions.



Chapter 9 • Shaping features with geometry • 1019

G
eo

m
et

ry

If the four control points of a potential BezierCurve are known, the
PutCoords method may be used to define the curve, as shown below.

  Dim pPoints(3) as IPoint

  ' Set the coordinates of each member of the pPoints array here.

  pBezier.PutCoords 4, pPoints(0)

For example, the control points could be the result of mouse clicks or
be based on an existing Line or Multipoint. The PutCoords method
should be used in preference to setting each control point separately
with four calls to PutCoord, as the order in which the control points are
specified may affect the outcome of the shape of the BezierCurve,
possibly resulting in an invalid arc.

 IConstructBezierCurve : IUnknown Provides access to members that construct a Bezier curve
using other geometries and measures.

ConstructTangentsAtEndpoints
(pTangentAtFrom: ILine,
pTangentAtTo: ILine)

Constructs a Bezier curve from tangents at both endpoints.

The IConstructBezierCurve interface provides an alternative method to
constructing a BezierCurve using Bézier tangents. However, the recom-
mended way to define a BezierCurve is to use IBezierCurve::PutCoords.

BEZIERCURVE COCLASS



1020 • Exploring ArcObjects • Volume 2

Multipoint

IConstructMultipoint
IGeometry2

IGeometryCollection
IHitTest

IMAware
IMCollection

IMultipoint
IPersist

IPersistStream
IPointCollection

IPointCollection2
IPointIDAware

IProximityOperator
IRelationalOperator

ISpatialIndex
ITopologicalOperator

ITopologicalOperator2
IZAware

IZCollection

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

A multipoint is a collection of points. It is
commonly found in feature classes or as

the result of a relational or topological
operation.

A Multipoint coclass holds a collection of references to Point objects. A
Multipoint is often returned from operations where the result may be
one or many Points. A Multipoint object can also be used as the Geom-
etry of a Feature.

 IMultipoint : IGeometry Provides access to members that identify a multipoint
object.

The IMultipoint interface has no methods and exists so that you can
identify a Multipoint Geometry object. This line of code shows its use.

  If TypeOf pGeometry Is IMultipoint Then ...

    ' You have a Multipoint object

  End If

The shape of a Multipoint object can be defined by adding Point objects
to a Multipoint object using the IPointCollection interface, as shown in
the following code. Remember you are adding the point pPoint by
reference, not by value.

  Dim pPointCollection As IPointCollection

  Set pPointCollection = New Multipoint

  pPointCollection.AddPoint pPoint

For more information about the IPointCollection interface, see the collec-
tion interfaces section later in this chapter.

The IConstructMultipoint interface offers ways to construct multipoints
based on other existing geometries.

 IConstructMultipoint : IUnknown Provides access to members that construct multiple points
using other geometries and measures.

ConstructArcPoints (a: ICircularArc) Constructs the four arc points (Point of Tangency, Point of Curvature,
Center point, Point of Intersection, in that order) for the specified
circular arc.

ConstructDivideEqual (inCurve: ICurve,
numInnerPoints: Long)

Constructs cPoints points evenly distributed along the input curve.

ConstructDivideLength (inCurve:
ICurve, separationDistance: Double)

Places points along the input curve each seperate by the specified
distance.

ConstructIntersection (segment1:
ISegment, extension1:
tagesriSegmentExtension, segment2:
ISegment, extension2:
tagesriSegmentExtension, pParams1:
Variant, pParams2: Variant,
isTangentPoint: Variant)

Constructs the point(s) of intersection/tangency between two
segments. Different ways of producing the segments in order to
locate additional points can be specified.

ConstructIntersectionEx (segment1:
ISegment, extension1:
tagesriSegmentExtension, segment2:
ISegment, extension2:
tagesriSegmentExtension, pParams1:
Double, pParams2: Double,
pTangentBits: Long)

Constructs the point(s) of intersection/tangency between two
segments. Different ways of producing the segments in order to
locate additional points can be specified.

ConstructTangent (inCurve: ICurve, p:
IPoint)

Constructs all points of tangency to a curve from a point.

The ConstructDivideEqual method creates Point objects at equal dis-
tances along an ICurve object.

The following code uses this method to create a regular Polygon. This
example is similar to the function shown with IConstructPoint but,

MULTIPOINT COCLASS



Chapter 9 • Shaping features with geometry • 1021

G
eo

m
et

ry

instead of the length of one edge, this function allows you to define the
overall size of the Polygon.

Private Function fnMakePolygon2(pArc As ICircularArc, intSides As Integer) _

     As ISegmentCollection

  If Not pArc Is Nothing Then

    If pArc.IsClosed Then

      Set fnMakePolygon2 = New Ring

      Dim pMulti As IConstructMultipoint

      Set pMulti = New Multipoint

      ' ConstructDivideEqual always returns the FromPoint and ToPoint of

      ' the curve, therefore divide the curve into the number of sides

      ' required minus one

      pMulti.ConstructDivideEqual pArc, intSides - 1

      Dim pPointColl As IPointCollection

      Set pPointColl = pMulti

      Dim i As Integer

      Dim pLine As ILine

      For i = 0 To intSides - 1

        Set pLine = New Line

         pLine.PutCoords pPointColl.Point(i), pPointColl.Point(i + 1)

         fnMakePolygon2.AddSegment pLine

      Next i

    End If

  End If

End Function

Similarly, the ConstructDivideLength method divides a curve into sec-
tions, adding a Point to the new Multipoint at each division.

The ConstructTangent method adds a new Point to the Multipoint for
each point of tangency of a Curve to a particular Point.

MULTIPOINT COCLASS

input point

tangent lines
two-point multipoint 
at points of tangency

curve

Using ConstructTangent, you can find a
tangent line from any curve to a particular point.

constructed
  point

input curve

regular
 polygon

ConstructDivideEqual is used in this code to
help construct a regular polygon, as shown above.



1022 • Exploring ArcObjects • Volume 2

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Point

IConstructPoint
IConstructPoint2

IGeometry2
IHitTest

IMAware
IPoint

IPointIDAware
IProximityOperator

IRelationalOperator
ITopologicalOperator

ITransform3D
IZAware

A point represents a single location. It is
commonly used in a point feature class

but can be found in many areas of
ArcObjects, such as locators, symbology,

spatial references, and networks. It is also
used to help define the shape of other

geometry objects.

An instance of the Point coclass represents a set of x,y coordinates,
which together define a single, zero-dimensional location in space.

 IPoint : IGeometry Provides access to members that define two dimensional
points.

ID: Long The Point ID attribute.
M: Double The measure attribute.
VertexAttribute (attributeType:

esriGeometryAttributes) : Double
Any attribute (coordinate), except X or Y.

X: Double The X coordinate.
Y: Double The Y coordinate.
Z: Double The Z attribute.

Compare (pOtherPoint: IPoint) : Long Compares X, Y, M, Z, ID of this point with that of the other point.
Returns -1 if this point's value is less, 1 if greater, and 0 otherwise.

ConstrainAngle (constraintAngle:
Double, Anchor: IPoint, allowOpposite:
Boolean)

Moves this point to the closest point on the infinite line defined by
anchor and angle (in radians). If allowOpposite is true, then the
point can also snap to angle + pi radians.

ConstrainDistance (constraintRadius:
Double, Anchor: IPoint)

Project this point to the perimeter of the circle defined by radius and
anchor.

PutCoords (X: Double, Y: Double) Sets the X and Y coordinates.
QueryCoords (out X: Double, out Y:

Double)
Copies the X and Y coordinates.

The IPoint::X and IPoint::Y properties return or set the Point’s spatial
coordinates. The properties cannot be read from an empty Geometry
(one that has not had its shape defined), and esriGeometryError 514
(“Empty Geometry”) will be raised if this is attempted. The PutCoords
and QueryCoords methods get and set the x,y coordinates in a single
method call.

A Point may also have a z-attribute, stored in the Z property. This at-
tribute can be used as a z or height coordinate to help construct 3D
geometries, such as MultiPatch. The M property stores a measure value,
which is a numeric value used by dynamic segmentation routines. For
more information on dynamic segmentation, see Chapter 8, ‘Accessing
the geodatabase’. The Z and M properties both have a default value that
is not a number (NaN).

A Point has a third attribute, a Long integer value stored in the ID prop-
erty, which has a default value of zero. This value is not used by any
other ArcObjects objects and can therefore be used programmatically as
you decide.

You can set the appropriate awareness for a Point object as shown in
the code below.
  Dim pZAware As IZAware
  Set pZAware = pPoint1
  pZAware.ZAware = True
  pPoint1.Z = 11.1

The ConstrainAngle and ConstrainDistance methods are ideal for exact
correction of existing point locations. Relative to an anchor point,
ConstrainAngle corrects a point’s location to the specified angle, and
ConstrainDistance corrects to a specified distance. The code below
corrects the angle of a line to lie on the nearest of eight compass points
(0, 45, 90, 135, 180, -135, -90, or -45 degrees).
  Dim dblSize As Double
  'This formula calculates the angle in-between compass points, in Radians
  dblSize = 45 / 180 * 3.14159265358979

POINT COCLASS

For more information about working with z-, m-
and ID values, see the geometry attributes

section in this chapter.



Chapter 9 • Shaping features with geometry • 1023

G
eo

m
et

ry

  Dim pPoint As IPoint
  Set pPoint = pLine.ToPoint
  ' You cannot directly set a Line Angle, so ConstrainAngle is used instead

  pPoint.ConstrainAngle dblSize * Round(pLine.Angle / dblSize), _

     pLine.FromPoint, False

  pLine.ToPoint = pPoint

Compare is a method used internally by ArcObjects to compare x-, y-, z-,
m-, and ID values and can be used to sort Points into lexicographical
order. If you wish to compare the spatial location of two points, you
may wish to use the IRelationalOperator::Equals instead, which compares x,
y, and SpatialReference. Alternatively, use the IClone::IsEqual method to
check if the coordinate and attribute properties are equal (depending on
their attribute awareness).

A Point is the simplest shape to define. Its x,y coordinates can be set
directly.
  Dim pPoint As IPoint
  Set pPoint = New Point
  pPoint.X = 10
  pPoint.Y = 20

Alternatively, the PutCoords method can be used to set both coordinates
in a single call.

  pPoint.PutCoords 10, 20

 IConstructPoint : IUnknown Provides access to members that construct a point using
other geometries and measures.

ConstructAlong (curve: ICurve,
Extension: tagesriSegmentExtension,
Distance: Double, asRatio: Boolean)

Constructs a point distance units along the input curve.

ConstructAngleBisector (from: IPoint,
through: IPoint, to: IPoint, Distance:
Double, bUseAcuteAngle: Boolean)

Constructs a point lying along the bisector of the angle defined by
three points.

ConstructAngleDistance (p: IPoint,
inAngle: Double, Distance: Double)

Constructs a point at a specified angle (in radians) from the
horizontal axis and a specified distance away from the input point.

ConstructAngleIntersection (p1: IPoint,
angle1: Double, p2: IPoint, angle2:
Double)

Constructs the point of intersection between two lines defined by the
input points and angles (in radians).

ConstructDeflection (baseLine: ILine,
Distance: Double, inAngle: Double)

Constructs a point in the polar coordinate system defined by baseLine
and its 'from' point. The angle is in radians.

ConstructDeflectionIntersection
(baseLine: ILine, StartAngle: Double,
EndAngle: Double, bRightSide:
Boolean)

Constructs the point of intersection of two rays with origins at the
endpoints of the base line and the specified angles (in radians).

ConstructOffset (curve: ICurve,
Extension: tagesriSegmentExtension,
Distance: Double, asRatio: Boolean,
Offset: Double)

Constructs a point distance units along the input curve and offset
units perpendicularly away from it.

ConstructParallel (Segment: ISegment,
Extension: tagesriSegmentExtension,
Start: IPoint, Distance: Double)

Constructs a point distance units from start, parallel to the tangent at
the nearest point on the (extended) segment.

ConstructPerpendicular (base:
ISegment, Extension:
tagesriSegmentExtension, from:
IPoint, Distance: Double,
bUseLineOrientation: Boolean)

Constructs a point along the line normal to base and passing through
from.

ConstructThreePointResection (pPoint1:
IPoint, angleP1P2: Double, pPoint2:
IPoint, angleP2P3: Double, pPoint3:
IPoint, out arcAngle: Double)

Constructs the point of observation from which two signed angles
between three points were measured; returns an angle which can
help establish the confidence of the observation location: A small
angle indicates greater uncertainty in the location.

The IConstructPoint interface offers numerous other ways to define a
Point’s location based on other existing geometries.

The ConstructAngleDistance method defines a point to be a specified
distance from an existing Point at a specified angle.

constraining angle

original 
point

constrained 
point

anchor 
pointoriginal 

point

constrained point

original 
point

constrained 
point

ConstrainAngle and ConstrainDistance can
be used to “tidy up” the location of points. For

example, the code shown will restrict points to
lie exactly North, North East, East, and so on,

from a central point.

POINT COCLASS



1024 • Exploring ArcObjects • Volume 2

The ConstructDeflection is a similar method, but it allows you to con-
struct the Point at a specified angle from an existing Line, at a specified
distance. These methods are used together in the function below, which
constructs and returns a regular polygonal Ring where pStart is the first
vertex of the shape, dblEdge is the length of an edge, and intSides is the
number of sides required on the polygon.

Private Function fnMakeRing(pStart As iPoint, dEdge As Double, iSides As _

Integer) As ISegmentCollection

  Set fnMakeRing = New Ring

  Dim dAngle As Double

  ' This formula calculates internal angle of the regular polygon in Radians

  dAngle = 3.14159265358979 - (6.28318530717958 / iSides)

  Dim pEnd As IConstructPoint

  Set pEnd = New Point

  ' Use ConstructAngleDistance to make the first Line

  pEnd.ConstructAngleDistance pStart, 0, dEdge

  Dim pLine As ILine

  Set pLine = New Line

  pLine.PutCoords pStart, pEnd

  Dim pSwitchLine As ILine

  Set pSwitchLine = CloneMe(pLine)

  pLine.ReverseOrientation

  fnMakeRing.AddSegment pLine

  ' Here, ensure the last Point and first Point of the Ring are identical

  Dim i As Long

  For i = 0 To iSides - 2

    If i = iSides - 2 Then

      Set pEnd = fnMakeRing.Segment(0).FromPoint

    Else

      ' Create a point at a constant angle from the last Line constructed.

      Set pEnd = New Point

      pEnd.ConstructDeflection pSwitchLine, dEdge, dAngle

    End If

    ' Here, add a reference to the new Line to the SegmentCollection

    Set pLine = New Line

    pLine.PutCoords pStart, pEnd

    fnMakeRing.AddSegment pLine

    ' These Lines set up the objects for the next iteration

    Set pStart = pEnd

    Set pSwitchLine = CloneMe(pLine)

    pSwitchLine.ReverseOrientation

  Next i

End Function

input 
point

constructed 
point

input segment

distance (dblEdge)

ConstructAngleDistance is used in this code
to create a point at a known distance from an

existing point.

Segments are added by reference to a
SegmentCollection. You want to use the original

orientation of the Line as the baseline, but the
opposite orientation to add to the Ring, so you

should clone the Line before adding the Line to
the Ring. The CloneMe function returns a clone

of the input object.

input point

distance (dblEdge)

base line

angle
constructed point

ConstructDeflection is used in this code to
create a new point at a particular angle from

the existing line.

POINT COCLASS



Chapter 9 • Shaping features with geometry • 1025

G
eo

m
et

ry

The ConstructParallel method can be used to define a Point parallel to
an existing Segment. The ConstructOffset method returns a Point offset by
a certain distance from an existing Line. These methods are demon-
strated in the code below, where they are combined to make a function
that constructs a Line parallel to an existing Line, pLine, at a distance of
dblDist units.

Function fnMakeParallel(pLine As ILine, dDist As Double) As ILine

  If Not pLine Is Nothing Then

    Dim pFromPoint As IConstructPoint

    Set pFromPoint = New Point

    pFromPoint.ConstructOffset pLine, esriNoExtension, 0, False, dDist

    Dim pToPoint As IConstructPoint

    Set pToPoint = New Point

    pToPoint.ConstructParallel pLine, esriNoExtension, pFromPoint, _

      pLine.Length

    Set fnMakeParallel = New Line

    fnMakeParallel.PutCoords pFromPoint, pToPoint

  End If

End Function

As you have seen above, the IConstructPoint methods, along with other
construction methods, can be combined in numerous ways to help you
construct even very complex geometrical shapes.

input point

constructed point

input segment

distance

ConstructParallel is used in this code to help
create parallel lines.

The ConstructOffset method also has a
distance parameter. This function could be

rewritten using two calls to ConstructOffset
instead.

POINT COCLASS



1026 • Exploring ArcObjects • Volume 2

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Envelope

IArea
IEnvelope

IEnvelope2
IGeometry2

IHitTest
IMAware
IPersist

IPersistStream
IProximityOperator

IRelationalOperator
IZAware

An Envelope is a rectangular shape. It is
generally used in the geometry model as

the minimum bounding box of any
geometry shape. Envelopes are also

used throughout ArcObjects, for example,
as the extent of a view or geodataset or

as the result of a feedback operation.

Geometry

Envelope

XMin XMax

YMin

YMax

UpperLeft

LowerLeft

UpperRight

LowerRight

An  Envelope is defined by the minimum and
maximum x,y coordinates. It also defines the

coordinates of each of its corners.

The Envelope coclass defines a rectangular shape by its minimum and
maximum x,y coordinates. Therefore, an Envelope is always orthogonal
to its SpatialReference. An Envelope may also define minimum and maxi-
mum z- and m-values, depending on the implemented IZAware and
IMAware interfaces.

 IEnvelope : IGeometry Provides access to members that set and return properties
of envelopes.

Depth: Double The depth of the envelope.
Height: Double The height of the envelope.
LowerLeft: IPoint The lower left corner.
LowerRight: IPoint The lower right corner.
MinMaxAttributes: _esriPointAttributes A reference to the attribute structures for this envelope.
MMax: Double The maximum measure value in the area of the envelope.
MMin: Double The minimum measure value in the area of the envelope.
UpperLeft: IPoint The upper left corner.
UpperRight: IPoint The upper right corner.
Width: Double The width of the envelope.
XMax: Double The position of the right side.
XMin: Double The position of the left side.
YMax: Double The position of the top.
YMin: Double The position of the bottom.
ZMax: Double The maximum Z value in the area of the envelope.
ZMin: Double The minimum Z value in the area of the envelope.

CenterAt (p: IPoint) Moves this envelope so it is centered at p.
DefineFromPoints (Count: Long, in

Points: IPoint)
Defines the envelope to cover all the points.

DefineFromWKSPoints (Count: Long, in
Points: _WKSPoint)

Defines the envelope to cover all the points.

Expand (dx: Double, dy: Double,
asRatio: Boolean)

Moves the X and Y coordinates of the sides toward or away from
each other.

ExpandM (dm: Double, asRatio:
Boolean)

Moves the measure of the sides toward or away from each other.

ExpandZ (dz: Double, asRatio: Boolean) Moves the Z attribute of the sides toward or away from each other.
Intersect (inEnvelope: IEnvelope) Adjusts to include only the area also included by inEnvelope.
Offset (X: Double, Y: Double) Moves the sides x units horizontally and y units vertically.
OffsetM (M: Double) Moves the sides m units.
OffsetZ (Z: Double) Moves the sides z units.
PutCoords (XMin: Double, YMin:

Double, XMax: Double, YMax: Double)
Constructs an envelope from the coordinate values of lower, left and

upper, right corners.
PutWKSCoords (e: _WKSEnvelope) Copies e's dimensions into this envelope.
QueryCoords (out XMin: Double, out

YMin: Double, out XMax: Double, out
YMax: Double)

Returns the coordinates of lower, left and upper, right corners.

QueryWKSCoords (out e:
_WKSEnvelope)

Copies the left, bottom, right and top sides into e.

Union (inEnvelope: IEnvelope) Adjusts to overlap inEnvelope.

The IEnvelope interface provides the XMax, XMin, YMax, YMin, Height,
and Width properties, allowing you to return and set the spatial coordi-
nates of an existing Envelope. Setting Width or Height changes the XMax
or YMax property, respectively. For example, the code:

  pEnv.XMax = pEnv.XMax + 10

has exactly the same effect on the Envelope as:

  pEnv.Width = pEnv.Width  + 10

The Expand method can be used to stretch an Envelope by equal
amounts (either units or ratio) on both the XMin and XMax or YMin and
YMax properties. The example above shows the Envelope being
stretched by 10 units to the right (XMax). The code below also stretches
the envelope by 10 units by adding 5 units to the XMax and subtracting
5 units from the XMin.

  pEnvelope.Expand 5, 0, False

ENVELOPE COCLASS

input 
envelope dx

dy

new envelope

Expand will stretch an envelope on all sides.



Chapter 9 • Shaping features with geometry • 1027

G
eo

m
et

ry

The Offset method adds a value (either positive or negative) to the XMin,
XMax, YMin, and YMax properties, moving it by the specified amount
but retaining the same area. The CenterAt method also retains the area,
centering the Envelope around the specified Point.

The corners of an Envelope can be returned directly from the UpperLeft,
UpperRight, LowerLeft, and LowerRight properties. For example, you can
create a Ring that traverses the boundary of an Envelope using the code
below, where CreateLine is a function that returns a new Line with
FromPoint and ToPoint as specified.

  Dim pEnv As IEnvelope

  Set pMxDocument = Application.Document

  Set pActiveView = pMxDocument.FocusMap

  Set pEnvelope = pActiveView.Extent

  Dim pSegmentColl As ISegmentCollection

  Set pSegmentColl = New Ring

  pSegmentColl.AddSegment CreateLine(pEnv.UpperLeft, pEnv.UpperRight)

  pSegmentColl.AddSegment CreateLine(pEnv.UpperRight, pEnv.LowerRight)

  pSegmentColl.AddSegment CreateLine(pEnv.LowerRight, pEnv.LowerLeft)

  pSegmentColl.AddSegment CreateLine(pEnv.LowerLeft, pEnv.UpperLeft)

If the Envelope is ZAware, the ZMin and ZMax and Depth properties can
be read and set. Changing the Depth property affects the ZMax property,
reflecting the behavior of Width and Height.

The ZMin and ZMax properties of a new Envelope default to NaN (“not a
number”). If either ZMin or ZMax has a NaN value, the Depth property
cannot be read and esriGeometryError 564 is raised, indicating the Geometry
is not z-aware; if both values are NaN, error 580 is raised, indicating that
the Geometry is not z-simple. ExpandZ and OffsetZ function similarly to
Expand and Offset but change only the ZMin and ZMax of a z-aware
Envelope.

MMin, MMax, ExpandM, and OffsetM function in a similar way to the z-
properties and methods mentioned above and work in conjunction with
the IMAware interface.

IEnvelope provides two envelope-specific topological methods, Intersect
and Union. Intersect changes the input Envelope to the area of intersec-
tion between itself and the input Envelope. The Union method operates
somewhat differently to the similar method on ITopologicalOperator, indicat-
ing the minimum bounding box of two Envelopes.

The IEnvelope interface inherits from IGeometry and therefore inherits its
own Envelope property. This property is present for consistency within
the geometry model and simply returns a copy of the original Envelope.

ENVELOPE COCLASS

base envelope

input envelope

base envelope

input envelope

base 
envelope

input envelope

intersect
envelope

intersect
envelope

no intersect
envelope

Intersect finds the rectangular overlap of two
Envelopes.

base envelope

input envelope

base envelope

input envelope

base 
envelope

input envelope

union envelope

union envelope

union envelope

Union finds the rectangular union of the
bounding box of two Envelopes.



1028 • Exploring ArcObjects • Volume 2

For a valid Envelope, XMin, YMin, ZMin, and MMin must be respec-
tively less than or equal to XMax, YMax, ZMax, and MMax.

An Envelope automatically corrects the x,y coordinates and z- and m-
attributes if they are set incorrectly. For example, if XMin = 5 and
XMax = 10, and XMax is set to 3, the Envelope will switch the new XMin
and XMax values to ensure a valid shape, meaning XMin becomes 3
and XMax becomes 5.

 IEnvelope2 : IEnvelope Provides access to members that extend the IEnvelope
interface.

PutMCoords (MMin: Double, MMax:
Double)

Sets the minimum and maximum M values simultaneously.

PutZCoords (ZMin: Double, ZMax:
Double)

Sets the minimum and maximum Z values simultaneously.

QueryMCoords (MMin: Double, MMax:
Double)

Queries the minimum and maximum M values simultaneously.

QueryZCoords (ZMin: Double, ZMax:
Double)

Queries the minimum and maximum Z values simultaneously.

The IEnvelope2 interface provides methods to set both z- or m-attributes
simultaneously to avoid problems with the automatic correction men-
tioned above.

There are a number of different ways to define a new Envelope. When
working with ArcObjects, you will often find an Envelope returned by
value as the extent of another spatial object, for example, a GeoDataset,
ActiveView, or another Geometry. You can often exploit this to define an
Envelope, as shown below.

  Dim pEnvelope as IEnvelope

  Set pEnvelope = pGeometry.Envelope

You can also define a new Envelope from scratch by defining its coordi-
nates. When a new Envelope is created, it has no default values of XMin,
XMax, YMin, and YMax—the Geometry is empty. Using the PutCoords
method, you can set all four values at once.

  Dim pEnvelope As IEnvelope

  Set pEnvelope = New Envelope

  pEnvelope.PutCoords 0, 0, 10, 10

You can define an Envelope by setting the XMin, XMax, YMin, and
YMax separately or by setting the corner properties, but watch out for
the automatic correction of these properties described previously. Con-
sider using PutCoords instead to define the Envelope in a single method
call.

Alternatively, you can use the DefineFromPoints method, which will set
the Envelope to the minimum bounding box of an array of Points. The
code below demonstrates this, where pPoints is a predefined array of Point
objects.

  Dim pEnvelope As IEnvelope

  Set pEnvelope = New Envelope

  pEnvelope.DefineFromPoints UBound(pPoints) + 1, pPoints(0)

ENVELOPE COCLASS

constructed envelope

input points

DefineFromPoints sets an Envelope as the
minimum bounding box of an array of Points.



Chapter 9 • Shaping features with geometry • 1029

G
eo

m
et

ry

Geometry-
Environment

IConstructAngle
IConstructDomain-

Extent
IEncode3DProperties

IExtrude
IGeometryEnvironment

IGeometry-
Environment2

IGeometryFactory
IGeometryFactory2

ISupportErrorInfo

A GeometryEnvironment controls
certain aspects of the Geometry system

in ArcObjects. It is suitable for use by the
more advanced programmer and is not

generally required for creating new
Geometries.

The GeometryEnvironment is a singleton object that controls certain
factors, such as on-the-fly densification limits, and provides methods to
allow ArcObjects to create and populate geometries from persistent
sources.

To get a reference to the GeometryEnvironment singleton object, simply
create the object as you would any other coclass.

Dim pGeometryEnv as IGeometryEnvironment2

Set pGeometryEnv = New GeometryEnvironment

 IGeometryEnvironment : IUnknown Provides access to members that control the environment
for certain geometric operations

AutoDensifyTolerance: Double The tolerance used for on-the-fly densification. If the value is less than
or equal to zero, the system will try to pick a reasonable tolerance
at the time of densification.

NoDiceLimit: Long The number of vertices for a polygon before the geometry can be
exported to a format that can be directly used by the Win32
drawing api (GDI).

NoDiceLimit controls how geometries are passed to the Win32 drawing
API. Windows may have performance issues when drawing Polygons with
particularly high vertex counts. Therefore, if a Polygon has a vertex
count greater than this limit, the Polygon will be diced into separate
trapezoids. These trapezoids are then passed to Windows for drawing.

Users may wish to experiment with increasing this value if they are
experiencing problems with drawing complex Polygons or Polylines, specifi-
cally when outputting to a printer device.

 IGeometryEnvironment2 :
 IGeometryEnvironment

Provides access to members that extend the
IGeometryEnvironment interface.

Pre81Compatibility: Boolean Indicates compatibility for some geometric operations with releases
previous to 8.1.  When set to false, return errors for some illegal
relational operations (default is true).

If Pre81Compatibility is True, the GeometryEnvironment uses the
ArcInfo 8.0.2 implementations of IRelationalOperator. At ArcGIS 8.1 and
later, the relational operators have improved to offer increased error
checking, raising errors when the relationship specified is illogical ac-
cording to the framework for spatial relationships, as defined by
Clementini.

This property is True by default, indicating that the extra error checking
is not used, to ensure existing ArcObjects code is not broken. To ensure
that IRelationalOperator is used fully, it is recommended that you set
Pre81Compatibility to False if this will not prevent backwards compat-
ibility within your code.

GEOMETRYENVIRONMENT COCLASS

You can find details of the framework used for
relational operations at Clementini, E., and Di

Felice, P. (1993): An Object Calculus for
Geographic Databases,  ACM Symposium on

Applied Computing, Indianapolis, IN, pp. 302–8.

By default, the NoDiceLimit value is
20,000 vertices, which is suitable for most cases.



1030 • Exploring ArcObjects • Volume 2

 IGeometryFactory : IUnknown Provides access to members that create geometries in
different formats.

CreateEmptyGeometryByESRIType
(ShapeType: tagesriShapeType, out
outGeometry: IGeometry)

Create an empty geometry of the specified ESRI shape file type.

CreateEmptyGeometryByType
(GeometryType:
tagesriGeometryType, out
ppOutGeometry: IGeometry)

Creates an empty geometry of the specified type.

CreateGeometry (byteCountInOut:
Long, in geometryInfo: Unsigned Char,
out outGeometry: IGeometry)

Create a point, polyline, polygon, or multipoint from the specified
shapefile format buffer.

CreateGeometryFromEnumerator
(geometries: IEnumGeometry) :
IGeometry

Creates geometries from geometry enumerator.

CreateGeometryFromWkb
(byteCountInOut: Long, in
geometryInfo: Unsigned Char, out
outGeometry: IGeometry)

Create a point, polyline, polygon, or multipoint from the specified
OGIS WKB format buffer.

CreateGeometryFromWkbVariant (wkb:
Variant, out outGeometry: IGeometry,
out cBytesRead: Long)

Create a point, polyline, polygon, or multipoint from the specified
OGIS WKB format buffer.

The IGeometryFactory interface is used internally in ArcObjects to create
and populate Geometries in the formats used internally by ArcObjects.
Generally, its methods are not suitable for use from Visual Basic®, as
they require information not generally available in the Visual Basic
environment. However, the CreateGeometryFromEnumerator method
may be used to create a GeometryBag from an enumeration of Geom-
etries.

For example, the code below takes an ISelectionSet and creates a
GeometryBag coclass. You could extend the code to create a Geometry-
Bag from an entire FeatureClass by creating a SelectionSet from an entire
FeatureClass.

  Dim pEnumGeom As IEnumGeometry

  Set pEnumGeom = New EnumFeatureGeometry

  Dim pEnumGeometryBind As IEnumGeometryBind

  Set pEnumGeometryBind = pEnumGeom

  pEnumGeometryBind.BindGeometrySource Nothing, pSelectionSet

  Dim pGeomFactory As IGeometryFactory

  Set pGeomFactory = New GeometryEnvironment

  Dim pGeom As IGeometry

  Set pGeom = pGeomFactory.CreateGeometryFromEnumerator(pEnumGeom)

C++ programmers or advanced Visual Basic programmers may wish to
use the CreateGeometry method if they already hold a reference to an
ESRIShape, for example, from a shapefile buffer, or use
CreateGeometryFromWkb or CreateGeometryFromWkbVariant if they
already hold a reference to a WKB or WKBVariant shape.

GEOMETRYENVIRONMENT COCLASS

"from" point

"to" point

ConstructLine returns the angle of a known
Line.

"from" point

through point

"to" point

ConstructThreePoints returns the angle
between three known Points.

The CreateEmptyGeometry and
CreateGeometryFromEnumerator methods

are suitable for use from Visual Basic.



Chapter 9 • Shaping features with geometry • 1031

G
eo

m
et

ry

 

 IConstructAngle : IUnknown Provides access to members that construct an angle using
other geometries and measures.

ConstructLine (InLine: ILine) : Double Constructs the angle between the infinite line containing the input line
segment and the positive x-axis.

ConstructThreePoint (from: IPoint,
through: IPoint, to: IPoint) : Double

Constructs the angle included in three points.

The IConstructAngle interface aids in the calculation of angles, which
may then be used in other geometry constructors. Values are returned in
radians.

Extrusion is a process generally used (via the IConstructMultiPatch
interface) to extrude Polylines, Polygons, or Envelopes to create 3D
MultiPatch geometries. However, the IExtrude interface also allows the
extrusion of Points or Multipoints to create Polylines. For more informa-
tion on the use of the extrusion methods, see the 3D geometry section
later in this chapter.

 IExtrude : IUnknown Provides access to members that can be used to take a
geometry and connect it to a translated version of itself
to generate a higher-dimensional geometry.

Extrude (OffsetZ: Double, baseGeom:
IGeometry) : IGeometry

Extrude using an input geometry as one base and offsetting the Zs
already set on the input geometry to get the second base.

ExtrudeAbsolute (toZ: Double,
baseGeom: IGeometry) : IGeometry

Extrude a geometry using its initial Zs for one base, and a uniform
input Z for the other.

ExtrudeAlongLine (extrusionLine: ILine,
baseGeom: IGeometry) : IGeometry

Extrude a geometry along a specified line, using the Zs on the two
ends of the line to set Zs on the top and bottom.

ExtrudeBetween (fromSurface:
IFunctionalSurface, toSurface:
IFunctionalSurface, baseGeom:
IGeometry) : IGeometry

Extrude a geometry between two functional surfaces.

ExtrudeFromTo (fromZ: Double, toZ:
Double, baseGeom: IGeometry) :
IGeometry

Extrude a geometry between two specified Z values.

ExtrudeRelative (extrusionVector:
IVector3D, baseGeom: IGeometry) :
IGeometry

Extrude a geometry along a specified vector, using Zs already set on
the input geometry.

The IExtrude interface provides methods to create new geometries from
existing geometries by a process of extrusion, where the new geometry
has one more dimension than the input. For example, a Point may be
extruded to a Line, or a Polygon may be extruded to a MultiPatch.

 IEncode3DProperties : IUnknown Provides access to members that encode and decode
normals and 2D texture coordinates into a single double
value.

PackNormal (normalVector: IVector3D,
packedNormal: Double)

Encodes a normal into part of a double. A normal and texture
information can both be packed in a single double without
conflict.

PackTexture2D (textureS: Double,
textureT: Double, packedTexture:
Double)

Encodes texture coordinates into part of a double. A normal and
texture information can both be packed in a single double
without conflict.

UnPackNormal (packedNormal: Double,
normalVector: IVector3D,
wasProductive: Boolean)

Decodes a normal from a double.

UnPackTexture2D (packedTextureST:
Double, textureS: Double, textureT:
Double, wasProductive: Boolean)

Decodes texture coordinates.

The IEncode3DProperties interface allows the storage of normal and
texture attributes on a Geometry. This interface provides a temporary
solution to storing these values for use by 3D applications.

GEOMETRYENVIRONMENT COCLASS



1032 • Exploring ArcObjects • Volume 2

Geometry-
Bag

IClone
IConstructGeometry-

Collection
IEnumGeometry

IGeometry
IGeometry2

IGeometryBag
IGeometryCollection
IRelationalOperator

ISpatialIndex
ISupportErrorInfo

ITopologicalOperator

A geometry bag is a convenient place to
keep assorted geometry objects. You can
add any IGeometry object to the bag.

A GeometryBag can be thought of as a convenient programmatic place
to keep Geometries. Unlike a standard collection or array, the
GeometryBag itself implements IGeometry, which allows you to use the
inherited properties and methods on the GeometryBag as a whole. A
GeometryBag preserves the order of its members.

A GeometryBag with no Geometries has a Dimension of esriGeometry-
NoDimension. If the SpatialReference of a GeometryBag is set, each
contained Geometry will reference this property in its SpatialReference—
so ensure that all your Geometries share the same SpatialReference if you
intend to do this. If you do not set the SpatialReference of the Geometry-
Bag coclass, each Geometry will maintain any existing reference to an
existing SpatialReference.

 IGeometryBag : IGeometry Provides access to members that identify a geometry bag

LosslessExport: Boolean Indicates when this geometry bag exported itself to a shapefile buffer
with no loss of information.

The IGeometryBag interface has only one property, which is used in
conjunction with the restricted IESRIShape interface.

GeometryBag supports a number of other interfaces, such as IClone,
IRelationalOperator, ISpatialIndex, and ITopologicalOperator. To use
these interfaces, ensure that all contained geometries also support the
required interface. These interfaces have limited use for a
GeometryBag—you can use Simplify and Buffer operations on
ITopologicalOperator, Assign and Clone on IClone, and all methods on
IRelationalOperator except Equal, although the relational operations may
be uninformative if used on geometries with varied dimensions.

 ISpatialIndex : IUnknown Provides access to members that create a temporary
spatial index to select by location

AllowIndexing: Boolean Indicates permission for creation of a spatial index for the geometry.

Invalidate Invalidate the spatial index.

ArcObjects uses spatial indices on FeatureClasses to improve access
times on spatial queries. Separate temporary indices can also be created
for individual Geometries using the ISpatialIndex interface. You could create
an individual index on a GeometryBag like this:

  Dim pSpatialIndex As ISpatialIndex

  Set pSpatialIndex = pBag

  pSpatialIndex.AllowIndexing = True

This line of code updates the index and should be used if the members
of the bag change.

  pSpatialIndex.Invalidate

Individual geometry indices may help to speed up spatial operations on
particularly large shapes, for example, Point in Polygon type operations,
Polygon or Polyline intersection operations, GeometryBag relation opera-
tions, or operations that identify individual Segments within a Geometry.
You may wish to use indices if the Geometry is particularly large, but do

GEOMETRYBAG COCLASS

The Multipoint, Polygon, and Polyline
coclasses also support ISpatialIndex.



Chapter 9 • Shaping features with geometry • 1033

G
eo

m
et

ry

not use an index if the Geometry changes often, as the index must be
rebuilt each time the shape changes.

To add geometries to a GeometryBag, use the IGeometryCollection inter-
face.

  Dim pGeomColl as IGeometryCollection

  Set pGeomColl = New GeometryBag

  pGeomColl.AddGeometry pPolygon

  pGeomColl.AddGeometry pPoint    ' And so on

 IConstructGeometryCollection :
 IUnknown

Provides access to members that construct a collection of
geometries

ConstructDivideEqual (divideSource:
IPolyline, cDivisions: Long, divideHow:
tagesriConstructDivideEnum)

Locate additional points equally spaced along the input polyline, and
create either new segments, parts or polylines depending on the
value of divideHow.

ConstructDivideLength (divideSource:
IPolyline, Length: Double, asRatio:
Boolean, divideHow:
tagesriConstructDivideEnum)

Locate additional points along the input polyline, spaced at a specified
interval, and create either new segments, parts, or polylines
depending on the value of divideHow.

Alternatively, the IConstructGeometryCollection interface provides meth-
ods to define the shapes in a GeometryBag using other existing Geom-
etries.

Both methods create a GeometryBag containing Polylines, defined by
splitting an existing Polyline into many separate Polylines.

GEOMETRYBAG COCLASS



1034 • Exploring ArcObjects • Volume 2

GEOMETRY COLLECTION INTERFACES

Certain geometries define their shape by holding a collection of refer-
ences to other geometries. For example, a Polygon holds a collection of
references to Rings. The IGeometryCollection, ISegmentCollection, and IPoint-
Collection interfaces provide functionality to access the individual constitu-
ents of a Geometry to add new references, rearrange references, and
remove references. Understanding these interfaces is an essential part of
working with the ArcObjects geometry model.

 IGeometryCollection : IUnknown Provides access to members that can be used for accessing,
adding and removing individual geometries of a multi-part
geometry (Multipoint, Polyline, Polygon, MultiPatch, and
GeometryBag).

Geometry (Index: Long) : IGeometry Returns a reference to the ith geometry.
GeometryCount: Long Returns the number of geometries in this collection.

AddGeometries (Count: Long, in
newGeometries: IGeometry)

Adds references to geometries in the input array.

AddGeometry (inGeometry: IGeometry,
before: Variant, after: Variant)

Adds a reference to the input geometry either at the end, or before,
or after the specified index.

AddGeometryCollection
(newGeometries: IGeometryCollection)

Adds references to geometries in the input collection.

GeometriesChanged Tells this geometry collection that some of its geometries have been
altered.

InsertGeometries (Index: Long, Count:
Long, in newGeometries: IGeometry)

Insert references to geometries in the input array.

InsertGeometryCollection (Index: Long,
newGeometries: IGeometryCollection)

Inserts reference to geometries in the input collection.

QueryGeometries (Index: Long, Count:
Long, out geometries: IGeometry)

Returns references to a sub-sequence of geometries.

RemoveGeometries (Index: Long,
Count: Long)

Removes references to some geometries.

SetGeometries (Count: Long, in
newGeometries: IGeometry)

Replaces all current geometries with references to those in the input
array.

SetGeometryCollection (newParts:
IGeometryCollection)

Replacess all current geometries with references to geometries from
the input collection.

The IGeometryCollection interface holds a collection of references to the
parts of a multipart geometry and allows you to add, change, and re-
move those parts (note the use of the GeometriesChanged method, dis-
cussed later in this section, if you are editing a geometry).

• For the GeometryBag coclass, each part Geometry can be any type of
Geometry.

• For the Polygon coclass, each part Geometry is a Ring.

• For the Polyline coclass, each part Geometry is a Path.

• For the Multipoint coclass, each part Geometry is a Point.

• For the MultiPatch coclass, each part Geometry is a TriangleFan, Triangle-
Strip, or a Ring.

• For the TriangleFan coclass, each part Geometry is a Point or Multipoint.

• For the TriangleStrip coclass, each part Geometry is a Point or Multipoint.

The Geometry property holds a read-only array of the parts of a shape,
with GeometryCount providing a count of those parts. This code uses
these properties to iterate a MultiPatch shape and find out what con-
stituent geometries it has.

  Dim pGeomColl As IGeometryCollection, i As Integer

  Set pGeomColl = pMultipatch

  For i = 0 To pGeomColl.GeometryCount - 1

    If pGeomColl.Geometry(i).GeometryType = esriGeometryRing Then

IGeometryCollection is implemented
by all geometries that reference a

collection of other geometries—Poly-
gons, Polylines, Multipoints,
MultiPatches, TriangleStrips,

TriangleFans, and GeometryBags.

If the coclass is a Polygon, add a Ring using
AddGeometry, an array of Rings using

AddGeometries, or another Polygon using
AddGeometryCollection. If, however, the

coclass is a MultiPatch, add a surface patch (a
TriangeFan, TriangleStrip, or Ring) using

AddGeometry, an array of surface patches
using AddGeometries, or another MultiPatch

using AddGeometryCollection.



Chapter 9 • Shaping features with geometry • 1035

G
eo

m
et

ry

      Debug.Print i & ": Ring"

    ElseIf pGeomColl.Geometry(i).GeometryType = esriGeometryTriangleFan Then

      Debug.Print i & ": TriangleFan"

    ElseIf pGeomColl.Geometry(i).GeometryType = _

                                        esriGeometryTriangleStrip Then

      Debug.Print i & ": TriangleStrip"

    End If

  Next i

Geometries can be added singly using AddGeometry or as an array of
geometries using AddGeometries. The two methods have one important
difference—the AddGeometry method allows you to specify where to
add the Geometry to the collection using an index. The AddGeometries
method adds the geometries to the end of the collection, making them
the last parts in the shape.

Below, the AddGeometry method is used to add the Geometry of one
single-part Polygon to a second single-part Polygon, creating a Polygon
with two parts. If the parts overlap, are not closed, or have a contain-
ment relationship, the Polygon will not be simple. Therefore, Simplify is
called to ensure the Polygon has a valid geometry.

  Dim pGeomColl1 As IGeometryCollection

  Dim pGeomColl2 As IGeometryCollection

  Set pGeomColl1 = pExistingPolygon1

  Set pGeomColl2 = pExistingPolygon2

  pGeomColl1.AddGeometry pGeomColl2.Geometry(0)

  Dim pTopological As ITopologicalOperator

  Set pTopological = pGeomColl1

  pTopological.Simplify

The AddGeometryCollection method adds a reference to every Part in a Polygon
to the base Polygon. You may wish to use this method to combine Polygons
with more than one part (although you can also use it regardless of the
part count of a geometry):

  pGeomColl1.AddGeometryCollection pGeomColl2

Using the InsertGeometries or InsertGeometryCollection methods, you can insert
parts into an existing GeometryCollection at a certain index. Parts are re-
moved using the RemoveGeometries method. The SetGeometries and
SetGeometryCollection methods replace all existing parts of a shape with
the specified parts.

The code below removes all parts of a Polyline that are closed Paths,
where pPolyline is an existing multipart Polyline Geometry.

  Dim pGeomColl As IGeometryCollection

  Set pGeomColl = pPolyline

  If Not pPolyline.IsEmpty Then

    Dim i As Integer

    Dim pPath As IPath

    Do While i < pGeomColl.GeometryCount

      Set pPath = pGeomColl.Geometry(i)

      If pPath.IsClosed Then

If the incorrect coclass is passed to these
methods, this is indicated by error 522.

GEOMETRY COLLECTION INTERFACES

If you have numerous geometries to add to a
collection, using the array-based AddGeometries

method will be more efficient than calling
AddGeometry repeatedly. The

InsertGeometries method is also array based.



1036 • Exploring ArcObjects • Volume 2

        pGeomColl.RemoveGeometries i, 1

        i = i - 1

      End If

      i = i + 1

    Loop

  End If

Calling the GeometriesChanged method indicates to a Geometry that its
parts have been altered. It should be called in a situation where you are
holding a variable that has also been added to an IGeometryCollection
interface, and you then make changes to the original variable. There is
no need to call this method after using the IGeometryCollection methods
to alter the Geometry.

 ISegmentCollection : IUnknown Provides access to members that manipulate the segments
of a path, ring, polyline, or polygon

EnumCurve: IEnumCurve Returns a new curve enumerator for this segment collection.
EnumSegments: IEnumSegment Returns a new enumerator for this segment collection.
IndexedEnumSegments (pQuery:

IGeometry) : IEnumSegment
Returns a new indexed curve enumerator for this segment collection.

Segment (i: Long) : ISegment Returns a reference to the ith segment.
SegmentCount: Long Returns the number of segments.

AddSegment (inSegment: ISegment,
before: Variant, after: Variant)

Adds a reference to the input segment at the end, or before or after
a specified index.

AddSegmentCollection (segments:
ISegmentCollection)

Adds references to the segments from the specified segment
collection.

AddSegments (Count: Long, in
newSegments: ISegment)

Adds references to segments.

HasNonLinearSegments
(pbNonLinearSegments: Boolean)

Indicates when this segment collection contains segments other than
lines.

InsertSegmentCollection (Index: Long,
newSegments: ISegmentCollection)

Inserts references to the segments in the input collectoin.

InsertSegmentCollectionEx (Index:
Long, Start: Long, Count: Long,
newSegments: ISegmentCollection)

Inserts references to some of the segments from the input collection.

InsertSegments (Index: Long, Count:
Long, in newSegments: ISegment)

Inserts references to the input segments.

QuerySegments (Index: Long, Count:
Long, out segments: ISegment)

Returns references to some of the input segments.

RemoveSegments (Index: Long, Count:
Long, closeGap: Boolean)

Removes references to some segments. If closeGap is TRUE, then any
remaining internal gap in the path, ring, polyline or polygon is
connected with a single line segment.

ReplaceSegmentCollection (Index:
Long, goingAway: Long,
newSegments: ISegmentCollection)

Remove and inserts some segments.

ReplaceSegments (Index: Long,
comingIn: Long, goingAway: Long,
newSegments: ISegment)

Removes and inserts from segments.

SegmentsChanged Informs the segmentcollection that any cached values that it may be
maintaining (envelope, length, etc.) are invalid.

SetCircle (cp: IPoint, circleRadius:
Double)

Defines this path, ring, polyline or polygon to contain a single circular
arc segment that is closed.

SetRectangle (inEnvelope: IEnvelope) Defines this path, ring, polyline or polygon to have four line segments
in the same positions as the sides of the input envelope.

SetSegmentCollection (newSegments:
ISegmentCollection)

Replaces all segments with references to segments from the input
collection.

SetSegments (Count: Long, in
newSegments: ISegment)

Replaces all segments with references to the input segments.

SynchronizeEmptyAttributes If, at end point shared by two segments, one segment has an empty
value for an attribute and the other has a non-empty value, use the
non-empty value for both.

AddSegment is used to add references to single Segments to a
SegmentCollection. The following code creates a new Line and uses the
AddSegment method to add a reference to this Line to a new Path.

The ISegmentCollection interface
provides access to individual Segments

of geometries that are composed of
Segments. It is implemented by the
Path, Ring, Polygon, and Polyline

coclasses.

Generally when working with multipart geom-
etries, that is, the Polygon or Polyline coclasses,

IGeometryCollection should be used in
preference to ISegmentCollection if Segments
are to be removed or added, to avoid potential

problems with the parts of the shape, or in
performance-critical situations.

GEOMETRY COLLECTION INTERFACES



Chapter 9 • Shaping features with geometry • 1037

G
eo

m
et

ry

  Dim pLine As ILine

  Set pLine = New Line

  pLine.PutCoords pPoint1, pPoint2

  Dim pSegments As ISegmentCollection

  Set pSegments = New Path

  pSegments.AddSegment pLine

Alternatively, AddSegments can be used to add references to an array of
Segments, or AddSegmentCollection can be used to add references to all
the Segments from another ISegmentCollection. Be careful when sharing
references to Segments—you are only copying references to the same
underlying objects.

The InsertSegments, InsertSegmentCollection, RemoveSegments,
ReplaceSegments, ReplaceSegmentCollection, SetSegmentCollection, and
SetSegments methods can be used to change and rearrange Segments in
the collection.

The SegmentsChanged method is similar to the
IGeometryCollection::GeometriesChanged method and should be called
in a situation where you are holding a reference to a Segment of a
SegmentCollection as well as to the SegmentCollection itself, and you
change the properties of the Segment object directly.

HasNonLinearSegments is a useful check on a SegmentCollection; it
indicates the presence of a CircularArc, EllipticArc, or BezierCurve
within the collection. These Segment types may not be supported by all
data formats. For example, a shapefile cannot store a nonlinear
feature—it will be converted to a linear approximation if you attempt
this.

The SetCircle and SetRectangle methods provide a simple way to con-
struct an entire Path, Ring, Polyline, or Polygon without adding separate
Segments to the ISegmentCollection. The SetCircle method works similarly
to the ICircularArc::ConstructCircle method—it takes a center Point and
radius and produces a single CircularArc representing a full circle. The
SetRectangle method creates four Line Segments that equal the sides of
the input Envelope.

GEOMETRY COLLECTION INTERFACES

Note here that Segments are added to
ISegmentCollection by reference, but Points

are added to a Line by value.



1038 • Exploring ArcObjects • Volume 2

 IPointCollection : IUnknown Provides access to members that manipulate the points of
a Multipoint, Path, Ring, Polyline, Polygon, TriangleFan,
TriangleStrip, or MultiPatch.

EnumVertices: IEnumVertex Returns a new enumerator for this point collection.
Point (i: Long) : IPoint Returns a copy of the ith vertex of a Path, Ring, Polyline, or Polygon;

or a reference to the ith point of a Multipoint, TriangleFan, or
TriangleStrip.

PointCount: Long Returns the number of points in the collection.

AddPoint (inPoint: IPoint, before:
Variant, after: Variant)

Adds a vertex to a Path, Ring, Polyline, or Polygon; or adds a
reference to the input point to a Multipoint, TriangleFan, or
TriangleStrip.

AddPointCollection (newPoints:
IPointCollection)

Adds copies of points in the input point collection to this Path, Ring,
Polyline, or Polygon; or adds references to the points in the collection
to this Multipoint, TriangleFan, or TriangleStrip.

AddPoints (Count: Long, in newPoints:
IPoint)

Adds copies of the input points as vertices to this Path, Ring, Polyline,
or Polygon; or references to the input points to this Multipoint,
TriangleFan, or TriangleStrip.

AddWKSPoints (Count: Long, in
pointStructures: _WKSPoint)

Adds vertices to this Path, Ring, Polyline, or Polygon, or adds new
points to this Multipoint, TriangleFan, or TriangleStrip.

InsertPointCollection (Index: Long,
newPoints: IPointCollection)

Inserts copies of points, from the input point collection, as vertices
into this Path, Ring, Polyline, or Polygon; or references to points in
the input point collection into this Multipoint, TriangleFan, or
TriangleStrip.

InsertPoints (Index: Long, Count: Long,
in newPoints: IPoint)

Inserts copies of the input points as vertices into a Path, Ring, Polyline,
or Polygon; or references to the input points into a Multipoint,
TriangleFan, or TriangleStrip.

InsertWKSPoints (Index: Long, Count:
Long, in newPoints: _WKSPoint)

Inserts new vertices/points into this Path, Ring, Polyline, Polygon,
Multipoint, TriangleFan, TriangleStrip, or MultiPatch.

QueryPoint (Index: Long, pPoint: IPoint) Queries for a point in the PointCollection at given index.
QueryPoints (Index: Long, Count: Long,

Points: IPoint)
Copies some points to an existing array of points.

QueryWKSPoints (Index: Long, Count:
Long, out pointStructures: _WKSPoint)

Copies vertices'/points' coordinates to the array of point structures.

RemovePoints (Index: Long, Count:
Long)

Removes vertices from a Path, Ring, Polyline, or Polygon, or references
to points from a Multipoint, TriangleFan, or TriangleStrip.

ReplacePointCollection (Index: Long,
goingAway: Long, newPoints:
IPointCollection)

Replaces vertices/points within a PointCollection.

ReplacePoints (Index: Long, comingIn:
Long, goingAway: Long, in newPoints:
IPoint)

Replaces vertices/points within a PointCollection.

SetPointCollection (newPoints:
IPointCollection)

Replaces all vertices of this Path, Ring, Polyline, or Polygon with copies
of the points in the input collection; or all points of this Multipoint,
TriangleFan, or TriangleStrip with references to points from the
input collection.

SetPoints (Count: Long, in newPoints:
IPoint)

Replaces all existing vertices of this Path, Ring, Polyline, or Polygon
with copies of the input points; or all existing points of this
Multipoint, TriangleFan, or TriangleStrip with references to the input
points.

SetWKSPoints (Count: Long, in
pointStructures: _WKSPoint)

Replaces all vertices of this Path, Ring, Polyline, or Polygon with new
ones, or replaces all points of this Multipoint, TriangleFan, or
TriangleStrip with new ones.

UpdatePoint (i: Long, p: IPoint) Changes the ith vertex or point to be a copy of the input point.

IPointCollection allows you to interact with the Point objects that em-
body the shape of a Multipoint, TriangleFan, or TriangleStrip. It is
analogous to ISegmentCollection on a Path or IGeometryCollection on a
Polyline. A reference to a Point object can be added to a Multipoint by
using the AddPoint method.

The code below uses a UIToolControl in a VBA ArcMap session to add
a new Point to a Multipoint (using AddPoint) each time the user clicks
on the map. Each Point in the Multipoint gives map coordinates at the
location the user clicked.

Private pPointColl As IPointCollection

Private pTransformation As IDisplayTransformation

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

  ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim pPoint As IPoint

  Set pPoint = New Point

GEOMETRY COLLECTION INTERFACES

The MultiPoint, TriangleFan, and
TriangleStrip coclasses base their
geometry on Point objects. These

coclasses implement IPointCollection,
providing methods and properties to

investigate, add, rearrange, and replace
the individual Points of these geom-

etries. For these coclasses, the methods
and properties use references to the

original Point objects.

A second type of geometry also implements
IPointCollection. The Path, Ring, Polygon,

Polyline, and MultiPatch geometries are not
based on Point objects but can be represented

by collections of Points. In these cases, the Point
objects are passed by value. For these coclasses,

new Point objects are created in memory as
required. Ensure that your code takes account of

this difference.

The MultiPatch coclass is based on both these
types of geometries and will return Points

either by reference (for TriangleFans or
TriangleStrips) or by value (for Rings).

If you are using the IPointCollection interface
of a multipart shape, for example, a Polygon or
Polyline coclass, care should be taken if adding

or removing Points. To avoid potential problems
with the parts of the multipart shape, you may

prefer to use the IGeometryCollection
interface instead.



Chapter 9 • Shaping features with geometry • 1039

G
eo

m
et

ry

  Set pPoint = pTransformation.ToMapPoint(x, y)

  pPointColl.AddPoint pPoint

End Sub

Private Sub UIToolControl1_Select()

  Set pPointColl = New Multipoint

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Set pTransformation = _

     pMxDoc.ActiveView.ScreenDisplay.DisplayTransformation

End Sub

The Polygon, Polyline, Path, and Ring coclasses also implement the
IPointCollection interface. You can take advantage of this to copy the verti-
ces from an existing Polygon to a Multipoint object by using the
AddPointCollection method.

  If TypeOf pGeometry Is IPointCollection Then

    Dim pPolyPointColl As IPointCollection

    Set pPolyPointColl = pGeometry

    Dim pMultiPointColl As IPointCollection

    Set pMultiPointColl = New Multipoint

    pMultiPointColl.AddPointCollection pPolyPointColl

  End If

Alternatively, you can replace all the Points in an existing Multipoint with
references to the Points in the Polygon by using the SetPointCollection
instead.

  pMultiPointColl.SetPointCollection pPolyPointColl

An existing Point in the point collection can be changed using the
UpdatePoint method. For example, the code changes any Point in a
Multipoint that has a y-coordinate greater than zero to zero. The code
also uses the read-only Point property to query each Point and the
PointCount property to find out how many Points are in the Multipoint,
pMulti.

  Dim pTemp As IPoint

  For i = 0 To pMulti.PointCount - 1

    If pMulti.Point(i).y <> 0 Then

      Set pTemp = pMulti.Point(i)

      pTemp.y = 0

      pMulti.UpdatePoint i, pTemp

    End If

  Next i

The other methods of IPointCollection can be used to add, insert, re-
place, remove, and query Points, arrays of Points, and Points collections.

The EnumVertices property returns an enumerator of the Points in the
IPointCollection interface.

GEOMETRY COLLECTION INTERFACES



1040 • Exploring ArcObjects • Volume 2

 IEnumVertex : IUnknown Provides access to members that iterate over the vertices of
a path, ring, polyline or polygon.

Clone: IEnumVertex Returns a copy of this enumerator positioned at the same vertex.
IsLastInPart: Boolean Indicates when the current vertex is last in the current part.
Next (out outVertex: IPoint, out

outPartIndex: Long, out vertexIndex:
Long)

Returns the next vertex and its location within the geometry.

NextInPart (out outVertex: IPoint, out
OutVertexIndex: Long)

Returns the next vertex in current part, or goes back to first vertex
after last vertex in part is encountered.

Previous (out outVertex: IPoint, out
outPartIndex: Long, out vertexIndex:
Long)

Returns the previous vertex and its location in the geometry.

put_Attribute (attributeType:
esriGeometryAttributes, Value:
Double)

Sets attribute values at the current vertex.

put_ID (pointID: Long) Sets ID at the current vertex.
put_M (M: Double) Sets M at the current vertex.
put_X (X: Double) Sets X at the current vertex.
put_Y (Y: Double) Sets Y at the current vertex.
put_Z (Z: Double) Sets Z at the current vertex.
QueryNext (Vertex: IPoint, out

outPartIndex: Long, out vertexIndex:
Long)

Copies the next vertex to the input parameter and returns its location
in the geometry.

QueryNextInPart (Vertex: IPoint, out
OutVertexIndex: Long)

Copies the next vertex in current part to the input parameter and
returns the next vertex index in current part, or goes back to first
vertex after last vertex in part is encountered.

QueryPrevious (Vertex: IPoint, out
outPartIndex: Long, out vertexIndex:
Long)

Copies the previous vertex to the input parameter and returns the
previous vertex in the geometry.

Reset Starts from the beginning of the geometry the next time Next is
called.

ResetToEnd Starts from the end of the geometry the next time Previous is called.
SetAt (iPart: Long, iVertex: Long) Resets enumerator to specific location.
Skip (cVertices: Long) Skips forward or backward over a specified number of vertices.

The Next method populates a Point with the next Point in the enumera-
tor. It also indicates the current position in the collection by part and
vertex number. Calling Reset ensures the enumerator is positioned at the
beginning of the collection.

  Dim pEnum As IEnumVertex

  Set pEnum = pPointCollection.EnumVertices

  pEnum.Reset

  Dim pPoint As IPoint, lPart As Long, lVertex As Long

  pEnum.Next pPoint, lPart, lVertex

  Do While Not pPoint Is Nothing

    Debug.Print pPoint.X, pPoint.Y

    pEnum.Next pPoint, lPart, lVertex

  Loop

By using the ResetToEnd and Previous methods, you can iterate back-
wards through the enumeration.

  pEnum.ResetToEnd

  pEnum.Previous pPoint, lPart, lVertex

  Do While Not pPoint Is Nothing

    Debug.Print pPoint.X, pPoint.Y

    pEnum.Previous pPoint, lPart, lVertex

  Loop

The Skip method positions the enumeration cursor by skipping a certain
number of Points. The NextInPart method allows you to loop around a
particular part of a multipart shape—remember that Multipoint objects

GEOMETRY COLLECTION INTERFACES

EnumVertex is a lightweight object that
you can use to pass around between

routines.

You may wish to use this enumerator in
preference to the Points array returned by the
IPointCollection::Points property, as it allows
you to directly change the x-, y-, z-, m-, and ID

properties of each Point, although Points cannot
be removed or replaced using this interface.

The IEnumVertex has knowledge of parts
within multipart shapes and may therefore be

convenient for use on a multipart shape, such as
a Polygon or Polyline.



Chapter 9 • Shaping features with geometry • 1041

G
eo

m
et

ry

only have one single part conceptually, but a Polygon or Polyline may
have many. The code below uses these methods to check the z- and m-
values of the first and last point in a part.

  Dim pEnum As IEnumVertex

  Set pEnum = pPolygonPointCollection.EnumVertices

  pEnum.Reset

  Dim pPoint As IPoint, lPart As Long, lVertex As Long

  pEnum.Next pPoint, lPart, lVertex

  Do While Not pPoint Is Nothing

    If pEnum.IsLastInPart Then

      Dim pPointFirst As IPoint, lFirstVertex As Long

      pEnum.NextInPart pPointFirst, lFirstVertex

      Debug.Print pPoint.M, pPointFirst.M

      If Not pPoint.M = pPointFirst.M Then

        Debug.Print "Unequal M"

      End If

      pEnum.Skip lVertIndex

      pEnum.Next pPoint, lPart, lVertex

    Else

      pEnum.Next pPoint, lPart, lVertex

    End If

  Loop

The Clone method provides a convenient way to copy an enumeration
of Points, as the enumeration does not support IClone. Additionally, it
positions the cloned enumeration at the same point as the original enu-
meration.

GEOMETRY COLLECTION INTERFACES



1042 • Exploring ArcObjects • Volume 2

GEOMETRY ATTRIBUTES

Geometries may have z-, m-, or ID attributes, which can be used for a
variety of purposes. Attributes of geometries can be stored in feature
classes of many formats, as long as the feature class has the appropriate
awareness (to find out more, check the HasZ and HasM properties on
the FeatureClass).

Z-attributes define a value that may be used as a height coordinate by
3D objects and operations. In this case, the units of the z-coordinate are
defined by the SpatialReference of the Geometry.

An m-attribute defines a measure value that represents a relative position
along a geometry. Measures are most commonly used to represent dis-
tances but can also represent times, costs, or other events that may occur
that are not necessarily relative to the spatial coordinates. Features with
associated measure information are often termed “measured features”. M-
attributes are principally used by dynamic segmentation routines.

ID or Point ID attributes define a value that is not used by other
ArcObjects functions and can therefore be used programmatically as
you require, perhaps to uniquely tag Point objects or to relate vertices of
a Polygon to rows in a database.

Z-, m-, and ID attributes are stored at a low level on the constituent
objects that comprise the Geometry; on the Point objects that comprise a
Multipoint, TriangleFan, or TriangleStrip; or on the Segment endpoints
of Polygons or Polylines. For a MultiPatch geometry, both cases apply.

A geometry’s attribution awareness, however, is controlled at its highest
level. For example, if ZAware is set to True on a Multipoint, ZAware will
also equal True for each of the Point objects in the Multipoint.

Instead of accessing the attributes separately via each Point or Segment in
a Geometry, interfaces are provided to deal with attributes via the higher
level Geometry. Generally, you can read z-, m-, and ID attribute values
regardless of the awareness of the Geometry, although a good practice
would be to set awareness to True if you intend to store and use those
attributes. Operations that can make use of attributes will only use those
attributes if the geometry is aware of them.

 IZAware: IUnknown Provides access to members that identify geometric objects
that can have persistant Z values attached to coordinates.

ZAware: Boolean Indicates whether or not the geometry is aware of and capable of
handling Zs.

ZSimple: Boolean Indicates if all the Zs are valid numbers.

DropZs Sets all the Z values to a non-valid number (NaN).

To make a Geometry z-aware, simply set the ZAware property to True.
By default, the z-values of a shape will be NaN (“not a number”)—the
ZSimple property returns True if any NaN values remain. To reset all z-
values of a Geometry to NaN, call DropZs.

  If Not pZaware.ZSimple Then

    pZAware.DropZs

  End If

The IZAware interface determines
whether or not the Geometry object is

aware that it may have z-attributes.

For example, to use a Point as a three-
dimensional object, set the IZAware property to

True and set the IPoint::Z property. If you
intend to store the Geometry in a

FeatureClass, the FeatureClass must support
z-values. For more information, see IGeometry-

Def and IGeometryDefEdit in Chapter 8,
‘Accessing the geodatabase’.

It may not be possible to perform some
attribute operations if the Geometry is not

MSimple, ZSimple, or PointIDSimple.

A Segment has a FromPoint and ToPoint, and
Points have z-, m-, and ID attributes. The

ISegmentZ, ISegmentM, and ISegmentID
interfaces provide direct access from the

Segment to these attributes, without having to
replace the FromPoint and ToPoint properties

with new Point objects.

Geometries can have z-, m-, and/or ID
attributes at the point level. If a geometry

has attribute awareness (ZAware,
MAware, or IDAware = True), it will use
the attributes in any appropriate opera-

tions.

If a geometry has its attribute awareness
removed (set to False), those attributes will not

be used in operations. However, any existing
attribute values will remain in memory; there-

fore, if awareness is removed and then rein-
stated, the geometry will maintain its set of
attributes. The awareness concept provides a
level of dynamic type safety and efficiency for

geometries and operations that work with
attributes.



Chapter 9 • Shaping features with geometry • 1043

G
eo

m
et

ry

Logically, either a shape has no z-values or a complete set of z-values,
depending on whether or not you intend to use a Geometry as a two- or
three-dimensional shape—a non-z-simple shape may not display cor-
rectly in ArcScene™ software, for example. If your shape is not z-
simple, consider why some z-attributes are missing and what you could
do to fill in missing values.

 IZ: IZCollection Provides access to members that identify geometric objects
that can have 3D coordinates and defines operations on
such objects.

ZVertical: Boolean Indicates when at least two consecutive vertices of this polyline or
polygon have the same x and y values, but distinct z values.

CalculateNonSimpleZs Calculates the non-simple Z values by extrapolation/interpolation.
InterpolateFromSurface

(pFunctionalSurface:
IFunctionalSurface)

Use the specified functional surface to generate Z values for the
vertices of this object.

InterpolateZsBetween (startPart: Long,
StartPoint: Long, endPart: Long,
EndPoint: Long)

Generate Z values by linear interpolation for all vertices in the range
[start+1, end-1].

SetConstantZ (zLevel: Double) Sets Z coordinates at all locations on this object equal to a single
value.

If some z-values are missing for a shape, three methods provide ways to
fill in the missing values. CalculateNonSimpleZs interpolates the existing
z-values to fill in the NaN values, and InterpolateZsBetween replaces
every z-attribute with a value based on the distance along the Polyline
or boundary of the Polygon.

Finally, the InterpolateFromSurface method sets z-attributes from a speci-
fied FunctionalSurface, which indicates that the z-attributes will have a
valid value if the vertex lies within the Domain of the
FunctionalSurface. Alternatively, the SetConstantZ method will set all z-
attributes to a constant value—this method has no Domain limit—which
is much more efficient than setting the z-attribute of each constituent
Point individually.

Elsewhere in this chapter, the Simplify method is discussed, which en-
sures topological simplicity for a Geometry. A z-aware Geometry follows
the same rules of simplicity as non-z-aware Geometry—that is, the z-
attribute is always ignored. The ZVertical read-only property indicates
the presence of two consecutive vertices that are only differentiated by a
differing z-attribute. Such cases will be removed by a call to Simplify.

 IZCollection: IUnknown Provides access to members that identify geometric
collection objects that can have Z values attached to
coordinates and defines operations on such objects.

ZMax: Double Returns the maximum Z value.
ZMin: Double Returns the minimum Z value.

MultiplyZs (factor: Double) Multiplies all the Z values by a factor.
OffsetZs (Offset: Double) Offsets all the Z values by an offset value.

The MultiplyZs and OffsetZs methods update all the z-attributes for a
Geometry and can only be used if every z-attribute has previously been
set. Check IZAware::ZSimple or consider using the IZ interface methods
to fill in z-attributes that are NaN.

The IZ interface is used to calculate and set z-
attributes on the Point objects that represent

the vertices (IPointCollection) of a Polyline or
Polygon object. You might use IZ methods to

ensure that a shape does not have inappropriate
z- values.

The IZCollection interface is used to change
existing z-attributes on the Point objects that
represent the vertices (IPointCollection) of a
Polyline, Polygon, MultiPatch, or Multipoint

object.

GEOMETRY ATTRIBUTES



1044 • Exploring ArcObjects • Volume 2

 IMAware : IUnknown Provides access to members that identify geometric objects
that can have persistant M values attached to
coordinates.

MAware: Boolean Indicates whether or not the geometry is aware of and capable of
handling Ms.

MSimple: Boolean Indicates if all the Ms are valid numbers.

DropMs Sets all the M values to a non-valid number (NaN).

To make a Geometry MAware, simply set the MAware property to True.
By default, the m-values of a shape are NaN—the MSimple property
returns True if any NaN values remain. To reset all m-values of a Geom-
etry to NaN, call DropMs.

 IMCollection : IUnknown Provides access to members that identify geometric
collection objects that can have M values attached to
coordinates and defines operations on such objects.

MMax: Double Returns the maximum M value.
MMin: Double Returns the minimum M value.

MultiplyMs (factor: Double) Multiplies all the M values by a factor.
OffsetMs (Offset: Double) Offsets all the M values by an offset value.

The MultiplyMs and OffsetMs methods update all the m-attributes for a
Geometry and can only be used if every m-attribute has been set. Check
the IMAware::MSimple property or consider using the IMSegmentation
methods to fill in missing m-attributes.

 IMSegmentation : IMCollection Provides access to members that identify polycurve
geometric objects that can have M as a linear coordinate
system.

MMonotonic: esriMMonotonicEnum Returns a value indicating whether Ms are monotonic, and if so,
whether they are ascending or descending.

CalculateNonSimpleMs Calculates the non-simple M values by extrapolation/interpolation.
ExtrapolateMs (extrapolationStyle:

esriExtrapolationEnum, startPart:
Long, startPointIndex: Long, endPart:
Long, endPointIndex: Long)

Extrapolates the M values at the beginning of the geometry up to the
fromIndex based on the M value interval between the fromIndex
and the toIndex.

GetDistancesAtM (asRatio: Boolean, M:
Double) : Variant

Returns an array of distances corrsponding to the M value along the
line. If the M's are monotonic along the geometry then returns only
one value.

GetMsAtDistance (Distance: Double,
asRatio: Boolean) : Variant

Returns any M values at the distance along the geometry.

GetPointsAtM (M: Double, LateralOffset:
Double) : IGeometryCollection

Returns a multipoint geometry corresponding to the location along the
geometry at the M value.

GetSubcurveBetweenMs (fromM:
Double, toM: Double) :
IGeometryCollection

Returns a polyline geometry corresponding to the extent along the
geometry between the fromM and the toM values.

InsertMAtDistance (M: Double,
Distance: Double, asRatio: Boolean,
createPart: Boolean, out
SplitHappened: Boolean, out
newPartIndex: Long, out
newSegmentIndex: Long)

Sets the M value at the given distance along the geometry. If no point
exists at this distance then creates a new one.

InterpolateMsBetween (fromPart: Long,
FromPoint: Long, toPart: Long,
ToPoint: Long)

Generate M values by linear interpolation for all vertices in the range
[start+1, end-1].

ReverseMsOrder Reverse the order of the M values along the geometry.
SetAndInterpolateMsBetween (fromM:

Double, toM: Double)
Sets the M values at the beginning and the end of the geometry and

interpolates the M values between these values.
SetMsAsDistance (asRatio: Boolean) Sets the M values to the cumulative length from the origin of the

geometry.

The CalculateNonSimpleMs method interpolates or extrapolates missing
(NaN) measure values based on the existing values. Use the
ExtrapolateMs or InterpolateMsBetween methods to set m-attributes for
only the specified vertices of a Polyline. InsertMAtDistance will update a
single vertex’s m-attribute or, if the specified distance does not fall on a
vertex, a new vertex will be inserted into the Polyline at that location.

The IMCollection interface is used to change
existing m-attributes on the Point objects that
represent the vertices of a Polyline, Polygon,

MultiPatch, or Multipoint object.

Although m-attributes can be set on any Point
object, measure values were first introduced to
work in association with dynamic segmentation
routines, which are specific to Polyline shapes.
The IMSegmentation interface, implemented
only on the Polyline coclass, provides methods
designed to work with the dynamic segmenta-

tion functionality in ArcObjects.

10.0

35.0

Simple m
Non-simple m

Original polyline

10.00

35.00

21.51

28.42

31.05

InterpolateMsBetween 
Part 0, Pdnl 3
Part 0, Pdnl 7

0.25

0.80

0.50

0.61

0.71SetMsAsDistance, 
asRatio = True

0.00
0.08

0.15

0.93

1.00

10.0ReverseMsOrder
35.0

10.0

35.0

40.0

InsertMsAtDistance
M = 40, Distance = 0.4

asRatio = True

Starting with the original Polyline (shown top),
you can fill in nonsimple m-attributes using the

methods on IMSegmentation.

GEOMETRY ATTRIBUTES

The IMAware interface determines
whether or not the Geometry object is

aware that it may have m-attributes.



Chapter 9 • Shaping features with geometry • 1045

G
eo

m
et

ry

IMSegmentation also provides methods to query a measured Polyline
based on its m-attributes. The code below first ensures that the Polyline
is MSimple by interpolating missing m-attributes before using
GetSubcurveBetweenMs to return a new Polyline, whose parts indicate the
sections of the original Polyline between the specified m-attributes.
  Dim pMAware As IMAware
  Set pMAware = pPolyline
  If pMAware.MAware Then
    Dim pMSeg As IMSegmentation2
    Set pMSeg = pPolyline
    If Not pMAware.MSimple Then
      pMSeg.CalculateNonSimpleMs
    End If
    Dim pNewGeom As IGeometry
    Set pNewGeom = pMSeg.GetSubcurveBetweenMs(30, 40)
  End If

If the m-attributes do not monotonically increase along the line (check
the MMonotonic property), the result of GetSubcurveBetweenMs may have
more than one part.

 IMSegmentation2: IMSegmentation Provides access to members that provide additional linear
referencing operations on polylines.

CalibrateByDistance (Points:
IEnumVertex, updateHow: Long,
ignoreGaps: Boolean) :
IEnumSplitPoint

Calibrates M values based on distances from a fixed set of input
points and a given update method.

CalibrateByMs (Points: IEnumVertex,
updateHow: Long) : IEnumSplitPoint

Calibrates M values based on Ms from a fixed set of input points and
a given update method.

GetSubcurveBetweenMsEx (fromM:
Double, toM: Double, fromMDetails:
Long, toMDetails: Long) :
IGeometryCollection

Returns a polyline geometry corresponding to the extent along the
geometry between the fromM and the toM values. The 'details'
arguments are composed of esriMCurveRelationEnum values.

SetMsAsDistance2 (pOrigin: IPoint,
Scale: Double, Offset: Double,
ignoreGaps: Boolean)

Sets Ms as a scalable distance relative to an origin point along the
curve with an initial offset. May treat gaps as continuations of the
curve or add the gap distance to the calculation.

UpdateMsByDistance (fromPart: Long,
FromPoint: Long, toPart: Long,
ToPoint: Long, fromM: Double, toM:
Double, updateHow: Long,
ignoreGaps: Boolean)

Update Ms based on distance for points in a given range. The update
method is given as a combination of esriGeometryUpdateMEnum
values.

UpdateMsByMs (fromPart: Long,
FromPoint: Long, toPart: Long,
ToPoint: Long, fromM: Double, toM:
Double, updateHow: Long)

Update Ms based on input M values for points in a given range. The
update method is given as a combination of
esriGeometryUpdateMEnum values.

The methods of IMSegmentation2 offer extended ways to interpolate
and update the m-attributes on a Polyline by cumulative distance and
also by existing m-values.

 IPointIDAware: IUnknown Provides access to members that identify geometric objects
that can have persistant point ID values attached to
coordinates.

PointIDAware: Boolean Indicates whether or not the geometry is aware of and capable of
handling PointIDs.

PointIDSimple: Boolean Indicates when all PointID values for this object are well-defined. Only
works if object is aware of PointIDs.

DropPointIDs Unsets all PointID values without changing awareness. Only works if
object is aware of PointIDs.

To make a Geometry point ID aware, simply set the PointIDAware prop-
erty to True. By default, the ID values of a shape will be zero—the
PointIDSimple property returns True if any zero values remain. To reset all
ID values of a Geometry to zero, call DropPointIDs.

Original polyline
32.00

37.00

35.00

42.00

28.00

34.00

Result polyline
32.00

37.00

35.00

40.00

30.00

34.00

38.21

38.79 40.00

The code opposite takes the top Polyline,
interpolates the nonsimple  m-attributes, and

then returns only the parts of the Polyline that
now have m-attributes between 30 and 40.

The IMSegmentation2 interface extends the
functionality available in IMSegmentation, which

it inherits.

GEOMETRY ATTRIBUTES

The CalculateNonSimpleMs,
SetAndInterpolateMsBetween, and

SetMsAsDistance methods all ensure a
Polyline is MSimple.

The IPointIDAware interface determines
whether or not the Geometry object is aware

that it may have ID attributes.

The IPointID interface is implemented by all
shapes that are based on Point objects (Point,
MultiPoint, TriangleFan, or TriangleStrip) or
that implement IPointCollection (Polygon,
Path, Polyline, Ring, and MultiPatch), all of

which may have an ID attribute for each of the
constituent Points.



1046 • Exploring ArcObjects • Volume 2

Spatial operations comprise an essential part of most GIS systems, allow-
ing spatial querying and modification of spatial entities. The interfaces
described below, implemented by many of the geometry coclasses,
provide a wide range of spatial operations, including topological, rela-
tional, and proximity operations.

Geometries used in spatial operations should share the same coordinate
system (SpatialReference), or the result of the operation may be mean-
ingless. Some spatial operations may raise geometry error 553 (inconsis-
tent spatial references) if comparing two geometries with different spatial
references. IGeometry::Project can be used to convert a Geometry from
one coordinate system to another, prior to attempting a spatial operation.

 ITopologicalOperator : IUnknown Provides access to members that define methods for
constructing new geometries based upon topological
relationships between existing geometries.

Boundary: IGeometry Returns the boundary of this geometry.
IsKnownSimple: Boolean Indicates when this geometry is known to be simple and FALSE if its

state is unknown.
IsSimple: Boolean Indicates when the topological state of this geometry is definitely not

simple and TRUE when it is.
TopologyCache (out

pTopologyCacheHandle: Long)
Provides a handle to the TopologyCache.

Buffer (Distance: Double) : IGeometry Constructs a polygon that is the locus of points at a distance less than
or equal to a specified distance from this geometry.

Clip (clipperEnvelope: IEnvelope) Constructs the intersection of this geometry and the specified
envelope.

ClipDense (clipperEnvelope: IEnvelope,
denseDistance: Double)

Constructs the intersection of this geometry and the specified
envelope; densifies lines on window.

ConstructUnion (geometries:
IEnumGeometry)

Defines this geometry to be the union of the inputs.

ConvexHull: IGeometry Constructs the convex hull of this geometry.
Cut (cutter: IPolyline, out leftGeom:

IGeometry, out rightGeom: IGeometry)
Splits this geometry into a part left of the specified polyline, and a

part right of it.
Difference (other: IGeometry) :

IGeometry
Constructs the geometry containing points from this geometry but not

the other geometry.
Intersect (other: IGeometry,

resultDimension:
tagesriGeometryDimension) :
IGeometry

Constructs the geometry that is locus of points common to this
geometry and the other geometry.

QueryClipped (clipperEnvelope:
IEnvelope, clippedGeometry:
IGeometry)

Redefines clippedGeometry to be the intersection of this geometry
and the clipping envelope.

QueryClippedDense (clipperEnvelope:
IEnvelope, denseDistance: Double,
clippedGeometry: IGeometry)

Redefines clippedGeometry to be the intersection of this geometry
and the clipping envelope; densifies lines on window.

Simplify Makes this geometry topologically consistent.
SymmetricDifference (other: IGeometry)

: IGeometry
Constructs the geometry that contains points from either but not both

input geometries.
Union (other: IGeometry) : IGeometry Constructs the geometry that is the locus of points in one or the other

input geometries.

Topological operations can be performed on Polyline, Polygon, Point,
Multipoint, and GeometryBag coclasses using the ITopologicalOperator
interface.

To be used in a topological operation, a geometry must be topologically
simple, or esriGeometryError 536 is raised.

The IsKnownSimple property returns True if the Geometry has not been
changed since simplicity was last confirmed, whereas IsSimple actually
checks the Geometry for topological simplicity. It may be more efficient,
therefore, to check IsKnownSimple before using IsSimple, especially
inside a code loop, as shown in this code:

  Dim pEnumGeom As IEnumGeometry

  Set pEnumGeom = pGeometryBag

SPATIAL OPERATORS

Topology refers to the spatial connectivity
of a shape.

A Geometry’s topology does not change if data
is deformed continuously and elastically, for

example, if it is uniformly stretched.  A topologi-
cally simple shape is one that is able to apply

topological operations.

The ITopologicalOperator provides various
topological operations, such as Intersect and

Union. It also provides simplification functional-
ity—to be used in another topological operation,

a Geometry must be simple.

empty

Boundaries have a lower dimension than the
original shape.

Simplified shapes can be used in other
topological operations.

d

Buffering creates areal shapes.

Use Clip to trim existing shapes.



Chapter 9 • Shaping features with geometry • 1047

G
eo

m
et

ry

  Dim pTopoOp As ITopologicalOperator

  Set pTopoOp = pEnumGeom.Next

  Do While Not pTopoOp Is Nothing

    If Not pTopoOp.IsKnownSimple Then  ‘ You check IsKnownSimple first here

      If Not pTopoOp.IsSimple Then     ‘ because its quicker than IsSimple.

        pTopoOp.Simplify               ‘ This could save time if the enum

      End If                           ‘ is particularly large.

    End If

    Set pTopoOp = pEnumGeom.Next

  Loop

The Simplify method modifies a Geometry’s shape to ensure it obeys all
the rules of geometric simplicity for the particular coclass. For a Polygon,
Polyline, Multipoint, or Point coclass, these rules are discussed previ-
ously with each coclass. For a GeometryBag coclass, each object in the
bag must implement the ITopologicalOperator interface and must then
apply the appropriate rules of simplicity for that coclass.

The Boundary property returns the boundary of a Geometry, which is
always one dimension less than the input Geometry—Points and
Multipoints, therefore, have an empty boundary. Polylines return a Multipoint
as their boundary, where each point corresponds to the end of a part of
the Polyline. For example, using the Boundary property of a Polyline (pPolyline),
you could create a Multipoint geometry like this:

Dim pPointColl as IPointCollection

Set pPointColl = pPolyline.Boundary

The ConvexHull of a Geometry is the smallest possible convex Polygon that
contains the entire shape—the exception being that a Point has a
ConvexHull that equals the original Point.

The Boundary, Buffer, Difference, Intersect, SymmetricDifference, and
Union methods all derive from set theory and should be familiar to any
GIS user. The ConstructUnion, SymmetricDifference, and Union methods
all require the base Geometry and input Geometry to have the same
dimension. The Difference method requires that the base Geometry has a
dimension less than or equal to the dimension of the input Geometry.
Intersect may be used with any combination of dimensions.

If you wish to construct a Union of numerous geometries, instead of
using Union in a loop, you may find ConstructUnion to be more effi-
cient. Use ConstructUnion by passing in an enumerator of geometries.

  Dim pEnum as IEnumGeometry

  Set pEnum = GeometryBag

  Dim pNewGeomTopo as ITopologicalOperator

  Set pNewGeomTopo = pEnum.Next

  pNewGeomTopo.ConstructUnion pEnum

ClipDense provides an alternative to Clip, suitable for use on Polygons,
which densifies the clipped Geometry along its clipped edges, adding
new vertices at the specified separation. Use this if you wish to project
the Geometry after clipping it.

SPATIAL OPERATORS

A ConvexHull encloses an entire shape.

Left
Right

Left

Right

You can cut a shape using a Polyline.

Base
Comparison Result

Difference returns the  difference between two
shapes.

Intersect returns the  overlap of two shapes.

Base
Comparison Result

SymmetricDifference returns a different result
to Difference.



1048 • Exploring ArcObjects • Volume 2

Note that the Clip, ClipDense, and Simplify methods all operate by
changing the shape of the original Geometry to the result of the topologi-
cal operation—ensure that you do not need to use the original Geometry
object again, or use a clone to perform the operation instead.

QueryClipped and QueryClippedDense populate a new Geometry with
the operations result instead of changing the base object.

 ITopologicalOperator2 :
 ITopologicalOperator

Provides access to members that extend the
ITopologicalOperator interface.

IsKnownSimple: Boolean Sets the state of being known simple for this geometry to true or
false.

ClipToDomain Clips the geometry to the domain of the spatial reference.
ConstructBuffers (cBuffers: Long, in

distances: Double) : IEnumGeometry
Constructs enumerated polygons of various distances that are the

locus of points at a distance less than or equal to specified distances
from this geometry.

After performing a buffer, a shape may exceed the Domain of its
SpatialReference. If you intend to persist the result to an ArcSDE or
personal geodatabase FeatureClass coclass, you may wish to use the
ClipToDomain method to ensure your Geometry remains inside its Domain.

 IHitTest : IUnknown Provides access to members that locate a part of a
geometry closest to a point.

HitTest (QueryPoint: IPoint,
searchRadius: Double, geometryPart:
tagesriGeometryHitPartType, hitPoint:
IPoint, hitDistance: Double,
hitPartIndex: Long, hitSegmentIndex:
Long, bRightSide: Boolean) : Boolean

Locates a part of a geometry closest to a point.

The IHitTest interface provides a flexible search method, locating the
point on a Polygon, Polyline, Point, Multipoint, MultiPatch, or Envelope
closest to a specified search Point. This method is used internally by
other ArcObjects search methods that may be more appropriate for your
use than HitTest, for example, IProximityOperator::QueryPoint or
ICurve::QueryPointAndDistance.

The HitTest method has a number of parameters. QueryPoint,
searchRadius, and geometryPart are all passed by value and indicate the
location you wish to search for. The hitPoint, hitDistance, hitPartIndex,
hitSegmentIndex, and bRightSide parameters are passed by reference
and are used to return the results of the hit test operation.

If HitTest is successful, the hitPoint parameter indicates the found Point,
and the hitDistance indicates the distance between the hitPoint and the
QueryPoint.

If bRightSide is True, this indicates that the QueryPoint lies on the right-
hand side of the search Geometry; for a two-dimensional geometry, this
indicates the QueryPoint lies inside the boundary of the shape. The
partIndex and SegmentIndex indicate on which part and segment in a
multipart shape (Polygon, Polyline, Multipoint, or MultiPatch) the Query-
Point was found. For an Envelope, the SegmentIndex indicates a corner
of the Envelope using one of the following esriEnvelopeVertex constants:

The IHitTest interface can be used to return the
nearest point or vertex on a Geometry, find the

nearest endpoint or centroid of a shape, or find
the midpoint of a Segment of a shape.

SPATIAL OPERATORS

The Union of two shapes includes all
the points that were in either of the input

shapes.



Chapter 9 • Shaping features with geometry • 1049

G
eo

m
et

ry

Enumeration tagesriEnvelopeVertex The corners of an envelope.  This enumeration can be used
to interpret the hitSegmentIndex parameter of the
IHitTest::HitTest method when hit testing against an
envelope.

0 - esriEnvelopeVertexLL The lower left envelope vertex.
1 - esriEnvelopeVertexUL The upper left envelope vertex.
2 - esriEnvelopeVertexUR The upper right envelope vertex.
3 - esriEnvelopeVertexLR The lower right envelope vertex.

To specify which type of point you wish to find, use one of the follow-
ing esriGeometryHitPartType constants.

Enumeration
tagesriGeometryHitPartType

Describes the parts of a geometry that can be located by
their proximity to a query point.

 0 - esriGeometryPartNone No part was located by the hit test.
 1 - esriGeometryPartVertex Locate the vertex of a geometry closest to the query point.
 4 - esriGeometryPartBoundary Locate the closest point on the boundary of a polygon, or the closest

point on a polyline, to the query point.
 8 - esriGeometryPartMidpoint Locate the segment midpoint that is closest to the query point.
16 - esriGeometryPartEndpoint Locate the 'from' or 'to' point of the polyline closest to the query

point.
32 - esriGeometryPartCentroid Locate the ring centroid closest to the query point.

Not every constant is suitable for use on every GeometryType—
esriGeometryPartCentroid is suitable only for geometries with two or
more dimensions (Polygons, Envelopes, and MultiPatches), while
esriGeometryPartEndpoint can only be used on Polyline geometries.

The example code below demonstrates how to use HitTest in the
MouseDown event of a UIToolControl. The ActiveView variable should be
set at an appropriate point, and the search Geometry should also be set
as required.

Private m_pAV As IActiveView

Private Sub UIToolControl1_MouseDown(ByVal button As Long, _

    ByVal shift As Long, ByVal x As Long, ByVal y As Long)

  Dim dSrchDis As Double

  dSrchDis = m_pAV.Extent.Width / 20

  Dim pPnt As IPoint

  Set pPnt = m_pAV.ScreenDisplay.DisplayTransformation.ToMapPoint(x, y)

  Dim pHitTest As IHitTest

  Set pHitTest = GetSomeGeometryFunction

  If Not pHitTest Is Nothing Then

    Dim lPartVert As esriGeometryHitPartType

    lPartVert = esriGeometryPartBoundary

    Dim pHitPoint As IPoint

    Set pHitPoint = New Point

    Dim lPart As Long, lSeg As Long, bHitRt As Boolean, dHitDis As Double

    If pHitTest.HitTest(pPnt, dSrchDis, lPartVert, pHitPoint, dHitDis, _

            lPart, lSeg, bHitRt) Then

SPATIAL OPERATORS

Set a maximum radius in which to search,
relative to ActiveView’s width.

To make the QueryPoint, use the
MouseDown coordinates.

Set the pHitTest variable to the Geometry on
which you wish to search, for example, the

selected feature in a layer or a graphic element.

Specifies to search for the closest point on the
shape, regardless of whether it is a vertex, or

somewhere on a segment.

Creates a new Point before using this variable
as the HitPoint parameter; otherwise, the

Point is not populated by the HitTest method.

Checks the return value of HitTest to see
whether or not a point was found. If successful,
you can check some of the return values here.



1050 • Exploring ArcObjects • Volume 2

      Debug.Print "Successful Hit"

      Debug.Print "Distance from QueryPoint: " & dHitDis

      Debug.Print "Part Index: " & lPart & "Segment Index: " & lSeg

      If Not pHitPoint Is Nothing Then

        'Use the found point as required.

      End If

    End If

  End If

End Sub

SPATIAL OPERATORS



Chapter 9 • Shaping features with geometry • 1051

G
eo

m
et

ry

Does the current geometry equal the other geometry?

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

No equals
relationship

possible

No equals
relationship

possible

No equals
relationship

possible

No equals
relationship

possible

No equals
relationship

possible

No equals
relationship

possible

Does the current geometry contain the other geometry?

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

No containment
relationship

possible

No containment
relationship

possible

No containment
relationship

possible

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

No within
relationship

possible

No within
relationship

possible

No within
relationship

possible

Is the current geometry within the other geometry?

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

No crossing
relationship

possible

No crossing
relationship

possible

No crossing
relationship

possible

No crossing
relationship

possible

No crossing
relationship

possible

No crossing
relationship

possible

Does the current geometry cross the other geometry?

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

Is the current geometry disjoint from the other geometry?

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

No overlap
relationship

possible

No overlap
relationship

possible

No overlap
relationship

possible

No overlap
relationship

possible

No overlap
relationship

possible

No overlap
relationship

possible

Does the current geometry overlap the other geometry? Does the current geometry touch the other geometry?

Base Geometry

C
om

pa
ris

on
 G

eo
m

et
ry

No touch
relationship

possible

IRELATIONALOPERATOR INTERFACE

Relational operators assess the spatial
relationships between two geometries.

IRelationalOperator provides a number of methods that assess the spa-
tial relationships between two geometries.

When using IRelationalOperator interface, it is important to note the use
of the Pre81Compatibility property of the IGeometryEnvironment2 inter-
face. If you wish to use the full implementation of the methods, it is
important to create your Geometry using Pre81Compatibility equal to
True (the default is False). For more information, see the Geometry-
Environment coclass in this chapter.

 IRelationalOperator : IUnknown Provides access to members that determine if a certain
relationship exists between two geometries.

Contains (other: IGeometry) : Boolean Indicates when this geometry properly contains the other geometry.
Crosses (other: IGeometry) : Boolean Indicates when the two geometries intersect in a geometry of lesser

dimension.
Disjoint (other: IGeometry) : Boolean Indicates when the two geometries share no points in common.
Equals (other: IGeometry) : Boolean Indicates when the two geometries are structurally equivalent.
Overlaps (other: IGeometry) : Boolean Indicates when the intersection of the two geometries intersect has

the same dimension as one of the input geometries.
Relation (other: IGeometry,

relationDescription: String) : Boolean
Indicates if the defined relationship exists.

Touches (other: IGeometry) : Boolean Indicates when strictly the boundaries of two geometries intersect.
Within (other: IGeometry) : Boolean Indicates when this geometry is a proper subset of the other

geometry.

For each IRelationalOperator method, the return Boolean value indicates
whether or not the particular spatial relationship exists. These diagrams
indicate the valid types of relationship. Using a relational operator with
incompatible geometries will raise errors, which may vary according to
the relationship attempted.

The Relation method is a flexible way to check highly specific spatial
relationships—it allows you to define your own type of spatial relation-
ship using the Shape Comparison Language. This language is based on
the Calculus-Based Method (CBM), as described and defined by
Clementini and Felice, but has some extensions specific to working with
vertex-based geometries and is fully described in the Technical Docu-
ments section of the ArcObjects Developer Help system. Note that at the
current release, Relation only operates with straight lines.

