
this print for content only—size & color not accurate spine = 0.893" 384 page count

Books for professionals By professionals®

Pro Excel 2007 VBA
Dear Reader,

Having spent the past ten years writing code for Microsoft Office products, I
jumped at the chance to write a book on VBA programming. Before moving to VB
6.0 and subsequently .NET, I was primarily focused on solutions for Microsoft
Access, but I’d always had a soft spot for Excel. After working through this book,
you’ll discover that the latest version of Excel (2007) offers a rich set of tools that
enable you to develop user-friendly data-centric applications. And I promise,
after you’ve dabbled in Excel programming, you’ll never look back.

In this book, I’ll show you how to leverage Excel to retrieve data from a database,
how Excel can read and write data from non-database sources like XML and text
files, and how Excel can be used as a data collection tool. And since Excel is an
integral part of the Microsoft Office suite, I’ll show you how easily it integrates
with the other Office products. You’ll also see that Excel makes an extremely
capable and extensible reporting tool. Excel is often overlooked as a solution,
since more powerful database tools such as Microsoft Access are available, but
as you’ll see in the pages of this book, Excel 2007 has plenty of uses of its own.

You don’t have to look very far to find a place for Excel in your work. If you
think back to how often users export data from reports they receive into spread-
sheets for analysis, you might see an opportunity to bring your reports directly
into Excel.

I hope that when you’ve finished working through the examples and recipes
I’ve provided in this book, you’ll agree that Excel 2007 provides an easy-to-use
yet extremely powerful programming environment. Data input, data output,
charts, reports, and integration—Excel does it all.

Jim DeMarco

US $42.99

Shelve in
Excel

User level:
Intermediate–Advanced

DeM
arco

Excel 2007 VBA

The eXperT’s Voice® in eXcel VBa

Pro

Excel 2007
VBA

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Jim DeMarco

Companion
eBook Available

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-957-0
ISBN-10: 1-59059-957-8

9 781590 599570

54299

Learn to build high-performance
applications in Excel 2007 using VBA

Pro

RElAtED titlES

Jim DeMarco

Pro Excel 2007 VBA

9578fmfinal.qxd 1/30/08 8:28 PM Page i

Pro Excel 2007 VBA

Copyright © 2008 by Jim DeMarco

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-957-0

ISBN-10 (pbk): 1-59059-957-8

ISBN-13 (electronic): 978-1-4302-0580-7

ISBN-10 (electronic): 1-4302-0580-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Campbell
Technical Reviewer: Mark Etwaru
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Damon Larson
Associate Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Linda Weidemann, Wolf Creek Press
Proofreaders: Linda Seifert, April Eddy
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9578fmfinal.qxd 1/30/08 8:28 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

This book is dedicated to my beautiful wife, Marlene, who
continually challenges me to excel (no pun intended). I would also

like to dedicate it to my two very talented teens, Jimmy and Melanie,
who never fail to impress us with their creative powers.

9578fmfinal.qxd 1/30/08 8:28 PM Page iii

9578fmfinal.qxd 1/30/08 8:28 PM Page iv

Contents at a Glance

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 The Macro Recorder and Code Modules . 1

■CHAPTER 2 Data In, Data Out . 43

■CHAPTER 3 Using XML in Excel 2007 . 99

■CHAPTER 4 UserForms . 133

■CHAPTER 5 Charting in Excel 2007 . 193

■CHAPTER 6 PivotTables . 223

■CHAPTER 7 Debugging and Error Handling . 249

■CHAPTER 8 Office Integration . 287

■CHAPTER 9 ActiveX and .NET . 315

■INDEX . 351

v

9578fmfinal.qxd 1/30/08 8:28 PM Page v

9578fmfinal.qxd 1/30/08 8:28 PM Page vi

Contents

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 The Macro Recorder and Code Modules. 1

Macro Security Settings . 1

Trusted Publishers. 2

Trusted Locations . 2

The Remove Button . 3

Lowering the Security Level. 3
The Visual Basic Development Environment. 4

The Immediate Window . 10

The Locals Window . 11

The Watch Window . 13

Recording a Macro . 14

Formatting the Table . 16

Adding Totals . 17

Same Task, Different Code . 18

Writing a Macro in the VBE . 20

More Macro Security . 21

The Object Browser. 24

Object Browser Window Elements . 25

Standard Code Modules . 27

Subprocedures . 28

Functions. 28

Type Statements . 29

Class Modules . 29

Sample Class and Usage . 31

The Class-y Way of Thinking . 35

UserForms . 36

Toolbox Window Elements . 37

vii

9578fmfinal.qxd 1/30/08 8:28 PM Page vii

Object-Oriented Programming: An Overview . 39

OOP: Is It Worth the Extra Effort? . 40

Summary. 41

■CHAPTER 2 Data In, Data Out . 43

Excel’s Data Import Tools . 43

Importing Access Data . 43

Simplifying the Code . 46

Importing Text Data. 48

Macro Recorder–Generated Text Import Code 51

Using DAO in Excel 2007 . 54

DAO Example 1: Importing Access Data Using Jet 55

DAO Example 2: Importing Access Data Using ODBC 60

DAO Example 3: Importing SQL Data Using ODBC. 65

Using ADO in Excel 2007 . 67

ADO Example 1: Importing SQL Data . 67

ADO Example 2: Importing SQL Data Based on a Selection. 75

ADO Example 3: Updating SQL Data. 80

Of Excel, Data, and Object Orientation. 87

Using the cExcelSetup and cData Objects. 95

Summary. 96

■CHAPTER 3 Using XML in Excel 2007 . 99

Importing XML in Excel 2007 . 99

Appending XML Data . 106

Saving XML Data . 107

Building an XML Data Class. 108

A Final Test . 117

Adding a Custom Ribbon to Your Workbook . 119

Inside the Excel 2007 XML File Format . 119

Viewing the XML . 120

Adding a Ribbon to Run Your Custom Macros 128

Summary . 132

■CONTENTSviii

9578fmfinal.qxd 1/30/08 8:28 PM Page viii

■CHAPTER 4 UserForms . 133

Creating a Simple Data Entry Form . 133

Designing the Form . 133

The Working Class. 139

Coding the UserForm . 143

Creating Wizard-Style Data Entry UserForms. 150

Laying Out the Wizard Form. 152

Adding Controls to the Form . 154

HRWizard Classes . 160

The HRWizard Business Objects . 161

Managing Lists . 169

The Data Class . 169

Managing the Wizard . 172

Coding the HRWizard UserForm . 178

Summary. 191

■CHAPTER 5 Charting in Excel 2007 . 193

Getting Started. 193

Looking at the Code . 198

Summarizing with Pie Charts . 202

Creating the Pie Chart . 206

More Pie for Everyone. 211

Dynamically Placing a Chart . 216

Summary. 221

■CHAPTER 6 PivotTables . 223

Putting Data into a PivotTable Report . 223

The Macro Code. 229

Refreshing Data in an Existing PivotTable Report 235

Applying Formatting to a PivotTable Report 238

Summary . 247

■CONTENTS ix

9578fmfinal.qxd 1/30/08 8:28 PM Page ix

■CHAPTER 7 Debugging and Error Handling . 249

Debugging . 249

The Debugger’s Toolkit. 249

Quick Debugging . 253

A Deeper Look . 261

Error Handling . 275

Is the File There? . 275

Trapping Specific Errors . 278

Summary. 285

■CHAPTER 8 Office Integration . 287

Creating a Report in Word . 287

The Helper Functions . 290

Creating an Instance of Word . 291

Adding Charts to the Report. 295

Creating a PowerPoint Presentation. 298

Coding the Presentation . 299

Summary. 314

■CHAPTER 9 ActiveX and .NET . 315

Using ActiveX Components in Your Excel 2007 Projects 315

Are There Any Benefits? . 316

Custom Functionality with ActiveX . 316

Excel in the .NET World . 323

Managed Code in an Excel Project . 327

Summary. 350

■INDEX . 351

■CONTENTSx

9578fmfinal.qxd 1/30/08 8:28 PM Page x

About the Author

■JIM DEMARCO is Director of Application Development at the Hudson
Center for Health Equity and Quality (HCHEQ), in Tarrytown, NY.
HCHEQ is a not-for-profit organization whose mission includes advo-
cacy for equitable healthcare policy in government and the development
of information technologies to improve healthcare quality, safety, and
efficiency. Previously, Jim was a product manager at Sharp Electronics,
where his responsibilities included the development of their handheld
organizer product line.

Jim has been building Microsoft Office applications ever since he first received a copy of
Microsoft Access 1 in the early 1990s. He discovered object-oriented programming when tak-
ing a Visual Basic 5 course, and has been a strong proponent of that paradigm ever since. Jim
has published numerous articles on this subject and has also published articles on Microsoft
Access programming. He has worked as a software trainer for local adult education facilities,
a position that has helped tremendously when designing user interfaces.

Jim is currently leading a team of developers using cutting-edge .NET technologies to
streamline the processing of Medicaid applications in New York state. He is the software archi-
tect for a system that streamlines that process, providing huge cost savings to all users of the
system, as well as providing data efficiencies.

Jim is also a working musician and music producer; music from his projects is available
locally and nationally.

xi

9578fmfinal.qxd 1/30/08 8:28 PM Page xi

9578fmfinal.qxd 1/30/08 8:28 PM Page xii

About the Technical Reviewer

■MARK ETWARU is an information technology strategy consultant in
New York, NY. Mark originates from Guyana, South America, and cur-
rently resides in New York with his immediate and extended family
whose roots in New York date back to the 1960s.

Mark holds a BS in information technology and business manage-
ment from York College, New York, earned in 2002. He is currently pursu-
ing an MBA with a concentration in technology management from the
University of Phoenix Online. Mark is a seasoned technology professional,

expanding his knowledge through academic and work-related activities. In addition, Mark is
a member of PMI, as well as many other acclaimed organizations.

Beyond Mark’s passion for technology, he also enjoys reading, traveling, and spending
time with his loved ones. His future aspirations include expanding his consulting services into
the financial services marketplace, assembling a technology training institution for the under-
privileged, and expanding his travels of the world.

xiii

9578fmfinal.qxd 1/30/08 8:28 PM Page xiii

9578fmfinal.qxd 1/30/08 8:28 PM Page xiv

Acknowledgments

I would like to first thank my family for being so understanding and supportive during this
endeavor. Over the last three or four months, in addition to my normal (and large) amount
of side projects (computer- and music-related), I spent whatever “free” time I had putting
together this volume. Their patience is truly appreciated and made a busy period of my life
pass with ease.

I would like to acknowledge my technical reviewer Mark Etwaru. Mark is a very talented
developer and project manager in his own right, and his input was invaluable in putting this
book together. Thanks again Mark for a job well done!

I would like to thank Dilshan Jesook for getting me started with the .NET examples in this
book. I have yet to find a technology that he is not able to implement in short order.

I would also like to thank Mor Hezi and Chris Bryant at Microsoft for taking the time to talk
to me about Excel 2007 and helping me understand Microsoft’s vision for the Office product.

Thanks to all at Apress for giving me this opportunity and for guiding me through a pro-
cess that is very complex. As a first-time author, I did not know what to expect, and the folks
at Apress were so very understanding and helpful at all times.

And finally, I would like to acknowledge the readers of this book. Thank you for purchas-
ing it and I hope this book helps you understand the power of VBA in Microsoft Excel 2007.

xv

9578fmfinal.qxd 1/30/08 8:28 PM Page xv

9578fmfinal.qxd 1/30/08 8:28 PM Page xvi

Introduction

Did you ever wonder whether there is more to Excel than data displayed in rows and col-
umns or pretty charts? If you want to learn how to bring data into your Excel 2007 projects, or
learn to work with XML, or see how object-oriented programming can be used in Excel 2007,
this book will provide you with that information.

I wrote this book because I’ve always enjoyed writing applications in Excel when it is the
required solution. Excel is often overlooked in coding situations, but as you’ll see in the pages
of this book, it has many, many possibilities, and it is relatively easy to learn. Excel 2007 has
expanded XML support. XML data is easily brought into and out of an Excel project so your
client spreadsheet data can be shared. Excel UserForms give you the ability to create simple
user interfaces for your clients and allow you to create easy-to-use data collection tools. Excel
charting and PivotTables have always been a strong suit for data summary, and in Excel 2007,
PivotTables are greatly enhanced.

This book also addresses object-oriented programming to a great degree. Just because
you’re not writing a .NET or even a classic Visual Basic application, there’s no reason you can’t
use object-oriented coding techniques in your projects. It provides you with the same advan-
tages in Excel that you get in the full-fledged programming languages: ease of reuse, easier
code maintenance, encapsulation, and more.

You will find sample files and code solutions in the Source Code/Download section of the
Apress web site, at www.apress.com.

Who This Book Is For
This book is intended for developers who would like to learn to use Visual Basic for Applica-
tions (VBA) to extend the power of Microsoft Excel 2007. You should have some knowledge of
or experience using the VBA or classic Visual Basic programming languages and their related
development environment.

Anyone with VBA, Visual Basic, Microsoft Access, or .NET experience will readily under-
stand the concepts in this book, but anyone with any coding experience should have no
problem with the material.

How This Book Is Structured
This book gives a view into the many features available to today’s Excel developer, from a
tour of the Visual Basic Editor, where coding is done, to its debugging features. It also pro-
vides modern coding techniques, including object-oriented programming. You’ll learn
about data access, XML, charting, and PivotTables, UserForms, and more.

Chapter 1 is a basic tour of Excel 2007 coding features, from the development environ-
ment to other tools you’ll use. It begins with an examination of the Visual Basic Editor and

xvii

9578fmfinal.qxd 1/30/08 8:28 PM Page xvii

http://www.apress.com

shows some of its features. It then looks at the Excel Macro Recorder and the code it generates
for you, talks about the different types of code modules available to you, and discusses the
types of code you can write.

Chapter 2 details methods of bringing data into and out of Excel projects. It covers
importing from Microsoft Access data, text files, and SQL Server data. It also discusses the
many data access options available, including DAO, ADO, and ODBC.

Chapter 3 discusses using the XML features in Excel 2007. Examples include importing
and exporting data to an XML file and appending data from an XML file. It shows how to build
a custom object in a class module to work with XML files. It also shows how to build a custom
user interface component using XML.

Chapter 4 looks at Excel 2007 UserForms and the tools they provide. Its examples show
how to build simple and complex data entry forms, and how to use classes to add functional-
ity to the UserForms.

Chapter 5 explores charting in Excel 2007. After examining the code created by the Macro
Recorder, it shows how to use the Chart object in code.

Chapter 6 takes a look at Excel PivotTable reports. PivotTables are powerful data analysis
tools, and they’re easy to create and modify. The code samples show how to create and modify
PivotTable reports.

Chapter 7 is an overview of VBA debugging tools and techniques. The Immediate, Locals,
and Watch windows are shown in detail. The section on error handling shows how to effec-
tively trap for errors and how to provide positive feedback to the user.

Chapter 8 is all about integrating your Excel solution with other Microsoft Office applica-
tions. Its examples include building a chart report in Word 2007 and building a PowerPoint
presentation that includes text and charts from an Excel workbook.

Chapter 9 shows how to use components built in Visual Basic 6 and Visual Studio 2005 in
your Excel 2007 projects. Examples from earlier chapters are re-created using ActiveX tech-
nologies in Visual Basic 6 and .NET assemblies using Visual Studio 2005 and Visual Studio
Tools for Office 2005.

Prerequisites
Microsoft Excel 2007 is required for the examples in this book. For Chapter 8, “Office Inte-
gration,” you’ll need Microsoft Word 2007 and PowerPoint 2007.

SQL Server 2005 Management Studio Express is used in our SQL data examples. This
is available for download from the Apress web site (www.apress.com), in the Source Code/
Download section.

To create the code for Chapter 9, “ActiveX and .NET,” you’ll need Visual Basic 5 or 6 (for
the ActiveX section) and Visual Studio 2005 and Visual Studio Tools for Office 2005 SE (for the
.NET section). If you do not have one or both of the above, the compiled components for each
example are provided on the Apress web site. The .NET Framework 2.0 should be installed on
your PC for the .NET examples to run. If you do not have Visual Studio 2005, you’ll be able to
run the samples, but you won’t have direct access to the code.

■INTRODUCTIONxviii

9578fmfinal.qxd 1/30/08 8:28 PM Page xviii

http://www.apress.com

Downloading the Code
The source code for this book is available to readers at www.apress.com, in the Source Code/
Download section. Please feel free to visit the Apress web site and download all the code there.
You can also check for errata and find related titles from Apress.

Contacting the Author
Contact Jim DeMarco at jim.demarco@hcheq.org. For more information on HCHEQ and
its mission, go to www.hcheq.org. For information on Jim’s musical endeavors, go to www.
fiftyhabit.com or contact him at info@fiftyhabit.com.

■INTRODUCTION xix

9578fmfinal.qxd 1/30/08 8:28 PM Page xix

http://www.apress.com
mailto:demarco@hcheq.org
http://www.hcheq.org
http://www.fiftyhabit.com
http://www.fiftyhabit.com
mailto:info@fiftyhabit.com

9578fmfinal.qxd 1/30/08 8:28 PM Page xx

The Macro Recorder and
Code Modules

This book is written for experienced coders. You may have experience in many languages,
but not in the Excel (or Office) VBA IDE. We will be writing quite a bit of code as we move
along, but before we do that, let’s take a quick look at Excel’s Macro Recorder and the Visual
Basic Development Environment. The Macro Recorder has been a part of Excel for quite a
long time, and it’s still the best way to get a look at some of the objects that make up the Excel
Document Object Model (DOM), and a great way to get the core of your code written for you
as you start your development projects.

Macro Security Settings
Excel’s default security settings do not allow any macro activity. Before you begin exploring
macros in Excel and the Macro Recorder, you will need to tell Excel which security settings to
use to control what happens when you open a workbook that contains macros (or one that
will contain macros). If you use antivirus software that works with Microsoft Office 2007 and
you open a workbook that contains macros, the virus scanner will check the workbook for
viruses before opening it.

You can make changes to the macro security settings in the Trust Center:

1. Click the Microsoft Office button, which looks like the following:

2. Click the Excel Options button, select Trust Center, click the Trust Center Settings
button, and finally click the Macro Settings item.

Alternatively, on the Developer ribbon, click the Macro Security button in the Code Group
section. (Depending on the network security level at your organization, you may or may not
have rights to change these settings).

■Note Macro setting changes made in Excel’s Macro Settings section apply to Excel only; they do not
affect any other Microsoft Office applications.

1

C H A P T E R 1

9578ch01final.qxd 1/30/08 8:46 PM Page 1

Table 1-1 lists the Excel macro security settings and explains each setting.

Table 1-1. Macro Security Settings

Setting Purpose

Disable all macros without notification Use this setting if you don’t trust the source of
a workbook containing macros.

Disable all macros with notification This is the default setting. Use it when you
want macros to be disabled, but you want to
get security alerts if there are macros present.
You can decide when to enable those macros.

Disable all macros except digitally signed macros This is the same as the “Disable all macros
with notification” option, except that when
the macro is digitally signed by a trusted pub-
lisher, the macro can run if you have trusted
the publisher.

Enable all macros (not recommended, potentially Use this setting to allow all macros to run.
dangerous code can run)

Trust access to the VBA project object model This setting is for developers only.

■Caution The “Enable all macros” setting makes your computer vulnerable to potentially malicious code.
It is not recommended that you use this setting permanently. For the examples in this book, we use this set-
ting, but it is highly recommended that you choose another option in your production code.

Trusted Publishers
This section lists the currently trusted certificates that can be used by developers to sign
documents and add-ins. When you open a digitally signed document, the digital signature
appears on your computer as a certificate. The certificate names the VBA project’s source,
plus additional information about the identity and integrity of that source. A digital signa-
ture does not necessarily guarantee the safety of a project, and you must decide whether
you trust a project that has been digitally signed. If you know you can always trust macros
from a particular source, you can add that macro developer to the list of trusted sources
when you open the project.

Trusted Locations
This is where you can define trusted locations. These are folders on your PC or network where
files with macros can be stored. Excel will trust any document in a folder designated as trusted
and will run any macros in those files.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES2

9578ch01final.qxd 1/30/08 8:46 PM Page 2

■Caution Be careful when defining trusted locations! Documents in trusted locations can run without
being checked by the Trust Center security system. If you add or change a location, make sure the new
location is secure.

The Remove Button
If you added a certificate to your list of trusted publishers when you first opened a VBA proj-
ect signed with that certificate, and later choose not to trust that publisher, you can use the
Remove button to remove the certificate from your list of trusted publishers. The next time
a project signed with that certificate is opened, the virus protection behavior corresponding
to the setting on the Security Level tab will occur.

The Remove button in the Trusted Locations section lets you remove locations from the
list in the same manner.

Lowering the Security Level
Before you can begin recording and playing back macros, you must lower the macro security
level. By default, all macro activity is disabled.

To temporarily set the security level to enable all macros, do the following:

1. On the Developer ribbon, in the Code group, click Macro Security, as shown in
Figure 1-1.

Figure 1-1. Code options on the Developer ribbon

2. If the Developer tab is not available, do the following to display it:

a. Click the Microsoft Office button (shown in the following image).

b. Click Excel Options.

c. In the Popular category, under “Top options for working with Excel,” select the
“Show Developer tab in the Ribbon” check box, and then click OK.

3. Under Macro Settings, click “Enable all macros (not recommended, potentially dan-
gerous code can run),” and then click OK, as shown in Figure 1-2.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 3

9578ch01final.qxd 1/30/08 8:46 PM Page 3

■Warning To help prevent potentially dangerous code from running, it is recommended that you return to
any of the settings that disable all macros after you finish working with macros.

Once this is done, you can record your macro.

Figure 1-2. Excel Trust Center Macro Settings options

The Visual Basic Development Environment
Open the Developer ribbon and choose Visual Basic to display the Visual Basic Editor (VBE).
Figure 1-3 shows the VBE.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES4

9578ch01final.qxd 1/30/08 8:46 PM Page 4

Figure 1-3. Excel’s Visual Basic Editor

The default view is divided into three panes: the Project Explorer, the Property Sheet, and
the code window.

The Project Explorer (Figure 1-4) lists open projects (workbooks) and the objects they
contain. These can include worksheets, the workbook itself, standard code modules, class
modules, and any UserForms in the project.

Objects are stored in folders representing their function. In Figure 1-4, you can see the
worksheet objects in the Microsoft Excel Objects folder. Code is placed in its own folder, as are
UserForms.

At the top of the Project Explorer pane is a toolbar that provides access to view code, view
the selected object (choosing this command with Sheet1 selected will bring you to the Excel
window with Sheet1 active), and toggle the folder view on or off. Toggling the folders off lists
all of the objects together in one list regardless of type of object, as in Figure 1-5.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 5

9578ch01final.qxd 1/30/08 8:46 PM Page 5

Figure 1-4. Excel objects grouped by object (with Toggle Folders on)

Figure 1-5. Excel objects with Toggle Folders off

The Property Sheet lists properties for the currently selected object in the Project Explorer,
and will look very familiar to those VB 6.0 coders among us. Figure 1-6 shows an example of the
Property Sheet for an Excel worksheet.

Use the code window to write, display, and edit Visual Basic code. You can open as many
code windows as you have modules, so you can easily view the code in different forms or
modules, and copy and paste between them.

You can open a code window from

• The Project window, by selecting a form or module and choosing the View Code button

• A UserForm window, by double-clicking a control or form, choosing Code from the
View menu, or pressing F7

You can drag selected text to

• A different location in the current code window

• Another code window

• The Immediate and Watch windows

• The Recycle Bin

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES6

9578ch01final.qxd 1/30/08 8:46 PM Page 6

Figure 1-6. VBA Property Sheet

The code window shown in Figure 1-7 will look very familiar to those with VB 6.0
experience.

Figure 1-7. The VBA code window

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 7

9578ch01final.qxd 1/30/08 8:46 PM Page 7

At the top of the code window are two drop-down lists. On the left is the Object box,
where any objects associated with the current selection are listed. On the right is the
Procedure/Events box, where all methods and events for the currently selected object are
displayed.

With Sheet1 selected in the Project Explorer, choose Worksheet from the Object box in
the code pane. The default method for the worksheet object, Worksheet_SelectionChange, is
inserted into the code window. Open the Procedure/Events box to see other methods and
events available to you, as shown in Figure 1-8.

Figure 1-8. The code pane with the procedure list open

In the bottom-left corner of the code pane are two command buttons that determine how
your procedures are displayed: Full Module View and Procedure View (shown in Figure 1-9).

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES8

9578ch01final.qxd 1/30/08 8:46 PM Page 8

Figure 1-9. Full Module view

By default, Excel shows all procedures in a module (Full Module View). Clicking the Pro-
cedure View button (Figure 1-10) filters out all code except the procedure in which the cursor
is located.

Figure 1-10. Procedure view

Immediately above the vertical scroll bar is the split bar, shown in Figure 1-11. Dragging
this bar down splits the code window into two horizontal panes. Each pane can be scrolled
separately, allowing viewing of two sections of a module at once. The information that appears
in the Object box and Procedure/Events box applies to the code in the pane that has the focus.
Dragging the bar to the top or the bottom of the window or double-clicking the bar restores
the pane to its original single-pane view.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 9

9578ch01final.qxd 1/30/08 8:46 PM Page 9

Figure 1-11. Code window with split panes

In addition to these items, there are a few other windows to help you write and test your
code: the Immediate window, the Locals window, and the Watch window.

The Immediate Window
The Immediate window (Figure 1-12) allows you to do the following:

• Type or paste a line of code and press Enter to run it

• Copy and paste the code from the Immediate window into the code window, but not
save code in the Immediate window

Figure 1-12. The Immediate window

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES10

9578ch01final.qxd 1/30/08 8:46 PM Page 10

The Immediate window can be dragged and positioned anywhere on your screen unless
you have made it a dockable window from the Docking tab of the Options dialog box.

You can close the window by clicking the Close box. If the Close box is not visible, double-
click the Title bar to make the Close box visible, and then click it.

■Note In break mode, a statement in the Immediate window is executed in the context that is displayed
in the Procedure box. For example, if you type Print variablename, your output will be the value of
variablename. This is the same as if the Print method had occurred in the procedure you were executing.

The Locals Window
The Locals window (Figure 1-13) automatically displays all of the declared variables in the
current procedure and their values.

Figure 1-13. The Locals window

When the Locals window is visible, it is automatically updated every time there is a
change from run to break mode, and when you navigate in the stack display, as shown in
Figure 1-14.

Figure 1-14. The Locals window shows function values.

You can use the Locals window to do the following:

• Resize the column headers by dragging the border right or left.

• Close the window by clicking the Close box. If the Close box is not visible, double-click
the Title bar to make the Close box visible, and then click it.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 11

9578ch01final.qxd 1/30/08 8:46 PM Page 11

Locals Window Elements
The Locals window is made up of the following components. These window elements allow
you to open the call stack and see the actual values of your variable as they are processed.

Call Stack button: Opens the Call Stack dialog box, which lists the procedures in the call
stack. The call stack lists all the functions that are currently being executed. Figure 1-15
shows that the GetRegionalTotals function is being run from within the GetTotals func-
tion. The function on top is called by the function below it.

Figure 1-15. The call stack

The Locals window shows the following items in its columns:

Expression: Lists the name of the variables. The first variable in the list is a special module
variable that can be expanded to display all module-level variables in the current module.
This data is read-only.

Value: Lists the value of the variable. When you click a value in the Value column, the cur-
sor changes to an I-beam. You can edit a value here to alter your code execution.

■Note All numeric variables must have a value. String variables can have an empty value.

Type: Lists the variable type (read-only).

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES12

9578ch01final.qxd 1/30/08 8:46 PM Page 12

The Watch Window
The Watch window (Figure 1-16) appears automatically when watch expressions are defined
in the project (Figure 1-17).

Figure 1-16. The Watch window

Figure 1-17. The Watch window takes action when values meet certain criteria.

You can use the Watch window to do the following:

• Change the size of a column header, by dragging its border to the right to make it larger
or to the left to make it smaller

• Drag a selected variable to the Immediate window or the Watch window

Close the window by clicking the Close box. If the Close box is not visible, double-click the
Title bar to make the Close box visible, and then click it.

Watch Window Elements
The Watch window list box columns display information about your watched expressions.

Expression: Stores a conditional phrase defined by the developer to evaluate the value of
the watched variable. For example, if you wanted to know when a string variable named
sCity was equal to New York, you would enter an expression of sCity = "New York".

Value: Lists the value of the expression at the time of entering break mode. You can edit
a value here to alter code execution.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 13

9578ch01final.qxd 1/30/08 8:46 PM Page 13

Type: Lists the expression type.

Context: Lists the context of the watch expression.

You can close the window by clicking the Close box. If the Close box is not visible, double-
click the Title bar to make the Close box visible, and then click it.

Recording a Macro
In an Excel workbook, open the Developer ribbon and choose the Record Macro command
to display the Record Macro dialog box, shown in Figure 1-18. The Record Macro dialog will
display. The dialog box shows the default macro name, allows you to assign a shortcut key,
lets you choose where to store the macro, and provides a text field where you can enter text
describing the macro’s function.

By default, Excel 2007 stores macros in the current workbook. If you want your macros
to be available to any workbook, you can choose Personal Macro Workbook from the “Store
macro in” drop-down list.

Figure 1-18. The Record Macro dialog box

1. In the Macro name text box, enter a name for your macro: MyMacro.

2. Add a shortcut key if you like.

3. From the “Store macro in” drop-down, choose This Workbook.

4. Add descriptive text if you like.

5. Click OK.

6. Enter the data shown in Figure 1-19.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES14

9578ch01final.qxd 1/30/08 8:46 PM Page 14

Figure 1-19. Recording data entry

7. Choose the Stop Recording command from the Developer ribbon.

Let’s take a look at the code Excel 2007 created for us. To open the Visual Basic Editor
(VBE), choose the Visual Basic command from the Developer ribbon or use the Alt+F11 short-
cut key combination.

A new standard code module named Module1 has been inserted in your project. Open
Module1 by double-clicking the Modules folder, and then click Module1 to view the Macro
Recorder–generated code. Listing 1-1 shows the code the Macro Recorder generated for us.

Listing 1-1. Macro Recorder–Generated Code

Sub MyMacro()
'
' MyMacro Macro
' Enter test data
'

'
Range("A1").Select
ActiveCell.FormulaR1C1 = "Item"
Range("B1").Select
ActiveCell.FormulaR1C1 = "Color"
Range("C1").Select
ActiveCell.FormulaR1C1 = "Quantity"
Range("D1").Select
ActiveCell.FormulaR1C1 = "Price"
Range("E1").Select
ActiveCell.FormulaR1C1 = "Line total"
Range("A2").Select
ActiveCell.FormulaR1C1 = "Shirt"
Range("B2").Select
ActiveCell.FormulaR1C1 = "Red"
Range("C2").Select
ActiveCell.FormulaR1C1 = "5"
Range("D2").Select
ActiveCell.FormulaR1C1 = "6"

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 15

9578ch01final.qxd 1/30/08 8:46 PM Page 15

2ca983ba3745582e6151dc1b079b2db0

Range("A3").Select
ActiveCell.FormulaR1C1 = "Shirt"
Range("B3").Select
ActiveCell.FormulaR1C1 = "Blue"
Range("C3").Select
ActiveCell.FormulaR1C1 = "4"
Range("D3").Select
ActiveCell.FormulaR1C1 = "7"
Range("A4").Select
ActiveCell.FormulaR1C1 = "Hat"
Range("B4").Select
ActiveCell.FormulaR1C1 = "Black"
Range("C4").Select
ActiveCell.FormulaR1C1 = "10"
Range("D4").Select
ActiveCell.FormulaR1C1 = "8"
Range("A6").Select
ActiveCell.FormulaR1C1 = "Total"
Range("A7").Select

End Sub

Excel 2007 has created a subroutine for us, and we can see each cell we selected and the
data we entered into each. One interesting thing to notice is Excel’s choice of the FormulaR1C1
property to assign the data to the Range object (cell A1 in the second line of code generated),
ActiveCell.FormulaR1C1 = "Item". We did not enter any formulas, and yet Excel uses a prop-
erty used to reference a formula. As you’re coding, you’ll most likely assign a value to a cell or
range by using the Range object’s Value property, and use the FormulaR1C1 property to insert
formulas.

1. Change the line ActiveCell.FormulaR1C1 = "Item" to ActiveCell.Value = "Item", and
then delete all of the data from the worksheet. Run the MyMacro macro.

2. Click the Macros command from the Developer ribbon.

3. Choose MyMacro from the Macro dialog box.

4. Click Run.

Cell A1 contains the word Item as its value as it did in the previous example. The Value
property is a bit more intuitive to use when typing code.

Let’s create two more quick macros, one to format our data table and one to add formu-
las, to get a look at the code Excel creates.

Formatting the Table
1. Select the Record Macro command.

2. Name the macro FormatTable and click OK. (You cannot use spaces or special charac-
ters in your macro names.)

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES16

9578ch01final.qxd 1/30/08 8:46 PM Page 16

3. Select cells A1:E1 using the mouse, and apply bold formatting to them.

4. Select cell A6 and apply bold formatting.

5. Choose the Stop Recording command from the Developer ribbon.

The code Excel generates is very straightforward:

Sub FormatTable()
'
' FormatTable Macro
' Formats the table
'

'
Range("A1:E1").Select
Selection.Font.Bold = True
Range("A6").Select
Selection.Font.Bold = True

End Sub

We select the range containing our data. Each Selection object’s Font property has a Bold
property that is set to True.

Adding Totals
1. Select the Record Macro command.

2. Name the macro AddTotals and click OK.

3. Select cell C6, choose the AutoSum command, and then press Enter (AutoSum can be
found on the Home ribbon or the Formulas ribbon, as shown in Figure 1-20).

Figure 1-20. The AutoSum button on the Home ribbon

4. Select cell E2 and choose the AutoSum command. Press Enter.

5. Copy the contents of cell E2 to cells E3:E4. Press Enter.

6. Select cell E6 and choose the AutoSum command. Press Enter.

7. Choose the Stop Recording command from the Developer ribbon.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 17

9578ch01final.qxd 1/30/08 8:46 PM Page 17

Taking a look at the code, notice that Excel uses the FormulaR1C1 property of the
ActiveCell object, and this time it makes sense because we are entering formulas. One thing
to note is that, depending on how you copy the formula from cell E2 to the rest of the column
in step 5, Excel will create different lines of code.

Same Task, Different Code
If you use the fill handle and Ctrl-drag the contents into the range E3:E4, the code Excel gener-
ates might look like this:

Range("C6").Select
ActiveCell.FormulaR1C1 = "=SUM(R[-4]C:R[-1]C)"
Range("E2").Select
ActiveCell.FormulaR1C1 = "=SUM(RC[-2]:RC[-1])"
Range("E2").Select

'Used fill handle to copy formula to E3:E4
Selection.AutoFill Destination:=Range("E2:E4"), Type:=xlFillDefault
Range("E2:E4").Select
Range("E6").Select
ActiveCell.FormulaR1C1 = "=SUM(R[-4]C:R[-1]C)"
Range("E7").Select

If you select cell E2 and choose the Copy command, select the range E3:E4, and then
choose the Paste command, Excel will generate this code:

Range("C6").Select
ActiveCell.FormulaR1C1 = "=SUM(R[-4]C:R[-1]C)"
Range("E2").Select
ActiveCell.FormulaR1C1 = "=SUM(RC[-2]:RC[-1])"
Range("E2").Select

'Used Copy command to copy formula to E3:E4
Selection.Copy
Range("E3:E4").Select
ActiveSheet.Paste
Application.CutCopyMode = False
Range("E6").Select
ActiveCell.FormulaR1C1 = "=SUM(R[-4]C:R[-1]C)"
Range("E7").Select

The code is identical up until the second Range("E2").Select command. In the first
example, the fill method of copying was used, and we see Excel’s AutoFill method invoked.

The AutoFill method takes two arguments, the range to fill (including the source
range) and the type of fill to apply. The Type argument takes a value whose data type is
xlAutoFillType enumeration. These correspond to the Series dialog and can contain the
values listed in Table 1-2. These values can be combined by using the And operator (as in
xlFillSeries And xlFillFormats).

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES18

9578ch01final.qxd 1/30/08 8:46 PM Page 18

Table 1-2. xlAutoFillType Enumerations

Name Value Description

xlFillCopy 1 Copies the values and formats from the source range to the target
range

xlFillDays 5 Extends the names of the days of the week in the source range into
the target range

xlFillDefault 0 Lets Excel determine the values and formats used to fill the target
range

xlFillFormats 3 Copies only the formats from the source range to the target range.

xlFillMonths 7 Extends the names of the months in the source range into the target
range

xlFillSeries 2 Extends the values in the source range into the target range as a
series (e.g., “1, 2” will be extended as “3, 4, 5”)

xlFillValues 4 Copies only the values from the source range to the target range

xlFillWeekdays 6 Extends the names of the days of the workweek in the source range
into the target range

xlFillYears 8 Extends the years in the source range into the target range

xlGrowthTrend 10 Extends the numeric values from the source range into the target
range; assumes that each number is a result of multiplying the pre-
vious number by some value (e.g., “1, 2” will be extended as “4, 8, 16”)

xlLinearTrend 9 Extends the numeric values from the source range into the target
range, assuming that each number is a result of adding some value
to the previous number (e.g., “1, 2” will be extended as “3, 4, 5”)

The copy-and-paste method is very straightforward:

1. Select the range to be copied: Range("E2").Select.

2. Choose the copy command: Selection.Copy.

3. Select the destination range: Range("E3:E4").Select.

4. Choose the Paste command: ActiveSheet.Paste.

Another interesting line of code is: ActiveCell.FormulaR1C1 = "=SUM(R[-4]C:R[-1]C)".
The default cell or range reference behavior in the Macro Recorder is to use R1C1 notation.
This provides you with row and column offsets from the active cell. It can be useful in situa-
tions where you must calculate cell addresses to be used in your formulas.

R1C1 notation uses the R value to show the row offset from the active cell and the C value
to show the column offset from the active cell. The offset value is enclosed in brackets; it can
be a negative number to show rows or columns with a lesser value than the active cell row or
column, or a positive number to show rows or columns with a greater value than the active
cell. If the reference is to the same row or column as the active cell, there is no value entered—
only the letter R or C.

In the preceding example, the first call to the SUM function refers to the range
R[–4]C:R[–1]C. This is interpreted as a range starting four rows above the active cell (C6) in the
same column and ending in the cell one row above the active cell in the same column.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 19

9578ch01final.qxd 1/30/08 8:46 PM Page 19

You may be used to seeing the SUM function used with direct cell references like
=SUM(A1:A4), especially if you’re entering formulas directly on a worksheet. If you are adding
a total to cell A5, this is a direct way to get the total of that range. But what if you need to add
a total value for a number of columns across a row under your data range through VBA code?
Using R1C1 notation, the formula =SUM(R[-4]C:R[-1]C) will always refer to rows 1 through 4
in the same column as the active cell (where the active cell is located in row 5).

As you’ve seen, the VBE is where Excel’s Macro Recorder stores the code it creates, and it’s
where you will create and save the code you use in your daily tasks as well as in this book’s
examples.

Writing a Macro in the VBE
In this example, you’ll create a macro by typing code directly in the VBE.

Open the file 1-MacroExample01.xlsx (shown in Figure 1-21), and open the VBE.

■Note You will find all the example files and source code for this book at www.apress.com in the
Downloads section of this book’s home page.

Figure 1-21. Sales data for the first quarter of the year

We see tour sales for the fictitious band “VBA,” which are received quarterly by their man-
agement office and need to be totaled. Using R1C1 notation, we’ll create one subroutine that
will total these numbers, and since it is a relative reference to the cells, we’ll see that we only
need to create one formula.

First, we’ll add a standard code module to the project. In the VBE (Alt+F11 from an Excel
workbook), in the Project Explorer section (top-left pane), choose the top-level item, named
VBAProject (1-MacroExample01.xlsx), right-click it, and choose Insert ➤ Module, as shown in
Figure 1-22.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES20

9578ch01final.qxd 1/30/08 8:46 PM Page 20

http://www.apress.com

Figure 1-22. Inserting a standard code module (shortcut menu)

The Project Explorer shows our new module, named Module1 by default, as shown in
Figure 1-23.

Figure 1-23. New standard code module added

More Macro Security
In the code pane, create a new empty subroutine called TotalSales, as shown in Listing 1-2,
and save the file.

Listing 1-2. Empty TotalSales Subroutine

Sub TotalSales()

End Sub

The prompt shown in Figure 1-24 will appear.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 21

9578ch01final.qxd 1/30/08 8:46 PM Page 21

Figure 1-24. Macro-free workbook warning

The file you opened has an extension of .xlsx, which is the default file format for any
new Excel workbook. This format is not macro-enabled and cannot be macro-enabled. To
use macros in Excel 2007, you must choose a macro-enabled format from the list of file types
in the Save As dialog box.

Choose No from this dialog to display the Save As dialog box. In the “Save as type”
drop-down list, choose Excel Macro-Enabled Workbook (*.xlsm), as shown in Figure 1-25,
and click OK.

Figure 1-25. Selecting a macro-enabled file type (*.xlsm)

Other macro-enabled file types available are listed in Table 1-3.

Table 1-3. Macro-Enabled File Types

File Type Extension

Macro-enabled template *.xltm

Macro-enabled add-in *.xlam

Non-XML Excel binary workbook *.xlsb

Our TotalSales method will create a formula to insert in the first cell in the Totals section
(B8). That formula will be reused in the rest of the cells in the Totals row on the worksheet.

Let’s determine the R1C1 coordinates of our formula. Once that’s done, we’ll assign that
to a variable so we don’t have to type it multiple times or copy and paste it.

The first cell in the Totals row is cell B8. On the worksheet, put the cursor in cell B8. For
illustrative purposes, arrow key up until the cursor is in B3 (the first cell in the data range for
that column), counting rows as you move. Of course, it’s much simpler to just subtract the row
numbers (8 – 3 = 5 in this case). Now we have our starting row, R[–5], five rows above our for-
mula’s cell location. Since we’re working in the same column as our formula, the column refer-
ence will be C. This gives us the starting cell in our formula range of R[–5]C. Use the same
technique to determine the last cell location (I’ve used the cell above the formula even though

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES22

9578ch01final.qxd 1/30/08 8:46 PM Page 22

it does not contain any data; this is how Excel’s AutoSum command works). Our finished
range reference is R[–5]C:R[–1]C.

Add a string variable to hold the formula:

Dim sFormula As String

Once we’ve done this, we can assign the variable to each cell in the Totals data row indi-
vidually.

The finished TotalSales code should look like Listing 1-3.

Listing 1-3. Completed TotalSales Macro

Sub TotalSales()
'Author: Jim DeMarco
'Date: 6/24/07
'Purpose: Adds total sales for all regions
Dim sFormula As String

sFormula = "=SUM(R[-5]C:R[-1]C)"
Range("B8").Select
ActiveCell.FormulaR1C1 = sFormula
Range("C8").Select
ActiveCell.FormulaR1C1 = sFormula
Range("D8").Select
ActiveCell.FormulaR1C1 = sFormula
Range("E8").Select
ActiveCell.FormulaR1C1 = sFormula

End Sub

As you can see, we created the formula once, assigned it to the sFormula variable, and
then selected each target cell and inserted the formula. Of course, this is not the most efficient
method we can use to achieve this.

Using Excel’s Range object, we can walk through the cells in a given range and set the for-
mula. Add a second subroutine to Module1 as follows:

Sub TotalSales2()
'Author: Jim DeMarco
'Date: 6/24/07
'Purpose: Adds total sales for all regions by looping through cells in a range
Dim sFormula As String
Dim cell As Range

sFormula = "=SUM(R[-5]C:R[-1]C)"
For Each cell In Range("B8:E8")

cell.FormulaR1C1 = sFormula
Next cell

End Sub

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 23

9578ch01final.qxd 1/30/08 8:46 PM Page 23

We’ve added a variable called cell which is of type Range. You’ll recall that a range in Excel
can be anything from one to multiple cells. We then walk through the range B8:E8 using a
For...Each statement, visiting each cell in the referenced range. This is much more concise,
easier to read, and easier to maintain. Of course, like in the first example it also assumes you
know the addresses of the cells in the range to receive the formula.

Let’s look at one last example that, while not completely dynamic, will show you a method
whereby you could easily adapt it to determine the locations for your formula.

Add one more subroutine to Module1:

Sub TotalSales3()
'Author: Jim DeMarco
'Date: 6/24/07
'Purpose: Adds total sales for all regions by moving across columms
Dim sFormula As String
Dim i As Integer

sFormula = "=SUM(R[-5]C:R[-1]C)"
For i = 2 To 5

Cells(8, i).Select
ActiveCell.FormulaR1C1 = sFormula

Next i

End Sub

This time we’re using a counter variable, i, to loop through columns 2 through 5. We
select each cell in turn and apply the formula to it. Using this method, it becomes apparent
that if we can use code to determine our start and end points for the For loop, we can very eas-
ily create a dynamic method of adding our formula to a variable number of columns or rows.

The Object Browser
The Object Browser, shown in Figure 1-26, is displayed by choosing View ➤ Object Browser
or by pressing the F2 function key. It displays the classes, properties, methods, events, and
constants available from any object libraries, and it also shows the procedures in your proj-
ect. You can also use it to find and use custom objects you create.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES24

9578ch01final.qxd 1/30/08 8:46 PM Page 24

Figure 1-26. The Object Browser

Object Browser Window Elements
The Object Browser window contains window elements that enable you to search for a
method or property within an object library and to get information about the selected method
or property.

Project/Library Box: The Project/Library box displays the currently referenced libraries for
the active project (Figure 1-27). Libraries can be added in the Tools ➤ References dialog
box. The <All Libraries> selection allows all of the libraries to be displayed at one time.

Figure 1-27. The Library drop-down list box

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 25

9578ch01final.qxd 1/30/08 8:46 PM Page 25

Search Text box: This text box contains the string that you want to use in your search. You
can type a string or choose the string you want from the drop-down list. The Search Text
box contains the last four search strings that you entered until you close the project. You
can also use the standard Visual Basic wildcards when typing a string. You can search for
a whole word by using the Find Whole Word Only command from the shortcut menu.

Go Back button: This allows you to go back to the previous selection in the Classes and
“Members of” lists. Each time you click it, you move back one selection.

Go Forward button: This allows you to repeat your original selections in the Classes and
“Members of” lists each time you click it.

Copy to Clipboard button: This copies the current selection in the “Members of” list or the
Details pane text to the clipboard.

View Definition button: This moves the cursor to the place in the code window where the
selection in the “Members of” list or the Classes list is defined.

Help button: This displays the online help topic for the item selected in the Classes or
“Members of” list. You can also press F1 to access this.

Search button: This searches the libraries for the class, property, method, event, or con-
stant that matches the string you typed in the Search Text box. The result of the search is
shown in the Search Results pane.

Show/Hide Search Results button: This opens or hides the Search Results pane.

Search Results list: This list displays the library, class, and member that matches the items
that contain your search string.

Classes list: This list displays all of the available classes in the library or project selected in
the Project/Library box.

“Members of” list: This list displays the elements of the class selected in the Classes pane
by group and then alphabetically within each group.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES26

9578ch01final.qxd 1/30/08 8:46 PM Page 26

Details pane: This pane shows the definition of the class member. The Details pane (Fig-
ure 1-28) contains a hypertext link to the class or library to which the element belongs.
Some members have hypertext links to their parent class. For example, if the text in the
Details pane states that TextBox1 is declared as a text box type, clicking text box takes you
to the TextBox class. You can copy or drag text from the Details pane to the code window.

Figure 1-28. The Details pane

Split bar: This splits the panes so that you can adjust their size. There are split bars
between the following:

• The Classes box and the “Members of” box

• The Search Results list and the Classes and “Members of” boxes

• The Classes and “Members of” boxes and the Details pane

Standard Code Modules
A standard module is a code module containing only procedure (Sub or Function), type, and
data declarations and definitions. Module-level declarations and definitions in a standard
module are public by default. In earlier versions of Visual Basic, a standard module was
referred to as a code module.

Whenever a new macro is created in an Excel session, a standard module is inserted into
the workbook to hold the macro. Any additional macros created in that session will also be
inserted into this standard module. Once the workbook is closed and reopened, Excel will
create a new standard module if the Macro Recorder is invoked.

■Note You will have to copy and paste your code if you want to keep it in one place or provide a specific
location for your code.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 27

9578ch01final.qxd 1/30/08 8:46 PM Page 27

Standard modules are inserted into your project by choosing Insert ➤ Module or by
right-clicking an object in the Project Explorer and choosing Insert ➤ Module from the pop-
up menu.

Subprocedures
A subprocedure (also called subroutine) is a procedure that performs a task within a program,
but does not return a value. A subroutine begins with a Sub statement and ends with an End
Sub statement. Any version of the TotalSales code you wrote previously is an example of a
subroutine.

Sub TotalSales3()
'Author: Jim DeMarco
'Date: 6/24/07
'Purpose: Adds total sales for all regions by moving across columms
Dim sFormula As String
Dim i As Integer

sFormula = "=SUM(R[-5]C:R[-1]C)"
For i = 2 To 5

Cells(8, i).Select
ActiveCell.FormulaR1C1 = sFormula

Next i

End Sub

Functions
A function is a procedure that performs a task within a program and returns a value. A func-
tion begins with a Function statement and ends with an End Function statement. Functions
(and subroutines) can receive arguments passed in from calling procedures or passed in
directly.

The following is a function that returns the total for a range passed in to the function as���0�C���f��� � � � � � � � � � � � � � � � �i�Ë¯
an arr a rgument. W�e pass in the rˇˇˇˇ ˇ ˇ ˇ ˇ ˇ � � � � � �ange reference to make the code flexible enough to reuse on����� � �
any ron���ange that needs to be totaled.

Function GetSalesTotal(RangeToTotal As Range) As Currency
'Author: Jim DeMarco
'Date: 6/24/07
'Purpose: Returns value of sales total
Dim currReturn As Currency
Dim cell As Range
Dim temp As Currency

For Each cell In RangeToTotal
temp = temp + cell.Value

Next cell

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES28

9578ch01final.qxd 1/30/08 8:46 PM Page 28

Hamid
Highlight

currReturn = temp
GetSalesTotal = currReturn

End Function

To use the function, we can create a subroutine or function to call it. The following adds
a label and inserts the total next to it on the worksheet:

Sub AddSalesTotal()
'Author: Jim DeMarco
'Date: 6/24/07
'Purpose: Places value of sales total on worksheet

With Range("A10")
.Value = "Grand Total"
.Font.Bold = True

End With

Range("C10").Value = GetSalesTotal(range("B8:E8"))

End Sub

Type Statements
Type statements are used at module level to define a user-defined data type containing one or
more elements. In the following example, we define Employee as a data type and then use it in
a subroutine, setting values and displaying them.

Type Employee
ID As Long
Name As String
Title As String
Phone As String

End Type

Sub SetEmployee()
Dim empMyEmployee As Employee

empMyEmployee.ID = 123456
empMyEmployee.Name = "John Doe"
MsgBox empMyEmployee.ID & " " & empMyEmployee.Name

End Sub

Class Modules
If you’ve done any amount of VBA or VB coding, you have more than likely used objects in
your code. Any time you’ve gone out to a database and retrieved records using ADO, you may
have declared and instantiated a variable like this:

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 29

9578ch01final.qxd 1/30/08 8:46 PM Page 29

Dim rs As ADODB.Recordset
Set rs = New ADODB.Recordset

Some of the examples you’ve seen thus far have also used some of Excel’s built-in objects,
like the Selection object, which has a Font property, or the Range object, which has many
properties and methods you can use in your code.

Using Excel’s VBE, you can create your own objects that contain custom properties and
methods that you define. You do this by creating classes in class modules. Here’s the definition
of an object (from Microsoft’s ASP.NET forums at http://forums.asp.net/p/1117506/
1933142.aspx):

Class: The formal definition of an object. The class acts as the template from which an

instance of an object is created at run time. The class defines the properties of the object

and the methods used to control the object’s behaviour.

In a standard code module, public functions and subroutines you create can be called
from anywhere in your code simply by referencing the procedure. Code in a class module
must be explicitly instantiated, as in the preceding ADO Recordset example. Until an object
is instantiated in this manner, its methods and properties are not available to your code.

Another difference is that standard code modules can contain any number of related or
unrelated procedures (although best practices dictate that code in a given module should be
related to specific functionality, reality tells us that this is not always the case, and there is no
enforcement of this practice within a standard code module). Code in a class module by defi-
nition defines the methods, properties, and events for objects that you create from a class.
These methods, properties, and events are all directly related to the object, and their inner
workings do not need to be known to implement or use the object. The term used to define
this relationship to the object is encapsulation.

Encapsulation can be defined as the capability of an object to conceal its inner workings
from client code or other objects. It is one of the fundamental principles of object-oriented pro-
gramming (OOP). If an object has clearly defined properties and methods, it will be easily
reusable and will require limited (if any) documentation. When we look at the ADO recordset
object, we can easily understand what its Open or AddNew methods do for us with no concern
for how they provide their services. Your objects will be as well defined as any of the Visual
Basic objects, and therefore easy for you or anyone else to implement in their applications.

Class modules contain only code—there is no visual interface. Classes you create in Excel
VBA are easily portable to other VBA applications, and can be placed into Visual Basic 5 or 6
code with no (or minimal) modifications and compiled into ActiveX DLLs or EXEs. This allows
your objects to be used in applications outside of Excel.

Use of classes allows for the design of robust, reusable objects. It requires more fore-
thought and planning, but you receive the benefits of code that is usually more reliable and
easier to maintain.

Class modules are inserted into your project by choosing Insert ➤ Class Module or by
right-clicking an object in the Project Explorer and choosing Insert ➤ Class Module from the
pop-up menu.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES30

9578ch01final.qxd 1/30/08 8:46 PM Page 30

http://forums.asp.net/p/1117506

Sample Class and Usage
Let’s re-create the Employee user-defined data type that we looked at in a previous example as
an object. Custom data types are a great way to store more than one related value for an item,
but they have a few shortcomings. They don’t do any validation, they cannot perform actions
(methods or functions), and they cannot by themselves trigger events. Classes allow you to do
all of these.

The cEmployee Class
Let’s take a quick look at the Employee data type from our previous example:

Type Employee
ID As Long
Name As String
Title As String
Phone As String

End Type

The first thing we will do is create properties for each value type. In Visual Basic 5/6.0
and VBA, you must create methods for getting and setting the values of a property. These are
known as Property Let and Property Get methods. A third method is available if your prop-
erty will return or set an object. This is known as the Property Set method, and it works in a
similar manner to the Property Let method.

1. In a new workbook open the VBE and insert a class module (choose Insert ➤ Class
Module).

2. In the Property Sheet, rename the class module cEmployee.

3. In the code pane, enter the following code:

Dim m_lngID As Long
Dim m_sName As String
Dim m_sTitle As String
Dim m_sPhoneNumber As String

These module-level variables will contain the values for our object.

4. Next, enter the Property Let and Get functions for each property:

Property Get ID() As Long
ID = m_lngID

End Property

Property Let ID(newID As Long)
m_lngID = newID

End Property

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 31

9578ch01final.qxd 1/30/08 8:46 PM Page 31

Property Get Name() As String
Name = m_sName

End Property

Property Let Name(newName As String)
m_sName = newName

End Property

Property Get Title() As String
Title = m_sTitle

End Property

Property Let Title(newTitle As String)
m_sTitle = newTitle

End Property

Property Get PhoneNumber() As String
PhoneNumber = m_sPhoneNumber

End Property

Property Let PhoneNumber(newPhoneNumber As String)
m_sPhoneNumber = newPhoneNumber

End Property

Note that the module-level variables are used within each Property Let or Get method,
and are either being returned (Get) or assigned a value (Let).

Property Get ID() As Long
ID = m_lngID

End Property

Property Let ID(newID As Long)
m_lngID = newID

End Property

Another advantage class modules give us is the ability to initialize the values of the
module-level variables when an object is instantiated from the class.

5. Choose Class from the Object box in the code pane, as shown in Figure 1-29.

Figure 1-29. Selecting Class from the VBA code window Object box

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES32

9578ch01final.qxd 1/30/08 8:46 PM Page 32

6. The VBE inserts the Class_Initialize method for you. Add code to set the default val-
ues for the Employee class, as shown in Listing 1-4.

Listing 1-4. Class Initialization Code—Here It’s Set to Nonsense Values Useful in
Determining What Properties Have or Have Not Been Set.

Private Sub Class_Initialize()
m_lngID = 0
m_sName = "NOG"
m_sTitle = "NOG"
m_sPhoneNumber = "0000000000"

End Sub

There are two methods included with each class module, the Class_Initialize and the
Class_Terminate methods. It’s always a good idea to initialize your values so that any clients
of your class have a value to work with.

The Initialize method is a great place to set default values, to open any data sources
or files your class may need, or to perform any other setup that your object may need to do
its job.

The Terminate method, although not always used, is important because it gives you a
place to clean up any data connections or recordsets (or any other objects your class may use)
and close any files you’ve opened.

Using the cEmployee Class
We can test our cEmployee class using the Immediate window in the VBE:

1. Open the Immediate window by choosing View ➤ Immediate Window or by pressing
the Ctrl+G key combination.

2. In the Immediate window, type - Set emp = New cEmployee, and press Enter.

3. Type - ?emp.Name and press Enter.

Your screen should look like Figure 1-30.

Figure 1-30. Instantiating the cEmployee object in the Immediate window. Property values have
not been set yet.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 33

9578ch01final.qxd 1/30/08 8:46 PM Page 33

We’ve returned our nonsense value from the class initialization code. Now let’s assign
values to our properties. Type the following commands into the Immediate window, pressing
Enter after each. The first group of commands will set the cEmployee object’s properties and
the second will retrieve and display them.

emp.ID = 15
emp.Name = "John Doe"
emp.Title = "Analyst"
emp.PhoneNumber = "8885555555"
?emp.name
?emp.ID
?emp.title
?emp.phonenumber
set emp = Nothing

Your Immediate window should look like Figure 1-31.

Figure 1-31. cEmployee object with property values set and returned

Let’s take a look at what’s going on here. The first line of code instantiates (or creates) the
employee object:

Set emp = New cEmployee

When that object is created, the Class_Initialize method fires and the default values are
set. As mentioned earlier, this is where you would set up any activities or objects your class
needs to have in place.

Next, a quick check of the Name property is done to see that it is holding your default
value—in this case the nonsense value NOG.

The next four lines set all of the properties of the Employee object with real values:

emp.ID = 15
emp.Name = "John Doe"
emp.Title = "Analyst"
emp.PhoneNumber = "8885555555"

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES34

9578ch01final.qxd 1/30/08 8:46 PM Page 34

Each time you pressed the Enter key, the Property Let method fired for each property and
assigned the value you passed in to the module-level variable for each property. Then you typed
in commands to show that the cEmployee object was indeed storing the values entered previously.

?emp.name
John Doe
?emp.ID
15
?emp.title
Analyst
?emp.phonenumber
8885555555

Each time you pressed the Enter key, the Property Get method fired and retrieved the
value currently stored in the module-level variable for each property.

The final line of code removes the object from memory. Any attempt to write or retrieve
a value after the object is destroyed will result in an error.

set emp = Nothing

When the object is set to Nothing, any code placed in the Class_Terminate method will
run. As previously noted, this is where you will perform any necessary cleanup before the
object is destroyed.

The Class-y Way of Thinking
Our cEmployee class, while extremely simple in content and functionality, does serve the pur-
pose of showing some of the benefits of writing class-based code.

Let’s assume for a moment that we had written validation and formatting code into the
Property Lets and Gets of the class, as well as some business rules; or that we had added
methods to export the employee data to a delimited string or set of XML tags for import into
an external system. It would be very easy for us to export the class module for use in someone
else’s Excel project, or an Access database or even a Word document.

The key to successfully implementing classes is to keep the code as generic as possible.
Of course, if you are creating a class for one specific task, this is an acceptable exception to
the rule, but in general, keeping code generic provides great reuse opportunities.

Classes also provide an excellent example of self-documentation via IntelliSense.
Anytime you reference an object variable in your code and type the . operator, you’ll see a
complete list of the object’s functionality (just like the built-in VBA objects, such as ADO) as
shown in Figure 1-32.

Figure 1-32. Class objects provide documentation via IntelliSense.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 35

9578ch01final.qxd 1/30/08 8:46 PM Page 35

We will focus heavily on classes and object-oriented development as we move on in this
text. The ease of maintenance and high probability of reuse are well worth the extra planning
required to build applications using these techniques. Once you are comfortable with these
concepts, there really won’t be much additional thought or planning required. It will be your
natural process to work in an OOP fashion.

UserForms
Excel provides us with UserForms as a means to provide a user interface (UI) to our Excel
applications. UserForms are similar to Access or Visual Basic forms. They are containers for
input and display controls. Both the forms and controls have properties, methods, and events
that we can code against. Excel names new forms UserForm1, UserForm2, and so on, as they
are added. They can be renamed as needed.

UserForms are inserted into your project by choosing Insert ➤ UserForm or by right-
clicking an object in the Project Explorer and choosing Insert ➤ UserForm from the pop-up
menu, as shown in Figure 1-33.

