

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page iii

Mastering Microsoft
Visual Basic 2008

Evangelos Petroutsos

Mark Ridgeway

Wiley Publishing, Inc.

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page ii

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page i

Mastering Microsoft
Visual Basic 2008

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page ii

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page iii

Mastering Microsoft
Visual Basic 2008

Evangelos Petroutsos

Mark Ridgeway

Wiley Publishing, Inc.

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page iv

Acquisitions Editor: Thomas Cirtin
Development Editor: Toni Zaccarini Ackley
Technical Editor: John Mueller
Production Editor: Daniel Scribner
Copy Editor: Sharon Wilkey
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Executive Publisher: Joseph B. Wikert
Vice President and Publisher: Neil Edde
Book Designer: Maureen Forys and Judy Fung
Proofreader: Nancy Riddiough
Indexer: Ron Strauss
Cover Designer: Ryan Sneed
Cover Image: Pete Gardner / Digital Vision / Getty Images

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-4701-8742-5

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978) 646–8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, (317) 572–3447, fax (317) 572–4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice
and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher
is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a
competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom.
The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it
may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care
Department within the U.S. at (800) 762–2974, outside the U.S. at (317) 572–3993 or fax (317) 572–4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic
books.

Library of Congress Cataloging-in-Publication Data

Petroutsos, Evangelos.
Mastering Microsoft Visual basic 2008 / Evangelos Petroutsos. — 1st ed.

p. cm.
ISBN 978-0-470-18742-5 (paper/website)

1. Microsoft Visual BASIC. 2. BASIC (Computer program language) I. Title.
QA76.73.B3P492285 2008
005.2′762 — dc22

2007051637

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this
book.

10 9 8 7 6 5 4 3 2 1

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page v

Dear Reader,

Thank you for choosing Mastering Microsoft Visual Basic 2008. This book is part of a family of
premium quality Sybex books, all written by outstanding authors who combine practical experi-
ence with a gift for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to producing
consistently exceptional books. With each of our titles we’re working hard to set a new standard
for the industry. From the paper we print on, to the authors we work with, our goal is to bring you
the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about this or
any other Sybex book by sending me an email at nedde@wiley.com, or if you think you’ve found
a technical error in this book, please visit http://sybex.custhelp.com. Customer feedback is
critical to our efforts at Sybex.

Best regards,

Neil Edde

Vice President and Publisher
Sybex, an Imprint of Wiley

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page vi

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page vii

To my dearest and most precious ones, Nefeli
and Eleni-Myrsini.

Petroutsos ffirs.tex V3 - 01/28/2008 6:03pm Page viii

Petroutsos fack.tex V3 - 01/28/2008 6:06pm Page ix

Acknowledgments
Many people contributed to this book, and I would like to thank them all. I first want to express my
deep appreciation to Mark Ridgeway for contributing the Web-related chapters (Chapters 25, 26,
and 27) and Chapter 5, ‘‘The Vista Interface,’’ and to John Mueller for providing the technical edit of
this book. I want to thank the programmers at Microsoft for their commitment to Visual Basic. Visual
Basic has evolved from a small, limited programming environment to a first-class development tool
for building all types of Windows and Web applications, from small hobbyist projects to enterprise
scale applications.

Special thanks to the talented people at Sybex — to all of them and to each one individually.
Starting with editor Toni Zuccarini Ackley, who has taken this book under her wing and improved
it in numerous ways. To acquisitions editor Tom Cirtin, who has followed the progress of the
book, its ups and downs, and managed to coordinate the entire team. To production editor Daniel
Scribner, who kept this project in order and on schedule. Thanks, Daniel. To copyeditor Sharon
Wiley, proofreader Nancy Riddiough, indexer Ron Strauss and everyone else who added their
expertise and talent

Petroutsos fack.tex V3 - 01/28/2008 6:06pm Page x

Petroutsos fauth.tex V3 - 01/28/2008 6:11pm Page xi

About the Author
Evangelos Petroutsos works as a consultant on medium to large projects, teaches, and writes
articles — but he mostly writes code, VB code. He specializes in VB and SQL, and from the new
technologies, he fancies XML. He has authored many articles and more than 10 programming
books, including the best-selling titles Mastering Microsoft Visual Basic 2005 and Mastering Visual
Basic .NET Database Programming, both published by Sybex.

Petroutsos fauth.tex V3 - 01/28/2008 6:11pm Page xii

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xiii

Contents at a Glance

Introduction . xxix

Chapter 1 • Getting Started with Visual Basic 2008 . 1

Chapter 2 • Variables and Data Types . 35

Chapter 3 • Programming Fundamentals . 85

Chapter 4 • GUI Design and Event-Driven Programming . 123

Chapter 5 • The Vista Interface . 151

Chapter 6 • Basic Windows Controls . 173

Chapter 7 • Working with Forms . 217

Chapter 8 • More Windows Controls . 267

Chapter 9 • The TreeView and ListView Controls . 305

Chapter 10 • Building Custom Classes . 349

Chapter 11 • Working with Objects . 395

Chapter 12 • Building Custom Windows Controls . 429

Chapter 13 • Handling Strings, Characters, and Dates . 461

Chapter 14 • Storing Data in Collections . 499

Chapter 15 • Accessing Folders and Files . 541

Chapter 16 • Serialization and XML . 591

Chapter 17 • Querying Collections and XML with LINQ . 621

Chapter 18 • Drawing and Painting with Visual Basic 2008 649

Chapter 19 • Manipulating Images and Bitmaps . 693

Chapter 20 • Printing with Visual Basic 2008 . 717

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xiv

xiv CONTENTS AT A GLANCE

Chapter 21 • Basic Concepts of Relational Databases . 753

Chapter 22 • Programming with ADO.NET . 805

Chapter 23 • Building Data-Bound Applications . 845

Chapter 24 • Advanced DataSet Operations . 885

Chapter 25 • Building Web Applications . 901

Chapter 26 • ASP.NET 3.5 . 937

Chapter 27 • ASP.NET Web Services . 981

Appendix A • ’’The Bottom Line’’ . 997

Appendix B • ’’Debugging and Error Handling’’ . 1045

Index . 1075

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xv

Contents

Introduction . xxix

Chapter 1 • Getting Started with Visual Basic 2008 . 1

Exploring the Integrated Development Environment . 1
The Start Page . 2
Starting a New Project . 3
Using the Windows Form Designer . 5

Creating Your First VB Application . 11
Making the Application More User-Friendly . 15

Understanding the IDE Components . 18
The IDE Menu . 18
Toolbox Window . 23
Solution Explorer Window . 23
Properties Window . 23
Output Window . 24
Command and Immediate Windows . 24
Error List Window . 25

Setting Environment Options . 25
Building a Console Application . 27
Using Code Snippets . 29
Using the My Object . 30
The Bottom Line . 33

Chapter 2 • Variables and Data Types . 35

Variables . 35
Declaring Variables . 36
Types of Variables . 39
The Strict, Explicit, and Infer Options . 54
Object Variables . 58

Variables as Objects . 60
Converting Variable Types . 61
Formatting Numbers . 64
User-Defined Data Types . 66
Examining Variable Types . 69
Why Declare Variables? . 71
A Variable’s Scope . 71
A Variable’s Lifetime . 73

Constants . 74

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xvi

xvi CONTENTS

Arrays . 75
Declaring Arrays . 75
Initializing Arrays . 77
Array Limits . 77
Multidimensional Arrays . 78
Dynamic Arrays . 81

The Bottom Line . 82

Chapter 3 • Programming Fundamentals . 85

Flow-Control Statements . 85
Decision Statements . 86
Loop Statements . 93
Nested Control Structures . 98
The Exit Statement . 100

Writing and Using Procedures . 100
Subroutines . 100
Functions . 101

Arguments . 103
Argument-Passing Mechanisms . 104
Built-in Functions . 107
Custom Functions . 109
Passing Arguments and Returning Values . 111
More Types of Function Return Values . 113
Overloading Functions . 117

The Bottom Line . 121

Chapter 4 • GUI Design and Event-Driven Programming 123

On Designing Windows Applications . 123
Building a Loan Calculator . 124

Understanding How the Loan Calculator Application Works 125
Designing the User Interface . 126
Programming the Loan Application . 129
Validating the Data . 133

Building a Calculator . 137
Designing the User Interface . 137
Programming the MathCalculator . 139
Using Simple Debugging Tools . 145
Exception Handling . 147

The Bottom Line . 149

Chapter 5 • The Vista Interface . 151

Introducing XAML . 151
Introducing the WPF Controls . 153

Simple ‘‘Hello World’’ WPF Application . 154
Simple Drawing Program . 156

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xvii

CONTENTS xvii

Data-Binding WPF Controls . 159
Data-Binding Example 2: Binding to a Database . 164

Creating a WPF Browser Application . 166
Expression Blend Overview . 168
The Bottom Line . 171

Chapter 6 • Basic Windows Controls . 173

The TextBox Control . 173
Basic Properties . 174
Text-Manipulation Properties . 176
Text-Selection Properties . 179
Text-Selection Methods . 180
Undoing Edits . 181
VB 2008 at Work: The TextPad Project . 181
Capturing Keystrokes . 188
Auto-complete Properties . 190

The ListBox, CheckedListBox, and ComboBox Controls . 195
Basic Properties . 196
Manipulating the Items Collection . 197
Selecting Items . 200
VB 2008 at Work: The ListBox Demo Project . 200
Searching the ListBox . 203
The ComboBox Control . 205

The ScrollBar and TrackBar Controls . 210
The ScrollBar Control . 210
The TrackBar Control . 213

The Bottom Line . 214

Chapter 7 • Working with Forms . 217

The Appearance of Forms . 217
Properties of the Form Object . 218
Placing Controls on Forms . 223
Setting the TabOrder Property . 224
VB 2008 at Work: The Contacts Project . 226
Anchoring and Docking . 229
Splitting Forms into Multiple Panes . 232
The Form’s Events . 234

Loading and Showing Forms . 236
The Startup Form . 237
Controlling One Form from within Another . 238
Forms versus Dialog Boxes . 240

Building Dynamic Forms at Runtime . 246
The Form’s Controls Collection . 247
Creating Event Handlers at Runtime . 253

Designing Menus . 255

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xviii

xviii CONTENTS

The Menu Editor . 255
The ToolStripMenuItem Properties . 257
Manipulating Menus at Runtime . 260
Iterating a Menu’s Items . 263

The Bottom Line . 265

Chapter 8 • More Windows Controls . 267

The Common Dialog Controls . 267
Using the Common Dialog Controls . 268
The ColorDialog Control . 270
The FontDialog Control . 272
The OpenDialog and SaveDialog Controls . 274
The FolderBrowserDialog Control . 279

The RichTextBox Control . 283
The RTF Language . 284
Text Manipulation and Formatting Properties . 286
Methods . 289
Advanced Editing Features . 290
Cutting and Pasting . 291
Searching in a RichTextBox Control . 291
Handling URLs in the Document . 292
Displaying a Formatted Directory Listing . 293
VB 2008 at Work: The RTFPad Project . 294

The Bottom Line . 302

Chapter 9 • The TreeView and ListView Controls 305

Understanding the ListView, TreeView, and ImageList Controls 305
Tree and List Structures . 306
The ImageList Control . 309

The TreeView Control . 310
Adding Nodes at Design Time . 312
Adding Nodes at Runtime . 313
VB 2008 at Work: The TreeViewDemo Project . 316
VB 2008 at Work: The Globe Project . 320
Scanning the TreeView Control . 328

The ListView Control . 330
The Columns Collection . 332
ListView Items and Subitems . 334
The Items Collection . 336
The SubItems Collection . 336
VB 2008 at Work: The ListViewDemo Project . 337
Sorting the ListView Control . 340
Processing Selected Items . 342
VB 2008 at Work: The CustomExplorer Project . 343
Additional Topics . 346

The Bottom Line . 347

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xix

CONTENTS xix

Chapter 10 • Building Custom Classes . 349

Classes and Objects . 349
What Is a Class? . 350

Classes Combine Code with Data . 351
Building the Minimal Class . 352

Adding Code to the Minimal Class . 355
Using Property Procedures . 356
Customizing Default Members . 362
Custom Enumerations . 366
Object Constructors . 375
Using the SimpleClass in Other Projects . 376
Firing Events . 378
Instance and Shared Methods . 380

A ‘‘Real’’ Class . 384
Parsing a Filename . 384
Converting Numbers to Strings . 385

Operator Overloading . 388
VB 2008 at Work: The LengthUnits Class . 389

The Bottom Line . 394

Chapter 11 • Working with Objects . 395

Issues in Object-Oriented Programming . 395
Classes versus Objects . 395
Objects versus Object Variables . 396
Properties versus Fields . 400
Shared versus Instance Members . 401
Type Casting . 402
Early versus Late Binding . 403
Discovering a Variable’s Type . 404

Inheritance . 404
How to Apply Inheritance . 405

Polymorphism . 415
Building the Shape Class . 417

Who Can Inherit What? . 421
Parent Class Keywords . 422
Derived Class Keywords . 422
Parent Class Member Keywords . 423
Derived Class Member Keyword . 423
VB 2008 At Work: The InheritanceKeywords Project . 424
MyBase and MyClass . 425
The Class Diagram Designer . 427

The Bottom Line . 428

Chapter 12 • Building Custom Windows Controls 429

On Designing Windows Controls . 429
Enhancing Existing Controls . 430

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xx

xx CONTENTS

Building the FocusedTextBox Control . 431
Building Compound Controls . 438

VB 2008 at Work: The ColorEdit Control . 439
Building User-Drawn Controls . 442

VB 2008 at Work: The Label3D Control . 443
Raising Custom Events . 450
Using the Custom Control in Other Projects . 452

Designing Irregularly Shaped Controls . 453
Customizing List Controls . 456

Designing Owner-Drawn ListBox Controls . 457
The Bottom Line . 459

Chapter 13 • Handling Strings, Characters, and Dates 461

Handling Strings and Characters . 461
The Char Class . 462
The String Class . 464
The StringBuilder Class . 473
VB 2008 at Work: The StringReversal Project . 476
VB 2008 at Work: The CountWords Project . 479

Handling Dates and Times . 481
The DateTime Class . 481
The TimeSpan Class . 492

The Bottom Line . 497

Chapter 14 • Storing Data in Collections . 499

Advanced Array Topics . 499
Sorting Arrays . 499
Searching Arrays . 502
Performing Other Array Operations . 506
Array Limitations . 509

The ArrayList Collection . 509
Creating an ArrayList . 509
Adding and Removing ArrayList Items . 510
Sorting ArrayLists . 513
Searching ArrayLists . 515
Iterating an ArrayList . 515

The HashTable Collection . 516
VB 2008 at Work: The WordFrequencies Project . 518

The SortedList Collection . 523
VB 2008 at Work: The SortedList Project . 524

Other Collections . 527
The IEnumerator and IComparer Interfaces . 528

Enumerating Collections . 528
Custom Sorting . 531

Generic Collections . 537
The Bottom Line . 539

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxi

CONTENTS xxi

Chapter 15 • Accessing Folders and Files . 541

The IO Namespace and the FileSystem Component . 541
Using the My.Computer.FileSystem Component . 542
Manipulating Folders and Files with the IO Namespace . 546

The Directory Class . 547
The File Class . 554
Drive, Folder, and File Properties . 560
The Path Class . 564
VB 2008 at Work: The CustomExplorer Project . 566

Accessing Files . 569
Using Streams . 570
VB 2008 at Work: The RecordSave Project . 580

The FileSystemWatcher Component . 585
Properties . 585
Events . 586
VB 2008 at Work: The FileSystemWatcher Project . 587

The Bottom Line . 589

Chapter 16 • Serialization and XML . 591

Understanding Serialization Types . 591
Using Binary and SOAP Serialization . 592

Serializing Individual Objects . 592
Deserializing Individual Objects . 594
Serializing Collections . 595
Deserializing Collections . 596

Persisting a HashTable . 598
Persisting a TreeView’s Nodes . 601
Using XML Serialization . 607

Serializing and Deserializing Individual Objects . 608
Serializing Custom Objects . 609
Serializing ArrayLists and HashTables . 613

Working with XML Files . 615
Understanding XML Structure . 615
Editing XML Files . 617

The Bottom Line . 620

Chapter 17 • Querying Collections and XML with LINQ 621

What Is LINQ? . 621
LINQ Components . 623

LINQ to Objects . 625
Querying Collections . 627
Aggregating with LINQ . 630

LINQ to XML . 631
Traversing XML Documents . 633
Adding Dynamic Content to an XML Document . 634

LINQ to SQL . 642

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxii

xxii CONTENTS

Retrieving Data with the ExecuteQuery Method . 646
The Bottom Line . 647

Chapter 18 • Drawing and Painting with Visual Basic 2008 649

Displaying and Sizing Images . 649
Drawing with GDI+ . 652

The Basic Drawing Objects . 654
Drawing Shapes . 663
Drawing Methods . 667
Gradients . 681
Clipping . 685

Applying Transformations . 687
VB 2008 at Work: The ImageCube Project . 690
VB 2008 at Work: Plotting Functions . 691

The Bottom Line . 691

Chapter 19 • Manipulating Images and Bitmaps 693

Specifying Colors . 693
The RGB Color Cube . 694
Defining Colors . 695

The Image Object . 699
Properties . 699
Methods . 699
VB 2008 at Work: The Thumbnails Project . 702
Exchanging Images through the Clipboard . 705

The Bitmap Object . 706
Processing Bitmaps . 708
VB 2008 at Work: The ImageProcessing Project . 710

The Bottom Line . 715

Chapter 20 • Printing with Visual Basic 2008 . 717

The Printing Components . 717
The PrintDocument Control . 717
The PrintDialog Control . 720
The PageSetupDialog Control . 721
The PrintPreviewDialog Control . 723

Printer and Page Properties . 725
Retrieving the Printer Names . 726
Page Geometry . 728
VB 2008 at Work: The SimplePrintout Project . 729
VB 2008 at Work: The PageSettings Project . 732

Practical Printing Examples . 737
Printing Tabular Data . 738
Printing Plain Text . 744
Printing Bitmaps . 748

The Bottom Line . 751

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxiii

CONTENTS xxiii

Chapter 21 • Basic Concepts of Relational Databases 753

What Is a Database? . 753
Using Relational Databases . 754
Obtaining the Northwind and Pubs Sample Databases . 755
Exploring the Northwind Database . 756
Exploring the Pubs Database . 760
Understanding Relations . 761

Server Explorer . 763
Working with Tables . 767
Working with Relationships, Indices, and Constraints . 770

Structured Query Language . 773
Executing SQL Statements . 775
Using Selection Queries . 776
Working with Calculated Fields . 783
Calculating Aggregates . 783
Using SQL Joins . 785
Grouping Rows . 788
Limiting Groups with HAVING . 790
Selecting Groups with IN and NOT IN . 791
Selecting Ranges with BETWEEN . 791

Action Queries . 791
Deleting Rows . 792
Inserting New Rows . 793
Editing Existing Rows . 794

The Query Builder . 794
The Query Builder Interface . 795
SQL at Work: Calculating Sums . 796
SQL at Work: Counting Rows . 797
Parameterized Queries . 798
Calculated Columns . 799

Stored Procedures . 800
The SalesByCategory Stored Procedure . 801

The Bottom Line . 802

Chapter 22 • Programming with ADO.NET . 805

Stream- versus Set-Based Data Access . 805
The Basic Data-Access Classes . 806

The Connection Class . 807
The Command Class . 809
The DataReader Class . 819

Storing Data in DataSets . 822
Filling DataSets . 823
Accessing the DataSet’s Tables . 828
Working with Rows . 828
Handling Null Values . 829
Adding and Deleting Rows . 830

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxiv

xxiv CONTENTS

Navigating through a DataSet . 831
Update Operations . 834

Updating the Database with the DataAdapter . 835
Handling Identity Columns . 836

VB 2008 at Work: The SimpleDataSet Project . 837
The Bottom Line . 843

Chapter 23 • Building Data-Bound Applications . 845

Working with Typed DataSets . 845
Generating a Typed DataSet . 846
Exploring the Typed DataSet . 850

Data Binding . 855
Using the BindingSource Class . 857

Designing Data-Driven Interfaces the Easy Way . 863
Enhancing the Navigational Tools . 866
Binding Hierarchical Tables . 867
Adjusting the Appearance of the DataGridView Control 870
Building More-Functional Interfaces . 877

The Bottom Line . 883

Chapter 24 • Advanced DataSet Operations . 885

Working with SQL Expressions . 885
Selecting Rows . 886

Simple Calculated Columns . 887
Calculated Columns with Aggregates . 888

VB 2008 at Work: The SQL Expressions Project . 890
Selecting and Viewing an Order’s Details . 895

The Bottom Line . 900

Chapter 25 • Building Web Applications . 901

Developing for the Web . 901
Understanding HTML and XHTML . 902
Working with HTML . 903

Page Construction . 904
Text Management . 905
Horizontal Rules . 905
Images . 905
Links . 906
Embedding Media . 906
Comments . 906
Scripts . 907
Lists . 907
Tables . 907
Page Formatting . 909
Forms and Form Elements . 909