Briefly, the method uses the boundary or Interior of each shape to
calculate the relationship. It can be used as shown below, where G1
and G2 refer to the base and other Geometry object, respectively:

  If pRelational.Relation (pOther, "G1 IDENTICAL G2") Then

    MsgBox "Geometries are identical"

  End If

Only IGeometry objects that also support
IRelationalOperator may be used as the other

parameter.



1052 • Exploring ArcObjects • Volume 2

Use IProximityOperator to find the
nearest Point on a Geometry, or to
calculate the distance between two

existing plane geometries.

return distance

input geometry

other geometry

ReturnDistance calculates the minimum
possible distance between two geometries. The

minimum distance does not have to be mea-
sured between two vertices—it may occur along

a Segment.

geometry

input point
nearest point

ReturnNearestPoint calculates the minimum
possible distance between an input point and an

existing Geometry.  The minimum distance
may occur along a Segment of the Geometry.

IPROXIMITYOPERATOR INTERFACE

IProximityOperator is implemented by the plane geometries Polygon,
Polyline, Point, Multipoint, and Envelope and also by the Segment
coclasses BezierCurve, EllipticArc, CircularArc, and Line.

 IProximityOperator : IUnknown Provides access to members that find the distance between
two geometries.

QueryNearestPoint (p: IPoint,
Extension: tagesriSegmentExtension,
nearest: IPoint)

Sets the location of the 'nearest' parameter to be a point on this
geometry nearest to the input point.

ReturnDistance (other: IGeometry) :
Double

Returns the minimum distance between two geometries.

ReturnNearestPoint (p: IPoint,
Extension: tagesriSegmentExtension) :
IPoint

Creates and Returns a point on this geometry nearest to the input
point.

The code below uses the ReturnDistance method to find out which
Geometry in a GeometryBag (pBag) is closest to the query
GeometrypQueryGeom.
If TypeOf pQueryGeom Is IProximityOperator Then
  Dim pProximity As IProximityOperator
  Set pProximity = pQueryGeom

  ' Here, set the initial distance to be the Map's Full Extent.
  ' Use this variable to keep track of the smallest ReturnDistance value
  Dim i As Long, lClosest As Long, dDist As Double, dCurr As Double
  dDist = pAV.FullExtent.Width
  For i = 0 To pGeomColl.GeometryCount - 1
    If Typeof pGeomColl.Geometry(i) Is IProximityOperator Then
     'We can only use this on geometries that support IProximityOperator
      dCurr = pProximity.ReturnDistance(pGeomColl.Geometry(i))
      If dCurr < dDist Then
        lClosest = i
        dDist = dCurr
      End If
    End If
  Next i
End If

ReturnNearestPoint or QueryNearestPoint can both be used to return the
Point on a given Geometry closest to the specified QueryPoint. Using the
esriNoExtension constant as the Extension parameter, the Point returned is
restricted to lie on a Segment of a Polygon or Polyline or on the bound-
ary of an Envelope. Other parameters can be used to return a Point that
lies on an extension of the existing Geometry.



Chapter 9 • Shaping features with geometry • 1053

G
eo

m
et

ry

rotation angle

origin 
point

original 
geometry

rotated geometry

delta x

vectordelta y

original geometry

moved geometry

scale factor of two
in x and y directions

original 
geometry

scaled 
geometry

origin 
point

ITransform2D provides a variety of simple
spatial transformations that alter the location

and/or the size and shape of a Geometry.

ITRANSFORM2D INTERFACE

ITransform2D is implemented by plane geometries and by many
graphic elements, providing simple Euclidean transformation methods.

 ITransform2D : IUnknown Provides access to members that supply an object with
Euclidean 2D transformation capabilities.

Move (dx: Double, dy: Double) Moves the object dx units horizontally and dy units vertically.
MoveVector (v: ILine) Moves the object defined by a 2D displacement vector.
Rotate (Origin: IPoint, RotationAngle:

Double)
Rotates the object about the specified origin point through

rotationAngle radians.
Scale (Origin: IPoint, sx: Double, sy:

Double)
Scales the object about the specified origin point a factor of sx

horizontally and sy vertically.
Transform (Direction:

tagesriTransformDirection,
Transformation: ITransformation)

Applies an arbitrary transformation.

The Move method translates a Geometry by specified amounts along the
x- and y-axes—the dx and dy values are in the units of the Geometry.

The MoveVector method translates the Geometry according to the height
and width of an input Line.

Rotate a Geometry around a given origin using the Rotate method. As
with other Geometry methods, the Rotation angle must be in radians.

Rotate and Scale allow you to specify a point of origin around which to
perform the transformation—this origin may lie inside or outside the
Geometry. Below, the code rotates a Polygon (pPolygon) around its Cen-
troid by one radian (about 57 degrees).

  Dim pArea As IArea

  Set pArea = pPolygon

  Dim pTrans As ITransform2D

  Set pTrans = pPolygon

  pTrans.Rotate pArea.Centroid, 1

When using any transformation method, the characteristics of the origi-
nal Geometry may be changed. For example, a CircularArc when scaled
must remain circular, whether or not the dx and dy values are identi-
cal—you may wish to convert a CircularArc to an EllipticArc before
performing a transformation. Also, an Envelope cannot be rotated (geom-
etry error 520 is raised), as conceptually a rectangle rotated by, for ex-
ample, 45 degrees would no longer be rectangular in shape—its sides
would no longer be orthogonal to the coordinate system. However, you
could convert the Envelope to a Polygon first if this is the effect you
require.

The Transform method is used internally by the IGeometry::Project
method but can also be effectively used by an ArcObjects developer to
apply a specific, highly customizable type of transformation to a Geom-
etry. For more information, see the IAffineTransformation2D interface in
this chapter.

Geometries can be scaled, rotated, or
moved by using the ITransform2D

methods.



1054 • Exploring ArcObjects • Volume 2

ITransform3D is implemented by MultiPatch and Point. ITransform3D
should only be used on z-aware Point objects; otherwise, esriGeometry-
Error 564 is raised.

  Dim pZAware as IZAware

  Set pZAware = pMyPoint

  pZAware.ZAware = True

  Dim pTransform3D as ITransform3D

  Set pTransform3D = pMyPoint

 ITransform3D : IUnknown Provides access to members that supplies an object with 3D
transformation capabilities.

Move3D (dx: Double, dy: Double, dz:
Double)

Moves the object by dx, dy and dz along the x, y, and z axes
respectively.

MoveVector3D (v: IVector3D) Moves the object by an offset defined by a 3D vector.
ProjectToPlane (planarOrigin: IPoint,

planarPositiveX: IVector3D,
planarNorm: IVector3D) : IGeometry

Generates a polygon footprint for the object in an arbitrary plane.
The footprint may have multiple parts.

RotateVector3D (axis: IVector3D,
RotationAngle: Double)

Rotates the object about axis defined by the specified vector through
an angle measured in radians.

Scale3D (Origin: IPoint, sx: Double, sy:
Double, sz: Double)

Scales the object about the specified origin point. sx, sy, and sz are
the scaling factors for the x, y, and z dimensions repectively.

Transform3D (Direction:
tagesriTransformDirection,
Transformation: ITransformation3D)

Applies an arbitrary 3D transformation.

The ProjectToPlane method can be used to create a Polygon from a MultiPatch
shape—it has no analogous two-dimensional equivalent. This method
produces a planar Polygon in three dimensions by projecting a
MultiPatch shape onto a specified plane. Imagine a MultiPatch shape as
a solid that is held up to a light source over a sheet of paper—the re-
sultant Polygon is the shadow cast on the paper. The plane is specified
by an origin and two three-dimensional vectors that together define a
unique plane; the projection is orthogonal to the plane.

For a Point coclass, only the Move3D and MoveVector3D methods are
implemented at ArcGIS 8.1.

ITRANSFORM3D INTERFACE

Like the ITransform2D interface,
geometries can be scaled, rotated, or
moved by using the ITransform3D

methods. However, this interface is used
to transform three-dimensional Geom-
etries in three-dimensional space. This

interface is not fully implemented at
ArcGIS 8.1 and is therefore discussed

only briefly.



Chapter 9 • Shaping features with geometry • 1055

G
eo

m
et

ry

The AffineTransformation2D coclass offers the ability to construct cus-
tom transformations for geometrical shapes. It is useful for creating
particular transformations that are not supported by ITransform2D and
also for performing numerous transformations in one go.

Transformations can be done in two different ways. Firstly, and most
commonly within the geometry model, the AffineTransformation2D
object can be used in the ITransform2D::Transform method to trans-
form an existing Geometry. Alternatively, the methods of ITransform can
be used to transform points or values individually.

 ITransformation : IUnknown Applies a function (or its inverse) to a set of points or
measures. The suffix of each method indicates the type of
parameters operated on.

TransformMeasuresFF (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Double,
outMeasures: Double)

Transforms floating point measures to floating point measures (or do
the inverse).

TransformMeasuresFI (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Double,
outMeasures: Long)

Transforms floating point measures to integer measures (or do the
inverse).

TransformMeasuresIF (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Long,
outMeasures: Double)

Transforms integer measures to floating point measures (or do the
inverse).

TransformMeasuresII (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Long,
outMeasures: Long)

Transforms integer measures to integer measures (or do the inverse).

TransformPointsFF (Direction:
tagesriTransformDirection, cPoints:
Long, inPoints: Double, outPoints:
Double)

Transforms floating point points to floating point points (or do the
inverse).

TransformPointsFI (Direction:
tagesriTransformDirection, cPoints:
Long, in inPoints: Double, outPoints:
Long)

Transforms floating point points to integer points (or do the inverse).

TransformPointsIF (Direction:
tagesriTransformDirection, cPoints:
Long, inPoints: Long, outPoints:
Double)

Transforms integer points to floating point points (or do the inverse).

TransformPointsII (Direction:
tagesriTransformDirection, cPoints:
Long, inPoints: Long, outPoints: Long)

Transforms integer points to integer points (or do the inverse).

The methods of the ITransformation interface provide functions that
convert arrays of Points or values according to the defined transforma-
tion.

These methods are more commonly used in other areas of the
ArcObjects model, such as Display and SpatialReference—only the
TransformPointsFF and TransformPointsFI are implemented by the
AffineTransformation2D coclass.

AFFINETRANSFORMATION2D COCLASS

AffineTrans-
formation2D

IAffineTransformation-
2D

IAffineTransformation-
2D2

IClone
ISupportErrorInfo

ITransformation

Affine transformations are operations
that change some aspect of a geometry,
such as its size or position, while retain-

ing colinearity (that is, all the points on a
line remain on the line) and distance
ratios (that is, the midpoint of a line

remains the midpoint). These transforma-
tions are two-dimensional.

In addition to offering alternative transforma-
tions, the affine transformation offers the ability

to specify other transformations that are
performed before or after the specified transfor-

mation.



1056 • Exploring ArcObjects • Volume 2

 IAffineTransformation2D :
 ITransformation

Provides access to members that define and manipulate
affine transformations.

IsReflective: Boolean Indicates if the transformation contains a reflection (determinant is
negative).

MoveOrigin: IPoint Move origin.
Rotation: Double Returns the rotation angle.
SpatialReference: ISpatialReference The spatial reference in which this transformation is meaningful.
XScale: Double Returns the scale along the X axis.
XTranslation: Double Returns the translation along the X axis.
YScale: Double Returns the scale along the Y axis.
YTranslation: Double Returns the translation along the Y axis.

DefineFromControlPoints (cPoints:
Long, in FromPoints: IPoint, in
ToPoints: IPoint)

Define transformation that maps from control points.

DefineFromControlPointsEx (cPoints:
Long, in FromPoints: _WKSPoint, in
ToPoints: _WKSPoint)

Define transformation that maps from control points.

DefineFromEnvelopes (from: IEnvelope,
to: IEnvelope)

Defines a transformation that maps a point relative to one envelope
to a similar position relative to another envelope.

DefineFromEnvelopesEx (from:
IEnvelope, to: IEnvelope, outFrom:
IEnvelope, assumeFalseOrigin:
Boolean, keepAspect: Boolean, flipIt:
Boolean)

Defines a transformation that maps a point relative to one envelope
to a similar position relative to another envelope.

DefineReflection (l: ILine) Defines a transformation that can perform a reflection about the line
l.

GetControlPointError (i: Long, out
fromError: Double, out toError: Double)

Returns the errors involved in moving control point i from the 'from' to
'to' system.

GetRMSError (out fromError: Double,
out toError: Double)

RMS error expressed relative to the 'from' and 'to' points defining the
transformation.

Move (dx: Double, dy: Double) Incorporates a translation factor into the transformation.
MoveVector (pVector: ILine) Performs an X and Y translation defined by a 2D vector.
PostMultiply (postTransform:

IAffineTransformation2D)
Post-multiplies the transformation by another transformation.

PreMultiply (preTransform:
IAffineTransformation2D)

Pre-multiplies the transformation by another transformation.

Project (pNewSpatialReference:
ISpatialReference)

Moves this transformation into another spatial reference.

Reset Reset the tranformation.
Rotate (da: Double) Incorporates a rotation (in radians) into the transformation.
Scale (dx: Double, dy: Double) Incorporates scale factors into the transformation.

The IAffineTransformation2D interface defines the function of a trans-
formation, that is, how the coordinates of a Geometry are altered by the
transformation. Use the DefineFromControlPoints, DefineFromEnvelopes,
DefineFromEnvelopesEx, DefineReflection, Move, MoveVector, Project,
Rotate, or Scale methods to define transformation functions for the
AffineTransformation2D.

For example, the code below reflects the geometry pGeom in the y-axis
(where the function CreatePoint returns a new Point as specified).

  Dim pLine As ILine

  Set pLine = New Line

  pLine.PutCoords fnCreatePoint(0, 0), CreatePoint(10, 0)

  Dim pAffine as IAffineTransformation2D, pTrans2D as ITransform2D

  Set pAffine = New AffineTransformation2D

  pAffine.DefineReflection pLine

  Set pTrans2D = pGeom

  pTrans2D.Transform esriTransformForward, pAffine

The Move, Scale, and Rotate transformations are cumulative—they add
the transformation specified to any existing transformation in an
AffineTransformation2D object. The following code creates a transfor-

AFFINETRANSFORMATION2D COCLASS

An AffineTransformation2D defines a transfor-
mation as a matrix. Using the esriTransform-

Direction constant, esriTransformReverse,
applies the inverse of the transformation matrix.



Chapter 9 • Shaping features with geometry • 1057

G
eo

m
et

ry

mation that moves a Geometry 20 units in the x direction before rotating
it 90 degrees (~1.57 radians).

  Dim pAffine as IAffineTransformation2D

  Set pAffine = New AffineTransformation2D

  pAffine.Move 20, 0

  pAffine.Rotate 1.57

To remove all current transformations from an AffineTransformation2D
object, simply call the Reset method.

If set, MoveOrigin is used only by the Project method—it does not affect
the transformation.

The Rotation, IsReflective, XScale, YScale, XTranslation, and YTranslation
properties all report calculated parameters of the currently set transfor-
mation.

To perform chained transformation, where one transformation is per-
formed after another, use the PreMultiply or PostMultiply methods to
connected transformations. For example, if you have two
AffineTransformation2D objects, you can apply both in turn to your
Geometry. To specify that pAffineOne should be applied before
pAffineTwo, set the PreMultiply property like so:

  pAffineTwo.PreMultiply pAffineOne

Now, when you call Transform on your Geometry (pTransform2D), pass
in pAffineTwo as the transformation, which will apply the PreMultiply
transformation before applying its own transformation functions.

  pTransform2D.Transform pAffineTwo

You can achieve the same effect by specifying pAffineTwo as the
PostMultiply transformation of pAffineOne, then passing pAffineOne to
the Transform method.

The DefineFromControlPoints method may be particularly useful if you
wish to register a set of control points from a digitizer to existing known
control points. This method calculates a ‘best fit’ affine transformation to
map one set of control points onto another.

AFFINETRANSFORMATION2D COCLASS



1058 • Exploring ArcObjects • Volume 2

In previous versions of ArcGIS, geometry was based on two-dimen-
sional shapes. With the introduction of three-dimensional geometries
and such software as the ArcGIS 3D Analyst™ extension and the
ArcScene application, the geometry object model has been extended. In
2D geometry, z-values are attributes, but in 3D geometry, z-values are
height coordinates.

MultiPatch, TriangleFan, and TriangleStrip shapes are stored internally
as collections of vertices; they have no concept of actual edges and
faces, and the 3D geometry is only constructed in the drawing process.
Therefore, 3D geometry does not have topology, and 3D topological
analysis functionality is not currently available. The relational, proximity,
and hit test operators are not available for 3D geometries.

3D geometry objects

Sphere
IClone

IGeometry
ISphere

Ray
IClone

IGeometry
IRay

*

*

A ray is an infinite one-dimensional
line defined by an origin point and a
three-dimensional direction of
infinite extension from the origin

A sphere is a three-dimensional
surface that is a specified radius
from a central origin point

A 3D vector has a specific
direction and magnitude, but
no fixed location. A 3D vector
can be used to define
directions and axes

A triangle fan is a surface patch
consisting of triangle surfaces
between two consecutive points
connected around a single central
point

A triangle strip is a surface patch
consisting of triangle surfaces
between three consecutive points

A multipatch is a three-
dimensional collection of
surface patches; triangle
fans, triangle strips, and

rings

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

Ring
IArea
IRing

*

Vector3D
IClone

ISupportErrorInfo
IVector

IVector3D

TriangleFan

IClone
IGeometry

IGeometry2
IGeometryCollection

IMAware
IPointCollection

IPointIDAware
ISupportErrorInfo

ITransform2D
ITriangleFan

IZAware

Triangle-
Strip

IClone
IGeometry

IGeometry2
IGeometryCollection

IMAware
IPointCollection

IPointIDAware
ISupportErrorInfo

ITransform2D
ITriangleStrip

IZAware

MultiPatch

IConstructMultiPatch
IGeometryCollection

IHitTest
IMAware

IMCollection
IMultiPatch

IPersist
IPersistStream

IPointCollection
IPointIDAware
ITransform2D
ITransform3D

IZAware
IZCollection



Chapter 9 • Shaping features with geometry • 1059

G
eo

m
et

ry

The MultiPatch coclass is a high-level three-dimensional Geometry shape
with linear edges. The shape of a MultiPatch is defined as a collection
of surface patches. Surface patches are geometries which, when added
to a MultiPatch, define a three-dimensional surface. TriangleFan,
TriangleStrip, or Ring objects can all be surface patches. A MultiPatch
can consist of one or more objects, using any combination of the
named surface patch coclasses.

The MultiPatch, TriangleStrip, and TriangleFan all support the IZAware
interface—for these coclasses, ZAware always equals True. Each object
must also be ZSimple to be a valid 3D Geometry.

The individual surface patches in a MultiPatch are accessed via the
IGeometryCollection interface—for more information on this interface,
see the section on geometry collections in this chapter.

The IMultiPatch interface provides methods and properties that return
information about existing MultiPatches; it is also essential to defining
and maintaining a valid MultiPatch shape.

 IMultiPatch : IGeometry Provides access to members that identify a MultiPatch and
permit controlled access to its parts.

BeginningRingCount (ringTypesDesired:
Long) : Long

Returns the number of beginning rings, counting only those of the
desired types.

FollowingRingCount (beginningRing:
IRing) : Long

Returns the number of following rings in the ring group that starts
with the specified beginning ring.

XYFootprint: IGeometry Returns a reference to a cached copy of the multipatch's footprint in
the x-y plane. If the footprint is modified, InvalXYFootprint should
be called.

FindBeginningRing (followingRing:
IRing) : IRing

Returns the beginning ring of the ring group containing the specified
following ring.

GetRingType (queryRing: IRing,
isBeginningRing: Boolean) :
tagesriMultiPatchRingType

Gets the esriMultiPatchRingType of the input Ring and returns a
boolean indicating if that ring is a beginning ring.

InvalXYFootprint Notifies the multipatch that its cached footprint has been modified by
an outside agent. The footprint will be recalculated the next time it
is requested.

PutRingType (queryRing: IRing,
ringType: tagesriMultiPatchRingType)

Defines the type of the input Ring.

QueryBeginningRings
(ringTypesDesired: Long,
numBeginningRingsRequested: Long,
out beginningRings: IRing)

Returns an array of references to all beginning rings of the specified
types.

QueryFollowingRings (beginningRing:
IRing, numFollowingRingsRequested:
Long, out followingRings: IRing)

Returns an array of references to following rings that are in the ring
group that starts with the specified beginning ring.

The XYFootprint property returns a Geometry that is a copy of the foot-
print of the MultiPatch in the x,y plane. If the shape of a MultiPatch is
changed, the InvalXYFootprint method should be called to update this
property, as the footprint is cached, not regenerated for each property
call.

A MultiPatch imposes some order on any Rings it contains. When added
to a MultiPatch shape, Rings must always be planar—that is, all the
vertices must lie on the same 3D plane. The plane can have any 3D
orientation; it does not have to be horizontal or vertical.

Within a MultiPatch shape, any adjacent Rings (those with consecutive
indices in the IGeometryCollection interface) define a Ring sequence. A
sequence consists of a beginning Ring followed by one or more other
Rings. A sequence may be a first Ring followed by one or more generic

MultiPatch

IConstructMultiPatch
IGeometryCollection

IHitTest
IMAware

IMCollection
IMultiPatch

IPersist
IPersistStream

IPointCollection
IPointIDAware
ITransform2D
ITransform3D

IZAware
IZCollection

Geometry
IClone

IGeometry
ISupportErrorInfo

ITransform2D

A MultiPatch is a three-dimensional
shape defined by a collection of surface
patches. Surface patches can be Rings,

TriangleFans, or TriangleStrips, each of
which defines a three-dimensional

surface.

A MultiPatch can be used as a Feature in a
FeatureClass and displayed as a solid three-

dimensional shape in ArcScene. It is also used as
the Geometry for a MultiPatchElement

graphic.

       

       

These are some MultiPatches created and
displayed in ArcScene.

MultiPatch feature classes cannot be edited
using the  ArcMap user interface as ArcMap is

2D and only displays the XYFootprint of a
MultiPatch.

MULTIPATCH COCLASS



1060 • Exploring ArcObjects • Volume 2

Rings or an outer Ring followed by one or more inner Rings. These
inner, outer, first, and generic Ring objects are not different when they
are created but, when added to the MultiPatch, they are tagged inter-
nally—whenever you add a Ring to a MultiPatch or edit an existing Ring
so that the type may be changed, call the PutRingType method to create
the internal tag.

Enumeration tagesriMultiPatchRingType MultiPatch Ring Types.

 1 - esriMultiPatchInvalidRing Invalid Ring.
 2 - esriMultiPatchUndefinedRing Ring type has not been defined.
 3 - esriMultiPatchProblemCaseRingMask A mask of problematic rings (UndefinedRings and InvalidRings).
 4 - esriMultiPatchFirstRing The beginning FirstRing in a FirstRing/Ring sequence.
 8 - esriMultiPatchRing A following Ring in a FirstRing/Ring sequence or a beginning Ring in a

solo Ring group.
16 - esriMultiPatchOuterRing The beginning OuterRing in an OuterRing/InnerRing sequence.
28 - esriMultiPatchBeginningRingMask A mask of valid beginning rings (OuterRings, FirstRings, and solo

Rings).
32 - esriMultiPatchInnerRing A following InnerRing in an OuterRing/InnerRing sequence.
40 - esriMultiPatchFollowingRingMask A mask of valid following rings (InnerRings and Rings).

In the code below, a Ring is added to a MultiPatch, and it is indicated
as a beginning Ring, specifically an OuterRing.

  pGeoColl.AddGeometry pSegmentCollection

  Dim pPatch as IMultiPatch

  Set pPatch = pGeomColl ' an existing MultiPatch

  pPatch.PutRingType pSegColl, esriMultiPatchOuterRing

ExteriorRings with the following InteriorRings indicate a Ring with a
hole, where the hole is defined by the inner Ring. An outer Ring may
have many inner Rings. Outer and inner Rings do not need to have the
specific orientation that exterior and interior Polygons require—that is,
both an outer and inner Ring can be oriented either clockwise or coun-
terclockwise. If you do not know in advance the relationship of your
ring sequence, you may specify a first Ring followed by one or more
generic Rings.

The BeginningRingCount property reports the number of Ring se-
quences present in a MultiPatch of the specified type. The
FollowingRingCount property and FindBeginningRing method also pro-
vide ways to help you navigate your MultiPatch’s Ring sequences.

To create a new MultiPatch shape, create TriangleFan, TriangleStrip, or
Ring objects and use the IGeometryCollection interface to add these
surface patches to the MultiPatch. The code below demonstrates how
you might create a MultiPatch that is pyramid shaped with one missing
face.

  Dim pSegColl As ISegmentCollection, pPointColl As IPointCollection

  Dim pGeoColl as IGeometryCollection, pPatch As IMultiPatch

  Set pGeoColl = New MultiPatch

  Set pPatch = pGeoColl

  Set pPointColl = New TriangleFan

  With pPointColl

    .AddPoint CreatePointZ(5, 5, 20)

    .AddPoint CreatePointZ(0, 0, 0)

Create a new MultiPatch object and get both
the IGeometryCollection and IMultiPatch

interfaces.

CreatePointZ is a function that creates and
returns a new Point object from x,y,z coordi-

nates. There is no need to ensure the Point is
ZAware, as it will have ZAwareness automati-

cally set when it is added to the TriangleFan.

The picture above shows a MultiPatch contain-
ing an outer-Ring, inner-Ring sequence, which

forms the top face of the shape.

MULTIPATCH COCLASS

Create a new TriangleFan object.



Chapter 9 • Shaping features with geometry • 1061

G
eo

m
et

ry

    .AddPoint CreatePointZ(0, 10, 0)

    .AddPoint CreatePointZ(10, 10, 0)

    .AddPoint CreatePointZ(10, 0, 0)

  End With

  pGeoColl.AddGeometry pPointColl

  Set pSegColl = New Ring

  With pSegColl

    .AddSegment CreateLine(CreatePointZ(0, 0, 2), CreatePointZ(10, 0, 2))

    .AddSegment CreateLine(CreatePointZ(10, 0, 2), CreatePointZ(10, 10, 2))

    .AddSegment CreateLine(CreatePointZ(10, 10, 2), CreatePointZ(0, 10, 2))

    .AddSegment CreateLine(CreatePointZ(0, 10, 2), CreatePointZ(0, 0, 2))

  End With

  pGeoColl.AddGeometry pSegColl

  pPatch.PutRingType pSegColl, esriMultiPatchFirstRing

  pPatch.InvalXYFootprint 'Update the cached XY footprint

Earlier it was stated that the orientation, clockwise or counterclockwise,
of the vertices of surface patches in a MultiPatch is unimportant when it
comes to constructing the geometrical shape. When rendering 3D geom-
etries, however, orientation is important. If a Ring, or the first triangle in
a TriangleFan or TriangleStrip, is oriented in a clockwise direction,
ArcScene will render the surface patch as if it forms an outer face of the
MultiPatch. If counterclockwise, the surface patch will be rendered as if
it forms an inner face of the MultiPatch.

 IConstructMultiPatch : IUnknown Provides access to members that can be used to construct
MultiPatches.

ConstructExtrude (OffsetZ: Double,
baseGeom: IGeometry)

Construct a MultiPatch by using an input (non-point) geometry as one
base and offsetting the Zs already set on the input geometry to get
the second base.

ConstructExtrudeAbsolute (toZ: Double,
baseGeom: IGeometry)

Construct a MultiPatch by extruding a (non-point) geometry using its
initial Zs for one base, and a uniform input Z for the other.

ConstructExtrudeAlongLine
(extrusionLine: ILine, baseGeom:
IGeometry)

Construct a MultiPatch by extruding a (non-point) geometry along a
specified line, using the Zs on the two ends of the line to set Zs on
the top and bottom.

ConstructExtrudeBetween
(fromSurface: IFunctionalSurface,
toSurface: IFunctionalSurface,
baseGeom: IGeometry)

Construct a MultiPatch by extruding a (non-point) geometry between
two functional surfaces.

ConstructExtrudeFromTo (fromZ:
Double, toZ: Double, baseGeom:
IGeometry)

Construct a MultiPatch by extruding a (non-point) geometry between
two specified Z values.

ConstructExtrudeRelative
(extrusionVector: IVector3D,
baseGeom: IGeometry)

Construct a MultiPatch by extruding a (non-point) geometry along a
specified vector, using Zs already set on the input geometry.

The IConstructMultiPatch interface offers alternative ways to create the
shape of a new MultiPatch; it lets you extrude an existing Geometry—
create a new shape by extending a Geometry into more dimensions than
the original shape.

Polygons, Polylines, and Envelopes can be extruded using the
ConstructExtrude method. For example, the code below extrudes the first
selected Polygon Feature in an ArcScene document from the existing
plane to the plane z=5.

  Dim pDoc As ISxDocument

  Set pDoc = ThisDocument

The shape created by the code above is pyrami-
dal. The Ring forms the base of the pyramid, and

the TriangleFan creates the faces.

A shape being extruded in ArcScene

MULTIPATCH COCLASS

CreatePointZ is a function that creates and
returns a new Line object from two endpoints.

There is no need to ensure the Line is ZAware,
as it will have ZAwareness automatically set

when it is added to the MultiPatch.

More information on 3D vectors can be found
later in this section.

Always set the RingType of any Ring you add to
a MultiPatch.



1062 • Exploring ArcObjects • Volume 2

  Dim pEnumFeat As IEnumFeature

  Set pEnumFeat = pDoc.Scene.FeatureSelection

  If Not pEnumFeat Is Nothing Then

    Dim pFeat As IFeature, pGeom as IGeometry, pZAware as IZAware

    Set pFeat = pEnumFeat.Next

    Set pGeom = pFeat.Shape

    If TypeOf pGeom Is IPolygon Then

      Set pZAware = pGeom

      If pZAware.ZAware Then

        Dim pConstruct As IConstructMultiPatch

        Set pConstruct = New MultiPatch

        pConstruct.ConstructExtrude 2, pGeom

      End If

    End If

  End If

The ConstructExtrude, ConstructExtrudeAbsolute, and ConstructExtrude-
Relative methods all generate MultiPatch shapes using z-values from the
original geometry and an offset value. The ConstructExtrudeAlongLine
and ConstructExtrudeFromTo methods use z-values specified in a vector
or as constants. Any extrusion methods that use the z-attributes of the
existing Geometry to generate the new shape require the input Geometry
to be ZAware and ZSimple.

The ConstructExtrudeBetween method extrudes geometries between two
FunctionalSurfaces. A FunctionalSurface defines a plane in three di-
mensions by specifying two 3DVectors and a planar point of origin.
When defined, a FunctionalSurface can return a z-value for every pair
of x,y coordinates in its domain. A FunctionalSurface can be defined
from a TIN or raster layer.

MULTIPATCH COCLASS

ExtrudeBetween creates a MultiPatch shape
from two FunctionalSurface objects.



Chapter 9 • Shaping features with geometry • 1063

G
eo

m
et

ry

TriangleFan

IClone
IGeometry

IGeometry2
IGeometryCollection

IMAware
IPointCollection

IPointIDAware
ISupportErrorInfo

ITransform2D
ITriangleFan

IZAware

A TriangleFan is a collection of Points
that define a surface made of triangles in

a fan arrangement.

0

5

1

6

2

7

3

8

4

9

10
11 12

All the surfaces in a single TriangleFan share a
common vertex.

TriangleFans are based on two-dimensional
shapes, with additional knowledge of height

coordinates, and are therefore sometimes known
as 2.5D objects.

You do not need to ensure that each Point is
ZAware; when a Point is added to a z-aware

TriangleFan, the Point will automatically be set
to have z-awareness. For more information on z-

attributes, see the section on geometry
attributes in this chapter.

A TriangleFan is a continuous fan of triangles, where every triangle in the
fan shares at least one vertex, which together define a surface.
TriangleFans are mainly used as surface patches in MultiPoint
geometries.

The TriangleFan coclass is based on an ordered collection of Points,
where the first Point in the collection defines the vertex that is shared by
all triangles. Each triangle in a fan with n Points has the vertices Point(0),
Point(i), and Point(i + 1), up to n = -2. The number of triangles in a
TriangleFan equals IPointCollection.PointCount - 2.

 ITriangleFan : IGeometry Provides access to members that identify a triangle fan.

The ITriangleFan interface has no methods or properties, but a Query-
Interface for ITriangleFan can be used as a simple check for the
TriangleFan coclass.

To add, change, move, or remove Points in a TriangleFan, use the
IPointCollection interface as shown below.
  Dim pPointColl As IPointCollection
  Set pPointColl = New TriangleFan

  With pPointColl
    .AddPoint CreatePointZ(5, 5, 20)
    .AddPoint CreatePointZ(0, 0, 0)
    .AddPoint CreatePointZ(0, 10, 0)
    .AddPoint CreatePointZ(10, 10, 0)  'You can use values like these to
    .AddPoint CreatePointZ(10, 0, 0)    'create a pyramid shaped TriangleFan
  End With

Where CreatePointZ is the function:
Private Function CreatePointZ(dblX As Double, dblY As Double, _
    dblZ As Double) As IPoint
  Set CreatePointZ = New Point
  CreatePointZ.PutCoords dblX, dblY
  CreatePointZ.Z = dblZ
End Function

TRIANGLEFAN COCLASS



1064 • Exploring ArcObjects • Volume 2

A TriangleStrip is a continuous strip of triangles, where every triangle
shares two vertices and an edge with the preceding triangle.
TriangleStrips are mainly used as surface patches in MultiPoint geom-
etries.

The TriangleStrip coclass is based on an ordered collection of Points,
where each triangle in a strip with n points has the vertices Point(i),
Point(i +1), and Point(i + 2), up to n = -2. The number of Triangles can
be found by IPointCollection.PointCount - 2.

 ITriangleStrip : IGeometry Provides access to members that identify a triangle strip.

The ITriangleStrip interface has no methods or properties but can be
used as a check for the TriangleStrip coclass.

If Typeof pGeometry Is ITriangleStrip Then ...

To add, change, move, or remove Points in a TriangleStrip, use the
IPointCollection interface. The code used would be similar to that shown
previously for TriangleFan.

To identify the vertices of the ith triangle in the strip, for example, use
the code below:

  Dim pPointColl As IPointCollection

  Set pPointColl = pTriangleStrip

  Dim pPoint1 As IPoint, pPoint2 As IPoint, pPoint3 As IPoint

  Dim i As Integer

  i = 3

  If Not (i > pPointColl.PointCount - 2) Then

    Set pPoint1 = pPointColl.Point(i - 1)

    Set pPoint2 = pPointColl.Point(i)

    Set pPoint3 = pPointColl.Point(i + 1)

  Else

    MsgBox "There are only " & pPointColl.PointCount - 2 & _

       " triangles in the strip."

  End If

Triangle-
Strip

IClone
IGeometry

IGeometry2
IGeometryCollection

IMAware
IPointCollection

IPointIDAware
ISupportErrorInfo

ITransform2D
ITriangleStrip

IZAware

A TriangleStrip is a collection of Points that
define a surface of triangles, where consecutive

triangles in the strip share an edge.

0

51

62

73

8

4

A TriangleStrip is also known as a 2.5D object,
as it is based on two-dimensional shapes with

height coordinates.

TRIANGLESTRIP COCLASS



Chapter 9 • Shaping features with geometry • 1065

G
eo

m
et

ry

A Vector3D defines a direction in terms of magnitude along the x-, y-,
and z-axes. Its direction can also be thought of in terms of spherical
coordinates, as an angle of rotation (azimuth) from the y,z plane; angle
of displacement (inclination) from the x,y plane; or length (magnitude).

A Vector3D is not a geometrical shape and as such does not inherit the
IGeometry interface—it does not have a spatial location and is mainly
used in the construction of other 3D geometries.

 IVector : IUnknown Provides access to members that define general vector
properties and operations.

ComponentByIndex (componentIndex:
Long) : Double

The component corresponding to a given index.

Dimension: Long The dimension of this vector.
IsEmpty: Boolean Indicates if the vector is empty (unset).
Magnitude: Double The length of the vector.

AddVector (otherVector: IVector) :
IVector

Construct a new vector by adding a different vector to this vector.

ConstructAddVector (vector1: IVector,
vector2: IVector)

Set this vector by adding two input vectors.

ConstructCrossProduct (vector1:
IVector, vector2: IVector)

Set this vector equal to the cross product of the two input vectors.

ConstructSubtractVector (vector1:
IVector, vector2: IVector)

Set this vector by subtracting the second input vector from the first
one.

CrossProduct (otherVector: IVector) :
IVector

Returns the cross product of this vector and another vector.

DotProduct (otherVector: IVector) :
Double

Returns the dot product of this vector and another vector.

Normalize Normalize the vector (scale it to magnitude = 1).
Scale (ScaleFactor: Double) Scale the vector by the given factor.
SetEmpty Makes the vector empty (unset).
SubtractVector (otherVector: IVector) :

IVector
Construct a new vector by subtracting a different vector from this

vector.

The IVector interface applies to vectors of any dimension. This interface
allows you to change existing vectors using vector mathematics using
the AddVector, CrossProduct, DotProduct, Normalize, Scale, or
SubtractVector methods. Use ConstructAddVector, ConstructCrossProduct,
or ConstructSubtractVector to set the components of a new vector by
using existing vectors.

 IVector3D : IVector Provides access to members that define 3D vector
properties and operations.

Azimuth: Double The vector's azimuth angle in radians.
Inclination: Double The vector's inclination in radians.
XComponent: Double The vector's X component.
YComponent: Double The vector's Y component.
ZComponent: Double The vector's Z component.

ConstructDifference (point1: IPoint,
point2: IPoint)

Set the vector by taking the difference of point1 and point2 (so the
vector would go from point2 to point1).

Move (dx: Double, dy: Double, dz:
Double)

Move the vector by adding a shift value to each component.

PolarMove (dAzimuth: Double,
dInclination: Double, dRadius: Double)

Modify the vector by adding to its polar components. Angles are in
radians.

PolarQuery (out Azimuth: Double, out
Inclination: Double, out radiusLength:
Double)

Get the vector's polar components. Angles are in radians.

PolarSet (Azimuth: Double, Inclination:
Double, radiusLength: Double)

Set the vector using polar components. Angles are in radians.

QueryComponents (out dx: Double, out
dy: Double, out dz: Double)

Get the values of the vector's components.

Rotate (Angle: Double, axis: IVector3D) Rotate the vector around an axis defined by another vector. The
angle is in radians.

SetComponents (dx: Double, dy:
Double, dz: Double)

Set the values of the vector's components.

Use the IVector3D interface to define a 3DVector in two different ways,
either by Euclidean or polar coordinates. To define the vector using

Vector3D
IClone

ISupportErrorInfo
IVector

IVector3D

A Vector3D defines a shape that has a
direction in three dimensions.

VECTOR3D COCLASS

IVector3D contains particular properties and
methods that apply to three-dimensional vectors.



1066 • Exploring ArcObjects • Volume 2

Euclidean coordinates, set the XComponent, YComponent, and
ZComponent properties. You can either use the individual properties or
use SetComponents.

  Dim pVector3D as IVector3D

  Set pVector3D = New 3DVector

  pVector3D .SetComponents 10, 5, 2

Alternatively, use polar coordinates—either set the Azimuth, Inclination,
and Magnitude properties, or use PolarSet.

  p3DVector.PolarSet 1, 1, 10

The Azimuth and Inclination properties both use radians as units.

The IVector3D interface also provides methods to construct a vector. For
example, the ConstructDifference method sets a Vector3D to be the line
between two z-aware Points.

  Dim pPointOne As IPoint, pPointTwo As IPoint

  Dim pZAware As IZAware

  Set pPointOne = New Point

  pPointOne.PutCoords -10, -10

  Set pZAware = pPointOne

  pZAware.ZAware = True

  pPointOne.Z = -10

  Set pPointTwo = New Point

  pPointTwo.PutCoords 15, 15

  Set pZAware = pPointTwo

  pZAware.ZAware = True

  pPointTwo.Z = 15

  pVector3D.ConstructDifference pPointOne, pPointTwo

The points must have z-attributes set in order
to correctly generate the vector.

VECTOR3D COCLASS



Chapter 9 • Shaping features with geometry • 1067

G
eo

m
et

ry

Ray
IClone

IGeometry
IRay

A Ray is a three-dimensional linear
shape, beginning at a Point and continu-

ing infinitely in one direction.

Sphere
IClone

IGeometry
ISphere

A Sphere is a spherical 3D geometry.

A Ray is a linear 3D Geometry that inherits the IGeometry interface. Its loca-
tion is defined by its origin (a Point object), and its direction is defined
by a vector (a Vector3D object).

 IRay : IGeometry Provides access to members that define properties and
functionality specific to 3D rays.

Origin: IPoint The origin point of the ray.
Vector: IVector3D The direction vector of the ray.

GetEnumIntersect (targetGeometry:
IGeometry) : IEnumIntersection

Constructs an enumerator that can provide information about
intersections with the target geometry.

GetPointAtDistance (Distance: Double) :
IPoint

Constructs a point at a distance along the ray.

Intersect (targetGeometry: IGeometry,
intersectionPoints: IPointCollection)

Returns a point collection containing all points of intersection, in order
along the ray.

Intersects (targetGeometry: IGeometry)
: Boolean

Indicates if the ray intersects the target geometry.

QueryFirstIntersection (targetGeometry:
IGeometry, intersectionPoint: IPoint)

Returns the first point of intersection between the ray and the target
geometry. The point is set empty if there is no intersection.

QueryOrigin (vectorOrigin: IPoint) Sets a point equal to the ray's origin.
QueryPointAtDistance (Distance:

Double, Point: IPoint)
Queries a point at a distance along the ray.

QueryVector (directionVector:
IVector3D)

Sets a vector equal to a unit vector with the same direction as the
ray.

The IRay interface provides information about existing Rays and also
allows you to construct a new Ray.

  Dim pRay As IRay

  Set pRay = New Ray

  pRay.Origin = CreatePointZ(0, 0, 0)

  pRay.Vector = pVector3D

Basic Ray intersection is available using the Intersects and Intersect meth-
ods, passing in an existing MultiPatch object or a ZSimple Polygon, Polyline
Envelope, or Point as the target Geometry. However, note that Ray intersection
is not fully implemented at ArcGIS 8.1. The methods indicate if the Ray
intersects the bounding Envelope of the Geometry, not the shape itself—
returned intersect Points lie within the bounding Envelope, not on the edges
or surfaces of the input Geometry.

A Sphere coclass defines a spherical 3D geometry. A sphere’s shape is
defined by a center Point and a Radius distance.

 ISphere : IGeometry Provides access to members that define a sphere.

Center: IPoint The center of the sphere.
Radius: Double The radius of the sphere.

QueryCenter (CenterPoint: IPoint) Sets a point equal to the center of the sphere.

The ISphere interface provides information about existing Spheres and
also allows you to construct a new Sphere by setting the Radius and
Center properties:

  Dim pPoint As IPoint, pSphere as ISphere

  Set pPoint = New Point

  pPoint.PutCoords 10, 10

  pPoint.Z = 10

  Set pSphere = New Sphere

  pSphere.Center = pPoint

  pSphere.Radius = 50

RAY AND SPHERE COCLASSES





Managing the
spatial reference

The features in a dataset represent objects in the real world. Each

feature’s relative location within the dataset reflects the location of that

feature within the real world. The location of each feature is

defined by a coordinate system.

Geographic coordinate systems, measured in degrees of

latitude and longitude, are based on a spheroidal

approximation of the shape of the earth. To facilitate the

two-dimensional display of features on a map or computer

screen, spatial data is transformed from the three-

dimensional geographic coordinate system onto a two-

dimensional coordinate system by means of a map

projection.

Many different coordinate systems are used for data

collection and storage. If the data you are using came from a

variety of sources, it’s likely that the different datasets may be based on

different coordinate systems. You can use the spatial reference objects in

ArcObjects to view your data in a common coordinate system.

Steve Wheatley, Melita Kennedy

10



1070 • Exploring ArcObjects • Volume 2

Spatial reference

Projection
IProjection

Projected
Coordinate

System

IProjectedCoordinateSystem
IProjectedCoordinateSystemEdit

Unknown-
Coordinate-

System

IUnknownCoordinateSystemIGeographicCoordinateSystem
IGeographicCoordinateSystemEdit

Datum
IDatum

IDatumEdit

A prime meridian object
specifies the line of zero
longitude for the coordinates in
a geographic coordinate system.

The spheroid object models the
approximate shape of the earth's surface

The angular unit specifies the
measurement units used in a
geographic coordinate system

A projected coordinate system
object includes a geographic

coordinate system, a
projection, a set of projection

parameters, and a linear unit

A projection object specifies the mathematical
transformation to convert between geographic
and planar coordinates

The parameter can be used to
define and modify the values for
specific properties for a projected
coordinate system

The linear unit specifies the
measurement units used in a
projected coordinate system.

The unknown coordinate system is used when the
coordinate system is not known or unavailable

The spatial reference is the base for three types of
coordinate systems; projected, geogaphic, and unknown

The geographic coordinate
system defines a coordinate

system that describes the
positions of features on the

earth using latitude and
longitude values

LinearUnit
ILinearUnit

ILinearUnitEdit
IUnit

Prime-
Meridian

IPrimeMeridian
IPrimeMeridianEdit

Parameter
IParameter

AngularUnit
IAngularUnit

IAngularUnitEdit
IUnit

A datum represents a
reference system for latitude-

longitude coordinates and is
defined by a spheroid and the
spheroid's position relative to

the center of the earth

Geographic-
Coordinate-

System

Spheroid
ISpheroid

ISpheroidEdit

Spatial-
Reference

IClone
IPersist

IPersistStream
IESRISpatialReference

ISpatialReference
ISpatialReference2

ISpatialReferenceInfo
ISupportedErrorInfo



Chapter 10 • Managing the spatial reference • 1071

S
p

at
ia

l R
ef

er
en

ce

objects

Spatial-
Reference-

Info

ISpatialReferenceInfo

The spatial reference info retrieves
information about a spatial reference object

The ESRI spatial reference info provides methods to import
and export components to and from spatial reference objects

The spatial reference environment creates predefined spatial
reference objects

ESRISpatial-
Reference-

Info

IESRISpatialReference

Spatial
Reference-

Environment

ISpatialReferenceFactory
ISpatialReferenceFactory2

Composite-
Geo-

Transformation

ICompositeGeoTransformation

The composite geotransformation allows you to set up a
transformation path between two datums by defining
two or more geotransformation objects and their
associated direction

Geo-
Transformation-

OperationSet

IGeoTransformationOperationset

The geotransformation operation set stores a set
of geographic transformation operators (a

geotransformation object and its direction)

Geo-
Transformation

IGeoTransformation

Transformation
ITransformation

Abridged-
Molodensky-

Transformation

IMolodenskyTransformation

Coordinate-
Frame-

Transformation

ICoordinateFrameTransformation

Geocentric-
Translation

IGeocentricTranslation

PositionVector-
Transformation

IPositionVectorTransformation

Molodensky-
Transformation

IMolodenskyTransformation

The abridged Molodensky transformation uses
three parameters (dX, dY, dZ) to convert between

geographic coordinate systems (datums)

The coordinate frame transformation object uses seven
parameters (dX, dY, dZ, rX, rY, rZ, dS) to convert

between geographic coordinate systems (datums)

The geocentric translation transformation uses three
parameters (dX, dY, dZ) to convert between geographic

coordinate systems (datums)

The Molodensky transformation uses three parameters (dX, dY,
dZ) to convert between geographic coordinate systems (datums)

The position vector (Bursa-Wolf) transformation object uses seven
parameters (dX, dY, dZ, rX, rY, rZ, dS) to convert between

geographic coordinate systems (datums)

The geotransformation class specifies the methods
used by all geographic transformations

Transformations are used by
spatial reference and geometry
transformation objects

Longitude-
Rotation

ILongitudeRotation

The longitude rotation transformation converts between two
prime meridians by applying a shift to the longitude values

Grid-
Transformation

IGridTransformation

NADCON-
Transformation

HARN-
Transformation

The NADCON
transformation is a grid-based
transformation method that
converts geographic
coordinates between the
NAD 1927 and the NAD 1983
datums

Grid transformations perform
accurate coordinate conversions
using a grid, or matrix, of control
points held in a file

The HARN transformation is a highly accurate
grid-based transformation method that
converts geographic coordinates between the
NAD1983 datum and the HARN
readjustments (used in the United States)



1072 • Exploring ArcObjects • Volume 2

Part of what defines a feature dataset is its spatial reference, or coordi-
nate system. A coordinate system includes such information as the unit
of measure, the earth model used and, sometimes, how the data was
projected.

A geographic coordinate system is defined by a datum, an angular unit
of measure (usually either degrees or grads), and a prime meridian.

A projected coordinate system consists of a linear unit of measure (usu-
ally meters or feet), a map projection, the specific parameters used by
the map projection, and a geographic coordinate system.

Many analysis techniques and data are designed for two-dimensional or
planar coordinates. Three-dimensional geographic data is converted to
planar coordinates via a map projection. A map projection is a set of
mathematical equations to convert from a 3D earth represented by
longitude and latitude to planar coordinates (x,y).

Converting from three to two dimensions causes distortions—either the
shape, area, distance, or direction can be affected. A map projection is
designed to minimize distortions caused by flattening the earth’s surface.
However, a projection that minimizes distortion of shape may be at the
cost of increased distortion in distance. Therefore, ensure that the pro-
jection chosen for your data is fit for your purpose, as different projec-
tions are useful for different applications.

STRUCTURE OF SPATIAL REFERENCE OBJECT MODEL

ArcObjects provides a set of classes designed to allow the user to con-
trol and manipulate when coordinate systems of data are displayed and
how they are stored. For the majority of developers, there are three main
ArcObjects components to help manage coordinate systems:
ProjectedCoordinateSystem, GeographicCoordinateSystem, and
SpatialReferenceEnvironment.

For advanced developers who need additional flexibility to create user-
defined or even custom coordinate systems, the following classes are
available: Projection, Datum, AngularUnit, LinearUnit, Spheroid,
PrimeMeridian, and the GeoTransformation classes.

The relationships between the SpatialReference objects are shown in the
object model diagram. The objects can be placed in three groups: utility,
core, and transformation.

The utility group of classes and interfaces are those that are used to
either create SpatialReference objects or provide information about them.
These include SpatialReferenceEnvironment, ESRISpatialReferenceInfo,
and SpatialReferenceInfo.

The core group consists of objects that are used to represent the com-
ponent parts of a coordinate system. These are
ProjectedCoordinateSystem, Projection, GeographicCoordinateSystem,
AngularUnit, LinearUnit, Datum, Spheroid, Parameter, and
PrimeMeridian.

INTRODUCTION TO SPATIAL REFERENCE

The spatial reference model is based on a model
developed by Petrotechnical Open Software

Corporation (POSC), a consortium of oil and gas
companies that simplifies the various pieces that
compose a coordinate system. A related organi-

zation, European Petroleum Survey Group
(EPSG), has compiled a large set of coordinate

systems and the objects needed to define them.
Each object has a unique integer code or ID. For

example, the code for international meters is
9001, while the WGS 1984 datum is 6326,

and so on. A coordinate system has a single ID.

Within the spatial reference model, the integer
code is known as a FactoryCode.

To ensure that the most recent version of the
EPSG files is always available, the EPSG has

requested that only one Web site carry the files.
The files are available in three different formats

at www.epsg.org.



Chapter 10 • Managing the spatial reference • 1073

S
p

at
ia

l R
ef

er
en

ce

The object model diagram also illustrates the relationships between the
core spatial reference objects. For example, a Datum object has a Spher-
oid property, while a GeographicCoordinateSystem object has both a
Datum property and a PrimeMeridian property.

The geographic transformation objects are all those objects that handle
coordinate conversions between geographic systems, also known as
datum conversions or datum shifts. This chapter starts with a discussion
on the utility objects, followed by the core objects, and finally the trans-
formation objects.

METADATA

If your feature class is contained within a feature dataset, then all fea-
ture classes within that dataset must share a common spatial reference.
Depending on your data source, ArcObjects will read and honor any
accompanying metadata containing information on the coordinate sys-
tem of that data and will set the SpatialReference property of that feature
dataset or feature class appropriately.

• A shapefile may have an accompanying coordinate system metadata
file (.prj).

• An ArcInfo coverage contains coordinate system information in a PRJ
(prj.adf) file within the coverage workspace.

• ArcSDE layers store coordinate system metadata in a field in the
ArcSDE layers table.

• VPF should have its projection information already built in its data-
base. ArcGIS will honor that metadata, and the VPF data will be
projected. Since VPF is currently a read-only data source, it’s not
possible to set the coordinate system.

• It is possible to assign a spatial reference to CAD data, but this can
only be done at the CAD feature dataset (not feature class) or CAD
drawing level. A projection (.prj) file must be saved to disk. As long
as this file shares the same name as the CAD file and resides in the
same folder, ArcGIS will recognize it.

• Feature classes in a personal geodatabase always have an explicit
SpatialReference, which may be an UnknownCoordinateSystem.

• For raster datasets based on a grid and a TIN, the associated PRJ file
will also be read.

If the metadata is not present or is incorrect, then ArcObjects will in-
spect the coordinate range and magnitude of the data. If it appears that
the coordinates of the data are in units of degrees and within the range
of standard geographic coordinates, then it will associate the feature
class with an “Assumed Geographic Coordinate System”. This also
means that no information is known about the datum on which these
geographic coordinates are based. In fact, ArcObjects will set the datum
to be NAD 1927, which is generally fine for data based in North
America.

INTRODUCTION TO SPATIAL REFERENCE



1074 • Exploring ArcObjects • Volume 2

If the coordinates of the data appear to be in units other than degrees,
such as meters or feet, then ArcObjects will set the SpatialReference
property of the feature class to be an “UnknownCoordinateSystem”. This
maintains precision information for the coordinates so that geometry
operations have a consistent tolerance.

Defining the spatial reference metadata for a layer is a data management
task best achieved within ArcCatalog. Within the ArcMap application, it
is not possible to select an individual layer and set its spatial reference
property. However, it is possible to do it programmatically. There is an
ArcObjects component that provides a dialog box to allow for the
browsing of all the available projected and geographic coordinate sys-
tems that ArcObjects supports.

 ISpatialReferenceDialog : IUnknown Provides access to members that control the Spatial
Reference Dialog.

DoModalCreate (in hasXY: Boolean, in
HasZ: Boolean, in HasM: Boolean, in
hParent: Long) : ISpatialReference

Prompts the user to define a new spatial reference.

DoModalEdit (in inputSpatialReference:
ISpatialReference, in hasXY: Boolean,
in HasZ: Boolean, in HasM: Boolean,
in coordPageReadOnly: Boolean, in
domainPageReadOnly: Boolean, in
hParent: Long) : ISpatialReference

Displays/edits the properties of the given spatial reference.

The following code illustrates how to programmatically call up the dia-
log box and use it to instantiate a SpatialReference object.

  Dim pDialog As ISpatialReferenceDialog

  Set pDialog = New SpatialReferenceDialog

  Dim pSpatialReference As ISpatialReference

  'Once the dialog box pops up you can browse for the PRJ file that you
want.

  Set pSpatialReference = pDialog.DoModalCreate(True, False, False, 0)

While it appears possible to set the SpatialReference property of a
FeatureLayer coclass, this will not have any effect on the drawing of the
layer within the Map. This property is used to carry the Map’s knowl-
edge of the current on-the-fly projection back to the feature layer and is
really intended for internal ArcObjects use.

If you want to reset or override the SpatialReference of your FeatureLayer,
you need to use the IGeoDatasetSchemaEdit interface. This interface has
two methods: CanAlterSpatialReference and AlterSpatialReference.

The following code illustrates how to obtain a handle on the
IGeoDatasetSchemaEdit interface.

  ' This code sample takes a layer and resets its SpatialReference

  ' to be the OSGB1936 Geographic Coordinate System.

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Dim pMap As IMap

  Set pMap = pMxDoc.FocusMap

  Dim pLayer As IFeatureLayer

The New Spatial Reference dialog box in
ArcCatalog

INTRODUCTION TO SPATIAL REFERENCE



Chapter 10 • Managing the spatial reference • 1075

S
p

at
ia

l R
ef

er
en

ce

  Set pLayer = pMap.Layer(0)

  Dim pFeatureClass As IFeatureClass

  Set pFeatureClass = pLayer.FeatureClass

  'QI for the geodataset for the layers featureclass

  Dim pGeoDataset As IGeoDataset

  Set pGeoDataset = pFeatureClass

  'QI for the GeoDatasetSchemaEdit from the geodataset

  Dim pGeoDatasetEdit As IGeoDatasetSchemaEdit

  Set pGeoDatasetEdit = pGeoDataset

  'Test if you can alter the spatialreference, if you can, the you

  'create a factory and use it to create a geographic coordinate system.

  If (pGeoDatasetEdit.CanAlterSpatialReference = True) Then

    Dim pSpatRefFact As ISpatialReferenceFactory2

    Set pSpatRefFact = New SpatialReferenceEnvironment

    Dim pGeoCoordSys As IGeographicCoordinateSystem

    Set pGeoCoordSys = _

      pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_OSGB1936)

    'Now alter the layers SR

    pGeoDatasetEdit.AlterSpatialReference pgeocoorsys

  End If

  'and force a refresh

  pMxDoc.ActiveView.Refresh

To get the SpatialReference information on a Layer, you will need to QI
for the IGeoDataset interface and obtain the SpatialReference object from
there.

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Dim pMap As IMap

  Set pMap = pMxDoc.FocusMap

  Dim pLayer As IFeatureLayer

  Set pLayer = pMap.Layer(0)

  Dim pGeoDataset As IGeoDataset

  Dim pSpatialReference As ISpatialReference

  Set pGeoDataset = pLayer 'QI for the geodataset from the layer

  Set pSpatialReference = pGeoDataset.SpatialReference

  MsgBox pSpatialReference.Name

INTRODUCTION TO SPATIAL REFERENCE



1076 • Exploring ArcObjects • Volume 2

The SpatialReference property on the IMap interface defines the way in
which the layers are displayed onscreen. This is known as your target
coordinate system, while each layer’s coordinate system is known as the
source coordinate system.

Setting or changing the target coordinate system on the Map will change
how your layers are displayed, as each Layer is transformed from the
source to the target coordinate system. The coordinates of all features
within the visible extent are read and transformed for each display
refresh.

Here is an example of how to set the SpatialReference property on a
Map.

  Dim pSpatialReference As IProjectedCoordinateSystem

  Dim pDialog As ISpatialReferenceDialog

  Set pDialog = New SpatialReferenceDialog

  Set pSpatialReference = pDialog.DoModalCreate(True, False, False, 0)

  Dim pMap As IMap

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Set pMap = pMxDoc.FocusMap

  Set pMap.SpatialReference = pSpatialReference

  pMxDoc.ActiveView.Refresh

INTRODUCTION TO SPATIAL REFERENCE



Chapter 10 • Managing the spatial reference • 1077

S
p

at
ia

l R
ef

er
en

ce

The three SpatialReference classes that could be considered utility
classes are SpatialReferenceInfo, ESRISpatialReferenceInfo, and
SpatialReferenceEnvironment. As their names and their supported inter-
faces suggest, they are concerned with the creation of SpatialReference
objects and also with providing information about those objects.

The SpatialReferenceInfo abstract class supports ISpatialReferenceInfo,
which defines properties common to all components of the spatial
reference object model. For example, the Datum coclass, Geographic-
CoordinateSystem, and Projection coclasses all implement this interface.
This is achieved through type inheritance—the ISpatialReference inter-
face inherits from ISpatialReferenceInfo.

 ISpatialReferenceInfo : IUnknown ISpatialReferenceInfo interface defines properties common
to all components of a spatial reference system.

Abbreviation: String The abbreviated name of this spatial reference component.
Alias: String The alias of this spatial reference component.
FactoryCode: Long Returns the factory code of the spatial reference
Name: String The name of this spatial reference component.
Remarks: String The comment string of this spatial reference component.

The ISpatialReferenceInfo interface provides properties such as the
FactoryCode, Name, and Alias of the SpatialReference object. For ex-
ample, this type of information might be provided from a Projection
object.

  FactoryCode: 43033

  Name: "Lambert Azimuthal Equal Area"

  Alias: "Zenithal Equal Area"

  Usage: "Maintains small area, good for up to a hemisphere, often used for

    polar data.

  Classification: Azimuthal/Planar, Equal Area"

  Remarks: "Supports both spheres and spheroids (datums). Projection

    parameters are central meridian and latitude of origin"

This code shows the display of spatial reference information. Note that
because IProjection inherits from ISpatialReferenceInfo, no QI is needed.

  Dim pSpatRefFact As ISpatialReferenceFactory

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pProjection As IProjection

  Set pProjection = _

  pSpatRefFact.CreateProjection(esriSRProjection_LambertAzimuthal) '43033

  Debug.Print pProjection.Abbreviation

  Debug.Print pProjection.Alias

  Debug.Print pProjection.FactoryCode

  Debug.Print pProjection.Name

  Debug.Print pProjection.Remarks

SPATIALREFERENCEINFO ABSTRACT CLASS

Spatial-
Reference-

Info

ISpatialReferenceInfo

The spatial reference info provides
information about any spatial reference

object.

As mentioned earlier, the SpatialReference
model is based on the POSC model and uses

EPSG integer codes to uniquely identify coordi-
nate systems and their component parts. In

ArcObjects, this code number is referred to as
the FactoryCode. It is primarily used to create

predefined coordinate systems with the methods
available in the ISpatialReferenceFactory

interface. The value of the FactoryCode can be
obtained from the ISpatialReferenceInfo interface.



1078 • Exploring ArcObjects • Volume 2

ESRISPATIALREFERENCEINFO ABSTRACT CLASS

ESRISpatial-
Reference-

Info

IESRISpatialReference

The ESRI spatial reference info provides
methods to import and export spatial

reference objects.

The ESRISpatialReferenceInfo abstract class defines the IESRISpatial-
Reference interface, which is implemented by all spatial reference objects
except the SpatialReferenceEnvironment singleton object. This interface
provides import and export capability for SpatialReference objects or
their components.

 IESRISpatialReference : IUnknown IESRISpatialReference implements import/export
operations components of a spatial reference system.

ESRISpatialReferenceSize: Long Returns the number of bytes required to hold the persistant
representation of this spatial reference component.

ExportToESRISpatialReference (str:
String, out cBytesWrote: Long)

Exports this spatial reference component to a buffer.

ImportFromESRISpatialReference (str:
String, out cBytesRead: Long)

Defines this spatial reference component from the specified
ESRISpatialReference buffer.

The IESRISpatialReference interface was designed primarily for internal
ArcObjects use but can be utilized by experienced developers who are
also familiar with the Projection Engine API.

The ESRISpatialReferenceSize property returns the number of bytes
required to hold the string representation of the SpatialReference object.
This number is guaranteed to be large enough but may be larger than
needed. The number returned from ExportToESRISpatialReference is the
exact number of bytes used in the buffer to hold the string.

The ExportToESRISpatialReference method is straightforward, as it pro-
vides a string representation of the definition of the SpatialReference
object.

The following code, which demonstrates how to use this method, ex-
pects that a valid SpatialReference object has already been created. In
this case, you can assume that a ProjectedCoordinateSystem object can
be obtained from the FocusMap.

  Dim pMxDoc As IMxDocument

  Dim pBytes As Long

  Dim pBuffer As String * 2048

  Dim pParameterExport As IESRISpatialReference

  Dim pProjectedCoordinateSystem As ISpatialReference

  'Here it is essential that the buffer is intialized and allocated memory.

  Set pMxDoc = Application.Document

  'get the SpatialReference object from the FocusMap

  Set pProjectedCoordinateSystem = pMxDoc.FocusMap.SpatialReference

  Set pParameterExport = pProjectedCoordinateSystem 'QI

  'make the call

  pParameterExport.ExportToESRISpatialReference pBuffer, pBytes

  MsgBox pBuffer

The ImportFromESRISpatialReference method is slightly more compli-
cated. To correctly create a SpatialReference object requires that the
string buffer is formatted in a way that is defined by the ESRI Projection
Engine (which is the POSC/GeoTIFF format for spatial reference repre-
sentation). The required format is exactly the same as the format of the
new PRJ file structure.

The counts passed out of the methods on this
interface are byte counts, not character counts.



Chapter 10 • Managing the spatial reference • 1079

S
p

at
ia

l R
ef

er
en

ce

If you open up a PRJ file in Notepad that contains the string description
of a ProjectedCoordinateSystem, you will see something like the text to
the left. The important fact to realize is that subcomponents of the
PROJCS are defined with a pair of square brackets “[ ]”. Therefore, the
Datum component, which is composed of a name and a spheroid, can
be seen highlighted in red.

With this in mind, the following code shows the ImportFromESRI-
SpatialReference method to create a Parameter object from a string
description. What you should do with the Parameter object is explained
later in this chapter.

  Dim pBuffer As String

  Dim pBytes As Long

  Dim pParameterImport As IESRISpatialReference

  Dim pParameter As IParameter

  'Note the PARAMETER keyword

  'Note also the double quotation marks around an embedded string.

  pBuffer = "PARAMETER[""false_easting"", 1000000]"

  'Create an ESRISpatialReference using the parameter coclass

  Set pParameterImport = New Parameter

  'make the call

  pParameterImport.ImportFromESRISpatialReference pBuffer, pBytes

  'QI to get your new Parameter

  Set pParameter = pParameterImport

  MsgBox pParameter.Name

  MsgBox pParameter.Value

Finally, the following similar example also shows how to use the
ImportFromESRISpatialReference method, this time to create a Datum
object from a string.

  Dim pBuffer As String
  Dim pBytes As Long
  Dim pDatumImport As IESRISpatialReference
  Dim pDatum As IDatum

  ' Note the DATUM and SPHEROID keywords.
  ' Note also the double quotation marks around embedded strings.
  pBuffer = "DATUM[""D_WGS_1984"", _

     SPHEROID[""WGS_1984"",6378137,298.257223]]"

  ' Create an ESRISpatialReference using the Datum coclass
  Set pDatumImport = New Datum

  ' make the call
  pDatumImport.ImportFromESRISpatialReference pBuffer, pBytes

  ' QI to get your new Datum

  Set pDatum = pDatumImport

  MsgBox pDatum.Name
  MsgBox pDatum.Spheroid.Name
  MsgBox pDatum.Spheroid.Flattening
  MsgBox pDatum.Spheroid.SemiMajorAxis
  MsgBox pDatum.Spheroid.SemiMinorAxis

ESRISPATIALREFERENCEINFO ABSTRACT CLASS

PROJCS[“Test”,

GEOGCS[“GCS_WGS_1984”,

DATUM[“D_WGS_1984”,

SPHEROID[“WGS_1984”,6378137,298.257223]],

PRIMEM[“Greenwich”,0],

UNIT[“Degree”,0.0174532925199433]],

PROJECTION[“Mercator”],

PARAMETER[“false_easting”,1000000],

UNIT[“Foot”,0.3048] ]



1080 • Exploring ArcObjects • Volume 2

The SpatialReferenceEnvironment coclass is another primary component
of the spatial reference object model. It is a singleton object that imple-
ments the ISpatialReferenceFactory interface, which provides the devel-
oper with methods that can be used to create predefined “factory”
instances of all types of spatial reference objects.

 ISpatialReferenceFactory : IUnknown ISpatialReferenceFactory creates different kinds of spatial
reference components.

CreateDatum (datumType: Long) :
IDatum

Creates a predefined datum.

CreateESRISpatialReference
(spatRefInfo: String, out
SpatialReference: ISpatialReference,
out cBytesRead: Long)

Creates a spatial reference system and defines it from the specified
ESRISpatialReference buffer.

CreateESRISpatialReferenceFromPRJ
(prj: String) : ISpatialReference

Creates a spatial reference from a PRJ string

CreateESRISpatialReferenceFromPRJF
ile (prjFile: String) : ISpatialReference

Creates a spatial reference from a PRJ file

CreateGeographicCoordinateSystem
(gcsType: Long) :
IGeographicCoordinateSystem

Creates a predefined geographic coordinate system.

CreateGeoTransformation
(gTransformationType: Long) :
ITransformation

Creates a predefined transformation between geographic coordinate
systems.

CreateParameter (parameterType:
Long) : IParameter

Creates a predefined parameter.

CreatePredefinedAngularUnits: ISet Creates a list of predefined angular units.
CreatePredefinedDatums: ISet Creates a list of a list of predefined datums.
CreatePredefinedLinearUnits: ISet Creates a list of predefined linear units.
CreatePredefinedPrimeMeridians: ISet Creates a list of predefined prime meridians.
CreatePredefinedProjections: ISet Creates a list of predefined projections.
CreatePredefinedSpheroids: ISet Creates a list of predefined spheroids.
CreatePrimeMeridian

(primeMeridianType: Long) :
IPrimeMeridian

Creates a predefined prime meridian.

CreateProjectedCoordinateSystem
(pcsType: Long) :
IProjectedCoordinateSystem

Creates a predefined projected coordinate system.

CreateProjection (projectionType: Long)
: IProjection

Creates a predefined projection.

CreateSpheroid (spheroidType: Long) :
ISpheroid

Creates a predefined spheroid.

CreateUnit (unitType: Long) : IUnit Creates a predefined unit of measure.
ExportESRISpatialReferenceToPRJFile

(prjFile: String, SpatialReference:
ISpatialReference)

Exports a spatial reference to a PRJ file

The ISpatialReferenceFactory interface, whose coclass is
SpatialReferenceEnvironment, provides methods that use the
FactoryCode to generate predefined “factory” spatial reference objects.

There are three types of functions on this interface: those that return
single objects, those that return a set of objects of the same type, and
those that are used to import and export SpatialReference objects to and
from a PRJ file or a PRJ string representation.

For example, the CreateDatum function takes as its only parameter an
integer that represents the FactoryCode of a predefined datum. The
function returns a fully instantiated Datum object that can then be que-
ried for its name and Spheroid coclass. The following code shows how
to create a Datum object that represents the WGS 1984 datum.

  Dim pDatum As IDatum

  Dim pSpatialRefFact As ISpatialReferenceFactory

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  'esriSRDatum_WGS1984 = 6326

  Set pDatum = pSpatialRefFact.CreateDatum(esriSRDatum_WGS1984)

Spatial
Reference-

Environment

ISpatialReference-
Factory

ISpatialReference-
Factory2

The spatial reference environment is
used to create predefined spatial refer-

ence objects.

SPATIALREFERENCEENVIRONMENT COCLASS



Chapter 10 • Managing the spatial reference • 1081

S
p

at
ia

l R
ef

er
en

ce

  Debug.Print pDatum.Name

  Debug.Print pDatum.FactoryCode

  Debug.Print pDatum.Spheroid.Name

  Debug.Print pDatum.Spheroid.FactoryCode

  Debug.Print pDatum.Spheroid.Flattening

  Debug.Print pDatum.Spheroid.SemiMajorAxis

  Debug.Print pDatum.Spheroid.SemiMinorAxis

The CreateDatum function takes an enumerated esriSRDatumType as the
integer code. In the example esriSRDatum_WGS1984 = 6326, 6326 is the
POSC integer code for the WGS 1984 datum.

Other functions on the ISpatialReferenceFactory take similar enumerated
types. The full listing of available types and their values can be seen in
the Object Browser.

These are the enumerations relevant to spatial reference in esriCore.olb.

esriSRGeoCSType
esriSRDatumType

esriSRSpheroidType
esriSRPrimeMType

esriSRUnitType
esriSRProjCSType

esriSRProjectionType
esriSRParameterType

esriSRGeoTransformationType
esriSRGeoTransformation2Type

Geographic coordinate systems
Available predefined datums
The available spheroids and spheres
The available prime meridians
The available units of measure
Projected coordinate systems
Map projections
Predefined parameters
The available equation-based datum transformations
More datum transformations; longitude rotation, NADCON and HARN methods

Similarly, the following code demonstrates the CreateProjected-
CoordinateSystem, which returns a fully instantiated projection system
that represents the British National Grid.

  Dim pBritishNatGrid As IProjectedCoordinateSystem

  Dim pSpatialRefFact As ISpatialReferenceFactory

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  ' esriSRProjCS_BritishNationalGrid = 27700

  Set pBritishNatGrid = _

pSpatialRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_BritishNationalGrid)

  ' now show the component parts for the projected coordinate system

  Debug.Print pBritishNatGrid.Name

  Debug.Print pBritishNatGrid.GeographicCoordinateSystem.Name

  Debug.Print pBritishNatGrid.GeographicCoordinateSystem.Datum.Name

  Debug.Print pBritishNatGrid.GeographicCoordinateSystem.Datum.Spheroid.Name

  Debug.Print pBritishNatGrid.Projection.Name

  Debug.Print pBritishNatGrid.FalseEasting

  Debug.Print pBritishNatGrid.FalseNorthing

The next type of function on the ISpatialReferenceFactory interface
returns a complete Set of objects. For example, the following code
shows how the CreatePredefinedProjections function returns a set that
contains all the available Projection objects supported by ArcObjects.
The set is iterated through, and the name of each Projection with the set
is obtained. These type of functions are useful for developers who may
wish to populate a pulldown selection list of available SpatialReference
objects.

SPATIALREFERENCEENVIRONMENT COCLASS



1082 • Exploring ArcObjects • Volume 2

  Dim pProjection As IProjection

  Dim pProjectionSet As ISet

  Dim pSpatialRefFact As ISpatialReferenceFactory

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Set pProjectionSet = pSpatialRefFact.CreatePredefinedProjections

  Debug.Print pProjectionSet.Count

  Dim i As Integer

  pProjectionSet.Reset

  For i = 0 To pProjectionSet.Count - 1

    Set pProjection = pProjectionSet.Next

    Debug.Print pProjection.Name

  Next i

The third type of function supported by ISpatialReferenceFactory deals
with PRJ files and strings.

CreateESRISpatialReferenceFromPRJFile takes an old or new style PRJ file
and creates either a geographic or projected coordinate system from it,
depending on the file contents. CreateESRISpatialReferenceFromPRJ is
used to create a SpatialReference based on the string buffer of an old
style PRJ file. While CreateESRISpatialReference is similar, the string
buffer must be in the format of a new PRJ file.

This code sample shows how to create a SpatialReference coordinate
system directly from a PRJ file (both old and new style files are sup-
ported):

  Dim pSpatialRefFact As ISpatialReferenceFactory

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Dim pProjCoordSys As IProjectedCoordinateSystem

  Set pProjCoordSys = _

 pSpatialRefFact.CreateESRISpatialReferenceFromPRJFile("C:\Data\UKData\county.prj")

  Debug.Print pProjCoordSys.Name

  Debug.Print pProjCoordSys.GeographicCoordinateSystem.Name

  Debug.Print pProjCoordSys.GeographicCoordinateSystem.Datum.Name

  Debug.Print pProjCoordSys.GeographicCoordinateSystem.Datum.Spheroid.Name

  Debug.Print pProjCoordSys.Projection.Name

  Debug.Print pProjCoordSys.FalseEasting

  Debug.Print pProjCoordSys.FalseNorthing

Conversely, the ExportESRISpatialReferenceToPRJFile function provides a
mechanism to take a SpatialReference object and create a new style PRJ
file from it. These four functions provide you with a way to take advan-
tage of existing routines that involve the use of PRJ files. They also
provide an easy and effective way to exchange spatial reference infor-
mation through the use of text files.

This piece of code demonstrates the CreateESRISpatialReference method,
which takes a string buffer representing the contents of a new style PRJ
file and creates a Spatial Reference coordinate system from it. If you
have an old style PRJ file, then you should use the
CreateESRISpatialReferenceFromPRJ method instead.

SPATIALREFERENCEENVIRONMENT COCLASS



Chapter 10 • Managing the spatial reference • 1083

S
p

at
ia

l R
ef

er
en

ce

  Dim pSpatialRefFact As ISpatialReferenceFactory

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Dim pSpatialReference As ISpatialReference

  Dim pProjCoordSys As IProjectedCoordinateSystem

  ' create a coordsys using the factory

  Set pSpatialReference = _

pSpatialRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_BritishNationalGrid)

  Dim pESRISpatialReference As IESRISpatialReference

  Set pESRISpatialReference = pSpatialReference

  Dim pBuffer As String * 2048

  Dim pBytes As Long

  ' Export the coord sys description to a string buffer

  pESRISpatialReference.ExportToESRISpatialReference pBuffer, pBytes

  ' Read that string buffer and create a new coord sys from it

  pSpatialRefFact.CreateESRISpatialReference pBuffer, pProjCoordSys, pBytes

  Debug.Print pProjCoordSys.Name

  Debug.Print pProjCoordSys.GeographicCoordinateSystem.Name

  Debug.Print pProjCoordSys.GeographicCoordinateSystem.Datum.Name

  Debug.Print pProjCoordSys.GeographicCoordinateSystem.Datum.Spheroid.Name

  Debug.Print pProjCoordSys.Projection.Name

  Debug.Print pProjCoordSys.FalseEasting

  Debug.Print pProjCoordSys.FalseNorthing

 ISpatialReferenceFactory2 :
 ISpatialReferenceFactory

ISpatialReferenceFactory2 creates different kinds of spatial
reference components.

GeoTransformationDefaults:
IGeoTransformationOperationSet

Creates a list of default geographic transformations.

CreatePredefinedGeographicTransform
ations: ISet

Creates a list of predefined geographic transformations.

CreateSpatialReference (srID: Long) :
ISpatialReference

Creates a predefined spatial reference from an srID.

ExportESRISpatialReferenceToPRJ
(SpatialReference: ISpatialReference)
: String

Exports a spatial reference to a PRJ string

GetPredefinedGeographicTransformatio
ns: ISet

Returns a list of predefined geographic transformations.

The ISpatialReferenceFactory2 interface implements all the methods
inherited from ISpatialReferenceFactory; it also provides additional meth-
ods.

The GeoTransformationDefaults method returns an
IGeoTransformationOperationSet that contains a default set of
geotransformations that ArcObjects calculates are required, depending
on the feature classes loaded into the Map.

If your application has a reference to a Map object, then you should be
working with this Map’s GeoTransformationOperationSet. You only need
to work directly with the ISpatialReferenceFactory2::Geotransformation-
Defaults when creating an application that does not use the Map object.
For example, you may be using the geodatabase API directly and would
still like to have automatic datum conversions.

SPATIALREFERENCEENVIRONMENT COCLASS



1084 • Exploring ArcObjects • Volume 2

The Map object is currently preloaded with two geotransformation op-
erations (NAD27 to NAD83 via NADCON and NAD83 to NAD27 via
NADCON). In other cases, ArcObjects does not try to automatically pick
a geotransformation operation based on a pair of geographic coordinate
systems. By default, the IGeoTransformationOperationSet returned by the
ISpatialReferenceFactory2 interface is empty and is not populated until
after a redraw has been performed.

Geographic transformations are covered later in this chapter.

The CreatePredefinedGeographicTransformations and the GetPredefined-
GeographicTransformations methods both return an ISet of all the pos-
sible geotransformations that ArcObjects can create. The difference
between the two is that the Set object (and its contents) returned by
GetPredefinedGeographicTransformations should be considered “read-
only”; the Set object (and its contents) returned by Create-
PredefinedGeographicTransformations can be modified in any way.

The following code shows how to create a set of predefined geographic
transformations and iterate through them, printing out their names.

  Dim pGeotrans As IGeoTransformation

  Dim pGeotransSet As ISet

  Dim pSpatialRefFact As ISpatialReferenceFactory2

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Set pGeotransSet = _

    pSpatialRefFact.CreatePredefinedGeographicTransformations

  Debug.Print pGeotransSet.Count

  Dim i As Integer

  pGeotransSet.Reset

  For i = 0 To pGeotransSet.Count - 1

    Set pGeotrans = pGeotransSet.Next

    Debug.Print pGeotrans.Name

  Next i

The CreateSpatialReference method creates a valid SpatialReference—
either a projected or geographic coordinate system, depending on the
supplied FactoryCode (here called an srID). The method returns an
ISpatialReference. The following code illustrates how to test for what
type of SpatialReference has been created. This method will raise an
error (E_INVALIDARG) if the FactoryCode number supplied is not valid.

  Dim pSpatialRefFact As ISpatialReferenceFactory2

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Dim pSpatialReference As ISpatialReference

  'esriSRProjCS_ColombiaBogota = 21892

  'esriSRGeoCS_Australian = 4003

  Set pSpatialReference = pSpatialRefFact.CreateSpatialReference(4003)

  If TypeOf pSpatialReference Is IProjectedCoordinateSystem Then

    MsgBox "You have a Projected Coordinate System"

  ElseIf TypeOf pSpatialReference Is IGeographicCoordinateSystem Then

    MsgBox "You have a Geographic Coordinate System"

  End If

SPATIALREFERENCEENVIRONMENT COCLASS



Chapter 10 • Managing the spatial reference • 1085

S
p

at
ia

l R
ef

er
en

ce

Feature classes derived from ArcSDE layers, an ArcSDE geodatabase, or
a personal geodatabase have additional requirements for a coordinate
transformation: conversion from floating point real-world units to posi-
tive integer system units for storage in the database. All coordinates must
be 32-bit positive integers between 0 and 2147483647 in ArcSDE. This
format provides better data accuracy, data integrity, and processing
speed than real numbers.

This ArcSDE conversion requires the following false origin and scale
information:

• falsex, a false origin for x-values

• falsey, a false origin for y-values

• falsez, a false origin for z-values

• falsem, a false origin for measure values

• xyunits, a scale factor to convert from world units to integer
x,y-system units

• zunits, a scale factor to convert from elevation units to integer
z- system units

• munits, a scale factor to convert from measure units to integer
m-system units

Because coordinates are often neither positive nor integer, ArcSDE
requires an offset distance (a false origin) to ensure numbers are posi-
tive and a minimum resolution multiplier (called the scale factor) to
convert real numbers to integers. The conversion algorithm is:

  ArcSDE X = truncate ((( X coordinate - false X ) * xyunits ) + 0.5 )
  ArcSDE Y = truncate ((( Y coordinate - false Y ) * xyunits ) + 0.5 )
  ArcSDE Z = truncate ((( Z coordinate - false Z ) * zunits ) + 0.5 )
  ArcSDE M = truncate ((( M coordinate - false M ) * munits ) + 0.5 )

0.5 is added to round off numbers. ArcSDE coordinates are converted
back to plane coordinates with the following formula:

  X coordinate = (( ArcSDE X / xyunits ) + false X)
  Y coordinate = (( ArcSDE Y / xyunits ) + false Y)
  Z coordinate = (( ArcSDE Z / zunits ) + false Z)
  M coordinate = (( ArcSDE M / munits ) + false M)

The false origin (false x, false y, false z) translates the origin of the layer
in either a positive or negative direction along any of the three axes. As
a rule, the false origin of a layer should be set to its minimum x,y,z
plane coordinate. The z-origin should be set to 0 for two-dimensional
layers.

A false origin is mandatory for layers that have negative world coordi-
nates. The false origin is moved so that the minimum x-coordinate will
be positive. The y-values are all positive, but you can extend the false
y origin in case other data is added to the database.

A false origin can also improve coordinate precision, especially for
maps that cover a very small area. For example, the extent of the layer
to the side has more than 10 digits, so ArcSDE will not keep all of them.

ARCSDE COORDINATE INFORMATION

-125.652, 24.229 is the current origin

All coordinates must be positive, so the false
origin is set to at least the minimum x-value

(-125.652), but probably even further to move
all features into positive space. Be sure you allow
for more features to be added in all directions. If
Hawaii and Alaska are added to the layer, you’ll
need to shift the false origin to about -180,18.

False origin of -180, 18

Current origin of -125.652, 24.229

Setting the false origin to -180, 18

2449499.93, 769499,98

2460501.31, 780500.32

You can offset the origin in the positive direction
because all coordinates are the same for the

first two digits in the x-direction (2400000),
and one digit in the y-direction. The false origin

can be set to 2400000, 700000, 0. This
preserves the precision of the numbers when

they are converted to integers.

For this layer, all x- and y-values are greater than
2.4 million and 700000 meters, respectively.



1086 • Exploring ArcObjects • Volume 2

The minimum resolution below which the precision of a plane coordi-
nate is truncated is called the scale in ArcSDE. For instance, for a layer
with units of meters and a precision of no less than half a centimeter,
the x,y scale would be set to 200. Remember that digital data is only as
accurate as its source and that z-coordinates and measures can also
have scales.

You can translate the precision of real numbers to the scale. In the
example above, the coordinates are stored to three decimal places. A
scale of 1000 converts the numbers to integers and preserves the same
resolution. Double-precision coordinates may have up to six decimal
places. ArcSDE integers can have up to ten digits (about two billion), so
you need to consider the number of digits to the left of the decimal
place plus the number to the right when deciding the system unit.

A quick look at the coordinate values of your data will show you the
number of decimal places you can use to determine the system unit.

ARCSDE COORDINATE INFORMATION



Chapter 10 • Managing the spatial reference • 1087

S
p

at
ia

l R
ef

er
en

ce

SPATIALREFERENCE ABSTRACT CLASS

The previous discussion about the utility classes made references to
some of the core SpatialReference classes. This part of the chapter docu-
ments these classes and their interfaces.

One of the primary components of the spatial reference object model is
the SpatialReference abstract class. This abstract class supports the
ISpatialReference interface, which provides you with access to funda-
mental spatial reference properties of a dataset, such as the domain
extents and coordinate precision.

The SpatialReference class specifies the ISpatialReference interface. This
interface is implemented by all three types of coordinate systems (pro-
jected, geographic, and unknown) and therefore provides the basis for
polymorphic substitution within the spatial reference model.

 ISpatialReference :
 ISpatialReferenceInfo

ISpatialReference interface

PrecisionExImpl: Long Return an opaque reference to the precision information (including z/
m awareness) implementation for this spatial reference.

PrecisionImpl: Long Return an opaque reference to the precision information
implementation for this spatial reference.

SpatialReferenceImpl: Long SpatialReferenceImpl
ZCoordinateUnit: ILinearUnit Returns the unit for the Z coordinate

Changed Notify this object that some of its parts have changed (parameter
values, z unit, etc.)

GetDomain (out XMin: Double, out
XMax: Double, out YMin: Double, out
YMax: Double)

Get the domain extent.

GetFalseOriginAndUnits (falseX:
Double, falseY: Double, xyUnits:
Double)

Get the false origin and units.

GetMDomain (out outMMin: Double, out
outMMax: Double)

Get the measure domain extent.

GetMFalseOriginAndUnits (falseM:
Double, mUnits: Double)

Get the measure false origin and units.

GetZDomain (out outZMin: Double, out
outZMax: Double)

Get the Z domain extent.

GetZFalseOriginAndUnits (falseZ:
Double, zUnits: Double)

Get the Z false origin and units.

HasMPrecision: Boolean Returns true when m-value precision information has been defined.
HasXYPrecision: Boolean Returns true when (x,y) precision information has been defined.
HasZPrecision: Boolean Returns true when z-value precision information has been defined.
IsPrecisionEqual (in otherSR:

ISpatialReference, out
IsPrecisionEqual: Boolean)

Returns TRUE when the precision information for the two spatial
references is the same.

SetDomain (in XMin: Double, in XMax:
Double, in YMin: Double, in YMax:
Double)

Set the xy domain extent

SetFalseOriginAndUnits (falseX:
Double, falseY: Double, xyUnits:
Double)

Set the false origin and units.

SetMDomain (in inMMin: Double, in
inMMax: Double)

Set the measure domain extent

SetMFalseOriginAndUnits (falseM:
Double, mUnits: Double)

Set the measure false origin and units.

SetZDomain (in inZMin: Double, in
inZMax: Double)

Set the z domain extent

SetZFalseOriginAndUnits (falseZ:
Double, zUnits: Double)

Set the Z false origin and units.

This interface provides methods to get and set various properties of a
coordinate system. The properties and methods refer to the domain,
precision, and the false origin and units of the coordinate system. Gen-
erally, most developers have no need to set or use these properties.

The most important method on this interface is the Changed method.
This is used to indicate when a Parameter of a ProjectedCoordinate-

Spatial-
Reference

IClone
IPersist

IPersistStream
IESRISpatialReference

ISpatialReference
ISpatialReference2

ISpatialReferenceInfo
ISupportedErrorInfo

The spatial reference is the top-level
class in the spatial reference model.



1088 • Exploring ArcObjects • Volume 2

System has changed. For detailed information on when to use this
method, see the section on the Parameter class in this chapter.

The SpatialReferenceImpl property is a pointer to the underlying ESRI
Projection Engine structure, which implements the coordinate system.
For example, if your SpatialReference was ProjectedCoordinateSystem,
then SpatialReferenceImpl would refer to a PE_PROJCS structure; if your
SpatialReference was a GeographicCoordinateSystem, then it would refer
to a PE_GEOGCS.

PrecisionExImpl and PrecisionImpl are both pointers to underlying data
structures used to retrieve precision information implementation for the
coordinate system. Precision, for ArcGIS, is the number of significant
digits used to store a coordinate. Since there can only be a finite num-
ber of bits in the computer representation of a coordinate, if you need
more significant digits, this will be at the cost of the extent.

Likewise, the GetDomain and SetDomain methods are used to set and
get the domain extents of a coordinate system. The domain extent is
different than the valid area of a projection. The domain extent is an
arbitrary rectangle used to determine the precision of coordinates within
that rectangle. It is possible that the domain extent is larger than the
usable area of a projection (a UTM zone, for example). Developers can
define a domain extent to control the precision of coordinates. A small
domain extent gives you more precise coordinates over a smaller area.

A larger domain extent lets you represent features over a larger geo-
graphic area but with less precision; so, if you are happy with less sig-
nificant digits, you can get a larger extent.

 ISpatialReference2 : ISpatialReference ISpatialReference extension interface

ApplyPrecision (cPoints: Long, Points:
_WKSPoint, ms: Double, zs: Double)

Applies the measure and z value precisions.

ApplyXYPrecision (cPoints: Long,
Points: _WKSPoint)

Applies the XY precision.

IsMPrecisionEqual (in otherSR:
ISpatialReference) : Boolean

Returns true if the measure precisions of the two spatial references
are the same.

IsXYPrecisionEqual (in otherSR:
ISpatialReference) : Boolean

Returns true if the XY precisions of the two spatial references are the
same.

IsZPrecisionEqual (in otherSR:
ISpatialReference) : Boolean

Returns true if the Z precisions of the two spatial references are the
same.

ISpatialReference2 is an extension to the ISpatialReference interface. It
provides additional methods for comparing the precision information of
coordinate systems. In addition, it “snaps” points to that precision.

The geometry system uses the ApplyXYPrecision and the ApplyPrecision
methods to snap geometries to the grid defined by the geometry’s
SpatialReference. This happens whenever a geometry is associated with
a feature. It is needed so that features coming from an ArcSDE data-
base, and features on the client side destined for that database, can be
accurately compared before the latter feature makes a round-trip
through the database.

A developer who has an array of point structures (WKSPoints) might
have some application-specific reason to use this method; otherwise, it
is very unlikely that a developer will need to use this method.

For a detailed explanation of the Project Engine
API, be sure to consult the ESRI ArcSDE

documentation.

SPATIALREFERENCE ABSTRACT CLASS

Precision does not snap coordinates of existing or
new geometries added to coverages or

shapefiles, but it is used when converting to a
personal geodatabase or ArcSDE, and it is also

used as the “fuzzy tolerance” when doing
topological operations.



Chapter 10 • Managing the spatial reference • 1089

S
p

at
ia

l R
ef

er
en

ce

The GeographicCoordinateSystem (GCS) coclass serves as the underlying
spatial reference component for both geographic and projected coordi-
nate system objects. This coclass implements two interfaces:
IGeographicCoordinateSystem and IGeographicCoordinateSystemEdit.

A GCS is often incorrectly called a datum, but a datum is only one part
of a GCS, along with an angular unit of measure and a prime meridian.

 IGeographicCoordinateSystem :
 ISpatialReference

IGeographicCoordinateSystem permits access to all
properties of geographic coordinate systems.

CoordinateUnit: IAngularUnit The angular unit of this geographic coordinate system.
Datum: IDatum The horizontal datum of this geographic coordinate system.
PrimeMeridian: IPrimeMeridian The prime meridian of this geographic coordinate system.
Usage: String The usage notes of this geographic coordinate system.

The IGeographicCoordinateSystem interface has properties that will
return a reference to the PrimeMeridian, Datum, and CoordinateUnit
objects that make up a GCS. These properties are useful in determining
the characteristics of a geographic coordinate system.

The following code shows how to retrieve information about the com-
ponent parts of a geographic coordinate system.

  Dim pGeographicCoordinateSystem As IGeographicCoordinateSystem

  Dim pSpatRefFact As ISpatialReferenceFactory

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Set pGeographicCoordinateSystem = _

    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_OSGB1936)

  Dim pDatum As IDatum

  Set pDatum = pGeographicCoordinateSystem.Datum

  Debug.Print pDatum.Name

  Dim pSpheroid As ISpheroid

  Set pSpheroid = pDatum.Spheroid

  Debug.Print pSpheroid.Name

  Debug.Print pSpheroid.Flattening

  Debug.Print pSpheroid.SemiMajorAxis

  Debug.Print pSpheroid.SemiMinorAxis

  Dim pPrimeMeridian As IPrimeMeridian

  Set pPrimeMeridian = pGeographicCoordinateSystem.PrimeMeridian

  Debug.Print pPrimeMeridian.Name

  Debug.Print pPrimeMeridian.Longitude

  Dim pUnit As IUnit

  Set pUnit = pGeographicCoordinateSystem.CoordinateUnit

  Debug.Print pUnit.Name

Geographic-
Coordinate-

System

IGeographicCoordinate-
System

IGeographicCoordinate-
SystemEdit

Spatial-
Reference

ISpatialReference

A geographic coordinate system (GCS)
defines locations on the earth using a

three-dimensional spherical surface.

GEOGRAPHICCOORDINATESYSTEM COCLASS



1090 • Exploring ArcObjects • Volume 2

 IGeographicCoordinateSystemEdit :
 IUnknown

Defines the properties for a geographic coordinate system.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, useage: Variant, Datum:
Variant, PrimeMeridian: Variant,
geographicUnit: Variant)

Defines the properties for a geographic coordinate system.

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
useage: String, Datum: IDatum,
PrimeMeridian: IPrimeMeridian,
geographicUnit: IAngularUnit)

Defines the properties for a geographic coordinate system.

The IGeographicCoordinateSystemEdit interface allows you to establish a
geographic coordinate system based on properties such as Name, Da-
tum coclass, PrimeMeridian, and CoordinateUnit. This is accomplished
with IGeographicCoordinateSystemEdit::Define.

The following code demonstrates how to use the Define method to
create a user-defined geographic coordinate system. The
ISpatialReferenceFactory allows you to create the Datum,
PrimeMeridian, and AngularUnit component parts. These components
can also be created using a similar Define method available on their
classes.

  Dim pUserDefinedGeogCS As IGeographicCoordinateSystem

  Dim pSpatRefFact As ISpatialReferenceFactory

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pDatum As IDatum

  Set pDatum = pSpatRefFact.CreateDatum(esriSRDatum_OSGB1936)

  Dim pPrimeMeridian As IPrimeMeridian

  Set pPrimeMeridian = _

    pSpatRefFact.CreatePrimeMeridian(esriSRPrimeM_Greenwich)

  Dim pUnit As IUnit

  Set pUnit = pSpatRefFact.CreateUnit(esriSRUnit_Degree)

  Dim pGCSEdit As IGeographicCoordinateSystemEdit

  Set pGCSEdit = New GeographicCoordinateSystem

  pGCSEdit.Define "UserDefined Geographic Coordinate System", _

    "UserDefined GCS", _

    "UserDefined", _

    "User Defined Geographic Coordinate System based on OSGB1936", _

    "Suitable for the UK", _

    pDatum, _

    pPrimeMeridian, _

    pUnit

  ' QI for the result

  Set pUserDefinedGeogCS = pGCSEdit

  Debug.Print pUserDefinedGeogCS.Name

GEOGRAPHICCOORDINATESYSTEM COCLASS



Chapter 10 • Managing the spatial reference • 1091

S
p

at
ia

l R
ef

er
en

ce

Alternatively, it is possible to make use of the IGeographicCoordinate-
SystemDialog to provide an intuitive user interface with which to create a
new geographic coordinate system.