Figure 1-33. A new UserForm inserted in the VBE

When a new UserForm is inserted, the Toolbox window is also displayed. The Toolbox
identifies the different controls that you can add to your forms.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES36

9578ch01final.qxd 1/30/08 8:46 PM Page 36

■Note If the Toolbox is not displayed, click View ➤ Toolbox to display it.

The Toolbox (Figure 1-34) is customizable. The following are some of the customization
options you have:

• Adding pages to the Toolbox

• Moving controls from one page to another

• Renaming pages

• Adding other controls, including ActiveX controls, to the Toolbox

• Copying customized controls from the form into the Toolbox

■Tip The OK and Cancel buttons are special cases of a command button. If you add OK and Cancel tem-
plates to the Toolbox, you can quickly add them to other forms.

Figure 1-34. The Toolbox window

Toolbox Window Elements
The Toolbox window contains the following controls:

Select Objects: This is the only item in the Toolbox that doesn’t draw a control. When you
select it, you can only resize or move a control that has already been placed on a form.

Label: This displays text that the user cannot change, such as a form heading.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 37

9578ch01final.qxd 1/30/08 8:46 PM Page 37

TextBox: This allows entry or modification of text.

ComboBox: The ComboBox is a combination list box and text box. Users can either
choose an item from the list or enter a value in the text box.

ListBox: This is used to display a list of items from which the user can choose. The list can
be scrolled if it has more items than can be displayed at one time.

CheckBox: This creates a box that the user can click to select or deselect an item or to
show a true or false value.

OptionButton: This displays multiple choices from which the user can choose only one.

ToggleButton: This button is used for toggling on and off.

Frame: This is a graphical or functional grouping for controls. To group controls, draw the
frame first, and then place option buttons or check box controls inside the frame.

CommandButton: This creates a button the user can click to carry out a command.

TabStrip: This allows you to define multiple pages for the same area of a window or dialog
box in your application.

MultiPage: This presents multiple screens of information as a single set.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES38

9578ch01final.qxd 1/30/08 8:46 PM Page 38

ScrollBar: This provides a tool for quickly navigating through a long list of items or a large
amount of information. It is also useful for indicating the current position on a scale, or as
an input device or indicator of speed or quantity.

SpinButton: This is used in conjunction with another control to increment and decrement
numbers. It can also be used to scroll back and forth through a range of values or a list of
items.

Image: This displays an image from a graphics file on your form.

RefEdit: This allows the user to type or click and drag range references into its text area. It
is similar to Excel’s Set Print Area input function.

Figure 1-35 shows an example of an Excel 2007 UserForm.

Figure 1-35. Sample UserForm with controls added

Object-Oriented Programming: An Overview
I decided early on in the process of writing this book that I would concentrate my efforts on
providing guidance in the creation of class-based solutions to Excel VBA coding problems
where possible. I have found through programming in Access, VB 6, and then VB.NET that
using OOP techniques has helped me visualize my applications more clearly, helped me to
better organize my code, and has been invaluable in making my code easier to maintain. Stan-
dard code modules and procedural programming allow us to write code anywhere we like.
Although programmers always try to group related code in the same well-named module, it’s
not always possible and not always done. Using objects, you will find that you always create
functionality related to the object and that there’s really no room for unrelated code. Imagine

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 39

9578ch01final.qxd 1/30/08 8:46 PM Page 39

you’re creating the cEmployee class shown earlier. You’d never think of adding a Part Number
property or a CalculateHorsepower method in an Employee class. The object defines its inter-
face. These are words to live by. Classes initially built for Access applications were moved to
VB 6 with little or no modification (and the reverse is also true). The same is true of bringing
those classes into Excel applications. Of course, the .NET world with its new syntax changes
that, but the concepts still apply (which helps to make a more effective transition to the .NET
environment). That said, the classes provided in this book should work in almost any Micro-
soft Office environment (prerequisites and differences in component or Office versions not-
withstanding). That’s the beauty of using class-based code. Objects are defined as an instance
of a class. Objects have properties (nouns) and methods (verbs), and can fire events. Each
object instance holds its own values for its properties (private instance variables). Objects are
responsible for providing a certain behavior (or functionality), and they can collaborate with
other objects to perform their tasks. Classes hide their inner workings so we can simply bring
an existing class into a project and begin using the functionality it provides. This is known as
encapsulation, and is one of the fundamental concepts of OOP. A FileReader class may have
the ability to open and parse an XML file and return various nodes to me through its interface.
I do not need to concern myself with the details of how it accomplishes this. I call the GetNodes
method and I’ve got the nodes I need to work with. Another basic concept to OOP is polymor-
phism. Polymorphism is the ability of objects of different types to respond to calls to methods
with the same name. Imagine creating a cEmployee class and a PurchaseOrder class that both
make database calls. Each class can contain a SaveData method. Each will perform its function
differently, yet the functionality for each is the same. We don’t need to know how either one
does its job, which brings us back to . . . encapsulation!

OOP purists would tell you that this is an incomplete implementation of polymorphism,
and they would be correct. True polymorphism should also include the ability to overload
methods. This means that an object can have more than one implementation of a method.
For example, my aforementioned SaveData method could have multiple footprints within the
same class:

Sub SaveData(Name As String, ID As Long)
'code here
End Sub

Sub SaveData(Name As String, ID As Long, Title As String, Photo As Object)
'code here
End Sub

The two SaveData methods take different arguments and are valid in a development
environment that supports polymorphism, such as Visual Studio .NET. VBA does not sup-
port polymorphism, but you can program in Visual Studio .NET and use those components
in your Excel applications. We’ll explore that later.

OOP: Is It Worth the Extra Effort?
Of course it is. For the effort of making it through the slight learning curve, you will reap the
benefits of object-oriented development. When you let objects do your work, your UI code
will be much cleaner. Your business logic will reside in objects, and the UI will send data to

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES40

9578ch01final.qxd 1/30/08 8:46 PM Page 40

and from them. Your data layer will be compartmentalized and reusable between applica-
tions. Any workflow can be stored in classes and used in any application that needs it. You’ll
develop code libraries that will provide easy access to your object-based functionality. How
do you transport this functionality from application to application? Simply import the class!

If you create a lot of Excel applications, you may even find yourself building a reusable
framework from which you can create new applications that will already contain your base
functionality.

Summary
In Chapter 1, you looked at the Excel 2007 Macro Recorder and learned how to use it to let
Excel generate code for you. This is useful when learning the Excel 2007 object model, and it
can also be used to generate base code that you can then edit to suit your purpose.

You worked with the Excel Visual Basic Editor (VBE), where you created macros to
enter and format data. The VBE is similar to the VB 6 code editor, and includes many of the
same tools for debugging your code, such the Immediate window, the Locals window, and
the Watch window. You were introduced to Excel’s Object Browser, which contains tools
that let you examine the libraries in your project and investigate an object’s methods and
properties.

You also looked at standard code modules. Standard code modules contain subrou-
tines, functions, and type statements. You saw how to build your own subroutines to
perform tasks and learned that subroutines do not return a value. When you need a routine
to return a value, you create functions. Functions can also perform tasks just like subrou-
tines. Type statements allow you to create complex custom data types, such as the Employee
type created in this chapter. Types are similar to classes but without the ability to contain
code within their data elements.

You then explored class modules. Class modules allow you to create custom objects.
These objects can contain properties and methods to perform any task the object needs.

Finally, you looked at the Excel 2007 UserForm object and its Toolbox. UserForms allow
you to create data entry forms and data display screens from within the Excel VBE. The Tool-
box contains many common controls that you can use on the UserForm, including text boxes,
combo boxes, and command buttons. It’s similar to the Toolbox in Microsoft Access.

You are equipped with a very powerful set of development tools in Excel 2007. In Chapter
2, we are going to look at the many ways to bring data in and out of an Excel 2007 workbook
project.

CHAPTER 1 ■ THE MACRO RECORDER AND CODE MODULES 41

9578ch01final.qxd 1/30/08 8:46 PM Page 41

9578ch01final.qxd 1/30/08 8:46 PM Page 42

Data In, Data Out

Excel 2007 provides us with a number of methods to bring in data. We can import or link to
many different data sources, including Microsoft Access databases, SQL Server databases, text
files, ODBC databases, and XML files, to name a few.

Excel’s Data Import Tools
Excel 2007 has a rich set of data handling tools. On the Developer ribbon, you’ll find quick
access to Microsoft Access databases, web tables, and text files. Excel also includes data access
to SQL Server and OLAP databases, XML data, and ODBC data sources.

By recording macros, you can see how Excel connects us to various data sources. From
there, you’ll begin writing your own data access routines.

■Note The first few examples will run under Windows 2000 or Windows XP as is. Windows Vista still
supports Visual Basic 6.0 (and by extension VBA), but does not ship with all of the data access components
of its predecessors. To run the examples under Windows Vista, check the following link to Microsoft’s
Support Statement for Visual Basic 6.0 on Windows Vista: http://msdn2.microsoft.com/en-us/vbrun/
ms788708.aspx.

Importing Access Data
Let’s look at how Excel brings in external data by recording a quick macro to import data from
an Access database.

Create a new macro named GetAccessData. We’re going to import the Extended Employ-
ees list (query) from the Northwind 2007 database onto Sheet1 in a new Excel workbook.

1. Select the Data ribbon.

2. Select From Access from the Get External Data section of the Data ribbon.

3. Navigate to wherever you have the Northwind database stored.

43

C H A P T E R 2

9578ch02final.qxd 1/30/08 8:44 PM Page 43

http://msdn2.microsoft.com/en-us/vbrun

■Note The files for these examples can be found in the Source Code/Download section of this book’s
home page at www.apress.com.

■Note There is a new version of Northwind in Access 2007 that uses a file extension of *.accdb for
Access databases.

4. In the Select Table dialog box, choose Employees Extended, and click OK.

5. In the Import Data dialog box, you have choices of how you want to view the data
(table, PivotTable, or PivotChart) and where you want to put the data, as well as
advanced options. For now, just accept the defaults by clicking the OK button.

The code generated from this looks like Listing 2-1.

Listing 2-1. Macro-Generated Data Access Code

Sub GetAccessData()
'
' GetAccessData Macro
' Code created by Excel 2007 Macro Recorder

'
With ActiveSheet.ListObjects.Add(SourceType:=0, Source:=Array(➥

"OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;Password="""";User ID=Admin;" ➥

& "Data Source=C:\projects\Excel2007Book\Files\Northwind 2007.accdb;Mod" ➥

, ➥

"e=Share Deny Write;Extended Properties="""";" ➥

& "Jet OLEDB:System database="""";Jet OLEDB:Registry Path="""";" ➥

& "Jet OLEDB:Database Password=""""" ➥

, ➥

";Jet OLEDB:Engine Type=6;Jet OLEDB:Database Locking Mode=0;" ➥

& "Jet OLEDB:Global Partial Bulk Ops=2;Jet OLEDB:Global Bulk Transaction" ➥

, ➥

"s=1;Jet OLEDB:New Database Password="""";" ➥

& "Jet OLEDB:Create System Database=False;" ➥

& "Jet OLEDB:Encrypt Database=False;Jet OLEDB:Don't C" ➥

, ➥

"opy Locale on Compact=False;" ➥

& "Jet OLEDB:Compact Without Replica Repair=False;Jet OLEDB:SFP=False;" ➥

& "Jet OLEDB:Support Complex Data=Fa" ➥

, "lse"), Destination:=Range("A1")).QueryTable
.CommandType = xlCmdTable
.CommandText = Array("Employees Extended")

CHAPTER 2 ■ DATA IN, DATA OUT44

9578ch02final.qxd 1/30/08 8:44 PM Page 44

http://www.apress.com

.RowNumbers = False

.FillAdjacentFormulas = False

.PreserveFormatting = True

.RefreshOnFileOpen = False

.BackgroundQuery = True

.RefreshStyle = xlInsertDeleteCells

.SavePassword = False

.SaveData = True

.AdjustColumnWidth = True

.RefreshPeriod = 0

.PreserveColumnInfo = True

.SourceDataFile = "C:\projects\Excel2007Book\Files\Northwind 2007a.accdb"

.ListObject.DisplayName = "Table_Northwind_2007a.accdb"

.Refresh BackgroundQuery:=False
End With

End Sub

The SourceType and Source settings of the ListObject.Add method tell whether the data is
from an Excel sheet (xlSrcRange = 1) or an external source (xlSrcExternal = 0). When the
SourceType is external, the source is an array of string values specifying a connection to the
source data.

Buried at the end of our lengthy source data string is this line of code:

Destination:=Range("A1")).QueryTable

A QueryTable object is a worksheet table that is created any time data is returned from an
external data source like an Access or SQL Server database. Table 2-1 lists the members of the
QueryTable object and describes them.

Table 2-1. QueryTable Object Members

QueryTable Object Members Description

CommandType Returns/sets one of the xlCmdType constants. The xlCommandType
constants define whether an SQL statement, cube, or OLE DB data
source will be requested. The default value is xlCmdSQL.

CommandText Returns/sets the command string for the data source.

RowNumbers True if row numbers are added as the first column of the query table.

FillAdjacentFormulas True if formulas to the right of the query table are automatically
updated whenever the query table is refreshed.

PreserveFormatting True if formatting common to the first five rows of data are applied
to new rows in the query table.

RefreshOnFileOpen True if the PivotTable cache or query table is automatically updated
whenever the workbook is opened.

BackgroundQuery True if queries for the query table are performed in the background.

RefreshStyle Returns/sets the way rows on the specified worksheet are added or
deleted to accommodate the number of rows in a recordset
(returned by a query).

Continued

CHAPTER 2 ■ DATA IN, DATA OUT 45

9578ch02final.qxd 1/30/08 8:44 PM Page 45

Table 2-1. Continued

QueryTable Object Members Description

SavePassword True if password information in an ODBC connection string is saved
with the query. False if the password is removed.

SaveData True if data for the query table report is saved with the workbook.
False if the report definition is saved and nothing else.

AdjustColumnWidth True if the column widths are automatically adjusted for the best fit
each time you refresh the specified query table. False if they are not.

RefreshPeriod Returns/sets the number of minutes between refreshes.

PreserveColumnInfo True if column sorting, filtering, and layout information is preserved
when a query table is refreshed. Default value is False.

SourceDataFile Returns/sets a String value that indicates the source data file for a
query table.

ListObject.DisplayName Property of ListObject. Creates or returns a named range for the
inserted data.

Refresh Causes Excel to connect to the data source, execute the SQL query
again, and return data to the range that contains the QueryTable
object. The QueryTable object doesn’t communicate with the data
source once data is inserted unless this method is called.

Simplifying the Code
The code Excel generates, while accurate, is certainly not something one would want to
maintain. And you can forget about flexibility. The Array function used to pass in the con-
nection string and database information is one scary looking piece of code. One of the first
things we can do to simplify this is to create our own connection string and store it in a vari-
able. This will give us the advantage of easier maintenance. Create a new function in
Module1 and name it GetAccessData2. Paste the code from GetAccessData into it, and then
add the following declaration and code (be sure to change the path to the Northwind 2007
database to your location):

Dim sConnString As String

sConnString = "OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;Password="""";" ➥

& "User ID=Admin;" ➥

& "Data Source=C:\projects\Excel2007Book\Files\Northwind 2007.accdb;" ➥

& "Mode=Share Deny Write;Extended Properties="""";" ➥

& "Jet OLEDB:System database="""";" ➥

& "Jet OLEDB:Registry Path="""";Jet OLEDB:Database Password="""";" ➥

& "Jet OLEDB:Engine Type=6;Jet OLEDB:Database Locking Mode=0;" ➥

& "Jet OLEDB:Global Partial Bulk Ops=2;Jet OLEDB:Global Bulk Transactions=1;" ➥

& "Jet OLEDB:New Database Password="""";" ➥

& "Jet OLEDB:Create System Database=False;" ➥

& "Jet OLEDB:Encrypt Database=False;" ➥

& "Jet OLEDB:Don't Copy Locale on Compact=False;" ➥

& "Jet OLEDB:Compact Without Replica Repair=False;Jet OLEDB:SFP=False;" ➥

& "Jet OLEDB:Support Complex Data=False"

CHAPTER 2 ■ DATA IN, DATA OUT46

9578ch02final.qxd 1/30/08 8:44 PM Page 46

This code is much more readable and there is less danger of breaking our code if we ever
need to point to another Access data source.

Now we just need to change the Source property of the ListObjects.Add method to refer
to the connection string in place of the array:

With ActiveSheet.ListObjects.Add(SourceType:=0, Source:=sConnString, ➥

Destination:=Range("A1")).QueryTable

With a couple of quick and easy changes, we’ve made the Macro Recorder–generated code
much easier to read and modify. Let’s import the same data onto Sheet2 in the workbook:

1. Navigate to Sheet2 in the workbook.

2. Run the GetAccessData2 macro.

Oops, we’ve generated an error (see Figure 2-1).

Figure 2-1. Macro code generates error

Why should there be an error? Excel generated this code itself (with the exception of your
addition of a string variable). Click the Debug button, and the VBE should show us the errant
line of code (see Figure 2-2).

Figure 2-2. DisplayName property fires error

The ListObject.DisplayName property creates a named range on the worksheet. Even
though we’re working on Sheet2, a range named Table_Northwind_2007a.accdb already exists
in this workbook. Easy enough to fix:

1. Click Debug.

2. Remove or change the a before the file extension, or simply choose another name
entirely.

3. Press F5 to continue running the code.

CHAPTER 2 ■ DATA IN, DATA OUT 47

9578ch02final.qxd 1/30/08 8:44 PM Page 47

There is still a lot of code stored on our sConnString variable. Many of the Jet database
property values default to False, since we did a simple import of data. We can remove them
from our connection string and leave just the essential information required to access our
Northwind database. Create one last new method and name it GetAccessData3. Paste the code
from GetAccessData2 into it and make the following changes:

sConnString = "OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;Password="""";" ➥

& "User ID=Admin;" ➥

& "Data Source=C:\projects\Excel2007Book\Files\Northwind 2007.accdb;"

We could also remove any property call from the QueryTable object’s instantiation as well,
to further simplify the code—but we’ll leave that alone for now.

The GetAccessData, GetAccessData2, and GetAccessData3 subroutines show all three ver-
sions of this code with each version becoming more succinct than the last.

Importing Text Data
Before we begin writing our own code to import data, let’s record one more macro to see some
of the settings available when we bring in data from a text file.

1. Create a new workbook and name it DataAccessSample02.xlsm.

2. Create a new macro and name it GetTextData.

3. On the Data ribbon, choose From Text.

4. Navigate to the myfilepath\maillist.csv file, and then choose the Import command.
The Text Import wizard will open, as shown in Figure 2-3.

Figure 2-3. The Text Import wizard

CHAPTER 2 ■ DATA IN, DATA OUT48

9578ch02final.qxd 1/30/08 8:44 PM Page 48

The file is comma-delimited (the default selection in the Original Data Type section), so
just click Next.

On Step 2 of the Text Import wizard, the default delimiter is Tab. The “Data preview”
section should show us our columns separated by vertical lines. Since our file is not tab-
delimited, the preview shows our raw data file (see Figure 2-4).

Figure 2-4. View of maillist.csv with Tab selected as delimiter

Select Comma from the Delimiters options. The data preview now shows your data in the
correct columnar display (see Figure 2-5).

Figure 2-5. View of maillist.csv with Comma selected as delimiter

CHAPTER 2 ■ DATA IN, DATA OUT 49

9578ch02final.qxd 1/30/08 8:44 PM Page 49

Click Next to continue to Step 3 of the wizard (see Figure 2-6), where we can choose the
data type for each column of data.

Figure 2-6. Step 3 lets you choose data types for each column.

The onscreen prompt tells us that the General format will convert numeric values to
numbers, date values to dates, and so on. We will choose each column in turn, and choose the
Text data type for our data. The Phone Number column contains numbers, but we want Excel
to treat them as text. The column heading in the “Data preview” window shows us the data
type selected for each column.

Click Finish after applying the Text data type to all columns (see Figure 2-7).
Click OK to let Excel place the data beginning in cell A1 (see Figure 2-8).
Click cell A1, and then stop the Macro Recorder. Figure 2-9 shows the data after it has

been imported from the CSV file.
On the Developer ribbon, click the Visual Basic command or press Alt+F11 to open the

Visual Basic window. Let’s take a look at the code Excel generated for us. We’ll examine the dif-
ferences between importing Access data and text data in the Macro Recorder.

CHAPTER 2 ■ DATA IN, DATA OUT50

9578ch02final.qxd 1/30/08 8:44 PM Page 50

Figure 2-7. “Data preview” window after applying the Text data type to all columns

Figure 2-8. Entering a location for the data

Figure 2-9. Data imported from maillist.csv

Macro Recorder–Generated Text Import Code
After we stop the Macro Recorder, we are left with code that looks like Listing 2-2.

Listing 2-2. Macro-Generated Text Data Import Code

Sub GetTextData()
'
' GetTextData Macro
'

CHAPTER 2 ■ DATA IN, DATA OUT 51

9578ch02final.qxd 1/30/08 8:44 PM Page 51

'
With ActiveSheet.QueryTables.Add(Connection:= _

"TEXT;C:\projects\Excel2007Book\Chapters\Chapter 2\files\maillist.csv", ➥

Destination:=Range("A1"))
.Name = "maillist"
.FieldNames = True
.RowNumbers = False
.FillAdjacentFormulas = False
.PreserveFormatting = True
.RefreshOnFileOpen = False
.RefreshStyle = xlInsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumnWidth = True
.RefreshPeriod = 0
.TextFilePromptOnRefresh = False
.TextFilePlatform = 437
.TextFileStartRow = 1
.TextFileParseType = xlDelimited
.TextFileTextQualifier = xlTextQualifierDoubleQuote
.TextFileConsecutiveDelimiter = False
.TextFileTabDelimiter = False
.TextFileSemicolonDelimiter = False
.TextFileCommaDelimiter = True
.TextFileSpaceDelimiter = False
.TextFileColumnDataTypes = Array(2, 2, 2)
.TextFileTrailingMinusNumbers = True
.Refresh BackgroundQuery:=False

End With
Application.Goto Reference:="maillist"
Range("A1").Select

End Sub

One of the first differences to notice about this code when compared to the Access data
import is how simple the connection string is. There is no complex Source string, and there
are no Command object properties (CommandType and CommandText) to set. We simply tell Excel
we’re connecting to a text file, and then provide the path to the file and add it to the
QueryTables collection via the Add method.

Then there are some common properties, such as the FillAdjacentFormulas and
SavePassword properties. After the RefreshPeriod property, we begin to see a lot of text
file–specific commands. We can set properties that define the type of text file we’re working
with by setting the TextFileParse type to xlFixedWidth if our data is arranged in columns
of fixed widths, or xlDelimited if we have a character-delimited file. If we set this to
xlDelimited, we can then set one or more of the following properties to True:

• TextFileTabDelimiter

• TextFileSemicolonDelimiter

CHAPTER 2 ■ DATA IN, DATA OUT52

9578ch02final.qxd 1/30/08 8:44 PM Page 52

• TextFileCommaDelimiter

• TextFileSpaceDelimiter

TextFileColumnDataTypes Property
The Macro Recorder generated this line of code:

.TextFileColumnDataTypes = Array(2, 2, 2)

Setting this property to 2 for all columns tells Excel to format the columns as text. These
values correspond to the xlTextFormat constant in Table 2-2. If you enter more values into
this array than there are columns in your data, the additional values are ignored. To see the
numeric equivalent for Excel constants like these, type the name into the Immediate window
(go to View ➤ Immediate Window or press Ctrl+G) in the VBE, preceded by the ? output char-
acter. You can use the xlColumnDataType constants listed in Table 2-2 to specify the column
data types used or the actions taken during a data import.

Table 2-2. TextFileColumnDataTypes Enums

Constant Description Value

xlGeneralFormat General 1

xlTextFormat Text 2

xlSkipColumn Skip column 9

xlDMYFormat Day-month-year date format 4

xlDYMFormat Day-year-month date format 7

xlEMDFormat EMD date 10

xlMDYFormat Month-day-year date format 3

xlMYDFormat Month-year-day date format 6

xlYDMFormat Year-day-month date format 8

xlYMDFormat Year-month-day date format 5

A quick way to find the value of any of Excel 2007’s built-in constants or enumerations is
to type it into the Immediate window, preceded by a ? character. This will display the value as
shown in Figure 2-10.

Figure 2-10. Viewing constant values in the Immediate window

CHAPTER 2 ■ DATA IN, DATA OUT 53

9578ch02final.qxd 1/30/08 8:44 PM Page 53

We’ve seen that Excel’s Macro Recorder is a fast and easy way to explore some of the prop-
erties and methods available when bringing data into Excel. Let’s write a little of our own code
and explore some flexible methods of data transfer. These methods will work in Excel or any
other VB- or VBA-enabled application, making them relatively portable and reusable.

Using DAO in Excel 2007
Data Access Objects (or DAO, as it’s commonly known) has been around Microsoft Office for
many versions, going back to 1992, when Jet was introduced. DAO was the first data access
tool available to VB and VBA programmers, and can still be used to manipulate data in older
versions of Office and ODBC-compliant database systems.

DAO is very easy to use, and you’ve probably encountered DAO code if you’ve done any
work in versions of Access preceding the 2000 release, when it was the default data access tool.
In Office 2000, Microsoft made ADO the default data access method, which caused program-
mers who used DAO heavily to learn to use explicit references to their data access model.

You can use DAO to access SQL data via ODBC, and Microsoft Access data via Jet. Jet is
no longer a part of the Microsoft Data Access Components (MDAC) with the 2007 release.
Office 2007 introduces a new version of the Jet engine called ACE (Access Engine).

The DAO object model is shown in Figure 2-11, and its common objects are described
in Table 2-3, which follows.

Figure 2-11. DAO Jet object model

CHAPTER 2 ■ DATA IN, DATA OUT54

9578ch02final.qxd 1/30/08 8:44 PM Page 54

Table 2-3. Common DAO Objects

Object Description

DBEngine The top-level object in the DAO object hierarchy

Workspace An active DAO session

Connection The network connection to an ODBC database

Database An open database

Error Data access error information

Field A field in a database object

TableDef Saved table information in a database

QueryDef Saved query information in a database

Recordset A set of records defined by a table or query

Index Table index

User A user account in the current workgroup

Parameter Query parameter

Property Property of an object

Let’s take a look at how easy DAO is to use by bringing data from the Northwind 2007
database into an Excel worksheet using DAO.

DAO Example 1: Importing Access Data Using Jet
Open a new workbook and name it DataAccessSample03.xlsm. Be sure to use the .xlsm exten-
sion so your workbook is macro-enabled.

Open the VBE by choosing the Visual Basic command from the Developer ribbon or by
pressing Alt+F11.

Before we can retrieve data using DAO, we must add a reference to the DAO library in our
project.

1. Select Tools ➤ References in the VBE.

2. Find the Microsoft DAO 3.6 Object library in the list, and select it, as shown in
Figure 2-12.

3. Click OK.

4. Insert a new standard module by selecting Insert ➤ Module.

5. Create a new subroutine called GetDAOAccessJet().

6. Add the following variable declarations:

Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim xlSheet As Worksheet
Dim i As Integer
Dim arr_sPath(1) As String

CHAPTER 2 ■ DATA IN, DATA OUT 55

9578ch02final.qxd 1/30/08 8:44 PM Page 55

Figure 2-12. Adding a reference to the DAO library

We’re declaring the db and rs variables to hold our database and recordset objects. The
xlSheet variable will provide a simpler way to refer to the worksheet we’ll be populating with
data. We’re going to store the path to two versions of the Northwind database—the new ver-
sion with the .accdb extension and the Access 2000 version with the .mdb extension—to
compare how DAO works with these.

Add the following code to set up the file paths and Excel worksheet (be sure to change
the paths to the database files to reflect your location):

arr_sPath(0) = "C:\projects\Excel2007Book\Files\northwind 2007.accdb"
arr_sPath(1) = "C:\projects\Excel2007Book\Files\northwind.mdb"

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

We’re assigning the Sheet1 object from our workbook to the variable xlSheet to provide
easier access to that sheet. This eliminates the need to type Sheets("Sheet1") whenever we
need to reference the worksheet we’re manipulating.

Next we’ll instantiate our database and recordset objects:

Set db = Workspaces(0).OpenDatabase(arr_sPath(0), ReadOnly:=True)
Set rs = db.OpenRecordset("Employees")

This code creates the default Jet workspace and fills a recordset with the information in
the Employees table in the Northwind 2007 database.

Now we’ll fill the first row in the worksheet with the field names from the recordset and
add bold formatting to the column headings:

CHAPTER 2 ■ DATA IN, DATA OUT56

9578ch02final.qxd 1/30/08 8:44 PM Page 56

For i = 0 To rs.Fields.Count - 1
xlSheet.Cells(1, i + 1).Value = rs.Fields(i).Name

Next i

xlSheet.Range(xlSheet.Cells(1, 1), xlSheet.Cells(1, rs.Fields.Count)) ➥

.Font.Bold = True

Rather than create a loop to walk through the recordset and populate the sheet row by
row and column by column, we’ll use Excel’s CopyFromRecordset method to fill the sheet with
data:

xlSheet.Range("A2").CopyFromRecordset rs

The last thing we’ll do before inserting our cleanup code is adjust the column widths to
show the full text values (using the AutoFit method):

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

The first call to Range("A1").Select puts the cursor within the region we want to work
with (in case there’s more than one area with data on your worksheet). The next line,
Selection.CurrentRegion.Select, selects any contiguous area of cells based on the current
cursor location. Next comes our AutoFit command, followed by the selection of a single cell
(to remove the selection from the entire range).

The entire function should now look like Listing 2-3.

Listing 2-3. GetDAOAccessJet Method

Sub GetDAOAccessJet()
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim xlSheet As Worksheet
Dim i As Integer
Dim arr_sPath(1) As String

'store path to Access 2007 and 2000 versions of Northwind db
arr_sPath(0) = "C:\projects\Excel2007Book\Files\northwind 2007.accdb"
arr_sPath(1) = "C:\projects\Excel2007Book\Files\northwind.mdb"

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

CHAPTER 2 ■ DATA IN, DATA OUT 57

9578ch02final.qxd 1/30/08 8:44 PM Page 57

Set db = Workspaces(0).OpenDatabase(arr_sPath(0), ReadOnly:=True)
Set rs = db.OpenRecordset("Employees")

For i = 0 To rs.Fields.Count - 1
xlSheet.Cells(1, i + 1).Value = rs.Fields(i).Name

Next i

xlSheet.Range(xlSheet.Cells(1, 1), xlSheet.Cells(1, rs.Fields.Count)) ➥

.Font.Bold = True

xlSheet.Range("A2").CopyFromRecordset rs

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

rs.Close
db.Close

Set xlSheet = Nothing
Set rs = Nothing
Set db = Nothing

End Sub

Let’s run our code and see the result on Sheet1.

1. On the Developer ribbon, choose the Macros command.

2. Select the GetDAOAccessJet macro from the list, and click the Run button. DAO gener-
ates an error, as shown in Figure 2-13.

Figure 2-13. Unrecognized database format error

3. Click the Debug button, and notice that our attempt to instantiate our DAO.Database
object is failing (see Figure 2-14).

CHAPTER 2 ■ DATA IN, DATA OUT58

9578ch02final.qxd 1/30/08 8:44 PM Page 58

Figure 2-14. OpenDatabase method fires error

DAO Jet, it seems, does not support the new Access database format. Does this mean we
cannot use DAO with *.accdb files? No, it does not. In a short while, we’ll take a look at how we
can access data from Access 2007 using DAO with ODBC. For now, let’s continue with Jet.

To make this code work, all we have to do is change the array index in our arr_sPath vari-
able from 0 to 1.

Set db = Workspaces(0).OpenDatabase(arr_sPath(1), ReadOnly:=True)

Rerun the code, and your worksheet should look like Figure 2-15.

Figure 2-15. The Employees table from the Access 2000 version of the Northwind database

■Note According to the help file, the Range.CopyFromRecordset method will fail if the DAO (or ADO)
recordset contains an OLE object. This seems to be true only sometimes. In the preceding example, we filled
a DAO recordset object with the entire contents of the Employees table from the Access 2000 version of the
Northwind database. This table includes a field named Photo that does contain an OLE object and is included
in the data returned to us.

Using the CopyFromRecordset method is much more efficient and more performant than
looping through a recordset to retrieve the entire contents.

CHAPTER 2 ■ DATA IN, DATA OUT 59

9578ch02final.qxd 1/30/08 8:44 PM Page 59

■Note When using the Range.CopyFromRecordset method, copying begins at the current row of the
recordset object. After copying is completed, the EOF property of the recordset object is True. If you need to
reuse your recordset, you must call its MoveFirst method (if the type of recordset you’ve created is not
using a forward-only cursor).

DAO Example 2: Importing Access Data Using ODBC
In the previous example, you saw that Jet 4 does not support the *.accdb format, and you
learned that it is no longer a part of the MDAC. How can you use DAO to access data in the
new Access database format? The answer is ODBC (Open Database Connectivity).

The DAO ODBC object model is shown in Figure 2-16.

Figure 2-16. DAO ODBC object model

The method for importing data using DAO ODBC is somewhat different than using Jet.
In Jet, we could use a database object to refer to our Access database. Using ODBC, we have
to create Workspace and Connection objects that we’ll use to connect to the database and
retrieve a recordset of data.

In the VBE, on the same code module, add a subroutine called GetDAOAccess2007ODBC().
Add the following variable declarations:

Dim wrk As DAO.Workspace
Dim cnn As DAO.Connection
Dim rs As DAO.Recordset
Dim sConn As String
Dim xlSheet As Worksheet
Dim iFieldCount As Integer
Dim i As Integer
Dim arr_sPath(1) As String

CHAPTER 2 ■ DATA IN, DATA OUT60

9578ch02final.qxd 1/30/08 8:44 PM Page 60

This looks very similar to our last example, but let’s look at the differences. We’ve added
variables to hold our Workspace and Connection objects, as previously noted. We’ve also added
the sConn variable to hold our connection string. This is where we’ll tell our Connection object
where to find the data we require. The last difference is that we’ve added a variable, iFieldCount,
to hold the number of fields in our Recordset object.

Copy and paste the path string and worksheet setup code from the previous example:

'store path to Access 2007 and 2000 versions of Northwind db
arr_sPath(0) = "C:\projects\Excel2007Book\Files\northwind 2007.accdb"
arr_sPath(1) = "C:\projects\Excel2007Book\Files\northwind.mdb"

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

Set the connection string:

sConn = "ODBC;Driver={Microsoft Access Driver (*.mdb, *.accdb)};" ➥

& "DBQ=" & arr_sPath(0)

Instantiate the Workspace and Connection objects:

Set wrk = CreateWorkspace("", "", "", dbUseODBC)
Set cnn = wrk.OpenConnection("", , , sConn)

We use the Workspace object’s OpenConnection method to create the Connection object.
Next we’ll use the Connection object’s OpenRecordset method to fill our recordset with

data from the Employees table:

Set rs = cnn.OpenRecordset("SELECT * FROM Customers", dbOpenDynamic)

Insert our column headings using the iFieldCount variable:

iFieldCount = rs.Fields.Count
For i = 1 To iFieldCount

xlSheet.Cells(1, i).Value = rs.Fields(i - 1).Name
Next i

xlSheet.Range(xlSheet.Cells(1, 1), _
xlSheet.Cells(1, rs.Fields.Count)).Font.Bold = True

Our first example used a zero-based counter to do this job:

For i = 0 To rs.Fields.Count - 1
xlSheet.Cells(1, i + 1).Value = rs.Fields(i).Name

Next i

CHAPTER 2 ■ DATA IN, DATA OUT 61

9578ch02final.qxd 1/30/08 8:44 PM Page 61

The only real difference in this code is that we’ve assigned the rs.Fields.Count property
to a variable in the new version. This is a bit more efficient because it eliminates the need to
query the Recordset object for its Fields.Count with each pass through the loop. It does, how-
ever, change the way we reference our index values. In the first example, our loop refers to
Fields.Count - 1; in the second, it simply refers to Fields.Count; and so on.

The remainder of the code is the same as the first example, with the addition of cleanup
code for our new Workspace and Connection objects. The entire new subroutine looks like
Listing 2-4.

Listing 2-4. Retrieving Access 2007 Code via ODBC

Sub GetDAOAccess2007ODBC()
Dim wrk As DAO.Workspace
Dim cnn As DAO.Connection
Dim rs As DAO.Recordset
Dim sConn As String
Dim xlSheet As Worksheet
Dim iFieldCount As Integer
Dim i As Integer
Dim arr_sPath(1) As String

'store path to Access 2007 and 2000 versions of Northwind db
arr_sPath(0) = "C:\projects\Excel2007Book\Files\northwind 2007.accdb"
arr_sPath(1) = "C:\projects\Excel2007Book\Files\northwind.mdb"

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

sConn = "ODBC;Driver={Microsoft Access Driver (*.mdb, *.accdb)};" ➥

& "DBQ=" & arr_sPath(0)

Set wrk = CreateWorkspace("", "", "", dbUseODBC)
Set cnn = wrk.OpenConnection("", , , sConn)

Set rs = cnn.OpenRecordset("SELECT * FROM Customers", dbOpenDynamic)

iFieldCount = rs.Fields.Count
For i = 1 To iFieldCount

xlSheet.Cells(1, i).Value = rs.Fields(i - 1).Name
Next i

CHAPTER 2 ■ DATA IN, DATA OUT62

9578ch02final.qxd 1/30/08 8:44 PM Page 62

xlSheet.Range(xlSheet.Cells(1, 1), ➥

xlSheet.Cells(1, rs.Fields.Count)).Font.Bold = True

xlSheet.Cells(2, 1).CopyFromRecordset rs

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

'close workspace
wrk.Close

'release objects
Set xlSheet = Nothing
Set rs = Nothing
Set wrk = Nothing
Set cnn = Nothing

End Sub

Let’s run this code from Sheet1 and see what it does.

1. Choose the Macros command from the Developer ribbon.

2. Select the DAOAccess2007ODBC macro from the list, and click Run. This should
generate an error, as shown in Figure 2-17.

Figure 2-17. DAO ODBC runtime error

3. Click the Debug button, and let’s see where the code is stopping (see Figure 2-18).

Figure 2-18. CopyFromRecordset stops the code.

CHAPTER 2 ■ DATA IN, DATA OUT 63

9578ch02final.qxd 1/30/08 8:44 PM Page 63

Now we run into the error that I mentioned in the previous example. Excel’s
CopyFromRecordset method doesn’t like the data type of a field or fields that we’re returning in
the recordset being passed to it. A look at the Northwind 2007 Customers table in Design view
(Figure 2-19) will show us the data types in use here.

Figure 2-19. Northwind Customers table Design view

Figure 2-19 shows us that most of these fields use the Text data type, but we see a few
that do not. You’ll recall me mentioning that the Excel help file noted that OLE fields would
cause the CopyFromRecordset method to fail, yet there are no OLE fields present here. The
Memo, Hyperlink, and Attachment data types will all cause the CopyFromRecordset method to
fail. To check, you could change your SQL statement in the OpenRecordset call to any of these:

SELECT Address FROM Customers

or

SELECT [Web Page] FROM Customers

or

SELECT Attachments FROM Customers

A recordset that includes any of these filters will cause our subroutine to fail. So let’s then
modify our SQL statement to include only those fields that are not of these data types.

Set rs = cnn.OpenRecordset("SELECT ID, Company, [Last Name]," ➥

& " [First Name], [E-mail address], [Job title]," ➥

& " [Business Phone], [Mobile Phone], [Fax Number]," ➥

& " city, [state/province], [zip/postal code]," ➥

& " [country/region] " ➥

& "FROM Customers Order By Company", dbOpenDynamic)

Run the code, and your result should look like that in Figure 2-20.

CHAPTER 2 ■ DATA IN, DATA OUT64

9578ch02final.qxd 1/30/08 8:44 PM Page 64

Figure 2-20. DAO ODBC result from Northwind 2007 Customers table

Can you access data in other versions of Access using DAO ODBC? Yes, you can. With a
simple edit to the GetDAOAccess2007ODBC subprocedure, you could use an ODBC call.

Change the connection string to reference the Access 2000 version file path by changing
the 0 to 1 in the arr_sPath array:

sConn = "ODBC;Driver={Microsoft Access Driver (*.mdb, *.accdb)};" ➥

& "DBQ=" & arr_sPath(1)

Then use the original SQL statement in the call to OpenRecordset:

Set rs = cnn.OpenRecordset("SELECT * FROM Customers", dbOpenDynamic)

The Access 2000 version of the Northwind Customers table does not contain any of these
issue-bearing data types, so we are able to query using Select * syntax.

DAO Example 3: Importing SQL Data Using ODBC
The final example of using DAO to bring data into your Excel project will focus on getting data
from an SQL server (or other ODBC-compliant database). The process is identical to what we
just did in our previous example, with the exception of a new connection string:

sConn = "ODBC;DATABASE=msdb;DSN=mySQL"

CHAPTER 2 ■ DATA IN, DATA OUT 65

9578ch02final.qxd 1/30/08 8:44 PM Page 65

We’re still using the ODBC reference in the string, but now we’re passing in the database
name and the DSN name. Here’s the complete code. (You must reference a valid database and
DSN for this to provide you with output.)

Sub GetDAOSQLODBC()
Dim wrk As DAO.Workspace
Dim cnn As DAO.Connection
Dim rs As DAO.Recordset
Dim sConn As String
Dim xlSheet As Worksheet
Dim iFieldCount As Integer
Dim i As Integer

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

sConn = "ODBC;DATABASE=msdb;DSN=mySQL"

Set wrk = CreateWorkspace("", "", "", dbUseODBC)
Set cnn = wrk.OpenConnection("", , , sConn)
Set rs = cnn.OpenRecordset("SELECT * FROM msdbms", dbOpenDynamic)

iFieldCount = rs.Fields.Count
For i = 1 To iFieldCount

xlSheet.Cells(1, i).Value = rs.Fields(i - 1).Name
Next i

xlSheet.Cells(2, 1).CopyFromRecordset rs

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

'close workspace
wrk.Close

'release objects
Set xlSheet = Nothing
Set rs = Nothing
Set wrk = Nothing
Set cnn = Nothing

End Sub

CHAPTER 2 ■ DATA IN, DATA OUT66

9578ch02final.qxd 1/30/08 8:44 PM Page 66

Using ADO in Excel 2007
ActiveX Data Objects (ADO) was introduced by Microsoft in 1996 and has become the suc-
cessor to DAO. Its database access technology is OLE DB (Object Linking and Embedding
Database), which is the successor to ODBC.

The latest version of ADO is ADO 2.8. ADO lets us access, edit, and update data from
many data sources by interfacing to these data sources via OLE DB providers. OLE DB
providers speak to the database engine more directly than ODBC, and provide us with better
performance.

In the examples in the previous section, we used DAO to interact with an Access 2007
database and an SQL database. You’ll recall we could not interface with Access 2007 directly
with Jet, but we could interact using ODBC. In both cases, DAO goes through Jet, then from
Jet to ODBC, and then to the data engine. Then our data comes back. As you might imagine,
this may not be the speediest route to your data. ADO, on the other hand, talks directly to
your OLE DB provider, which speaks directly to the data engine, and vice versa. This is a
much more direct route and provides better performance. ADO also gives us many settings to
help fine-tune how we interact with our data. We can choose to run our cursor on the server
(in a connected environment) or on the client (if the database supports it, in a disconnected
environment).

I mentioned my use of explicit reference to DAO and ADO in my variable declarations
earlier. This is due to the fact that Microsoft made ADO the default data mechanism with the
release of Access 2000. Up until that time, Dim rs As Recordset meant a DAO recordset object
to Access and nothing else. After the release of Access 2000, that same line of code referred to
an ADO recordset. Having started out in life as an Access developer, I relied heavily on DAO in
many of my applications. After upgrading to Access 2000 and beginning to use ADO (along
with DAO), I learned to make my declarations complete to avoid confusing the compiler (not
to mention debugging!).

In any application that uses both access protocols, explicitly creating your objects elimi-
nates any confusion. Your application will always know the difference between an object
declared as DAO.Recordset and one declared as ADODB.Recordset. If you do not explicitly
declare your DAO or ADO objects, whichever object is higher in the references list will get
priority. If the ADO 2.8 library is listed above the DAO 3.6 library, then any object declared as
type Recordset will default to the ADO library.

ADO Example 1: Importing SQL Data
For our first ADO example, we’re going to use the AdventureWorks sample database provided
by Microsoft. You can install a copy of the AdventureWorks database by running the file
AdventureWorksDB.msi.

You will be using SQL Server 2005 Management Studio Express to view the various data-
base objects. To install Management Studio Express, run SQLServer2005_SSMSEE.msi.

1. Open a new workbook and name it DataAccessSample04.xlsm.

2. Before we begin using ADO in Excel 2007, we must add a reference to the ADO 2.8
library (see Figure 2-21).

CHAPTER 2 ■ DATA IN, DATA OUT 67

9578ch02final.qxd 1/30/08 8:44 PM Page 67

a. In the VBE, choose Tools ➤ References.

b. Select the Microsoft ActiveX Data Objects 2.8 library.

c. Click OK.

Figure 2-21. Adding a reference to the ADO 2.8 library

If you have SQL Server 2005 installed on your machine, you can use that instead of SQL
Server 2005 Management Studio Express.

For our first example, we’ll be using a parameterized stored procedure to return a list of
Adventure Works employees for a selected manager. We’ll enter the manager’s employee ID
and retrieve a list of that manager’s direct and indirect reports.

The AdventureWorks database contains a stored procedure called uspGetManagerEmployees.
If we expand that item in the Stored Procedures tree, we see that it takes one parameter,
ManagerID, which is of the Integer data type (as shown in Figure 2-22).

Figure 2-22. Parameterized stored procedure in AdventureWorks database, as viewed in SQL
Server 2005 Management Studio Express

CHAPTER 2 ■ DATA IN, DATA OUT68

9578ch02final.qxd 1/30/08 8:44 PM Page 68

1. In the VBE, add a standard module.

2. Create a new subroutine called GetManagerEmployeeListSQL.

3. Add the following variable declarations:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim param As ADODB.Parameter
Dim xlSheet As Worksheet
Dim rs As ADODB.Recordset
Dim sConnString As String
Dim i As Integer

We’re using a few ADO objects to retrieve our data: an ADO Connection object to connect
to the data, an ADO Command object to run our stored procedure, an ADO Parameter object to
pass the ManagerID data to the stored procedure, and an ADO Recordset object to hold the
results of our stored procedure.

In this example we are going to use cell A1 to hold the ManagerID information for our
stored procedure’s parameter. Let’s add a modified version of the code we’ve been using to
set up and clear our Excel worksheet:

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A3").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

Although this looks very similar to the code used in the DAO examples, the third line,
Range("A3").Activate, has changed. The DAO examples activated cell A1 to clear the entire
current region on the worksheet. Since we’re using cell A1 as input to our stored procedure in
this example, we want to start clearing the contiguous range beginning at cell A3 instead.

Let’s open our connection and assign it to a Command object:

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MyServerName\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"
cnn.Open sConnString

Set cmd = New ADODB.Command
cmd.ActiveConnection = cnn

■Note To connect to a named instance of SQL Server, the convention is to use a server name of the for-
mat <servername>\<instancename>. Note the way the Server property is set in our previous example:
Server=MyServerName\SQLEXPRESS.

CHAPTER 2 ■ DATA IN, DATA OUT 69

9578ch02final.qxd 1/30/08 8:44 PM Page 69

Now let’s create our Parameter object, fill some of its properties, and add it to our Command
object.

Set param = New ADODB.Parameter
With param

.Name = "ManagerID"

.Type = adInteger

.Value = ActiveSheet.Range("A1").Value
End With

With cmd
.CommandType = adCmdStoredProc
.CommandText = "uspGetManagerEmployees"
.Parameters.Append param

End With

We are setting the Parameter object’s Name property to ManagerID, as called for by the
stored procedure, and telling it to use the Integer data type. Finally, we set its Value property
to whatever value is contained in the active sheet’s cell A1.

Once that’s done, we set up our Command object by telling it what kind of command we
need (stored procedure), and the name of the stored procedure. Then we append our
Parameter object to the Command object’s Parameters collection.

Table 2-4 gives a list of ADO data type enums, along with their actual values and the cor-
responding Access and SQL data types they refer to.

Table 2-4. ADO Data Types

Data Type Value Access SQL Server

adBigInt 20 BigInt (SQL Server
2000 +)

adBinary 128 Binary
TimeStamp

adBoolean 11 YesNo Bit

adChar 129 Char

adCurrency 6 Currency Money
SmallMoney

adDate 7 Date DateTime

adDBTimeStamp 135 DateTime (Access 97 DateTime
[ODBC]) SmallDateTime

adDecimal 14

adDouble 5 Double Float

adGUID 72 ReplicationID UniqueIdentifier
(Access 97 [OLEDB]), (SQL Server 7.0 +)
(Access 2000 [OLEDB])

adIDispatch 9

Continued

CHAPTER 2 ■ DATA IN, DATA OUT70

9578ch02final.qxd 1/30/08 8:44 PM Page 70

Data Type Value Access SQL Server

adInteger 3 AutoNumber Identity (SQL
Integer Server 6.5)
Long Int

adLongVarBinary 205 OLEObject Image

adLongVarChar 201 Memo (Access 97) Text
Hyperlink (Access 97)

adLongVarWChar 203 Memo (Access 2000 NText (SQL Server 7.0 +)
[OLEDB])
Hyperlink (Access
2000 [OLEDB])

adNumeric 131 Decimal (Access 2000 Decimal
[OLEDB]) Numeric

adSingle 4 Single Real

adSmallInt 2 Integer SmallInt

adUnsignedTinyInt 17 Byte TinyInt

adVarBinary 204 ReplicationID VarBinary
(Access 97)

adVarChar 200 Text (Access 97) VarChar

adVariant 12 Sql_Variant (SQL
Server 2000 +)

adVarWChar 202 Text (Access 2000 NVarChar (SQL
[OLEDB]) Server 7.0 +)

adWChar 130 NChar (SQL Server 7.0 +)

The remainder of our code is basically identical to our previous examples. Listing 2-5
shows what the finished subroutine looks like.

Listing 2-5. Calling Parameterized SQL in VBA

Sub GetManagerEmployeeListSQL()
Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim param As ADODB.Parameter
Dim xlSheet As Worksheet
Dim rs As ADODB.Recordset
Dim sConnString As String
Dim i As Integer

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A3").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

CHAPTER 2 ■ DATA IN, DATA OUT 71

9578ch02final.qxd 1/30/08 8:44 PM Page 71

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MyServerName\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"
cnn.Open sConnString

Set cmd = New ADODB.Command
cmd.ActiveConnection = cnn

Set param = New ADODB.Parameter
With param

.Name = "ManagerID"

.Type = adInteger

.Value = ActiveSheet.Range("A1").Value
End With

With cmd
.CommandType = adCmdStoredProc
.CommandText = "uspGetManagerEmployees"
.Parameters.Append param

End With

Set rs = New ADODB.Recordset
Set rs = cmd.Execute

For i = 1 To rs.Fields.Count
ActiveSheet.Cells(3, i).Value = rs.Fields(i - 1).Name

Next i

xlSheet.Range(xlSheet.Cells(3, 1), _
xlSheet.Cells(3, rs.Fields.Count)).Font.Bold = True

ActiveSheet.Range("A4").CopyFromRecordset rs

xlSheet.Select
Range("A3").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

rs.Close
cnn.Close

CHAPTER 2 ■ DATA IN, DATA OUT72

9578ch02final.qxd 1/30/08 8:44 PM Page 72

Set cmd = Nothing
Set param = Nothing
Set rs = Nothing
Set cnn = Nothing
Set xlSheet = Nothing

End Sub

Note that our cleanup code also refers to cell A3 when setting up the worksheet with the
AutoFit method.

We can test this code out by entering a ManagerID in cell A1 on Sheet1 and running the
GetManagerEmployeeListSQL method from the macro list.

1. Enter 16 in cell A1.

2. Choose GetManagerEmployeeListSQL from the macro list and run the code. The
results are shown in Figure 2-23.

Figure 2-23. Result of GetManagerEmployeeListSQL code

3. Enter a manager ID of 21 in cell A1 and run the code again. You’ll see a longer list of
employees since this is a higher-level manager.

4. Enter a manager ID of 16 again to see the setup code at work, clearing the used cells
for the next round of data import.

CHAPTER 2 ■ DATA IN, DATA OUT 73

9578ch02final.qxd 1/30/08 8:44 PM Page 73

EXCEL 97 AND ADO RECORDSETS

For efficiency and performance, CopyFromRecordset is the preferred method of filling cells with data from
an ADO recordset. Because Excel 97 supports only DAO recordsets with CopyFromRecordset, if you
attempt to pass an ADO recordset to CopyFromRecordset with Excel 97, you receive the following error:

Run-time error 430:
Class does not support Automation or does not support expected interface.

In the code sample, you can avoid this error by checking Excel’s version using the
ExcelVersionShort property from the cExcelUtils class in the codeLib.xlsm workbook included on
the CD so that you do not use CopyFromRecordset for the 97 version.

Property Get ExcelVersionShort() As String
Dim xlApp As Object
Dim sExcelVersionShort As String

Set xlApp = CreateObject("Excel.Application")
sExcelVersionShort = Mid(xlApp.Version, 1, InStr(1, xlApp.Version, ".") - 1)

Set xlApp = Nothing
ExcelVersionShort = sExcelVersionShort

End Property

Property Get ExcelVersion() As String
Dim xlApp As Object
Dim sExcelVersion As String

Set xlApp = CreateObject("Excel.Application")
sExcelVersion = xlApp.Version

Set xlApp = Nothing
ExcelVersion = sExcelVersion

End Property

If Excel 97 is detected, use the GetRows method of the ADO recordset to copy the recordset into
an array. If you assign the array returned by GetRows to a range of cells in the worksheet, the data goes
across the columns instead of down the rows. For example, if the recordset has two fields and ten rows,
the array appears as two rows and ten columns. Therefore, you need to transpose the array using your
TransposeDim() function before assigning the array to the range of cells.

CHAPTER 2 ■ DATA IN, DATA OUT74

9578ch02final.qxd 1/30/08 8:44 PM Page 74

ADO Example 2: Importing SQL Data Based on a Selection
In this exercise, we’ll see how we can use Excel to generate a list, and how by making a selec-
tion from that list we can view detailed information about the selected item.

Adventure Works management wants to see a quick view of their reporting tree by man-
ager. We’re going to create a list of managers and then add code that will show the selected
manager’s reporting structure.

On Module1, add a new subroutine and name it GetManagerList. Add the following vari-
able declarations:

Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim xlSheet As Worksheet
Dim sConnString As String
Dim sSQL As String

Our setup code is very similar to our last example, except that we are going to put our list
of managers on Sheet2. Our opening line of setup code will now look like this:

Set xlSheet = Sheets("Sheet2")

The remainder of the code is the same, with the obvious exception of the SQL statement.
The SQL statement to generate our manager list looks like this:

sSQL = "SELECT HumanResources.Employee.EmployeeID, Person.Contact.FirstName," ➥

& " Person.Contact.LastName FROM Person.Contact" ➥

& " INNER JOIN HumanResources.Employee" ➥

& " ON Person.Contact.ContactID = HumanResources.Employee.ContactID" ➥

& " WHERE (((HumanResources.Employee.EmployeeID) In" ➥

& " (SELECT HumanResources.Employee.ManagerID" ➥

& " FROM HumanResources.Employee)));"

Let’s dissect this SQL statement a bit. Our manager list will show the employee ID as well
as the first and last name for each manager. As you can see, the data is stored in two tables.
The HumanResources.Employee table stores the EmployeeID field and the Person.Contact
table stores the name fields.

The two tables have a common field, ContactID, that is used to join the tables in this
query. Notice the WHERE clause, which contains a SELECT statement within it. This is known
as nested SQL or an SQL subquery. Essentially, it says, “Only show us those employees
whose employee ID can be found in the result of the subquery that contains only manager
IDs.” Subqueries such as this are a nice way to avoid creating temporary tables or individ-
ual queries to narrow down our search.

Here’s the complete GetManagerList code:

Sub GetManagerList()
Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim xlSheet As Worksheet
Dim sConnString As String
Dim sSQL As String

CHAPTER 2 ■ DATA IN, DATA OUT 75

9578ch02final.qxd 1/30/08 8:44 PM Page 75

Set xlSheet = Sheets("Sheet2")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MyServerName\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"

cnn.Open sConnString

sSQL = "SELECT HumanResources.Employee.EmployeeID, Person.Contact.FirstName," ➥

& " Person.Contact.LastName FROM Person.Contact" ➥

& " INNER JOIN HumanResources.Employee" ➥

& " ON Person.Contact.ContactID = HumanResources.Employee.ContactID" ➥

& " WHERE (((HumanResources.Employee.EmployeeID) In" ➥

& " (SELECT HumanResources.Employee.ManagerID" ➥

& " FROM HumanResources.Employee)));"

Set rs = New ADODB.Recordset

rs.Open sSQL, cnn, adOpenDynamic

Sheets("Sheet2").Activate
Range("A1").CopyFromRecordset rs

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

rs.Close
cnn.Close

Set rs = Nothing
Set cnn = Nothing
Set xlSheet = Nothing

End Sub

Run the code, and your result on Sheet2 should look like Figure 2-24.

CHAPTER 2 ■ DATA IN, DATA OUT76

9578ch02final.qxd 1/30/08 8:44 PM Page 76

Figure 2-24. The manager list displayed

Now that we have our list of managers, let’s write the code to show the selected manager’s
staff.

Add a new subroutine to Module1 and name it GetSelectedManagerEmployeeListSQL.
Since this code is very similar to GetManagerEmployeeListSQL, take a look at Listing 2-6,

which shows the entire code set, and we’ll review the differences.

Listing 2-6. GetSelectedManagerEmployeeListSQL Subroutine

Sub GetSelectedManagerEmployeeListSQL()
Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim param As ADODB.Parameter
Dim rs As ADODB.Recordset
Dim xlSheet As Worksheet
Dim sConnString As String
Dim iMgrID As Integer
Dim sMgrName As String
Dim i As Integer

CHAPTER 2 ■ DATA IN, DATA OUT 77

9578ch02final.qxd 1/30/08 8:44 PM Page 77

Set xlSheet = Sheets("Sheet3")
xlSheet.Activate
Range("A3").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select
Sheets("Sheet2").Activate 'make sure we're on the right sheet

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MyServerName\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"

cnn.Open sConnString

Set cmd = New ADODB.Command
cmd.ActiveConnection = cnn

iMgrID = GetMgrID
sMgrName = GetMgrName

Set param = New ADODB.Parameter
With param

.Name = "ManagerID"

.Type = adInteger

.Value = iMgrID
End With

With cmd
.CommandType = adCmdStoredProc
.CommandText = "uspGetManagerEmployees"
.Parameters.Append param

End With

Set rs = New ADODB.Recordset
Set rs = cmd.Execute

xlSheet.Activate 'activate the display sheet
Range("A1").Value = "Employee List for: " & sMgrName
Range("A1").Font.Bold = True

For i = 1 To rs.Fields.Count
ActiveSheet.Cells(3, i).Value = rs.Fields(i - 1).Name

Next i

xlSheet.Range(xlSheet.Cells(3, 1), _
xlSheet.Cells(3, rs.Fields.Count)).Font.Bold = True

CHAPTER 2 ■ DATA IN, DATA OUT78

9578ch02final.qxd 1/30/08 8:44 PM Page 78

ActiveSheet.Range("A4").CopyFromRecordset rs

xlSheet.Select
Range("A3").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

rs.Close
cnn.Close

Set cmd = Nothing
Set param = Nothing
Set rs = Nothing
Set cnn = Nothing
Set xlSheet = Nothing

End Sub

When a manager is selected and this code is run, it will generate the employee list on
Sheet3. The manager’s name will appear at the top of the page in cell A1, and the employee
list will populate below it. We’ve added a couple of variables to our declarations:

Dim iMgrID As Integer
Dim sMgrName As String

These will hold the ID for our search and the name for our display.
We’re setting our xlSheet variable to refer to Sheet3:

Set xlSheet = Sheets("Sheet3")

And we’re pointing back to Sheet2 to get our selected manager information:

Sheets("Sheet2").Activate

We’ve added calls to two helper functions, GetMgrID and GetMgrName. These functions refer
to the active sheet, so this line of code is important. We could optionally have made explicit
references to Sheet2 in our functions or passed in the worksheet as an argument to the func-
tions.

Add these functions to Module1.

Function GetMgrID() As Integer
Dim iReturn As Integer
Dim rngMgrID As Range

Set rngMgrID = Cells(ActiveCell.Row, 1)
iReturn = rngMgrID.Value
Set rngMgrID = Nothing

GetMgrID = iReturn
End Function

CHAPTER 2 ■ DATA IN, DATA OUT 79

9578ch02final.qxd 1/30/08 8:44 PM Page 79

Function GetMgrName() As String
Dim sReturn As String
Dim iRow As Integer

iRow = ActiveCell.Row
sReturn = Cells(iRow, 2).Value & " " & Cells(iRow, 3).Value

GetMgrName = sReturn
End Function

These functions illustrate two methods for referring to cells on Sheet2. GetMgrID uses a
variable of type Range to refer to the cell in the current row and column 1. GetMgrName uses
direct references to the cells by using the Cells object.

Let’s test the code. On Sheet2, put your cursor in any column on a row containing man-
ager information, as in Figure 2-25.