Cascading Style Sheets (CSS) . 911

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxv

CONTENTS xxv

Formatting Styles with CSS . 912
Page Formatting with CSS . 913

JavaScript . 916
AJAX . 918

Microformats . 918
Server-Side Technologies . 918
Creating a Web Application . 919
Controls . 922

Standard Controls . 922
Data Controls . 924
Validation Controls . 924
Navigation Controls . 925
Login Controls . 925
WebParts Controls . 926
AJAX Extensions Controls . 926
Reporting Controls . 928
HTML Controls . 928

Maintaining State . 929
Master Pages . 930
ASP.NET Objects . 931

Application Object . 931
Context Object . 931
Request Object . 931
Response Object . 932
Server Object . 932
Session Object . 934
Trace Object . 934

Postback . 935
The Bottom Line . 935

Chapter 26 • ASP.NET 3.5 . 937

Planning the Demonstration Site . 937
Getting Started . 938

Building the Style Sheet for MasterPage.master . 939
Creating the Style Sheet . 940
Attaching the Style Sheet to the Master Page . 942

Creating the Content Master Page . 944
Creating ContentStyleSheet.css . 945
Completing ContentMasterPage.master . 947

Adding Elements to the Main Master Page . 948
Creating the Web User Control . 949
Adding the Web User Control to Your Page . 952
Creating the Footer.ascx Web User Control . 953

Building the Site Navigation . 955
Creating a SiteMap . 955
Configuring the Menu Control for MasterPage.master . 955

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxvi

xxvi CONTENTS

Creating the Navbar in ContentsMasterPage.master . 956
Adding Authentication . 957

Using the Login Control . 957
Establishing Forms-Based Authentication . 957
Adding an Access Rule . 958
Adding a LoginName Control to MasterPage.master . 959
Adding a LoginName Control to ContentMasterPage.master 960

Adding Content Pages . 960
Adding an Entry to the SiteMap . 961
Updating the SiteMapDataSource Control . 961
Running the Application . 961

Adding Further Content Pages . 963
Adding Items to the SiteMap . 963
Using Buttons for Navigation . 963
Building the Password Page . 965
Building the NewUser.aspx page . 967

Working with Data . 967
Creating the XML Database . 968
Working with the GridView Control . 970
Further Configuration of the GridView Control . 971

Building the Computers.aspx Page . 974
Adding the DropDownList Control . 975
Adding the DetailsView Control . 976
Further Configuring the DetailsView Control . 977

Building the Report.aspx page . 978
Adding the MicrosoftReportViewer Control . 978
Creating the Report . 978

The Bottom Line . 980

Chapter 27 • ASP.NET Web Services . 981

Using ASP.NET Web Services and WCF . 981
ASP.NET Web Services . 981
Windows Communication Foundation (WCF) . 982

Understanding Technologies Associated with Web Services 982
SOAP . 983
Web Services Description Language (WSDL) . 983
SOAP Discovery . 983
Universal Description, Discovery, and Integration (UDDI) 983

Creating a Simple ASP.NET Web Service . 984
Setting Up the Web Service . 984
Testing the Web Service . 985
Consuming the Web Service . 986

Developing a Stand-Alone Web Service . 986
Building MyWebService . 987
Deploying MyWebService . 989
Consuming MyWebService . 989

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxvii

CONTENTS xxvii

Simple AJAX Implementation . 993
The Bottom Line . 995

Appendix A • . 997

Appendix B • . 1045

Index . 1075

Petroutsos ftoc.tex V2 - 01/28/2008 6:12pm Page xxviii

Petroutsos flast.tex V3 - 01/28/2008 6:13pm Page xxix

Introduction

Welcome to Visual Basic 2008, the most mature version yet of the most popular programming
language for building Windows and web applications. In modern software development, how-
ever, the language is only one of the components we use to build applications. The most important
component is the .NET Framework, which is an indispensable component of every application; it’s
actually more important than the language itself. You can think of the Framework as an enormous
collection of functions for just about any programming task. All drawing methods, for example,
are part of the System.Drawing class. To draw a rectangle, you call the DrawRectangle method of
the System.Drawing class, passing the appropriate arguments. To create a new folder, you call the
CreateDirectory method of the Directory class, and to retrieve the files in a folder you call the
GetFiles method of the same class.

The Framework contains all the functionality of the operating system and makes it available to
your application through methods. The language and the Framework are the two ‘‘programming’’
components, absolutely necessary to build Windows applications. It’s possible to develop appli-
cations with these two components alone, but the process would be awfully slow. The software
development process relies on numerous tools that streamline the coding experience, and these
tools are provided for us by Visual Studio 2008.

The third component is an integrated environment that hosts a number of tools enabling you
to perform many common tasks with point-and-click operations. It’s basically an environment
in which you can design your forms with visual tools and write code as well. This environment,
provided by Visual Studio 2008, is known as an integrated development environment, or IDE.
You’ll be amazed by the functionality provided by the tools of Visual Studio 2008: you can actually
design a functional data-driven application without writing a single line of code. You can use
similar tools in the same environment to design a fancy data-driven web page without a single line
of code. Visual Studio even provides tools for manipulating databases and allows you to switch
between tasks, all in the same, streamlined environment. You realize, of course, that Visual Studio
isn’t about writing applications without code; it just simplifies certain tasks through wizards and,
more often than not, we step in and provide custom code to write a functional application. Even
so, Visual Studio 2008 provides numerous tools, from debugging tools to help you track and fix
all kinds of bugs in your code, to database manipulation tools.

This book shows you how to use Visual Studio 2008 and Visual Basic 2008 to design rich Win-
dows and web applications. We’ll start with the visual tools and then we’ll explore Visual Basic
and the Framework. A Windows application consists of a visual interface and code behind the ele-
ments of the interface. (The code handles the user actions on the visual interface, such as the click
of a button, the selection of a menu item, and so on.) You’ll use the tools of Visual Studio to build
the visual interface and then you’ll program the elements of the application with Visual Basic. For
any nontrivial processing, such as file and folder manipulation, data storage, and so on, you’ll use

Petroutsos flast.tex V3 - 01/28/2008 6:13pm Page xxx

xxx INTRODUCTION

the appropriate classes of the .NET Framework. A substantial segment of this book deals with the
most useful components of the Framework.

The Mastering Series
The Mastering series from Sybex provides outstanding instruction for readers with intermediate
and advanced skills, in the form of top-notch training and development for those already working
in their field and clear, serious education for those aspiring to become pros. Every Mastering book
includes the following:

◆ Real-World Scenarios, ranging from case studies to interviews, that show how the tool,
technique, or knowledge presented is applied in actual practice

◆ Skill-based instruction, with chapters organized around real tasks rather than abstract
concepts or subjects.

◆ Self-review test questions, so you can be certain you’re equipped to do the job right.

Who Should Read This Book?
You don’t need a solid knowledge of Visual Basic to read this book, but you do need a basic
understanding of programming. You need to know the meaning of variables and functions and
how an If. . .Then structure works. This book is aimed at the typical programmer who wants to
get the most out of Visual Basic. It covers the topics I felt are of use to most VB programmers,
and it does so in depth. Visual Basic 2008 and the .NET Framework 3.5 are two extremely rich
programming tools, and I had to choose between a superficial coverage of many topics and an
in-depth coverage of fewer topics. To make room for more topics, I have avoided including a lot
of reference material and lengthy listings. For example, you won’t find complete project listings or
form descriptions. I assume that you can draw a few controls on a form and set their properties,
and that you don’t need long descriptions of the controls’ properties. I’m also assuming that you
don’t want to read the trivial segments of each application. Instead, the listings concentrate on the
‘‘meaty’’ part of the code: the procedures that explain the topic at hand.

The topics covered in this book were chosen to provide a solid understanding of the principles
and techniques for developing applications with Visual Basic. Programming isn’t about new
keywords and functions. I chose the topics I felt every programmer should learn in order to master
the language. I was also motivated by my desire to present useful, practical examples. You will
not find all topics equally interesting or important. My hope is that everyone will find something
interesting and something of value for his or her daily work — whether it’s an application that
maps the folders and files of a drive to a TreeView control, an application that prints tabular
data, a data-driven application for editing customers or products, or an application that saves a
collection of objects to a file.

Many books offer their readers long, numbered sequences of steps to accomplish a task. Follow-
ing instructions simplifies certain tasks, but programming isn’t about following instructions. It’s
about being creative; it’s about understanding principles and being able to apply the same tech-
niques in several practical situations. And the way to creatively exploit the power of a language
such as Visual Basic 2008 is to understand its principles and its programming model.

In many cases, I provide a detailed, step-by-step procedure that will help you accomplish a
task, such as designing a menu, for example. But not all tasks are as simple as designing menus.
I explain why things must be done in a certain way, and I present alternatives and try to connect

Petroutsos flast.tex V3 - 01/28/2008 6:13pm Page xxxi

INTRODUCTION xxxi

new topics to those explained earlier in the book. In several chapters, I expand on applications
developed in earlier chapters. Associating new knowledge with something you have mastered
already provides positive feedback and a deeper understanding of the language.

This book isn’t about the hottest features of the language; it’s about solid programming tech-
niques and practical examples. After you master the basics of programming Windows applications
with Visual Basic 2008 and you feel comfortable with the more advanced examples of the book,
you will find it easy to catch up with the topics not discussed in this book. Of course, you will find
information about the latest data access techniques, as well as an introduction to LINQ (Language
Integrated Query), which is the hottest new component of the Framework.

How about the Advanced Topics?
Some of the topics discussed in this book are nontrivial, and quite a few topics can be considered
advanced. The TreeView control, for example, is not a trivial control, like the button or text box
control, but it’s ideal for displaying hierarchical information. (This is the control that displays
the hierarchy of folders in Windows Explorer.) If you want to build an elaborate user interface,
you should be able to program controls such as the TreeView and ListView controls, which are
discussed in Chapter 9, ‘‘The TreeView and ListView Controls.’’

You may also find some examples to be more difficult than you expected. I have tried to
make the text and the examples easy to read and understand, but not unrealistically simple.
In Chapter 15, ‘‘Accessing Folders and Files,’’ you will find information about the File and
Directory objects. You can use these objects to access and manipulate the file system from within
your application, but this chapter wouldn’t be nearly as useful without an application that shows
you how to scan a folder recursively (scan the folder’s files and then its subfolders, to any depth).
To make each chapter as useful as I could, I’ve included nontrivial examples, which will provide a
better understanding of the topics. In addition, many of these examples can be easily incorporated
into your applications.

You can do a lot with the TreeView control with very little programming, but to make
the most out of this control, you must be ready for some advanced programming — nothing
terribly complicated, but some things just aren’t trivial. Programming most of the operations
of the TreeView control, for instance, is not complicated, but if your application calls for
populating a TreeView control with an arbitrary number of branches (such as mapping a direc-
tory structure to a TreeView control), the code can get complex. The same goes for printing; it’s
fairly straightforward to write a program that prints some text, but printing tabular reports takes
substantial coding effort.

The reason I’ve included the more advanced examples is that the corresponding chapters
would be incomplete without them. If you find some material to be over your head at first read-
ing, you can skip it and come back to it after you have mastered other aspects of the language.
But don’t let a few advanced examples intimidate you. Most of the techniques are well within
the reach of an average VB programmer. The few advanced topics were included for the readers
who are willing to take that extra step and build elaborate interfaces by using the latest tools and
techniques.

There’s another good reason for including advanced topics. Explaining a simple topic, such as
how to populate a collection with items, is very simple. But what good is it to populate a collection
if you don’t know how to save it to disk and read back its items in a later session? Likewise, what
good is it to learn how to print simple text files? In a business environment, you will most likely
be asked to print a tabular report, which is substantially more complicated than printing text. In
Chapter 20, ‘‘Printing with Visual Basic 2008,’’ you will learn how to print business reports with

Petroutsos flast.tex V3 - 01/28/2008 6:13pm Page xxxii

xxxii INTRODUCTION

headers, footers, and page numbers, and even how to draw grids around the rows and columns
of the report. One of my goals in writing this book was to exhaust the topics I’ve chosen to discuss
and present all the information you need to do something practical.

The Structure of the Book
This book isn’t meant to be read from cover to cover, and I know that most people don’t read
computer books this way. Each chapter is independent of the others, although all chapters contain
references to other chapters. Each topic is covered in depth; however, I make no assumptions
about the reader’s knowledge of the topic. As a result, you may find the introductory sections
of a chapter too simple. The topics become progressively more advanced, and even experienced
programmers will find some new information in most chapters. Even if you are familiar with
the topics in a chapter, take a look at the examples. I have tried to simplify many of the advanced
topics and demonstrate them with clear, practical examples.

This book tries to teach through examples. Isolated topics are demonstrated with short
examples, and at the end of many chapters you’ll build a large, practical application (a real-world
application) that ‘‘puts together’’ the topics and techniques discussed throughout the chapter.
You may find some of the more advanced applications a bit more difficult to understand, but you
shouldn’t give up. Simpler applications would have made my job easier, but the book wouldn’t
deserve the Mastering title, and your knowledge of Visual Basic wouldn’t be as complete.

The book starts with the fundamentals of Visual Basic 2008. You’ll learn how to design
visual interfaces with point-and-click operations and how to program a few simple events, such as
the click of the mouse on a button. After reading the first two chapters, you’ll understand the
structure of a Windows application. Then you’ll explore the elements of the visual interface
(the basic Windows controls) and how to program them. You’ll also learn about the My object and
code snippets, two features that make Visual Basic so simple and fun to use. These two objects will
also ease the learning process and make it much simpler to learn the features of the language.

I then discuss in detail the basic components of Windows applications. I explain the most
common controls you’ll use in building Windows forms in detail, as well as how to work with
forms: how to design forms, how to design menus for your forms, how to create applications with
multiple forms, and so on. You will find detailed discussions of many Windows controls, as well
as how to take advantage of the built-in dialog boxes, such as the Font and Color dialog boxes, in
your applications.

Visual Basic 2008 is a truly object-oriented language, and objects are the recurring theme
in every chapter. The three following chapters (chapter 10, 11 and 12) contain a formal and
more systematic treatment of objects. You will learn how to build custom classes and controls,
which will help you understand object-oriented programming a little better. You will also learn
about inheritance and will see how easy it is to add custom functionality to existing classes
through inheritance.

The following few chapters deal with some of the most common classes of the .NET
Framework. The Framework is at the very heart of Windows programming; it’s your gateway
to the functionality of the operating system itself, and it’s going to be incorporated into the next
version of Windows. You’ll examine several extremely interesting topics such as collections (for
example, ArrayLists and HashTables), the classes for manipulating files and folders, the String-
Builder class that manipulates text, XML serialization, and a few more, including the Language
Integrated Query component (LINQ, which is brand new to the latest version of the Framework).

Then you will find a few chapters on graphics. You’ll learn how to use the classes of the
Framework that generate graphics, and you’ll learn how to create vector drawings as well as

Petroutsos flast.tex V3 - 01/28/2008 6:13pm Page xxxiii

INTRODUCTION xxxiii

how to manipulate bitmaps. In Chapter 20, you’ll learn everything you need to create printouts
with Visual Basic 2008 and see a few practical examples.

The first twenty chapters deal with the fundamentals of the language and Windows applica-
tions. Following these chapters, you will find an overview of the data-access tools. The emphasis
is on the visual tools, and you will learn how to query databases and present data to the user.
You will also find information on programming the basic objects of ADO.NET and write simple
data-driven Windows applications.

In the last few chapters of this book you will learn about web applications, the basics of
ASP.NET 2, how to develop data-bound web applications, and how to write web services.

Downloading This Book’s Code
The code for the examples and projects can be downloaded from the Sybex website (www.sybex.com).
At the main page, you can find the book’s page by searching for the author, the title, or the ISBN
(9780470187425), and then clicking the book’s link listed in the search results. On the book’s page,
click the Download link. It will take you to the download page. The downloaded source code is a
zip file, which you can unzip with the WinZip utility.

How to Reach the Author

Despite our best efforts, a book of this size is bound to contain errors. Although a printed medium
isn’t as easy to update as a website, I will spare no effort to fix every problem you report (or I dis-
cover). The revised applications, along with any other material I think will be of use to the readers of
this book, will be posted on the Sybex website. If you have any problems with the text or the applica-
tions in this book, you can contact me directly at pevangelos@yahoo.com.

Although I can’t promise a response to every question, I will fix any problems in the examples and
provide updated versions. I would also like to hear any comments you may have on the book, about
the topics you liked or did not like, and how useful the examples are. Your comments will be taken
into consideration in future editions.

Petroutsos flast.tex V3 - 01/28/2008 6:13pm Page xxxiv

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 1

Chapter 1

Getting Started with
Visual Basic 2008

I’m assuming that you have installed one of the several versions of Visual Studio 2008. For this
book, I used the Professional Edition of Visual Studio, but just about everything discussed in
this book applies to the Standard Edition as well. Some of the features of the Professional Edition
that are not supported by the Standard Edition concern database tools, which are discussed in
Chapters 21 through 24 of this book.

You may have even already explored the new environment on your own, but this book starts
with an overview of Visual Studio and its basic tools. It doesn’t even require any knowledge of
VB 6, just some familiarity with programming at large. As you already know, Visual Basic 2008
is just one of the languages you can use to build applications with Visual Studio 2008. I happen
to be convinced that it is also the simplest, most convenient language, but this isn’t really the
issue; I’m assuming you have your reasons to code in VB, or else you wouldn’t be reading this
book. What you should keep in mind is that Visual Studio 2008 is an integrated environment for
building, testing, debugging, and deploying a variety of applications: Windows applications, web
applications, classes and custom controls, and even console applications. It provides numerous
tools for automating the development process, visual tools for performing many common design
and programming tasks, and more features than any author would hope to cover.

In this chapter, you’ll learn how to do the following:

◆ Navigate the integrated development environment of Visual Studio

◆ Understand the basics of a Windows application

Exploring the Integrated Development Environment
Visual Basic 2008 is just one of the languages you can use to program your applications. The
language is only one aspect of a Windows application. The visual interface of the application isn’t
tied to a specific language, and the same tools you’ll use to develop your application’s interface
will also be used by all programmers, regardless of the language they’ll use to code the application.

To simplify the process of application development, Visual Studio provides an environment
that’s common to all languages, which is known as an integrated development environment (IDE).
The purpose of the IDE is to enable the developer to do as much as possible with visual tools,
before writing code.

The IDE provides tools for designing, executing, and debugging your applications. It will be
a while before you explore all the elements of the IDE, and I will explain the various items as
needed in the course of the book. In this section, you’ll look at the basic components of the IDE

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 2

2 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

needed to build simple Windows applications. You’ll learn how its tools allow you to quickly
design the user interface of your application, as well as how to program the application.

The IDE is your second desktop, and you’ll be spending most of your productive hours in this
environment.

The Start Page
When you run Visual Studio 2008 for the first time, you will be prompted to select the type of
projects you plan to build with Visual Studio, so that the environment can be optimized for that
specific type of development. I’m assuming that you have initially selected the Visual Basic Devel-
opment settings, which will optimize your copy of Visual Studio for building Windows and web
applications with Visual Basic 2008. You can always change these settings, as explained at the end
of this section.

After the initial configuration, you will see a window similar to the one shown in Figure 1.1. The
Recent Projects pane will be empty, of course, unless you have already created some test projects.
Visual Studio 2008 will detect the settings of a previous installation, so if you’re upgrading from
an earlier version of Visual Studio, the initial screen will not be identical to the one shown in
Figure 1.1.

Figure 1.1

This is what you’ll see
when you start Visual
Studio for the first time.

On the Start Page of Visual Studio, you will see the following panes:

Recent Projects Here you see a list of the projects you opened most recently with Visual
Studio, and you can select the one you want to open again — chances are that you will con-
tinue working on the same project as the last time. Each project’s name is a hyperlink, and you
can open it by clicking its name. At the bottom of the Recent Projects section are two hyper-
links, for opening or creating another project.

MSDN: Visual Studio This section is a browser window that displays an MSDN
(the Microsoft Developer Network, which is the definitive resource for all Microsoft tech-
nologies and products) page when the computer is connected to the Internet. In this section,

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 3

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 3

you will see news about Visual Studio, the supported languages, articles, and other inter-
esting bits of information.

Getting Started This section contains links to basic programming tasks in the product’s
documentation.

Visual Studio Headlines This section contains links to announcements and other news
of interest to VB developers.

Most developers will skip the Start Page. To do so, open the Tools menu and choose the
Import And Export Settings command to start a configuration wizard. In the first dialog box of
the wizard, select the Reset All Settings check box and click the Next button. The next screen
of the wizard prompts you for the location where the new settings will be saved, so that Visual
Studio can read them every time it starts. Leave the default location as is and click Next again to
see the last screen of the wizard, in which you’re prompted to select a default collection of settings.
This collection depends on the options you’ve installed on your system. I installed Visual
Studio 2008 with Visual Basic only on my system, and I was offered the following options: General
Development Settings, Visual Basic Development Settings, and Web Development Settings.
For the default configuration of my copy of Visual Studio, and for the purposes of this book, I
chose the Visual Basic Development Settings, so that Visual Studio could optimize the environ-
ment for a typical VB developer. Click the Finish button to see a summary of the process and then
close the wizard.