  Dim pGeographicCoordinateSystem As IGeographicCoordinateSystem

  Dim pGCSDialog As IGeographicCoordinateSystemDialog

  Set pGCSDialog = New GeographicCoordinateSystemDialog

  Set pGeographicCoordinateSystem = pGCSDialog.DoModalCreate(0)

  Debug.Print pGeographicCoordinateSystem.Name

The following C++ code shows how the DefineEx method can be used.
It uses a SpatialReferenceFactory to create the Datum, PrimeMeridian,
and Unit components.

// Smart pointer variables used

IDatumPtr ipDatum;

IPrimeMeridianPtr ipPrimeMeridian;

IUnitPtr ipUnit;

IAngularUnitPtr ipAngularUnit;

// Create the factory and the component parts

ISpatialReferenceFactoryPtr ipFactory(CLSID_SpatialReferenceEnvironment);

ipFactory->CreateDatum(esriSRDatum_OSGB1936,&ipDatum);

ipFactory->CreatePrimeMeridian(esriSRPrimeM_Greenwich,&ipPrimeMeridian);

ipFactory->CreateUnit(esriSRUnit_Degree,&ipUnit);

IGeographicCoordinateSystemEditPtr ipGeoCSEdit(CLSID_GeographicCoordinateSystem);

IGeographicCoordinateSystemPtr ipGCS;

// QI for the AngularUnit from the Unit

// - this is achieved by the SmartPointers

ipAngularUnit = ipUnit;

// Make the string descriptions

CComBSTR name(_T("User Defined Geographic Coordinate System"));

CComBSTR alias(_T("UserDefined"));

CComBSTR abbreviation(_T("User"));

CComBSTR remarks(_T("User Define GCS based on OSGB1936"));

CComBSTR useage(_T("Suitable for the UK"));

// Make the call

HRESULT hr;

hr = ipGeoCSEdit->DefineEx(name,

alias,

abbreviation,

remarks,

useage,

ipDatum,

ipPrimeMeridian,

ipAngularUnit);

// QI for the result
ipGCS = ipGeoCSEdit;

DefineEx is a C++-friendly method that can be
used to create a user-defined geographic

coordinate system. It does exactly the same job
as the Define method. The difference between
the two is that the parameters in the Define

method are all defined as optional and are
passed in as Variants. This can make for

cumbersome programming within a C++
environment, so the DefineEx method is

provided and the C++ programmer does not
need to create Variants. VB programmers will

not see the DefineEx appear in the IntelliSense
list, while C++ programmers will see both

methods.

GEOGRAPHICCOORDINATESYSTEM COCLASS

Dialog box for a new geographic coordinate
system



1092 • Exploring ArcObjects • Volume 2

A Datum object represents a reference system for latitude–longitude
coordinates. It is defined by a spheroid and the spheroid’s position
relative to the center of the earth.

The Datum coclass creates a datum. A Datum object in ArcObjects
contains a reference to its Spheroid.

 IDatum : ISpatialReferenceInfo IDatum defines properties of all horizontal datums.

Spheroid: ISpheroid The spheroid of this horizontal datum.

The IDatum interface has one property, its Spheroid. The IDatumEdit
interface has two methods, Define and DefineEx. Both perform the same
function, except that DefineEx is geared toward the C++ developer.

 IDatumEdit : IUnknown Defines the properties of a horizontal datum.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, Spheroid: Variant)

Defines the properties of a horizontal datum

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
Spheroid: ISpheroid)

Defines the properties of a horizontal datum.

The IDatumEdit interface creates a user-defined Datum object. Please
refer to the code example following the ISpheroid interface of the Spher-
oid object.

The Spheroid object models the approximate shape of the earth’s sur-
face. A spheroid that best fits one region is not necessarily the most
ideal for another region.

 ISpheroidEdit : IUnknown Defines the properties of a spheroid.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, majorAxis: Variant, Flattening:
Variant)

Defines the properties of a spheroid.

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
majorAxis: Double, Flattening: Double)

Defines the properties of a spheroid.

To see how the DefineEx method could be used with C++, please refer
to the IGeographicCoordinateSystemEdit::DefineEx method.

 ISpheroid : ISpatialReferenceInfo ISpheroid defines properties of all spheroids.

Flattening: Double The flattening ratio of this spheroid.
SemiMajorAxis: Double The semi-major axis length of this spheroid.
SemiMinorAxis: Double The semi-minor axis length of this spheroid.

The ISpheroid interface returns the properties that make up a spheroid:
its flattening and its semimajor and semiminor axes.

The following piece of code illustrates how to define a Datum using a
Spheroid that has been created using the ISpheroidEdit::Define method.

Datum
IDatum

IDatumEdit

While a spheroid approximates the
shape of the earth, a datum defines the

position of the spheroid relative to the
center of the earth. A datum provides a
frame of reference for measuring loca-

tions on the surface of the earth.

Earth-centered
datum

Earth's surface

Local
datum

The relationship between an earth-based datum
and a local datum

DATUM AND SPHEROID COCLASSES

Spheroid
ISpheroid

ISpheroidEdit

The shape and size of a geographic
coordinate system’s surface is defined by
a sphere or spheroid. Although the earth

is best represented by a spheroid, the
earth is sometimes treated as a sphere

to make mathematical calculations easier.
However, to maintain accuracy for large-

scale maps (scales of 1:1,000,000 or
larger), a spheroid is necessary to repre-

sent the shape of the earth.

Polar axis
(Semiminor axis)

Equatorial axis
(Semimajor axis)

The semimajor and semiminor axes of a
spheroid



Chapter 10 • Managing the spatial reference • 1093

S
p

at
ia

l R
ef

er
en

ce

The last two Define parameters are the semimajor axis and the flattening.
The semimajor axis is the equatorial radius of the new spheroid, while
the flattening is represented as one minus the ratio of polar radius to
equatorial radius.

Prior to using the Spheroid created by the Define method (as a param-
eter in the IDatumEdit::Define method), you must QI for it from
SpheroidEdit.

  Dim pSpheroidEdit As ISpheroidEdit

  Dim pSpheroid As ISpheroid

  Set pSpheroidEdit = New Spheroid

  pSpheroidEdit.Define "UserDefined Spheroid", _

    "UserDefined", _

    "UserDefined", _

    "Canada Spheroid", _

    6378135, _

    1 / 298.257223563

  'Note - to use the spheroid in DatumEdit::Define

  'we must QI from the SpheroidEdit first.

  Set pSpheroid = pSpheroidEdit

  Dim pDatumEdit As IDatumEdit

  Dim pDatum As IDatum

  Set pDatumEdit = New Datum

  pDatumEdit.Define "CAN2000", _

    "TRANSCAN", _

    "CAN", _

    "New Datum for Canada", _

    pSpheroid

  Set pDatum = pDatumEdit

  'Get the spheroid name

  Debug.Print pDatum.Name

  Debug.Print pSpheroid.Name

  Debug.Print pSpheroid.Abbreviation

  Debug.Print pSpheroid.Alias

  Debug.Print pSpheroid.Remarks

  Debug.Print pSpheroid.Flattening

  Debug.Print pSpheroid.SemiMajorAxis

  Debug.Print pSpheroid.SemiMinorAxis

DATUM AND SPHEROID COCLASSES



1094 • Exploring ArcObjects • Volume 2

The PrimeMeridian coclass implements IPrimeMeridian and
IPrimeMeridianEdit.

 IPrimeMeridian : ISpatialReferenceInfo IPrimeMeridian defines properties of all prime meridians.

Longitude: Double The longitude value of this prime meridian.

Longitude is the value of the location of the PrimeMeridian that is used
to define a geographic coordinate system. In this example, Paris is set as
the prime meridian at 2o 20' 14".025 east of Greenwich.

  Dim pSpatRefFact As ISpatialReferenceFactory

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pPrimeMeridian As IPrimeMeridian

  Set pPrimeMeridian = pSpatRefFact.CreatePrimeMeridian(esriSRPrimeM_Paris)

  Debug.Print pPrimeMeridian.Name

  Debug.Print pPrimeMeridian.Longitude

 IPrimeMeridianEdit : IUnknown Defines the properties of the prime meridian.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, Longitude: Variant)

Defines the properties of the prime meridian.

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
Longitude: Double)

Defines the properties of the prime meridian.

When using the Define or DefineEx methods on IPrimeMeridianEdit, the
value given for the Longitude should be decimal degrees. The next
example defines a new prime meridian for Timbuktu, in Mali, West
Africa. It is 2o 59' west of Greenwich:

  Dim pPrimeMeridian As IPrimeMeridian

  Dim pPrimeMeridianEdit As IPrimeMeridianEdit

  Set pPrimeMeridianEdit = New PrimeMeridian

  pPrimeMeridianEdit.Define "Timbuktu Prime Meridian", _

    "Timbuktu", "TBKU", "All the way to Timbuktu", 2.983

  Set pPrimeMeridian = pPrimeMeridianEdit

  Debug.Print pPrimeMeridian.Longitude

  Debug.Print pPrimeMeridian.Remarks

To list all predefined PrimeMeridians and their Longitude values sup-
ported by ArcObjects, do the following:

  Dim pPrimeMeridian As IPrimeMeridian

  Dim pPrimeMeridianSet As ISet

  Dim pSpatialRefFact As ISpatialReferenceFactory2

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Set pPrimeMeridianSet = pSpatialRefFact.CreatePredefinedPrimeMeridians

  Debug.Print pPrimeMeridianSet.Count

  Dim i As Integer

  pPrimeMeridianSet.Reset

  For i = 0 To pPrimeMeridianSet.Count - 1

    Set pPrimeMeridian = pPrimeMeridianSet.Next

    Debug.Print pPrimeMeridian.Name & " " & pPrimeMeridian.Longitude

  Next i

Prime-
Meridian

IPrimeMeridian
IPrimeMeridianEdit

A meridian is a reference line on the
earth’s surface formed by the intersection

of the surface with a plane passing
through both poles. This line is identified

by its longitude. Meridians run north–
south between the poles. A prime merid-

ian defines the origin of the longitude
values for a geographic coordinate

system.

PRIMEMERIDIAN COCLASS

Most geographic coordinate systems use
Greenwich, England, as their prime meridian.
Other prime meridians defined in the POSC/

EPSG model, such as Paris, Rome, and Oslo, are
available in ArcObjects. These are defined in

relation to Greenwich.



Chapter 10 • Managing the spatial reference • 1095

S
p

at
ia

l R
ef

er
en

ce

AngularUnit
IAngularUnit

IAngularUnitEdit
IUnit

An angular unit is used by geographic
coordinate systems and can be degrees

or grads.

LinearUnit
ILinearUnit

ILinearUnitEdit
IUnit

A linear unit is used by projected coordi-
nate systems and can be feet, meters, or

inches.

A unit is defined by its name and the conversion factor between meters
and the unit, if linear, or radians and the unit, if angular. The
ConversionFactor property on the IUnit interface represents this.

Linear units, such as meters and feet, are used by
ProjectedCoordinateSystems, and angular units, such as degrees, are used
by GeographicCoordinateSystems.

To view all the predefined units available in ArcObjects, run the follow-
ing code. You will notice that the ConversionFactor is the same as the
RadiansPerUnit or MetersPerUnit property.

  Dim pAngularUnit As IAngularUnit

  Dim pLinearUnit As ILinearUnit

  Dim pUnitSet As ISet

  Dim pSpatialRefFact As ISpatialReferenceFactory2

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Dim i As Integer

  Set pUnitSet = pSpatialRefFact.CreatePredefinedAngularUnits

  Debug.Print pUnitSet.Count

  pUnitSet.Reset

  For i = 0 To pUnitSet.Count - 1

    Set pAngularUnit = pUnitSet.Next

    Debug.Print pAngularUnit.Name & " " & pAngularUnit.ConversionFactor & _

       " " & pAngularUnit.RadiansPerUnit

  Next i

  Set pUnitSet = pSpatialRefFact.CreatePredefinedLinearUnits

  Debug.Print pUnitSet.Count

  pUnitSet.Reset

  For i = 0 To pUnitSet.Count - 1

    Set pLinearUnit = pUnitSet.Next

    Debug.Print pLinearUnit.Name & " " & pLinearUnit.ConversionFactor & _

      " " & pLinearUnit.MetersPerUnit

  Next i

Sometimes, especially when dealing with North American data on a State
Plane Coordinate System, you may find that different datasets do not
appear to align correctly with each other when projected; the misalign-
ment can be significant. In some cases, this may be due to the wrong
Unit being used within the ProjectedCoordinateSystem. For example, the
data may be in U.S. feet while a LinearUnit of meters is being used. The
following code shows how to check what units are being used by a
ProjectedCoordinateSystem.

  Dim pUnit As ILinearUnit

  Dim pGeoDataset As IGeoDataset

  Dim pLayer As IFeatureLayer

  Dim pProjCoordSys As IProjectedCoordinateSystem

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Set pMxDoc = Application.Document

ANGULARUNIT AND LINEARUNIT COCLASSES

Predefined angular units in ArcObjects
Name

Second_Centesimal
Grad

Mil_6400
Gon

Degree
Microradian

Minute
Radian

Minute_Centesimal
Second

RadiansPerUnit
1.5707963267949E-06
0.015707963267949
9.8174770424681E-04
0.015707963267949
1.74532925199433E-02
0.000001
2.90888208665722E-04
1
1.5707963267949E-04
4.84813681109536E-06

Predefined linear units in ArcObjects
Name

Chain_Benoit_1895_B
Link_Sears

Meter_German
Foot_Indian

Link_Benoit_1895_B
Yard_Benoit_1895_A

Chain_US
Foot_Indian_1937

Foot_Benoit_1895_A
Link_US

Foot_Indian_1962
Meter

Chain_Benoit_1895_A
Mile_US

Foot_Indian_1975
Foot

Kilometer
Yard_Indian
Link_Clarke

Foot_US
Link_Benoit_1895_A

Yard_Clarke
Yard_Indian_1937

Yard_Sears
Foot_Clarke

Foot_1865
Yard_Benoit_1895_B

Chain_Clarke
Yard_Indian_1962

Foot_Sears
Fathom

Foot_Benoit_1895_B
Yard_Indian_1975

Chain_Sears
Nautical_Mile

MetersPerUnit
20.1167824943759
0.201167651215526
1.00000135965
0.304799510248147
0.201167824943759
0.9143992
20.1168402336805
0.30479841
0.304799733333333
0.201168402336805
0.3047996
1
20.1167824
1609.34721869444
0.3047995
0.3048
1000
0.914398530744441
0.2011661949
0.304800609601219
0.201167824
0.914391795
0.91439523
0.914398414616029
0.304797265
0.304800833333333
0.914399204289812
20.11661949
0.9143988
0.304799471538676
1.8288
0.304799734763271
0.9143985
20.1167651215526
1852



1096 • Exploring ArcObjects • Volume 2

  Set pMap = pMxDoc.FocusMap

  Set pLayer = pMap.Layer(0)

  Set pGeoDataset = pLayer

  Set pProjCoordSys = pGeoDataset.SpatialReference

  Set pUnit = pProjCoordSys.CoordinateUnit

  Debug.Print pUnit.Name

  Debug.Print pUnit.ConversionFactor

 IUnit : ISpatialReferenceInfo IUnit identifies a linear or angular unit of measure within a
spatial reference system.

ConversionFactor: Double Returns the conversion factor of the unit.

 IAngularUnit : IUnit Properties of angular unit.

RadiansPerUnit: Double Returns radians per angular unit.

 IAngularUnitEdit : IUnknown Defines the properties of an angular unit.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, RadiansPerUnit: Variant)

Defines the properties of an angular unit.

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
RadiansPerUnit: Double)

Defines the properties of an angular unit.

 ILinearUnit : IUnit Properties of the linear unit.

MetersPerUnit: Double Returns the meters per unit for a coordinate system.

 ILinearUnitEdit : IUnknown Defines the properties of the linear unit.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, MetersPerUnit: Variant)

Defines the properties of the linear unit.

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
MetersPerUnit: Double)

Defines the properties of the linear unit.

The IAngularUnit interface has one property, RadiansPerUnit.

If you used the Define method to create your own angular unit object,
you would have to know how many radians equate to one of your
units. Likewise, the ILinearUnit has a similar property, MetersPerUnit.

If you wanted to define your own linear unit, you would have to know
how many meters equate to one of your units. For the vast majority of
developers, the predefined units provided by ArcObjects are sufficient
for their requirements.

The only real purpose for using the Define methods comes when work-
ing with data that has been captured in an undefined unit of measure-
ment. The DefineEx methods on these interfaces perform the same
functions as the Define methods, except that they are C++ friendly.

Parameters are defined in the same units as the
coordinate system. That is, linear parameters,

such as false easting and false northing, are
defined in the same linear units as the projected

coordinate system.

Angular parameters, such as central meridian
and standard parallels, are the same angular

units as the geographic coordinate system.

ANGULARUNIT AND LINEARUNIT COCLASSES



Chapter 10 • Managing the spatial reference • 1097

S
p

at
ia

l R
ef

er
en

ce

The ProjectedCoordinateSystem coclass creates a ProjectedCoordinate-
System (PCS).

A PCS is composed of a GeographicCoordinateSystem, a Projection, a
Linear Unit, and a set of Parameters—these are shown as properties on
the interface.

Two interfaces are supported by this coclass:
IProjectedCoordinateSystem and IProjectedCoordinateSystemEdit.

 IProjectedCoordinateSystem :
 ISpatialReference

IProjectedCoordinateSystem defines properties and
methods for all projected coordinate systems.

Azimuth: Double The azimuth of a projected coordinate system.
CentralMeridian (in inDegrees: Boolean)

: Double
The central meridian (Lambda0) of a projected coordinate system.

CentralParallel: Double The central parallel (Phi 0) of a projected coordinate system.
CoordinateUnit: ILinearUnit The linear unit of a projected coordinate system.
FalseEasting: Double The false easting (X0) of a projected coordinate system.
FalseNorthing: Double The false northing (Y0) of a projected coordinate system.
GeographicCoordinateSystem:

IGeographicCoordinateSystem
The geographic coordinate system of a projected coordinate system.

Horizon (in horizonIndex: Long) :
esriSRHorizon

The mathematical limits of a projected coordinate system.

HorizonCount: Long The number of shapes that describe the limits of a ProjCS.
LatitudeOf1st: Double The latitude of the first point (Phi 1) of a projected coordinate

system.
LatitudeOf2nd: Double The latitude of the second point (Phi 2) of a projected coordinate

system.
LatitudeOfOrigin: Double The latitude of the origin (Phi 0) of a projected coordinate system.
LongitudeOf1st: Double The longitude of the first point (Lambda 1) of a projected coordinate

system.
LongitudeOf2nd: Double The longitude of the second point (Lambda 2) of a projected

coordinate system.
LongitudeOfOrigin: Double The longitude of origin (Lambda0) of a projected coordinate system.
Projection: IProjection The map projection of a projected coordinate system.
ScaleFactor: Double The scale factor (K0) of a projected coordinate system.
StandardParallel1: Double The first parallel (Phi 1) of a projected coordinate system.
StandardParallel2: Double The second parallel (Phi 2) of a projected coordinate system.
Usage: String The usage notes of a projected coordinate system.

Forward (in Count: Long, Points:
_WKSPoint)

Projects points from geographic to planar coordinates.

GetParameters (out parameters:
IParameter)

Gets the map projection parameters of a projected coordinate
system.

Inverse (in Count: Long, Points:
_WKSPoint)

Projects points from planar to geographic coordinates.

IProjectedCoordinateSystem allows you to obtain and set properties of
the PCS and also provides you with methods that are inherited from the
ISpatialReference interface.

The following code illustrates how to retrieve properties of a projected
coordinate system. This example retrieves a parameter (Azimuth) that is
not appropriate for the projected coordinate system. The dialog box to
the left is displayed.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pProjCoordSys As IProjectedCoordinateSystem

  Set pProjCoordSys = _

  pSpatRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_Argentina_1)

  Debug.Print pProjCoordSys.Azimuth

Projected
Coordinate

System

IProjectedCoordinate-
System

IProjectedCoordinate-
SystemEdit

Spatial-
Reference

IClone
IPersist

IPersistStream
IESRISpatialReference

ISpatialReference
ISpatialReference2

ISpatialReferenceInfo
ISupportedErrorInfo

A PCS is defined on a flat, two-dimen-
sional surface. Unlike a geographic

coordinate system, a PCS has the advan-
tage that lengths, angles, and areas are

constant across the two dimensions.

PROJECTEDCOORDINATESYSTEM COCLASS



1098 • Exploring ArcObjects • Volume 2

 IProjectedCoordinateSystemEdit :
IUnknown

Defines the properties of a projected coordinate system.

Define (Name: Variant, Alias: Variant,
Abbreviation: Variant, Remarks:
Variant, useage: Variant, gcs: Variant,
projectedUnit: Variant, Projection:
Variant, parameters: Variant)

Defines the properties of a projected coordinate system.

DefineEx (Name: String, Alias: String,
Abbreviation: String, Remarks: String,
useage: String, gcs:
IGeographicCoordinateSystem,
projectedXYUnit: ILinearUnit,
Projection: IProjection, parameters:
IParameter)

Defines the properties of a projected coordinate system.

The IProjectedCoordinateSystemEdit interface provides you with the
Define method to create your own PCS object based on parameters such
as Name, GeographicCoordinateSystem, projectedUnit, Projection and, if
necessary, projection Parameters.
  'Create a factory
  Dim pSpatRefFact As ISpatialReferenceFactory2
  Set pSpatRefFact = New SpatialReferenceEnvironment

  'Create a projection, gcs and unit using the factory
  Dim pProjection As IProjection
  Dim pGCS As IGeographicCoordinateSystem
  Dim pUnit As IUnit
  Dim pLinearUnit As ILinearUnit
  Set pProjection = _
    pSpatRefFact.CreateProjection(esriSRProjection_Sinusoidal)
  Set pGCS = _
    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)
  Set pUnit = pSpatRefFact.CreateUnit(esriSRUnit_Meter)
  Set pLinearUnit = pUnit

  'get the default parameters from the Projection
  Dim pParams(16) As IParameter
  pProjection.GetDefaultParameters pParams(0)

  'create a projected coordinate system using the Define method
  Dim pProjCoordSysEdit As IProjectedCoordinateSystemEdit
  Dim pProjCoordSys As IProjectedCoordinateSystem
  Set pProjCoordSysEdit = New ProjectedCoordinateSystem
  pProjCoordSysEdit.Define "Newfoundland", _
    "NF_LAB", "NF", "Most Eastern Province in Canada", _
    "When making maps of Newfoundland", pGCS, _
    pLinearUnit, pProjection, pParams

It is also possible to use the IProjectedCoordinateSystemDialog to pro-
vide an intuitive user interface to create a projected coordinate system.
  Dim pProjCoordSysDialog As IProjectedCoordinateSystemDialog
  Set pProjCoordSysDialog = New ProjectedCoordinateSystemDialog
  Dim pProjCoordSys As IProjectedCoordinateSystem
  Set pProjCoordSys = pProjCoordSysDialog.DoModalCreate(0)

Dialog box for a projected coordinate system

PROJECTEDCOORDINATESYSTEM COCLASS

For a used-defined PCS, ESRI recommends
creating a predefined or factory PCS that is
“close” to what is required—essentially the

same projection. Then, either use the parameter
setting methods on IProjectedCoordinate-

System to change parameter values or use the
Define method to plug in only those new

components that are different (probably only a
different GCS).



Chapter 10 • Managing the spatial reference • 1099

S
p

at
ia

l R
ef

er
en

ce

PARAMETER COCLASS

Parameter
IParameter

A parameter defines and modifies the
properties of a projected coordinate

system.

Parameters are required by both projected coordinate systems and
geographic transformations. For example, to define a Lambert Azimuthal
Equal Area projected coordinate system, only the central meridian and
latitude of origin parameters are required by the mathematic algorithm
that actually performs the projection.

 IParameter : ISpatialReferenceInfo Get properties of projection parameters.

Index: Long Returns the index of a particular projection parameter.
Value: Double The numerical value of a projection parameter.

The IParameter interface has an Index and a Value. The value is self-
explanatory and refers to the internal array that holds the parameters for
a projected coordinate system or a geographic transformation.

The ISpatialReferenceFactory can be used to create new parameters. Here
is an example of how to use the CreateParameter method and the
esriSR_ParameterType enumeration. The SpatialReferenceFactory provides
default values for each type of parameter. The values can easily be
changed.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pParameter As IParameter

  Set pParameter = _

    pSpatRefFact.CreateParameter(esriSRParameter_LatitudeOfOrigin)

  Debug.Print pParameter.Name

  Debug.Print pParameter.Index

  Debug.Print pParameter.Value

  pParameter.Value = 45

  Debug.Print pParameter.Value

The following code demonstrates how to get the parameters from a
map’s projected coordinate system. These parameters are passed to the
client by reference; it is then possible to modify the value of the param-
eters directly. If this is done, then the Changed method on the
ProjectedCoordinateSystem must be called. The following code illustrates
getting the Parameters from a map’s projected coordinate system.

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  'Get the projected coordinate system from the IMap

  Dim pPcs As IProjectedCoordinateSystem

  Set pPcs = pMap.SpatialReference

  'Create an array of IParameters with 16 elements

  Dim pParams(16) As IParameter

  'Pass the address of the first element of the array and get the parameters

As a matter of style, ESRI discourages developers
from using the Parameter object approach with

a script to change the values of a projected
coordinate system or geographic transformation.

They can be difficult to use and are really only
useful when writing user interfaces that need to

generically manipulate projection parameters.
Instead, it is recommended that the developer

calls the appropriate method on the IProjected-
CoordinateSystem interface to modify a

parameter directly.

ESRI also recommends using the Spatial-
ReferenceEnvironment to create Parameter

objects.

The following is a list of all ArcObjects enumera-
tions for parameters that are appropriate for

projected coordinate systems:

esriSRParameter_Azimuth
esriSRParameter_CentralMeridian
esriSRParameter_CentralParallel

esriSRParameter_FalseEasting
esriSRParameter_FalseNorthing
esriSRParameter_LatitudeOf1st
esriSRParameter_LatitudeOf2nd

esriSRParameter_LatitudeOfCenter
esriSRParameter_LatitudeOfOrigin
esriSRParameter_LongitudeOf1st
esriSRParameter_LongitudeOf2nd

esriSRParameter_LongitudeOfCenter
esriSRParameter_LongitudeOfOrigin
esriSRParameter_StandardParallel1
esriSRParameter_StandardParallel2

The following is a list of the ArcObjects
enumerations for parameters appropriate for

geographic transformations:

esriSRParameter_NameDataset
esriSRParameter_ScaleDifference

esriSRParameter_ScaleFactor
esriSRParameter_XAxisRotation

esriSRParameter_XAxisTranslation
esriSRParameter_YAxisRotation

esriSRParameter_YAxisTranslation
esriSRParameter_ZAxisRotation

esriSRParameter_ZAxisTranslation



1100 • Exploring ArcObjects • Volume 2

  pPcs.GetParameters pParams(0)

  Dim pParam As IParameter

  ' iterate through the array of Parameters

  Dim i As Integer

  For i = 0 To 15

    Set pParam = pParams(i)

    If Not (pParam Is Nothing) Then

      Debug.Print pParam.Name, pParam.Index, pParam.Value

    End If

  Next i

The following code shows how to change a Parameter using the same
variables.

  'Pass the address of the first element of the array and get the parameters

  pPcs.GetParameters pParams(0)

  Dim pParam As IParameter

  ' Get the Central Meridian Parameter

  Set pParam = pParams(2)

  'set the new value

  pParam.Value = 123

  'tell the projected coordinate system that it has changed

  pPcs.Changed

PARAMETER COCLASS



Chapter 10 • Managing the spatial reference • 1101

S
p

at
ia

l R
ef

er
en

ce

The Projection coclass creates a projection. A projection uses math-
ematical formulas to relate spherical 3D coordinates on the globe to flat,
2D planar coordinates. Along with a GCS, Projection is one of the com-
ponents that is used to create a ProjectedCoordinateSystem.

 IProjection : ISpatialReferenceInfo IProjection defines properties of all map projections.

Classification: String The classification of a map projection.
Usage: String The usage notes of a map projection.

GetDefaultParameters (parameters:
IParameter)

Returns the set of default parameters needed for this projection.

The Classification of a projection typically refers to the type of projec-
tion. For example, if the projection is a Lambert Azimuthal Equal Area,
then the classification is Azimuthal/Planar, Equal Area.

Likewise, using the same example projection above, the Usage can have
a comment such as, “Maintains small area, good for up to a hemi-
sphere, often used for polar data”.

Not all ArcObjects predefined projection objects return Classification
and Usage with descriptive strings.

GetDefaultParameters returns the set of parameters, with default values,
needed for this projection. This method can be used to obain a list of
valid parameters for a projection to pass to IProjectedCoordinateSystem-
Edit::Define. Therefore, before using the parameters, their correct values
should be set.

The following example uses the GetDefaultParameters method to retrieve
a set of the required parameters for a projection. Next, set some values
and create a new projected coordinate system using these parameters,
then make a call to IProjectedCoordinateSystem::GetParameters to verify
that the parameters have been set.

  'Create a factory

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  'Create a projection, gcs and unit using the factory

  Dim pProjection As IProjection

  Dim pGCS As IGeographicCoordinateSystem

  Dim pUnit As IUnit

  Dim pLinearUnit As ILinearUnit

  Set pProjection = _

    pSpatRefFact.CreateProjection(esriSRProjection_Sinusoidal)

  Set pGCS = _

    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

  Set pUnit = pSpatRefFact.CreateUnit(esriSRUnit_Meter)

  Set pLinearUnit = pUnit

  'get the default parameters from the Projection

  Dim i As Integer

  Dim pParameter As IParameter

Projection
IProjection

A projection specifies the mathematical
transformation to convert between
geographic and planar coordinates.

PROJECTION COCLASS



1102 • Exploring ArcObjects • Volume 2

  Dim pParams(16) As IParameter

  pProjection.GetDefaultParameters pParams(0)

  'Iterate through the Parameters and print out their name and value

  For i = 0 To 15

    Set pParameter = pParams(i)

    If Not (pParameter Is Nothing) Then

      Debug.Print pParameter.Name, pParameter.Index, pParameter.Value

    End If

  Next i

  'reset one of the parameter values

  Set pParameter = pParams(2)

  pParameter.Value = 45

  'create a projected coordinate system using the Define method

  Dim pProjCoordSysEdit As IProjectedCoordinateSystemEdit

  Dim pProjCoordSys As IProjectedCoordinateSystem

  Set pProjCoordSysEdit = New ProjectedCoordinateSystem

  pProjCoordSysEdit.Define "Newfoundland", _

    "NF_LAB", _

    "NF", _

    "Most eastern Province in Canada", _

    "When making maps of Newfoundland", _

    pGCS, _

    pLinearUnit, _

    pprojeciont, _

    pParams

  'QI to get out projected coordinate system

  Set pProjCoordSys = pProjCoordSysEdit

  'Get the parameters from your new projected coordinate system and verify

  'that the parameter value was changed.

  pProjCoordSys.GetParameters pParams(0)

  'Iterate through the Parameters and print their name and value

  For i = 0 To 15

    Set pParameter = pParams(i)

    If Not (pParameter Is Nothing) Then

      Debug.Print pParameter.Name, pParameter.Index, pParameter.Value

    End If

  Next i

PROJECTION COCLASS



Chapter 10 • Managing the spatial reference • 1103

S
p

at
ia

l R
ef

er
en

ce

Unknown-
Coordinate-

System

IUnknownCoordinate-
System

Spatial-
Reference

ISpatialReference

The unknown coordinate system is used
when the coordinate system is not

known or is unavailable. This object is
used to maintain precision information

for coordinates, so geometry operations
will have a consistent tolerance with

which to work.

The UnknownCoordinateSystem coclass provides you with a way to
create a spatial reference for a dataset without defining a geographic or
projected coordinate system.

This is accomplished using the IUnknownCoordinateSystem interface.
This functionality is helpful when you possess spatial reference informa-
tion about a dataset, such as domain extents and false origin and units,
but do not need to assign a geographic or projected coordinate system
at the time of data creation.

 IUnknownCoordinateSystem :
 ISpatialReference

Unknown coordinate system

Likewise, when a FeatureClass is loaded into a Map, if there is no associ-
ated projection information (such as a PRJ file), then ArcObjects will
inspect the coordinate values of the dataset and try to determine
whether or not the FeatureClass is in projected or geographic coordi-
nates.

If the range and magnitude of the coordinate values indicate that the
data is projected, then an UnknownCoordinateSystem is assigned. This is
because it is impossible to infer the projection and type of units used
from the raw coordinate values. This approach still allows for precision
information to be maintained.

UNKNOWNCOORDINATESYSTEM COCLASS



1104 • Exploring ArcObjects • Volume 2

Moving your data between projected coordinate systems may also in-
volve transforming between geographic coordinate systems. Because the
geographic coordinate systems contain datums that are based on sphe-
roids, a geographic transformation also changes the underlying spher-
oid. Other frequently used terms for a geographic transformation in-
clude “datum shift” and “geodetic transformation”.

A geographic transformation is a mathematical operation that takes the
coordinates of a point in one geographic coordinate system and returns
the coordinates of the same point in another geographic coordinate
system. There is also an inverse transformation to allow coordinates to
be put back to the first coordinate system from the second. There are
many different types of mathematical operations used to achieve this
task.

To illustrate the above, consider the following scenario. You have a
known geographic position in the State of Kansas: 97.32o W, 37.68o N.
This same location, when displayed with UTM Grid Zone 14N for Kan-
sas (based on the NAD 1927 geographic coordinate system), will have
planar coordinates of 648147.22m E, 4171434.25m N. The exact same
geographic location when using the UTM Grid Zone 14N (based on the
NAD 1983 geographic coordinate system) will have planar coordinates
of 648115.09m E, 4171640.19m N. This is a difference of -12.13 meters in
the Eastings and 204.86 meters in the Northings.

Thus, if you have two datasets that are projected, they may be on differ-
ent projected coordinate systems, and their respective coordinate sys-
tems may be based on different geographic coordinate systems. It might
not be enough to simply change the parameters of the projected coordi-
nate system. You may experience a misalignment between the two
datasets even when both are displayed using a common projected
coordinate system. The magnitude of the error will vary depending on
the geographic coordinate systems used and the relative accuracy of the
data. A geographic transformation should minimize these inaccuracies.

ArcObjects provides a number of classes that represent different math-
ematical methods for applying the geographic transformation. There are
several standard mathematical methods for transforming between da-
tums, and each has a different level of accuracy and range. These in-
clude the geocentric translation, position vector, and coordinate frame,
as well as grid-based methods. ArcObjects also provides you with the
capability to define your own geographic transformation. The following
discussion introduces the ArcObjects geographic transformation compo-
nents and how to create them. Afterwards, you will learn how to use
them.

GEOGRAPHIC TRANSFORMATIONS USING ARCOBJECTS

This diagram illustrates the difference in
Eastings between two road feature classes, one
(red) based on NAD1983, and the other (blue)

based on NAD1927.



Chapter 10 • Managing the spatial reference • 1105

S
p

at
ia

l R
ef

er
en

ce

v
Transform-

ation

ITransformation

The transformation class is the top-level
class used by both the spatial reference

and geometry models.

TRANSFORMATION ABSTRACT CLASS

Transformation is an abstract class used by both the spatial reference
and geometry models. It defines the methods on the ITransformation
interface.

 ITransformation : IUnknown Applies a function (or its inverse) to a set of points or
measures. The suffix of each method indicates the type of
parameters operated on.

TransformMeasuresFF (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Double,
outMeasures: Double)

Transforms floating point measures to floating point measures (or do
the inverse).

TransformMeasuresFI (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Double,
outMeasures: Long)

Transforms floating point measures to integer measures (or do the
inverse).

TransformMeasuresIF (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Long,
outMeasures: Double)

Transforms integer measures to floating point measures (or do the
inverse).

TransformMeasuresII (Direction:
tagesriTransformDirection, cMeasures:
Long, inMeasures: Long,
outMeasures: Long)

Transforms integer measures to integer measures (or do the inverse).

TransformPointsFF (Direction:
tagesriTransformDirection, cPoints:
Long, inPoints: Double, outPoints:
Double)

Transforms floating point points to floating point points (or do the
inverse).

TransformPointsFI (Direction:
tagesriTransformDirection, cPoints:
Long, in inPoints: Double, outPoints:
Long)

Transforms floating point points to integer points (or do the inverse).

TransformPointsIF (Direction:
tagesriTransformDirection, cPoints:
Long, inPoints: Long, outPoints:
Double)

Transforms integer points to floating point points (or do the inverse).

TransformPointsII (Direction:
tagesriTransformDirection, cPoints:
Long, inPoints: Long, outPoints: Long)

Transforms integer points to integer points (or do the inverse).

These methods in ITransformation are implemented by the transforma-
tion subclasses in both models. In the case of the spatial reference
model, the subclasses are those that provide the geographic transforma-
tions.

Enumeration tagesriTransformDirection Specifies whether to apply a forward or reverse (inverse)
transformation.

0 - esriTransformForward Specifies a forward transformation.
1 - esriTransformReverse Specifies a reverse (inverse) transformation.

The direction enumerations dictate the direction of the transformation—
forward or reverse (inverse). A geographic transformation is always
defined as converting “from” one geographic coordinate system “to”
another one. Using the reverse flag allows you to convert in the other
direction.



1106 • Exploring ArcObjects • Volume 2

The GeoTransformation abstract class defines the IGeoTransformation
interface.

 IGeoTransformation : ITransformation Defines a geographic (datum) transformation.

Name: String Returns the name of the geographic transformation.

GetSpatialReferences (out from:
ISpatialReference, out to:
ISpatialReference)

Returns the from and to spatial references for the transformation.

PutSpatialReferences (from:
ISpatialReference, to:
ISpatialReference)

Sets the from and to spatial references for the transformation.

The IGeoTransformation interface is used as a basis for all the transfor-
mation interfaces, such as IPositionVectorTransformation,
IGeocentricTransformation, and the grid-based transformations.

The IGeoTransformation interface provides two methods,
GetSpatialReferences and PutSpatialReferences, which are used by all
transformations.

When performing a geographic transformation, all methods need to
know where the source points are coming from (the source geographic
coordinate system) and where they are going to (the target coordinate
system).

Consider a geographic transformation from NAD 1927 to NAD 1983.
With these, there are two spatial references. These are what the
PutSpatialReferences and GetSpatialReferences methods are referring to.
Either projected or geographic coordinate systems can be passed as
parameters. If a projected coordinate system is passed, the transforma-
tion object will automatically obtain its inherent geographic coordinate
system. The transformations get required parameters from the spatial
references (spheroid parameters) so they can perform the mathematics.

The following code illustrates creating a geotransformation using the
spatial reference factory and the GetSpatialReferences methods.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pGeotrans As IGeoTransformation

  Dim pFromSR As ISpatialReference

  Dim pToSR As ISpatialReference

  'mean for Great Britain

  Set pGeotrans = _

pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_OSGB1936_To_WGS1984_1)

  pGeotrans.GetSpatialReferences pFromSR, pToSR

  Debug.Print pGeotrans.Name

  Debug.Print pFromSR.Name, pToSR.Name

GeoTransform
-ation

IGeoTransformation

Transform-
ation

ITransformation

These transformations are used when
data that is held on one datum needs to
be transformed onto another datum. This
is also known as a datum transformation.

GEOTRANSFORMATION ABSTRACT CLASSOBJECTS



Chapter 10 • Managing the spatial reference • 1107

S
p

at
ia

l R
ef

er
en

ce

x

y

z

The geocentric (x,y,z) coordinate system

One of the simplest datum transformation methods is a geocentric, or
three-parameter, translation. The geocentric translation transformation
models the differences between the two datums in the x,y,z coordinate
system. One datum is defined to be centered at (0, 0, 0). The center of
the other datum is defined to be at some distance dx, dy, and dz
meters away. Usually, the transformation parameters are defined as
going “from” a local datum “to” WGS 1984 or to another geocentric
datum.

 IGeocentricTranslation :
 IGeoTransformation

3D vector transformation with 3 translation values.

GetParameters (dx: Double, dy: Double,
dz: Double)

Returns the translation values in meters for the X, Y and Z axis

PutParameters (dx: Double, dy: Double,
dz: Double)

Sets the translation values in meters for the X, Y and Z axis

The GeocentricTranslation coclass defines the IGeocentricTranslation
interface, which has two methods: GetParameters and SetParameters.
These allow the developer to set or retrieve the values for the geocentric
translation transformation. The parameters are delta x, delta y, and
delta z and are always specified in meters.

The code below shows how to use the spatial reference factory to cre-
ate a predefined geocentric translation transformation and then display
its default parameter values.

First, use the esriSRGeoTransformationType of
esriSRGeoTransformation_OSGB1936_To_WGS1984_1. This creates a
geocentric translation transformation object that converts geographic
coordinates from the OSGB1936 geographic coordinate system to the
WGS 1984 geographic coordinate system. This particular transformation
uses parameters that are mean values for Great Britain (England, Scot-
land, Wales, and Isle of Man).

Next, use esriSRGeoTransformation_OSGB1936_To_WGS1984_5; this
provides parameter values that are more specific to Wales. These param-
eter values are all taken from the POSC/EPSG database. To see the differ-
ent enumerations available within ArcObjects, use the online Help system
or the browser.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pGeocentric As IGeocentricTranslation

  Dim dx As Double

  Dim dy As Double

  Dim dz As Double

  'mean for Great Britain

  Set pGeocentric = _

    pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_OSGB1936_To_WGS1984_1)

  pGeocentric.GetParameters dx, dy, dz

  Debug.Print dx, dy, dz

ArcObjects provides the ability to generate
predefined geotransformation objects. These

predefined “factory” geotransformations are all
geometric translations apart from the Grid

Based Geotransformations, such as HARN and
NADCON, which will be covered shortly.

ArcObjects also allows you to define Position
Vector and Coordinate Frame geotransformation

objects.

GeoTrans-
formation

IGeoTransformation

Transform-
ation

ITransformation

Geocentric-
Translation

IGeocentric-
Translation

The geocentric translation transformation
uses three parameters to convert

between two geographic coordinate
systems.

GEOCENTRICTRANSLATION COCLASS



1108 • Exploring ArcObjects • Volume 2

GEOCENTRICTRANSLATION COCLASS

  'specific for Wales

  Set pGeocentric = _

  pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_OSGB1936_To_WGS1984_5)

  pGeocentric.GetParameters dx, dy, dz

  Debug.Print dx, dy, dz



Chapter 10 • Managing the spatial reference • 1109

S
p

at
ia

l R
ef

er
en

ce

MOLODENSKY TRANSFORMATION COCLASSES

The MolodenskyTransformation and AbridgedMolodenskyTransformation
coclasses both implement the IMolodensky interface.

 IMolodenskyTransformation :
 IGeoTransformation

Specify/retrieve parameters of a Molodensky
transformation.

GetParameters (dx: Double, dy: Double,
dz: Double)

Returns the dx, dy and dz parameters.

PutParameters (dx: Double, dy: Double,
dz: Double)

Sets the dx, dy and dz parameters.

These transformation methods also take three parameters (like
GeocentricTranslation): delta x, delta y, and delta z. The parameters are
always specified in meters.

These two transformations (and the GeocentricTranslation transforma-
tion) differ in the underlying mathematical formula, but the interfaces
are very similar. For more information on the mathematics, see Under-
standing Map Projections.

The following code creates an AbridgedMolodenskyTransformation
object.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pFromSR As ISpatialReference

  Dim pToSR As ISpatialReference

  Set pFromSR = _

    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_OSGB1936)

  Set pToSR = _

    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

  Dim pGeotrans As IMolodenskyTransformation

  Set pGeotrans = New AbridgedMolodenskyTransformation

  pGeotrans.PutParameters 375, -111, 431

  pGeotrans.PutSpatialReferences pFromSR, pToSR

GeoTransform
-ation

IGeoTransformation

Transform-
ation

ITransformation

Molodensky-
Transformation

IMolodensky-
Transformation

Abridged-
Molodensky-

Transformation

IMolodensky-
Transformation

The Molodensky and Abridged
Molodensky transformations, like the

Geocentric Translation, use three param-
eters to convert between two geographic

coordinate systems.



1110 • Exploring ArcObjects • Volume 2

The CoordinateFrameTransformation coclass implements the interface
of the same name.

 ICoordinateFrameTransformation :
 IGeoTransformation

3D frame transformation with rotation, translation and
scaling.

GetParameters (dx: Double, dy: Double,
dz: Double, rx: Double, ry: Double, rz:
Double, s: Double)

Returns translation, rotation and scale values of the transformation.

PutParameters (dx: Double, dy: Double,
dz: Double, rx: Double, ry: Double, rz:
Double, s: Double)

Sets translation, rotation and scale values for the transformation.

The coordinate frame geographic transformation uses seven parameters
to convert between geographic coordinate systems and is therefore
more accurate than the simpler three-parameter transformations.

The PositionVectorTransformation is similar to the
CoordinateFrameTransformation; this transformation also uses seven
parameters, the values of which should be supplied by the developer
depending on the specific requirements of the transformation.

 IPositionVectorTransformation :
 IGeoTransformation

3D vector transformation with rotation, translation and
scaling.

GetParameters (dx: Double, dy: Double,
dz: Double, rx: Double, ry: Double, rz:
Double, s: Double)

Returns translation, rotation and scale values of the transformation.

PutParameters (dx: Double, dy: Double,
dz: Double, rx: Double, ry: Double, rz:
Double, s: Double)

Sets translation, rotation and scale values for the transformation.

The parameters for methods are delta x, delta y, delta z, rotation x,
rotation y, rotation z, and scale difference. In both cases, the transla-
tions (delta x,y,z) are always specified in meters, while the rotations are
in decimal seconds. The scale difference is in parts per million. The
following code shows how to create a CoordinateFrameTransformation.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pFromSR As ISpatialReference

  Dim pToSR As ISpatialReference

  Set pFromSR = _

    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_OSGB1936)

  Set pToSR = _

    pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

  Dim pGeotrans As ICoordinateFrameTransformation

  Set pGeotrans = New CoordinateFrameTransformation

  pGeotrans.PutParameters -9.2, 158.7, 183.1, 0.382, -1.451, -0.72, 2.482

  pGeotrans.PutSpatialReferences pFromSR, pToSR

  Dim dx As Double, dy As Double, dz As Double

  Dim rx As Double, ry As Double, rz As Double

  Dim dscale As Double

  pGeotrans.GetParameters dx, dy, dz, rx, ry, rz, dscale

  Debug.Print dx, dy, dz, rx, ry, rz, dscale

GeoTrans-
formation

IGeoTransformation

Transform-
ation

ITransformation

ICoordinateFrame-
Transformation

IPositionVector-
Transformation

Coordinate-
Frame-

Transformation

PositionVector-
Transformation

These transformations use a seven-
parameter similarity equation to convert

between two geographic coordinate
systems.

COORDINATE FRAME AND POSITION VECTOR TRANSFORMATIONS



Chapter 10 • Managing the spatial reference • 1111

S
p

at
ia

l R
ef

er
en

ce

The LongitudeRotationTransformation coclass implements the
ILongitudeRotationTransformation interface.

 ILongitudeRotationTransformation :
 IGeoTransformation

Get parameters of a longitude-rotation transformation.

Rotation: Double Counterclockwise (looking down on North Pole) positive rotation
about Earth's rotational axis.

This transformation performs a shift between two prime meridians. Not
all geographic coordinate systems use Greenwich as their prime merid-
ian; the Rotation value refers to the difference in degrees between
Greenwich and the prime meridian for the target geographic coordinate
system.

Use the CreateGeotransformation method on the
ISpatialReferenceFactory to create geotransformations of this type; the
esriSRGeoTransformation2Type enumeration gives you valid factory
codes for this geotransformation, as the following code demonstrates.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pFromSR As ISpatialReference

  Dim pToSR As ISpatialReference

  Dim pLongitudeRotation As ILongitudeRotationTransformation

  Set pLongitudeRotation = _

    pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_Bogota_Bogota_To_Bogota)

  Dim pRot As Double

  pRot = pLongitudeRotation.Rotation

  pLongitudeRotation.GetSpatialReferences pFromSR, pToSR

  Debug.Print pRot

  Debug.Print pFromSR.Name, pToSR.Name

These are the esriSRGeoTransformation2Type enumeration values that
apply to LongitudeRotationTransformation:

• esriSRGeoTransformation_Batavia_Jakarta_To_Batavia
• esriSRGeoTransformation_Belge_1950_Brussels_To_Belge_1950
• esriSRGeoTransformation_Bern_1898_Bern_To_Bern_1898
• esriSRGeoTransformation_Bogota_Bogota_To_Bogota
• esriSRGeoTransformation_Greek_Athens_To_Greek
• esriSRGeoTransformation_Lisbon_Lisbon_To_Lisbon
• esriSRGeoTransformation_Makassar_Jakarta_To_Makassar
• esriSRGeoTransformation_MGI_Ferro_TO_MGI
• esriSRGeoTransformation_Monte_Mario_Rome_To_Monte_Mario
• esriSRGeoTransformation_NGO_1948_Oslo_To_NGO_1948
• esriSRGeoTransformation_NTF_Paris_To_NTF
• esriSRGeoTransformation_Padang_1884_Jakarta_To_Padang_1884
• esriSRGeoTransformation_RT38_Stockholm_TO_RT38
• esriSRGeoTransformation_Tananarive_1925_Paris_To_Tananarive_1925
• esriSRGeoTransformation_Voirol_1875_Paris_To_Voirol_1875
• esriSRGeoTransformation_Voirol_Unifie_1960_Paris_To_Voirol_Unifie_1960

GeoTransform
-ation

IGeoTransformation

Transform-
ation

ITransformation

Longitude-
Rotation-

Transformation

ILongitudeRotation-
Transformation

The longitude-rotation transformation
converts between two prime meridians.

LONGITUDEROTATIONTRANSFORMATION COCLASS



1112 • Exploring ArcObjects • Volume 2

GRIDTRANSFORMATION COCLASSES

Some countries, like the United States and Canada, use a grid-based
geographic (datum) transformation method. A grid contains the differ-
ences (often in seconds) between two geographic coordinate systems.
Grid-based methods can be very accurate because a grid can model
small changes in the fit between the two geographic coordinate systems.
The grids are held in files and can be found in the PEDATA directory of
your ArcInfo 8.1 installation.

Currently, ArcObjects supports one grid type and method—the United
States National Geodetic Survey (NGS) format.

NGS has grids that convert from NAD 1927 and other old datums to
NAD 1983. The grid files can be found in the Nadcon subdirectory. A
NADCON transformation actually needs two grids, one for latitude shifts
and one for longitude shifts. Each has an .las or an .los extension. The
NADCON files are:

• alaska—NAD27–NAD83 shifts for Alaska

• conus—NAD27–NAD83 shifts for the contiguous U.S. (lower 48)

• hawaii—Old Hawaiian–NAD83 shifts

• prvi—NAD27–NAD83 shift for Puerto Rico and Virgin Islands

• stgeorge—Alaskan island datum–NAD83 shifts for St. George Island

• stlrnc—Alaskan island datum–NAD83 shifts for St. Lawrence Island

• stpaul—Alaskan island datum–NAD83 shifts for St. Paul Island

NGS also provides High Accuracy Regional Network (HARN) or High
Precision Geodetic Network (HPGN) grids. These are a more accurate
redefinition of the NAD 1983 datum. The grid files for these are stored
in the Harn subdirectory in PEDATA.

 IGridTransformation :
 IGeoTransformation

Specify/retrieve dataset name for a grid-based
transformation.

GridDatasetName: String The name of a dataset containing gridded transformation values for a
geographic area.

Load Makes the grid data available for transformation operations.
Unload Releases any resources consumed by the grid data.

The GridTransformation coclass defines the IGridTransformation inter-
face. Due to polymorphic substitution, a GridTransformation is also a
GeoTransformation, as the IGridTransformation interface inherits from
the IGeoTransformation interface. One property and two methods are
defined.

The GridDatasetName is a read–write property that represents the grid
file on disk. The Load method caches the contents of the grid file into
memory, thus improving the performance of this transformation. The
Unload method recovers memory.

All NGS grids are available for download at
ftp://ftp.ngs.noaa.gov/pub/pcsoft/nadcon/.

Grid-
Transformation

IGridTransformation

Grid-based geographic transformations,
such as NADCON and NTv2, are often

the most accurate way to convert be-
tween two geographic coordinate sys-

tems.

Grid-
Transformation

IGridTransformation

NADCON-
Transformation

The NADCON transformation is a grid-
based transformation method that

converts geographic coordinates between
the NAD 1927 and NAD 1983 datums.

HARN-
Transformation

Grid-
Transformation

IGridTransformation

The HARN transformation is a highly
accurate grid-based transformation

method that converts geographic coordi-
nates between the NAD 1983 datum
and the HARN readjustments (used in

the United States).



Chapter 10 • Managing the spatial reference • 1113

S
p

at
ia

l R
ef

er
en

ce

The NADCONTransformation coclass implements the IGrid-
Transformation interface and is used to perform geographic transforma-
tions from NAD 1927 to NAD 1983 using the NGS grid files found in the
Nadcon subdirectory.

The HARNTransformation coclass implements the IGridTransformation
interface and performs geographic transformations from NAD 1983 to
the HARN or HPGN grids.

To create both NADCONTransformation and HARNTransformation
geotransformation objects, use the CreateGeoTransformation method on
the ISpatialReferenceFactory2 interface. Use the esriSRGeo-
Transformation2Type enumerations for GridTransformations.

The following piece of code shows how to create a geographic transfor-
mation that transforms NAD 1927 to NAD 1983 for the contiguous
United States (CONUS). The GridDatasetName is automatically set, but
the Load method still needs to be called.

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pGeotransNAD27toNAD83 As IGridTransformation

  Set pGeotransNAD27toNAD83 = _

    pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_NAD_1927_TO_NAD_1983_NADCON)

  pGeotransNAD27toNAD83.Load

Alternatively, you can use the NADCONTransformation coclass. Note
how the NADCON grid file is specified. No directory path or file exten-
sions are required.

  Dim pGeotransNAD27toNAD83 As IGridTransformation

  Set pGeotransNAD27toNAD83 = New NADCONTransformation

  pGeotransNAD27toNAD83.GridDatasetName = "CONUS"

  pGeotransNAD27toNAD83.Load

Please refer to the ArcObjects Developer Help system for a complete
listing of the current esriSRGeoTransformation2Type enumerations that
apply to NAD27 and NAD83 grid-based geotransformations.

GRIDTRANSFORMATION COCLASSES



1114 • Exploring ArcObjects • Volume 2

Composite-
Geo-

Transformation

ICompositeGeo-
Transformation

The composite geotransformation is used
to build up a transformation that goes
from one datum to another via a third

common datum.

A CompositeGeoTransformation is a geotransformation.

 ICompositeGeoTransformation :
 IGeoTransformation

Contains a set of geographic transformations.

Count: Long Returns the number of geographic transformations in the list.
GeoTransformation (i: Long) :

IGeoTransformation
Returns a geographic transformation from the list.

TransformationDirection (i: Long) :
esriTransformDirection

Returns the direction (forward/reverse) of a geographic
transformation.

Add (Direction:
esriTransformDirection, pXForm:
IGeoTransformation)

Adds a geographic transformation to the list.

SetEmpty Clears the list of geographic transformations from the object.

Use the ICompositeGeoTransformation interface when you need to de-
fine a geographic transformation operation that requires the use of an
interim datum. For example, there is no direct path from one geographic
coordinate system to another, so you can use a third geographic coordi-
nate system to get from one to another.

For example, Cameroon uses both the Adindan and Minna geographic
coordinate systems. While it is not possible to convert directly between
Adindan and Minna, you can convert both to WGS 1984. So, you can
go from Adindan to WGS 1984, and then from WGS 1984 to Minna. The
transformation method actually goes from Minna to WGS 1984, so you
need to state that you want to go in the reverse direction (WGS 1984 to
Minna).

To specify the direction of a transformation, use the esriTransform-
Direction enumerations (esriTransformForward and
esriTransformReverse).

Once you create a CompositeGeoTransformation, add it to the
GeographicOperationSet for the Map. When you do this, specify the
transformation direction.

In the CompositeGeotransformation example above, you define whether
you want to do Adindan to WGS 1984 followed by WGS 1984 to Minna,
or Minna to WGS 1984 followed by WGS 1984 to Adindan.

The “forward” direction through this composite geotransformation takes
you from Adindan to Minna. The “reverse” direction through this
geotransformation takes you from Minna to Adindan. This composite
geotransformation has two components. That is, it has two (direction,
geotransformation) pairs:

• Adindan to WGS 1984 (forward)

• Minna to WGS 1984 (reverse)

Going “forward” through the composite geotransformation is the same
as going forward through the first component geotransformation and
backward through the second component geotransformation. Going
“reverse” through the composite geotransformation is the same as going
forward through the second geotransformation and backward through
the first geotransformation.

COMPOSITEGEOTRANSFORMATION COCLASS



Chapter 10 • Managing the spatial reference • 1115

S
p

at
ia

l R
ef

er
en

ce

In other words, you need the component directions and component
ordering to define what forward and reverse mean at the composite
level. The order is important. Once you build the composite transforma-
tion, it acts just like a regular transformation.

The following code applies the example just discussed.

  Dim pActiveView As IActiveView

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMxDoc.ActiveView

  '1)Create your factory

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pGeoTrans_A As IGeoTransformation

  Dim pGeoTrans_B As IGeoTransformation

  '2)Use the factory to create your geotransformation objects

  Set pGeoTrans_A = _

    pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_Adindan_To_WGS1984_1)

  Set pGeoTrans_B = _

    pSpatRefFact.CreateGeoTransformation(esriSRGeoTransformation_Minna_To_WGS1984_1)

  '3)Create a composite geotransformation object

  Dim pGeoTransComposite As ICompositeGeoTransformation

  Set pGeoTransComposite = New CompositeGeoTransformation

  '4)Add the two seperate geotransformations to the composite

  pGeoTransComposite.Add esriTransformForward, pGeoTrans_A

  pGeoTransComposite.Add esriTransformReverse, pGeoTrans_B

  '5)QI for the IMapGeographicTransformations

  Dim pMapGeotrans As IMapGeographicTransformations

  Set pMapGeotrans = pMap

  '6)And get the IGeoTransformationOperationSet

  Dim pGeoTransOperationSet As IGeoTransformationOperationSet

  Set pGeoTransOperationSet = pMapGeotrans.GeographicTransformations

  '7)Add your composite to the set

  pGeoTransOperationSet.Set esriTransformForward, pGeoTransComposite

  pActiveView.Refresh

COMPOSITEGEOTRANSFORMATION COCLASS



1116 • Exploring ArcObjects • Volume 2

Geo-
Transformation-

OperationSet

IGeoTransformation-
Operationset

The geotransformation operation set
manages the collection of transforma-
tions needed to transform all the cur-

rently loaded datasets onto one common
datum.

The GeotransformationOperationSet coclass is used by the Map to store
all the required geotransformation objects. During the refresh cycle,
ArcObjects uses the geotransformation objects stored in this set to
achieve any geographic transformations required by the feature classes
loaded into the Map.

 IMapGeographicTransformations :
 IUnknown

Provides access to members that control the map's set of
geographic transformations and the directions in which
they are applied.

GeographicTransformations:
IGeoTransformationOperationSet

on-the-fly geographic transformations.

The IMapGeographicTransformations interface returns by reference the
geographic operations set from the Map. An
IMapGeographicTransformations is obtained by a QI from the IMap.

  ' Get the IMapGeographicTransformations by QI from the IMap.

  Dim pMapGeotrans As IMapGeographicTransformations

  Set pMapGeotrans = pActiveView.FocusMap

 IGeoTransformationOperationSet :
 IUnknown

Stores a set of geographic transformation operators (GT +
direction).

Count: Long Returns the number of geographic transformations in the set.

Find (Direction:
tagesriTransformDirection, GT:
IGeoTransformation) : Boolean

Check a geographic transformation and a direction to see if it exists
in the set.

Get (pFromGCS:
IGeographicCoordinateSystem,
pToGCS:
IGeographicCoordinateSystem, out
Direction: tagesriTransformDirection,
out Transformation:
IGeoTransformation)

Returns a default geographic transformation.

Next (out Direction:
tagesriTransformDirection, out GT:
IGeoTransformation)

Retrieves the next geographic transformation in the set.

Remove (Direction:
tagesriTransformDirection,
Transformation: IGeoTransformation)

Deletes a particular geographic transformation.

RemoveAll Deletes all geographic transformations in the set.
RemoveByKey (pFromGCS:

IGeographicCoordinateSystem,
pToGCS:
IGeographicCoordinateSystem)

Deletes a particular geographic transformation by its from and to
GeoCS.

Reset Reinitializes the geographic transformation set.
Set (Direction:

tagesriTransformDirection,
Transformation: IGeoTransformation)

Sets a default geographic transformation.

The IGeoTransformationOperationSet interface stores an ordered collec-
tion of geographic transformations and associated direction pairs.

The GeoTransformationOperationSet property on the
IMapGeographicTransformations returns a reference to the map’s
IGeographicOperationsSet. You are then free to modify it directly.

The following code shows how to get the GeoTransformationsOper-
ationSet and find a matching geotransformation object given the feature
dataset’s spatial reference and the map’s current spatial reference.

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Set pMxDoc = ThisDocument

GEOTRANSFORMATIONOPERATIONSET COCLASS



Chapter 10 • Managing the spatial reference • 1117

S
p

at
ia

l R
ef

er
en

ce

  Set pMap = pMxDoc.FocusMap

  'Get the IMapGeographicTransformations by QI from the IMap

  Dim pMapGeoTrans As IMapGeographicTransformations

  Set pMapGeoTrans = pMap

  ' Get the set of geotransformations from the IMapGeographicTransformations

  Dim pGeoTransSet As IGeoTransformationOperationSet

  Set pGeoTransSet = pMapGeotrans.GeographicTransformations

  pGeoTransSet.Reset 'put the set to its beginning

  ' set up the geotran to receive the direction/transformation pairs

  Dim pGT As IGeoTransformation

  Dim pDirection As esriTransformDirection

 ' Get the GCSs from the source featureclass and from the target projection:

  ' Assuming source is Geographic and get the GCS from the featureclass

  Dim pGCSfrom As IGeographicCoordinateSystem

  Dim pGeoDataset As IGeoDataset

  Set pGeoDataset = pMap.Layer(0)

  Set pGCSfrom = pGeoDataset.SpatialReference

  ' Assuming the IMap has a ProjectedCoordinateSystem

  Dim pGCSto As IGeographicCoordinateSystem

  Dim pPCS As IProjectedCoordinateSystem

  Set pPCS = pMap.SpatialReference

  Set pGCSto = pPCS.GeographicCoordinateSystem

  ' From the IGeographicOperationSet, Get the geotransformation/direction

  ' associated with this pair of GCSs

  pGeoTransSet.Get pGCSfrom, pGCSto, pDirection, pGT

  ' print out the names

  Debug.Print pGCSfrom.Name

  Debug.Print pGCSto.Name

  Debug.Print Str(pDirection)

  Debug.Print pGT.Name

The following code extract shows how to set geographic transformations
into the IGeographicOperationSet.

  ' Reset the IGeographicOperationSet to the beginning, and if the set

  ' doesn't contain your required geographic transformation, then,

  ' if you don't need them, remove all the current contents of the set

  ' and add to it your specific geotransformation/direction pair

  pGeoTransSet.Reset

  If (not pGeoTransSet.Find esriTransformForward, pGeotrans) Then

    pGeoTransSet.RemoveAll

    pGeoTransSet.Set esriTransformForward, pGeotrans

  EndIf

GEOTRANSFORMATIONOPERATIONSET COCLASS



1118 • Exploring ArcObjects • Volume 2

This section focuses on how to actually use geotransformation objects
to perform an on-the-fly geotransformation.

This scenario has two feature classes for data in the United States. Both
sets of data are in geographic latitude and longitude. However, one set
of geographicals is based on the NAD1927 geographic coordinate sys-
tem, and the other is based on the NAD1983 geographic coordinate
system. The aim is to assign a projected coordinate system to the map
and project both feature classes. The target projected coordinate system
uses a Mercator projection and a geographic coordinate system based
on the WGS 1984 datum.

Not only do the feature classes need to go from geographic latitude and
longitude coordinates to projected x,y coordinates, but a geographic
transformation also needs to take place to ensure the best accuracy in
alignment between the features. However, ArcObjects does most of the
work for you.

When the feature classes were loaded as feature layers into the map, if
there were associated PRJ files or other projection metadata, then the
spatial reference for each feature layer was automatically created. Here
is how to get the name of the spatial reference associated with the fea-
ture layer.

  Dim pMxDoc As IMxDocument

  Set pMxDoc = ThisDocument

  Dim pMap As IMap

  Set pMap = pMxDoc.FocusMap

  Dim pLayer As IFeatureLayer

  Set pLayer = pMap.Layer(0)

  Dim pGeoDataset As IGeoDataset

  Dim pSpatialReference As ISpatialReference

  Set pGeoDataset = pLayer 'QI for the geodataset from the layer

  Set pSpatialReference = pGeoDataset.SpatialReference

  MsgBox pSpatialReference.Name

When you create a ProjectedCoordinateSystem and set the IMap to use it,
the ArcObjects drawing pipeline checks to see if the Map has a target
SpatialReference set; if so, it will automatically reproject on the fly as
necessary.

The Map keeps a Set of GeoTransformations called an
IGeoTransformationsOperationSet. It is possible to add and remove
objects from this set. When a projection operation occurs and the
source and target GeographicCoordinateSystems involved are different,
then the Set is automatically searched for a GeoTransformation appropri-
ate for the GeographicCoordinateSystems involved. This geographic
transformation is then applied to every feature layer that is based on the
same geographic coordinate system.

PERFORMING ON-THE-FLY GEOTRANSFORMATIONS



Chapter 10 • Managing the spatial reference • 1119

S
p

at
ia

l R
ef

er
en

ce

All you need to do is to create the appropriate GeoTransformation ob-
jects and add them to the IGeoTransformationsOperationSet. The above
scenario, which has feature classes on NAD1927 and NAD1983, will
project both onto the SPCS for Kansas North, then use a
NADCONTransformation to enable both feature layers to be correctly
aligned.

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMxDoc.ActiveView

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  '1)Create a NADCON transformation

  Dim pGeotransNAD27toNAD83 As IGridTransformation

  Set pGeotransNAD27toNAD83 = New NADCONTransformation

  '2)Specify which grid file to use.

  pGeotransNAD27toNAD83.GridDatasetName = "CONUS"

  '3)Load the grid file into memory

  pGeotransNAD27toNAD83.Load

  '4)Get the IMapGeographicTransformations

  Dim pMapGeotrans As esriCore.IMapGeographicTransformations

  Set pMapGeotrans = pMap

  '5)Now get set of geotransformations from IMapGeographicTransformations

  Dim pGeoTransSet As IGeoTransformationOperationSet

  Set pGeoTransSet = pMapGeotrans.GeographicTransformations

  '6)RemoveAll the default geotransformations as they are unneccessary

  pGeoTransSet.RemoveAll

  '7)And add your NADCON transformation to it

  pGeoTransSet.Set esriTransformForward, pGeotransNAD27toNAD83

  '8)Create a pcs for State Plane Coordinate System for Kansas

  Dim pPCS As IProjectedCoordinateSystem

  Set pPCS = _

    pSpatRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_NAD1983SPCS_KSNorth)

  '9)Assign it to the map

  Dim pEnv As IEnvelope

  Set pEnv = pActiveView.Extent

  pActiveView.PartialRefresh esriViewGeography, Nothing, pEnv

PERFORMING ON-THE-FLY GEOTRANSFORMATIONS



1120 • Exploring ArcObjects • Volume 2

The next example illustrates how to project a FeatureLayer that is in
geographical coordinates based on WGS 1984 onto the British National
Grid, a projected coordinate system based on the OSGB 1936 geo-
graphic coordinate system.

This could be a common scenario when adding GPS-derived points to
an application. Likewise, although you are using the British National
Grid as your target projection, the same approach would be required for
a target coordinate system using, for example, a State Plane Coordinate
System.

The code example that follows uses the GeocentricTranslation coclass to
create the GeoTransformation. If what you want to do is a common
operation (such as this example), then you can use the
SpatialReferenceFactory to create a predefined GeoTransformation. If
you need a GeoTransformation that is not supported by ArcObjects,
then you can create your own using the following approach. However,
you will still need to obtain the correct geodetic information for the
parameter values yourself.

In this example, your “from” coordinate system is OSGB 1936, and your
“to” coordinate system is WGS 1984. You actually want to do the inverse
operation, that is, go from WGS 1984 to OSGB 1936. To enable this you
can either swap the pFromSR and pToSR variables around and modify
the Parameter values or, as is done here, specify that the inverse opera-
tion should be performed. To specify the direction of a transformation,
use the esriTransformDirection enumerations (esriTransformForward
and esriTransformReverse).

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pMxDoc As IMxDocument

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  Set pActiveView = pMxDoc.ActiveView

  Dim pSpatRefFact As ISpatialReferenceFactory2

  Set pSpatRefFact = New SpatialReferenceEnvironment

  Dim pFromSR As ISpatialReference

  Dim pToSR As ISpatialReference

  '1) Create your from and to Spatial References

  Set pFromSR = _

  pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_OSGB1936)

  Set pToSR = _

  pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

  '2) Create your geocentric transformation

PERFORMING ON-THE-FLY GEOTRANSFORMATIONS



Chapter 10 • Managing the spatial reference • 1121

S
p

at
ia

l R
ef

er
en

ce

PERFORMING ON-THE-FLY GEOTRANSFORMATIONS

  Dim pGeotrans As IGeocentricTranslation

  Set pGeotrans = New GeocentricTranslation

  '3) Put its SpatialReferences and Parameters using values provided by a

  'third party

  pGeotrans.PutSpatialReferences pFromSR, pToSR

  pGeotrans.PutParameters 375, -111, 431

  '4) Get the IMapGeographicTransformations from the Map.

  Dim pMapGeotrans As esriCore.IMapGeographicTransformations

  Set pMapGeotrans = pMap

  '5) Now get set of geotransformations from IMapGeographicTransformations

  Dim pGeoTransSet As IGeoTransformationOperationSet

  Set pGeoTransSet = pMapGeotrans.GeographicTransformations

  '6) RemoveAll the default geotransformations as they are unneccessary

  pGeoTransSet.RemoveAll

  '7) And add your geotrans to it - NOTE THE DIRECTION

  pGeoTransSet.Set esriTransformReverse, pGeotrans

  '8) Finally, refresh current extent of the map. it's already projected.

  Dim pEnv As IEnvelope

  Set pEnv = pActiveView.Extent

  pActiveView.PartialRefresh esriViewGeography, Nothing, pEnv



1122 • Exploring ArcObjects • Volume 2

ArcObjects allows you to integrate your own custom projection server.
To do so, write a COM component that implements two spatial reference
interfaces, IProjection and ISpatialReferenceInfo.

The definitions of the methods you need to implement are defined in
the esriCore object type library (esriCore.olb). This file can be found in
the bin directory of your ArcGIS installation.

One of the easiest ways to build a COM component object that imple-
ments these interfaces is to use the ATL and VC++. ATL is the Active
Template Library, a set of template-based VC++ classes with which you
can easily create small, fast (COM) objects. For a detailed description of
what this involves, please see Volume 1, Chapter 2, ‘Developing with
ArcObjects’.

Likewise, refer to the Custom Projection Sample topic under Spatial
Reference in the Developer Samples section of the ArcObjects Devel-
oper Help System. This sample covers the implementation in greater
detail than is appropriate here. However, as an outline, to create a cus-
tom projection you need to:

1. Use the Projection Engine (PE) API to define a custom
PE_PROJECTION object and its forward and inverse methods. These
methods are the actual mathematical transformations that define how
your projection behaves.

2. Use the standard COM techniques described in Chapter 2 to create a
COM projection object that implements the two interfaces above and
knows about your custom PE_PROJECTION object.

3. Within your client application, use the Define method on IProjected-
CoordinateSystemEdit to create a user-defined ProjectedCoordinate-
System that uses your custom COM projection and its parameters.

4. Assign your user-defined projected coordinate system to your map;
you should see your projection at work.

CREATING CUSTOM PROJECTIONS



Chapter 10 • Managing the spatial reference • 1123

S
p

at
ia

l R
ef

er
en

ce

THE GEOMETRY MODEL PROJECT METHOD

Within the geometry object model, a number of interfaces have a
SpatialReference as a property or use one within a method. For example,
calling the Project method on an individual geometry will change the
coordinates of the geometry from one coordinate system to another.

In most cases, developers will not need to manage the SpatialReferences
of individual geometries, and in some cases it would not make sense to
do so. For example, if a geometry is projected using a SpatialReference
different to that of the Map, the geometry will be projected, but it will
not be drawn in the same display space that the Map is currently using.

However, it makes sense to draw the same geometry onto a different
Map that uses a different SpatialReference.

As an illustration, consider a VB project that uses two MapControls.
Each MapControl has been loaded with the same FeatureClass using the
PropertyPage, and each has been assigned a different SpatialReference
in the Form_Load method.

The following code shows what is required to track a polygon on the
first MapControl and draw it onto the second MapControl.

Option Explicit

Private g_pPolygon As IPolygon

Private Sub Form_Load()

  Dim pSpatialRefFact As ISpatialReferenceFactory2

  Set pSpatialRefFact = New SpatialReferenceEnvironment

  Dim pGeographic As IGeographicCoordinateSystem

  Dim pProjected As IProjectedCoordinateSystem

  Set pGeographic = _

pSpatialRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_WGS1984)

  Set pProjected = _

pSpatialRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_World_EquidistantConic)

  Set MapControl1.SpatialReference = pGeographic

  Set MapControl2.SpatialReference = pProjected
End Sub

Private Sub MapControl1_OnAfterDraw(ByVal display As esriCore.IDisplay, _

 ByVal phase As esriCore.esriViewDrawPhase)

  If (Not g_pPolygon Is Nothing) Then

    g_pPolygon.Project MapControl1.SpatialReference

    MapControl1.DrawShape g_pPolygon

  End If

  If (Not g_pPolygon Is Nothing) Then

    g_pPolygon.Project MapControl2.SpatialReference

    MapControl2.DrawShape g_pPolygon

  End If

End Sub

Rectangle in WGS 1984 geographicals

Rectangle densified and then projected to the
Equidistant Conic projection

From the screen image you can see what
happens to a rectangle drawn in an unprojected

geographic coordinate system when it is
densified (adding a vertex every 10 degrees) and
then projected to Equidistant Conic projection. If

the Densify method is not used, the result
would be a simple trapezoid drawn in the

projected display.



1124 • Exploring ArcObjects • Volume 2

THE GEOMETRY MODEL PROJECT METHOD

Private Sub MapControl1_OnMouseDown(ByVal button As Long, _

 ByVal shift As Long, ByVal x As Long, ByVal y As Long, _

 ByVal mapX As Double, ByVal mapY As Double)

  Set g_pPolygon = MapControl1.TrackPolygon

  Set g_pPolygon.SpatialReference = MapControl1.SpatialReference

  MapControl1.Refresh esriViewForeground

  MapControl2.Refresh esriViewForeground

End Sub



Chapter 10 • Managing the spatial reference • 1125

S
p

at
ia

l R
ef

er
en

ce

These are some summary points to help ensure your success with the
spatial reference object model:

• Check that your feature classes have correct coordinate system
metadata. If necessary, use ArcCatalog to prepare your data.

• Whenever you are repeatedly doing the same on-the-fly projections,
consider permanently projecting your feature class into the target
coordinate system.

• Obtain a working understanding of projection concepts—you do not
necessarily need to concern yourself with the mathematics.

• Use geographic transformations as necessary when collating feature
classes from different coordinate systems to ensure as much accu-
racy is obtained as possible; enough is already lost due to generaliza-
tion, data capture methods, and other causes.

• If you change a ProjectedCoordinateSystem parameter by reference
(and not by using one of the available methods), remember to call
the Changed method afterwards.

• Once your application has finished, if you have used the
IGridTransformation::Load method, you should call the Unload
method.

• When a Map’s SpatialReference is changed, all elements contained
within its GraphicLayers or GraphicContainer will automatically be
projected, too.

TIPS FOR USING THE SPATIAL REFERENCE MODEL





Editing features

ArcMap lets the user create, modify, and remove vector-shaped

features in a geodatabase, coverage, or shapefile.

The topics covered in this chapter include:

implementing edit operations through

commands, tools, tasks, and edit event

notifications • controlling the scope of updates within an edit session

• applying geometric updates through edit sketches, sketch operations,

and edit operations • joining features precisely through snap agents

• updating and browsing feature attributes with the Attribute Window

extension • adding features from manuscripts with the Digitizer

extension • editing shared edges with the Topology Editor extension

• reconciling versions through the Conflict Resolution extension

Steve Van Esch

11



1128 • Exploring ArcObjects • Volume 2

1..*

1..*

1..*

IFeatureCache
IFeatureCache2 Feature-

CacheISketchOperation
ISketchOperation2 Sketch-

Operation

IEditTask

EditTask

IFeatureSnapAgent

FeatureSnap

IExtension

Extension

IConflictDisplay
IConflictsWindow

IConflictsWindow2
Conflicts-
Window

IDigitizerButtons
IDigitizerSetup Digitizer-

Extension

TopoEditor
ITopoEditor

ICommand
ISketchTool

ITool SketchTool

IObjectInspector Feature-
Inspector

ICommand
ISnappingWindow Snapping-

Command

ISnapAgent

SnapAgent

A feature cache stores features in
memory for a particular spatial
extent.

The conflicts window
is the editor's conflict
resolution dialog box

ArcMap editing objects

The snapping command is the editor's snapping
window where snap agent properties are set

An edit selection cache stores the
selection for fast hit testing

The sketch tool is the editor's main
tool for creating an edit sketch

The feature inspector is the
control inside the attributes dialog
box that enables attribute editing

The digitizer extension allows
the editor to work with a
digitizing board and puck

The topological editor extension
enables the editor to perform
shared geometry editing

Editor extensions are additional
objects that aid editing

The Editor gives ArcMap
feature editing capabilities

Edit tasks perform a
specific operation

using the edit sketch

Snap agents aid in
positioning geometries
by snapping them to
other geometries

IEditSelectionCache
IEditSelectionCache2

Edit-
Selection-

Cache

Attribute-
Window

IAttributeWindow

The attribute window is
the editor's attribute

editing dialog box

IEditSketchExtension EditSketch-
Extension

EditEvents2 enables Visual Basic
developers the opportunity to
respond to the events grouped
under IEditEvents2 fired by the
Editor object

Sketch operations allow edit sketch
modifications to be undone

Edit sketch extensions
override the default
edit sketch behavior to
provide a custom
editing experience for
specific feature classes

Feature snap agents are a class of snap agents
that help position features and the edit sketch
by snapping them to other features

IEditEvents2

EditEvents2

IActiveViewEvents
IEditEvents

IEditEvents2
IEditLayers

IEditor
IEditProperties

IEditSketch
IEditSketch2

IExtension
IExtensionAccelerators

IExtensionManager
IPersist

IPersistStream
ISnapEnvironment

Editor



Chapter 11 • Editing features • 1129

E
d

it
o

r

The ArcMap editing toolbar is an extension to the ArcMap application
that provides a unified editing and mapping environment for features
stored in all types of vector geographic datasets: geodatabases, cover-
ages, and shapefiles.

The ArcMap editing toolbar consists of tools for editing and maintaining
GIS databases. These are some important functions of these tools:

• CAD-like tools for feature construction and editing

• Rule-based feature validation

• Multilayer feature snapping

• Undo/Redo capabilities

• Multiuser editing and versioning

The ArcMap editing toolbar is built on an underlying framework or
object model composed of COM components that you can program to
customize the user’s editing environment. Developers can use these
objects to create new custom tools, constrain or remove existing tools, or
enforce application-specific behavior using custom tasks or edit event
notifications implemented using custom extensions.

The primary object in the editor framework is the Editor object. The
Editor object exposes many interfaces, including: IEditor, IEditLayers,
IEditEvents, IEditProperties, IEditSketch, and ISnapEnvironment. Each
interface manages a logical grouping of editing functionality. Before
discussing the editing components in more detail, this chapter first re-
views the model for extending the editing environment.

IMPLEMENTING EDIT OPERATIONS

Edit operations typically occur through one of four methods: com-
mands, tools, tasks, and edit event notifications.

• Commands perform edits—the user doesn’t need to click on the map.
For example, the Buffer command creates new features by buffering
the selected features.

• Tools require user interaction. For example, the Split tool requires the
user to locate the point where the split will occur.

• Edit tasks require an input geometry to perform their edits. For example,
the Reshape task uses a sketch geometry to modify a selected feature’s
shape.

• Edit events are notifications that occur during an edit session, and
edit event listeners are any objects that respond to the events. For
example, the target layer control on the Editor toolbar responds to the
IEditEvents::OnCurrentLayerChanged event so that it can update itself
when the target layer is set programmatically.

Editor commands
ArcMap uses commands for all operations that do not require the user
to click on the map. Examples of editor commands include the Buffer,
Intersect, and Union commands. Commands may prompt the user for

THE EDITOR FRAMEWORK

Commands in
the Editor menu



1130 • Exploring ArcObjects • Volume 2

input using a dialog box, but none of them require the user to interact
with the display. Most editor commands reside on the Editor menu.

All commands implement the ICommand interface. For more details on
creating custom commands, read Volume 1, Chapter 3, ‘Customizing the
user interface’.

An example of a custom editor command that a developer can create is
a Difference command. Such a command creates new features based
on the overlapping regions of two selected features. The code samples
provided in your ArcGIS software installation contain examples of how
to create custom editor commands.

Editor tools
All operations that require the user to interact with the display are called
tools. The Sketch tool, the Rotate tool, and the Split tool are all examples
of editing tools. Tools require that the user click on the map to complete
the desired operation. Tools generally reside directly on the Editor tool-
bar.

All tools implement the ITool and ICommand interfaces. For more details
on creating custom tools, read Volume 1, Chapter 3, ‘Customizing the
user interface’.

An example of a custom tool that can be created and added to the
Editor toolbar is a Fillet tool. A Fillet tool asks the user to select two
segments and then create a fillet line between them based on a radius
value. The code samples on your ArcGIS installation contain many
examples of how to create a custom edit tool.

Edit tasks
For edit operations that require an input geometry, ArcMap uses edit
tasks. Edit tasks are components that acquire the geometry stored in an
edit sketch and perform a specific operation with it. For example, the
Reshape task uses the sketch geometry to alter the shape of a selected
feature. Edit tasks are managed by the Editor object, and one is always
active. The current task is set using the IEditor::CurrentTask property.

All edit tasks implement the IEditTask interface and are registered in the
ESRI Edit Tasks component category. An example of a custom edit task
might be a Measure task that reports the length of a line created in the
edit sketch. The benefit of such a task is that the user can digitize an
accurate line using sketch tools and snapping, instead of just clicking on
the map. All edit tasks appear in the Current Task dropdown list on the
Editor toolbar.

Edit events
Edit events are specific notifications that occur during editing. Edit event
listeners are objects, such as commands, that listen for and respond to
edit events. For example, a specific edit event is fired each time a new
feature is created, and a custom object can perform automatic feature
validation after receiving this notification.

Tools in the Editor toolbar

Task dropdown list in the Editor toolbar

THE EDITOR FRAMEWORK



Chapter 11 • Editing features • 1131

E
d

it
o

r

EDIT SESSION

All editing takes place during an edit session. Only layers belonging to
one workspace can be edited at a time; all the layers that have been
added to a map and belong to the same workspace can be edited simul-
taneously.

To specify a workspace to edit, use IEditor::StartEditing. You can get a
reference to the current edit workspace with IEditor::EditWorkspace.

The following sample determines the workspace that the first feature
layer in the map belongs to and starts an edit session on it. This sample
and all the following samples in this chapter must have a reference to
the Editor extension passed in. The first subroutine below shows how to
obtain this reference.

Public Sub GetEditorReference()

  Dim pEditor As IEditor

  Dim pID As esriCore.UID

  Set pID = New esriCore.UID

  pID = "esriCore.Editor"

  Set pEditor = Application.FindExtensionByCLSID(pID)

  'Call the StartEditing routine

  StartEditing pEditor

End Sub

The following sample code determines the edit workspace the first
feature layer belongs to and starts an edit session on it.

Public Sub StartEditing(pEditor As IEditor)

  Dim pMxDoc As IMxDocument

  Dim pMap As IMap

  Dim pFeatureLayer As IFeatureLayer

  Dim pDataset As IDataset

  Dim iLayerCount As Integer

  Set pMxDoc = Application.Document

  Set pMap = pMxDoc.FocusMap

  'If an edit session has already been started exit

  If Not pEditor.EditState = esriStateNotEditing Then Exit Sub

  'Start editing the workspace of the first featurelayer you find

  For iLayerCount = 0 To pMap.LayerCount - 1

    If TypeOf pMap.Layer(iLayerCount) Is IFeatureLayer Then

      Set pFeatureLayer = pMap.Layer(iLayerCount)

      Set pDataset = pFeatureLayer.FeatureClass

      pEditor.StartEditing pDataset.Workspace

      Exit For

    End If

  Next iLayerCount

End Sub

The Start Editing command on the Editor menu performs similarly.

Starting an edit session in the Editor
menu

THE EDITOR FRAMEWORK



1132 • Exploring ArcObjects • Volume 2

Edit sketch
The edit sketch contains a geometry that is used as input for completion
of the current edit task. The type of sketch geometry may be a
multipoint, a polyline, or a polygon. The current edit task sets the type
of sketch geometry. The edit sketch is owned by the Editor object and
accessed via the IEditSketch interface. Access to the edit sketch geom-
etry is through the IEditSketch::Geometry property.

When the edit sketch is finished, the current editing task takes the geom-
etry stored in the edit sketch and performs a specific operation with it.
For example, completing the sketch of a building outline when the
current task is set to Create New Feature and the target layer is set to the
Buildings feature class creates a new Building feature.

Tools that add points to the sketch are called sketch tools. Any sketch
tool or combination of sketch tools can be used to create a sketch geom-
etry. For example, the Intersection tool and the Distance-Distance tool
can be used interchangeably to add points to an edit sketch. A custom
sketch tool is another example of a custom editing tool that can be
created and added to the Editor toolbar.

The edit sketch has a context menu that aids in manipulating the edit
sketch geometry. Commands that appear on this menu include Move,
Move To, Insert, and Delete. Right-clicking any part of the edit sketch
invokes the edit sketch context menu, no matter what the active tool is.
Custom commands can be added to the edit sketch context menu
through the Customize dialog box.

To automatically add new commands to the edit sketch context menu,
register commands in the ‘ESRI Sketch Menu Commands’ component
category. Customize the sketch tool context menu in the same fashion,
except in this case register commands in the ‘ESRI SketchTool Menu
Commands’ component category. Commands registered in these catego-
ries will appear at the top of their related menus. An interesting alterna-
tive when adding several commands to either category is to add a single
pullright menu that in turn lists the custom commands. For more infor-
mation, see IMenuDef. A pullright menu makes ordering and managing
the custom commands easier.

The following sample adds a new point to the end of an edit sketch and
then completes the sketch. In this example, the new point is calculated
at a delta x,y of 50 map units from the last point in the edit sketch. Once
IEditSketch::FinishSketch is called, the geometry the edit sketch manages
is sent to the current task.

Public Sub AddPoint(pEditor As IEditor)

  Dim pEditSketch As IEditSketch

  Dim pPoint As IPoint

  Set pEditSketch = pEditor 'QI

  Set pPoint = pEditSketch.LastPoint

  If pPoint Is Nothing Then Exit Sub

  pPoint.PutCoords pPoint.x + 50, pPoint.y + 50

THE EDITOR FRAMEWORK

The editor facilitates geometric construction and
modification by managing a temporary staging

area, called the edit sketch, for coordinates.



Chapter 11 • Editing features • 1133

E
d

it
o

r

  pEditSketch.AddPoint pPoint, True

  pEditSketch.FinishSketch

End Sub

Edit sketch extensions
Edit sketch extensions let programmers alter the edit sketch geometry
and edit sketch display feedback mechanism. For example, a custom edit
sketch extension may be written for a layer that contains two-point
polylines. Such an extension can ensure that new features are restricted
to two points when created and modified.

When constructing a new feature of this type, the edit sketch extension
automatically finishes the sketch when a second point is added. When
modifying the feature, inserting new vertices into the edit sketch is pre-
vented unless the user has deleted a vertex and the point count is less
than two.

The creation or modification of a dimension feature in a geodatabase
uses edit sketch extensions; dimension features store complex geometry,
and the edit sketch extension is used to help the user create and modify
complex dimension shapes in an intuitive manner.

Edit sketch extensions are created by implementing IExtension and
IEditSketchExtension, then registering the class in the ESRI Editor Exten-
sions component category.

Sketch operations
Sketch operations are a type of operation that can be put on the
document’s operation stack, IMxDocument::OperationStack. Any change
to the edit sketch should happen within the context of a sketch opera-
tion.

For example, the Edit tool is able to move edit sketch vertices using
sketch operations so that each action is undoable. Code that modifies
the edit sketch should be placed between calls to ISketchOperation::Start
and ISketchOperation::Finish.

IEditSketch::AddPoint adds a new vertex to the end of the edit sketch,
and it automatically creates a sketch operation. This case is an excep-
tion; there is no need to create an edit operation when using AddPoint.

The sample below deletes a vertex from the edit sketch. The sample
relies on the IEditSketch::Vertex property to identify which vertex to
delete. This property is set whenever you right-click a vertex in the edit
sketch. This is also the case for IEditSketch::Part and
IEditSketch::Segment. If nothing has been right-clicked, a value of -1 is
returned. Right-clicking any part of the edit sketch opens the edit sketch
context menu.

The best place for commands and macros that work with the edit sketch
is on the edit sketch context menu, so they can be easily executed after
right-clicking the edit sketch.

Public Sub DeleteEditSketchVertex(pEditor As IEditor)

All editing tools and commands that create or
modify the geometry of an edit sketch use

sketch operations to provide undo/redo
capabilities.

THE EDITOR FRAMEWORK

Edit sketch extensions provide developers with a
mechanism for managing the behavior of edit

tasks to ensure application-specific feature
construction and modification.



1134 • Exploring ArcObjects • Volume 2

  Dim pEditSketch As IEditSketch

  Dim pPointColl As IPointCollection

  Dim lIndex As Long

  Dim pSketchOp As ISketchOperation

  Set pEditSketch = pEditor 'QI

  lIndex = pEditSketch.Vertex 'Get the vertex that was last right-
clicked

  If lIndex = -1 Then Exit Sub 'Exit if I don’t have a vertex

  'Create a sketch operation to get undo/redo capabilities

  Set pSketchOp = New SketchOperation

  pSketchOp.MenuString = "Delete Vertex"  'Give the operation a name

  pSketchOp.start pEditor 'Start the operation

  'Delete the point from the edit sketch and refresh

  Set pPointColl = pEditSketch.Geometry

  pPointColl.RemovePoints lIndex, 1

  pEditSketch.RefreshSketch

  'Finish the operation to add it to the operation stack

  pSketchOp.Finish pEditSketch.Geometry.Envelope

End Sub

Edit operations
Edit operations are very similar to sketch operations except that these
are typically operations on features instead of the edit sketch. For ex-
ample, if a feature is moved with the Edit tool, the operation can be
undone and redone.

Edit operations are created using the IEditor interface by placing the
code between calls to IEditor::StartOperation and IEditor::StopOperation.

The following sample deletes all of the selected features that are editable
and does so within the confines of an edit operation so the delete can
be undone.

Public Sub DeleteFeatures(pEditor As IEditor)

  On Error GoTo ErrorHandler:

  Dim pEnumFeature As IEnumFeature

  Dim pFeature As IFeature

  Dim pActiveView As IActiveView

  'Check the editor's selection

  If pEditor.SelectionCount = 0 Then Exit Sub

  'Start an edit operation

  pEditor.StartOperation

  'Delete each selected feature

All editing commands, tools, and tasks use edit
operations to provide undo/redo capabilities.

THE EDITOR FRAMEWORK



Chapter 11 • Editing features • 1135

E
d

it
o

r

  Set pEnumFeature = pEditor.EditSelection

  pEnumFeature.Reset

  Set pFeature = pEnumFeature.Next

  Do While Not pFeature Is Nothing

    pFeature.Delete

    Set pFeature = pEnumFeature.Next

  Loop

  'Complete the edit operation

  pEditor.StopOperation "Delete Features"

  'Refresh the display

  pEditor.Map.ClearSelection

  Set pActiveView = pEditor.Map

  pActiveView.PartialRefresh esriViewGeography + _

    esriViewGeoSelection, Nothing, Nothing

  Exit Sub 'Exit sub to avoid error handler

ErrorHandler:

    'Abort the edit operation if any error occurs

    pEditor.AbortOperation

End Sub

Snap agents
ArcMap also maintains a snapping environment that contains several
snapping agents useful for placing points. For example, FeatureSnapAgent
can be configured to snap input points to the vertices of existing features.

All snap agents implement the ISnapAgent interface and are registered in
the Editor Snap Agents component category. A specific class of snap
agent is the feature snap agent.

The sketch tools and other editing tools use feature snap agents to find
features to which to snap. A feature snap agent is automatically instanti-
ated for each editable feature class the first time the snapping window is
opened. The other snap agents, such as Snap Perpendicular, are also
instantiated when the snapping window is first opened.

The snapping properties, such as snap tolerance, snap tolerance units
(map or pixel), and hit-type, are managed by the ISnapEnvironment
interface on the Editor object.

Snapping is performed by calling the ISnapEnvironment::SnapPoint
method and passing it an IPoint. For example, the sketch tools get the
current mouse location (IEditor::Location) and pass it to SnapPoint.
SnapPoint in turn calls each snap agent’s ISnapAgent::Snap method until
one of them returns True, which indicates that the snap agent has found
a new point that meets its unique snapping criteria. The coordinates of
the point are modified to reflect that of the new point location.

Feature snap agents use feature caches to create a small selected set of
features in memory. The feature snap agents track the current mouse

Snap agents help position features and edit
sketch vertices.

THE EDITOR FRAMEWORK



1136 • Exploring ArcObjects • Volume 2

location and continually reinitialize a feature cache and fill it with the
features that reside near this point. The snap agents then cycle through
all of the features in the cache and check to see if any of them are
within the ArcMap snap tolerance.

Editor extensions
ArcMap has several extensions including the Attributes Window exten-
sion, the Digitizer extension, the Topology Editor extension, and the
Conflict Resolution extension. All editor extensions must implement the
IExtension interface and be registered in the ESRI Edit Extensions com-
ponent category. When an edit session begins, each editor extension is
activated; when editing is complete, each editor extension is deactivated.

Custom editor extensions can be created and added to the editor. For
example, a developer may choose to create a custom extension that
controls feature validation throughout an edit session. Such an extension
might listen for the edit events OnCreateFeature and OnChangeFeature
and perform validation whenever these events are fired.