Figure 2-25. Selecting a manager

In the Macro window, run the GetSelectedManagerEmployeeListSQL subroutine, the results
of which are shown in Figure 2-26.

Figure 2-26. Results of manager’s employee search

ADO Example 3: Updating SQL Data
Now it’s time to let Excel 2007 do some real work. We’ve seen a few different methods of
retrieving data. Let’s see what we can do to provide some updating capabilities to our work-
sheets.

In this example, we will import a list of employees with some personal data (“personal
data” as defined by the AdventureWorks database; I don’t know that many of us would agree
that this meets our definition). Once we have that list, we’ll create a routine that lets us update
any information that has changed.

CHAPTER 2 ■ DATA IN, DATA OUT80

9578ch02final.qxd 1/30/08 8:44 PM Page 80

1. Open a new workbook and name it DataAccessSample05.xlsm.

2. In the VBE, add a new standard module.

3. Create a function named GetEmpList.

4. Add the following code:

Sub GetEmpList()
Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim xlSheet As Worksheet
Dim sConnString As String
Dim sSQL As String
Dim i As Integer

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MYSERVERNAME\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"

cnn.Open sConnString
sSQL = "SELECT emp.EmployeeID, Person.Contact.FirstName, " ➥

& "Person.Contact.LastName, emp.NationalIDNumber, " ➥

& "emp.BirthDate, emp.MaritalStatus, emp.Gender " ➥

& "FROM HumanResources.Employee AS emp " ➥

& "INNER JOIN Person.Contact ON emp.ContactID = " ➥

& "Person.Contact.ContactID"

Set rs = New ADODB.Recordset
rs.Open sSQL, cnn, adOpenDynamic

For i = 1 To rs.Fields.Count
ActiveSheet.Cells(1, i).Value = rs.Fields(i - 1).Name

Next i

xlSheet.Range(xlSheet.Cells(1, 1), _
xlSheet.Cells(1, rs.Fields.Count)).Font.Bold = True

ActiveSheet.Range("A2").CopyFromRecordset rs

CHAPTER 2 ■ DATA IN, DATA OUT 81

9578ch02final.qxd 1/30/08 8:44 PM Page 81

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

rs.Close
cnn.Close

Set rs = Nothing
Set cnn = Nothing

End Sub

This should be fairly standard code by now. We’re setting up our worksheet, opening
our ADO Connection object, filling a recordset with employee personal data from our
SQL statement, and then displaying it on the worksheet.

■Note All of our examples require a reference to the Microsoft ActiveX Data Objects 2.8 library.

5. Run the code and show the employee personal information data (see Figure 2-27).

Figure 2-27. Employee personal data list

The AdventureWorks database comes with a stored procedure called HumanResources.
uspUpdateEmployeePersonalInfo that will update this information (see Figure 2-28).

Figure 2-28. uspUpdateEmployeePersonalInfo and parameters

CHAPTER 2 ■ DATA IN, DATA OUT82

9578ch02final.qxd 1/30/08 8:44 PM Page 82

We are going to write a procedure called UpdateEmpPersonalInfo that will call this stored
procedure and update the database with the information from the currently selected row in
our Excel worksheet.

Before we begin coding this procedure, note that this stored procedure has five input
parameters. Our earlier GetSelectedManagerEmployeeListSQL procedure called a stored pro-
cedure that took one parameter, which we instantiated and filled, and then appended to a
Command object within the procedure, like so:

Dim param As ADODB.Parameter
'Code omitted...

Set param = New ADODB.Parameter
With param

.Name = "ManagerID"

.Type = adInteger

.Value = iMgrID
End With

With cmd
.CommandType = adCmdStoredProc
.CommandText = "uspGetManagerEmployees"
.Parameters.Append param

End With

We could declare five variables of ADODB.Parameter type and repeat the Set param =...
and the With...End With block five times from within our procedure—but that would make
the code for this otherwise simple subroutine somewhat lengthy (the coders dictate of keep-
ing routines to what can be seen on one monitor screen comes into play here). What we can
do instead is use a VBA Collection object that we’ll fill with Parameter objects (through a
helper function), and that will then be appended to an ADO Command object.

1. On Module1, create a new subroutine named UpdateEmpPersonalInfo.

2. Add the following variable declarations:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim colParams As Collection
Dim sConnString As String
Dim i As Integer

3. Insert the following code to activate the data worksheet and set up the Connection and
Command objects:

Sheets("Sheet1").Activate 'make sure we're on the data sheet

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MYSERVERNAME\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"

CHAPTER 2 ■ DATA IN, DATA OUT 83

9578ch02final.qxd 1/30/08 8:44 PM Page 83

cnn.Open sConnString

Set cmd = New ADODB.Command
cmd.ActiveConnection = cnn

4. Next, fill the colParams collection with ADODB.Parameter objects:

Set colParams = SetParams(ActiveCell.Row)

The SetParams function returns a filled collection and looks like this:

Function SetParams(RowNum As Integer) As Collection
'returns a collection of filled ADO Parameter objects
Dim colReturn As Collection
Dim prm As ADODB.Parameter

Set colReturn = New Collection
Set prm = New ADODB.Parameter
With prm

.Name = "EmployeeID"

.Type = adInteger

.Value = Cells(RowNum, 1).Value
End With
colReturn.Add prm

Set prm = New ADODB.Parameter 'wipe prm and start over; best way to ➥

prevent leftover data
With prm

.Name = "NationalIDNumber"

.Type = adLongVarWChar

.Size = 15

.Value = Cells(RowNum, 4).Value
End With

colReturn.Add prm

Set prm = New ADODB.Parameter
With prm

.Name = "BirthDate"

.Type = adDBTimeStamp

.Value = Cells(RowNum, 5).Value
End With
colReturn.Add prm

CHAPTER 2 ■ DATA IN, DATA OUT84

9578ch02final.qxd 1/30/08 8:44 PM Page 84

Set prm = New ADODB.Parameter
With prm

.Name = "MaritalStatus"

.Type = adWChar

.Size = 1

.Value = Cells(RowNum, 6).Value
End With
colReturn.Add prm

Set prm = New ADODB.Parameter
With prm

.Name = "Gender"

.Type = adWChar

.Size = 1

.Value = Cells(RowNum, 7).Value
End With
colReturn.Add prm

Set prm = Nothing
Set SetParams = colReturn

End Function

There is nothing really fancy going here, although we have called upon a new property
of the Parameter object. We’re instantiating the Parameter object with this line of code:

Set prm = New ADODB.Parameter

Then we are setting various properties. You might have noticed when looking at the param-
eters list in SQL Server that some parameters were numeric and others were various flavors of
char (nchar and nvarchar, to be exact). These parameters require an additional property setting,
the Parameter.Size property. You also have other properties available, such as the Direction
property, which you can set to determine whether a value is for input or output.

With prm
.Name = "EmployeeID"
.Type = adInteger
.Value = Cells(RowNum, 1).Value

End With
colReturn.Add prm

Once the properties are set, we add the prm variable to our colReturn collection.
We reuse the prm variable by reinstantiating it before setting the next set of properties and

adding to the collection. This is an effective way of reusing an object and ensures you don’t
have any “leftover” property settings lingering.

This process is repeated for each input parameter that uspUpdateEmployeePersonalInfo
requires us to provide. Finally, we set the function’s return value to the internal collection
object:

Set SetParams = colReturn

CHAPTER 2 ■ DATA IN, DATA OUT 85

9578ch02final.qxd 1/30/08 8:44 PM Page 85

Next, we’ll finish setting up the Command object and loop through the collection of
Parameter objects, appending each to the Command object’s Parameters collection:

With cmd
.CommandType = adCmdStoredProc
.CommandText = "HumanResources.uspUpdateEmployeePersonalInfo"
For i = 1 To colParams.Count

.Parameters.Append colParams(i)
Next i

End With

cmd.Execute

We end by calling the Command.Execute method to send the updated data to the database.
Before we run this command, let’s take a look at the entire procedure. It should look like this:

Sub UpdateEmpPersonalInfo()
Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim colParams As Collection
Dim sConnString As String
Dim i As Integer

Sheets("Sheet1").Activate 'make sure we're on the data sheet

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MYSERVERNAME\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"

cnn.Open sConnString

Set cmd = New ADODB.Command
cmd.ActiveConnection = cnn

Set colParams = SetParams(ActiveCell.Row)

With cmd
.CommandType = adCmdStoredProc
.CommandText = "HumanResources.uspUpdateEmployeePersonalInfo"
For i = 1 To colParams.Count

.Parameters.Append colParams(i)
Next i

End With

cmd.Execute
cnn.Close

CHAPTER 2 ■ DATA IN, DATA OUT86

9578ch02final.qxd 1/30/08 8:44 PM Page 86

Set colParams = Nothing
Set cmd = Nothing
Set cnn = Nothing

MsgBox "Record has been updated", vbOKOnly, "Record Processed"

End Sub

Now we’ll modify some data and run the procedure. Figure 2-29 shows the data before we
make any changes.

Figure 2-29. Employee data before update

Kevin Brown, EmployeeID 2, has been recently married. Change his marital status to M,
and then move the cursor to save the change. Run the UpdateEmpPersonalInfo routine, making
sure the cursor is in the row containing Kevin’s record. The “Record has been updated” mes-
sage will appear.

To test your success, select and delete all the data from Sheet1 (or just change Kevin’s
marital status to any character), and run the GetEmpList subroutine again. Your display should
look like Figure 2-30.

Figure 2-30. Employee data after update

Of Excel, Data, and Object Orientation
Earlier in this book, I promised that we’d see object-oriented solutions to our coding problems
in Excel 2007. Let’s take our manager list–creation code and the code that lists a manager’s
staff, and convert them to classes. Normally, this is the way I would directly approach a solu-
tion, but up to this point we’ve been exploring some of the VBA possibilities in Excel 2007.

Open DataAccessSample04.xlsm and save it as DataAccessSample06.xlsm.
Open Module1 in the VBE and review the GetManagerList subroutine. We can break its

functionality down to just a few items. The problem with that is it’s doing a number of unre-
lated things. It’s setting up the worksheet for data import, opening a connection to the
database, getting data, putting it on the worksheet, and then formatting and cleaning up
the worksheet.

When we build our objects, we will pay strict attention to the separation of functionality.
The rule of thumb is that objects should do only one well-defined job. Of course there are
exceptions, but if you plan carefully, you will develop objects that provide a clearly defined
set of methods and properties, providing a focused set of functionality.

CHAPTER 2 ■ DATA IN, DATA OUT 87

9578ch02final.qxd 1/30/08 8:44 PM Page 87

The first thing we’re doing in our original code is setting up the worksheet by activating it
and then clearing a contiguous region in preparation for importing our data:

Set xlSheet = Sheets("Sheet2")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

Then we’re instantiating and opening a connection to our data:

Set cnn = New ADODB.Connection
sConnString = "Provider=SQLNCLI;Server=MYSERVERNAME\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"

cnn.Open sConnString

Next, we get our data into an ADO recordset and place it on our worksheet:

sSQL = "SELECT HumanResources.Employee.EmployeeID, Person.Contact.FirstName," ➥

& " Person.Contact.LastName FROM Person.Contact" ➥

& " INNER JOIN HumanResources.Employee" ➥

& " ON Person.Contact.ContactID = HumanResources.Employee.ContactID" ➥

& " WHERE (((HumanResources.Employee.EmployeeID) In" ➥

& " (SELECT HumanResources.Employee.ManagerID" ➥

& " FROM HumanResources.Employee)));"

Set rs = New ADODB.Recordset

rs.Open sSQL, cnn, adOpenDynamic

Sheets("Sheet2").Activate
Range("A1").CopyFromRecordset rs

And finally, we do a quick bit of formatting the sheet by using the AutoFit command to
resize the data columns:

xlSheet.Select
Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Range("A1").Select

These are four simple units of functionality that we can provide in a very generic and
reusable object-oriented solution.

In the VBE, add a new class module and name it cData. Add a second new class module
and name it cExcelSetup. These will contain the code that will provide all of the functionality
provided in our standard code module.

CHAPTER 2 ■ DATA IN, DATA OUT88

9578ch02final.qxd 1/30/08 8:44 PM Page 88

Let’s work with cExcelSetup first, and create an object that can provide our worksheet
setup and cleanup functionality.

Add three module-level variables:

Private m_xlSheet As Worksheet
Private m_rngInitialCellSelect As Range
Private m_rngDataRegionStart As Range

These are the private variables that will hold key property values for us. Next we’ll create
read/write properties to set and retrieve our property values:

Public Property Get Worksheet() As Worksheet
Set Worksheet = m_xlSheet

End Property

Public Property Set Worksheet(newSheet As Worksheet)
Set m_xlSheet = newSheet

End Property

Public Property Get InitialCellSelection() As Range
Set InitialCellSelection = m_rngInitialCellSelect

End Property

Public Property Set InitialCellSelection(newCell As Range)
Set m_rngInitialCellSelect = newCell

End Property

Public Property Get DataRegionStart() As Range
Set DataRegionStart = m_rngDataRegionStart

End Property

Public Property Set DataRegionStart(newCellAddress As Range)
Set m_rngDataRegionStart = newCellAddress

End Property

The GetInitialCellSelection and DataRegionStart properties both return Range objects.
We’ll be using the GetInitialCellSelection property to determine where our cursor will be
after our code runs. The DataRegionStart property sets and returns the cell that begins our
data region. This is used when we clear the sheet at the start of our procedures and when we
perform our autofit during cleanup.

Even though we’ve got Property Get and Set functions for these two properties, we’re
going to create an initialization function that allows us to set them both at once. This give us
the advantage of using less client code to accomplish the task of setting two properties, yet
gives us the flexibility of using the property settings directly if we need to.

Public Sub SetKeyCells(InitialCell As Range, DataRegionStart As Range)
Set m_rngInitialCellSelect = InitialCell
Set m_rngDataRegionStart = DataRegionStart

End Sub

CHAPTER 2 ■ DATA IN, DATA OUT 89

9578ch02final.qxd 1/30/08 8:44 PM Page 89

Now that we’ve got our key properties laid out, we can concentrate on adding our setup
and cleanup code.

Add a new subroutine called SetupWorksheet, and add the following code:

Public Sub SetupWorksheet()
Me.Worksheet.Activate
ClearRegion
Me.InitialCellSelection.Select

End Sub

This code corresponds to our original code from our standard module:

Set xlSheet = Sheets("Sheet2")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

The first and last lines of the SetupWorksheet routine correspond to the first and last lines
of our original code. There is a call to a private method called ClearRegion that does the work
of the remaining original code:

Private Sub ClearRegion()
m_xlSheet.Activate
Me.DataRegionStart.Activate
Selection.CurrentRegion.Select
Selection.ClearContents

End Sub

Add one last function to do our autofit cell formatting, and clean up the worksheet:

Public Sub DoAutoFit()
Me.Worksheet.Select
Me.DataRegionStart.Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Me.InitialCellSelection.Select

End Sub

By now, I’m sure you’ve noticed that this code is very similar to the original code in our
standard module. The major difference is that rather than referring to specific cells, we are
using internal class properties such as Me.DataRegionStart.Select.

That’s all there is to our cExcelSetup class. Let’s create our cData class to populate our
worksheet with data. Add the following private module-level variables:

Private m_cnn As ADODB.Connection
Private m_rs As ADODB.Recordset
Private m_sConnString As String
Private m_sSQL As String

CHAPTER 2 ■ DATA IN, DATA OUT90

9578ch02final.qxd 1/30/08 8:44 PM Page 90

These are the same tools we’ve been using all along to connect to our data and return sets
of data from the AdventureWorks database. We’re going to create properties to hold our con-
nection string and SQL statement. We’ll also create methods (functions) to open and close our
ADO connections and recordsets.

Add the following Property Get/Lets:

Public Property Get ConnectString() As String
ConnectString = m_sConnString

End Property

Public Property Let ConnectString(newString As String)
m_sConnString = newString

End Property

Public Property Get SQL() As String
SQL = m_sSQL

End Property

Public Property Let SQL(newSQL As String)
m_sSQL = newSQL

End Property

Next we are going to add methods to open and close our ADO Connection object:

Function OpenConnection()
If m_sConnString <> "" Then

m_cnn.Open m_sConnString
Else

MsgBox "Cannot open connection", vbOKOnly, "cData: OpenConnection Error"
End If

End Function

Function CloseConnection()
m_cnn.Close

End Function

Note that the OpenConnection method is using the private variable m_sConnString to
return the connection string to the AdventureWorks database.

Next we’ll create a new function called GetData and add the following code:

Function GetData() As ADODB.Recordset
m_rs.Open m_sSQL, m_cnn, adOpenDynamic

Set GetData = m_rs
End Function

This function returns a dataset based on an SQL statement passed in from the private
variable m_sSQL, and uses the private connection object to connect to the database. In reality,
this is a very simplistic method. In the real world, we would probably add arguments or prop-
erties for the cursor type, location, and other key settings, but for our example this will suffice.

CHAPTER 2 ■ DATA IN, DATA OUT 91

9578ch02final.qxd 1/30/08 8:44 PM Page 91

Our last order of business for this class is setting its initialization and termination
methods. It is good practice to initialize any internal objects and data variables, and the
Class_Initialize method is the place to do it. When using internal objects like the ADO
objects, using the Class_Terminate method allows us a place to clean them up when the
object goes out of scope in our client code.

Private Sub Class_Initialize()
m_sConnString = ""
m_sSQL = ""
Set m_cnn = New ADODB.Connection
Set m_rs = New ADODB.Recordset
Set m_prm = New ADODB.Parameter
Set m_cmd = New ADODB.Command

End Sub

Private Sub Class_Terminate()
Set m_cnn = Nothing
Set m_rs = Nothing
Set m_prm = Nothing
Set m_cmd = Nothing

End Sub

Let’s take a look at both classes in their entirety (shown in Listings 2-7 and 2-8). Then
we’ll create client code to use these objects and compare them to the original code in
Module1.

Listing 2-7. cExcelSetup Class Code

Option Explicit

Private m_xlSheet As Worksheet
Private m_rngInitialCellSelect As Range
Private m_rngDataRegionStart As Range
'

Public Property Get Worksheet() As Worksheet
Set Worksheet = m_xlSheet

End Property

Public Property Set Worksheet(newSheet As Worksheet)
Set m_xlSheet = newSheet

End Property

Public Property Get InitialCellSelection() As Range
Set InitialCellSelection = m_rngInitialCellSelect

End Property

CHAPTER 2 ■ DATA IN, DATA OUT92

9578ch02final.qxd 1/30/08 8:44 PM Page 92

Public Property Set InitialCellSelection(newCell As Range)
Set m_rngInitialCellSelect = newCell

End Property

Public Property Get DataRegionStart() As Range
Set DataRegionStart = m_rngDataRegionStart

End Property

Public Property Set DataRegionStart(newCellAddress As Range)
Set m_rngDataRegionStart = newCellAddress

End Property

Public Sub SetKeyCells(InitialCell As Range, DataRegionStart As Range)
Set m_rngInitialCellSelect = InitialCell
Set m_rngDataRegionStart = DataRegionStart

End Sub

Public Sub SetupWorksheet()
Me.Worksheet.Activate
ClearRegion
Me.InitialCellSelection.Select

End Sub

Private Sub ClearRegion()
m_xlSheet.Activate
Me.DataRegionStart.Activate
Selection.CurrentRegion.Select
Selection.ClearContents

End Sub

Public Sub DoAutoFit()
Me.Worksheet.Select
Me.DataRegionStart.Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
Me.InitialCellSelection.Select

End Sub

Listing 2-8. cData Class Code

Option Explicit

Private m_cnn As ADODB.Connection
Private m_rs As ADODB.Recordset
Private m_sConnString As String
Private m_sSQL As String
'

CHAPTER 2 ■ DATA IN, DATA OUT 93

9578ch02final.qxd 1/30/08 8:44 PM Page 93

Public Property Get ConnectString() As String
ConnectString = m_sConnString

End Property

Public Property Let ConnectString(newString As String)
m_sConnString = newString

End Property

Public Property Get SQL() As String
SQL = m_sSQL

End Property

Public Property Let SQL(newSQL As String)
m_sSQL = newSQL

End Property

Function OpenConnection()
If m_sConnString <> "" Then

m_cnn.Open m_sConnString
Else

MsgBox "Cannot open connection", vbOKOnly, "cData: OpenConnection Error"
End If

End Function

Function CloseConnection()
m_cnn.Close

End Function

Function GetData() As ADODB.Recordset
m_rs.Open m_sSQL, m_cnn, adOpenDynamic

Set GetData = m_rs
End Function

Private Sub Class_Initialize()
m_sConnString = ""
m_sSQL = ""
Set m_cnn = New ADODB.Connection
Set m_rs = New ADODB.Recordset

End Sub

Private Sub Class_Terminate()
Set m_cnn = Nothing
Set m_rs = Nothing

End Sub

CHAPTER 2 ■ DATA IN, DATA OUT94

9578ch02final.qxd 1/30/08 8:44 PM Page 94

Using the cExcelSetup and cData Objects
Now that we’ve created the objects we need, let’s put them to use in client code.

In the VBE, add a new standard module and name it basManagers. Add two module-level
variables to hold our cExcelSetup and cData objects:

Dim m_cData As cData
Dim m_cXL As cExcelSetup

These are placed at module level in case we need to use the objects across function calls.
Create a new subroutine and name it GetManagers. Add the following code:

Dim sConnString As String
Dim sSQL As String

Set m_cXL = New cExcelSetup
Set m_cData = New cData
sConnString = "Provider=SQLNCLI;Server=MyServerName\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"
sSQL = "SELECT HumanResources.Employee.EmployeeID, Person.Contact.FirstName," ➥

& " Person.Contact.LastName FROM Person.Contact" ➥

& " INNER JOIN HumanResources.Employee" ➥

& " ON Person.Contact.ContactID = HumanResources.Employee.ContactID" ➥

& " WHERE (((HumanResources.Employee.EmployeeID) In" ➥

& " (SELECT HumanResources.Employee.ManagerID" ➥

& " FROM HumanResources.Employee)));"

Here we are instantiating our cExcelSetup and cData objects, and preparing variables to
set up the cData class.

When we analyzed the original code, we found we needed to have three sets of function-
ality, prepare the worksheet for data import, get and display the data, and resize the columns
for the data. We are going to create helper functions to do most of this work.

Add a new subroutine to basManagers and name it DoClearSheet(). Add the following
code:

With m_cXL
Set .Worksheet = Sheets("Sheet1")
.SetKeyCells .Worksheet.Range("A1"), .Worksheet.Range("A3")
.SetupWorksheet

End With

Note that we’re using our cExcelSetup object’s SetKeyCells method, allowing us to assign
values to the InitialCellSelection and DataRegionStart properties with one line of code.

Add another subroutine called GetData. This procedure will take two arguments: the con-
nection string and the SQL statement. Here is the code for the GetData method:

Sub GetData(ConnString As String, which As String)
With m_cData

.ConnectString = ConnString

.OpenConnection

.SQL = which

CHAPTER 2 ■ DATA IN, DATA OUT 95

9578ch02final.qxd 1/30/08 8:44 PM Page 95

m_cXL.Worksheet.Range("A1").CopyFromRecordset .GetData
.CloseConnection

End With
End Sub

Both of these methods use only our cExcelSetup and cData objects with no external code.
Let’s finish our GetManagers procedure by adding calls to these methods, and also adding

some cleanup code. The entire GetManagers subroutine should look like this:

Sub GetManagers()
Dim sConnString As String
Dim sSQL As String

Set m_cXL = New cExcelSetup
Set m_cData = New cData
sConnString = "Provider=SQLNCLI;Server=MyServerName\SQLEXPRESS;" ➥

& "Database=AdventureWorks;Trusted_Connection=yes;"
sSQL = "SELECT HumanResources.Employee.EmployeeID, Person.Contact.FirstName," ➥

& " Person.Contact.LastName FROM Person.Contact" ➥

& " INNER JOIN HumanResources.Employee" ➥

& " ON Person.Contact.ContactID = HumanResources.Employee.ContactID" ➥

& " WHERE (((HumanResources.Employee.EmployeeID) In" ➥

& " (SELECT HumanResources.Employee.ManagerID" ➥

& " FROM HumanResources.Employee)));"
DoClearSheet
GetData sConnString, sSQL
m_cXL.DoAutoFit
Set m_cData = Nothing
Set m_cXL = Nothing

End Sub

I mentioned a moment ago that neither of our helper methods made any direct VBA calls.
The same is true of the GetManagers method. All of our work is being done by our objects from
start to finish. The beauty of this is that we can drop these classes in any Excel project and
have this functionality available instantly.

In our current Excel project, we can change the database and/or SQL statement and
import any data we need via the cData object.

Summary
In this chapter, you’ve taken a look at some of the many data access methods you can use in
Excel. You’ve seen how to use DAO to get data into an Excel workbook. DAO, while old technol-
ogy, is certainly still a viable alternative for Windows 2000 or XP users. It’s easy to use and very
fast if you’re working with local data sources like an Access database stored on your hard drive.
But what if you need to work with remote data? Or what if you need to work with data in a dis-
connected fashion? In the next section, we began using ActiveX Data Objects (ADO), a
technology that addresses these issues and more.

CHAPTER 2 ■ DATA IN, DATA OUT96

9578ch02final.qxd 1/30/08 8:44 PM Page 96

You’ve also explored various methods of importing data into your Excel workbooks.
You’ve pulled data from Access databases to text files to ODBC and OLE DB data sources.
You’ve also taken a look at how to think of functionality from an object-oriented point of view.
Taking existing code that you reuse often or rewrite in a similar manner is a great way to start
moving into OOP practices.

As you move into the next chapter and begin looking at some of the XML features of Excel
2007, you’ll continue developing objects to do your work for you. Some will provide a level of
reusability; some may be one-offs. There is no rule that says all of your code must be reusable.
In fact, you might find that you write a lot of code for an application that is specific to that
application. This is perfectly acceptable. Reusability is not the only advantage to program-
ming custom objects. Ease of maintenance is another by-product of OOP, and is just as
valuable as code reuse.

CHAPTER 2 ■ DATA IN, DATA OUT 97

9578ch02final.qxd 1/30/08 8:44 PM Page 97

9578ch02final.qxd 1/30/08 8:44 PM Page 98

Using XML in Excel 2007

The XML file format was introduced with Excel 2003 (XML support was introduced in Excel
2000). Excel 2007 has new XML file formats. The *.xlsx format represents a workbook that
does not and cannot contain macros. The *.xlsm format represents a workbook that can or
does contain macros. This separation is a security enhancement that lets the user know in
advance of opening a document that there may be code inside. Remember the “This docu-
ment may contain harmful code” warnings in previous Microsoft Office versions? With these,
you would not be aware of the possibility of code until you opened the file. Now, your users
will know in advance if they are opening a workbook containing code.

The Excel XML format is compatible with Microsoft Office 2003, Office XP, and Office 2000
with the addition of a file format converter patch, available from Microsoft Office Online and
Microsoft Update. Users of Office 2003, Office XP, and Office 2000 can open, edit, and save files
using the new Excel XML format.

By providing the XML file format, Microsoft has given us the ability to create Excel files
(and Word and PowerPoint files as well) on machines that do not have these applications
installed. Navigating the Excel DOM, some of which we worked with in the previous chapter,
is no longer the only method to access Excel data and/or create Excel files.

XML also gives us the advantage of using XSL to transform external XML to Excel format
and from Excel format to many other formats.

Importing XML in Excel 2007
Importing XML data into an Excel workbook is a fairly straightforward process. The Workbook
object has a method called XmlImport that does the work for us.

Open a new workbook and save it with an .xlsm format file extension. Open the VBE, add
a standard module, and create a new function named GetXMLData():

Sub GetXMLData()
ActiveWorkbook.XmlImport URL:= ➥

"C:\projects\Excel\cds.xml", ImportMap:= ➥

Nothing, Overwrite:=True, Destination:=Range("A1")
End Sub

■Caution Be sure to adjust the file path to reflect your location for the XML file.

99

C H A P T E R 3

9578ch03final.qxd 1/30/08 8:42 PM Page 99

The ActiveWorkbook object is actually a property of the Application object that returns a
Workbook object type, and therefore contains all the properties and methods of the Workbook
object.

Figure 3-1 shows the ActiveWorkbook object as it appears in the Visual Basic Object
Browser. Figure 3-2 shows the Workbook object and its properties and methods. The
ActiveWorkbook object has all the properties and methods of the Workbook object.

Figure 3-1. ActiveWorkbook property of Application object

If you try double-clicking the ActiveWorkbook property, you will not find any properties or
methods associated with it in the Object Browser. Click the Workbook link in the description
section of the Object Browser, however, and you will see the Workbook object’s properties and
methods listed, as shown in Figure 3-2. Since a reference to the ActiveWorkbook is actually
returning a Workbook, you can access all of these properties and methods.

Figure 3-2. Workbook object and class members

I’ll present you with a quick example to show that the two objects contain the same class
members. Following are two screenshots. Figure 3-3 contains the Immediate window showing
IntelliSense for the Workbook object, and Figure 3-4 shows IntelliSense for the ActiveWorkbook
object.

CHAPTER 3 ■ USING XML IN EXCEL 2007100

9578ch03final.qxd 1/30/08 8:42 PM Page 100

Figure 3-3. IntelliSense for Workbook object

Figure 3-4. IntelliSense for ActiveWorkbook object

So if you find yourself examining an object in the Object Browser and you don’t see any
class members, check to see if it’s a property of another object and look at that object’s class
members.

Before we run the code, let’s take a look at the XmlImport function and see what it does
(see Figure 3-5).

Figure 3-5. XmlImport function arguments

The XmlImport function takes four arguments, as shown in Table 3-1.

CHAPTER 3 ■ USING XML IN EXCEL 2007 101

9578ch03final.qxd 1/30/08 8:42 PM Page 101

Table 3-1. XmlImport Function Argument Descriptions

Name Required (Y/N) Data Type Description

URL Y String Path to an XML data file.

ImportMap Y XMLMap The XML map to apply when importing the
file.

Overwrite N Variant Specifies whether or not to overwrite data
that has been mapped to the schema map
specified in the ImportMap parameter. Set to
True to overwrite the data or False to append
the new data to the existing data.

Destination N Variant Specifies the top-left cell of the range that will
display the data.

The XmlImport function returns a value of type XIXmlImportResult, which is an enum
showing the success or failure of the call. Figure 3-6 shows the available options displayed in
the Object Browser window.

Figure 3-6. XIXmlImportResult members

Let’s run our GetXMLData procedure and see what we get.
If no schema exists for this data, Excel will create one for you, as shown in Figure 3-7.

Figure 3-7. XML Schema dialog box

Excel refers to these schemas as XML maps. Click the check box so you won’t see this
message any longer, and let the import continue. When the import is finished, the data should
look like that in Figure 3-8.

CHAPTER 3 ■ USING XML IN EXCEL 2007102

9578ch03final.qxd 1/30/08 8:42 PM Page 102

Figure 3-8. Imported XML file

Our call to XmlImport sets the arguments like this:

ActiveWorkbook.XmlImport URL:= _
"C:\projects\Excel\cds.xml", ImportMap:= ➥

Nothing, Overwrite:=True, Destination:=Range("A1")

The URL argument is pointing to a file named cds.xml, which contains discography infor-
mation. The ImportMap argument is set to Nothing for now because we do not have an existing
schema for this data. We are setting Overwrite to True to overwrite any existing data, and the
Destination range is setting cell A1 as the target for the start of our data range.

If we try to rerun this code as is, we will generate an error, as shown in Figure 3-9.

Figure 3-9. XML map error

This is due to the fact that the first time we ran the code, Excel created a map for us and
bound our data table to it. To view that map, right-click anywhere in the data range and
choose XML ➤ XML Source (Figures 3-10 and 3-11).

CHAPTER 3 ■ USING XML IN EXCEL 2007 103

9578ch03final.qxd 1/30/08 8:42 PM Page 103

Figure 3-10. XML menu

Figure 3-11. The XML Source window

CHAPTER 3 ■ USING XML IN EXCEL 2007104

9578ch03final.qxd 1/30/08 8:42 PM Page 104

Figure 3-11 shows the XML Source window with the artist element selected. Selecting an
element in the XML Source window selects the associated (or mapped) data range. Above the
XML map is a drop-down list that contains all of the XML maps in the currently active work-
book. The XML map in this project is called cds_Map.

The second time the code is run, we run into trouble because Excel automatically creates
a new map for the data that is mapped to destination cell A1. Excel will not allow you to bind
your data to more than one XML map. If you change the destination cell, the procedure runs
fine, however. So how do we refresh our data if a source file is updated?

The XMLMaps collection has a DataBinding property that has a Refresh method. Using this
method, we can read in any changes to the XML file that our data range is mapped to.

Before we begin, let’s copy our GetXMLData function into a standard code module in a new
workbook and save it. Run the GetXMLData macro from the Developer ribbon.

Open the cds.xml file and add a new title to the list by adding the following set of nodes at
the top of the XML file:

<cd>
<artist>Nirvana</artist>
<title>Greatest Hits</title>
<releasedate>2000</releasedate>

</cd>

Save the file. Add the following function to the standard module:

Sub RefreshXML()
Range("A1").Select
ActiveWorkbook.XmlMaps("cds_Map").DataBinding.Refresh

End Sub

Run the code by pressing the F5 key with the insertion point inside the RefreshXML sub-
routine. The data range is expanded to include the new data, as shown in Figure 3-12.

Figure 3-12. XML data refreshed

Remove the new set of nodes and run the RefreshXML method again, and the table will
be resized to display only the data from the XML file.

CHAPTER 3 ■ USING XML IN EXCEL 2007 105

9578ch03final.qxd 1/30/08 8:42 PM Page 105

Excel 2007 provides other methods to remove and load XML map settings. The
DataBinding.ClearSettings method unbinds the data in a range from the XML file.

ActiveWorkbook.XmlMaps("cds_Map").DataBinding.ClearSettings

The DataBindings.LoadSettings method takes the file path or URL as an argument to load
the mapping from the specified XML file.

ActiveWorkbook.XmlMaps("cds_Map").DataBinding.LoadSettings ➥

"C:\projects\Excel\cds.xml"

Appending XML Data
Both the Excel Workbook object and the XmlMaps collection contain methods for appending or
overwriting XML data in a workbook. The Workbook.XmlImport method and the Xmlmaps.
Import method provide functionality to do either. Both methods take Overwrite arguments,
which when set to False will append data to any existing data. The XmlImport method, how-
ever, will not append data when Overwrite is set to False if the optional Destination argument
is used. In this case, nothing will happen (the append is cancelled).

We’re going to append data from another XML file containing more discography informa-
tion that we’ve received. We’ll use the ActiveWorkbook’s XmlImport method to do the append.
Add a function to a standard module and name it AppendXMLData. The code looks like this:

Sub AppendXMLData()
Dim map As XmlMap
Set map = ActiveWorkbook.XmlMaps("cds_Map")
ActiveWorkbook.XmlImport URL:= ➥

"C:\projects\Excel\cds02.xml", ImportMap:= ➥

map, Overwrite:=False
End Sub

Run the AppendXMLData() method on the same worksheet that you imported the original
XML discography information on. The data should look like that shown in Figure 3-13.

Figure 3-13. XML data appended

CHAPTER 3 ■ USING XML IN EXCEL 2007106

9578ch03final.qxd 1/30/08 8:42 PM Page 106

Using the XmlMaps collection’s Import method, the same call might look like this:

Sub AppendXMLIntoExistingMap()
Dim sNewData As String
sNewData = "C:\projects\Excel\cds02.xml"

ActiveWorkbook.XmlMaps("cds_Map").Import sNewData, False
End Sub

The Overwrite argument is set to False, causing the data to be appended to the end of
your data range. Set it to True to write over the data.

Sub ImportXMLIntoExistingMap()
Dim sNewData As String
sNewData = "C:\projects\Excel\cds.xml"

ActiveWorkbook.XmlMaps("cds_Map").Import sNewData, True
End Sub

Saving XML Data
Saving your data back to the existing XML file or a new file is as simple as a call to the
Workbook object’s SaveAsXMLData method. The SaveAsXMLData method takes two arguments,
the file name to save to and the XML map object to retrieve the file schema from. Figure 3-14
shows the SaveAsXMLData method displayed in the Visual Basic Immediate window with its
arguments shown via IntelliSense.

Figure 3-14. SaveAsXMLData method

Add a new procedure to the standard module you’ve been working with, and name it
SaveXML.

Sub SaveXML()
Dim ExportMap As XmlMap
Set ExportMap = ActiveWorkbook.XmlMaps("cds_Map")

If ExportMap.IsExportable Then
ActiveWorkbook.SaveAsXMLData ➥

"C:\projects\Excel\cds_XML_out.xml", ExportMap
Else
MsgBox ExportMap.Name & " cannot be used to export XML"

End If
End Sub

CHAPTER 3 ■ USING XML IN EXCEL 2007 107

9578ch03final.qxd 1/30/08 8:42 PM Page 107

Before persisting your data, it’s a good idea to ensure that the XML is exportable. The
XMLMaps collection contains a read-only IsExportable method that returns True if any lists that
refer to the map are exportable. A map is not exportable if an invalid value for an element is
present or if required fields are not supplied.

Run the SaveXML macro from the Macros dialog box, accessible from the Developer rib-
bon. Figure 3-15 shows the XML generated by the SaveXML subroutine.

Figure 3-15. Exported XML file

When saving an XML map to a file, Excel adds the processing instructions. Our original
file was very basic and did not include them (of course, there’s no harm in including them).

Building an XML Data Class
Now that we’ve got an idea of what XML data services Excel provides us, let’s build a class that
will give us an easy-to-use interface to this functionality. Before we begin, though, let’s think
about what we’d like our class to do:

• We want it to bring in data from various XML data sources.

• We want the ability to refresh the data in case the source file is updated (either manu-
ally or through an automated process).

• We want to append data from another file that conforms to the same XML schema.

CHAPTER 3 ■ USING XML IN EXCEL 2007108

9578ch03final.qxd 1/30/08 8:42 PM Page 108

• We want to be able to clear and reset the data bindings.

• We want to be able to persist the data back to the original file or to a new file.

Those are some basic functions we’d expect from this object, but what else might a class
of this type do for us?

• Check for the existence of XML maps?

• Enumerate XML maps?

• Rename an XML map?

• Add or delete XML maps?

Open a new workbook and add a new class module in the VBE. Name the class cXML.
Before we do any importing of XML data, it’s a good idea to see if a map exists for our

data. Add a new public property and call it HasMaps. Normally, I would add a module-level
variable to hold the contents of this property, but the HasMaps property will be read-only.
Creating a module-level variable presents us with the option of accessing that variable
directly in our code. I’m suggesting leaving it out to prevent that possibility.

Add the following code to the HasMaps property:

Public Property Get HasMaps() As Boolean
Dim blnReturn As Boolean

blnReturn = ActiveWorkbook.XmlMaps.Count >= 1
HasMaps = blnReturn

End Property

My preference is to keep my code as concise as possible without sacrificing readability.
I’m using one line of code in place of an If...Else block. The long form, if you prefer it, looks
like this.

Dim blnReturn As Boolean

If ActiveWorkbook.XmlMaps.Count >= 1 Then
blnReturn = True

Else
blnReturn = False

End If

HasMaps = blnReturn

Add a property to store the name of the XML file to import plus a few additional setup
properties:

Public Property Get XMLSourceFile() As String
XMLSourceFile = m_sXMLSourceFile

End Property

CHAPTER 3 ■ USING XML IN EXCEL 2007 109

9578ch03final.qxd 1/30/08 8:42 PM Page 109

Public Property Let XMLSourceFile(newXMLSourceFile As String)
m_sXMLSourceFile = newXMLSourceFile

End Property

Public Property Get DataRange() As Excel.Range
Set DataRange = m_oRange

End Property

Public Property Set DataRange(newRange As Excel.Range)
Set m_oRange = newRange

End Property

Property Get Overwrite() As Boolean
Overwrite = m_blnOverwrite

End Property

Property Let Overwrite(newOverwrite As Boolean)
m_blnOverwrite = newOverwrite

End Property

Public Property Get MapName() As String
MapName = m_sMapName

End Property

We’ve added a property to store and retrieve the DataRange into which we’ll put our data
(remember, it’s the top-left cell reference in the range). We’ve also added an overwrite flag and
a read-only property to retrieve the name of the XML map for this object.

The module-level declarations section should now look like this:

Dim m_sXMLSourceFile As String
Dim m_blnOverwrite As Boolean
Dim m_oRange As Excel.Range
Dim m_sMapName As String

Now let’s start getting some work done. We are going to build, import, append, refresh,
and save functions for our XML data. The first step is to get data from the XML file into the
worksheet. We have a few scenarios in which to put data on our worksheet:

• Bringing in data from an XML file

• Overwriting existing XML data with a file that shares the same schema

• Appending XML data to our existing XML data

We’ll start out by building a function that gives a developer who might be using this class
in a project the ability to bring in new data (thereby creating an XML map) and a function to
add additional data to previously imported XML data (or overwrite it if desired). These will be
declared as private functions within the class. We will create a wrapper method to let our code
make the decision as to which process we are calling. We’ll also add a method to provide a
direct call to an append function.

CHAPTER 3 ■ USING XML IN EXCEL 2007110

9578ch03final.qxd 1/30/08 8:42 PM Page 110

In the cXML class module, add a private method named GetNewXMLData. The code for this
method will look very familiar:

Private Function GetNewXMLData()
ActiveWorkbook.XmlImport m_sXMLSourceFile, Nothing, m_blnOverwrite, m_oRange
m_sMapName = ActiveWorkbook.XmlMaps(ActiveWorkbook.XmlMaps.Count).Name

End Function

We are making the same call to the XmlImport method of the ActiveWorkbook object as
we did in the examples that we created in standard code modules—but rather than directly
setting its arguments, we are referring to the internal variables of our cXML class.

The GetNewXMLData method is actually doing two jobs for us. The first, of course, is get-
ting the data into our worksheet. Remember that a call to the XmlImport method brings in
data and creates an XML map. The second line of code in this method is setting our class’s
MapName property for us:

m_sMapName = ActiveWorkbook.XmlMaps(ActiveWorkbook.XmlMaps.Count).Name

This will come in handy when we need to add data or overwrite the current set of data.
By checking the XmlMaps.Count property, we can get the latest addition to the collection that
was added by the XmlImport method.

Now we’ll add a second private function that will append or overwrite data for an existing
XML map. Add a new private function and name it GetXMLForExistingMap. Add the following
code:

Private Function GetXMLForExistingMap(DoOverwrite As Boolean)
ActiveWorkbook.XmlMaps(m_sMapName).Import m_sXMLSourceFile, DoOverwrite

End Function

This function takes one argument, which is used to flag whether we want to append or
overwrite our existing data. The single line of code should again be familiar. We are using the
XmlMaps collection’s Import method to get our data. Notice that we’re using the internal
m_sMapName variable to determine which XML map the data corresponds to.

Now let’s add that wrapper method and let our class decide how to handle the data
retrieval. Add a public function to the cXML class and name it GetXMLData. Add the following
code:

Public Function GetXMLData(Optional DoOverwrite As Boolean = True)
If (m_sMapName = "") Or (Not Me.HasMaps) Then
GetNewXMLData

Else
'must set XMLSourceFile Property before appending if necessary
GetXMLForExistingMap DoOverwrite

End If
End Function

The GetXMLData method has one optional argument, which is used to set an overwrite flag
for the incoming data. This argument has a default value of True, remaining consistent with
Excel’s built-in object interfaces.

CHAPTER 3 ■ USING XML IN EXCEL 2007 111

9578ch03final.qxd 1/30/08 8:42 PM Page 111

The code begins with branching logic to determine whether our object already contains
a reference to an XML map or whether the workbook does not contain any XML maps.

Once that’s determined, the code will either bring in new data and create an XML map
via the private GetNewXMLData function or it will call GetXMLForExistingMap, where, depending
on how the overwrite flag is set, it will either append or overwrite the data in the existing
mapping. The second branch also contains a comment noting that the XMLSourceFile prop-
erty should be set before calling this function to perform an append.

Before we create client code to test this, remember that the original GetXMLData function
that we wrote in our standard module in a previous example generated an error if it was run
two times in a row (against a data table that was already mapped). We are going correct that
error in our cXML class. Our private GetNewXMLData method is almost identical to that original
code. This was done this way to show the relationship of the standard code to the class code.

We can use the XPath property of the Range object to determine if our destination cell
(which is set when we instantiate our cXML object) already belongs to a mapping. If it
belongs to a mapping, we’ll perform a data refresh using the XmlMaps collection; if not, we’ll
import the data and create a new XML map. We are also going to validate the import using
the XlXmlImportResult data type as the return value of our XmlImport call.

The first thing we need to do is return the name of the destination range’s map if it has
one. Add the following private function to the cXML class:

Private Function CurrentMapName() As String
Dim strReturn As String
On Error GoTo Err_Handle
If Me.HasMaps Then
strReturn = m_oRange.XPath.map.Name

Else
strReturn = ""

End If

Exit_Function:
CurrentMapName = strReturn
Exit Function

Err_Handle:
'not in a cell in the mapped table - treat as new mapping
strReturn = ""
Resume Exit_Function

End Function

This code first checks to see if the workbook has any XML maps. If it does, it returns the
map name for the class’s destination range. If not, it returns an empty string. The error han-
dler is there in case the destination range is set to a location outside an XML-mapped area.
It returns an empty string in that case, and treats it like a new mapping.

Now we’ll modify the private method, GetNewXMLData, to use CurrentMapName and to give
us a return value on our import. And while we’re at it, we’ll add a result output to
GetXMLForExistingMap, and finally, the GetXMLData method will respond to those results with
a message to the user. The finished code for all three methods looks like this:

CHAPTER 3 ■ USING XML IN EXCEL 2007112

9578ch03final.qxd 1/30/08 8:42 PM Page 112

Private Function GetNewXMLData() As XlXmlImportResult
Dim sCurrMap As String
Dim result As XlXmlImportResult
'check to see if data range is already bound to a map
sCurrMap = CurrentMapName
If sCurrMap = "" Then
result = ActiveWorkbook.XmlImport(m_sXMLSourceFile, Nothing, ➥

m_blnOverwrite, m_oRange)
m_sMapName = ActiveWorkbook.XmlMaps(ActiveWorkbook.XmlMaps.Count).Name

Else
m_sMapName = sCurrMap
ActiveWorkbook.XmlMaps(m_sMapName).DataBinding.Refresh
result = xlXmlImportSuccess

End If

GetNewXMLData = result
End Function

Private Function GetXMLForExistingMap(DoOverwrite As Boolean) As XlXmlImportResult
'calling this function to append data requires ➥

setting the XMLSourceFile Property
Dim result As XlXmlImportResult
result = ActiveWorkbook.XmlMaps(m_sMapName).Import(m_sXMLSourceFile, DoOverwrite)

GetXMLForExistingMap = result
End Function

Public Function GetXMLData(Optional DoOverwrite As Boolean = True)
Dim result As XlXmlImportResult
If (m_sMapName = "") Or (Not Me.HasMaps) Then
result = GetNewXMLData

Else
'must set XMLSourceFile Property before appending if necessary
result = GetXMLForExistingMap(DoOverwrite)

End If

Select Case result
Case xlXmlImportSuccess
MsgBox "XML data import complete"

Case xlXmlImportValidationFailed
MsgBox "Invalid document could not be processed"

Case xlXmlImportElementsTruncated
MsgBox "Data too large. Some data was truncated"

End Select
End Function

Let’s create some client code to test our cXML class out as we build it.

CHAPTER 3 ■ USING XML IN EXCEL 2007 113

9578ch03final.qxd 1/30/08 8:42 PM Page 113

Add a standard module to the workbook, and declare a module-level variable:

Dim oEmpDept As cXML

Add a new procedure and name it GetEmpDept. Add the following code:

■Note Be sure to change the file path to where you have the XML file stored.

Public Sub GetEmpDept()
Set oEmpDept = New cXML

oEmpDept.XMLSourceFile = ➥

"C:\Chapter 3\EmpDept.xml"
Set oEmpDept.DataRange = Sheets(1).Range("A1")
oEmpDept.GetXMLData

End Sub

Before running the client code, save your work. We are going to import some test data,
and then we’ll close the workbook without saving to remove the data and XML maps between
each test. This is an easy way to reset the project without deleting worksheets and XML maps
between tests.

Our data file contains a listing of Adventure Works employees and their department and
job information. Since the object is just being instantiated here and its MapName property is
empty, the code will fall into the first branch of the If statement and call the GetNewXMLData
method.

Run the GetEmpDept procedure. Figure 3-16 shows the last few rows of the imported XML
data.

Figure 3-16. Last few rows of Adventure Works employee XML file

Run the GetEmpDept procedure once again. This time, the data is just refreshed. If you
need to see the proof, put a breakpoint in the GetEmpDept procedure before you run it the
second time. Figure 3-17 shows the code in break mode when being run a second time.
Figure 3-18 shows the code falling into the Else statement and calling the RefreshXML
method instead when the XML map already exists.

CHAPTER 3 ■ USING XML IN EXCEL 2007114

9578ch03final.qxd 1/30/08 8:42 PM Page 114

Figure 3-17. First time importing EmpDept.xml

Figure 3-18. Second time importing EmpDept.xml

Close the file without saving it, and then reopen it. Let’s append some data contained in
another XML file that conforms to the same XML schema. In the same standard module, add
another method and name it GetAdditionalEmpDeptInfo.

Public Sub GetAdditionalEmpDeptInfo()
'appends data from files sent in from field offices.
If oEmpDept Is Nothing Then
Set oEmpDept = New cXML

End If

oEmpDept.XMLSourceFile = ➥

"C:\Chapter 3\EmpDeptAdd.xml"
Set oEmpDept.DataRange = Sheets(1).Range("A1")
oEmpDept.GetXMLData False

End Sub

Save the file after adding this code.

CHAPTER 3 ■ USING XML IN EXCEL 2007 115

9578ch03final.qxd 1/30/08 8:42 PM Page 115

This function might be used to append data from files you receive on a regular basis.
Run the GetEmpDept macro once again. Open the Macro dialog and run the
GetAdditionalEmpDeptInfo subroutine to append the new data.

Let’s take a look at what this code is doing. First we check to see that we have created an
oEmpDept object, and if not, create one. Then we set the XMLSourceFile property to the location
of the file containing the additional XML data (otherwise, we’ll just append the same data to
our list). Once that’s done, we call the GetXMLData method again, but this time we pass in the
Overwrite flag with a value of False to tell the method to append the data.

Remember to not save the file after importing the data so that you can easily reset the file.
Figure 3-19 shows the new XML data appended to our existing worksheet.

Figure 3-19. New rows appended to Adventure Works employee information

There may be a case where you do not want to change the XMLSourceFile property but
still need to append data. Let’s create a method in our class that allows us to point to the data
file directly.

First reset the file by closing without saving. Then reopen the file.
In the cXML class, add a method called AppendFromFile. We’ll pass in the file name as an

argument and use the XmlMaps collection’s Import method to append the data. The finished
method will look like this:

Public Function AppendFromFile(FileName As String)
'calling this function to append data will not modify the XMLSourceFile Property
ActiveWorkbook.XmlMaps(m_sMapName).Import FileName, False

End Function

Once again, this line of code is identical to the code in our earlier experiments, with the
exception of calling on the class’s internal variable for the XML map name. We can quickly test
this method. Add a new subroutine to the standard module called AppendEmpDeptInfo. Add the
following code:

Public Sub AppendEmpDeptInfo()
'sample routine to get additional XML data w/o modifying XMLSourceFile Property
oEmpDept.AppendFromFile ➥

"C:\Chapter 3\EmpDeptAdd.xml"
End Sub

CHAPTER 3 ■ USING XML IN EXCEL 2007116

9578ch03final.qxd 1/30/08 8:42 PM Page 116

Run the GetEmpDept macro to get the initial data on the worksheet. Then run the
AppendEmpDeptInfo procedure from the Macro dialog box. The result is identical, but
the XMLSourceFile property was not modified.

In case the contents of the file you’re reading will be updated from time to time by exter-
nal sources, the XmlMaps collection has the ability to refresh the data source.

Add a new method to the cXML class called RefreshXML. Here is the code for the RefreshXML
method:

Public Function RefreshXML()
ActiveWorkbook.XmlMaps(m_sMapName).DataBinding.Refresh

End Function

Now that we have our XML data in a worksheet, we can modify it or add records. We need
to add one last bit of functionality to our class: the ability to save the data back to XML. Reset
your project by closing without saving and reopening it.

Add a new method to the cXML class called SaveToFile. The finished SaveToFile method
will look like this:

Public Function SaveToFile(Optional SaveAsFileName As String = "FileNotSet")
'if no SaveAsFileName is provided the current XMLSourceFile will be overwritten
Dim ExportMap As XmlMap

If SaveAsFileName = "FileNotSet" Then
SaveAsFileName = m_sXMLSourceFile

End If

Set ExportMap = ActiveWorkbook.XmlMaps(m_sMapName)
If ExportMap.IsExportable Then
ActiveWorkbook.SaveAsXMLData SaveAsFileName, ExportMap

Else
MsgBox ExportMap.Name & " cannot be used to export XML"

End If
End Function

We’ve included an optional argument for the file name of the saved document and
passed in a default nonsense value. If we want to save the data back to the file from which it
came, we simply call the method with no argument. The code will use whatever file is stored
in the XMLSourceFile property. If we want to write the data out to a new file, we pass in the
new file name. As in our original example, we’re checking to ensure the map is exportable,
and then we’re calling the ActiveWorkbook object’s SaveAsXMLData method.

A Final Test
There is one last test to perform that will show just how using objects can compartmentalize
your code and provide easy-to-reuse functionality. In our HR workbook, we will create two
objects from the cXML class. Each will store its own mappings and property settings.

The following code shows the contents of the standard module containing the client
code for using the cXML class:

CHAPTER 3 ■ USING XML IN EXCEL 2007 117

9578ch03final.qxd 1/30/08 8:42 PM Page 117

Dim oEmpDept As cXML
Dim oHREmployees As cXML
'

Sub GetHREmployees()
Set oHREmployees = New cXML

oHREmployees.XMLSourceFile = ➥

"C:\Chapter 3\HREmployees.xml"
Set oHREmployees.DataRange = Sheets(1).Range("A1")
oHREmployees.GetXMLData
End Sub

Public Sub GetEmpDept()
Set oEmpDept = New cXML

oEmpDept.XMLSourceFile = ➥

"C:\Chapter 3\EmpDept.xml"
Set oEmpDept.DataRange = Sheets(2).Range("A1")
oEmpDept.GetXMLData

End Sub

Public Sub GetAdditionalEmpDeptInfo()
'appends data from files sent in from field offices.
If oEmpDept Is Nothing Then
Set oEmpDept = New cXML

End If

oEmpDept.XMLSourceFile = ➥

"C:\Chapter 3\EmpDeptAdd.xml"
Set oEmpDept.DataRange = Sheets(2).Range("A1")
oEmpDept.GetXMLData False
End Sub

Public Sub AppendEmpDeptInfo()
'sample routine to get additional XML data w/o modifying XMLSourceFile Property
oEmpDept.AppendFromFile _
"C:\Chapter 3\EmpDeptAdd.xml"

End Sub

Public Sub RefreshEmps()
oEmpDept.RefreshXML
End Sub

Public Sub RefreshHR()
oHREmployees.RefreshXML

End Sub

CHAPTER 3 ■ USING XML IN EXCEL 2007118

9578ch03final.qxd 1/30/08 8:42 PM Page 118

Public Sub SaveEmps()
oEmpDept.SaveToFile

End Sub

Public Sub SaveEmpsNewFile()
oEmpDept.SaveToFile ➥

"C:\Chapter 3\EmpDeptAddNEW.xml"
End Sub

Sub Cleanup()
Set oEmpDept = Nothing
Set oHREmployees = Nothing

End Sub

To test the code, save the workbook, and then do the following:

1. With Sheet1 active, run the GetEmpDept macro (shows Adventure Works employee
department information).

2. With Sheet 2 active, run the GetHREmployees macro (shows employee personal infor-
mation).

3. With any sheet active, run the GetAdditionalEmpDeptInfo or AppendEmpDeptInfo
macro to append new data to the end of the data on Sheet1. The oEmpDept variable
knows where the data lives in the workbook due to the internal XML mapping.

4. Open the HREmployees.xml file in any text editor and modify a data element, and then
save the file.

5. Run the RefreshHR macro.

6. When the code has finished running, run the Cleanup macro to destroy both objects.

As you can see, we have simultaneous objects of the same type performing similar activi-
ties, but each monitoring and controlling its own set of values.

Adding a Custom Ribbon to Your Workbook
Excel 2007 has a whole new XML file format that adds a lot of flexibility to your projects. One
neat thing you can do is add a custom ribbon to call your code and to hide the standard Excel
ribbons from your users. Before we delve into the mechanism, behind this technique a bit of
background on the new file format is in order.

Inside the Excel 2007 XML File Format
Excel 2007 builds on its history of XML support with a new file format called the Office Open
XML format. This new format improves file and data management, data recovery, and interop-
erability. Any application that supports XML can access and work with information in an Excel
2007 workbook. This means it is now possible to work with your Excel data in systems outside
of Microsoft Office products as long as they provide XML support.

CHAPTER 3 ■ USING XML IN EXCEL 2007 119

9578ch03final.qxd 1/30/08 8:42 PM Page 119

Additionally, security concerns are reduced, since you now have your Excel data in what
is essentially a text file. This allows data to pass through firewalls without difficulty.

The new XML file format is based on the compressed ZIP file format specification. Each
ZIP container is made up of numerous XML files containing what Microsoft refers to as
“parts.” While most parts are XML files describing workbook data, metadata, and document
information, non-XML files like binary files representing images or OLE objects may also be
included in the ZIP file. There are also relationship parts that describe the relationships
between parts, thus providing the structure for the workbook file. The parts are the content
of the workbook and the relationships detail how the content parts fit together.

Figure 3-20 shows the Open XML format’s file container.

Figure 3-20. Open XML format’s file container

Viewing the XML
To see what’s inside an Excel document, you must change the extension to *.zip.

In the Downloads section for this book on the Apress web site, find the file Chapter 3\
NwindEmps.xlsx, rename it NwindEmps.zip, and copy it to a folder on your PC called
unzippedExcelfiles (you’ll have to create the folder first). This file contains Northwind
employee information that was typed or pasted in (not imported).

Even though we could open the files directly from the ZIP file, we will create a folder into
which we’ll extract the contents of the ZIP file. Be sure keep “Use folder names” checked in the
options list. Figure 3-21 shows the Extract function in WinZip.

You can see the file structure associated with Office documents clearly once the files are
extracted (see Figure 3-22). I’ve created a folder named unzippedExcelfiles to store them in.

CHAPTER 3 ■ USING XML IN EXCEL 2007120

9578ch03final.qxd 1/30/08 8:42 PM Page 120

Figure 3-21. Check “Use folder names” in the Extract dialog.

Figure 3-22. Excel’s XML file structure

The _rels Folder
The _rels folder is the first place you should look to see what your Excel file is made of. The
_rels folder contains a file named .rels. This file contains the top-level relationships. In your
file, they should look like Figure 3-23.

Figure 3-23. .rels file contents

This file contains three relationship items. Table 3-2 describes the relationship attributes.