Starting a New Project
At this point, you can create a new project and start working with Visual Studio. To best explain
the various items of the IDE, we will build a simple form. The form is the window of your
application — it’s what users will see on their Desktop when they run your application.

Open the File menu and choose New Project, or click Create Project/Solution in the Start Page.
In the New Project dialog box that pops up (see Figure 1.2), you’ll see a list of project types you can
create with Visual Studio. The most important ones are Windows Forms Applications, which are
typical Windows applications with one or more forms (windows); Console Applications, which
are simple applications that interact with the user through a text window (the console); Windows
Forms Control Libraries, which are collections of custom controls; and Class Libraries, which are
collections of classes. These are the project types we’ll cover in depth in this book.

If you have installed Visual Basic 2008 Express Edition, you will see fewer project types in the
New Project dialog box, but the projects discussed in this book are included.

Notice the Create Directory For Solution check box in the dialog box of Figure 1.2. By default,
Visual Studio creates a new folder for the project under the folder you have specified in the Loca-
tion box. If you want to put together a short application to test a feature of the language, or perform
some trivial task, you may not wish to save the project. In this case, just clear the check box to skip
the creation of a new project folder.

You can always save a project at any time by choosing the Save All command from the File
menu. You’ll be prompted at that point about the project’s folder, and Visual Studio will save
the project under the folder you specified. If you decide to discard the project, you can create
a new project or close Visual Studio. Visual Studio will prompt you about an open project that
hasn’t been saved yet, and you can choose not to save it.

You may discover at some point that you have created too many projects, which you don’t
really need. You can remove these projects from your system by deleting the corresponding
folders — no special action is required. You’ll know it’s time to remove the unneeded project
folder when Visual Studio suggests project names such as WindowsApplication9 or Windows-
Application49.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 4

4 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.2

The New Project dialog
box

For our project, select the Windows Forms Application template; Visual Studio suggests
the name WindowsApplication1 as the project name. Change it to MyTestApplication, select the
Create Directory For Solution check box, and then click the OK button to create the new project.

What you see now is the Visual Studio IDE displaying the Form Designer for a new project, as
shown in Figure 1.3. The main window of your copy of Visual Studio may be slightly different,
but don’t worry about it. I’ll go through all the components you need to access in the process of
designing, coding, and testing a Windows application.

Figure 1.3

The integrated develop-
ment environment of
Visual Studio 2008 for a
new project

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 5

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 5

The new project contains a form already: the Form1 component in the Solution Explorer. The
main window of the IDE is the Form Designer, and the gray surface on it is the window of your
new application in design mode. Using the Form Designer, you’ll be able to design the visible
interface of the application (place various components of the Windows interface on the form and
set their properties) and then program the application.

The default environment is rather crowded, so let’s hide a few of the toolbars that we won’t use
in the projects of the first few chapters. You can always show any of the toolbars at any time. Open
the View menu and choose Toolbars. You’ll see a submenu with 28 commands that are toggles.
Each command corresponds to a toolbar, and you can turn the corresponding toolbar on or off by
clicking one of the commands in the Toolbars submenu. For now, turn off all the toolbars except
for the Layout and Standard toolbars. These are the toolbars shown by default and you shouldn’t
hide them; if you do, this is the place to make them visible again.

The last item in the Toolbars submenu is the Customize command, which leads to a dialog box
in which you can specify which of the toolbars and which of the commands you want to see. After
you have established a work pattern, use this menu to customize the environment for the way you
want to work with Visual Studio. You can hide just about any component of the IDE, except for
the main menu — after all, you have to be able to undo the changes!

Using the Windows Form Designer
To design the form, you must place on it all the controls you want to display to the user at runtime.
The controls are the components of the Windows interface (buttons, text boxes, radio buttons,
lists, and so on). Open the Toolbox by moving the pointer over the Toolbox tab at the far left; the
Toolbox, shown in Figure 1.4, pulls out. This Toolbox contains an icon for each control you can
use on your form.

The controls are organized into groups according to each control’s function on the interface.
In the first part of the book, we’ll create simple Windows applications and we’ll use the controls
on the Common Controls tab. When you develop web applications, you will see a different set of
icons in the Toolbox.

To place a control on the form, you can double-click the icon of the control. A new instance
with a default size will be placed on the form. Then you can position and resize it with the mouse.
Or you can select the control from the Toolbox with the mouse and then click and drag the
mouse over the form and draw the outline of the control. A new instance of the control will be
placed on the form, and it will fill the rectangle you specified with the mouse. Start by placing a
TextBox control on the form.

The control’s properties will be displayed in the Properties window (see Figure 1.5). This win-
dow, at the far right edge of the IDE and below the Solution Explorer, displays the properties of
the selected control on the form. If the Properties window is not visible, open the View menu and
choose Properties Window, or press F4. If no control is selected, the properties of the selected item
in the Solution Explorer are displayed.

In the Properties window, also known as the Properties Browser, you see the properties that
determine the appearance of the control and (in some cases) its function. The properties are
organized in categories according to their role. The properties that determine the appearance
of the control are listed alphabetically under the header Appearance, the properties that determine
the control’s behavior are listed alphabetically under the header Behavior, and so on. You can
click the AZ button on the window’s title bar to display all properties in alphabetical order.
After you familiarize yourself with the basic properties, you will most likely switch to the
alphabetical list.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 6

6 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.4

Windows Forms Toolbox
of the Visual Studio IDE

Rearranging the IDE Windows

As soon as you place a control on the form, the Toolbox retracts to the left edge of the Designer. You
can fix this window on the screen by clicking the icon with the pin on the Toolbox’s toolbar. (It’s the
icon next to the Close icon at the upper-right corner of the Toolbox window, and it appears only when
the Toolbox window is docked, but not while it’s floating.)

You can easily rearrange the various windows that make up the IDE by moving them around with the
mouse. Move the pointer to a window’s title bar, press the left mouse button, and drag the window
around. A window may not follow the mouse, because its position is locked. In this case, click the pin
icon in the upper-right corner of the window to unlock the window’s position and then move it
around with the mouse.

As you move the window, eight semitransparent buttons with arrows appear on the screen, indicat-
ing the area where the window can be docked. Keep moving the window until the pointer hovers over

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 7

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 7

one of these buttons, and the docking area appears in semitransparent blue color. Find the desired
docking location for the window and release the mouse. If you release the mouse while the pointer
is not on top of an arrow, the window is not docked. Instead, it remains at the current location as a
floating window, and you can move it around at will with your mouse.

Most developers would rather work with docked windows, and the default positions of the IDE win-
dows are quite convenient. If you want to open even more windows and arrange them differently on
the screen, use the docking feature of the IDE to dock the additional windows.

Locate the TextBox control’s Text property and set it to My TextBox Control by entering the
string into the box next to the property name. The control’s Text property is the string that appears
in the control (the control’s caption), and most controls have a Text property.

Next locate its BackColor property and select it with the mouse. A button with an arrow
appears next to the current setting of the property. Click this button, and you’ll see a dialog box
with three tabs (Custom, Web, and System), as shown in Figure 1.6. In this dialog box, you can
select the color that will fill the control’s background. Set the control’s background color to yellow
and notice that the control’s appearance changes on the form.

One of the settings you’ll want to change is the font of the various controls. While the TextBox
control is still selected on the form, locate the control’s Font property in the Properties window.
You can click the plus sign in front of the property name and set the individual properties of
the font, or you can click the ellipsis button to invoke the Font dialog box. Here you can set the
control’s font and its attributes and then click OK to close the dialog box. Set the TextBox control’s
Font property to Verdana, 14 points, bold. As soon as you close the Font dialog box, the control
on the form is adjusted to the new setting.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 8

8 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.5

Properties of a TextBox
control

Figure 1.6

Setting a color prop-
erty in the Properties
window

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 9

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 9

There’s a good chance that the string you assigned to the control’s Text property won’t fit in the
control’s width when rendered in the new font. Select the control on the form with the mouse, and
you will see eight handles along its perimeter. Rest the pointer over any of these handles, and it
will assume a shape indicating the direction in which you can resize the control. Make the control
long enough to fit the entire string. If you have to, resize the form as well. Click somewhere on the
form, and when the handles along its perimeter appear, resize it with the mouse.

Some controls, such as the Label, Button, and CheckBox controls, support the AutoSize prop-
erty, which determines whether the control is resized automatically to accommodate its caption.
The TextBox control, as well as many others, doesn’t support the AutoSize property. If you
attempt to make the control tall enough to accommodate a few lines of text, you’ll realize that
you can’t change the control’s height. By default, the TextBox control accepts a single line of text,
and you must set its MultiLine property to True to resize the TextBox control vertically.

The Font Is a Design Element

Like documents, forms should be designed carefully and follow the rules of a printed page design. At
the very least, you shouldn’t use multiple fonts on your forms, just as you shouldn’t mix different
fonts on a printed page. You could use two font families on rare occasions, but you shouldn’t overload
your form. You also shouldn’t use the bold style in excess.

To avoid adjusting the Font property of multiple controls on the form, you should set the form’s font
first, because each control you place on a form inherits the form’s font. If you change the form’s font,
the controls will be adjusted accordingly, but this may throw off the alignment of the controls on the
form. You should experiment with a few Label controls, select a font that you like that’s appropriate
for your interface (you shouldn’t use a handwritten style with a business application, for example)
and then set the form’s Font property to the desired font. Every time you add a new form to the appli-
cation, you should start by setting its Font property to the same font, so that the entire application
will have a consistent look.

The font is the most basic design element, whether you’re designing forms or a document. Various
components of the form may have a different font size, even a different style (like bold or italics),
but there must be a dominant font family that determines the look of the form. The Verdana fam-
ily was designed for viewing documents on computer monitors and is a popular choice. Another great
choice is Segoe UI, a new font family introduced with Windows Vista. The Segoe Print font has a
distinguished handwritten style, and you can use it with graphics applications.

The second most important design element is color, but you shouldn’t get too creative with colors
unless you’re a designer. I recommend that you stay with the default colors and use similar shades
to differentiate a few elements of the interface.

The design of a modern interface has become a new discipline in application development, and there
are tools for designing interfaces. One of them is Microsoft’s Expression Studio, which enables design-
ers to design the interface and developers to write code, without breaking each other’s work. You can
download a trial version of Expression Studio from www.microsoft.com/expression.

So far, you’ve manipulated properties that determine the appearance of the control. Now you’ll
change a property that determines not only the appearance, but also the function of the control.
Locate the Multiline property. Its current setting is False. Expand the list of available settings

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 10

10 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

and change it to True. (You can also change it by double-clicking the name of the property. This
action toggles the True/False settings.) Switch to the form, select the TextBox control, and make it
as tall as you wish.

The Multiline property determines whether the TextBox control can accept one (if Multiline
= False) or more (if Multiline = True) lines of text. Set this property to True, go back to the Text
property, set it to a long string, and press Enter. The control breaks the long text into multiple lines.
If you resize the control, the lines will change, but the entire string will fit in the control because the
control’s WordWrap property is True. Set it to False to see how the string will be rendered on
the control.

Multiline TextBox controls usually have a vertical scroll bar so users can quickly locate the
section of text that they’re interested in. Locate the control’s ScrollBars property and expand
the list of possible settings by clicking the button with the arrow. This property’s settings are
None, Vertical, Horizontal, and Both. Set it to Vertical, assign a very long string to its Text
property, and watch how the control handles the text. At design time, you can’t scroll the text on
the control; if you attempt to move the scroll bar, the entire control will be scrolled. The scroll bar
will work as expected at runtime (it will scroll the text vertically).

You can also make the control fill the entire form. Start by deleting all other controls you may
have placed on the form and then select the multiline TextBox. Locate the Dock property in the
Properties window and keep double-clicking the name of the property until its setting changes
to Fill. (You’ll learn a lot more about docking controls in Chapter 7, ‘‘Working with Forms.’’)
The TextBox control fills the form and is resized as you resize the form, both at design time and
runtime.

To examine the control’s behavior at runtime, press F5. The application will be compiled, and
a few moments later, a window filled with a TextBox control will appear on the Desktop (like the
one shown in Figure 1.7). This is what the users of your application would see (if this were an
application worth distributing, of course).

Figure 1.7

A TextBox control
displaying multiple
text lines

Enter some text on the control, select part of the text, and copy it to the Clipboard by pressing
Ctrl+C. You can also copy text from any other Windows application and paste it on the TextBox
control. Right-click the text on the control and you will see the same context menu you get with

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 11

CREATING YOUR FIRST VB APPLICATION 11

Notepad; you can even change the reading order of the text — not that you’d want to do that with
a Western language. When you’re finished, open the Debug menu and choose Stop Debugging.
This will terminate your application’s execution, and you’ll be returned to the IDE. The Stop
Debugging command is also available as a button with a blue square icon on the toolbar. Finally,
you can stop the running application by clicking the Close button in the application’s window.

The design of a new application starts with the design of the application’s form, which is the
application’s user interface, or UI. The design of the form determines to a large extent the func-
tionality of the application. In effect, the controls on the form determine how the application will
interact with the user. The form itself is a prototype, and you can demonstrate it to a customer
before even adding a single line of code. By placing controls on the form and setting their proper-
ties, you’re implementing a lot of functionality before coding the application. The TextBox control
with the settings discussed in this section is a functional text editor.

Creating Your First VB Application
In this section, we’ll develop a simple application to demonstrate not only the design of the inter-
face, but also the code behind the interface. We’ll build an application that allows the user to enter
the name of his favorite programming language, and the application will evaluate the choice.
Objectively, VB is a step ahead of all other languages, and it will receive the best evaluation. All
other languages get the same grade — good — but not VB.

The project is called WindowsApplication1. You can download the project from the book’s
website and examine it, but I suggest you follow the steps outlined in this section to build the
project from scratch. Start a new project and use the default name, WindowsApplication1, and
place a TextBox and a Button control on the form. Use the mouse to position and resize the controls
on the form, as shown in Figure 1.8.

Figure 1.8

A simple applica-
tion that processes a
user-supplied string

Start by setting the form’s Font property to Segoe UI, 9 pt. Arrange and size the controls as
shown in Figure 1.8. Then place a Label control on the form and set its Text property to Enter
your favorite programming language. The Label will be resized according to its caption, because

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 12

12 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

the control’s AutoSize property is True. As you move the controls around on the form, you’ll see
some blue lines connecting the edges of the controls when they’re aligned. These lines are called
snap lines, and they allow you to align controls on the form.

Now you must insert some code to evaluate the user’s favorite language. Windows applications
are made up of small code segments, called event handlers, which react to specific actions such as
the click of a button, the selection of a menu command, the click of a check box, and so on. In the
case of our example, we want to program the action of clicking the button. When the user clicks
the button, we want to execute some code that will display a message.

To insert some code behind the Button control, double-click the control. You’ll see the code
window of the application, which is shown in Figure 1.9. You will see only the definition of
the procedure, not the code that is shown between the two statements in the figure. The line
Private . . . is too long to fit on the printed page, so I inserted a line continuation character (an
underscore) to break it into two lines. When a line is too long, you can break it into two (or more)
lines by inserting this character. Alternatively, you can turn on the WordWrap feature of the editor
(you’ll see shortly how to adjust the editor’s properties). Notice that I also inserted quite a bit of
space before the second half of the first code line. It’s customary to indent continued lines so they
can be easily distinguished from the other lines. If you enter the line continuation character in the
editor, the following line will be indented automatically.

Figure 1.9

Outline of a subrou-
tine that handles the
Click event of a Button
control

The editor opens a subroutine, which is delimited by the following statements:

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

At the top of the main pane of the Designer, you will see two tabs named after the form: the
Form1.vb [Design] tab and the Form1.vb tab. The first tab is the Windows Form Designer (in
which you build the interface of the application with visual tools), and the second is the code
editor (in which you insert the code behind the interface). At the top of the code editor, which is
what you see in Figure 1.9, are two ComboBoxes. The one on the left contains the names of the
controls on the form. The one on the right contains the names of events each control recognizes.
When you select a control (or an object, in general) in the left list, the other list’s contents are
adjusted accordingly. To program a specific event of a specific control, select the name of the

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 13

CREATING YOUR FIRST VB APPLICATION 13

control in the left list (the Objects list) and the name of the event in the right list (the Events list).
While Button1 is selected in the Objects list, open the Events list to see the events to which the
button can react.

The Click event happens to be the default event of the Button control, so when you double-click
a Button on the form, you’re taken to the Button1 Click subroutine. This subroutine is an event
handler, which is invoked automatically every time an event takes place. The event of interest in
our example is the Click event of the Button1 control. Every time the Button1 control on the form
is clicked, the Button1 Click subroutine is activated. To react to the Click event of the button,
you must insert the appropriate code in this subroutine.

There are more than two dozen events for the Button control, and it is among the simpler
controls (after all, what can you do to a button besides clicking it?). Most of the controls recognize
a very large number of events.

The definition of the event handler can’t be modified; this is the event handler’s signature (the
arguments it passes to the application). All event handlers in VB 2008 pass two arguments to
the application: the sender argument, which is an object that represents the control that fired the
event, and the e argument, which provides additional information about the event.

The name of the subroutine is made up of the name of the control, followed by an underscore
and the name of the event. This is just the default name, and you can change it to anything you like
(such as EvaluateLanguage, for this example, or StartCalculations). What makes this subrou-
tine an event handler is the keyword Handles at the end of the statement. The Handles keyword
tells the compiler which event this subroutine is supposed to handle. Button1.Click is the Click
event of the Button1 control. If there were another button on the form, the Button2 control, you’d
have to write code for a subroutine that would handle the Button2.Click event. Each control
recognizes many events, and you can provide a different event handler for each control and event
combination. Of course, we never program every possible event for every control.

The controls have a default behavior and handle the basic events on their own. The TextBox
control knows how to handle keystrokes. The CheckBox control (a small square with a check
mark) changes state by hiding or displaying the check mark every time it’s clicked. The ScrollBar
control moves its indicator (the button in the middle of the control) every time you click one of the
arrows at the two ends. Because of this default behavior of the controls, you need not supply any
code for the events of most controls on the form.

If you change the name of the control after you have inserted some code in an event handler, the
name of the event handled by the subroutine will be automatically changed. The name of the sub-
routine, however, won’t change. If you change the name of the Button1 control to bttnEvaluate,
the subroutine’s header will become

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnEvaluate.Click

End Sub

Rename the Button1 Click subroutine to EvaluateLanguage. You must edit the code to
change the name of the event handler. I try to name the controls before adding any code to the
application, so that their event handlers will be named correctly. Alternatively, you can use your
own name for each event handler. The default names of the controls you place on a form are quite
generic, and you should change them to something more meaningful. I usually prefix the con-
trol names with a few characters that indicate the control’s type (such as txt, lbl, bttn, and so
on), followed by a meaningful name. Names such as txtLanguage and bttnEvaluate make your

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 14

14 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

code far more readable. It’s a good practice to change the default names of the controls as soon
as you add the controls to the form. Names such as Button1, Button2, Button3, and so on, don’t
promote the readability of your code. With the exception of this first sample project, I’m using
more-meaningful names for the controls used in this book’s projects.

Let’s add some code to the Click event handler of the Button1 control. When this button is
clicked, we want to examine the text in the text box. If it’s Visual Basic, we display a message; if
not, we display a different message. Insert the lines of Listing 1.1 between the Private Sub and
End Sub statements. (I’m showing the entire listing here; there’s no reason to retype the first and
last statements.)

Listing 1.1: Processing a User-Supplied String

Private Sub EvaluateLanguage(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = TextBox1.Text
If language = ”Visual Basic” Then

MsgBox(”We have a winner!”)
Else

MsgBox(language & ”is not a bad language.”)
End If

End Sub

Here’s what this code does. First, it assigns the text of the TextBox control to the variable lan-
guage. A variable is a named location in memory where a value is stored. Variables are where we
store the intermediate results of our calculations when we write code. All variables are declared
with a Dim statement and have a name and a type.

You could also declare and assign a value to the language variable in a single step:

Dim language = TextBox1.Text

The compiler will create a String variable, because the statement assigns a string to the variable.
We’ll come back to the topic of declaring and initializing variables in Chapter 2, ‘‘Variables and
Data Types.’’

Then the program compares the value of the language variable to the literal Visual Basic, and
depending on the outcome of the comparison, it displays one of two messages. The MsgBox()
function displays the specified message in a small window with the OK button, as shown in
Figure 1.8. Users can view the message and then click the OK button to close the message box.

Even if you’re not familiar with the syntax of the language, you should be able to understand
what this code does. Visual Basic is the simplest of the languages supported by Visual Studio 2008,
and we will discuss the various aspects of the language in detail in the following chapters. In the
meantime, you should try to understand the process of developing a Windows application: how
to build the visible interface of the application and how to program the events to which you want
your application to react.