Feature inspectors
The ArcMap Attribute dialog box contains two panels. The left panel
lists the features from the map that have been selected and are editable.
The features are listed under the feature class they belong to. Any re-
lated features are also listed in this panel underneath the selected fea-
ture they are related to. The right panel houses a feature inspector.

ArcMap ships with a standard feature inspector, which enables attribute
editing. For any feature class in a geodatabase, you can replace the
default feature inspector with a custom feature inspector. For example,
you may want to create a custom feature inspector that displays a
bitmap whenever a feature belonging to a specific feature class is
selected.

Create custom inspectors by implementing the IObjectInspector interface
and registering the class as a feature class’s feature class extension.
Again, custom feature inspectors can only be assigned to feature classes
in a geodatabase.

Only one feature inspector can be active for each feature class. When
you create a custom feature inspector, you specify the specific feature
classes that will use it. Selecting a feature in the left panel of the At-
tributes dialog box activates the associated feature inspector in the right
panel.

Feature inspectors let you analyze features in
greater detail.

The ArcMap feature inspector enables attribute
editing.

THE EDITOR FRAMEWORK

Just as the editor is an extension to the ArcMap
application, it also manages its own extensions.



Chapter 11 • Editing features • 1137

E
d

it
o

r

EDITOR CLASS

The Editor object manages the edit sketch, the current task, the current
target layer, the edit workspace, the edit selection, the edit session prop-
erties, and the snap environment.

You can get a reference to one of the Editor object’s interfaces by using
IApplication::FindExtensionByCLSID or IApplication::FindExtensionByName.

This VBA code shows how to get the reference by class ID.

   Dim pEditor As IEditor

   Dim pID As New esriCore.UID

   pID = "esriCore.Editor"

   Set pEditor = Application.FindExtensionByCLSID(pID)

This VBA code shows how to get the reference by name.

   Dim pEditor as IEditor

   Set pEditor = Application.FindExtensionByName ("ESRI Object Editor")

 IEditor : IUnknown Controls the behavior of the editor.

CurrentTask: IEditTask Controls the current edit task.
Display: IScreenDisplay Reference to the current display.
EditSelection: IEnumFeature Gets the selected features which are editable.
EditState: esriEditState Returns the editor's current edit state.
EditWorkspace: IWorkspace Reference to the workspace being edited.
Location: IPoint The last known location of the mouse.
Map: IMap Reference to the map being edited.
Parent: IApplication Reference to the parent application.
ScratchWorkspace: IWorkspace Reference to the editor's scratch workspace.
SelectionAnchor: IAnchorPoint The selection anchor point.
SelectionCount: Long Gets the number of selected features which are editable.
Task (in Index: Long) : IEditTask Returns an edit task by index.
TaskCount: Long The number of edit tasks.

AbortOperation Aborts an edit operation.
CreateSearchShape (in Point: IPoint) :

IGeometry
Creates a geometry using the point and the current search tolerance.

DelayEvents (in delay: Boolean) Used to batch operations together and minimize notifications.
EnableUndoRedo (in Enabled: Boolean) Enable/disable the undo/redo capabilities.
FindExtension (in extensionID: IUID) :

IExtension
Finds the extension given an id.

HasEdits: Boolean Returns true if edits have been made.
InvertAgent (in loc: IPoint, in hDC: Long) Draws the editor's snapping agent.
RedoOperation Redo an edit operation.
SearchSelection (in Point: IPoint) :

IEnumFeature
Searches the edit selection using the given location.

StartEditing (Workspace: IWorkspace) Starts an edit session.
StartOperation Starts an edit operation.
StopEditing (in saveChanges: Boolean) Stops an edit session.
StopOperation (in menuText: String) Stops an edit operation.
UndoOperation Undo an edit operation.

The IEditor interface is the main interface used to control all editing
actions. Use the members in this interface to start and stop an edit ses-
sion, create and manage edit operations, and set the editor’s current
task.

This sample routine uses the IEditor interface to change the current task
based on input passed to the routine.

Public Sub ChangeTask(pEditor As IEditor, sTaskName As String)

  Dim pEditTask As IEditTask

  Dim lTaskCount As Long

  'Loop through all the available edit tasks

  For lTaskCount = 0 To pEditor.TaskCount - 1

IActiveViewEvents
IEditEvents

IEditEvents2
IEditLayers

IEditor
IEditProperties

IEditSketch
IEditSketch2

IExtension
IExtensionAccelerators

IExtensionManager
IPersist

IPersistStream
ISnapEnvironment

Editor

The Editor object represents the Editor
extension to ArcMap; it is the main

editing component and the focal point for
all other objects in the Editor object
model. Because the Editor object is

implemented as an extension, this object
is instantiated when ArcMap is launched.



1138 • Exploring ArcObjects • Volume 2

    Set pEditTask = pEditor.Task(lTaskCount)

    If pEditTask.Name = sTaskName Then

      Set pEditor.CurrentTask = pEditTask

      Exit For

    End If

  Next lTaskCount

End Sub

 IEditEvents : IUnknown IEditEvents is an outbound interface on the editor.
Implement it to listen for specific events that occur during
an edit session.

AfterDrawSketch (in pDpy: IDisplay) Called after the edit sketch is drawn.
OnChangeFeature (obj: IObject) Called when features are modified.
OnConflictsDetected Called when editing conflicts are detected during save.
OnCreateFeature (obj: IObject) Called when new features are created.
OnCurrentLayerChanged Called when the current layer changes.
OnCurrentTaskChanged Called when the current task changes.
OnDeleteFeature (obj: IObject) Called when features are deleted.
OnRedo Called when RedoOperation is called.
OnSelectionChanged Called when the selection changes.
OnSketchFinished Called when the edit sketch is finished.
OnSketchModified Called when the edit sketch is modified.
OnStartEditing Called when editing begins.
OnStopEditing (in Save: Boolean) Called when editing ends.
OnUndo Called when UndoOperation is called.

IEditEvents is an outbound interface on the Editor. Use this interface to
trap specific events that occur inside an edit session. For example, you
may wish to execute custom validation code whenever a user completes
an edit sketch.

To respond to events using Visual Basic, declare a modular-level object
variable of type Editor using the WithEvents keyword in a class module.

  Private WithEvents EditorEvents as Editor

Although the object variable has been declared, it points to nothing.
Initialize the object variable using the Set statement to link it to the exist-
ing Editor object. If implementing ICommand, do so in
ICommand_OnCreate or Class_Initialize. Editor extensions typically
initialize event object variables in IExtension_Startup.

Always set the event object variable to Nothing when the class is de-
structed to avoid circular reference problems.

 IEditEvents2 : IUnknown Provides access to more editor events.  Implement it to
listen for specific events that occur during an edit
session.

BeforeStopEditing (in Save: Boolean) Fired before StopEditing happens.
BeforeStopOperation Called before StopOperation is called.
OnAbort Called when AbortOperation is called.
OnCurrentZChanged Called when the CurrentZ changes.
OnSaveEdits Called when edits are saved.
OnStartOperation Called when StartOperation is called.
OnStopOperation Called when StopOperation is called.
OnVertexAdded (in Point: IPoint) Called after a point/vertex is added to the sketch.
OnVertexDeleted (in Point: IPoint) Called after a point is added to the sketch.
OnVertexMoved (in Point: IPoint) Called after a vertex/point has been moved in the sketch.

With ArcGIS 8.1, additional editor events have been added and grouped
under the IEditEvents2 interface. Because Visual Basic only supports
one outbound interface per object, the EditEvents2 coclass has been

EDITOR CLASS

IEditEvents2

EditEvents2

The EditEvents2 coclass allows the
Visual Basic programmer to respond to

additional editor events.



Chapter 11 • Editing features • 1139

E
d

it
o

r

created to allow Visual Basic developers the opportunity to respond to
these events. To respond to events under IEditEvents2, declare a modu-
lar-level object variable of type EditEvents2, as shown below.

  Private WithEvents EditorEvents2 as EditEvents2

As with IEditEvents, set the event object variable to reference the Editor
object.

  Set EditorEvents2 = m_pEditor

Again, as with IEditEvents, always set the event object variable to Noth-
ing when the class is destroyed to avoid circular reference problems.

Private WithEvents EditorEvents As Editor

Private WithEvents EditorEvents2 As EditEvents2

Private m_pEditor As IEditor

Private m_pEditLayers As IEditLayers

Public Sub InitEvents()

   Dim pUID As New UID

   pUID = "esriCore.Editor"

   Set m_pEditor = Application.FindExtensionByCLSID(pUID)

   If m_pEditor Is Nothing Then Exit Sub

   Set m_pEditLayers = m_pEditor

   Set EditorEvents = m_pEditor

   Set EditorEvents2 = m_pEditor

End Sub

Private Sub EditorEvents_OnCurrentLayerChanged()

  MsgBox m_pEditLayers.CurrentLayer.Name

End Sub

Private Sub EditorEvents_OnSelectionChanged()

  MsgBox m_pEditor.SelectionCount

End Sub

Private Sub EditorEvents_OnStopEditing(ByVal bSave As Boolean)

  Set EditorEvents = Nothing

End Sub

Private Sub EditorEvents2_OnVertexMoved(ByVal Point As IPoint)

  MsgBox Point.X &amp; " " &amp; Point.Y

End Sub

EDITOR CLASS



1140 • Exploring ArcObjects • Volume 2

 IEditLayers : IUnknown Access information about layers in the edit session.

CurrentLayer: IFeatureLayer Indicates the editor's target layer which new features are added to.
CurrentSubtype: Long The sub type for new features in the CurrentLayer.

IsEditable (in Layer: IFeatureLayer) :
Boolean

Determines if a specific feature layer is editable.

SetCurrentLayer (in Layer:
IFeatureLayer, in SubType: Long)

The editor's target layer and subtype for new features.

The IEditLayers interface is used to access information about layers
involved in an edit session. For example, use IEditLayers to determine if
a particular layer involved in an edit session is editable or not; in addi-
tion, use IEditLayers to check or set the editor’s current layer and cur-
rent subtype.

The current layer (or target layer) determines which layer will receive
newly created features. For instance, if you set the current layer to
Buildings, all new features created will be added to this layer. Edit tasks
and commands that create new features use this property to determine
to which layer to write out the new features.

The following subroutine sets the current layer based on a name and
subtype index.

Public Sub SetCurrentLayer(pEditor As IEditor, sLayerName As String,
lSubType As Long)

  Dim pEditLayers As IEditLayers

  Dim pFeatLayer As IFeatureLayer

  Dim pMap As IMap

  Dim lLayerCount As Long

  Set pEditLayers = pEditor 'QI

  Set pMap = pEditor.Map

  'Loop through all of the maps layers to find the desired one

  For lLayerCount = 0 To pMap.LayerCount - 1

    If pMap.Layer(lLayerCount).Name = sLayerName Then

      'Make sure the layer is editable

      If pEditLayers.IsEditable(pMap.Layer(lLayerCount)) Then

        Set pFeatLayer = pMap.Layer(lLayerCount)

        pEditLayers.SetCurrentLayer pFeatLayer, lSubType

        Exit For

      End If

    End If

  Next lLayerCount

End Sub

EDITOR CLASS



Chapter 11 • Editing features • 1141

E
d

it
o

r

 IEditProperties : IUnknown Controls the properties of an edit session.

AutoSaveOnVersionRedefined: Boolean Enabling autosave informs the stop editing process that it should
automatically reconcile an edit session and save the version without
notification.

ReportPrecision: Long Controls the number of decimal places the editor reports numbers
with.

SelectedVertexSymbol: IMarkerSymbol Symbol used to draw the active vertex of the edit sketch.
SketchSymbol: ILineSymbol Symbol used to draw the lines of the edit sketch.
SketchVertexSymbol: IMarkerSymbol Symbol used to draw the vertices of the edit sketch.
SnapSymbol: IMarkerSymbol Symbol used to draw the snap location.
StreamGroupingCount: Long Controls the number of points to group together when streaming.
StreamTolerance: Double Controls the streaming tolerance, measured in map units.
StretchGeometry: Boolean If True, the edit sketch is stretched when one of its vertices is moved.

The IEditProperties interface manages all of the properties an edit ses-
sion has. This sample changes the color of edit sketch segments from
green to red.

Public Sub ChangeSketchSymbol(pEditor As IEditor)

  Dim pEditProperties As IEditProperties

  Dim pLineSymbol As ILineSymbol

  Dim pRGBColor As IRgbColor

  Set pEditProperties = pEditor 'QI

  Set pLineSymbol = New SimpleLineSymbol

  Set pRGBColor = New RgbColor

  pRGBColor.Red = 255

  pLineSymbol.Color = pRGBColor

  Set pEditProperties.SketchSymbol = pLineSymbol

End Sub

Here is a more complete sample that changes the Sketch tool’s default
snap symbol (blue dot) to the symbol of the current point layer. The
macro listens for current layer changes and checks to see if the new
target layer is a point layer; if so, it changes the editor snap symbol to
that of the point layer. The point layer must be using a unique value
renderer.

Option Explicit

Private m_pEditor As IEditor

Private m_pEditProps As IEditProperties

Private m_pEditLyrs As IEditLayers

Private m_pOrigSym As ISymbol

Private WithEvents EditorEvents As esriCore.Editor

Private Sub Driver()

  'Run Driver once to setup the environment

  Dim pApp As IApplication

  Dim pID As New UID

  pID = "esriCore.Editor"

  Set pApp = Application

  Set m_pEditor = pApp.FindExtensionByCLSID(pID)

  Set EditorEvents = m_pEditor

  Set m_pEditProps = m_pEditor

EDITOR CLASS



1142 • Exploring ArcObjects • Volume 2

  Set m_pEditLyrs = m_pEditor

  'Keep the original symbol for polyline and polygon layers

  Set m_pOrigSym = m_pEditProps.SnapSymbol

End Sub

Private Sub EditorEvents_OnCurrentLayerChanged()

  Dim pSym As ISymbol

  Dim pClone As IClone

  Dim pMySym As ISymbol

  Dim pGeoFeatureLayer As IGeoFeatureLayer

  Dim pUniqueRender As IUniqueValueRenderer

  Dim sValue As String

  Dim pRenderer As IFeatureRenderer

  Dim pSubTypes As ISubtypes

  'Check that the current layer contains point features

  If m_pEditLyrs.CurrentLayer.FeatureClass.ShapeType = esriGeometryPoint Then

    Set pGeoFeatureLayer = m_pEditLyrs.CurrentLayer

    Set pRenderer = pGeoFeatureLayer.Renderer

    'Make sure a uniquevalue renderer is used to display the points

    If Not TypeOf pRenderer Is IUniqueValueRenderer Then Exit Sub

    'Check if data has subtypes

    Set pSubTypes = m_pEditLyrs.CurrentLayer.FeatureClass

    Set pUniqueRender = pGeoFeatureLayer.Renderer

    If pSubTypes.HasSubtype Then

      Value = m_pEditLyrs.CurrentSubtype

      Set pSym = pUniqueRender.Symbol(sValue)

    Else

      Set pSym = pUniqueRender.DefaultSymbol

    End If

    'Clone the symbol

    Set pClone = pSym

    Set pMySym = pClone.Clone

    'Set the ROP property so the symbol will clear itself on redraw

    pMySym.ROP2 = esriROPNotXOrPen

    Set m_pEditProps.SnapSymbol = pMySym

  Else

    'Layer must be polyline or polygon so use default symbol

    Set m_pEditProps.SnapSymbol = m_pOrigSym

  End If

End Sub

Private Sub EditorEvents_OnStopEditing(ByVal bSave As Boolean)

  Set EditorEvents = Nothing

End Sub

EDITOR CLASS

This illustration shows a polygon edit sketch
being created with the main sketch tool.



Chapter 11 • Editing features • 1143

E
d

it
o

r

 IEditSketch : IUnknown Access and manipulate the edit sketch.

Geometry: IGeometry Geometry stored in the edit sketch.
GeometryType: tagesriGeometryType Type of the geometry stored in the edit sketch.
LastPoint: IPoint Returns the last point in the edit sketch.
Part: Long Returns the index of the current part of the sketch.
Segment: Long Returns the index of the current segment of the sketch.
Vertex: Long Returns the index of the current vertex of the sketch.

AddPoint (in Point: IPoint, in allowUndo:
Boolean)

Adds a point to the edit sketch. If allowUndo is true, a new operation
will be created.

FinishSketch Completes the current edit sketch.
FinishSketchPart Completes a part for the current edit sketch.
ModifySketch Call to notify listeners that the sketch has been changed.
RefreshSketch Invalidates the portion of the display that is occupied by the sketch.

The purpose of the IEditSketch interface is to manage the edit sketch
geometry: a geometry used by the current task. For example, when the
user completes the sketch, the Create New Feature task takes the sketch
geometry and creates a new feature, using that shape, in the target layer.

ArcMap creates a new empty geometry when the Editor object is instan-
tiated. Edit tasks set the geometry type of the edit sketch, and the sketch
tools add points to that geometry. For example, the Create New Feature
task sets the edit sketch geometry type to be the same as the geometry
type of the target layer. In contrast, the Select Features Using a Line task
always sets the edit sketch geometry type to esriGeometryPolyline, with
no regard to the current layer geometry type.

Edit tasks often set the edit sketch geometry to esriGeometryNull, causing
the sketch tools to become inactive. For example, the Reshape task will
set the edit sketch geometry to esriGeometryNull if there are no polygon
or polyline features selected. This prevents users from creating an edit
sketch that would otherwise do nothing. Edit tasks respond to editor
events such as OnSelectionChanged and OnCurrentLayerChanged to
accomplish this.

Use the AddPoint method to build (add data to) the edit sketch geometry
or directly manipulate the sketch geometry within the context of a sketch
operation. Use FinishSketch to signal to the current task that the geom-
etry is ready for use. To move an existing feature into the edit sketch, set
the Geometry property to the desired feature and call RefreshSketch.

 IEditSketch2 : IEditSketch Access and manipulate the edit sketch.

CurrentZ: Double Current Z value for the edit sketch.
EditSketchExtension:

IEditSketchExtension
The current edit sketch extension.

MAware: Boolean If True, the edit sketch geometry will contain Ms.
ZAware: Boolean If True, the edit sketch geometry will contain Zs.

VertexAdded (in Point: IPoint) Call to notify listeners that a sketch vertex has been added.
VertexDeleted (in Point: IPoint) Call to notify listeners that a sketch vertex has been deleted.
VertexMoved (in Point: IPoint) Call to notify listeners that a sketch vertex has been moved.

The IEditSketch2 interface extends the functionality of the edit sketch by
adding support for making the sketch z-aware and for setting z-values
on a vertex, as well as managing the current EditSketchExtension.
IEditSketch2 also exposes three functions that fire event notifications
when vertices are added, modified, or deleted.

EDITOR CLASS



1144 • Exploring ArcObjects • Volume 2

Whenever a vertex is deleted from an edit sketch, VertexDeleted should
be called so that any clients listening for this event have the opportunity
to respond.

 IExtensionManager : IUnknown Provides access to members that query extension.

Extension (in Index: Long) : IExtension The extension at the specified index.
ExtensionCount: Long The number of extensions loaded in the application.

To help manage the editor extensions, the Editor object implements
IExtensionManager interface. For more information on this interface, see
the Application object in Volume 1, Chapter 3, ‘Customizing the user
interface’.

The following sample returns the number of editor extensions:

Public Function GetEditorExtensionCount(pEditor As IEditor) As Long

  Dim pExtensionManager As IExtensionManager

  Set pExtensionManager = pEditor 'QI

  GetEditorExtensionCount = pExtensionManager.ExtensionCount

End Function

 ISnapEnvironment : IUnknown Manages the snap agents used by the editor.

SnapAgent (in Index: Long) :
ISnapAgent

Returns a snap agent given an index.

SnapAgentCount: Long Returns the number of active snap agents.
SnapTolerance: Double Controls the snap tolerance, measured in pixels or map units.
SnapToleranceUnits:

esriSnapToleranceUnits
Controls the units used for the snap tolerance.

AddSnapAgent (in SnapAgent:
ISnapAgent)

Adds a new snap agent to the snap environment.

ClearSnapAgents Removes all snap agents.
RemoveSnapAgent (in Index: Long) Removes the snap agent at the given index.
SnapPoint (in Point: IPoint) : Boolean Attempts to snap the point using the current snap environment.

The ISnapEnvironment interface manages the collection of snap agents,
the snap tolerance, and the snap tolerance units.

To add a new snap agent, call AddSnapAgent; to remove a snap agent,
call RemoveSnapAgent. Use SnapPoint to snap a point—for more details,
see the discussion on snap agents earlier in this chapter.

EDITOR CLASS



Chapter 11 • Editing features • 1145

E
d

it
o

r

All edit tasks implement the IEditTask interface. Edit tasks must be regis-
tered in the ESRI Edit Tasks component category to appear in the Edit
Task dropdown menu on the Editor toolbar.

 IEditTask : IUnknown A task that receives notification when the sketch is
complete.

Name: String The name of the edit task.

Activate (in Editor: IEditor, in oldTask:
IEditTask)

Called by the editor when the task becomes active.

Deactivate Called by the editor when the task becomes inactive.
OnDeleteSketch Notifies the task that the edit sketch has been deleted.
OnFinishSketch Notifies the task that the edit sketch is complete.

The IEditTask interface is primarily used when implementing a new edit
task and when programmatically changing the current edit task.

Below is a complete edit task sample. This task sets the geometry of the
edit sketch to esriGeometryPolygon and uses the polygon created to
select those features the sketch intersects.

Option Explicit

Implements IEditTask

Private m_pEditor As IEditor

Private m_pEditSketch As IEditSketch

Private m_pArcMapDoc As IMxDocument

Private m_pApp As IMxApplication

Private m_pMXApp As IMxApplication

Private Sub IEditTask_Activate(ByVal Editor As IEditor, _

      ByVal oldTask As IEditTask)

  Set m_pEditor = Editor

  Set m_pEditSketch = Editor

  m_pEditSketch.GeometryType = esriGeometryPolygon

  Set m_pApp = Editor.Parent

  Set m_pMXApp = m_pApp  'QI

End Sub

Private Sub IEditTask_Deactivate()

End Sub

Private Property Get IEditTask_Name() As String

  IEditTask_Name = "Custom Select Task"

End Property

Private Sub IEditTask_OnDeleteSketch()

End Sub

Private Sub IEditTask_OnFinishSketch()

  Dim pMap As IMap

  Dim pActiveView As IActiveView

  Dim pSelectionEnv As ISelectionEnvironment

  Dim pSearchGeo As IGeometry

EDITTASK ABSTRACT CLASS

IEditTask

EditTask

The Editor manages a collection of
EditTask objects that perform a specific,

unique operation with the edit sketch.



1146 • Exploring ArcObjects • Volume 2

  Dim pTopoOp As ITopologicalOperator

  Set pMap = m_pEditor.Map

  Set pActiveView = pMap 'QI

  Set pSelectionEnv = m_pMXApp.SelectionEnvironment

  Set pSearchGeo = m_pEditSketch.Geometry

  'Refresh old selection

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

  Set pTopoOp = pSearchGeo 'QI

  pTopoOp.Simplify 'Close polygons

  'Do the Selection.

  'SelectByShape automatically fires the SelectionChanged event

  pMap.SelectByShape pSearchGeo, pSelectionEnv, False

  'Refresh the new selection

  pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

End Sub

EDITTASK ABSTRACT CLASS



Chapter 11 • Editing features • 1147

E
d

it
o

r

The SketchTool object is the default sketch tool on the Editor toolbar.
This sketch tool has its own context menu with commands such as
Angle, Length, and Parallel. Add your own custom commands or mac-
ros to the Sketch Tool context menu using the Customize dialog box.

Like most commands and tools, this object is not cocreatable and is
hidden in the type library. However, one interface is exposed, allowing
developers to customize its behavior.

 ISketchTool : IUnknown SketchTool

Anchor: IPoint The anchor of the sketch.
AngleConstraint: Double Controls the angular constraint.
Constraint: esriSketchConstraint Controls the sketch constraint.
DistanceConstraint: Double Controls the distance constraint.
IsStreaming: Boolean Indicates whether stream mode digitizing is enabled.
Location: IPoint The current location of the mouse.

AddPoint (in Point: IPoint, in Clone:
Boolean, in allowUndo: Boolean)

Adds a point to the sketch.

Use ISketchTool when you want to set and get specific information
about the Sketch tool. For example, when creating a custom Sketch tool
menu item, you may need to get the Sketch tool’s current location or the
edit sketch anchor point. For example, the Parallel command uses the
Location property to find the feature on which the sketch tool was right-
clicked before the command was selected.

This interface also allows you to set constraints on the Sketch tool, as
well as add new points to the edit sketch. The sample below prompts
the user for an input angle and then constrains the edit sketch to this
angle. The command should be added to the Edit Sketch context menu
so that the command is only available when the user right-clicks it.

Public Sub SetAngleConstraint()

  Dim pEditor As IEditor

  Dim pID As New UID

  pID = "esriCore.Editor"

  Set pEditor = Application.FindExtensionByCLSID(pID)

  Dim pSketchTool As ISketchTool

  Dim pNumberDialog As INumberDialog

  Dim dPI As Double

  dPI = 4 * Atn(1)

  'Get a reference to the sketch tool

  Set pSketchTool = Application.CurrentTool.Command

  'Use a number dialog to get user input angle

  Set pNumberDialog = New NumberDialog

  If pNumberDialog.DoModal("Angle", 0, 4, 0) Then

    pSketchTool.AngleConstraint = pNumberDialog.Value * dPI / 180

    pSketchTool.Constraint = esriConstraintAngle

  End If

End Sub

SKETCHTOOL COCLASS

ICommand
ISketchTool

ITool SketchTool

The sketch tool is the main tool for
creating an edit sketch.

This illustration shows the sketch tools available
with the editor. Only the main sketch tool has

an interface exposed to developers.



1148 • Exploring ArcObjects • Volume 2

Create a Sketch operation whenever you need to provide undo/redo
capabilities for modifications made to the edit sketch. For example,
custom code that deletes one of the vertices in the edit sketch should
use a Sketch operation so the user can undo the edit.

Both IEditSketch::AddPoint and ISketchTool::AddPoint automatically
create a Sketch operation.

 ISketchOperation : IOperation Provides undo/redo capabilities for edit sketch
modifications.

MenuString: String Sets the text that appears in the undo menu choice.

Finish (in invalEnv: IEnvelope) Finishes the operation and puts it into the operation stack. Call this
after the sketch has been modified.

Start (in Editor: IEditor) Starts the operation, caching the existing sketch. Call this before
modifying the sketch.

Sketch operations are very similar to Editor operations. First, call Start to
flag the beginning of the Sketch operation. Use the MenuString property
to give the operation a name. Perform the edits. Call Finish to complete
the edit operation. Finish requires an envelope parameter that is used to
invalidate/refresh the display.

 ISketchOperation2 : IUnknown Provides undo/redo capabilities for edit sketch
modifications.

Finish (in invalEnv: IEnvelope, opType:
esriSketchOperationType, in data:
Variant)

Finishes the operation and puts it into the operation stack. Call this
after the sketch has been modified.

ISketchOperation2 was added to provide a new implementation for the
Finish method. The new implementation allows tools to give more infor-
mation about what they modified; typically, the edited sketch point is
passed back to clients listening to editor events (IEditEvents2).

For example, if a point is deleted from an edit sketch and
ISketchOperation2::Finish is used to complete the operation, the deleted
point is passed to clients responding to IEditEvents2::OnVertexDeleted.

The sample below rewrites the DeleteEditSketchVertex subroutine from
the first section of this chapter to use ISketchOperation2.

Public Sub DeleteEditSketchVertex2(pEditor As IEditor)

  Dim pEditSketch As IEditSketch

  Dim pPointColl As IPointCollection

  Dim pPoint As IPoint

  Dim pSketchOp As ISketchOperation

  Dim pSketchOp2 As ISketchOperation2

  Dim pID As New UID

  Dim index As Long

  Set pEditSketch = pEditor 'QI

  index = pEditSketch.Vertex

  If index = -1 Then Exit Sub 'Exit if I don’t have a vertex

  'Create a sketch operation to get undo/redo capabilities

  Set pSketchOp = New SketchOperation

  Set pSketchOp2 = pSketchOp

SKETCHOPERATION COCLASS

ISketchOperation
ISketchOperation2 Sketch-

Operation

Sketch operations allow edit sketch
modifications to be undone.

This illustration shows a sketch operation added
to the document’s operation stack after a vertex

has been added to the edit sketch.



Chapter 11 • Editing features • 1149

E
d

it
o

r

  pSketchOp.MenuString = "Delete Vertex" 'Give the operation a name

  pSketchOp.start pEditor 'Start the operation

  'Delete the point from the edit sketch and refresh

  Set pPointColl = pEditSketch.Geometry

  Set pPoint = pPointColl.Point(index)

  pPointColl.RemovePoints index, 1

  pEditSketch.RefreshSketch

  'Finish the operation to add it to the operation stack

  pSketchOp2.Finish pEditSketch.Geometry.Envelope, _

  esriSketchOperationVertexDeleted, pPoint

End Sub

Using IEditEvents2, you can draw the deleted vertex.

Private Sub EditorEvents_OnVertexDeleted(ByVal Point As IPoint)

  With m_pScreenDisplay

    .StartDrawing 0, esriNoScreenCache

    .SetSymbol New SimpleMarkerSymbol

    .DrawPoint Point

    .FinishDrawing

  End With

End Sub

SKETCHOPERATION COCLASS



1150 • Exploring ArcObjects • Volume 2

The Editor manages a collection of snap agents that perform feature and
sketch snapping. All snap agents implement the ISnapAgent interface. All
nonfeature snap agents are registered in the ESRI Snap Agent’s compo-
nent category and appear in the bottom half of the the ArcMap snap-
ping window. Feature snap agents are not registered in this component
category, as you cannot develop custom feature snap agents.

For more information on snap agents and the snapping environment,
see the ‘Snap agents’ section earlier in this chapter.

 ISnapAgent : IUnknown Snaps point locations using a tolerance.

Name: String The name of the snap agent shown in the UI.

Snap (in geom: IGeometry, in Point:
IPoint, in Tolerance: Double) : Boolean

Called by the editor to perform the actual snapping logic.

The ISnapAgent interface is typically used in two scenarios: creating new
custom snap agents and accessing properties of an existing snap agent.

Custom snap agents must implement ISnapAgent and IPersistStream or
IPersistVariant to save its state. For example, a snap agent may want to
persist its settings in the map document so that when the document is
next loaded, the user does not have to reset anything.

Use ISnapEnvironment::SnapAgent on the Editor object to get an
ISnapAgent reference to a specific snap agent. For example, there may
be cases where you need to loop through all of the available snap
agents to find the one you want to work with.

Feature snap agents are a specific class of snap agents. The sketch tools
and other editing tools use feature snap agents to find features to which to
snap. A feature snap agent is automatically instantiated for each editable
feature class the first time the snapping window is opened. Alternatively,
you can cocreate a new feature snap agent, set its properties, and manu-
ally add it to the snapping environment. The editor will not replace manu-
ally added feature snap agents when the snapping window is opened.

 IFeatureSnapAgent : ISnapAgent Controls a feature snap agent's properties.

FeatureCache: IFeatureCache Retrieves the FeatureCache associated with the feature snap agent.
FeatureClass: IFeatureClass The feature class the feature snap agent snaps to.
HitType: esriGeometryHitPartType The part of a geometry the feature snap agent snaps to.

The IFeatureSnapAgent interface is used to set the properties of a feature
snap agent. IFeatureSnapAgent inherits from ISnapAgent so all of the
members on ISnapAgent are directly available.

Enumeration esriGeometryHitPartType Describes the parts of a geometry that can be located by
their proximity to a query point.

 0 - esriGeometryPartNone No part was located by the hit test.
 1 - esriGeometryPartVertex Locate the vertex of a geometry closest to the query point.
 4 - esriGeometryPartBoundary Locate the closest point on the boundary of a polygon, or the

closest point on a polyline, to the query point.
 8 - esriGeometryPartMidpoint Locate the segment midpoint that is closest to the query point.
16 - esriGeometryPartEndpoint Locate the 'from' or 'to' point of the polyline closest to the query

point.
32 - esriGeometryPartCentroid Locate the ring centroid closest to the query point.

FEATURESNAP COCLASS

IFeatureSnapAgent

FeatureSnap

ISnapAgent

SnapAgent

Feature snap agents are a class of snap
agents that help position features and

edit sketch vertices by snapping them to
other features.

This image shows how the feature snap agents
are separated from the regular snap agents in

the snapping environment window.

For information on the esriGeometryHitPart-
Type enumeration, please see Chapter 9,

‘Shaping features with geometry’ .



Chapter 11 • Editing features • 1151

E
d

it
o

r

The features stored in a feature cache are typically those that are near
the current mouse location. For example, each feature snap agent tracks
the current mouse location and continually reinitializes a feature cache
and fills it with the features residing near this point. The snap agents
then cycle through all of the features in their cache, checking if any are
within the snap tolerance.

 IFeatureCache : IUnknown A cache of features in memory for a particular spatial
extent.

Count: Long Returns the number of features in the cache.
Feature (in Index: Long) : IFeature Returns the nth feature.

AddFeatures (in fclass: IFeatureClass) Fills the cache with features from the featureclass.  All previously
loaded features in the cache are removed.

Contains (in Point: IPoint) : Boolean Returns true if the point is contained in the cache.
Initialize (in Point: IPoint, in Size:

Double)
Initializes the cache with a given size and location.

Use the IFeatureCache interface to initialize and fill a feature cache as
well as iterate through it.

A FeatureCache must be initialized before it can be used. The required
Point and Size parameters specify an area that AddFeatures will use to
find features and add them to the cache.

To reload a cache with new features, reinitialize the cache around a new
point and call AddFeatures again.

The Point parameter is typically a point defined by the current mouse
location.

The Size parameter is usually an arbitrary number, such as ten times the
snap tolerance.

 IFeatureCache2 : IUnknown Provides access to members that control a cache of
features in memory for a particular spatial extent.

Count: Long The number of features in the cache.
Feature (in Index: Long) : IFeature The nth feature.

AddFeatures (in fclass: IFeatureClass,
addToCache: Boolean, Clip: IEnvelope)

Fills the cache with features from the featureclass. Optionally
clears the cache before filling it. Clip envelope may be null.

Contains (in Point: IPoint) : Boolean Returns true if the point is contained in the cache.
Initialize (in Point: IPoint, in Size: Double) Initializes the cache with a given size and location.

IFeatureCache2 is exactly the same as IFeatureCache with one enhance-
ment—the AddFeatures method has an additional parameter that lets you
append features into an existing cache or, like IFeatureCache, create a
new cache.

Use this interface to fill a cache with multiple feature classes. For ex-
ample, the Intersection sketch tool uses this interface because, unlike a
snap agent, it works with all the selectable layers in the focus map.

FEATURECACHE COCLASS

IFeatureCache
IFeatureCache2 Feature-

Cache

Use feature caches to store a small set
of features in memory. Having these

features stored in memory enables you
to perform extremely quick operations on

these features.

This illustration shows the extent of a feature
cache initialized around a point.



1152 • Exploring ArcObjects • Volume 2

The snapping window reveals all the snap agents currently available. All
custom snap agents appear in the bottom half of the dialog box with all
regular snap agents; only feature snap agents appear in the top half.

A feature snap agent is created for each editable feature class the first
time the snapping window is opened. Each feature snap agent initially
has its HitType property set to esriGeometryPartNone. Change the HitType
by checking the appropriate box in the snapping window or program-
matically change it using IFeatureSnapAgent::HitType.

Snap agents other than feature snap agents, for example, Snap Perpen-
dicular, are also instantiated the first time the snapping window is
opened, but these are not added to the snap environment until the user
checks them on.

 ISnappingWindow : IUnknown Provides methods for working with the SnappingWindow

Hide Hides the window.
RefreshContents Refreshes the contents.
Show Shows the window.

Use the ISnappingWindow interface after programmatically changing the
snapping environment to refresh the contents of the Snapping Window.
You can also programmatically close or open the snapping window
using the Hide and Show methods.

Call RefreshContents to update the snapping window with any program-
matic changes made to the snapping environment.

To get a handle to the snapping window, use ICommandBars::Find. The
VBA example below shows a standalone subroutine that clears all the
snap agents. To see how this works, turn some snap agents on before
running this code.

Sub ClearSnapAgents(pEditor As IEditor)

  Dim pSnapUID As New UID

  Dim pSnapEnv As ISnapEnvironment

  Dim pSnapWindow As ISnappingWindow

  pSnapUID = "esriCore.SnappingCommand"

  Set pSnapEnv = pEditor

  'Clear all of the loaded snap agents

  pSnapEnv.ClearSnapAgents

  'Get a handle to the snapping window by searching for it

  Set pSnapWindow = _

           Application.Document.CommandBars.Find(pSnapUID).Command

  pSnapWindow.RefreshContents

 End Sub

SNAPPINGCOMMAND COCLASS

ICommand
ISnappingWindow Snapping-

Command

The snapping command object repre-
sents the snapping environment window,

which gives a user interface to the
ArcMap snapping environment.



Chapter 11 • Editing features • 1153

E
d

it
o

r

Use the EditSelectionCache object to quickly determine if the mouse is
over a selected feature.

 IEditSelectionCache : IUnknown Caches the selection for fast hit testing.

HitTest (in loc: IPoint) : Boolean Tests if the location is over the selection or not.
Initialize (in Editor: IEditor, in sizePixels:

Long)
Initializes the cache using the editor's selection.

Use the IEditSelectionCache interface to initialize and fill the cache and
to perform hit tests against the features in the cache. In this case, topo-
logical features are not added to the edit selection cache even if they are
selected because they cannot be edited in the same fashion as simple
features. For example, coverage polygons cannot be moved using the
Edit tool, as this will break the coverage’s topology; instead, the Shared
Edit tool must be used to signal that all coincident edges be moved as
well.

The following sample changes a UIToolControl’s cursor whenever it
moves over the map feature selection.

Private m_pEditor As IEditor

Private m_pMxDoc As IMxDocument

Private m_pEditSelectionCache As IEditSelectionCache

Private Function UIToolControl1_CursorID() As Variant

  If IsMouseOverSelection(m_pMxDoc.CurrentLocation) Then

    UIToolControl1_CursorID = 5

  Else

    UIToolControl1_CursorID = 0

  End If

End Function

Private Sub UIToolControl1_Select()

 Dim pID As New UID

 pID = "esriCore.Editor"

 Set m_pEditor = Application.FindExtensionByCLSID(pID)

 Set m_pMxDoc = Application.Document

End Sub

Private Function IsMouseOverSelection(pPoint As IPoint) As Boolean

  Set m_pEditSelectionCache = New EditSelectionCache

  m_pEditSelectionCache.Initialize m_pEditor, 400

  IsMouseOverSelection = m_pEditSelectionCache.HitTest(pPoint)

End Function

 IEditSelectionCache2 : IUnknown Caches the selection for fast hit testing.

Initialize (in Editor: IEditor, in sizePixels:
Long, in blockTopoFeatures: Boolean)

Initializes the cache using the editor's selection.

IEditSelectionCache2 allows developers to control whether or not topo-
logical features are added to the edit selection cache. This is done with
a new parameter on Initialize called blockTopoFeatures.

EDITSELECTIONCACHE COCLASS

IEditSelectionCache
IEditSelectionCache2

Edit-
Selection-

Cache

The edit selection cache works with an
offscreen bitmap representing the map’s
selection to very quickly determine if the

mouse is on top of a selected feature.
For example, the Edit tool cursor changes

when you move over the selection.

IEditSketchCache2 is used for adding topologi-
cal features in code.



1154 • Exploring ArcObjects • Volume 2

IEditSelectionCache::Initialize always works as though this parameter is
set to True. Using IEditSelectionCache2::Initialize with blockTopoFeatures
set to False brings topologic features into the edit selection cache.

EDITSELECTIONCACHE COCLASS



Chapter 11 • Editing features • 1155

E
d

it
o

r

Edit sketch extensions let programmers alter the edit sketch geometry
and edit sketch display feedback mechanism. For more details, see the
discussion on these earlier in this chapter.

 IEditSketchExtension : IUnknown Extends the edit sketch.

CanDeleteVertices: Boolean Does the sketch allow the deleting of vertices?
CanInsertVertices: Boolean Does the sketch allow the inserting of additional vertices?
CanMoveVertices: Boolean Does the sketch allow the moving of vertices?
HasFeedback: Boolean Returns true if the SketchExtension will use a custom feedback.
SketchGeometryType:

tagesriGeometryType
The geometry type used for the edit sketch when creating new

features.

Activate (in Editor: IEditor) Called when the sketch extension is about to be used.
Applies (in Editor: IEditor) : Boolean Does this extension apply to the current edit environment?
BeforeStoreFeature (in Feature:

IFeature, in Geometry: IGeometry)
Lets the extension know the feature is about to be stored.

CreateFeedback: IDisplayFeedback Called when a new feedback is needed.
CreateSketchGeometry (in Feature:

IFeature) : IGeometry
The geometry that will be used in the sketch when modifying a

feature.
Deactivate Called when the sketch extension is no longer needed.
StartFeedback (in Point: IPoint) Called when the feedback needs to be started.
StopFeedback: IGeometry Called when the feedback is no longer necessary.

Implement this interface along with IExtension to create a custom edit
sketch extension.

Edit sketch extensions typically work as follows:

The current edit task calls each registered edit sketch extension’s Applies
function; the first one to return True becomes the active extension and
its Activate method is called. Each extension performs certain tests in its
Applies method to determine if it should be activated. This typically
involves checking the current task, the current target layer, and, when
modifying a feature, the currently selected features. Most extensions just
override the Create New Feature task and the Modify Feature task.

Once an extension has become active, it sets the geometry type of the
edit sketch. The extension then optionally sets up a new feedback
mechanism; this typically involves the use of one of the feedback ob-
jects, such as NewLineCircleFeedback. For example, a custom edit sketch
extension may create perfect circles by allowing users to enter a center
point and another point defining the radius. When a user modifies the
feature, they are presented with one point instead of an entire polygon;
this limits them to only changing the radius, rather than adding new
vertices and creating a shape that is an imperfect circle.

EDITSKETCHEXTENSION ABSTRACT CLASS

IEditSketchExtension EditSketch-
Extension

Edit sketch extensions provide developers
with a mechanism for managing the

behavior of edit tasks to ensure applica-
tion-specific feature construction and

modification.



1156 • Exploring ArcObjects • Volume 2

The AttributeWindow is an Editor extension that provides a window for
viewing additional information about selected features involved in the
current edit session. The attributes window has two panels: the left panel
lists the selected features, and the right panel houses an object
inspector.

ArcMap ships with a default object inspector called the FeatureInspector,
which facilitates attribute editing. A custom object inspector may be
associated with geodatabase feature classes; in this case, the custom
inspector will show up in the right attributes window panel whenever a
feature that belongs to one of these features classes is selected in the
left panel.

Right-clicking a feature listed in the attributes window reveals a context
menu with commands such as Highlight and Zoom To. This menu is
not customizable, that is, you cannot add or remove commands from
this menu.

 IAttributeWindow : IUnknown Provides access to the Attribute Window.

ObjectInspector: IObjectInspector Current object inspector.
Visible: Boolean Indicates if Attribute Window is visible.

Use this interface to hide or show the Attributes dialog box and access
the object inspector currently loaded inside of it. The sample below
opens the Attributes dialog box if it is closed and closes it if it is open.

Private Sub ToggleAttributeWindow(pEditor As IEditor)

  Dim pExtension As IExtension

  Dim pExtensionManager As IExtensionManager

  Dim pAttributeWindow As IAttributeWindow

  Dim iExtensionCount As Integer

  'Ensure an active edit session

  If Not pEditor.EditState = esriStateEditing Then Exit Sub

  'Loop through all of the extensions to find the attribute window

  Set pExtensionManager = pEditor 'QI

  For iExtensionCount = 0 To pExtensionManager.ExtensionCount - 1

    Set pExtension = pExtensionManager.Extension(iExtensionCount)

    If pExtension.Name = "AttributeWindow" Then Exit For

  Next iExtensionCount

  'Open the window if it is closed; close it, if it is open

  If Not TypeOf pExtension Is IAttributeWindow Then Exit Sub

  Set pAttributeWindow = pExtension 'QI

  If Not pAttributeWindow.Visible Then

    pAttributeWindow.Visible = True

  Else

    pAttributeWindow.Visible = False

  End If

End Sub

ATTRIBUTEWINDOW COCLASS

IExtension

Extension

Attribute-
Window

IAttributeWindow

The attribute window extension is the
ArcMap attribute editing window.

This image shows the two panels in the
attributes window and the context menu

available to selected features.



Chapter 11 • Editing features • 1157

E
d

it
o

r

The FeatureInspector has been made cocreateable so that custom feature
inspectors can incorporate it. You may want to create a custom feature
inspector for features that contain complex attributes or behavior.

For example, you may want to create a custom property inspector that
lets you edit the flow of electricity through a switch gear or regulate the
pressure attribute of natural gas through a regulator station.

 IObjectInspector : IUnknown Custom object/feature property inspector.

hWnd: Long The window handle for the inspector.

Clear Clear the inspector before inspecting another object.
Copy (in srcRow: IRow) Copies the values from srcRow to the row being edited.
Inspect (in Objects: IEnumRow, in

Editor: IEditor)
Inspects the properties of the features.

To create your own custom property inspector for features in a specific
feature class, implement the IObjectInspector and IClassExtension inter-
faces, then add your extension’s GUID to the EXTCLSID field for that
feature class in the GDB_ObjectClasses table. When the user opens the
Attributes dialog box, it will display the custom inspector instead of the
default inspector.

IObjectInspector Feature
Inspector

The feature inspector is the default
object inspector that facilitates attribute

editing.

FEATUREINSPECTOR COCLASS



1158 • Exploring ArcObjects • Volume 2

CONFLICTSWINDOW COCLASS

IExtension

Extension

IConflictDisplay
IConflictsWindow

IConflictsWindow2
Conflicts-
Window

The conflicts window extension allows
users to resolve conflicts when saving

edits in a versioned geodatabase.

This image shows a conflicts window listing two
conflict features. The red dots in the bottom

pane show which attributes are different; in this
case, the Shape of the feature and the SYMBOL

attribute value differ.

A customizable Conflicts Menu is available when
you right-click on conflict features. Standard

commands on this menu include Replace With
Edit Version and Zoom To Edit Version.

The Conflicts dialog box is an extension that presents the conflicts be-
tween the current edit version, the version the edits are being saved into,
and the original state of the editor’s data when its edit session first
started. Conflicts arise when features are modified by more than one
person. For example, if two people start an edit session on the same
version and edit the same feature, the last editor to save the modifica-
tions will get a conflict that must be resolved if any edits made are to be
commited to the database.

 IConflictsWindow : IUnknown Provides access to Conflicts Display Window.

Class (in Index: Long) : IConflictClass Class by index.
ClassCount: Long The number of classes with conflicts.
CurrentClass: IConflictClass Class of the selected feature, or 0 if no ConflictClass.
CurrentRow: Long ID of the selected row or feature, or -1 if no current row.
IDs (in conflictClass: IConflictClass) :

IEnumIDs
Enumerate the feature IDs for a ConflictClass.

Visible: Boolean Indicates if Conflicts Window is visible.

FindTable (in conflictClass:
IConflictClass, in vers: esriVersion) :
ITable

Finds a cached table corresponding to the conflict class and version.

HasConflicts: Boolean Indicates if conflicts have been detected.
Reset Resets the conflicts.

The IConflictsWindow interface lets the developer manipulate the Con-
flicts dialog box. For example, if you wanted to process all conflicts
automatically, use IConflictsWindow to create a custom reconciliation
process eliminating the manual conflict resolution step.

 IConflictDisplay : IUnknown Provides access to the Conflict display environment.

FillSymbol (in vers: esriVersion) :
IFillSymbol

Display symbol used to draw polygon features.

LineSymbol (in vers: esriVersion) :
ILineSymbol

Display symbol used to draw line features.

MarkerSymbol (in vers: esriVersion) :
IMarkerSymbol

Display symbol used to draw point features.

VersionVisible (in vers: esriVersion) :
Boolean

The start editing, pre-reconcile or reconcile version used for display.

The Conflicts dialog box can symbolize a conflict feature as it appears
in three different versions: the current edit session, directly prior to the
local edit session, and the version the edit session is reconciling against.
The IConflictDisplay interface manages point, line, and polygon symbols
for each of these versions. For example, you may want all conflict poly-
gons in the reconcile version drawn in red. The IConflictDisplay inter-
face additionally controls whether or not conflict features from a par-
ticular version are displayed. For example, you can elect not to draw
conflict features in the preedit session version.

Enumeration esriVersion ESRI Version type.

0 - esriReconcileVersion The version the edit session is reconciling against.
1 - esriPreReconcileVersion The version prior to reconciliation.
2 - esriStartEditingVersion The version prior to start editing.

The esriVersion enumeration works with all of the properties managed
by IConflictDisplay. Use this enumeration to specify a particular version.



Chapter 11 • Editing features • 1159

E
d

it
o

r

The DigitizerExtension object connects a digitizing board and puck with
ArcMap. This object is primarily responsible for the transformation
between digitizing space and map space. After a transformation has
been established, the location of the puck directly correlates to a loca-
tion on the focus map.

 IDigitizerSetup : IUnknown Provides access to members that define the transformation
used by the digitizer.

ControlPointCount: Long The number of control points used for digitizing.
Transformation: ITransformation The transformation used by the digitizer.

AddControlPoint (in xDigitizer: Double,
in yDigitizer: Double, in xMap: Double,
in yMap: Double)

Adds a control point to the transformation.

ClearControlPoints Removes all control points.
GetControlPoint (in Index: Long, out

xDigitizer: Double, out yDigitizer:
Double, out xMap: Double, out yMap:
Double)

A control point's X,Y coordinates in Digitizer and Map units.

The IDigitizerSetup interface manages the transformation between digi-
tizer coordinates and map units. The transformation is based on control
points.

The IDigitizerSetup uses an affine transformation to transform digitizer
coordinates to map units. The affine transformation can differentially
scale, skew, rotate, and translate your data. Using the Transformation
method located on the IDigitizerSetup interface, you can control the
parameters used to perform these affine functions.

 IDigitizerButtons : IUnknown Provides access to map digitizer puck buttons to ArcMap
commands.

Button (in Button: Long) : IUID Button to map on the digitizer puck.

The IDigitizerButtons interface allows you to map ArcMap commands
directly to the buttons on the digitizer puck. For example, button 4 can
be mapped to the Edit tool, button 5 mapped to the Sketch tool, and
button 6 mapped to the Arc tool.

Commands or tools that are mapped to digitizer buttons will only work
when in digitizing mode. To use the digitizer puck in digitizing mode,
you must check the Enabled check box on the Digitizer tab of the Editor
Options dialog box.

When digitizing is enabled, the only tools that display a cursor on the
screen when you move the puck are the sketch tools. You will not, for
example, see the Edit tool cursor when it is the active tool and you are
driving it from the digitizing board. For tools other than the sketch tools,
you must rely on the position of the puck. Mouse events work the same
for all tools. For example, when the Edit tool is the active tool, pressing
the Left Click button will select the feature over which the puck is posi-
tioned, but looking at the screen will not show you the Edit tool’s posi-
tion.

This sample creates relationships between digitizer puck buttons and
ArcMap commands/tools. For example, button 8 on the puck is set to
call the ArcMap ZoomInFixed command. All mouse-related events must

IDigitizerButtons
IDigitizerSetup Digitizer

Extension

IExtension

Extension

The digitizer extension enables the
editor to receive input from a digitizing

board and puck.

DIGITIZEREXTENSION COCLASS



1160 • Exploring ArcObjects • Volume 2

be set in the digitizer control panel. For this sample, you should set Left
Click, Left Drag, and Left Double-Click to 0, 1, and 2, respectively. Make
sure buttons 3, 4, 5, 6, 8, 9, 12, and 15 are set to none.

This sample shows a faster approach to obtaining a reference to the
desired extension compared to the AttributesWindow extension sample.

Public Sub SetDigitizerBtns(pEditor as IEditor)

  Dim pDigitizerBnts As IDigitizerButtons

  Dim pID As New UID

  'Get a handle to the editor’s digitizer extension

  pID = "esriCore.DigitizerExtension"

  Set pDigitizerBnts = pEditor.FindExtension(pID)

  'Set button 3 on digitizer puck to execute FinishSketch command

  pID = "esriCore.FinishSketchCommand"

  pDigitizerBnts.Button(3) = pID

  'Set button 4 on the digitizer puck to switch to the EditTool

  pID = "esriCore.EditTool"

  pDigitizerBnts.Button(4) = pID

  'Set button 5 on the digitizer puck to switch to the SketchTool

  pID = "esriCore.SketchTool"

  pDigitizerBnts.Button(5) = pID

  'Set button 6 on the digitizer puck to switch to the ArcTool

  pID = "esriCore.ArcTool"

  pDigitizerBnts.Button(6) = pID

  'Set button 8 on digitizer puck to execute ZoomIn fixed command

  pID = "esriCore.ZoomInFixedCommand"

  pDigitizerBnts.Button(8) = pID

  'Set button 9 on digitizer puck to execute ZoomOut fixed command

  pID = "esriCore.ZoomOutFixedCommand"

  pDigitizerBnts.Button(9) = pID

  'Set button 12 on digitizer puck to turn Streaming digitizing

  'on and off

  pID = "esriCore.StreamingSketchMenuItem"

  pDigitizerBnts.Button(12) = pID

  'Set button 15 on the digitizer puck to delete the edit sketch

  pID = "esriCore.DeleteSketchCommand"

  pDigitizerBnts.Button(15) = pID

End Sub

DIGITIZEREXTENSION COCLASS



Chapter 11 • Editing features • 1161

E
d

it
o

r

The TopoEditor extension provides the ability to create and edit topo-
logical associations between features. Topological associations are man-
aged using a specialized selection called a shared edit selection.

 ITopoEditor : IUnknown Controls the behavior of the topology editor.

ClusterTolerance: Double The current cluster tolerance used in Integrate.
Geometry: IGeometry The geometry of a Shared Edge or Point.
InteGrateFullExtent: Boolean Indicates if Integrate will be limited to the current extent.
LineSelectionSymbol: ISymbol The current line symbol used for shared selections.
PointSelectionSymbol: ISymbol The current marker symbol used for shared selections.

AutoComplete (in pClass:
IFeatureClass, in pSketch: IGeometry)

Intersects a Polyline onto the FeatureClass.

Clear Internally clears the shared edge or point, removing associated
internal arrays.

ClearSelection Clears the current Shared Edge or Point selection.
CreateSharedFeature (in pClass:

IFeatureClass, in pSketch: IGeometry,
out ppFeature: IFeature)

Creates a shared feature in the FeatureClass.

DeleteFeatures (in menuText: String) Deletes the features associated with the Shared Edge or Point.
InteGrateClass (in pClass:

IFeatureClass, in pTrackCancel:
ITrackCancel)

Integrates the FeatureClass.

InteGrateDataset (in pDataset:
IFeatureDataset, in pTrackCancel:
ITrackCancel)

Integrates the Feature Dataset.

Reset (in pUpdatedGeom: IGeometry) Resets the Shared Edge or Point selection.
Select (in pPoint: IPoint, in tol: Double) Selects the Shared Edge or Point.
SetVertexIndices (in pFirstFeedback:

IVertexFeedback, in pLastFeedback:
IVertexFeedback)

Builds the associated array of vertices for the current Shared Edge.

UpdateFeatures (in pUpdatedGeom:
IGeometry, in menuText: String)

Updates the features associated with the Shared Edge or Point.

Use the ITopoEditor interface if you need to create or modify the topo-
logical associations between features. Shared edits affect all feature
classes inside the feature dataset you are editing. For example, if the
shape shared between two adjacent county boundaries in one feature
class and a river in another feature class are modified, all features in all
classes will be updated.

This sample creates a new polyline based on a shared edge selection. If
a coverage workspace is being edited, CreateSharedFeature is used;
otherwise, the CreateFeature/Store combination is used.

Public Sub CreateFeatureFromSharedEdge2()

  Dim pActiveView As IActiveView

  Dim pEditLayers As IEditLayers

  Dim pEditor As IEditor

  Dim pNewFeature As IFeature

  Dim pSharedGeometry As IGeometry

  Dim pTargetFeatureClass As IFeatureClass

  Dim pTopoEditor As ITopoEditor

  Dim pUID As New UID

  'Get a handle to the editor extension

  pUID = "esriCore.Editor"

  Set pEditor = Application.FindExtensionByCLSID(pUID)

  If pEditor Is Nothing Then

    Exit Sub

  ElseIf Not pEditor.EditState = esriStateEditing Then

    Exit Sub

TOPOEDITOR COCLASS

TopoEditor
ITopoEditor

IExtension

Extension

The topological editor extension per-
forms shared edge editing.



1162 • Exploring ArcObjects • Volume 2

  End If

  Set pEditLayers = pEditor 'QI

  pUID = "esriCore.TopoEditor"

  Set pTopoEditor = pEditor.FindExtension(pUID)

  If pTopoEditor Is Nothing Then Exit Sub

  pEditor.StartOperation 'Start an edit operation right away

  On Error GoTo ErrorHandler

  'Check if a shared edge exits

  Set pSharedGeometry = pTopoEditor.Geometry

  If pSharedGeometry Is Nothing Then

    MsgBox "Select a shared edge."

    Exit Sub

  ElseIf Not pSharedGeometry.GeometryType = esriGeometryPolyline Then

    MsgBox "Select a shared edge."

    Exit Sub

  End If

  If Not pEditLayers.CurrentLayer.FeatureClass.ShapeType =
esriGeometryPolyline Then

    MsgBox "Target layer must be a polyline layer.:"

    Exit Sub

  End If

  If TypeOf pEditor.EditWorkspace Is ICoverage Then

    pTopoEditor.CreateSharedFeature _

      pEditLayers.CurrentLayer.FeatureClass, pSharedGeometry, _

         pNewFeature

  Else

    Set pNewFeature = _

      pEditLayers.CurrentLayer.FeatureClass.CreateFeature

    Set pNewFeature.Shape = pSharedGeometry

    pNewFeature.Store

  End If

  pEditor.StopOperation "Create New Feature"

  Set pActiveView = pEditor.Map

  pTopoEditor.ClearSelection

  pActiveView.PartialRefresh esriViewGeography, Nothing, _

    pSharedGeometry.Envelope

  Exit Sub 'Exit to avoid error handler

ErrorHandler:

  pEditor.AbortOperation

End Sub

TOPOEDITOR COCLASS



Solving linear
networks

Feature classes in a geodatabase can participate together in a network.

Because the features have geometry and can be mapped, such a network is

called a geometric network. There are a variety of tools and objects for

analyzing networks and a rich set of objects for

building custom networks with complex behavior.

Feature classes that participate in a geometric

network contain either edge features (lines) or

junction features (points). Every geometric network

has a corresponding logical network, which is a

“behind-the-scenes” data structure that stores edge

and junction elements and the connectivity between

them. A software developer writing programs to

analyze flow through a network deals almost

exclusively with a logical network. Database

designers, data builders, and analysts can all benefit

from understanding the correspondence between

geometric network features and logical network

elements.

Larry Young

12



1164 • Exploring ArcObjects • Volume 2

INetworkWorkspace
INetworkWorkspace2 Network-

Workspace

Street-
Network

IStreetNetworkUtility-
Network

IUtilityNetwork

INetWeight
INetWeightEdit NetWeight

ForwardStar
IForwardStar

NetElement-
Class

INetElementClass

NetWeight-
Association

INetWeightAssociation
INetWeightAssociationEdit

NetElement-
Description

INetElementDescription
INetElementDescriptionEdit

NetFlag
INetFlag

EdgeFlag
IEdgeFlag

Network

The Network object is the
logical network associated

with a geometric network. It
represents the linear

connectivity among a set of
network features

A junction flag is a
network flag that

occurs at a junction

An edge flag is a network flag that occurs
somewhere along an edge. The position is

measured as a percent along the edge

A network flag is a
location on a network.
They are used as input for
a network solver

A network weight is used to
limit tracing in a network and
denote the cost of tracing
through a network element

A forward star returns
all the adjacent elements
given a junction and edge
element. They are used
extensively when writing
solvers

A network element class
provides access to the
IDs of the object classes
participating in the
network

A network element
description is a container to
hold information about a
network element to be used in
calls in INetTopologyEdit

A network weight association
defines how an object class
participates in a weight

A network solver defines the trace
environment before executing one

of the trace methods from the trace
flow solver

A trace flow solver performs tracing
operations on a logical network

Workspace
See chapter 8,
'Accessing the
Geodatabase'

IDatabaseCompact (optional)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspaceAnno (optional)
IFeatureWorkspaceManage

IFeatureWorkspaceSchemaEdit
IGeodatabaseRelease (optional)

ISpatialCacheManager
ISQLSyntax

ITransactions (optional)
ITransactionsOptions (optional)

IWorkspace
IWorkspaceConfiguration (optional)

IWorkspaceDomains (optional)
IWorkspaceDomains2 (optional)

IWorkspaceEdit
IWorkspaceProperties (optional)

IWorkspaceSpatialReferenceInfo

A network workspace lets
you open and create a logical

network

Dataset
See chapter 8,
'Accessing the
Geodatabase'

IDataset
IDatasetAnalyze (optional)

IDatasetEdit
IDatasetEditInfo

ISchemaLock (optional)

EnumNet-
EIDArray

IEnumNetEID
IEnumNetEIDBuilder

NetSolver
INetSolver

INetSolverWeights

A utility network is a network where
flow is directed. You can establish
flow direction on this type of network

A street network is a
network where flow
is undirected

Network-
Loader

INetworkLoader
INetworkLoader2

INetworkLoaderProps

JunctionFlagIJunctionFlag

A network loader creates a
geometric network along with
its logical network

Network

INetAttributes
INetAttributesEdit

INetElements
INetSchema

INetSchemaEdit
INetTopology

INetTopologyEdit
INetwork

INetworkUpdate
IVersionedObject2

TraceFlow-
Solver

ISupportErrorInfo
ITraceFlowSolver

ITraceFlowSolver2



Chapter 12 • Solving linear networks • 1165

N
et

w
o

rk

0..*

UtilityNetwork-
AnalysisExt

ITraceTasks
IUtilityNetworkAnalysisExt

TraceTask
ITraceTask

ITraceTaskResults

EdgeFlag-
Display

IEdgeFlagDisplay

0..*

Selection-
SetBarriers

ISelectionSetBarriers

Junction-
FlagDisplay

IJunctionFlagDisplay

0..*

FlagDisplay
IFlagDisplay

IFeatureDraw

objects

A utility network analysis extension
provides trace and path finding

capabilities to a Utility Network
Analyst toolbar

A trace task executes a defined trace
or path finding routine

Network element
barriers creates barriers
of individual elements

Selection set barriers
create barriers from
selected sets of features

A junction flag display
begins a trace or path
finding at a junction

A flag display maintains
the starting point for
traces and path findings

The find ancestors task finds the
common ancestors in an upstream

trace from two or more flags

The find connected task finds all
elements that can be reached

from the current flags

The find loops task finds
elements that can be reached

from more than one direction

The trace downstream task
finds all elements that can be
reached in a downstream
flow from the current flags

The trace upstream task
finds all elements that can
be reached in an upstream
flow from the current flags

The find disconnected task finds
all elements that cannot be

reached from the current flags

The find accumulation task
finds the accumulated cost of

an upstream trace

The find path upstream task finds
the optimal path based on
elements flowing upstream

The trace path task
finds the optimal path
between flag displays

Find-
Ancestors-

Task

Find-
Disconnected-

Task

Find-
Connected-

Task

FindLoops-
Task

Trace-
Upstream-

Task

Trace-
Downstream-

Task

ITracePathTaskResults TracePath-
Task

ITracePathTaskResults FindPath-
Upstream-

Task

Find-
Accumulation-

Task

ITracePathTaskResults

An edge flag display begins a trace
or path finding along an edge

IExtension
IExtensionAccelerators

IExtensionConfig Extension

A network analysis extension manages
the parameters found within the Utility

Network Analysis toolbar

IActiveViewEvents
IEditEvents
IExtension

IMapEvents
INetworkAnalysisExt

INetworkAnalysisExtBarriers
INetworkAnalysisExtFlags

INetworkAnalysisExtResultColor
INetworkAnalysisExtResults

INetworkAnalysisExtWeightFilter
INetworkAnalysisExtWeights

Network-
AnalysisExt

NetElement-
Barriers

INetElementBarriers
INetElementBarriers2



1166 • Exploring ArcObjects • Volume 2

Junctions

Edges

Train stations
id geometry

Airports
id geometry

Rivers
geometryid

Railroads
id geometry

id
Roads

geometry

Two views of a network

You can view a network as a collection of geographic objects, such as rails, roads,
stations, and bridges, and also as a pure network of edges and junctions.

ElementsFeatures

Network features can be
organized in any number of

network feature classes.

Network elements are stored in an edge table
and junction table with a connectivity table
describing how they connect.

You interact with the network through network features. When you add or remove a network feature in a
geometric network, ArcGIS adds or removes the matching network elements. When you perform network

analysis, ArcGIS submits a solver to the logical network.

The geometric network and logical network are always synchronized.

Features from an arbitrary number of edge and
junction feature classes correspond to network
elements in the edge table and junction table.

A network feature
can be related to one
or many network
elements. This allows
a single feature to
represent a complex
part of a network.

A logical network has
no geometry or

coordinates. It is a
pure graph of how

junctions and edges
are connected.

The logical network is invisible
in ArcMap and ArcCatalog,

but it is the foundation for the
geometric network's rich

model and high performance.

Airport

Airport

Factory Bridge

Navigable riverBridge

Railroad

H
ig

hw
ay

Airline route

43

66

Train station

Navigable river

Railroad

Airline route
Highway

Logical networkGeometric network

A logical network is a pure graph of junction elements
and edge elements.

A geometric network is the representation of
geographic features that comprise a network.

Geographic view Network view

The geometric network
maintains relationships
between connected
junction features and
edge features. When you
move a junction feature,
the connected edge
features are
rubberbanded.

You can define connectivity
rules to define the valid
combinations of connected
junctions and edges in a
geometric network.

The connectivity table
keeps track of how edge

and junction elements are
connected.

Connectivity
junction

IDs
adjacent junctions

and edges

Junction
feature
classes

Edge
feature
classes

Logical
network
tables



Chapter 12 • Solving linear networks • 1167

N
et

w
o

rk

The NetworkWorkspace coclass creates and opens logical networks.

 INetworkWorkspace : IUnknown Provides access to members that create and open a logical
network.

CreateNetwork (in NetworkName:
String, in NetworkType:
esriNetworkType, in
BuildNormalizedTables: Boolean) :
INetwork

Creates a logical network.

GetNetworkNames: IEnumBSTR Sets the workspace
OpenNetwork (in NetworkName: String,

in NetworkType: esriNetworkType, in
networkAccess: esriNetworkAccess) :
INetwork

Opens a logical network.

The INetworkWorkspace interface is used for creating and opening a
logical network. This interface should be used when you need to create
or open a logical network that does not have a geometric network asso-
ciated with it. This may be necessary when you want to model relation-
ships that do not have a spatial representation.

OpenNetwork should only be used to open a logical network that does
not have an associated geometric network. Opening a network that does
have a geometric network and updating elements can cause corruption
of the network.

CreateNetwork should be used to create logical networks without geo-
metric networks. To create a geometric network, use INetworkCollection::
CreateGeometricNetwork.

 INetworkWorkspace2:INetworkWorkspace Provides access to a member that create a logical network
based on a configuration keyword.

CreateNetworkEx (in NetworkName: String,
in NetworkType: esriNetworkType, in
BuildNormalizedTables: Boolean, in
ConfigKeyword: String) : INetwork

Creates a logical network based on the specified configuration
keyword.

Use the INetworkWorkspace2 interface when you want to create a logical
network that is not associated with a geometric network. This interface
differs from INetworkWorkspace in that the CreateNetwork method allows
for the entry of a configuration keyword. The keyword is used by
ArcSDE to determine what set of parameters from the dbtune file to
employ.

Enumeration esriNetworkType Network type options.

0 - esriNTStreetNetwork Street network.
1 - esriNTUtilityNetwork Utility network.

The esriNetworkType enumeration lists the types of networks that can be
created.

Enumeration esriNetworkAccess Network read/write access privileges.

0 - esriNAReadOnly Opens the network with read only permission.
1 - esriNAReadWrite Opens the network with read and write permissions.
2 - esriNACreate Creates a network.

The esriNetworkAccess enumeration lists the possible modes to open a
network with when using the OpenNetwork method.

NETWORKWORKSPACE CLASS

Workspace
See chapter 8,
'Accessing the
Geodatabase'

IDatabaseCompact
(optional)
IDataset

IDatasetContainer
IFeatureWorkspace

IFeatureWorkspace-
Anno (optional)

IFeatureWorkspace-
Manage

IFeatureWorkspace-
SchemaEdit

IGeodatabaseRelease
(optional)

ISpatialCacheManager
ISQLSyntax

ITransactions
(optional)

ITransactionsOptions
(optional)

IWorkspace
IWorkspaceConfig-

uration (optional)
IWorkspaceDomains

(optional)
IWorkspaceDomains2

(optional)
IWorkspaceEdit

IWorkspaceProperties
(optional)

IWorkspaceSpatial-
ReferenceInfo

INetworkWorkspace
INetworkWorkspace2 Network-

Workspace

The network workspace creates and
opens logical networks.



1168 • Exploring ArcObjects • Volume 2

The Network abstract class provides access to the individual elements of
the network and any associated weights. With a network, you can examine
and update the schema, attributes, and topology of a logical network.

 INetwork : IUnknown Provides access to members that give general information
about the network and its elements.

EdgeCount: Long Number of edges in the network.
JunctionCount: Long Number of junctions in the network.
MaxDegree: Long Maximum degree of a junction.
MaxTurn: Long Maximum number of turns associated with a junction.
Status: esriNetworkStatus Status of the network.
TurnCount: Long Number of turns in the network.

CreateForwardStar (in honorState:
Boolean, in pJunctionWeight:
INetWeight, in pFromToEdgeWeight:
INetWeight, in pToFromEdgeWeight:
INetWeight, in turnWeight: INetWeight)
: IForwardStar

Creates a forward star cursor on the network index.

CreateNetBrowser (in ElementType:
esriElementType) : IEnumNetEID

Creates a network index element browser.

The INetwork interface provides descriptive information for the logical
network and provides the ability to create a ForwardStar object for
traversing the network.

MaxTurn and TurnCount properties apply only to StreetNetwork objects
and will return 0 for UtilityNetwork objects. MaxDegree returns a valid
value for utility networks.

CreateForwardStar requires INetWeight objects as parameters even if the
network does not have any weights associated with it. In this case, set
the INetWeight to Nothing before using it as an argument.

Sub CreateFwdStar(pNetwork as INetwork)

  Dim pNetWeight As INetWeight, pForward As IForwardStar

  Set pNetWeight = Nothing

  Set pForward = pNetwork.CreateForwardStar(False, pNetWeight, _

    pNetWeight, pNetWeight, pNetWeight)

End Sub

Enumeration esriNetworkStatus Specifies the current status of the network.

0 - esriNSInvalidConnection The network connection is invalid.
1 - esriNSNetworkAlreadyExist The network already exists and hence cannot be created.
2 - esriNSReadOnlyNetwork The network is read only.
3 - esriNSCannotOpenTables The network tables cannot be opened.
4 - esriNSCannotCreateTables The network tables cannot be created.
5 - esriNSInvalidElementClasses The network element classes are invalid.
6 - esriNSInvalidWeights The network weights are invalid.
7 - esriNSUnknownStatus The status of the network is unknown.
8 - esriNSValidNetwork The network is valid.

esriNetworkStatus lists the possible returned status values for the Status
property of a Network object.

NETWORK ABSTRACT CLASS

Dataset
See chapter 8,
'Accessing the
Geodatabase'

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock

(optional)

Network

INetAttributes
INetAttributesEdit

INetElements
INetSchema

INetSchemaEdit
INetTopology

INetTopologyEdit
INetwork

INetworkUpdate
IVersionedObject2

The Network abstract class represents
the logical network. There are two types

of network objects, StreetNetwork and
UtilityNetwork.



Chapter 12 • Solving linear networks • 1169

N
et

w
o

rk

 INetworkUpdate : IUnknown Provides access to members that start and end sessions for
updating the attributes, schema, and topology of the
network.

IsAttributesBeingUpdated: Boolean Indicates if the attributes of the network are currently being updated.
IsSchemaBeingUpdated: Boolean Indicates if the schema of the network is currently being updated.
IsTopologyBeingUpdated: Boolean Indicates if the topology of the network is currently being updated.

StartAttributesUpdating Starts a session for updating the attributes of the network.
StartSchemaUpdating Starts a session for updating the schema of the network.
StartTopologyUpdating Starts a session for updating the topology of the network.
StopAttributesUpdating Ends the session for updating the attributes of the network.
StopSchemaUpdating Ends the session for updating the schema for the network.
StopTopologyUpdating Ends the session for updating the topology of the network.

The INetworkUpdate interface is implemented only by the Network ab-
stract class to provide access to the different update processes for the
network. Updates can be made to the attributes, schema, and topology
of the network. For each process, it is necessary to be in an edit session
before attempting to perform an update. An edit session can be started
through the Editor toolbar or by executing one of the Start methods
from the INetworkUpdate interface.

For example, if you want to edit the attributes (weight value or enabled/
disabled state) of a network element, you need to be in an edit session
or need to execute StartAttributesUpdating before performing the up-
date. None of the start procedures can be executed when an edit ses-
sion is in progress, and an edit session can’t be started once one of the
start procedures has been executed.

Once you have executed a start procedure, you can’t perform a Start
Editing procedure (from the Editor toolbar) until you have run the ap-
propriate stop procedure.

Use the IsAttributesBeingUpdated, IsSchemaBeingUpdated, and
IsTopologyBeingUpdated interfaces to determine if you need to run the
appropriate start procedure.

The following VBA code can be used to update the disabled property
of the selected simple edges. This code assumes there is not an active
edit session.

Sub NetworkUpdate()

  Dim pDoc As IMxDocument, pMap As IMap

  Dim pFeatSel As IEnumFeature, pFeat As IFeature

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  Set pFeatSel = pMap.FeatureSelection

  Set pFeat = pFeatSel.Next

  Do While Not pFeat Is Nothing

    Dim pNetFeat As INetworkFeature, pNetAtt As INetAttributesEdit

    Dim pSimpleEdge As ISimpleEdgeFeature, pNetUpdate As INetworkUpdate

    Set pNetFeat = pFeat

    Set pNetAtt = pNetFeat.GeometricNetwork.Network

    Set pSimpleEdge = pNetFeat

    Set pNetUpdate = pNetAtt

    pNetUpdate.StartAttributesUpdating

    pNetAtt.SetDisabledState pSimpleEdge.EID, esriETEdge, True

NETWORK ABSTRACT CLASS

This interface is designed specifically for the
editing of a logical network that does not have
an associated geometric network. It is impera-
tive that if you have a geometric network, you
must edit a logical network through its associ-

ated geometric network. You risk data corruption
if you use the Edit interfaces on logical networks

that have associated geometric networks.



1170 • Exploring ArcObjects • Volume 2

    pNetUpdate.StopAttributesUpdating

    Set pFeat = pFeatSel.Next

  Loop

End Sub

 INetElements : IUnknown Provides access to members that convert between user IDs
and network element IDs (EIDs).

GetEID (in UserClassID: Long, in
UserID: Long, in UserSubID: Long, in
ElementType: esriElementType) : Long

Returns the network element ID (EID).

GetEIDCount (in UserClassID: Long, in
UserID: Long, in ElementType:
esriElementType) : Long

Returns the number of network element IDs (EIDs) corresponding to
the specified user class ID and user ID.

GetEIDs (in UserClassID: Long, in
UserID: Long, in ElementType:
esriElementType) : IEnumNetEID

Returns the network element IDs (EIDs) corresponding to the
specified user classID and user ID.

IsValidElement (in EID: Long, in
ElementType: esriElementType) :
Boolean

Returns whether the specified element is part of the network.

QueryIDs (in EID: Long, in
ElementType: esriElementType, out
UserClassID: Long, out UserID: Long,
out UserSubID: Long)

Returns the user class ID, user ID, and user sub ID for the specified
network element.

The INetElements interface is implemented by the Network abstract class
to access the individual elements of the logical network. This interface is
important because it provides the ability to go from a network element
to a feature or from a feature to its elements.

As an example of when the interface would be used, consider an up-
stream trace operation. The trace operation is performed on the network
with the results being the elements that are traversed. The INetElements
interface is necessary to take this set of elements and determine the
actual features that were traversed. The features could then be listed as
part of report or simply highlighted.

GetEID returns the EID of the first associated element when there is
more than one.

Use GetEIDCount to determine whether you should run GetEID (when
you have only one associated element) or GetEIDs (when you have
more than one element).

 INetSchema : IUnknown Provides access to members that get information about the
schema of the network.

ElementClass (in Index: Long) :
INetElementClass

Element class by index.

ElementClassByUserID (in
elementClassUserID: Long) :
INetElementClass

Element class corresponding to the specified user class ID.

ElementClassCount: Long Number of element classes in the network.
Weight (in WeightInternalID: Long) :

INetWeight
Network weight corresponding to the specified weight internal ID.

WeightAssociations (in
WeightInternalID: Long) :
IEnumNetWeightAssociation

Network weight associations corresponding to the specified weight
internal ID.

WeightAssociationsByTableName (in
TableName: String) :
IEnumNetWeightAssociation

Network weight associations corresponding to the specified table
name.

WeightByName (in WeightName: String)
: INetWeight

Network weight corresponding to the specified name.

WeightCount: Long Number of weights in the network.

GetAncillaryRole (in UserClassID: Long,
out ancillaryRole:
esriNetworkClassAncillaryRole, out
ancillaryRoleFieldName: String)

Returns the ancillary role type and the name of the field containing
the ancillary role information.

GetEnabledDisabledFieldName (in
UserClassID: Long) : String

Returns the name of the filed containing the enabled/disabled
information for the specified user class.

This interface is designed specifically for the
editing of a logical network that does not have
an associated geometric network. It is impera-
tive that if you have a geometric network, you
must edit a logical network through its associ-

ated geometric network. You risk data corruption
if you use the Edit interfaces on logical networks

that have associated geometric networks.

NETWORK ABSTRACT CLASS



Chapter 12 • Solving linear networks • 1171

N
et

w
o

rk

The INetSchema interface is implemented by the Network abstract class
to provide read-only access to the schema of the network.

The schema consists primarily of the classes and weights that make up the
network, but it also includes identification of the classes that provide
sources and sinks (ancillary role) and a specification of the field name that
represents this property and the enabled/disabled property. Use the INet-
SchemaEdit interface when you want to update the schema properties.

The Weight property returns information about a weight (name and type)
as an INetWeight, while the WeightAssociations property returns the tables
and field names associated with a particular weight as an IEnumNet-
WeightAssociation. A single INetWeight object can have zero to many
INetWeightAssociation objects related to it, while a single INetWeight-
Assocation object must be related to a single INetWeight object.

An empty string will be returned for the ancillaryRoleFieldName when
the GetAncillaryRole method is executed with a feature class that does
not have an ancillary role.

WeightCount returns the number of defined weights, not the number of
weight associations.

The Weight and WeightAssociations properties both require a
WeightInternalID parameter as input. This parameter is the same thing as
an index value. To access all the weights in a network, check the
WeightCount and loop the index (or WeightInternalID number) from 0
to the WeightCount – 1.

Sub SetWeight()

  Dim pApp As IApplication, pUID As New UID, pNetExt As INetworkAnalysisExt

  Dim pNetWeight As INetWeight, pSchema As INetSchema, lLoop As Long

  Set pApp = Application

  pUID = "esricore.UtilityNetworkAnalysisExt"

  Set pNetExt = pApp.FindExtensionByCLSID(pUID)

  Set pSchema = pNetExt.CurrentNetwork.Network

  For lLoop = 0 To pSchema.WeightCount - 1

    Set pNetWeight = pSchema.Weight(lLoop)

    Debug.Print pNetWeight.WeightName

  Next lLoop

End Sub

NETWORK ABSTRACT CLASS



1172 • Exploring ArcObjects • Volume 2

Sub

 INetSchemaEdit : INetSchema Provides access to members that modify the schema of the
network.

AddElementClass (in UserClassID:
Long) : INetElementClass

Adds a new element class to the network.

AddWeight (in networkWeight:
INetWeight)

Adds a new weight to the network.

AddWeightAssociation (in
weightSource: INetWeightAssociation)

Adds a new weight association to the network.

PutAncillaryRole (in UserClassID: Long,
in ancillaryRole:
esriNetworkClassAncillaryRole,
ancillaryRoleFieldName: String)

Sets the ancillary role type and the name of the field containing the
ancillary role information for the specified user class.

PutEnabledDisabledFieldName (in
UserClassID: Long, in
enabledDisabledRoleFieldName:
String)

Sets the name of the field containing the enabled/disabled
information for the specified user class.

The INetSchemaEdit interface is implemented by the Network abstract
class. INetSchemaEdit is a companion interface to INetSchema. INet-
Schema provides read-only information about the schema of the net-
work, while INetSchemaEdit is a write-only interface for updating the
schema. The interface allows you to add a new feature class or weight
to the network and to update the ancillary and enable/disable proper-
ties.

INetSchemaEdit inherits from INetSchema, so all of the read-only proper-
ties and methods of this interface are also available. If you need to do
both read and write operations on the schema, it is best to declare a
single INetSchemaEdit variable.

Before executing an update on the schema, you need to make sure you
are in an edit session. You can check this by checking the value of
INetworkUpdate::IsSchemaBeingUpdated. If the value is False, then you
can start an edit session by clicking Start Editing and using the Edit tool,
or you can execute INetworkUpdate::StartSchemaUpdating. If you take
the latter approach, be sure to execute
INetworkUpdate::StopSchemaUpdating when you have finished your
updates.

AddElementClass will add a new feature class to the network based on
the IObjectClass::ObjectClassID.

 INetAttributes : IUnknown Provides access to members that get the disabled state and
weight values of individual elements in the network.

GetDisabledState (in EID: Long, in
ElementType: esriElementType) :
Boolean

Returns the disabled state of the specified network element.

GetWeightValue (in EID: Long, in
ElementType: esriElementType, in
WeightInternalID: Long) : Variant

Returns the weight value of the specified network element for the
specified weight.

The INetAttributes interface is implemented by the Network abstract class
to provide read-only access to the attributes of the network elements.
The network attributes of an element are the enabled/disabled state
(whether you can trace through the element) and any values related to a
defined weight. Use this interface when you only want to view these
attribute values (use INetAttributesEdit to update them).

The WeightInternalID input parameter for GetWeightValue is equivalent
to an Index value (0 to INetSchema.WeightCount - 1).

NETWORK ABSTRACT CLASS

This interface is designed specifically for the
editing of a logical network that does not have
an associated geometric network. It is impera-
tive that if you have a geometric network, you
must edit a logical network through its associ-

ated geometric network. You risk data corruption
if you use the Edit interfaces on logical networks

that have associated geometric networks.



Chapter 12 • Solving linear networks • 1173

N
et

w
o

rk

Enumeration esriElementType Types of network elements.

0 - esriETNone Deleted element.
1 - esriETJunction Junction element.
2 - esriETEdge Edge element.
3 - esriETTurn Turn element.

The esriElementType enumeration lists the types of elements.

 INetAttributesEdit : INetAttributes Provides access to members that modify the disabled state
and weight values of individual elements in the network.

SetDisabledState (in EID: Long, in
ElementType: esriElementType, in
disableState: Boolean)

Sets the disabled state of the specified network element.

SetWeightValue (in EID: Long, in
ElementType: esriElementType, in
WeightInternalID: Long, in
WeightValue: Variant)

Sets the weight value of the specified network element for the
specified weight.

The INetAttributesEdit interface is implemented by the Network abstract
class. INetAttributesEdit is a companion interface to INetAttributes inter-
face. INetAttributes provides read-only information about the attributes of
the network, while INetAttributesEdit is a write-only interface for updat-
ing the schema. The interface allows you to edit the enabled/disabled
property of an element as well as the field values of any associated
weights.

INetAttributesEdit inherits from INetAttributes, so all of the read-only
properties and methods of this interface are also available. If you need
to do both read and write operations on the attributes, it is best to de-
clare a single INetAttributesEdit variable.

Before executing an update on the attributes, make sure you are in an
edit session. You can check this by checking the value of
INetworkUpdate::IsAttributesBeingUpdated. If the value is False, you can
start an edit session by clicking Start Editing and using the Edit tool, or
you can execute INetworkUpdate::StartAttributesUpdating.

If you take the latter approach, execute
INetworkUpdate::StopAttributesUpdating when you have finished your
updates.

 INetTopology : IUnknown Provides access to members that get information about the
elements adjacent to the specified element.

GetAdjacentEdge (in atJunctionEID:
Long, in Index: Long, out
AdjacentEdge: Long, out
ReverseOrientation: Boolean)

Returns the network element ID of the index'th adjacent edge to the
specified junction.

GetAdjacentEdgeCount (in
atJunctionEID: Long) : Long

Returns the number of edges adjacent to the specified junction.

GetAdjacentEdges (in atJunctionEID:
Long, in adjacentEdgesCount: Long,
out adjacentEdges: Long, out
ReverseOrientation: Boolean)

Returns the network element IDs of all the edges adjacent to the
specified junction.

GetFromToJunctionEIDs (in EdgeEID:
Long, out FromJunctionEID: Long, out
ToJunctionEID: Long)

Returns the network element IDs of the junctions adjacent to the
specified edge.

The INetTopology interface is implemented only by the Network class for
read-only access to the topology parameters of the network. The inter-
face has methods for identifying the edges adjacent to the specified
junction element and the to and from junctions for the specified edge.

NETWORK ABSTRACT CLASS



1174 • Exploring ArcObjects • Volume 2

The following VBA code prints the EIDs and reverse orientation values
for the edges connected to a selected simple junction.

Sub ListEIDs()

  Dim pDoc As IMxDocument, pMap As IMap

  Dim pFeatSel As IEnumFeature

  Dim pFeat As IFeature

  Set pDoc = ThisDocument

  Set pMap = pDoc.FocusMap

  Set pFeatSel = pMap.FeatureSelection

  pFeatSel.Reset

  Set pFeat = pFeatSel.Next

  Do While Not pFeat Is Nothing

    Dim pNetFeat As INetworkFeature

    Dim pSimpleJunc As ISimpleJunctionFeature

    Set pNetFeat = pFeat

    If pFeat.FeatureType = esriFTSimpleJunction Then

      Set pSimpleJunc = pNetFeat

      Dim pTopo As INetTopology, lEdgeCount As Long

      lEdgeCount = pSimpleJunc.EdgeFeatureCount

      Set pTopo = pNetFeat.GeometricNetwork.Network

      Dim lAdjacentEdges() As Long, bRev() As Boolean, lLoop As Long

      ReDim lAdjacentEdges(lEdgeCount - 1)

      ReDim bRev(lEdgeCount - 1)

      pTopo.GetAdjacentEdges pSimpleJunc.EID, lEdgeCount, _

          lAdjacentEdges(0), bRev(0)

      For lLoop = 0 To lEdgeCount - 1

        Debug.Print lAdjacentEdges(lLoop) & " - " & bRev(lLoop)

      Next lLoop

    End If

    Set pFeat = pFeatSel.Next

  Loop

End Sub

NETWORK ABSTRACT CLASS



Chapter 12 • Solving linear networks • 1175

N
et

w
o

rk

 INetTopologyEdit : INetTopology Provides access to members that add and delete network
elements from the logical network.

AddEdgeByEndEIDs (in
edgeDescription:
INetElementDescription, in
FromJunctionEID: Long, in
ToJunctionEID: Long) : Long

Adds an edge element to the logical network between the specified
junction elements.

AddJunction (in junctionDescription:
INetElementDescription) : Long

Adds a junction element to the logical network.

DeleteByEID (in EID: Long, in
ElementType: esriElementType)

Deletes the specified network element from the logical network.

DeleteByEIDs (in ElementType:
esriElementType, in ElementCount:
Long, in elementEIDs: Long)

Deletes the specified network elements from the logical network.

DeleteByID (in UserClassID: Long, in
UserID: Long, in UserSubID: Long, in
ElementType: esriElementType)

Deletes the specified network element from the logical network.

The INetTopologyEdit interface is implemented only by the Network
abstract class. INetTopologyEdit is a companion interface to INetTopology.
INetTopology provides read-only information about the topology of the
network, while INetTopologyEdit is a write-only interface for updating the
topology. The interface allows you to add and delete network elements
(junctions and edges).

INetTopologyEdit inherits from INetTopology, so all of the read-only
properties and methods of this interface are also available. If you need
to do both read and write operations on the topology, it is best to de-
clare a single INetTopologyEdit variable.

Before executing an update on the topology, make sure you are in an
edit session. You can check this by checking the value of
INetworkUpdate::IsTopologyBeingUpdated. If the value is False, then you
can start an edit session by clicking Start Editing and using the Edit tool,
or you can execute INetworkUpdate::StartTopologyUpdating. If you take
the latter approach, execute INetworkUpdate::StopTopologyUpdating
when you have finished your updates.

NETWORK ABSTRACT CLASS

This interface is designed specifically for the
editing of a logical network that does not have
an associated geometric network. It is impera-
tive that if you have a geometric network, you
must edit a logical network through its associ-

ated geometric network. You risk data corruption
if you use the Edit interfaces on logical networks

that have associated geometric networks.



1176 • Exploring ArcObjects • Volume 2

A StreetNetwork is a type of Network designed for working with roadways
(highways, streets, and so on). Future releases of ArcGIS will include
additional interfaces implemented on the class to provide street-specific
types of operations. The only distinguishing characteristic of a
StreetNetwork class is that it is not a UtilityNetwork.

 IStreetNetwork : INetwork Provides accesss to members that get and set properties
specific to a street network.

The IStreetNetwork class is the default interface for the StreetNetwork
class. This interface has no properties or methods and exists only to
distinguish a StreetNetwork from a UtilityNetwork.

A UtilityNetwork is a type of Network designed for working with facilities
data (gas, electric, water, telecommunications). The purpose of the class
is to provide utility-specific operations, such as the establishment of
flow direction for the network.

 IUtilityNetwork : INetwork Provides access to members that get and set flow direction
in a utility network.

ValidFlowDirection: Boolean Property not implemented.

EstablishFlowDirection (in sourceCount:
Long, in sourceEIDs: Long, in
sinkCount: Long, in sinkEIDs: Long)

Sets the flow direction of all edge elements based on the placement
of sources and sinks.

GetFlowDirection (in EdgeEID: Long) :
esriFlowDirection

Returns the flow direction of the specified edge element.

SetFlowDirection (in EdgeEID: Long, in
flowDirection: esriFlowDirection)

Sets the flow direction for the specified edge element.

The IUtilityNetwork interface is the default interface for the
UtilityNetwork class. The interface deals with the establishment of flow
direction on the network. Flow direction is used in trace operations to
determine such things as the upstream or downstream facilities from a
particular location.

EstablishFlowDirection sets the flow direction of the entire network
based on specified sources and sinks. Sources and sinks can be stored
persistently in the network through an ancillary role, but they can also
be dynamic.

SetFlowDirection sets the flow direction for a single specified element.
This method allows for the setting of flow direction based on the digi-
tized direction or other specialized methods.

Enumeration esriFlowDirection Direction of flow along an edge in a network.

0 - esriFDUninitialized The flow direction is uninitialized.
1 - esriFDWithFlow The flow direction is in the direction of digitization.
2 - esriFDAgainstFlow The flow direction is opposite the direction of digitization.
3 - esriFDIndeterminate The flow direction is indeterminate.

The esriFlowDirection enumeration lists the possible flow direction
settings for an edge element.

UTILITYNETWORK AND STREETNETWORK CLASSES

Street-
Network

IStreetNetwork

Utility-
Network

IUtilityNetwork

Dataset
See chapter 8,
'Accessing the
Geodatabase'

IDataset
IDatasetAnalyze

(optional)
IDatasetEdit

IDatasetEditInfo
ISchemaLock

(optional)

Network

INetAttributes
INetAttributesEdit

INetElements
INetSchema

INetSchemaEdit
INetTopology

INetTopologyEdit
INetwork

INetworkUpdate
IVersionedObject2

The utility network object represents
facility networks with directed flow.

Networks of this type allow upstream
and downstream types of analysis.

The street network object represents
transportation network without any

defined flow.



Chapter 12 • Solving linear networks • 1177

N
et

w
o

rk

A NetElementClass object can be obtained through various methods
including the ElementClass and ElementClassByUserID on the INetSchema
interface.

This class allows access to the IDs of the user classes participating in
the logical network. As with most interfaces and classes related to the
logical network, this class is only important when dealing with a logical
network that does not have an associated geometric network.

 INetElementClass : IUnknown Provides access to a member that gets the user class ID of
an element class in the logical network.

UserClassID: Long UserClassID of an element class in the logical network.

The INetElementClass interface is the only interface for the
NetElementClass class. Use this interface when you want to access the ID
of a class participating in the logical network.

The NetElementDescription coclass creates network elements to be added
to a logical network without an associated geometric network. (If you do
have a geometric network, you should add new elements by adding
new features to your feature classes.)

The AddEdgeByEndEID and AddJunction methods on ITopologyEdit take
NetElementDescription objects as input for creating new network elements.

 INetElementDescription : IUnknown Provides access to members that get information about the
element described by this NetElementDescription object.

ElementType: esriElementType Type of network element described by this NetElementDescription
object.

UserClassID: Long User class ID for the element described by this
NetElementDescription object.

UserID: Long User ID for the element described by this NetElementDescription
object.

UserSubID: Long User sub ID for the element described by this NetElementDescription
object.

The INetElementDescription interface provides read-only access to the
properties of a network element (element type, user class, and user ID).

UserSubID returns the index number of an element that is part of a
complex network feature. For simple network features (edges and junc-
tions), the UserSubID is 0 when that feature is added. Subsequent edits
will change this value.

 INetElementDescriptionEdit :
 INetElementDescription

Provides access to members that set information for this
NetElementDescription object.

ElementType: esriElementType Type of network element for this NetElementDescription object.
UserClassID: Long User class ID for this NetElementDescription object.
UserID: Long User ID for this NetElementDescription object.
UserSubID: Long User sub ID for this NetElementDescription object.

INetElementDescriptionEdit is an interface on the NetworkDescription
coclass that edits network element properties. This interface inherits
from INetElementDescription, so it provides read–write access to the
element description. Use this interface when creating a new network

NETELEMENTCLASS AND NETELEMENTDESCRIPTION

NetElement-
Class

INetElementClass

The net element class provides access to
the IDs of the object class represented in

the network.

NetElement-
Description

INetElementDescription
INetElement-

DescriptionEdit

The net element description object
provides access to the parameters of an
element. This object allows you to define

a new element based on the specified
object class and object ID.



1178 • Exploring ArcObjects • Volume 2

element to add to a logical network that is not associated with a geomet-
ric network.

ElementType returns or sets the type of the element. The possible types
are esriETEdge (value of 2), esriETJunction (value of 1), esriETNone
(value of 0), and esriETTurn (value of 3).

NETELEMENTCLASS AND NETELEMENTDESCRIPTION



Chapter 12 • Solving linear networks • 1179

N
et

w
o

rk

The ForwardStar class is created through the INetwork interface and is
designed to allow incremental stepping through a logical network. The
ESRI trace solver routines are all based on the ForwardStar class.