Table 3-2. Relationship Attributes

Attribute Description

Id Any string (must be unique in the .rels file)

Type The type of the relationship

Target The folder and file that contain the target of the relationship (this is also a part)

CHAPTER 3 ■ USING XML IN EXCEL 2007 121

9578ch03final.qxd 1/30/08 8:42 PM Page 121

Following is a list of the many types of relationships that can be found in an Office
document:

• http://schemas.microsoft.com/office/2006/relationships/officeDocument

• http://schemas.microsoft.com/office/2006/relationships/vbaProject

• http://schemas.microsoft.com/office/2006/relationships/userXmlData

• http://schemas.microsoft.com/office/2006/relationships/styleSheet

• http://schemas.microsoft.com/office/2006/relationships/hyperlink

• http://schemas.microsoft.com/office/2006/relationships/comments

• http://schemas.microsoft.com/office/2006/relationships/oleObject

• http://schemas.microsoft.com/office/2006/relationships/e1Object

• http://schemas.microsoft.com/office/2006/relationships/e2Object

• http://schemas.microsoft.com/office/2006/relationships/image

• http://schemas.microsoft.com/office/2006/relationships/sound

• http://schemas.microsoft.com/office/2006/relationships/movie

• http://schemas.microsoft.com/office/2006/relationships/slide

• http://schemas.microsoft.com/office/2006/relationships/layout

• http://schemas.microsoft.com/office/2006/relationships/notesslide

• http://schemas.microsoft.com/office/2006/relationships/slidemaster

• http://schemas.microsoft.com/office/2006/relationships/glossaryDoc

• http://schemas.microsoft.com/office/2006/relationships/chart

• http://schemas.microsoft.com/office/2006/relationships/activeXControl

• http://schemas.microsoft.com/office/2006/relationships/cfChunk

• http://schemas.microsoft.com/office/2006/relationships/dataStoreItem

• http://schemas.microsoft.com/office/2005/relationships/diagram

• http://schemas.microsoft.com/office/2006/relationships/embeddedFont

• http://schemas.microsoft.com/office/2006/relationships/embeddedMetroObject

• http://schemas.microsoft.com/office/2005/relationships/diagramData

• http://schemas.microsoft.com/office/2005/relationships/diagramStyle

• http://schemas.microsoft.com/office/2005/relationships/diagramColorTrans

• http://schemas.microsoft.com/office/2005/relationships/diagramDefinition

CHAPTER 3 ■ USING XML IN EXCEL 2007122

9578ch03final.qxd 1/30/08 8:42 PM Page 122

http://schemas.microsoft.com/office/2006/relationships/officeDocument
http://schemas.microsoft.com/office/2006/relationships/vbaProject
http://schemas.microsoft.com/office/2006/relationships/userXmlData
http://schemas.microsoft.com/office/2006/relationships/styleSheet
http://schemas.microsoft.com/office/2006/relationships/hyperlink
http://schemas.microsoft.com/office/2006/relationships/comments
http://schemas.microsoft.com/office/2006/relationships/oleObject
http://schemas.microsoft.com/office/2006/relationships/e1Object
http://schemas.microsoft.com/office/2006/relationships/e2Object
http://schemas.microsoft.com/office/2006/relationships/image
http://schemas.microsoft.com/office/2006/relationships/sound
http://schemas.microsoft.com/office/2006/relationships/movie
http://schemas.microsoft.com/office/2006/relationships/slide
http://schemas.microsoft.com/office/2006/relationships/layout
http://schemas.microsoft.com/office/2006/relationships/notesslide
http://schemas.microsoft.com/office/2006/relationships/slidemaster
http://schemas.microsoft.com/office/2006/relationships/glossaryDoc
http://schemas.microsoft.com/office/2006/relationships/chart
http://schemas.microsoft.com/office/2006/relationships/activeXControl
http://schemas.microsoft.com/office/2006/relationships/cfChunk
http://schemas.microsoft.com/office/2006/relationships/dataStoreItem
http://schemas.microsoft.com/office/2005/relationships/diagram
http://schemas.microsoft.com/office/2006/relationships/embeddedFont
http://schemas.microsoft.com/office/2006/relationships/embeddedMetroObject
http://schemas.microsoft.com/office/2005/relationships/diagramData
http://schemas.microsoft.com/office/2005/relationships/diagramStyle
http://schemas.microsoft.com/office/2005/relationships/diagramColorTrans
http://schemas.microsoft.com/office/2005/relationships/diagramDefinition

• http://schemas.microsoft.com/package/2005/02/md/core-properties

• http://schemas.microsoft.com/office/2006/relationships/docPropsApp

• http://schemas.microsoft.com/office/2006/relationships/docPropsCustom

• http://schemas.microsoft.com/office/2006/relationships/glossaryDoc

• http://schemas.microsoft.com/ office/2006/relationships/documentThumbnail

The relationship in our XML file with an ID attribute of rId1 and a Type of http://
schemas.microsoft.com/office/2006/relationships/officeDocument is the main document
part. Since we’re working in Excel, this translates to an Excel workbook (as defined by the tar-
get of this relationship item, xl/workbook.xml). If we were working with PowerPoint, this
would be a presentation, and if we were working in Word, it would be a document.

The Application Folder
The next folder to explore is the application folder, whose name will reflect the program used
to create the file. Ours is named xl (for Excel), as displayed in Figure 3-24. The application
folder contains application-specific document files. Some of these files are found in their own
folder, but the root contains the workbook part and the sharedStrings (data) part.

Figure 3-24. xl folder contents

The [Content_Types].xml File
Another file of interest is the [Content_Types].xml file found in the root folder we created
(unzippedExcelfiles). It lists the content types for the other parts included in the Excel file
package. Content types are the types of parts that can be included in a package. Following is
a list of the content types that can be found in an Office document:

• application/vnd.ms-excel.12application/x-font

• application/vnd.ms-excel.addin.12application/xml

• application/vnd.ms-excel.template.12audio/mp3

• application/vnd.ms-excel.binary.12audio/aiff

• application/vnd.ms-excel.macroEnabled.12audio/basic

• application/vnd.ms-excel.macroEnabledTemplate.12audio/midi

• application/vnd.ms-office.activeX+xmlaudio/x-ms-wax

CHAPTER 3 ■ USING XML IN EXCEL 2007 123

9578ch03final.qxd 1/30/08 8:42 PM Page 123

http://schemas.microsoft.com/package/2005/02/md/core-properties
http://schemas.microsoft.com/office/2006/relationships/docPropsApp
http://schemas.microsoft.com/office/2006/relationships/docPropsCustom
http://schemas.microsoft.com/office/2006/relationships/glossaryDoc
http://schemas.microsoft.com
http://schemas.microsoft.com/office/2006/relationships/officeDocument
http://schemas.microsoft.com/office/2006/relationships/officeDocument

• application/vnd.ms-office.chartaudio/x-ms-wma

• application/vnd.ms-office.vbaProjectimage/bmp

• application/vnd.ms.powerpoint.template.macroEnabled.12application/x-font

• application/vnd.ms-powerpoint.image/gif

• application/vnd.ms-powerpoint.macroEnabled.12image/jpeg

• application/vnd.ms-powerpoint.main.12+xmlimage/png

• application/vnd.ms-powerpoint.presentation.12image/tiff

• application/vnd.ms-powerpoint.template.12video/avi

• application/vnd.ms-powerpoint.show.12image/xbm

• application/vnd.ms-powerpoint.show.macroEnabled.12image/x-icon

• application/vnd.ms-word.document.12video/mpeg

• application/vnd.ms-word.document.macroEnabled.12video/mpg

• application/vnd.ms-word.document.macroEnabled.main+xmlvideo/x-ivf

• application/vnd.ms-word.document.main+xmlvideo/x-ms-asf

• application/vnd.ms-word.template.12

• application/vnd.ms-word.template.macroEnabled.12

• application/vnd.ms-word.template.macroEnabled.main+xml

• application/vnd.ms-word.fontTable+xmlvideo/x-ms-asf-plugin

• application/vnd.ms-word.listDefs+xmlvideo/x-ms-wm

• application/vnd.ms-word.settings+xmlvideo/x-ms-wmv

• application/vnd.ms-word.styles+xmlvideo/x-ms-wmx

• application/vnd.ms-word.subDoc+xmlvideo/x-ms-wvx

• application/vnd.ms-word.template.main+xml

• application/vnd.ms-metro.core-properties+xmlaudio/mpegurl

• application/vnd.ms-metro.relationships+xmlaudio/wav

CHAPTER 3 ■ USING XML IN EXCEL 2007124

9578ch03final.qxd 1/30/08 8:42 PM Page 124

The docProps Folder
This folder contains files listing document properties, similar to what you see when you click
the Office button and select Prepare ➤ Properties. The docProps folder contains at a minimum
a file named app.xml and a file named core.xml. These files contain meta-information about
your Excel file, such as the creator name, and modified and creation dates.

Relationships
An Excel 2007 document is made of parts. These parts are “joined” together via relationships
as defined in the various XML files we’ve seen. The connection between a data table and the
worksheet it resides in is defined by a relationship.

Our root folder contains a _rels folder that contains a .rels file. This file defines relation-
ships between our document properties files, app.xml and core.xml, and the xl/workbook.xml
file. The xl folder itself contains a _rels folder that has a relationship file, workbook.xml.rels.
This file defines the relationships of the workbook, data, and formatting parts. Figure 3-25
shows an example of the workbook.xml.rels file.

Figure 3-25. Contents of the workbook.xml.rels file

From the Downloads section of this book’s page on the Apress web site, copy the file
named NwindEmps01.xlsx to a local folder and rename it to NwindEmps.zip. This file contains
the same Northwind employee information as NwindEmps.xlsx, but this data was imported
from the Northwind Access database. Note the additional files reflecting the imported data
when we open it. I’ve opened the file using WinZip, as shown in Figure 3-26.

Before we look at these new files, let’s check the [Content_Types].xml file (shown in
Figure 3-27). Remember that this shows us all the various types of content we’ll find in our
Excel project.

CHAPTER 3 ■ USING XML IN EXCEL 2007 125

9578ch03final.qxd 1/30/08 8:42 PM Page 125

Figure 3-26. Additional XML files with imported data highlighted

Figure 3-27. New parts in [Content_Types].xml (other parts omitted for clarity)

New parts are listed for the query table, table, and connections that we know from the
previous chapter are associated with a workbook containing imported data. The contents of
the \xl\connections.xml file in Figure 3-28 should look very familiar to you by now.

CHAPTER 3 ■ USING XML IN EXCEL 2007126

9578ch03final.qxd 1/30/08 8:42 PM Page 126

Figure 3-28. Connections.xml contents

It’s the same connect string we used in the code we generated and that Excel generated
for us with the Macro Recorder. The id attribute tells us this is connection 1 (in this case, the
only connection in the file). The sourceFile attribute tells us where the data came from.
The last two attributes of the connection node refer to the ADO Command object and the
CommandType.

The xl\queryTables\queryTable1.xml file displayed in Figure 3-29 shows the relationship
between the connection and the query table object. The queryTable node has a connectionId
attribute of 1, referring to the OLE DB connection we just looked at. Then there are some for-
matting attributes, followed by a list of field names with queryTableField IDs and
tableColumnIds linking the query table to an Excel table (or range).

Figure 3-29. queryTable1.xml contents

We find that there’s a new folder in our structure called tables. In this folder is a file
named Table1.xml (shown in Figure 3-30). Table1.xml looks very similar to queryTables1.xml.
It has the same field mapping information, but also contains information about the range
name (Table_Northwind_2007.accdb), cell locations for the data, what data is autofiltered, and
whether a totals row is shown.

CHAPTER 3 ■ USING XML IN EXCEL 2007 127

9578ch03final.qxd 1/30/08 8:42 PM Page 127

Figure 3-30. Table1.xml contents

There is also table style information in the last node of the file. So how are the queryTable
and Table1.xml files associated? In the tables folder is a subfolder named _rels. This folder
contains a file named table1.xml.rels (the full path to the file is \xl\table_res.\
table1.xml.rels). The contents of table1.xml.rels is shown in Figure 3-31.

Figure 3-31. table1.xml.rels contents

As you can see, the tables folder’s Relationship element is referring to the
relationships/queryTable content item in its Type attribute with a target of the
queryTable1.xml file.

Adding a Ribbon to Run Your Custom Macros
So that was quite a bit to take in just to add a ribbon to a project, right? It’s really just impor-
tant background information that will be helpful as you do more and more work with Excel
(or other Office products).

Next, let’s add a ribbon to our XML data project. We’re going to add a ribbon that con-
tains one tab with four groups: one for adding new data, one for appending data, one for
refreshing data, and one for saving data.

To do so, we will create a ribbon extensibility customization file with one tab, four groups,
and seven buttons. We’ll specify a callback event in the buttons to call each macro we’ve cre-
ated in the document. Then we will modify the contents of the macro-enabled document
container file to point to the ribbon extensibility customization file.

CHAPTER 3 ■ USING XML IN EXCEL 2007128

9578ch03final.qxd 1/30/08 8:42 PM Page 128

1. Save your XML_Class.xlsm file as XML_Class_Ribbon.xlsm.

2. Open the VBE.

3. In the VBE, double-click ThisWorkbook to open the code window.

4. Type the following VBA subroutines, and then close the VBE:

Sub GetEmpDataBtn(ByVal ControlID As IRibbonControl)
Call GetEmpDept

End Sub

Sub AppendEmpDataBtn(ByVal ControlID As IRibbonControl)
Call AppendEmpDeptInfo

End Sub

Sub GetHRDataBtn(ByVal ControlID As IRibbonControl)
Call GetHREmployees

End Sub

Sub RefreshEmpDataBtn(ByVal ControlID As IRibbonControl)
Call RefreshEmps

End Sub

Sub RefreshHRDataBtn(ByVal ControlID As IRibbonControl)
Call RefreshHR

End Sub

Sub SaveEmpBtn(ByVal ControlID As IRibbonControl)
Call SaveEmps

End Sub

Sub SaveEmpNewFileBtn(ByVal ControlID As IRibbonControl)
Call SaveEmpsNewFile

End Sub

These procedures will be mapped to the controls on the custom ribbon via an XML
configuration file.

Save the workbook and close it.

Creating the XML File That Contains the Markup to Modify the UI
1. Create a folder called customUI.

2. Open a new file in the text editor of your choice, and save it as customUI.xml in the
customUI folder.

3. Add the following code to the customUI.xml file:

CHAPTER 3 ■ USING XML IN EXCEL 2007 129

9578ch03final.qxd 1/30/08 8:42 PM Page 129

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="true">

<tabs>
<tab id="DataFunctions" label="XML Data Functions">

<group id="NewDataControls" label="New Data">
<button id="Button1" size="large" label="Get Emps Dept" ➥

onAction="ThisWorkbook.GetEmpDataBtn" />
<button id="Button2" size="large" label="Get HR Info" ➥

onAction="ThisWorkbook.GetHRDataBtn" />
</group>

<group id="AppendDataControls" label="Append Data">
<button id="Button3" size="large" label="Append Emps Dept" ➥

onAction="ThisWorkbook.AppendEmpDataBtn" />
</group>

<group id="RefreshDataControls" label="Refresh Data">
<button id="Button4" size="large" label="Refresh Emp Dept" ➥

onAction="ThisWorkbook.RefreshEmpDataBtn" />
<button id="Button5" size="large" label="Refresh HR Info" ➥

onAction="ThisWorkbook.RefreshHRDataBtn" />
</group>

<group id="SaveDataControls" label="Save Data">
<button id="Button6" size="large" label="Save Emp Dept" ➥

onAction="ThisWorkbook.SaveEmpBtn" />
<button id="Button7" size="large" label="Save Emp Dept As" ➥

onAction="ThisWorkbook.SaveEmpNewFileBtn" />
</group>

</tab>
</tabs>

</ribbon>
</customUI>

4. Save the file.

This XML defines the XML Data Functions tab and its four groups. Within each group,
note the reference to each macro we just created in the ThisWorkbook module in our Excel
project.

CHAPTER 3 ■ USING XML IN EXCEL 2007130

9578ch03final.qxd 1/30/08 8:42 PM Page 130

http://schemas.microsoft.com/office/2006/01/customui

Next, we will modify some of the files contained in the macro-enabled Excel file that we
just created.

1. Change the extension of XML_Class_Ribbon.xlsm to .zip, and double-click the file to
open it.

2. Add the customization file to the ZIP container by dragging the customUI folder from
its location to the ZIP file.

3. Extract the .rels file to a local folder. A _rels folder containing the .rels file is copied
to your folder. (If only the file appears, use your ZIP tool’s extract function rather than
dragging the file from the ZIP window.)

4. Open the .rels file and add the following line between the last Relationship tag and
the Relationships tag, as shown in Listing 3-1. This creates a relationship between the
workbook file and the customization file.

Listing 3-1. Adding the CustomUI Relationship to the .rels. File

<Relationships ➥

xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship Id="rId3" Type="http://schemas.openxmlformats.org/ ➥

officeDocument/2006/relationships/extended-properties" ➥

Target="docProps/app.xml" />
<Relationship Id="rId2" Type="http://schemas.openxmlformats.org ➥

/package/2006/relationships/metadata/core-properties" ➥

Target="docProps/core.xml" />
<Relationship Id="rId1" Type="http://schemas.openxmlformats.org ➥

/officeDocument/2006/relationships/officeDocument" ➥

Target="xl/workbook.xml" />
<Relationship Id="someID" Type="http://schemas.microsoft.com/office/ ➥

2006/relationships/ui/extensibility" Target="customUI/customUI.xml" />
</Relationships>

5. Close and save the file.

6. Add the _rels folder back to the container file by dragging it from its location, over-
writing the existing file.

7. Rename the workbook file back to its original name.

8. Open the workbook and notice that the Ribbon UI now displays your XML data
functions.

9. Click the buttons to check that the functionality is there and working (shown in
Figure 3-32).

CHAPTER 3 ■ USING XML IN EXCEL 2007 131

9578ch03final.qxd 1/30/08 8:42 PM Page 131

http://schemas.openxmlformats.org/package/2006/relationships
http://schemas.openxmlformats.org/�officeDocument/2006/relationships/extended-properties
http://schemas.openxmlformats.org/�officeDocument/2006/relationships/extended-properties
http://schemas.openxmlformats.org�/package/2006/relationships/metadata/core-properties
http://schemas.openxmlformats.org�/package/2006/relationships/metadata/core-properties
http://schemas.openxmlformats.org�/officeDocument/2006/relationships/officeDocument
http://schemas.openxmlformats.org�/officeDocument/2006/relationships/officeDocument
http://schemas.microsoft.com/office/�2006/relationships/ui/extensibility
http://schemas.microsoft.com/office/�2006/relationships/ui/extensibility

Figure 3-32. A custom ribbon added using an XML configuration file

Summary
In this chapter, we explored the various methods of bringing XML data in and out of Excel. We
also took an excursion into the new Office Open XML file format. While it looks complicated at
first glance, remember that it is all about relationships between parts. Once that’s understood,
you’ll be able to explore its many possibilities.

Finally, we added a custom user interface by modifying the underlying ZIP file format in
Excel 2007. By adding a customUI XML file describing the ribbon we wanted to add, and by
adding a relationship reference to one of Excel’s built-in configuration files, we were able to
very simply add a custom ribbon.

Very powerful stuff indeed.

CHAPTER 3 ■ USING XML IN EXCEL 2007132

9578ch03final.qxd 1/30/08 8:42 PM Page 132

UserForms

As skilled as we developers are at laying out a UI, when working with spreadsheets we find
our options may be a bit limited. Depending on what data is being entered, you may find your
users scrolling off the screen to the right or bottom of an Excel worksheet window.

UserForms in Excel 2007 allow you to create easy-to-use data entry screens for your users.
They can be used to display summary data or data from any data source. They provide us with
the tools we need to create “wizard” applications or simple data entry forms.

Creating a Simple Data Entry Form
Let’s create a form for quick data entry for a call center doing a one-minute customer con-
tact. The user’s task is to call the customer and find out if they’ve heard of “the Widget” and
whether they’re interested in finding out more about the product. If the customer is inter-
ested, the user will mark that on the form as well so sales can follow up.

■Note The example files and source code for this book are available to readers at www.apress.com in the
Downloads section of this book’s home page.

Designing the Form
From the sample files for this book, open the workbook named UserForm.xlsm. This file con-
tains the Customer Survey database shown in Figure 4-1. Our custom form will collect and
save its data to this table.

Figure 4-1. The Customer Survey database

133

C H A P T E R 4

9578ch04final.qxd 1/30/08 8:40 PM Page 133

http://www.apress.com

Open the VBE, and add a UserForm to the project. You can do this by choosing Insert ➤
UserForm, or you can right-click in the Project Explorer window and choose Insert ➤
UserForm, as shown in Figure 4-2.

Figure 4-2. Adding a UserForm to the project

A new empty UserForm named UserForm1 is added to the project, as shown in Figure 4-3.

CHAPTER 4 ■ USERFORMS134

9578ch04final.qxd 1/30/08 8:40 PM Page 134

Figure 4-3. New UserForm with Toolbox and Property Sheet displayed

Along with the UserForm, you’ll see the Toolbox window, which contains a palette of con-
trols to use, and the UserForm Property Sheet, where you can rename your form and modify
various settings.

The Toolbox controls are described in Table 4-1.

UserForm Toolbox Controls

Table 4-1. UserForm Toolbox Objects

Toolbox Button Command Description

Select Objects Resizes or moves a control on a form.

Label Holds text that is not editable except through code.

TextBox Holds text that users can enter or modify.

Continued

CHAPTER 4 ■ USERFORMS 135

9578ch04final.qxd 1/30/08 8:40 PM Page 135

Table 4-1. Continued

Toolbox Button Command Description

ComboBox A combination of a list box and a text box. Users can
choose an item from a list or enter a value in the text
box.

ListBox Displays a list of items from which users can choose.

CheckBox Indicates a true or false value.

OptionButton Presents multiple choices, of which only one can be
selected.

ToggleButton A button that toggles off and on.

Frame A grouping for controls such as option buttons or
check boxes. Users can only select one of a group of
controls placed inside a Frame control.

CommandButton A button the user can click to perform an action.

TabStrip Multiple pages in the same form area.

MultiPage Multiple screens of information.

ScrollBar Provides quick navigation through a long list of
items. It is also useful for indicating the current
position on a scale, or as an input device or indicator
of speed or quantity.

SpinButton Increments or decrements a numeric value.

Image Presents an image from a bitmap, icon, or metafile.

RefEdit Simulates the behavior of the reference edit boxes
such as the Range selector in the Print Area section of
the Page Setup dialog box.

On UserForm1, add the controls and enter the property settings listed in Table 4-2.

Table 4-2. UserForm1 Settings and Controls

Item/Property Value

UserForm —

Caption: Customer Survey Form

Label —

Caption: ID

Label —

Name: lblID

Caption: Label1

Label —

Caption: State

CHAPTER 4 ■ USERFORMS136

9578ch04final.qxd 1/30/08 8:40 PM Page 136

Item/Property Value

TextBox —

Name: txtState

Label —

Caption: Phone Number

TextBox —

Name: txtPhone

CheckBox —

Name: chkHeard

Caption: Customer Has Heard of Product

CheckBox —

Name: chkInterested

Caption: Customer Is Interested in Product

CheckBox —

Name: chkFollowup

Caption: Followup Required

CommandButton —

Name: cmdSave

Cancel: False

Caption: Save

Default: True

CommandButton —

Name: cmdNew

Cancel: False

Caption: New

Default: False

CommandButton —

Name: cmdCancel

Cancel: True

Caption: Cancel

Default: False

The finished form should look like Figure 4-4.

CHAPTER 4 ■ USERFORMS 137

9578ch04final.qxd 1/30/08 8:40 PM Page 137

Figure 4-4. UserForm with controls placed

As you can see, we’re designing a very simple data collection tool. We’re going to write a
record to the database that is stored on Sheet1 in the UserForm workbook, and we want to do
some validation of the data before we save.

Before we begin, we need to think about a couple of functions we might need and how to
approach our code design. First, our form needs to know which worksheet to save the data to
(in this case, Sheet1 contains our database). It also needs to know the next available ID num-
ber and the location of the next available row to place the data when we save the data.

A function that can tell us where the next available row in a worksheet is might be useful
in another project as well. Remember the cExcelUtils class we started in Chapter 2? Let’s put
our function in that class and export it so we can reuse it in other projects.

Open the last project you worked on in Chapter 2, DataAccessSample06.xlsm, and then
open the VBE. In the Project Explorer, right-click the cExcelUtils class icon and choose Export
File from the shortcut menu, as shown in Figure 4-5.

Figure 4-5. Exporting a module

Choose your location and save the *.cls file. Once that’s done, you can close the
DataAccessSample06.xlsm workbook. Right-click anywhere in the Project Explorer in the
UserForm.xlsm project, and choose Import File, as shown in Figure 4-6. Navigate to where
you just saved the cExcelUtils.cls file and choose the Open command.

CHAPTER 4 ■ USERFORMS138

9578ch04final.qxd 1/30/08 8:40 PM Page 138

Figure 4-6. Importing a module

The cExcelUtils class is now a part of your project. Open the cExcelUtils class in the VBE
and add the following method. The FindEmptyRow function returns a Long Integer containing
the row number of the next available row on a worksheet.

Function FindEmptyRow(ws As Worksheet) As Long
Dim lngReturn As Long

lngReturn = ws.Cells(Rows.Count, 1).End(xlUp).Offset(1, 0).Row
FindEmptyRow = lngReturn

End Function

This simple bit of code uses the Range object’s End property to find the last cell in the
region and offsets it by 1. We’re passing in a worksheet as an argument so the function will
return the next open row in the passed worksheet.

The Working Class
Next we’re going to build a class to hold the values for each customer survey. This class will
also store the location of the database worksheet and it will perform a data save to the
database.

In the VBE, add a new class module and name it cCustSurvey. Add the following module-
level variables to hold the various properties:

Private m_lngID As Long
Private m_strState As String
Private m_strPhone As String
Private m_blnHeardOfProduct As Boolean
Private m_blnWantsProduct As Boolean
Private m_blnFollowup As Boolean
Private m_xlWksht As Worksheet
Private m_oXL As cExcelUtils

The first six items are simply the data we’ll enter on our UserForm plus the ID field that
we’ll generate from the database worksheet. The m_xlWksht variable will hold the location of

CHAPTER 4 ■ USERFORMS 139

9578ch04final.qxd 1/30/08 8:40 PM Page 139

the database worksheet, which we’ll need for a couple of things. The m_oXL variable is how
we’ll determine where to put any new data.

Let’s add the data properties first, and then we’ll get into adding some functionality to the
class. Add the following properties to the cCustSurvey class module:

Property Get ID() As Long
ID = m_lngID

End Property

Property Get State() As String
State = m_strState

End Property

Property Let State(newState As String)
m_strState = newState

End Property

Property Get PhoneNumber() As String
PhoneNumber = m_strPhone

End Property

Property Let PhoneNumber(newPhoneNumber As String)
m_strPhone = newPhoneNumber

End Property

Property Get HeardOfProduct() As Boolean
HeardOfProduct = m_blnHeardOfProduct
End Property

Property Let HeardOfProduct(newHeardOf As Boolean)
m_blnHeardOfProduct = newHeardOf

End Property

Property Get WantsProduct() As Boolean
WantsProduct = m_blnWantsProduct

End Property

Property Let WantsProduct(newWants As Boolean)
m_blnWantsProduct = newWants

End Property

Property Get Followup() As Boolean
Followup = m_blnFollowup

End Property

Property Let Followup(newFollowup As Boolean)
m_blnFollowup = newFollowup

End Property

CHAPTER 4 ■ USERFORMS140

9578ch04final.qxd 1/30/08 8:40 PM Page 140

Property Get DBWorkSheet() As Worksheet
Set DBWorkSheet = m_xlWksht

End Property

Property Set DBWorkSheet(newSheet As Worksheet)
Set m_xlWksht = newSheet

End Property

Notice that our ID property has no Property Let method, so it’s read-only. The ID will be
pulled from the database as it’s needed. Everything else is rather generic until we get to our
DBWorksheet property. This is where we are storing the worksheet that contains our database
and must be set before the class can work.

We’re going to add a GetNextID method to find the last row, grab the value from the first
column, and then increment it by 1. This function will set the ID property’s internal variable
so we can retrieve it from the class once it’s set.

Add the following code to the cCustSurvey class module:

Public Function GetNextID() As Long
Dim lngReturn As Long
lngReturn = m_xlWksht.Cells(Rows.Count, 1).End(xlUp).Value + 1
m_lngID = lngReturn ' set the ID property
GetNextID = lngReturn

End Function

This code is very similar to the FindEmptyRow method in the cExcelUtils class, but it’s
returning a cell value instead of a row number.

Next, add initialization and cleanup code:

Private Sub Class_Initialize()
Set m_oXL = New cExcelUtils

End Sub

Private Sub Class_Terminate()
Set m_oXL = Nothing

End Sub

■Tip As mentioned in previous chapters, the Class_Initialize method is a great place to set up any
internal objects used by your custom classes, and the Terminate method is the place to clean these objects
up when you’re finished using your class.

Now let’s make this class do some work. First let’s add some validation code. We cannot
save the record if the State and PhoneNumber properties do not contain data. Add a new func-
tion called ValidateData and type in the following code:

CHAPTER 4 ■ USERFORMS 141

9578ch04final.qxd 1/30/08 8:40 PM Page 141

Public Function ValidateData() As Boolean
Dim blnReturn As Boolean
If (Len(Me.PhoneNumber & "") * Len(Me.State & "")) = 0 Then
blnReturn = False

Else
blnReturn = True

End If

ValidateData = blnReturn
End Function

By multiplying the lengths of the text values State and PhoneNumber, we can determine
whether one is missing, because the math will always return 0 if we’re multiplying by 0.

Create a new function named Save that returns a success flag. This function needs to
know the row number of the next available row for data entry; it needs to know what sheet
that row is on; and if there are no errors, it must return a Boolean True value.

Here is the code for the Save method:

Public Function Save() As Boolean
Dim lngNewRowNum As Long
Dim blnReturn As Boolean

If m_xlWksht Is Nothing Then
blnReturn = False
GoTo Exit_Function

End If

lngNewRowNum = m_oXL.FindEmptyRow(m_xlWksht)

With m_xlWksht
.Cells(lngNewRowNum, 1).Value = Me.ID
.Cells(lngNewRowNum, 2).Value = Me.State
.Cells(lngNewRowNum, 3).Value = Me.PhoneNumber
.Cells(lngNewRowNum, 4).Value = Me.HeardOfProduct
.Cells(lngNewRowNum, 5).Value = Me.WantsProduct
.Cells(lngNewRowNum, 6).Value = Me.Followup

End With

If Err.Number = 0 Then
blnReturn = True

End If

Exit_Function:
Save = blnReturn
Exit Function

End Function

CHAPTER 4 ■ USERFORMS142

9578ch04final.qxd 1/30/08 8:40 PM Page 142

The first thing we’re doing is checking to make sure our worksheet object still exists.

If m_xlWksht Is Nothing Then 'double check that we still have a valid object
blnReturn = False
GoTo Exit_Function

End If

If it doesn’t, we return a False value and exit the function.
Next we get our empty row location from our cExcelUtils object:

lngNewRowNum = m_oXL.FindEmptyRow(m_xlWksht)

Then we use the m_xlWksht variable that contains the database worksheet and populate
each column in the row with data from our class properties:

With m_xlWksht
.Cells(lngNewRowNum, 1).Value = Me.ID
.Cells(lngNewRowNum, 2).Value = Me.State
.Cells(lngNewRowNum, 3).Value = Me.PhoneNumber
.Cells(lngNewRowNum, 4).Value = Me.HeardOfProduct
.Cells(lngNewRowNum, 5).Value = Me.WantsProduct
.Cells(lngNewRowNum, 6).Value = Me.Followup

End With

Finally, we check that we have not received any errors, set the success flag to True, and
then exit the function:

If Err.Number = 0 Then
blnReturn = True

End If

Exit_Function:
Save = blnReturn
Exit Function

That’s it for the cCustSurvey class. We’ve just built a class to hold our input values from the
UserForm. It will find the next ID value for any new records and it will save the data to the
worksheet we pass into the class in the next free row.

Coding the UserForm
We just created a class to handle our data and modified our Excel Utility class to help the
cCustSurvey class. Let’s put cCustSurvey to work by coding it into our UserForm.

Open the Customer Survey form (UserForm1). Open the code view by clicking the View
Code button on the Project Explorer toolbar, as shown in Figure 4-7.

CHAPTER 4 ■ USERFORMS 143

9578ch04final.qxd 1/30/08 8:40 PM Page 143

Figure 4-7. The View Code button displays the code window for UserForm1 (selected).

Add the following module-level variables in the UserForm code window:

Private m_oCustSurvey As cCustSurvey
Private m_blnSaved As Boolean

The m_oCustSurvey variable will do most of the work for us, and the m_blnSaved variable
will store the return value from the m_oCustSurvey object’s Save method.

Now let’s put our initialization and cleanup code in place. Add the following code to the
UserForm’s UserForm_Initialize and UserForm_Terminate events:

Private Sub UserForm_Initialize()
Set m_oCustSurvey = New cCustSurvey
Set m_oCustSurvey.DBWorkSheet = Sheets("Sheet1")
m_oCustSurvey.GetNextID
lblID.Caption = m_oCustSurvey.ID
m_blnSaved = False
ClearForm

End Sub

Private Sub UserForm_Terminate()
Set m_oCustSurvey = Nothing

End Sub

When the form is initialized, we’re instantiating our cCustSurvey object. Then we’re set-
ting the DBWorksheet property. This is a very important step. This value must be stored right
away so the class can determine the next valid ID and so it knows where to store the data it
collects. Then we get the next available ID number and display it in a label. We then initialize
our save success flag to False, and call a function to clear the form.

The ClearForm procedure does nothing more than blank out the text input fields and set
the check boxes values to False (or not checked).

Private Sub ClearForm()
Me.txtPhone.Value = ""
Me.txtState.Value = ""
Me.chkHeard.Value = False
Me.chkInterested.Value = False
Me.chkFollowup.Value = False

End Sub

CHAPTER 4 ■ USERFORMS144

9578ch04final.qxd 1/30/08 8:40 PM Page 144

Our form has three command buttons: one to save the data entered (Save), one to clear
the form and add a new record (New), and one to cancel the data entry operation and close
the form without saving the data (Cancel).

The Save button should perform a few functions for us:

• Sending the data to the cCustSurvey class

• Validating the data and returning a message if the data is not valid

• Saving the data if valid and returning a message if the save is successful

• Cleaning up the form after the save and resetting the saved flag

Here is the code for the Save button:

Private Sub cmdSave_Click()
With m_oCustSurvey
.State = txtState.Text
.PhoneNumber = txtPhone.Text
.HeardOfProduct = chkHeard.Value
.WantsProduct = chkInterested.Value
.Followup = chkFollowup.Value

End With

If Not m_oCustSurvey.ValidateData Then
MsgBox "State and Phone Number required", vbOKOnly, "Cannot Save"
Exit Sub

Else
m_blnSaved = m_oCustSurvey.Save

End If

DoAfterSave m_blnSaved
End Sub

The first section of the code is sending the values to the class. In the real world, our class
would perform some input validations (such as validating that we entered a phone number
using the correct format).

With m_oCustSurvey
.State = txtState.Text
.PhoneNumber = txtPhone.Text
.HeardOfProduct = chkHeard.Value
.WantsProduct = chkInterested.Value
.Followup = chkFollowup.Value

End With

The second section of the code is calling the m_oCustSurvey.ValidateData method and
displaying a message if both text fields do not contain data. If the data is present, the
m_oCustSurvey.Save method is called.

CHAPTER 4 ■ USERFORMS 145

9578ch04final.qxd 1/30/08 8:40 PM Page 145

Finally, we’re calling a function called DoAfterSave to perform our cleanup. We’re passing
in our success flag so that this method will be the one calling out any messages to the user.

Private Sub DoAfterSave(success As Boolean)
If success Then
ClearForm
lblID.Caption = m_oCustSurvey.GetNextID
MsgBox "Record Saved"

Else
MsgBox "Could not save record"

End If

m_blnSaved = False 'resetting flag
End Sub

Our cleanup code clears the form, gets the next available ID number from the database,
and sends the user a success (or failure) message.

The New command button has the job of clearing the form and getting a new ID from the
database. Before it does that, it must check the text fields to see if they have any data entered.
The code for the New command button follows:

Private Sub cmdNew_Click()
'sets form up for a new record
Dim iAnswer As Integer
'check that current record is saved (if any)
If Not m_blnSaved Then 'see if any text data is entered that is not saved
If (Len(Me.txtPhone.Value & "") + Len(Me.txtState.Value & "")) <> 0 Then
iAnswer = MsgBox("There is unsaved data. Do you want to continue?", _

vbYesNo, "Unsaved Data")
If iAnswer = vbYes Then
ClearForm

End If
Else
ClearForm

End If
End If

End Sub

We’re using the following line of code to determine whether we have data in one of our
two text input fields:

If (Len(Me.txtPhone.Value & "") + Len(Me.txtState.Value & "")) <> 0 Then

Once again, we use the Len function to help us make this determination. If the length of
both strings summed together is greater than 0, then at least one of the fields contains data.
If the result is True, then we prompt the user as to whether they want to continue with the
new record and throw out the existing data.

CHAPTER 4 ■ USERFORMS146

9578ch04final.qxd 1/30/08 8:40 PM Page 146

The Cancel command button has a very simple job: clearing the form and closing it.
Here is the code for the Cancel button:

Private Sub cmdCancel_Click()
ClearForm
Unload UserForm1

End Sub

The last step is to create a procedure in a standard module to launch our Customer Sur-
vey form. In the VBE, add a new standard code module and create a new subroutine named
ShowForm. Add the following line of code to the procedure.

Sub ShowForm()
UserForm1.Show

End Sub

If you renamed your UserForm object, use that name in place of UserForm1. Let’s run our
form and enter some data. In Excel, run the ShowForm macro, as shown in Figure 4-8.

Figure 4-8. Running the ShowForm macro

The Customer Survey form displays. The ID displayed is 103, and as you can see in
Figure 4-9, the last entry in the table is 102. Also note that row 5 is the next row available for
data.

Let’s check our code. Enter NY in the State text box, but leave the phone number field
blank, and then click the Save button.

Figure 4-10 shows that our cCustSurvey’s ValidateData method finds that neither piece of
required data is present, and returns a message to our client code in the UserForm. Click OK
and enter a phone number, and then check one or more of the check boxes. Click Save.

CHAPTER 4 ■ USERFORMS 147

9578ch04final.qxd 1/30/08 8:40 PM Page 147

Figure 4-9. The UserForm showing the next ID available

Figure 4-10. cCustSurvey class validation result

The success message, shown in Figure 4-11, is displayed to the user, and row 5 now con-
tains the data we entered on our UserForm. Notice that the ID label has been updated to show
the ID for the next record.

CHAPTER 4 ■ USERFORMS148

9578ch04final.qxd 1/30/08 8:40 PM Page 148

Figure 4-11. Success message and new record displayed

Let’s test the New button before we move on to a more advanced UserForm. Clicking the
New button with a blank or empty screen does nothing. If check boxes are checked but the
text fields are empty, it will clear the screen without a prompt (this is because only the text
fields are required). Enter a state and/or phone number and click the New button, and you’ll
receive a warning that the data has not been saved (as shown in Figure 4-12).

Figure 4-12. Warning the user about unsaved data

Clicking No returns the user to the form without making any changes. Clicking Yes will
clear the form for new entry.

CHAPTER 4 ■ USERFORMS 149

9578ch04final.qxd 1/30/08 8:40 PM Page 149

We made a useful addition to our cExcelUtils class. Let’s export that file (overwriting the
existing copy) so we can use that new functionality in other projects.

1. In the VBE Project Explorer, right-click any item in the project tree.

2. Choose Export File, as shown in Figure 4-13.

Figure 4-13. Exporting a module

3. Navigate to wherever you store your *.cls files, and save cExcelUtils.cls.

Creating Wizard-Style Data Entry UserForms
Wizard-style entry is a fairly common technique used to help users enter data in long or com-
plex forms. Wizards allow you to break your data into related sections, allowing you to guide
the user through an orderly data entry process.

From the sample files for this book, open the file named HRWizard.xlsm. This file consists
of two worksheets. The employee database worksheet, named EmpData, is shown in
Figure 4-14.

Figure 4-14. The HRWizard.xlsm EmpData database worksheet

CHAPTER 4 ■ USERFORMS150

9578ch04final.qxd 1/30/08 8:40 PM Page 150

The second worksheet, ListMgr, contains various lists we’ll be using when we create our
wizard data entry form. Figure 4-15 shows the ListMgr worksheet.

Figure 4-15. The ListMgr worksheet contains list data for the wizard UserForm.

For reference, any column on the EmpData worksheet that references a list has a blue
color-coded column heading. Our EmpData worksheet data is divided into four sections:
Personal, Address, Equipment, and Access, as shown in Figures 4-16 through 4-19.

Figure 4-16. Employee personal information

Figure 4-17. Employee address information

CHAPTER 4 ■ USERFORMS 151

9578ch04final.qxd 1/30/08 8:40 PM Page 151

Figure 4-18. Employee equipment information

Figure 4-19. Employee access information

Our wizard UserForm will walk the user through entering this information for new
employees. In turn, each piece of information will be forwarded to the appropriate depart-
ment for processing.

Laying Out the Wizard Form
1. Open the VBE and add a new UserForm.

2. Set the form’s height to 320 and its width to 332.

3. Rename the form to HRWizard.

4. Add a Label to the top of the form, set its caption property to MyCompany - HR Wiz-
ard, and set the font to a large size like 18 pt. This will be the main heading for
our form.

5. Add a MultiPage control to the form.

6. Set its Height property to 216 and its Width property to 270.

7. Center it on the form, leaving room at the bottom.

Your form in Design view should look something like Figure 4-20.

CHAPTER 4 ■ USERFORMS152

9578ch04final.qxd 1/30/08 8:40 PM Page 152

Figure 4-20. Initial layout for HRWizard UserForm

Since we have four data collection sections, we need to add two additional pages to our
MultiPage control.

1. Right-click either of the tabs at the top of the MultiPage control to display the shortcut
menu.

2. Select New Page from the shortcut menu, as shown in Figure 4-21.

3. Repeat this one more time.

Figure 4-21. Inserting a new page in the MultiPage control

Your UserForm in Design view should look like Figure 4-22.

CHAPTER 4 ■ USERFORMS 153

9578ch04final.qxd 1/30/08 8:40 PM Page 153

Figure 4-22. UserForm after adding two new pages

Adding Controls to the Form
The following sections will explain how to add the various controls to your form.

The Personal Information Page
Add controls to Page1 of the MultiPage control as listed in Table 4-3. These will correspond to
the personal information column headings on the EmpData worksheet.

Table 4-3. HRWizard UserForm Controls

Item/Property Value

Label —

Caption: First Name

TextBox —

Name: txtFname

Label —

Caption: Mid Init

TextBox —

Name: txtMidInit

Label —

Caption: Last Name

TextBox —

Name: txtLname

Label —

Caption: Date of Birth

CHAPTER 4 ■ USERFORMS154

9578ch04final.qxd 1/30/08 8:40 PM Page 154

Item/Property Value

TextBox —

Name: txtDOB

Label —

Caption: SSN

TextBox —

Name: txtSSN

Label —

Caption: Department

ComboBox —

Name: cboDept

Label —

Caption: Job Title

TextBox —

Name: txtJobTitle

Label —

Caption: E-mail Address

TextBox —

Name: txtEmail

Resize the MultiPage control so there is room on the bottom of the UserForm for two
command buttons (side by side) on the left side of the form and two command buttons (side
by side) on the right side of the form. Table 4-4 lists the settings for these controls.

Table 4-4. Command Button Settings

Item/Property Value

CommandButton —

Name: cmdPrevious

Caption: <<<

CommandButton —

Name: cmdNext

Caption: >>>

CommandButton —

Name: cmdSave

Caption: Save

CommandButton —

Name: cmdCancel

Caption: Cancel

CHAPTER 4 ■ USERFORMS 155

9578ch04final.qxd 1/30/08 8:40 PM Page 155

The UserForm should now look something like Figure 4-23 in Design view.

Figure 4-23. Personal information data entry page

The Address Information Page
Add the controls listed in Table 4-5 to Page2 of the MultiPage control. These will correspond to
the address information column headings on the EmpData worksheet.

Table 4-5. Address Tab Control Settings

Item/Property Value

Label —

Name: lblEmpName

Caption: lblEmpName

Label —

Caption: Street Address

TextBox —

Name: txtStreetAddr

Label —

Caption: Street Address 2

TextBox —

Name: txtStreetAddr2

Label —

Caption: City

CHAPTER 4 ■ USERFORMS156

9578ch04final.qxd 1/30/08 8:40 PM Page 156

Item/Property Value

TextBox —

Name: txtCity

Label —

Caption: State

TextBox —

Name: txtState

Label —

Caption: ZIP Code

TextBox —

Name: txtZip

Label —

Caption: Phone Number

TextBox —

Name: txtPhone

Label —

Caption: Cell Phone

TextBox —

Name: txtCell

Page2 in Design view should look similar to Figure 4-24.

Figure 4-24. Address information data entry on Page2

CHAPTER 4 ■ USERFORMS 157

9578ch04final.qxd 1/30/08 8:40 PM Page 157

The Equipment Information Page
Add the controls listed in Table 4-6 to Page3 of the MultiPage control. These will correspond to
the equipment information column headings on the EmpData worksheet.

Table 4-6. Equipment Tab Control Settings

Item/Property Value

Frame —

Name: fraPCType

Caption: Computer Type

OptionButton —

Name: optDesktop

Caption: Desktop

OptionButton —

Name: optLaptop

Caption: Laptop

Frame —

Name: fraPhoneType

Caption: Phone Type

OptionButton —

Name: optStandard

Caption: Standard

OptionButton —

Name: optCell

Caption: Cell Phone

Label —

Caption: Location

ComboBox —

Name: cboLocation

CheckBox —

Name: chkFaxYN

Caption: Fax Machine Y/N

Page3 in Design view will look something like Figure 4-25.

CHAPTER 4 ■ USERFORMS158

9578ch04final.qxd 1/30/08 8:40 PM Page 158

Figure 4-25. Equipment information data entry on Page3

The Access Information Page
Add the controls listed in Table 4-7 to Page4 of the MultiPage control. These will correspond to
the access information column headings on the EmpData worksheet.

Table 4-7. Access Tab Control Settings

Item/Property Value

Label —

Caption: Network Access Level

ComboBox —

Name: cboNetworkLvl

Label —

Caption: Remote Access Y/N

ComboBox —

Name: cboRemoteAccess

Label —

Caption: Assigned Parking Spot

ComboBox —

Name: cboParkingSpot

Frame —

Name: fraBuilding

Caption: Building

Continued

CHAPTER 4 ■ USERFORMS 159

9578ch04final.qxd 1/30/08 8:40 PM Page 159

Table 4-7. Continued

Item/Property Value

OptionButton —

Name: optNYC

Caption: NYC

OptionButton —

Name: optNJ

Caption: NJ

Page4 in Design view should look similar to Figure 4-26.

Figure 4-26. Access level information data entry on Page4

That’s it for visual UI design. Next, we’re going to design some classes to make this form
work. At first glance, you might think having one class tied to the data record will suffice, but
we are going to break up the functional areas when we define our classes, and we’ll design a
class or two to help us define our wizard steps. At the end of the process, we’ll have a flexible
wizard application that will give us the ability to change the order of the steps very easily and
even make adding a step fairly simple.

HRWizard Classes
Since some of the employee information we are collecting will be passed on to other depart-
ments for processing, we’ll place the data from each screen in its own class. We’re also going to

CHAPTER 4 ■ USERFORMS160

9578ch04final.qxd 1/30/08 8:40 PM Page 160

need a class to monitor the steps in the wizard. We might also consider a class to help us
populate those lists that use data from our ListMgr worksheet. Table 4-8 lists each class and
describes some of its functionality.

Table 4-8. HRWizard Application Class Modules

Class Description

cPerson Holds all personal information for the new record

cAddress Holds all address information for the new record

cEquipment Holds all equipment information for the new record

cAccess Holds all access information for the new record

cStep Holds configuration values for each step of the wizard

cStepMgr Controls the operation of the wizard and manages a collection of cStep objects

cListMgr Controls the lists that will populate the combo boxes on the UserForm

cHRData Transfers data to the database from the business objects; sends data from the
database to the business objects

The HRWizard Business Objects
We’ll begin by designing our business objects. These classes will store the data for each object
(person, address, equipment, and access level) and will contain any business rules for each
object.

Add a new class module to the project and name it cPerson. Add three more class mod-
ules, naming them cAddress, cEquipment, and cAccess. Our cPerson object will contain one
each of cAddress, cEquipment, and cAccess objects. To keep them in sync, we’ll add an ID
property to each of our four business object classes.

In each class, add the following module-level declaration:

Private m_lngID As Long

Then add the Property Get and Let in each class:

Public Property Get ID() As Long
ID = m_lngID

End Property

Public Property Let ID(newID As Long)
m_lngID = newID

End Property

Save your work, and let’s concentrate on our cPerson class. Each class essentially mirrors
its input screen from our earlier UI design. Add the following module-level variable declara-
tions to the cPerson class:

CHAPTER 4 ■ USERFORMS 161

9578ch04final.qxd 1/30/08 8:40 PM Page 161

Private m_sFName As String
Private m_sMidInit As String
Private m_sLName As String
Private m_dtDOB As Date
Private m_sSSN As String
Private m_sJobTitle As String
Private m_sDepartment As String
Private m_sEmail As String
Private m_oAddress As cAddress
Private m_oEquipment As cEquipment
Private m_oAccess As cAccess

Notice that in addition to the data inputs from our screen design, we’ve included objects
to hold the address, equipment, and access information.

The first thing we’ll do here is initialize our cPerson class and set some default values. In
the Class_Initialize event, add the following code:

Private Sub Class_Initialize()
m_lngID = RandomNumber(100000, 999999)
Set m_oAddress = New cAddress
Set m_oEquipment = New cEquipment
Set m_oAccess = New cAccess
SetObjectIDs

End Sub

We’re setting our private ID variable, m_lngID, to a random six-digit value, and initializing
our private business object variables. We then call a private function that sets the ID values of
all four of our business objects to the same value, SetObjectIDs. Add the following code to the
cPerson class to generate the random number and synchronize the ID field:

Private Function RandomNumber(upper As Long, lower As Long) As Long
'generates a random number between upper & lower
Randomize
RandomNumber = Int((upper - lower + 1) * Rnd + lower)

End Function

Private Sub SetObjectIDs()
m_oAddress.ID = m_lngID
m_oEquipment.ID = m_lngID
m_oAccess.ID = m_lngID

End Sub

We’ll also add a call to this procedure in our ID Property Let function. This way, if we
manually assign a value to the ID field, all the business objects will get the new value. The fin-
ished ID Property Let will look like this:

Public Property Let ID(newID As Long)
m_lngID = newID
SetObjectIDs 'keep all objects in sync with the same ID

End Property

CHAPTER 4 ■ USERFORMS162

9578ch04final.qxd 1/30/08 8:40 PM Page 162

The remainder of the cPerson class is very straightforward. Finish the cPerson class by
adding the following code:

Property Get FName() As String
FName = m_sFName

End Property

Property Let FName(newFName As String)
m_sFName = newFName

End Property

Property Get MidInit() As String
MidInit = m_sMidInit

End Property

Property Let MidInit(newMidInit As String)
m_sMidInit = newMidInit

End Property

Property Get LName() As String
LName = m_sLName

End Property

Property Let LName(newLName As String)
m_sLName = newLName

End Property

Property Get DOB() As Date
DOB = m_dtDOB

End Property

Property Let DOB(newDOB As Date)
m_dtDOB = newDOB

End Property

Property Get SSN() As String
SSN = m_sSSN

End Property

Property Let SSN(newSSN As String)
m_sSSN = newSSN

End Property

Property Get JobTitle() As String
JobTitle = m_sJobTitle

End Property

CHAPTER 4 ■ USERFORMS 163

9578ch04final.qxd 1/30/08 8:40 PM Page 163

Property Let JobTitle(newJobTitle As String)
m_sJobTitle = newJobTitle

End Property

Property Get Department() As String
Department = m_sDepartment

End Property

Property Let Department(newDepartment As String)
m_sDepartment = newDepartment

End Property

Property Get Email() As String
Email = m_sEmail

End Property

Property Let Email(newEmail As String)
m_sEmail = newEmail

End Property

Property Get Address() As cAddress
Set Address = m_oAddress

End Property

Property Set Address(newAddress As cAddress)
Set m_oAddress = newAddress

End Property

Property Get Equipment() As cEquipment
Set Equipment = m_oEquipment

End Property

Property Set Equipment(newEquipment As cEquipment)
Set m_oEquipment = newEquipment

End Property

Property Get Access() As cAccess
Set Access = m_oAccess

End Property

Property Set Access(newAccess As cAccess)
Set m_oAccess = newAccess

End Property

We’ve added the remaining Person data elements to our class, as well as three object prop-
erties using Property Get/Set statements. We may also want to add a property that returns the
employee’s full name. Add the read-only FullName property to cPerson:

CHAPTER 4 ■ USERFORMS164

9578ch04final.qxd 1/30/08 8:40 PM Page 164

Property Get FullName() As String
Dim sReturn As String
Dim blnMidInit As Boolean
blnMidInit = Len(m_sMidInit & "") > 0

If blnMidInit Then
sReturn = m_sFName & " " & m_sMidInit & " " & m_sLName

Else
sReturn = m_sFName & " " & m_sLName

End If

FullName = sReturn
End Property

That’s all we need for our cPerson class. Now we’ll fill in our cAddress, cEquipment, and
cAccess objects. Then we’ll start putting our wizard application together. These classes are
mapped directly to the screen elements from our HRWizard UserForm. The entirety of their
code is shown in Listings 4-1 through 4-3.

Listing 4-1. The cAddress Class

Private m_lngID As Long
Private m_sStreetAddress As String
Private m_sStreeAddress2 As String
Private m_sCity As String
Private m_sState As String
Private m_sZipCode As String
Private m_sPhoneNumber As String
Private m_sCellPhone As String
'

Public Property Get ID() As Long
ID = m_lngID

End Property

Public Property Let ID(newID As Long)
m_lngID = newID

End Property

Public Property Get StreetAddress() As String
StreetAddress = m_sStreetAddress

End Property

Public Property Let StreetAddress(newAddress As String)
m_sStreetAddress = newAddress

End Property

CHAPTER 4 ■ USERFORMS 165

9578ch04final.qxd 1/30/08 8:40 PM Page 165

Public Property Get StreetAddress2() As String
StreetAddress2 = m_sStreeAddress2

End Property

Public Property Let StreetAddress2(newAddress2 As String)
m_sStreeAddress2 = newAddress2

End Property

Public Property Get City() As String
City = m_sCity

End Property

Public Property Let City(newCity As String)
m_sCity = newCity

End Property

Public Property Get State() As String
State = m_sState

End Property

Public Property Let State(newState As String)
m_sState = newState

End Property

Public Property Get ZipCode() As String
ZipCode = m_sZipCode

End Property

Public Property Let ZipCode(newZipCode As String)
m_sZipCode = newZipCode

End Property

Public Property Get PhoneNumber() As String
PhoneNumber = m_sPhoneNumber

End Property

Public Property Let PhoneNumber(newPhoneNumber As String)
m_sPhoneNumber = newPhoneNumber

End Property

Public Property Get CellPhone() As String
CellPhone = m_sCellPhone

End Property

Public Property Let CellPhone(newCellPhone As String)
m_sCellPhone = newCellPhone

End Property

CHAPTER 4 ■ USERFORMS166

9578ch04final.qxd 1/30/08 8:40 PM Page 166

Listing 4-2. The cEquipment Class

Private m_lngID As Long
Private m_sPCType As String
Private m_sPhoneType As String
Private m_sLocation As String
Private m_sFaxYN As String
'

Public Property Get ID() As Long
ID = m_lngID

End Property

Public Property Let ID(newID As Long)
m_lngID = newID

End Property

Public Property Get PCType() As String
PCType = m_sPCType

End Property

Public Property Let PCType(newPCType As String)
m_sPCType = newPCType

End Property

Public Property Get PhoneType() As String
PhoneType = m_sPhoneType

End Property

Public Property Let PhoneType(newPhoneType As String)
m_sPhoneType = newPhoneType

End Property

Public Property Get Location() As String
Location = m_sLocation

End Property

Public Property Let Location(newLocation As String)
m_sLocation = newLocation

End Property

Public Property Get FaxYN() As String
FaxYN = m_sFaxYN

End Property

Public Property Let FaxYN(newFaxYN As String)
m_sFaxYN = newFaxYN

End Property

CHAPTER 4 ■ USERFORMS 167

9578ch04final.qxd 1/30/08 8:40 PM Page 167

Listing 4-3. The cAccess Class

Private m_lngID As Long
Private m_sBuilding As String
Private m_iNetworkLevel As Integer
Private m_sRemoteYN As String
Private m_sParkingSpot As String
'

Public Property Get ID() As Long
ID = m_lngID

End Property

Public Property Let ID(newID As Long)
m_lngID = newID

End Property

Public Property Get Building() As String
Building = m_sBuilding

End Property

Public Property Let Building(newBuilding As String)
m_sBuilding = newBuilding

End Property

Public Property Get NetworkLevel() As Integer
NetworkLevel = m_iNetworkLevel

End Property

Public Property Let NetworkLevel(newNetworkLevel As Integer)
m_iNetworkLevel = newNetworkLevel

End Property

Public Property Get RemoteYN() As String
RemoteYN = m_sRemoteYN

End Property

Public Property Let RemoteYN(newRemoteYN As String)
m_sRemoteYN = newRemoteYN

End Property

Public Property Get ParkingSpot() As String
ParkingSpot = m_sParkingSpot

End Property

Public Property Let ParkingSpot(newParkingSpot As String)
m_sParkingSpot = newParkingSpot

End Property

CHAPTER 4 ■ USERFORMS168

9578ch04final.qxd 1/30/08 8:40 PM Page 168

Managing Lists
Some of the data inputs on our HRWizard UserForm are being displayed to the user via Com-
boBox controls. The HRWizard data file contains a worksheet named ListMgr that contains the
data for each list. The data is stored in named ranges on the ListMgr worksheet.

Our cListManager class will contain functions that let us populate our combo boxes from
these named ranges. We’ll also add a method to bind a list to a VBA Collection object. This
concept could easily be expanded to include lists gathered from any data source (like XML) or
an ADO or DAO recordset.

Insert a new class module and name it cListManager. Add these two methods to the class:

Public Sub BindListToRange(ListRangeName As String, TheCombo As MSForms.ComboBox)
TheCombo.RowSource = ListRangeName

End Sub

Public Sub BindListToCollection(TheCollection As Collection, ➥

TheCombo As MSForms.ComboBox)
Dim iNumItems As Integer
Dim i As Integer
iNumItems = TheCollection.Count
For i = 1 To iNumItems
TheCombo.AddItem TheCollection(i)

Next i
End Sub

The BindListToRange method takes a Range name string value and a ComboBox object,
and sets the ComboBox’s RowSource property to the named range. The BindListToCollection
method simply loops through a collection and calls the ComboBox’s AddItem method.

The Data Class
Our data class is named cHRData. This class is being designed specifically for our HRWizard
application, and will be closely coupled with our cPerson object and our EmpData worksheet.
Insert a new class module and name it cHRData. Add the following module-level variables, one
property, and one method:

Private m_oWorksheet As Worksheet
Private m_lngNewRowNum As Long
Private m_oEmployee As cPerson
Private m_oXL As cExcelUtils
'

Public Property Get Worksheet() As Worksheet
Set Worksheet = m_oWorksheet

End Property

Public Property Set Worksheet(newWorksheet As Worksheet)
Set m_oWorksheet = newWorksheet

End Property

CHAPTER 4 ■ USERFORMS 169

9578ch04final.qxd 1/30/08 8:40 PM Page 169

Public Function SaveEmployee(Employee As cPerson) As Boolean
Dim blnReturn As Boolean

If m_oWorksheet Is Nothing Then
GoTo Exit_Function

End If

m_lngNewRowNum = m_oXL.FindEmptyRow(m_oWorksheet)
Set m_oEmployee = Employee

SaveEmpData
SaveAddressData
SaveEquipmentData
SaveAccessData

Exit_Function:
SaveEmployee = blnReturn
Exit Function

End Function

Add the following class initialization and cleanup code:

Private Sub Class_Initialize()
Set m_oXL = New cExcelUtils

End Sub

Private Sub Class_Terminate()
Set m_oXL = Nothing

End Sub

The Worksheet property lets us define where the data will be stored in our workbook. The
SaveEmployee method does a few things for us when we pass in a cPerson object:

Public Function SaveEmployee(Employee As cPerson) As Boolean

It checks to see that the Worksheet property has been set so we know where to save our
data:

If m_oWorksheet Is Nothing Then
GoTo Exit_Function

End If

It finds the first empty row using the cExcelUtils object:

m_lngNewRowNum = m_oXL.FindEmptyRow(m_oWorksheet)

Then we assign the cPerson object we passed in to the method to a private module-level
cPerson object that will be used in various save functions:

Set m_oEmployee = Employee

CHAPTER 4 ■ USERFORMS170

9578ch04final.qxd 1/30/08 8:40 PM Page 170

Lastly, it fires a few save functions, one for each data object:

SaveEmpData
SaveAddressData
SaveEquipmentData
SaveAccessData

The Save methods simply transfer the data values stored in the cPerson object (and its
internal data objects) to a cell on the EmpData worksheet. Add the following Save methods
to the cHRData class module:

Private Sub SaveEmpData()
With m_oWorksheet
.Cells(m_lngNewRowNum, 1).Value = m_oEmployee.ID
.Cells(m_lngNewRowNum, 2).Value = m_oEmployee.FName
.Cells(m_lngNewRowNum, 3).Value = m_oEmployee.MidInit
.Cells(m_lngNewRowNum, 4).Value = m_oEmployee.LName
.Cells(m_lngNewRowNum, 5).Value = m_oEmployee.DOB
.Cells(m_lngNewRowNum, 6).Value = m_oEmployee.SSN
.Cells(m_lngNewRowNum, 7).Value = m_oEmployee.JobTitle
.Cells(m_lngNewRowNum, 8).Value = m_oEmployee.Department
.Cells(m_lngNewRowNum, 9).Value = m_oEmployee.Email

End With
End Sub

Private Sub SaveAddressData()
With m_oWorksheet
.Cells(m_lngNewRowNum, 10).Value = m_oEmployee.Address.StreetAddress
.Cells(m_lngNewRowNum, 11).Value = m_oEmployee.Address.StreetAddress2
.Cells(m_lngNewRowNum, 12).Value = m_oEmployee.Address.City
.Cells(m_lngNewRowNum, 13).Value = m_oEmployee.Address.State
.Cells(m_lngNewRowNum, 14).Value = m_oEmployee.Address.ZipCode
.Cells(m_lngNewRowNum, 15).Value = m_oEmployee.Address.PhoneNumber
.Cells(m_lngNewRowNum, 16).Value = m_oEmployee.Address.CellPhone

End With
End Sub

Private Sub SaveEquipmentData()
With m_oWorksheet
.Cells(m_lngNewRowNum, 17).Value = m_oEmployee.Equipment.PCType
.Cells(m_lngNewRowNum, 18).Value = m_oEmployee.Equipment.PhoneType
.Cells(m_lngNewRowNum, 19).Value = m_oEmployee.Equipment.Location
.Cells(m_lngNewRowNum, 20).Value = m_oEmployee.Equipment.FaxYN

End With
End Sub

CHAPTER 4 ■ USERFORMS 171

9578ch04final.qxd 1/30/08 8:40 PM Page 171

Private Sub SaveAccessData()
With m_oWorksheet
.Cells(m_lngNewRowNum, 21).Value = m_oEmployee.Access.Building
.Cells(m_lngNewRowNum, 22).Value = m_oEmployee.Access.NetworkLevel
.Cells(m_lngNewRowNum, 23).Value = m_oEmployee.Access.RemoteYN
.Cells(m_lngNewRowNum, 24).Value = m_oEmployee.Access.ParkingSpot

End With
End Sub

Notice the syntax used to retrieve the cPerson object’s internal Address, Equipment, and
Access object data:

m_oEmployee.Address.StreetAddress
m_oEmployee.Equipment.PCType
m_oEmployee.Access.Building

Using an object within an object gives you the flexibility of categorizing information
within your objects. Anyone familiar with object-relational database technologies, such as
InterSystems Cache (www.intersystems.com), may recognize this type of syntax.