The code of our first application isn’t very robust. If the user doesn’t enter the string with the
exact spelling shown in the listing, the comparison will fail. We can convert the string to uppercase

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 15

CREATING YOUR FIRST VB APPLICATION 15

and then compare it with VISUAL BASIC to eliminate differences in case. To convert a string to
uppercase, use the ToUpper method of the String class. The following expression returns the string
stored in the language variable, converted to uppercase:

language.ToUpper

We should also take into consideration the fact that the user may enter VB or VB 2008, and so
on. In the following section, we’ll further improve our application. You never know what users
may throw at your application, so whenever possible you should try to limit their responses to the
number of available choices. In our case, we can display the names of certain languages (the ones
we’re interested in) and force the user to select one of them.

One way to display a limited number of choices is to use a ComboBox control. In the following
section, we’ll revise our sample application so that users won’t have to enter the name of the
language. We’ll force them to select their favorite language from a list so that we won’t have to
validate the string supplied by the user.

Making the Application More User-Friendly
Start a new project: the WindowsApplication2 project. Do not select the Create Directory For Solu-
tion check box; we’ll save the project from within the IDE. As soon as the project is created, open
the File menu and choose Save All to save the project. When the Save Project dialog box appears,
click the Browse button to select the folder where the project will be saved. In the Project Location
dialog box that appears, select an existing folder or create a new folder such as MyProjects or
VB.NET Samples.

Open the Toolbox and double-click the icon of the ComboBox tool. A ComboBox control will
be placed on your form. Now place a Button control on the form and position it so that your
form looks like the one shown in Figure 1.10. Then set the button’s Text property to Evaluate
My Choice.

Figure 1.10

Displaying options in a
ComboBox control

We must now populate the ComboBox control with the valid choices. Select the ComboBox
control on the form by clicking it with the mouse and locate its Items property in the Properties
window. The setting of this property is Collection, which means that the Items property doesn’t
have a single value; it’s a collection of items (strings, in this case). Click the ellipsis button and
you’ll see the String Collection Editor dialog box, as shown in Figure 1.11.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 16

16 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.11

Click the ellipsis button
next to the Items prop-
erty of a ComboBox to
see the String Collection
Editor dialog box.

The main pane in the String Collection Editor dialog box is a TextBox, in which you can enter
the items you want to appear in the ComboBox control at runtime. Enter the following strings, one
per row and in the order shown here:

C++
C#

Visual Basic

Java

Cobol

Click the OK button to close the dialog box. The items will not appear on the control at design
time, but you will see them when you run the project. Before running the project, set one more
property. Locate the ComboBox control’s Text property and set it to Select your favorite pro-
gramming language. This is not an item of the list; it’s the string that will initially appear on the
control.

You can run the project now and see how the ComboBox control behaves. Press F5 and wait
a few seconds. The project will be compiled, and you’ll see its form on your Desktop, on top of
the Visual Studio window. I’m sure you know how the ComboBox control behaves in a typical
Windows application, and our sample application is no exception. You can select an item on the
control, either with the mouse or with the keyboard. Click the button with the arrow to expand the
list and then select an item with the mouse. Or press the down or up arrow keys to scroll through
the list of items. The control isn’t expanded, but each time you click an arrow button, the next or
previous item in the list appears on the control. Press the Tab key to move the focus to the Button
control and press the spacebar to emulate a Click event (or simply click the Button control).

We haven’t told the application what to do when the button is clicked, so let’s go back and
add some code to the project. Stop the application by clicking the Stop button on the toolbar (the
solid black square) or by choosing Debug� Stop Debugging from the main menu. When the form
appears in design mode, double-click the button, and the code window will open, displaying an
empty Click event handler. Insert the statements shown in Listing 1.2 between the Private Sub
and End Sub statements.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 17

CREATING YOUR FIRST VB APPLICATION 17

Listing 1.2: The Revised Click Event Handler

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = ComboBox1.Text
If language = ”Visual Basic” Then

MsgBox(”We have a winner!”)
Else

MsgBox(language & ”is not a bad language.”)
End If

End Sub

When the form is first displayed, a string that doesn’t correspond to a language is displayed
in the ComboBox control. We can preselect one of the items from within our code when the form
is first loaded. When a form is loaded, the Load event of the Form object is raised. Double-click
somewhere on the form and the editor will open the form’s Load event handler:

Private Sub Form1 Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Enter the following code to select the item Visual Basic when the form is loaded:

Private Sub Form1 Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

ComboBox1.SelectedIndex = 2
End Sub

SelectedIndex is a property of the ComboBox control that determines the selected item. You
can set it to an integer value from within your code to select an item on the control, and you can
also use it to retrieve the index of the selected item in the list. Instead of comparing strings, we
can compare the SelectedIndex property to the value that corresponds to the index of the item
Visual Basic, with a statement such as the following:

If ComboBox1.SelectedIndex = 2 Then
MsgBox(”We have a winner!”)

Else
MsgBox(ComboBox1.Text & ”is not a bad language.”)

End If

The Text property of the ComboBox control returns the text on the control, and we use it to
print the selected language’s name. Of course, if you insert or remove items from the list, you
must edit the code accordingly. If you run the application and test it thoroughly, you’ll realize

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 18

18 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

that there’s a problem with the ComboBox control. Users can type a new string in the control,
which will be interpreted as a language. By default, the ComboBox control allows users to type in
something, in addition to selecting an item from the list. To change the control’s behavior, select
it on the form and locate its DisplayStyle property in the Properties window. Expand the list of
possible settings for the control and change the property’s value from DropDown to DropDown-
List. Run the application again and test it; our sample application has become bulletproof. It’s a
simple application, but you’ll see more techniques for building robust applications in Chapter 4,
‘‘GUI Design and Event-Driven Programming.’’

The controls on the Toolbox are more than nice pictures we place on our forms. They encapsu-
late a lot of functionality and expose properties that allow us to adjust their appearance and their
functionality. Most properties are usually set at design time, but quite frequently we change the
properties of various controls from within our code.

Now that you’re somewhat familiar with the process of building Windows applications, and
before you look into any additional examples, I will quickly present the components of the Visual
Studio IDE.

Understanding the IDE Components
The IDE of Visual Studio 2008 contains numerous components, and it will take you a while to
explore them. It’s practically impossible to explain in a single chapter what each tool, window, and
menu command does. We’ll discuss specific tools as we go along and as the topics get more
and more advanced. In this section, I will go through the basic items of the IDE — the ones we’ll
use in the following few chapters to build simple Windows applications.

The IDE Menu
The IDE menu provides the following commands, which lead to submenus. Notice that most
menus can also be displayed as toolbars. Also, not all options are available at all times. The options
that cannot possibly apply to the current state of the IDE are either invisible or disabled. The Edit
menu is a typical example. It’s quite short when you’re designing the form and quite lengthy when
you edit code. The Data menu disappears altogether when you switch to the code editor — you
can’t use the options of this menu while editing code. If you open an XML document in the IDE,
the XML command will be added to the main menu of Visual Studio.

File Menu

The File menu contains commands for opening and saving projects or project items, as well as
commands for adding new or existing items to the current project. For the time being, use the
New � Project command to create a new project, Open � Project/Solution to open an existing
project or solution, Save All to save all components of the current project, and the Recent Projects
submenu to open one of the recent projects.

Edit Menu

The Edit menu contains the usual editing commands. Among these commands are the Advanced
command and the IntelliSense command. Both commands lead to submenus, which are discussed
next. Note that these two items are visible only when you’re editing your code, and are invisible
while you’re designing a form.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 19

UNDERSTANDING THE IDE COMPONENTS 19

Edit � Advanced Submenu

The more-interesting options of the Edit � Advanced submenu are the following:

View White Space Space characters (necessary to indent lines of code and make it easy to
read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, the line is
automatically wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your
code’s statements to document your application. Every line that begins with a single quote
is a comment; it is part of the code, but the compiler ignores it. Sometimes, we want to dis-
able a few lines from our code but not delete them (because we want to be able to restore
them later). A simple technique to disable a line of code is to comment it out (insert the com-
ment symbol in front of the line). This command allows you to comment (or uncomment)
large segments of code in a single move.

Edit � IntelliSense Submenu

The Edit � IntelliSense menu item leads to a submenu with five options, which are described
next. IntelliSense is a feature of the editor (and of other Microsoft applications) that displays as
much information as possible, whenever possible. When you type the name of a control and the
following period, IntelliSense displays a list of the control’s properties and methods, so that you
can select the desired one, rather than guessing its name. When you type the name of a function
and the opening parenthesis, IntelliSense will display the syntax of the function — its arguments.
The IntelliSense submenu includes the following options:

List Members When this option is on, the editor lists all the members (properties, methods,
events, and argument list) in a drop-down list. This list will appear when you enter the name of
an object or control followed by a period. Then you can select the desired member from the list
with the mouse or with the keyboard. Let’s say your form contains a control named TextBox1
and you’re writing code for this form. When you enter the name of the control followed by
a period (TextBox1.), a list with the members of the TextBox control will appear (as seen in
Figure 1.12).

In addition, a description of the selected member is displayed in a ToolTip box, as you can
see in the same figure. Select the Text property and then enter the equal sign, followed by a
string in quotes, as follows:

TextBox1.Text = ”Your User Name”

If you select a property that can accept a limited number of settings, you will see the names
of the appropriate constants in a drop-down list. If you enter the following statement, you will
see the constants you can assign to the property (see Figure 1.13):

TextBox1.TextAlign =

Again, you can select the desired value with the mouse. The drop-down list with the members
of a control or object (the Members list) remains open until you type a terminator key (the Esc
or End key) or select a member by pressing the space bar or the Enter key.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 20

20 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.12

Viewing the members
of a control in the
IntelliSense
drop-down list

Figure 1.13

Viewing the possible
settings of a prop-
erty in the IntelliSense
drop-down list

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 21

UNDERSTANDING THE IDE COMPONENTS 21

Parameter Info While editing code, you can move the pointer over a variable, method, or
property and see its declaration in a yellow pop-up box. You can also jump to the variable’s
definition or the body of a procedure by choosing Go To Definition from the context menu that
will appear if you right-click the variable or method name in the code window.

Quick Info This is another IntelliSense feature that displays information about commands
and functions. When you type the opening parenthesis following the name of a function, for
example, the function’s arguments will be displayed in a ToolTip box (a yellow horizontal box).
The first argument appears in bold font; after entering a value for this argument, the next one is
shown in bold. If an argument accepts a fixed number of settings, these values will appear in a
drop-down list, as explained previously.

Complete Word The Complete Word feature enables you to complete the current word by
pressing Ctrl+spacebar. For example, if you type TextB and then press Ctrl+spacebar, you
will see a list of words that you’re most likely to type (TextBox, TextBox1, and so on).

Insert Snippet This command opens the Insert Snippet window at the current location in the
code editor window. Code snippets, which are an interesting feature of Visual Studio 2008, are
discussed in the section ‘‘Using Code Snippets’’ later in this chapter.

Edit � Outlining Submenu

A practical application contains a substantial amount of code in a large number of event han-
dlers and custom procedures (subroutines and functions). To simplify the management of the
code window, the Outlining submenu contains commands that collapse and expand the various
procedures.

Let’s say you’re finished editing the Click event handlers of several buttons on the form. You
can reduce these event handlers to a single line that shows the names of the procedures and a
plus sign in front of them. You can expand a procedure’s listing at any time by clicking the plus
sign in front of its name. When you do so, a minus sign appears in front of the procedure’s name,
and you can click it to collapse the body of the procedure again. The Outlining submenu contains
commands to handle the outlining of the various procedures, or turn off outlining and view the
complete listings of all procedures. You will use these commands as you write applications with
substantial amounts of code:

Toggle Outlining Expansion This option lets you change the outline mode of the current
procedure. If the procedure’s definition is collapsed, the code is expanded, and vice versa.

Toggle All Outlining This option is similar to the Toggle Outlining Expansion option, but
it toggles the outline mode of the current document. A form is reduced to a single statement.
A file with multiple classes is reduced to one line per class.

Stop Outlining This option turns off outlining and adds a new command to the
Outlining submenu, Start Automatic Outlining, which you can select to turn on automatic
outlining again.

Collapse To Definitions This option reduces the listing to a list of procedure headers.

View Menu

This menu contains commands to display any toolbar or window of the IDE. You have already
seen the Toolbars menu (in the ‘‘Starting a New Project’’ section). The Other Windows command
leads to a submenu with the names of some standard windows, including the Output and Com-
mand windows. The Output window is the console of the application. The compiler’s messages,

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 22

22 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

for example, are displayed in the Output window. The Command window allows you to enter
and execute statements. When you debug an application, you can stop it and enter VB statements
in the Command window.

Project Menu

This menu contains commands for adding items to the current project (an item can be a form, a file,
a component, or even another project). The last option in this menu is the Project Properties com-
mand, which opens the project’s Properties Pages. The Add Reference and Add Web Reference
commands allow you to add references to .NET components and web components, respectively.

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic com-
mands in this menu are Build and Rebuild All. The Build command compiles (builds the exe-
cutable) of the entire solution, but it doesn’t compile any components of the project that haven’t
changed since the last build. The Rebuild All command does the same, but it clears any existing
files and builds the solution from scratch.

Debug Menu

This menu contains commands to start or end an application, as well as the basic debugging tools.
The basic commands of this menu are discussed briefly in Chapter 4 and in Appendix B.

Data Menu

This menu contains commands you will use with projects that access data. You’ll see how to
use this short menu’s commands in the discussion of the visual database tools in Chapters 21 and
22 of the book.

Format Menu

The Format menu, which is visible only while you design a Windows or web form, contains
commands for aligning the controls on the form. The commands of this menu are discussed in
Chapter 4. The Format menu is invisible when you work in the code editor — its commands apply
to the visible elements of the interface.

Tools Menu

This menu contains a list of useful tools, such as the Macros command, which leads to a submenu
with commands for creating macros. Just as you can create macros in a Microsoft Office applica-
tion to simplify many tasks, you can create macros to automate many of the repetitive tasks you
perform in the IDE. The last command in this menu, the Options command, leads to the Options
dialog box, in which you can fully customize the environment. The Choose Toolbox Items com-
mand opens a dialog box that enables you to add more controls to the Toolbox. In Chapter 12,
‘‘Building Custom Windows Controls,’’ you’ll learn how to design custom controls and add them
to the Toolbox.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of open
windows, it also contains the Hide command, which hides all toolboxes, leaving the entire

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 23

UNDERSTANDING THE IDE COMPONENTS 23

window of the IDE devoted to the code editor or the Form Designer. The toolboxes don’t dis-
appear completely; they’re all retracted, and you can see their tabs on the left and right edges of
the IDE window. To expand a toolbox, just hover the mouse pointer over the corresponding tab.

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic
Help window, which is populated with topics that apply to the current operation. The Index
command opens the Index window, in which you can enter a topic and get help on the specific
topic.

Toolbox Window
The Toolbox window contains all the controls you can use to build your application’s interface.
This window is usually retracted, and you must move the pointer over it to view the Toolbox. The
controls in the Toolbox are organized in various tabs, so take a look at them to become familiar
with the controls and their functions.

In the first few chapters, we’ll work with the controls in the Common Controls and Menus &
Toolbars tabs. The Common Controls tab contains the icons of the most common Windows con-
trols. The Data tab contains the icons of the objects you will use to build data-driven applications
(they’re explored later in this book). The Dialogs tab contains controls for implementing the com-
mon dialog controls, which are so common in Windows interfaces; they’re discussed in Chapter 8,
‘‘More Windows Controls.’’

Solution Explorer Window
The Solution Explorer window contains a list of the items in the current solution. A solution can
contain multiple projects, and each project can contain multiple items. The Solution Explorer
displays a hierarchical list of all the components, organized by project. You can right-click any
component of the project and choose Properties in the context menu to see the selected com-
ponent’s properties in the Properties window. If you select a project, you will see the Project
Properties dialog box. You will find more information on project properties in the following
chapter.

If the solution contains multiple projects, you can right-click the project you want to become
the startup form and select Set As StartUp Project. You can also add items to a project with the
Add Item command of the context menu, or remove a component from the project with the
Exclude From Project command. This command removes the selected component from the project,
but doesn’t affect the component’s file on the disk. The Delete command removes the selected
component from the project and also deletes the component’s file from the disk.

Properties Window
This window (also known as the Properties Browser) displays all the properties of the selected
component and its settings. Every time you place a control on a form, you switch to this window
to adjust the appearance of the control. You have already seen how to manipulate the properties
of a control through the Properties window.

Many properties are set to a single value, such as a number or a string. If the possible settings
of a property are relatively few, they’re displayed as meaningful constants in a drop-down list.
Other properties are set through a more elaborate interface. Color properties, for example, are set
from within a Color dialog box that’s displayed right in the Properties window. Font properties
are set through the usual Font dialog box. Collections are set in a Collection Editor dialog box,

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 24

24 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

in which you can enter one string for each item of the collection, as you did for the items of the
ComboBox control earlier in this chapter.

If the Properties window is hidden, or if you have closed it, you can either choose View �
Properties Window, or right-click a control on the form and choose Properties. Or you can simply
press F4 to bring up this window. There will be times when a control might totally overlap another
control, and you won’t be able to select the hidden control and view its properties. In this case,
you can select the desired control in the ComboBox at the top of the Properties window. This box
contains the names of all the controls on the form, and you can select a control on the form by
selecting its name on this box.

Output Window
The Output window is where many of the tools, including the compiler, send their output. Every
time you start an application, a series of messages is displayed in the Output window. These
messages are generated by the compiler, and you need not understand them at this point. If the
Output window is not visible, choose View � Other Windows � Output from the menu.

Command and Immediate Windows
While testing a program, you can interrupt its execution by inserting a so-called breakpoint. When
the breakpoint is reached, the program’s execution is suspended, and you can execute a statement
in the Immediate window. Any statement that can appear in your VB code can also be executed in
the Immediate window. To evaluate an expression, enter a question mark followed by the expres-
sion you want to evaluate, as in the following samples, where result is a variable in the program
you interrupted:

? Math.Log(35)
? ”The answer is ” & result.ToString

You can also send output to this window from within your code with the Debug.Write and
Debug.WriteLine methods. Actually, this is a widely used debugging technique — to print the
values of certain variables before entering a problematic area of the code. There are more elaborate
tools to help you debug your application, and you’ll find a discussion in Appendix B, but printing
a few values to the Immediate window is a time-honored practice in programming with VB.

In many of the examples of this book, especially in the first few chapters, I use the Debug.
WriteLine statement to print something to the Immediate window. To demonstrate the use of the
DateDiff() function, for example, I’ll use a statement like the following:

Debug.WriteLine(DateDiff(DateInterval.Day, #3/9/2007#, #5/15/2008#))

When this statement is executed, the value 433 will appear in the Immediate window. This
statement demonstrates the syntax of the DateDiff() function, which returns the difference
between the two dates in days. Sending some output to the Immediate window to test a function
or display the results of intermediate calculations is a common practice.

To get an idea of the functionality of the Immediate window, switch back to your first sample
application and insert the Stop statement after the End If statement in the button’s Click event
handler. Run the application, select a language, and click the button on the form. After displaying
a message box, the application will reach the Stop statement and its execution will be suspended.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 25

SETTING ENVIRONMENT OPTIONS 25

You’ll see the Immediate window at the bottom of the IDE. If it’s not visible, open the Debug menu
and choose Windows � Immediate. In the Immediate window, enter the following statement:

? ComboBox1.Items.Count

Then press Enter to execute it. Notice that IntelliSense is present while you’re typing in the Imme-
diate window. The expression prints the number of items in the ComboBox control. (Don’t worry
about the numerous properties of the control and the way I present them here; they’re discussed
in detail in Chapter 6, ‘‘Basic Windows Controls.’’) As soon as you press Enter, the value 5 will be
printed on the following line.

You can also manipulate the controls on the form from within the Immediate window. Enter
the following statement and press Enter to execute it:

ComboBox1.SelectedIndex = 4

The fifth item on the control will be selected (the indexing of the items begins with 0). How-
ever, you can’t see the effects of your changes, because the application isn’t running. Press F5 to
resume the execution of the application and you will see that the item Cobol is now selected in the
ComboBox control.

The Immediate window is available only while the application’s execution is suspended. To
continue experimenting with it, click the button on the form to evaluate your choice. When the
Stop statement is executed again, you’ll be switched to the Immediate window.

Unlike the Immediate window, the Command window is available at design time. The Com-
mand window allows you to access all the commands of Visual Studio by typing their names in
this window. If you enter the string Edit followed by a period, you will see a list of all commands
of the Edit menu, including the ones that are not visible at the time, and you can invoke any of
these commands and pass arguments to them. For example, if you enter Edit.Find ”Margin” in
the Command window and then press Enter, the first instance of the string Margin will be located
in the open code window. To start the application, you can type Debug.Start. You can add a new
project to the current solution with the AddProj command, and so on. Most developers hardly
ever use this window in designing or debugging applications.