 IForwardStar : IUnknown Provides access to members that query information about
adjacent elements in the logical network.

Network: INetwork Underlying network of this forward star cursor.

FindAdjacent (in fromEdgeEID: Long, in
atJunctionEID: Long, out
adjacentEdgesCount: Long)

Finds the edge elements that are adjacent to the given junction
element and returns the count.

QueryAdjacentEdge (in Index: Long, out
adjacentEdgeEID: Long, out
ReverseOrientation: Boolean, out
adjacentEdgeWeightValue: Variant)

Returns index'th adjacent edge found with FindAdjacent, its
orientation, and its weight value.

QueryAdjacentEdges (in Count: Long,
out adjacentEdgeEIDs: Long, out
ReverseOrientation: Boolean, out
adjacentEdgesWeightValue: Variant)

Returns the adjacent edges found with FindAdjacent into the specified
user-defined array.

QueryAdjacentJunction (in Index: Long,
out adjacentJunctionEID: Long, out
adjacentJunctionWeightValue: Variant)

Returns the opposite junction of the index'th adjacent edge found
with FindAdjacent, and the weight value for this junction.

QueryAdjacentJunctions (in Count:
Long, out adjacentJunctionEIDs: Long,
out adjacentJunctionsWeightValue:
Variant)

Returns the opposite junctions of the adjacent edges found with
FindAdjacent into the specified user-defined array.

QueryAtTurn (in Index: Long, out
adjacentTurnEID: Long, out
adjacentTurnWeightValue: Variant)

Returns the turn through which the index'th adjacent edge found with
FindAdjacent passes, and the weight value of the turn.

QueryAtTurns (in Count: Long, out
adjacentTurnEIDs: Long, out
adjacentTurnsWeightValue: Variant)

Returns the turns through which the adjacent edges found with
FindAdjacent passes into the user-defined array.

The IForwardStar interface provides methods for querying the connec-
tivity between junctions, edges, and turns. Use this interface when you
want to create your own trace solving routines, generate a network
schematic, or perform some other operation based on the connectivity
of the logical network.

Sub TraverseSegment(pForward as IForwardStar, lEdgeEID As Long, _

  lInJunc As Long)

  Dim lLoop As Long, lEdgeCount As Long, lOutEID As Long

  Dim bOrient As Boolean, pWeight As Variant, lOutJuncEID As Long

  pForward.FindAdjacent lEdgeEID, lInJunc, lEdgeCount

  For lLoop = 0 To lEdgeCount - 1

    pForward.QueryAdjacentEdge pLoop, pOutEID, bOrient, pWeight

    If lOutEID <> lEdgeEID Then

      pForward.QueryAdjacentJunction lLoop, lOutJuncEID, pWeight

    End If

  Next lLoop

End Sub

FindAdjacent returns a count of all the edges connected to the specified
edge through the specified junction. This method must be run before
you use any of the other Query methods on the interface.

QueryAdjacentEdge returns the EID and weight value of an edge indi-
cated by the index value. This method needs to be run after the
FindAdjacent method.

QueryAdjacentJunctions returns an array of junctions based on the user-
specified count. This method needs to be run after the FindAdjacent
method.

FORWARDSTAR CLASS

ForwardStar
IForwardStar

The forward star is important when you
wish to create your own trace solver

routines or want to walk through the
network connectivity for some other

reason.

In order to use any of the Query methods, you
must first run the FindAdjacent method. This

code demonstrates how to use the
FindAdjacent method to set the stage for the
Query methods (m_pForward is a variable

defined as an IForwardStar).



1180 • Exploring ArcObjects • Volume 2

Edges and junctions can have any number of weights associated with
them. Weights are typically used to store the cost of traversing across an
edge or through a junction. A typical weight is the length of the edge.
Weights are created from field values on the edge and junction feature
classes.

Weights are stored with the logical network so that analysis programs
can access them efficiently. When a weight value is modified on a
feature table, it is automatically updated in the logical network.

The NetWeight coclass objects define the weight categories to apply to a
particular network. NetWeight objects define the type of weight to be
applied (Null, BitGate, Integer, Single, and Double), while
NetWeightAssociation objects define which field in a feature class will
participate in a weight. For example, a NetWeight object that specifies an
integer weight with a name of “phase” might be created. A number of
NetWeightAssociation objects would then be created to specify the name
of the field in each participating feature class that contains the phase
information.

 INetWeight : IUnknown Provides access to members that get information about the
network weight described by this NetWeight object.

BitGateSize: Long Bit gate size of the network weight described by this NetWeight
object.

WeightID: Long Internal ID of the network weight described by this NetWeight object.
WeightName: String Name of the network weight described by this NetWeight object.
WeightType: esriWeightType Type of network weight described by this NetWeight object.

INetWeight, the default interface on the NetWeight coclass, provides
read-only access to the properties of a network weight object. The inter-
face provides access to the name, type, ID, and bitgatesize (where appli-
cable) properties of the weight.

BitGateSize defines the number of bits to be used as the bit gate.

WeightName is an arbitrary name given to the weight when it is created.

 INetWeightEdit : INetWeight Provides access to members that set information for this
NetWeight object.

BitGateSize: Long Bit gate size of this NetWeight object.
WeightName: String Name of this NetWeight object.
WeightType: esriWeightType Type of network weight of this NetWeight object.

INetWeightEdit is an interface on the NetWeight coclass that edits
NetWeight object properties. This interface inherits from INetWeight, so it
provides read–write access to the NetWeight object. Use this interface
when you are creating a weight object to add to your logical network.

WeightType defines the type of weight being defined (Null, BitGate,
Integer, Single, or Double).

NETWEIGHT COCLASS

INetWeight
INetWeightEdit NetWeight

The net weight object defines the type of
constraining parameter to apply to a

network, while net weight association
objects define the object classes and

fields that will participate in that weight.

Weights actually serve two purposes: to limit
tracing in a network and to denote cost of

tracing through a network element.



Chapter 12 • Solving linear networks • 1181

N
et

w
o

rk

The NetWeightAssociation objects define how a particular object class
participates in a network weight. Object classes participate in a weight
when a NetWeightAssociation that specifies the name of the table and
the field containing attribute values that correspond to the particular
weight is created. For example, a NetWeight object might be created with
an integer type. Any NetWeightAssociation objects that want to partici-
pate in that weight must define a table field that contains integer values.

Once a weight is defined, it can be employed during trace-solving pro-
cedures to dictate flow through the different elements.

Once a NetWeightAssociation object is defined, any update to the speci-
fied table and field will propagate to the logical network.

 INetWeightAssociation : IUnknown Provides access to members that get information about the
network weight association described by this
NetWeightAssociation object.

FieldName: String Name of the field that contains the values for this weight.
TableName: String Name of the table to which this weight is associated.
WeightID: Long Weight internal ID of the weight to which this table is associated.

The INetWeightAssociation interface is implemented by the
NetWeightAssociation coclass and provides read-only access to the
properties of the object. The interface provides access to the table
name, field name, and ID of the associated weight.

WeightID refers to the weight (NetWeight object) in which the association
participates.

 INetWeightAssociationEdit :
 INetWeightAssociation

Provides access to members that set information for this
NetWeightAssociation object.

FieldName: String Name of the field that contains the values for this associated weight.
TableName: String Name of the table to be associated in this weight association.
WeightID: Long Weight internal ID of the weight to be associated in this weight

association.

INetWeightAssociationEdit is an interface on the NetWeightAssociation
coclass that edits NetWeightAssociation object properties. This interface
inherits from INetWeightAssociation, so it provides read–write access to
the properties.

Use this interface when you want to specify a field (from a particular
table or feature class) to participate in a defined weight object in the
network.

TableName designates the name of the table/feature class that contains
the field to use in the weight object.

NETWEIGHTASSOCIATION COCLASS

NetWeight-
Association

INetWeightAssociation
INetWeightAssociation-

Edit

Net weight association objects define the
object classes and fields that will partici-

pate in that weight.



1182 • Exploring ArcObjects • Volume 2

The NetSolver object sets the table for the trace methods found in the
TraceFlowSolver class. Through this object, you can specify the network
you are working on, disable entire network classes, specify individual
barriers, and define weights. The derived TraceFlowSolver class can then
be used to run a trace on the defined problem.

 INetSolver : IUnknown Provides access to members that specify the network and
the barriers to be used with this solver.

ElementBarriers (in ElementType:
esriElementType) :
INetElementBarriers

Network element barrier set to be used in this solver.

SelectionSetBarriers:
ISelectionSetBarriers

Selection set barriers to be used in this solver.

SourceNetwork: INetwork Source network to be used in this solver.

DisableElementClass (in ClassID: Long) Sets an element class as disabled within this solver.

The INetSolver interface specifies barriers and disabled classes. This
interface is key when you need to limit your traces based on the exclu-
sion of entire classes or individual elements. This interface offers three
different ways to set barriers for the purpose of limiting traces.

The DisableElementClass method stops traces at every instance of the
specified class. For example, if you have a gas pipe that has burst and
you need to identify all valves to shutoff, then you would use this
method to set barriers at every valve in the network.

The ElementBarriers property lets you specify an INetElementBarriers
object that contains individual elements to use as barriers. These could
be barriers composed of closed street segments, bridges that are out, or
individual electric switches that have been opened for some reason.

The SelectionSetBarriers property is similar to the ElementBarriers prop-
erty. It allows you to specify an ISelectSetBarriers object to use as a
barrier in your trace-solving routine. SelectionSetBarriers are meant to be
barriers based on a selected set of elements, such as 8-inch pipes and
six-lane highways.

Here is some sample code for using the ElementBarriers property to set
barriers based on a set of identified elements.

Sub SetEdgeBarrier(pNetwork As INetwork, pFeatClass As IFeatureClass,

lEdgeOID1 As Long, lEdgeOID2 As Long)

  'Create the NetElementBarriers object

  Dim pNetEdgeBarriers As INetElementBarriers, lOIDs(1) As Long

  Set pNetEdgeBarriers = New NetElementBarriers

  lOIDs(0) = lEdgeOID1

  lOIDs(1) = lEdgeOID2

  Set pNetEdgeBarriers.Network = pNetwork

  pNetEdgeBarriers.ElementType = esriETEdge

  pNetEdgeBarriers.SetBarriers pFeatClass.FeatureClassID, 2, lOIDs(0)

'Pass in the first element of the array

  'Set the edge barrier in the TraceFlowSolver

  Dim pTraceFlowSolver As ITraceFlowSolver, pNetSolver As INetSolver

  Set pTraceFlowSolver = New TraceFlowSolver

  Set pNetSolver = pTraceFlowSolver

NETSOLVER ABSTRACT CLASS

NetSolver
INetSolver

INetSolverWeights

The NetSolver object is a key object for
anyone that wishes to write their own

trace-solving routines based on existing
ESRI methods. The NetSolver abstract

class only supports the TraceFlowSolver
coclass.



Chapter 12 • Solving linear networks • 1183

N
et

w
o

rk

  Set pNetSolver.SourceNetwork = pNetwork

  Set pNetSolver.ElementBarriers(esriETEdge) = pNetEdgeBarriers

End Sub

An alternative method for using the SetBarriers method above is to
collect all the OIDs of all the elements in order to use the barriers in the
pOIDs array, then execute SetBarriers once.

 INetSolverWeights : IUnknown Provides access to members that specify the weights to be
used for this solver.

FromToEdgeFilterWeight: INetWeight Weight to be used for filtering edge elements traced in the digitized
direction.

FromToEdgeWeight: INetWeight Weight to be used to determine the cost of passing through edge
elements in the digitized direction.

JunctionFilterWeight: INetWeight Weight to be used for filtering junction elements.
JunctionWeight: INetWeight Weight to be used to determine the cost of passing through junction

elements.
ToFromEdgeFilterWeight: INetWeight Weight to be used for filtering edge elements traced against the

digitized direction.
ToFromEdgeWeight: INetWeight Weight to be used to determine the cost of passing through edge

elements against the digitized direction.

SetFilterRanges (in ElementType:
esriElementType, in rangeCount:
Long, in fromValues: Variant, in
toValues: Variant)

Sets the range of values to be filtered for the specified network
element type.

SetFilterType (in ElementType:
esriElementType, in weightFilterType:
esriNetWeightFilterType, in
applyNotOperator: Boolean)

Sets the filter type for the specified network element type.

The INetSolverWeights interface specifies the weights to use during trace-
solving procedures. For a description of how weights are used, see the
NetWeight coclass documentation. This interface allows you to specify
junction and edge weights and also set the filters to be used in conjunc-
tion with the weights. The filters specify the attribute values or ranges to
use or not use when tracing. For instance, a cathodic protection trace
might be done by tracing on steel pipe, so the weight filter would indi-
cate to trace only on the value representing steel pipe.

Filter weights (FromToEdgeFilterWeight, ToFromEdgeFilterWeight, and
JunctionFilterWeight) are used to explicitly specify the type of feature on
which you do or do not want to trace.

FromToEdgeFilterWeight, FromToEdgeWeight, ToFromEdgeFilterWeight,
and ToFromEdgeWeight get their from and to direction based on the
digitized direction of the edge.

Here is some sample code for setting filter weights on edges and junc-
tions. The edge weight is called “Material”, and the filter is being set to
not trace on values of 1. The junction weight is called “Fitting_Type”,
and the filter is being set to not trace on values of 8.

Sub SetFilterWeights()

  Dim pApp As IApplication, pUID As New UID

  Dim pNetSolverWeights As INetSolverWeights

  Dim pWeight As INetWeight, pSchema As INetSchema

  Dim lRange(1) As Long, pNetExt As INetworkAnalysisExt

  Set pApp = Application

  pUID = "esricore.UtilityNetworkAnalysisExt"

  Set pNetExt = pApp.FindExtensionByCLSID(pUID)

NETSOLVER ABSTRACT CLASS



1184 • Exploring ArcObjects • Volume 2

' Establish the trace flow solver

  Dim pTraceFlowSolver As ITraceFlowSolver

  Set pTraceFlowSolver = New TraceFlowSolver

  Dim pNetSolver As INetSolver

  Set pNetSolver = pTraceFlowSolver

  Set pNetSolver.SourceNetwork = pNetExt.CurrentNetwork.Network

  'Add the weights

  Set pSchema = pNetExt.CurrentNetwork.Network

  Set pNetSolverWeights = pTraceFlowSolver

  Set pWeight = pSchema.WeightByName("Material")

  Set pNetSolverWeights.FromToEdgeFilterWeight = pWeight

  Set pNetSolverWeights.ToFromEdgeFilterWeight = pWeight

  pNetSolverWeights.SetFilterType esriETEdge, esriWFRange, True

  lRange(0) = 1

  pNetSolverWeights.SetFilterRanges esriETEdge, 1, lRange(0), lRange(0)

  Set pWeight = pSchema.WeightByName("Fitting_Type")

  Set pNetSolverWeights.JunctionFilterWeight = pWeight

  pNetSolverWeights.SetFilterType esriETJunction, esriWFRange, True

  lRange(0) = 8

  pNetSolverWeights.SetFilterRanges esriETJunction, 1, lRange(0), lRange(0)

End Sub

NETSOLVER ABSTRACT CLASS



Chapter 12 • Solving linear networks • 1185

N
et

w
o

rk

The TraceFlowSolver object contains a set of traces developed by ESRI
for use with custom code. You also have the option of generating your
own trace routines by using the ForwardStar object.

 ITraceFlowSolver : IUnknown Provides access to members that perform basic traces on a
network.

TraceIndeterminateFlow: Boolean Indicates if directional traces include edges with indeterminate or
uninitialized flow direction.

FindCircuits (in flowElements:
esriFlowElements, out junctionEIDs:
IEnumNetEID, out edgeEIDs:
IEnumNetEID)

Finds all reachable network elements that are parts of closed circuits
in the network.

FindCommonAncestors (in
flowElements: esriFlowElements, out
junctionEIDs: IEnumNetEID, out
edgeEIDs: IEnumNetEID)

Finds all reachable network elements that are upstream from all the
specified origins.

FindFlowElements (in FlowMethod:
esriFlowMethod, in flowElements:
esriFlowElements, out junctionEIDs:
IEnumNetEID, out edgeEIDs:
IEnumNetEID)

Finds all reachable network elements based on the specified flow
method.

FindFlowEndElements (in FlowMethod:
esriFlowMethod, in flowElements:
esriFlowElements, out junctionEIDs:
IEnumNetEID, out edgeEIDs:
IEnumNetEID)

Finds all reachable network end elements based on the specified flow
method.

FindPath (in FlowMethod:
esriFlowMethod, in objFn:
esriShortestPathObjFn, out
junctionEIDs: IEnumNetEID, out
edgeEIDs: IEnumNetEID, in Count:
Long, segmentCosts: Variant)

Finds a path between the specified origins in the network.

PutEdgeOrigins (in edgeOriginCount:
Long, in edgeOrigins: IEdgeFlag)

Sets the starting edges for this trace solver.

PutJunctionOrigins (in
junctionOriginCount: Long, in
junctionOrigins: IJunctionFlag)

Sets the starting junctions for this trace solver.

The ITraceFlowSolver interface lets you specify junction and edge ori-
gins and then execute one of the trace methods. These trace methods
should allow you to perform the majority of required tracing tasks;
traces not included with this interface need to be constructed via the
ForwardStar object.

 ITraceFlowSolver2 : ITraceFlowSolver Provides access to members that perform traces on a
network.

FindAccumulation (in FlowMethod:
esriFlowMethod, in flowElements:
esriFlowElements, out junctionEIDs:
IEnumNetEID, out edgeEIDs:
IEnumNetEID, out pTotalCost: Variant)

Finds the total cost of all reachable network elements based on the
specified flow method.

FindFlowUnreachedElements (in
FlowMethod: esriFlowMethod, in
flowElements: esriFlowElements, out
junctionEIDs: IEnumNetEID, out
edgeEIDs: IEnumNetEID)

Finds all unreachable network elements based on the flow method.

FindSource (in FlowMethod:
esriFlowMethod, in objFn:
esriShortestPathObjFn, out junctionEIDs:
IEnumNetEID, out edgeEIDs:
IEnumNetEID, in Count: Long,
segmentCosts: Variant)

Finds a path upstream to a source or downstream to a sink,
depending on the specified flow method.

ITraceFlowSolver2 adds more trace solvers to the TraceFlowSolver ob-
ject. It can be used in a similar way as the ITraceFlowSolver interface.

Many of the traces require that flow direction has been established on
the network. You can set flow direction through the IUtilityNetwork
interface.

TRACEFLOWSOLVER COCLASS

NetSolver
INetSolver

INetSolverWeights

TraceFlow-
Solver

ISupportErrorInfo
ITraceFlowSolver

ITraceFlowSolver2

The trace flow solver object is a type of
NetSolver used to perform traces on
the network based on the limitations

(barriers and weights) specified with the
NetSolver object.



1186 • Exploring ArcObjects • Volume 2

There are four basic trace algorithms that can be used to solve a variety
of trace-flow problems. These methods are used in the Utility Network
Analyst toolbar to create the nine trace tasks available there, and they
can also be used by the developer to create an unlimited number of
new tasks.

• FindCircuits (sometimes known as find loops) finds elements that
can be reached from more than one direction. This method is impor-
tant for such things as electrical networks, where electricity traveling
in both directions on an edge can cause problems.

• FindCommonAncestors finds the common elements in an upstream
trace from more than one location. This method helps determine
potential pollution sources based on sites where contaminants have
been discovered or identify potential outage locations when multiple
customers have reported that their service is out.

• FindFlowElements and FindFlowEndElements perform the same type of
analysis. The only difference is that FindFlowEndElements returns
only the termination elements of the trace. These methods are prob-
ably the most important trace methods because they solve problems,
such as what is upstream from this location, what is downstream,
what is connected, and so on. By applying further constraints (such
as disabling classes), these methods can perform additional analysis,
such as shutoff modeling.

• FindPath determines the optimal path between two or more flags.
The flags will be routed in order beginning with the first flag entered
and ending with the last. By default, the optimal path is based on the
number of elements traversed, with optimal being the least number of
elements. Define weights on the network to base the optimal path on
length of segments, travel time, or some other parameter.

TRACEFLOWSOLVER COCLASS



Chapter 12 • Solving linear networks • 1187

N
et

w
o

rk

The NetworkLoader coclass allows you to specify input parameters for
the name and type of network, the feature classes to be included, the
feature classes to be used as sources and sinks, and the weights you
wish to employ. All of these parameters are specified up front through
the object, and then the LoadNetwork method is executed to generate
the logical network.

 INetworkLoader : IUnknown Provides access to members used to create a new
geometric network.

FeatureDatasetName: IDatasetName Feature dataset name to where the new geometric network is to be
created.

NetworkName: String Name of the new geometric network.
NetworkType: esriNetworkType Network type of the new geometric network.
SnapTolerance: Double Snap tolerance to be used in creating the new geometric network.

AddFeatureClass (in
FeatureClassName: String, in
newFeatureType: esriFeatureType, in
newClsID: IUID, in
canChangeGeometry: Boolean)

Adds a feature class to the new geometric network.

AddWeight (in networkWeightName:
String, in WeightType: esriWeightType,
in BitGateSize: Long)

Adds a weight to the new geometric network.

AddWeightAssociation (in
networkWeightName: String, in
FeatureClassName: String, in
FieldName: String)

Adds an association between a network weight and a feature class
attribute.

LoadNetwork Creates the new geometric network inside the feature dataset.
PutAncillaryRole (in FeatureClassName:

String, in ancillaryRole:
esriNetworkClassAncillaryRole, in
ancillaryRoleFieldName: String)

Specifies the ancillary role attribute field for the specified feature
class.

PutEnabledDisabledFieldName (in
FeatureClassName: String, in
enabledDisabledFieldName: String)

Specifies the enabled/disabled field for the specified feature class.

The INetworkLoader lets you set the parameters to use in building a
logical network out of a set of feature classes within the same dataset.
Use this interface when you want to define and generate your logical
network.

NetworkType specifies the type of network to be built: street or utility.

LoadNetwork generates the network based on the specified parameters.
Do not execute this method until you have finished setting the param-
eters.

Use PutEnabledDisabledFieldName when you want to specify a field to
hold the enabled/disabled setting for a feature that differs from the
default defined in the INetworkLoaderProps interface.

NETWORKLOADER COCLASS

Network-
Loader

INetworkLoader
INetworkLoader2

INetworkLoaderProps

Besides the Network object, the
NetworkLoader object may be the key

object in the network model. Even
though you may only use this object one
time, it is important because it builds the

geometry network and its logical network
when you have existing feature classes.
All the other objects are of no use until

you have somehow made use of the
NetworkLoader object to generate the

network.

If you wish to create a network without an
associated geometric network, then use the

NetworkWorkspace object and the interfaces
provided there.

At present, the majority of network functionality
has been implemented for utility networks.



1188 • Exploring ArcObjects • Volume 2

 INetworkLoader2 : INetworkLoader Provides access to members that specify parameters for
creating a new geometric network.

ConfigurationKeyword: String Configuration keyword for the new geometric network.
ErrorTableName: String Name of the table containing errors encountered while building the

new geometric network.
MinSnapTolerance: Double Minimum nonzero snap tolerance for creating a new geometric

network.
NumInvalidFeatures (in

FeatureClassName: String) : Long
Number of features with invalid geometry in the given feature

class.
PreserveEnabledValues: Boolean Indicates if the Network Loader should preserve the values in the

existing Enabled fields.
TotalNumInvalidFeatures: Long Total number of features with invalid geometry.

CanUseFeatureClass (in
FeatureClassName: String) :
esriNetworkLoaderFeatureClassCheck

Determines if the given feature class can participate in a network.

CheckAncillaryRoleField (in
FeatureClassName: String, in
FieldName: String) :
esriNetworkLoaderFieldCheck

Determines whether the given AncillaryRole field is valid.

CheckEnabledDisabledField (in
FeatureClassName: String, in
FieldName: String) :
esriNetworkLoaderFieldCheck

Determines whether the given Enabled field is valid.

The INetworkLoader2 interface provides access to members that specify
parameters for creating a new geometric network.

 INetworkLoaderProps : IUnknown Provides access to memebers that return the default names
of fields and domains used by the network loader.

DefaultAncillaryRoleDomain: String Default ancillary role domain name.
DefaultAncillaryRoleField: String Default ancillary role field name.
DefaultEnabledDomain: String Default enabled domain name.
DefaultEnabledField: String Default enabled field name.

The INetworkLoaderProps interface returns names for the ancillary and
enabled/disabled fields and domains.

When you execute the LoadNetwork method on INetworkLoader, a logi-
cal network is generated based on the feature classes you specify. An
enabled/disabled field is added within the table for each feature class to
keep track of whether flow can go through each individual feature.
There is also a domain created with the values of “enabled” and “dis-
abled”. This domain is automatically assigned to the created field within
each feature class.

The INetworkLoaderProps interface allows you to see the default field
names that will be added to each feature class and the name of the
domain. In addition, default field and domain names can be returned
for the ancillary role (feature classes that contain sources or sinks).

DefaultEnabledField returns the field name that will be added to each
feature class to keep the enabled/disabled property of the individual
features.

NETWORKLOADER COCLASS



Chapter 12 • Solving linear networks • 1189

N
et

w
o

rk

The NetFlag abstract class has two classes that are derived from it:
EdgeFlag and JunctionFlag. The purpose of the class is to specify the
starting points (flags) of traces and path-finding routines. When a flag is
created, it is necessary to specify whether that flag is on an edge or a
junction. The PutEdgeOrigins and PutJunctionOrigins methods on
ITraceFlowSolver include the flags in the current trace.

 INetFlag : IUnknown Provides access to members that specify the network
element on which a flag is located.

ClientClassID: Long User-specified client class ID of this flag.
ClientID: Long User-specified client ID of this flag.
Label: String Label of this flag.
UserClassID: Long User class ID of the network element on which this flag is placed.
UserID: Long User ID of the network element on which this flag is placed.
UserSubID: Long User sub ID of the network element on which this flag is placed.

The INetFlag interface is the only interface on the NetFlag object. This
interface allows set and retrieve access on the individual properties of
the element being used as a flag. Use this interface to specify the user
class and ID of the element.

UserSubID specifies the index of the particular element you want to use
as a flag within a complex junction or edge feature.

An EdgeFlag object is a type of NetFlag object. The EdgeFlag object speci-
fies the starting point of a trace or path algorithm. As the name implies, the
flag (or starting point) must be on an edge feature. This object creates a
flag that is associated with an edge feature.

 IEdgeFlag : IUnknown Provides access to members that return and set properties
that are specific to edge flags on the network.

Position: Single Position of the flag along the edge.
TwoWay: Boolean Indicates if the trace can proceed in either direction from this edge

flag.

The IEdgeFlag interface is the only interface on the EdgeFlag object. This
interface provides access to the flag properties unique for an edge. Use
this interface to specify the position of the flag on the edge and whether
or not the flag is to be used for flow in both directions along the edge.

The Position property specifies the percentage location of the flag down
the edge beginning at the “from” point.

A JunctionFlag object is a type of NetFlag object. The JunctionFlag ob-
ject specifies the starting point (flag) of a trace or path algorithm. As the
name implies, the flag must be on a junction feature.

 IJunctionFlag : IUnknown Provides access to members that return and set properties
that are specific to junction flags on the network.

The IJunctionFlag interface is the only interface on the JunctionFlag
object. This interface has no properties or methods but serves as a way
to identify what type of flag you have. For instance, if an object sup-
ports IJunctionFlag, then you know you have a JunctionFlag object.

JUNCTIONFLAG AND EDGEFLAG COCLASSES

NetFlag
INetFlag

EdgeFlag
IEdgeFlag

JunctionFlag
IJunctionFlag

Net flag objects designate the starting
points for traces and path-finding rou-

tines. The net flag object itself maintains
a description of the feature on which the

flag has been placed.

The junction flag object indicates a
starting point on a junction feature, while

an edge flag object indicates a starting
point somewhere along an edge feature.

The UserSubID must be specified, even for
noncomplex network features. You can look up

any nework element’s ID by calling
INetElements::QueryIDs and passing in its

EID.



1190 • Exploring ArcObjects • Volume 2

The NetworkAnalysisExt class implements several different interfaces that
support the general characteristics of network analysis. These character-
istics include the flags (starting points) that have been set, barriers that
have been added, weights and filters that have been defined, and what
to do with the results of any analysis. At present, there is only one
“type” of NetworkAnalysisExt, UtilityNetworkAnalysisExt, but more will
be coming in future releases.

 INetworkAnalysisExt: IUnknown Provides access to members that add or remove networks
and feature layers from the Network Analysis extension.

Application: IApplication Parent application of the Network Analysis extension.
CurrentNetwork: IGeometricNetwork Current network being used by the Network Analysis extension.
FeatureLayer (Index: Long) :

IFeatureLayer
Returns a feature layer in the Network Analysis extension by index.

FeatureLayerCount: Long Returns the number of feature layers currently loaded into the
Network Analysis extension.

Network (in Index: Long) :
IGeometricNetwork

Geometric network in the Network Analysis extension by index.

NetworkCount: Long Number of geometric networks currently loaded into the Network
Analysis extension.

SnapTolerance: Long Snap tolerance, in pixels, for placing flags and barriers on the map.

AddLayer (in Layer: ILayer) Adds a layer to the Network Analysis extension.
AddNetwork (GeometricNetwork:

IGeometricNetwork)
Loads a geometric network into the Network Analysis extension.

DeleteNetwork (GeometricNetwork:
IGeometricNetwork)

Unloads a geometric network from the Network Analysis extension.

DropLayer (in Layer: ILayer) Removes a layer from the Network Analysis extension.

The INetworkAnalysisExt interface provides information about the net-
works and layers available for analysis. Through this interface, the de-
veloper can add and remove networks and layers from the analysis
process.

A key property of this interface is Application, which provides access to
the application housing the toolbar. When creating a custom trace task,
INetworkAnalysisExt::Application is the way to get a reference back to
the application, and through that, the document, and so on.

The CurrentNetwork property allows the developer to set (and retrieve)
the network being used for analysis.

SnapTolerance is used when adding a new flag or barrier to the analysis
process.

DropLayer removes a layer from the toolbar but not the map. Traces will
still go through layers that have been “dropped”, but they will not dis-
play as part of the results.

The following VBA code will drop a layer called “Regulators” from the
network analysis extension (the toolbar).

Sub Drop()

  Dim pNetAnal As INetworkAnalysisExt, pUID As New UID, _

 pApp As IApplication

  Set pApp = Application

  pUID = "esricore.utilitynetworkanalysisext"

  Set pNetAnal = pApp.FindExtensionByCLSID(pUID)

  Dim pDoc As IMxDocument, pMap As IMap, pLayer As ILayer, lLoop As Long

  Set pDoc = ThisDocument

NETWORKANALYSISEXT CLASS

Much of the analysis capabilities of the network
model are exposed to the user through the

Utility Network Analyst toolbar. The primary
purpose of the toolbar is to allow users to

perform traces and display the results. Traces are
executed by specifying one or more “flags”

(starting points), selecting the type of traces to
perform (upstream, downstream, find connected,
and so on), and clicking the Trace button. Traces

can be further limited by adding barriers,
disabling layers, and setting weight values. All of
these options are available through the toolbar
and are supported by a group of objects devel-

oped specifically for that purpose.

The toolbar can be extended by creating
additional custom trace tasks and registering

them under the ESRI Utility NetworkTasks
category. These custom tasks are developed using
the same set of objects the toolbar is based on.
The easiest way for a developer to create their

own tracing functionality is to extend the
toolbar. Through the objects discussed below, the
developer can retrieve all the flags, barriers, and
so on, that the user has set through the toolbar
and can then apply these to a custom trace. This
process saves the developer from having to write

code to manage the flags, barriers, and so on.

Network-
AnalysisExt

IActiveViewEvents
IEditEvents
IExtension

IMapEvents
INetworkAnalysisExt

INetworkAnalysis-
ExtBarriers

INetworkAnalysis-
ExtFlags

INetworkAnalysis-
ExtResultColor

INetworkAnalysis-
ExtResults

INetworkAnalysisExt-
WeightFilter

INetworkAnalysisExt-
Weights

The network analysis extension object
manages the Utility Network Analyst

toolbar. Through this object, you can set
and retrieve all of the toolbar

parameters.



Chapter 12 • Solving linear networks • 1191

N
et

w
o

rk

  Set pMap = pDoc.FocusMap

  For lLoop = 0 To pMap.LayerCount - 1

    If UCase(pMap.Layer(lLoop).Name) = "REGULATORS" Then

      Set pLayer = pMap.Layer(lLoop)

      Exit For

    End If

  Next lLoop

  If Not pLayer Is Nothing Then

    pNetAnal.DropLayer pLayer

  End If

End Sub

 INetworkAnalysisExtFlags : IUnknown Provides access to members that manage flags in the
Network Analysis extension.

EdgeFlag (in Index: Long) :
IEdgeFlagDisplay

Edge flag on the current network by index.

EdgeFlagCount: Long Number of edge flags on the current network.
JunctionFlag (in Index: Long) :

IJunctionFlagDisplay
Junction flag on the current network by index.

JunctionFlagCount: Long Number of junction flags on the current network.

AddEdgeFlag (in EdgeFlag:
IEdgeFlagDisplay)

Adds an edge flag to the current network.

AddJunctionFlag (in JunctionFlag:
IJunctionFlagDisplay)

Adds a junction flag to the current network.

ClearFlags Removes all flags from the current network.

The INetworkAnalysisExtFlags interface manages the flags being moni-
tored by the toolbar. Flags are the starting points for traces and the
FindPath routine. Use this interface when you want to retrieve, set, or
clear the flags to be used during the analysis process. Use the
INetworkAnalysisExtFlags interface if you want to write a custom trace
task in which you explicitly set the flags.

EdgeFlagCount returns the number of flags set on edge features in the
network.

ClearFlags removes all edge and junction flags.

 INetworkAnalysisExtBarriers :
 IUnknown

Provides access to members that manage barriers in the
Network Analysis extension.

EdgeBarrier (in Index: Long) :
IEdgeFlagDisplay

Edge barrier on the current network by index.

EdgeBarrierCount: Long Number of edge barriers on the current network.
JunctionBarrier (in Index: Long) :

IJunctionFlagDisplay
Junction barrier on the current network by index.

JunctionBarrierCount: Long Number of junction barriers on the current network.
SelectionSemantics: esriAnalysisType Indicates if trace tasks are performed on selected features,

unselected features, or all features.

AddEdgeBarrier (in Barrier:
IEdgeFlagDisplay)

Adds an edge barrier to the current network.

AddJunctionBarrier (in Barrier:
IJunctionFlagDisplay)

Adds a junction barrier to the current network.

ClearBarriers Removes all barriers from the current network.
CreateElementBarriers (out

junctionBarriers: INetElementBarriers,
out edgeBarriers: INetElementBarriers)

Returns a NetElementBarriers object corresponding to the barriers
added to the current network.

CreateSelectionBarriers (out
selectionBarriers:
ISelectionSetBarriers)

Returns a SelectionSetBarriers object corresponding to the currently
selected features in the current network and the SelectionSemantics
property.

GetDisabledLayer (in pFeatureLayer:
IFeatureLayer) : Boolean

Gets the disabled state for the specified feature layer.

SetDisabledLayer (in DisabledLayer:
IFeatureLayer, in isDisabled: Boolean)

Sets the disabled state for the specified feature layer.

NETWORKANALYSISEXT CLASS



1192 • Exploring ArcObjects • Volume 2

The INetworkAnalysisExtBarriers interface manages the barriers moni-
tored by the toolbar. Barriers are short-term blockages of flow within
your network. For long-term blockages of flow (for example, shutting off
a valve or opening a switch), use the Enabled property on the individual
feature. This interface sets blockages based on pipes that have burst or
other short-term issues or to monitor layers that have been completely
disabled. When a layer is disabled, tracing cannot go through any fea-
ture in that layer. You might disable a layer (in this case, “valves”) to
determine which valves need to be shutoff to isolate a break in the pipe.

SelectionSemantics allows the developer to specify on which features the
tracing is performed. The options are all features, only selected features,
or only nonselected features.

CreateElementBarriers and CreateSelectionBarriers return a set of barriers
that can be passed to the NetSolver object within your custom trace task.
The barriers returned are based on what the user has set through the
toolbar.

GetDisabledLayer returns a Boolean indicating whether the user has
disabled the FeatureLayer that is passed in.

 INetworkAnalysisExtResults : IUnknown Provides access to members that set and clear the trace
task results.

DrawComplex: Boolean Indicates if sub elements of complex edges are rendered individually
in the results.

ResultFeatureCount: Long Number of elements in the current results.
ResultsAsSelection: Boolean Indicates if results are returned as a selection.

ClearResults Clears the current results.
CreateSelection (in junctionEIDs:

IEnumNetEID, in edgeEIDs:
IEnumNetEID)

Creates a selection set from the specified set of network elements.

SetResults (in junctionEIDs:
IEnumNetEID, in edgeEIDs:
IEnumNetEID)

Sets the current results to the specified network elements.

The INetworkAnalysisExtResults interface retrieves and sets the conditions
for the results returned from a trace and manipulates the results after
they are returned. Use this interface when you want to specify whether
the individual elements of a complex edge will be drawn or whether or
not the results will be returned as a selection set.

DrawComplex specifies whether the individual elements of a complex
feature are displayed or not. When this property is False, all elements
within a complex feature are drawn regardless of whether each element
is traversed or not (assuming at least one element of the feature is tra-
versed).

CreateSelection selects the features specified in the IEnumNetEIDs that
are passed in.

SetResults is called after executing your custom trace in order to display
the results. Once SetResults is called, the corresponding network elements
are displayed until the results are cleared (through ClearResults) or the
user exits ArcMap.

NETWORKANALYSISEXT CLASS



Chapter 12 • Solving linear networks • 1193

N
et

w
o

rk

 INetworkAnalysisExtWeightFilter:
 IUnknown

Provides access to members that set and return the weight
filter information to be used when performing trace tasks.

FilterRangeCount (in ElementType:
esriElementType) : Long

Number of filter ranges for the specified network element type.

FromToEdgeWeightFilterName: String Name of the weight to be used for filtering edge elements traced in
the digitized direction.

JunctionWeightFilterName: String Name of the weight to be used for filtering junction elements.
ToFromEdgeWeightFilterName: String Name of the weight to be used for filtering edge elements traced

against the digitized direction.

AddFilterRange (in ElementType:
esriElementType, in fromValue:
Variant, in toValue: Variant)

Adds a range of values to be filtered for the specified network
element type.

ClearRanges (in ElementType:
esriElementType)

Clears all filter ranges for the specified network element type.

GetFilterRange (in ElementType:
esriElementType, in Index: Long, out
fromValue: Variant, out toValue:
Variant)

Returns a filter range by index for the specified network element
type.

GetFilterType (in ElementType:
esriElementType, out weightFilterType:
esriNetWeightFilterType, out
applyNotOperator: Boolean)

Gets the filter type for the specified network element type.

SetFilterType (in ElementType:
esriElementType, in weightFilterType:
esriNetWeightFilterType, in
applyNotOperator: Boolean)

Sets the filter type for the specified network element type.

The INetworkAnalysisExtWeightFilter interface is used in conjunction
with INetworkAnalysisExtWeights to set and retrieve the weight values
that have been set through the toolbar.

FromToEdgeWeightFilterName and ToFromEdgeWeightFilterName are
based on the digitized direction of the segment, not necessarily the
direction of flow. In most cases, these two values should be set to the
same filter.

AddFilterRange allows the setting of a range of values for either junction
or edge filters. There is only one setting for edge filters, regardless of
whether the FromTo and ToFrom filter names are the same.

Here is some VBA code for adding junction filter ranges 2–5 and 8–10.

Sub AddJunctionFilters()

  Dim pApp As IApplication, pUID As New UID

  Dim pWeightFilter As INetworkAnalysisExtWeightFilter

  Dim lFilterRangeCount As Long

  Set pApp = Application

  pUID = "esricore.UtilityNetworkAnalysisExt"

  Set pWeightFilter = pApp.FindExtensionByCLSID(pUID)

  pWeightFilter.ClearRanges esriETJunction

  lFilterRangeCount = pWeightFilter.FilterRangeCount(esriETJunction)

  MsgBox "FilterRangeCount: " & lFilterRangeCount

  pWeightFilter.AddFilterRange esriETJunction, 2, 5

  pWeightFilter.AddFilterRange esriETJunction, 8, 10

  lFilterRangeCount = pWeightFilter.FilterRangeCount(esriETJunction)

  MsgBox "FilterRangeCount " & lFilterRangeCount

End Sub

Weights limit the trace based on the attribute
values of the features. The network must be built
with weight parameters to allow values to be set

through the toolbar. Filter weights (those that
are set and retrieved by

INetworkAnalysisExtWeightFilter) are used for
most tracing tasks to specify pass or don’t pass
types of values. For instance, traces can only be

perfomed on 8-inch pipes or should exclude
certain types of transformers (where the value of

the specified field is between 5 and 8).

NETWORKANALYSISEXT CLASS



1194 • Exploring ArcObjects • Volume 2

 INetworkAnalysisExtWeights: IUnknown Provides access to members that set and return the weights
to be used when performing trace tasks.

FromToEdgeWeightName: String Weight to be used to determine the cost of traversing edge elements
in the digitized direction.

JunctionWeightName: String Weight to be used to determine the cost of passing through junction
elements.

ToFromEdgeWeightName: String Weight to be used to determine the cost of traversing edge elements
against the digitized direction.

The INetworkAnalysisExtWeights interface is used in conjunction with
INetworkAnalysisExtFilterWeights to set and retrieve the weight values
that have been set through the toolbar.

INetworkAnalysisExtWeights differs from INetworkAnalysisExtFilterWeights
in that these weights are applied during cumulative traces, such as
FindPath or FindUpstreamAccumulation. For example, FindPath can be
used to find the optimal path between two flags. By default, the results
will be based on the shortest path, but by applying a weight you can
cause the results to be based on the time it takes to travel to each ele-
ment or some other parameter. The weight values are added up to deter-
mine the “least-cost” path.

With no weights specified, “shortest path” is based on the number of
edge elements encountered, regardless of length. To find “shortest”
based on length, a weight must be specified.

FromToEdgeWeightName and ToFromEdgeWeightName can be different
to allow for a different cost in traveling the digitized and against-digi-
tized directions of a feature.

NETWORKANALYSISEXT CLASS



Chapter 12 • Solving linear networks • 1195

N
et

w
o

rk

The UtilityNetworkAnalysisExt coclass is a type (currently the only type)
of NetworkAnalysisExt class. It is designed to manage the trace tasks
created for the Utility Network Analyst toolbar in ArcMap.

Each trace task performs a different type of analysis on the currently
selected network, such as find connected, trace upstream, trace down-
stream, and so on. The toolbar and the set of trace tasks can be ex-
tended by creating a custom task through the implementation of the
ITraceTask interface. By extending the list of available traces, the devel-
oper can take advantage of the flag and barrier management code
within the toolbar.

 IUtilityNetworkAnalysisExt: IUnknown Provides access to a member that determines whether flow
direction can be set for the current network.

EnableSetFlowDirection: Boolean Indicates if flow direction can be set for the current network.

The IUtilityNetworkAnalysisExt interface has only one property,
EnableSetFlowDirection, which indicates whether the flow direction can
be calculated for the current network. The value of this property is
based on whether or not the user has an edit session open on the net-
work workspace. The value is True for an open edit session and False
otherwise.

This value is also determined by whether or not the current network
(specified as INetworkAnalysisExt::CurrentNetwork) has any sources and
sinks feature classes. If there are no sources and sinks feature classes in
the current network, then the value is False, regardless of whether an
edit session is open or not.

 ITraceTasks: IUnknown Provides access to members that set and return the current
trace task and the options for tracing.

CurrentTask: ITraceTask Current trace task.
Task (in Index: Long) : ITraceTask Trace task by index.
TaskCount: Long Number of available trace tasks.
TraceEnds: Boolean Indicates if trace tasks return end features.
TraceFlowElements: esriFlowElements Elements to include in the trace results.
TraceIndeterminateFlow: Boolean Indicates if directional traces include features with indeterminate or

uninitialized flow direction.

The ITraceTasks interface is used to track the set of trace tasks registered
with the Utility Network Analyst extension (ESRI Utility Network Task
category) and to set parameters specifying how to perform the trace.
This interface is important for the toolbar but is often not used when
creating custom tasks. One exception to this comes when the developer
wishes to set parameters, such as the tracing of ends (TraceEnds), edges
with indeterminate flow (TraceIndeterminateFlow), or what types of
elements to trace (TraceFlowElements).

CurrentTask retrieves and sets the current task to be solved. The task
can be manually executed through the ITraceTask interface that is re-
turned.

TraceFlowElements specifies what types of elements (junctions, edges,
both, or none) to trace with a custom task.

UTILITYNETWORKANALYSISEXT COCLASS

UtilityNetwork
-AnalysisExt

ITraceTasks
IUtilityNetwork-

AnalysisExt

Network-
AnalysisExt

IActiveViewEvents
IEditEvents
IExtension

IMapEvents
INetworkAnalysisExt

INetworkAnalysis-
ExtBarriers

INetworkAnalysis-
ExtFlags

INetworkAnalysis-
ExtResultColor

INetworkAnalysis-
ExtResults

INetworkAnalysisExt-
WeightFilter

INetworkAnalysisExt-
Weights

The utility network analyst extension
object manages the trace tasks defined
for utility networks. Through this object,
you can retrieve the defined tasks and

manipulate how the traces are
implemented.



1196 • Exploring ArcObjects • Volume 2

The UtilityNetworkAnalysisExt object contains one or more trace task
coclasses. These trace task coclasses represent a different network
analysis option to perform on the current network.

 ITraceTask : IUnknown Provides access to members that execute a trace task.

EnableSolve: Boolean Indicates if the trace task is ready to be executed.
Name: String Name of the trace task.

OnCreate (in utilityNetworkAnalysis:
IUtilityNetworkAnalysisExt)

Initializes the trace task.

OnTraceExecution Executes the trace task.

The ITraceTask interface is the key interface when creating custom trace
tasks for use with the Utility Network Analyst toolbar. This interface must
be implemented by the class the developer creates and includes proper-
ties for naming the task and determining if it should be enabled given
the current conditions. In addition, methods are called after creating the
task (OnCreate) and when a user attempts to execute the task
(OnTraceExecution).

EnableSolve specifies whether the trace task can be executed under the
current conditions.

OnCreate receives a hook to the network analysis extension. Through
this hook the developer can get to the flags, barriers, and weights set by
the user via the toolbar.

 ITraceTaskResults : IUnknown Provides access to members that return the network
elements returned by the trace task.

ResultEdges: IEnumNetEID Edges in the trace task result.
ResultJunctions: IEnumNetEID Junctions in the trace task result.

The ITraceTaskResults interface provides access to the edges and junc-
tions that have been selected by the trace. The purpose of the interface
is to allow developers to get to the results of a trace for their own pro-
cessing. For instance, you may want to do further processing of the
results of each trace the user executes. Instead of writing your own trace
tasks and manipulating the results, you can write a tool that gets the
current ITraceTaskResults object and queries that for the results that were
returned.

If you choose to write your own custom trace tasks, it is only required
that you implement ITraceTask. However, you should also implement
ITraceTaskResults in case some other code attempts to retrieve the re-
sults through that interface.

Here is some VBA code for displaying the number of edges selected by
the current trace task.

Sub TraceTaskResults()

  Dim pApp As IApplication, pUID As New UID, pNetUtil As _

      IUtilityNetworkAnalysisExt

  Set pApp = Application

  pUID = "esricore.utilitynetworkanalysisext"

  Set pNetUtil = pApp.FindExtensionByCLSID(pUID)

TRACE TASK COCLASSES

TraceTask
ITraceTask

ITraceTaskResults

Trace-
Upstream-

Task

Trace-
Downstream-

Task

FindLoops-
Task

Find-
Ancestors-

Task

Find-
Disconnected-

Task

Find-
Connected-

Task

Find-
Accumulation-

Task

ITracePath-
TaskResults

ITracePath-
TaskResults

FindPath-
Upstream-

Task

ITracePath-
TaskResults TracePath-

Task

Out of the box, ESRI provides nine trace
tasks for use with the Utility Network

Analyst toolbars. Each of these tasks is
registered under the

ESRI Utility Network Task category.

Additional trace task classes can be created by
the developer through implementation of the
ITraceTask interface. The developer samples

include a couple of examples of custom tasks.



Chapter 12 • Solving linear networks • 1197

N
et

w
o

rk

  Dim pTraceResults As ITraceTaskResults, pTasks As ITraceTasks

  Set pTasks = pNetUtil

  Set pTraceResults = pTasks.CurrentTask

  Dim pEnum As IEnumNetEID

  Set pEnum = pTraceResults.ResultEdges

  MsgBox pEnum.Count

End Sub

 ITracePathTaskResults : IUnknown Provides access to members that return cost information
about the path or tree found by certain trace tasks.

SegmentCost (in Segment: Long) :
Variant

Cost of tracing the elements in the specified segment of the trace
results.

TotalCost: Variant Total cost of tracing all elements in the trace results.

The ITracePathTaskResults interface provides access to the total cost and
cost by segment for the results of the task. The task determines the least-
cost path between two flags.

TotalCost returns the accumulated cost based on the optimal path be-
tween two flags.

The TracePathTask coclass is used by the Utility Network Analyst toolbar
to find the optimal path between two flags.

The FindAccumulationTask coclass is used by the Utility Network Ana-
lyst toolbar to find the accumulated cost of an upstream trace.

The FindPathUpstreamTask coclass is used by the Utility Network Ana-
lyst toolbar to find the least-cost path through the upstream elements.

The FindAncestorsTask coclass is used by the Utility Network Analyst
toolbar to find the common upstream elements based on a trace from
two or more flags.

The FindConnectedTask coclass is used by the Utility Network Analyst
toolbar to find the elements that can be reached from a trace out from
one or more flags.

The FindDisconnectedTask coclass is used by the Utility Network Analyst
toolbar to find all network elements that cannot be reached from a trace
originating from the current set of one or more flags.

The TraceDownstream coclass is used by the Utility Network Analyst
toolbar to find the elements downstream from one or more flags.

The FindLoopsTask coclass is used by the Utility Network Analyst toolbar
to find the elements that can be reached in more than one direction
based on a trace from one or more flags.

The TraceUpstreamTask coclass is used by the Utility Network Analyst
toolbar to find the elements upstream from one or more flags.

TRACE TASK COCLASSES

Traces against flow from an
origin (a netflag) until stopped
by barriers, sources, or end

of network

flow statistics at a point
determine valves to shut off

to isolated edge
find sources of pollution from

a monitoring station

Traces with flow from origin
(a netflag) until stopped by
barriers, sinks, or end of

network.

calculate contribution to flow
distance from sink

From each netflag, traces
against flow to source or

barrier, then finds the
features (ancestors) common

to all traces.

trouble call analysis - find
common transformers or

switches

Finds all loops or cycles
regardless of flow direction.

database quality assurance,
logical consistency of

network
find causes of indeterminate

flow directions

Finds a path between two
netflags regardless of flow
direction.  If there is more

then one path, only the first
path found is returned.

database quality assurance,
logical consistency of

network
check for connectivity
between two points

Finds all elements that are
connected to the netflag. The

connected elements are
referred to as the connected

component.

database quality assurance,
logical consistency of

network
find and label connected

components

Traces on all elements
upstream from origin (a

netflag) and returns the total
value of these elements.

flow statistics at a point
find number of facilities

upstream from a monitoring
station

Finds a path from a netflag
against flow to the source.

database quality assurance,
logical consistency of

network
find source of pollution from

a monitoring station

Finds all elements that cannot
be reached from the netflag.

database quality assurance,
logical consistency of

network
find and label non-connected

components

Trace upstream

flow direction needed to
solve

sink

Trace downstream

flow direction needed to
solve

sink

flow direction not required

source

Find common
ancestors

Find loops

flow direction not required

Find path

flow direction not required

Find connected

flow direction not required

Find upstream
accumulation

flow direction needed to
solve

sink

Find path upstream

flow direction needed to solve

source

Find disconnected

flow direction not required



1198 • Exploring ArcObjects • Volume 2

The FlagDisplay abstract class supports two coclasses,
JunctionFlagDisplay and EdgeFlagDisplay, for the tracking of flags set
through the Utility Network Analyst toolbar. The purpose of the class is
to monitor flags set through the toolbar and make sure they are correctly
displayed when the map is redrawn. Flags are used by the network
toolbar as starting points for traces.

 IFlagDisplay : IUnknown Provides access to members that specify the network
element on which a flag is located.

ClientClassID: Long User-specified client class ID of this flag.
ClientFID: Long User-specified feature ID of the flag.
FeatureClassID: Long Feature class ID of the element on which the flag is placed.
FID: Long Feature ID of the network element on which the flag is placed.
Geometry: IGeometry Point object containing the flag's coordinates.
SubID: Long Sub ID of the network element on which the flag is placed.
Symbol: ISymbol Symbol used to display the flag.

The IFlagDisplay interface provides access to the properties of flags set
through the Utility Network Analyst toolbar. These properties include the
feature class, ID, and SubID (if a complex network feature) of the fea-
ture the flag was placed on, as well as the symbol used to draw the flag.
The UserSubID must be specified, even for noncomplex network fea-
tures. You can look up any network element’s ID by calling
INetElements::QueryIDs and passing in its EID.

The ClientClassID and ClientFID properties are specifically for developer
use. These properties are not used by the core ArcGIS software in any
way.

Geometry returns a point object representing the location of the flag.

The JunctionFlagDisplay coclass is a type of FlagDisplay that supports
flags placed on junction elements through the network toolbar. At any
time, there can be zero to many JunctionFlagDisplay objects associated
with the toolbar.

 IJunctionFlagDisplay : IUnknown Provides access to members that return and set the
properties that are specific to junction flags.

The IJunctionFlagDisplay interface has no properties or methods but
can be used to determine if the FlagDisplay object is a
JunctionFlagDisplay object.

The following code demonstrates how to take the flags set within the
network toolbar and pass them to a TraceSolver object. pFlags is of type
INetworkAnalysisExtFlags, and pTraceFlowSolver is of type ITraceFlow-
Solver.

Sub FlagDisplay(pFlags as INetworkAnalysisExtFlags, _

    pTraceSolver as ITraceFlowSolver)

  Dim pEFlags() As IEdgeFlag, pEdgeFlagDisplay As IFlagDisplay

  Dim pEdgeFlag As INetFlag, lLoop As Long

  ReDim pEFlags(pFlags.EdgeFlagCount - 1)

  For lLoop = 0 To pFlags.EdgeFlagCount - 1

EdgeFlag-
Display

IEdgeFlagDisplay

Junction-
FlagDisplay

IJunctionFlagDisplay

FlagDisplay
IFlagDisplay

IFeatureDraw

Flag display objects designate the start-
ing points for traces defined through the

Utility Network Analyst toolbar. The
objects contain information about which
network feature the flag was placed on

and the geometry of the location for
display.

There are two types of flag display
objects. The junction flag display indicates

a starting point on a junction feature,
while the edge flag display object indi-

cates a starting point somewhere along
an edge feature.

FLAG DISPLAY COCLASSES



Chapter 12 • Solving linear networks • 1199

N
et

w
o

rk

    Set pEdgeFlagDisplay = pFlags.EdgeFlag(lLoop)

    Set pEdgeFlag = New EdgeFlag

    pEdgeFlag.UserID = pEdgeFlagDisplay.FID

    pEdgeFlag.UserClassID = pEdgeFlagDisplay.FeatureClassID

    pEdgeFlag.Label = "Edge"

    Set pEFlags(pLoop) = pEdgeFlag

  Next lLoop

  Dim lCount As Long

  lCount = pFlags.EdgeFlagCount

  pTraceFlowSolver.PutEdgeOrigins lCount, pEFlags(0)

End Sub

The EdgeFlagDisplay coclass is a type of FlagDisplay that supports flags
placed on edge elements through the Utility Network Analyst toolbar. At
any time, there can be zero-to-many EdgeFlagDisplay objects associated
with the toolbar.

 IEdgeFlagDisplay : IUnknown Provides access to members that return and set the
properties that are specific to edge flags.

Percentage: Double Position of the flag along the edge element.

The IEdgeFlagDisplay interface allows the developer to determine if the
FlagDisplay object is of type EdgeFlagDisplay. The only property on the
interface (Percentage) returns the position of the flag on the edge mea-
sured as a percentage from the digitized “from” end of the feature.

FLAG DISPLAY COCLASSES



1200 • Exploring ArcObjects • Volume 2

The NetElementBarriers coclass is one of the few network coclasses that
is used by the Utility Network Analyst toolbar but is also employed
outside the toolbar.

This coclass creates network element barriers (elements that trace and
path tasks cannot go through) that can then be applied through the
INetSolver object during the analysis process.

You have the option of creating the object directly (since it is a creatable
object) and setting the barriers manually or generating the object
through INetworkAnalysisExtBarriers::CreateElementBarriers. When this
object is generated through CreateElementBarriers, the resulting barrier
elements are based on what was set by the user through the toolbar.

 INetElementBarriers : IUnknown Provides access to members that specify a set of barriers
for the TraceFlowSolver object.

ElementType: esriElementType Type of network element on which the barriers are placed.
Network: INetwork Network on which the barrier set is placed.

SetBarriers (in UserClassID: Long, in
Count: Long, in userIDs: Long)

Specifies a set of network features to use as barriers.

The INetElementBarriers interface is used to set the type of element
(edge or junction) contained within the class and to set the barriers.

SetBarriers is expecting an array of IDs to be passed in as an argument
even if only one ID is being used. Always pass in the first element of
the array (array_name(0)) regardless of what count you specify.

INetElementBarriers2:INetElementBarriers Provides access to members that specify a set of barriers
by EIDs for the TraceFlowSolver object.

SetBarriersByEID (in Count: Long, in
EIDs: Long)

Specifies a set of network element IDs to use as barriers.

The INetElementBarriers2 interface was added at ArcGIS 8.1 to allow
barrier elements to be added without it acting on the entire complex
feature.

SetBarriersByEID allows barriers to be specified by their element EID.
This option saves the developer from having to perform a query on the
element to determine the feature class ID and feature ID.

NETELEMENTBARRIERS COCLASS

NetElement-
Barriers

INetElementBarriers
INetElementBarriers2

The network element barriers object
maintains the set of barriers (stopping
points) defined for the network. These

barriers can be defined through code or
through the Utility Network Analyst

toolbar.

When creating custom traces that you wish to
stop at certain element types (for instance,

isolation traces that need to stop at plastic pipes
or open switches), there are basically three

options.

The first option is to use the Enabled field
added to each feature class. Tracing cannot go

through features that have their Enabled value
set to False. The downside to this option is that
you have to have an edit session open to make

the change, or you have to save the settings.

The second option is to use weight filters.
Weight filters require you to specify during the

building of the network which fields will contain
the values for each feature class. When you

execute a trace, you can specify a range of values
to stop a trace at or, alternatively, to trace

within. This option is best when you wish to
trace on 8-inch pipes or stop traces from going

through certain types of fittings.

The third option is to use a NetElement-
Barriers class and manually set barriers on each
location you wish to stop at. This option requires
the least amount of work up front but requires
a substantial amount of work during the actual
analysis process. The user (through the toolbar)
or the developer (through code) is required to

identify each stopping point and manually place a
barrier to limit tracing and path finding.



Chapter 12 • Solving linear networks • 1201

N
et

w
o

rk

The SelectionSetBarriers coclass is also employed both by the toolbar
and outside the toolbar.

This coclass is similar to NetElementBarriers but can contain both junc-
tion and edge elements. When creating your own custom trace tool, you
can create your own SelectionSetBarriers object or generate one through
INetworkAnalysisExtBarriers::CreateSelectionBarriers. The resulting class
can then be applied during the analysis process through the NetSolver
object.

SelectionSetBarriers offers an additional advantage over NetElement-
Barriers in that the Not method can be used to specify that elements not
within the class will act as barriers.

 ISelectionSetBarriers : IUnknown Provides access to members that specify a set of barriers
for the TraceFlowSolver object.

Add (in UserClassID: Long, in UserID:
Long)

Adds a network feature to the set of barriers.

Not Specifies that the network features not in this set act as barriers.

The ISelectionSetBarriers interface allows new barriers to be added to
the set through the Add method but also offers the Not method to
specify that elements not currently within the set (instead of what is
within the set) will serve as barriers.

Selection-
SetBarriers

ISelectionSetBarriers

The selection set barriers object main-
tains a set of barriers for use with the

different trace methods. This object
differs from network element barriers in
that it can maintain a set of barriers on

both junction and edge elements.

SELECTIONSETBARRIERS COCLASS





Integrating
raster data

Raster data consists of a rectangular array of equally spaced cells, which taken as

a whole represent thematic, spectral, or picture data. Raster data can represent

everything from qualities of a land surface, such as elevation or vegetation, to

satellite images, scanned maps, and

photographs.

Many different formats are used to store

raster data. The raster objects allow you to

display and analyze your raster data whether

your raster is a GRID, TIFF, or any of our

other supported raster formats.

The combination of powerful analytical tools

enabling you to read and write raster data

from a variety of different formats and

visualization tools for many different types of

raster data allows you to truly integrate

raster data into your GIS.

Bruce Payne

13



1204 • Exploring ArcObjects • Volume 2

Raster

 A raster band represents
a single band of a raster

dataset on disk

A raster band name
maintains name and

other information for
a raster band

A raster statistics object provides
access to pixel statistics from a
raster band

A raster histogram
provides access to the
histogram of a raster band

A raster colormap
provides access to
the colormap of a
raster band

The raster bands object allows a
developer to easily enumerate
through a set of raster bands

A raster dataset name
maintains name and other

information for a raster
dataset

 A raster cursor is a mechanism for iterating
through all of the pixel blocks in a raster

 The pixel block is a generic
container for a pixel array
that can be read from any

raster or raster band

A raster dataset represents an
existing dataset stored on disk
or in a database in a particular

raster format

A raster workspace can open
and create raster datasets

A raster workspace factory can
create raster workspaces

IGxObjectFilter GxFilter-
Raster-

Datasets

IEnumDataset
IEnumRasterBand RasterBands

GxFilterRasterDatasets filters all non-
raster datasets out from the GxBrowser

IDatasetName
IName

IPersistStream
ISDERasterTableName

ISQLPrivilege

SDERaster-
TableName

A SDE raster table name
maintains name and other

information for an SDE raster

IDatasetName
IMetadata

IMetadataEdit
IName

INativeTypeInfo
IPersistStream

IRasterBandName

RasterBand-
Name

IGeoDataset
IRaster

IRasterAnalysisProps
IRasterBandCollection

IRasterDefaultProps
IRasterProps

ISupportErrorInfo

Raster

IRasterStatistics Raster-
Statistics

IRasterHistogram Raster-
Histogram

IRasterColormap Raster-
Colormap

IRasterCursor

RasterCursor

IPixelBlock

PixelBlock

   A raster is a dynamic, in-
memory representation of
pixels that derives from a
raster data source on disk

ISupportErrorInfo
IWorkspaceFactory

IWorkspaceFactory2

Raster-
Workspace-

Factory

IDataset
IDatasetAnalyze
IDatasetFileStat

IGeoDataset
IGeoDatasetSchemaEdit

IMetadata
IMetadataEdit

INativeTypeInfo
IRasterBandCollection

IRasterDataset
IRasterPyramid

ISupportErrorInfo
ITemporaryDataset

IWorldFileExport

Raster-
Dataset

IDatasetName
IDatasetNameFileStat

IMetadata
IMetadataEdit

IName
INativeTypeInfo
IPersistStream

IRasterDatasetName

Raster-
Dataset-
Name

IDataset
IRasterWorkspace

IRasterWorkspace2
ISupportErrorInfo

IWorkspace

Raster-
Workspace

IClass
IDataset

IGeoDataset
IMetadata

IMetadataEdit
INativeTypeInfo

IObjectClass
IRasterBand

IRasterDataset
IRasterProps

IRasterPyramid
IRasterTable

IRasterTransaction
IRawPixels

ISupportErrorInfo
ITable

RasterBand



Chapter 13 • Integrating raster data • 1205

R
as

te
r

IPnt

IRasterPicture

1..*

*

*

*

IRasterEncoder
ISupportErrorInfo

IFormatData
IFormatList

IFormatTestIRasterDefaultsEnv
IRasterDefaultsEnv2

IRasterFormatInfo

Raster format information provides
information about a raster format

specific to the user interface

A raster picture is a lightweight
object that can be used to view some

raster formats in a simple manner

A double point is a support
object that represents a point

An RGB renderer compositely draws three
bands of a raster dataset, one to each of the
red, green, and blue channels of the display

 A unique value renderer displays
each unique value in the dataset using

a different color

 A stretch renderer stretches
the values from the dataset
along a color ramp

 A raster layer
combines raster data
and instructions to
visualize, or render,
this data

 A raster renderer is an abstract class
that provides the basic tools for raster
rendering operations

IIdentifyObj
IRasterIdentifyObj

IRasterGeometryProc

A raster catalog layer is a
special type of layer used
to display raster catalogs

  A raster identify object allows
identification of individual raster
pixels in a dataset

A raster SDE loader
creates and loads
raster data into an
SDE database

A raster defaults environment allows the
user to customize raster default behavior

 A classify renderer divides the data
values for a dataset into classes and
assigns each class to a specific color

IGeoDataset
IRasterCatalogTable

A raster catalog table is a
special type of table used to
display multiple raster
datasets as a single entity

A raster geometry proc can be used to perform
geometric operations, such as flip, mirror, rotate,

and polynomial warping, on a raster

A format list can
identify all supported
raster formats and
provide information
about them

The Sid encoder compresses a
raster dataset into MrSID format

Raster-
DefaultsEnv

SidEncoder

Raster-
Geometry-

Proc

RasterPicture

DblPnt

FormatList

Raster-
CatalogTable

Raster-
IdentifyObj

IRasterUniqueValueRenderer
IRasterRendererClassInfo

RasterUnique-
Value-

Renderer
IRasterRGBRenderer

IRasterStretch RasterRGB-
Renderer

IRasterClassifyColorRampRenderer
IRasterClassifyUIProperties

IRasterDataExclusion
IRasterRendererClassInfo

RasterClassify-
ColorRamp-

Renderer

IRasterStretch
IRasterStretchColorRampRenderer

IRasterRendererClassInfo

RasterStretch-
ColorRamp-

Renderer

IConnectionPointLayer
IDataLayer

IDataLayer2
IDisplayAdmin

IGeoDataset
IIdentify

ILayer
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerInfo

ILayerPosition
ILegendInfo

IPersistStream
IRasterCatalogLayer

Raster-
Catalog-

Layer

Raster-
Renderer

IDisplayAdmin
IIdentify

ILegendInfo
IPersistStream

IRasterDisplayProps
IRasterRenderer

IAttributeTable
IClass

IConnectionPointContainer
IDataLayer

IDataLayer2
IDataset

IDisplayAdmin
IDisplayRelationshipClass

IDisplayTable
IGeoDataset

IGeoReference
IIdentify

ILayer
ILayerDrawingProperties

ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IObjectClass

IPersistStream
IRasterLayer

IRelationshipClassCollection
IRelationshipClassCollectionEdit

ITable
ITableFields

ITableSelection

RasterLayer

Raster-
FormatInfo

IRasterSdeConnection
IRasterSdeServerOperation

IRasterSdeStorage
ISupportErrorInfo

Raster-
SdeLoader

objects



1206 • Exploring ArcObjects • Volume 2

THE RASTER DATA OBJECTS

The raster data objects (RDO) analyze and display raster data. They
provide raster data management, pixel access, and visualization tools
and are designed to work with any raster dataset, regardless of format.
This means that you can perform the same functions with any sup-
ported data format including GRID, TIFF, ERDAS® IMAGINE®, PNG, and
others.

Some raster formats, such as GRID and TIFF, support projection, statis-
tics, and other ancillary data about datasets in these formats. Others,
such as GIF and JPEG, cannot maintain any of this information. To
provide a common foundation, ArcGIS stores ancillary data not main-
tained in a raster’s native format within an auxiliary file associated with a
raster dataset the first time it is used by ArcObjects. The auxiliary file has
the same name as the raster dataset with the extension .aux. It is capable
of maintaining statistics, color maps, projection, tables, geometric trans-
formations, and other information that can make your raster data more
useful for spatial analysis.

The three objects that directly access raster data on disk are the
RasterDataset coclass, Raster, and RasterBand objects. Understanding the
roles and functions of these three objects is fundamental to working
with the raster objects.

The RasterDataset represents an existing dataset stored on disk or in a
database in a particular raster format. It can manage raster data on disk
and instantiate Raster and RasterBand objects for that data.

The Raster object is a virtual representation of raster data derived from a
raster data source on disk. The Raster can be modified without affecting
the properties of your persistent data. The Raster object provides
resampling, reprojection, data type conversion, and the ability to com-
bine bands from multiple raster datasets when reading pixels for display
or analysis.

The RasterBand can read and write raw pixel data and read statistics,
color maps, or tables for a band of a disk-based raster dataset. The
Raster and the RasterDataset contain raster bands and, regardless of
whether the band is obtained from a Raster or a RasterDataset, the band
has an essentially static nature similar to the dataset.

The spatial relationships in your raster data are easier to analyze when
displayed in a manner appropriate for your data. For example, elevation
data looks best when the data range is mapped to a color ramp, while
categorical data, such as land use, looks best when displaying each land
use type with its own color. The RasterLayer and RasterRenderers control
the visualization techniques that can be applied to your raster data. The
RasterRenderers control the instructions used to display a particular raster
dataset, while the RasterLayer contains a reference to a raster data
source and a renderer to provide instructions on how to paint that data
to the screen.

Other objects with more specific functionality are also included in the
raster objects. The RasterWorkspaceFactory and RasterWorkspace let you



Chapter 13 • Integrating raster data • 1207

R
as

te
r

open raster datasets. The SDELoader and SidEncoder allow you to con-
vert your raster data into different formats. The GxFilterRasterDatasets
displays only raster datasets in the Gx Browser. The RasterGeometryProc
object allows you to perform geometric operations, such as flip, warp,
and merge.

While this chapter is intended as a general reference, new raster devel-
opers may find it useful to read the chapter from the beginning. It be-
gins with the RasterWorkspaceFactory and RasterWorkspace, which are
used to access the RasterDataset. This is followed by a discussion of the
RasterDataset, RasterBand, and Raster objects, which form the core
objects used for raster data analysis. Interspersed within this section are
objects used for raster data input, output, and manipulation. Following
this is a section describing the RasterLayer and RasterRenderers, raster
extensions to the ArcMap object model. The chapter ends with a variety
of objects that provide specific functionality and are difficult to group
within the context of the chapter.

THE RASTER DATA OBJECTS



1208 • Exploring ArcObjects • Volume 2

RASTERWORKSPACEFACTORY AND RASTERWORKSPACE

ISupportErrorInfo
IWorkspaceFactory

IWorkspaceFactory2

Raster-
Workspace-

Factory

A raster workspace factory creates raster
workspaces.

The RasterWorkspaceFactory coclass creates RasterWorkspace objects.

The main function of the RasterWorkspaceFactory is to create
RasterWorkspaces. A RasterWorkspaceFactory object must be used to create
a RasterWorkspace. The functionality of the RasterWorkspaceFactory is
exposed through the generic IWorkspaceFactory and IWorkspaceFactory2
interfaces, which is common to all workspace factory types. For more
information on the IWorkspaceFactory interface and workspace objects,
see Chapter 8, ‘Accessing the geodatabase’.

This example provides a function that returns a RasterWorkspace using
the RasterWorkspaceFactory. This function is used in many of the code
samples throughout this chapter.

Public Function SetRasterWorkspace(sName As String) As IRasterWorkspace

  ' Given a pathname, returns the raster workspace object for that path

  ' If not a valid raster workspace returns nothing. Caller must test!!

  On Error GoTo ErrorSetWorkspace

  Dim pWKSF As IWorkspaceFactory

  Set pWKSF = New RasterWorkspaceFactory

  Dim pWKS As IRasterWorkspace

  Set pWKS = pWKSF.OpenFromFile(sName, 0)

  Set SetRasterWorkspace = pWKS

  Exit Function

ErrorSetWorkspace:

  Set SetRasterWorkspace = Nothing

End Function

The RasterWorkspace object must be created using a
RasterWorkspaceFactory. This mechanism is detailed in the section
describing the RasterWorkspaceFactory.

 IRasterWorkspace : IUnknown Provides access to members that control a raster
workspace.

CanCopy: Boolean Indicates if this dataset can be copied.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this workspace to a new workspace with the specified name.

IsWorkspace (in Name: String) :
Boolean

Indicates if the file path specified is a raster workspace.

OpenRasterDataset (in Name: String) :
IRasterDataset

Opens a RasterDataset in the workspace given its name.

The IRasterWorkspace interface opens datasets, verifies whether a direc-
tory location is a workspace, and copies workspaces.

The IsWorkspace property returns True if the directory location input is a
valid RasterWorkspace.

IDataset
IRasterWorkspace

IRasterWorkspace2
ISupportErrorInfo

IWorkspace

Raster-
Workspace

The raster workspace object opens
existing raster datasets and creates new

datasets on disk.



Chapter 13 • Integrating raster data • 1209

R
as

te
r

If the CanCopy property is True, the Copy method copies all raster
datasets in the workspace into an existing or new workspace. At
ArcGIS 8.1, the Copy method is not implemented and CanCopy will
always return False.

The OpenRasterDataset method provides a way to open a raster dataset
and is the main way that many developers will gain access to the Raster-
Dataset object.

This example provides a function that can be used to open a raster
dataset from a path and filename. Note the use of the
SetRasterWorkspace function defined in the RasterWorkspaceFactory
section of this chapter. This function is also frequently used in code
samples throughout this chapter.

Public Function OpenRasterDataset(sPath As String, sFile As String) _

    As IRasterDataset

  ' Given a path and filename, returns the raster dataset object

  ' If not a valid raster dataset returns nothing. Caller must test!!

  On Error GoTo ErrorOpenRasterDataset

  Dim pRasWKS As IRasterWorkspace

  Set pRasWKS = SetRasterWorkspace(sPath)

  Dim pRasDS As IRasterDataset

  Set pRasDS = pRasWKS.OpenRasterDataset(sFile)

  Set OpenRasterDataset = pRasDS

ErrorOpenRasterDataset:

  Set OpenRasterDataset = Nothing

End Function

 IRasterWorkspace2 : IUnknown Provides access to members that control an improved
raster workspace.

CanCopy: Boolean Indicates if this dataset can be copied.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this workspace to a new workspace with the specified name.

CreateRasterDataset (in Name: String,
in Format: String, in Origin: IPoint, in
ColumnCount: Long, in RowCount:
Long, in cellSizeX: Double, in
cellSizeY: Double, in numbands: Long,
in pt: rstPixelType, SR:
ISpatialReference, in Permanent:
Boolean) : IRasterDataset

Creates a RasterDataset in the workspace given its name.

IsWorkspace (in Name: String) :
Boolean

Indicates if the file path specified is a raster workspace.

OpenRasterDataset (in Name: String) :
IRasterDataset

Opens a RasterDataset in the workspace given its name.

The IRasterWorkspace2 interface provides the functionality of
IRasterWorkspace plus CreateRasterDataset, which lets you create new
raster datasets on disk.

At ArcGIS 8.1, CreateRasterDataset can only be used to create GRID,
TIFF, or ERDAS IMAGINE format rasters. The case-sensitive strings input
to the format argument are “GRID”, “TIFF”, and “IMAGINE Image”.

The Name argument is the name of the new dataset in the workspace.

The Origin argument determines the lower-left corner of the new
RasterDataset coclass.

RASTERWORKSPACEFACTORY AND RASTERWORKSPACE



1210 • Exploring ArcObjects • Volume 2

RowCount and ColumnCount specify the number of rows and columns,
and these combine with the cell sizeX and cell sizeY arguments to deter-
mine the extent of the new dataset. GRID datasets can only be created
with square cells.

The spatial reference (SR) argument allows you to specify a spatial
reference that will be used for the output grid. Passing Nothing to the
spatial reference argument will result in a dataset with unknown spatial
reference.

The Permanent argument allows you to create temporary datasets if
desired.

These datasets are useful for temporary analysis outputs because they
delete themselves when they are no longer being used. This mechanism
can also be used to produce behavior similar to
ArcView® Spatial Analyst and ArcGIS Spatial Analyst, which create tem-
porary grids as output by default.

The initial values in the dataset are NODATA for GRID, 0 for TIFF, and
the highest value available for the data type for ERDAS IMAGINE.

This example shows how to create a new three-band raster in TIFF
format. The dataset will have 512 rows and columns with its lower-left
corner at the origin and a cell size of 2. The cell values will be of float-
ing point type, and the dataset will be permanent.

  ' Create the workspace and QI for IRasterWorkspace2

  Dim pRasWKS As IRasterWorkspace2

  Set pRasWKS = SetRasterWorkspace("c:\temp")

  ' Create a point for the origin and set the coordinates

   Dim pOrigin As IPoint

   Set pOrigin = New Point

   pOrigin.PutCoords 0, 0

   ' Create the new dataset

   Dim pOutDS as IRasterDataset

   Set pOutDS = pOutWKS.CreateRasterDataset("test.tif", "TIFF", pOrigin, _

     512, 512, 2, 2, 3, PT_FLOAT, Nothing, True)

RASTERWORKSPACEFACTORY AND RASTERWORKSPACE



Chapter 13 • Integrating raster data • 1211

R
as

te
r

RASTERDATASET COCLASS

The RasterDataset object represents a dataset on disk or in a database.
The properties of this dataset cannot be modified, as these properties
are determined by the existing dataset. This dataset is composed of one
or more persistent raster bands. The dataset provides access only to
operations that apply to the entire dataset, with the RasterBand providing
access to operations that occur on individual bands.

The RasterDataset object performs basic dataset management functions,
such as copy, rename, and delete. It can also instantiate RasterBand and
Raster objects representing other aspects of the data. It can be used to
examine dataset properties including different format, extent, spatial
reference, and number of bands.

The RasterDataset can only modify the properties of the dataset in two
ways. First, it can change the spatial reference associated with the
dataset. This does not project the dataset from one projection to an-
other; it only changes the coordinate system associated with the dataset.
Second, the RasterDataset object can be used to build pyramids, or
reduced-resolution datasets, which improve display performance for
large raster datasets.

To access a raster dataset from the path and filename, open the Raster-
Dataset using a RasterWorkspace as shown in the previous section. The
RasterDataset may also be retrieved from a band in the dataset using the
RasterDataset property. To access the RasterDataset from a Raster object,
first access a band from the Raster, then obtain a reference to the
dataset from the band.

 IRasterDataset : IUnknown Provides access to members that control a raster dataset.

CompleteName: String The full path of the RasterDataset.
CompressionType: String The compression technique applied to this RasterDataset.
Format: String The format of this RasterRataset.

CanCopy: Boolean Returns true if this dataset can be copied.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this dataset to a new dataset with the specified name.

CreateDefaultRaster: IRaster Creates a raster object with the default properties for this dataset.
PrecalculateStats (in index_list: Variant) Calculates statistics and histograms for specified bands.

The IRasterDataset interface offers you a way to determine the raster
format, compression type, and complete name of the dataset.

If the CanCopy property returns True, the Copy method will create a new
copy of this dataset.

The CreateDefaultRaster method creates a Raster object with properties
derived from the source dataset. This default raster has the height,
width, extent, and spatial reference from the source dataset and contains
one band for single-band data and three bands if the dataset is multi-
band. The bands that populate the three-band raster and their order in
the raster can be controlled using the RasterDefaultsEnv object. The
PrecalculateStats method takes a variant array of band indices in the
raster dataset and calculates approximate statistics for those bands.
These statistics are not exact but can be calculated more quickly than
using a full statistics calculation.

IDataset
IDatasetAnalyze
IDatasetFileStat

IGeoDataset
IGeoDataset-

SchemaEdit
IMetadata

IMetadataEdit
INativeTypeInfo

IRasterBandCollection
IRasterDataset
IRasterPyramid

ISupportErrorInfo
ITemporaryDataset

IWorldFileExport

Raster-
Dataset

The raster dataset object represents a
dataset stored on disk or in a database

in a particular raster format.

The IRasterDataset interface accesses informa-
tion about a raster dataset.



1212 • Exploring ArcObjects • Volume 2

 IRasterPyramid : IUnknown Provides access to members that control the pyramids for a
raster dataset.

MinimumSize: IPnt The minimum raster pyramid size.
Present: Boolean Indicates whether pyramid layers exist.

Create Build raster pyramids for this raster.

The IRasterPyramid interface accesses raster pyramids.

The Present property returns True if pyramids exist for this dataset.

The MinimumSize property returns the smallest size for which pyramids
will automatically be considered. For datasets larger than this size, pyra-
mids will be created or not created, or you will be prompted to ask if
you wish to build them depending on a setting you can adjust using the
RasterDefaultsEnv object.

The Create method creates pyramids for the current dataset regardless of
its size.

 IGeoDataset : IUnknown GeoDataset Interface.

Extent: IEnvelope The extent of the GeoDataset.
SpatialReference: ISpatialReference The spatial reference of the GeoDataset.

The IGeoDataset interface allows you to read extent and spatial reference
existing for the dataset.

 IGeoDatasetSchemaEdit : IUnknown Interface to change the schema of a GeoDataset.

CanAlterSpatialReference: Boolean True if the spatial reference of the dataset can be altered.

AlterSpatialReference (in
SpatialReference: ISpatialReference)

Alters the spatial reference of the dataset to match the coordinate
system of the input spatial reference, does not reproject the data.

The IGeoDatasetSchemaEdit interface modifies the spatial reference
system applied to a raster dataset.

If the CanAlterSpatialReference property returns True, calling the
AlterSpatialReference method will change the projection definition asso-
ciated with a raster dataset. For raster formats that natively support pro-
jection definition (such as GRID, GeoTIFF, and IMAGINE), the projec-
tion will be written using the format-specific projection method. For
other formats, the projection information will be maintained in the
raster’s auxiliary file. This will not project the data; it will only change
the projection definition of the raster dataset. If previous projection
information exists for the raster, it will be overwritten.

The following example changes the projection of pNoPrjRasterDataset to
the projection from pUTMRasterDataset.

  ' QI the source dataset for IGeoDataset to read projection

  Dim pGeoDataset as IGeoDataset

  Set pGeoDataset = pUTMRasterDataset

  ' QI the target dataset for IGeoDatasetSchemaEdit to write projection

  Dim pGeoDatasetSchemaEdit as IGeoDatasetSchemaEdit

  Set pGeoDatasetSchemaEdit = pNoPrjRasterDataset

RASTERDATASET COCLASS

For more information on the IDataset, IGeo-
Dataset, and IGeoDatasetSchemaEdit inter-

faces, see Chapter 8, ‘Accessing the geodatabase’.

Raster pyramids store a progressively smaller set
of resampled versions of a dataset into a

reduced resolution dataset (raster_name.rrd) file
on disk. The pyramid layers reduce the amount

of resampling that must be performed at display
time and thus speed drawing of large raster

datasets.



Chapter 13 • Integrating raster data • 1213

R
as

te
r

  If pGeoDatasetSchemaEdit.CanAlterSpatialReference Then

    PGeoDatasetSchemaEdit.AlterSpatialReference pGeoDataset.SpatialReference

  End If

 IWorldFileExport : IUnknown Provides access to members that export Georeference
information to a WorldFile.

Write Write WorldFile.

The IWorldFileExport interface outputs a world file for this raster
dataset.

The Create method outputs a world file for the current raster dataset.
The contents of the world file will be determined from the coordinates
of the dataset header or transformation contained in the raster’s auxil-
iary file. For GRID format datasets or datasets that get their georeference
information from a world file, this method has no effect. The world file
maintains coordinate transformation information for a raster dataset that
allows the georeference information in the raster to be used with other
GIS and image processing software.

 IRasterBandCollection : IUnknown Provides access to members that control a collection of
RasterBands.

BandByName (in Name: String) :
IRasterBand

A RasterBand given its name.

BandIndex (in Name: String) : Long The index of a RasterBand given its name.
Bands: IEnumRasterBand All the bands in the collection as an interface to the RasterBands

enumerator object.
Count: Long The number of bands in the collection.

Add (in Element: IRasterBand, in Index:
Long)

Adds a RasterBand to the band collection.

AppendBand (in Element: IRasterBand) Appends a RasterBand to the band collection.
AppendBands (in Bands:

IRasterBandCollection)
Appends a collection of RasterBands to the band collection.

Clear Removes all the elements in the collection.
Item (in BandIndex: Long) : IRasterBand Returns a RasterBand given its index.
Remove (in Index: Long) Removes an element from the collection.
SaveAs (in new_name: String, in

worksp: IWorkspace, in Format: String)
: IDataset

Creates a new persistent RasterDataset with the bands in the
collection.

The IRasterBandCollection interface accesses individual bands in a
RasterDataset.

The Count property on the IRasterBandCollection interface returns the
number of bands in the raster dataset.

The BandByName and BandIndex properties return a reference to the
RasterBand or the index of the band from the band’s name.

The Item method returns a raster band from the dataset. The Item re-
turned is determined from the zero-based band index, so the first band
is band 0, the second band is band 1, and so on.

The SaveAs method converts a RasterDataset to a different raster format.
This method can only create GRID, TIFF, and IMAGINE format rasters.

The Add, AppendBand, AppendBands, Clear, and Remove methods
should not be used with the RasterDataset.

RASTERDATASET COCLASS



1214 • Exploring ArcObjects • Volume 2

 ITemporaryDataset : IUnknown Provides access to members that control temporary
datasets.

IsTemporary: Boolean Indicates if the dataset is temporary.
MakePermanent Persists this temporary dataset permanent.
MakePermanentAs (in new_name:

String, in Workspace: IWorkspace, in
Format: String) : IDataset

Persists this temporary dataset to a new permanent dataset.

The ITemporaryDataset interface supports temporary raster datasets.

Temporary datasets are created by most operations performed by the
ArcView Spatial Analyst and ArcGIS Spatial Analyst extensions and can
be created using the CreateRasterDataset method of the RasterWorkspace
object.

The IsTemporary property returns True if the dataset is temporary.

The MakePermanent method changes the status of a dataset from tem-
porary to permanent. If this dataset is permanent, this method does
nothing.

The MakePermanentAs method makes the current dataset permanent by
creating a new raster dataset that contains the same data. The new
dataset can be created in any raster workspace and can be in GRID,
TIFF, or IMAGINE format. The current dataset will be deleted when all
references to it are released. If this dataset is already permanent, this
method performs a SaveAs operation. This method may fail if it is called
while any Raster objects or RasterBand using this dataset exist.

RASTERDATASET COCLASS



Chapter 13 • Integrating raster data • 1215

R
as

te
r

A RasterDatasetName maintains name and other information for a raster
dataset. Its main function is to allow ArcCatalog to browse dataset infor-
mation about a RasterDatatset using generic interfaces, as well as to
allow ArcGIS to perform searches as with each other dataset type. It is
not intended for use by external developers.

A RasterBandName maintains name and other information for a raster
band. This allows ArcCatalog to browse band information about a
RasterBand using generic interfaces and allows ArcGIS to perform
searches as with each other dataset type. It is not intended for use by
external developers.

An SDERasterTableName maintains name and other information for a
raster dataset stored in an ArcSDE database. This object allows
ArcCatalog to browse information about an ArcSDE Raster table using
generic interfaces and allows ArcGIS to perform searches as with each
other dataset type. It is not intended for use by external developers.

RASTER NAME COCLASSES

IDatasetName
IDatasetNameFileStat

IMetadata
IMetadataEdit

IName
INativeTypeInfo
IPersistStream

IRasterDatasetName

Raster-
Dataset-

Name

IDatasetName
IMetadata

IMetadataEdit
IName

INativeTypeInfo
IPersistStream

IRasterBandName

RasterBand-
Name

IDatasetName
IName

IPersistStream
ISDERasterTableName

ISQLPrivilege

SDERaster-
TableName

These raster name objects are not
intended for use by external developers.



1216 • Exploring ArcObjects • Volume 2

The RasterBand object represents an existing band of a raster dataset on
disk. This band may be the only band in a single-band raster dataset or
one band in a multiband raster dataset.

The RasterBand is the only object in the raster data objects that allows
you to change pixel values in datasets stored on disk.

One band of raster data can contain statistics, a color map, a table, a
histogram, and values for each pixel in the band. These properties,
which exist only for single bands of raster datasets, are accessible using
the RasterBand.

The RasterBand may be accessed from either the Raster or the
RasterDataset coclass but, regardless of whether derived from the static
RasterDataset or the transient Raster, the RasterBand always represents a
static band of raster data on disk.

The following code shows how to access a RasterBand from either a
Raster or a RasterDataset object.

  Dim pRasBC as IRasterBandCollection

  Set pRasBC = pRasterPtr 'May be a Raster or a RasterDataset

  MsgBox "Number of bands in Raster: " & CInt(pRasBC.Count)

  ' Get the first band of the raster

  ' Band Index must be less than or equal to pRasBC.Count-1

  Dim pRasBand as IRasterBand

  Set pRasBand = pRasBC.Item(0)

 IRasterBand : IUnknown Provides access to members that control a raster band
object.

AttributeTable: ITable The attribute table of this raster band.
Bandname: String The name of this raster band.

Histogram: IRasterHistogram The histogram of this raster band.
RasterDataset: IRasterDataset The RasterDataset associated with this raster band.

CanCopy: Boolean Returns true if this dataset can be copied.
ComputeStatsAndHist Calculates statistics and histogram if not previously stored.
Copy (in copyName: String, in

copyWorkspace: IWorkspace) :
IDataset

Copies this raster band to a new dataset with the specified name.

HasColormap (out b: Boolean) Indicates if this band has a colormap.
HasStatistics (out b: Boolean) Indicates if this band has statistics.
HasTable (out b: Boolean) Indicates if this band has an attribute table.

Colormap: IRasterColormap The colormap of this raster band.

Statistics: IRasterStatistics The statistics of this raster band.

The IRasterBand interface provides access to aspects of a raster band.

The BandName method returns the name of the band within its associated
dataset. For most formats, this is the string “Band_1”, “Band_2”, and so on,
but for GRID the band name is the same as the name of the dataset.

The Statistics, Histogram, and Colormap methods return references to
objects that represent these aspects of the RasterBand.

The RasterDataset method returns a reference to the RasterDataset that
contains this band.

The AttributeTable method returns a table of the values contained in this
band. At ArcGIS 8.1, this table is a copy of the table from the band, and

IClass
IDataset

IGeoDataset
IMetadata

IMetadataEdit
INativeTypeInfo

IObjectClass
IRasterBand

IRasterDataset
IRasterProps

IRasterPyramid
IRasterTable

IRasterTransaction
IRawPixels

ISupportErrorInfo
ITable

RasterBand

The raster band object accesses a single
band of a raster dataset stored on disk.

RASTERBAND CLASS



Chapter 13 • Integrating raster data • 1217

R
as

te
r

modifications to this table will not have any effect on the data in the
band.

The ComputeStatsAndHist method calculates statistics and a histogram
for the band.

The HasStatistics, HasHistogram, and HasColormap methods set the
output parameter to True if the band contains a histogram, colormap, or
statistics and False if the band does not.

At ArcGIS 8.1, the CanCopy method always returns False, and the Copy
method does nothing.

 IRasterProps : IUnknown Provides access to members that control the most common
raster properties.

Extent: IEnvelope The extent of the Raster.
Height: Long Height in pixels.
IsInteger: Boolean Indicates if the data is integer.
NoDataValue: Variant Data value used to indicate invalid or excluded data.
PixelType: rstPixelType Data type of the pixels.
SpatialReference: ISpatialReference SpatialReference of the Raster.
Width: Long Width in pixels.

MeanCellSize: IPnt Returns the approximate cell size of the raster.

The IRasterProps interface accesses properties of the data in a raster
band.

The Height and Width properties return the number of rows and col-
umns in this band of raster data.

The Extent property returns an envelope surrounding the data in the
band.

The SpatialReference returns the projection associated with this band of
raster data on disk.

The IsInteger property returns True if the band contains data of integer
type, and the PixelType property returns the bit depth and data type of
the values in the raster band.

The NoDataValue returns the value stored in the dataset that is used to
represent NoData. This value is returned in a variant with the same data
type as that returned by the PixelType method. If there is no
NoDataValue in the dataset, this property returns an empty variant.

As the RasterBand represents a fixed band of data on disk, changing the
properties on the IRasterProps interface has no effect.

 IRasterPyramid : IUnknown Provides access to members that control the pyramids for a
raster dataset.

MinimumSize: IPnt The minimum raster pyramid size.
Present: Boolean Indicates whether pyramid layers exist.

Create Build raster pyramids for this raster.

The IRasterPyramid interface accesses raster pyramids.

The Present property returns True if pyramids exist for this band.

The MinimumSize property returns the smallest size for which pyramids
will automatically be considered.

RASTERBAND CLASS



1218 • Exploring ArcObjects • Volume 2

The Create method creates pyramids for the current band regardless of
its size. Creating pyramids for the only band in a single-band dataset is
the same as creating pyramids for that dataset. If pyramids exist for
some bands of a multiband dataset, any band with pyramids will use
them, but you will not be prompted to build pyramids for the other
bands in your dataset; this may slow display if these bands are visible.

 IRawPixels : IUnknown Provides access to members that control pixel reading and
writing from a RasterBand.

NumCacheRefs: Long Number of outstanding cache references

AquireCache: IUnknown Gets reference to edit cache
CreatePixelBlock (in Size: IPnt) :

IPixelBlock
Allocates a PixelBlock of size requested and type of this band.

Read (in tlc: IPnt, in pxls: IPixelBlock) Read a block of pixels starting from tlc (top left corner).
ReturnCache (in cache: IUnknown

Pointer) : Long
Restores edit cache to previous state

Write (in tlc: IPnt, in pxls: IPixelBlock) Write a block of pixels starting from tlc (top left corner).

The IRawPixels interface reads and writes pixel values to a RasterBand
on disk.

At ArcGIS 8.1, the IRawPixels interface provides the only mechanism to
change pixel values in an existing raster dataset. With the IRawPixels
interface, you can create a PixelBlock, then use the PixelBlock to read
and write data.

When using a PixelBlock created by the RasterBand coclass, use only
the first plane because the RasterBand is a single band. All formats can
be read using this technique, but only GRID, TIFF, IMAGINE, BIL, BIP,
and BSQ formats can be written. Reading the PixelBlock from the band
completes the initialization of the PixelBlock and should be done before
writing to the band.

The CreatePixelBlock method creates a new PixelBlock of the size re-
quested. This PixelBlock has the pixel type associated with the data in
this band.

The Read method reads a block of pixels into the input PixelBlock ob-
ject. The data is read beginning at the top-left corner specified by the
input point. The input coordinates are in pixel coordinates, with the top-
left corner represented by (0,0) and increasing down and to the right. If
data is read from an area outside the band, the NoData value associated
with the band will appear in these pixels. If there is no NoData value in
the band, these values will most likely contain the minimum or maxi-
mum values in the data range of the band.

The Write method outputs the contents of a PixelBlock to the Raster-
Band. The PixelBlock is written to an area in the band specified by its
top-left corner in the same pixel coordinate space used by the Read
method. If transactioning is enabled, this write is persisted temporarily to
a memory cache that allows undo support; otherwise, the data is per-
sisted directly to disk at this time.