■Note Object-oriented databases use objects rather than tables to represent data. If you’re interested in
object-oriented programming techniques and haven’t checked out this technology, I highly recommend you
do. InterSystems offers a free single-user download on its web site. Also, the online resource Wikipedia has
a good article on the subject at http://en.wikipedia.org/wiki/Object_database.

Managing the Wizard
We’ll build two classes to help us manage our wizard application. The first is a very simple
class that will hold configuration data for each step. Then we’ll create a class that will hold a
collection of these “wizard step” objects. This class will manage the operation of the wizard
process for us.

Insert a new class module and name it cStep. Add the following code:

Private m_iOrder As Integer
Private m_iPage As Integer
Private m_sCaption As String

Public Property Get Order() As Integer
Order = m_iOrder

End Property

Public Property Let Order(newOrder As Integer)
m_iOrder = newOrder

End Property

CHAPTER 4 ■ USERFORMS172

9578ch04final.qxd 1/30/08 8:40 PM Page 172

http://www.intersystems.com
http://en.wikipedia.org/wiki/Object_database

Public Property Get Page() As Integer
Page = m_iPage

End Property

Public Property Let Page(newPage As Integer)
m_iPage = newPage

End Property

Public Property Get Caption() As String
Caption = m_sCaption

End Property

Public Property Let Caption(newCaption As String)
m_sCaption = newCaption

End Property

The HRWizard.xlms workbook contains a worksheet named UFormConfig. This worksheet
holds information about each step in the wizard. This is where we can change the order of the
steps or insert a new step. This class will hold that information for us. How will it do that when
it (apparently) only holds information on one step?

Table 4-9 lists the cStep class’s properties and describes them.

Table 4-9. cStep Properties

Property Description

Order Holds the step’s place in the wizard process’s order

Page Holds the page number corresponding to a page in the MultiPage control

Caption The text to display on the currently active Page control

We are now going to design a class to manage the steps in the wizard. In that class, we’ll
create a collection of cStep objects that we’ll use to keep track of where we are in the process
and how many steps we have.

Insert a new class module and name it cStepManager. Add the following module-level vari-
able declarations:

Dim m_oStep As cStep
Dim m_iNumSettings As Integer
Dim m_iNumSteps As Integer
Dim m_iCurrentPage As Integer
Dim m_iPreviousPage As Integer
Dim m_iNextPage As Integer
Dim WithEvents m_oPreviousButton As MSForms.CommandButton
Dim WithEvents m_oNextButton As MSForms.CommandButton
Dim m_oWorksheet As Worksheet

We have a cStep object, m_oStep, that we’ll be using to populate a collection of steps for
the wizard, followed by a few Integer variables. These tell us how many steps we have and

CHAPTER 4 ■ USERFORMS 173

9578ch04final.qxd 1/30/08 8:40 PM Page 173

how many properties each step has, and they track the current, next, and previous steps based
on where in the wizard the user might be.

We then have a couple variables that are set to the MSForms.CommandButton object type.
These are declared WithEvents. We are going to let our cStepManager class maintain the state
of these buttons. The WithEvents declaration lets us trap their Click event and act on it inside
of our class. We will use the Click event to determine whether the button should be enabled
based on where the user is in the wizard process.

Add the following properties to cStepManager:

Public Property Get NumberOfSettings() As Integer
NumberOfSettings = m_iNumSettings

End Property

Public Property Let NumberOfSettings(newNum As Integer)
m_iNumSettings = newNum

End Property

'Worksheet Property: Gets/Sets the sheet containing the step information
Public Property Get Worksheet() As Worksheet
Set Worksheet = m_oWorksheet

End Property

Public Property Set Worksheet(newWorksheet As Worksheet)
Set m_oWorksheet = newWorksheet

End Property

Public Property Get CurrentPage() As Integer
CurrentPage = m_iCurrentPage

End Property

Public Property Let CurrentPage(newPage As Integer)
m_iCurrentPage = newPage

End Property

Public Property Get PreviousPage() As Integer
PreviousPage = m_iCurrentPage - 1

End Property

Public Property Get NextPage() As Integer
NextPage = m_iCurrentPage + 1

End Property

Public Property Set PreviousButton(newPreviousBtn As MSForms.CommandButton)
Set m_oPreviousButton = newPreviousBtn

End Property

CHAPTER 4 ■ USERFORMS174

9578ch04final.qxd 1/30/08 8:40 PM Page 174

Public Property Set NextButton(newNextBtn As MSForms.CommandButton)
Set m_oNextButton = newNextBtn

End Property

Table 4-10 lists the cStepManager class’s properties and describes them.

Table 4-10. cStepManager Properties

Property Description

NumberOfSettings Contains the number of columns in our step configuration worksheet,
UFormConfig

Worksheet Tells the class where to find the information for each step of the wizard

CurrentPage Stores the value of the current step in the wizard

PreviousPage Calculated based on the CurrentPage property; returns the value of the
preceding step in the wizard

NextPage Calculated based on the CurrentPage property; returns the value of the
next step in the wizard

PreviousButton Stores a pointer to the button on the UserForm that will navigate to the
preceding step in the wizard

NextButton Stores a pointer to the button on the UserForm that will navigate to the
next step in the wizard

We need to add one more property to our class. This read-only property will contain the
collection of cStep objects that hold the information on each step of the wizard.

The PageSettings property will store this collection for us. It returns a Collection object
that we will use in the client code behind our HRWizard UserForm.

The code for the PageSettings property looks like this:

Public Property Get PageSettings() As Collection
Dim colReturn As Collection
Dim numrows As Integer
Dim row As Integer
Dim col As Integer
Dim sKey As String
Set colReturn = New Collection

numrows = m_oWorksheet.Cells(Rows.Count, 1).End(xlUp).row
For row = 2 To numrows
Set m_oStep = New cStep
For col = 1 To m_iNumSettings
Select Case col
Case 1
m_oStep.Order = m_oWorksheet.Cells(row, col).Value
sKey = CStr(m_oStep.Order)

Case 2
m_oStep.Page = m_oWorksheet.Cells(row, col).Value

CHAPTER 4 ■ USERFORMS 175

9578ch04final.qxd 1/30/08 8:40 PM Page 175

Case 3
m_oStep.Caption = m_oWorksheet.Cells(row, col).Value

End Select
Next col
colReturn.Add m_oStep, sKey

Next row

m_iNumSteps = colReturn.Count
Set PageSettings = colReturn

End Property

The first thing we’re doing is getting the number of rows in the used area on the work-
sheet:

numrows = m_oWorksheet.Cells(Rows.Count, 1).End(xlUp).Row

■Note Although Excel’s Worksheet object has a Rows.Count method, we cannot use that here
(m_oWorksheet.Rows.Count). That would return the total number of rows in the worksheet, which would
not only give us an incorrect value, but would also overflow our Integer variable.

Next we’re using the number-of-used-rows value just returned in a loop that will populate
the collection of cStep objects. Let’s look at that code:

For row = 2 To numrows
Set m_oStep = New cStep
For col = 1 To m_iNumSettings
Select Case col
Case 1
m_oStep.Order = m_oWorksheet.Cells(row, col).Value
sKey = CStr(m_oStep.Order)

Case 2
m_oStep.Page = m_oWorksheet.Cells(row, col).Value

Case 3
m_oStep.Caption = m_oWorksheet.Cells(row, col).Value

End Select
Next col
colReturn.Add m_oStep, sKey

Next row

The first thing we do is instantiate a new cStep object. Then we move into an inner loop to
walk through the columns on the configuration worksheet, and assign them to the correspon-
ding property in the internal cStep object. The m_iNumSettings value will have already been set
via the NumberOfSettings property before this code is run.

Finally, we add the cStep object to our internal collection, colReturn, passing in the Order
value as the key in the collection.

CHAPTER 4 ■ USERFORMS176

9578ch04final.qxd 1/30/08 8:40 PM Page 176

■Note It is important to note the first line of code inside the outer loop, Set m_oStep = New cStep. If
this is omitted, you will end up with four identical cStep objects in your collection (all containing the data
from the last configuration item read from the worksheet). This is because the m_oStep object reference is
still active, so every call to it modifies any existing instances. By using the New keyword, you create a new,
separate instance of the object.

The last thing we’re doing is setting the internal m_iNumSteps variable that is used to track
our Previous and Next CommandButton availability, and finally we’re returning the collection:

m_iNumSteps = colReturn.Count
Set PageSettings = colReturn

Now we will turn our attention to our PreviousButton and NextButton properties. You’ll
recall that our internal variables for these properties were declared WithEvents. When you
declare an object WithEvents, you have access to that object’s event code via the VB code win-
dow’s Object box, as shown in Figure 4-27.

Figure 4-27. The Object box lists objects declared WithEvents.

Select m_oNextButton and m_oPreviousButton from the Object box to insert their event-
handler stubs into the class module. Add the following code to each:

Private Sub m_oNextButton_Click()
m_oNextButton.Enabled = Me.NextPage <> m_iNumSteps + 1
m_oPreviousButton.Enabled = Me.PreviousPage <> 0

End Sub

Private Sub m_oPreviousButton_Click()
m_oPreviousButton.Enabled = Me.PreviousPage <> 0
m_oNextButton.Enabled = Me.NextPage <> m_iNumSteps + 1

End Sub

This code controls whether each button is enabled based on the value of the NextPage or
PreviousPage properties of our cStepManager class. We’ll add one more method to initialize the
buttons when the class is first created in client code:

Public Sub HandleControls()
m_oPreviousButton.Enabled = Me.PreviousPage <> 0
m_oNextButton.Enabled = Me.NextPage <> m_iNumSteps + 1

End Sub

CHAPTER 4 ■ USERFORMS 177

9578ch04final.qxd 1/30/08 8:40 PM Page 177

We’ve created a fair amount of code here, all stored in objects across many class modules.
By compartmentalizing our functionality, we’ve made our job of maintaining this code very
easy. If we need to bind lists to data sources we may not be currently handling, it is trivial to
add a new method to the cListManger class. If we need to add a screen to our process, we
design a new page on the MultiPage control, create a new class to store that screen’s informa-
tion, and add a row to our configuration table.

Your Class Modules folder in the Project Explorer should look like Figure 4-28 after all the
classes have been added and coded.

Figure 4-28. HRWizard class module list

Coding the HRWizard UserForm
Now that we’ve done all the hard work, let’s plug our objects into our HRWizard UserForm and
put those objects to work.

Open the code window for the HRWizard UserForm. Add the following module-level vari-
able declarations:

Dim m_oEmployee As cPerson
Dim m_oLM As cListManager
Dim m_oWizard As cStepManager
Dim m_colSteps As Collection

Although we created nine separate class modules to run our application, many are used
internally by the classes listed in our declaration section. We’ll be using the cPerson class to
collect the data for a new employee; the cListManager to populate our various combo boxes
on the HRWizard UserForm; and the cStepManager to determine which screen to show when
and in what order, and to control the availability of the navigation command buttons. Finally,
we are using a standard VBA Collection object. This will be used to store the cStepManager
object’s PageSettings collection.

Initializing the Application
In our HRWizard UserForm’s Initialize event, we will initialize our custom objects and add
code to set up the wizard, lists, and display form.

Add the following code to the UserForm_Initialize event:

CHAPTER 4 ■ USERFORMS178

9578ch04final.qxd 1/30/08 8:40 PM Page 178

Private Sub UserForm_Initialize()
Set m_oEmployee = New cPerson
Set m_oLM = New cListManager
Set m_oWizard = New cStepManager

InitWizard
InitLists
InitForm

End Sub

Now we’ll create the three Init functions. These will set up our wizard, list manager, and
UserForm objects.

Initializing the Wizard

Add a new subroutine to the UserForm code window and name it InitWizard. Add the follow-
ing code:

Private Sub InitWizard()
With m_oWizard
Set .Worksheet = Sheets("UFormConfig")
.NumberOfSettings = 3
Set m_colSteps = .PageSettings
Set .PreviousButton = Me.cmdPrevious
Set .NextButton = Me.cmdNext
.CurrentPage = MultiPage1.Value + 1

End With
End Sub

This simple procedure does the following:

• Tells the cStepManager object where to find the configuration data

Set .Worksheet = Sheets("UFormConfig")

• Tells the cStepManager object how many columns to retrieve data from

.NumberOfSettings = 3

• Puts the page settings into a collection

Set m_colSteps = .PageSettings

• Sets the navigation buttons

Set .PreviousButton = Me.cmdPrevious
Set .NextButton = Me.cmdNext

• Sets the current page

.CurrentPage = MultiPage1.Value + 1

CHAPTER 4 ■ USERFORMS 179

9578ch04final.qxd 1/30/08 8:40 PM Page 179

We are using the MultiPage control’s Value property plus 1 to set the CurrentPage property
because the MultiPage control’s Page collection is zero-based. (Normally, collections are one-
based, and I’m not sure why this collection is different, but that’s the way it is.)

The cStepManager object must be set up before we initialize the form because the form
will use the PageSettings collection to set itself up.

Initializing the Combo Boxes

The next step is to bind our combo boxes to their respective lists. The lists are stored on the
ListMgr worksheet.

Add a new subroutine and name it InitLists. Add the following code:

Private Sub InitLists()
With m_oLM
.BindListToRange "Departments", Me.cboDept
.BindListToRange "Locations", Me.cboLocation
.BindListToRange "NetworkLvl", Me.cboNetworkLvl
.BindListToRange "ParkingSpot", Me.cboParkingSpot
.BindListToRange "YN", Me.cboRemoteAccess

End With
End Sub

Again, this is very simple code that calls the cListManager object’s BindListToRange
method for each list in the application.

Initializing the Form

Our final step in setting up the application is to initialize the UserForm itself. Create a new
subroutine named InitForm. Add the following code:

Private Sub InitForm()
Dim iFirstPage As Integer
Dim i As Integer
Dim iPageCount As Integer

iFirstPage = m_colSteps("1").Order - 1
Me.MultiPage1.Value = iFirstPage
Me.MultiPage1.Pages((m_colSteps("1").Page) - 1).Caption = m_colSteps("1").Caption
m_oWizard.HandleControls
iPageCount = MultiPage1.Pages.Count
For i = 1 To iPageCount - 1
MultiPage1.Pages(i).Visible = False

Next
End Sub

Here we are setting our MultiPage control’s Value property to the PageSetting collection’s
(m_colSteps) item (whose key value is 1), and setting its caption:

CHAPTER 4 ■ USERFORMS180

9578ch04final.qxd 1/30/08 8:40 PM Page 180

iFirstPage = m_colSteps("1").Order - 1
Me.MultiPage1.Value = iFirstPage
Me.MultiPage1.Pages((m_colSteps("1").Page) - 1).Caption = m_colSteps("1").Caption

Remember that we passed in the value of the Order property as the key. This makes it very
easy for us to determine which page to move to. When setting a MultiPage control’s Value
property, you are activating the page with a corresponding value. In this case, the value is 1.

Then we are calling the m_oWizard object’s HandleControls method to initialize the naviga-
tion buttons to their correct settings:

m_oWizard.HandleControls

Next, we hide all the pages except the first page:

iPageCount = MultiPage1.Pages.Count
For i = 1 To iPageCount - 1
MultiPage1.Pages(i).Visible = False

Next

Remember that the MultiPage control’s Page collection is zero-based, so by starting our
loop counter at 1, we keep that page visible.

At this point, you should be able to run the form.

1. In the VBE, double-click the form in the Project Explorer window.

2. Click the Run button on the Standard toolbar or press the F5 function key, as shown in
Figure 4-29.

Figure 4-29. The Run Sub/UserForm toolbar button

Notice in Figure 4-30 that the caption appears in the tab handle and the Previous
command button is disabled.

CHAPTER 4 ■ USERFORMS 181

9578ch04final.qxd 1/30/08 8:40 PM Page 181

Figure 4-30. Initialized HRWizard UserForm

A look at the Department combo box in Figure 4-31 shows us our list manager did
indeed bind the combo box to the Departments named range.

Figure 4-31. Department combo box bound to named range

3. Stop running the form by clicking the X button.

CHAPTER 4 ■ USERFORMS182

9578ch04final.qxd 1/30/08 8:40 PM Page 182

Adding Navigation to the Form

Our navigation buttons have the task of moving us from step to step in our wizard application.
But they also need the ability to put the data from each screen into its place in the UserForm’s
cPerson object.

Add the following code to the cmdNext_Click event:

Private Sub cmdNext_Click()
Dim iNext As Integer
StoreData
iNext = m_oWizard.NextPage
Me.MultiPage1.Value = m_colSteps(CStr(iNext)).Order - 1
Me.MultiPage1.Pages((m_colSteps(CStr(iNext)).Page) - 1).Caption = ➥

m_colSteps(CStr(iNext)).Caption
ShowNextPage "up"

End Sub

The first thing we need to do before we move to the next step in the wizard is retain the
values entered on the current form. The StoreData method determines which step the user is
on and calls the correct store method based on that location, as shown in Listing 4-4.

Listing 4-4. The StoreData Method Calls the Correct Method for Each Step in the Wizard.

Private Sub StoreData()
Select Case m_oWizard.CurrentPage
Case 1
StorePerson

Case 2
StoreAddress

Case 3
StoreEquipment

Case 4
StoreAccess

End Select
End Sub

The code for the store method follows:

Private Sub StorePerson()
With m_oEmployee
.FName = Me.txtFname.Value
.MidInit = Me.txtMidInit.Value
.LName = Me.txtLname.Value
If Len(Me.txtDOB.Value & "") > 0 Then
.DOB = Me.txtDOB.Value

End If

CHAPTER 4 ■ USERFORMS 183

9578ch04final.qxd 1/30/08 8:40 PM Page 183

.SSN = Me.txtSSN.Value

.Department = Me.cboDept.Text

.JobTitle = Me.txtJobTitle.Value

.Email = Me.txtEmail.Value
End With

End Sub

Private Sub StoreAddress()
With m_oEmployee.Address
.StreetAddress = Me.txtStreedAddr.Value
.StreetAddress2 = Me.txtStreetAddr2.Value
.City = Me.txtCity.Value
.State = Me.txtState.Value
.ZipCode = Me.txtZip.Value
.PhoneNumber = Me.txtPhone.Value
.CellPhone = Me.txtCell.Value
End With

End Sub

Private Sub StoreEquipment()
Dim opt As MSForms.OptionButton
With m_oEmployee.Equipment
For Each opt In Me.fraPCType.Controls
If opt.Value = True Then
.PCType = opt.Caption
Exit For

End If
Next

For Each opt In Me.fraPhoneType.Controls
If opt.Value = True Then
.PhoneType = opt.Caption
Exit For

End If
Next

.Location = Me.cboLocation.Text

If Me.chkFaxYN = True Then
.FaxYN = "Y"

Else
.FaxYN = "N"

End If
End With

End Sub

CHAPTER 4 ■ USERFORMS184

9578ch04final.qxd 1/30/08 8:40 PM Page 184

Private Sub StoreAccess()
Dim opt As MSForms.OptionButton

With m_oEmployee.Access
If Len(Me.cboNetworkLvl.Text & "") > 0 Then
.NetworkLevel = CInt(Me.cboNetworkLvl.Text)

End If
.ParkingSpot = Me.cboParkingSpot.Text
.RemoteYN = Me.cboRemoteAccess.Text
For Each opt In Me.fraBuilding.Controls
If opt.Value = True Then
.Building = opt.Caption
Exit For

End If
Next

End With
End Sub

This code simply takes the data from the screen and holds it in the corresponding object
within cPerson.

Next, we determine what the next page should be (remember that the MultiPage Pages
collection is zero-based, so we’re subtracting 1 from our Order property to get the value of the
next page).

iNext = m_oWizard.NextPage
Me.MultiPage1.Value = m_colSteps(CStr(iNext)).Order - 1
Me.MultiPage1.Pages((m_colSteps(CStr(iNext)).Page) - 1).Caption = ➥

m_colSteps(CStr(iNext)).Caption

Then we call the ShowNextPage method, telling it which way we want to move:

ShowNextPage "up"

The ShowNextPage method looks like this:

Private Sub ShowNextPage(Direction As String)
Dim iCurrPage As Integer
Dim iUpDown As Integer
iCurrPage = MultiPage1.Value
If LCase(Direction) = "up" Then
iUpDown = 1

Else
iUpDown = -1

End If
MultiPage1.Pages(iCurrPage + iUpDown).Visible = True
MultiPage1.Pages(iCurrPage).Visible = False

End Sub

This method simply looks at the value of our CurrentPage property and adds or subtracts
1 based upon the Direction argument that is passed into the method.

CHAPTER 4 ■ USERFORMS 185

9578ch04final.qxd 1/30/08 8:40 PM Page 185

The cmdPrevious button’s Click event looks very similar:

Private Sub cmdPrevious_Click()
Dim iPrevious As Integer
StoreData
iPrevious = m_oWizard.PreviousPage
Me.MultiPage1.Value = m_colSteps(CStr(iPrevious)).Order - 1
Me.MultiPage1.Pages((m_colSteps(CStr(iPrevious)).Page) - 1).Caption = ➥

m_colSteps(CStr(iPrevious)).Caption
ShowNextPage "down"

End Sub

The only difference is that we are passing the keyword down to the ShowNextPage method
so that we move the user in the proper direction.

Let’s add one last event handler to assist us with our navigation. Whenever we change
pages on a MultiPage control, the control’s Change event fires. We’ll use that event to grab the
value of the current page and store it in our m_oWizard object’s CurrentPage property.

Add the following code to the MultiPage1 control’s Change event:

Private Sub MultiPage1_Change()
m_oWizard.CurrentPage = MultiPage1.Value + 1

End Sub

Now that we have our navigation working, let’s give it a try:

1. With the UserForm open in Design view, click the Run button on the Standard toolbar
or press the F5 key.

2. Once the form is open, click the Next Button to move to the second step in our wizard,
as defined on our configuration worksheet. This should be the Address screen. Notice
that both navigation buttons are now enabled, as shown in Figure 4-32.

3. Click the Previous button to navigate back to the Personal screen, and the Previous
button will no longer be active.

4. Click the Next button until you are at the last screen as defined on our configuration
worksheet. This should be the Network Access screen. The Next button will no longer
be enabled, as shown in Figure 4-33.

5. Stop the form by clicking the X button.

CHAPTER 4 ■ USERFORMS186

9578ch04final.qxd 1/30/08 8:40 PM Page 186

Figure 4-32. Both navigation buttons are enabled.

Figure 4-33. The Next button is disabled on the last screen in the wizard.

Saving the Employee Record

We’ve done a lot of work so far, and we’ve got some pretty neat functionality provided to our
UserForm from our custom objects. The only thing missing is saving the data to the EmpData
worksheet.

CHAPTER 4 ■ USERFORMS 187

9578ch04final.qxd 1/30/08 8:40 PM Page 187

Normally, we might create a subroutine, name it something like SaveData(), and call it
from our cmdSave_Click event—but our cHRData class already has a SaveEmployee method. We
can call that directly from cmdSave_Click with no need to create a save function on our form.

Insert the following code in the cmdSave_Click event:

Private Sub cmdSave_Click()
Dim oHRData As cHRData

Set oHRData.Worksheet = Sheets("EmpData")
oHRData.SaveEmployee m_oEmployee

Set oHRData = Nothing
End Sub

After setting the Worksheet property so that our cHRData object knows where to save the
data, we call the SaveEmployee method, passing in our m_oEmployee object, which contains all
the data to save.

Cleaning Up

We’ve almost got a complete application finished. Let’s finish off by adding code to our Cancel
button and putting some cleanup code in our form’s Terminate event.

Add the following line of code to the cmdCancel button’s Click event:

Private Sub cmdCancel_Click()
Unload Me

End Sub

This single line of code simply unloads the form without saving any values.
Now we’ll clean up the objects used by our HRWizard UserForm. Add the following to the

UserForm_Terminate event handler:

Private Sub UserForm_Terminate()
Set m_oEmployee = Nothing
Set m_oLM = Nothing
Set m_oWizard = Nothing

End Sub

Now let’s add a simple function to our project to open the Wizard form. In the VBE, add
a standard module. Add the following method to the standard module:

Sub StartWizard()
HRWizard.Show

End Sub

This single line of code will display the UserForm when it is run.

Testing the HRWizard Application

It’s time to take our wizard for a test ride. Let’s enter some data into each screen of the wizard
and save it to the EmpData worksheet.

CHAPTER 4 ■ USERFORMS188

9578ch04final.qxd 1/30/08 8:40 PM Page 188

From the Excel workbook, run the StartWizard subroutine from the Macro dialog box, as
shown in Figure 4-34.

Figure 4-34. Running the StartWizard macro

Figures 4-35 to 4-39 show some sample input values and the saved data on the EmpData
worksheet.

Figure 4-35. Personal information added

CHAPTER 4 ■ USERFORMS 189

9578ch04final.qxd 1/30/08 8:40 PM Page 189

Figure 4-36. Address information added

Figure 4-37. Equipment information added

CHAPTER 4 ■ USERFORMS190

9578ch04final.qxd 1/30/08 8:40 PM Page 190

Figure 4-38. Access level information added

Figure 4-39. New employee data added to table

Summary
This chapter has explored UserForms in Excel 2007. UserForms allow developers to provide
a clean, easy-to-navigate data entry or retrieval experience to users. When users are entering
data into a large or unwieldy spreadsheet, we can provide a logical user experience by creating
applications with UserForms.

Form design is quick and easy using the controls provided in the UserForm Toolbox.
Although both of the samples in this chapter used only one UserForm each, you can place as
many as you need in your applications.

We used a somewhat nonstandard technique for adding functionality to our UserForms
by wrapping our code in custom objects in class modules.

The code behind our form is much cleaner than if we had coded directly behind the form.
How many module-level variables did we declare in our form’s code-behind? Only four. How
many might we have used if we had coded our functionality right on the form? Certainly more
than four.

Even if using classes gave us nothing more than better-organized code, I’d say it would be
worth the effort. And yes, it’s a bit more effort than just dropping code in any standard module
and trying to manage it. But we actually get more than organization. By wrapping our func-
tionality in classes, we have the opportunity to give more thought to our code, and in some
cases develop classes we can use in other projects.

CHAPTER 4 ■ USERFORMS 191

9578ch04final.qxd 1/30/08 8:40 PM Page 191

9578ch04final.qxd 1/30/08 8:40 PM Page 192

Charting in Excel 2007

Excel 2007 provides us with an easy-to-use chart-creation tool that quickly lets us create and
modify or enhance the charts we build. Microsoft has rebuilt the UI to include tools that make
chart type selection quick and easy. There are tools to allow us to quickly change, remove, or
add chart elements like titles, legends, data labels, and more. And charts now look even better
through the use of ClearType fonts that improve readability.

Getting Started
As with many of the previous features we’ve explored, we’ll manually create a few different
charts and record macros to take a look at some of the chart object properties and methods.
Then we’ll write our own code to create charts for our users.

1. In the Download section for this book on the Apress web site, find the file named
Chart01.xlsx and open the workbook.

2. Since we know we’ll be inserting code into this workbook, let’s save it in the macro-
enabled format, as Chart01.xlsm.

3. Activate the Monthly Total Sales Amount worksheet.

The Chart01.xlsm file shown in Figure 5-1 contains three worksheets containing North-
wind sales data, including sales by category, sales amounts by product, and total sales for
products in the beverage product line.

4. On the Developer ribbon, choose Record Macro from the Code section.

5. Name the Macro MakeBeverageSalesChart, as shown in Figure 5-2.

6. Click OK to run the Macro Recorder.

7. Select the data in cells A1:E7, as in Figure 5-3.

193

C H A P T E R 5

9578ch05final.qxd 1/30/08 8:39 PM Page 193

Figure 5-1. Northwind sales data on the Monthly Total Sales Amount worksheet

Figure 5-2. Recording the MakeBeverageSalesChart macro

Figure 5-3. Data selected for charting

CHAPTER 5 ■ CHARTING IN EXCEL 2007194

9578ch05final.qxd 1/30/08 8:39 PM Page 194

■Note You’ll notice that we did not select the row or column containing the total sales amounts. Excel will
include them in the chart, which will throw our vertical (value) axis amounts off.

8. On the Insert Ribbon, go to the Charts section, and click the Column chart type drop-
down list to display the many column chart types available to you.

9. In the 3-D Column section, choose the first (leftmost) item, the 3-D Clustered Column
chart type, as shown in Figure 5-4.

Figure 5-4. Column chart type selection menu

10. Stop the Macro Recorder.

The new chart is inserted in the worksheet. Notice in Figure 5-5 that Excel has highlighted
the data ranges associated with each chart element (legend, values, and horizontal axis label
ranges).

CHAPTER 5 ■ CHARTING IN EXCEL 2007 195

9578ch05final.qxd 1/30/08 8:39 PM Page 195

Figure 5-5. The Beverage sales chart

In addition to inserting the chart, Excel also added a context ribbon. Context ribbons pro-
vide commands relative to the currently selected object. In this case it’s a chart, but it could be
an inserted image or any other object that can be acted upon. Context ribbons are noted by a
title bar above the ribbon area. Figure 5-6 shows the Chart Tools context ribbon. It contains
three of its own ribbons: Design, Layout, and Format.

Figure 5-6. The Chart Tools context ribbon

Excel’s default charting behavior is to display the data values by column (by product in
this example). The vertical and horizontal axes may not show the data with the orientation
you expected. Assuming that is the case here, let’s record a macro so we can see the command
Excel applies to switch the chart’s data orientation from column to row.

1. On the Developer ribbon, click Record Macro.

2. Name the macro ChartByRow.

3. Select the chart by clicking anywhere inside of it.

4. Select the Design ribbon from Chart Tools.

CHAPTER 5 ■ CHARTING IN EXCEL 2007196

9578ch05final.qxd 1/30/08 8:39 PM Page 196

5. From the Data section of the Design ribbon, select the Switch Row/Column command
(Figure 5-7).

Figure 5-7. The Switch Row/Column command on the Data tab

6. Stop the Macro Recorder.

The chart should now look like Figure 5-8.

Figure 5-8. Beverage sales chart with rows and columns switched

The original chart in Figure 5-5 showed us the sales grouped by month, and was helpful
in showing which product lines had strong sales in a given month. By choosing the Switch
Row/Column command, we can quickly view the monthly sales trend for each product. Is it
a coincidence that beer sales went up as summer approached?

CHAPTER 5 ■ CHARTING IN EXCEL 2007 197

9578ch05final.qxd 1/30/08 8:39 PM Page 197

Looking at the Code
Let’s take a look at the code we’ve generated so far. The MakeBeverageSalesChart macro cre-
ated a 3-D bar chart for us using a data range we selected. The ChartByRow macro switched
the data orientation of the chart from the default, column, to row.

Sub MakeBeverageSalesChart()
'
' MakeBeverageSalesChart Macro
'

'
Range("A1:E7").Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Range(_

"'Monthly Total Sales Amount'!A1:E7")
ActiveChart.ChartType = xl3DColumnClustered

End Sub

The first line of code selects the data range for the chart. The next line adds a chart and
activates it via its Select method. Charts are members of the Shape class, and the AddChart
method returns a Shape object.

ActiveSheet.Shapes.AddChart.Select

The AddChart method has a few optional arguments (listed in Table 5-1) and no required
arguments.

Table 5-1. AddChart Method Arguments

Name Data Type Description

Type xlChartType Type of chart (bar, line, pie, etc.)

Left Variant Distance from the left edge of the chart to the left edge of Column A

Top Variant Distance from the top edge of the chart to the top edge of the
worksheet

Width Variant Width of the chart

Height Variant Height of the chart

The Type property is of data type xlChartType. This enumeration includes all of the chart
types Excel ships with, as shown in Table 5-2.

Table 5-2. The xlChartType Enumerations

Name Description Value

xl3DArea 3D area -4098

xl3DAreaStacked 3D stacked area 78

xl3DAreaStacked100 100% stacked area 79

xl3DBarClustered 3D clustered bar 60

CHAPTER 5 ■ CHARTING IN EXCEL 2007198

9578ch05final.qxd 1/30/08 8:39 PM Page 198

Name Description Value

xl3DBarStacked 3D stacked bar 61

xl3DBarStacked100 3D 100% stacked bar 62

xl3DColumn 3D column -4100

xl3DColumnClustered 3D clustered column 54

xl3DColumnStacked 3D stacked column 55

xl3DColumnStacked100 3D 100% stacked column 56

xl3DLine 3D line -4101

xl3DPie 3D pie -4102

xl3DPieExploded Exploded 3D pie 70

xlArea Area 1

xlAreaStacked Stacked area 76

xlAreaStacked100 100% stacked area 77

xlBarClustered Clustered bar 57

xlBarOfPie Bar of pie 71

xlBarStacked Stacked bar 58

xlBarStacked100 100% stacked bar 59

xlBubble Bubble 15

xlBubble3DEffect Bubble with 3D effects 87

xlColumnClustered Clustered column 51

xlColumnStacked Stacked column 52

xlColumnStacked100 100% stacked column 53

xlConeBarClustered Clustered cone bar 102

xlConeBarStacked Stacked cone bar 103

xlConeBarStacked100 100% stacked cone bar 104

xlConeCol 3D cone column 105

xlConeColClustered Clustered cone column 99

xlConeColStacked Stacked cone column 100

xlConeColStacked100 100% stacked cone column 101

xlCylinderBarClustered Clustered cylinder bar 95

xlCylinderBarStacked Stacked cylinder bar 96

xlCylinderBarStacked100 100% stacked cylinder bar 97

xlCylinderCol 3D cylinder column 98

xlCylinderColClustered Clustered cone column 92

xlCylinderColStacked Stacked cone column 93

xlCylinderColStacked100 100% stacked cylinder column 94

xlDoughnut Doughnut -4120

xlDoughnutExploded Exploded doughnut 80

Continued

CHAPTER 5 ■ CHARTING IN EXCEL 2007 199

9578ch05final.qxd 1/30/08 8:39 PM Page 199

Table 5-2. Continued

Name Description Value

xlLine Line 4

xlLineMarkers Line with markers 65

xlLineMarkersStacked Stacked line with markers 66

xlLineMarkersStacked100 100% stacked line with markers 67

xlLineStacked Stacked line 63

xlLineStacked100 100% stacked line 64

xlPie Pie 5

xlPieExploded Exploded pie 69

xlPieOfPie Pie of pie 68

xlPyramidBarClustered Clustered pyramid bar 109

xlPyramidBarStacked Stacked pyramid bar 110

xlPyramidBarStacked100 100% stacked pyramid bar 111

xlPyramidCol 3D pyramid column 112

xlPyramidColClustered Clustered pyramid column 106

xlPyramidColStacked Stacked pyramid column 107

xlPyramidColStacked100 100% stacked pyramid column 108

xlRadar Radar -4151

xlRadarFilled Filled radar 82

xlRadarMarkers Radar with data markers 81

xlStockHLC High-low-close 88

xlStockOHLC Open-high-low-close 89

xlStockVHLC Volume-high-low-close 90

xlStockVOHLC Volume-open-high-low-close 91

xlSurface 3D surface 83

xlSurfaceTopView Surface (top view) 85

xlSurfaceTopViewWireframe Surface (top view wireframe) 86

xlSurfaceWireframe 3D surface (wireframe) 84

xlXYScatter Scatter -4169

xlXYScatterLines Scatter with lines 74

xlXYScatterLinesNoMarkers Scatter with lines and no data markers 75

xlXYScatterSmooth Scatter with smoothed lines 72

xlXYScatterSmoothNoMarkers Scatter with smoothed lines and no data markers 73

The next line of code assigns the selected range of data to the chart’s Source property:

ActiveChart.SetSourceData Source:=Range(➥

"'Monthly Total Sales Amount'!A1:E7")

CHAPTER 5 ■ CHARTING IN EXCEL 2007200

9578ch05final.qxd 1/30/08 8:39 PM Page 200

The last line of the MakeBeverageSalesChart macro sets the type of chart directly using
the ChartType property of the ActiveChart object:

ActiveChart.ChartType = xl3DColumnClustered

The ChartType property is the same property from the optional arguments of the AddChart
method we saw in the second line of this macro. I’ve always been a proponent of using less
code when possible. You could shorten the MakeBeverageSalesChart subroutine by leaving the
direct assignment of the ChartType property out and setting the ChartType when calling the
AddChart method.

The modified version of this code looks like Listing 5-1.

Listing 5-1. Modified MakeBeverageSalesChart Macro

Sub MakeBeverageSalesChart()
'
' MakeBeverageSalesChart Macro
'

'
Range("A1:E7").Select
ActiveSheet.Shapes.AddChart(xl3DColumnClustered).Select
ActiveChart.SetSourceData Source:=Range(➥

"'Monthly Total Sales Amount'!A1:E7")
End Sub

Now let’s look at the code we created to switch the chart data orientation from column to
row in the ChartByRow macro:

Sub ChartByRow()
'
' ChartByRow Macro
'

'

ActiveSheet.ChartObjects("Chart 1").Activate
ActiveChart.PlotBy = xlRows

End Sub

You’ll recall the first thing we did was select our chart. The first line of this code calls the
ChartObjects.Activate method to activate the chart named Chart 1 (the default name given
to our chart). A ChartObject represents a chart embedded on a worksheet. The ChartObjects
object contains a collection of all the ChartObject objects on a chart sheet, dialog sheet, or
worksheet. (I realize the word object was used an awful lot in that last sentence, but let me
remind you that I did not name these objects!)

Like any other Collection object, ChartObjects in our ChartByRow macro refers to
Chart 1 by name, but it also could have referred to it by its index in the collection, as follows:

ActiveSheet.ChartObjects(1).Activate

CHAPTER 5 ■ CHARTING IN EXCEL 2007 201

9578ch05final.qxd 1/30/08 8:39 PM Page 201

The next line of code is where the work is being done:

ActiveChart.PlotBy = xlRows

The ActiveChart.PlotBy property sets or returns a value of the XlRowCol enumeration.
Table 5-3 lists the values of the XlRowCol enumerated items.

Table 5-3. XlRowCol Enumeration

Name Value

xlRows 1

xlColumns 2

Summarizing with Pie Charts
In Chart01.xlsm, select the Sales By Category worksheet. Here you’ll see a list of product cate-
gories with sales quantities by month, as in Figure 5-9.

Figure 5-9. The Sales By Category worksheet

This data provides us with a great format to display each category in a pie chart to see
how overall sales looked by month for each product line. Before you begin charting data like
this, it’s a good idea to make sure the data is sorted correctly to make your selections for chart-
ing easier.

CHAPTER 5 ■ CHARTING IN EXCEL 2007202

9578ch05final.qxd 1/30/08 8:39 PM Page 202

1. Put the cursor anywhere in the data table on the Sales By Category worksheet.

2. On the Data ribbon, choose the Sort command, as shown in Figure 5-10.

Figure 5-10. The Sort command on the Data ribbon

The Sort dialog box appears, as shown in Figure 5-11.

Figure 5-11. The Sort dialog box

In this case, Excel made a guess that we want to sort by the Month column (and we are
going to override this).We want to sort by Category first, and then by Month.

■Note As I was testing this code, I had various results in what Excel decided would be the “Sort by” col-
umn. These results ranged from Month, as shown in Figure 5-11, to Category, to a blank value. Your results
may vary.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 203

9578ch05final.qxd 1/30/08 8:39 PM Page 203

3. Choose Category from the “Sort by” list under the Column listing, as shown in
Figure 5-12.

Figure 5-12. Choosing Category as the first sort field

4. Choose A-Z from the Order drop-down list, as shown in Figure 5-13.

Figure 5-13. Choosing the sort order for Category

5. Click the Add Level button on the Sort dialog box to add a new blank sort item to the
sort list, as shown in Figure 5-14.

CHAPTER 5 ■ CHARTING IN EXCEL 2007204

9578ch05final.qxd 1/30/08 8:39 PM Page 204

Figure 5-14. New item added to the sort list

6. In the “Then by” drop-down list, select Month, as shown is Figure 5-15.

Figure 5-15. Adding Month to the sort list

7. Select Custom List from the Order drop-down, as in Figure 5-16. If we choose either
alpha sort option, the months will sort alphabetically by name rather than ascending
or descending order by month.

Figure 5-16. Choosing Custom List

CHAPTER 5 ■ CHARTING IN EXCEL 2007 205

9578ch05final.qxd 1/30/08 8:39 PM Page 205

8. The Custom Lists dialog box will appear. Choose the item labeled Jan, Feb, Mar, and so
on, as shown in Figure 5-17.

Figure 5-17. Custom Lists dialog box

9. Click OK to return to the Sort dialog box.

10. Click OK to close the Sort dialog box and sort the data.

The data should now look like that in Figure 5-9.

Creating the Pie Chart
In this example, we are going to create a pie chart based on the data for one product category.
The chart will show the monthly sales for the category. Then we’ll explore options to reuse the
code and automate the creation of pie charts for each product line.

1. Select the Sales By Category worksheet.

2. Create a new macro and name it MakePieChart.

3. Select the data range that contains the data for the Baked Goods & Mixes category
(A2:C5), as shown in Figure 5-18.

Figure 5-18. Selection for pie chart

CHAPTER 5 ■ CHARTING IN EXCEL 2007206

9578ch05final.qxd 1/30/08 8:39 PM Page 206

4. On the Insert ribbon, select Pie from the Charts section, as shown in Figure 5-19.

Figure 5-19. Selecting a 2D pie chart from the ribbon

The pie chart is displayed, but as Figure 5-20 shows, it is not exactly what we might
have expected. Excel combined the first two columns of data and created the legend
from them. The data itself is fine. With a couple of quick adjustments, we will modify
the legend to show the month name only, and we’ll add a title to the chart showing the
product category.

Figure 5-20. The new pie chart as created

CHAPTER 5 ■ CHARTING IN EXCEL 2007 207

9578ch05final.qxd 1/30/08 8:39 PM Page 207

5. With the Macro Recorder still running, select the pie chart if it’s not already selected.

6. Go to Chart Tools ➤ Design ribbon, and choose the Select Data command, as shown in
Figure 5-21.

Figure 5-21. The Select Data command

7. The Select Data Source dialog box will appear, as shown in Figure 5-22.

Figure 5-22. The Select Data Source dialog box

The Select Data Source dialog box contains functions to set the data range for the
chart, to switch row/column orientation, to assign a range that contains the data val-
ues for the chart series, and to assign a range that contains the legend information.

We see in Figure 5-22 that the Chart data range, =’Sales By Category’!A2:C5, is cor-
rect, and we do not want to switch the row/column orientation. We need to correct the
legend information display, and we want to use the category information to add a title
to the chart.

8. In the Legend Entries (Series) section, at the bottom left of the Select Data Source
dialog box, select Series 1 from the list.

9. Click the Edit button to display the Edit Series dialog box (shown in Figure 5-23).

CHAPTER 5 ■ CHARTING IN EXCEL 2007208

9578ch05final.qxd 1/30/08 8:39 PM Page 208

Figure 5-23. The Edit Series dialog box

10. To add the title, in the Series name text box, type =’Sales By Category’!A2 (or use the
range selector to navigate to cell A2 and let Excel insert the range reference for you).
Figure 5-24 shows the Edit Series dialog box with this value entered.

Figure 5-24. Series name range reference added to the Edit Series dialog box

11. Click OK to store the range reference.

12. In the Horizontal (Category) Axis Labels section, at the bottom right of the Select Data
Source dialog box, click the Edit button to show the Axis Labels dialog box, as shown in
Figure 5-25 (no selection is necessary).

Figure 5-25. The Axis Labels dialog box

13. In the “Axis label range” text box, type in =’Sales By Category’!B2:B5 to tell Excel
to show only the month names in the legend (or use the range selector to select cells
B2:B5 and let Excel insert the range reference for you).

14. Click OK to store the range reference.

The Select Data Source dialog box should look like Figure 5-26.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 209

9578ch05final.qxd 1/30/08 8:39 PM Page 209

Figure 5-26. The Select Data Source dialog after edits

15. Click OK to close the Select Data Source dialog box and save the changes to the chart.

16. Stop the Macro Recorder.

Figure 5-27 shows the updated chart with the category as the chart title and the month
names for the legend.

Figure 5-27. The updated pie chart

A Look at the Code
Now let’s take a look at the code behind the process we just walked through. As you might
expect, the first few lines look very similar to the MakeBeverageSalesChart macro, right up to
the point where we set the chart type:

CHAPTER 5 ■ CHARTING IN EXCEL 2007210

9578ch05final.qxd 1/30/08 8:39 PM Page 210

Sub MakePieChart()
'
' MakePieChart Macro
'

'
Range("A2:C5").Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Range("'Sales By Category'!A2:C5")
ActiveChart.ChartType = xlPie
ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!A2"
ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!B2:B5"

End Sub

The two lines of code following ActiveChart.ChartType = xlPie, where we set the chart
type, define the name or title of the chart and the legend values (in this case the range B2:B5).

Let’s look at the line of code that sets the name of the data series in our pie chart:

ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!A2"

The SeriesCollection(index) object collection contains the data series for the chart. The
index represents the order in which the series was added to the chart. In the case of our pie
chart, there is only one series. Here we are setting the name to the first value in the Category
column of our data range.

The last line of code changes the legend to simply show the month value without append-
ing the category to each legend item.

ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!B2:B5"

More Pie for Everyone
So we’ve created a pie chart and modified some of its properties to make the data displayed
more meaningful. We’ve got quite a few categories on our Sales By Category worksheet. Can
we use what we’ve learned and the code we’ve created to generate charts for the remaining
categories? Of course!

Excel does not always place charts in the most appropriate place on a worksheet, so
before we begin, let’s be sure to move the Baked Goods & Mixes chart to the right of the
data range on the Sales By Category worksheet by dragging and dropping it, as shown in
Figure 5-28.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 211

9578ch05final.qxd 1/30/08 8:39 PM Page 211

Figure 5-28. Chart moved next to data range

Next we’d like to chart the Beverages product category in a manner similar to the Baked
Goods & Mixes pie chart. The simplest way to start is to copy the code from the MakePieChart
macro we just recorded and modify it to use the data range A6:C9, which contains the Bever-
age category sales information.

1. If it’s not already open, open the VBE by going to the Developer ribbon and selecting
Code ➤ Visual Basic, or by pressing Alt+F11.

2. If it’s not already open, open Standard Module1.

3. Copy the MakePieChart macro.

4. Paste the copy below MakePieChart and rename it MakePieChart2.

5. Modify all range references to refer to the data range containing the Beverage category
sales information, as shown in Listing 5-2.

Listing 5-2. MakePieChart2 Subroutine Modified to Chart the Beverage Category

Sub MakePieChart2()
Range("A6:C9").Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Range("'Sales By Category'!A6:C9")
ActiveChart.ChartType = xlPie
ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!A6"
ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!B6:B9"

End Sub

CHAPTER 5 ■ CHARTING IN EXCEL 2007212

9578ch05final.qxd 1/30/08 8:39 PM Page 212

As in our original example, we are selecting a range of data (A6:C9), and then adding a
chart and setting the source data range to the selected range. Then we set the chart
type to Pie (xlPie) and set the name and legend values.

6. Run the MakePieChart2 macro.

As shown in Figure 5-29, Excel still insists on placing the pie chart on top of our data
range. In fact, if we had not moved the Baked Goods & Mixes pie chart, the new chart would
be sitting on top of it (and it still is partially covering our existing chart)!

Figure 5-29. Excel places any new chart on our data range.

Not to worry. You’ll recall that when we created our first chart using the Macro Recorder,
Excel used the AddChart method to insert the chart. We looked at the optional arguments for
that method in Table 5-1. These optional arguments include the type of chart and its top, left,
width, and height settings (in pixels). We can use these optional arguments to place the new
chart immediately below the existing chart, and align it with it as well.

1. Delete the Beverages pie chart from the Sales By Category worksheet.

a. Select the chart by clicking it on its borders.

b. Press the Delete key on your keyboard.

2. On Standard Module1, create a new subroutine and name it PlaceChart.

3. Add the following variable declarations to the PlaceChart subroutine:

Dim arrChartInfo(3) As Variant
Dim spacer As Integer

The arrChartInfo(3) variable will hold an array that contains information about the
existing chart (Chart 1), such as its name and top, left, and height values. We’ll use the
spacer variable to place some empty space between our charts.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 213

9578ch05final.qxd 1/30/08 8:39 PM Page 213

4. Add the following code after the variable declarations:

With ActiveSheet.ChartObjects(1)
arrChartInfo(0) = .Name
arrChartInfo(1) = .Top
arrChartInfo(2) = .Left
arrChartInfo(3) = .Height

End With

spacer = 25

Within the With...End With block, we are setting the array elements equal to the Name,
Top, Left, and Height properties of the ChartObjects(1) item, which is of course the
existing (and only) chart on the worksheet at the moment. We could also have referred
to the chart by name, as in ActiveSheet.ChartObjects("Chart 1").

For this example, we’re setting the spacer variable to a value of 25, but you can use any
value that suits your purpose.

5. Press Enter twice to insert blank lines in the code after spacer = 25.

6. Copy the code from the MakePieChart2 macro and paste it after the blank lines.

The completed PlaceChart subroutine should look like Listing 5-3.

Listing 5-3. The Completed PlaceChart Subroutine

Sub PlaceChart()
Dim arrChartInfo(3) As Variant
Dim spacer As Integer

With ActiveSheet.ChartObjects(1)
arrChartInfo(0) = .Name
arrChartInfo(1) = .Top
arrChartInfo(2) = .Left
arrChartInfo(3) = .Height

End With

spacer = 25
'
' The following code is from MakePieChart2 Macro
'

Range("A6:C9").Select
ActiveSheet.Shapes.AddChart(, arrChartInfo(2), ➥

(arrChartInfo(1) + arrChartInfo(3) + spacer)) ➥

.Select
ActiveChart.SetSourceData Source:=Range("'Sales By Category'!A6:C9")

CHAPTER 5 ■ CHARTING IN EXCEL 2007214

9578ch05final.qxd 1/30/08 8:39 PM Page 214

ActiveChart.ChartType = xlPie
ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!A6"
ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!B6:B9"

End Sub

7. Return to the Sales By Category worksheet and run the PlaceChart procedure.

Figure 5-30 shows the result of our placement efforts.

Figure 5-30. Beverages chart aligned with Baked Goods & Mixes chart

Fantastic! We modified the original MakePieChart code by changing the range references
and referring to the location of the original chart to determine where to put the new chart. But
let’s make this code a bit more dynamic. Our users aren’t going to give us ranges of data to
chart, they most likely will want to create them on the fly as needed.

In our next example, we are going to give the user the ability to select a range of data to be
charted. In addition, we’ll make the placement of the chart more dynamic as well. In our last
example, we knew we wanted to refer to the first chart on the worksheet. Now that we’ve got
more than one chart on the worksheet, we’ll need to grab the location of the last chart inserted
and place our new chart below that.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 215

9578ch05final.qxd 1/30/08 8:39 PM Page 215

Dynamically Placing a Chart
In the VBE, on Standard Module1, create a new subroutine called PlaceChartDynamic. Copy the
code from the PlaceChart procedure and paste it into PlaceChartDynamic.

Before we begin our exercise, we’re going to move the opening lines of code into their own
function. This subroutine begins by getting location information about the chart we want to
use as a placement reference, but is not directly involved in creating a chart. It’s always a good
idea from a maintenance perspective to keep our functional operations separate, so we are
going to create a function that returns the location of a chart in an array.

Storing Chart Location in an Array
1. On Standard Module1, create a new function named GetChartInfo().

2. Add the following argument to the function:

Private Function GetChartInfo(MyChart As ChartObject) As Variant

The argument MyChart will pass a ChartObject into our function. From this object, we’ll
return the location information in GetChartInfo.

3. Add a variable: Dim varReturn As Variant. This will hold the return value for our func-
tion.

4. Move the code shown in bold in the following code block from the PlaceChartDynamic
subroutine into GetChartInfo, under the variable declaration we just added.

The GetChartInfo code should look like this:

Private Function GetChartInfo(MyChart As ChartObject) As Variant
Dim varReturn As Variant
Dim arrChartInfo(3) As Variant
With MyChart
arrChartInfo(0) = .Name
arrChartInfo(1) = .Top
arrChartInfo(2) = .Left
arrChartInfo(3) = .Height

End With
End Function

5. Add the following code to assign the array to the return variable, and finally to assign
varReturn as the return value of the function:

varReturn = arrChartInfo

GetChartInfo = varReturn

The completed function should look like that in Listing 5-4.

CHAPTER 5 ■ CHARTING IN EXCEL 2007216

9578ch05final.qxd 1/30/08 8:39 PM Page 216

Listing 5-4. The GetChartInfo Subroutine

Private Function GetChartInfo(MyChart As ChartObject) As Variant
Dim varReturn As Variant
Dim arrChartInfo(3) As Variant
With MyChart
arrChartInfo(0) = .Name
arrChartInfo(1) = .Top
arrChartInfo(2) = .Left
arrChartInfo(3) = .Height

End With
varReturn = arrChartInfo

GetChartInfo = varReturn
End Function

Completing the PlaceChartDynamic Procedure
The PlaceChartDynamic subroutine currently looks like Listing 5-5, and is ready for a few modi-
fications, including using the GetChartInfo method we just created.

Listing 5-5. The PlaceChartDynamic Routine Is Ready for Modifications

Sub PlaceChartDynamic()
Dim spacer As Integer

spacer = 25

Range("A6:C9").Select
ActiveSheet.Shapes.AddChart(, arrChartInfo(2), ➥

(arrChartInfo(1) + arrChartInfo(3) + spacer)) ➥

.Select
ActiveChart.SetSourceData Source:=Range("'Sales By Category'!A6:C9")
ActiveChart.ChartType = xlPie
ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!A6"
ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!B6:B9"

End Sub

Add the following variable declarations to PlaceChartDynamic:

Dim varChartInfo As Variant
Dim iChartIndex As Integer

The varChartInfo variable will hold the array returned from the GetChartInfo function
and will be used to place our new chart. iChartIndex will hold the index value of the last chart
added to the worksheet.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 217

9578ch05final.qxd 1/30/08 8:39 PM Page 217

Let’s take a look at the remaining code in the PlaceChartDynamic procedure to get an idea
of the changes we’ll make to make this routine much more flexible.

We see numerous hard-coded range references. Our new code will have to

• Find the last chart added and use its coordinates to insert the new chart below it

• Define the data range for the chart

• Define the cell that contains the name of the product category to display in the chart
title

• Define the range containing the month values for the chart legend

Let’s attack these one at time. First, let’s get the chart location information from the
GetChartInfo function.

Getting the Coordinates from the Existing Chart

Add the following lines of code:

iChartIndex = ActiveSheet.ChartObjects.Count
varChart = GetChartInfo(ActiveSheet.ChartObjects(iChartIndex)

The ChartObjects.Count property will return the value of the last chart added. Then we
use that index to get the chart information.

As I noted at the end of the last example, we are going to let the user define the range to
chart by selecting the data for a particular product category.

Defining the Data Range and Legend Information

Before we modify the remaining code and its range references, let’s add a few variables to hold
the range references from the user-defined selection.

1. Add the following variables:

Dim sDataRange As String
Dim sTitleRange As String
Dim sLegendRange As String

2. Since the user will select the data for us, we can remove the following line of code:

Range("A6:C9").Select

3. Put your cursor in the blank line created by removing the code in step 2, and add the
following code:

sDataRange = Selection.Address
sTitleRange = Selection.Cells(1, 1).Address
sLegendRange = Selection.Cells(1, 2).Address & ":" ➥

& Selection.Cells(1, 2).Offset(Selection.Rows.Count - 1).Address

The Selection object (which is of the generic Object type) holds a Range object in this
case. Using the Range’s Address and Cells properties, we can determine the address of the
entire range of the selection, the cell containing the title text (always the first cell in the data

CHAPTER 5 ■ CHARTING IN EXCEL 2007218

9578ch05final.qxd 1/30/08 8:39 PM Page 218

range), and the range of cells containing the legend information (always column B for each
row in the selected range).

4. Moving to the next line of code, we are going to replace all references to the
arrChartInfo array that we are no longer using with a reference to the return value of
the GetChartInfo function, varChartInfo.

ActiveSheet.Shapes.AddChart(, arrChartInfo(2), ➥

(arrChartInfo(1) + arrChartInfo(3) + spacer)) ➥

.Select

When finished, the line of code that adds and places the new chart will look like this:

ActiveSheet.Shapes.AddChart(, varChartInfo(2), ➥

(varChartInfo(1) + varChartInfo(3) + spacer)) ➥

.Select

Setting the Data Range and Legend Information

Now we’ll modify the line of code that sets the chart’s data range.

1. Put your cursor on this line of code:

ActiveChart.SetSourceData Source:=Range("'Sales By Category'!A6:C9")

2. Modify it to read as follows:

ActiveChart.SetSourceData Source:=Range("'Sales By Category'!" & sDataRange)

3. Leave the next line of code as is:

ActiveChart.ChartType = xlPie

4. Now we’ll set the title range. Put your cursor on this line of code:

ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!A6"

5. Modify it to read as follows:

ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!" & sTitleRange

6. All that’s left is to set the legend text data range. Put your cursor on the last line of code:

ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!" & sTitleRange

7. Modify it to read as follows:

ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!" ➥

& sLegendRange

CHAPTER 5 ■ CHARTING IN EXCEL 2007 219

9578ch05final.qxd 1/30/08 8:39 PM Page 219

The completed subroutine should now look like Listing 5-6.

Listing 5-6. The Completed PlaceChartDynamic Subroutine

Sub PlaceChartDynamic()
Dim spacer As Integer
Dim varChartInfo As Variant
Dim iChartIndex As Integer
Dim sDataRange As String
Dim sTitleRange As String
Dim sLegendRange As String

iChartIndex = ActiveSheet.ChartObjects.Count
varChartInfo = GetChartInfo(ActiveSheet.ChartObjects(iChartIndex))

spacer = 25

sDataRange = Selection.Address
sTitleRange = Selection.Cells(1, 1).Address
sLegendRange = Selection.Cells(1, 2).Address & ":" ➥

& Selection.Cells(1, 2).Offset(Selection.Rows.Count - 1).Address

ActiveSheet.Shapes.AddChart(, varChartInfo(2), _
(varChartInfo(1) + varChartInfo(3) + spacer)) ➥

.Select���
ActiveChart.SetSourceData Source:=Range("'Sales By Category'!" & sDataRange)
ActiveChart.ChartType = xlPie˝K���s�VÙU��Ä»�VÙU���s�¤˝K��Ä
ActiveChart.SeriesCollection(1).Name = "='Sales By Category'!" & sTitleRange
ActiveChart.SeriesCollection(1).XValues = "='Sales By Category'!" ➥

& sLegendRange
End Sub

Testing the Code
Now that we’ve got our code rewritten to be much more flexible, let’s select a data range and
create a formatted chart placed below the last chart on the Sales By Category worksheet.

1. Select the data for the Candy product line (cells A10:C13), as shown in Figure 5-31.

Figure 5-31. Data selected for dynamic charting

CHAPTER 5 ■ CHARTING IN EXCEL 2007220

9578ch05final.qxd 1/30/08 8:39 PM Page 220

Hamid
Highlight

2. Run PlaceChartDynamic by going to the Developer ribbon and choosing Code ➤
Macros.

3. The new chart is inserted below the Beverages chart and is aligned to its left side, as
shown in Figure 5-32.

Figure 5-32. The Candy chart is properly formatted and inserted below the Beverages chart.

Summary
In this chapter, we’ve been exploring charting in Excel. We began by recording a macro while
manually creating a bar chart. We examined the AddChart method, which adds a new chart to
a worksheet, and we saw the SetSourceData method, which assigns a range of data to the
chart. We saw in Table 5-2 the many types of charts Excel makes available to us. We also
looked at the PlotBy property, which allows us to switch a chart’s data orientation from row
to column and vice versa.

We then looked at pie charts, and as we did, we also learned a bit about sorting data in
Excel. Next, we learned how to use some of the AddChart method’s arguments to place a chart
at a given location on a worksheet. And finally, we expanded on that idea to create dynamic
code that lets the user select a data range to chart, and we built routines to create a chart from
that data, placing it below the last chart on the worksheet.

Charts are a great way to make large sets of data more understandable for analysis by
compressing the data into a visual image. In the next chapter, we’ll look at another one of
Excel’s excellent analysis tools: PivotTables.