Error List Window
This window is populated by the compiler with error messages, if the code can’t be successfully
compiled. You can double-click an error message in this window, and the IDE will take you to the
line with the statement in error — which you should fix. Change the MsgBox() function name to
MssgBox(). As soon as you leave the line with the error, the name of the function will be under-
lined with a wiggly red line and the following error description will appear in the Error List
window:

Name ’MssgBox’ is not declared

Setting Environment Options
The Visual Studio IDE is highly customizable. I will not discuss all the customization options here,
but I will show you how to change the default settings of the IDE. Open the Tools menu and select
Options (the last item in the menu). The Options dialog box appears, in which you can set all the

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 26

26 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

options regarding the environment. Figure 1.14 shows the options for the fonts of the various
items of the IDE. Here you can set the font for the Text Editor, dialog boxes, toolboxes, and so on.
Select an item in the tree in the left pane list and then set the font for this item in the box below.

Figure 1.14

The Fonts And Colors
options

Figure 1.15 shows the Projects And Solutions options. The top box indicates the default location
for new projects. The Save New Projects When Created check box determines whether the editor
will create a new folder for the project when it’s created. If you uncheck this box, then Visual
Studio will create a folder in the Temp folder. Projects in the Temp folder will be removed when
you run the Disk Cleanup utility to claim more space on your hard drives.

Figure 1.15

The Projects And Solu-
tions options

By default, Visual Studio saves the changes to the current project every time you press F5. You
can change this behavior by setting the Before Building option in the Build And Run page, under
the Project And Solutions branch. If you change this setting, you must save your project from time
to time with the File � Save All command.

Most of the tabs in the Options dialog box are straightforward, and you should take a look at
them. If you don’t like some of the default aspects of the IDE, this is the place to change them. If

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 27

BUILDING A CONSOLE APPLICATION 27

you switch to the Basic item under the Text Editor branch of the tree in the left pane of the Options
dialog box, you will find the Line Numbers option. Select this check box to display numbers
in front of each line in the code window. The Options dialog box contains a lot of options for
customizing your work environment, and it’s worth exploring on your own.

Building a Console Application
Apart from Windows applications, you can use Visual Studio 2008 to build applications that run
in a command prompt window. The command prompt window isn’t really a DOS window, even
though it looks like one. It’s a text window, and the only way to interact with an application is to
enter lines of text and read the output generated by the application, which is displayed in this text
window, one line at a time. This type of application is called a console application, and I’m going
to demonstrate console applications with a single example. We will not return to this type of
application later in the book because it’s not what you’re supposed to do as a Windows developer.

The console application you’ll build in this section, ConsoleApplication1, prompts the user to
enter the name of her favorite language. It then prints the appropriate message on a new line, as
shown in Figure 1.16.

Figure 1.16

A console application
uses the command
prompt window to inter-
act with the user.

Start a new project. In the New Project dialog box, select the template Console Application. You
can also change its default name from ConsoleApplication1 to a more descriptive name. For this
example, don’t change the application’s name.

A console application doesn’t have a user interface, so the first thing you’ll see is the code
editor’s window with the following statements:

Module Module1

Sub Main()

End Sub

End Module

Unlike a Windows application, which is a class, a console application is a module. Main() is
the name of a subroutine that’s executed automatically when you run a console application. The
code you want to execute must be placed between the statements Sub Main() and End Sub. Insert
the statements shown in Listing 1.3 in the application’s Main() subroutine.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 28

28 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Listing 1.3: Console Application

Module Module1
Sub Main()

Console.WriteLine(”Enter your favorite language”)
Dim language As String
language = Console.ReadLine()
language = language.ToUpper
If language = ”VISUAL BASIC” Or

language = ”VB” Or
language = ”VB.NET” Then

Console.WriteLine(”We have a winner!”)
Else

Console.WriteLine(language & ”is not a bad language.”)
End If
Console.WriteLine()
Console.WriteLine()
Console.WriteLine(”PRESS ENTER TO EXIT”)
Console.ReadLine()

End Sub
End Module

This code is quite similar to the code of the equivalent Windows applications we developed
earlier, except that it uses the Console.WriteLine statement to send its output to the command
prompt window instead of a message box.

A console application doesn’t react to events because it has no visible interface. However, it’s
easy to add some basic elements of the Windows interface to a console application. If you change
the Console.WriteLine method call into the MsgBox() function, the message will be displayed in
a message box.

The reason to build a console application is to test a specific feature of the language without
having to build a user interface. Many of the examples in the documentation are console applica-
tions; they demonstrate the topic at hand and nothing more. If you want to test the DateDiff()
function, for example, you can create a new console application and enter the lines of Listing 1.4
in its Main() subroutine.

Listing 1.4: Testing the DateDiff() Function with a Console Application

Sub Main()
Console.WriteLine(DateDiff(DateInterval.Day, #3/9/2000#, #5/15/2008#))
Console.WriteLine(”PRESS ENTER TO EXIT”)
Console.ReadLine()

End Sub

The last two lines will be the same in every console application you write. Without them, the
command prompt window will close as soon as the End Sub statement is reached, and you won’t

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 29

USING CODE SNIPPETS 29

have a chance to see the result. The Console.ReadLine method waits until the user presses the
Enter key.

Console applications are convenient for testing short code segments, but Windows program-
ming is synonymous with designing graphical user interfaces, so you won’t find any more console
applications in this book.

Using Code Snippets
Visual Basic 2008 comes with a lot of predefined code snippets for selected actions, and you can
insert these snippets in your code as needed. Let’s say you want to insert the statements for writing
some text to a file, but you have no idea how to access files. Create an empty line in the listing
(press the Enter key a couple of times at the end of a code line). Then open the Edit menu and
choose IntelliSense � Insert Snippet (or right-click somewhere in the code window and choose
Insert Snippet from the context menu).

You will see on the screen a list of the snippets, organized in folders according to their function,
as shown in Figure 1.17. Select the fundamentals folder, which will display another list of options:
collections and arrays, datatypes, filesystem, and math. Double-click the filesystem item to see a list of
common file-related tasks, as shown in Figure 1.18. Locate the item Write Text To A File in the list
and double-click it to insert the appropriate snippet at the current location in the code window.

Figure 1.17

The code snippets orga-
nized according to their
function

The following snippet will be inserted in your code:

My.Computer.FileSystem.WriteAllText(”C:\test.txt”, ”Text”, True)

To write some text to a file, you need to call the WriteAllText method of the My.Computer
.FileSystem object. You can replace the strings shown in the snippet with actual values. The first
string is the filename, the second string is the text to be written to the file, and the last argument
of the method determines whether the text will be appended to the file (if False) or will overwrite
any existing text (if True).

The snippet shows you the basic statements for performing a common task, and you can edit
the code inserted by Visual Studio as needed. A real-world application would probably prompt

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 30

30 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

the user for a filename via the File common dialog box and then use the filename specified by the
user in the dialog box, instead of a hard-coded file name.

Figure 1.18

Selecting a code snippet
to insert in your code

As you program, you should always try to find out whether there’s a snippet for the task at
hand. Sometimes you can use a snippet without even knowing how it works. Although snippets
can simplify your life, they won’t help you understand the Framework, which is discussed in
detail throughout this book.

Using the My Object
You have probably noticed that the code snippets of Visual Studio use an entity called My, which
is a peculiar object that was introduced with VB 2005 to simplify many programming tasks. As
you saw in the preceding code snippet, the My object allows you to write some text to a file with
a single statement, the WriteAllText method. If you’re familiar with earlier versions of Visual
Basic, you know that you must first open a file, and then write some text to it, and finally close the
file. The My object allows you to perform all these operations with a single statement, as you saw
in the preceding example.

Another example is the Play method, which you can use to play back a WAV file from within
your code:

My.Computer.Audio.Play (”C:\Sounds\CountDown.wav”)

You can also use the following expression to play back a system sound:

My.Computer.Audio.PlaySystemSound(System.Media.SystemSounds.Exclamation)

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 31

USING THE MY OBJECT 31

The method that plays back the sound is the Play method, and the method that writes text to
a file is the WriteAllText method. However, you can’t call them directly through the My object;
they’re not methods of the My object. If they were, you’d have to dig hard to find out the method
you need. The My object exposes six components, which contain their own components. Here’s a
description of the basic components of the My object and the functionality you should expect to
find in each component:

My.Application The Application component provides information about the current appli-
cation. The CommandLineArgs property of My.Application returns a collection of strings, which
are the arguments passed to the application when it was started. Typical Windows applications
aren’t called with command-line arguments, but it’s possible to start an application and pass a
filename as an argument to the application (the document to be opened by the application, for
example). The Info property is an object that exposes properties such as DirectoryPath (the
application’s default folder), ProductName, Version, and so on.

Computer This component of the My object exposes a lot of functionality via a number of
properties, many of which are objects. The My.Computer.Audio component lets you play back
sounds. The My.Computer.Clipboard component lets you access the Clipboard. To find out
whether the Clipboard contains a specific type of data, use the ContainsText, ContainsImage,
ContainsData, and ContainsAudio methods. To retrieve the contents of the Clipboard, use
the GetText, GetImage, GetData, and GetAudioStream methods. Assuming that you have
a form with a TextBox control and a PictureBox control, you can retrieve text or image data
from the Clipboard and display it on the appropriate control with the following statements:

If My.Computer.Clipboard.ContainsImage Then
PictureBox1.Image = My.Computer.Clipboard.GetImage

End If
If My.Computer.Clipboard.ContainsText Then

TextBox2.Text = My.Computer.Clipboard.GetText
End If

You may have noticed that using the My object in your code requires that you write long
statements. You can shorten them substantially via the With statement, as shown next:

With My.Computer.Clipboard
If .ContainsImage Then

PictureBox1.Image = .GetImage
End If
If .ContainsText Then

TextBox2.Text = .GetText
End If

End With

When you’re executing multiple statements on the same object, you can specify the object in
a With statement and call its methods in the block of the With statement by specifying the
method name prefixed with a period. The With statement is followed by the name of the object
to which all following methods apply, and is terminated with the End With statement.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 32

32 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Another property of the My.Computer component is the FileSystem object that exposes all
the methods you need to access files and folders. If you enter the expression My.Computer
.FileSystem followed by a period, you will see all the methods exposed by the FileSystem
component. Among them, you will find DeleteFile, DeleteDirectory, RenameFile,
RenameDirectory, WriteAllText, ReadAllText, and many more. Select a method and then
type the opening parenthesis. You will see the syntax of the method in a ToolTip. The syntax of
the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String)

Just specify the path of the file you want to copy and the new file’s name, and you’re finished.
This statement will copy the specified file to the specified location.

You will notice that the ToolTip box with the syntax of the CopyFile method has multiple ver-
sions, which are listed at the left side of the box along with arrow up and arrow down icons.
Click these two buttons to see the next and previous versions of the method. The second ver-
sion of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String,
overwrite As Boolean)

The overwrite argument specifies whether the method should overwrite the destination file if
it exists.

The third version of the method accepts a different third argument that determines whether the
usual copy animation will be displayed as the file is being copied.

The various versions of the same method differ in the number and/or type of their arguments,
and they’re called overloaded forms of the method. Instead of using multiple method names
for the same basic operation, the overloaded forms of a method allow you to call the same
method name and adjust its behavior by specifying different arguments.

Forms This component lets you access the forms of the current application. You can also
access the application’s forms by name, so the Forms component isn’t the most useful one.

Settings This component lets you access the application settings. These settings apply to the
entire application and are stored in an XML configuration file. The settings are created from
within Visual Studio, and you use the Settings component to read them.

User This component returns information about the current user. The most important
property of the User component is the CurrentPrincipal property, which is an object that
represents the credentials of the current user.

WebServices The WebServices component represents the web services referenced by the
current application.

The My object gives beginners unprecedented programming power and allows you to perform
tasks that would require substantial code if implemented with earlier versions of the language, not
to mention the research it would take to locate the appropriate methods in the Framework. You
can explore the My object on your own and use it as needed. My is not a substitute for learning

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 33

THE BOTTOM LINE 33

the language and the Framework. It can help you initially, but you can’t go far without learning
the methods of the Framework for handling files or any other feature.

Let’s say you want to locate all the files of a specific type in a folder, including its subfolders.
Scanning a folder and its subfolders to any depth is quite a task (you’ll find the code in Chapter
15, ‘‘Accessing Folders and Files’’). You can do the same with a single statement by using the
My object:

Dim files As ReadOnlyCollection(Of String)
files = My.Computer.FileSystem.GetFiles(”D:\Data”, True, ”*.txt”)

The GetFiles method populates the files collection with the pathnames of the text files in
the folder D:\Data and its subfolders. However, it won’t help you if you want to process each file
in place. Moreover, this GetFiles method is synchronous: If the folder contains many subfolders
with many files, it will block the interface until it retrieves all the files. In Chapter 15, you’ll see the
code that retrieves filenames and adds them to a control as it goes along.

If you’re already familiar with VB, you may think that the My object is an aid for the absolute
beginner or the nonprogrammer. This isn’t true. VB is about productivity, and the My object can
help you be more productive with your daily tasks, regardless of your knowledge of the language
or programming skills. If you can use My to save a few (or a few dozen) statements, do it. There’s
no penalty for using the My object, because the compiler replaces the methods of the My object
with the equivalent method calls to the Framework.

The Bottom Line

Navigate the integrated development environment of Visual Studio. To simplify the pro-
cess of application development, Visual Studio provides an environment that’s common to
all languages, known as an integrated development environment (IDE). The purpose of the
IDE is to enable the developer to do as much as possible with visual tools, before writing code.
The IDE provides tools for designing, executing, and debugging your applications. It’s your
second desktop, and you’ll be spending most of your productive hours in this environment.

Master It Describe the basic components of the Visual Studio IDE.

Understand the basics of a Windows application. A Windows application consists of a
visual interface and code. The visual interface is what users see at runtime: a form with controls
with which the user can interact — by entering strings, checking or clearing check boxes, click-
ing buttons, and so on. The visual interface of the application is designed with visual tools. The
visual elements incorporate a lot of functionality, but you need to write some code to react to
user actions.

Master It Describe the process of building a simple Windows application.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 34

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 35

Chapter 2

Variables and Data Types

This chapter and the next discuss the fundamentals of any programming language: variables
and data types. A variable stores data, which are processed with statements. A program is a list
of statements that manipulate variables. To write even simple applications, you need a basic
understanding of some fundamental topics, such as the data types (the kind of data you can store
in a variable), the scope and lifetime of variables, and how to write procedures and pass arguments
to them. In this chapter, we’ll explore the basic data types of Visual Basic, and in the following one,
you’ll learn about procedures and flow-control statements.

If you’re new to Visual Basic, you may find some material in this chapter less than exciting. It
covers basic concepts and definitions — in general, tedious, but necessary, material. Think of this
chapter as a prerequisite for the following ones. If you need information on core features of the
language as you go through the examples in the rest of the book, you’ll probably find it here.

In this chapter, you’ll learn how to do the following:

◆ Declare and use variables

◆ Use the native data types

◆ Create custom data types

◆ Use arrays

Variables
In Visual Basic, as in any other programming language, variables store values during a program’s
execution. A variable has a name and a value. The variable UserName, for example, can have
the value Joe, and the variable Discount can have the value 0.35. UserName and Discount are
variable names, and Joe and 0.35 are their values. Joe is a string (that is, text or an alphanumeric
value), and 0.35 is a numeric value. When a variable’s value is a string, it must be enclosed in
double quotes. In your code, you can refer to the value of a variable by the variable’s name.

In addition to a name and a value, variables have a data type, which determines what kind
of values we can store to a variable. VB 2008 supports several data types (and they’re discussed
in detail later in this chapter). It’s actually the Common Language Runtime (CLR) that supports
the data types, and they’re common to all languages, not just to Visual Basic. The data type of a
variable is specified when the variable is declared, and you should always declare variables before
using them. To declare a variable, enter the Dim statement, followed by the variable’s name, the As
keyword, and the variable’s type:

Dim Amount As Decimal

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 36

36 CHAPTER 2 VARIABLES AND DATA TYPES

Decimal is a numeric data type; it can store both integer and noninteger values. For example,
the following statements calculate and display the discount for the amount of $24,500:

Dim Amount As Decimal
Dim Discount As Decimal
Dim DiscountedAmount As Decimal
Amount = 24500
Discount = 0.35
DiscountedAmount = Amount * (1 - Discount)
MsgBox(”Your price is $” & DiscountedAmount.ToString)

If you enter these statements in a button’s Click event handler to test them, the compiler may
underline the statement that assigns the value 0.35 to the Discount variable and generate an
error message. To view the error message, hover the pointer over the underlined segment of the
statement in error. This will happen if the Strict option is on. (I discuss the Strict option, along with
two more options of the compiler, later in this chapter.) By default, the Strict option is off and the
statement should generate an error.

The compiler treats any numeric value with a fractional part as a Double value and detects that
you’re attempting to assign a Double value to a Decimal variable. To convert the numeric value to
the Decimal type, use the following notation:

Discount = 0.35D

As you will see later, the D character at the end of a numeric value indicates that the value
should be treated as a Decimal value, and there are a few more type characters (see Table 2.2 later
in this chapter). I’ve used the Decimal data type here because it’s commonly used in financial
calculations. The message that this expression displays depends on the values of the Discount
and Amount variables. If you decide to offer a better discount, all you have to do is change the
value of the Discount variable. If you didn’t use the Discount variable, you’d have to make many
changes throughout your code. In other words, if you coded the line that calculated the discounted
amount as follows, you’d have to look for every line in your code that calculates discounts and
change the discount from 0.35 to another value:

DiscountedAmount = 24500 * (1 - 0.35)

By changing the value of the Discount variable in a single place in your code, the entire
program is up-to-date.

Declaring Variables
In most programming languages, variables must be declared in advance. Historically, the reason
for doing this has been to help the compiler generate the most efficient code. If the compiler knows
all the variables and their types ahead of time, it can produce the most compact and efficient, or
optimized, code. For example, when you tell the compiler that the variable Discount will hold a
number, the compiler sets aside a certain number of bytes for the Discount variable to use.

One of the most popular, yet intensely criticized, features of BASIC was that it didn’t force
the programmer to declare all variables. As you will see, there are more compelling reasons than
speed and efficiency for declaring variables. For example, when a compiler knows the types of

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 37

VARIABLES 37

variables in advance, it can catch many errors at design or compile time — errors that otherwise
would surface at runtime. When you declare a variable as Date, the compiler won’t let you assign
an integer value to it.

When programming in VB 2008, you should declare your variables because this is the default
mode, and Microsoft recommends this practice strongly. If you attempt to use an undeclared
variable in your code, VB 2008 will throw an exception. It will actually catch the error as soon
as you complete the line that uses the undeclared variable, underlining it with a wiggly line. It
is possible to change the default behavior and use undeclared variables the way most people did
with earlier versions of VB (you’ll see how this is done in the section ‘‘The Strict, Explicit, and Infer
Options,’’ later in this chapter), but all the examples in this book use explicitly declared variables.
In any case, you’re strongly encouraged to declare your variables.

To declare a variable, use the Dim statement followed by the variable’s name, the As keyword,
and its type, as follows:

Dim meters As Integer
Dim greetings As String

The first variable, meters, will store integers, such as 3 or 1,002; the second variable, greetings,
will store text. You can declare multiple variables of the same or different type in the same line, as
follows:

Dim Qty As Integer, Amount As Decimal, CardNum As String

If you want to declare multiple variables of the same type, you need not repeat the type. Just
separate all the variables of the same type with commas and set the type of the last variable:

Dim Length, Width, Height As Integer, Volume, Area As Double

This statement declares three Integer variables and two Double variables. Double variables
hold fractional values (or floating-point values, as they’re usually called) that are similar to the
Single data type, except that they can represent noninteger values with greater accuracy.

You can use other keywords in declaring variables, such as Private, Public, and Static.
These keywords are called access modifiers because they determine which sections of your code
can access the specific variables and which sections can’t. You’ll learn about these keywords in
later sections of this chapter. In the meantime, bear in mind that all variables declared with the
Dim statement exist in the module in which they were declared. If the variable Count is declared
in a subroutine (an event handler, for example), it exists only in that subroutine. You can’t access
it from outside the subroutine. Actually, you can have a Count variable in multiple procedures.
Each variable is stored locally, and they don’t interfere with one another.

Variable-Naming Conventions

When declaring variables, you should be aware of a few naming conventions. A variable’s name

◆ Must begin with a letter, followed by more letters or digits.

◆ Can’t contain embedded periods or other special punctuation symbols. The only special
character that can appear in a variable’s name is the underscore character.

◆ Mustn’t exceed 255 characters.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 38

38 CHAPTER 2 VARIABLES AND DATA TYPES

◆ Must be unique within its scope. This means that you can’t have two identically named
variables in the same subroutine, but you can have a variable named counter in many
different subroutines.

Variable names in VB 2008 are case-insensitive: myAge, myage, and MYAGE all refer to the same
variable in your code. Actually, as you enter variable names, the editor converts their casing so
that they match their declaration.