The AcquireCache and ReturnCache methods control a cache within the
band object that allows the transactioning mechanism used by the
RasterBand to be activated. Invoking the AcquireCache method creates a

RASTERBAND CLASS



Chapter 13 • Integrating raster data • 1219

R
as

te
r

cache if it does not exist and increments a reference count for this
cache if it has already been created. The IUnknown return value for this
method is a reference to the cache. The user should not directly try to
modify this cache. All caches must be returned for the band to free this
cache, or data management functions, such as rename and delete, and
some other functions will not work. The ReturnCache method will dec-
rement the reference count and destroy the cache if it is no longer used
(that is, the reference count is decremented to 0.) The ReturnCache
method accepts a cache, obtained from the AcquireCache method,
which it will confirm is valid before decrementing the cache reference
count. If the cache input to the ReturnCache method is anything other
than a valid existing cache obtained from the AcquireCache method, the
reference count will not be decremented and the cache will not go
away. The return value from the ReturnCache method is the number of
caches remaining after this cache is returned.

For more information on how to use the PixelBlock, see the PixelBlock
section in this chapter.

 IRasterTransaction : IUnknown Provides access to members that provide undo support.

UndoLevels: Long Maximum number of reversible operations.

Commit Sends all pending changes to persistent storage.
End Commits changes and stops double buffering.
Start Starts double buffering edits for undo support.
Undo (in N: Long) : Long Reverses last N changes.

The IRasterTransaction interface allows you to undo edits made to a
raster band.

This interface allows you to set up and maintain a transaction stack that
can revert from changes that have been made in memory before persist-
ing these changes to disk. In this mechanism, a transaction is defined as
either a write called on the dataset outside a double-buffered transaction
or a set of writes contained within a single Start/End transaction block.
The Start and End methods allow you to perform multiple writes that are
managed by the undo stack as a single transaction.

To enable the transactioning mechanism, a band cache must first be
created. To create the cache, call the AcquireCache method on the
IRawPixels interface. After you are done editing, free the cache using the
ReturnCache method.

The UndoLevels property controls the number of changes that are main-
tained in the Undo stack.

The Start method creates a second buffer that allows multiple writes to
be treated by the transaction controller as a single transaction. Calling
the Start method means any further writes will be combined as a single
virtual transaction to reduce long transaction lists and make it easier to
remove logically grouped transactions.

The End method closes a second buffer if initialized using the Start
method, then closes the virtual transaction.

RASTERBAND CLASS



1220 • Exploring ArcObjects • Volume 2

RASTERBAND CLASS

The Commit method flushes all changes to the persistent raster band.

The Undo method reverts the band to its state before one or more pend-
ing transactions. The input value specifies the number of changes that
should be undone. The return value of the Undo method is the number
of remaining transactions that have been made since the last call to
commit. For example, if four writes are made to a band, and the Undo
method called with an input of one, the return value indicates that three
changes were made since the transaction was persisted.

The following example uses the IRawPixels interface and the PixelBlock
object to convert each cell value in a raster band from degrees to radi-
ans. The IRasterProps interface is used to get properties about the band.

Public Sub ConvertDegreesToRadians(pRasBand as IRasterBand)

  ' This example shows the usage of the IRawPixels interface to

  ' Read and write pixels to a raster band that is passed in.

  ' QI for the IRawPixels interface

  Dim pRawPixels As IRawPixels

  Set pRawPixels = pRasterBand

  ' QI for the IRasterProps interface to get height and width

  Dim pProps As IRasterProps

  Set pProps = pRasterBand

  Dim pPnt As IPnt

  Set pPnt = New DblPnt

  pPnt.SetCoords pProps.Width, pProps.Height

  ' Use the RawPixels interface to create a new PixelBlock

  Dim pPixelBlock As IPixelBlock

  Set pPixelBlock = pRawPixels.CreatePixelBlock(pPnt)

  ' Create a new point to specify where to begin reading, then read

  ' Note:the origin is specified in pixel (or image) coordinates

  Dim pOrigin As IPnt

  Set pOrigin = New DblPnt

  pOrigin.SetCoords 0, 0

  pRawPixels.Read pOrigin, pPixelBlock

  ' get the variant SafeArray from the pixelblock

  Dim vPixels As Variant

  vPixels = pPixelBlock.SafeArray(0)

  ' Loop through the safearray and change all the pixel values

  ' in this case, convert degrees to radians

  Dim i As Long, j As Long

  For i = 0 To pProps.Width - 1

    For j = 0 To pProps.Height - 1

      vPixels(i, j) = vPixels(i, j) * 3.14 / 180

    Next

  Next



Chapter 13 • Integrating raster data • 1221

R
as

te
r

  ' Write the data back to the dataset

  pRawPixels.Write pOrigin, pPixelBlock

  ' Clean up the remaining interface pointers

  Set pProps = Nothing

  Set pRawPixels = Nothing

  Set pRasterBand = Nothing

  Set pRasBC = Nothing

  Set pPixelBlock = Nothing

End Sub

RASTERBAND CLASS



1222 • Exploring ArcObjects • Volume 2

RASTERBANDS CLASS

The RasterBands class is not cocreatable but must be retrieved from
other objects. It is an enumerator object that iterates through either the
RasterBands in a dataset or the RasterDatasets in a workspace.

 IEnumRasterBand : IUnknown Provides access to members that control a raster band
enumerator object.

Next: IRasterBand Retrieves the next raster band in the enumeration sequence.
Reset Resets the enumeration sequence to the beginning.

The IEnumRasterBand interface returns an IRasterBand reference to the
next band in the collection.

The IEnumRasterBand interface to this object is returned by the Bands
method on the IRasterBandCollection interface from either the Raster or
RasterDataset object.

The Next method returns an IRasterBand pointer to the next band in the
collection, and the Reset method sets the object to the first band in the
collection.

 IEnumDataset : IUnknown Dataset Enumerator Object.

Next: IDataset Retrieves the next dataset in the enumeration sequence.
Reset Resets the enumeration sequence to the beginning.

The IEnumDataset interface returns an IDataset reference to the next
RasterDataset or RasterBand in the collection.

The IEnumDataset interface to this object is returned by the Datasets
method on the IWorkspace interface on the RasterWorkspace object.
When returned from the raster workspace, it enumerates through all
datasets in the workspace. It can also be returned from the Subsets
method on the IDataset interface of the RasterDataset object. When
obtained from the dataset, it enumerates through all bands in the raster
dataset.

The Next method returns an IDataset pointer to the next object in the
collection, and the Reset method sets the object to the first dataset in the
collection.

IEnumDataset
IEnumRasterBand RasterBands

The RasterBands object allows you to
enumerate through a set of raster bands.



Chapter 13 • Integrating raster data • 1223

R
as

te
r

The RasterColormap is available for any raster that has a table with fewer
than 2,048 values but is most useful when used with a dataset that con-
tains a predefined colormap.

Rasters that contain a colormap, referred to as pseudocolor rasters,
come in a variety of formats, but each specifies how each pixel value in
the dataset is mapped to a color in the display. These colors are typi-
cally specified using red, green, and blue components, but using the
RasterColormap object gives you the option of reading the specific
components for each value or reading OLE_COLOR color objects. At
ArcGIS 8.1, the values contained in the colormap cannot be changed
using this object.

 IRasterColormap : IUnknown Provides access to members that control a raster colormap.

BlueValues: Variant Array of blue ratios as doubles between 0.0 and 1.0.
Colors: Variant Array of colors as OLE_COLORs.
GreenValues: Variant Array of green ratios as doubles between 0.0 and 1.0.
RedValues: Variant Array of red ratios as doubles between 0.0 and 1.0.

Bin (in pixval: Double) : Long Translates pixel values into integers to index into the colormap.

The IRasterColormap interface controls the colormap used when dis-
playing a RasterBand.

The RedValues, BlueValues, and GreenValues properties return variant
arrays of double-precision floating-point values. These arrays contain
one value for each entry in the colormap. The values, which range from
0.0 to 1.0, represent the fraction of possible brightness to be displayed
for that channel.

The Colors property returns a variant array of OLE_COLOR objects, one
for each value in the colormap.

The Bin function converts a pixel value from the dataset into an index
in the color array, which can be used to determine the correct color for
each pixel.

The RasterHistogram object is not intended for outside developers and
should not be used.

IRasterColormap Raster-
Colormap

A raster colormap object provides access
to the colormap of a raster band.

RASTERCOLORMAP COCLASS AND RASTERHISTOGRAM CLASS

IRasterHistogram Raster-
Histogram

A raster histogram object provides access
to the histogram of a raster band.



1224 • Exploring ArcObjects • Volume 2

The RasterStatistics class is not cocreatable and must be retrieved from a
RasterBand object. The statistics only provide information about a single
band and are used when displaying the raster. The statistics may be
modified or recalculated using this object.

 IRasterStatistics : IUnknown Provides access to members that control raster statistics.

IgnoredValues: Variant Array of doubles indicating the pixel values not included in the
statistics calculation.

IsValid: Boolean Indicates if statistics are fresh.
Maximum: Double Approximate largest value.
Mean: Double Approximate average value.
Median: Double Divides pixel population approximately in halves.
Minimum: Double Approximate smallest value.
Mode: Double Approximate most popular pixel value.
RasterBand: IRasterBand The Raster Band.
SkipFactorX: Long Number of horizontal pixels between samples for purposes of

calculating statistics.
SkipFactorY: Long Number of vertical pixels between samples for purposes of calculating

statistics.
StandardDeviation: Double Measures spread of pixel values about the mean.

Recalculate Recalculate statistics based upon current skip factors and ignored
values.

The IRasterStatistics interface reads statistics values and recalculates
statistics.

The statistics provided include Minimum, Maximum, Mean, and Stan-
dard deviation. These values will always exist if statistics have been
calculated for the dataset and can be edited. Changing the values of
these statistics may affect the display of the dataset, particularly when
using a stretched or RGB renderer. Changes made to these values are
temporary and are lost when the band goes out of scope.

The Mode and Median may not always be present and cannot be
changed.

With the IgnoredValues property, you may set a value or values not used
in the statistics calculation. This property may be useful if there is a
background or other invalid value in the dataset.

The SkipFactorX and SkipFactorY properties allow you to skip some of
the values in each direction when computing statistics. This results in
statistics that are less accurate, but the calculation time required is
decreased. By default, the skip factor is one, which means every value in
the dataset will be used. Calculating statistics with skip factors greater
than 1 can result in a table with empty rows or other undesirable
behavior.

The Recalculate method calculates the values of the statistics using the
specified skip factors and ignored values. Recalculate will not work if
the statistics are valid, so you must set the IsValid property to False be-
fore calculating statistics. Changing the skip factors will automatically
invalidate any existing statistics. When calculated, the statistics will be
stored into the raster or written into the auxiliary file if they can be
stored in the raster’s native format.

IRasterStatistics Raster-
Statistics

A raster statistics object provides access
to statistics from a raster band.

RASTERSTATISTICS CLASS



Chapter 13 • Integrating raster data • 1225

R
as

te
r

The example below shows how to display the statistics of a raster band.

   ' Get the statistics from a RasterBand

   Dim pStats As IRasterStatistics

   Set pStats = pRasterBand.Statistics

   ' Recalculate the statistics if necessary

   If Not pStats.IsValid Then pStats.Recalculate

   MsgBox "Mean: " & pStats.Mean & vbLf & _

   "Std. Dev.: " & pStats.StandardDeviation

RASTERSTATISTICS CLASS



1226 • Exploring ArcObjects • Volume 2

RASTER COCLASS

The Raster object, in contrast to the static RasterDataset and RasterBand
objects, is transient in nature and can be modified without affecting the
source data. This allows the raster to represent what you want, as you
may specify a projection, extent, and cell size into which the input data
will be transformed. This makes the raster quite useful for performing
display or analysis in a coordinate system different from that which is
stored in the raster data on disk.

Because of the transient nature of the raster, any modifications that are
made to this object will be lost when the object is released. Although
the Raster object is always transient in nature, it must be associated with
one or more raster bands on disk, which provide a source for data to
be read through the raster. As such, the Raster is most easily understood
as a vehicle to provide resampling, projection, and data type conversion
from one or more raster bands to a desired output coordinate system.

You can read data from the Raster using the PixelBlock object, which is
discussed later in this chapter. The RasterCursor may also be used for
reading data, providing a mechanism to iterate from one PixelBlock to
the next throughout the entire Raster. It is important to remember that
any data read through the raster has been resampled and has potentially
also been projected and undergone data type conversion during the
reading process. The Raster may read data from a raster’s pyramids, if
they exist, to provide faster performance when reading a raster at re-
duced resolution.

The Raster object may be obtained from a RasterLayer or RasterDataset,
or it can be cocreated.

A Raster returned from the RasterLayer already has some properties
modified by the layer, which makes it difficult to return to the original
properties of the raster data. This also means that you could mistakenly
operate on a subset of a raster dataset or use a resampled version based
on the raster’s pyramids by using a Raster obtained from the layer with-
out first setting these properties.

The Raster created from the RasterDataset has the properties of the
dataset on disk, except that rasters with more than three bands will only
have three bands. The three bands used are determined by the settings
for default raster behavior made on the RasterDefaultsEnv.

Cocreating a new Raster results in an empty raster that is not useful until
one or more bands are placed into the raster, providing data for the
raster to read. Creating a new raster and populating it with the desired
bands provides the most flexibility. Any time a band is added or re-
moved from a raster, its default settings for spatial reference, extent, and
cell size may be changed, and these default settings will be applied to
the raster if they have not been previously set by the user.

Each of these techniques is demonstrated in the sample code below:

  ' Get Raster from RasterLayer

  Set pRaster = pRasterLayer.Raster

IGeoDataset
IRaster

IRasterAnalysisProps
IRasterBandCollection

IRasterDefaultProps
IRasterProps

ISupportErrorInfo

Raster

The Raster object is a transient representation
of raster data that performs resampling

and reprojection.



Chapter 13 • Integrating raster data • 1227

R
as

te
r

  ' Create Default Raster from RasterDataset

  Set pRaster = pRasterDataset.CreateDefaultRaster

  ' Cocreate new raster and add one band, more could be added

  Set pRaster = New Raster

  Dim pRasBC as IRasterBandCollection

  Set pRasBC = pRaster

  pRasBC.AppendBand pRasterBand

Sometimes it is necessary to find the RasterDataset that is associated with
a Raster. This can be done by first accessing a band of the Raster, then
retrieving the dataset from that band.

This technique is shown here:

‘ QI IRasterBandCollection from the Raster object

Dim pRasBC As IRasterBandCollection

Set pRasBC = pRaster

‘ Get the first band from the Raster

Dim pRasBand As IRasterBand

Set pRasBand = pRasBC.Item(0)

‘ Get the Raster’s dataset from the first band

Dim pRasDS As IRasterDataset

Set pRasDS = pRasBand.RasterDataset

 IRaster : IUnknown Provides access to members that control an in-memory
raster.

ResampleMethod: rstResamplingTypes Interpolation method used when reading pixels.

CreateCursor: IRasterCursor Allocates a Raster Cursor for fast raster scanning.
CreatePixelBlock (in Size: IPnt) :

IPixelBlock
Allocates a PixelBlock of requested size.

Read (in tlc: IPnt, in block: IPixelBlock) Read a block of pixels starting from the top left corner.

The IRaster interface controls the reading of pixels from a Raster object.

The IRaster interface provides the ability to read data from a raster. This
interface controls the resampling technique used when pixels are read
from the Raster through the ResampleMethod property.

The CreatePixelBlock method creates a PixelBlock that can be used to
read data from the Raster.

The input Size specifies the number of rows and columns in the
PixelBlock and is specified with the DblPnt object.

The Read method transfers data into a PixelBlock after it is created. Once
the data is read into the PixelBlock, it can be accessed through the
methods on that object. The read can be initiated from any point in the
raster, and the top-left corner of the area being read is specified as a
DblPnt using the tlc argument.

The CreateCursor method creates a RasterCursor that can be used to
successively read the set of PixelBlocks that make up the Raster. For
more information, see the section of this chapter detailing the
RasterCursor object.

RASTER COCLASS



1228 • Exploring ArcObjects • Volume 2

 IRasterBandCollection : IUnknown Provides access to members that control a collection of
RasterBands.

BandByName (in Name: String) :
IRasterBand

A RasterBand given its name.

BandIndex (in Name: String) : Long The index of a RasterBand given its name.
Bands: IEnumRasterBand All the bands in the collection as an interface to the RasterBands

enumerator object.
Count: Long The number of bands in the collection.

Add (in Element: IRasterBand, in Index:
Long)

Adds a RasterBand to the band collection.

AppendBand (in Element: IRasterBand) Appends a RasterBand to the band collection.
AppendBands (in Bands:

IRasterBandCollection)
Appends a collection of RasterBands to the band collection.

Clear Removes all the elements in the collection.
Item (in BandIndex: Long) : IRasterBand Returns a RasterBand given its index.
Remove (in Index: Long) Removes an element from the collection.
SaveAs (in new_name: String, in

worksp: IWorkspace, in Format: String)
: IDataset

Creates a new persistent RasterDataset with the bands in the
collection.

The IRasterBandCollection interface controls the bands in a raster.

The IRasterBandCollection interface allows you to access the raster
bands that compose the raster.

The Count property on the IRasterBandCollection interface returns the
number of bands in the raster dataset.

The BandByName and BandIndex properties return a reference to the
RasterBand or the index of the band in the raster from the band’s name.

The Item method returns a raster band from the dataset. The Item re-
turned is determined from the zero-based band index, so the first band
is band 0, the second band is band 1, and so on.

The IRasterBandCollection interface allows you to manage the bands
present in the raster. The Add, Append, AppendBands, Clear, and Remove
methods change the contents of the Raster object.

The Add method inserts a RasterBand into the raster at the specified
band index, while the AppendBand method adds a RasterBand after all
existing bands in the Raster.

The AppendBand accepts a RasterDataset or another Raster object and
appends all bands in that object to the current Raster.

The Remove method removes the specified band from the Raster, while
the Clear method removes all bands and resets the Raster to its empty
state.

When a band is added to or removed from a Raster object, the Raster
recomputes a default cell size, extent, and spatial reference based on
the bands in the Raster. If the user has not manually adjusted these
properties, the default settings will be applied to the raster object.

The spatial reference is determined first. If the user has not specified a
spatial reference system to be applied to the raster, it is calculated from
the first band in the raster that has a spatial reference other than un-
known. If all bands have an unknown spatial reference, the spatial
reference system of the raster will be unknown.

RASTER COCLASS



Chapter 13 • Integrating raster data • 1229

R
as

te
r

Next the cell size is calculated, if the cell size and number of rows and
columns have not been changed by the user. The cell size is the maxi-
mum cell size of any input bands projected into the current spatial
reference system. If no spatial reference system is known, the largest
cell size of any band in the Raster is selected.

Finally, if the extent has not been specified by the user, it is calculated.
The extent is the smallest bounding box with an integer number of
rows and columns that can be placed around all bands of the input
raster while aligning with the bottom-left corner of the Raster. Because
of the way these defaults are calculated, the Raster can be used to
project data from one coordinate system to another. Simply add your
projected data to an empty Raster, then change the spatial reference
system on the Raster. When the data is read or saved, it will be in the
new coordinate system, and the correct extent and cell size will be
calculated automatically.

The SaveAs method on the IRasterBandCollection interface persists a
resampled or reprojected Raster to disk. The output dataset has all of
the properties, including spatial reference, cell size, extent, and pixel
type of the raster, when this method is invoked. Thus, this method can
be useful to project raster data, convert data from one pixel type to
another, or resample raster data. This method, like CreateRasterDataset,
can only write out GRID, TIFF, and IMAGINE format rasters.

 

 IRasterProps : IUnknown Provides access to members that control the most common
raster properties.

Extent: IEnvelope The extent of the Raster.
Height: Long Height in pixels.
IsInteger: Boolean Indicates if the data is integer.
NoDataValue: Variant Data value used to indicate invalid or excluded data.
PixelType: rstPixelType Data type of the pixels.
SpatialReference: ISpatialReference SpatialReference of the Raster.
Width: Long Width in pixels.

MeanCellSize: IPnt Returns the approximate cell size of the raster.

The IRasterProps interface controls properties of the data in a raster.

Many properties of the Raster object can be accessed and modified using
the IRasterProps interface. It is important to remember that these modi-
fications only affect the in-memory raster representation and in no way
change any of the data stored on disk. Therefore, the Raster can be used
to change the extent, dimensions, pixel-bit depth, and spatial reference
to one that is nonnative to the disk-based raster dataset and provide for
automatic resampling or reprojection before reading from the dataset.

The Raster also utilizes raster pyramids to provide faster reading at low
resolutions if pyramids exist for the dataset with which it is associated.
The resampling method used when reading can be set using the Resample
method on the IRaster interface.

The Height and Width properties return the number of rows and col-
umns in the Raster. This height and width determine the number of
rows and columns into which to divide the input extent.

The Extent property controls the extent for which data in the Raster will be read.

RASTER COCLASS



1230 • Exploring ArcObjects • Volume 2

The SpatialReference controls the projection of the Raster’s extent.

The IsInteger property returns True if the band contains data of integer
type; the PixelType property controls the bit depth and data type of the
values in the raster. If the PixelType specified is not the same as a band
of the raster, the pixel values will automatically be converted to the
correct data type.

The NoDataValue controls an array of values used to represent NoData.
This variant array of values has the pixel type of the raster and contains
one NoData value for each band. This allows the different bands in the
raster to contain a different NoData value. If there is no NoDataValue in
the band, the value in the corresponding member of the array will be
empty.

 IRasterAnalysisProps : IUnknown Provides access to members that control the properties for
raster analysis.

AnalysisExtent: IEnvelope The analysis extent of the raster.
PixelHeight: Double The pixel height in ground resolution.
PixelWidth: Double The pixel width in ground resolution.
RasterDataset: IRasterDataset The RasterDataset, if there is one.

MakePermanent Makes a temporary raster a permanent raster dataset.

The IRasterAnalysisProps interface controls properties of a Raster that are
useful when performing analysis.

The AnalysisExtent property returns an envelope object containing the
intersection of all bands in the Raster.

The PixelHeight and PixelWidth properties control the height and width
of each pixel in the dataset.

The MakePermanent method changes the status of the dataset associated
with this Raster to permanent if it is currently temporary.

The RasterDataset property returns the dataset associated with a raster if
all bands contained in the raster come from the same dataset. If bands
from multiple datasets are present in this raster, this property will return
NULL.

 IRasterDefaultProps : IUnknown Provides access to members that control the default raster
properties.

DefaultIntersectExtent: IEnvelope The default intersect extent.
DefaultPixelHeight: Double The  default pixel size in Y.
DefaultPixelWidth: Double The default pixel size in X.
DefaultSpatialReference:

ISpatialReference
The default spatial reference.

DefaultUnionExtent: IEnvelope The default union extent.

ResetToDefault Resets the raster to default state

The IRasterDefaultProps interface accesses the default properties of a
Raster.

The default properties of a raster are updated each time a band is
added or removed from the raster. This allows the raster to provide
useful defaults while still obeying any settings you adjust. The default
properties of the raster allow you to examine what these defaults would be if
you changed the properties on the raster.

RASTER COCLASS



Chapter 13 • Integrating raster data • 1231

R
as

te
r

RASTER COCLASS

The DefaultSpatialReference returns the spatial reference system associated with the
first band of the raster whose coordinate system is not Unknown or Unknown if all
bands in the raster are unprojected.

The DefaultPixelHeight and DefaultPixelWidth properties return the
default height and width of each cell in the specified coordinate system.

The DefaultUnionExtent returns the smallest bounding box that sur-
rounds all bands in the raster; it has an integral number of default size
pixels.

The ResetToDefault method causes the system to revert to these settings
and forces subsequent addition or removal of bands to recompute these
settings automatically.

The following example creates a raster object, then resamples it to half
its original size and reprojects it before writing the results to a new
dataset.

  Dim pUTMRasterDataset As IRasterDataset

  Set pUTMRasterDataset = OpenRasterDataset("d:\Workspace", "utmGridName")

  Dim pGeoDataset As IGeoDataset

  Set pGeoDataset = pUTMRasterDataset

  Dim pOutputSpatialReference As ISpatialReference

  Set pOutputSpatialReference = pGeoDataset.SpatialReference

  Dim pRasterDS As IRasterDataset

  Set pRasterDS = OpenRasterDataset("D:\Workspace\", "drg.tif")

  Dim pRaster As IRaster

  Set pRaster = pRasterDS.CreateDefaultRaster

  'Change the pRaster's properties

  Dim pProps As IRasterProps

  Set pProps = pRaster

  pProps.Height = pProps.Height / 2

  pProps.Width = pProps.Width / 2

  pProps.SpatialReference = pOutputSpatialReference

  Dim pRasBC As IRasterBandCollection

  Set pRasBC = pRaster

  pRasBC.SaveAs "loresdrg.tif", SetRasterWorkspace("D:\Workspace\"), "TIFF"



1232 • Exploring ArcObjects • Volume 2

PIXELBLOCK CLASS

The PixelBlock can be created for Raster and RasterBand objects.

The behavior of the PixelBlock is different depending on which object
created it. A PixelBlock read from a RasterBand can only have one
band, while one read from a Raster may contain multiple bands. From
the RasterBand coclass, the PixelBlock can be modified and written back
to the band.

From the Raster, the PixelBlock is resampled, can be reprojected, and
will read from raster pyramids, if available, to improve performance.
Conversely, the RasterBand does not resample or reproject; it reads only
the raw pixel values contained in the dataset.

The PixelBlock object is designed to handle generic pixel arrays from
any raster data source. This means it must be able to handle single and
multiband data, as well as support different pixel types. To support
different pixel types, the PixelBlock transports pixels in a SafeArray,
which has the ability to contain many different data types. To support
multiple bands, or planes, of raster data, the PixelBlock provides a sepa-
rate array for each plane in the raster.

A Raster or RasterBand object must create the PixelBlock unless it is
being read from a RasterCursor, which will create the object automati-
cally. A PixelBlock that is created for use with one object may not be
usable with another object because of the way the PixelBlock is initial-
ized. If you think this may be a problem in your application, you
should simply release the old PixelBlock, then create a new PixelBlock
with the object from which you will be reading.

The PixelBlock can be created in any size, but after it is created, its size
cannot be changed. For small rasters, the PixelBlock can be the size of
the entire dataset, which can usually be held in memory at one time.
Larger rasters can be read in as smaller pieces by creating a smaller
PixelBlock and reading portions of the raster sequentially. This is done
by specifying the top-left corner of the PixelBlock within the raster each
time data is read into the PixelBlock.

The top-left corner of the RasterBand PixelBlock is determined based on
pixel coordinates for the dataset. The top-left corner of the Raster
PixelBlock is determined by the extent, width, and height specified in the
raster properties. The top-left corner of the dataset is (0,0), with the
values ascending as the pixels go down and to the right.

 IPixelBlock : IUnknown Provides access to members that control a PixelBlock.

BytesPerPixel: Long The number of bytes per pixel for the PixelBlock.
Height: Long The height of the PixelBlock in pixels.
PixelType (in plane: Long) : rstPixelType The pixel type of the PixelBlock.
Planes: Long The number of pixel arrays contained in the PixelBlock.
SafeArray (in plane: Long) : Variant A variant SafeArray of pixels for a specified plane.
Width: Long The width of the PixelBlock in pixels.

GetVal (in plane: Long, in X: Long, in Y:
Long) : Variant

The value for a specified pixel.

The IPixelBlock interface controls a generic pixel array.

IPixelBlock

PixelBlock

The PixelBlock object contains a pixel
array that can be read from a raster or

raster band.



Chapter 13 • Integrating raster data • 1233

R
as

te
r

The Height and Width properties return the number of rows and col-
umns in the PixelBlock. The Planes argument specifies the number of
bands in the PixelBlock.

The PixelType property returns the data type and bit depth of the pixels
in the specified band.

The SafeArray property returns the variant SafeArray for the specified
band.

The GetVal method returns an individual value for the pixel specified by
the band and pixel location input.

The sample below reads an entire raster as one block, then displays
how many times the value 0 occurs in the dataset.
  'Create a default raster from the dataset
  Dim pRaster As IRaster
  Set pRaster = pRasterDataset.CreateDefaultRaster

  'QI the raster properties interface
  Dim pRasProps As IRasterProps
  Set pRasProps = pRaster

  'Create a DblPnt to hold the PixelBlock size
  Dim pPnt As IPnt
  Set pPnt = New DblPnt
  pPnt.SetCoords pRasProps.Width, pRasProps.Height

  'Create the empty PixelBlock
  Dim pBlock As IPixelBlock
  Set pBlock = pRaster.CreatePixelBlock(pPnt)

  'Create a DblPnt to hold the Top Left Corner read location
  Dim pOrigin As IPnt
  Set pOrigin = New DblPnt
  pOrigin.SetCoords 0, 0

  'Read in the PixelBlock from the Raster
  pRaster.Read pOrigin, pBlock

  'Get the Safearray associated with the first plane, or band
  Dim pRasSafe As Variant 'Safearray is a variant type
  pRasSafe = pBlock.SafeArray(0)
  Dim j As Integer, k As Integer
  Dim count As Long

  'Loop through the values in the SafeArray and count zeroes
  For j = 0 To pPnt.X - 1
    For k = 0 To pPnt.Y - 1
      If pRasSafe(j, k) = 0 Then count = count + 1
    Next
  Next

  MsgBox "There are " & CStr(count) & " zeroes in this raster."

PIXELBLOCK CLASS



1234 • Exploring ArcObjects • Volume 2

The RasterCursor is useful for rasters that are too large to be brought
into memory at once.

The RasterCursor divides the Raster into blocks 128 pixels high that span
the full width of the raster. Each successive PixelBlock is read 128 lines
below the previous PixelBlock.

To create a RasterCursor, use the CreateCursor method on the Raster
object. The object may then be used to iterate through the PixelBlocks in
a raster.

 IRasterCursor : IUnknown Provides access to members that provide optimized raster
access.

PixelBlock: IPixelBlock The current PixelBlock.
TopLeft: IPnt The offset of the current pixelblock.

Next: Boolean Iterates to the next PixelBlock.
Reset Return to state when first created.

The IRasterCursor interface controls enumeration through the
PixelBlocks in a Raster.

The PixelBlock property retrieves the current PixelBlock object from the
cursor.

The PixelBlock is the full width of the input raster and 128 pixels tall.

The TopLeft property returns the coordinates of the upper-left corner of
the current PixelBlock within the source raster. Because the PixelBlock
spans the full width of the raster, the x-coordinate of this value is
always 0.

The Next method updates the cursor to the next PixelBlock within the
raster. This method returns True when the next PixelBlock begins within
the extent of the Raster. If the return value is False, the cursor has iter-
ated through the entire raster, and subsequent PixelBlock accesses will
produce empty PixelBlocks.

The Reset method returns the cursor to its initial state at the top of the
Raster.

The following code loops through all of the PixelBlocks in a raster using
the RasterCursor. It outputs the top-left corner coordinates of the
PixelBlock after reading it.

  Dim pCursor As IRasterCursor

  Set pCursor = pRaster.CreateCursor

  Dim pBlock As IPixelBlock

  Do

    Set pBlock = pCursor.PixelBlock

    MsgBox pCursor.TopLeft.X & " " & pCursor.TopLeft.Y

  Loop Until Not pCursor.Next

IRasterCursor

RasterCursor

A raster cursor object is a mechanism for
iterating through all of the pixel blocks in

a raster.

RASTERCURSOR CLASS



Chapter 13 • Integrating raster data • 1235

R
as

te
r

The RasterGeometryProc manipulates only Raster objects, not RasterBand
or RasterDataset objects. This is because the Raster is transient, as are the
effects of the RasterGeometryProc. This means that any transformation
will also go away when the Raster object goes out of scope.

To keep the transformed data for later use, you must persist the transfor-
mation using Register or Rectify. Alternatively, you can use the SaveAs
method on the transformed Raster to persist the transformation to a new
dataset. If used on a Raster contained within a RasterLayer, processing
performed by this object will be visible when the display is refreshed.

 IRasterGeometryProc : IUnknown Provides access to members that allow raster geometry
processing.

Clip (in ipRectangle: IEnvelope, in
ipRaster: IRaster)

Clips the input raster based on the specified envelope.

Flip (in ipRaster: IRaster) Flips the input raster.
isPixelToMapTransSimple (in ipRaster:

IRaster) : Boolean
Determines if the transformation of pixel to map is simple.

LeastSquareFit (in sourceControlPoints:
IPointCollection, in
targetControlPoints: IPointCollection,
in transformType:
tagesriGeoTransTypeEnum, in
forwardTransformation: Boolean, in
returnTransformationCoef: Boolean) :
Variant

Computes a least squares fit for the input control points.

Merge (in saveas_name: String, in
ipWorkspace: IWorkspace, in
OutRasterFormat: String, in Cellsize:
Double, in ipSR: ISpatialReference, in
ipRaster: IRaster) : IRaster

Merges the input rasters into a single dataset.

Mirror (in ipRaster: IRaster) Mirrors the input raster.
Mosaic (in saveas_name: String, in

ipWorkspace: IWorkspace, in
OutRasterFormat: String, in Cellsize:
Double, in ipSR: ISpatialReference, in
ipRaster: IRaster) : IRaster

Mosaics the input rasters into a single dataset.

PointsTransform (in inPoints:
IPointCollection, in isForward:
Boolean, in ipRaster: IRaster) :
IPointCollection

Transforms a set of points based upon the transformation being
applied to the input raster.

Project (in ipNewSR: ISpatialReference,
in PrjMethodType:
tagesriRasterPrjMethodTypeEnum, in
resampleType: rstResamplingTypes, in
newCellsize: Double, in ipRaster:
IRaster)

Projects the input raster using specified transformation type.

ProjectFast (in ipNewSR:
ISpatialReference, in resampleType:
rstResamplingTypes, Cellsize: Variant,
in ipRaster: IRaster)

Projects the input raster using a single polynomial fit to compute the
adjustment between coordinate systems.

Rectify (in saveas_name: String, in
Format: String, in ipRaster: IRaster)

Persists the input raster to a new dataset of the specified format.

Register (in ipRaster: IRaster) Outputs the current transformation properties to the dataset header
or auxilliary file.

Resample (in resampleType:
rstResamplingTypes, in newCellsize:
Double, in ipRaster: IRaster)

Resamples the input raster to a new cellsize.

ReScale (in XScale: Double, in YScale:
Double, in ipRaster: IRaster)

Scales the input raster by the specified x and y scale factors.

Reset (in ipRaster: IRaster) Resets the input raster to its native coordinate space.
Rotate (in ipPivotPoint: IPoint, in

rotateAngle: Double, in ipRaster:
IRaster)

Rotates the input raster around the specified pivot by an angle
specified in degrees.

Shift (in deltaX: Double, in deltaY:
Double, in ipRaster: IRaster)

Shifts the input raster by deltaX and deltaY map units.

TwoPointsAdjust (in
sourceControlPoints: IPointCollection,
in targetControlPoints:
IPointCollection, in ipRaster: IRaster)

Performs a Hermite Transformation on the input raster based upon
the 2 input control point pairs.

Warp (in sourceControlPoints:
IPointCollection, in
targetControlPoints: IPointCollection,
in transformType:
tagesriGeoTransTypeEnum, in
ipRaster: IRaster)

Warps the input raster based upon the input control points using the
transformation type specified.

IRasterGeometryProc Raster-
Geometry-

Proc

The RasterGeometryProc object
performs geometric processing, such as
flipping, scaling, rotation, and polynomial

warping, on a raster.

RASTERGEOMETRYPROC COCLASS



1236 • Exploring ArcObjects • Volume 2

The IRasterGeometryProc interface controls geometric processing for
raster data.

The Clip method extracts the portion of a raster within a box.

The Flip and Mirror methods flip an input raster horizontally or
vertically.

The Shift method translates the raster to a new position without chang-
ing its size. The deltaX and deltaY parameters specify the distance to
shift the raster in the x and y directions.

The Rescale method scales the input raster by the scale factors specified.
Negative values should not be input for the scale factor arguments.

The Rotate method rotates the raster by the angle input in degrees
around the input pivot point, if specified. If no pivot point is specified,
the raster is rotated around its center point.

The Resample method changes the cell size of the raster.

The Reset method sets the raster back to its initial state.

This interface also allows you to reproject raster data. The ProjectFast
method projects a raster to a new spatial reference using a polynomial
warp. This is similar to the PROJECTGRID command in ArcGrid™. This
method is much faster than projecting each cell and is accurate over
small regions with limited distortion but can produce poor results if the
input raster covers a large geographic extent or is at high latitude. At
ArcGIS 8.1, true raster projection must be performed using ArcGrid; this
functionality will be supported in a future release of ArcGIS.

The IRasterGeometryProc interface can also adjust a raster based on a
set of input control points or links.

The TwoPointsAdjust method accepts a pair of links that are used to
compute a Hermite transformation, which is applied to the raster. A
Hermite transformation can shift, rotate, and scale a raster.

The Warp method computes a polynomial transformation based on the
input links, then applies this transformation to the input raster. At
ArcGIS 8.1, first-, second-, and third-order polynomial transformations
are available.

The LeastSquaresFit method returns the parameters that would be used
to transform a dataset based on the input links.

The PointsTransform method takes a set of input points and transforms
them using the transformation currently held in the raster. The points
can be transformed forwards or backwards.

All of the preceding methods modify the transient raster object and will
be cleared when the raster goes out of scope. To persist the transforma-
tion for later use, you must use the Register or Rectify methods.

The Rectify method creates a new dataset using the current transforma-
tion. This dataset is rectangular in extent and therefore will be
resampled. New datasets can be created in GRID, TIFF, and

RASTERGEOMETRYPROC COCLASS



Chapter 13 • Integrating raster data • 1237

R
as

te
r

ERDAS IMAGINE format. Resampling can degrade your data and is not
recommended unless it is necessary.

To prevent the need for resampling, the Register method persists the
transformation into the auxiliary file associated with the dataset on
disk. The presence of this transformation on disk means that the data
can be transformed on the fly to its correct position for display and
analysis. However, because the transformation is stored in the auxiliary
file, only ArcGIS, ArcObjects, and ERDAS IMAGINE will be able to use
this information. Register will not correctly maintain the transformation
for rasters that have been clipped. To provide compatibility with
ArcInfo Workstation, complex transformations cannot be written to
GRID-format datasets.

The IRasterGeometryProc interface also provides the ability to combine
multiple raster datasets into a single output dataset.

The Merge and Mosaic methods combine multiple adjacent datasets
into a single output dataset. The Raster that is input to these methods
should be composed of multiple bands from separate datasets. The
easiest way to do this is to cocreate an empty raster, then QI for the
IRasterBandCollection interface, and add each band to be combined
into the input raster. The difference between these methods results
from how they handle overlapping areas.

The Merge command determines the value of an overlapping output
cell from the first nonNoData cell input from any input raster.

The Mosaic method performs an average weighted by the distance
from the edge of the input raster to determine the value of these cells.

These methods are different from the rest of the geometric processing
operations because they do not operate on the input raster but, in-
stead, create a new output dataset. Therefore, an output name,
workspace, and format must be specified to perform these methods.
The case-sensitive output format argument must be “GRID”, “TIFF”, or
“IMAGINE Image”. Raster datasets of any format may be input to these
methods. The bounding box of the output dataset is the union of the
bounding boxes of all input datasets.

The following example merges two raster datasets using the Raster-
GeometryProc. Note the usage of the OpenRasterDataset function de-
fined in the RasterWorkspace section of this chapter.

   ' Cocreate the geometric processing object

   Dim pProc As IRasterGeometryProc

   Set pProc = New RasterGeometryProc

   ' cocreate the new empty raster

   Dim pRas As IRaster

   Set pRas = New Raster

RASTERGEOMETRYPROC COCLASS



1238 • Exploring ArcObjects • Volume 2

   ' QI the raster for IRasterBandCollection

   Dim pRasBC As IRasterBandCollection

   Set pRasBC = pRas

   Dim pRasterDataset As IRasterDataset

   ' open the first dataset and add its bands to the raster

   Set pRasterDataset = OpenRasterDataSet("e:\drgs", "O38106f6.tif")

   pRasBC.AppendBands pRasterDataset

   ' open the second dataset and add its bands to the raster

   Set pRasterDataset = OpenRasterDataSet("e:\drgs ", "O38106f5.tif")

   pRasBC.AppendBands pRasterDataset

   ' merge the datasets, creating a new dataset named merged

   pProc.Merge "merged.img", SetRasterWorkspace("e:\drgs "), _

   "IMAGINE Image", 3, Nothing, pRas

RASTERGEOMETRYPROC COCLASS



Chapter 13 • Integrating raster data • 1239

R
as

te
r

The RasterLayer contains raster data and instructions for how to visual-
ize it. The RasterLayer provides raster-specific functionality and supports
generic layer functionality that is needed for raster layers to behave like
other layer types. Only the raster-specific aspects of the RasterLayer are
discussed in this section.

The RasterLayer visualizes all types of raster data supported by ArcGIS
except raster catalogs, which must use the RasterCatalogTable and
RasterCatalogLayer.

The Raster object obtained from the layer will have had its properties
modified by the layer. Therefore, it will not have the extent and cell size
of the original dataset. Because these properties have been set, the raster
will not be able to use its default settings either. This is because the
Raster is used by the RasterLayer to perform resampling, reprojection if
necessary, and data type conversion when needed.

The easiest way to access the unmodified Raster is to open a
RasterDataset based on the file path from the layer and use the
CreateDefaultRaster method to get the desired raster.

 IRasterLayer : ILayer Provides access to members that create or modify a raster
layer.

BandCount: Long Number of bands in the layer.
ColumnCount: Long Number of columns in the layer.
DataFrameExtent: IEnvelope Extent of the dataframe that contains the layer.
DisplayResolutionFactor: Long Display resolution factor.  Factor value is expressed as a percentage

between 0 and 100.
FilePath: String Filepath of the data source.
PrimaryField: Long Layer's primary field.
PyramidPresent: Boolean Indicates if pyramids are present for the layer.
Raster: IRaster Layer's Raster object.
Renderer: IRasterRenderer Layer's renderer.
RowCount: Long Number of rows in the layer.
ShowResolution: Boolean Indicates if the raster resolution should be displayed in the Table of

Contents.
VisibleExtent: IEnvelope Visible extent of the layer in the data frame.

CreateFromDataset (in RasterDataset:
IRasterDataset)

Creates a layer from a RasterDataset object.

CreateFromFilePath (in FilePath: String) Creates a layer from a file path to raster data.
CreateFromRaster (in Raster: IRaster) Creates a layer from a Raster object.

All of the raster-specific functionality of the RasterLayer is exposed
through the IRasterLayer interface.

Many properties accessed from the RasterLayer provide information
about the layer, including the number of rows, columns, and bands in
the raster; the full path of the source raster dataset; whether pyramids
are present; and the Raster object being used by this layer.

The user can also set some of the properties exposed on the
IRasterLayer interface.

The ShowResolution property controls whether the current display reso-
lution is listed in the table of contents next to the entry for the layer.

The VisibleExtent specifies a subset of the raster layer to be drawn,
which can speed the drawing of the layer.

The PrimaryField property controls the field that provides map tips and
the field that appears in the left pane of the Identify window. The

IAttributeTable
IClass

IConnectionPoint-
Container

IDataLayer
IDataLayer2

IDataset
IDisplayAdmin

IDisplayRelationship-
Class

IDisplayTable
IGeoDataset

IGeoReference
IIdentify

ILayer
ILayerDrawing-

Properties
ILayerEffects
ILayerEvents

ILayerExtensions
ILayerFields

ILayerInfo
ILayerPosition

ILegendInfo
IObjectClass

IPersistStream
IRasterLayer

IRelationshipClass-
Collection

IRelationshipClass-
CollectionEdit

ITable
ITableFields

ITableSelection

RasterLayer

The RasterLayer object is the raster
extension to the ArcMap object model

used for visualizing raster data.

RASTERLAYER COCLASS



1240 • Exploring ArcObjects • Volume 2

integer property value represents the column number of the selected
field, where the value field equals 1.

The Renderer property controls the renderer being used by the layer.
The raster renderers are instructions for how the data should be dis-
played; they are discussed next.

The RasterLayer must be initialized with data before it can be used.
When the layer is intialized, a default renderer is selected for the dataset
based on the number of bands, statistics, and whether a colormap or
other table exists for the data. Other internal properties of the layer are
also set at this time.

A raster layer can be initialized with a path to a disk-based raster
dataset, a Raster object, or a RasterDataset object.

This example shows how to create a RasterLayer from a file path, raster,
or raster dataset.

  ' Cocreate the new RasterLayer

  Dim pRasLyr as IRasterLayer

  Set pRasLyr = New RasterLayer

  ' Initialize one of the following three methods

  pRasLyr.CreateFromFilePath "D:\data\dem.bsq"

  pRasLyr.CreateFromDataset pRasterDataset

  pRasLyr.CreateFromRaster pRaster

RASTERLAYER COCLASS



Chapter 13 • Integrating raster data • 1241

R
as

te
r

The RasterRenderer is an abstract class that cannot be created or used
directly. All of its functionality is inherited by the four raster renderers;
the unique value, classified, and stretched renderers for single-band
data; and the RGB renderer for multiband data.

Each of these raster renderer types aggregates the functionality de-
scribed here. This means that although the interfaces here are not listed
in the object model diagram on the specific renderer classes, these
interfaces may be queried and used from each raster renderer.

 IRasterRenderer : IUnknown Provides acess to methods that define a generic raster
renderer.

DisplayResolutionFactor: Long Display resolution factor.  Factor value is expressed as a percentage
between 0 and 100.

Raster: IRaster Raster to be rendered.
ResamplingType: rstResamplingTypes Resampling method for displaying a raster.
Updated: Boolean Indicates whether the renderer requires updating.

CanRender (in Raster: IRaster) :
Boolean

Indicates if the raster can be rendered.

Copy (in pSource: IRasterRenderer) Selects a raster as the current copy object.
Draw (in Raster: IRaster, in drawPhase:

tagesriDrawPhase, in pDisplay:
IDisplay, in pTrackCancel:
ITrackCancel)

Draws the raster on the display.

Update Updates the renderer for any changes that have been made.

Use the IRasterRenderer interface to attach a new renderer to any raster
layer.

The ResamplingType property controls the resampling method used
when resampling the raster for display.

The DisplayResolutionFactor property gets or sets the raster display qual-
ity parameter. This value is expressed as a percentage from 0 to 100,
where 100 represents full raster quality and lower values select fewer
input values to be used to paint each display pixel. This results in a
drawing performance boost at the cost of display quality.

The Raster property controls the raster being displayed by the renderer.
Because the renderers depend on dataset statistics, after changing the
raster to be displayed, the Update method must be called before per-
forming using the renderer.

The Update method returns False if the raster has been changed since
the last update. The Update method should also be called after making
changes to the renderer but before assigning the renderer to a layer.

The CanRender method returns True if the input raster can be displayed
using the current renderer.

 IRasterDisplayProps : IUnknown Provides access to members that control the raster display
properties.

BrightnessValue: Long Brightness value for a raster.
ContrastValue: Long Contrast value for a raster.
NoDataColor: IColor Nodata color for a raster.
TransparencyValue: Long Transparency value for a raster.

The IRasterDisplayProps interface controls display properties common to
all raster renderers.

Raster-
Renderer

IDisplayAdmin
IIdentify

ILegendInfo
IPersistStream

IRasterDisplayProps
IRasterRenderer

The RasterRenderer object controls
how raster datasets are displayed.

RASTERRENDERER ABSTRACT CLASS



1242 • Exploring ArcObjects • Volume 2

The TransparencyValue, ContrastValue, and BrightnessValue properties
provide access to these properties of raster display.

The TransparencyValue value ranges from 0 to 100, with 0 representing
opaque and 100 representing fully transparent.

The ContrastValue and BrightnessValue properties range from -100 to
100, representing a percentage of increase or decrease in the property.

The NoDataColor property controls how NoData cells in your raster are
displayed. By default, NoData cells appear transparent.

RASTERRENDERER ABSTRACT CLASS



Chapter 13 • Integrating raster data • 1243

R
as

te
r

Continuous raster data can be displayed by stretching the values from
the dataset along a color ramp.

The color ramp to be used is divided into 256 segments, and a color is
obtained at each location in the ramp. The raster dataset is then reclassi-
fied into 256 classes, and each class is drawn with the corresponding
color in the palette. The stretched renderer is the default display for all
rasters in ArcGIS that contain more than 25 unique values.

 IRasterStretchColorRampRenderer :
 IUnknown

Provides access to members that control the color ramp of
a contrast stretch.

BandIndex: Long Index of the band to be rendered.
ColorRamp: IColorRamp Color ramp.
ColorScheme: String ColorScheme name.
LabelHigh: String Label for highest value.
LabelLow: String Label for lowest value.
LabelMedium: String Label for medium value.

ResetLabels Makes default labels.

The IRasterStretchColorRampRenderer interface controls the display of a
raster dataset stretched along a color ramp.

The BandIndex property specifies the band in the raster dataset to be
drawn. For single-band data, this should be 0, but with multiband data
any band may be selected.

The color ramp to be used can be specified using the ColorRamp prop-
erty. This color ramp is used to display the raster and appears in the
table of contents.

The ColorScheme property specifies the text name of the color scheme
from the style gallery displayed in the color ramp selection list on the
layer property page. The default is black to white.

The LabelHigh, LabelMedium, and LabelLow properties specify the text
that appears at the top, center, and bottom of the color ramp.

The ResetLabels method changes the labels to their original state, with the
center label empty and the top and bottom labels showing the maxi-
mum and minimum values in the dataset.

 IRasterStretch : IUnknown Provides access to members which control contrast
stretching.

Background: Boolean Indicates if a background value is being used.
BackgroundColor: IColor Background display color.
BackgroundValues: Double Indicates whether an array of background values is being used.
Invert: Boolean Indicates if the stretch is inverted.
StandardDeviationsParam: Double Standard deviation parameter for the stretch renderer.
StretchType:

tagesriRasterStretchTypesEnum
Current stretch type.

The IRasterStretch interface controls how the values in a band are
binned for display.

Data can be binned to the data range used for display in several ways.
This binning is controlled by the IRasterStretch interface. If no stretch is
applied, the data values from the full range of the data type, for ex-
ample, 0 to 255 for 8-bit unsigned, or -32,768 to 32,767 for 16-bit signed,

IRasterStretch
IRasterStretchColor-

RampRenderer
IRasterRenderer-

ClassInfo

RasterStretch-
ColorRamp-

Renderer

Raster-
Renderer

IDisplayAdmin
IIdentify

ILegendInfo
IPersistStream

IRasterDisplayProps
IRasterRenderer

The
RasterStretchColorRampRenderer

object stretches the values from the
dataset along a color ramp.

RASTERSTRETCHCOLORRAMPRENDERER COCLASS



1244 • Exploring ArcObjects • Volume 2

are divided into 255 classes, and each pixel in the input dataset is
placed in one of these classes.

With the standard deviation and min–max stretches, the range of values
that defines the classes is determined by the statistics of the dataset. For
the min–max stretch, the range from the minimum to the maximum
values of the dataset is used, while the standard deviation stretch uses
the mean value plus and minus a certain number of standard deviations
(two by default) to determine the bounds of the stretch.

The histogram equalization method does not divide the data range into
classes with the same interval; instead, it creates the classes so that each
class has approximately the same number of values.

Dataset statistics are required for many of these stretches, including
standard deviation, min–max, and histogram equalization, to work cor-
rectly. Statistics will be built automatically if one of these stretches is
selected. If no statistics exist for the dataset, no stretch is applied by
default; otherwise, a standard deviation stretch is applied.

The StretchType property controls the minimum and maximum values
between which the data is stretched using the stretch types discussed
above.

When using the standard deviation stretch, the StandardDeviationsParam
property controls the number of standard deviations from the mean used
to determine the minimum and maximum values for the stretch. The
default is two.

The Invert parameter flips the color ramp used to display the data so the
data is displayed with the colors inverted.

If one value in the dataset does not belong in the stretch, it may be
displayed as background. Background is different from NoData because
it is still a valid pixel value; it is simply displayed in a color that is not
determined by the stretch. If the Background property is True, the
BackgroundValues property specifies a value that can be displayed as
background.

The BackgroundColor property controls the color in which the back-
ground value is displayed. By default, the background is disabled but, if
enabled, the background defaults to the value 0 and is displayed
transparently.

 IRasterRendererClassInfo : IUnknown Provides access to members which contain info about
renderer classes.

ClassCount: Long Number of classes in the renderer.
ClassificationField: String Classification field name or an empty string if a table doesn't exist.

IsNumericClasses: Boolean Indicates if the classification field is numeric.
NormalizationField: String Normalization field name or an empty string if none.

QueryNumberClass (in ClassIndex: Long,
out MinValue: Double, out MaxValue:
Double, out outValue: Long)

Information for a number class by index.

QueryStringClass (in ClassIndex: Long,
out inValue: String, out outValue: Long)

Information for a string class by index.

The IRasterRendererClassInfo interface provides the ability to read
classification properties from each single-band renderer.

RASTERSTRETCHCOLORRAMPRENDERER COCLASS



Chapter 13 • Integrating raster data • 1245

R
as

te
r

While each of the single-band renderers produces different display
effects, each at some point must divide the input data into classes. The
unique value renderer creates a class for each value, the classified
renderer creates an arbitrary number of classes defined by the user, and
the stretched renderer divides the input data into 255 classes. The
IRasterRendererClassInfo interface provides the ability to read these
classes from each renderer through a common mechanism.

The ClassCount property returns the number of classes into which the
current renderer has divided the input data.

The ClassificationField returns the name of the field in the raster table that
is currently being rendered. If the raster has no table, the string is empty.

The NormalizationField property returns the field being used to normal-
ize the data being classified and an empty string if there is none.

The IsNumericClasses property returns True if the class is numeric and
False if the field is a string. The return value from this field determines
which of the Query methods should be used.

The QueryNumberClass method returns the minimum and maximum
values for the specified class, as well as the value to which any input
value in this range will be mapped.

The QueryStringClass method returns the input string and output value
to which the string will be mapped.

This example creates a stretched renderer and adds it to a raster layer.
   'Cocreate the new RasterLayer
  Dim pOutRasterLayer As IRasterLayer
  Set pOutRasterLayer = New RasterLayer
  pOutRasterLayer.CreateFromDataset pRasterDataset

 ' create the renderer and get the correct interface pointers
  Dim pRen As IRasterStretchColorRampRenderer
  Set pRen = New RasterStretchColorRampRenderer
  Dim pRasRen As IRasterRenderer
  Set pRasRen = pRen
  ' get the raster from the layer and update
  Set pRasRen.Raster = pOutRasterLayer.Raster
  pRasRen.Update
  ' create color ramp
  Dim pRamp As IAlgorithmicColorRamp
  Set pRamp = New AlgorithmicColorRamp
  pRamp.Size = 255
  Dim blTest As Boolean
  pRamp.CreateRamp blTest
  ' plug colorramp into the renderer and select a band
  pRen.BandIndex = 0
  pRen.ColorRamp = pRamp
  ' update the renderer with the new settings and plug into layer
  pRasRen.Update

  Set pOutRasterLayer.Renderer = pRen

RASTERSTRETCHCOLORRAMPRENDERER COCLASS



1246 • Exploring ArcObjects • Volume 2

The RasterUniqueValueRenderer is most commonly used for displaying a
dataset containing a colormap, such as a pseudocolor image. However,
it is also useful for categorical data, such as classification results, land
use type, or soil type. For this type of data, each value can be displayed
with a distinct color, which makes it easy to distinguish between the
classes. Multiple values can be displayed using the same color by com-
bining them into classes. The unique value renderer is the default ren-
derer used for all raster datasets with less than 25 unique values.

For documentation on IRasterRendererClassInfo, see the
RasterSketchColorRampRenderer coclass.

 IRasterUniqueValueRenderer :
 IUnknown

Provides access to members that relate to the unique value
rendering of rasters.

ClassCount (in iHeading: Long) : Long Number of classes in the specified heading.
ColorScheme: String Current renderer color scheme.
DefaultLabel: String Default label for the unique value renderer.
DefaultSymbol: ISymbol Default unique value renderer.
Description (in iHeading: Long, in

IClass: Long) : String
Description for a particular class in the specified heading.

Field: String Currently active renderer field.
Heading (in iHeading: Long) : String One heading in the heading list based on its index.
HeadingCount: Long Number of headings used by the renderer.
Label (in iHeading: Long, in IClass:

Long) : String
Label for a particular class in the specified heading.

Symbol (in iHeading: Long, in IClass:
Long) : ISymbol

Symbol for a particular class in the specified heading.

UseDefaultSymbol: Boolean Indicates whether the default unique value renderer is currently
active.

Value (in iHeading: Long, in IClass:
Long, in iValue: Long) : Variant

Value of a particular class in the specified heading based on its index.

ValueCount (in iHeading: Long, in
IClass: Long) : Long

Number of values in a particular class in the specified heading.

AddValue (in iHeading: Long, in IClass:
Long, in Value: Variant)

Adds a value to a particular class in the specified heading.

RemoveValues (in iHeading: Long, in
IClass: Long)

Removes a value from a particular class in the specified heading

The IRasterUniqueValueRenderer interface controls the display of rasters
in which each value is displayed in a unique color.

The unique value renderer allows you to create multiple groups of
values that can be separately used to display the raster. These values are
called headings. Each heading can contain one or more classes. Each
class consists of one or more values from the dataset and a symbol that
draws all values in the class. Most applications use only one heading
with multiple classes, and most classes contain only one value.

The HeadingCount property controls the number of headings used by
the renderer, and the Heading property specifies the name for each
heading.

The ClassCount property controls the number of classes in each heading.

The Symbol, Label, and Description properties are unique for each head-
ing and class.

The Symbol property controls the color used to display values in this class.

The Label for each class is displayed next to the symbol in the table of
contents.

IRasterUniqueValue-
Renderer

IRasterRenderer-
ClassInfo

RasterUnique-
Value-

Renderer

Raster-
Renderer

IDisplayAdmin
IIdentify

ILegendInfo
IPersistStream

IRasterDisplayProps
IRasterRenderer

The RasterUniqueValueRenderer
object displays each value in a raster

dataset with a different color.

RASTERUNIQUEVALUERENDERER COCLASS



Chapter 13 • Integrating raster data • 1247

R
as

te
r

The Description property controls a name that can be used when creat-
ing a legend for the raster.

The ValueCount property returns the number of values in a particular
class, and the Value property returns a specific value from a class.

The AddValue method inserts a new value in the specified class.

The RemoveValues method removes all values from the input class.

The Field property controls the field in the raster’s table that provides the
values that are associated with symbols. By default, the value field is
used. Any values that are not associated with any class are considered
default values.

If the UseDefaultSymbol property is False, the default values are dis-
played transparently. If this property is True, the DefaultSymbol property
controls the symbol used to display these values, and the DefaultLabel is
displayed next to the symbol in the table of contents.

The ColorScheme property selects a color scheme from the style gallery
to be displayed in the property page of the renderer.

This example provides a VBA macro that takes the first layer in a map, if
it is a raster layer, and changes the renderer to unique values. This
macro works best for 8-bit unsigned data where the data values all fall
within the range of 0 to 255.

Sub ChangeRendererToUV()

   Dim m_pMXdoc As IMxDocument

   Dim pRasLyr As IRasterLayer

   Set m_pMXdoc = ThisDocument

   Set pRasLyr = m_pMXdoc.FocusMap.Layer(0)

   Dim pUVRen As IRasterUniqueValueRenderer

   Set pUVRen = New RasterUniqueValueRenderer

   Dim pRen As IRasterRenderer

   Set pRen = pUVRen

   Set pRen.Raster = pRasLyr.Raster

   pRen.Update

   Dim pColor As IRgbColor

   Set pColor = New RgbColor

   Dim pSym As IColorSymbol

   pUVRen.HeadingCount = 1

   pUVRen.Heading(0) = "All Data Values"

   pUVRen.ClassCount(0) = 255

   Dim i As Long

   For i = 0 To 255 - 1

     pUVRen.AddValue 0, i, i

     pUVRen.Description(0, i) = "Desc" & CStr(i)

     pUVRen.Label(0, i) = "Label" & CStr(i)

RASTERUNIQUEVALUERENDERER COCLASS



1248 • Exploring ArcObjects • Volume 2

RASTERUNIQUEVALUERENDERER COCLASS

     pColor.Red = i

     pColor.Blue = 255 - i

     pColor.Green = i * i Mod 255

     Set pSym = New ColorSymbol

     pSym.Color = pColor

     pUVRen.Symbol(0, Int(i / 10)) = pSym

   Next i

   ' Set up a display symbol for values not in any class

   pUVRen.UseDefaultSymbol = True

   pUVRen.DefaultLabel = "Defaults"

   Set pUVRen.DefaultSymbol = pSym

   ' update the renderer and plug into layer

    pRen.Update

   Set pRasLyr.Renderer = pRen

End Sub



Chapter 13 • Integrating raster data • 1249

R
as

te
r

The RasterClassifyColorRampRenderer visualizes a raster as a set of
classes. Each class is displayed using a unique color. Each class con-
tains one or more values from within the raster. This renderer allows
you to control the way the raster is split into classes and determine the
color used to paint each class to the screen.

For a description of the IRasterRendererClassInfo interface, see the
RasterStretchColorRampRenderer coclass.

 IRasterClassifyColorRampRenderer :
 IUnknown

Provides access to members that relate to the classified
rendering of rasters.

Break (in Index: Long) : Double Break at the index.
ClassCount: Long Number of classes.
ClassField: String Field this renderer is using.
Description (in Index: Long) : String Description for the class at the given index.
Label (in Index: Long) : String Label for the class at the given index.
NormField: String Normalization field this renderer is using.
SortClassesAscending: Boolean Sort direction for the legendClass labels.
Symbol (in Index: Long) : ISymbol Symbol representing the class at the index.

The IRasterClassifyColorRampRenderer controls the classes used by the
renderer and how they are displayed.

The ClassField property determines the field of the raster on which the
classification will be performed. With the NormField property, you may
optionally specify another field by which the class field will be divided
before the classes are determined. The ClassField and NormField must
be numeric. By default, the ClassField is Value and the NormField is
empty.

The ClassCount property controls the number of classes into which the
dataset is divided. The rest of the properties are specific to each class.

The Break property determines the value that separates one class from
the next.

The Label for each class is displayed next to the symbol in the table of
contents.

The Description property specifies a string that can be used when creat-
ing a legend for the raster.

The Symbol property controls the color used to display values in this class.

 IRasterClassifyUIProperties : IUnknown Provides access to members that control the classification
properties in the UI.

ClassificationMethod: IUID Classification method.
ColorRamp: String Color ramp name.
DeviationInterval: Double Deviation interval. Range is 0 to 1 where 0 means no deviation is

used.
NumberFormat: INumberFormat Number format for labels.
ShowClassGaps: Boolean Indicates if gaps between classes are shown.

The IRasterClassifyUIProperties interface controls the properties that
appear in the Classification dialog box of the raster property page.

The ClassificationMethod controls the classification method used to divide
the dataset into classes. The default is a natural breaks classification.

IRasterClassifyColor-
RampRenderer

IRasterClassify-
UIProperties

IRasterDataExclusion
IRasterRenderer-

ClassInfo

RasterClassify-
ColorRamp-

Renderer

Raster-
Renderer

IDisplayAdmin
IIdentify

ILegendInfo
IPersistStream

IRasterDisplayProps
IRasterRenderer

The
RasterClassifyColorRampRenderer

object draws a raster by dividing the data
into groups and assigning a specific color

to each group.

RASTERCLASSIFYCOLORRAMPRENDERER COCLASS



1250 • Exploring ArcObjects • Volume 2

This must be specified as a ClassID of the classification coclass. This
can be obtained by performing QI for the IClassify interface on any of
the coclasses that support IClassify, then passing the ClassID property to
the ClassificationMethod property of the renderer.

If the ClassificationMethod is standard deviation, the DeviationInterval
property determines the number of standard deviations that separate
each class.

The ColorRamp property controls the name of the color scheme from
the style gallery that is selected in the dropdown list on the raster prop-
erty page.

The NumberFormat property passes an object supporting the
INumberFormat interface, which controls how the data values are for-
matted in the Classification dialog box.

If ShowClassGaps is True, neighboring classes that have gaps between
them will have classification boundaries that do not visibly match
through the user interface.

 IRasterDataExclusion : IUnknown Provides access to members that exclude data values from
classification.

ExcludeColor: IColor Color for the excluded values.
ExcludeDescription: String Description for the excluded values.
ExcludeLabel: String Label for the excluded values.
ExcludeRanges: Variant Array of doubles indicating the excluded ranges.
ExcludeShowClass: Boolean Indicates if color is shown for the excluded values.
ExcludeValues: Variant Array of doubles indicating the excluded values.

The IRasterDataExclusion interface controls the display of values that
are not in any class.

The ExcludeValues property allows you to select the value or values that
will not be included in any class.

The ExcludeRanges property specifies a range of values to exclude.

The ExcludeShowClass property determines whether this class will ap-
pear in the table of contents with the rest of the classes.

The ExcludeColor property controls the color with which any excluded
values will be displayed. The different display for excluded values is
black.

The ExcludeLabel and ExcludeDescription properties determine the labels
used for this class in the table of contents and the legend.

This example shows how to change the renderer of a raster layer to the
classified renderer.

  'Cocreate the new RasterLayer

  Dim pOutRasterLayer As IRasterLayer

  Set pOutRasterLayer = New RasterLayer

  pOutRasterLayer.CreateFromDataset pRasterDataset

  ' create the renderer and QI for both interfaces

  Dim pRen As IRasterClassifyColorRampRenderer

RASTERCLASSIFYCOLORRAMPRENDERER COCLASS



Chapter 13 • Integrating raster data • 1251

R
as

te
r

RASTERCLASSIFYCOLORRAMPRENDERER COCLASS

  Set pRen = New RasterClassifyColorRampRenderer

  Dim pRasRen As IRasterRenderer

  Set pRasRen = pRen

  ' get the raster from the layer and update

  Set pRasRen.Raster = pOutRasterLayer.Raster

  pRen.ClassCount = 3

  pRasRen.Update

  ' create a color ramp to use

  Dim pRamp As IAlgorithmicColorRamp

  Set pRamp = New AlgorithmicColorRamp

  pRamp.Size = pRen.ClassCount

  Dim blOk As Boolean

  pRamp.CreateRamp blOk

  ' create the symbol for this class

  Dim pSym As IColorSymbol

  Set pSym = New ColorSymbol

  ' loop through the classes and apply the correct color and label

  Dim i As Integer

  For i = 0 To pRen.ClassCount - 1

   ' the color does not need to be set from a ramp,

   ' and may be specified as desired

   ' must provide symbol not color to the renderer

   pSym.Color = pRamp.Color(i)

   pRen.Symbol(i) = pSym

   pRen.Label(i) = "Label" & CStr(i)

  Next i

  ' update the renderer and plug into layer

  pRasRen.Update

  Set pOutRasterLayer.Renderer = pRen



1252 • Exploring ArcObjects • Volume 2

An RGB composite is a raster displayed using three bands of a dataset
where each band is painted to a different display channel. Each band is
stretched to fit in the display range for that channel, then the three bands
are displayed together, resulting in what is known as a true color display.

The RGB renderer is only available for rasters that contain three or more
bands. Any band of the dataset can be selected for each display channel,
and one band can be displayed in more than one display channel. Dis-
playing one band to the red, green, and blue channels simultaneously is
like using a stretch of the same band from black to white, as equal values
of red, green, and blue correspond to shades of gray.

The only customizations that can be performed with this renderer are
adjusting the stretch for each band and changing which band is dis-
played in which channel.

 IRasterRGBRenderer : IUnknown Provides access to members which control the raster Red/
Green/Blue renderer.

BlueBandIndex: Long Band to be represented in blue.
GreenBandIndex: Long Band to be represented in green.
RedBandIndex: Long Band to be represented in red.
UseBlueBand: Boolean Indicates if the blue band is used.
UseGreenBand: Boolean Indicates if the green band is used.
UseRedBand: Boolean Indicates if the red band is used

QueryBandIndices (out redIndex: Long,
out greenIndex: Long, out blueIndex:
Long)

Band numbers for red, green, and blue bands.

SetBandIndices (in redIndex: Long, in
greenIndex: Long, in blueIndex: Long)

Band numbers for red, green, and blue bands.

The IRasterRGBRenderer interface controls how raster bands are drawn
in each display channel.

The RedBandIndex, BlueBandIndex, and GreenBandIndex properties
control which band is displayed in each display channel.

The BandIndex is zero based, with a value of zero representing band
one, a value of one representing band two, and so on. Each channel
can be set to display or not display using the UseRedBand,
UseGreenBand, and UseBlueBand properties.

To check or set the band indices for all three bands with one call, use
the QueryBandIndices or SetBandIndices functions.

 IRasterStretch : IUnknown Provides access to members which control contrast
stretching.

Background: Boolean Indicates if a background value is being used.
BackgroundColor: IColor Background display color.
BackgroundValues: Double Indicates whether an array of background values is being used.
Invert: Boolean Indicates if the stretch is inverted.
StandardDeviationsParam: Double Standard deviation parameter for the stretch renderer.
StretchType:

tagesriRasterStretchTypesEnum
Current stretch type.

The IRasterStretch interface controls how the values in a band are
binned for display.

The data from each band can be binned to the data range used for
display in several ways. This binning is controlled by the IRasterStretch
interface.

IRasterRGBRenderer
IRasterStretch RasterRGB-

Renderer

Raster-
Renderer

IDisplayAdmin
IIdentify

ILegendInfo
IPersistStream

IRasterDisplayProps
IRasterRenderer

An RGB renderer draws three bands of a
raster dataset, one to each of the red,

green, and blue channels of the display.

RASTERRGBRENDERER COCLASS



Chapter 13 • Integrating raster data • 1253

R
as

te
r

If no stretch is applied, the data values from the full range of the data
type, for example, 0 to 255 for 8-bit unsigned or -32,768 to 32,767 for
16-bit signed, are divided into 255 classes, and each pixel in the input
dataset is placed in one of these classes.

With the standard deviation and min–max stretches, the range of values
that defines the classes is determined by the statistics of the dataset. For
the min–max stretch, the range from the minimum to the maximum
values of the dataset is used, while the standard deviation stretch uses
the mean value plus and minus a certain number of standard deviations
(two by default) to determine the bounds of the stretch.

The histogram equalization method does not divide the data range into
classes with the same interval; instead, it creates the classes so that each
class has approximately the same number of values.

Dataset statistics are required for many of these stretches, including
standard deviation, min–max, and histogram equalization, to work cor-
rectly. Statistics will be automatically built if one of these stretches is
selected. If no statistics exist for the dataset, no stretch is applied by
default; otherwise, a standard deviation stretch is applied.

The StretchType property controls the minimum and maximum values
between which the data is stretched using the stretch types discussed
above.

When using the standard deviation stretch, the StandardDeviationsParam
property controls the number of standard deviations from the mean
used to determine the min and max values for the stretch. The default is
two.

The Invert parameter flips the color ramp used to display the data so the
data is displayed with the colors inverted.

If one value in the dataset does not belong in the stretch, it may be
displayed as background. Background is different than NoData because
it is still a valid pixel value; it is simply displayed in a color that is not
determined by the stretch. For a pixel to appear as background, the
values for the pixel in each of the red, green, and blues bands must
match the specified background value.

If the Background property is True, the BackgroundValues property
specifies a value that can be displayed as background.

The BackgroundColor property controls the color in which the back-
ground value is displayed. By default, the background is disabled but, if
enabled, the background defaults to the value 0 and is
displayed transparently.

RASTERRGBRENDERER COCLASS



1254 • Exploring ArcObjects • Volume 2

The RasterRendererMakerDefault object is used by the system to deter-
mine the default renderer used to display a raster. The default renderer
is used when a raster is initially added to ArcMap or ArcScene or the
raster is displayed in ArcCatalog. The renderer can later be changed in
ArcMap and ArcScene but is not adjustable within ArcCatalog. Custom
renderer-maker objects can be created if you wish to use different ren-
derer defaults than those provided by this object. This object can be
cocreated to see which renderer will be used by default for any Raster
object.

 IRasterRendererMaker : IUnknown Provides access to members that can determine the default
display of a raster dataset.

Priority: Long Controls the order in which renderer makers are selected.  Higher
priority renderer makers are called first.

CreateDefaultRasterRenderer (in
pRaster: IRaster) : IRasterRenderer

Returns the raster renderer which should be used for the default
display of the input raster.

The IRasterRendererMaker interface controls the renderer used to display
a raster upon initial display.

The priority method returns the priority of this renderer maker relative to
others in the system. Renderer makers are called with decreasing priority
until a renderer is provided for a raster. As soon as a renderer is re-
turned, the priority of the RasterRendererMakerDefault is 0. The
CreateRasterDefaultRenderer method returns the renderer that will be
used by default for the input raster.

To create your own raster renderer maker, implement the
IRasterRendererMaker interface in an object and register this renderer-
maker object with the Raster Renderer Makers component category. If
the priority returns a value greater than 0, this renderer will have the
ability to provide a renderer before the system default. For rasters for
which you wish to use the system default, return Null instead of a valid
renderer. If no renderer is returned from this renderer maker, the raster
will be passed to the next highest priority until a renderer is created.
This allows you to specify multiple custom rendering combinations that
can be used with different priority levels. The default renderer maker
will create a renderer for any raster dataset.

RASTERRENDERERMAKERDEFAULT COCLASS

IRasterRendererMaker Raster-
Renderer-

MakerDefault

The RasterRendererMakerDefault
object determines the renderer used to

display a raster by default.



Chapter 13 • Integrating raster data • 1255

R
as

te
r

Because raster data has no explicit boundaries between cells, each
value is frequently symbolized using a color. The ColorSymbol coclass
allows you to provide this color for the RasterStretchColorRampRenderer,
RasterUniqueValueRenderer, and RasterClassifyColorRampRenderer. Ex-
amples of how to use the ColorSymbol object are shown in each of
these renderers.

 IColorSymbol : IFillSymbol Provides access to members that control the color symbol.

Color: IColor Fill color.
Outline: ILineSymbol Line symbol of fill outline.

The IColorSymbol interface controls a color used to display a value in a
raster dataset.

The IColorSymbol allows you to control the way values in a raster are
drawn.

The Color property controls the ESRI color object (typically RGBColor or
GrayColor) used for display.

The Outline property allows you to specify a LineSymbol that will display
around the boundary of the data. For raster data, this property
is ignored.

COLORSYMBOL COCLASS

IClone
IColorSymbol

IFillSymbol
IMapLevel

IPersistStream
IPropertySupport

ISymbol

ColorSymbol

A ColorSymbol object specifies a color
to be displayed by a raster renderer.



1256 • Exploring ArcObjects • Volume 2

Formerly known as an image catalog, a raster catalog is a table in any
supported table format (including INFO, dbf, access, text, and others)
that contains a list of raster datasets and their geographic extents. This
table allows the list of datasets contained in the table to be displayed as
a single entity.

The first five columns of the table must be called “Image”, “Xmin”,
“Ymin”, “Xmax”, and “YMax” for the table to be identified as a raster
catalog. The first column contains the path to a dataset on disk, while
the next four contain the bounding box around the dataset. Additional
fields in the table are allowed but will have no effect on the display of
the raster catalog.

 IRasterCatalogTable : IUnknown Provides access to members that control a raster catalog
table.

FieldBoundsLocation (out pLocXmin:
Long, out pLocYmin: Long, out
pLocXmax: Long, out pLocYMax:
Long)

Bounds of the field location of the raster catalog.

FieldNameLocation (out pLocName:
Long)

Location of the field name of the raster catalog.

OID (in idx: Long) : Long OID of the ith raster in the raster catalog.
RasterDataset (in idx: Long) :

IRasterDataset
Reference to the ith raster dataset in the raster catalog.

RasterExtent (in idx: Long) : IEnvelope Extent of the ith raster in the catalog.
RasterName (in idx: Long) : String Name of the ith raster in the raster catalog.
Size: Long Number of rasters in the raster catalog.
Table: ITable The table object underlying the raster catalog table.
WhereClause: String A SQL expression limiting the list of rasters currently viewed.

Update Updates the object after the table is changed.

The IRasterCatalogTable interface supports all the functionality of the
RasterCatalogTable.

The RasterCatalogTable object allows you to access information about a
raster catalog including the extent and name for each dataset in the
catalog and the number of datasets (Size) and Extent of the entire
RasterCatalog.

You can also provide a table in the correct format to be used as the
RasterCatalogTable. You must call the Update method after putting a
table in the RasterCatalogTable.

Finally, the RasterCatalogTable allows you to specify an SQL
WhereClause to be applied to the table to limit the rasters currently
being viewed using a logical query.

The following example shows how to take a raster catalog table that has
been opened as a Table object and turn it into a RasterCatalogTable. If
the first five fields of the table do not identify the table as a raster cata-
log, an error will occur.

  Dim pRasCatTbl as IRasterCatalogTable

  Set pRasCatTbl = New RasterCatalogTable

  ' Insert the Table into the RasterCatalog and update

  Set pRasCatTbl.Table = pTable

  pRasCatTbl.Update

  MsgBox "There are " & pRasCatTbl.Size & " rasters in the raster catalog."

IGeoDataset
IRasterCatalogTable Raster-

CatalogTable

A RasterCatalogTable object is a table
that contains multiple raster datasets
that can be viewed as a single entity.

RASTERCATALOGTABLE COCLASS

The spatial reference for the raster catalog is
taken from the first raster present in the raster

catalog.



Chapter 13 • Integrating raster data • 1257

R
as

te
r

A RasterCatalogLayer contains a RasterCatalogTable and instructions on
how to display that table.

The RasterCatalogLayer provides raster-specific functionality and sup-
ports generic layer functionality required for these layers to behave like
other layer types. Only the raster-specific behavior is discussed in this
section. The default renderer for the raster catalog is taken from the first
raster present in the table.

 IRasterCatalogLayer : ILayer Provides access to members that create or modify a raster
catalog.

CatalogTable: IRasterCatalogTable Raster catalog table.
DisplayRasters: Long Indicates whether to display rasters.
PrimaryField: Long Layer's primary field.
Renderer: IRasterRenderer Layer's RasterRenderer.
Symbol: ISymbol Layer's symbol.

Create (in pCatalog:
IRasterCatalogTable)

Creates a raster catalog layer.

The RasterCatalogLayer provides all of its raster-specific functionality
through the IRasterCatalogLayer interface.

The main function of the RasterCatalogLayer is to provide a drawing
mechanism for a RasterCatalogTable.

This RasterCatalogTable can be retrieved from the layer using the
CatalogTable property.

To place a new catalog in the layer, the Create method, which provides
some dataset-specific layer initialization, must be used.

The DisplayRasters property specifies the threshold, in raster datasets, of
how many datasets must be visible for the pixel data to be drawn.

If too many datasets are within the display extent, a wire frame will
show the bounding box of each raster dataset with the name of the
dataset. The symbol used in wire frame drawing mode can be con-
trolled using the Symbol property, and the renderer used in raster draw-
ing mode can be controlled using the Renderer property.

The following sample shows how to set the renderer used for a raster
catalog table from the renderer used on one dataset contained in the
catalog. This VBA code must be added to a map document before it
can be used. Then, add a raster catalog layer and any single raster
contained in the catalog. Move the catalog below the raster layer in the
table of contents, then adjust the renderer on the raster layer to the
renderer you wish to apply to the catalog. Finally, run this script and the
renderer of the raster layer will be applied to the raster catalog.

Sub ChangeCatalogSymbology()

  ' Reference the current document

  Dim m_pMxDoc As IMxDocument

  Set m_pMxDoc = ThisDocument

  ' Get a reference to the raster layer

  Dim pRasLyr As IRasterLayer

  Set pRasLyr = m_pMxDoc.FocusMap.Layer(0)

IConnectionPointLayer
IDataLayer

IDataLayer2
IDisplayAdmin

IGeoDataset
IIdentify

ILayer
ILayerDrawing-

Properties
ILayerEffects
ILayerEvents

ILayerExtensions
ILayerInfo

ILayerPosition
ILegendInfo

IPersistStream
IRasterCatalogLayer

Raster-
Catalog-

Layer

A RasterCatalogLayer object displays
raster catalogs.

RASTERCATALOGLAYER COCLASS



1258 • Exploring ArcObjects • Volume 2

  ' Get a reference to the raster catalog layer

  Dim pCatLyr As IRasterCatalogLayer

  Set pCatLyr = m_pMxDoc.FocusMap.Layer(1)

  ' Set the catalog's renderer from the individual layer

  Set pCatLyr.Renderer = pRasLyr.Renderer

  ' Refresh the display

  m_pMxDoc.ActiveView.Refresh

End Sub

RASTERCATALOGLAYER COCLASS



Chapter 13 • Integrating raster data • 1259

R
as

te
r

Multiresolution Seamless Image Database (MrSID®) is a proprietary raster
format that uses wavelet compression and can provide compression
ratios greater than 50 to 1. This compression algorithm provides lossy
compression and as such should not be used for data that will be used
for analysis later.

The SidEncoder can encode single files of up to 50 MB uncompressed
for no additional cost. To mosaic multiple datasets or encode datasets
larger than 50 MB, you must purchase an additional license from your
ESRI distributor.

 IRasterEncoder : IUnknown Provides access to members that control the
RasterEncoder.

BandIndices: Variant The input raster band indices.
BlackValue: Double The minimum sample value for background and transparent pixels.
Datasets: IGxObjectArray The input raster datasets.
EncodingRatio: Single The encoding ratio.
NoDataValues: Variant The NoData values.
OutputBandCount: Long The number of bands of the output.
TransparentValues: Variant The transparent values.
WhiteValue: Double The maximum sample value for background and transparent pixels.

CanEncode:
tagesriRasterCanEncodeResult

Returns evaluation result whether the input raster can be encoded.

Encode (in FileName: String, in
Workspace: IWorkspace)

Performs the encoding process and output the encoded raster to the
specified filename.

The IRasterEncoder interface controls the settings and process of creat-
ing new raster datasets.

The SidEncoder has a number of properties that may be set to specify
the properties desired for the dataset to be encoded; it also has one
method, Encode. Once the desired properties have been set (Datasets is
the only required property), calling the Encode method produces a new
MrSID dataset.

The Datasets property controls the raster or set of rasters as an
IGxObjectArray, which represents the datasets to be compressed into
MrSID format. The encoding ratio property can be used to specify the
desired compression ratio.

The following code allows the user to select a raster dataset from the
Gx Browser, which will be compressed into a new MrSID archive.

  ' Create the GxDialog and filter to display only rasters

  Dim pGXDlg As IGxDialog

  Set pGXDlg = New GxDialog

  Dim pGxRasterFilter As IGxObjectFilter

  Set pGxRasterFilter = New GxFilterRasterDatasets

  Set pGXDlg.ObjectFilter = pGxRasterFilter

  pGXDlg.Title = "Select Raster Dataset"

  pGXDlg.AllowMultiSelect = False

  ' Display the dialog to allow the user to select datasets

  Dim pEnumGxObj As IEnumGxObject

  pGXDlg.DoModalOpen 0, pEnumGxObj

  ' Place the GxObjects into an array to put into the SidEncoder

IRasterEncoder
ISupportErrorInfo SidEncoder

The SidEncoder object compresses one
or more raster datasets into MrSID

format.

SIDENCODER COCLASS



1260 • Exploring ArcObjects • Volume 2

SIDENCODER COCLASS

  Dim pGxCatalog As IGxCatalog

  Set pGxCatalog = pGXDlg.InternalCatalog

  Dim pArr As IGxObjectArray

  Set pArr = New GxObjectArray

  Dim i As Integer

  For i = 1 To pGxCatalog.Selection.count

    pArr.Insert 0, pGxCatalog.Selection.SelectedObjects.Next

  Next i

  ' Set the datasets and encode the new MrSID dataset

  Dim pSid As IRasterEncoder

  Set pSid = New SidEncoder

  pSid.Datasets = pArr

  pSid.Encode "test.sid", SetRasterWorkspace("c:\temp")



Chapter 13 • Integrating raster data • 1261

R
as

te
r

This object allows you to provide a Gx Browser to the end user, who
can select one or more raster datasets. No other dataset types will be
shown when this filter is used. The only interface supported by this
object is the generic IGxObjectFilter interface.

This example shows how to create a GxDialog to allow the user to select
one or more raster datasets.

  ' Create the GxObject Filter

  Dim pGxRasterFilter As IGxObjectFilter

  Set pGxRasterFilter = New GxFilterRasterDatasets

  ' Create the ArcCatalog MiniBrowser

  Dim pGXDlg As IGxDialog

  Set pGXDlg = New GxDialog

  ' Assign the Filter to the MiniBrowser and show a correct title

  Set pGXDlg.ObjectFilter = pGxRasterFilter

  pGXDlg.Title = "Select Raster Dataset"

  Dim pEnumObj As IEnumGxObject

  ' Open the MiniBrowser and allow user to select dataset or datasets

  If pGXDlg.DoModalOpen(0, pEnumObj) Then

   ' Process user selected objects in the enumeration here

  End If

IGxObjectFilter GxFilter-
Raster-

Datasets

The GxFilterRasterDatasets object
displays only raster datasets from the

Gx Browser.

GXFILTERRASTERDATASETS COCLASS



1262 • Exploring ArcObjects • Volume 2

The DblPnt object is used by raster objects, including the Raster, Raster-
Band, and PixelBlock, to specify coordinates or extent information.

 IPnt : IUnknown Provides access to members that control a portable point.

X: Double X coordinate of the point.
Y: Double Y coordinate of the point.

Convert2Point (in env: IPoint) Set ESRI's Point Object from Pnt.
Set2Point (in env: IPoint) Reset from ESRI's Point Object.
SetCoords (in X: Double, in Y: Double) Set X and Y coordinates of the point.

The IPnt interface provides the ability to get and set point coordinates
and convert to a Point object.

The X and Y properties allow you to get or set the coordinates of the
point individually, while the SetCoords method allows you to set
the x,y coordinates with a single call.

The ConvertToPoint method sets the coordinates of the input point
object to those of the DblPnt, while the Set2Point method sets the coor-
dinates of the DblPnt to those of the input Point.

This example uses a DblPnt to specify the size of a PixelBlock to be
created by a Raster.

   ' Create the new DblPnt object

   Dim pPnt As IPnt

   Set pPnt = New DblPnt

   pPnt.SetCoords 512,512

   ' create a new PixelBlock from an existing raster

   Dim pPix As IPixelBlock

   Set pPix = pRaster.CreatePixelBlock(pPnt)

IPnt

DblPnt

A DblPnt object represents a point.

DBLPNT COCLASS



Chapter 13 • Integrating raster data • 1263

R
as

te
r

The RasterSDELoader creates new raster datasets in ArcSDE and controls
the loading and mosaicing of data into these datasets.

At ArcGIS 8.1, raster data is not supported in personal geodatabases and
can only be loaded into ArcSDE databases using Oracle®, SQL Server,
Informix, and DB2.

The RasterSDELoader can control the projection, tile size, tuning param-
eters, and other properties of datasets being created. It also provides the
ability to overwrite all or part of the dataset as well as to delete datasets.
Rasters in any format supported in ArcGIS can be loaded into a
database.

 IRasterSdeConnection : IUnknown RasterSDE Connection object.

database: String The database name.
InputBitMaskName: String The input 1-bit raster dataset name to be used as mask.
InputRasterName: String The input raster dataset name.
instance: String The server instance.
Password: String The password.
SdeConnection: IGxDatabase Sets SDE Connection through GxDatabase object.
SdeRasterName: String The output raster dataset name.
SdeWorkspaceName:

IWorkspaceName
Sets SDE Connection through WorksapceName object.

ServerName: String The server name.
UserName: String The username.

The IRasterSDEConnection interface defines the connection information
for the ArcSDE database server.

Database connection information is needed for the RasterSDELoader to
communicate with a database server. There are three ways to specify
this connection: a WorkspaceName object, a GxDatabase, or the connec-
tion properties for the database.

The SdeConnection property allows you to specify a GxDatabase object,
which can be retrieved from ArcCatalog containing the connection
properties.

The SdeWorkspaceName property lets you specify the connection using
a WorkspaceName object that contains the connection information.

To connect without using a WorkspaceName or GxDatabase object, the
ServerName, Instance, UserName, Password, and Database properties
must be specified.

The ServerName property accesses the name of the server that contains
the database.

The Instance is the name of the instance used by the database.
Typically, this is the port number.

The Database property specifies the name of the database and is not
required for Oracle databases.

The UserName and Password properties control the access privileges to
the database. If the UserName and Password do not match, or the ac-
count does not have sufficient rights on the server, loading raster data
into ArcSDE will be unsuccessful.

IRasterSdeConnection
IRasterSdeServer-

Operation
IRasterSdeStorage

ISupportErrorInfo

Raster-
SdeLoader

The raster ArcSDE loader object controls
raster data loading in an ArcSDE

database.

RASTERSDELOADER COCLASS



1264 • Exploring ArcObjects • Volume 2

The InputRasterName specifies the full path to the raster that is to be
loaded into the database.

The InputBitMaskName specifies the full path to an optional mask
dataset. If a mask is specified, any cells containing a 1 will be inserted
from the input raster into the dataset, and any cells containing 0 in the
mask raster will not be inserted.

The SDERasterName property controls the name of the raster in the
database.

 IRasterSdeStorage : IUnknown RasterSDE Storage object.

CompressionType:
tagesriRasterSdeCompressionTypeEn
um

The compression type.

keyword: String The keyword.
MosaicingTolerance: IPoint The mosaicing tolerance.
PyramidOption:

tagesriRasterSdePyramidOptEnum
The option for building pyramid.

PyramidResampleType:
rstResamplingTypes

The resampling method.

SpatialReference: ISpatialReference The SpatialReference.
TileHeight: Long The tile height.
TileWidth: Long The tile width.

The IRasterSDEStorage interface controls the properties of the raster
dataset in ArcSDE.

The IRasterSDEStorage interface allows you to set parameters used by
the new SDE raster dataset. Specify any of the properties that you desire
before creating a raster because once the raster has been created, these
properties cannot be changed.

The CompressionType property selects the compression type used for the
new dataset. At ArcGIS 8.1, only LZ77 compression is supported. By
default, the data is uncompressed.

The PyramidOption property specifies how pyramids will be built. Pyra-
mids will be built by default.

The PyramidResampleType determines which resampling method will be
used to compute the pyramids. For categorical data, nearest neighbor
resampling is best, while for continuous data, bilinear interpolation or
cubic convolution are appropriate.

The SpatialReference property determines the coordinate system that will
be defined for the new raster. Rasters inserted into the database will not
be reprojected during loading.

The TileHeight and TileWidth properties determine the size of the stor-
age block inserted into the database. The default tile size is 128 x 128.

The Keyword property allows you to specify a configuration keyword in
a dbtune file to optimize the performance of your database for raster
retrievals.

The MosaicingTolerance property specifies the offset between the output
raster cell corners and input raster cell corners. By default, the tolerance

RASTERSDELOADER COCLASS



Chapter 13 • Integrating raster data • 1265

R
as

te
r

is 0, which means that if the input raster is not perfectly aligned with the
output raster in x and y, data loading will fail. At ArcGIS 8.1, this prop-
erty has no effect.

 IRasterSdeServerOperation : IUnknown RasterSDE Operation object.

BuildPyramids Instructs Raster SDE Server to build pyramid layers based on the
defined storage properties.

ComputeStatistics Computes statistics on a raster SDE.
Create Creates a raster dataset on an SDE server.
Delete Deletes raster dataset from SDE server.
Mosaic Instructs Raster SDE Server to mosaic data based on the defined

storage properties.
Update Updates properties of raster dataset on SDE server.

The IRasterSDEServerOperation interface controls the operation of an
ArcSDE session that modifies raster data in an ArcSDE database.

The Create method creates a new ArcSDE raster dataset in the dataset.

The ComputeStatistics and BuildPyramids methods create the ancillary
data that is associated with the dataset.

The Delete method deletes the current raster dataset from the database.

The Mosaic method mosaics a new raster into an existing dataset.

The Update method replaces an existing raster with the current input
raster.

The following example uses an ArcSDE connection to create a new
ArcSDE raster dataset with pyramids and statistics using the default
storage properties.

  Dim pSDEConn As IRasterSdeConnection

  Dim pSDEOperation As IRasterSdeServerOperation

  Set pSDEConn = New RasterSdeLoader

  pSDEConn.InputRasterName = "d:\data\dem"

  pSDEConn.SdeRasterName = "raster.dataset"

  pSDEConn.SDEWorkspaceName = pInSDEWorkspaceName

  Set pSDEOperation = pSDEConn

  pSDEOperation.Create

  pSDEOperation.ComputeStatistics

RASTERSDELOADER COCLASS



1266 • Exploring ArcObjects • Volume 2

The FormatList object contains information about all available raster
formats. It can be used to access this information or to check if a par-
ticular file is a raster and determine its format.

This object will provide information about all native formats and any
formats that have been added to ArcMap by external developers. For-
mats that have multiple possible file extensions may appear more than
once in this list.

 IFormatList : IUnknown Provides access to members that contain information about
all raster formats currently supported.

Count: Long Total number of formats.
CurrentRecord: Long Index of currently accessed format information.

Item (in Index: Long) : IFormatData Return format information for a given index.

The IFormatList interface maintains the most general information
including the number of supported raster formats.

The Count property returns the number of formats available.

The CurrentRecord property and Item method set the object to provide
information about specific raster formats.

 

 IFormatData : IUnknown Provides access to members that provide access to
information about specific raster formats.

Creatable: Boolean Indicates whether this format supports 'SaveAs'.
Directory: Boolean Indicates whether this format is directory based, as opposed to file

based.
Extension: String Default extension (without the dot).
order: Long Order to display in UI.
Pseudo: Boolean Indicates if wildcard match is enough for verification.
ShortName: String Name used for icon registration.
Templ: String Wildcard string for file matching.
Title: String Implementor name of format.
UITitle: String User legible name of format.
UserFile: Boolean Indicates whether this format is intended for display to user (eg. NOT

*.rrd, or *.aux).

The IFormatData interface allows you to read information about specific
raster formats.

The Creatable property indicates whether or not new raster datasets in
this format can be created. Only GRID, TIFF, and IMAGINE currently
provide this functionality.

The Directory property returns whether datasets in this format are direc-
tory-based (like GRID) or file-based.

The Pseudo property determines whether the file extension can be reli-
ably used to detect raster datasets of this format. Any format that has
Pseudo set to True will not be viewable in ArcGIS.

The format name and default extension, if any, associated with the
format and the title of the format in the ArcMap and ArcCatalog inter-
face are also accessible through this interface.

IFormatData
IFormatList

IFormatTest FormatList

A format list object can identify all
available raster formats and provide

information about them.

FORMATLIST COCLASS



Chapter 13 • Integrating raster data • 1267

R
as

te
r

 IFormatTest : IUnknown Provides access to members that provide information on
the format of a raster .

FormatIdentify (in Path: String) :
IFormatData

The title of the dataset's format, if supported.

FormatVerify (in Path: String, in Title:
String) : Boolean

Tests whether a dataset is an raster format given a title.

The IFormatTest interface determines if a specific raster file is of a
known raster format and can determine which raster format.

The FormatVerify method returns True if the input path and file point to
a raster of a supported format. The FormatIdentify method can then
return a pointer to specific information about that format.

FORMATLIST COCLASS



1268 • Exploring ArcObjects • Volume 2

The defaults that can be accessed include band combinations for the
RGB renderer on multiband data, behavior for raster pyramid creation,
and how raster datasets are found. This information can also be con-
trolled in ArcMap and ArcCatalog by clicking the Tools menu, clicking
Options, then clicking the Raster tab.