CHAPTER 5 ■ CHARTING IN EXCEL 2007 221

9578ch05final.qxd 1/30/08 8:39 PM Page 221

9578ch05final.qxd 1/30/08 8:39 PM Page 222

PivotTables

PivotTables are a neat feature of Excel 2007 that allows users to summarize and analyze data.
By adding or removing data elements from an onscreen selection tool, your users can easily
reshape their data for analysis or reporting.

A PivotTable report provides an interactive method to quickly and easily summarize large
amounts of data (without the need to export the data to an external database system like
Microsoft Access or an external reporting tool).

Here are some examples of when you might want to use a PivotTable to display your data:

• To query large amounts of data and create different views

• To aggregate and subtotal data, and/or create custom calculations and formulas

• To expand and collapse levels of data

• To move rows to columns or columns to rows to see different summaries of the source
data (hence the term pivot)

PivotTables enable you to take huge amounts of data and present a concise, easy-to-read
view of that data.

Putting Data into a PivotTable Report
In the Download section for this book on the Apress web site, find the file named
PivotTable01.xlsx and open it.

Remember our fictitious band “VBA” from Chapter 1? Well, they’ve been out touring
and their manager wants to see what’s selling and what’s not, and where items are selling
best. PivotTable01.xlsx contains sales data from the first quarter of their tour, as shown in
Figure 6-1.

223

C H A P T E R 6

9578ch06final.qxd 1/30/08 8:37 PM Page 223

Figure 6-1. Tour sales data

A good way for the manager to look at this data is via an Excel 2007 PivotTable report.
We’re going to record a macro while we create a PivotTable. Then we’ll take a look at some of
the properties and methods available to us.

1. Start the Macro Recorder (Developer ribbon ➤ Record Macro).

2. Name the new macro MakePivotTable.

3. Put the cursor anywhere inside the sales data.

4. Choose Insert Ribbon ➤ Tables ➤ PivotTable. The Create PivotTable dialog box will be
displayed, as shown in Figure 6-2.

Figure 6-2. Create PivotTable dialog box

CHAPTER 6 ■ PIVOTTABLES224

9578ch06final.qxd 1/30/08 8:37 PM Page 224

The Create PivotTable dialog box contains two sections. The first section is where you can
choose a data source. This can be a table or range within an Excel workbook or data from an
external source. External data is accessed through a connection file, such as an Office Data
Connection (ODC) file (.odc) or a Universal Data Connection (UDC) file (.udcx).

The second section lets you dictate where you would like the PivotTable report to be
placed.

5. For now, just accept the defaults and click OK. A blank PivotTable report will be
inserted on Sheet4, as shown in Figure 6-3.

Figure 6-3. Excel 2007 PivotTable report default view

The new PivotTable report has a revamped interface that allows for easy manipulation of
pivot data. All fields in the table are listed in the PivotTable Field List pane, which you can see
on the right side of Figure 6-3. Check boxes are provided for users to choose the fields they
want to include in the report. Text fields will by default place themselves in the Row Labels list
and numeric fields will default to the Values list.

An easier way to create a report is to drag the field from the selection section at the top of
the PivotTable Field List pane to the correct list below (shown in Figure 6-4).

CHAPTER 6 ■ PIVOTTABLES 225

9578ch06final.qxd 1/30/08 8:37 PM Page 225

Figure 6-4. Dragging the State field to the Row Labels section

Once you drop the field, the PivotTable updates to show the text or data (when available),
as shown in Figure 6-5.

Figure 6-5. State field added to the PivotTable

CHAPTER 6 ■ PIVOTTABLES226

9578ch06final.qxd 1/30/08 8:37 PM Page 226

6. Drag the Product field to the Column Labels list.

7. Drag the Qty field to the Values list. The PivotTable Field List pane should look like
Figure 6-6.

Figure 6-6. PivotTable Field List with all fields added

The PivotTable report will look like Figure 6-7.

Figure 6-7. The completed PivotTable report

We see a sales summary by product line by state. But what if we also need to see sales by
city within each state?

CHAPTER 6 ■ PIVOTTABLES 227

9578ch06final.qxd 1/30/08 8:37 PM Page 227

8. Drag the City field to the Row Labels list and place it under the State field.

The finished report should now look like Figure 6-8.

Figure 6-8. City added to PivotTable report

9. Stop the Macro Recorder by clicking the Stop Recording command on the Developer
ribbon.

If you have had any experience with previous versions of Excel PivotTable reports, you
probably immediately noticed a change in the UI of the blank PivotTable.

The PivotTable Field List pane in Excel 2007 now does the work of all three components
shown in Figure 6-9. The user experience is much cleaner this way, and makes using
PivotTables much easier for users.

CHAPTER 6 ■ PIVOTTABLES228

9578ch06final.qxd 1/30/08 8:37 PM Page 228

Figure 6-9. Excel 2003 PivotTable report default view

The Macro Code
Listing 6-1 shows the code the Macro Recorder generated for us.

Listing 6-1. MakePivotTable Macro Code

Sub MakePivotTable()
'
' MakePivotTable Macro
'

'
Sheets.Add
ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= ➥

"Sheet1!R1C1:R43C6", Version:=xlPivotTableVersion12).CreatePivotTable ➥

TableDestination:="Sheet4!R3C1", TableName:="PivotTable1", DefaultVersion ➥

:=xlPivotTableVersion12
Sheets("Sheet4").Select
Cells(3, 1).Select

CHAPTER 6 ■ PIVOTTABLES 229

9578ch06final.qxd 1/30/08 8:37 PM Page 229

With ActiveSheet.PivotTables("PivotTable1").PivotFields("State")
.Orientation = xlRowField
.Position = 1

End With
With ActiveSheet.PivotTables("PivotTable1").PivotFields("Product")

.Orientation = xlColumnField

.Position = 1
End With
ActiveSheet.PivotTables("PivotTable1").AddDataField ActiveSheet.PivotTables(➥

"PivotTable1").PivotFields("Qty"), "Sum of Qty", xlSum
With ActiveSheet.PivotTables("PivotTable1").PivotFields("City")

.Orientation = xlRowField

.Position = 2
End With
End Sub

The first thing the code does is add a new worksheet to the workbook. Then it creates the
PivotTable using the source data range we provided in the Create PivotTable dialog box. Then
it places the PivotTable on the new sheet (in this case Sheet4) and gives it a default name.

Sheets.Add
ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= ➥

"Sheet1!R1C1:R43C6", Version:=xlPivotTableVersion12).CreatePivotTable ➥

TableDestination:="Sheet4!R3C1", TableName:="PivotTable1", DefaultVersion ➥

:=xlPivotTableVersion12

The PivotCaches.Create method takes three arguments, of which only one (SourceType) is
required. The SourceData argument is required when SourceType does not equal xlExternal.
Table 6-1 lists the PivotCaches.Create method’s arguments and describes them.

Table 6-1. PivotCaches.Create Method Arguments

Name Required (Y/N) Data Type Description

SourceType Y xlPivotTableSourceType Choices are xlConsolidation,
xlDatabase, or xlExternal

SourceData N Variant The data for the new PivotTable
cache

Version N Variant Version of the PivotTable

The PivotCaches.Create method returns a PivotCache object. The Macro Recorder very
cleverly calls the CreatePivotTable method based on the return from the Create method in
one long (but readable) line of code:

ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= ➥

"Sheet1!R1C1:R43C6", Version:=xlPivotTableVersion12).CreatePivotTable ➥

TableDestination:="Sheet4!R3C1", TableName:="PivotTable1", DefaultVersion ➥

:=xlPivotTableVersion12

CHAPTER 6 ■ PIVOTTABLES230

9578ch06final.qxd 1/30/08 8:37 PM Page 230

The CreatePivotTable method defines where the table will be placed, its name, and its
default version. Table 6-2 lists the CreatePivotTable method’s arguments.

Table 6-2. CreatePivotTable Method Arguments

Name Required (Y/N) Data Type Description

TableDestination Y Variant The cell in the top-left corner of the
PivotTable’s destination range.

TableName N Variant The name of the PivotTable report.

ReadData N Variant Set to True to create a PivotTable cache that
contains all of the records from the data
source (can be very large). Set to False to
enable setting some fields as server-based
page fields before the data is read.

DefaultVersion N Variant The default version of the PivotTable report.

The code then selects the new sheet and the starting range location for the PivotTable.

Sheets("Sheet4").Select
Cells(3, 1).Select

We added two text fields (State and Products) to the PivotTable Field List pane and one
data field containing the item quantities (Qty):

With ActiveSheet.PivotTables("PivotTable1").PivotFields("State")
.Orientation = xlRowField
.Position = 1

End With
With ActiveSheet.PivotTables("PivotTable1").PivotFields("Product")

.Orientation = xlColumnField

.Position = 1
End With
ActiveSheet.PivotTables("PivotTable1").AddDataField ActiveSheet.PivotTables(➥

"PivotTable1").PivotFields("Qty"), "Sum of Qty", xlSum

This is where the code is telling the PivotTable how to display the data assigned to each
PivotField object. The Orientation property is set to a value of the xlPivotFieldOrientation
enumeration type, as shown in Table 6-3.

Table 6-3. xlPivotFieldOrientation Enumerations

Name Value Description

xlRowField 1 Row

xlColumnField 2 Column

xlPageField 3 Page

xlDataField 4 Data

xlHidden 0 Hidden

CHAPTER 6 ■ PIVOTTABLES 231

9578ch06final.qxd 1/30/08 8:37 PM Page 231

The Position property notes where in the row or column hierarchy the field belongs, and
therefore how the data will be grouped on the PivotTable. After we added the City field to the
Row Labels list in the PivotTable Field List pane, the next bit of code was added:

With ActiveSheet.PivotTables("PivotTable1").PivotFields("City")
.Orientation = xlRowField
.Position = 2

End With

Notice that its Orientation property is set to xlRowField, denoting row data, and its posi-
tion is 2. So in the table’s rows, we have State in position 1 and City in position 2. If you refer
back to Figure 6-8, you can see the data hierarchy displayed.

Let’s save this workbook as a macro-enabled workbook. Click the Office button and
choose Save As ➤ Excel Macro-Enabled Workbook, leaving the name the same (except for the
extension), as shown in Figure 6-10.

Figure 6-10. Saving the file as macro-enabled

Unfortunately, if we rerun the MakePivotTable macro again, we’ll get an error, as shown in
Figure 6-11.

CHAPTER 6 ■ PIVOTTABLES232

9578ch06final.qxd 1/30/08 8:37 PM Page 232

Figure 6-11. Running MakePivotTable a second time generates an error.

■Note The runtime error 1004 shown in Figure 6-11 was generated in Windows XP. Windows Vista users
will still see runtime error 1004, but its description will read “Application-defined or object-defined error.”

We can’t drop another PivotTable on top of an existing PivotTable. Let’s make a few
changes to our code to allow us to create our PivotTables dynamically based upon data that
is currently being viewed by the user.

There are two issues that stand out in our existing code:

• We have to add a new worksheet for an additional PivotTable for the data because we
can’t use the existing sheet (or we have to find a new location on the existing work-
sheet).

• What if the source data range expands (or shrinks) the next time we get this data?

In the VBE, add a new subroutine and name it MakeDynamicPivotTable. Copy the code
from the MakePivotTable procedure, and then make the following modifications. Add the
following variable declarations at the top of the MakeDynamicPivotTable procedure:

Dim ws As Worksheet
Dim rngRangeToPivot As Range
Dim sPivotLoc As String

The first variable, ws, will be used to store the new worksheet that we’ll be adding. The
next variable, rngRangeToPivot, will get the data source range for us regardless of number of
rows. The last variable, sPivotLoc, will hold a string value denoting the range to place the new
PivotTable.

The first thing we’ll do is get the location of the data range that we’ll be putting into our
PivotTable. We’ll do this first because once we add a new sheet, the data viewed by the user
will no longer be active.

CHAPTER 6 ■ PIVOTTABLES 233

9578ch06final.qxd 1/30/08 8:37 PM Page 233

Add the following line of code to assign the current data region (the region where the cur-
sor is currently placed):

Set rngRangeToPivot = ActiveCell.CurrentRegion

The ActiveCell.Current region property will retrieve the range of the contiguous set of
cells surrounding the cursor location.

Now let’s add a new worksheet and define the PivotTable location on the new worksheet:

Set ws = Sheets.Add
sPivotLoc = ws.Name & "!R3C1"

We’re adding a new worksheet and assigning that worksheet to the ws variable. Then we’re
looking at that worksheet to determine its name and concatenating it to the cell location
where the PivotTable will be place on the new worksheet. We’re using Excel’s default location
of row 3/column 1, but you can place the PivotTable anywhere you like on your worksheet.

Finally, add the two commands shown in Listing 6-2 to make the PivotCaches.Create
method and the PivotCache.CreatePivotTable table commands act on our new dynamic
variables.

Listing 6-2. Dynamic PivotTable Creation Code

ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= ➥

rngRangeToPivot, Version:=xlPivotTableVersion12).CreatePivotTable ➥

TableDestination:=sPivotLoc, TableName:="PivotTable1", DefaultVersion ➥

:=xlPivotTableVersion12

ws.Select

Compare this to the original version of these lines of code in Listing 6-3.

Listing 6-3. Static Macro Recorder–Generated PivotTable Creation Code

ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= ➥

"Sheet1!R1C1:R43C6", Version:=xlPivotTableVersion12).CreatePivotTable ➥

TableDestination:="Sheet4!R3C1", TableName:="PivotTable1", DefaultVersion ➥

:=xlPivotTableVersion12
Sheets("Sheet4").Select

In the original code, the macro recorder set SourceData:="Sheet1!R1C1:R43C6". We
changed that to refer to the rngRangeToPivot variable, SourceData=rngRangeToPivot. Regard-
less of how many rows are in the data range, the data source for our PivotTable will reflect the
correct data.

The next line to compare is our call to the PivotCache object’s CreatePivotTable method.
The original code set the TableDestination to a location in a hard-coded reference to a work-
sheet: CreatePivotTable TableDestination:="Sheet4!R3C1". We replaced that with a call to
our dynamic variable sPivotLoc, which refers to the name of the new worksheet we added,
whatever that might be: CreatePivotTable TableDestination:=sPivotLoc.

CHAPTER 6 ■ PIVOTTABLES234

9578ch06final.qxd 1/30/08 8:37 PM Page 234

The last difference is that the original code selects the hard-coded worksheet,
Sheets("Sheet4").Select, while our new dynamic code simply refers to the ws variable and
selects the worksheet it contains using the Worksheet object’s Select method, ws.Select.

Listing 6-4 shows the completed MakeDynamicPivotTable subroutine.

Listing 6-4. Complete MakeDynamicPivotTable Subroutine

Sub MakeDynamicPivotTable()
Dim ws As Worksheet
Dim rngRangeToPivot As Range
Dim sPivotLoc As String 'where to place the PivotTable on the new sheet

Set rngRangeToPivot = ActiveCell.CurrentRegion
Set ws = Sheets.Add
sPivotLoc = ws.Name & "!R3C1"

ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= ➥

rngRangeToPivot, Version:=xlPivotTableVersion12).CreatePivotTable ➥

TableDestination:=sPivotLoc, TableName:="PivotTable1", DefaultVersion ➥

:=xlPivotTableVersion12
ws.Select
Cells(3, 1).Select
With ActiveSheet.PivotTables("PivotTable1").PivotFields("State")

.Orientation = xlRowField

.Position = 1
End With
With ActiveSheet.PivotTables("PivotTable1").PivotFields("City")

.Orientation = xlRowField

.Position = 2
End With
With ActiveSheet.PivotTables("PivotTable1").PivotFields("Product")

.Orientation = xlColumnField

.Position = 1
End With
ActiveSheet.PivotTables("PivotTable1").AddDataField ActiveSheet.PivotTables ➥

("PivotTable1").PivotFields("Qty"), "Sum of Qty", xlSum End Sub

Refreshing Data in an Existing PivotTable Report
How do we handle keeping our data fresh in a PivotTable? When rows are modified, added, or
deleted, how do we pass that on to our PivotTable reports?

If our data had come from an external source like an Access or SQL Server database,
refreshing the data would be as simple as running the following command with the PivotTable
activated:

ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh

CHAPTER 6 ■ PIVOTTABLES 235

9578ch06final.qxd 1/30/08 8:37 PM Page 235

How do we handle updating our PivotTable data when the data does not sit in a DBMS? If
the data on Sheet1 in our example is modified, how do we refresh the PivotTable?

When we created our macro to build the PivotTable, we assigned a dedicated range of
data to the PivotTable using the ActiveCell.CurrentRegion property. The Refresh command
cannot recalculate the CurrentRegion property we used because it knows nothing about it.
So when we apply the Refresh command, whether through Excel’s UI or via VBA code, it
only refreshes the data range we initially supplied. Any values that have changed within that
range (or any deleted rows) would be updated, but any additions to the data would not be
applied to the PivotTable.

To update the PivotTable report we created, we will write a subroutine that determines
the original data range of the PivotTable and uses that to recalculate the current data range. It
will then apply that data range to the PivotTable’s SourceData property, and then refresh the
PivotTable.

In the VBE, create a new subroutine and name it RefreshPivotTableFromWorksheet. Add
the following code:

Sub RefreshPivotTableFromWorksheet()
Dim sData As String
Dim iWhere As Integer
Dim rngData As Range

sData = ActiveSheet.PivotTables("PivotTable1").SourceData
iWhere = InStr(1, sData, "!")
sData = Left(sData, iWhere)

Set rngData = ➥

ActiveWorkbook.Sheets(Left(sData, iWhere - 1)).Cells(1, 1).CurrentRegion

ActiveSheet.PivotTables("PivotTable1").SourceData = ➥

sData & rngData.Address(, , xlR1C1)
End Sub

Let’s take a look at what this code is doing. We have three variables declared. sData will
hold the value of the current range for the PivotTable’s source data. We want to find the bang
character (!) so we can retrieve the name of the worksheet the data came from. We’ll store that
in the iWhere variable. And finally, we have a variable of type Range, rngData, that will be
assigned the CurrentRegion of cell A1 on the data worksheet. With this information, we have
the tools to refresh our pivot data any time detail data is added on the data worksheet.

The first step is to get the current data source for the PivotTable:

sData = ActiveSheet.PivotTables("PivotTable1").SourceData

Next we’ll find the ! character:

iWhere = InStr(1, sData, "!")

Now we want the worksheet name including the !:

sData = Left(sData, iWhere)

CHAPTER 6 ■ PIVOTTABLES236

9578ch06final.qxd 1/30/08 8:37 PM Page 236

We modify sData because we only needed it to determine the worksheet name. The origi-
nal data source range is going to be replaced, so we discard it at this time.

Now we’ll assign the CurrentRegion property of cell A1 of the worksheet stored in sData to
the rngData variable:

Set rngData = ➥

ActiveWorkbook.Sheets(Left(sData, iWhere - 1)).Cells(1, 1).CurrentRegion

Once we have the CurrentRegion, we can replace the current SourceData value of the
PivotTable object with it:

ActiveSheet.PivotTables("PivotTable1").SourceData = ➥

sData & rngData.Address(, , xlR1C1)

We’re passing in the xlR1C1 enum for the ReferenceStyle argument. This is the string
format the SourceData property is looking for.

Now that we’ve set the SourceData for the PivotTable to the new CurrentRegion of the data
worksheet, all that’s left to do is call the Refresh command:

ActiveSheet.PivotTables("PivotTable1").PivotCache.Refresh

Let’s give it a test. On Sheet1, add the following data to the grid for the city of Rochester,
NY, as shown in Figure 6-12.

Figure 6-12. New rows added to PivotTable source data

Open Sheet4 (or the sheet your PivotTable is on, if different). Click any cell inside the
PivotTable. When the PivotTable is selected, a couple of new ribbons are displayed, as shown
in Figure 6-13.

CHAPTER 6 ■ PIVOTTABLES 237

9578ch06final.qxd 1/30/08 8:37 PM Page 237

Figure 6-13. The PivotTable Tools ribbon (Options ribbon shown)

On the PivotTable Tools ribbon, select Options ➤ Data ➤ Refresh. Click OK on the
Windows Vista security warning. Nothing happens—the Rochester data does not display.

On the Developer ribbon, run the RefreshPivotTableFromWorksheet subroutine. Now the
new city appears in the data summary, as shown in Figure 6-14.

Figure 6-14. Rochester data displayed after RefreshPivotTableFromWorksheet is run

Applying Formatting to a PivotTable Report
You will probably find that some of the default formatting Excel applies to your PivotTable
reports needs some modification—things such as the general number format, the table for-
matting without lines, the default naming of calculated fields to “Sum of field name,” and its
handling of null or blank entries.

In the Download section for this book on the Apress web site, find the file named
PivotTable02_Formatting.xlsm, and open it.

Blank Data Records
To see the effect of blank records on a PivotTable report, let’s make Sheet1 active and remove
the data for Reading, PA’s tank top sales. The Quantity and Sales Total values are 0, but we
want to make them blank as though no data were added (as shown in Figure 6-15).

CHAPTER 6 ■ PIVOTTABLES238

9578ch06final.qxd 1/30/08 8:37 PM Page 238

Figure 6-15. Blank data for Reading, PA tank top sales

1. Activate the worksheet containing the PivotTable report.

2. Refresh the data (either through the UI or the RefreshPivotTableFromWorksheet proce-
dure). Figure 6-16 shows Excel 2007’s default behavior when we have blank values in a
PivotTable.

Figure 6-16. Blank values display as blank on PivotTable report

3. Drag the Sum of Qty label back up to the field selection list in the PivotTable Field List.

There is a little quirk that exists in the UI that you might encounter when coding
PivotTables that bears a quick mention here. When Excel finds blank or null data in a range
of data used in a PivotTable, and that field is used in the summary section, it defaults the
summary field to “Count of field name” even though “Sum of field name” may be a more
appropriate selection.

4. Drag the Qty field back down to the Values list.

CHAPTER 6 ■ PIVOTTABLES 239

9578ch06final.qxd 1/30/08 8:37 PM Page 239

Figure 6-17 shows Excel displaying “Count of field name” when we want to sum.

Figure 6-17. Count of Qty is the default due to the blank data record.

5. To prevent blank data from displaying, we can use the NullString property of the
PivotTable object. In the VBE, add the following subroutine to the project:

Sub ZeroForBlanks()
ActiveSheet.PivotTables("PivotTable1").NullString = "0"

End Sub

6. From the Macros dialog box, run the subroutine. Figure 6-18 shows the result of run-
ning the ZeroForBlanks macro.

7. To fix Excel’s inaccurate guess that we wanted to count the number of Qty records in
the summary section of our PivotTable, we can use the Function property of the
PivotField object. Add the following subprocedure to the standard code module:

Sub ChangeSummaryFunction()
With ActiveSheet.PivotTables("PivotTable1").PivotFields("Count of Qty")

.Caption = "Sum of Qty"

.Function = xlSum
End With

End Sub

Once this code runs, the PivotTable will look like it did in Figure 6-16.

CHAPTER 6 ■ PIVOTTABLES240

9578ch06final.qxd 1/30/08 8:37 PM Page 240

Figure 6-18. Zeros displayed instead of blanks

Table 6-4 lists the possible choices for the Function property.

Table 6-4. XlConsolidationFunction Enumeration

Name Value Description

xlAverage -4106 Averages all numeric values

xlCount -4112 Counts all cells including numeric, text, and errors; equal to the
worksheet function =COUNTA()

xlCountNums -4113 Counts numeric values only; equal to the worksheet function
=COUNT()

xlMax -4136 Shows the largest value

xlMin -4139 Shows the smallest value

xlProduct -4149 Multiplies all the cells together

xlStDev -4155 Standard deviation based on a sample

xlStDevP -4156 Standard deviation based on the whole population

xlSum -4157 Returns the total of all numeric data

xlUnknown 1000 No subtotal function specified

xlVar -4164 Variation based on a sample

xlVarP -4165 Variation based on the whole population

CHAPTER 6 ■ PIVOTTABLES 241

9578ch06final.qxd 1/30/08 8:37 PM Page 241

Changing the Number Format
The default number format in a new PivotTable is Excel’s general number format. Most of us
like to see commas or currency symbols, which make the data more readable. To change the
number format, you use the PivotField.NumberFormat property. The NumberFormat property
sets or returns the string value that represents the format code for the numeric value. The for-
mat code is the same string value given by the Format Codes option in the Format Cells dialog
box shown in Figure 6-19.

Figure 6-19. The Format Cells dialog box

Add the following routine to a standard module:

Sub FormatNumbersComma()
With ActiveSheet.PivotTables("PivotTable1").PivotFields("Sum of Qty")

.NumberFormat = "#,##0"
End With

End Sub

Run the FormatNumbersComma subroutine from the Macros dialog box. The result should
look like Figure 6-20.

CHAPTER 6 ■ PIVOTTABLES242

9578ch06final.qxd 1/30/08 8:37 PM Page 242

Figure 6-20. Grand Total rows with commas added

Changing Field Names
By default, Excel uses the name “Sum of field name” or “Count of field name” when you add
summary value fields to a PivotTable. You can change the names to something with more
visual appeal using VBA code.

Add the Amount field to the Values list in the PivotTable Field List. Change the Count
value to Sum in the Value Field Settings dialog box (as shown in Figure 6-21) by clicking the
Amount field in the Values list and choosing Value Field Settings from the right-click shortcut
menu. Figure 6-22 shows the result of changing the field names.

Figure 6-21. Value Field Settings dialog box

CHAPTER 6 ■ PIVOTTABLES 243

9578ch06final.qxd 1/30/08 8:37 PM Page 243

Figure 6-22. PivotTable showing Sum of Qty and Sum of Amount fields

Use the PivotField.Caption property to change the captions to something more easily
readable.

Add the following subroutine to a standard code module:

Sub ChangeColHeading()
ActiveSheet.PivotTables("PivotTable1").PivotFields("Sum of Qty").Caption = ➥

"Item Qty"
ActiveSheet.PivotTables("PivotTable1").PivotFields("Sum of Amount").Caption = ➥

"Item Amount"
End Sub

Run the code from the Macros dialog box. The result should look like Figure 6-23.

CHAPTER 6 ■ PIVOTTABLES244

9578ch06final.qxd 1/30/08 8:37 PM Page 244

Figure 6-23. Summary field headings modified

Adding Formatting to a PivotTable Report
The default PivotTable report Excel generates looks okay, but Excel 2007 does provide us with
75 different formatting options. To change the look of a PivotTable report using VBA code, use
the PivotTable object’s TableStyle2 property. This property is named TableStyle2 because
there is already a TableStyle property (but it’s not a member of the PivotTable object’s
properties—go figure).

Add a new subroutine to a standard code module and add the following code:

Sub ApplyTableStyle()
ActiveSheet.PivotTables("PivotTable1").TableStyle2 = "PivotStyleLight1"
'ActiveSheet.PivotTables("PivotTable1").TableStyle2 = "PivotStyleLight22"
'ActiveSheet.PivotTables("PivotTable1").TableStyle2 = "PivotStyleMedium23"

End Sub

Before we run this code, let’s remove the Item Qty field from the Values list in the
PivotTable Field List to make the PivotTable smaller and the formatting easier to see.

Run the code from the Macros dialog box to apply the PivotStyleLight1 formatting to the
PivotTable, as shown in Figure 6-24.

CHAPTER 6 ■ PIVOTTABLES 245

9578ch06final.qxd 1/30/08 8:37 PM Page 245

Figure 6-24. PivotStyleLight1 formatting applied

Comment out the first line of code in the ApplyTableStyle procedure and uncomment
the second line. Run the subroutine from the Macros dialog box to apply PivotStyleLight22
formatting, as shown in Figure 6-25.

Figure 6-25. PivotStyleLight22 formatting applied

CHAPTER 6 ■ PIVOTTABLES246

9578ch06final.qxd 1/30/08 8:37 PM Page 246

Comment out the second line of code in the ApplyTableStyle procedure and uncomment
the third line. Run the subroutine from the Macros dialog box to apply PivotStyleMedium23
formatting, as shown in Figure 6-26.

Figure 6-26. PivotStyleMedium23 formatting applied

Summary
PivotTables in Excel 2007 provide users with a very easy-to-use interface with which they
can analyze and summarize large amounts of data. In this chapter, we took a look at code
generated by Excel’s Macro Recorder to get a feel for the PivotTable and PivotCache objects’
properties and methods. We then saw how we could modify that code to make it more flexi-
ble and dynamic.

Excel 2007 PivotTable reports are not linked to their data, but use the PivotCache object
to store a pointer to the data. When the data on a worksheet changes, the PivotTable does not
automatically update with those changes, especially if new data is appended. We created a
method to let the user refresh the PivotTable if the worksheet data on which it was based was
appended to.

Finally, we looked at some of the formatting options available to us using VBA code. We
were able to fix some of Excel 2007’s default formatting behaviors, such as its use of the gen-
eral number format, generic summary field names, and its handling of blank rows. We also
saw how applying styles can dress up a PivotTable report.

CHAPTER 6 ■ PIVOTTABLES 247

9578ch06final.qxd 1/30/08 8:37 PM Page 247

9578ch06final.qxd 1/30/08 8:37 PM Page 248

Debugging and Error Handling

Debugging technique is an often overlooked part of a developer’s set of skills. In this chapter,
we are going to explore some debugging techniques that will save you time when trou-
bleshooting your code, and make you a more efficient coder.

Error handling is another area in which we often find ourselves taking shortcuts. We will
also look at error handling methods in this chapter, and we'll see how to deliver user-friendly
messages to our users.

Debugging
Debugging is the process of stepping through code to find inconsistencies due to coding
errors when output is not what you expected, or to find the cause of errors at runtime.

Here are some examples of output not displaying what’s expected:

• When reading file names from an array, the file you expected does not open. Something
causes your code to find the incorrect array element. How do you determine where that
incorrect value came from?

• You’re reading data from a database but there is nothing there, or the data is not the
data you expected. Is your SQL correct? Is the database there?

• You’re reading information from a collection but the collection is empty. Why is the
collection empty?

To determine what’s happening under the covers while our code is running, we need the
ability to see inside the variables as they are populated with data. We need to be able to follow
our code through any looping or branching structures, and we need a way to stop code at a
predetermined point (or points), or based upon whether certain conditions are met.

The Debugger’s Toolkit
The VBE gives us tools to do all of the above and more. The Debug menu, shown in Figure 7-1,
contains the VBE’s debugging command. The Debug toolbar (Figure 7-2) contains commonly
used commands from the Debug menu.

249

C H A P T E R 7

9578ch07final.qxd 1/30/08 8:35 PM Page 249

Figure 7-1. The Debug menu

Figure 7-2. The Debug toolbar

Table 7-1 describes the commands on the Debug menu and shows the corresponding
Debug toolbar button for that command when one is available. Table 7-2 describes the
remaining commands on the Debug toolbar.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING250

Table 7-1. Descriptions of the Debug Menu and Toolbar Commands

Debug Toolbar Button
(If Applicable) Command Shortcut Key Description

— Compile VBA Project — Compiles the project. It does not
create an executable or
redistributable component, but it
does check that the syntax is correct.

Step Into F8 Executes code one statement at a
time. The next statement displayed is
the next statement in the current
procedure (break mode does not
flow into the called procedure or
function).

Step Out Ctrl+Shift+F8 Executes the remaining lines of a
procedure or function from where
the current execution point lies.

— Run to Cursor Ctrl+F8 Executes code from the current
location to the statement at the
cursor location. This is useful when
there’s a need to avoid stepping
through large loops.

9578ch07final.qxd 1/30/08 8:35 PM Page 250

Debug Toolbar Button
(If Applicable) Command Shortcut Key Description

— Add Watch — Displays the Add Watch dialog box,
where you enter a watch expression
(a user-defined expression that
enables you to see the contents of a
variable or the result of an
expression). The expression can be
any valid Visual Basic expression
(e.g., MyVariable = "New York").

— Edit Watch Ctrl+W Displays the Edit Watch dialog box,
in which you can edit or delete a
watch expression.

Quick Watch Shift+F9 Displays the Quick Watch dialog box
with the current value of the selected
expression.

Toggle Breakpoint Shift+F9 Inserts or removes a breakpoint at
the current line.

— Clear All Breakpoints Ctrl+Shift+F9 Removes all breakpoints in a project.

— Set Next Statement Ctrl+F9 Sets the execution point to the line of
code you choose. You can set a
different line of code to execute after
the currently selected statement by
selecting the line of code you want to
execute and choosing the Set Next
Statement command, or by dragging
the Current Execution Line indicator
to the line of code you want to
execute.

— Show Next Statement — Highlights the next statement to be
executed.

There are a few additional commands available to us on the Debug toolbar. Some are common
commands from the Debug menu and others are commonly used items from the View menu.
They are described in Table 7-2.

Table 7-2. Description of the Debug Toolbar Commands

Debug Toolbar Button Command Shortcut Key Description

Design Mode — Turns design mode for a UserForm off or on.

Continue F5 Runs the current procedure if the cursor is in a
procedure. Runs a UserForm if the UserForm is
active. Opens the Macro dialog box if neither
the code window nor a UserForm is active.

Break Ctrl+Break Stops execution of a procedure and switches to
break mode.

Reset — Stops execution of a procedure, clears module-
level variables, and resets the project.

Continued

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 251

9578ch07final.qxd 1/30/08 8:35 PM Page 251

Table 7-2. Continued

Debug Toolbar Button Command Shortcut Key Description

Locals Window — Displays the Locals window. The Locals
window displays all of the variables in the
current procedure and their values.

Immediate Window Ctrl+G Displays the Immediate window. The
Immediate window allows you to type or paste
code and press Enter to run it.

Watch Window — Displays the Watch window. The Watch window
is where you define expressions to be
monitored (in the Watch window).

Call Stack Ctrl+L Displays the Call Stack dialog box. The Call
Stack dialog box lists procedures that have
started but have not finished, in the order they
were called.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING252

So there we have the tools we’ll use to search out errors in our code. Before we begin put-
ting these to work and seeing what they can do for us, though, let’s take a very quick look at
one line of code that the VBE will add for you that can help eliminate some coding errors from
the start: Option Explicit.

Option Explicit
The default installation of any Microsoft Office product and the VBE do not require variable
declaration before use. VBA will create the variable automatically the first time it is used. If you
include a call to Option Explicit at the top of your code modules, VBA will require that each
variable be declared before use.

■Tip Why go to the trouble? Option Explicit helps the compiler catch any variable names you may
have mistyped. It also helps you avoid confusion when the scope of a variable may not be clear.

To turn Option Explicit on, do the following:

1. From any Excel workbook, open the VBE.

2. From any open workbook, choose the Visual Basic command from the Code tab of the
Developer ribbon, or press Alt+F11.

3. In the VBE, choose Tools ➤ Options to display the Options dialog box, as shown in
Figure 7-3.

9578ch07final.qxd 1/30/08 8:35 PM Page 252

4. If it’s not already checked, in the Code Settings section in the top half of the Options
dialog box, click the Require Variable Declaration check box. In Figure 7-3, the arrow
cursor points to this item.

Figure 7-3. The VBE’s Options dialog box

5. Click OK to save the changes and close the Options dialog box.

Once this is done, any time you create a new code module or open the code module
attached to any worksheet, the Option Explicit command will already be inserted at the top
of the module.

Quick Debugging
The VBE provides us with a couple of easy-to-use tools for simple debugging needs. There will
be times where running code through the debugger may be more than you need. In those
cases, here are the tools available to us:

Message boxes: These are used to display information about the code while it’s running.

The Debug object: The Debug object hosts two methods that will ease our debugging efforts
while code is running as well. These are Print and Assert.

Displaying Information with Message Boxes
Message boxes are useful tools for simple debugging. They allow us to display the values of
variables inside our code while the code is running, and they interrupt the running of the
code. Let’s take a look at an example in which we are not getting an expected result and we’d
like to see what’s happening under the covers.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 253

9578ch07final.qxd 1/30/08 8:35 PM Page 253

■Note No one is perfect! As I was writing the code for this example, I actually made the typo we are going
to troubleshoot. When I ran the code to make sure it worked (my plan was to break the code for this exam-
ple), I did not get the result I expected!

1. In the Download section for this book on the Apress web site, find the file named
DebugExample01.xlsm and open it. This file contains sample sales data, but we’ll ignore
that for the time being.

2. Open the VBE by choosing the Visual Basic command from the Code tab of the Devel-
oper ribbon, or by pressing Alt+F11.

3. Open Standard Module1 by double-clicking its folder in the VBA Project window, as
shown in Figure 7-4.

Figure 7-4. Opening Standard Module1

On Module1, you’ll find a very useful function named BirthYear, as shown in Listing 7-1.

Listing 7-1. The BirthYear Function

Function BirthYear(Age As Integer, HadBDay As Boolean)
Dim iReturn As Integer
Dim iCurrYear As Integer

iCurrYear = Year(Date)
iReturn = iCurrYear = Age

If Not HadBDay Then
iReturn = iReturn - 1

End If

BirthYear = iReturn
End Function

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING254

9578ch07final.qxd 1/30/08 8:35 PM Page 254

This function takes two inputs—an Integer containing your age and a Boolean flag denot-
ing whether you’ve had your birthday yet this year—and it returns your birth year. Let’s run
the code in the Immediate window.

1. Open the Immediate window from the VBE by choosing View ➤ Immediate Window or
by pressing Ctrl+G.

2. Type in the following: ?BirthYear(30,True).

3. Press Enter to see the result.

■Note In the Immediate window, when you precede a command or variable name with the ? character, the
result of the command (or contents of the variable) will be output to the Immediate window. Otherwise, the
command will just run, unless there are errors.

We passed in 30 as the Age parameter (you didn’t think I’d put my real age in there, did
you?) and set the flag to True, indicating that the birthday had passed for this year. This code
was run in the year 2007, so the result I would expect to see is 1977—but that’s not what we see
in Figure 7-5, is it?

Figure 7-5. Unexpected result in Immediate window

Let’s check our variables and make sure they’re holding correct values by inserting a few
message boxes. You can create message boxes by calling the MsgBox function. As shown in Fig-
ure 7-6, the MsgBox function takes a few arguments, but since we’re not presenting these to a
user at this time, we’ll just pass in the first argument, the prompt or message.

Figure 7-6. The MsgBox function’s argument list

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 255

9578ch07final.qxd 1/30/08 8:35 PM Page 255

1. In the BirthYear function, add the following code above the If...End If statement:

MsgBox "Current Year: " & CStr(iCurrYear)
MsgBox "Birth Year before If: " & CStr(iReturn)

2. Insert a blank line after the If...End If statement.

3. Add the following code:

MsgBox "Birth Year after If: " & CStr(iReturn)

Your code should now look like Listing 7-2.

Listing 7-2. BirthYear Function with MsgBox Debugging

Function BirthYear(Age As Integer, HadBDay As Boolean)
Dim iReturn As Integer
Dim iCurrYear As Integer

iCurrYear = Year(Date)
iReturn = iCurrYear = Age

MsgBox "Current Year: " & CStr(iCurrYear)
MsgBox "Birth Year before If: " & CStr(iReturn)
If Not HadBDay Then
iReturn = iReturn - 1

End If
MsgBox "Birth Year after If: " & CStr(iReturn)

BirthYear = iReturn
End Function

We’re checking to see that the Year function is returning the correct value, and we’re
checking our return value before and after the If...End If statement to see if the code fell
into it and possibly changed there.

4. Run the code in the Immediate window, clicking OK at each message box.

Figures 7-7, 7-8, and 7-9 show us that our current year value looks good but the iReturn
value has a problem. The problem must lie in our logic.

Figure 7-7. Current Year is correct.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING256

9578ch07final.qxd 1/30/08 8:35 PM Page 256

Figure 7-8. The iReturn variable is incorrect before the If...End If statement.

Figure 7-9. The iReturn variable did not fall into the If...End If statement, and it is still incorrect.

Now we know we’ve got an issue at the point in the code where we set the iReturn variable
value. Let’s take a look at that line of code:

iReturn = iCurrYear = Age

It’s fairly obvious at this point, but instead of subtracting the age from the year, this code
is creating a conditional statement setting iReturn to True or False if the year equals Age.

5. Change the second = to a minus sign (-) so that the code reads as follows:

iReturn = iCurrYear - Age

6. In the Immediate window, run the code again (clicking OK on each message box,
which should now hold the correct value for iReturn). The result should look like
Figure 7-10.

Figure 7-10. The correct value is returned.

Using the Debug Object
The Debug object contains two methods that we can use to debug our code: Print and Assert.
The Print method directs output to the Immediate window, and the Assert method lets us set
a condition that puts our code in break mode if the condition fails.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 257

9578ch07final.qxd 1/30/08 8:35 PM Page 257

Debug.Print

Whereas the MsgBox function interrupts the execution of our code, the Debug.Print method
allows the code to run through to finish, sending its output to the Immediate window. This is
especially useful when debugging code in a loop.

1. As a very simple example, enter the code from Listing 7-3 on Standard Module1 in the
DebugExample01.xlsm project.

Listing 7-3. Simple Routine Using Debug.Print to Send Output to the Immediate Window

Sub DebugLoop()
Dim i As Integer

For i = 1 To 15
Debug.Print "Debug loop: " & i

Next i
End Sub

2. Run the code in the Immediate window, as shown in Figure 7-11, by typing the follow-
ing command and pressing Enter:

debugloop

Figure 7-11. Debugging a loop

Imagine checking the value of the variable i with a message box. No fun there, and that’s
a small loop! Let’s modify the BirthYear function to use Debug.Print instead of MsgBox so our
code can run without interruption and still show us the variable values as the code runs.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING258

9578ch07final.qxd 1/30/08 8:35 PM Page 258

1. On Standard Module1, replace each instance of MsgBox with Debug.Print. The code
should look like Listing 7-4.

Listing 7-4. BirthYear Function Using the Debug.Print Method

Function BirthYear(Age As Integer, HadBDay As Boolean)
Dim iReturn As Integer
Dim iCurrYear As Integer

iCurrYear = Year(Date)
iReturn = iCurrYear - Age

Debug.Print "Current Year: " & CStr(iCurrYear)
Debug.Print "Birth Year before If: " & CStr(iReturn)
If Not HadBDay Then
iReturn = iReturn - 1

End If
Debug.Print "Birth Year after If: " & CStr(iReturn)

BirthYear = iReturn
End Function

2. In the Immediate window, run BirthYear, passing in False to the HadBday argument, by
typing the following:

?birthyear(30, False)

3. Press Enter to run the code. The output to the Immediate window is shown in
Figure 7-12.

Figure 7-12. Output of BirthYear function sent to Immediate window

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 259

9578ch07final.qxd 1/30/08 8:35 PM Page 259

We see the three messages we were looking for, plus the bottom line shows us the return
of the function. Here we see that our code did fall into the If...End If statement where it
subtracted one from the result because the birthday did not yet occur this year.

■Tip Message boxes are easy to add, but don’t forget to remove (or comment) them when your code goes
into production. Otherwise, you’ll have some very confused users.

Debug.Print statements, on the other hand, only appear in the Immediate window. Although it’s wise
to remove or comment them, your users won’t see the output.

Debug.Assert

Assertions are another tool you can use to check for conditions within your code. Assertions
are conditional statements that you create that will put your code in break mode if the condi-
tions are not met. Listing 7-5 shows a sample method you can use as an example.

Listing 7-5. Sample Subroutine Using Debug.Assert

Sub TestAssert()
Dim iTest As Integer
iTest = 10
Debug.Assert iTest = 9
Debug.Print "Test Value: " & iTest

End Sub

1. Copy the code in Listing 7-5 into Standard Module1 in the DebugExample01.xlsm file.

2. Open the Immediate window by choosing View ➤ Immediate Window or by pressing
the Ctrl+G shortcut keys.

3. In the Immediate window, type TestAssert.

4. Press Enter.

Our assertion is testing to see if the iTest variable equals 9. Since we set that variable to
10 in the line of code preceding the assertion, it will return a value of False and put the code
in break mode. Figure 7-13 shows the code in break mode as it stops on the assertion.

Of course, we forced this false condition, but if we need to know when a condition other
than what we expect might happen when testing our code, assertions provide us with that
option.

5. Press F5 to continue running the code to its end.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING260

9578ch07final.qxd 1/30/08 8:35 PM Page 260

Figure 7-13. A false condition in the Assert method puts the code in break mode.

A Deeper Look
Let’s take a look at some of the other tools we can use to make our debugging more efficient.
In this section, we’ll look at the following:

• Step-through options

• The Immediate window

• The Locals window

• The Watch window

• The call stack

Stepping Through Code
Assertions are great at stopping code if a condition is false, but we need a method to move
back and forth through our code if we are to find out why our condition failed. The VBE has
commands we can use to move through our code line by line, and to move directly to a line of
code as well. Figure 7-14 shows the step section of the Debug menu.

Figure 7-14. Step-through-code options from the Debug menu

Earlier in this chapter, Table 7-1 gave a quick overview of these functions. Now we’ll take a
closer look at them.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 261

9578ch07final.qxd 1/30/08 8:35 PM Page 261

In Standard Module1 in the DebugExample01.xlsm file, add the code from Listing 7-6.

Listing 7-6. Sample Code for Debugging

Function TestLoop() As Long
Dim i As Integer
Dim lngResult As Long

lngResult = 1
For i = 1 To 10
lngResult = lngResult * i
ExternalProcess lngResult

Next i

TestLoop = lngResult
End Function

Sub ExternalProcess(TheValue As Long)
If TheValue > 10000 Then
TheValue = 0

End If

End Sub

We’re going to use this code to explore the various ways we can step through our code line
by line, and we’ll also see how to make use of additional tools like the Immediate window and
the call stack.

The code in Listing 7-6 is a simulation of a construct we see often in our code. In the
TestLoop function, we have a loop that runs a fixed number of times (in real-life situations,
this may or may not be the case) and returns a value at the end of the process. Within that
loop, we call a procedure to act on or process data or perform an action based on the value
of variables in the loop. In this case, we have the appropriately named ExternalProcess
subroutine.

Our TestLoop function is designed to multiply a value by the loop counter; the expected
result of our process is the value 3628800. The ExternalFunction procedure is purposely coded
to give an incorrect result. Let’s run the code.

1. Open the VBE.

2. Show the Immediate window by choosing View ➤ Immediate Window or by pressing
Ctrl+G.

3. In the Immediate Window, type ?testloop.

The result is shown in Figure 7-15.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING262

9578ch07final.qxd 1/30/08 8:35 PM Page 262

Figure 7-15. The TestLoop function returns an incorrect value.

Let’s begin debugging by inserting a breakpoint in our code.

1. In the code window, find the TestLoop function.

2. Move the mouse pointer to the gray left margin next to the start of the For...Next loop,
and click. A maroon break marker is inserted, as shown in Figure 7-16.

Figure 7-16. Breakpoint inserted

3. In the Immediate window, run the code again by typing TestLoop and pressing Enter.

4. The code runs as far as the beginning of the loop, and then stops, as shown in
Figure 7-17.

Once you’re in break mode, the break line text (the code at the breakpoint) and the execu-
tion line text (the currently executing line of code as you step through) are highlighted. The
default highlight color is maroon for the break line text and yellow for the currently executing
line of text. This color coding is user-definable on the Tools ➤ Options menu on the Editor
Format tab, as shown in Figure 7-18.

At the first breakpoint, you will get a combination of the break and execution line colors.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 263

9578ch07final.qxd 1/30/08 8:35 PM Page 263

Figure 7-17. VBE enters break mode when a breakpoint is reached.

Figure 7-18. Options dialog box showing VBE color options

5. The Step Into command moves you through your code one line at a time. Press the F8
key (or choose Debug ➤ Step Into) to move to the first line of code inside the loop. The
color coding should now be more easily seen, as in Figure 7-19.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING264

9578ch07final.qxd 1/30/08 8:35 PM Page 264

Figure 7-19. Better view of the break and execution lines of code

6. Press the F8 key twice to move the execution line to the ExternalProcess routine.

7. Press F8 again to move the execution line into the ExternalProcess procedure.

As you can see, the Step Into command moves you through the code one line at time.
When it encounters another procedure call, it moves you into that procedure. At the moment,
our execution point is inside the ExternalProcess subroutine. To move out of this procedure
without moving line by line, use the Step Out command by choosing Debug ➤ Step Out or by
pressing Ctrl+Shift+F8. The Step Out command moves you out of the current procedure and to
the next line of code in the procedure that called the current procedure.

8. Press Ctrl+Shift+F8 to move the execution point back into the TestLoop function at the
end of the loop structure, as shown in Figure 7-20.

Figure 7-20. Result of Step Out command

9. Press F8 two times. The execution point should be back on the call to ExternalProcess,
as shown in Figure 7-21.

If you don’t have a need to step through this external procedure and want to skip over this
call, you can use the Step Over command.

10. Choose Debug ➤ Step Over or press Shift+F8.

11. The execution point moves to the bottom of the loop without stepping through the
procedure call, as shown in Figure 7-22.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 265

9578ch07final.qxd 1/30/08 8:35 PM Page 265

Figure 7-21. Execution point on a procedure call

Figure 7-22. The execution point moves directly to the next line of code when the
Step Over command is used.

What if you decide that you should have stepped into the procedure you just stepped
over? (In a loop like this, you may need to test that procedure with the current counter vari-
able in place.) The VBE gives us a command called Set Next Statement that makes this very
easy to do.

To bring the execution point back to the call to ExternalProcess, do the following:

12. Put the cursor on the line of the next statement that you want executed (in this case,
the call to ExternalProcess).

13. Choose Debug ➤ Set Next Statement or press Ctrl+F9.

The result is shown in Figure 7-23.

Figure 7-23. The Set Next Statement command moves the execution point to the
selected line of code.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING266

9578ch07final.qxd 1/30/08 8:35 PM Page 266

The Set Next Statement command can be used to move the execution point forward as
well as backward. You can also use the mouse to drag the execution arrow (shown in the gray
margin on the left side of the code window in Figure 7-23) to the location of the code you’d like
to run.

■Warning The Set Next Statement command can be used to move the execution point backward or
forward in the code. It will not reverse values in a loop. If you need to see counters or incremented values
as they happen, remember to check them in their current context in a loop.

One last command you can use is the Run To Cursor command. The Run To Cursor com-
mand lets you place the cursor on a line of code, and when that line is reached, the code will
resume break mode.

Let’s bring the execution point to the cursor location as follows:

14. Put the cursor on the last line of code in the TestLoop function.

15. Choose Debug ➤ Run To Cursor or press Ctrl+F8.

The execution point moves to the last line of code, as shown in Figure 7-24.

Figure 7-24. The Run To Cursor command moves the execution point to the cursor location.

Checking Variables in Break Mode
Our execution point is on the last line of code before the function is finished. Don’t move the
execution point just yet. We have the ability in the VBE to view the values of variables in our
procedures as they change in real time.

We can use any of the following to view variable values:

• The Immediate window

• The Locals window

• The code window

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 267

9578ch07final.qxd 1/30/08 8:35 PM Page 267

The Immediate Window

To check the value of a variable in the Immediate window, simply type the name of variable
and its value will be displayed.

1. In the Immediate window, type ?i.

2. Press Enter.

3. In the Immediate window, type ?lngResult.

4. Press Enter.

Figure 7-25 shows that this returns the values 11 (since our loop reached its last iteration)
and 0, respectively.

Figure 7-25. Checking the value of variables in the Immediate window

5. To run the code to the end from the current execution point, press F5.

■Tip Did you know that you can test loops from within the Immediate window? Just type them using the
following syntax:

for i = 1 to 5:debug.print "Test " & i:next i

The result of running this is shown in Figure 7-26.

Figure 7-26. Testing loops in the Immediate window

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING268

9578ch07final.qxd 1/30/08 8:35 PM Page 268

The Locals Window

The Locals window lets you see all current variables and their values in break mode in one
place. To see the Locals window at work, we are going to run an existing macro in the
DebugExample01.xlsm file against the sales data on Sheet1.

We saw this data and code in our 1-MacroExample01.xlsm file in Chapter 1. In this exam-
ple, the data has been slightly modified and will generate an error that we’ll track down using
the tools explained thus far.

1. In the Excel window, open Worksheet1 in the DebugExample01.xlsm file.

2. Open the Developer ribbon and click the Macros command to open the Macros dialog
box.

3. Run the AddSalesTotal macro.

A type mismatch error occurs, as shown in Figure 7-27.

Figure 7-27. Type mismatch error 13

4. Click the Debug button to put the code in break mode.

5. Open the Locals window by choosing View ➤ Locals Window.

The Locals window will open, as shown in Figure 7-28.
Looking at the Locals window in Figure 7-28, we see the values for the GetSalesTotal

function and for the variables currReturn, temp, and cell. We also see the values for the range
we pass into the function, RangeToTotal.

GetSalesTotal and currReturn both have a value of 0, as they are not set until the end of
the function. The variable temp, which is set during the loop that walks the range, has a value
of 303 so far.

The cell variable is a bit different, as is the RangeToTotal variable. These variables are ref-
erences to range objects. This means that they have more than just a value. They have
properties—and lots of them!

6. Click the plus sign to the left of the cell variable.

7. Scroll down until you see the Value2 property.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 269

9578ch07final.qxd 1/30/08 8:35 PM Page 269

Figure 7-28. The Locals window displays values for all in-scope variables.

The Value2 property stores the current cell’s value. In this case, it’s the string N/A. It looks
like someone didn’t have a value for DVD sales in the East region, and entered a string rather
than leaving it blank or entering a 0. We’ve found our problem.

Before we fix the issue, let’s take a look at a feature that’s available from the Locals window
as well as the View menu: the call stack. The call stack lists any procedures that are currently
running, starting with the first procedure you ran. In this case, we ran the AddSalesTotal
macro, which in turn called the GetSalesTotal function.

Click the ellipsis button (...) at the top-right corner of the Locals window to open the Call
Stack window (you can also choose View ➤ Call Stack or press Ctrl+L). The Call Stack window
for our currently running code is shown in Figure 7-29.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING270

9578ch07final.qxd 1/30/08 8:35 PM Page 270

Figure 7-29. The Call Stack window shows all functions called in the current process.

You’ll notice in Figure 7-29 that the most current procedure call is at the top of the stack.
Once GetSalesTotal completes and execution returns to AddSalesTotal, it will be removed
from the stack.

8. Close the Call Stack window.

With the code still in break mode, we’re going to look at one last method of checking vari-
able values. Then we’ll fix our problem and run the code successfully.

The Code Window

The code window also has the ability to show us the values of variables. By simply holding
your mouse pointer over any in-scope variable, you can see its value in a tool tip–style pop-up.

In the VBE code window, move the mouse pointer over any variable to see its value. Figure
7-30 shows the mouse hovering over the cell.Value variable, showing its value, N/A.

Figure 7-30. Checking variable values in the code window

Stop the code from running by clicking the Reset button on the toolbar, as shown in
Figure 7-31.

Figure 7-31. The Reset button stops code execution.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 271

9578ch07final.qxd 1/30/08 8:35 PM Page 271

Let’s fix the error and rerun the code. On Sheet1 in Excel, change the value of cell D4 to 0,
or leave it blank and run the AddSalesTotal macro again. Figure 7-32 shows Sheet1 with the
total added after successfully running AddSalesTotal.

Figure 7-32. The worksheet after fixing the data

The Watch Window
The Watch window is a tool that allows you to set conditions on which you can put your code
into break mode. The Watch window, shown in Figure 7-33, has a few options as to how to
handle watched values.

Figure 7-33. The Watch window

You enter an expression in the Expression text box, and then select the context of the
expression from the Procedure and Module drop-down lists. Then you select a watch type.
Watch types are described in Table 7-3.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING272

9578ch07final.qxd 1/30/08 8:35 PM Page 272

Table 7-3. Watch Types

Watch Type Description

Watch Expression Code execution will not be stopped. In break mode, the values of
watched expressions will be displayed in the Watch window.

Break When Value Is True Code execution will enter break mode when the watched value is
True.

Break When Value Changes Code execution will enter break mode when the value of the
watched expression changes.

In this example, we’ll add a watch to the GetSalesTotal function and set it to break when
the value is True.

1. Open the VBE and open Standard Module2.

2. Display the GetSalesTotal function.

3. Right-click any occurrence of the variable cell in the For Each...Next loop.

4. Select Add Watch from the shortcut menu, as shown in Figure 7-34.

Figure 7-34. Selecting the Add Watch command

5. Enter the information shown in Figure 7-35 into the Add Watch dialog box.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 273

9578ch07final.qxd 1/30/08 8:35 PM Page 273

Figure 7-35. Adding a watch expression

■Tip If you put the insertion point anywhere on the variable you want to watch and add the watch, the
variable name will automatically be inserted in the Expression box for you.

6. Click OK to close the Add Watch dialog box.

7. If not already open, open the Watch window in the VBE by clicking View ➤ Watch
Window. Figure 7-36 shows the Watch window with our expression added.

Figure 7-36. Watch expression added to Watch window

Notice that the value is currently out of context because the code is not yet running.

8. Run the AddSalesTotal macro from Worksheet1 in Excel. The code enters break mode
in the For Each...Next loop, and the Watch window shows us that the value of our
condition is True, as shown in Figure 7-37.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING274

9578ch07final.qxd 1/30/08 8:35 PM Page 274

Figure 7-37. Watch window showing the true condition with the code in break mode

9. Press F5 to continue running the code. Any time the watch encounters a cell value of
less than 30, the code will enter break mode.

10. Press F5 until the code runs to completion.

Now that we’ve seen how to debug and troubleshoot our code, let’s take a look at how to
prevent errors from occurring and how to graciously notify users of errors.

Error Handling
Effective error handling is one of the major keys in providing a friendly experience to your
users. It’s right up there with UI design in importance, and it can be the difference between a
dream and a nightmare from the user’s perspective.

The Microsoft Office suite of tools is still VBA-based. Therefore we are still limited to the
On Error GoTo syntax for error handling. Be that as it may, we will look at some methods of
handling errors, and then we'll see how to deliver user-friendly messages to our users.

Is the File There?
One common error occurs when we try to open a file that is not available. In Chapter 3, we
opened files that contained various information ranging from CD lists to employee data. What
if the file wasn’t there or was misnamed?

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 275

9578ch07final.qxd 1/30/08 8:35 PM Page 275

In the Download section for this book on the Apress web site, find the file named
...XML_data.xlsm, and open the file. This is a blank workbook that includes code modules
from Chapter 3.

1. Open the VBE by clicking the Visual Basic command on the Code tab of the Developer
ribbon, or by pressing Alt+F11.

2. Open Standard Module1.

3. Find the GetXMLData subroutine. It is shown in Listing 7-7.

Listing 7-7. GetXMLData Procedure Before Modification

Sub GetXMLData()
ActiveWorkbook.XmlImport URL:= ➥

"C:\Chapter 3\files\cds.xml", ImportMap:= ➥

Nothing, Overwrite:=True, Destination:=Range("A1")
End Sub

■Note The path to the XML file will vary based on where you are storing the files that came with this book.

4. In the GetXMLData subroutine, change the name of the XML file we’re opening to
cd.xml. The subroutine should look like Listing 7-8 now.

Listing 7-8. GetXMLData Procedure After Modification

Sub GetXMLData()
ActiveWorkbook.XmlImport URL:= ➥

"C:\Chapter 3\files\cd.xml", ImportMap:= ➥

Nothing, Overwrite:=True, Destination:=Range("A1")
End Sub

5. In Excel, make Worksheet1 the active sheet.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING276

9578ch07final.qxd 1/30/08 8:35 PM Page 276

6. From the Macro dialog box, run the GetXMLData procedure. We get a very ugly error, as
shown in Figure 7-38.

Figure 7-38. A non-intuitive error message is presented to the user.

7. Click the End button.

In cases like this, where it’s an issue of resource availability, we don’t need to code an
actual error handler to assist the user. What we need to do is check for the existence of the file
before we try to open it. If the file is not present, we’ll tell the user in a friendlier and more
understandable manner.

In the VBE, add a standard code module. Add the code from Listing 7-9.

Listing 7-9. The FileExists Function

Function FileExists(FilePathName As String) As Boolean
Dim blnReturn As Boolean
blnReturn = Len(Dir(FilePathName)) > 0

FileExists = blnReturn
End Function

On Standard Module1, modify the GetXMLData subroutine as in Listing 7-10.

Listing 7-10. GetXMLData Subroutine with Modifications

Sub GetXMLData()
Dim sFileName As String

sFileName = "C:\Book\Chapters\Chapter 3\files\cd.xml"
If FileExists(sFileName) Then
ActiveWorkbook.XmlImport URL:= _
sFileName, ImportMap:= _
Nothing, Overwrite:=True, Destination:=Range("A1")

Else
MsgBox "Could not find the requested file", vbOKOnly, "File Not Found"

End If
End Sub

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 277

9578ch07final.qxd 1/30/08 8:35 PM Page 277

Let’s take a look at what we changed:

• We took the string containing the file name out of the XmlImport method call and
assigned it to the variable sFileName.

• We then wrapped our XmlImport method call in an If statement. Based upon the exis-
tence of the file, we either import the data or present the user with the friendly message
shown in Figure 7-39.

Figure 7-39. Friendly error message: File Not Found

The moral of this story in this case is that the best defense is a good offense. By consider-
ing in advance where our code might fail, we can avoid errors and provide users with feedback
they can use.

Trapping Specific Errors
A rule of thumb when considering error handling is that error handling should not be an after-
thought or something to add later. Trap your errors when you create your code.