Variable Initialization

VB 2008 allows you to initialize variables in the same line that declares them. The following
statement declares an Integer variable and initializes it to 3,045:

Dim distance As Integer = 3045

This statement is equivalent to the following two:

Dim distance As Integer
distance = 3045

It is also possible to declare and initialize multiple variables, of the same or different type, on
the same line:

Dim quantity As Integer = 1, discount As Single = 0.25

Type Inference

As I mentioned earlier, one of the trademark features of BASIC, including earlier versions of Visual
Basic, was the ability to use variables without declaring them. It has never been a recommended
practice, yet VB developers loved it. This feature is coming back to the language, only in a safer
manner. VB 2008 allows you to declare variables by assigning values to them. The compiler will
infer the type of the variable from its value and will create a variable of the specific type behind
the scenes. The following statement creates an Integer variable:

Dim count = 2999

To request the variable’s type, use the GetType method. This method returns a Type object,
which represents the variable’s type. The name of the type is given by the ToString property. The
following statement will print the highlighted string in the Immediate window:

Debug.WriteLine(count.GetType.ToString)
System.Int32

The count variable is of the Integer type. If you attempt to assign a value of a different type to
this variable later in your code, such as a date, the editor will underline the value and generate
the warning Value of type ‘Date’ cannot be converted to Integer. The compiler has inferred the type
of the value assigned initially to the variable and created a variable of the same type. That’s why
subsequent statements can’t change the variable’s type. You can turn off type inference by
inserting the following statement at the top of the module:

Option Infer Off

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 39

VARIABLES 39

Alternatively, you can turn on or off this option in the project’s Properties pages. If the Infer
option is off, the compiler will handle variables declared without a specific type depending on
the Strict option. If the Strict option is off, the compiler will create an Object variable, which can
store any value, even values of different types in the course of the application. If the Strict option
is on, the compiler will reject the declaration; it will underline the variable’s name with a wiggly
line and generate the following warning: Option Strict On requires all variable declarations to have an
As clause.

For more information on the various variable declaration–related options of the compiler, see
the section ‘‘The Strict, Explicit, and Infer Options,’’ later in this chapter. In the following sections,
you’ll explore the various data types of Visual Basic, and I will use explicit declarations, which is
the recommended best practice for creating and using variables in your code.

Types of Variables
Visual Basic recognizes the following five categories of variables:

◆ Numeric

◆ String

◆ Boolean

◆ Date

◆ Object

The two major variable categories are numeric and string. Numeric variables store numbers,
and string variables store text. Object variables can store any type of data. Why bother to specify
the type if one type suits all? On the surface, using object variables might seem like a good idea,
but they have their disadvantages. Integer variables are optimized for storing integers, and date
variables are optimized for storing dates. Before VB can use an object variable, it must determine
its type and perform the necessary conversions. If the variable is declared with a specific type,
these conversions are not necessary.

We begin our discussion of variable types with numeric variables. Text is stored in string
variables, but numbers can be stored in many formats, depending on the size of the number and
its precision. That’s why there are many types of numeric variables. The String and Date data
types are much richer in terms of the functionality they expose, and are discussed in more detail
in Chapter 13, ‘‘Handling Strings, Characters, and Dates.’’

Numeric Variables

You’d expect that programming languages would use the same data type for numbers. After all,
a number is a number. But this couldn’t be further from the truth. All programming languages
provide a variety of numeric data types, including the following:

◆ Integers (there are several integer data types)

◆ Decimals

◆ Single, or floating-point numbers with limited precision

◆ Double, or floating-point numbers with extreme precision

Decimal, Single, and Double are the three basic data types for storing floating-point
numbers (numbers with a fractional part). The Double data type can represent these numbers
more accurately than the Single type and is used almost exclusively in scientific calculations.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 40

40 CHAPTER 2 VARIABLES AND DATA TYPES

The Integer data types store whole numbers. The data type of your variable can make a
difference in the results of the calculations. The proper variable types are determined by the
nature of the values they represent, and the choice of data type is frequently a trade-off
between precision and speed of execution (less-precise data types are manipulated faster).
Visual Basic supports the numeric data types shown in Table 2.1. In the Data Type column,
I show the name of each data type and the corresponding keyword in parentheses.

Integer Variables

There are three types of variables for storing integers, and they differ only in the range of numbers
each can represent. As you understand, the more bytes a type takes, the larger values it can hold.
The type of Integer variable you’ll use depends on the task at hand. You should choose the type
that can represent the largest values you anticipate will come up in your calculations. You can go
for the Long type, to be safe, but Long variables are four times as large as Short variables, and it
takes the computer longer to process them.

The statements in Listing 2.1 will help you understand when to use the various Integer data
types. Each numeric data type exposes the MinValue and MaxValue properties, which return the
minimum and maximum values, respectively, that can be represented by the corresponding data
type. Values of the Short (Int16) type can be stored in Integer (Int32) and Long (Int64) variables,
but the reverse is not true. If you attempt to store a Long value to an Integer variable, an error will
be generated and the compiler will underline the offending line with a wiggly line. I have included
comments after each statement to explain the errors produced by some of the statements.

Listing 2.1: Experimenting with the Ranges of Numeric Variables

Dim shortInt As Int16
Dim Int As Int32
Dim longInt As Int64
Debug.WriteLine(Int16.MinValue)
Debug.WriteLine(Int16.MaxValue)
Debug.WriteLine(Int32.MinValue)
Debug.WriteLine(Int32.MaxValue)
Debug.WriteLine(Int64.MinValue)
Debug.WriteLine(Int64.MaxValue)
shortInt = Int16.MaxValue + 1
’ ERROR, exceeds the maximum value of the Short data type
Int = Int16.MaxValue + 1
’ OK, is within the range of the Integer data type
Int = Int32.MaxValue + 1
’ ERROR, exceeds the maximum value of the Integer data type
Int = Int32.MinValue - 1
’ ERROR, exceeds the minimum value of the Integer data type
longInt = Int32.MaxValue + 1
’ OK, is within the range of the Long data type
longInt = Int64.MaxValue + 1
’ ERROR, exceeds the range of all Integer data types

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 41

VARIABLES 41

Table 2.1: Visual Basic Numeric Data Types

Data Type Memory Representation Stores

Byte (Byte) 1 byte Integers in the range 0 to 255.

Signed Byte (SByte) 1 byte Integers in the range −128 to 127.

Short (Int16) 2 bytes Integer values in the range −32,768
to 32,767.

Integer (Int32) 4 bytes Integer values in the range
−2,147,483,648 to 2,147,483,647.

Long (Int64) 8 bytes Integer values in the range
−9,223,372,036,854,755,808 to
9,223,372,036,854,755,807.

Unsigned Short (UShort) 2 bytes Positive integer values in the range 0
to 65,535.

Unsigned Integer (UInteger) 4 bytes Positive integers in the range 0 to
4,294,967,295.

Unsigned Long (ULong) 8 bytes Positive integers in the range 0 to
18,446,744,073,709,551,615.

Single Precision (Single) 4 bytes Single-precision floating-point
numbers. It can represent negative
numbers in the range −3.402823E38
to −1.401298E-45 and positive
numbers in the range 1.401298E-45
to 3.402823E38. The value 0 can’t
be represented precisely (it’s a
very, very small number, but not
exactly 0).

Double Precision (Double) 8 bytes Double-precision floating-point
numbers. It can represent negative
numbers in the range
−1.79769313486232E308 to
−4.94065645841247E-324 and
positive numbers in the range
4.94065645841247E-324 to
1.79769313486232E308.

Decimal (Decimal) 16 bytes Integer and floating-point numbers
scaled by a factor in the range from
0 to 28. See the description of the
Decimal data type for the range of
values you can store in it.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 42

42 CHAPTER 2 VARIABLES AND DATA TYPES

The six WriteLine statements will print the minimum and maximum values you can represent
with the various Integer data types. The following statement attempts to assign to a Short integer
variable a value that exceeds the largest possible value you can represent with the Short data type,
and it will generate an error. The editor will underline the incorrect statement, and if you hover
the pointer over the statement, you’ll see the error description: Constant expression not representable
in type Short. If you attempt to store the same value to an Integer variable, there will be no problem
because this value is well within the range of the Integer data type.

The next two statements attempt to store to an Integer variable two values that are also outside
of the range that an integer can represent. The first value exceeds the range of positive values, and
the second exceeds the range of negative values. If you attempt to store these values to a Long
variable, there will be no problem. If you exceed the range of values that can be represented by
the Long data type, you’re out of luck. This value can’t be represented as an integer, and you must
store it in one of the variable types discussed in the next sections.

Single- and Double-Precision Numbers

The names Single and Double come from single-precision and double-precision numbers.
Double-precision numbers are stored internally with greater accuracy than single-precision
numbers. In scientific calculations, you need all the precision you can get; in those cases, you
should use the Double data type.

The result of the operation 1 / 3 is 0.333333. . . (an infinite number of digits 3). You could fill
256 MB of RAM with 3 digits, and the result would still be truncated. Here’s a simple example that
demonstrates the effects of truncation:

In a button’s Click event handler, declare two variables as follows:

Dim a As Single, b As Double

Then enter the following statements:

a = 1 / 3
Debug.WriteLine(a)

Run the application, and you should get the following result in the Output window:

.3333333

There are seven digits to the right of the decimal point. Break the application by pressing
Ctrl+Break and append the following lines to the end of the previous code segment:

a = a * 100000
Debug.WriteLine(a)

This time, the following value will be printed in the Output window:

33333.34

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 43

VARIABLES 43

The result is not as accurate as you might have expected initially — it isn’t even rounded
properly. If you divide a by 100,000, the result will be

0.3333334

This number is different from the number we started with (0.3333333). The initial value was
rounded when we multiplied it by 100,000 and stored it in a Single variable. This is an important
point in numeric calculations, and it’s called error propagation. In long sequences of numeric calcu-
lations, errors propagate. Even if you can tolerate the error introduced by the Single data type in a
single operation, the cumulative errors might be significant.

Let’s perform the same operations with double-precision numbers, this time using the
variable b. Add these lines to the button’s Click event handler:

b = 1 / 3
Debug.WriteLine(b)
b = b * 100000
Debug.WriteLine(b)

This time, the following numbers are displayed in the Output window:

0.333333333333333
33333.3333333333

The results produced by the double-precision variables are more accurate.
Why are such errors introduced in our calculations? The reason is that computers store

numbers internally with two digits: zero and one. This is very convenient for computers
because electronics understand two states: on and off. As a matter of fact, all the statements
are translated into bits (zeros and ones) before the computer can understand and execute them.
The binary numbering system used by computers is not much different from the decimal system
we humans use; computers just use fewer digits. We humans use 10 different digits to represent
any number, whole or fractional, because we have 10 fingers (in effect, computers count with
just two fingers). Just as with the decimal numbering system, in which some numbers can’t be
precisely represented, there are also numbers that can’t be represented precisely in the binary
system.

Let me give you a more illuminating example. Create a single-precision variable, a, and a
double-precision variable, b, and assign the same value to them:

Dim a As Single, b As Double
a = 0.03007
b = 0.03007

Then print their difference:

Debug.WriteLine(a-b)

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 44

44 CHAPTER 2 VARIABLES AND DATA TYPES

If you execute these lines, the result won’t be zero! It will be −6.03199004634014E-10. This is
a very small number that can also be written as 0.000000000603199004634014. Because different
numeric types are stored differently in memory, they don’t quite match. What this means to you
is that all variables in a calculation should be of the same type.

Eventually, computers will understand mathematical notation and will not convert all numeric
expressions into values, as they do today. If you multiply the expression 1/3 by 3, the result
should be 1. Computers, however, must convert the expression 1/3 into a value before they can
multiply it by 3. Because 1/3 can’t be represented precisely, the result of the (1/3) × 3 will not be
exactly 1. If the variables a and b are declared as Single or Double, the following statements will
print 1:

a = 3
b = 1 / a
Debug.WriteLine(a * b)

If the two variables are declared as Decimal, however, the result will be a number very close
to 1, but not exactly 1 (it will be 0.9999999999999999999999999999 — there are 28 digits after the
decimal point).

The Decimal Data Type

Variables of the Decimal type are stored internally as integers in 16 bytes and are scaled by a power
of 10. The scaling power determines the number of decimal digits to the right of the floating point,
and it’s an integer value from 0 to 28. When the scaling power is 0, the value is multiplied by
100, or 1, and it’s represented without decimal digits. When the scaling power is 28, the value is
divided by 1028 (which is 1 followed by 28 zeros — an enormous value), and it’s represented with
28 decimal digits.

The largest possible value you can represent with a Decimal value is an integer: 79,228,162,
514,264,337,593,543,950,335. The smallest number you can represent with a Decimal variable is
the negative of the same value. These values use a scaling factor of 0. When the scaling factor
is 28, the largest value you can represent with a Decimal variable is quite small, actually. It’s
7.9228162514264337593543950335 (and the smallest value is the same with a minus sign). This
is a very small numeric value (not quite 8), but it’s represented with extreme accuracy. The
number zero can’t be represented precisely with a Decimal variable scaled by a factor of 28.
The smallest positive value you can represent with the same scaling factor is 0.00. . .01
(there are 27 zeros between the decimal period and the digit 1) — an extremely small value,
but still not quite zero. The more accuracy you want to achieve with a Decimal variable, the
smaller the range of available values you have at your disposal — just as with everything else
in life.

When using decimal numbers, the compiler keeps track of the decimal digits (the digits
following the decimal point) and treats all values as integers. The value 235.85 is represented
as the integer 23585, but the compiler knows that it must scale down the value by 100 when
it finishes using it. Scaling down by 100 (that is, 102) corresponds to shifting the decimal
point by two places. First, the compiler multiplies this value by 100 to make it an integer. Then,
it divides it by 100 to restore the original value. Let’s say that you want to multiply the following
values:

328.558 * 12.4051

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 45

VARIABLES 45

First, you must turn them into integers. You must remember that the first number has three
decimal digits, and the second number has four decimal digits. The result of the multiplication
will have seven decimal digits. So you can multiply the following integer values:

328558 * 124051

and then treat the last seven digits of the result as decimals. Use the Windows Calculator (in
the Scientific view) to calculate the previous product. The result is 40,757,948,458. The actual
value after taking into consideration the decimal digits is 4,075.7948458. This is how the compiler
manipulates the Decimal data type. Insert the following lines in a button’s Click event handler
and execute the program:

Dim a As Decimal = 328.558D
Dim b As Decimal = 12.4051D
Dim c As Decimal
c = a * b
Debug.WriteLine(c.ToString)

The D character at the end of the two numeric values specifies that the numbers should be
converted into Decimal values. By default, every value with a fractional part is treated as a Double
value. Assigning a Double value to a Decimal variable will produce an error if the Strict option is
on, so we must specify explicitly that the two values should be converted to the Decimal type. The
D character at the end of the value is called a type character. Table 2.2 lists all of them.

Table 2.2: Type Characters

Type Character Description Example

C Converts value to a Char type Dim ch As String = ‘‘A’’c

D or @ Converts value to a Decimal type Dim price As Decimal = 12.99D

R or # Converts value to a Double type Dim pi As Double = 3.14 R

I or % Converts value to an Integer type Dim count As Integer = 99I

L or & Converts value to a Long type Dim distance As Long = 1999L

S Converts value to a Short type Dim age As Short = 1 S

F or ! Converts value to a Single type Dim velocity As Single = 74.99F

If you perform the same calculations with Single variables, the result will be truncated (and
rounded) to three decimal digits: 4,075.795. Notice that the Decimal data type didn’t introduce
any rounding errors. It’s capable of representing the result with the exact number of decimal
digits. This is the real advantage of Decimals, which makes them ideal for financial applications.
For scientific calculations, you must still use Doubles. Decimal numbers are the best choice for
calculations that require a specific precision (such as four or eight decimal digits).

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 46

46 CHAPTER 2 VARIABLES AND DATA TYPES

Infinity and Other Oddities

The Framework can represent two very special values, which may not be numeric values
themselves but are produced by numeric calculations: NaN (not a number) and Infinity. If your
calculations produce NaN or Infinity, you should confirm the data and repeat the calculations,
or give up. For all practical purposes, neither NaN nor Infinity can be used in everyday business
calculations.

Not a Number (NaN)

NaN is not new. Packages such as Wolfram Mathematica and Microsoft Excel have been using
it for years. The value NaN indicates that the result of an operation can’t be defined: It’s not a
regular number, not zero, and not infinity. NaN is more of a mathematical concept rather than a value
you can use in your calculations. The Log() function, for example, calculates the logarithm of
positive values. By definition, you can’t calculate the logarithm of a negative value. If the argument
you pass to the Log() function is a negative value, the function will return the value NaN to indicate
that the calculations produced an invalid result. You may find it annoying that a numeric function
returns a non-numeric value, but it’s better than throwing an exception. Even if you don’t detect this
condition immediately, your calculations will continue and they will all produce NaN values.

Some calculations produce undefined results, such as infinity. Mathematically, the result of
dividing any number by zero is infinity. Unfortunately, computers can’t represent infinity, so they
produce an error when you request a division by zero. VB 2008 will report a special value, which
isn’t a number: the Infinity value. If you call the ToString method of this value, however, it will
return the string Infinity. Let’s generate an Infinity value. Start by declaring a Double variable,
dblVar:

Dim dblVar As Double = 999

Then divide this value by zero:

Dim infVar as Double
infVar = dblVar / 0

and display the variable’s value:

MsgBox(infVar)

The string Infinity will appear in a message box. This string is just a description; it tells you
that the result is not a valid number (it’s a very large number that exceeds the range of numeric
values that can be represented with any data type), but it shouldn’t be used in other calculations.
However, you can use the Infinity value in arithmetic operations. Certain operations with infinity
make sense; others don’t. If you add a number to infinity, the result is still infinity (any number,
even an arbitrarily large one, can still be increased). If you divide a value by infinity, you’ll get
the zero value, which also makes sense. If you divide one Infinity value by another Infinity value,
you’ll get the second odd value, NaN.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 47

VARIABLES 47

Another calculation that will yield a non-number is the division of a very large number by a
very small number. If the result exceeds the largest value that can be represented with the Double
data type, the result is Infinity. Declare three variables as follows:

Dim largeVar As Double = 1E299
Dim smallVar As Double = 1E-299
Dim result As Double

The notation 1E299 means 10 raised to the power of 299, which is an extremely large number.
Likewise, 1E-299 means 10 raised to the power of −299, which is equivalent to dividing 10 by a
number as large as 1E299.

Then divide the large variable by the small variable and display the result:

result = largeVar / smallVar
MsgBox(result)

The result will be Infinity. If you reverse the operands (that is, you divide the very small by the
very large variable), the result will be zero. It’s not exactly zero, but the Double data type can’t
accurately represent numeric values that are very, very close to zero.

You can also produce an Infinity value by multiplying a very large (or very small) number by
itself many times. But clearly, the most absurd method of generating an Infinity value is to assign
the Double.PositiveInfinity or Double.NegativeInfinity value to a variable!

The result of the division 0 / 0, for example, is not a numeric value. If you attempt to enter the
statement 0 / 0 in your code, however, VB will catch it even as you type, and you’ll get the error
message Division by zero occurs in evaluating this expression.

To divide zero by zero, set up two variables as follows:

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
MsgBox(result)

If you execute these statements, the result will be NaN. Any calculations that involve the result
variable will yield NaN as a result. The following statements will produce a NaN value:

result = result + result
result = 10 / result
result = result + 1E299
MsgBox(result)

If you make var2 a very small number, such as 1E-299, the result will be zero. If you make var1
a very small number, the result will be Infinity.

For most practical purposes, Infinity is handled just like NaN. They’re both numbers that
shouldn’t occur in business applications (unless you’re projecting the national deficit in the

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 48

48 CHAPTER 2 VARIABLES AND DATA TYPES

next 50 years), and when they do, it means that you must double-check your code or your data.
They are much more likely to surface in scientific calculations, and they must be handled
with the statements described in the next section.

Testing for Infinity and NaN

To find out whether the result of an operation is a NaN or Infinity, use the IsNaN
and IsInfinity methods of the Single and Double data types. The Integer data
type doesn’t support these methods, even if it’s possible to generate Infinity and NaN
results with integers. If the IsInfinity method returns True, you can further examine
the sign of the Infinity value with the IsNegativeInfinity and IsPositiveInfinity
methods.

In most situations, you’ll display a warning and terminate the calculations. The statements
of Listing 2.2 do just that. Place these statements in a button’s Click event handler and run the
application.

Listing 2.2: Handling NaN and Infinity Values

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
If Double.IsInfinity(result) Then

If Double.IsPositiveInfinity(result) Then
MsgBox(”Encountered a very large number. Can’t continue”)

Else
MsgBox(”Encountered a very small number. Can’t continue”)

End If
Else

If Double.IsNaN(result) Then
MsgBox(”Unexpected error in calculations”)

Else
MsgBox(”The result is : ” & result.ToString)

End If
End If

This listing will generate a NaN value. Set the value of the var1 variable to 1 to generate
a positive Infinity value, or to −1 to generate a negative Infinity value. As you can see, the
IsInfinity, IsPositiveInfinity, IsNegativeInfinity, and IsNaN methods require that the
variable be passed as an argument.