 IRasterDefaultsEnv : IUnknown Provides access to members that control the default raster
environment.

Format (in i: Long) : IRasterFormatInfo Information about the format indicated by index i.
NumFormats: Long Number of supported raster formats.
PyramidCreateOpt:

tagesriRasterPyramidOptEnum
Default pyramid creation option.

UseExtChecking: Boolean Use extension checking flag.

Query3BandRGB (out redIndex: Long,
out greenIndex: Long, out blueIndex:
Long)

Default zero indexed bands for a 3 band raster.

Query4BandRGB (out redIndex: Long,
out greenIndex: Long, out blueIndex:
Long)

Default zero indexed bands for a 4 or more band raster.

Set3BandRGB (in redIndex: Long, in
greenIndex: Long, in blueIndex: Long)

Default zero indexed bands for a 3 band raster.

Set4BandRGB (in redIndex: Long, in
greenIndex: Long, in blueIndex: Long)

Default zero indexed bands for a 4 or more band raster.

The IRasterDefaultsEnv interface provides access to raster default prop-
erties that are shared between all supported raster formats.

The PyramidCreateOpt property selects whether pyramids will be built
when a large raster is previewed in ArcCatalog or added as a layer to
ArcMap. The options are to always build pyramids, to never build pyra-
mids, or to be prompted by a dialog box asking if you want to build
pyramids each time a large raster without pyramids is viewed.

The UseExtChecking property specifies how ArcCatalog and the
Gx Browser search for raster datasets. A True value for extension check-
ing means that files or folders will be identified as raster datasets only if
their extension matches the list of supported raster format extensions. A
False value means that all files and folders will be opened to determine
whether they are a raster dataset in any of the supported raster formats.
This is more reliable but is much slower than extension checking only.
Extension checking only is the default.

The NumFormats property returns the number of supported raster formats,
and the Format method returns a RasterFormatInfo object specific to one
raster format, which can specify default properties for that format.

The Query3BandRGB, Query4BandRGB, Set3BandRGB, and
Set4BandRGB methods allow you to view or set the default band com-
binations used to display rasters with three or more bands. The indices
set for these defaults will populate the red, green, and blue channels of
the RGB renderer when a raster is initially displayed.

The Query3BandRGB and Set3BandRGB methods apply only to three-
band rasters, while the Query4BandRGB and Set4BandRGB methods
apply to all rasters containing four or more bands. This can be useful if
you use three-band true color data but also view Landsat TM imagery

IRasterDefaultsEnv
IRasterDefaultsEnv2

Raster-
DefaultsEnv

The RasterDefaultsEnv object allows
you to customize raster default behavior

in the ArcGIS user interface.

RASTERDEFAULTSENV COCLASS



Chapter 13 • Integrating raster data • 1269

R
as

te
r

and want to have six-band TM scenes display by default as a color
infrared composite that corresponds to the band combination of four,
three, and two for RGB.

 IRasterDefaultsEnv2 :
IRasterDefaultsEnv

Provides access to members that control the default raster
environment.

MaxTableSize: Long Default maximum table size.
ProxyFilePath: String Default proxy file path.
RenderingMode:

tagesriRasterRenderingModeEnum
Default rendering mode.

Resampling: rstResamplingTypes Default resampling for display.

The IRasterDefaultsEnv2 interface controls all of the common raster
default properties of IRasterDefaultsEnv and more.

Each method and property on the IRasterDefaults interface perform the
same function when called on this interface. This interface also provides
four additional functions that customize other raster behavior. Proxy
files are token files that allow statistics and pyramids to be used with
read-only datasets, such as datasets on a CD.

The ProxyFilePath property controls the directory location where these
proxy files, as well as any auxiliary or pyramid files for these datasets,
are located. This property can only be set by users with Administrator
access to their computer. The rest of these properties control the appear-
ance of raster datasets when first viewed in ArcGIS.

The Resampling property controls the default resampling technique used
when a raster is first displayed. Single-band rasters are displayed using
the stretched renderer or unique value renderer by default.

If a dataset has more entries in its table then the MaxTableSize property,
it will be displayed by default using the stretched renderer. A dataset
with fewer unique values than this threshold will display using the
unique value renderer. This value is 25 by default.

The RenderingMode property specifies the drawing mode used when
displaying a raster dataset. The full option waits until the entire raster
has been drawn to a backing store, then displays it to the screen at
once.

Block mode draws the raster one block at a time, starting at the upper
left and progressing left to right and then down. Top-to-bottom mode
begins at the top and draws a few lines at a time as it progresses down
the screen.

RASTERDEFAULTSENV COCLASS



1270 • Exploring ArcObjects • Volume 2

This object is not cocreatable but must be obtained using the Format
method of the RasterDefaultsEnv.

The input to the Format method specifies the index of the raster format
from the user interface, not from the list of formats that can be obtained
from the FormatList object.

 IRasterFormatInfo : IUnknown Provides access to members that provide basic information
about a raster format.

ActiveBrowse: Boolean Whether or not all files are searched for valid raster formats.
DefaultExts: String Default format extensions.
FormatName: String Format name.

The IRasterFormatInfo interface exposes all of the format-specific raster
defaults used in ArcMap and ArcCatalog.

The FormatName property specifies the name shown for this raster
format in the formats pane of the Raster tab on the Options menu. The
other properties specify how ArcMap and ArcCatalog determine if a disk
file is a raster dataset when extension browsing is active.

The DefaultExts property specifies one or more comma-delimited file
extensions that are used to filter for raster datasets of this format.

The ActiveBrowse property determines if ArcMap and ArcCatalog are
currently scanning for datasets in this format.

The following code snippet displays the current extensions being used
to find raster datasets in DTED format, then changes the list of exten-
sions used to find DTED datasets.

  Dim pEnv As IRasterDefaultsEnv

  Set pEnv = New RasterDefaultsEnv

  Dim pInfo As IRasterFormatInfo

  Set pInfo = pEnv.Format(15)

  MsgBox "Raster Format: " & pInfo.FormatName & _

   " browses using the following extensions: " & pInfo.DefaultExts

  pInfo.DefaultExts = "*.dt1,*.dt2"

  Set pEnv = Nothing

  Set pInfo = Nothing

IRasterFormatInfo Raster-
FormatInfo

The RasterFormatInfo object provides
a way to view and set ArcMap and
ArcCatalog browsing properties for

specific raster formats.

RASTERFORMATINFO COCLASS



Chapter 13 • Integrating raster data • 1271

R
as

te
r

The RasterPicture object can load a raster into a Picture object, such as
that exposed by a PictureBox control.

The RasterPicture object supports these formats: JPEG, GIF, TIFF, EMF,
and PNG. The picture can only be displayed at its true resolution, with
each raster pixel mapping to a single pixel on the display.

 IRasterPicture : IUnknown Raster Picture Interface.

DrawPicture (in FileName: String, in
hDC: Long, in pOutputRect: tagRECT)

Draws the picture.

LoadPicture (in FileName: String) :
IPicture

Gets number of classes.

The IRasterPicture interface exposes all of the functionality of the Raster-
Picture object.

The LoadPicture method displays a raster into a picture control.

The DrawPicture method offers more complete control over the display
of the picture.

In the following example, the RasterPicture object paints a raster into a
PictureBox control on a VB form.

   Dim pPic As IRasterPicture

   Set pPic = New RasterPicture

   'pict1 is defined as a PictureBox in a VB form

   Set pict1.Picture = pPic.LoadPicture("e:\data\logo.gif")

IRasterPicture

RasterPicture

The RasterPicture object displays some
raster formats simply and efficiently.

RASTERPICTURE COCLASS





Open data access
in ArcGIS

ArcGIS incorporates Microsoft’s Data Access Components (MDAC) and the

functionality available to developers with ArcObjects. MDAC, which consists of

ActiveX® Data Objects (ADO), OLE DB, and Open Database Connectivity

(ODBC), represents Microsoft’s implementation of the Universal Data

Access strategy. The philosophy behind this strategy is to provide easy access

to information maintained in a variety of data sources, both relational and

nonrelational, regardless of data type and proprietary format.

The topics in this appendix include: Microsoft’s ADO

and OLE DB technology • the ESRI OLE DB

provider • third-party OLE DB providers

Jillian Clark

Appendix

A



1274 • Exploring ArcObjects • Volume 2

OLE DB is a new database-access API (set of interfaces) based on
Microsoft’s Component Object Model (COM) technology. OLE DB is a
low-level programming environment that stores and retrieves records
from a data source. It is an open specification that expands on, but does
not replace, ODBC technology.

ADO is a COM-based front end to OLE DB; it is aimed primarily at
application and Web developers. ADO will work with any compliant
OLE DB provider in a consistent manner; programmers have access to
the same set of features in different programming environments. ADO
provides ArcGIS users with an alternative development option for cus-
tomizing the existing user interface or developing standalone applica-
tions outside the ArcGIS application framework.

THE ADO/OLE DB ROAD MAP

OLE DB Consumers, Providers, and Data Sources

Service components

Cursor engine Query processor

Data providers

Database

Database

Simple data provider OLE DB provider

ODBC

ODBC provider

Non-relational
data

Mainframe
data

Data consumers

Visual Basic application Visual C++ application

Other applications

ADO

ASP page



Appendix A • Open data access in ArcGIS • 1275

ACTIVEX DATA OBJECTS MODEL

The ADO model, which incorporates nine objects and four collections
(errors, parameters, fields, and properties), presents a much less daunting
set of objects with related properties and methods than the ArcGIS object
model. Developers are shielded from the complexities of the geodatabase
data-access model. However, although ADO supports simple data-ma-
nipulation and data-creation operations, it is not as robust as the ArcGIS
object model.

For further information on Microsoft’s Universal Data Access strategy,
ADO, and OLE DB, please refer to http://www.microsoft.com/data.

Connection

Error
(optional)

Command
(optional)

Recordset

Record

Field

Stream

Parameter
(optional)

Execute

Source

Parameters
collection

Fields
collectionActive

connection

Execute

Errors
collection
(optional)

Recordset represents the
entire set of records from a
base table or the results of an
executed command (query)

Property represents a
dynamic characteristic of
an ADO object that is
defined by the provider

Parameter represents a
parameter or argument
associated with a Command
object based on a parameterized
query or stored procedure

Field represents a column of
data with a common data type

Error contains details about data access
errors that pertain to a single operation
involving the current provider

Connection represents an open
connection to a data source

Command defines a specific command
executed against a data source

Record represents a row of a
Recordset, or a directory or file in a

file system

Stream represents a
binary stream of data

Property

Property
collection

Property
collection

Fields
collection

Property
collection

Property
collection



1276 • Exploring ArcObjects • Volume 2

ESRI OLE DB PROVIDER

In ArcGIS, ESRI has included a proprietary OLE DB provider capable of
serving spatial data. The ESRI provider is a minimum (level 0)
OLE DB 2.0 provider (as defined by Microsoft) that conforms to the
OpenGIS® Simple Features Specification for OLE/COM from the
Open GIS Consortium (OGIS).

The ESRI OLE DB provider supports shapefiles, coverages, personal
geodatabase files (Access .mdb file), and ArcSDE data sources.

ESRI ADO/OLE DB framework

External data source      File-based Geodatabase

ArcSDEAccessCoverageShapefile OtherRDBMSTextExcel

ESRI OLE DB provider OLE DB providers

ADO application
An OLE DB consumer, such as VBA in ArcGIS, VB, VC++

The following ADO/VB samples illustrate some of the connection string
permutations required for connections to ESRI data sources.

When implementing ADO in Visual Basic, the project must reference the
current Microsoft ActiveX Data Objects library file (version 2.5 with
ArcGIS 8.1). To take advantage of the ArcGIS object model functionality,
the VB project must also reference the ArcGIS object library.

To set ArcSDE connection parameters, you can either directly specify
these parameters or you can use an existing binary connection file
created via the desktop user interface.

These are the connection parameters:

• The provider is ESRI.GeoDB.OLEDB.1.

• The location is server name.

• The data source is database name.

• The user ID is user name, and the password is password.

• The Extended Properties is WorkspaceType, which is
esriCore.SDEWorkspaceFactory.1.

• The instance is ArcSDE service.

• The version is ArcSDE version.

• The geometry is WKB|OBJECT.

The following Visual Basic sample shows the setting of these param-
eters:

sConString = "Provider=ESRI.GeoDB.OleDB.1;Location=fabio;" & _

Further information on Microsoft’s OLE DB
provider specification can be obtained from

www.microsoft.com/data and
www.microsoft.com/data/oledb/prodinfo.htm.

Information on the OGIS specification can be
found at www.opengis.org/techno/specs.htm.



Appendix A • Open data access in ArcGIS • 1277

 "Data Source=world;User Id=avtest;Password=avtest;" & _

 "Extended Properties=workspacetype=esriCore." & _

  "SdeWorkspaceFactory.1;Instance=sql8;Version=SDE.DEFAULT;Geometry=WKB"

This is how an existing binary connection file could be utilized to open
the connection to an ArcSDE data source:

• The provider is ESRI.GeoDB.OLEDB.1.

• The Extended Properties is WorkspaceType, which is
esriCore.SDEWorkspaceFactory.1.

• The ConnectionFile is path to and name of binary ArcSDE connection
file.

This Visual Basic sample shows how to implement these connection
files:

sConString = "Provider=ESRI.GeoDB.OleDB.1;Extended " & _

"Properties=workspacetype=esriCore.SdeWorkspaceFactory.1;" & _

"ConnectionFile=c:\winnt\profiles\jill\Application Data\ESRI\" & _

"ArcCatalog\connection to springs.sde"

To set personal geodatabase connection parameters, the Access work-
space factory requires the name of and path to a Microsoft Access file
(.mdb).

• The provider is ESRI.GeoDB.OLEDB.1.

• The data source is access file(.mdb).

• The Extended Properties is WorkspaceType, which is
esriCore.AccessWorkspaceFactory.1.

• The geometry is WKB|OBJECT.

This example VB code shows the application of these settings:

sConString = "Provider=ESRI.GeoDB.OLEDB.1;" & _

  "Data Source=d:\testdata\access\oledb_testdata.mdb;" & _

  "Extended Properties=workspacetype=" & _

  "esriCore.AccessWorkspaceFactory.1; Geometry=WKB"

For coverages and shapefiles with the extended properties workspace
type set to esriCore.ArcInfoWorkspaceFactory.1 and
esriCore.ShapefileWorkspaceFactory.1, respectively, set the data source
parameter path to a directory that contains coverage or shapefile data, not
a specific coverage or shapefile itself. Other than the different connection
strings, the create and open connection syntax is then standard ADO
code:

Dim AdoCon as ADODB.connection

Set AdoCon = New ADODB.Connection

Dim sConString As String

'Set Connection string according to data source

sConString = " <see samples > "

AdoCon.Open sConString

The OGIS standard includes support for GIS metadata. For each con-
nection to an ESRI data source, this information can be viewed by

ESRI OLE DB PROVIDER



1278 • Exploring ArcObjects • Volume 2

opening three schema recordsets via an Openschema method on the
ADO connection or by opening a property set on the data source.

The metadata available includes:

• Which tables are considered to be GIS features

• Which columns contain geometry (and what type of geometry it is)

• What the spatial references for the data source are

• What spatial operators are supported by the OLE DB data provider

The following code shows how to create the three schema recordset
objects for an existing ADO connection.

Dim ogisFTSchema As String, ogisGCSchema As String, _

  ogisSRSchema As String

'Initialize the OGIS GUIDs.

'DBSCHEMA_OGIS_FEATURE_TABLES recordset

ogisFTSchema = "{a0690a29-faf5-11d1-baf5-080036db0b03}"

'DBSCHEMA_OGIS_GEOMETRY_COLUMNS Recordset

ogisGCSchema = "{a0690a2a-faf5-11d1-baf5-080036db0b03}"

'DBSCHEMA_OGIS_SPATIAL_REFERENCE_SYSTEMS Recordset

ogisSRSchema = "{a0690a2b-faf5-11d1-baf5-080036db0b03}"

'DBSCHEMA_OGIS_FEATURE_TABLES recordset

Dim rsFT  As ADODB.Recordset

Set rsFT = New ADODB.Recordset

Set rsFT = Adocon.OpenSchema(adSchemaProviderSpecific, _

  ,ogisFTSchema)

'DBSCHEMA_OGIS_GEOMETRY_COLUMNS Recordset

Dim rsGC As ADODB.Recordset

Set rsGC = New ADODB.Recordset

Set rsGC = Adocon.OpenSchema(adSchemaProviderSpecific, _

  ,ogisGCSchema)

'DBSCHEMA_OGIS_SPATIAL_REFERENCE_SYSTEMS Recordset

Dim rsSR As ADODB.Recordset

Set rsSR = New ADODB.Recordset

Set rsSR = Adocon.OpenSchema(adSchemaProviderSpecific, _

  ,ogisSRSchema)

The spatial data contained in the geometry column can be returned to
the consumer in either OGIS Well Known Binaries (WKB) format or as
ESRI geometry objects. The ESRI provider supports read–write opera-
tions to both the geometry and the attribute columns.

The following code sample illustrates how to read the spatial data in
either WKB format or as ESRI objects from a personal geodatabase file.
It also demonstrates how to filter and edit the recordset.

Dim pGeomCol As IGeometryCollection

ESRI OLE DB PROVIDER



Appendix A • Open data access in ArcGIS • 1279

ESRI OLE DB PROVIDER

Set pGeomCol = New GeometryBag

Dim pGeoEnv As GeometryEnvironment

Dim pGFact As IGeometryFactory

Set pGeoEnv = New GeometryEnvironment

Set pGFact = pGeoEnv

Dim pEnv As IEnvelope

Set pEnv = New Envelope

Dim pGeom As IGeometry

Dim sStr As String, sConString As String, sChoice As String

Dim WKBData As Variant

Dim BytesRead As Long

Dim Adocon As ADODB.Connection

Set Adocon = New ADODB.Connection

Dim Adors As ADODB.Recordset

Set Adors = New ADODB.Recordset

sChoice = InputBox("Enter geometry format -  WKB (OGIS WKB),  OBJ (ESRI
OBJECTS):", , "WKB")

If sChoice = "WKB" Then

'Either Geometry = WKB format

sConString = "Provider=ESRI.GeoDB.OLEDB.1;" & _

"Data Source=d:\data\access\oledb_testdata.mdb;" & _

"ExtendedProperties=workspacetype=esriCore." & _

"AccessWorkspaceFactory.1;Geometry=WKB"

Else

'OR Geometry = ESRI OBJECT

sConString = "Provider=ESRI.GeoDB.OLEDB.1;" & _

"Data Source=d:\data\access\oledb_testdata.mdb;" & _

"ExtendedProperties=workspacetype=" & _

"esriCore.AccessWorkspaceFactory.1;Geometry=OBJECT"

End If

Adocon.Open sConString

sStr = "Select * from us_states"

Adors.Open sStr, Adocon, adOpenForwardOnly, adLockOptimistic

If sChoice = "WKB" Then

'EITHER - Read spatial data in WKB format

 Do Until Adors.EOF

   If Not IsNull(Adors.Fields.Item(1).Value) Then

    WKBData = Adors.Fields.Item(1).Value

    pGFact.CreateGeometryFromWkbVariant WKBData, pGeom, BytesRead

    pEnv.Union pGeom.Envelope

    pGeomCol.AddGeometry pGeom

   End If

  Adors.MoveNext

 Loop



1280 • Exploring ArcObjects • Volume 2

ASP

Business tier

Data tier

Web browser

Presentation tier

ADO
recordset

ADO
recordset

OLE DB rowset

Database

Implementing the ESRI OLE DB provider in this
manner involves serverside (business tier) scripts

that create ADO connections and recordsets
based on data source choices and SQL query

statements forwarded from the client. The
recordset can be returned to the client in the

form of an HTML table or passed to data-aware
ActiveX grid control. Attribute data may be

edited locally and the changes applied to the
data source via the recordset.

ESRI OLE DB PROVIDER

Else

'OR - Read spatial data as ESRI OBJECTS

 Do Until Adors.EOF

   If Not IsNull(Adors.Fields.Item(1).Value) Then

    Set pGeom = Adors.Fields.Item(1).Value

    pEnv.Union pGeom.Envelope

    pGeomCol.AddGeometry pGeom

   End If

  Adors.MoveNext

 Loop

End If

Adors.MoveFirst

'Update the recordset via an edit transaction

Adocon.BeginTrans

'Filter the recordset and apply an update

Adors.Filter = "STATE_NAME = 'Ohio'"

Do Until Adors.EOF

 Adors.Update Adors.Fields.Item(3).Name, "New Name"

 Adors.MoveNext

Loop

Adocon.CommitTrans

ADO can also be used in conjunction with Active Server Pages (ASP)
and embedded VBScript to develop Web-based geodatabase browse
and edit applications in the following system architecture.



Appendix A • Open data access in ArcGIS • 1281

ArcGIS users have “out-of-the-box” access to all the OLE DB providers
that are installed as part of the MDAC package. These include
Microsoft’s OLE DB providers for Jet, SQL Server, and Oracle, as well as
an OLE DB provider for ODBC drivers.

The Microsoft Data Link Properties utility, installed as part of the MDAC
package and integrated within the desktop user interface, enables users
to create and manage their OLE DB connections. The data may then be
viewed in a consistent, although read-only, tabular format.

To overcome the read-only restriction, it is possible to programmatically
connect to an external data source using ADO and an appropriate OLE
DB provider to support read–write and simple data-creation operations.

The following VB code samples illustrate how to programmatically make
an ADO connection to an external (nonESRI) data source and execute
SQL commands. There are many more samples available on Microsoft’s
Web site at www.microsoft.com/data.

1. Make an ADO connection using the MS OLE DB provider for SQL
Server and modify a table and the database schema.

'Modify the connection string, table name and SQL commands

'accordingly.

Dim AdoCon As ADODB.Connection

Set AdoCon = New ADODB.Connection

Dim AdoRS As ADODB.Recordset

Set AdoRS = New ADODB.Recordset

Dim cmdstr1 As String, cmdstr2 As String, sConstring As String

Dim sqlstr As String

'MS OLE DB provider for SQL Server

sConstring = "Provider=SQLOLEDB.1;Password=test;User ID=test;" & _

 "Persist Security Info=True;Initial Catalog=test;Data Source=fabio"

AdoCon.Open sConstring

'Modify a schema object

cmdstr1 = "alter table codemog add test_col integer "

AdoCon.Execute cmdstr1

'Create a new schema object via the OLE DB connection

cmdstr2 = "create view my_view as select name, state_name, " & _

  "state_fips from codemog"

AdoCon.Execute cmdstr2

2. Make an ADO connection to an Excel worksheet using the MS OLE
DB provider for ODBC drivers and open a recordset.

'Modify the ODBC parameter and table name accordingly.

Dim AdoCon As ADODB.Connection

THIRD-PARTY OLE DB PROVIDERS



1282 • Exploring ArcObjects • Volume 2

Set AdoCon = New ADODB.Connection

Dim AdoRS As ADODB.Recordset

Set AdoRS = New ADODB.Recordset

Dim sConstring As String, sqlstr as string

'The data source in this case is an ODBC DSN (Data Source Name)

sConstring = "Provider= MSDASQL.1;data source=Excel_wks"

AdoCon.Open sConstring

sqlstr = "select * from codemog"

AdoRS.Open sqlstr, AdoCon, adOpenDynamic, adLockOptimistic

THIRD-PARTY OLE DB PROVIDERS



�����������

	���
�������

���

The geodatabase data model is an object-oriented data

model for geographic data. To create blueprints of the

objects, their relationships, and their behavior, you can

use UML, a graphical modeling language. Utilize the

CASE tools to create the storage medium

(geodatabase schema) and object behavior

(custom features and class extensions).

This appendix explores the concepts involved in

modeling object behavior using UML and the Code

Generation Wizard.

Julio Andrade

Appendix

B



1284 • Exploring ArcObjects • Volume 2

GEODATABASE MODELING WITH UML

UML is the universal language of object modeling. With UML you can
build object models that help you and others better understand the sys-
tem in development. The more complex a system is, the more difficulty
you will have understanding it. Modeling helps you understand such
complex systems.

Using UML, you can create object models that include geodatabase
elements. These elements may be subdivided into structural elements,
parameterized elements, and custom behavior elements. Structural ele-
ments and parameterized behavior elements are covered in Building a
Geodatabase. This appendix discusses the modeling of custom behavior
using UML.

Structural Elements Parameterized Behavior Custom Behavior Elements

Feature datasets
Geometric networks

Feature classes
Relationship classes

Fields
Subtypes

 Elements
Domains

Default values
Connectivity rules
Relationship rules

Custom features
 Feature class extensions

Custom interfaces

Modeling these elements lets you clearly visualize the structure and behav-
ior of your system. For example, you can easily see what feature classes are
involved in a geometric network, how features may be associated through
relationship classes, or what services a custom feature provides.

Customer

*

Pole

<<GN>>
Electric-
Network

Transformer
-Class-

Extension

EdgeFeature

Simple-
Edge-

Feature

Secondary-
Segment

Complex-
Edge-

Feature

Primary-
Segment

Complex-
Junction-
Feature

Junction-
Feature

Transformer

Simple-
Junction-
Feature

Standard ArcInfo objectsObject model

A customer is not a feature
in a map, so it is derived
from Object.

A Pole is not involved in
the network, so it is derived
from Feature.

Poles can hold
transformers.
Relationships can be
modeled in UML.

A class extension may be created
for transformers. Classwide

behavior is implemented in the
class extension.

Transformers are simple features at network junctions,
so they are derived from the SimpleJunctionFeature
class. Custom behavior may be generated for
Transformers.

Network features are
associated with a

geometric network.

Feature

Network-
Feature

Object

FeatureClass
-Extension

ObjectClass-
Extension



Appendix B • Geodatabase modeling with UML • 1285

New object models are created from a template diagram that contains
information about the geodatabase data access objects, specifically classes
and interfaces relevant to the creation of custom features and class exten-
sions.

The template diagram has a hierarchical structure based on UML pack-
ages. A given model has, at the minimum, a logical view package—a
logical root, ESRI interfaces, ESRI classes, and workspace packages. Inter-
faces of the geodatabase API are defined under the ESRI interfaces pack-
age, for example, IRowEvents. Likewise, COM classes of the same API
are defined under ESRI Classes. The workspace package represents a
geodatabase. Under it, you can create common geodatabase elements,
such as domains, feature datasets, and tables.

The illustration to the left shows the procedure to use CASE tools. You
create an object model based on the provided template, export it to the
Microsoft Repository, then generate code for the custom behavior in the
form of a C++, ATL-based project. The developer writes the custom be-
havior and compiles the project into a Dynamic Link Library (DLL). The
DLL acts as a carrier for COM classes, the custom features, and class
extensions. The last step is to create a schema for the model using the
Schema Wizard in ArcCatalog. The Schema Wizard associates the custom
features and class extensions with the created feature classes.

Code generation is an optional step. If code is not generated, the
Schema Wizard associates ArcGIS COM classes to the created feature
classes. In a given model you can generate code for only a selected set
of feature classes, not necessarily for all of them. The Schema Wizard
associates the correct behavior COM class for each created feature class.

The semantics checker can be used to verify the validity of a model.
Available from the template diagram in Visio®, it verifies that the
geodatabase elements in a model are correctly specified. For more infor-
mation about the semantics checker, see Building a Geodatabase.

CREATING OBJECT MODELS

MS Repository

Create UML model

Export model to
repository

Create geodatabase
schema

Generate source code
for custom behavior

A conceptual view of storing and applying an
object model in the repository

The UML navigator



1286 • Exploring ArcObjects • Volume 2

To explain the concepts involved in modeling custom behavior, a
sample object model is shown. The model represents a transformer
custom feature and its associated class extension.

Transformer is derived from SimpleJunctionFeature. This means a trans-
former will provide exactly the same services as a simple junction fea-
ture. In other words, it will implement the same interfaces its parent
implements (type inheritance). In total, the transformer must implement
approximately 20 system-defined interfaces, such as IRow,
IFeatureDraw, and ISimpleJunctionFeature. Clients of such interfaces
include ArcMap, ArcCatalog, and the geodatabase itself.

Custom features are COM classes that implement interfaces. This rela-
tionship is modeled in UML with a dependency stereotyped as “refines”.
In the sample model, Transformer implements ITransformer. An inter-
face is modeled as a UML class marked with the stereotype interface.
Interfaces are abstract classes because they do not have code imple-
menting them. In a way, they are a specification of the services the
implementing class must provide.

ITransformer is a developer-created interface. Through these interfaces,
custom features provide services on a specific domain, in this case,
electrical utilities. Applications developed on top of ArcGIS are the
clients of these services.

Class extensions are created by type-inheriting either from
ObjectClassExtension or FeatureClassExtension. In UML, they are required
to follow a naming convention—the name of the class followed by
“ClassExtension” (TransformerClassExtension, for example).

MODELING CONCEPTS



Appendix B • Geodatabase modeling with UML • 1287

Class extensions do not have fields but may implement developer-
designed or optional geodatabase interfaces such as IObjectClass-
Validation. Optional class extension interfaces are available under the
ESRI interfaces package.

When the schema is created for this model, Transformer will become a
feature class and its attributes will become fields (for example, KVA).
Notice the types of the fields are taken from the esriFieldType enumera-
tion, while the types in the interfaces are C++ automation types. During
schema creation, the custom feature and its class extension are assigned
to the feature class if code was generated.

MODELING CONCEPTS



1288 • Exploring ArcObjects • Volume 2

The Code Generation Wizard works inside Developer Studio. The wiz-
ard generates an ATL-based C++ project with stub code for custom
features and class extensions in your model.

To load the Code Generation Wizard, follow these steps:

1. In Developer Studio, click Tools and click Customize.

2. Click the Add-ins and Macro Files tab.

3. Click Browse to search for the add-in. Click CodeGenWiz.dll (under
the bin directory in the ArcGIS installation directory).

When using the wizard you will connect to a repository, select the object
model, define implementation reuse options for each object in your
model, then specify an output name for the C++ project.

Code reuse
A custom feature is required to implement a number of system-defined
interfaces so ArcGIS can use it. Implementing all the services could
prove to be a difficult task. COM aggregation and containment are
simple techniques developers can employ to reuse the implementation
already present in ArcGIS software’s COM classes. See the discussion on
COM aggregation and containment in Volume 1, Chapter 2, ‘Developing
with ArcObjects’.

In both cases, the object to reuse is placed inside the object reusing the
implementation. Each interface implemented by the inner object can be
directly exposed (COM aggregation) or indirectly exposed (COM contain-
ment).

When developing custom features, COM containment is used when the
custom feature changes or adds behavior to the implementation provided
by the inner object. In the sample model, Transformer could contain
IRowEvents, for example, so that it could respond to the OnNew or
OnDelete events. However, a custom feature may aggregate all the inter-
faces implemented by its inner object and provide custom behavior
only through its own interfaces (ITransformer, for example).

GENERATING CODE

Transformer

Simple-
Junction-
Feature

ITransformer
IRow-
Buffer

...

...
IRow

IRow-
Events

Aggregated

Contained

Local

Inherited

For each custom feature, the Code
Generation Wizard will allow you to

select what interfaces should be con-
tained or aggregated.

It is not necessary to generate code for
all the UML classes in a model. In this

case, Secondary is not selected for code
generation. The Schema Wizard will

assign ArcGIS software’s SimpleEdge-
Feature COM class to the feature class

created to store secondaries.



Appendix B • Geodatabase modeling with UML • 1289

The code generator will create a Developer Studio C++ workspace with
the following:

1. Registration script (.rgs), header (.h), and implementation (.cpp) files
for each custom feature and class extension

2. IDL with the definition of COM classes, interfaces, and type library

3. Other standard C++/ATL files

The registration script creates the registry keys and values in the registry
for each custom feature and class extension. It also registers them under
the appropriate component category.

The project’s IDL contains the definition of the COM classes and inter-
faces created by the developer in the model. ArcGIS software’s COM
classes and interfaces are imported using the importlib directive, so types
such as IRowEvents are available to the type library being created.

Attributes in interfaces yield to accessor and mutator methods. For ex-
ample, the Weight attribute in the ITransformer interface generates the
following IDL code:

  [  propget  ]    HRESULT Weight([out, retval] double* pWeight);

  [  propput  ]    HRESULT Weight([in] double Weight);

UML operations yield to methods in the interface. The method
NextMaintenance generates the following IDL code:

  HRESULT NextMaintenance([out, retval] DATE* pNextMaintenance);

Read-only and write-only properties are created using methods prefixed
with get_, put_, and propput_, as shown in the following table.

get_Foo : double

Prefix / Sample

put_Foo (Y : double)

putref_Foo (Y : IY)

[ propget ] HRESULT Foo ([out, retval] double * pFoo);

IDL

[ propput ] HRESULT Foo ([in] double Y);

[ propputref ] HRESULT Foo ([in] IY * pIY);

Each time a custom feature is created, an instance of the inner ArcGIS
COM class is created as well. The C++ code generated for Transformer
includes the creation of the inner SimpleJunctionFeature in its
FinalConstruct (ATL calls FinalConstruct as soon as the C++ class has
been instantiated).

In the same function, a query interface is made for each COM-contained
interface, IRowEvents, in this example. A member variable will hold a
reference to the interface implemented by the inner object.

  HRESULT Transformer::FinalConstruct()

  {

    // Creates instance of inner object

    IUnknown * pOuter = GetControllingUnknown();

    if (FAILED (CoCreateInstance(__uuidof(SimpleJunctionFeature),

  /* create inner object  */

                pOuter,

                CLSCTX_INPROC_SERVER,

CODE GENERATED



1290 • Exploring ArcObjects • Volume 2

                IID_IUnknown,

                (void**) &m_pInnerUnk)))

/* hold it */

        return E_FAIL;

    // QI for IRowEvents

    if (FAILED(m_pInnerUnk->QueryInterface(IID_IRowEvents,

          (void**)&m_pIRowEvents)))

        return E_FAIL;

    pOuter->Release();

    return S_OK;

  }

The header generated for the transformer declares the ATL COM MAP.
These macros are used to specify which interfaces are implemented lo-
cally and which are aggregated.

In the example, ITransformer and IRowEvents are implemented locally,
and all other interfaces implemented by the inner object are aggregated.

  BEGIN_COM_MAP(Transformer)

COM_INTERFACE_ENTRY(ITransformer)

COM_INTERFACE_ENTRY(IRowEvents)

COM_INTERFACE_ENTRY_AGGREGATE_BLIND(m_pInnerUnk)

  END_COM_MAP()

Stub code is generated for the interfaces defined in the model. The gener-
ated code returns E_NOTIMPL for each method. The implementation of the
methods in these interfaces is the responsibility of the developer.

In our sample model, the code generated for the interface ITransformer
in the transformer C++ class looks like the code below.

  // ITransformer ——————————

  //

  STDMETHODIMP Transformer::get_Weight(double* pWeight)

  {    return E_NOTIMPL; }

  STDMETHODIMP Transformer::put_Weight(double Weight)

  {    return E_NOTIMPL; }

  STDMETHODIMP Transformer::NextMaintenance(DATE* pNextMaintenance)

  {    return E_NOTIMPL; }

The custom feature may add or change the implementation of a con-
tained interface provided by the inner object. For each method in the
interface, the custom feature can forward the call to the inner feature or
use its own implementation. The former option is used by the Code
Generation Wizard by default.

In the sample, the generated code for IRowEvents inside the transformer
C++ class looks like the following code (recall that pointers to contained
interfaces are acquired in the FinalConstruct). The developer may write
its own implementation for each method in the interface.

CODE GENERATED



Appendix B • Geodatabase modeling with UML • 1291

//  Methods of Contained Interfaces

// IRowEvents methods ——————————

//

STDMETHODIMP Transformer::OnChanged()

{    return m_pIRowEvents->OnChanged();  }

STDMETHODIMP Transformer::OnDelete()

{    return m_pIRowEvents->OnDelete();  }

STDMETHODIMP Transformer::OnInitialize()

{    return m_pIRowEvents->OnInitialize();  }

STDMETHODIMP Transformer::OnNew()

{    return m_pIRowEvents->OnNew();  }

STDMETHODIMP Transformer::OnValidate()

{    return m_pIRowEvents->OnValidate();  }

CODE GENERATED



1292 • Exploring ArcObjects • Volume 2

The Code Generation Wizard will optionally create a class description
COM class for each custom feature in the model. Such COM classes de-
scribe the custom feature itself, so a feature class can be created using
ArcCatalog without using the Schema Wizard. The IObjectClass-
Description and IFeatureClassDescription interfaces are implemented by
these COM classes. Code for class descriptions can be generated if the
model does not have relationship classes, subtypes, or geometric
networks.

COMPILED CUSTOM FEATURES AND CLASS EXTENSIONS

Upon compilation of the project, a DLL will be created. It can be seen
as the carrier for the COM classes in your model. All custom features,
class extensions, and class descriptions are COM classes inside the DLL.
Registering the DLL in a system registers the COM classes in the DLL.

SCHEMA CREATION

The Schema Wizard, a command available in ArcCatalog, can be used
to create a schema for a UML object model. A feature in the object
model will create the feature class in the target geodatabase. If code was
generated for the custom feature or class extension, the COM classes are
associated with the feature class. When behavior classes were not code
generated, the wizard will use the appropriate ArcGIS COM class.

The lists of available custom features and class extensions are filled
based on those registered in the system; therefore, the DLL should be
registered before running the wizard.

The Schema Wizard creates an instance of every custom feature or class
extension registered in the system and queries them for some informa-
tion, for example, their feature type. To avoid crashes, custom features
and class extensions should handle error conditions properly during
construction.

CLASS DESCRIPTIONS

Transformer

ITransformer
IRow

...

...
IFeature

Transformer-
ClassExtension

IObjectClass-
Validation

ITransClass-
Extension

ElectricUtils.dll

A view of the DLL created in the sample

The Schema Wizard



Developing for
ArcGIS

deployments

Developing with ArcObjects should not be done in

isolation from the deployment of the final application

solution. Currently, there are three possible

deployments with ArcGIS: ArcInfo, ArcEditor™, and

ArcView. To maximize the number of potential users

of your components, you should develop your code so

that all three products can use your code no matter

what their license restrictions are. This appendix

outlines how to write code in a way that requires only

one code base to support all the possible deployment

options, both now and in the future.

Euan Cameron

Appendix

C



1294 • Exploring ArcObjects • Volume 2

ArcObjects is the underlying technology that ESRI has used to develop
ArcMap, ArcCatalog, and ArcScene, the new ArcGIS Desktop applications.
These applications can be deployed in a number of ways that include
ArcView 8.1, ArcEditor 8.1, and ArcInfo 8.1. There may be more deploy-
ment options in the future. As a developer, you must think carefully when
developing your solutions so that you do not limit yourself unnecessarily
to one of these deployment options. Well-designed code should continue
to work if new deployments of ArcGIS are released by ESRI.

DEPLOYMENT OBJECT MODELS

The object models for ArcView, ArcEditor, and ArcInfo at ArcGIS 8.1 are
identical. All classes, interfaces, methods, and properties are present in all
products. This means that the same DLLs containing the same compo-
nents with the same GUIDs are installed for all deployments; in other
words, code written on one deployment will successfully compile on
another. What will differ for the various deployments is the behavior of
certain method calls.

All the ESRI-developed components handle the different possible deploy-
ment options in a unified manner. The functionality available with these
different deployments is controlled via a license. This means that if a user
installs a new license, the software does not require a reinstallation to
access the functionality permitted under the new license.

ArcObjects performs several types of license checking:

• Application: Each ArcGIS application requires a valid application li-
cense to run.

• Extension: Extension products also have licenses associated with them.

• Component: The components within ArcObjects perform license
checking.

• Functional: When methods are executed, the behavior of the method
varies depending on the available licenses.

It is likely that you will be interacting with more than one of these
license-checking mechanisms. For instance, you may check for the appro-
priate component-level license, then, when working with individual meth-
ods, you will have to be aware of the license restrictions associated with
these methods.

ESRI engineers use the same coding techniques outlined in this appendix
to write code that works with the various deployment options of ArcGIS.
Using these techniques, you will be able to write your code to handle the
various deployment models.

Application license checking
The simplest form of license checking for you to deal with is when your
components are running within an ArcGIS application since there is little
for you to do. The license-checking procedures are contained within the
ArcGIS applications, and the fact that your components are initialized
means that the user has a valid ArcGIS license. However, determining

When executing code, no query interface call will
fail because of a license issue, as this would

break the rules of COM as stated in Volume 1,
Chapter 2, ‘Developing with ArcObjects’. If license
checking was implemented at the query-interface
level, depending on licenses being checked in and
out, the query interface call may succeed the first

time but fail the next or vice versa.

ARCGIS LICENSE CHECKING



Appendix C • Developing for ArcGIS deployments • 1295

what license is currently checked out by the user can be useful for
working with licensing at the functional level.

 IESRILicenseInfo : IUnknown Provides access to members that check software licenses.

DefaultProduct: esriProductCode Indicates the product code that will be used on the current
machine.

IsLicensed (in ProductCode:
esriProductCode) : Boolean

Indicates if the specified product is licensed.

To determine the level of license currently in use, use the ESRILicense-
Info coclass and the DefaultProduct property on its IESRILicenseInfo
interface.

Private Function GetDeploymentName() As String

  Dim pLicense As IESRILicenseInfo

  Set pLicense = New ESRILicenseInfo

  Select Case pLicense.DefaultProduct

    Case esriProductCodeViewer

      GetDeploymentName = “ArcView”

    Case esriProductCodeEditor

      GetDeploymentName = “ArcEditor”

    Case esriProductCodeProfessional

      GetDeploymentName = “ArcInfo”

  End Select

End Function

Extension license checking
Extension products provided by ESRI supply functionality via a user
interface and an API. To use either of these, a valid extension license
must be available. Before making calls to objects within an extension, an
appropriate license must be checked out. If the following lines of code
are executed in a VBA macro, an error will be raised when the
StartExporting method is executed since an ArcPress™ license has not
been checked out. The method calls do not attempt to check one out;
they only ensure that one already has been checked out. This gives you
license usage control.

  Dim pExporter As IExporter

  Set pExporter = New ArcPressExporterJPEG

  ...

  Dim hDc As OLE_HANDLE

  hDc = pExporter.StartExporting

For the above code to execute without the license error, the ArcPress
extension must be initialized before the call to the StartExporting method.
The function below shows how to check out an ArcPress license:

Public Function GetArcPressLicense() As Boolean

  Dim pUid As UID

  Set pUid = New UID

  pUid.Value = “esricore.ArcPressExtension”

  Dim pExtAdmin As IExtensionManagerAdmin

ARCGIS LICENSE CHECKING

IESRILicenseInfo ESRILicense-
Info



1296 • Exploring ArcObjects • Volume 2

   Set pExtAdmin = New ExtensionManager

   ‘Necessary in standalone application

   pExtAdmin.AddExtension pUid, 0

  Dim pExtManager As IExtensionManager

  Set pExtManager = pExtAdmin

  Dim pExtConfig As IExtensionConfig

  Set pExtConfig = pExtManager.FindExtension(pUID)

  If (Not pExtConfig.State = esriESUnavailable) Then

    On Error Resume Next

     pExtConfig.State = esriESEnabled

    GetArcPressLicense = (pExtConfig.State = esriESEnabled)

  End If

  If (Not GetArcPressLicense) Then _

    MsgBox “No ArcPress licenses available”

End Function

Assuming that the process of exporting only requires access to the
license for a short time, the license should be released upon completion
of the export. Releasing the license means that another user can export
using the same license; the only restriction is that the other user cannot
export at the same time.

Public Sub ReleaseArcPressLicense()

  Dim pUid As UID

  Set pUid = New UID

  pUid.Value = “esricore.ArcPressExtension”

  Dim pExtManager As IExtensionManager

  Set pExtManager = New ExtensionManager

  Dim pExtConfig As IExtensionConfig

  Set pExtConfig = pExtManager.FindExtension(pUID)

  If (Not pExtConfig.State = esriESUnavailable) Then

    pExtConfig.State = esriESDisabled

  End If

End Sub

If you are developing an extension that you want to add license check-
ing to in a way similar to ESRI, you must follow certain rules when
dealing with the configuration state of your extension. These rules are
outlined in Volume 1, Chapter 3, ‘Customizing the user interface’.

Component license checking
When embedding ArcObjects within another application, careful thought
must be given to license issues. If you instantiate an ArcObjects object, a
license is checked out. Any subsequent objects that request licenses make
use of the same checked-out license. When you release all of the
ArcObjects objects, your created license is also released. However, there

ARCGIS LICENSE CHECKING

For more information on singleton objects, see
Volume 1, Chapter 2, ‘Developing with

ArcObjects’.



Appendix C • Developing for ArcGIS deployments • 1297

are a number of singleton objects within ArcObjects that require a valid
license. Since singleton objects exist for the lifetime of the process, once a
license is acquired it will not be released until the hosting application is
shut down. Once created, you cannot release singleton objects in a way
that causes them to remove themselves from the process. If temporal
use of licenses is an issue, you should design your main application to
make use of ArcObjects in another process so that when that process
ends the license is released.

It is important to check that a valid license is available before making
any calls to ArcObjects. You can check for a valid license using the
ESRILicenseInfo coclass. The function below, GetArcInfoLicense, makes a
call to the ESRILicenseInfo object to inquire whether or not an ArcInfo
license is available. If a license is not available, the function will behave
in two possible ways depending on why there is no license. If the license
server has run out of licenses, the function returns False. If the license
server does not have any ArcInfo licenses installed, or there is no running
license server available, the IsLicensed method shuts down the host pro-
cess. The process is shut down for license security; you have no control
over this automatic shutdown procedure. For instance, an ArcInfo user
may not have any viewer licenses installed; hence, a call to the function
similar to the one below asking for a viewer license would cause the
application making the call to shut down.

Private Function GetArcInfoLicense() As Boolean

  Dim pLicense As IESRILicenseInfo

  Set pLicense = New ESRILicenseInfo

  GetArcInfoLicense = _

   pLicense.IsLicensed(esriProductCodeProfessional)

  If (Not GetArcInfoLicense) Then _

   MsgBox “No ArcInfo licenses available”

End Function

To ensure that you ask for a license that the user installed, you should call
the IsLicensed method using the default product code for the installation.

Private Function GetArcGISDefaultLicense() As Boolean

  Dim pLicense As IESRILicenseInfo

  Set pLicense = New ESRILicenseInfo

  GetArcGISDefaultLicense = _

   pLicense.IsLicensed(pLicense.DefaultProduct)

  If (Not GetArcGISDefaultLicense) Then _

    MsgBox “No licenses available”

End Function

Functional license checking
Interaction with the three previous forms of license checking in
ArcObjects is relatively straightforward. Depending on the functionality
accessed, the functional license checking is more involved.

ARCGIS LICENSE CHECKING



1298 • Exploring ArcObjects • Volume 2

The differences between ArcObjects-based functionality available
through ArcGIS deployments are centered on the geodatabase.
ArcEditor 8.1 and ArcInfo 8.1 products have the same capabilities, while
ArcView 8.1 has reduced functionality.

The ArcInfo and ArcEditor licenses have full access to ArcObjects,
particularly the geodatabase. This includes full read access, full editing,
and schema definition for both personal and enterprise geodatabases.

ArcView 8.1 can view all supported ArcGIS data sources, but only
shapefiles and personal geodatabases can be edited. Editing of coverages
is not supported. Geodatabase functionality is further refined to provide a
user read access to all geodatabases. What can be created and edited
within a personal geodatabase is further refined to prohibit the following:

• Geometric networks

• Feature classes using nonsimple classes (for example, network feature
classes and dimension classes), except annotation

• Feature classes with subtypes

• Features classes participating in a relationship class (for example,
feature-linked annotation)

• Tables with subtypes

• Tables participating in a relationship class

In addition, when editing within ArcMap, the Integrate command cannot
be accessed using the ArcView license.

Knowing this list of supported functionality will help you make decisions
on whether licensing issues are of concern for the components you are
developing.

As a developer, you have the choice to write proactive or reactive code
when dealing with these functional license checks. Proactive code deter-
mines the license that is currently in use, which dictates the flow through
the program. Reactive code does not perform up-front checking, but it
does perform checks after the methods with license behavior are called.
In reality, you will most often employ a mixture of both techniques.

An example of proactive code might involve an application that will
display and edit data from a variety of data sources. You might choose to
limit the data that a user can add to the application based on the license
in use. This can be achieved in conjunction with the GxDialog coclass
and a selection of GxObject filters, as illustrated below:

Private Function SelectLicensedEditClasses() As IEnumGxObject

  Dim pGxDialog As IGxDialog

  Set pGxDialog = New GxDialog

  Dim pFilters As IGxObjectFilterCollection

  Set pFilters = pGxDialog

  pFilters.RemoveAllFilters

  pFilters.AddFilter New GxFilterShapefiles, False

ARCGIS LICENSE CHECKING

A personal geodatabase is stored in the
Microsoft Access .mdb format. An enterprise

geodatabase is stored within an RDBMS.



Appendix C • Developing for ArcGIS deployments • 1299

  pFilters.AddFilter New GxFilterPGDBFeatureClasses, False

  pFilters.AddFilter New GxFilterPGDBFeatureDatasets, False

  pFilters.AddFilter New GxFilterPGDBTables, False

  Dim pLicInfo As IESRILicenseInfo

  Set pLicInfo = New ESRILicenseInfo

  If ((pLicInfo.DefaultProduct = esriProductCodeEditor) Or _

   (pLicInfo.DefaultProduct = esriProductCodeProfessional)) Then

   pFilters.AddFilter New GxFilterCoverageAnnotationClasses, False

    pFilters.AddFilter New GxFilterCoverageFeatureClasses, False

    pFilters.AddFilter New GxFilterCoverages, False

    pFilters.AddFilter New GxFilterDimensionFeatureClasses, False

    pFilters.AddFilter New GxFilterGeometricNetworks, False

    pFilters.AddFilter New GxFilterInfoTables, False

    pFilters.AddFilter New GxFilterRelationshipClasses, False

    pFilters.AddFilter New GxFilterSDEFeatureClasses, False

    pFilters.AddFilter New GxFilterSDEFeatureDatasets, False

    pFilters.AddFilter New GxFilterSDETables, False

  End If

  With pGxDialog

    .AllowMultiSelect = True

    .Title = “Select Editable data”

    .DoModalOpen 0, SelectLicensedEditClasses

  End With

End Function

Functional changes take two forms. A method either returns an appro-
priate error HRESULT to signal that there is not an appropriate license
available to successfully execute the method, or it returns a successful
HRESULT but the behavior of the method changes to reflect the avail-
able licenses.

As an example of the first kind of functional license check, the Delete
method on the IDataset interface may return the HRESULT
FDO_E_NO_OPERATION_LICENSE to say that you did not have the
correct license to complete the operation. This type of error can be easily
trapped for reactively, then reported to the user using an informative
message box.

Private Function DeleteDataset(pDataset As IDataset) As Boolean

  On Error GoTo ErrorHandler

  pDataset.Delete

  DeleteDataset = True

  Exit Function

ErrorHandler:

  If (Err.Number = FDO_E_NO_OPERATION_LICENSE) Then

    MsgBox “You do not have a license that enables you to delete _

            dataset “ & pDataset.Name, vbCritical

ARCGIS LICENSE CHECKING



1300 • Exploring ArcObjects • Volume 2

  Else

    MsgBox “Error Deleting Dataset “ & pDataset.Name & vbCrLf & _

           “Error Description : “ & Err.Description, vbCritical

  End If

End Function

The alternative is to determine the license in use, the type of dataset that
the user wants to delete, and then decide whether or not to allow the
DeleteDataset function to be called.

The more difficult scenario is when the behavior of a method changes
depending on the available licenses. For instance, assume that the user
has defined a personal geodatabase using ArcEditor and has a number of
classes defined. Two of these feature classes have a relationship class.
This means that as long as an ArcEditor or ArcInfo license is used to edit
the database, all classes are editable. If an ArcView user starts editing on
the database, the start editing will succeed for all the classes except the
two with the relationship. The method’s behavior has changed, but there
was no failure HRESULT returned from the method call since it success-
fully started editing all the other classes. In this case, you must perform
another step after calling StartEdit to determine whether or not the start
edit operation was successful on all classes. If you find that it was not
successful, you can retrieve the reason from the database and present that
information to the user or perhaps just configure your tools accordingly.

Private Sub StartEditWithCheck(pWorkspace As IWorkspace)

  Dim pWorkspaceEdit As IWorkspaceEdit

  Set pWorkspaceEdit = pWorkspace

  pWorkspaceEdit.StartEditing True

  Dim pDatasets As IEnumDataset

  Set pDatasets = pWorkspace.Datasets(esriDTFeatureClass)

  pDatasets.Reset

  Dim pDataset As IDataset

  Dim pDatasetEdit As IDatasetEdit

  Set pDatasetEdit = pDatasets.Next

  Dim failedClasses As String

  Do Until (pDatasetEdit Is Nothing)

    If (Not pDatasetEdit.isBeingEdited) Then

      Set pDataset = pDatasetEdit

      failedClasses = failedClasses & pDataset.Name & vbCrLf

    End If

    Set pDatasetEdit = pDatasets.Next

  Loop

  If (failedClasses <> “”) Then _

    MsgBox “Start edit failed for the following classes : “ & _

         failedClasses, vbCritical

End Sub

The above function can be changed slightly to perform the checking
proactively. In the following function, the class is checked to see if it

ARCGIS LICENSE CHECKING



Appendix C • Developing for ArcGIS deployments • 1301

can be edited using its IDatasetEditInfo interface. This is the preferred
method of checking since there are a number of reasons in addition to
the license issues discussed here that a user may not be able to start
editing a feature class. For more information, see Chapter 8, ‘Accessing
the geodatabase’.

Private Function AllOrNothingStartEdit(pWorkspace As IWorkspace) As Boolean

  Dim pDatasets As IEnumDataset

  Set pDatasets = pWorkspace.Datasets(esriDTFeatureClass)

  pDatasets.Reset

  Dim pDatasetEditInfo As IDatasetEditInfo

  Set pDatasetEditInfo = pDatasets.Next

  Do Until (pDatasetEditInfo Is Nothing)

    If (Not pDatasetEditInfo.CanEdit) Then Exit Function

    Set pDatasetEditInfo = pDatasets.Next

  Loop

  Dim pWorkspaceEdit As IWorkspaceEdit

  Set pWorkspaceEdit = pWorkspace

  pWorkspaceEdit.StartEditing True

  AllOrNothingStartEdit = True

End Function

When designing your functionality, being aware of these license issues
will help you create a solid application that will work on any deployment
of the ArcGIS functionality.

Using the tables on the next page will help you decide when it is appro-
priate to check for license-related HRESULTs. You should not treat this
as a fixed list of method calls since changes in ArcGIS deployments
may result in changes to the functional license-checking routines.

The following table lists the license-related HRESULTs:

-2147220962

-2147220961

-2147220974

-2147221247

Decimal value

-2147217407

-2147220734

-2147217402

-2147220960

-2147216062

-2147210395

-2147216084

-2147216085

-2147220735

-2147220976

-2147217302

-2147217304

FDO_E_NO_EDIT_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_LICENSE_FAILURE

E_NOTLICENSED

Name

E_RASTERENCODER_NO_LICENSE

E_LICENSENOTAVAILABLE

E_RASTER_FILE_LZW_FAILED

FDO_E_NO_OPERATION_LICENSE

FDO_E_SE_LICENSE_EXPIRED

E_TIN_LICENSE_NOT_AVAILABLE

FDO_E_SE_OUT_OF_LICENSES

FDO_E_SE_LICENSE_FAILURE

E_GEOSTAT_LICENSENOTAVAILABLE

LOCATION_E_NO_LICENSE

E_SPATIAL_ANALYST_SHAREDLICENSENOTAVAILABLE

E_SPATIAL_ANALYST_LICENSENOTAVAILABLE

0x8004021E

0x8004021F

0x80040212

0x80040101

Hexidecimal value

0x80041001

0x80040302

0x80041006

0x80040220

0x80041542

0x80042B65

0x8004152C

0x8004152B

0x80040301

0x80040210

0x8004106A

0x80041068

ARCGIS LICENSE CHECKING



1302 • Exploring ArcObjects • Volume 2

The following table lists the method calls that can return license-related
HRESULTs:

CreateTable

Method

CreateRelationshipClass

CreateFeatureClass

CreateAnnotationClass

CreateFeatureDataset

CreateCoverage

CreateInfoTable

AddField

AddSubtype

DeleteSubtype

put_DefaultSubtypeCode

put_DefaultValue

putref_Domain

CreateFeatureClass

CreateRelationshipClass

CreateGeometricNetwork

Delete

IntegrateDataset

IntegrateClass

Select

StartPrinting

StartExporting

SaveAs

put_VersionName

put_Description

put_Access

CreateVersion

Delete

FailIfViewer

IFeatureWorkspace

Interface

IArcInfoWorkspace

IClass

ISubtypes

IFeatureDataset

ITopoEditor

IPrinter

IExporter

IRasterBandCollection

IVersion

IWorkspaceLicense

FDO_E_NO_SCHEMA_LICENSE

HRESULT

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_SCHEMA_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_EDIT_LICENSE

FDO_E_NO_EDIT_LICENSE

FDO_E_NO_EDIT_LICENSE

E_LICENSENOTAVAILABLE

E_LICENSENOTAVAILABLE

E_RASTER_FILE_LZW_FAILED

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSE

FDO_E_NO_OPERATION_LICENSEputref_Domain

MakeNodeEnumerator

MakeEdgeEnumerator

MakeTriangleEnumerator

ConvertToVoronoiRegions

ITinAdvanced

FDO_E_NO_SCHEMA_LICENSE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

StartEditing

InitNew

ITinEdit E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

GetProjectedArea

GetSurfaceArea

GetVolume

GetVolumeAndArea

ISurface E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

GetPartialVolumeAndArea

ConvertToPolygons

GetLineOfSight

GetContour

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

ContourList

Contour

AsPolygons

QueryPixelBlock

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

E_TIN_LICENSE_NOT_AVAILABLE

GetSteepestPath E_TIN_LICENSE_NOT_AVAILABLE

ARCGIS LICENSE CHECKING



Developing with
the Map control

You can create standalone applications—outside ArcGIS

applications such as ArcMap and ArcCatalog—using the

Map control, an ActiveX control that comes with

ArcGIS Desktop.

The Map control provides you with the

basic infrastructure, such as

managing views, layers, and datasets

in your new applications, with relatively

little development. In fact, the Map control works

in a similar way to MapObjects; the main difference is

that the Map control is your gateway to the entire

ArcObjects object model.

Michael Waltuch

Appendix

D



1304 • Exploring ArcObjects • Volume 2

ArcGIS 8.1 includes an ActiveX component called the Map control. No
additional installation is required. It’s similar to the MapObjects
Map control—you can start up any of the standard development environ-
ments and languages that support ActiveX controls, such as Visual Basic,
Visual C++, Visual Basic for Applications (VBA), Delphi®, and
PowerBuilder®, load the control, and start to build applications that
display and manipulate geographic data.

If you need to display any of the ArcGIS data sources, either in concert
with one of the ArcGIS applications or as a standalone application, the
Map control may be an appropriate technology. The application you
build with the control may be as simple or as extensive as you wish. In
fact, you can build a standalone application in a matter of minutes, use
the control to provide access to the entire ArcObjects object model, or
add your own COM components.

What you can do with the Map control is limited only by your imagina-
tion. Many application scenarios exist, and you may recognize your own
situation in this brief list. For example, you can use the control to build:

• Kiosks that allow the public to make simple inquiries about land par-
cels

• Minicatalogs of available data for in-house use

• Specialized editing task environments

• Enhanced Office applications that include “live” maps

• Equipment and inventory location tracking tools

WHAT DOES THE MAP CONTROL DO?

Simply put, the Map control does all the plumbing required to get
ArcObjects inside another application. At the simplest level you can work
with the control interactively, with no code needed. For instance, in
Visual Basic you can browse for the control, add it to the Toolbox, and
drag it to a Form. This creates a map display that you can use to render
geographic data. Right-clicking the control displays a property page that
lets you browse for layers to add to the map. These layers can be any
ArcGIS-supported data source. If you’ve already created or have access to
an ArcMap document, you can browse for it and the control will display
the entire contents of the document using all previously established sym-
bology and spatial references. In addition to working interactively, you
can use the appropriate set of methods and properties that the control
exposes to handle the data-loading tasks. Here’s a simple example of
loading an ArcMap document onto the control:

Private Sub Form_Load()

  MapControl1.LoadMxFile “c:\data\mxds\StudyArea.mxd”

End Sub

Because the Map control is like any standard ActiveX control, it has a
full complement of stock events. Thus, you can write code for these
events in order to respond to user actions. For example, you can re-
spond to an event, such as OnMouseDown, by using a simple method,

STANDALONE APPLICATIONS WITH THE MAP CONTROL

The Map control in the Visual Basic Toolbox.

To see how to load this control automatically,
see the automated references add-in topic in

Volume 1, Chapter 2, ‘Developing with
ArcObjects.’



Appendix D • Developing with the Map control • 1305

such as IMapControl::TrackRectangle, to create code to set a new spatial
extent, as shown with this code:

Private Sub MapControl1_OnMouseDown(ByVal button As Long, _

   ByVal shift As Long, ByVal x As Long, ByVal y As Long, _

   ByVal mapX As Double, ByVal mapY As Double)

  With MapControl1

    .MousePointer = esriPointerZoomIn

    .Extent = MapControl1.TrackRectangle

    .MousePointer = esriPointerArrow

  End With

End Sub

Returning to the original spatial extent is just as easy:

Private Sub Command1_Click()

  MapControl1.Extent = MapControl1.FullExtent

End Sub

To get going quickly you can avail yourself of the wide-ranging func-
tionality of the sample commands and tools that are provided with the
installation. These tools implement ICommand and/or ITool, provide
functionality to identify and select features, produce attribute reports,
edit commands (including StartEditing, StopEditing, Undo, Redo), and
supply tools to add and reorganize layers.

The tools are available in two DLLs stored in the installation’s bin folder.
One, written in C++, AfCommands.dll, contains two commands, the
other, written in Visual Basic, AfCommandsVB.dll, contains several tools;
they both can be used in a development environment that supports
ActiveX DLLs.

The source for these samples is in the ArcObjects Developer
Kit\Kits\ArcObjects Source\Commands folder. If you want to find out
more about using the sample commands and tools, or you’re looking
for a place to start learning from scratch, read the PDF document
named Getting started with the Map control.pdf in the ArcObjects Devel-
oper Kit\Samples\MapControl folder for more information. Of course,
you can also use the samples simply as a model for your own tools.

You can create a sophisticated application using the Map control’s
methods, properties, and events. In some cases, however, you may
require the more extensive functionality of the rest of the ArcObjects
object model. How do you do this? The control’s Map property returns
an IMap and, if you’ve loaded the ESRI Object Library (esriCore.olb),
you can use the members of IMap to link the Map control to the rest of
the object model. Here is a simple example of how to highlight the
selected features of a map. In this case, the selection set is the result of
the intersection of any features on the map and a circle you track with
the mouse:

Private Sub MapControl1_OnMouseDown(ByVal button As Long, _

   ByVal shift As Long, ByVal x As Long, ByVal y As Long, _

   ByVal mapX As Double, ByVal mapY As Double)

  Dim pSelEnv As ISelectionEnvironment

STANDALONE APPLICATIONS WITH THE MAP CONTROL

A sample Map control application with a pre-
loaded MXD file.

The Map control in a Visual Basic form at design
time.



1306 • Exploring ArcObjects • Volume 2

  Dim pRgbColor As IRgbColor

  Set pSelEnv = New SelectionEnvironment

  Set pRgbColor = New RgbColor

  pRgbColor.Red = 255

  pSelEnv.AreaSelectionMethod = esriSpatialRelIntersects

  Set pSelEnv.DefaultColor = pRgbColor

  MapControl1.Map.SelectByShape MapControl1.TrackCircle, pSelEnv, False

  MapControl1.Refresh esriViewGeography

End Sub

You may decide to write commands or tools that work both with
ArcMap or an application that embeds the Map control. To do so, you
must simply determine the type of object that you pass in your imple-
mentation of ICommand_OnCreate. When the framework creates the
command, it calls OnCreate. The IDispatch interface of the hosting
framework gets passed through the method’s hook variable:

Option Explicit

‘ Member Variables

Private m_pApp As IApplication          ‘ Top most object of an ArcGIS
Application

Private m_pMapControl As IMapControl    ‘ Top most object of the Map
control

Private Sub ICommand_OnCreate(ByVal hook As Object)

  If (TypeOf hook Is IApplication) Then

    Set m_pApp = hook

  ElseIf (TypeOf hook Is IMapControl) Then

    Set m_pMapControl = hook

  End If

End Sub

Once you’ve made this determination, you can QI for an appropriate
interface. For example:

Private Function GetFocusMap() As IMap

  ‘ Try for the IMap member Variable first

  If (Not m_pMapControl Is Nothing) Then

    Set GetFocusMap = m_pMapControl.Map

    Exit Function

  End If

  ‘ Get The Map From the Application

  If (Not m_pApp Is Nothing) Then

    Dim pMxDoc As IMxDocument

    Set pMxDoc = m_pApp.Document

    Set GetFocusMap = pMxDoc.FocusMap

    Exit Function

  End If

End Function

There may be instances when you may be better off not using the con-
trol. The ArcObjects Map control is not a lightweight component—it’s

STANDALONE APPLICATIONS WITH THE MAP CONTROL

The Map control with some of the sample
commands and tools



Appendix D • Developing with the Map control • 1307

not the next version of MapObjects, nor should it be used to serve
geographic data to a Web-based application. In addition, you may find
that you can save development effort by leveraging the existing display-
and data-management capabilities inherent in ArcMap or ArcCatalog and
just work on implementing your own tools or commands, rather than
“reinventing the wheel”. The use of the control is tied to the same li-
censing requirements as your other ESRI ArcGIS 8.1 applications. A
simple rule of thumb is that if you can’t run ArcMap or ArcView on the
seat, then you can’t run an application with the control there either.

STANDALONE APPLICATIONS WITH THE MAP CONTROL





Index • mcccix

Index

Symbols

#import  165, 172

A

AbridgedMolodenskyTransformation coclass  1109
Abstract class  11, 79
Accelerator table

accessing  211, 216
adding accelerators to

example  216
described  216
removing accelerators from

example  216
Accelerators

accessing  216
creating  216

example  216
removing

example  216
ACMap coclass  357
Active Server Pages (ASP)  1280
Active Template Library. See ATL
Active tool

accessing  188
setting  188

Active view. See Views
ActiveX Data Objects (ADO)  1273

library file  1276
ActiveX Data Objects model

command  1275
connection  1275, 1278, 1280

openschema  1278
error  1275
field  1275
parameter  1275
property  1275
record  1275
recordset  1275, 1278, 1280

edit  1278
filter  1278

stream  1275
ActiveX DLL  120–121
Addref method. See IUnknown
ADO (ActiveX Data Objects)  1273
Advanced Drawing Options dialog box  505
AffineTransformation2D coclass  1055, 1056, 1057

Aggregation. See also COM: aggregation
in CASE tools  1288

AlgorithmicColorRamp coclass  496, 497, 498, 539
AnchorPoint coclass  554, 620
AngleFormat coclass  416, 420
Angles  986, 1009, 1022, 1031
AngularUnit coclass  1072, 1090
Animation progressor  210, 241
AnnotateLayerPropertiesCollection coclass  433, 434
Annotation  302

adding layers to ArcMap example  446–447
creating from labels  366
groups  364, 366

creating example  368–369
in layers

annotation feature classes in a geodatabase  364, 370
coverages  351–353
graphics  364

levels in coverage  351
scale  367–368
subclasses in coverages  351
target  364, 366, 370

Annotation class. See Annotation feature class
Annotation feature  847–848, 849

example  849
splined  551

Annotation feature class  742, 847–848, 849
adding elements to  370
in ArcMap layers  370

Annotation layers. See FDO graphics layers
AnnotationFeature coclass  742, 847, 849
AnnotationFeatureClassExtension coclass  742, 847
AnnotationJScriptEngine coclass  436, 442
AnnotationVBScriptEngine coclass  436, 442
AOIBookmark coclass  384
Apartment  85–86
AppDisplay coclass  252, 254, 260, 570
Application

active tool  188
ArcMap  249
discussion  187–190
display built-in dialog boxes  188
exiting  188
extending  191–201
getting a reference to  207, 230, 235–236
handling global data  197–199
in ArcCatalog  187
in ArcMap  187
locking  188
managing threads  188–189
multithreaded  188–189
persisting data  199–201
start up sequence  197
unlocking  188
window. See Application window



mcccx • Exploring ArcObjects

Application framework
introduction  184
object model diagram  182

Application license checking. See License checking: applica-
tion

Application object  119, 122
Application running object table  235–236
Application window

height  189
left position  189
maximizing  190
minimizing  190
moving  189–190
moving and resizing example  190
resizing  189–190
top position  189
width  189

AppRef coclass  207
AppROT coclass  235
Arc Connection map  357
ArcCatalog

application  187
browsing for data  702
connect to folder  691
container object example  686
container objects  686, 687
copy/paste  661, 668, 684
creating your own objects  682
customizing  186
Database Connections folder  691
defining file types  692
disk connection example  691
displaying files  701
drag/drop  661, 662
editing a file example  692
extension collection example  689
extensions  689

accessing  689
creating  689

find. See ArcCatalog: search
folders  690

connecting and disconnecting  699
location  659, 668, 672, 677
location property example  699
location setting example  669
looping through selected example  668, 683
Name objects within a folder example  690
Normal template  186
object filters  672, 701, 702, 703, 704

collection example  703
creation example  704–705
example  701

object model
described  658

renaming objects  684

ArcCatalog (continued)
search  713

adding queries example  724
creating a new query example  723
date searches  724
geographic searches  724
initialization example  713
initializing  713
keyword searches  724
modifying parameters  722
search engine  714, 723
search results  693, 714
XSL patterns  722

selected objects  659
selection  659, 662, 666, 668
shortcuts

see search results  693
thumbnails  672, 696

ArcGIS  1294
deployment  1294
deployment differences  1298
license checking  1294

ArcID module  217
ArcIMS

data source  822
layer based on feature service  357
layer based on image service  357

ArcInfo coverage. See Coverage
ArcInfoItem coclass  789, 919, 920
ArcInfoItems coclass  919
ArcInfoWorkspaceFactory coclass  909, 910
ArcMap

accessing documents  188
accessing layers  264
adding layers  264
application  187

introduced  252
launching programmatically  187

automation. See Automation
basic user interface elements  251
charts. See Graphs
contents views. See Table of contents
core objects diagram  250
customizing  184–186
data windows. See Data Windows
documents  659

accessing in ArcCatalog  696
ArcCatalog example  696
described  254

drawing shapes. See Drawing
extensions  260
graphs. See Graphs
layers. See Layers
Normal template  185–186



Index • mcccxi

ArcMap (continued)
object model

described  249
printers. See Printers
removing layers  264
starting programatically  124
template  114–115, 118, 185
views. See Views
working out of process. See Automation

ArcMap Editor object model diagram  1128
ArcObjects

embedded  1296
ArcPress

description  632
dither settings  633
driver  632, 633, 647

color  634
license checking  1295–1296
plotting with  632

ArcPressExporterDriver coclass  647
ArcPressExporterJPEG coclass  645
ArcPressExporterPCX coclass  645
ArcPressExporterPNG coclass  645
ArcPressExporterTIFF coclass  645
ArcPressPrinter coclass  629, 632, 633
ArcPressPrinterDriver coclass  632, 633, 634
Arcs

Bezier curves  1018
circular  1010, 1037
defining the shape of  1011, 1013,

1014, 1016, 1017, 1019
elliptical  1015
segments  1005

ArcSDE coordinate information  1085
ArcSDE raster  1263
ArcSDE storage parameter  755
Area of interest. See Bookmarks
AreaPatch coclass  377
ArrowMarkerSymbol coclass  510, 512, 515
ASP (Active Server Pages)  1280
ATL  126

and Direct-To-COM  165
bibliography  179
debugging  167
error handling  165–166
example  168–175
handling component categories  174
importlib. See #import
linking code  166
overview  164
smart types  155–157

Attribute query. See Query: attribute
AttributedRelationship coclass  775, 816, 831
AttributedRelationshipClass coclass  829
AttributeRule coclass  861, 863

Attributes
editing  1136, 1156
open/close window example  1156
window  1156

AttributeWindow coclass  1156
Automation  88

driving ArcMap with  253, 444–447

B

BalloonCallout coclass  552, 554, 557
Band interleaved by line format. See BIL
Band interleaved by pixel format. See BIP
Band sequential format. See BSQ
Bar/column renderer. See Feature Renderer: chart renderer
BarChartSymbol coclass  469, 470, 561, 563
BarrierCollection coclass  443
Barriers  270

accessing collection  443
count on layer example  352–353
defined  352
on coverage annotation layers  352

Basic graphics layer
accessing  367
defined  366

BasicOverposterLayerProperties coclass  434, 436,
437, 438, 443

BezierCurve coclass  551, 604, 607, 991,
995, 1002, 1005, 1018, 1019, 1037

BezierMovePointFeedback coclass  607
BezierTextPath coclass  551
Binding  83
BiUniqueValueRenderer coclass  474
Bivariate renderer. See Feature Renderer: biunique value

renderer
BMP. See DIB
BmpPictureElement coclass  312
Bookmarks  270

add area of interest example  385
area of interest  384–386
creating example  271
discussion  384–386
feature  386
object model diagram  384
zooming to example  271, 385–386

Brightness of layers  339
BSTR  96
Buffering shapes  1032, 1047
Buttons

changing appearance of  223
creating  230
creating in VBA  226
properties  230



mcccxii • Exploring ArcObjects

C

C++. See Visual C++
C++ Builder  98
Caching features

feature cache  1151
selection cache  1153

CAD data
accessing in ArcCatalog  690, 699
creating a layer file example  694

CAD drawings
layers based on. See CAD layers

CAD layers
discussion  360–361
drawing layer visibility  360

example  362
feature layers  362
report properties example  360
whole drawing layers  360

CadFeatureLayer coclass  360, 362
CadLayer coclass  360
CalcRendererValues coclass  476
CalibratedMapGridBorder coclass  406
Callback mechanism  82, 157–159
Callout. See Text background: callout
CalloutFeedback coclass  620
CancelTracker coclass  241, 352
CartographicLineSymbol coclass  521, 522, 523, 524, 527,

528, 529, 530, 562
CASE tools

ATL  1288
class description  1292
class extensions  1286
Code Generation Wizard  1285
custom features  1286
custom interface  1286
designing geodatabases  1284
Schema Wizard  1285
semantics checker  1285

CatalogSearchEngine coclass  726
CGM

driver  648
exporting to  643, 648

example  648–649
CGMExporter coclass  643, 648
CharacterMarkerSymbol coclass  510, 513, 553
Chart symbol

bar chart  561
defining fills  560
described  559
Editor dialog box  564
pie chart  562
stacked  563

ChartRenderer coclass  462, 469, 473, 559,
560, 561, 562, 563

ChartSymbolEditor coclass  564
CieLabConversion coclass  487, 495
Circle. See Arcs
CircleElement coclass  310
Circular references  1138
CircularArc coclass  988, 991, 992, 1002, 1005, 1007,

1010, 1011, 1013, 1014, 1015, 1037, 1053
Class description

in CASE tools  1292
Class extensions  775. See also Custom object class

annotation  847
circular references  841
defined  833
dimension  850
example  833, 835, 836
for feature class  839
for object class  834, 842
in CASE tools  1286

Class factory. See COM: class factory
Class identifiers (CLSIDs)  239
ClassBreaksRenderer coclass  457, 459, 460, 462,

474, 496, 579, 581, 582
Classes  79

types of  11
ClassHelper coclass  833, 841
Classification  460, 580–581, 586

example  580–581, 586
Classify objects  579, 580–582
CLSIDs (class identifiers)  239
Coclass  79
CodedValueDomain coclass  859, 860
Coding standards  89. See also Visual Basic: coding

guidelines; Visual C++: coding guidelines
Color

adjusting for output  634
ArcPress driver  634
CIELAB conversion  495
CMYKToLong example  487
comparing colors  495
concepts  484–485
creation examples  488, 489
custom palette example  490–491
dithering  486
LongToRGB example  487
monitor settings  486, 494, 495
null colors  487
palette  490–491
ramp. See Color ramp
RGBToLong example  486
samples illustration  485
selector  492
series of. See Color ramp
transparency  487
user interface  490–491



Index • mcccxiii

Color ramp
ArcView 3.x  500
described  496–497
example  464
gradient fill example  497
in gradient fill  539
interpolated example  498
multipart example  501
preset example  500
random example  496, 499

ColorBrowser coclass  492
ColorPalette coclass  490
ColorSelector coclass  490, 492, 493
ColorSymbol coclass  1255
Column. See Field
COM  1274

Active Template Library. See ATL
aggregation  84–85
background  76–77
bibliography  179
class. See Class
class factory  78
client  77–78
client storage  91
commands

described  230
containment  84–85
described  76–88
Direct-To-COM (DTC). See Direct-To-COM
DLL  77
EXE  77
instantiating objects  87
instantiation of features  95
interface. See interface
interface pointer  154
marshalling  86
server  77–78
server creation example  168–175

Combo box controls
creating  232
creating in VBA  227

Command bars
accessing  217
adding items to  218

example  218–219
adding menus to  218
creating  217, 218, 220
described  217
document-based versus COM-based  220
positioning  218
types of  217

Command bars collection
accessing  211, 217
described  217

Command items
accessing  223
adding to command bars  218
changing appearance of  223

example  223
described  223
display style  223
type  224

Commands
adding to command bars  218
assigning accelerators  216
changing appearance of  223
creating  230
creating dynamic  234
creating in VBA  225, 226
creating subtyped  233
executing  223
finding OID of  217
on command bars. See Command items
preventing the execution of  204–205
properties  230

ComplexEdgeFeature coclass  878, 885
ComplexJunctionFeature coclass

877, 878, 879, 880, 881, 882
Component category  87, 96–97,

121, 128–130, 176, 177, 237
adding objects to  237
creating  237
described  237
removing objects from  237

Component Category Manager  97
Component license checking. See License checking:

component
Component Object Model. See COM
ComponentCategoryManager coclass  176, 237
Composite graphics layers  366–369. See also Graphics layer

accessing  367
adding layers to example  368–369
annotation target  366
associated layer example  367
overflow graphics container  368

Composite layers. See Composite graphics layers. See also
Group layers

CompositeGeoTransformation coclass  1114
CompositeGraphicsLayer coclass  263, 267, 270, 366, 367
Composition  12
Computer Graphics Metafile format. See CGM
Configuration keyword  740, 754, 755
ConfigurationKeyword coclass  755
ConfigurationParameter coclass  755
Conflicts

resolving  1158
symbolizing  1158
window editing extension  1158



mcccxiv • Exploring ArcObjects

ConflictsWindow coclass  895
Connection file  735
Connectivity rule  864
Constraint. See Validation rule
Containment. See COM: containment

in CASE tools  1288
Contents views. See Table of contents
Context menus

creating  217, 222
Contrast of layers  339
Coordinate system. See Spatial reference

assumed geographic  1073
geographic

described  1089
user-defined  1090

projected
described  1097
parameters for  1097, 1099, 1101
user-defined  1098, 1101

source  1076
target  1076
unknown  1074, 1103

Coordinate Systems folder. See Spatial reference: ArcCatalog
folder

Coordinate transformations  572–573
CoordinateDialog coclass  243
CoordinateFrameTransformation coclass  1110
Copy/Paste

using ArcCatalog  661, 663, 668, 684
CORBA  76
Coverage

accessing in ArcCatalog  690
converting  899
creation example  910
described  908, 909, 910–914, 915,

916–917, 918, 919
feature class example  916
items  919
name objects  908, 918
workspace example  909

Coverage annotation
barriers count example  352–353

Coverage annotation layers  351–353. See also Layers
barriers  352
font size example  351–352
level visibility example  351–352
levels  351
subclasses  351
symbols  351

CoverageAnnotationLayer coclass  270, 330, 351
CoverageFeatureClassName coclass  918
CoverageName coclass  910, 918
Creating a layer file example  694
CurrencyFormat coclass  424

Current layer  1140
changing example  1140

Current task  1130
changing example  1137–1138

Cursor
buffering  819
changing mouse cursor  238
defined  816
example  817
fields  817
insert  94–95
insert cursor  776, 777, 818
positioning  817
recycling  94, 817
RelQueryCursor  952
resulting from join  952
search cursor  777
setting wait cursor  238
types of  816
update  94–95
update cursor  777, 818

Cursor coclass  796, 799, 816, 817, 820
Custom feature  85, 452, 477, 805, 806, 808, 839. See

also Custom object
in CASE tools  1286

Custom feature class  839
Custom feature renderer. See Feature Renderer: custom
Custom object  782, 801, 804

example  836
Custom object class  740, 743, 775, 834

example  835
Custom sorting  797
Custom Workspace  756
Customization

deployment  176–178
locking  188

Customization environments  191–192
generic  191–192
locked down  191, 192

Customization filters  191
activating  202
creating  202

example  203–204, 204–205
customization event types  202
described  202
discussion  202–206
in extensions  197, 202, 205–206

Customization framework. See also Application framework
in ArcCatalog  186

CustomOverlayGridFactory coclass  414



Index • mcccxv

D

Data conversion. See Feature data converter
Data exporting. See Feature data converter
Data Frame. See Map Frame
Data graph window  315

creating example  315
Data loading. See Feature data converter. See also Cursor:

insert
Data sources

nonrelational  1273
relational  1273

Data types  95–96
Data views. See Views
Data windows

accessing example  253
data graph  315
discussion  314–315
magnifier  316
map inset  316
object model diagram  314
overview  317
table  319–320

Database
as an ArcCatalog object  682, 688
schema

modify  1281
transaction  745, 783

DataGraph coclass  315, 321, 322
DataGraphElement coclass  305, 315
DataGraphWindow coclass  314, 315, 321
DataHistogram coclass  587
Dataset

access control  761, 766
as an ArcCatalog object  682, 688
browsing for  738
copying  765
coverage  914
creating a feature class within  712
defined  764
deleting  743, 765
editing  765
grant access example  761
IDataset example  764
locking  766

example  766
metadata. See Metadata
move example  772
name objects  760. See also Name object

example  758, 760
opening  738, 739
privileges  761
referenced in a document  256
register as versioned  893
renaming  765

Dataset (continued)
spatial properties  791
spatial reference  769
specifying before creation  760
types of  764
version  893
zoom to example  769

DataStatistics coclass  467
Datum

described  1092
user-defined  1093

Datum coclass  1072, 1073, 1079,
1080, 1089, 1090, 1091, 1092

DblPnt coclass  1227, 1262
DCE  78, 81
Debugging. See Visual Basic: debugging. See also ATL:

debugging; Visual C++: debugging
DefaultProduct property  1295
DefinedInterval coclass  579, 583
DefineEx method  1091
Definition query

on layers  336
Deleting data. See Editing
Deleting features example  1134–1135
Delphi  98
Deployment object models  1294–1301
Device context  502, 503, 569, 577
Device units  572–573
Device-independent bitmap format. See DIB
Dialog boxes

coordinate  243
display in application  188
list  246
message  247
number  248
progress  241
string  244
user and password  245

DIB
exporting to  643, 650

example  650, 650–651
World file  650

DibExporter coclass  650, 656
Difference of shapes  1047
DifferenceCursor coclass  892
DigitizerExtension coclass  1159
Digitizing  1159

programming puck button  1159–1160
example  1160

streaming tolerance  1141
Digitizing shapes. See Feedbacks. See also Rubber band
Dimension feature

described  850
digitizing example  623–624
example  855



mcccxvi • Exploring ArcObjects

Dimension feature (continued)
modify example  625–626
shape component diagram  856
style  624
types of  855
user interaction  622–624

DimensionClassExtension coclass  850
DimensionFeature coclass  855, 856
DimensionGraphic coclass  856, 857
DimensionLayer coclass  310, 359
DimensionShape coclass  622, 625, 855, 856, 857
DimensionStyle coclass  624, 851, 852, 857
DimensionStyles coclass  850, 851, 852, 855
Direct-To-COM  154–155, 165
Dispatch event

interface  82–83
Display

cache  571, 576
creation example  574
custom feature  806, 839
customizing  569
drawing example  575
drawing to  503, 506, 574

example  503–504, 506
event handling  570
filters  578
overview  569
rotating  572
special effects  578
zoom and pan  577

Display filter  335–336
DisplayTransformation coclass  254, 406, 570, 572
DLL  80, 87, 120–121, 176–178
DMSGridLabel coclass  409
Dockable windows

accessing  213
creating  213–215
described  213
displaying  213
positioning  213

Documents  184
accessing  188, 211
accessing parent application  211
determining filename of  212
discussion  211
in ArcCatalog  211
in ArcMap  185, 211, 254–259

changing the layout  256
datasets reporting example  256–257
datasets used in  256
described  254
events described  257
events open document example  258
firing sequence of events  258
overriding events  258

Documents (continued)
in ArcMap (continued)

properties  259
locking  188
locking customization. See Customization filters
opening  188
printing  188
saving  188
type  211

Domain
and attribute rules  863
described  859–860
example  860
extent  1088
managing  746
split policy  807
subtype  780

Dot density renderer. See Feature Renderer: dot density
renderer

DotDensityFillSymbol coclass  472, 473, 541, 542
DotDensityRenderer coclass  462, 472, 541, 542
Drag/Drop

using ArcCatalog  661, 662
Drawing

polygons example  274–276
Drawing feature layers. See Feature Renderer
Drawing phase  452
DSN (Data Source Name)  1282
DTC. See Direct-To-COM
Dynamic Link Library (DLL). See DLL
Dynamic segmentation

and editing  969
defined  959, 967
described  959
dynamic feature class. See Dynamic segmentation: route

event source
error handling  968, 969–970
event table  965–966, 967, 968–970
generating shape for location  964
measures  963–964
overlay example  973–974
route event source  967, 968–970
route feature class  959, 961
route location objects  963–964
route locator creation example  961
route locator objects  959, 960, 961–962
spatial analysis  971



Index • mcccxvii

E

Edge feature. See Geometric network: edge feature
EdgeConnectivityRule coclass  861, 867
EdgeFlag coclass  1189
EdgeFlagDisplay coclass  1198, 1199
Edit box controls

creating  232
creating in VBA  228

Edit cache  751
Edit events  1129, 1130, 1138

example  1139
Edit extensions  1136, 1144

attributes window  1156
conflicts window  1158
digitizer  1159
topology editor  1161–1162

Edit operations  93–94, 1134
delete feature example  1134–1135

Edit sessions  1131
Edit sketch  1132–1133, 1143

add point example  1132
context menu  1132, 1133
delete vertex and fire event example  1148–1149
delete vertex example  1133–1134
extensions  1133, 1155
operations  1133, 1148–1149
symbology example  1141

Edit tasks  1129, 1130, 1145–1146
changing example  1137–1138
custom edit task example  1145
relation to current layer  1140
relation to edit sketch  1132, 1143

EditEvents2 coclass  1138, 1139
Editing

appending data  905
attribute domains  859
conflicts. See Version: conflicts
custom configuration  839
customizing attribute editing  834
direct updates  745, 787
event handling  750, 799
feature caching  751
multiuser issues  748
original values  801
outside of edit session  782
performance  750, 837
reconcile and post  889
route event source  969
rules for geodatabase integrity  93–95, 749
Store method  782, 787, 799
topological features  869
undo and redo  747
without editing tools in ArcMap  747
workspace edit example  748
XY events  977

Editing features  1127
attributes  1136, 1156
delete feature example  1134–1135
edit events. See Edit events
edit sessions  1131
edit tasks. See Edit tasks
extending the system overview  1129–1130
object model diagram  1128
resolving conflicts  1158
start edit session example  1131
topological associations  1161–1162

Editing properties  1141–1142
Editor coclass  93, 192, 272, 674, 834,

895, 1129, 1130, 1132, 1135, 1137,
1138, 1139, 1143, 1144, 1150, 1156

Editor extensions. See Edit extensions
EditSelection coclass  109
EditSelectionCache coclass  1153
EID. See Logical network: element ID (EID)
Element ID (EID). See Logical network: element ID (EID)
Elements

accessing selection  288
adding text example  286–287
custom  591
custom properties  300
discussion  299
fill shape elements  310–311

circle  310
ellipse  310
polygon  311
rectangle  311

frame elements  306, 307–308
background  566
decoration  565–568
example  566
map frame  307–308
map surround frame  308
OLE frame  307

graphic elements  301, 302, 303, 304
adding to a graphics container  365
group  304
line  303
marker  303
storing in a geodatabase  370
text  302

map surrounds. See Map surrounds
moving example  287
object model diagram  298
picture elements

adding to layout example  313
bitmap  312–313
enhanced metafile  312–313

positioning
with grid  292, 296
with guides  293, 296



mcccxviii • Exploring ArcObjects

Elements (continued)
positioning (continued)

with margins  296
with rulers  294, 296
with snap agents  295

reshaping  299
rotating  594
scaling  595
selection count example  288
user interaction  589–590

Ellipse. See Arcs
EllipseElement coclass  310
EllipticArc coclass  991, 992, 1002, 1005,

1010, 1015, 1016, 1037
EMF

driver for  631
example  629
exporting to  643, 652

EmfExporter coclass  652
EmfPictureElement coclass  312
EmfPrinter coclass  629, 631
Enhanced Windows Metafile. See EMF
Enumeration

comparison of similar  791
Enumerator interfaces  90–91, 112
EnumFieldError coclass  904
EnumStyleGalleryItem coclass  392
Envelope coclass  91, 134, 546, 552, 600, 609,

619, 724, 857, 983, 989, 1026, 1027,
1028, 1037, 1048, 1052, 1053, 1067

Envelopes. See also Geometry
defining the shape of  1028, 1037
described  982, 1026

EqualInterval coclass  579, 583
Error Handler  130
Error handling  91, 102, 107–108, 135–137, 165–166
ESRI OLE DB provider  1276

extended properties
esriCore.AccessWorkspaceFactory.1;  1277
esriCore.ArcInfoWorkspaceFactory.1  1277
esriCore.SDEWorkspaceFactory.1;  1276
esriCore.ShapefileWorkspaceFactory.1  1277

esriArrowMarkerStyle Constants  512
esriBalloonCalloutStyle Constants  554
esriCmdBarType Constants  217
esriColorRampAlgorithm Constants  498
esriCommandStyles Constants  223
esriCommandTypes Constants  224
esriCustomizationEvent Constants  202
esriDataGraphColorEnum Constants  323
esriDataNormalization Constants  461
esriDifferenceType Constants  894, 897
esriDimensionDisplay Constants  852
esriDimensionMarkerFit Constants  852
esriDimensionTextDisplay Constants  853

esriDimensionTextFit Constants  854
esriDMSGridLabelType Constants  409
esriDockFlags Constants  218
esriDocumentType Constants  211
esriElementType Constants  1173
esriEnvelopeVertex Constants  1048
esriExtensionState Constants  194
esriFeatureType Constants  791, 805
esriFieldNameErrorType Constants  903
esriFieldType Constants  789, 1287
esriFlowDirection Constants  1176
esriFractionOptionEnum Constants  426
esriGeometryError Constants  1022, 1046
esriGeometryHitPartType Constants  1049
esriGeometryType Constants  336
esriGradientFillStyle Constants  539
esriGridAxisEnum Constants  407
esriHyperlinkType Constants  345
esriIPictureType Constants  537
esriJoinCapStyle Constants  521
esriJoinType Constants  342
esriLegendItemArrangement Constants  376
ESRILicenseInfo coclass  1295
esriLineCalloutStyle Constants  555
esriLineCapStyle Constants  521
esriMarkerFillStyle Constants  536
esriMaskStyle Constants  516, 547
esriNetworkAccess Constants  1167
esriNetworkStatus Constants  1168
esriNetworkType Constants  1167
esriPageFormID Constants  290
esriPageToPrinterMapping Constants  291
esriPictureType Constants  514
esriRasterOpCode Constants  503, 504
esriRelationshipSplitPolicy Constants  840
esriRelRole Constants  344
esriSelectionResultEnum Constants  278
esriSimpleFillStyle Constants  535
esriSimpleLineStyle Constants  520
esriSimpleMarkerStyle Constants  511
esriSQLPrivilege Constants  761
esriSRDatumType Constants  1081
esriSRGeoTransformation2Type Constants  1111, 1113
esriSRGeoTransformationType Constants  1107
esriSRParameterType Constants  1099
esriStatusBarPanes  208
esriStatusBarPanes Constants  208
esriSymbolRotationType Constants  457
esriTextCase Constants  546
esriTopoConfiguration Constants  880
esriTrackerLocation Constants  593
esriTransformDirection Constants  1114, 1120
esriVersion Constants  897, 1158
esriWindowState Constants  190
esriWorkspaceType Constants  733, 737



Index • mcccxix

Event
document  257
feature layer selection  337
graphics layer selection example  365
layer  340
map  272

example  272
map and page layout

examples  270
map and page layout view  269–270

examples  274–276
on route. See Dynamic segmentation
page  291
verbose  274

Event handling  92–93, 109–110
Excel

worksheet  1281
Exception handling. See Error handling
ExportDialog coclass  655, 656
ExportHTML coclass  721
Exporting feature data. See Feature data converter
Exporting maps

dialog box example  655–656
example  643–644
getting hDC  643–644
supported formats  643
using a dialog box  655
using ArcPress  645

ExportMP coclass  721
ExportMPFAQ coclass  721
ExportMPHTML coclass  721
ExportOperation coclass  899
ExportXML coclass  721
Extension license checking. See License checking: extension
Extensions. See also Edit extensions

accessing  188, 192, 193
creating  193–197
creating accelerators for  196–197
defined  191
disabling  194
discussion  191–201
enabling  194
in ArcMap  260
licensing  192, 194–195
listing in Extensions dialog box  194
order of loading  197
persisting data  199–201
start up sequence  197
storing data in documents  196, 199–201

Extents
bookmarks  270, 384–386

creating example  271
zooming to example  271

of maps  268

F

Factories
accessing remote workspaces  698
available factories  700

example  700
creating a layer file example  694
creating your own  706
finding children with  661, 706
for browsing data  659, 673
supporting metadata  707
text file factory example  706–707
to implement custom objects  682
use with search results  693

FDO graphics layers. See also Graphics layers
annotation target  370
discussion  370

FDOGraphicsLayer coclass  262, 267, 270, 366, 370
Feature. See also Object; Row

bookmarking  386
COM instantiation of  95
defined  805
deleting example  1134–1135
digitizing. See Rubber band. See also Feedbacks: for new

shapes
editing shape of  95, 805
identifying

querying attributes of  282–283
merging  808, 869
moving example  807
resolving conflicts  1158
rotating  594
scaling  595
select by shape example  1145
selecting in map layer example  335
splitting  807, 840
types of  805
user interaction  589–590, 594

Feature class. See also Dataset; Object class; Table
accessing example  785
conversion example  899
coverage  916
creating  741, 770, 792
creating in ArcCatalog  712

example  712
defined  784
drawing. See Feature Renderer
from query  811
from route events. See Dynamic segmentation: route

event source
from XY events  977
merging features  808
moving features  806
name object  762
network  786



mcccxx • Exploring ArcObjects

Feature class (continued)
opening  740

example  740
properties  784–785
splitting features example  807
standalone  772

Feature coclass  95, 542, 559, 561, 562, 563, 610,
775, 777, 805, 818, 839, 840, 847, 849, 953,
954, 983, 984, 999