■Tip Three good error handling rules to live by are (1) check for the error, (2) handle it, and (3) proceed
accordingly.

Returning our attention to the DebugExample01.xlsm file, let’s trap for the type mismatch
error we got in our first go around with this file. We’ll begin by resetting the file as follows:

1. On Sheet1, enter N/A in cell D4.

2. If there is a totals row present, delete it.

3. Save the file.

A type mismatch error is error number 13, and occurs when you try to place a value of
one data type into an incompatible data type (in this example, a string into a numeric data
type). See Figure 7-27 in our earlier example for an example of a type mismatch error. We are
going to modify our code to trap for error 13 and display a friendly message to the user.

Open the VBE by clicking the Visual Basic command on the Code tab of the Developer rib-
bon, or by pressing Alt+F11. Open Standard Module2, and find the GetSalesTotal function.

In the GetSalesTotal function, we have a loop (Figure 7-40) that uses a temporary place-
holder variable, temp, to hold the running total value of the cells in the range passed in. This
variable is defined as a Currency data type. The Currency data type can hold an awfully large
numeric value, but it cannot hold a string.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING278

9578ch07final.qxd 1/30/08 8:35 PM Page 278

Figure 7-40. The looping structure totals the cells in the temp variable.

There are a couple of things we have to do to set up a procedure for error handling:

1. Turn error handling on (also known as enabling error handling).

2. Add line labels so our code knows where to go when an error condition is fired.

3. Handle the error.

4. Resume code execution at the appropriate location.

Let’s modify the GetSalesTotal function and add an error handler.

1. Add a variable declaration after the declaration for temp:

Dim sErrMsg As String

The sErrMsg variable will hold the text of the message we’ll show our users should an error
occur. The variables should now look like those in Listing 7-11.

Listing 7-11. Variable List for GetSalesTotal

Dim currReturn As Currency
Dim cell As Range
Dim temp As Currency
Dim sErrMsg As String

2. Immediately below the variable declarations, add the following line of code to enable
error handling:

On Error GoTo Err_Handle

Here is where we tell the compiler where in our code to go if an error is fired. Err_Handle is
a line label that refers to a specific point in our code. We’ll add it in just a moment.

3. Add two blank lines between the last two lines of code in the GetSalesTotal function,
as follows:

currReturn = temp

GetSalesTotal = currReturn

4. Put your cursor in the second blank line and add the following line label:

Exit_Function:

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 279

9578ch07final.qxd 1/30/08 8:35 PM Page 279

5. Insert a blank line above the End Function line and type the following:

Exit Function

The code after the loop should now look like Listing 7-12.

Listing 7-12. Exit_Function Line Label Added

currReturn = temp

Exit_Function:
GetSalesTotal = currReturn
Exit Function

End Function

So far, with the exception of enabling error handling, our code works just like it did origi-
nally. Now let’s write code to handle the type mismatch error.

6. Put the insertion point at the end of the Exit Function line of code and press Enter.

7. Type the following line label:

Err_Handle:

8. Press Enter.

When we enabled error handling by adding the On Error GoTo statement, we referred it to
this label. You can name yours according to your own naming convention. Just be sure the
label used at the top of the procedure is the same as that used to name the error handler sec-
tion of code at the bottom of the procedure.

9. Add the following code at the insertion point:

If Err.Number = 13 Then
sErrMsg = "A value in your data may not be numeric. Please check your

data"
Else
sErrMsg = "An unexpected error " & Err.Number & " has occurred"

End If

MsgBox sErrMsg, vbOKOnly, "Error"
Resume Exit_Function

If an error occurs, the code redirects to the Err_Handle section. Here we placed condi-
tional logic that looks for a specific error number. If we were aware of other error conditions,
we could simply add them to the If...Else block or even use a Select Case statement.

Inside the If statement, we are assigning the appropriate error message to the sErrMsg
variable based on what error occurred. Then we show the user the message. The last line of the
error handler section tells the code where to resume once the error is dealt with. In this case,
we’re telling it to resume at the line label Exit_Function where we assign an output value to
our function.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING280

9578ch07final.qxd 1/30/08 8:35 PM Page 280

10. Save the code.

11. In Excel, run the AddSalesTotal Macro.

Our friendly message is displayed to the user informing her of the issue with the data, as
shown in Figure 7-41.

Figure 7-41. User-friendly error message

12. Click OK to continue.

As shown in Figure 7-42, there is a small issue with the output from the GetSalesTotal
function. It returned a value of 0.

Figure 7-42. Zero value returned from GetSalesTotal function

Let’s see what happened. Return to the VBE and look at the GetSalesTotal function
(Listing 7-13).

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 281

9578ch07final.qxd 1/30/08 8:35 PM Page 281

Listing 7-13. GetSalesTotal Function with Error Handling

Function GetSalesTotal(RangeToTotal As Range) As Currency
Dim currReturn As Currency
Dim cell As Range
Dim temp As Currency
Dim sErrMsg As String
On Error GoTo Err_Handle

For Each cell In RangeToTotal
temp = temp + cell.Value

Next cell

currReturn = temp

Exit_Function:
GetSalesTotal = currReturn
Exit Function

Err_Handle:
If Err.Number = 13 Then
sErrMsg = "A value in your data may not be numeric. Please check your data"

Else
sErrMsg = "An unexpected error " & Err.Number & " has occurred"

End If

MsgBox sErrMsg, vbOKOnly, "Error"
Resume Exit_Function

End Function

Debugging the Error Handler
After our error message is displayed, we tell our code to resume at the Exit_Function line
label. Since we know the code worked fine with all numeric values in our original example and
our error message was displayed successfully upon trapping the error, lets add a breakpoint at
the point where we resume execution, as shown in Figure 7-43.

Figure 7-43. Breakpoint added in error handler

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING282

9578ch07final.qxd 1/30/08 8:35 PM Page 282

1. Return to Excel.

2. Run the AddSalesTotal macro.

3. Click OK when the error message appears, and the code will go into break mode.

4. Press F8 once to step to the next line of code. The execution point will move into the
Exit_Function section.

5. Hold your mouse pointer over the currReturn variable to check its value. As shown in
Figure 7-44, it has a 0 value.

Figure 7-44. Checking the value of currReturn

6. Press F5 to let the code run to finish.

Since our loop never finished running, currReturn was never assigned a value. We have a
couple of choices on how to handle this. We can show no total in case of an error, or we can
show the total of the numeric values.

To show a total and get the loop to finish running, we need to modify the behavior of our
Resume statement. The Resume statement has three forms, as shown in Table 7-4.

Table 7-4. The Resume Statement

Statement Description

Resume Resumes code execution with the statement that caused the error. If the error was
not handled, it becomes fatal.

Resume Next Resumes code execution with the statement following the statement that triggered
the error.

Resume Line Resumes code execution at a line label or number within the procedure containing
the error handler.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 283

9578ch07final.qxd 1/30/08 8:35 PM Page 283

Our type mismatch error occurs in our loop, and in order to populate currReturn with a
value, we’ll need to complete the loop.

1. Remove the breakpoint.

2. In the GetSalesTotal function error handler, change the Resume statement to read as
follows:

Resume Next

3. In Excel, run the AddSalesTotal macro again.

4. Click OK when the error message is displayed. The correct total for the numeric values
will be displayed, as shown in Figure 7-45.

Figure 7-45. Result of using Resume Next to complete our loop

Our On Error GoTo statement refers to a specific line label to handle errors. If you know
that any errors you might encounter in a routine are not going to be fatal and can be skipped,
you can use the On Error Resume Next statement.

Listing 7-14 shows a modified version of the GetSalesTotal function that uses On Error
Resume Next.

Listing 7-14. GetSalesTotal Function Using On Error Resume Next

Function GetSalesTotal(RangeToTotal As Range) As Currency
Dim currReturn As Currency
Dim cell As Range
Dim temp As Currency
Dim sErrMsg As String
On Error Resume Next

For Each cell In RangeToTotal
temp = temp + cell.Value

Next cell

currReturn = temp

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING284

9578ch07final.qxd 1/30/08 8:35 PM Page 284

Exit_Function:
GetSalesTotal = currReturn
Exit Function

End Function

On Error Resume Next essentially turns error trapping off. If there’s a chance that another
section of your code could throw an error, you can turn error trapping back on by adding an
On Error GoTo statement inside your code. Figure 7-46 shows the GetSalesTotal function
with error trapping turned off for the loop, but turned back on again for the return variable
assignments.

Figure 7-46. Error trapping turned on by adding an On Error GoTo statement

Now if an error should occur after the loop runs, we can trap it and handle it appropri-
ately in the error handler.

Summary
The VBE in Excel 2007 provides us with many tools to debug our code. The better we get at
using these tools, the faster we can correct our code, and the more our productivity will
increase. In this chapter, we looked at the Debug menu and the Debug toolbar, and we
explored their commands.

The ability to step through code and move the execution point forward and backward are
invaluable assets when debugging code. The Immediate window provides us with an easy way
to run code and to view the values of in-scope variables. In this chapter, we explored these

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING 285

9578ch07final.qxd 1/30/08 8:35 PM Page 285

aspects of the Immediate window, and even how to run a loop from it. The Locals window pro-
vides a great way to view all the variables and their values in one place. The Locals window
also shows us objects and their properties as we step through our code in break mode.

We also learned about setting breakpoints to stop our code to help us pinpoint issues.
We explored some concepts to apply before coding to help prevent errors, including the
Option Explicit command, which forces us to declare all variables before using them.

In the next chapter, we’ll look at ways Excel can interact with other Microsoft Office
products like Word and PowerPoint.

CHAPTER 7 ■ DEBUGGING AND ERROR HANDLING286

9578ch07final.qxd 1/30/08 8:35 PM Page 286

Office Integration

One of the really great things about VBA in Microsoft Office is that it allows programmatic
access to each application from the others. This powerful functionality lets us automate many
business processes, including data integration and document creation and management. It
also allows us to create workflows within the Office suite of applications.

In this chapter, we will see how we can turn an Excel workbook into a summary report in
Microsoft Word. We’ll also take that same workbook and create a presentation in Microsoft
PowerPoint. Both documents will include text and chart data from our Excel project.

The code we’ve been writing so far has accessed properties of Microsoft Excel 2007 using
the Excel Document Object Model (DOM). We will now explore some of the common DOM
objects for Word and PowerPoint as we delve into Office automation.

Creating a Report in Word
In Chapter 5, we explored charting in Excel 2007. We are going to turn one of our chart reports
into a summary report using the Word 2007 DOM from the Excel 2007 VBE.

In this example, you’ll learn how to do the following:

• Open an instance of Microsoft Word programmatically

• Create a new document within the instance of Word

• Add text

• Apply styles

• Insert chart objects from Excel

Let’s start by opening an existing Excel project that contains numeric and chart data.
We’ll use the charts in our summary report in Word.

1. From the source files for this book, open the file Chapter 8\Files\Chart08.xslm.

The file contains sales data and pie charts for a few product categories that we need to
create a report on. The report will cover the first few months of sales year 2007, as shown in
Figure 8-1.

287

C H A P T E R 8

9578ch08final.qxd 1/30/08 8:31 PM Page 287

Figure 8-1. Sales data and pie charts

2. Open the VBE by selecting the Developer ribbon ➤ Code tab ➤ Visual Basic command,
or by pressing Alt+F11.

3. Add a new standard module in the Project Explorer.

Before we can begin accessing and working with the Word DOM, we need to add a refer-
ence to Word in the References dialog box.

4. In the VBE, select Tools ➤ References to display the References dialog box (shown in
Figure 8-2).

Figure 8-2. References dialog box

CHAPTER 8 ■ OFFICE INTEGRATION288

9578ch08final.qxd 1/30/08 8:31 PM Page 288

5. In the References dialog box, scroll down until you see the Microsoft Word 12.0 Object
Library (shown in Figure 8-3).

Figure 8-3. Microsoft Word 12.0 Object Library selected

6. Select the Microsoft Word 12.0 Object Library.

7. Click OK.

8. Add the following module-level variables:

Private m_oWordApp As Word.Application
Private m_oWordDoc As Word.Document

These variables will hold the instance of our Word application and the new Word docu-
ment for the report.

9. Create a new subroutine named MakeWordDoc.

10. Add the following variable declarations:

Dim i As Integer
Dim sTitle As String
Dim sBody As String

These will contain a counter value used when we loop through our charts, and two string
values to hold the title and introductory text for the report. Next, we’ll assign the title of our
report, “2007 Sales Report,” to the sTitle variable. Since we’ll also be creating a PowerPoint
presentation from our VBA code, let’s create some routines to provide that information to our
application. This way, we can reuse it in both processes.

CHAPTER 8 ■ OFFICE INTEGRATION 289

9578ch08final.qxd 1/30/08 8:31 PM Page 289

The Helper Functions
We are going to add three separate text entries for our report:

Title text: The title of the report

Title body text: A description or introduction to the report

Subject body text: Brief descriptions for each product chart

For this, we will create three helper functions.

1. In the VBE, add a new standard code module.

2. On the new code module, add the function shown in Listing 8-1 to return the report
title:

Listing 8-1. GetTitle Function

Function GetTitle() As String
GetTitle = "2007 Sales Report"

End Function

3. Below GetTitle, add a function to return the title body text, as shown in Listing 8-2.

Listing 8-2. GetTitleBody Function

Function GetTitleBody() As String
Dim sBody As String
sBody = "Sales for the first four months of 2007 were generally stable. "
sBody = sBody & "Although Baked Goods & Mixes were somewhat flat "
sBody = sBody & "Beverages and Candy showed improvement."

GetTitleBody = sBody
End Function

4. On the same code module, add the function shown in Listing 8-3 to return the subject
body text.

Listing 8-3. GetSubjectBody Function

Function GetSubjectBody(Index As Integer) As String
Dim sBody As String

Select Case Index
Case 1
sBody = "Sales in this category were average " ➥

& "for the first third of the year."
Case 2
sBody = "Sales in this category were slightly above average " ➥

& "for the first third of the year. February was " ➥

& "very good for the season."

CHAPTER 8 ■ OFFICE INTEGRATION290

9578ch08final.qxd 1/30/08 8:31 PM Page 290

Case 3
sBody = "Sales in this category were above average " ➥

& "for the first third of the year. February and April " ➥

& "showed spikes due to holidays."
End Select

GetSubjectBody = sBody
End Function

5. Save the project.

In a production application, you are probably not likely to store these string values in
your VBA code. For the purposes of our examples, I’ve included the text here, but a more real-
istic scenario would be if this information came from a database, an XML or text file, or even a
worksheet in an Excel project.

The last subroutine we added, GetSubjectBody, takes a parameter named Index. This is
used to match and display the correct text for the corresponding chart.

Let’s move back to Standard Module1 and resume programming our Word report.

Creating an Instance of Word
Before we begin, let’s outline the steps involved in creating a report with text and charts in
Word from Excel VBA code:

1. Open the Word application.

2. Create a new Word document.

3. Add formatted headings and text.

4. Add charts with formatted headings and text.

5. Display Word and the new report.

Let’s begin. Our first tasks are to open an instance of the Word application and load a new
document into that instance.

1. In the MakeWordDoc subroutine, add the following statements:

Set m_oWordApp = CreateObject("Word.Application")
Set m_oWordDoc = m_oWordApp.Documents.Add

We are using the CreateObject function to create an instance of the Word application.
CreateObject creates a new instance of Word even if one is already open. To use CreateObject
to create an instance of a Microsoft Office product, you call the method and pass in an argu-
ment containing the class name of that application. The class name is a combination of the
application name plus the object type. In this case (and in most cases), our object type is
Application. All Microsoft Office products expose an Application object type. Word and Excel
provide a few other object types that can be created with CreateObject as well, as shown in
Table 8-1.

CHAPTER 8 ■ OFFICE INTEGRATION 291

9578ch08final.qxd 1/30/08 8:31 PM Page 291

Table 8-1. Microsoft Office Object Types

Office Application Object Type Class

Access Application Access.Application

Excel Application Excel.Application

Excel Worksheet Excel.Worksheet

Excel Chart Excel.Chart

Outlook Application Outlook.Application

PowerPoint Application PowerPoint.Application

Word Application Word.Application

Word Document Word.Document

When using any of the additional object types provided by Word or Excel, a new instance
of Word or Excel is created. To use CreateObject to open an instance of Outlook, the syntax
would be the following:

CreateObject(Outlook.Application)

CREATEOBJECT VS. GETOBJECT

Another way to return an instance of an Office application is to use the GetObject function. GetObject
differs from CreateObject in that it uses an existing instance of the application. There are a couple of
instances where GetObject may make sense for your applications. One is when you want to use an existing
instance of an application object that is already loaded. The other is when you want to start an instance of an
application with a file loaded.

The syntax for using GetObject is GetObject(pathname, class), where pathname is the path to
a Microsoft Office document. The class parameter is not required in this case, as GetObject will find which
application to launch. If no file name is given, the class parameter is required. The class parameter takes the
same object class identifier as the CreateObject function.

2. Next, fill the variables with title and body text by adding the following lines of code:

sTitle = GetTitle
sBody = GetTitleBody

3. Then, use the Word Application object to insert the title and body text into the Word
document, by adding the following code to the MakeWordDoc subroutine:

With m_oWordApp
.Selection.Style = .ActiveDocument.Styles("Heading 1")
.Selection.TypeText sTitle
.Selection.TypeParagraph
.Selection.TypeText sBody

End With

CHAPTER 8 ■ OFFICE INTEGRATION292

9578ch08final.qxd 1/30/08 8:31 PM Page 292

This code defines the document style for the first line of text and inserts the title text.
Next, we add a new paragraph break and insert the report’s descriptive body text.

Before we begin inserting our charts, let’s add some cleanup code and take a quick look at
our progress by running and displaying Word from the VBE.

4. Add the following code after the With...End With block:

m_oWordApp.Visible = True
MsgBox "word s/b open now"
m_oWordApp.Quit
Set m_oWordApp = Nothing

Here we are displaying the Word application and our new document. The message box is
here to stop the code from running so we can navigate over to the Word window (if it’s not
already the active window). Once we click the message box to close it, our cleanup code runs
and shuts down the instance of Word and kills the Word Application object.

5. Save your work.

The code so far should look like Listing 8-4.

Listing 8-4. MakeWordDoc Subroutine

Sub MakeWordDoc()
Dim i As Integer
Dim sTitle As String
Dim sBody As String

Set m_oWordApp = CreateObject("Word.Application")
Set m_oWordDoc = m_oWordApp.Documents.Add

sTitle = GetTitle
sBody = GetTitleBody

With m_oWordApp
.Selection.Style = .ActiveDocument.Styles("Heading 1")
.Selection.TypeText sTitle
.Selection.TypeParagraph
.Selection.TypeText sBody

End With

m_oWordApp.Visible = True
MsgBox "word s/b open now"
m_oWordApp.Quit
Set m_oWordApp = Nothing

End Sub

Let’s run the code we’ve generated so far and see what we get.

CHAPTER 8 ■ OFFICE INTEGRATION 293

9578ch08final.qxd 1/30/08 8:31 PM Page 293

6. Put your cursor anywhere in the MakeWordDoc subroutine.

7. Click the Run button on the VBE toolbar or press F5.

■Note Depending on the speed of your computer, the code may run for a bit before Word appears.
Remember, you are loading an actual instance of Word, so this will take about as long as Word normally
takes to load on your machine.

Figure 8-4 shows the Word instance displaying the report heading in Heading 1 style and
descriptive text in the default (Normal) style formatting.

■Note We did not tell our code to format the body text in Normal style, did we? The default behavior of
Word’s heading styles is to format text at the following paragraph marker to Normal style (saving us a line
of code in the process!).

Figure 8-4. The report heading and text

■Note The formatting of the Heading 1 and Normal styles may differ in your Word installation.

CHAPTER 8 ■ OFFICE INTEGRATION294

9578ch08final.qxd 1/30/08 8:31 PM Page 294

8. Navigate back to the main Excel window and click OK on the message box to let the
code finish running, as shown in Figure 8-5.

Figure 8-5. The message box stops the code so that we can check results.

9. Click No when prompted to save the Word document (unless you really want it).

Adding Charts to the Report
We’ve seen now that our code works. Word opened and the heading section of the report dis-
played successfully. Now let’s return to the VBE and add our charts and their descriptive text.

We have three charts to insert and three sets of descriptive text. In this section, we will
add a loop that will do the following:

• Insert a blank line between each section

• Insert the descriptive text

• Insert the chart

1. In the MakeWordDoc subroutine, place the cursor at the beginning of the End With
statement.

2. Press Enter.

3. Move the insertion point into the blank line you just created and add the following
lines of code:

For i = 1 To 3
.Selection.TypeParagraph
InsertText i
InsertChart i
Next i

I’ve created a couple of helper functions to insert the text and charts according to the
index passed into the procedure. The InsertText subroutine finds the chart with the index
value passed in and grabs its title. It then calls the GetSubjectBody function to get the text cor-
responding to the chart. Finally, it formats the text area and inserts the appropriate section
heading and text.

CHAPTER 8 ■ OFFICE INTEGRATION 295

9578ch08final.qxd 1/30/08 8:31 PM Page 295

4. On Standard Module1, add the code shown in Listing 8-5.

Listing 8-5. InsertText Procedure

Sub InsertText(Index As Integer)
Dim sTitle As String
Dim sBody As String

Worksheets(1).ChartObjects(Index).Activate
sTitle = ActiveChart.ChartTitle.Text
sBody = GetSubjectBody(Index)

With m_oWordApp
.Selection.Style = .ActiveDocument.Styles("Heading 2")
.Selection.TypeText sTitle
.Selection.TypeParagraph
.Selection.TypeText sBody
.Selection.TypeParagraph

End With
End Sub

The InsertChart subroutine finds the chart based upon the index value passed in, and
then applies its Copy method to place a copy of the chart on the Windows clipboard. Then we
move to the Word document and apply the Paste command at the insertion point.

5. On Standard Module1, add the code shown in Listing 8-6.

Listing 8-6. InsertChart Procedure

Sub InsertChart(Index As Integer)
Worksheets(1).ChartObjects(Index).Copy
m_oWordApp.Selection.Paste

End Sub

This completes the MakeWordDoc procedure. The finished code should look like Listing 8-7.

Listing 8-7. Complete MakeWordDoc Subroutine

Sub MakeWordDoc()
Dim i As Integer
Dim sTitle As String
Dim sBody As String

Set m_oWordApp = CreateObject("Word.Application")
Set m_oWordDoc = m_oWordApp.Documents.Add

sTitle = GetTitle
sBody = GetTitleBody

CHAPTER 8 ■ OFFICE INTEGRATION296

9578ch08final.qxd 1/30/08 8:31 PM Page 296

With m_oWordApp
.Selection.Style = .ActiveDocument.Styles("Heading 1")
.Selection.TypeText sTitle
.Selection.TypeParagraph
.Selection.TypeText sBody
For i = 1 To 3
.Selection.TypeParagraph
InsertText i
InsertChart i
Next i
End With

m_oWordApp.Visible = True
MsgBox "word s/b open now"
m_oWordApp.Quit
Set m_oWordApp = Nothing

End Sub

Now let’s run the code and see the finished product.

6. Place the insertion point anywhere inside the MakeWordDoc subroutine.

7. Click the Run button on the VBE toolbar or press F5.

The completed report will appear, and should look similar to Figure 8-6.

Figure 8-6. The completed summary report displayed in Print Preview mode

CHAPTER 8 ■ OFFICE INTEGRATION 297

9578ch08final.qxd 1/30/08 8:31 PM Page 297

The Word DOM is very rich and contains many other useful objects for you to code
against. Once you’ve added a reference to Word in the VBE, you can explore its many features
in the Object Browser (which you can access by pressing F2). Figure 8-7 shows a view of the
Word objects as displayed in the Object Browser.

Figure 8-7. Word objects displayed in the Object Browser

8. Return to the Excel window.

9. Click OK on the message box and let the code run its cleanup.

Now that we’ve got our report completed in Microsoft Word, let’s look at PowerPoint and
create a presentation based on this data.

Creating a PowerPoint Presentation
Now that you’ve had a little experience in navigating Word’s DOM, you should be comfortable
enough to dive into the PowerPoint DOM. The process will be very similar, although the
objects we will use will be very different.

CHAPTER 8 ■ OFFICE INTEGRATION298

9578ch08final.qxd 1/30/08 8:31 PM Page 298

In this example, we will build a series of slides, including a title page followed by one slide
per chart in our Excel workbook project. The steps involved in this code will be as follows:

1. Open the PowerPoint application.

2. Create a new presentation document.

3. Create a Slide object.

4. Add a title slide.

5. Add chart slides.

6. Display the PowerPoint window with the new presentation loaded.

Coding the Presentation
Before we could access any of the Word DOM objects in the previous example, we had to add
a reference to the Word Object Model to our code project. Before we can access any of the
PowerPoint DOM objects, we must also add a reference to the PowerPoint Object Model.

1. Open the VBE by selecting the Developer ribbon ➤ Code tab ➤ Visual Basic command,
or by pressing Alt+F11.

2. In the VBE, select Tools ➤ References to display the References dialog box (shown in
Figure 8-8).

Figure 8-8. Adding a reference to the PowerPoint 12.0 Object Model

3. Select the Microsoft PowerPoint 12.0 Object Library.

4. Click OK to save the reference.

Now we can start coding against the PowerPoint DOM. For our PowerPoint example, we’ll
use a new empty code module.

CHAPTER 8 ■ OFFICE INTEGRATION 299

9578ch08final.qxd 1/30/08 8:31 PM Page 299

5. In the VBE, add a new standard module in the Project Explorer. If you’ve only coded
per the previous example, this should be Module3 (but don’t worry if it’s not).

6. Add the following module-level variables:

Private m_oPptApp As PowerPoint.Application
Private m_oPptShow As PowerPoint.Presentation
Private m_oPptSlide As PowerPoint.Slide

The object types of these variables are plainly named. We have a variable to hold a refer-
ence to the PowerPoint application, one for the Presentation object, and one to hold a Slide
object.

7. Add a new subroutine to the code module and name it MakePowerPointPresentation.

8. Add the following lines of code:

Set m_oPptApp = CreateObject("PowerPoint.Application")
Set m_oPptShow = m_oPptApp.Presentations.Add

In this code, we are instantiating an instance of the PowerPoint application using the
CreateObject function discussed in the previous example. Then we are adding a new presen-
tation to that instance.

Now that we have a presentation to work with, our next tasks are to create a title slide and
then add chart slides. In our Word example, we created helper functions to do this, and we will
do something similar here.

PowerPoint Helper Functions
Our next chore is to create a title slide. The title slide will consist of a title line plus descriptive
text, similar to the Word report we created in the last example.

1. Still working on the standard code module with your PowerPoint code, add a new sub-
routine and name it CreateTitleSlide.

2. Add the following line of code:

Set m_oPptSlide = m_oPptShow.Slides.Add(1, ppLayoutTitle)

The PowerPoint Presentation object contains a Slides collection that naturally contains
all of the slides in a presentation file. The Slides collection’s Add method adds a slide to the
collection and returns a Slide object back. Here we are assigning that new slide to our
m_oPptSlide variable.

The Add method takes two parameters. The first is the slide index. This tells PowerPoint
where to put the slide. In our code, it’s set to 1 since we’re creating the first or title slide. The
second parameter is the type of auto-layout to use. Figure 8-9 uses the Object Browser to show
the many options available.

CHAPTER 8 ■ OFFICE INTEGRATION300

9578ch08final.qxd 1/30/08 8:31 PM Page 300

Figure 8-9. Slide layout enums listed in the Object Browser

The enum we’ve used represents a layout with a title placeholder and a text placeholder.

3. Add the following code to the CreateTitleSlide subroutine:

With m_oPptSlide.Shapes.Placeholders(1)
With .TextFrame.TextRange
.Text = GetTitle
.Font.Bold = msoTrue
.ChangeCase ppCaseUpper

End With
End With

With m_oPptSlide.Shapes.Placeholders(2)
With .TextFrame.TextRange
.Text = GetTitleBody
.Font.Bold = msoFalse
.ChangeCase ppCaseUpper

End With
End With

CHAPTER 8 ■ OFFICE INTEGRATION 301

9578ch08final.qxd 1/30/08 8:31 PM Page 301

Within these two With...End With blocks, we are adding our title text and descriptive
text to the Placeholder objects on the title slide. In the first With...End With block, we are
setting the title and adding bold formatting to the text. In the second With...End With block,
we are adding the title body (or descriptive) text with no bold formatting. The completed
CreateTitleSlide subroutine should look like the code in Listing 8-8.

Listing 8-8. Complete CreateTitleSlide Subroutine

Sub CreateTitleSlide()
Set m_oPptSlide = m_oPptShow.Slides.Add(1, ppLayoutTitle)

With m_oPptSlide.Shapes.Placeholders(1)
With .TextFrame.TextRange
.Text = GetTitle
.Font.Bold = msoTrue
.ChangeCase ppCaseUpper

End With
End With

With m_oPptSlide.Shapes.Placeholders(2)
With .TextFrame.TextRange
.Text = GetTitleBody
.Font.Bold = msoFalse
.ChangeCase ppCaseUpper

End With
End With

End Sub

Next, we’ll create a procedure to add the slide charts.

1. Add a new subroutine to the code module we’ve been working in. Name it
CreateChartSlides.

2. Add the following variable declarations to CreateChartSlides:

Dim i As Integer
Dim sTitle As String
Dim sngChartStart As Single
Dim spacer As Integer

The first variable, i, is the counter variable for the loop we’ll use when enumerating
through our charts. sTitle will store the title text for each chart slide. The sngChartStart vari-
able will be used to help us determine where to place the chart on the slide and how to size it.
The last variable, spacer, will be used to put a bit of space between the title placeholder and
the chart.

CHAPTER 8 ■ OFFICE INTEGRATION302

9578ch08final.qxd 1/30/08 8:31 PM Page 302

3. Add a For...Next loop with two blank lines between the start and end of the loop, as
follows:

For i = 1 To 3

Next i

The entire subroutine will take place within this For...Next block.

4. Add the following lines of code:

Worksheets(1).ChartObjects(i).Activate
sTitle = ActiveChart.ChartTitle.Text

The first line activates the chart with an index of i. The second line retrieves the title of
the chart we just made active.

Next, we’ll add a slide to place the chart on.

5. Add the following line of code:

Set m_oPptSlide = m_oPptShow.Slides.Add(i + 1, ppLayoutTitleOnly)

This line adds a new slide and gives it a layout that contains only a title placeholder.

6. Add the following code to the CreateChartSlides procedure:

With m_oPptSlide.Shapes.Placeholders(1)
sngChartStart = .top + .height

With .TextFrame.TextRange
.Text = sTitle

End With
End With

In this With...End With block, we are assigning a value to the sngChartStart variable,
which is the total of the title placeholder’s Top and Height property values. This will be used
when we place the chart on the slide. Next, we add the chart title text to the title placeholder.

Next, we’ll use the Excel Chart object’s Copy method to place the chart in memory, and
then we can paste it into the slide and place it in its proper location.

7. Add the following code to the CreateChartSlides procedure:

Worksheets(1).ChartObjects(i).Copy

spacer = 20
With m_oPptSlide.Shapes.Paste
.top = sngChartStart + spacer
.height = m_oPptSlide.Master.height - sngChartStart + spacer
.left = m_oPptSlide.Master.width / 2 - .width / 2

End With

CHAPTER 8 ■ OFFICE INTEGRATION 303

9578ch08final.qxd 1/30/08 8:31 PM Page 303

The completed CreateChartSlides subroutine should look like Listing 8-9.

Listing 8-9. Complete CreateChartSlides Subroutine

Sub CreateChartSlides()
Dim i As Integer
Dim sTitle As String
Dim sngChartStart As Single
Dim spacer As Integer

For i = 1 To 3
Worksheets(1).ChartObjects(i).Activate
sTitle = ActiveChart.ChartTitle.Text
Set m_oPptSlide = m_oPptShow.Slides.Add(i + 1, ppLayoutTitleOnly)

With m_oPptSlide.Shapes.Placeholders(1)
sngChartStart = .top + .height

With .TextFrame.TextRange
.Text = sTitle

End With
End With

Worksheets(1).ChartObjects(i).Copy

spacer = 20
With m_oPptSlide.Shapes.Paste
.top = sngChartStart + spacer
.height = m_oPptSlide.Master.height - sngChartStart + spacer
.left = m_oPptSlide.Master.width / 2 - .width / 2

End With

Next i
End Sub

Completing the MakePowerPointPresentation Procedure
Moving our attention back to the MakePowerPointPresentation subroutine, we will now insert
our helper functions into the procedure and view our results. We will also add some cleanup
code.

CHAPTER 8 ■ OFFICE INTEGRATION304

9578ch08final.qxd 1/30/08 8:31 PM Page 304

1. In the MakePowerPointPresentation subroutine, move the insertion point to a blank
line after the two lines of code previously entered (shown in Listing 8-10 for reference).

Listing 8-10. MakePowerPointPresentation Subroutine So Far

Sub MakePowerPointPresentation()
Set m_oPptApp = CreateObject("PowerPoint.Application")
Set m_oPptShow = m_oPptApp.Presentations.Add

End Sub

2. Add the following two lines of code calling the helper functions:

CreateTitleSlide
CreateChartSlides

3. Add the following code to display the results of your work and to perform the neces-
sary cleanup operations:

m_oPptApp.Visible = msoTrue
MsgBox "PowerPoint is open"
m_oPptApp.Quit
Set m_oPptSlide = Nothing
Set m_oPptShow = Nothing
Set m_oPptApp = Nothing

We are making our m_PptApp object visible and freezing the code with a message box, as
we did in our Word example. The last few lines of this code close the PowerPoint application
and destroy all of the PowerPoint objects.

The completed MakePowerPointPresentation subroutine should look like Listing 8-11.

Listing 8-11. Complete MakePowerPointPresentation Subroutine

Sub MakePowerPointPresentation()
Set m_oPptApp = CreateObject("PowerPoint.Application")
Set m_oPptShow = m_oPptApp.Presentations.Add

CreateTitleSlide
CreateChartSlides

m_oPptApp.Visible = msoTrue
MsgBox "PowerPoint is open"
m_oPptApp.Quit
Set m_oPptSlide = Nothing
Set m_oPptShow = Nothing
Set m_oPptApp = Nothing

End Sub

CHAPTER 8 ■ OFFICE INTEGRATION 305

9578ch08final.qxd 1/30/08 8:31 PM Page 305

Running the Code
Now that we’ve completed the coding, let’s run it and see our results.

1. Place the insertion point anywhere inside the MakePowerPointPresentation subroutine.

2. Click the Run button on the VBE toolbar or press F5.

3. If the Excel window appears with the message box displayed, make PowerPoint the
active window.

The dynamically created PowerPoint presentation is displayed. It should look like
Figures 8-10 through 8-13.

Figure 8-10. Title slide

Figure 8-11. Baked Goods & Mixes slide

CHAPTER 8 ■ OFFICE INTEGRATION306

9578ch08final.qxd 1/30/08 8:31 PM Page 306

Figure 8-12. Beverages slide

Figure 8-13. Candy slide

4. Return to the Excel window.

5. Click OK on the message box to finish running the code.

Very nice output, and not much more work than our Word document. If we want to
include the text description on our chart slides, we can do that as well. For that, we need to do
a few things differently, however.

In the previous example, we called on the Add method of the Slides collection using the
following code:

Set m_oPptSlide = m_oPptShow.Slides.Add(i + 1, ppLayoutTitleOnly)

CHAPTER 8 ■ OFFICE INTEGRATION 307

9578ch08final.qxd 1/30/08 8:31 PM Page 307

The layout type we used was ppLayoutTitleOnly, which gave us an empty slide with a
Placeholder object to hold our title text. We used the remainder of the slide, which was
empty, to place and size our chart. In our next example, we’ll change the layout type to one
that includes three placeholders: one for the title, one for the descriptive text, and one for the
chart itself.

Adding Text to the Chart Slides
In this example, we’ll use a different slide template for our text and chart. Figure 8-14 shows
the empty template slide in PowerPoint.

Figure 8-14. PowerPoint slide template for text and chart

Let’s begin coding the CreateChartSlidesText procedure. In it we will add the title text in
the title placeholder. We’ll put our descriptive text in the text placeholder on the left side of the
slide. Finally, we’ll place our chart in the chart placeholder on the right side of the slide.

1. Open the VBE by selecting the Developer ribbon ➤ Code tab ➤ Visual Basic command,
or press by Alt+F11.

2. On the standard module containing the PowerPoint code you’ve been working on,
create a new subroutine and name it CreateChartSlidesText.

3. Add the following variable declarations:

Dim i As Integer
Dim sTitle As String
Dim oShape As PowerPoint.Shape
Dim top As Integer
Dim left As Integer
Dim height As Integer
Dim width As Integer

CHAPTER 8 ■ OFFICE INTEGRATION308

9578ch08final.qxd 1/30/08 8:31 PM Page 308

The first two variables, i and sTitle, serve the same function that they did in our original
example. The first is a counter for our loop through our charts and text indexes, and the sec-
ond will hold the title for each slide. The remaining variables will be used to hold the informa-
tion for the third of the three Placeholder objects on our slide template. We’ll need them in
order to place the chart correctly on the slide.

4. Add the following empty For...Next block with one or two blank lines within the code
block:

For i = 1 To 3

Next i

5. Within the For...Next block, add the following code:

Worksheets(1).ChartObjects(i).Activate
sTitle = ActiveChart.ChartTitle.Text
Set m_oPptSlide = m_oPptShow.Slides.Add(i + 1, ppLayoutTextAndChart)

This code is almost identical to our previous example—but notice the new layout type
enum, ppLayoutTextAndChart. This gives us the slide template shown in Figure 8-14.

6. Next (still within the For...Next loop), add the following With...End With block to the
CreateChartSlidesText subroutine:

With m_oPptSlide.Shapes.Placeholders(1)
With .TextFrame.TextRange
.Text = sTitle

End With
End With

Again, this code is very similar to our previous example, minus the variable to hold the
placeholder location (sngChartStart). In our current example, we already have a placeholder
for our chart, but we have to use a different technique to get its location.

7. Immediately below the With...End With block, add the following code:

With m_oPptSlide.Shapes.Placeholders(2)
With .TextFrame.TextRange
.Text = GetSubjectBody(i)

End With
End With

This code sets a reference to the second Placeholder object on our slide and inserts the
descriptive text from the GetSubjectBody function.

8. Add the following line of code after the With...End With block we just added:

Worksheets(1).ChartObjects(i).Copy

This line of code copies the current Chart object onto the Windows clipboard for later
pasting into our PowerPoint slide template.

CHAPTER 8 ■ OFFICE INTEGRATION 309

9578ch08final.qxd 1/30/08 8:31 PM Page 309

So we’ve got our text elements in place and our chart sitting in memory waiting to be
dropped into our slide template. However, we can’t just paste our chart into the third place-
holder area on our template as we could with the text-based Placeholder objects. To place the
chart, we have to get the coordinates of the third placeholder (top, left, height, and width).
Then we remove the Placeholder object and paste in the chart, placing it accordingly.

9. Add the following lines of code after the Copy command you just added:

Set oShape = m_oPptSlide.Shapes(3)
With oShape
top = .Top
left = .Left
width = .Width
height = .Height
.Delete

End With

Here, we are setting oShape to hold the third shape, which is the chart placeholder. Then
we are storing its dimensions and location in our top, left, width, and height variables. Once
we have that information, we are deleting the Shape object using its Delete method.

10. Immediately after this code, add the following code:

With m_oPptSlide.Shapes.Paste
.Top = top
.Left = left
.Width = width

End With

This code, which places and sizes the chart, is similar in function to our previous exam-
ple. We are placing it in the exact location of the placeholder we just removed.

■Note You might notice that although we’re retrieving and holding a reference to the height of the place-
holder shape, we’re not using it when we place the chart. It’s included here for reference. If you need to
resize the height in your projects, this is how and where you’d do it.

That’s it for coding our For...Next loop.

11. Place the insertion point at the end of the loop and press Enter.

12. Add the following line of cleanup code:

Set oShape = Nothing

Once we’re done with it, we destroy the oShape object. That’s the last line of code in this
procedure. The finished CreateChartSlidesText subroutine should look like Listing 8-12.

CHAPTER 8 ■ OFFICE INTEGRATION310

9578ch08final.qxd 1/30/08 8:31 PM Page 310

Listing 8-12. Complete CreateChartSlidesText Subroutine

Sub CreateChartSlidesText()
Dim i As Integer
Dim sTitle As String
Dim oShape As PowerPoint.Shape
Dim top As Integer
Dim left As Integer
Dim height As Integer
Dim width As Integer

For i = 1 To 3
Worksheets(1).ChartObjects(i).Activate
sTitle = ActiveChart.ChartTitle.Text
Set m_oPptSlide = m_oPptShow.Slides.Add(i + 1, ppLayoutTextAndChart)

With m_oPptSlide.Shapes.Placeholders(1)
With .TextFrame.TextRange
.Text = sTitle

End With
End With

With m_oPptSlide.Shapes.Placeholders(2)
With .TextFrame.TextRange
.Text = GetSubjectBody(i)

End With
End With

Worksheets(1).ChartObjects(i).Copy

Set oShape = m_oPptSlide.Shapes(3)
With oShape
top = .Top
left = .Left
width = .Width
height = .Height
.Delete

End With
With m_oPptSlide.Shapes.Paste
.Top = top
.Left = left
.Width = width

End With
Next i
Set oShape = Nothing

End Sub

CHAPTER 8 ■ OFFICE INTEGRATION 311

9578ch08final.qxd 1/30/08 8:31 PM Page 311

All that’s left to do now is modify our calling procedure, MakePowerPointPresentation, and
then run it.

13. Navigate to the MakePowerPointPresentation subroutine.

14. Replace this line of code:

CreateChartSlides

with this line:

CreateChartSlidesText

15. Place the insertion point anywhere inside the MakePowerPointPresentation procedure.

16. Click the Run button on the VBE toolbar or press F5.

17. Once the message box appears, make PowerPoint the active window if it’s not already.

Figures 8-15 through 8-17 show the chart slides with the descriptive text.

Figure 8-15. Baked Goods & Mixes chart slide with text

CHAPTER 8 ■ OFFICE INTEGRATION312

9578ch08final.qxd 1/30/08 8:31 PM Page 312

Figure 8-16. Beverages chart slide with text

Figure 8-17. Candy chart slide with text

18. Return to the Excel window.

19. Click OK on the message box to finish running the code.

CHAPTER 8 ■ OFFICE INTEGRATION 313

9578ch08final.qxd 1/30/08 8:31 PM Page 313

Summary
In this chapter, we took a look at automating other Microsoft Office products using Excel 2007
VBA. Office automation is a powerful concept that allows us to interact with Office applica-
tions for purposes of sharing information, creating documents, and creating workflow
processes.

We are not limited to automating Microsoft Office products, however. Many applications
support VBA, including some non-Microsoft products. For instance, versions 9 and later of
WordPerfect support VBA, and Novell has added VBA support to the open source office suite
OpenOffice.org (www.openoffice.org), which runs on the Windows and Linux platforms.

Throughout this book, we’ve explored various ways we can code in VBA in Excel 2007, and
we’ve seen some pretty neat solutions. However, we are not limited to using code created from
within the Excel VBE. We can create ActiveX components using Visual Basic (5 or 6) that we
can access from our Excel projects. We can also create assemblies using the .NET Framework
and Visual Studio Tools for Office, provided by Microsoft.

In Chapter 9, we will take a look at both of these tools and see how we can add functional-
ity to our Excel 2007 projects using them.

CHAPTER 8 ■ OFFICE INTEGRATION314

9578ch08final.qxd 1/30/08 8:31 PM Page 314

http://www.openoffice.org

ActiveX and .NET

ActiveX? .NET? In a book about programming in Excel 2007? Of course! Yes, ActiveX controls
and components are still kicking around. And .NET technologies are the wave of the future for
those Microsoft-centric developers among us (which is why you’re reading this book, I’d
assume).

ActiveX, for the uninitiated, is Microsoft’s technology for component software. ActiveX
comes in two flavors: components and controls. The controls we added to our Excel UserForm
in Chapter 4 were ActiveX controls. If you have any experience with VB 6 or earlier, you’ve used
ActiveX controls on your forms, and perhaps you’ve downloaded free controls written by other
developers or purchased control libraries written by third parties. The same is true of Micro-
soft Access controls. ActiveX components, on the other hand, do not necessarily provide a UI,
but they do expose a set of functionality you can use in your programs. Sometimes you hear
these described as “COM components,” a term that is somewhat correct. ActiveX is based on
the Microsoft COM (Component Object Model) technology, and the two terms are often used
interchangeably.

The Microsoft development world is moving away from COM and ActiveX for many rea-
sons, but there are so many classic VB applications out there that it is still a worthwhile
exercise to see what they have to offer.

The .NET tie-in comes to us via Visual Studio Tools for Office Second Edition (VSTO SE),
provided by Microsoft. By adding VSTO SE to your Visual Studio installation, you receive a rich
set of tools that allow you to program Microsoft Office applications from the Visual Studio pro-
gramming environment. Imagine opening a new Excel project and seeing Excel within the
Visual Studio 2005 development environment. There is some really neat stuff here with so
many possibilities.

In this chapter, we’ll look at ways to incorporate ActiveX components in our Excel projects.
Then we’ll take a dive into VSTO SE and explore some of the advantages that this maturing plat-
form can give us as Office developers.

Using ActiveX Components in Your
Excel 2007 Projects
We are at a technology crossroads as year 2007 draws to an end. Microsoft’s .NET technologies
have reached their stride and are becoming more widespread. Classic Visual Basic (VB 6)
applications will be supported throughout the Windows Vista life cycle (five years). This means

315

C H A P T E R 9

9578ch09final.qxd 1/30/08 8:29 PM Page 315

Microsoft will guarantee that applications and components (DLLs) created in VB 6 will con-
tinue to run in Windows Vista as they did in Windows XP. Not so for the VB 6 IDE (integrated
development environment), for which extended support will be retired in April of 2008).

What does this mean for you? If you are currently using any ActiveX components, your
applications should work just as they do now. The problem with VB 6 support going away as
I see it is that VBA, being a subset of VB, has similar syntax. It’s easy enough to create proce-
dures and compile your code in classic VB if you’re a VBA programmer.

If you’re moving your Microsoft development tools to Windows Vista, you will not have
this option available to you. Given that there are still plenty of ActiveX components available
(both free and for pay), and since you can still create your own if you are not moving to Vista
right away, we’ll take a short look at incorporating them into your Excel projects.

Are There Any Benefits?
Absolutely. Consider that the code you create in VBA is very similar to VB code. How can one
be more beneficial than the other? There are two major reasons:

Better performance: Code wrapped in an ActiveX DLL is compiled code. This runs much
faster than interpreted VBA code.

Greater security: Your VBA code is not very secure in the VBE. Anyone who knows how to
press Alt+F11 can see and modify your code. Code in a compiled VB component cannot
be seen by users or any other interested party.

Custom Functionality with ActiveX
Way back in Chapter 2, we looked at various methods of bringing data into your Excel projects.
These ranged from using Excel’s import methods to getting DAO and ADO recordsets and
placing their data on your worksheets.

In our ActiveX example, we’ll take one of these data-driven samples and see how they’d
happen in a compiled component or DLL. Then we’ll look at how we can use that compiled
component to add custom functionality to our projects.

I’m including the VB 6 code, but don’t worry if you’re not a VB programmer. The DLLs are
also included with the source files for this book, so you can access the functionality. You just
won’t have access to the code.

■Note The supporting files and source code for this book are available at www.apress.com, in the
Download section of this book’s home page.

Using an ActiveX Component in Excel 2007
Our ActiveX example allows us to put data on the worksheet of our choice in our current work-
book and pass in a SQL statement to retrieve whatever data we need. This example will mimic
the functionality of our ADO example from Chapter 2 in the file DataAccessSample03.xlsm.
Listing 9-1 shows the original VBA code we wrote in Chapter 2.

CHAPTER 9 ■ ACTIVEX AND .NET316

9578ch09final.qxd 1/30/08 8:29 PM Page 316

http://www.apress.com

Listing 9-1. ADOTest Macro from Chapter 2

Sub ADOTest()
Dim cnn As New ADODB.Connection
Dim rs As ADODB.Recordset
Dim xlSheet As Worksheet
Dim sConnString As String
Dim arr_sPath(1) As String
Dim sSQL As String
Dim iFieldCount As Integer
Dim i As Integer

arr_sPath(0) = "C:\projects\Excel2007Book\Files\northwind 2007.accdb"
arr_sPath(1) = "C:\projects\Excel2007Book\Files\northwind.mdb"

Set xlSheet = Sheets("Sheet1")
xlSheet.Activate
Range("A1").Activate
Selection.CurrentRegion.Select
Selection.ClearContents
Range("A1").Select

' Open connection to the database
' cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & ➥

"Data Source=" & arr_sPath(0) & ";"
''When using the Access 2007 Northwind database
''comment the previous code and uncomment the following code.
cnn.Open "Provider=Microsoft.ACE.OLEDB.12.0;" & ➥

"Data Source=" & arr_sPath(0) & ";"

Set rs = New ADODB.Recordset
' Open recordset based on Orders table
rs.Open "Select * From Orders", cnn

iFieldCount = rs.Fields.Count
For i = 1 To iFieldCount

xlSheet.Cells(1, i).Value = rs.Fields(i - 1).Name
Next i

' Copy the recordset to the worksheet, starting in cell A2
xlSheet.Cells(2, 1).CopyFromRecordset rs

xlSheet.Select
'Range("A1").Select
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
'Range("A1").Select

CHAPTER 9 ■ ACTIVEX AND .NET 317

9578ch09final.qxd 1/30/08 8:29 PM Page 317

rs.Close
cnn.Close
Set xlSheet = Nothing
Set rs = Nothing
Set cnn = Nothing

End Sub

This code dropped the result of a SQL SELECT statement onto Sheet1 in our sample file.
Our ActiveX component allows us to choose which worksheet we put our data on and select
which data we want, giving us a quick tool for querying the Northwind database.

The VB 6 code here is also split into a data class and a second class named cExcelNwind.
The data class, cData, is doing some work this time. Its GetData method will return a recordset
to the cExcelNwind class. The cExcelNwind class will do the work of placing the data on the
worksheet that is passed into the ActiveX component. Listings 9-2 and 9-3 show the VB 6 code.

Listing 9-2. cData Class from the ActiveX Component

Option Explicit

Const m_sDBPathName As String = "C:\Book\Files\Northwind 2007.accdb"
Private m_oCnn As ADODB.Connection
Private m_oRS As ADODB.Recordset
'

Public Function GetData(Which As String) As ADODB.Recordset
m_oCnn.Open "Provider=Microsoft.ACE.OLEDB.12.0;" & ➥

"Data Source=" & m_sDBPathName & ";"

Set m_oRS = New ADODB.Recordset

m_oRS.Open Which, m_oCnn

Set GetData = m_oRS
End Function

Private Sub Class_Initialize()
Set m_oCnn = New ADODB.Connection
Set m_oRS = New ADODB.Recordset

End Sub

Private Sub Class_Terminate()
Set m_oCnn = Nothing
Set m_oRS = Nothing

End Sub

CHAPTER 9 ■ ACTIVEX AND .NET318

9578ch09final.qxd 1/30/08 8:29 PM Page 318

Listing 9-3. cExcelNwind Class from the ActiveX Component

Option Explicit

Public Sub PlaceData(TheWorksheet As Excel.Worksheet, WhichData As String)
Dim oData As cData
Dim xl As Excel.Application
Dim rs As ADODB.Recordset
Dim iFieldCount As Integer
Dim i As Integer

Set xl = TheWorksheet.Application 'hook into the current Excel session
TheWorksheet.Activate
TheWorksheet.Range("A1").Activate
xl.Selection.CurrentRegion.Select
xl.Selection.ClearContents
TheWorksheet.Range("A1").Select

Set oData = New cData
Set rs = oData.GetData(WhichData)

iFieldCount = rs.Fields.Count
For i = 1 To iFieldCount

TheWorksheet.Cells(1, i).Value = rs.Fields(i - 1).Name
Next i

TheWorksheet.Cells(2, 1).CopyFromRecordset rs

TheWorksheet.Select
xl.Selection.CurrentRegion.Select
xl.Selection.Columns.AutoFit

rs.Close
Set TheWorksheet = Nothing
Set rs = Nothing
Set xl = Nothing

End Sub

■Note Once again, the VB 6 code provided here is for reference only, showing the similarities to code
we’ve already experienced. We will not dig into the specifics of compiling DLLs or ActiveX EXEs here.

As you’ll see in this next bit of client code, accessing the data from an external component
really helps keep the code on the client application simple. The compiled version of this code
is available at www.apress.com in the Download section of this book’s home page. It is called
Nwind2Excel.dll. You must register the DLL before you can access its functionality.

CHAPTER 9 ■ ACTIVEX AND .NET 319

9578ch09final.qxd 1/30/08 8:29 PM Page 319

http://www.apress.com

Registering Nwind2Excel.dll in Windows XP or 2000

1. Copy the file to a folder on your local machine.

2. Click Start ➤ Run.

3. Type regsvr32.exe, followed by a space, and then the full path to Nwind2Excel.dll.
Listing 9-4 shows an example of this command.

Listing 9-4. Example of Run Command to Register a DLL

regsvr32.exe C:\MyComponents\Nwind2Excel.dll

4. Click OK to register the DLL.

5. Click OK when the success message appears.

■Caution In the VB code, be sure to change the path to the Northwind 2007 database to wherever it can
be found on your local machine. If you are using the compiled DLL, it needs to find the Northwind database
in C:\ExampleDBs. You must create that folder and put the Northwind 2007 database there.

Registering Nwind2Excel.dll in Windows Vista

1. Open a command prompt window by selecting Start ➤ All Programs ➤ Accessories ➤
Command Prompt.

■Note This command prompt must be run using the Run as Administrator right-click menu option.

2. Type regsvr32.exe, followed by a space, and then the full path to Nwind2Excel.dll.
Listing 9-4 (shown previously) shows an example of this command.

3. Press Enter to run the command.

4. Click OK when the success message appears.

Figure 9-1 shows the success message you should see.

Figure 9-1. regsvr32.exe shows a success message upon registering a DLL in Windows Vista.

CHAPTER 9 ■ ACTIVEX AND .NET320

9578ch09final.qxd 1/30/08 8:29 PM Page 320

Now we can use the DLL in our project.

1. Open a new workbook in Excel.

2. Open the VBE by choosing the Developer ribbon ➤ Visual Basic or by pressing Alt+F11.

3. Add a standard code module in the Project Explorer.

4. Add a reference to the new DLL by selecting Tools ➤ References.

5. In the References dialog box, scroll down until you see an item named
!Northwind2Excel Object, as shown in Figure 9-2.

Figure 9-2. Adding a reference to !Northwind2Excel Object

■Tip When you create custom objects, they tend to get lost in the list in the References dialog box.
Adding the bang (!) character as a prefix helps keep your custom objects near the top of the list and
makes them easier to find.

6. Select it from the list and click OK to close the dialog and store the reference.

Now we are ready for a small bit of client code.

The Client Code

The really neat thing about using custom DLLs to provide functionality is that it lets us use
such a tiny bit of code in our applications.

CHAPTER 9 ■ ACTIVEX AND .NET 321

9578ch09final.qxd 1/30/08 8:29 PM Page 321

On the standard module you just created, add the following code:

Option Explicit

Sub GetNorthwindData()
Dim oNwindData As cExcelNwind

Set oNwindData = New cExcelNwind

oNwindData.PlaceData ThisWorkbook.Sheets("Sheet1"), "Select * From Orders"
oNwindData.PlaceData ThisWorkbook.Sheets("Sheet2"), "Select * From Employees"

Set oNwindData = Nothing
End Sub

That’s about it. The two lines of code between the Set statements do all the work, with
each line placing the result of its SQL statement on the worksheet referenced. Let’s run the
code.

1. Return to Excel.

2. Save the file.

3. Open the Macros dialog box by selecting the Developer ribbon ➤ Macros command.

4. Choose GetNorthwindData from the List of macros.

5. Click the Run button.

■Caution As noted earlier, if you are using the compiled DLL that comes with the source code for this
book, you must create the path C:\ExampleDBs and place the Northwind 2007 database there.

The result is shown in Figure 9-3. Sheet1 contains the order information and Sheet2 con-
tains the employee information.

CHAPTER 9 ■ ACTIVEX AND .NET322

9578ch09final.qxd 1/30/08 8:29 PM Page 322

Figure 9-3. Result of GetNorthwindData macro

6. Save the workbook if you like.

■Note Here’s one of the comparative advantages of the .NET platform vs. ActiveX. In the .NET world,
we do not have to deal with registration of components like we do with ActiveX components. We can
simply copy our component to any machine that has the correct version of the .NET Framework installed,
and it will run.

One benefit that we see from this example is minimal code in our project. Let’s take a look
now at how .NET technologies can actually take the code out of our Excel projects.

Excel in the .NET World
We can’t code directly in the Excel 2007 VBE to use .NET components, but we can download
tools from Microsoft that will let us create Excel projects from within Visual Studio 2005. VSTO
and VSTO SE each come with a suite of tools that allow us to access various functions within
an Excel project.

VSTO, which interfaces with Office 2003 applications, allows direct access to an Excel
workbook and gives us programmatic control within the managed code environment. VSTO
project templates include the ability to create the following:

CHAPTER 9 ■ ACTIVEX AND .NET 323

9578ch09final.qxd 1/30/08 8:29 PM Page 323

• Excel workbook projects

• Excel template projects

• Word template projects

• Word document projects

• Outlook add-in projects

Figure 9-4 shows the Visual Studio 2005 New Project dialog box for Microsoft Office 2003
projects from the original version of VSTO.

Figure 9-4. VSTO Microsoft Office projects

VSTO SE adds some new project types to the toolbox, as shown in Figure 9-5.

Figure 9-5. New project types included in VSTO SE

CHAPTER 9 ■ ACTIVEX AND .NET324

9578ch09final.qxd 1/30/08 8:29 PM Page 324

VSTO SE provides us with two new project categories, Excel 2003 Add-ins and Excel 2007
Add-ins. It adds an InfoPath template project to the Office menu, as shown in Figure 9-6
(which shows the Windows Vista interface).

Figure 9-6. InfoPath Form Template project added in VSTO SE

■Note If you already have VSTO installed, you can safely add VSTO SE. The existing Office 2003 project
types will still be available. The new project types of VSTO SE will be available in addition to the original
project types.

Figure 9-7 shows the VSTO SE Office 2003 Add-in projects available in the New Project
dialog box.

CHAPTER 9 ■ ACTIVEX AND .NET 325

9578ch09final.qxd 1/30/08 8:29 PM Page 325

Figure 9-7. Office 2003 Add-in projects added in VSTO SE in Windows XP

Another new project category containing Office 2007 Add-in projects is also added. The
new selections are shown in Figure 9-8.

Figure 9-8. Office 2007 Add-in projects added in VSTO SE in Windows Vista

CHAPTER 9 ■ ACTIVEX AND .NET326

9578ch09final.qxd 1/30/08 8:29 PM Page 326

VSTO is no longer available, but if you have a copy, you can still write code for Excel 2003
that will run in Excel 2007 Compatibility mode. VSTO SE provides add-in programming only.

■Note VSTO SE is available as a free download from Microsoft at www.microsoft.com/downloads/
details.aspx?familyid=5E86CAB3-6FD6-4955-B979-E1676DB6B3CB&displaylang=en (if this link
fails to work in the future, you can search the Web for “VSTO SE”).

Managed Code in an Excel Project
We are going to look at two examples of running managed code in Excel. In our ActiveX exam-
ples, we revisited some of the functionality we’d already built directly in Excel using VBA. The
first example .NET project will duplicate some of the functionality from our previous VBA
projects, but you’ll see how the .NET versions require absolutely no code on the Excel client
workbook. Our second example will show how to create a custom task pane in an Excel 2007
Add-in project in conjunction with the .NET version of an Excel UserForm.

■Caution If you do not have Visual Studio 2005, you can still run the sample workbooks as long as you
have placed the Northwind 2007.accdb file in the same path that the sample code refers to. The only
other prerequisite is that the .NET Framework 2.0 must be installed on your PC.

Retrieving Data Using .NET
In this example, we’ll reach out to the Northwind 2007 database and populate a worksheet
with data from the Employees table. The end result will look a lot like one of our early data
access samples in Chapter 2, where we imported data from the Northwind database and then
resized the columns using the AutoFit command. We will create a data access component and
then use it from within our add-in.

1. Open Visual Studio 2005, and the start page will appear.

2. In the Recent Projects area (shown in Figure 9-9) in the Create section, click the Project
link to open the New Project dialog box (shown previously in Figure 9-8).

Figure 9-9. Recent Projects section of Visual Studio 2005 start page

CHAPTER 9 ■ ACTIVEX AND .NET 327

9578ch09final.qxd 1/30/08 8:29 PM Page 327

http://www.microsoft.com/downloads

3. In the Name text box, name the project NWindDataAddIn.

4. Leave the “Create directory for solution” check box checked.

5. Click OK.

The new project is created, as shown in Figure 9-10.

Figure 9-10. New Excel 2007 add-in project

We’ll look at the default contents of the add-in project in a moment, but first let’s create
our data access component. We will add another project to our add-in project. Once the cod-
ing is finished, we’ll have to add a reference to our data access project before we can use it.