If you change the values of the var1 and var2 variables to the following values and execute the
application, you’ll get the message Encountered a very large number:

var1 = 1E+299
var2 = 1E-299

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 49

VARIABLES 49

If you reverse the values, you’ll get the message Encountered a very small number. In any case,
the program will terminate gracefully and let you know the type of problem that prevents the
completion of the calculations.

Byte Variables

None of the previous numeric types is stored in a single byte. In some situations, however, data
are stored as bytes, and you must be able to access individual bytes. The Byte data type holds
an integer in the range of 0 to 255. Bytes are frequently used to access binary files, image and
sound files, and so on. Note that you no longer use bytes to access individual characters. Unicode
characters are stored in two bytes.

To declare a variable as a Byte, use the following statement:

Dim n As Byte

The variable n can be used in numeric calculations too, but you must be careful not to assign the
result to another Byte variable if its value might exceed the range of the Byte type. If the variables
A and B are initialized as follows:

Dim A As Byte, B As Byte
A = 233
B = 50

the following statement will produce an overflow exception:

Debug.WriteLine(A + B)

The same will happen if you attempt to assign this value to a Byte variable with the following
statement:

B = A + B

The result (283) can’t be stored in a single byte. Visual Basic generates the correct answer, but
it can’t store it into a Byte variable.

Boolean Operations with Bytes

The operators that won’t cause overflows are the Boolean operators AND, OR, NOT, and XOR, which
are frequently used with Byte variables. These aren’t logical operators that return True or False;
they combine the matching bits in the two operands and return another byte. If you combine the
numbers 199 and 200 with the AND operator, the result is 192. The two values in binary format
are 11000111 and 11001000. If you perform a bitwise AND operation on these two values, the result is
11000000, which is the decimal value 192.

In addition to the Byte data type, VB 2008 provides a Signed Byte data type, SByte, which can
represent signed values in the range from −128 to 127. The bytes starting with the 1 bit represent
negative values. The range of positive values is less by one than the range of values of negative
values, because the value 0 is considered a positive value (its first bit is 0).

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 50

50 CHAPTER 2 VARIABLES AND DATA TYPES

Boolean Variables

The Boolean data type stores True/False values. Boolean variables are, in essence, integers that
take the value −1 (for True) and 0 (for False). Actually, any nonzero value is considered True.
Boolean variables are declared as

Dim failure As Boolean

and they are initialized to False. Boolean variables are used in testing conditions, such as the
following:

Dim failure As Boolean = False
’ other statements ...
If failure Then MsgBox(”Couldn’t complete the operation”)

They are also combined with the logical operators And, Or, Not, and Xor. The Not operator
toggles the value of a Boolean variable. The following statement is a toggle:

running = Not running

If the variable running is True, it’s reset to False, and vice versa. This statement is a shorter
way of coding the following:

Dim running As Boolean
If running = True Then

running = False
Else

running = True
End If

Boolean operators operate on Boolean variables and return another Boolean as their result. The
following statements will display a message if one (or both) of the variables ReadOnly and Hidden
are True (presumably these variables represent the corresponding attributes of a file):

If ReadOnly Or Hidden Then
MsgBox(”Couldn’t open the file”)

Else
{ statements to open and process file}

End If

The condition of the If statement combines the two Boolean values with the Or operator.
If one or both of them are True, the parenthesized expression is True. This value is negated with
the Not operator, and the If clause is executed only if the result of the negation is True. If ReadOnly
is True and Hidden is False, the expression is evaluated as

If Not (True Or False)

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 51

VARIABLES 51

(True Or False) is True, which reduces the expression to

If Not True

which, in turn, is False.

String Variables

The String data type stores only text, and string variables are declared as follows:

Dim someText As String

You can assign any text to the variable someText. You can store nearly 2GB of text in a string
variable (that’s 2 billion characters, and is much more text than you care to read on a computer
screen). The following assignments are all valid:

Dim aString As String
aString = ”Now is the time for all good men to come ” &

” to the aid of their country”
aString = ””
aString = ”There are approximately 25,000 words in this chapter”
aString = ”25,000”

The second assignment creates an empty string, and the last one creates a string that just
happens to contain numeric digits, which are also characters. The difference between these two
variables is that they hold different values:

Dim aNumber As Integer = 25000
Dim aString As String = ”25,000”

The aString variable holds the characters 2, 5, comma, 0, 0, and 0; and aNumber holds a
single numeric value. However, you can use the variable aString in numeric calculations, and the
variable aNumber in string operations. VB will perform the necessary conversions as long as the
Strict option is off.

The String data type and its text manipulation methods are discussed in detail in
Chapter 13.

Character Variables

Character variables store a single Unicode character in two bytes. In effect, characters are
Unsigned Short integers (UInt16); you can use the CChar() function to convert integers
to characters and use the CInt() function to convert characters to their equivalent
integer values.

To declare a Character variable, use the Char keyword:

Dim char1, char2 As Char

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 52

52 CHAPTER 2 VARIABLES AND DATA TYPES

You can initialize a Character variable by assigning either a character or a string to it. In the
latter case, only the first character of the string is assigned to the variable. The following statements
will print the characters a and A to the Output window:

Dim char1 As Char = ”a”, char2 As Char = ”ABC”
Debug.WriteLine(char1)
Debug.WriteLine(char2)

These statements will work only if the Strict option is off. If it’s on, the values assigned to the
char1 and char2 variables will be marked in error. To fix the error that prevents the compilation
of the code, change the Dim statement as follows:

Dim char1 As Char = ”a”c, char2 As Char = ”A”c

When the Strict option is on, you can’t assign a string to a Char variable and expect that only
the first character of the string will be used.

The Integer values that correspond to the English characters are the ANSI (American National
Standards Institute) codes of the equivalent characters. The following statement will print the
value 65:

Debug.WriteLine(Convert.ToInt32(”a”))

If you convert the Greek character alpha (α) to an integer, its value is 945. The Unicode value of
the famous character π is 960.

Character variables are used in conjunction with strings. You’ll rarely save real data as char-
acters. However, you might have to process the individual characters in a string, one at a time.
The Char data type exposes a number of interesting methods for manipulating characters, and
they’re presented in detail in Chapter 13. Let’s say the string variable password holds a user’s new
password, and you require that passwords contain at least one special symbol. The code segment
of Listing 2.3 scans the password and rejects it if it contains letters and digits only.

Listing 2.3: Processing Individual Characters

Dim password As String, ch As Char
Dim i As Integer
Dim valid As Boolean = False
While Not valid

password = InputBox(”Please enter your password”)
For i = 0 To password.Length - 1

ch = password.Chars(i)
If Not Char.IsLetterOrDigit(ch) Then

valid = True
Exit For

End If
Next
If valid Then

MsgBox(”You new password will be activated immediately!”)

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 53

VARIABLES 53

Else
MsgBox(”Your password must contain at least one special symbol!”)

End If
End While

If you are not familiar with the If. . .Then, For. . .Next, or While. . .End While structures, you
can read their descriptions in the following chapter.

The code prompts the user with an input box to enter a password. The valid variable is Boolean
and it’s initialized to False. (You don’t have to initialize a Boolean variable to False because this is
its default initial value, but it does make the code easier to read.) It’s set to True from within the
body of the loop, only if the password contains a character that is not a letter or a digit. We set it
to False initially, so the While. . .End While loop will be executed at least once. This loop will keep
prompting the user until a valid password is entered.

The For. . .Next loop scans the string variable password, one letter at a time. At each iteration,
the next letter is copied into the ch variable. The Chars property of the String data type is an array
that holds the individual characters in the string (another example of the functionality built into
the data types).

Then the program examines the current character. The IsLetterOrDigit method of the Char
data type returns True if a character is either a letter or a digit. If the current character is a symbol,
the program sets the valid variable to True so that the outer loop won’t be executed again, and
it exits the For. . .Next loop. Finally, it prints the appropriate message, and either prompts for
another password or quits.

The Char class and its methods are discussed in more detail in Chapter 13.

Date Variables

Date and time values are stored internally in a special format, but you don’t need to know the
exact format. They are double-precision numbers: the integer part represents the date, and the
fractional part represents the time. A variable declared as Date with a statement like the following
can store both date and time values:

Dim expiration As Date

The following are all valid assignments:

expiration = #01/01/2008#
expiration = #8/27/2008 6:29:11 PM#
expiration = ”July 2, 2008”
expiration = Today()

By the way, the Today() function returns the current date and time, while the Now() function
returns the current date. You can also retrieve the current date by calling the Today property of
the Date data type: Date.Today.

The pound sign tells Visual Basic to store a date value to the expiration variable, just as the
quotes tell Visual Basic that the value is a string. You can store a date as a string to a Date variable,
but it will be converted to the appropriate format. If the Strict option is on, you can’t specify dates
by using the Long date format (as in the third statement of this example).

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 54

54 CHAPTER 2 VARIABLES AND DATA TYPES

The date format is determined by the Regional Settings (found in the Control Panel). In the
United States, the format is mm/dd/yy. (In other countries, the format is dd/mm/yy.) If you assign
an invalid date to a date variable, such as 23/04/2002, the statement will be underlined and an
error message will appear in the Task List window. The description of the error is Date constant is
not valid.

The Date data type is extremely flexible; Visual Basic knows how to handle date and time
values, so you won’t have to write complicated code to perform the necessary conversions. To
manipulate dates and times, use the members of the Date type, which are discussed in detail in
Chapter 13, or the date and time functions of VB 6, which are still supported by VB 2008.

You can also perform arithmetic operations with date values. VB recognizes your intention to
subtract dates and it properly evaluates their difference. The result is a TimeSpan object, which
represents a time interval. If you execute the following statements, the value 638.08:49:51.4970000
will appear in the Output window:

Dim d1, d2 As Date
d1 = Now
d2 = #1/1/2004#Debug.WriteLine(d1 - d2)

The value of the TimeSpan object represents an interval of 638 days, 8 hours, 49 minutes, and
51.497 seconds.

Data Type Identifiers

Finally, you can omit the As clause of the Dim statement, yet create typed variables, with the
variable declaration characters, or data type identifiers. These characters are special symbols that
you append to the variable name to denote the variable’s type. To create a string variable, you can
use this statement:

Dim myText$

The dollar sign signifies a string variable. Notice that the name of the variable includes
the dollar sign — it’s myText$, not myText. To create a variable of a particular type, use
one of the data declaration characters shown in Table 2.3. (Not all data types have their own
identifiers.)

Using type identifiers doesn’t help to produce the cleanest and easiest-to-read code. They’re
relics from really old versions of BASIC, and if you haven’t used them in the past, there’s no really
good reason to start using them now.

The Strict, Explicit, and Infer Options
The Visual Basic compiler provides three options that determine how it handles variables:

◆ The Explicit option indicates whether you will declare all variables.

◆ The Strict option indicates whether all variables will be of a specific type.

◆ The Infer option indicates whether the compiler should determine the type of a variable
from its value.

These options have a profound effect on the way you declare and use variables, and you should
understand what they do. By exploring these settings, you will also understand a little better how

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 55

VARIABLES 55

Table 2.3: Data Type Definition Characters

Symbol Data Type Example

$ String A$, messageText$

% Integer (Int32) counter%, var%

& Long (Int64) population&, colorValue&

! Single distance!

Double ExactDistance

@ Decimal Balance@

the compiler handles variables. It’s recommended that you turn on all three of them, but old VB
developers may not follow this advice.

VB 2008 doesn’t require that you declare your variables, but the default behavior is to throw an
exception if you attempt to use a variable that hasn’t been previously declared. If an undeclared
variable’s name appears in your code, the editor will underline the variable’s name with a wiggly
line, indicating that it caught an error. The description of the error will appear in the Task List
below the code window. If you rest the pointer over the segment of the statement in question, you
will see the description of the error in a ToolTip box.

To change the default behavior, you must insert the following statement at the beginning of
the file:

Option Explicit Off

The Option Explicit statement must appear at the very beginning of the file. This setting
affects the code in the current module, not in all files of your project or solution. You can turn
on the Strict (as well as the Explicit) option for an entire solution. Open the solution’s properties
dialog box (right-click the solution’s name in Solution Explorer and select Properties), select the
Compile tab, and set the Strict and Explicit options accordingly, as shown in Figure 2.1.

You can also set default values for the Explicit option (as well as for Strict and Infer) for
all projects through the Options dialog box of the IDE. To open this dialog box, choose the
Options command from the Tools menu. When the dialog box appears, select the VB Defaults tab
under Projects And Solutions, as shown in Figure 2.2. Here you can set the default values for all
four options. You can still change the default values for specific projects through the project’s
Properties pages.

The way undeclared variables are handled by VB 2008 is determined by the Explicit and Strict
options, which can be either on or off. The Explicit option requires that all variables used in the
code are declared before they’re used. The Strict option requires that variables are declared with a
specific type. In other words, the Strict option disallows the use of generic variables that can store
any data type.

The default value of the Explicit statement is On. This is also the recommended value,
and you should not make a habit of changing this setting. In the section ‘‘Why Declare
Variables?’’ later in this chapter, you will see an example of the pitfalls you’ll avoid by
declaring your variables. By setting the Explicit option to Off, you’re telling VB that you

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 56

56 CHAPTER 2 VARIABLES AND DATA TYPES

intend to use variables without declaring them. As a consequence, VB can’t make any assumption
about the variable’s type, so it uses a generic type of variable that can hold any type of
information. These variables are called Object variables, and they’re equivalent to the old
variants.

Figure 2.1

Setting the
variable-related options
on the project’s
Properties pages

Figure 2.2

Setting the
variable-related options
in the Visual Studio
Options dialog box

While the option Explicit is set to Off, every time Visual Basic runs into an undeclared variable
name, it creates a new variable on the spot and uses it. The new variable’s type is Object, the
generic data type that can accommodate all other data types. Using a new variable in your code

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 57

VARIABLES 57

is equivalent to declaring it without type. Visual Basic adjusts its type according to the value you
assign to it. Create two variables, var1 and var2, by referencing them in your code with statements
like the following ones:

var1 = ”Thank you for using Fabulous Software”
var2 = 49.99

The var1 variable is a string variable, and var2 is a numeric one. You can verify this with the
GetType method, which returns a variable’s type. The following statements print the highlighted
types shown below each statement:

Debug.WriteLine ”Variable var1 is ” & var1.GetType().ToString
Variable var1 is System.String
Debug.WriteLine ”Variable var2 is ” & var2.GetType().ToString
Variable var2 is System.Double

Later in the same program, you can reverse the assignments:

var1 = 49.99
var2 = ”Thank you for using Fabulous Software”

If you execute the preceding statements again, you’ll see that the types of the variables
have changed. The var1 variable is now a Double, and var2 is a String. The type of a
generic variable is determined by the variable’s contents and it can change in the course
of the application. Of course, changing a variable’s type at runtime doesn’t come without
a performance penalty (a small one, but nevertheless some additional statements must be
executed).

Another related option is the Strict option, which is off by default. The Strict option tells
the compiler whether the variables should be strictly typed. A strictly typed variable must
be declared with a specific type and it can accept values of the same type only. With the Strict
option set to Off, you can use a string variable that holds a number in a numeric
calculation:

Dim a As String = ”25000”
Debug.WriteLine a / 2

The last statement will print the value 12500 in the Immediate window. Likewise, you can use
numeric variables in string calculations:

Dim a As Double = 31.03
a = a + ”1”

If you turn the Strict option on by inserting the following statement at the beginning of the file,
you won’t be able to mix and match variable types:

Option Strict On

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 58

58 CHAPTER 2 VARIABLES AND DATA TYPES

If you attempt to execute any of the last two code segments while the Strict option is on, the
compiler will underline a segment of the statement to indicate an error. If you rest the pointer over
the underlined segment of the code, the following error message will appear in a tip box:

Option strict disallows implicit conversions from String to Double

(or whatever type of conversion is implied by the statement).
When the Strict option is set to On, the compiler doesn’t disallow all implicit conversions

between data types. For example, it will allow you to assign the value of an integer to a Long,
but not the opposite. The Long value might exceed the range of values that can be represented by
an Integer variable. You will find more information on implicit conversions in the section titled
‘‘Widening and Narrowing Conversions,’’ later in this chapter.

Object Variables
Variants — variables without a fixed data type — were the bread and butter of VB programmers
up to version 6. Variants are the opposite of strictly typed variables: They can store all types of
values, from a single character to an object. If you’re starting with VB 2008, you should use strictly
typed variables. However, variants are a major part of the history of VB, and most applications
out there (the ones you may be called to maintain) use them. I will discuss variants briefly in this
section and show you what was so good (and bad) about them.

Variants, or object variables, were the most flexible data types because they could accommodate
all other types. A variable declared as Object (or a variable that hasn’t been declared at all) is
handled by Visual Basic according to the variable’s current contents. If you assign an integer value
to an object variable, Visual Basic treats it as an integer. If you assign a string to an object variable,
Visual Basic treats it as a string. Variants can also hold different data types in the course of the
same program. Visual Basic performs the necessary conversions for you.

To declare a variant, you can turn off the Strict option and use the Dim statement without
specifying a type, as follows:

Dim myVar

If you don’t want to turn off the Strict option (which isn’t recommended, anyway), you can
declare the variable with the Object data type:

Dim myVar As Object

Every time your code references a new variable, Visual Basic will create an object variable. For
example, if the variable validKey hasn’t been declared, when Visual Basic runs into the following
line, it will create a new object variable and assign the value 002-6abbgd to it:

validKey = ”002-6abbgd”

You can use object variables in both numeric and string calculations. Suppose that the variable
modemSpeed has been declared as Object with one of the following statements:

Dim modemSpeed ’ with Option Strict = Off
Dim modemSpeed As Object ’ with Option Strict = On

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 59

VARIABLES 59

and later in your code you assign the following value to it:

modemSpeed = ”28.8”

The modemSpeed variable is a string variable that you can use in statements such as the
following:

MsgBox ”We suggest a ” & modemSpeed & ” modem.”

This statement displays the following message:

”We suggest a 28.8 modem.”

You can also treat the modemSpeed variable as a numeric value with the following
statement:

Debug.WriteLine ”A ” & modemSpeed & ” modem can transfer ” &
modemSpeed * 1024 / 8 & ” bytes per second.”

This statement displays the following message:

”A 28.8 modem can transfer 3686.4 bytes per second.”

The first instance of the modemSpeed variable in the preceding statement is treated
as a string because this is the variant’s type according to the assignment statement
(we assigned a string to it). The second instance, however, is treated as a number
(a single-precision number). Visual Basic converts it to a numeric value because it’s used
in a numeric calculation.

Another example of this behavior of variants can be seen in the following statements:

Dim I As Integer, S As String
I = 10
S = ”11”
Debug.WriteLine(I + S)
Debug.WriteLine(I & S)

The first WriteLine statement will display the numeric value 21, whereas the second statement
will print the string 1011. The plus operator (+) tells VB to add two values. In doing so, VB must
convert the two strings into numeric values and then add them. The concatenation operator (&)
tells VB to concatenate the two strings.

Visual Basic knows how to handle object variables in a way that makes sense. The result may
not be what you had in mind, but it certainly is dictated by common sense. If you really want to
concatenate the strings 10 and 11, you should use the & operator, which would tell Visual Basic
exactly what to do. Quite impressive, but for many programmers, this is a strange behavior that
can lead to subtle errors — and they avoid it. It’s up to you to decide whether to use variants and
how far you will go with them. Sure, you can perform tricks with variants, but you shouldn’t
overuse them to the point that others can’t read your code.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 60

60 CHAPTER 2 VARIABLES AND DATA TYPES

Variables as Objects
Variables in VB 2008 are more than just names or placeholders for values. They’re intelligent
entities that can not only store but also process their values. I don’t mean to scare you, but I think
you should be told: VB 2008 variables are objects. And here’s why: A variable that holds dates is
declared as such with the following statement:

Dim expiration As Date

Then you can assign a date value to the expiration variable with a statement like this:

expiration = #1/1/2003#

So far, nothing out of the ordinary; this is how you use variables with any other language. In
addition to holding a date, however, the expiration variable can manipulate dates. The following
expression will return a new date that’s three years ahead of the date stored in the expiration
variable:

expiration.AddYears(3)

The new date can be assigned to another date variable:

Dim newExpiration As Date
newExpiration = expiration.AddYears(3)

AddYears is a method that knows how to add a number of years to a Date variable. There are
similarly named methods for adding months, days, and so on. In addition to methods, the Date
type exposes properties, such as the Month and Day properties, which return the date’s month
and day number, respectively. The keywords following the period after the variable’s name are
called methods and properties, just like the properties and methods of the controls you place on a
form to create your application’s visual interface. The methods and properties (or the members)
of a variable expose the functionality that’s built into the class representing the variable itself.
Without this built-in functionality, you’d have to write some serious code to extract the month
from a date variable, to add a number of days to a given date, to figure out whether a character is
a letter, a digit, or a punctuation symbol, and so on. Much of the functionality that you’ll need in
an application that manipulates dates, numbers, or text has already been built into the variables
themselves.