Feature data converter. See also Object loader
described  898, 899–900, 901
example  899
invalid data  902
progress events  901
progress example  901
validating field names  903, 904

Feature dataset
contents example  771
defined  770
exporting  900
for coverages  915
moving datasets to  772
name object  761

Feature Inspector  1136, 1156, 1157
creating custom  1157

Feature layers
adding to map example  332
annotation properties  333, 433
assigning renderer to  333
created from query example  811
definition query  336
determining shape type of  336
drawing. See Feature Renderer
hotlinks  345

using field  345
using macros  345–346
using macros example  346

hyperlinks  345, 347
assigning example  347–348

identifying features  338
example  349

identifying layers  349
joining tables to  342–343

example  342–343
joining with geodatabase

relationship class example  343
relating tables to  342, 343–344

example  344
rendering. See Feature Renderer
resulting from join  948, 950–951
searching  332, 333–334
selecting features  337

example  335, 338
selection events  337
selection properties  337

Feature layers (continued)
selection set  337
symbology. See Feature Renderer

Feature Renderer
assigning to feature layer  453
barcolumn  451
biunique value renderer  474
calculating values  476
canceling  452
changing symbol example  456
chart example  469–470
chart renderer  469–471, 476, 559
class breaks example  459, 460, 581–582
class breaks illustration  461
class breaks renderer  459–462, 579
custom  477–478
dot density example  472
dot density renderer  472–473, 541
example of accessing  452
excluding features  452, 462, 468
graduated values. See Feature Renderer: class breaks

renderer
handling exceptions  462, 468
legend. See Legend
multiple attributes. See Feature Renderer: bi-unique value

renderer
multiple fields  470
normalization  467, 471
operation  452
pie chart. See Feature Renderer: chart renderers

example  471
pie chart example  476
property page  453
proportional symbol example  467
proportional symbol renderer  466–468
ratios  461. See also Feature Renderer: normalization
rotating symbols  457
scale-dependent  475
simple renderer  456–458
single symbol. See Feature Renderer: simple renderers
stacked chart. See Feature Renderer: chart renderer
transparency  458
types of  451
unique value examples  463–465
unique value renderer  463–465
wind direction illustration  457

FeatureBookmark coclass  386
FeatureCache coclass  1151
FeatureClass coclass  622, 624, 764, 777, 784, 785, 811,

813, 816, 833, 839, 840, 842, 844, 849, 850,
874, 916, 938, 948, 977, 984, 1008, 1030,
1103, 1123

FeatureClassName coclass  762
FeatureDataConverter coclass  898, 899, 903



Index • mcccxxi

FeatureDataset coclass  262, 740, 741, 764,
770, 784, 840

FeatureDatasetName coclass  761, 763, 772
FeatureElement coclass  882
FeatureIdentifyObject coclass  349
FeatureInspector coclass  1157
FeatureLayer coclass 111, 114, 262, 310, 327, 330, 332,

333, 336, 345, 347, 362, 445, 446, 777,
811, 813, 839, 950, 1074, 1120, 1192

Feedbacks. See also Rubber band
compared with rubber band  600
controlling movement image  610–612
for dimensions  622–624
for moving groups  609, 610–612
for moving shapes  608, 613
for moving vertices  607, 613, 617–618
for new shapes  603–604
for reshaping  607, 613, 614–615, 617, 617–618
for text callouts  620–621
overview  600, 601–602
topological features  869
using multiple  619

FGDCSynchronizationHelper coclass  940
FGDCSynchronizer coclass  936, 938, 939, 940
Field

accessing  788, 799
accessing layer's  340
adding  775
alias name example  788
changing properties  779
comparison of data types  789
creating  790

example  790
defined  789
deleting  775
domain  779, 859
for coverages  916, 919
hide layer's example  350
in a cursor  817
properties example  789
properties for layers  350
required  842
shape field  791

example  792
types of  789
validating name  903, 904

Field coclass  459, 466, 470, 587, 741,
771, 784, 799, 821, 859, 1247

FieldChecker coclass  903
FieldError coclass  904
FieldInfo coclass  326, 340, 350
Fields coclass  559, 771, 788, 793, 796,

799, 818, 903, 919

FileName coclass  514
FileSystemQuery coclass  714, 722, 723
FileSystemXmlSearchEngine coclass  726
Fill shape elements  310–311
Fill symbol

color  534
defined  534
dot density fill  541–542
example  537
gradient fill  539
line fill  538
marker fill  536
multilayer  540
outline  534
picture fill  537
simple fill  535
types of  534

FindAccumulationTask coclass  1197
FindAncestorsTask coclass  1197
FindConnectedTask coclass  1197
FindDialog coclass  713
FindDisconnectedTask coclass  1197
FindLoopsTask coclass  1197
FindPathUpstreamTask coclass  1197
Flow direction

logical network  1176
Focus map. See Map
Font

default size example  549
example  513, 544

Font mapping
adding  638
PostScript  638
removing  638

FontMap coclass  638, 639
FontMapCollection coclass  638, 639
FontMapEnvironment coclass

635, 636, 637, 638, 653, 654
FontSize coclass  549
FormatList coclass  1266, 1270
FormattedGridLabel coclass  410
ForwardStar coclass  1168, 1179, 1185
Frame elements  306, 307–308, 565–568
FrameElement coclass  306, 308
Functional license checking. See License checking: functional



mcccxxii • Exploring ArcObjects

G

GDI  508
Generalization. See Geometry
Generic customization environment  191–192
GeocentricTranslation coclass  1107, 1109, 1120
Geocoding

services folder  661
Geodatabase. See also Workspace

compress  887, 893
customization  833
editing rules  93–95, 749
get user example  737
integrity. See Validation rules
load-only mode  786
loading feature data. See Feature data converter. See also

Cursor: insert
performance  738, 743, 750, 751, 767, 777,

817, 818, 819, 821, 826, 837, 847
privileges  761
release  754
security  761
versioning  887

Geographic Coordinate System. See Spatial reference
Geographic query. See Query: spatial
GeographicCoordinateSystem coclass  1072, 1073,

1077, 1088, 1089, 1097, 1098
GeographicCoordinateSystemDialog coclass  710
Geography Network

used for layers in ArcMap  357
Geometric network

accessing features example  871
building  1188. See also Geometric network: creating
complex edge feature  878, 885
complex junction examples  881
complex junction feature  877–881
connectivity rule  864
creating  771, 1187, 1188
custom feature  874, 875, 877, 879, 880
default junction  865, 867
defined  870, 1166
edge feature  883
edges at junction example  876
enabling features  874, 878
error detection  872
event handling  874
feature classes  771, 786, 844
junction feature  875, 876, 877–881
moving features  806
name object  762
navigating  883
rebuilding connectivity  873
snapping  881
validate connectivity example  865

GeometricNetwork coclass  786, 870, 874, 877, 878
GeometricNetworkName coclass  762
Geometry  1278. See also Envelopes; Polygons; Polylines

attributes  985, 1042
build query shape example  826
column  1278
described  982, 987, 1058
digitizing. See Rubber band. See also Feedbacks: for new

shapes
drawing  503, 506, 983
empty  983, 987
errors  990
example of digitizing  590
finding locations on  992, 1048, 1052
generalization  994, 995, 1002
in fields  791
multipart  985, 996, 1004, 1034, 1040
objects  1278, 1279
projecting  984, 988, 989, 1123
simplicity  986, 991, 997, 1001, 1032, 1043
simplification  1000, 1046
spatial operations  984, 985, 1027, 1029, 1032, 1046
spatial operators  1051
spatial reference of  984, 987, 988, 1032
splitting features example  807
three-dimensional  1058
topology  999, 1046
transforming the shape of  1002, 1026, 1053
user interaction  589–590
WKB  1279

GeometryBag coclass  982, 983, 1030, 1032, 1033, 1046
GeometryDef coclass  741, 771, 791, 792, 793, 805
GeometryDraw coclass  506, 984
GeometryEnvironment coclass  1029, 1051
Geotransformation

creating  1084, 1106, 1109, 1113, 1115
described  1104, 1106
direction  1105, 1114, 1115
grid-based  1107, 1112, 1113
HARN  1112
NADCON  1112
on-the-fly  1114, 1116
parameters for  1099, 1107–1108, 1109, 1110
two-stage  1114
user-defined  1109, 1120

GeoTransformationOperationSet coclass  1083, 1116
GetStringDialog coclass  244
GetUserAndPasswordDialog coclass  245
Globally unique identifier. See GUID
GradientFillSymbol coclass  497, 539
Graphic elements  301, 302, 303, 304
Graphical Device interface. See GDI
Graphics. See Elements; Graphics container



Index • mcccxxiii

Graphics container
accessing selection in  288
graphics layer  365
map's  267
overflow  368
page layout's  286

Graphics layers. See also Composite graphics layers; FDO
graphics layers

adding elements to  267
annotation target  364, 366, 370
associated with another layer  364, 366
associated with the Map  263, 267
basic  366, 367
creating example  368–369
described  267
discussed  364
discussion  364–365
graphics container  365

GraphicSnapEnvironment coclass  295
Graphs

in ArcMap
accessing  256
creating  256
data graph discussion  321–323
deleting  256
in data window example  315

Graticule coclass  402
GraticuleFactory coclass  414
Graticules. See Map grids and graticules
GrayColor coclass  489, 1255
Grayscale. See Color
Grids. See also Map grids and graticules
GridSnap coclass  296
Group elements  304

removing element from example  304
Group layers. See also Layers

adding layers to  355
creating example  355–356
discussion  355
removing layers from  355

Group symbol  847
GroupElement coclass  299, 304
GroupFeedback coclass  600, 619
GroupLayer coclass  330
GUID  78, 87, 239
Guides. See Snap guides
GuideSnap coclass  296
GxCadDataset coclass  688
GxCatalog coclass  659, 660, 666, 670, 682, 683, 699
GxContentsView coclass  659, 666, 672, 673
GxContentsViewColumn coclass  672, 673
GxCoverageDataset coclass  688
GxDatabase coclass  662, 663, 682, 686, 688, 689, 1263

GxDatabaseExtensions coclass  689
GxDataset coclass  682, 684, 686, 688
GxDialog coclass  672, 702, 703, 704, 1261
GxDiskConnection coclass  661, 691
GxDocument coclass  116, 211
GxDocumentationView coclass  659, 674
GxFile coclass  692, 697
GxFileFilter coclass  701
GxFilterRasterDatasets coclass  1207
GxFolder coclass  661, 690
GxGeocodingServiceExtension coclass  689
GxGeographicView coclass  659, 675, 676, 677, 678
GxLayer coclass  658, 694
GxMap coclass  659, 675, 696
GxMetadata coclass  697
GxNewDatabase coclass  698
GxObjectArray coclass  669
GxObjectFactories coclass  700, 706
GxPreview coclass  666, 678, 679
GxPrjFile coclass  696
GxRemoteDatabaseFolder coclass  687, 691
GxSelection coclass  659, 662, 668
GxShapefileDataset coclass  688
GxShortcut coclass  693
GxSpatialReferencesFolder coclass  690, 696
GxTableView coclass  677, 678, 679
GxTextFile coclass  697
GxTreeView coclass  658, 666, 677
GxVpfDataset coclass  688

H

HARNTransformation coclass  1113
HashLineSymbol coclass  519, 522, 523, 528, 529
Histogram  579, 587
HorizontalBarLegendItem coclass  373, 375
HorizontalLegendItem coclass  373, 375
Hotlinks. See also Hyperlinks

assigning  345
defined  345
on feature layers  345
using field  345
using macros  345–346

example  346
HRESULT  107

license failure  1299
license related  1301

Hyperlink coclass  259, 347
Hyperlinks. See also Hotlinks

assigning to layer example  347–348
creating  347
defined  345
on feature layers  347–348



mcccxxiv • Exploring ArcObjects

I

I3DChartSymbol interface  559
IAccelerator interface  216
IAcceleratorTable interface  216
IActiveView interface  254, 268, 269, 280, 384, 570,

601, 629, 633, 643, 675, 676
IActiveViewEvents interface  121, 261, 262,

269, 272, 274, 314
IAffineTransformation2D interface  1056
IAlgorithmicColorRamp interface  498
IAnchorPoint interface  595
IAngleFormat interface  416, 420
IAngularUnit interface  1096
IAnimationProgressor interface  210
IAnnoClass interface  847
IAnnoClassAdmin interface  847, 848
IAnnotateLayerProperties interface  433, 435
IAnnotateLayerPropertiesCollection interface  433, 742
IAnnotateLayerTransformationProperties interface  435
IAnnotationExpressionEngine interface  442
IAnnotationFeature interface  849
IAOIBookmark interface  384, 385
IAppDisplay interface  570
IApplication interface  83, 123, 187, 188, 193, 202,

208, 211, 235, 252, 254, 260, 666, 1137
IApplicationWindows interface  253, 314
IArcInfoItemEdit interface  920
IArcInfoItems interface  919
IArcInfoItemsEdit interface  919, 920
IArcInfoTable interface  793, 916, 938
IArcInfoWorkspace interface  910, 911
IArcInfoWorkspaceUtil interface  913
IArcPressExporter interface  645
IArcPressExporterDescriptionEnum interface  645
IArcPressExporterDriver interface  647
IArcPressPrinter interface  632
IArcPressPrinterDriver interface  633
IArea interface  1000
IAreaPatch interface  378
IArrowMarkerSymbol interface  512
IAttributeRule interface  861, 863
IBackgroundTabStyle interface  413
IBarrierCollection interface  443
IBarrierProperties interface  270
IBarrierProperties2 interface  352
IBasicMap interface  266
IBasicOverposterLayerProperties interface  437, 439, 440
IBasicOverposterLayerProperties2 interface  437
IBezierCurve interface  1018, 1019
IBmpExporter interface  650
ICadDrawingLayers interface  360, 362
ICadLayer interface  360
ICadTransformations interface  361
ICalcRendererValues interface  476

ICalibratedMapGridBorder interface  406
ICallout interface  554
ICalloutFeedback interface  620
ICalloutTracker interface  593
ICartographicLineSymbol interface  521
ICartographicMarkerSymbol interface  513
ICGMDriver interface  648
IChangeLayout interface  256
ICharacterMarkerSymbol interface  513
IChartRenderer interface  469, 470
IChartSymbol interface  469, 559, 564
ICieLabConversion interface  495
ICircleElement interface  310
ICircularArc  1010
ICircularArc interface  606, 1011, 1037
IClass interface  775, 776, 778, 788, 793, 828
IClassBreaksUIProperties interface  462
IClassExtension interface  833, 861, 1157
IClassFactory interface  164
IClassify interface  580, 583, 584, 585, 1250
IClassifyMinMax interface  583
IClassSchemaEdit interface  743, 779, 780, 833
IClassSchemaEdit2 interface  779, 833
IClone interface  1023, 1032
ICodedValueDomain interface  860
IColor interface  310, 400, 486, 487, 488, 492,

495, 498, 509, 511, 519, 534, 544, 582
IColorBrowser interface  493
IColorCorrection interface  634, 637
IColorPalette interface  490
IColorRamp interface  496, 497, 501, 539
IColorSelector interface  493
IColorSymbol interface  1255
ICommand interface  125, 130, 132, 134, 168,

230, 231, 233, 234, 237, 1130, 1138
ICommandBar interface  217, 218, 223
ICommandBars interface  217, 218, 223, 1152
ICommandItem interface  223, 230
ICommandSubType interface  233
ICompletionNotify interface  232
IComplexEdgeFeature interface  885
IComplexNetworkFeature interface  878
IComponentCategoryManager interface  237
ICompositeGeoTransformation interface  1114
ICompositeGraphicsLayer interface  366
ICompositeLayer interface  355, 357, 367
IComPropertyPage interface  482
IComPropertyPage2 interface  482
IComPropertySheetEvents interface  695
IConfigurationKeyword interface  755
IConfigurationParameter interface  755
IConfirmSendRelatedObjectEvents interface  837
IConflictClass interface  891, 894
IConflictDisplay interface  895, 897, 1158
IConflictsWindow interface  895, 1158



Index • mcccxxv

IConnectionPoint interface  877
IConnectivityRule interface  864, 867
IConstructAngle interface  1031
IConstructBezierCurve interface  1019
IConstructCircularArc interface  1011, 1013, 1017
IConstructEllipticArc interface  1016
IConstructGeometryCollection  1033
IConstructGeometryCollection interface  1033
IConstructLine interface  992, 1009
IConstructMultiPatch interface  1031, 1061
IConstructMultipoint interface  1020
IConstructPath  1002
IConstructPoint interface  992, 1020, 1023, 1025
IContentsView interface  256, 261, 262
IContentsViewEdit interface  256
ICoordinateDialog interface  243
ICoordinateFrameTransformation  1110
ICoverage interface  915
ICoverageAnnotationLayer interface  351
ICoverageFeatureClass interface  916, 918
ICoverageFeatureClassName interface  918
ICoverageName interface  918
ICursor interface  788, 799, 816, 820, 952, 953
ICurve interface  550, 551, 991, 992
ICustomColorPalette interface  490
ICustomizationFilter interface  202, 204
ICustomNumberFormat interface  428
ICustomOverlayGrid interface  404
IDatabaseCompact interface  752
IDataExclusion interface  462, 468, 469
IDataGraph interface  321
IDataGraphAreaProperties interface  322
IDataGraphBarProperties interface  322
IDataGraphColorTable interface  322
IDataGraphElement interface  305
IDataGraphHighLowCloseProperties interface  323
IDataGraphOverlayProperties interface  323
IDataGraphPieProperties interface  323
IDataGraphProperties interface  322
IDataGraphs interface  256
IDataGraphWindow interface  315
IDataLayer interface  334
IDataNormalization interface  461, 467, 469, 587, 588
IDataSampling interface  462
IDataset interface  688, 743, 744, 745, 760, 764,

774, 828, 911, 912, 914, 946, 956, 1222
IDatasetAnalyze interface  743, 767
IDatasetContainer interface  772
IDatasetEdit interface  764, 765, 914
IDatasetEditInfo interface  765
IDatasetName interface  662, 688, 744, 760, 955
IDataWindow interface  314
IDataWindowFactory interface  316, 317, 318
IDatum interface  1092
IDatumEdit interface  1092, 1093

Identifies interface  91
IdentifyDialog coclass  282
Identifying features  282–283

identify dialog box example  283
in feature layers  349
in layers  338
on layer's example  349

IDeviationInterval interface  585, 588
IDibExporter interface  650
IDifferenceCursor interface  894
IDigitizerButtons interface  1159
IDigitizerSetup interface  1159
IDimensionClassExtension interface  850
IDimensionFeature interface  855
IDimensionGraphic interface  857
IDimensionLayer interface  359
IDimensionShape interface  622, 625, 626, 856
IDimensionStyle interface  624, 852
IDimensionStyleText interface  853
IDispatch  interface  83–84
IDispatch interface  88, 92
IDisplay interface  260, 506, 545, 570, 571,

572, 574, 578, 610, 625
IDisplayAdmin interface  335, 456
IDisplayEvents interface  570
IDisplayFeedback interface  600, 601, 602, 603, 605,

606, 607, 608, 609, 613, 615, 616, 617,
619, 622, 625, 626

IDisplayFilter interface  339, 578
IDisplayFilterManager interface  336, 339
IDisplayRelationshipClass interface  337, 342
IDisplayTable interface  333, 334, 335, 948, 950
IDisplayTransformation interface  403, 572, 574, 600
IDL  81, 95–97
IDllThreadManager interface  189
IDMSGridLabel interface  409, 421, 422
IDockableWindow interface  213
IDockableWindowDef interface  213
IDockableWindowManager interface  213, 253
IDocument interface  116, 122, 123, 211, 216, 217
IDocumentDatasets interface  256
IDocumentDefaultSymbols interface  257
IDocumentEvents interface  82, 257, 258, 314
IDocumentEventsDisp interface  82, 258
IDocumentInfo interface  259
IDomain interface  808, 859
IDotDensityFillSymbol interface  541
IDotDensityRenderer interface  542
IDotDensityUIRenderer interface  473
IDoubleFillScaleBar interface  382
IDraw interface  260, 574
IEdgeConnectivityRule interface  867
IEdgeFeature interface  883
IEdgeFlag interface  1189
IEdgeFlagDisplay interface  1199



mcccxxvi • Exploring ArcObjects

IEditEvents interface  1129, 1138, 1139
IEditEvents2 interface  1139, 1148, 1149
IEditLayers interface  1129, 1140
IEditor interface  595, 1129, 1130, 1131,

1134, 1135, 1137
IEditProperties interface  1129, 1141
IEditSelectionCache interface  1153, 1154
IEditSelectionCache2 interface  1153, 1154
IEditSketch interface  1129, 1132, 1133, 1143, 1148
IEditSketch2 interface  1143
IEditSketchExtension interface  1133
IEditTask interface  1130, 1145
IElement interface  299, 551, 591, 592, 610, 611, 620
IElementEditVertices interface  592
IElementProperties interface  300
IEllipseElement interface  310
IEllipticArc interface  1016
IEmfExporter interface  652
IEmfPrinter interface  631
IEncode3DProperties interface  1031
IEnumConflictClass interface  891, 894
IEnumDataset interface  256, 1222
IEnumFeature interface  112
IEnumFieldError interface  904
IEnumGxObject interface  109, 669
IEnumInvalidObject interface  902
IEnumName interface  662
IEnumNetWeightAssociation interface  1171
IEnumPrinterNames interface  253
IEnumRasterBand interface  1222
IEnumSpatialReferenceInfo interface  744
IEnumStyleGalleryItem interface  392
IEnumVersionInfo interface  891, 892
IEnumVertex  1040
IEnvelope interface  602, 611, 614, 1026, 1027
IEnvelope2 interface  1028
IESRILicenseInfo interface  1295
IESRIShape interface  1032
IESRISpatialReference interface  1078
IEventSourceErrors interface  969
IExportDialog interface  655, 656
IExportDialog2 interface  656
IExporter interface  643, 645, 648, 650, 654, 656
IExtension interface  96, 121, 193, 195, 196, 198,

200, 260, 1133, 1136, 1155
IExtensionAccelerators interface  193, 196
IExtensionConfig interface  193, 194, 195
IExtensionManager interface  192, 253
IExtrude interface  1031
IFDOAttributeConversion interface  370
IFDOGraphicsLayer interface  370
IFeature interface  610, 784, 785, 805, 808,

849, 855, 953, 954
IFeatureBookmark interface  386
IFeatureBuffer interface  785, 806, 820, 953, 954

IFeatureChanges interface  804, 837
IFeatureClass interface  712, 764, 771, 784, 785, 786,

788, 803, 874, 948, 952
IFeatureClassContainer interface  771
IFeatureClassCreation interface  839
IFeatureClassDescription interface  842, 844, 1292
IFeatureClassDraw interface  788, 839
IFeatureClassEdit interface  839
IFeatureClassExtension interface  839
IFeatureClassLoad interface  786
IFeatureClassName interface  762
IFeatureClassWrite interface  787
IFeatureConnect interface  880, 882
IFeatureCursor interface  785, 820, 952
IFeatureCursorBuffer interface  820
IFeatureDataConverter interface  899, 900
IFeatureDataConverter2 interface  900
IFeatureDataset interface  712, 770, 910
IFeatureDatasetName interface  762, 771
IFeatureDraw interface  477, 610, 806, 839,

953, 954, 1286
IFeatureEdit interface  594, 806
IFeatureElement interface  882
IFeatureElementEdit interface  882
IFeatureEvents interface  808
IFeatureIdentifyObj interface  349
IFeatureLayer interface  332, 333, 334, 580
IFeatureLayer2 interface  336
IFeatureLayerDefinition interface  336, 342
IFeatureLayerSelectionEvents interface  337
IFeatureLayerSourcePageExtension interface  340
IFeatureProgress interface  901
IFeatureRenderer interface  477, 820
IFeatureSelection interface  335, 337
IFeatureSnap interface  881
IFeatureSnapAgent interface  1150, 1152
IFeatureWorkspace interface  712, 739, 754, 770,

778, 810, 811, 828, 912, 913
IFeatureWorkspaceAnno interface  742, 847
IFeatureWorkspaceManage interface  743
IFeatureWorkspaceSchemaEdit interface  743
IFieldChecker interface  903
IFieldChecker interface  898
IFieldEdit interface  794
IFieldError interface  904
IFieldInfo interface  350
IFields interface  788
IFieldsEdit interface  788, 790
IFileName interface  662
IFillProperties interface  536, 537
IFillShapeElement interface  310
IFillSymbol interface  534, 555, 556, 567
IFindDialog interface  713
IFindDialogSettings interface  713, 722
IFlagDisplay interface  1198



Index • mcccxxvii

IFontMap interface  639
IFontMap2 interface  639
IFontMapCollection interface  639
IFontMapEnvironment interface  636, 638, 639, 653, 654
IFormatData interface  1266
IFormatList interface  1266
IFormattedGridLabel interface  411
IFormattedTextSymbol interface  544, 546
IFormatTest interface  1267
IForwardStar interface  1179
IFractionFormat interface  426
IFrameDecoration interface  565, 566
IFrameElement interface  304, 306
IFrameProperties interface  565, 566, 567
IGeocentricTranslation interface  1107
IGeodatabaseRelease interface  754
IGeoDataset interface  330, 331, 765, 769, 1075, 1212
IGeoDatasetSchemaEdit interface  367, 769, 792,

1074, 1212
IGeoFeatureLayer interface  330, 332, 333, 452, 453
IGeographicCoordinateSystem interface  710, 1089
IGeographicCoordinateSystemDialog interface  1091
IGeographicCoordinateSystemEdit interface  1089,

1090, 1092
IGeometricNetwork interface  870, 871
IGeometricNetworkConnectivity interface  873
IGeometricNetworkErrorDetection interface  872
IGeometricNetworkName interface  763
IGeometry interface  506, 590, 605, 609, 614, 856,

874, 982, 983, 984, 987, 989, 1046, 1053, 1067
IGeometry2 interface  989
IGeometryBag interface  1032
IGeometryCollection interface  443, 995, 997,

1033, 1034, 1036, 1059, 1060
IGeometryDef interface  791, 959
IGeometryDefEdit interface  792
IGeometryEnvironment2 interface  1051
IGeometryFactory interface  1030
IGeoTransformation interface  1106, 1112
IGeoTransformationOperationSet interface  1083,

1084, 1116
IGetStringDialog interface  244
IGetUserAndPasswordDialog interface  245
IGradientFillSymbol interface  496, 497
IGraph interface  869, 870
IGraphicElement interface  301, 306, 611
IGraphicsContainer interface  263, 267, 286,

299, 304, 364, 365, 366, 399
IGraphicsContainerSelect interface  288, 299, 367, 592
IGraphicsLayer interface  364
IGraphicsLayerScale interface  367
IGraphicSnap interface  296, 297
IGraphicSnapEnvironment interface  295, 296
IGraticule interface  402
IGridLabel interface  407, 408, 411, 412

IGridTransformation interface  1112, 1113
IGroupElement interface  304, 306
IGroupLayer interface  355
IGroupSymbolElement interface  847
IGxApplication interface  187, 658, 666, 668
IGxCatalog interface  699
IGxCatalogEvents interface  667, 699
IGxContentsView interface  672
IGxContentsViewColumn interface  673
IGxContentsViewColumns interface  672
IGxDatabase2 interface  688
IGxDatabaseExtension interface  689
IGxDatabaseExtensions interface  689
IGxDataset interface  688
IGxDialog interface  702, 703
IGxDiskConnection interface  691
IGxDocumentationView interface  674, 926
IGxFile interface  692, 694
IGxFileFilter interface  692, 701, 704
IGxFileFilterEvents interface  701
IGxFolder interface  690
IGxGeographicView interface  675
IGxGeographicView2 interface  675, 676
IGxLayer interface  694
IGxMap interface  696
IGxNewDatabase interface  698
IGxObject interface  659, 661, 666,

668, 682, 684, 693, 706
IGxObjectArray interface  669, 1259
IGxObjectContainer interface  661, 686
IGxObjectEdit interface  659, 684
IGxObjectFactories interface  700
IGxObjectFactory interface  707
IGxObjectFactoryMetadata interface  707
IGxObjectFilter interface  1261
IGxObjectFilterCollection interface  702, 703
IGxObjectInternalName interface  685
IGxObjectUI interface  659, 661, 683
IGxPasteTarget interface  662, 663, 684
IGxPreview interface  679
IGxPrjFile interface  696
IGxRemoteContainer interface  687
IGxRemoteDatabaseFolder interface  691
IGxSelection interface  668
IGxShortcut interface  693
IGxSpatialReferencesFolder interface  690
IGxThumbnail interface  930
IGxTreeView interface  677
IGxView interface  659, 670, 671, 674, 675, 677
IGxViewContainer interface  678
IGxViewPrint interface  671, 674
IHashLineSymbol interface  529
IHistogram interface  587
IHitTest interface  1048
IHorizontalBarLegendItem interface  376



mcccxxviii • Exploring ArcObjects

IHotlinkContainer interface  345
IHyperlink interface  347
IHyperlinkContainer interface  347
IIdentify interface  282, 338, 349
IIdentifyDialog interface  282
IIdentifyDialogProps interface  282
IIdentifyObj interface  349
IIDs (interface identifiers)  239
IIMSMapLayer interface  357
IIMSSubLayer interface  357
IIndex interface  788, 793
IIndexEdit interface  793, 794
IIndexes interface  793
IIndexGrid interface  403
IIndexGridTabStyle interface  412
IIntervalRange interface  583
IInvalidObjectInfo interface  902
IItemDef interface  220
IJpegExporter interface  652
IJunctionConnectivityRule interface  864
IJunctionConnectivityRule2 interface  865
IJunctionFeature interface  875
IJunctionFlag interface  1189
IJunctionFlagDisplay interface  1198
ILabelEngineLayerProperties interface  436, 437, 442
ILatLonFormat interface  421
ILayer interface  280, 330, 333, 338, 340, 357, 694
ILayer2 interface  338
ILayerColorLock interface  516, 531, 540
ILayerDrawingProperties interface  338
ILayerEffects interface  339
ILayerEvents interface  340
ILayerFields interface  340, 350, 788
ILayerVisible interface  516, 531, 540
ILegend interface  373, 374, 377
ILegendFormat interface  377
ILegendGroup interface  454
ILegendInfo interface  341, 453, 478
ILegendItem interface  375, 453
ILensWindow interface  316, 570
ILevelRenderer interface  457
ILine interface  1009
ILinearUnit interface  1096
ILineDecoration interface  525, 528
ILineDecorationElement interface  525, 526
ILineElement interface  303
ILineFillSymbol interface  538
ILineLabelPlacementPriorities interface  439
ILineLabelPosition interface  439
ILineMovePointFeedback interface  607
ILinePatch interface  378
ILineProperties interface  521, 525, 529, 530
ILineSymbol interface  519, 520, 528, 529, 534, 568
IListDialog interface  246
ILocator interface  959

ILongitudeRotationTransformation interface  1111
Images

creating output separates  637
IMap interface  112, 263, 264, 266, 267, 306, 330,

366, 367, 372, 404, 443, 457, 505,
1076, 1116, 1118

IMapBarriers interface  270, 352, 443
IMapBookmarks interface  270, 384
IMapEvents interface  272
IMapFrame interface  306, 307, 308
IMapFrameEvents interface  307, 308
IMapGeographicTransformations interface  1116
IMapGrid interface  399, 400, 408, 414
IMapGridBorder interface  405
IMapGridFactory interface  414
IMapGrids interface  308, 399, 415
IMapGridSelector interface  394
IMapLevel interface  505
IMapSurround interface  372
IMapSurroundFrame interface  308
IMarkerElement interface  303
IMarkerLineSymbol interface  530
IMarkerNorthArrow interface  379
IMarkerSymbol interface  509, 510, 511, 512, 513,

560, 561, 562
IMarkerTextBackground interface  553
IMask interface  516, 547
IMAware  1044
IMAware interface  1027, 1044
IMCollection  1044
IMeasuredGrid interface  402
IMemoryRelationshipClassName interface  955
IMenuDef interface  220, 221, 222, 1132
IMessageDialog interface  247
IMetadata interface  697, 719, 720, 752,

760, 764, 925, 932, 940
IMetadataEdit interface  926
IMetadataEditor interface  716
IMetadataExport interface  720
IMetadataHelper interface  674
IMetadataImport interface  718, 719, 720
IMetadataSynchronizer interface  936, 938
IMetadataSynchronizerManager interface  936, 938
IMixedFontGridLabel interface  411
IModelInfo interface  780
IModifyDimensionFeedback interface  625
IMolodenskyTransformation  1109
IMouseCursor interface  238
IMoveEnvelopeFeedback interface  608
IMoveGeometryFeedback interface  609
IMoveImageFeedback interface  610, 611
IMoveImageFeedback2 interface  610, 611
IMoveLineFeedback interface  608
IMovePointFeedback interface  608
IMovePolygonFeedback interface  608



Index • mcccxxix

Importing feature data. See Feature data converter
IMS map layers. See also Layers

discussion  357–358
sublayers

Arc Connection layers  357
example  357

IMSegmentation interface  1044, 1045
IMSegmentation2 interface  1045
IMSMapLayer coclass  357
IMultiItem interface  230, 234
IMultiLayerFillSymbol interface  540
IMultiLayerLineSymbol interface  531
IMultiLayerMarkerSymbol interface  515, 516, 531, 540
IMultiPartColorRamp interface  501
IMultiPatch interface  1059
IMultipoint interface  616, 1020
IMultiThreadedApplication interface  188, 189, 253
IMxApplication interface  187, 252, 277
IMxDocument interface  112, 256, 261, 262, 263,

282, 284, 388, 549, 1133
IName interface  759
Index

accessing  793
adding and deleting  775
attribute  793
creation example  794–795
defined  793
for coverages  916
properties example  794
spatial  792, 793

Index coclass  1099
Indexes coclass  793
IndexGridFactory coclass  414
INestedLegendItem interface  376
INetAttributes interface  1172, 1173
INetAttributesEdit interface  1172, 1173
INetElementBarriers interface  1182, 1200
INetElementBarriers2 interface  1200
INetElementClass interface  1177
INetElementDescription interface  1177
INetElementDescriptionEdit interface  1177
INetElements interface  1170
INetFlag interface  1189
INetSchema interface  1171, 1172, 1177
INetSchemaEdit interface  1171, 1172
INetSolver interface  1182, 1200
INetSolverWeights interface  1183
INetTopology interface  1173, 1175
INetTopologyEdit interface  1175
INetWeight interface  1168, 1171, 1180
INetWeightAssociation interface  1171, 1181
INetWeightAssociationEdit interface  1181
INetWeightEdit interface  1180
INetwork interface  1168, 1179
INetworkAnalysisExt interface  1190, 1195

INetworkAnalysisExtBarriers interface  1192, 1200, 1201
INetworkAnalysisExtFlags interface  1191, 1198
INetworkAnalysisExtResults interface  1192
INetworkAnalysisExtWeightFilter interface  1193
INetworkAnalysisExtWeights interface  1193, 1194
INetworkClass interface  786
INetworkClassDescription interface  844
INetworkCollection interface  771, 772, 1167
INetworkCollection2 interface  772
INetworkFeature interface  874, 878, 880
INetworkLoader interface  1187, 1188
INetworkLoader2 interface  1188
INetworkLoaderProps interface  1187, 1188
INetworkUpdate interface  1169, 1172, 1173, 1175
INetworkWorkspace interface  1167
INetworkWorkspace2 interface  1167
INewBezierCurveFeedback interface  604
INewDimensionFeedback interface  622, 623, 625, 626
INewEnvelopeFeedback interface  601, 602
INewEnvelopeFeedback2 interface  605
INewLineFeedback interface  603
INewMultiPointFeedback interface  616
INewPolygonFeedback interface  601
INFO table

creation example  911
items  919
managing  916
name  913

Inheritance  12
interface inheritance  84
type inheritance. See Type inheritance

INorthArrow interface  379
Insert cursor. See Cursor
Inserting data. See Editing
Instantiation  12
Interface

and Visual Basic  103–106
default  83, 104
deprecated  80
described  78–80
notification interface  91
optional  81
outbound  82, 92–93, 109–110, 121

Interface Definition Language (IDL). See IDL
Interface identifiers (IIDs)  239
Intersecting shapes  1027, 1047
INumberDialog interface  248
INumberFormat interface  410, 416, 417, 418,

420, 421, 422, 424, 1250
INumberFormatDialog interface  430
INumericFormat interface  416, 417, 421, 422,

423, 424, 430
Invalidating. See Refreshing
InvalidObjectInfo coclass  902
IObject interface  778, 784, 803, 805, 953, 954



mcccxxx • Exploring ArcObjects

IObjectClass interface  740, 771, 778, 784, 788,
842, 948, 953, 1172

IObjectClassDescription interface  842, 844, 1292
IObjectClassEvents interface  838
IObjectClassExtension interface  834
IObjectClassInfo interface  782
IObjectClassInfo2 interface  748, 782
IObjectClassValidation interface  834, 861, 1287
IObjectFactory interface  253, 445, 446
IObjectInspector interface  834, 1136, 1157
IObjectLoaderUI interface  906
IObjectLoaderUIProperties interface  906
IOleFrame interface  307
IOlePictureElement interface  312
IOverposterLayerProperties interface  438
IPage interface  289, 290, 291, 296
IPageEvents interface  291
IPageLayout interface  285, 289, 292, 293, 294, 295
IPageLayoutSnap interface  297
IPaper interface  253, 640
IParameter interface  1099
IPath interface  613, 1002
IPDFDriver interface  654
IPDFExporter interface  654
IPersist interface  292
IPersistStream interface  200, 292, 477, 478, 1150
IPersistVariant interface  200, 478, 1150
IPictureElement interface  312
IPieChartRenderer interface  469, 470, 476, 560
IPieChartSymbol interface  562
IPixelBlock interface  1232
IPnt interface  1262
IPoint interface  107, 110, 111, 112, 602, 609,

614, 616, 619, 620, 622, 625, 881, 1022, 1135
IPointCollection interface  996, 1020, 1034, 1038,

1039, 1063, 1064
IPointDAware  1045
IPolycurve interface  994
IPolycurve2 interface  995
IPolygon interface  91, 590, 606, 611, 614, 999
IPolygon2 interface  999
IPolygonElement interface  311
IPolygonMovePointFeedback interface  607
IPolyline  997
IPositionVectorTransformation  1110
IPositionVectorTransformation interface  1106
IPostScriptColor interface  488, 638
IPresetColorRamp interface  500
IPrimeMeridian interface  1094
IPrimeMeridianEdit interface  1094
IPrinter interface  629, 631, 640
IProgressDialog interface  241
IProgressDialog2 interface  241
IProgressDialogFactory interface  241
IProgressor interface  209

IProjectedCoordinateSystem interface  709, 1097, 1101
IProjectedCoordinateSystemDialog interface  1098
IProjectedCoordinateSystemEdit interface  1097, 1098
IProjectedGrid interface  404
IProjection interface  1077, 1122
IPropertyPageContext interface  482
IPropertySet interface  768, 925, 927, 930, 931, 935
IPropertySet2 interface  768
IPropertySupport interface  310, 336, 458, 548
IProximityOperator interface  992, 1052
IPSDriver interface  637
IPsExporter interface  653
IPsPrinter interface  635, 637
IQuery interface  713, 722, 723, 724
IQueryDef interface  810, 811
IQueryFilter interface  821, 823, 824
IQueryFilter2 interface  822
IQueryGeometry interface  552
IRandomColorRamp interface  499, 500
IRangeDomain interface  859
IRaster interface  1227, 1229
IRasterAnalysisProps interface  1230
IRasterBand interface  1216, 1222
IRasterBandCollection interface  1213, 1222,

1228, 1229, 1237
IRasterCatalogLayer interface  1257
IRasterCatalogTable interface  1256
IRasterClassifyColorRampRenderer interface  1249
IRasterClassifyUIProperties interface  1249
IRasterColormap interface  1223
IRasterCursor interface  1234
IRasterDataExclusion interface  1250
IRasterDataset interface  1211
IRasterDefaultProps interface  1230
IRasterDefaultsEnv interface  1268, 1269
IRasterDefaultsEnv2 interface  1269
IRasterDisplayProps interface  1241
IRasterEncoder interface  1259
IRasterFormatInfo interface  1270
IRasterGeometryProc interface  1236, 1237
IRasterLayer interface  1239
IRasterPicture interface  1271
IRasterProps interface  1217, 1220, 1229
IRasterPyramid interface  1212, 1217
IRasterRenderer interface  1241
IRasterRendererClassInfo interface  1244, 1245,

1246, 1249
IRasterRendererMaker interface  1254
IRasterRGBRenderer interface  1252
IRasterSDEServerOperation interface  1265
IRasterSDEStorage interface  1264
IRasterStatistics interface  1224
IRasterStretch interface  1243, 1252
IRasterStretchColorRampRenderer interface  1243
IRasterTransaction interface  1219



Index • mcccxxxi

IRasterUniqueValueRenderer interface  1246
IRasterWorkspace interface  1208, 1209
IRasterWorkspace2 interface  1209
IRateFormat interface  424
IRawPixels interface  1218, 1219, 1220
IRay interface  1067
IReadingDirection interface  374
IRectangleElement interface  311
IRelatedObjectClassEvents interface  836
IRelatedObjectEvents interface  804, 837
IRelationalOperator interface  824, 1023, 1029,

1032, 1051
IRelationship interface  831
IRelationshipClass interface  828, 830, 831,

940, 944, 945, 948
IRelationshipClass2 interface  829, 946
IRelationshipClassCollection interface  342, 343
IRelationshipClassCollectionEdit interface  342, 344, 944
IRelationshipClassContainer interface  772, 828
IRelationshipClassName interface  763, 955
IRelationshipRule interface  863
IRelQueryTable interface  950
IRelQueryTableManage interface  949, 956
IRelQueryTableName interface  956
IRemoteDatabaseWorkspaceFactory interface  735
IRendererFields interface  469, 470, 471, 473, 560
IReshapeFeedback interface  613
IResizeEnvelopeFeedback interface  615
IResizeEnvelopeFeedback2 interface  614
IRing  1004
IRootLevelMenu interface  91, 221
IRotateTracker interface  594, 595
IRotationRenderer interface  456, 457, 462
IRouteEventProperties interface  965
IRouteEventSource interface  967
IRouteEventSourceName interface  968
IRouteLocation interface  963
IRouteLocator interface  959, 963, 964, 965
IRouteLocatorName interface  960, 961, 965
IRouteMeasureLineLocation interface  963
IRouteMeasureLineProperties interface  965
IRouteMeasurePointLocation interface  964
IRouteMeasurePointProperties interface  966
IRow interface  748, 778, 784, 799, 801,

803, 805, 817, 892, 952, 953, 954, 1286
IRowBuffer interface  788, 798, 799, 806, 953, 954
IRowChanges interface  801, 804, 837
IRowEdit interface  806
IRowEvents interface  801, 804, 808,

1285, 1288, 1289, 1290
IRowSubtypes interface  803
IRubberBand interface  589, 590
IRule interface  861, 863, 864
IRulerSettings interface  294
Is keyword  93, 111

IScaleBar interface  381
IScaleLine interface  383
IScaleMarks interface  381
IScaleText interface  383
IScaleTracker interface  595
ISchemaLock interface  764, 766, 767, 780, 786, 795, 859
ISchemaLockInfo interface  767
IScreenDisplay interface  254, 260, 280, 570, 571,

572, 576, 590, 602
ISearchEngine interface  726, 727
ISegment  1006
ISegment interface  617, 994, 1007
ISegmentCollection  1036
ISegmentCollection interface  606, 996, 1002,

1004, 1034, 1037
ISegmentID  1008
ISegmentZ  1008
ISelectionEnvironment interface  278
ISelectionEnvironmentStorage interface  279
ISelectionEnvironmentThreshold interface  279
ISelectionEvents interface  364, 365
ISelectionSet interface  813, 815, 894, 1030
ISelectionSet2 interface  814
ISelectionSetBarriers interface  1201
ISelectionTracker interface  299, 592, 593
ISet interface  253, 490, 491, 619, 828, 873, 1084
ISetDefaultConnectionInfo interface  735
IShortcutMenu interface  91, 222
IShortcutName interface  693
ISimpleDataConverter interface  788
ISimpleEdgeFeature interface  884
ISimpleFillSymbol interface  458, 535, 582
ISimpleJunctionFeature interface  876, 1286
ISimpleLineDecorationElement interface  526
ISimpleLineSymbol interface  520, 602
ISimpleMapGridBorder interface  405
ISimpleMarkerSymbol interface  511
ISimpleRenderer interface  454, 456
ISimpleTextSymbol interface  544, 545, 550
ISingleFillScaleBar interface  382
ISketchOperation interface  1133
ISketchOperation2 interface  1148
ISketchTool interface  1147, 1148
ISnapAgent interface  1135, 1150
ISnapEnvironment interface  1129, 1135, 1144, 1150
ISnapGrid interface  292
ISnapGuides interface  293
ISnappingWindow interface  1152
ISpatialBookmark interface  384, 385
ISpatialCacheManager interface  751
ISpatialFilter interface  823, 824
ISpatialIndex interface  1032
ISpatialReference interface  404, 696, 711, 988, 1077,

1084, 1087, 1088, 1097



mcccxxxii • Exploring ArcObjects

ISpatialReference2 interface  1088
ISpatialReferenceDialog  1074
ISpatialReferenceDialog interface  711
ISpatialReferenceFactory interface  1080, 1081, 1082,

1083, 1090, 1099, 1111
ISpatialReferenceFactory2 interface  1083, 1084, 1113
ISpatialReferenceInfo interface  1077, 1122
ISphere interface  1067
ISpheroid interface  1092
ISpheroidEdit interface  1092
ISpotPlate interface  638
ISpotPlateCollection interface  636
ISQLPrivilege interface  761
ISQLSyntax interface  738, 739
IStackedChartSymbol interface  560, 563
IStandaloneTable interface  326
IStandaloneTableCollection interface  326
IStatisticsResults interface  586, 588
IStatusBar interface  208, 209, 210
IStepProgressor interface  209
IStreetNetwork interface  1176
IStretchLineFeedback interface  616
IStyleDialog interface  397
IStyleGallery interface  388, 389, 390, 391, 392
IStyleGalleryClass interface  389, 393, 395, 396
IStyleGalleryItem interface  392, 396
IStyleGalleryStorage interface  391
IStyleImporter interface  390
IStyleSelector interface  394
ISubtypes interface  780, 803
ISupportErrorInfo interface  165, 166
ISymbol interface  505, 508, 516, 546, 552, 590
ISymbolArray interface  471, 541, 560
ISymbolCollection interface  742
ISymbolPropertyPage interface  482
ISynchronizationHelper interface  940
ITable interface  309, 712, 739, 748, 753,

775, 776, 777, 785, 786, 799, 803,
911, 950, 952, 953

ITableCollection interface  272
ITableControl interface  324
ITableControlWidth interface  325
ITableDefinitionDialog interface  712
ITableFields interface  326, 788
ITableFrame interface  309
ITableHistogram interface  586, 587, 588
ITableName interface  762
ITableProperty interface  309
ITableSelection interface  326
ITableSort interface  788, 796
ITableSortCallBack interface  797
ITableView interface  309, 324
ITableView2 interface  324
ITableViewTableFields interface  325
ITableWindow interface  319, 320

ITableWindow2 interface  320, 326
ITemplates interface  212
ITemporaryDataset interface  1214
ITextBackground interface  552, 553, 557
ITextElement interface  302
ITextMargins interface  555
ITextPath interface  550
ITextSymbol interface  544, 551, 557
ITinLayer interface  354
ITool interface  130, 229, 230, 231, 600, 601,

623, 625, 1130
IToolControl interface  230, 232
ITopoEditor interface  1161
ITopologicalOperator interface  808, 984, 1032,

1046, 1047
ITopologicalOperator2  1048
ITraceFlowSolver interface  1185, 1189, 1198
ITraceFlowSolver2 interface  1185
ITracePathTaskResults interface  1197
ITraceTask interface  1195, 1196
ITraceTaskResults interface  1196
ITraceTasks interface  1195
ITransactions interface  745, 800
ITransform2D interface  300, 301, 594, 1053, 1055
ITransform3D interface  1054
ITransformation interface  1055, 1105
ITransparencyRenderer interface  456, 458
ITriangleFan interface  1063
ITriangleStrip interface  1064
IUID interface  239
IUniqueValueRenderer interface  463
IUnit interface  1095
IUnknown interface  80–81, 83, 103–106
IUnknownCoordinateSystem interface  1103
IUtilityNetwork interface  1176, 1185
IUtilityNetworkAnalysisExt interface  1195
IValidate interface  781, 788, 802, 834
IValidation interface  781, 802, 834, 861, 870, 905
IValidation2 interface  781
IVariantStream interface  201
IVbaApplication interface  188
IVector interface  1065
IVector3D interface  1065, 1066
IVersion interface  887, 892
IVersionEdit interface  748, 750, 889, 891, 894
IVersionedObject interface  893
IVersionedTable interface  892, 894, 897
IVersionInfo interface  888, 891, 892
IVertexFeedback interface  617
IViewManager interface  270, 274
IVirtualTable interface  951
IWin32Shape interface  984
IWindowPosition interface  189
IWorkspace interface  93, 94, 688, 752, 913, 1222
IWorkspaceConfiguration interface  741, 754, 755



Index • mcccxxxiii

IWorkspaceDomains interface  746, 859
IWorkspaceDomains2 interface  746
IWorkspaceEdit interface  745, 747, 752, 765, 782
IWorkspaceEditEvents interface  750
IWorkspaceExtension interface  756
IWorkspaceExtensionControl interface  756
IWorkspaceFactory interface  736, 759, 1208
IWorkspaceFactory2 interface  736, 1208
IWorkspaceHelper interface  757
IWorkspaceName interface  688, 759
IWorkspaceProperties interface  738, 752, 753, 754, 755
IWorkspaceProperty interface  755
IWorkspaceSpatialReferenceInfo interface  744
IWorldFileExport interface  1213
IWorldFileSettings interface  650, 656
IXmlPropertySet interface  933, 934, 935
IXmlPropertySet2 interface  931
IXmlQuery interface  722
IXYEvent2FieldsProperties interface  976
IXYEventSource interface  976
IZ interface  1043
IZAware  1042
IZAware interface  1043, 1059
IZCollection  1043

J

Java  76
JavaScript  84
Jet  1281
Joining

layers with geodatabase relationship
class example  343

tables to layers  342–343
example  342–343

Joining tables. See Query: join
Joint Photographic Experts Group format. See JPEG
JPEG

description  646
exporting to  643, 645, 652
supported versions  646

JpegExporter coclass  643, 652
Junction feature. See Geometric network: junction feature
JunctionConnectivityRule coclass  861, 864, 865
JunctionFlag coclass  1189
JunctionFlagDisplay coclass  1198

K

Keyboard shortcuts. See Accelerators

L

LabelEngineLayerProperties coclass  433, 434, 435, 436
Labeling

features
accessing stored expressions  433
barriers  270, 352, 443
conflict resolution  437
converting to annotation  366
creating label engine example  434
discussion  432
displaying expressions example  433
JScript expressions  442
object model  432
overflow labels window  368
overposting  437–438
point placement example  440–441
positioning  439
priorities  439
properties  434–436
VBScript expressions  442
weights  439

map grids and graticules. See Map grids and graticules
Labels

converting to annotation  366
LatLonFormat coclass  421, 422
Layer files

accessing the path  694
as represented in ArcCatalog  658, 694
changing the renderer example  695

Layers  351–353. See also CAD layers; Composite graphics
layers; Coverage annotation layers; FDO graphics
layers; Graphics layers; Group layers; IMS map
layers; TIN layers

accessing  330
adding to group layer example  355–356
adding to map example  265, 332
based on Internet data  357–358
data source information  334
defined  330
definition query  336
determining type of  330
display filters  335–336
displaying in ArcCatalog  676
effects

brightness  339
contrast  339
transparency  339
transparency example  339

fields  340, 350
find by name example  331
identifying features example  349
joining tables to  342

example  342–343



mcccxxxiv • Exploring ArcObjects

Layers (continued)
joining with geodatabase

relationship class example  343
object model diagram  328
relating tables

example  344
relating tables to  342
reporting spatial reference example  331
selection properties  337
visibility changed event example  340
visibility event  340

Layout. See Page layout
Layout elements. See Frame elements; Map surrounds
Legend coclass  373, 375, 377, 453, 471, 560
Legend items

defined  373
discussion  375–376

LegendClass coclass  373, 377, 454, 478
LegendClassFormat coclass  375, 377
LegendFormat coclass  373, 375, 377, 378, 453
LegendGroup coclass  262, 373, 453, 454, 478
Legends. See also Legend items

and biunique value renderer  474
and chart renderer  471
and custom renderers  478
and dot density renderer  473
and feature renderer  453, 470
and proportional symbol renderer  467
class  454
discussion  373–374
formatting  373, 375–376, 377
group  454
groups and classes illustration  453
modifying  454
patches  378
properties  374
relation to renderers  373
symbology  373

License checking
application  1294, 1294–1295
component  1294, 1296–1297
extension  1294, 1295–1296
functional  1294, 1297–1302
methods  1302
proactive  1298
reactive  1298

Line coclass  545, 604, 607, 610, 988, 991, 993, 1002,
1005, 1006, 1007, 1009, 1025, 1036

Line elements  303
Line symbol

arrowheads  526
cartographic  521
dashed  521–522
decoration  522, 525, 526–527, 528

example  527
versus multilayer  525

Line symbol (continued)
Decoration Editor dialog box  528
defined  519
hashed  529
marker line example  530
markers repeated  530
multilayer  531
offsetting  521
pattern example  524
picture  532
simple  520
template  522, 523–524
tiled image  532
types of  519

LinearUnit coclass  1072, 1095
LineCallout coclass  552, 554, 555
LineDecoration coclass  525, 526, 528
LineDecorationEditor coclass  528
LineElement coclass  303
LineFillSymbol coclass  538
LineLabelPlacementPriorities coclass  434, 439
LineLabelPosition coclass  434, 437, 439
LineMovePointFeedback coclass  607
LinePatch coclass  377
Lines. See also Arcs; Polylines

defining the slope of  1009
described  1009
parallel  1025

ListDialog coclass  246
LocatorName coclass  961
Locked down customization environment  192
Locking customization  188. See also Customization filters
Logical network

access to  1167
accessing weights  1171
ancillary role  1171

field name  1188
attribute editing example  1169–1170
attributes  1168
building  1187. See also Logical network: creating
creating  1167, 1187, 1188
defined  1166
element ID (EID)  871
element status  1168
element to feature  1170
elements

adding  1175
creating  1177
deleting  1175
finding connected  1179
finding connected example  1179

enabled/disabled state  1172, 1188
accessing  1172
updating  1173



Index • mcccxxxv

Logical network (continued)
feature to element  1170
field name  1188
flow direction  1176
opening  1167
schema  1168

accessing  1171
updating  1171

solver  870, 879, 883, 885
stepping through  1179. See also Traversing
topology  1168

accessing  1173
connected edges example  1174
updating  1175

tracing  1176
barriers  1182
disabling classes  1182
finding common ancestors  1186
finding connected elements  1186
finding loops  1186
flags  1189
flow direction  1185
methods  1185, 1186
origins. See Logical network: tracing: flags
path finding  1186
setting barriers example  1182–1183
starting points. See Logical network: tracing: flags
weights  1183
weights example  1183–1184

traversing  1179
types of  1167, 1187

street  1176
utility  1176

updating  1169
starting  1169
stopping  1169

versus weight association  1180
weight association

accessing  1181
defined  1180, 1181
updating  1181
versus weights  1180

weights
defined  1180
types of  1180

without a Geometric network  1167
LongitudeRotationTransformation coclass  1111

M

Macro items
adding to comand bars  218
creating  218

Magnifier window. See Map inset window
Map  263

accessing layers  264
active graphics layer

described  267
adding graphic elements to  263, 267
adding layers  264
adding shapefile to example  265
borders. See Map grids and graticules
default graphics layer

described  267
drawing shapes. See Drawing
events  269–270, 272
extent  268

bookmarks  270
changing example  269

focus map  263
graphics container  267
grids and graticules. See Map grids and graticules
hiding and showing scroll bars  269
layers. See Layers
map frame relation to  263
map surrounds relation to  263
pan example  571
refreshing  269
removing layers  264
rotating  571, 572
selected features example  265
selecting features by shape example  265–266, 278
selection environment  277–279
spatial references of  263
symbol level  505
transforming units to device  572–573
zoom in example  269
zoom to center example  573

Map coclass  132, 133, 134, 254, 261, 262,
263, 264, 266, 267, 269, 270, 272, 280,
282, 284, 288, 299, 306, 326, 330, 331, 352,
366, 367, 372, 384, 445, 446, 452, 487, 502, 542,
545, 570, 573, 611, 623, 740, 811, 874, 1074, 1076,
1083, 1084, 1103, 1109, 1114, 1116, 1118, 1123

Map frame
borders. See Map grids and graticules
discussion  307–308
relation to Map  263
relation to map surrounds  372



mcccxxxvi • Exploring ArcObjects

Map grids and graticules
accessing example  399
adding to a data frame  415
borders  405

calibrated example  406
simple example  405

creating graticule example  400, 402
creating index grid example  403
creating measured grid example  404
creating via factory  414
discussion  399–401
factories  414
graticules defined  402
grids defined  399
index grid defined  403
labeling  407–408

DMS grid label example  409
formatted grid label example  410
index grid  412
mixed font grid labels example  411
properties example  407–408

measured grids defined  404
object model diagram  398
overlay grids defined  404
removing from a data frame  415

Map inset window  316. See also Map inset
creating example  316
factory  318

Map layers. See Layers
Map surrounds  373–374

discussion  372
frame  308
map inset  379
map title  380
North arrows  379
object model diagram  371
overview surround  380
relation to Map  263
scale bars  381

Map title  380
MapEvents coclass  272
MapFrame coclass  263, 284, 306, 307, 308, 372, 399
MapInset coclass  316, 379
MapInsetWindowFactory coclass  316
MapSurroundFrame coclass  263, 308, 372
MarginSnap coclass  296
Mark elements  303
Marker Symbol. See also Symbol
Marker symbol

arrow  512
character  513
chart  559
creation example  510, 513, 514
defined  509
halo  516

Marker symbol (continued)
illustration of types  510
multilayer  515–517
multilayer example  515
picture  513, 514
rotating  457
setting properties  509–510
simple  511
stretching  513
types of  510

MarkerElement coclass  303
MarkerFillSymbol coclass  536, 537
MarkerLineSymbol coclass  519, 521, 523, 528, 530, 532
MarkerTextBackground coclass  552, 553
Marshalling  253, 444–447. See COM: marshalling
MDAC (Microsoft's Data Access Components)  1273, 1281

Data Link Properties  1281
Measure (on route). See Dynamic segmentation
MeasuredGrid coclass  402
MeasuredGridFactory coclass  414
Measures  985, 1007, 1022, 1042, 1044, 1045
MemoryRelationshipClass coclass  342, 944, 945, 950, 955
MemoryRelationshipClassName coclass  955, 956
Menu items

creating  230
creating dynamic  234
creating in VBA  226

Menus. See also Command bars
adding to command bars  218
creating  218, 221

example  218–219
Merging features. See Feature: merging
MessageDialog coclass  247
Metadata  1277

accessing in ArcCatalog  697
associated with an ArcCatalog selection  658
creating  715, 716
custom editor  716
custom exporter  720
custom importers  718
described  715, 921
editing  674, 716, 927–934

example  674, 930, 935
example of accessing  925
exporting  720, 721, 932

example  720
FGDC standard  716
get XML example  933
importing  718, 719

example  719
objects that don't support metadata  715
printing  671, 674
searching  724
storage information  697



Index • mcccxxxvii

Metadata (continued)
supported formats  718
synchronizing  926, 940
updating  715
using keywords  673
viewing  674

MetadataSynchronizer coclass  936, 939, 940
MFC  152–153
Microsoft Access  822, 1277
Microsoft Enhanced Metafile format. See EMF
Microsoft interface Definition Language. See IDL
Microsoft's Data Access Components (MDAC)  1273
MixedFontGridLabel coclass  411
Model name  778, 780
ModifyDimensionFeedback coclass  625
MolodenskyTransformation coclass  1109
MonitorSettings coclass  494
MouseCursor coclass  238
MoveEnvelopeFeedback coclass  608
MoveGeometryFeedback coclass  609
MoveImageFeedback coclass  610, 611
MoveLineFeedback coclass  608, 609
MovePointFeedback coclass  608, 609
MovePolygonFeedback coclass  608
MrSid wavelet compression  1259
MultiItems

creating  234
described  234

MultiLayerFillSymbol coclass  540
MultiLayerLineSymbol coclass  505, 523, 524, 531
MultiLayerMarkerSymbol coclass  510, 515, 516, 531, 553
Multipart shapes. See Geometry
MultiPartColorRamp coclass  496, 497, 501
MultiPatch coclass  1022, 1031, 1034, 1042, 1048,

1054, 1058, 1059, 1060, 1061, 1062, 1067
Multipatches

defining the shape of  1031, 1060, 1061
described  1058, 1059

Multiplicities  12
Multipoint coclass  805, 983, 985, 1020, 1021,

1038, 1039, 1042, 1046, 1047, 1048, 1052
Multipoints. See also Geometry; Points

defining the shape of  1020, 1038
described  1020

Multithreading  188–189
Multivariate renderer. See Feature Renderer: biunique value

renderer
MxDocument coclass  116, 133, 211, 252, 254, 257,

258, 261, 262, 263, 269, 284

N

NADCONTransformation coclass  1113, 1119
Name object

defined  758
described  758, 759, 760–763
for coverages  908, 918
for dynamic segmentation  961–962, 968
for in-memory relationships  955
for joins  956
for XY events  978
referencing by  683, 685
returning an enumeration of  690
storing (persisting)  758

NameFactory coclass  662
NaturalBreaks coclass  579, 580, 584
Neatline. See Elements: frame elements: decoration
NestedLegendItem coclass  373, 375
NetElementBarriers coclass  1200, 1201
NetElementClass coclass  1177
NetElementDescription coclass  1177
NetWeight coclass  1180, 1181, 1183
NetWeightAssociation coclass  1180, 1181
Network. See Geometric network; Logical network
Network toolbar. See Utility network analysis toolbar
NetworkLoader coclass  1187
NetworkWorkspace coclass  1167
NewBezierCurveFeedback coclass  603, 604, 619
NewCircleFeedback coclass  606
NewDimensionFeedback coclass  622, 625
NewEnvelopeFeedback coclass  605
NewLineFeedback coclass  603, 604, 616, 619
NewMultiPointFeedback coclass  616
NewPolygonFeedback coclass  601, 603, 604
Normal template

ArcID module  217
determining filename of  212
in ArcCatalog  186
in ArcMap  185–186

North arrows  379
Notification interface  91
NumberDialog coclass  248
NumberFormatDialog coclass  430
Numbers

aligning  417
angle format  420
converting string to value  416
converting value to string  416
currency format  424
custom format  428
discussion  416
DMS (degrees, minutes, seconds) formatting example  421
format dialog box  430–431

example  430–431
formatting  417–419



mcccxxxviii • Exploring ArcObjects

Numbers (continued)
fraction format  426–427
fraction formatting example  426–427
latitude and longitude format  421–422
object model diagram  416
percentage format  423

example  423
rate format  424
rounding  418
scientific format  425
show plus sign  418
using separators  418–419

NumericFormat coclass  417

O

Object  179, 180. See also Row
defined  803
finding related objects  828
related object example  945

Object browser utility  90
Object class. See also Dataset; Table

changing schema  780
creating  842
custom  834
defined  778
distinguishing from table  778
event handling  838
objectID  775
required fields example  842

Object coclass  306, 740, 775, 777, 803,
805, 818, 834, 837, 861, 953

Object Definition Language. See IDL
Object ID  775, 948
Object inspector  834. See Feature Inspector
Object library. See Type library
Object loader

described  905
invalid data  902
progress events  901
user interface  906
validating field names  903, 904

Object model
in CASE tools  1286

ObjectClass coclass  774, 775, 778, 779, 780, 781,
784, 803, 816, 833, 834, 836, 838, 841, 842

ObjectLoader coclass  898, 905
ObjectLoaderUI coclass  906
Objects coclass  661, 803, 834, 838
ODBC (Open Database Connectivity)  1273, 1274

drivers  1281
DSN  1282

OGIS (Open GIS Consortium)  1276, 1277, 1278
OID. See ObjectID

OLE
and drag/drop  662, 663
clipboard  663

OLE automation. See Automation
OLE DB  1273

consumers  1274
data sources  1274
described  1274
providers  1274, 1281

OLE frame  307
OleFrame coclass  306, 307, 312
Open Database Connectivity (ODBC)  1273
Open GIS Consortium  1276

Open GIS Simple Features Specification for OLE/COM
1276

Open Grou's Distributed Computing Environment. See DCE
OpenRasterDataset  1209
Operations

delete edit sketch vertex example  1133–1134
delete feature example  1134–1135
edit sketch modifications  1133, 1148–1149
feature edits  1134

Oracle  1281
Ordering data  796
Outbound interface. See interface: outbound
Output

from display  577–578
Output device  569
Overview coclass  317
Overview surround. See Overview window
Overview window  317. See also Overview surround

creating example  317
factory  318

OverviewWindowFactory coclass  317

P

Page
background  289
border  289
change color example  289–290
change size example  289, 290
discussion  289–291
events  291
orientation  289
print settings  291
size  289

Page coclass  285, 289, 290, 291
Page layout

accessing in ArcCatalog  696
discussion  284–288
elements  372. See also Frame elements; Map surrounds

accessing selection  288
adding picture example  313
adding text example  286–287



Index • mcccxxxix

Page layout (continued)
elements (continued)

moving example  287
selection count example  288

graphics container  286
hiding and showing rulers  269
map grids. See Map grids
page. See Page
zoom to percent example  285

PageLayout coclass  133, 134, 254, 261, 263, 267,
269, 270, 280, 284, 285, 286, 288, 289, 291,
292, 293, 294, 295, 296, 299, 308, 372, 487,
502, 545, 551, 568, 570, 572, 573

Paper coclass  252, 253, 629, 640, 641
Parameter coclass  1072, 1079, 1087, 1088, 1100, 1120
Parameters

changing  1087, 1099–1100
described  1099
for geotransformation  1099, 1107–1108, 1110
for projected coordinate systems  1097, 1099, 1101

Partial Refresh example  1146
Patches

area  378
custom area patch example  378
line  378

Path coclass  613, 692, 985, 991, 996, 997,
1001, 1002, 1003, 1036, 1039

PC Paintbrush File Format. See PCX
PCX

description  646
exporting to  643, 645
supported versions  646

PDF
driver  654
exporting to  643, 654
font mapping  654

PDFDriver coclass  654
PDFExporter coclass  654
PercentageFormat coclass  423
Persisting data  199–201
Personal geodatabase

compacting  752
query syntax  822

Picture elements  312–313
adding to layout example  313

PictureFillSymbol coclass  536, 537
PictureLineSymbol coclass  532
PictureMarkerSymbol coclass  510, 513, 514, 532, 536
Pie chart renderer. See Feature Renderer: chart renderer
PieChartSymbol coclass  469, 471, 562, 563
PNC

exporting to  645

PNG
description  646
exporting to  643, 645
supported versions  646

Point coclass  107, 110, 503, 554, 608, 609,
610, 616, 805, 983, 992, 1008, 1020,
1021, 1022, 1023, 1024, 1038, 1039,
1040, 1042, 1043, 1046, 1047, 1048,
1052, 1054, 1151, 1262

Point symbol. See Marker Symbol
PointPlacementPriorities coclass  440
Points. See also Geometry; Multipoints

described  982, 1022
PointTracker coclass  591
Polygon

symbol. See Fill symbol
Polygon coclass  532, 552, 590, 604, 606, 609,

613, 614, 805, 983, 989, 991, 994, 995,
996, 999, 1000, 1001, 1004, 1034, 1035,
1039, 1042, 1043, 1046, 1047, 1048, 1052

PolygonElement coclass  299, 310, 311
PolygonMovePointFeedback coclass  607, 622
Polygons. See also Geometry

area of  1000
boundary of  1047
centroid of  1000
defining the shape of  1001, 1020, 1024, 1035
densification  1006, 1123–1124
described  982
symbol. See Fill symbol

Polyline coclass  552, 603, 604, 607, 613, 616,
617, 620, 805, 983, 985, 991, 994, 995,
996, 997, 998, 1035, 1039, 1043, 1044, 1045,
1046, 1047, 1048, 1049, 1052

Polylines. See also Geometry
defining the shape of  997, 1033, 1035
densification  1006
described  982, 997, 999
length of  991

Polymorphism  79
Portable Document Format. See PDF
Portable Network Graphics. See PNG
PositionVectorTransformation coclass  1110
PostScript

color separation  638
spot plates  636

driver  635, 653
separate images  637

exporting to  643, 653
font mapping  638
output with  635

example  635
Premier toolbar  129
PresetColorRamp coclass  496, 500



mcccxl • Exploring ArcObjects

Prime meridian
described  1094
user-defined  1094

PrimeMeridian coclass  1072, 1073, 1090, 1091, 1094
Printer  569, 577

accessing  253
assigning  640

example  640
example  629–630
objects  629
settings  640
tray designation  640

Printing
page settings  291

ProgIDs  132, 239
Programable identifier. See Prog ID
Progress animation

example  210
in a dialog box  241

example  241–242
on status bar  210

Progress bar
in a dialog box  241

example  241–242
on status bar  209

example  209–210
Progress dialog box  241
ProgressDialogFactory coclass  241
Projected Coordinate System. See Spatial reference
ProjectedCoordinateSystem coclass  1072, 1078, 1079,

1087, 1088, 1095, 1097, 1099, 1101, 1118
ProjectedCoordinateSystemDialog coclass  709
Projecting shapes. See Geometry
Projection

custom  1122
described  1101
parameters for  1101

Projection coclass  1072, 1077, 1081, 1097, 1098, 1101
Property by reference  92, 106, 108
Property by value  92, 108
PropertySet coclass  733, 765, 768, 833, 927
ProportionalSymbolRenderer coclass  457, 462, 466, 469
PSDriver coclass  637, 638
PsExporter coclass  639, 653
PsPrinter coclass  629, 635, 637, 638, 639

Q

QI. See Query Interface
Quantile coclass  579, 584
Query

and ArcIMS  822
and SQL  811, 822
attribute  810, 821
example  821
example of spatial  823
join  810, 944

example  956
joining multiple tables  950
multipart query shape example  826
multitable  810
outer join  951
performance  94, 743, 751, 767, 821, 826
search order  826
sorting results  796

example  796
spatial  823
spatial criteria  824
spatial reference  821

Query Interface  80–81
QueryDef coclass  740, 810, 811, 816, 822, 951
QueryFilter coclass  781, 796, 816, 821, 822, 823, 946

R

RandomColorRamp coclass  489, 496, 499, 500, 560
RangeDomain coclass  859
Raster catalog  1256

defined  1256
display  1257
rendering  1257
scale-dependent drawing  1257
table  1256
visualizing  1257

Raster coclass  1206, 1207, 1211, 1216, 1222,
1226, 1227, 1228, 1229, 1230, 1232, 1234,
1235, 1237, 1239, 1240, 1241, 1254, 1262

Raster data
calculating statistics  1224
default display  1254
defined  1203
defining projection  1212
display. See Raster data: rendering
editing  1218
format conversion  1213
geometric processing  1235
Gx Browser  1261
loading into ArcSDE  1263
management  1211
merging  1235, 1237
mosaicing  1235, 1237



Index • mcccxli

Raster data (continued)
MrSid format  1259
persisting  1229

example  1231
properties  1229
reading  1218
rendering

categorical data  1246
classified  1249
continuous data  1243, 1249
multiband data  1252
RGB composite  1252
stretching  1243
unique values  1246

reprojection  1226, 1230, 1235
example  1231

resampling  1226, 1227, 1235
example  1231

statistics of  1224
supported formats  1266
visualizing  1239
wavelet compression  1259
writing  1218

Raster data objects
introduction  1206

Raster dataset
accessing properties  1217
colormap  1223
creating new  1209–1210
persisting  1213
pseudocolor  1223
statistics  1224
temporary  1214
writing to  1218

Raster pyramid  1212, 1217
RasterBand coclass  1206, 1207, 1211, 1213, 1215,

1216, 1217, 1218, 1222, 1223, 1224, 1226,
1228, 1232, 1235, 1262

RasterBandName coclass  1215
RasterBands coclass  1222
RasterCatalogLayer coclass  1239, 1257
RasterCatalogTable coclass  1239, 1256, 1257
RasterClassifyColorRampRenderer coclass  1249, 1255
RasterDataset coclass  1206, 1207, 1209, 1211, 1213,

1216, 1222, 1226, 1228, 1230, 1235, 1239, 1240
RasterDatasetName coclass  1215
RasterDefaultsEnv coclass  1211, 1212, 1226, 1270
RasterFormatInfo coclass  1268
RasterGeometryProc coclass  1207, 1235, 1237
RasterLayer coclass  330, 1206, 1207, 1226,

1235, 1239, 1240
RasterPicture coclass  1271
RasterRendererMakerDefault coclass  1254
Rasters in ArcSDE  1263
RasterSDELoader coclass  1263

RasterStretchColorRampRenderer coclass  1249, 1255
RasterUniqueValueRenderer coclass  1246, 1255
RasterWorkspace coclass  1206, 1207, 1208, 1211,

1214, 1222, 1237
RasterWorkspaceFactory coclass  1206, 1207, 1208, 1209
RateFormat coclass  424, 430
Ray coclass  1067
RectangleElement coclass  310, 311
Rectangles. See Envelopes
Redrawing

selection example  1146
Reduced resolution dataset. See Raster pyramid
Reference scale

for annotation  847
for dimensions  850

Refreshing. See also Redrawing
discussion  280–281
feature selection example  281
the map  269

Regedit  97
Registry  87, 97, 176–177

regedit. See Regedit
script  97, 130

Relating
tables to layers  342, 343–344

example  344
Relationship. See also Relationship class

attributed  828, 829
automatic creation example  836
creating  829
defined  831
event handling  836, 837
example of deleting  829
many-to-many  829
performance  837
split policy  840

Relationship class. See also Relationship
and custom objects  804
between different workspaces  944
cardinality constraint  863
creating  741, 772
defined  828
foreign key diagram  828
in memory  944

example  945, 955
involved with layer joins  342
involved with layer relates  343–344
listing example  779
name object  763, 955
used for join  948–951

RelationshipClass coclass  336, 337, 342, 774, 828, 831,
836, 849, 863, 944, 948, 950

RelationshipClassName coclass  763
RelationshipRule coclass  861, 863
Release method. See IUnknown



mcccxlii • Exploring ArcObjects

RelQueryCursor coclass  952
RelQueryRow coclass  953, 954
RelQueryTable coclass  334, 342, 948,

949, 950, 951, 952, 953, 956
RelQueryTableName coclass  956
Renderer. See also Feature Renderer

custom  839
on TIN layers  354

example  354
relation to legends  373

ReshapeFeedback coclass  613
ResizeEnvelopeFeedback coclass  600, 614
Ring coclass  613, 991, 996, 1000, 1001,

1004, 1024, 1039, 1059, 1060
RotateTracker coclass  594
Route. See Dynamic segmentation
RouteEventSource coclass  965, 967, 968, 969, 971
RouteEventSourceName coclass  967, 968
RouteMeasureLineLocation coclass  963
RouteMeasureLineProperties coclass  965
RouteMeasureLocator coclass  959, 960, 961
RouteMeasureLocatorName coclass  960, 961
RouteMeasurePointLocation coclass  964
RouteMeasurePointProperties coclass  966, 968
Row

accessing  776–777, 799
defined  799
deleting  776, 800, 818
editing  799, 801, 818

example  800
inserting  776, 799, 818
joined  953–954

Row coclass  774, 775, 777, 781, 799, 800, 801,
803, 805, 810, 812, 817, 818, 834, 847, 953

RowBuffer coclass  798, 818, 819, 953
Rubber band  589–590. See also Feedbacks
RubberCircle coclass  589
RubberEnvelope coclass  589
RubberLine coclass  589, 590
RubberPoint coclass  589
RubberPolygon coclass  589, 590
RubberRectangularPolygon coclass  589
Rulers

accessing settings  285
change division example  294
discussion  294
hiding and showing  269

RulerSettings coclass  285, 294
RulerSnap coclass  296
Rules. See Validation rules

S

Scale bars  381
double-fill  382
scale line  383
scale text  383
single-fill  382

Scale threshold. See Feature Renderer: scale-dependent
ScaleDependentRenderer coclass  475
ScaleText coclass  302
Schema lock  766
ScientificFormat coclass  425
SCM  86, 87
ScreenDisplay coclass  254, 260, 263, 269, 282, 550,

569, 570, 572, 574, 575, 577, 590, 601, 619
Scroll bars  571

hiding and showing  269
SDERasterTableName coclass  1215
Search cursor. See Cursor
SearchResults coclass  714
Selection

change default color example  277
comparison of interfaces  815
environment  277–279
in ArcMap  265
is mouse over selection example  1153
of rows and features. See also Query

ArcMap Select by Location dialog box  825
creating  777
example  814, 821, 823
managing  813
persisting  814
types of set  812

refreshing example  281
select by shape example  1145
selecting features by shape example  265–266, 278

Selection handle. See Selection tracker
Selection tracker  591–593
SelectionEnvironment coclass  252, 277
SelectionSet coclass  326, 337, 796, 812, 813
SelectionSetBarriers coclass  1182, 1201
Set  108
Set coclass  253, 262, 490, 800, 1081, 1084, 1118, 1138
SetRasterWorkspace  1208
Shapefile. See Feature class
Shapes. See Geometry
Shortcut keys. See Accelerators
Shortcut menus

creating  217, 222
ShortcutName coclass  693
SidEncoder coclass  1207, 1259
SimpleDisplay coclass  569, 577
SimpleEdgeFeature coclass  884
SimpleFillSymbol coclass  535
SimpleJunctionFeature coclass  876, 1286, 1289



Index • mcccxliii

SimpleLineDecorationElement coclass  526
SimpleLineSymbol coclass  519, 520, 521, 529, 534
SimpleMarkerSymbol coclass  510, 511, 515
SimpleRelationship coclass  831
SimpleRenderer coclass  456, 462, 505
SimpleTextPath coclass  550, 551
SingleDivisionScaleBar coclass  382
Singleton objects  78, 123, 1297

license checking. See License checking: component
Sketch. See Edit sketch
Sketch tool  1141, 1147

anchor point  1147
constraining example  1147
context menu  1132, 1147
current location  1147
streaming mode

tolerance  1147
symbology example  1141–1142

Smart type  154
Snap agents  1135–1136

adding and removing  1144
for elements  295, 296

add grid snap agent example  297
for features  1135, 1150
listed on snapping window  1152
removing all example  1152

Snap grid
accessing  285
change spacing example  292
discussion  292

Snap guides
accessing  285
adding example  293
discussion  293

SnapGrid coclass  285, 292, 296
SnapGuides coclass  285, 293
Snapping  1135–1136

elements
to grid  292, 296
to guides  293, 296
to margins  295, 296
to rulers  295, 296

window  1150, 1152
closing  1152
opening  1152
refreshing  1152
refreshing example  1152

Snapping environment  1135, 1144
Snapping to features  1150
Snapping tolerance  1135
Snapping window  1135
Sorting data  796
Spatial bookmarks. See Bookmarks
Spatial operations. See Geometry
Spatial operator  1278

Spatial query. See Query: spatial
Spatial reference  1278

and ArcSDE  1085–1086, 1088
and CAD data  1073
and POSC codes  1072, 1077, 1081
and PRJ files  1073, 1079, 1082
and VPF data  1073
ArcCatalog folder  690
changing for dataset  769
changing parameters for  1087
converting data  899
creating  709, 710, 711

example  709
creating using Define method  1090, 1092–1093,

1094, 1096, 1098, 1101
creating using dialog box  1074, 1091, 1098
creating using factory  1074–1075, 1080–1081,

1084, 1095, 1099, 1106, 1111
dataset creation example  711
defined projections in ArcCatalog  696
described  1072, 1087
display transformation  572
editing  711
for a layer  1075
for a map  1076
geographic system  710

example  710
getting information about  1077, 1087, 1089, 1095,

1099, 1101
importing and exporting  1078, 1079, 1082
in Workspace  744
metadata  1073
object model diagram  1070
of query results  821
overriding a layer's  1074
projected system  709
projection file example  696
units  1095

Spatial relationship  824
Spatial resolution  822
SpatialFilter coclass  823, 984
SpatialReferenceDialog coclass  711
SpatialReferenceEnvironment coclass  1072, 1077,

1078, 1080
Sphere coclass  1067
Spheroid

described  1092
user-defined  1093

Spheroid coclass  1072, 1073, 1092, 1093
Splitting features. See Feature: splitting
Spot plates

adding  636
creating  638
description  636
removing  636



mcccxliv • Exploring ArcObjects

SpotPlate coclass  636, 638
SQL  1280

and query filters  822
and QueryDef  811
executing  738
granting privileges  761
syntax  744
validating names  903

SQL Server  1281
Stacked chart renderer. See Feature Renderer: chart

renderer
StackedChartSymbol coclass  563
Standalone table. See Tables
StandaloneTable coclass  326, 327, 944
StandardDeviation coclass  585, 586, 588
Statistics  586, 587–588
Status bar

accessing  208
described  208
discussion  208–210
message  209
panes  208–210
progress animation  210

example  210
progress bar  209

example  209–210
StatusBar

accessing  188
Step progress bar  209, 241
Street network  1176
StreetNetwork coclass  1168, 1176
StretchLineFeedback coclass  616
Structured Query Language. See SQL
Style files  388–391
Style gallery. See also Styles

accessing example  388
accessing items from file  389
accessing stored marker symbols example  392–393
accessing style classes example  389
classes  395–396
creating new items example  393, 396
discussion  388–391
items  392–393
listing categories example  389
object model diagram  387
storage  391

StyleGallery coclass  254, 388, 395, 502
StyleGalleryItem coclass  392, 502
StyleManagerDialog coclass  397
StyleReferencesDialog coclass  397
Styles. See also Style gallery

accessing style gallery classes example  396
defined  388
dimension  851, 852–854
displaying Style Selector dialog box example  394

Styles (continued)
relation to elements and symbols  388
selector  394
storing  388–391

Subtype  776, 778, 780, 803, 859
example  803

Subtyped commands
creating  233
described  233

Symbol. See also Chart symbol; Fill symbol; Line
symbol; Marker Symbol

and annotation  742, 847
and dimensions  852–854
change default fill example  257
custom  482
defaults for elements  257
described  502
draw order  505
example of selecting  507
flashing  503
gradient fill  497
image. See Marker Symbol: picture
map level example  505
mouse movement example  503–504
multilayer  505
multilevel  457
point. See Marker Symbol
polygon. See Fill symbol
Property Editor dialog box  508
property page  482
Selector dialog box  507

Symbol collection. See Annotation feature class
SymbolBackground coclass  565, 566
SymbolBorder coclass  565, 567
SymbolCollection coclass  742, 847, 848
SymbolEditor coclass  502, 508, 564
SymbolLevelDialog coclass  457
SymbologyEnvironment coclass  508
SymbolSelector coclass  507
SymbolShadow coclass  567

T

TabIndex property  100
Table. See also Dataset

accessing fields  775
accessing in ArcMap  272
adding to ArcMap  272

example  272–273
analyzing  743, 767
and versioning  894
appending data  905
column. See Field
converting  899
creating in ArcCatalog  712



Index • mcccxlv

Table (continued)
creation example  790
DBMS naming  774
defined  774
deleting rows  776, 800, 818
exporting  899
histogram  587–588
in table window  319–320
INFO. See INFO table
inserting rows  776, 818
join. See Query: join
managing fields  775
of route events  965–966, 967, 968–970
of XY events  976
registering  779
resulting from join  948–951
standalone  326–327

select rows example  327
updating rows  818
validating names  903
views  324–325
virtual  951

Table coclass  262, 309, 321, 326, 587,
774, 775, 776, 777, 796, 798, 799,
800, 803, 813, 816, 817, 819, 821,
916, 948, 952, 953, 1256

Table control. See Table view
Table of contents

accessing  213
hiding legend  454
in ArcMap

activating  261
context menu for selected item  255
creating  261
creating and adding tabs  256
display tab (TOCDisplayView)  261
refreshing  255, 261
removing all tabs  256
selected  262
selected items  255
source tab (TOCCatalogView)  261
updating  255

positioning  213
Table views  324–325
Table window  319–320

creating example  319–320
TableDefinitionDialog coclass  712
TableFrame coclass  309
TableHistogram coclass  459, 460, 579,

580, 585, 587, 588
TableName coclass  762, 780, 1181
TableProperties coclass  254
TableProperty coclass  309
TableSort coclass  796, 797
TableView coclass  309, 314, 319

TableWindow coclass  314, 319, 326
Tag Image File Format. See TIFF
tagesriGeometryError  990
Target layer. See Current layer
Template coclass  522, 523, 524, 529
Templates  184

accessing  188
collection  212
determining filename of  212
in ArcMap  185

Templates coclass  252
Text (.txt) files

accessing in ArcCatalog  697
editing example  697
selecting example  697

Text background
callout  554–556, 620–621
described  552
Editor dialog box  557
marker  553
Route 66 example  553

Text box controls
creating  232
creating in VBA  228

Text element  286, 302
adding to layout

example  286–287
splining example  551

Text feature. See Annotation feature
Text symbol

background  546, 547
default font size  549
described  544
Editor dialog box  557
fill  546, 547
halo  547
path  546, 550–551

example  550
setting properties  544–548
shadow example  547
size of  545
splined. See Text symbol: path

TextBackgroundEditor coclass  557
TextElement coclass  284, 286, 301, 302, 544,

551, 620, 621, 847, 849
TextSymbol coclass  351, 502, 544, 545, 546, 548,

550, 551, 552, 553, 554, 557
TextSymbolEditor coclass  557
ThisDocument  211
ThisDocument object  116, 119, 122
Thread  85
Thread managers  188–189
Three-dimensional shapes. See

Multipatches; Ray; Sphere; Vector3D



mcccxlvi • Exploring ArcObjects

TIFF
description  645
exporting to  643, 645
supported versions  645–646

TiffExporter coclass  650, 656
TIN layers. See also Layers

discussion  354
renderer report example  354
renderers  354

TinEdgeRenderer coclass  310
TinLayer coclass  330, 354
TOC. See Table of contents
TOCCatalogView coclass  254, 261
TOCDisplayView coclass  254, 261, 262
Tool controls

creating  232
described  232

Toolbars  129. See also Command bars
automatically displaying  221
creating  217, 218, 220

example  218–219
premier. See Premier toolbar
Utility Network Analyst toolbar  1197

Tools
activating  188
creating  231
creating in VBA  229
described  231

TopoEditor coclass  1161
Topology. See Geometry

create feature from shared edge example  1161–1162
discovering on-the-fly  1161–1162

TraceFlowSolver coclass  1182, 1185
TracePathTask coclass  1197
TraceUpstreamTask coclass  1197
Tracing

logical network  1176
Transaction control  745, 783
Transforming shapes. See Geometry
Transparency  456, 458, 487

changing layer's example  339
of layers  339
using display  578

TransparencyDisplayFilter coclass  458
TriangleFan coclass  1038, 1042, 1058,

1059, 1060, 1063, 1064
TriangleStrip coclass  1038, 1042, 1058, 1059, 1060, 1064
Type inheritance  78

in CASE Tools  1286
Type library  82, 95, 106, 122, 128

import. See #import
VB reference  122

TypeOf keyword  111

U

UIControls
creating  225
described  225
discussion  225

UID coclass  213, 217, 239, 453
UIDs (unique identifiers)  239
UML  11

and CASE tools  1284
Unicode  153, 159, 161
Unified Modeling Language. See UML
Union of shapes  1027, 1047
Unique identifiers (UIDs)  239
UniqueValueRenderer coclass  457, 463, 464,

474, 496, 499
Units

checking  1095
described  1095
user-defined  1096

Universal Data Access strategy  1273, 1275
Universally Unique Identifier (UUID). See GUID
UnknownCoordinateSystem coclass  1103
Update cursor. See Cursor
Updating data. See Editing
Utility network  1176
Utility network analysis toolbar

available networks  1190
barriers  1190

initializing  1200
retrieving  1192, 1200
setting  1192, 1200

disabled layers  1192
display results example  1196–1197
enabling "Set flow direction"  1195
find path

accumulated cost  1197
applying weights  1194
solving  1194

flags  1190
applying flags example  1198–1199
edge  1199
junction flags  1198
management of  1198
retrieving  1191
setting  1191

least cost path. See Utility network analysis toolbar: find
path

network in use  1190
removing layers  1190

example  1190–1191
results

clearing  1192
conditions for  1192
retrieving  1192



Index • mcccxlvii

Utility network analysis toolbar (continued)
trace tasks

avaialble tasks  1197
available tasks  1196
creating custom tasks  1196
current task  1195
descriptions  1197
getting results of  1196
parameters of  1195

weight values
retrieving  1194
setting  1194

weights  1190
filter example  1193
retrieving  1193
setting  1193
using filters  1193

Utility Network Analyst toolbar  1197
UtilityNetwork coclass  1168, 1176
UtilityNetworkAnalysisExt coclass  1190, 1195, 1196

V

Validation  1138
customizing validation example  835

Validation rule
applying  781, 802

example  781
attribute rule  863
customizing validation  834
described  861
example  861
managing  781
network connectivity example  865
network connectivity rule  864
relationship rule  863
types of  861

VB. See Visual Basic
VBA. See Visual Basic for Applications. See also Visual Basic
VBScript  84
VBVM. See Visual Basic: Virtual Machine
Vector3D coclass  1065, 1066, 1067
Version

access control example  888
accessing  887
and edit sessions  748
conflicts  891, 894, 895–896
conflicts window  895
creating  887
differences  892, 894
example of accessing  887
manager window  897
managing  887–888, 897
posting  889
properties  887–888, 892

Version (continued)
reconcile and post example  889
reconciling  889, 891, 894, 895–896

VersionedWorkspace coclass  887
VersionInfo coclass  888, 892
Versioning

resolving feature conflicts  1158
VersionManager coclass  897
VertexFeedback coclass  617
VerticalLegendItem coclass  373, 375
Views

3D  659
active view  675, 676

example  675
changing the layout  256
check active view example  255
custom view  670
data view

described  254
GxViews

contents view  658, 663, 672, 673, 683
contents view example  672
geographic  675, 678
geographic view  659
geographic view example  675
metadata view  658
preview view  658, 660, 678, 679
preview view example  671
table view  659, 677, 678
table view by UID example  678
tree view  658, 659, 661, 663, 666,
668, 677, 683, 686, 693, 697, 699
tree view rename example  677
ViewClassID example  679

introduced  254
layout view

described  254
previews  659, 660, 670
tabbed view  658, 659, 666, 668, 670, 697
table  324–325

Visual Basic  11
add-ins

align control creation with tab index  139
automatic reference  128
compile and register  128–130
error handler  135–137
error handler remover  137
interface implementer  130–131
line number  137–138
line number remover  138

and interfaces  103–106
arrays  101
bibliography  180
callback model  157–159
coding guidelines  100–113



mcccxlviii • Exploring ArcObjects

Visual Basic (continued)
coding standards

ambiguous type matching  102
arrays  101–102
bitwise operators  102
default properties  101
indentation  101
intermodule referencing  101
multiple property operations  101
order of conditional determination  101
parantheses  100–101
type suffixes  102
variable declaration  100
while wend constructs  103

collection object  113
collections  112
Command Creation Wizard  132–135
creating COM components  120
data types  96
debugging  124–127
debugging with ATL helper object  126–127
debugging with Visual C++  126
deploying DLL  176–178
Developer Add-Ins  128–131
error handling  102
event handling  109
getting handle to application  122–123
implementing interfaces  121
Is keyword  111
Magic example  105
memory management  102
methods  109
Package and Deployment Wizard  177–178
parameters  110
passing data between modules  110–111
PictureBox  102
starting ArcMap  124
TypeOf keyword  111
variables

Option Explicit  100
Private  100
Public  100

versus VBA  98–99
versus Visual C++  98–99
Virtual Machine (VBVM)  103, 106, 107

Visual Basic Editor
accessing  188
disabling  203
ThisDocument  211

Visual Basic for Applications  82
accessing projects  211
and ArcGIS  114–119
creating modules  188
executing code  188
getting started  115–117

Visual Basic for Applications (continued)
inserting code  188
locking code  118
removing modules  188
ThisDocument  211
versus Visual Basic  98–99

Visual C++
Active Template Library. See ATL
and MFC  152–153
and Win32  152–153
bibliography  180
code layout  146–152

avoid global data  151
avoid macros  151
bit-fields  149
brackets  148
comments  147
exceptions  151
function declarations  148
global scope  148
implementation organization  146
indentation  146
initialization  151
nested headers  149–150
nested if statements  147–148
null initialization  151
operator precedence  147
operators  147
switch statements  150
use references  150–151
variable declaration  149
white space  147

coding guidelines  140–155
coding standards

argument names  141
assignment operators  144
casting  144
class layout  141
class size  142
comments  143
const methods  144
construction  143
function names  140
inline methods  142
public data  142
true and false  141
type names  140

data types  96, 152–153, 153–157
debugging  159–163
deploying DLL  176–178
designing classes  141–146
Direct-To-COM  154–155
localization  153
naming conventions  140
versus Visual Basic  98

vTable  84, 121



Index • mcccxlix

W

Wait cursor  238
Well Known Binaries (WKB)  1278
Windows. See also Data windows; Dockable windows

height  189
left position  189
maximizing  190
minimizing  190
moving  189–190
resizing  189–190
top position  189
width  189

WKB (Well Known Binaries)  1278
Workspace

accessing contents of  738
as an ArcCatalog object  682, 688
browsing for  734
compress  887, 893
connecting to. See Workspace: opening example
connection string example  736
copying  735
creating  735
defined  737
determining capabilities of  752
editing example  748
extension  756
for coverages  909, 910–914
name object  759

example  759
opening  734, 735, 736, 737

example  734
properties  752, 755

example  753
types of  733, 737
version  887

Workspace coclass  93, 262, 733, 737, 756, 757,
759, 765, 785, 800, 811, 822, 887, 908, 909,
910, 911

WorkspaceFactory coclass  698, 733, 737
WorkspaceHelper coclass  757
WorkspaceName coclass  735, 737, 760, 908, 1263
WorkspaceProperty coclass  753, 755

X

XML. See Metadata
XY events  975

example  978
XYEvent2FieldsProperties coclass  976, 977
XYEventSource coclass  977, 978
XYEventSourceName coclass  977, 978

Z

Z coordinates  985, 1008, 1022, 1028,
1042, 1043, 1059, 1065




	Exploring ArcObjects: Volume 1
	Table of Contents
	Chapter 1: Introducing ArcObjects
	Chapter 2: Developing with ArcObjects
	Chapter 3: Customizing the user interface
	Chapter 4: Composing maps
	Chapter 5: Displaying graphics
	Chapter 6: Directing map output
	Chapter 7: Working with the Catalog

	Exploring ArcObjects: Volume 2
	Chapter 8: Accessing the geodatabase
	Chapter 9: Shaping features with geometry
	Chapter 10: Managing the spatial reference
	Chapter 11: Editing features
	Chapter 12: Solving linear networks
	Chapter 13: Integrating raster data
	Appendix A: Open data access in ArcGIS
	Appendix B: Geodatabase modeling with UML
	Appendix C: Developing with ArcGIS deployments
	Appendix D: Developing with Map control
	Index