The Data Access Component

We could add a new class directly in our add-in project, but it makes sense to put that in its
own project where it will become a separate component. This gives you the option to easily
use your data access layer in other projects.

CHAPTER 9 ■ ACTIVEX AND .NET328

9578ch09final.qxd 1/30/08 8:29 PM Page 328

1. Select the NWindDataAddIn project in the Solution Explorer.

2. Select File ➤ Add ➤ New Project (Figure 9-11).

Figure 9-11. Adding a new project to the solution

3. In the Add New Project dialog box, select Windows from the “Project types” list.

4. Select Class Library from the Templates section.

CHAPTER 9 ■ ACTIVEX AND .NET 329

9578ch09final.qxd 1/30/08 8:29 PM Page 329

5. Name the new project NWindDataAccess, as shown in Figure 9-12.

Figure 9-12. Creating a new class library project

6. Click OK.

A new project is added to the Solution Explorer and an empty class module is created, as
shown in Figure 9-13.

CHAPTER 9 ■ ACTIVEX AND .NET330

9578ch09final.qxd 1/30/08 8:29 PM Page 330

Figure 9-13. New class library project added

The default name for the new class is Class1. Let’s change that.

1. Select the Class1.vb file from the NWindDataAccess project in the Solution Explorer.

2. In the Properties pane (below the Solution Explorer, as shown in Figure 9-14), change
the File Name property to NWindData.vb.

Figure 9-14. Changing the class name

CHAPTER 9 ■ ACTIVEX AND .NET 331

9578ch09final.qxd 1/30/08 8:29 PM Page 331

Once that’s done, all references to Class1 will be changed to reflect the new class, as
shown in Figure 9-15.

Figure 9-15. Renamed class and file name

Now we’ll add some code to our class. This will be a very simple class that does nothing
more than query the Northwind 2007 database for a list of employees.

1. On your local PC, create a folder called C:\ExampleDBs (if you did not already do so for
the ActiveX example).

2. Copy the Northwind 2007.accdb file into the new folder.

■Note These two steps are more of a necessity for those who do not have Visual Studio 2005 (so the code
will run from the sample files you downloaded from www.apress.com). If you are using Visual Studio 2005,
you can modify the code to refer to the Northwind 2007 database from any location on your PC.

3. Put your cursor in the class module code window and press Ctrl+Home to position the
insertion point at the very beginning of the code.

4. Press Enter.

CHAPTER 9 ■ ACTIVEX AND .NET332

9578ch09final.qxd 1/30/08 8:29 PM Page 332

http://www.apress.com

5. Add the following statement to reference the OLEDB library:

Imports System.Data.OleDb

6. Move the insertion point to the blank line inside the class code.

7. Add the following module-level declarations:

Const TABLE_NAME As String = "Table1"
Private m_sNwindName As String

The constant TABLE_NAME will hold the table name we’ll use when we fill a DataSet from
the Northwind Employees table. The sNwindName variable will hold the path to the database.
Next, let’s add a public property to the data access class to store and retrieve the location of
the database.

8. Add the following property to the NWindData class module:

Public Property NwindPathFileName() As String
Get

Return m_sNwindName
End Get
Set(ByVal value As String)

If System.IO.File.Exists(value) Then
m_sNwindName = value

Else
Throw New System.IO.FileNotFoundException

End If
End Set

End Property

The Property Get is very straightforward in that it’s just returning the value from the pri-
vate variable. The Property Set has a bit of validation code. We’re checking to see if the file
exists before we assign the new value to the private variable. If it does not exist, the class will
throw a System.IO.FileNotFoundException error to the client code.

■Note Managed code does not raise errors as classic VBA and VB did. In the .NET world, exceptions are
thrown by our code and caught in exception handling blocks.

Now we’ll add a method that accepts a SQL statement to get the data and returns the data
in the form of a .NET DataSet object.

9. Add a new function named GetData to the NWindData class, as follows:

Public Function GetData(ByVal Which As String) As DataSet

CHAPTER 9 ■ ACTIVEX AND .NET 333

9578ch09final.qxd 1/30/08 8:29 PM Page 333

10. Add the following variable declarations:

Dim dsReturn As New DataSet()
Dim cnn As OleDbConnection
Dim sConnString As String

11. Create the connection to the data by adding the following code:

sConnString = "Provider=Microsoft.ACE.OLEDB.12.0;" ➥

& "Data Source=" & m_sNwindName & ";"
cnn = New OleDb.OleDbConnection(sConnString)

12. Create a DataAdapter to hold the data and fill the DataSet by adding the following code:

Dim da As New OleDbDataAdapter(Which, cnn)

Next, we are going to fill the DataSet from the DataAdapter. We will add exception han-
dling to this process. As VBA programmers, we’re used to using the age-old On Error Go To
syntax in our error handlers. In our managed code, we use Try...Catch blocks to catch any
exceptions our code throws.

13. Add the following code to fill the DataSet and watch for and handle exceptions:

Try
da.Fill(dsReturn, TABLE_NAME)

Catch ex As Exception
MsgBox(ex.Message)

End Try

This Try...Catch block includes the optional Finally clause. Any code inserted here will
always run regardless of errors. It’s a good place for cleanup code. The last thing to do is return
our filled DataSet.

14. Add the following code after the Try...Catch block:

Return dsReturn

The complete GetData function looks like Listing 9-5.

Listing 9-5. Complete GetData Function

Public Function GetData(ByVal Which As String) As DataSet
Dim dsReturn As New DataSet()
Dim cnn As OleDbConnection
Dim sConnString As String

sConnString = "Provider=Microsoft.ACE.OLEDB.12.0;" ➥

& "Data Source=" & m_sNwindName & ";"
cnn = New OleDb.OleDbConnection(sConnString)

Dim da As New OleDbDataAdapter(Which, cnn)

CHAPTER 9 ■ ACTIVEX AND .NET334

9578ch09final.qxd 1/30/08 8:29 PM Page 334

Try
da.Fill(dsReturn, TABLE_NAME)

Catch ex As Exception
MsgBox(ex.Message)

Finally
MsgBox(dsReturn.Tables("Table1").Rows.Count & " Records")

End Try

Return dsReturn
End Function

That completes our work on the data access component. Let’s bring our attention back to
the add-in project that Visual Studio 2005 created for us.

The Add-In Project

When we created our add-in project, Visual Studio 2005 created the NWindDataAddIn
project, and it created a deployment project named NWindDataAddInSetup. Within the
NWindDataAddIn project, we have one file, named ThisAddIn.vb. This is where we’ll put the
code that will run on our client Excel applications.

Before we begin, we must add a reference to our data component.

1. In the Solution Explorer, select the NWindDataAddIn project.

2. Right-click the project and choose Add Reference to display the Add Reference dialog box.

3. On the Projects tab, select NWindDataAccess, as shown in Figure 9-16.

Figure 9-16. The Add Reference dialog box

4. Click OK.

5. In the Solution Explorer, double-click the ThisAddIn.vb file to open the code window.

CHAPTER 9 ■ ACTIVEX AND .NET 335

9578ch09final.qxd 1/30/08 8:29 PM Page 335

Add-in projects include one line of code in the startup method referencing the Excel
application, as shown in Figure 9-17.

Figure 9-17. The predefined add-in project code

6. Place the insertion point in the blank line above the ThisAddIn_Startup method.

7. Add the following module-level variable declarations:

Private m_oNWind As NWindDataAccess.NWindData
Private m_oSheet As Excel.Worksheet
Private m_oDS As DataSet

Here, we create an object to hold a reference to our data component and create variables
to hold references to an Excel worksheet and our DataSet.

8. In the ThisAddIn_Startup method, put the insertion point in the blank line under the
last comment.

9. Add the following code:

m_oNWind = New NWindDataAccess.NWindData
m_oSheet = Me.Application.Worksheets("Sheet1")
GetData()

This code instantiates an instance of the data component, fills m_oSheet with a reference
to Sheet1 in our Excel workbook, and calls a function named GetData. Visual Studio 2005 may
bark at you because this function does not exist, yet but that’s only temporary.

CHAPTER 9 ■ ACTIVEX AND .NET336

9578ch09final.qxd 1/30/08 8:29 PM Page 336

10. Put the insertion point inside the ThisAddIn_Shutdown method.

11. Add the following line of cleanup code:

m_oNWind = Nothing

Now let’s create the GetData method.

Getting the Data Since we added a reference to our data access project, we can refer to its
properties and methods from our add-in. The GetData method will call out to our data access
layer and fill our module-level DataSet variable. Then it will push the data out to the Excel
sheet.

1. In the ThisAddIn class module, add a new subroutine named GetData.

2. In the GetData procedure, add the following variable declarations:

Dim sDB As String = "C:\ExampleDBs\Northwind 2007.accdb"
Dim iCols As Integer
Dim i As Integer
Dim row As Integer

We’re passing in the location of the database to the sDB String variable, and then we have
the remaining Integer variables to hold our place as we walk through the DataSet and display
our data.

3. On the first blank line below the variable declarations, type the following line of code:

Try

4. Press Enter, and Visual Studio 2005 will add a complete Try...Catch block for you.

5. Place the insertion point in the first blank line below the Try line of code.

6. Add the following code to set the file name in the data access component and call its
GetData method:

With m_oNWind
.NwindPathFileName = sDB
m_oDS = .GetData("select * from employees")

End With

7. Add the following code to walk through the DataSet and insert the column headings in
the worksheet:

For i = 0 To iCols - 1
m_oSheet.Cells(1, i + 1).Value = ➥

m_oDS.Tables("Table1").Columns(i).Caption
Next

8. Place the insertion point in the blank line following the previous code, and press Enter.

CHAPTER 9 ■ ACTIVEX AND .NET 337

9578ch09final.qxd 1/30/08 8:29 PM Page 337

9. Add the following code to walk through the DataSet and insert the employee data on
the worksheet:

row = 2
For Each RowIterator As DataRow In m_oDS.Tables("Table1").Rows

For i = 0 To iCols - 1
m_oSheet.Cells(row, i + 1).Value = ➥

RowIterator(m_oDS.Tables("Table1").Columns(i).Caption)
Next
row = row + 1

Next

Next, we’ll add the code to format the Excel worksheet by applying the AutoFit command
to size each column to show its longest data entry.

10. Place the insertion point in the blank line following the previous code, and press Enter.

11. Add the following code:

Dim r As Excel.Range
m_oSheet.Select()
r = m_oSheet.Range("A1")
r.Select()
Application.Selection.CurrentRegion.Select()
Application.Selection.Columns.AutoFit()
r.Select()

The last thing for us to do is a bit of exception handling.

12. Place the insertion point at the beginning of the line containing the Catch statement,
and press Enter.

13. Move the insertion point up into the blank line you just inserted.

14. Add the following code to trap for the FileNotFoundException:

Catch ex As System.IO.FileNotFoundException
MsgBox("File: " & sDB & " not found")

That’s all the code for the GetData method. The completed subroutine looks like
Listing 9-6.

CHAPTER 9 ■ ACTIVEX AND .NET338

9578ch09final.qxd 1/30/08 8:29 PM Page 338

Listing 9-6. Complete GetData Subroutine

Private Sub GetData()
Dim sDB As String = "C:\ExampleDBs\Northwind 2007.accdb"
Dim iCols As Integer
Dim i As Integer
Dim row As Integer

Try
With m_oNWind

.NwindPathFileName = sDB
m_oDS = .GetData("select * from employees")

End With

iCols = m_oDS.Tables("Table1").Columns.Count
For i = 0 To iCols - 1

m_oSheet.Cells(1, i + 1).Value = _
m_oDS.Tables("Table1").Columns(i).Caption

Next

row = 2
For Each RowIterator As DataRow In m_oDS.Tables("Table1").Rows

For i = 0 To iCols - 1
m_oSheet.Cells(row, i + 1).Value = _

RowIterator(m_oDS.Tables("Table1").Columns(i).Caption)
Next
row = row + 1

Next

Dim r As Excel.Range
m_oSheet.Select()
r = m_oSheet.Range("A1")
r.Select()
Application.Selection.CurrentRegion.Select()
Application.Selection.Columns.AutoFit()
r.Select()

Catch ex As System.IO.FileNotFoundException
MsgBox("File: " & sDB & " not found")

Catch ex As Exception

End Try
End Sub

15. Save the project, and then run it by selecting Debug ➤ Start Debugging, or by pressing
the F5 key.

CHAPTER 9 ■ ACTIVEX AND .NET 339

9578ch09final.qxd 1/30/08 8:29 PM Page 339

Excel 2007 will appear with the Northwind Employees table loaded into Sheet1, as shown
in Figure 9-18.

Figure 9-18. Northwind data added to the worksheet from the add-in project

I mentioned earlier that this is accomplished with no code at all in the workbook. Let’s
take a look at the VBE in the Excel workbook we just opened through our code.

Open the Excel VBE by selecting the Developer ribbon ➤ Code tab ➤ Visual Basic com-
mand, or by pressing Alt+F11. Look through all of the built-in code modules and you will not
find one bit of code.

■Note All Excel workbooks ship with built-in code modules representing the code behind the workbook
(ThisWorkbook) and its worksheets (Sheet1, Sheet2, etc.). You can find this code in the VBA IDE Project
Explorer by double-clicking the item in the Project Explorer’s Microsoft Excel Objects folder.

How does the workbook know where to find the data, then?

1. Return to Excel and click the Office button, and then select Excel Options.

2. Select Add-Ins from the left-hand navigation to display the Add-ins list, as shown in
Figure 9-19.

CHAPTER 9 ■ ACTIVEX AND .NET340

9578ch09final.qxd 1/30/08 8:29 PM Page 340

Figure 9-19. The Add-ins list in the Excel Options dialog box

This section gives you a snapshot of available and active add-in applications. Excel will
leave these add-ins loaded even after you close Visual Studio. Before you close the workbook,
and while the Excel Options dialog is still open, unload the add-in as follows.

3. From the Manage drop-down list, choose COM Add-Ins, and then click the Go button.

4. Deselect the NWindDataAddIn project, as shown in Figure 9-20.

Figure 9-20. Unloading an add-in

5. Click OK to unload the add-in.

6. Close the workbook without saving.

7. Close Visual Studio 2005.

CHAPTER 9 ■ ACTIVEX AND .NET 341

9578ch09final.qxd 1/30/08 8:29 PM Page 341

Creating a Custom Task Pane and Data Input Form Using .NET
In this example, we’ll look at a .NET project that creates a custom task pane and a simulated
Excel UserForm. A task pane is a window that anchors itself to the right of an Office applica-
tion and contains commands to perform various functions. A common Office task pane is the
Getting Started task pane, shown in Figure 9-21.

Figure 9-21. Getting Started task pane in Excel 2003

Our example task pane will contain commands used by a human resources department to
enter new hire information and send that information to other groups for processing.

Creating the HR Task Pane Add-In

To begin, we’ll need to add a couple of new items to our add-in project: a user control that will
contain the task pane and a Windows form to act as our Excel 2007 UserForm.

1. Open Visual Studio 2005.

2. From the start page, create a new Microsoft Excel Add-in project.

3. Name it UserFormAddIn.

4. Add a new user control to the project by selecting Project ➤ Add User Control.

5. In the Add New Item dialog box, name the user control HRTaskPane.vb.

6. Add a new Windows form to the project by selecting Project ➤ Add Windows Form.

7. In the Add New Item dialog box, name the Windows form NewEmpForm.vb.

CHAPTER 9 ■ ACTIVEX AND .NET342

9578ch09final.qxd 1/30/08 8:29 PM Page 342

The Custom Task Pane Our custom task pane will contain two commands. The first will open
our Windows form to collect new employee information. The second will send that informa-
tion to other departments who might need it.

1. Open the User Control Designer by double-clicking HRTaskPane.vb in the Solution
Explorer.

2. Click the Toolbox (on the left side of the Visual Studio window) to unhide it (if it’s not
already displayed).

3. Click the pin (Auto Hide) button to leave the Toolbox displayed.

4. Add two Button controls from the Common Controls section (Figure 9-22) to the user
control by dragging them onto the Designer.

5. In the Properties pane, change the Text properties of the two buttons to New Employee
and E-mail Info, respectively, as shown in Figure 9-22.

6. In the Properties pane, name the New Employee button btnLaunch.

7. In the Properties pane, name the E-mail Info button btnEmail.

Figure 9-22. Completed HR task pane with Auto Hide command displayed

8. Double-click the New Employee button to open its code stub.

9. Add the following code to btnLaunch_Click:

Dim oForm As New NewEmpForm
oForm.ShowDialog()

This code creates a new instance of our NewEmpForm and opens it in dialog mode (so it
remains attached to the Excel window).

10. Click back on the HRTaskPane.vb [Design] tab, and then double-click the E-mail Info
button.

CHAPTER 9 ■ ACTIVEX AND .NET 343

9578ch09final.qxd 1/30/08 8:29 PM Page 343

11. Add the following code to btnEmail_Click:

Dim rng As Excel.Range
rng = Globals.ThisAddIn.Application.Range("A6")
'code to handle e-mail here
MsgBox("Sending new hire information for" & rng.Text & " to Systems Group")

This is basically a dummy function to simply show that we can process the data from the
task pane and place it anywhere else we’d like.

12. Close the HRTaskPane design and code windows. If prompted to save changes, choose
Yes.

Showing the Custom Task Pane Now that we’ve got our custom task pane set up, we need add
code to show it when our add-in starts up. The ThisAddIn.vb code file that Visual Studio 2005
created for us came complete with two code stubs for handling add-in startup and shutdown.

■Note The startup method contains one line of code generated by VSTO. This tells the add-in what
application it’s attaching itself to.

1. Display the ThisAddIn.vb code window by clicking its tab in the Visual Studio display
area (if it’s not there, double-click it in the Solution Explorer).

2. Place the insertion point in the blank line below the end of the VSTO-generated code.

3. Add the following code to display the HRTaskPane control:

Dim MyTaskPane As New HRTaskPane
Dim MyCustomTaskPane As Microsoft.Office.Tools.CustomTaskPane = ➥

Me.CustomTaskPanes.Add(MyTaskPane, "HR Tasks")
MyCustomTaskPane.Visible = True

This code adds our HRTaskPane control to the add-in’s CustomTaskPanes collection. In the
call to the CustomTaskPanes.Add method, the second argument is the text that will display in
the title bar of the task pane when it is displayed. Finally, we make the task pane visible.

Creating an Excel UserForm Using a Windows Form So far, we’ve created a task pane with two com-
mands and added code to our add-in project to display the custom task pane. The last things
for us to do are add controls to our Windows form to collect data and add commands to put
the data on the active worksheet.

1. Open NewEmpForm.vb in Design view by double-clicking it in the Solution Explorer.

2. Add six labels, six text boxes, and two Button controls from the Common Controls
Toolbox, and lay them out as shown in Figure 9-23.

CHAPTER 9 ■ ACTIVEX AND .NET344

9578ch09final.qxd 1/30/08 8:29 PM Page 344

Figure 9-23. Completed employee data entry UserForm

3. Name the text boxes and buttons per Table 9-1.

Table 9-1. New Employee Form Control Properties

Item Property Value

Form Text New Employee Form

TextBox1 Name txtFName

TextBox2 Name txtMidInit

TextBox3 Name txtLName

TextBox4 Name txtDOH

TextBox5 Name txtTitle

TextBox6 Name txtReportsTo

Label1 Text First Name

Label2 Text Mid Init

Label3 Text Last Name

Label4 Text Date of Hire

Label5 Text Job Title

Label6 Text Reports To

Button1 Name btnSave

Button1 Text Save

Button2 Text btnCancel

Button2 Text Cancel

Now that we have our controls set, let’s add code to create the display form in Excel 2007
and place the data from our Windows form onto the worksheet.

4. Display the Save button code stub by double-clicking the Save button.

CHAPTER 9 ■ ACTIVEX AND .NET 345

9578ch09final.qxd 1/30/08 8:29 PM Page 345

Our Save button will do three things:

• Set up the worksheet by adding headings and adjusting column widths

• Put the data from the data entry form on the worksheet

• Close the data entry form

5. Add the following code to the btnSave_Click event:

FormatForm()
PlaceData()
Close()

As you can see, each command maps to one of the three functions that the Save com-
mand will perform. The Close method is a built-in method of the Windows form object.
Let’s add the code for the FormatForm and PlaceData methods.

6. On the NewEmpForm.vb code module, add a new subroutine and name it FormatForm.

7. Add the following code to the FormatForm subroutine:

DoHeadings()
Dim rng As Excel.Range
With Globals.ThisAddIn.Application

rng = .Range("A5")
rng.Value = "First Name"
rng.Font.Bold = True
rng.ColumnWidth = 15
rng = .Range("B5")
rng.Value = "Mid Init"
rng.Font.Bold = True
rng.ColumnWidth = 15
rng = .Range("C5")
rng.Value = "Last Name"
rng.Font.Bold = True
rng.ColumnWidth = 15
rng = .Range("A8")
rng.Value = "Date of Hire"
rng.Font.Bold = True
rng = .Range("B8")
rng.Value = "Job Title"
rng.Font.Bold = True
rng = .Range("C8")
rng.Value = "Reports To"
rng.Font.Bold = True

End With
rng = Nothing

The DoHeadings method will put the title and subtitle on the worksheet. The repeated ref-
erence to the rng variable sets the active cell, formats it, and places any text labels in the cell.

CHAPTER 9 ■ ACTIVEX AND .NET346

9578ch09final.qxd 1/30/08 8:29 PM Page 346

■Note We have a reference to the Visual Basic Globals module in our With block. We saw the same refer-
ence earlier in our btnEmail_Click event on our custom task pane object. In order to access objects in an
Excel workbook (or any Office application object), we must go through the Globals module. This module sup-
ports the runtime library members that contain information about the runtime currently being used.

8. Add another subprocedure and name it DoHeadings.

9. Add the following code:

Dim rng As Excel.Range
With Globals.ThisAddIn.Application

rng = .Range("A1")
rng.Value = "HR Data Entry System"
rng.Font.Bold = True
rng.Font.Size = 16
rng = .Range("A2")
rng.Value = "New Employee Information"
rng.Font.Italic = True
rng.Font.Size = 14

End With
rng = Nothing

There’s nothing new here. This code works exactly like the FormatForm subroutine.
Next, let’s add the code to put the data on the worksheet.

10. Add a new subroutine, and name it PlaceData.

11. Add the following code:

Dim rng As Excel.Range
With Globals.ThisAddIn.Application

rng = .Range("A6")
rng.Value = Me.txtFName.Text
rng = .Range("B6")
rng.Value = Me.txtMidInit.Text
rng = .Range("C6")
rng.Value = Me.txtLName.Text
rng = .Range("A9")
rng.Value = Me.txtDOH.Text
rng = .Range("B9")
rng.Value = Me.txtTitle.Text
rng = .Range("C9")
rng.Value = Me.txtReportsTo.Text

End With

Again, we’re not doing anything new here—we’re just breaking the functionality up into
smaller pieces.

CHAPTER 9 ■ ACTIVEX AND .NET 347

9578ch09final.qxd 1/30/08 8:29 PM Page 347

The last thing to do is to code the Cancel button.

12. Select btnCancel from the Class Name drop-down list on the code designer.

13. Select its click event from the Method Name list.

14. In the btnCancel_Click event code stub, add the following line of code:

Close()

That is all the code we need to write. Now let’s run the application and see how it works.

Running the Add-In Now that the user control, the Excel Add-in, and the Windows form have all
been coded, let’s run the project and take a look at what we’ve done.

1. Run the project by selecting Debug ➤ Start Debugging or pressing the F5 key.

Excel 2007 opens with a blank workbook displayed and our custom task pane anchored to
the right of the workbook, as shown in Figure 9-24.

Figure 9-24. Excel 2007 workbook with custom task pane

2. Click the New Employee button on the HR task pane to display the data entry form.

3. Enter data on the New Employee form. Sample data is shown in Figure 9-25.

CHAPTER 9 ■ ACTIVEX AND .NET348

9578ch09final.qxd 1/30/08 8:29 PM Page 348

Figure 9-25. New Employee form with sample data

4. Click the Save button to place the data on the worksheet and format the sheet, as
shown in Figure 9-26.

Figure 9-26. Data and formatting applied to active worksheet

5. Close the workbook without saving.

6. In Visual Studio 2005, save the project file.

■Caution As with the previous example, the add-in will remain loaded for all Excel workbooks until you
manually remove it.

CHAPTER 9 ■ ACTIVEX AND .NET 349

9578ch09final.qxd 1/30/08 8:29 PM Page 349

Summary
We’ve created some very interesting code using both classic VB (6.0) and VSTO SE from
within Visual Studio 2005. Although Microsoft is supporting VB 6 applications for the five-
year product life cycle of Windows Vista, it is retiring support for the classic VB develop-
ment environment. The good news is that .NET technologies, while not directly supported
in Microsoft Office applications, are available to us via the VSTO SE package. Where previ-
ous versions of VSTO gave us direct access to Office products from within the Visual Studio
development environment, the SE version does not. All access to Office applications is now
done via add-in applications created in VSTO SE.

In this chapter, we looked at a method of bringing data into an Excel workbook using an
ActiveX component created in VB 6.0. The code is almost identical to the code we wrote in
Chapter 2 when we looked at data access in Excel 2007. With very few lines of code in the Excel
VBE, we were able to accomplish what filled up multiple code modules in the original exam-
ples, by wrapping that code in a COM object.

We then built a couple of components using .NET technologies. These components made
code nonexistent in our Excel workbooks. By running the code from an add-in, all we have to
do is load the add-in, and the code runs. We built a simple data access tool that loads North-
wind Employee data when a workbook is opened, and we designed a custom task pane that
calls a data entry form to collect data and place it on the active worksheet.

CHAPTER 9 ■ ACTIVEX AND .NET350

9578ch09final.qxd 1/30/08 8:29 PM Page 350

■Numbers and Symbols
? character, using in Immediate window, 255
! (bang) character

adding to custom objects, 321
!Northwind2Excel Object, 321–322

■A
Access 2000, new Northwind version in, 44
Access data, importing DAO using Jet,

55–59
Access data import code vs. text data import

code, 52
Access database, importing data from,

43–46
access information page, adding controls to,

159–160
access tab control settings, table of, 159–160
ACE (Access Engine), 54
ActiveCell.CurrentRegion property, 236
ActiveChart.PlotBy property, 202
ActiveWorkbook object, 100–101
ActiveX

custom functionality with, 316–323
in Excel 2007 programming, 315
and .NET in Excel programming, 315–350

ActiveX components
cData class from, 318
cExcelNwind class from, 319
using in Excel 2007 projects, 315–323

ActiveX Data Objects (ADO), See ADO
(ActiveX Data Objects)

Add Reference dialog box, displaying, 335
Add Watch command, selecting, 273
Add Watch dialog box, 273
AddChart method

optional arguments, 198
placing and aligning charts with,

213–215
address information page, adding controls

to, 156–157
address tab control settings, table of,

156–157
ADO (ActiveX Data Objects), using in Excel

2007, 67–87
ADO 2.8 library, adding reference to, 67–68
ADO Connection and Command objects,

setting up, 83–84

ADO data type enums, 70–71
ADO examples

importing SQL data based on a selection,
75–80

importing SQL data, 67–74
updating SQL data, 80–87

ADO recordset, getting data into and placing
into worksheet, 88

ADODB.Parameter objects, filling colParams
collection with, 84–85

ADOTest macro, VBA code, 316–318
AdventureWorks sample database, installing,

67
AppendXMLData() method, adding to

standard module, 106
application folder, for Excel file, 123
Application object, ActiveWorkbook object as

property of, 100–101
AutoFill method, 18
AutoFit command, formatting worksheet

with, 88, 338
AutoSum button, on Home ribbon, 17
Axis Labels dialog box

opening, 209
setting label range in, 209–210

■B
bang (!) character

adding to custom objects, 32
basManagers module, adding in VBE, 95
Beverage category sales information,

modifying MakePieChart macro for,
212–213

Beverage sales chart, 196
with rows and columns switched, 197

BindListToCollection method, 169
BindListToRange method, 169
BirthYear function, 254–255

modifying to use Debug.Print, 258
with MsgBox debugging, 256

blank data records, effect on PivotTable
report, 238–242

break line text, at breakpoint, 263–267
break mode, checking variables in, 267–275
breakpoint, inserting in code for debugging,

263

Index

351

9578idxfinal.qxd 1/30/08 8:28 PM Page 351

■C
cAccess class module

adding to project, 161
code for, 168

cAddress class module
adding to project, 161
code for, 165

call stack feature, 270–271
Call Stack window, opening, 270
Cancel button, coding, 348
Cancel command button, code for

Userform1, 147
Candy chart, testing code for, 220–221
cCustSurvey class module, 140–142

coding into UserForm, 143–150
creating, 139–143
creating Save method in, 142–143
validation results, 148

cData class, code from ActiveX component,
318–319

cData class module
creating, 90–95
creating GetData function for, 91
creating in VBE, 88
initialization and termination methods, 92

cData objects, using, 95–96
cds.xml file, opening and adding new title to,

105
cEmployee class

adding Property Let and Get functions,
31–32

assigning property values, 34–35
creating, 31–33
using, 33–36

cEquipment class module
adding to project, 161
code for, 167

cExcelNwind class, code from ActiveX
component, 319

cExcelSetup class module
adding setup and cleanup functionality, 89
code for, 92
creating in VBE, 88
setting and retrieving property values,

89–90
working with, 89–90

cExcelSetup objects, using, 95–96
cExcelUtils class

exporting file with new addition, 150
exporting to UserForm.xlsm project,

138–139
chart creation, getting started with, 193–202
Chart object, placing into PowerPoint slide

template, 309
chart placeholder, getting location of, 309
Chart Tools context ribbon, 196

Chart01.xlsm, saving in macro-enabled
format, 193

ChartByRow macro, 201–202
charting, in Excel 2007, 193–221
ChartObject objects, 201
ChartObjects.Activate method, activating a

chart with, 201
ChartObjects.Count property, 218
ChartType property, setting chart type using,

201
CheckBox control, in Toolbox window, 38
cHRData class, designing for HRWizard

application, 169–172
class library project, creating new, 328–335
class modules, 29–36
class name, 291
class-based code, benefits of writing, 35–36
classes, sample and usage, 31–36
Classes list, in Object Browser, 26
Class_Initialize method, for Employee class,

33
Class_Terminate method, for Employee class,

33
cleanup code

adding to cCustSurvey class module, 141
adding to CreateChartSlidesText

subroutine, 310
adding to GetManagers subroutine, 96
adding to MakeWordDoc subroutine, 293
adding to ThisAddInShutdown method,

337
adding to UserForm1, 144

ClearForm procedure, 144–145
client code, adding to !Northwind2Excel

Object, 321–322
cListManager class, adding methods, 169
Close method, adding to btnSave_Click

event, 346
cmdCancel button’s Click event, adding code

to, 188
cmdPrevious button’s Click event, 186
cmdSave_Click event, saving employee

record with, 188
code modules

adding to projects, 20–21
standard, 27–29

code window
fixing error in, 272
in VBE, 6–9
variable values shown in, 271–272
with split panes, 10

colParams collection, filling with
ADODB.Parameter objects, 84–85

colReturn collection, adding prm variable to,
85–86

Column chart type, choosing, 195

■INDEX352

9578idxfinal.qxd 1/30/08 8:28 PM Page 352

column headings, adding to worksheet, 337
combo boxes, initializing, 180–180
ComboBox control, in Toolbox window, 38
command buttons, settings for, 155–156
Command.Execute method, calling, 86–87
CommandButton control, in Toolbox

window, 38
content types, in Office documents, 123–125
[Content_Types]xml file

checking new parts in, 125–128
for Excel file, 123

controls, adding to forms, 154–160
copy and paste method, 19
Copy command, copying formulas with, 18
Copy to Clipboard button, in Object Browser,

26
CopyFromRecordset method, 60

ADO error message, 74
counter variable, determining formula

location with, 24
cPerson class module

adding call to ID Property Let function,
162–163

adding read-only FullName property to,
164–165

adding to project, 161
adding variable declarations to, 161–162
finishing, 163–164
initializing and setting defaults, 162

Create PivotTable dialog box, sections in,
224–225

CreateChartSlides subroutine, creating,
302–304

CreateChartSlidesText subroutine
adding cleanup code to, 310
adding variable declarations to, 308–309
coding, 308–313

CreateObject function, 291–292
CreatePivotTable method, 230–231
CreateTitleSlide subroutine, creating,

300–302
cStep class module, 172–173
cStepManager class module

adding properties to, 174–175
designing to manage steps, 173–178
properties table, 175

Ctrl-drag, using fill handle with, 18
CurrentMapName() method, adding to cXML

class module, 112
CurrentRegion property, 237
currReturn variable, checking value of, 283
Custom Lists dialog box, 206
custom macros, adding ribbon to run,

128–129
Customer Survey database, saving data to,

133–139

Customer Survey form, launching, 147
customUI .xml file, creating, 129–131
cXML class

adding client code to test, 113–117
adding properties to, 109–110
building functions for, 110–119
putting data on worksheets, 110

■D
DAO. See Data Access Objects (DAO)
DAO examples

adding reference to DAO library, 55–56
importing Access data using Jet, 55–59
importing Access data using ODBC, 60–65
importing SQL data using ODBC, 65–67

DAO Jet object model, 54
DAO library, adding reference to, 55–56
DAO objects, common, 54–55
DAO ODBC

object model, 60
result from Northwind Customers table,

65
data access code, macro generated, 44–45
data access component, creating, 328–335
Data Access Objects (DAO), using in Excel

2007, 54–67
data entry form

creating simple, 133–150
creating wizard-style UserForms, 150–191

data import tools, in Excel 2007, 43–54
data orientation, switching from column to

row, 196–197
Data Preview window, with Text data type

applied, 51
data range and legend information, defining

and setting, 218–220
Data ribbon, Sort command on, 203
Data tab, Switch Row/Column command on,

197
data table, formatting, 16–17
DataAccessSample02.xlsm workbook,

creating, 48–50
DataAccessSample05.xlsm workbook,

creating, 80–82
DataBindings.LoadSettings method, 106
DataRegionStart property, using, 89–90
Debug menu, 249

and toolbar commands, 250–251
options for stepping through code,

261–267
Debug object, 253

toolbar, 249, 252
using, 257–260

Debug.Assert method, sample subroutine
using, 260

Debug.Print method, 258–260

■INDEX 353

9578idxfinal.qxd 1/30/08 8:28 PM Page 353

DebugExample01.xlsm file
copying Debug.Assert subroutine into, 260
downloading and opening, 254
trapping type mismatch error in, 278–279

Debugger’s toolkit, 249–275
debugging and error handling, 249–285

inserting breakpoint in code, 263
loops, 258
sample code for, 262
VBE tools for simple, 253–260

Department combo box, bound to named
range, 182

Details pane, in Object Browser, 27
Developer ribbon, code options on, 3
Developer tab, displaying, 3
DisplayName property, fixing error fired by,

47–48
DLL, using in project, 321
DoClearSheet() subroutine, creating, 95
docProps folder, for Excel file, 125
DoHeadings method, adding titles to

worksheet with, 346–347
Dynamic PivotTable, creation code for, 234

■E
Edit Series dialog box, 208–209
EmpData database worksheet

sample input values and saved data,
189–191

sections in, 151–152
employee data, adding to worksheet, 338
Employee data type, 36
employee record, saving, 187–188
encapsulation, 30
equipment information page, adding

controls to, 158
equipment tab control settings, table of, 158
error handling, 275–285. See also debugging

and error handling; exception
handling

breakpoint added in, 282
debugging error handler, 282
enabling for GetSalesTotal function, 279
rules to live by, 278
setting up procedure for, 279
trapping specific errors, 278–282
type mismatch error, 280–281

error messages, File Not Found, 278
Excel, checking version of, 74
Excel 2007

adding custom ribbon to workbook,
119–131

adding ribbon to run custom macros,
128–129

and ADO recordsets, 74
changing code to classes in, 87–96

charting in, 193–221
data import tools, 43–54
default charting behavior, 196
importing XML into, 99–106
in the .NET world, 323–349
inside the XML file format, 119–131
OOP solutions in, 87–96
PivotTables feature in, 223–247
simplifying code generated by, 46–48
UserForms in, 133–191
using ADO in, 67–87
using DAO in, 54–67
using XML in, 99–132

Excel Options dialog box, Add-ins list in, 341
Excel project, managed code in, 327–349
Excel Trust Center. See Trust Center
Excel UserForm, creating 344–348
Excel Visual Basic Editor. See Visual Basic

Editor (VBE)
Excel workbook, how it finds data, 340–341
Excel worksheet, formatting, 338
ExcelVersionShort property, checking Excel

version with, 74
exception handling, for GetData method, 338
execution line text, at breakpoint, 263–267
ExternalProcess, moving execution point

back to, 265

■F
File Name property, changing, 331–332
FileExists function, adding in VBE, 277
FileNotFoundException, code to trap for, 338
fill handle, using with Ctrl-drag, 18
FindEmptyRow function, 139
For...Next loop, for CreateChartSlidesText

subroutine, 309–310
Format Cells dialog box, 242
FormatAtNumbersComma subroutine,

running, 242
FormatForm method, adding code for, 346
Frame control, in Toolbox window, 38
FullName property, adding to cPerson class,

164–165
function, 28–29

■G
GetAccessData macro, creating, 43–46
GetAccessData2 function, creating, 46–47
GetChartInfo() subroutine, 216–217
GetDAOAccessJet method, 57–59
GetData method

complete code for, 334–335
creating, 95, 337–341
exception handling for, 338

GetData subroutine, complete code for,
338–339

■INDEX354

9578idxfinal.qxd 1/30/08 8:28 PM Page 354

GetEmpDept procedure, adding to cXML
class module, 113–117

GetEmpList function, creating, 81–82
GetInitialCellSelection property, 89–90
GetManagerEmployeeListSQL method,

testing code with, 73
GetManagerList

complete code for, 75–76
result of running code, 77

GetManagers subroutine
adding method calls and cleanup code to,

96
creating, 95

GetNewXMLData method
adding to cXML class module, 111
modifying to use CurrentMapName,

112–113
GetNextID method, adding to cCustSurvey

class module, 141–141
GetNorthwindData macro, running, 322–323
GetObject function, syntax for using, 292
GetRows method, 74
GetSalesTotal function

adding a watch, 273–275
adding error handler, 279–282
adding Exit_Function line label to, 280
adding Exit_Function to, 279
code with error handling, 281–282
using Error Resume Next, 284–285
using to complete loop, 284
variable list for, 279

GetSelectedManagerEmployeeListSQL
subroutine, 77–80

GetSubjectBody function
creating, 290–291
inserting descriptive text from, 309

GetTitle function, creating, 290
GetTitleBody function, creating, 290
GetXMLData function,

adding to cXML class module, 111–112
copying into new workbook, 105
creating, 99–100

GetXMLData subroutine, 276–278
GetXMLForExistingMap method, 111– 112
Go Back button, in Object Browser, 26
Go Forward button, in Object Browser, 26

■H
HasMaps property, adding to cXML class, 109
Help button, in Object Browser, 26
helper functions, creating for Word report,

290–291
HR workbook

creating objects from cXML class in,
117–119

testing code for, 119

HRWizard
adding variables to cStepManager, 173
class module in Project Explorer Class

Modules folder, 178
class modules table, 161
classes, 160–161
designing business objects, 169
managing, 172–178
testing, 188–191

HRWizard UserForm
adding additional pages to, 153–154
adding controls to, 154–160
adding navigation to, 183–186
adding variable declarations to, 178
cleaning up, 188
coding, 178–191
controls table, 154–155
initial layout for, 153
initializing, 178–182
laying out, 152
opening, 188
running, 181–182

HRWizard.xlsm file, EmpData database
worksheet, 150

HumanResources.uspUpdateEmployee
PersonalInfo, 82

■I
ID property, adding to business object

classes, 161
ID Property Let function, adding call to,

162–163
Image control, in Toolbox window, 39
Immediate window, 10–11

checking value of variables in, 268
testing cEmployee class in, 33

InfoPath Form Template project, added in
VSTO SE, 325

InitForm subroutine, creating, 180–182
initialization and cleanup code, adding to

cCustSurvey class module, 141
InitLists subroutine, adding, 180–182
InitWizard subroutine, adding to UserForm

code, 179–180
Insert ribbon, selecting chart type from, 207
InsertChart procedure, adding to Standard

Module 1, 296
InsertText procedure, adding to Standard

Module 1, 296
IntelliSense, 100
iWhere variable, 236

■J
Jet engine, 54–59

■INDEX 355

9578idxfinal.qxd 1/30/08 8:28 PM Page 355

■KL
Label control, in Toolbox window, 37
Len function, using for UserForm1, 146
Library drop-down list box, in Object

Browser, 25
ListBox control, in Toolbox window, 38
ListMgr worksheet, contents of, 151
ListObjects.Add method, changing Source

property of, 47
lists, managing, 169
Locals window, 11–12

at work, 269–271
Type mismatch error 13 in, 269

loops, testing within Immediate window, 268

■M
macro

recording, 14–20
writing in VBE, 20–24

Macro Recorder,
and Code Modules, 1–41
CreatePivotTable method called by, 230

macro security
creating more, 21–24
settings for, 1-4

macro-enabled file types, 22
macros, adding ribbon to run custom,

128–129
maillist.csv

data imported from, 51
with Comma selected as delimiter, 49
with Tab selected as delimiter, 49

MakeBeverageSalesChart macro
looking at code, 198–202
modified version, 201
recording, 193–194

MakeDynamicPivotTable subroutine,
creating, 233–235

MakePieChart macro
for creating pie chart, 206
modifying for Beverage category sales

info, 212–213
MakePieChart2 macro, creating and running,

212–213
MakePivotTable macro

adding new worksheet to workbook in,
230

code for, 229–235
error generated by, 232–233
saving as macro-enabled workbook, 232

MakePowerPointPresentation subroutine
adding text to chart slides, 308–313
completing, 304–306
creating, 300

modifying and running calling procedure,
312–313

running the code, 306–308
MakeWordDoc subroutine

adding charts to the report, 295–298
creating, 291–295
finished code for, 296–297

managed code, in an Excel project, 327–349
message boxes, displaying information with,

253–257
“Members of” list, in Object Browser, 26
Microsoft Office object types, 291–292
Microsoft tools, for creating Excel projects

within VS 2005, 323–327
Microsoft Windows Vista, running examples

on, 43
Monthly Total Sales Amount worksheet,

activating, 193–194
MsgBox debugging, BirthYear function with,

256–256
MsgBox function

arguments list, 255
creating message boxes with, 255–257

MultiPage control
adding command buttons to, 155
determining what next page should be,

185
hiding all pages except for first, 181
in Toolbox window, 38
inserting new page in, 153–154
setting Value property, 180–181

MultiPage1 control’s Change event, 186

■N
navigation, adding to HRWizard UserForm,

183–186
.NET

advantages of vs. ActiveX, 323
in Excel 2007 programming, 315
using to retrieve data, 327–328

.NET components, using in Excel, 323–349
New command button

code for UserForm1, 146
testing, 149

New Employee UserForm, creating, 344–348
New Project dialog box, VS 2005 for MS Office

2003 projects, 324
!Northwind2Excel Object, 321–322
number format, changing, 242
Number Format property, 242
Nwind2Excel.dll

registering in Windows XP, 2000, or Vista,
319–320

web site address for downloading, 319
NWindData class module, 333–334

■INDEX356

9578idxfinal.qxd 1/30/08 8:28 PM Page 356

NWindData.vb
adding code to class, 332–335
changing class name to, 331–332

NWindDataAccess project, adding to
Solution Explorer, 335

NWindDataAddIn project
creating, 327–328
NWindDataAddInSetup deployment

project, 335
NwindEmps01.xlsx file, downloading and

renaming, 125

■O
object, definition of, 30
Object box, in code window, 8–9
Object Browser

displaying, 24–25
window elements, 25–27
Word objects displayed in, 298

object-oriented programming (OOP)
overview, 39–41
solutions in Excel, 87–96
Wikipedia Object_database for, 172

ODBC
importing Access data using, 60–65
importing SQL data using, 65–67
retrieving Access 2007 code via, 62–63
running the code, 63–65

Office 2007 Add-in projects, added in
VSTO SE in Windows Vista, 326–327

office integration, 287–314
OLE DB (Object Linking and Embedding

Database), successor to ODBC, 67
OLEDB library, referencing, 333
On Error GoTo statement

adding to turn on error trapping, 285
syntax for error handling, 275

Open XML format, file container, 120
Option Explicit, 252–253
OptionButton, in Toolbox window, 38
Options dialog box, showing VBE color

options, 264
Overwrite arguments, for appending XML

data, 106–107

■P
PageSettings property, adding to

cStepManager class, 175–176
Parameter objects

appending to Parameters collection, 86
creating ADO and adding to Command

object, 70
instantiating and setting properties, 85

Parameters collection, appending Parameter
objects to, 86

personal information page, adding controls
to, 154–156

pie charts
creating, 206–211
dynamically placing, 216–221
looking at the code, 210–211
making selection for, 206–207
moving on worksheets, 211–212
selecting, 208
setting name of data series in, 211
storing data correctly for, 202–206
summarizing with, 202–221
updated, 210

PivotCaches.Create method, arguments, 230
PivotField.Caption property, changing

captions with, 244
PivotField.NumberFormat property, 242
PivotTable Field List pane

adding fields to, 231
in Excel 2007, 228

PivotTable report
changing field names in, 243–244
changing look of, 245–247
changing number format in, 242
contents of, 225
creating using drag-and-drop, 225–227
default view, 225
effect of blank records on, 238–242
example of completed, 227
formatting to, 238–242, 245–247
getting current source data for, 236
putting data into, 223–247
refreshing data in, 235–238
sales summary by city within state,

227–228
showing Sum of Qty and Sum of Amount

fields, 244
updating, 236

PivotTable Tools ribbon, Options ribbon
shown on, 238

PivotTable01.xlsx, downloading and opening,
223

/PivotTable02_Formatting.xlsm,
downloading, 238

PivotTables, 223–247
creating and recording macro for, 224–225
new rows added to source data, 237
new sheet and starting range for, 231
Position property for, 232
when to use, 223

PlaceChart subroutine, creating, 213–215
PlaceChartDynamic subroutine

adding variable declarations to, 217–218
completing, 217–221
creating, 216

■INDEX 357

9578idxfinal.qxd 1/30/08 8:28 PM Page 357

data range and legend information,
218–220

getting coordinates from existing chart,
218

ready for modifications, 217
testing, 220–221

PlaceData method, adding code for, 346
PlaceData subroutine, adding to ThisAddin

application, 347
Position property, for PivotTables, 232
PowerPoint 12.0 Object Model, adding a

reference to, 299
PowerPoint DOM, coding, 299–300
PowerPoint helper functions, 300–304
PowerPoint presentation, creating, 298–313
PowerPoint slide template, for text and chart,

308
ppLayoutTextAndChart, 309
PreviousButton and NextButton properties,

declaring WithEvents, 177
prm variable, adding to colReturn collection,

85–86
Procedure/Events box, in code window, 8–9
Project Explorer, in VBE, 5
Project/Library box, in Object Browser, 25
Property Get and Let, adding to business

object classes, 161
Property Get method, 31
Property Let method, 31
Property Set method, 31
Property Sheet, in VBE, 6–7

■Q
Quantity and Sales Total values, making

blank, 238–242
QueryTable object, members, 45–46

■R
R1C1 notation, 19–20
Range object, setting formula with, 23–24
Range, rngData variable, assigning

CurrentRegion of cell A1 with, 236
Record Macro dialog box, 14–20
RefEdit control, in Toolbox window, 39
References dialog box

adding reference to PowerPoint 12.0
Object Model, 299

adding reference to Word in, 288–289
Refresh command, 236–237
RefreshPivotTableFromWorksheet

subroutine
creating in VBE, 236–238
Rochester data displayed after running,

238
RefreshXML method (function)

adding to cXML class module, 117
adding to standard module, 105

relationships
for Excel documents, 125–128
types of in Office documents, 122–123

_rels folder, for Excel file, 121–123
Remove button, removing certificates with, 3
report, creating in Word, 287–298
Reset button, stopping code execution with,

271
Resume Next, using to complete loop, 284
Resume statement, 283–285
ribbon, adding to run custom macros,

128–129
ribbon extensibility customization file,

creating, 128–129
Run command, example to register a DLL,

320
Run Sub/UserForm toolbar button, 181
Run To Cursor command, 267

■S
Sales By Category worksheet, 202

running PlaceChart procedure on, 215
sales data and pie charts, 288
Save button

input validations, 145
performing DoAfterSave cleanup, 146
Userform1, 145–146

Save methods
adding to cHRData class module, 171–172
creating in cCustSurvey class module,

142–143
SaveAsXMLData method, 107–108
SaveEmployee method, HRWizard

application, 170
SaveToFile method, adding to cXML class

module, 117
ScrollBar control, in Toolbox window, 39
sData variable

modifying, 237
in RefreshPivotTableFromWorksheet

subroutine, 236
Search button, in Object Browser, 26
Search Results list, in Object Browser, 26
Search Text box, in Object Browser, 26
Select Data command, choosing, 208
Select Data Source dialog box, 208–210
Select method, 198
Select objects, in Toolbox window, 37
Series name range reference, added to Edit

Series dialog, 209
Set Next Statement command, for resetting

execution point, 266–267
SetSourceData method, 198, 201, 210, 221
SetupWorksheet subroutine, creating, 90
sFormula variable, 23
Show/Hide Search Results button, in Object

Browser, 26

■INDEX358

9578idxfinal.qxd 1/30/08 8:28 PM Page 358

ShowForm macro, running in Excel, 147–148
ShowNextPage method, calling, 185
slides, building series of, 299–313
Sort dialog box, 203–204

choosing Custom List in, 205–206
using “Then by” drop-down list, 205

Source property
assigning selected range of data to, 200
changing ListObjects.Add methods, 47

spacer variable, 213
SpinButton control, in Toolbox window, 39
Split bars, in Object Browser, 27
SQL data

importing using ADO, 67–73
updating, 80–87

SQL Server 2005 Management Studio
Express, installing, 67–68

Standard Module1
creating GetChartInfo() function on, 216
opening, 254

StartWizard macro, running, 189
Static Macro Recorder-Generated PivotTable

Creation, code for, 234
Step Into command, 264–265
Step Out command, 265
Step Over command, 265–266
StoreData method, function of, 183–185
subprocedures (subroutines), 28

adding cleanup code to MakeWordDoc,
293

adding InitLists, 180–182
CreateChartSlidesText, 308–313
creating CreateChartSlides, 302–304
creating CreateTitleSlide, 300–302
creating DoClearSheet, 95
creating InitForms, 180–182
creating TotalSales, 21
FormatAtNumbersComma, 242
GetChartInfo, 216–217
GetData, 338–339
GetManagers, 95–96
GetSelectedManagerEmployeeListSQL,

77–80
GetXMLData, 276
InitWizard, 179–180
MakeDynamicPivotTable, 233–235
MakePowerPointPresentation, 300,

304–306, 308–313
MakeWordDoc, 291–298
PlaceChart, 213–215
PlaceChartDynamic, 217-220
PlaceData, 347
RefreshPivotTableFromWorksheet,

236–238
SetupWorksheet, 90–91
TotalSales, 21

Summary field headings, modified, 245

■T
table default version, defined by

CreatePivotTable method, 230
table name, defined by CreatePivotTable

method, 230
table placement, defined by

CreatePivotTable method, 230
TabStrip control, in Toolbox window, 38
task pane, creating custom using .NET,

342–344
TestLoop function

for debugging code, 262–267
moving execution point back into, 265

text data
import code, 51–52
importing, 48–50

text import code, macro recorder-generated,
51–54

Text Import wizard, importing data in, 48
TextBox control, in Toolbox window, 38
TextFileColumnDataTypes Enums, 53–54
TextFileColumnDataTypes property, setting,

53–54
ThisAddIn application

coding Cancel button, 348
running, 348–349

ThisAddIn.vb file, 335–336
ThisAddIn_Shutdown method, adding

cleanup code to, 337
ThisAddIn_Startup method, instantiating

and calling GetData function, 336
title and body text, inserting into

MakeWordDoc subroutine, 292–293
title and subtitle, putting on worksheet,

346–347
ToggleButton, in Toolbox window, 38
Toolbox window

adding controls to forms in, 36
customization options, 37
elements, 37–39
ToggleButton in, 38

tools. See Microsoft tools
totals, macro for adding, 17–20
TotalSales macro, completed, 23
TotalSales subroutine, creating, 21
Tour sales data, in PivotTable01.xlsx,

223–224
TransposeDim() function, 74
Trust Center

macro security settings in, 1–2
Macro Settings options, 4

trusted locations, 2–3
trusted publishers, 2
Try...Catch block, catching exceptions with,

334

■INDEX 359

9578idxfinal.qxd 1/30/08 8:28 PM Page 359

Type mismatch error 13, debugging,
269–271

Type property, 198
type statements, 29

■U
UFormConfig, in HRWizard.xlms workbook,

173
UpdateEmpPersonalInfo stored procedure,

writing, 83–87
UserForm, See also HRWizard UserForm;

UserForm1; UserForms
laying out, 152
Toolbox controls, 135–136

UserForm.xlsm project, importing
cExcelUtils class to, 138–139

UserForm1
coding, 143–150
settings and controls, 136–137

UserForms, 36–39, 133–191
adding to projects, 134–135
coding, 143–150
creating wizard-style data entry, 150–191
example with controls added, 39
Excel naming of, 36
inserting into projects, 36

UserForm_Initialize event, 144
adding code to, 178–179

UserForm_Terminate event, 144
adding code to, 188

uspGetManagerEmployees stored procedure,
parameters taken by, 68

■V
validation code, adding to cCustSurvey class

module, 141–142
Value Field Settings dialog box, changing

field names in, 243
Value2 property, current cell’s value stored in,

269
variable values, viewing, 267–275
variables, checking in break mode, 267–275
VB code, benefits of vs. VBA code, 316
VBA (Visual Basic Application), calling

parameterized SQL in, 71–73
VBA code, benefits of vs. VB code, 316
VBA code window Object box, choosing Class

from, 32
VBE code window. See code window
View Definition button, in Object Browser, 26
Visual Basic development environment, 4–14
Visual Basic Editor (VBE), 5, 14

adding FileExists function in, 277
opening, 254, 288
Options dialog box showing color options,

264

panes in, 5
updating PivotTable in, 236–238
when breakpoint is reached, 264
writing a macro in, 20–24

Visual Studio 2005 start page, recent projects
section of, 327

Visual Studio Tools for Office Second Edition
(VSTO SE). See VSTO SE

VSTO and VSTO SE
project templates, 323
tools for creating Excel projects, 323–327

VSTO SE
Excel 2003 and Excel 2007 Add-ins, 325
new project types included in, 324
web site address for free download, 327

■W
Watch window

elements, 13–14
handling watched values in, 272–275
watch types, 272–273

web site address
example files and source code, 20
for free VSTO SE download, 327
for running examples on Vista, 43
Wikipedia Object_database, 172

Windows Vista
registering Nwind2Excel.dll in, 320
running examples on, 43

With...End With block
adding to For...Next loop, 309
setting array elements within, 214

wizard-style UserForms, creating, 150–191
Word

creating an instance of, 291–295
creating report in, 287–298
opening and loading new document into,

291
Word 2007 DOM, creating summary report

using, 287–298
Word objects, displayed in the Object

Browser, 298
workbook

adding custom ribbon to, 119–131
importing data into, 47–48
macro code generated error, 47–48

Workbook object, XmlImport method of, 99
workbook.xml.rels file, contents of, 125
Worksheet property, HRWizard application,

170

■X
XIXmlImportResult members, in Object

Browser window, 102
xl folder contents, 123
\xl\connections.xml file, 126–127

■INDEX360

9578idxfinal.qxd 1/30/08 8:28 PM Page 360

xl\queryTables\queryTable1.xml file,
127–128

xlAutoFillType enumerations, table of, 18–19
xlChartType data type, enumerations,

198–200
XlConsolidationFunction enumeration,

choices for Function property,
241–242

xlPivotFieldOrientation enumerations, table
of, 231

XlRowCol, enumerations, 202
XML, using in Excel 2007, 99–132
XML data

appending or overwriting in workbook,
106–107

saving, 107–108
XML data class, building, 108–119

XML_data.xlsm
downloading and opening, 276
Debugging and Error Handling, 249–286

XML file
creating to modify the UI, 129–131
imported, 103

XML maps, 102–106
XML Schema dialog box, 102
XML schemas. See XML maps, 132
XML Source window, with artist element

selected, 104
XmlImport function and arguments, 101–103
XmlImport method

appending XML data with, 106–107
of Workbook object, 99

XMLMaps collection, DataBinding
property Refresh method, 105–125

■INDEX 361

9578idxfinal.qxd 1/30/08 8:28 PM Page 361

9578idxfinal.qxd 1/30/08 8:28 PM Page 362

9578idxfinal.qxd 1/30/08 8:28 PM Page 363

Offer valid through 9/08.

9578idxfinal.qxd 1/30/08 8:28 PM Page 364

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Author

	The Macro Recorder and Code Modules
	Macro Security Settings
	Trusted Publishers
	Trusted Locations
	The Remove Button
	Lowering the Security Level

	The Visual Basic Development Environment
	The Immediate Window
	The Locals Window
	Locals Window Elements

	The Watch Window
	Watch Window Elements

	Recording a Macro
	Formatting the Table
	Adding Totals
	Same Task, Different Code

	Writing a Macro in the VBE
	More Macro Security

	The Object Browser
	Object Browser Window Elements

	Standard Code Modules
	Subprocedures
	Functions
	Type Statements

	Class Modules
	Sample Class and Usage
	The cEmployee Class
	Using the cEmployee Class

	The Class-y Way of Thinking

	UserForms
	Toolbox Window Elements

	Object-Oriented Programming: An Overview
	OOP: Is It Worth the Extra Effort?

	Summary

	Data In, Data Out
	Excel’s Data Import Tools
	Importing Access Data
	Simplifying the Code
	Importing Text Data
	Macro Recorder–Generated Text Import Code
	TextFileColumnDataTypes Property

	Using DAO in Excel 2007
	DAO Example 1: Importing Access Data Using Jet
	DAO Example 2: Importing Access Data Using ODBC
	DAO Example 3: Importing SQL Data Using ODBC

	Using ADO in Excel 2007
	ADO Example 1: Importing SQL Data
	ADO Example 2: Importing SQL Data Based on a Selection
	ADO Example 3: Updating SQL Data

	Of Excel, Data, and Object Orientation
	Using the cExcelSetup and cData Objects

	Summary

	Using XML in Excel 2007
	Importing XML in Excel 2007
	Appending XML Data
	Saving XML Data
	Building an XML Data Class
	A Final Test

	Adding a Custom Ribbon to Your Workbook
	Inside the Excel 2007 XML File Format
	Viewing the XML
	The _rels Folder
	The Application Folder
	The [Content_Types].xml File
	The docProps Folder
	Relationships

	Adding a Ribbon to Run Your Custom Macros
	Creating the XML File That Contains the Markup to Modify the UI

	Summary

	UserForms
	Creating a Simple Data Entry Form
	Designing the Form
	UserForm Toolbox Controls

	The Working Class
	Coding the UserForm

	Creating Wizard-Style Data Entry UserForms
	Laying Out the Wizard Form
	Adding Controls to the Form
	The Personal Information Page
	The Address Information Page
	The Equipment Information Page
	The Access Information Page

	HRWizard Classes
	The HRWizard Business Objects
	Managing Lists
	The Data Class
	Managing the Wizard
	Coding the HRWizard UserForm
	Initializing the Application

	Summary

	Charting in Excel 2007
	Getting Started
	Looking at the Code

	Summarizing with Pie Charts
	Creating the Pie Chart
	A Look at the Code

	More Pie for Everyone
	Dynamically Placing a Chart
	Storing Chart Location in an Array
	Completing the PlaceChartDynamic Procedure
	Testing the Code

	Summary

	PivotTables
	Putting Data into a PivotTable Report
	The Macro Code
	Refreshing Data in an Existing PivotTable Report
	Applying Formatting to a PivotTable Report
	Blank Data Records
	Changing the Number Format
	Changing Field Names
	Adding Formatting to a PivotTable Report

	Summary

	Debugging and Error Handling
	Debugging
	The Debugger’s Toolkit
	Option Explicit

	Quick Debugging
	Displaying Information with Message Boxes
	Using the Debug Object

	A Deeper Look
	Stepping Through Code
	Checking Variables in Break Mode
	The Watch Window

	Error Handling
	Is the File There?
	Trapping Specific Errors
	Debugging the Error Handler

	Summary

	Office Integration
	Creating a Report in Word
	The Helper Functions
	Creating an Instance of Word
	Adding Charts to the Report

	Creating a PowerPoint Presentation
	Coding the Presentation
	PowerPoint Helper Functions
	Completing the MakePowerPointPresentation Procedure
	Running the Code
	Adding Text to the Chart Slides

	Summary

	ActiveX and .NET
	Using ActiveX Components in Your Excel 2007 Projects
	Are There Any Benefits?
	Custom Functionality with ActiveX
	Using an ActiveX Component in Excel 2007

	Excel in the .NET World
	Managed Code in an Excel Project
	Retrieving Data Using .NET
	Creating a Custom Task Pane and Data Input Form Using .NET

	Summary

	Index