Don’t let the terminology scare you. Think of variables as placeholders for values and access
their functionality with expressions like the ones shown earlier. Start using variables to store
values and, if you need to process them, enter a variable’s name followed by a period to see a list
of the members it exposes. In most cases, you’ll be able to figure out what these members do by
just reading their names. I’ll come back to the concept of variables as objects, but I wanted to hit it
right off the bat. A more detailed discussion of the notion of variables as objects can be found in
Chapter 11, ‘‘Working with Objects,’’ which discusses objects in detail.

Programming languages can treat simple variables much more efficiently than objects. An
integer takes two bytes in memory, and the compiler will generate very efficient code to
manipulate an integer variable (add it to another numeric value, compare it to another integer,
and so on). If you declare an integer variable and use it in your code as such, Visual Studio doesn’t
create an object to represent this value. It creates a new variable for storing integers, like good old

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 61

VARIABLES AS OBJECTS 61

BASIC. After you call one of the variable’s methods, the compiler emits code to create the actual
object. This process is called boxing and it introduces a small delay, which is truly insignificant
compared to the convenience of manipulating a variable through its methods.

As you’ve seen by now, variables are objects. This shouldn’t come as a surprise, but it’s an odd
concept for programmers with no experience in object-oriented programming. We haven’t covered
objects and classes formally yet, but you have a good idea of what an object is. It’s an entity that
exposes some functionality by means of properties and methods. The TextBox control is an object
and it exposes the Text property, which allows you to read or set the text on the control. Any
name followed by a period and another name signifies an object. The ‘‘other name’’ is a property
or method of the object.

Converting Variable Types
In many situations, you will need to convert variables from one type into another. Table 2.4 shows
the methods of the Convert class that perform data-type conversions.

Table 2.4: The Data-Type Conversion Methods of the Convert Class

Method Converts Its Argument To

ToBoolean Boolean

ToByte Byte

ToChar Unicode character

ToDateTime Date

ToDecimal Decimal

ToDouble Double

ToInt16 Short Integer (2-byte integer, Int16)

ToInt32 Integer (4-byte integer, Int32)

ToInt64 Long (8-byte integer, Int64)

ToSByte Signed Byte

CShort Short (2-byte integer, Int16)

ToSingle Single

ToString String

ToUInt16 Unsigned Integer (2-byte integer, Int16)

ToUInt32 Unsigned Integer (4-byte integer, Int32)

ToUInt64 Unsigned Long (8-byte integer, Int64)

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 62

62 CHAPTER 2 VARIABLES AND DATA TYPES

In addition to the methods of the Convert class, you can still use the data-conversion functions
of VB (CInt() to convert a numeric value to an Integer, CDbl() to convert a numeric value to
a Double, CSng() to convert a numeric value to a Single, and so on), which you can look up in
the documentation. If you’re writing new applications in VB 2008, use the new Convert class to
convert between data types.

To convert the variable initialized as the following

Dim A As Integer

to a Double, use the ToDouble method of the Convert class:

Dim B As Double
B = Convert.ToDouble(A)

Suppose that you have declared two integers, as follows:

Dim A As Integer, B As Integer
A = 23
B = 7

The result of the operation A / B will be a Double value. The following statement

Debug.Write(A / B)

displays the value 3.28571428571429. The result is a Double value, which provides the
greatest possible accuracy. If you attempt to assign the result to a variable that hasn’t
been declared as Double, and the Strict option is on, then VB 2008 will generate an error
message. No other data type can accept this value without loss of accuracy. To store the
result to a Single variable, you must convert it explicitly with a statement like the
following:

Convert.ToSingle(A / B)

You can also use the DirectCast() function to convert a variable or expression from
one type to another. The DirectCast() function is identical to the CType() function.
Let’s say the variable A has been declared as String and holds the value 34.56. The
following statement converts the value of the A variable to a Decimal value and uses it
in a calculation:

Dim A As String = ”34.56”
Dim B As Double
B = DirectCast(A, Double) / 1.14

The conversion is necessary only if the Strict option is on, but it’s a good practice to perform
your conversions explicitly. The following section explains what might happen if your code relies
on implicit conversions.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 63

VARIABLES AS OBJECTS 63

Widening and Narrowing Conversions

In some situations, VB 2008 will convert data types automatically, but not always. Let’s say
you have declared and initialized two variables, an Integer and a Double, with the following
statements:

Dim count As Integer = 99
Dim pi As Double = 3.1415926535897931

If the Strict option is off and you assign the variable pi to the count variable, the count
variable’s new value will be 3. (The Double value was rounded to an Integer value, according
to the variable’s type.) Although this may be what you want, in most cases it’s an oversight that
will lead to incorrect results.

If the Strict option is on and you attempt to perform the same assignment, the compiler will
generate an error message to the effect that you can’t convert a Double to an Integer. The exact
message is Option Strict disallows implicit conversions from Double to Integer.

When the Strict option is on, VB 2008 will perform conversions that do not result in loss of
accuracy (precision) or magnitude. These conversions are called widening conversions. When you
assign an Integer value to a Double variable, no accuracy or magnitude is lost. This is a widening
conversion, because it goes from a narrower to a wider type.

On the other hand, when you assign a Double value to an Integer variable, some accuracy is
lost (the decimal digits must be truncated). This is a narrowing conversion, because we go from a
data type that can represent a wider range of values to a data type that can represent a narrower
range of values.

Because you, the programmer, are in control, you might want to give up the accuracy —
presumably, it’s no longer needed. Table 2.5 summarizes the widening conversions that VB 2008
will perform for you automatically.

Table 2.5: VB 2008 Widening Conversions

Original Data Type Wider Data Type

Any type Object

Byte Short, Integer, Long, Decimal, Single, Double

Short Integer, Long, Decimal, Single, Double

Integer Long, Decimal, Single, Double

Long Decimal, Single, Double

Decimal Single, Double

Single Double

Double None

Char String

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 64

64 CHAPTER 2 VARIABLES AND DATA TYPES

If the Strict option is on, the compiler will point out all the statements that may cause runtime
errors, and you can reevaluate your choice of variable types. You can also turn on the Strict option
temporarily to see the compiler’s warnings, and then turn it off again.

Formatting Numbers
So far, you’ve seen how to use the basic data types of the CLR. All data types expose a ToString
method, which returns the variable’s value (a number or date) as a string, so that it can be used
with other strings in your code. The ToString method formats numbers and dates in many
ways and it’s probably one of the most commonly needed methods. You can call the ToString
method without any arguments, as we have done so far, to convert any value to a string. The
ToString method, however, accepts an optional argument, which determines how the value will
be formatted as a string. For example, you can format a number as currency by prefixing it with
the appropriate sign (for example, the dollar symbol) and displaying it to two decimal digits,
and you can display dates in many formats. Some reports require that negative amounts are
enclosed in parentheses. The ToString method allows you to display numbers and dates in any
way you wish.

Notice that ToString is a method, not a property. It returns a value that you can assign to a
string variable or pass as arguments to a function such as MsgBox(), but the original value is not
affected. The ToString method can also format a value if called with an optional argument:

ToString(formatString)

The formatString argument is a format specifier (a string that specifies the exact format
to be applied to the variable). This argument can be a specific character that corresponds to a
predetermined format (a standard format string, as it’s called) or a string of characters that
have special meaning in formatting numeric values (a picture format string). Use standard
format strings for the most common formatting options, and use picture strings to specify unusual
formatting requirements. To format the value 9959.95 as a dollar amount, you can use the
following standard currency:

Dim Amnt As Single = 9959.95
Dim strAmnt As String
strAmnt = Amnt.ToString(”C”)

Or use the following picture numeric format string:

strAmnt = Amnt.ToString(”$#,###.00”)

Both statements will format the value as $9,959.95. The ”C” argument in the first example
means currency and formats the numeric value as currency. If you’re using a non-U.S. version of
Windows, the currency symbol will change accordingly. Use the Regional And Language Options
tool in the Control Panel to temporarily change the current culture to a European one, and the
amount will be formatted with the Euro sign.

The picture format string is made up of literals and characters that have special meaning
in formatting. The dollar sign has no special meaning and will appear as is. The # symbol is a
digit placeholder; all # symbols will be replaced by numeric digits, starting from the right. If the
number has fewer digits than specified in the string, the extra symbols to the left will be ignored.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 65

VARIABLES AS OBJECTS 65

The comma tells the Format function to insert a comma between thousands. The period is the
decimal point, which is followed by two more digit placeholders. Unlike the # sign, the 0
is a special placeholder: If there are not enough digits in the number for all the zeros you’ve
specified, a 0 will appear in the place of the missing digits. If the original value had been 9959.9,
for example, the last statement would have formatted it as $9,959.90. If you used the # placeholder
instead, the string returned by the Format method would have a single decimal digit.

Standard Numeric Format Strings

The ToString method of the numeric data types recognizes the standard numeric format strings
shown in Table 2.6.

Table 2.6: Standard Numeric Format Strings

Format Character Description Example

C or c Currency (12345.67).ToString(”C”) returns $12,345.67

D or d Decimal (123456789).ToString(”D”) returns 123456789.
It works with integer values only.

E or e Scientific format (12345.67).ToString(”E”) returns 1.234567E + 004

F or f Fixed-point format (12345.67).ToString(”F”) returns 12345.67

G or g General format Returns a value either in fixed-point or scientific format

N or n Number format (12345.67).ToString(”N”) returns 12,345.67

P or p Percentage (0.12345).ToString(”N”) returns 12,35%

R or r Round-trip (1 / 3).ToString(”R”)returns 0.33333333333333331
(where the G specifier would return a value with fewer
decimal digits: 0.333333333333333

X or x Hexadecimal format 250.ToString(”X”) returns FA

The format character can be followed by an integer. If present, the integer value specifies the
number of decimal places that are displayed. The default accuracy is two decimal digits.

The C format string causes the ToString method to return a string representing the num-
ber as a currency value. An integer following the C determines the number of decimal digits
that are displayed. If no number is provided, two digits are shown after the decimal separator.
Assuming that the variable value has been declared as Decimal and its value is 5596, then the
expression value.ToString(”C”) will return the string $5,596.00. If the value of the variable
were 5596.4499, then the expression value.ToString(”C3”) would return the string $5,596.450.

Notice that not all format strings apply to all data types. For example, only integer values can
be converted to hexadecimal format, and the D format string works with integer values only.

There are format strings and digits for dates too, and they’re discussed in Chapter 13, where I
will present the Date data type and related topics in detail.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 66

66 CHAPTER 2 VARIABLES AND DATA TYPES

Picture Numeric Format Strings

If the format characters listed in Table 2.6 are not adequate for the control you need over the
appearance of numeric values, you can provide your own picture format strings. Picture
format strings contain special characters that allow you to format your values exactly as you
like. Table 2.7 lists the picture formatting characters.

Table 2.7: Picture Numeric Format Strings

Format Character Description Effect

0 Display zero placeholder Results in a nonsignificant zero if a number has
fewer digits than there are zeros in the format

Display digit placeholder Replaces the symbol with only significant digits

. Decimal point Displays a period (.) character

, Group separator Separates number groups — for example, 1,000

% Percent notation Displays a % character

E + 0, E−0, e + 0, e−0 Exponent notation Formats the output of exponent notation

\ Literal character Used with traditional formatting sequences like
such as \n (newline)

‘‘’’ Literal string Displays any string within quotes or apostrophes
literally

; Section separator Specifies different output if the numeric value to
be formatted is positive, negative, or zero

The following statements will print the highlighted values:

Dim Amount As Decimal = 42492.45
Debug.WriteLine(Amount.ToString(”$#,###.00”))
$42,492.45
Amount = 0.2678
Debug.WriteLine(Amount.ToString(”0.000”))
0.268
Amount = -24.95
Debug.WriteLine(Amount.ToString(”$#,###.00;($#,###.00)”))
($24.95)

User-Defined Data Types
In the previous sections, we used variables to store individual values. As a matter of fact, most
programs store sets of data of different types. For example, a program for balancing your
checkbook must store several pieces of information for each check: the check’s number, amount,

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 67

VARIABLES AS OBJECTS 67

date, and so on. All these pieces of information are necessary to process the checks, and ideally,
they should be stored together.

You can create custom data types that are made up of multiple values using structures. A VB
structure allows you to combine multiple values of the basic data types and handle them as a
whole. For example, each check in a checkbook-balancing application is stored in a separate
structure (or record), as shown in Figure 2.3. When you recall a given check, you need all the
information stored in the structure.

Figure 2.3

Pictorial representation
of a structure

To define a structure in VB 2008, use the Structure statement, which has the following syntax:

Structure structureName
Dim variable1 As varType
Dim variable2 As varType
...
Dim variablen As varType

End Structure

varType can be any of the data types supported by the CLR. The Dim statement can be replaced
by the Private or Public access modifiers. For structures, Dim is equivalent to Public.

After this declaration, you have in essence created a new data type that you can use in your
application. structureName can be used anywhere you’d use any of the base types (Integers,
Doubles, and so on). You can declare variables of this type and manipulate them as you
manipulate all other variables (with a little extra typing). The declaration for the CheckRecord
structure shown in Figure 2.3 is as follows:

Structure CheckRecord
Dim CheckNumber As Integer
Dim CheckDate As Date
Dim CheckAmount As Single
Dim CheckPaidTo As String

End Structure

This declaration must appear outside any procedure; you can’t declare a Structure in a
subroutine or function. Once declared, The CheckRecord structure becomes a new data type for
your application.

To declare variables of this new type, use a statement such as this one:

Dim check1 As CheckRecord, check2 As CheckRecord

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 68

68 CHAPTER 2 VARIABLES AND DATA TYPES

To assign a value to one of these variables, you must separately assign a value to each one of its
components (they are called fields), which can be accessed by combining the name of the variable
and the name of a field, separated by a period, as follows:

check1.CheckNumber = 275

Actually, as soon as you type the period following the variable’s name, a list of all
members to the CheckRecord structure will appear, as shown in Figure 2.4. Notice that the
structure supports a few members on its own. You didn’t write any code for the Equals,
GetType, and ToString members, but they’re standard members of any Structure object, and
you can use them in your code. Both the GetType and ToString methods will return a string
like ProjectName.FormName + CheckRecord. You can provide your own implementation of the
ToString method, which will return a more meaningful string:

Public Overrides Function ToString() As String
Return ”CHECK # ” & CheckNumber & ” FOR ” &

CheckAmount.ToString(”C”)
End Function

Figure 2.4

Variables of custom
types expose their mem-
bers as properties.

As you understand, structures are a lot like objects that expose their fields as properties and
then expose a few members of their own. The following statements initialize a CheckRecord
variable:

check2.CheckNumber = 275
check2.CheckDate = #09/12/2008#
check2.CheckAmount = 104.25
check2.CheckPaidTo = ”Gas Co.”

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 69

VARIABLES AS OBJECTS 69

You can also create arrays of structures with a declaration such as the following (arrays are
discussed later in this chapter):

Dim Checks(100) As CheckRecord

Each element in this array is a CheckRecord structure and it holds all the fields of a given check.
To access the fields of the third element of the array, use the following notation:

Checks(2).CheckNumber = 275
Checks(2).CheckDate = #09/12/2008#
Checks(2).CheckAmount = 104.25
Checks(2).CheckPaidTo = ”Gas Co.”

The Nothing Value

The Nothing value is used with object variables and indicates a variable that has not been
initialized. If you want to disassociate an object variable from the object it represents,
set it to Nothing. The following statements create an object variable that references a brush, uses
it, and then releases it:

Dim brush As SolidBrush
brush = New SolidBrush(Color.Blue)
{ use brush object to draw with}
brush = Nothing

The first statement declares the brush variable. At this point, the brush variable is Nothing.
The second statement initializes the brush variable with the appropriate constructor (the brush
is initialized to a specific color). After the execution of the second statement, the brush variable
actually represents an object you can draw with in blue. After using it to draw something, you can
release it by setting it to Nothing.

If you want to find out whether an object variable has been initialized, use the Is or IsNot
operators, as shown in the following example:

Dim myPen As Pen
{ more statements here}
If myPen Is Nothing Then

myPen = New Pen(Color.Red)
End If

The variable myPen is initialized with the New constructor only if it hasn’t been initialized
already. If you want to release the myPen variable later in your code, you can set it to Nothing
with the assignment operator. When you compare an object to Nothing, however, you can’t use
the equals operator; you must use the Is and IsNot operators.

Examining Variable Types
Besides setting the types of variables and the functions for converting between types,
Visual Basic provides the GetType method, which returns a string with the variable’s type

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 70

70 CHAPTER 2 VARIABLES AND DATA TYPES

(Int32, Decimal, and so on). Any variable exposes these methods automatically, and you can
call them like this:

Dim var As Double
Debug.WriteLine ”The variable’s type is ” & var.GetType.ToString

There’s also a GetType operator, which accepts as an argument a type and returns a Type
object for the specific data type. The GetType method and GetType operator are used mostly in If
structures, like the following one:

If var.GetType() Is GetType(Double) Then
{ code to handle a Double value}

End If

Notice that the code doesn’t reference data type names directly. Instead, it uses the value
returned by the GetType operator to retrieve the type of the class System.Double and then
compares this value to the variable’s type with the Is (or the IsNot) keyword.

Is It a Number, String, or Date?

Another set of Visual Basic functions returns variables’ data types, but not the exact type. They
return a True/False value indicating whether a variable holds a numeric value, a date or an array.
The following functions are used to validate user input, as well as data stored in files, before you
process them.

IsNumeric() Returns True if its argument is a number (Short, Integer, Long, Single,
Double, Decimal). Use this function to determine whether a variable holds a numeric value
before passing it to a procedure that expects a numeric value or before processing it as a
number. The following statements keep prompting the user with an InputBox for a numeric
value. The user must enter a numeric value or click the Cancel button to exit. As long as the
user enters non-numeric values, the Input box keeps popping up and prompting for a numeric
value:

Dim strAge as String = ””
Dim Age As Integer
While Not IsNumeric(strAge)

strAge = InputBox(”Please enter your age”)
End While
Age = Convert.ToInt16(strAge)

The variable strAge is initialized to a non-numeric value so that the While. . .End While loop
will be executed at least once.

IsDate() Returns True if its argument is a valid date (or time). The following expressions
return True because they all represent valid dates:

IsDate(#10/12/2010#)
IsDate(”10/12/2010”)
IsDate(”October 12, 2010”)

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 71

VARIABLES AS OBJECTS 71

If the date expression includes the day name, as in the following expression, the IsDate()
function will return False:

IsDate(”Sat. October 12, 2010”) ’ FALSE

IsArray() Returns True if its argument is an array.

Why Declare Variables?
Visual Basic never enforced variable declaration (and it still doesn’t), which was a good thing
for the beginner programmer. When you want to slap together a ‘‘quick-and-dirty’’ program,
the last thing you need is someone telling you to decide which variables you’re going to use
and to declare them before using them. This convenience, however, is a blessing in disguise
because most programmers accustomed to the free format of Visual Basic also carry their habits
of quick-and-dirty coding to large projects. When writing large applications, you will sooner or
later discover that variable declaration is a necessity. It will help you write clean, strongly typed
code and simplify debugging. Variable declaration eliminates the source of the most common and
totally unnecessary bugs.

Let’s examine the side effects of using undeclared variables in your application. To be able to
get by without declaring your variables, you must set the Explicit option to Off. Let’s assume that
you’re using the following statements to convert Euros to U.S. dollars:

Euro2USD = 1.462
USDollars = amount * Euro2USD

The first time your code refers to the Euro2USD variable name, Visual Basic creates a new
variable and then uses it as if it were declared.

Suppose that the variable Euro2USD appears in many places in your application. If in one
of these places you type Euro2UDS, and the program doesn’t enforce variable declaration,
the compiler will create a new variable, assign it the value zero, and then use it. Any amount
converted with the Euro2UDS variable will be zero! If the application enforces variable declaration,
the compiler will complain (the Euro2UDS variable hasn’t been declared), and you will catch the
error right in the editor, as you type.

A Variable’s Scope
In addition to its type, a variable also has a scope. The scope (or visibility) of a variable is the section
of the application that can see and manipulate the variable. If a variable is declared within a
procedure, only the code in the specific procedure has access to that variable; this variable doesn’t
exist for the rest of the application. When the variable’s scope is limited to a procedure, it’s called
local.

Suppose that you’re coding the Click event of a button to calculate the sum of all even numbers
in the range 0 to 100. One possible implementation is shown in Listing 2.4.

Listing 2.4: Summing Even Numbers

Private Sub Button1 Click(ByVal sender As Object,
ByVal e As System.EventArguments)

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 72

72 CHAPTER 2 VARIABLES AND DATA TYPES

Handles Button1.Click
Dim i As Integer
Dim Sum As Integer
For i = 0 to 100 Step 2

Sum = Sum + i
Next
MsgBox ”The sum is ” & Sum.ToString

End Sub

The variables i and Sum are local to the Button1 Click() procedure. If you attempt to set
the value of the Sum variable from within another procedure, Visual Basic will complain that the
variable hasn’t been declared. (Or, if you have turned off the Explicit option, it will create another
Sum variable, initialize it to zero, and then use it. But this won’t affect the variable Sum in the
Button1 Click() subroutine.) The Sum variable is said to have procedure-level scope: It’s visible
within the procedure and invisible outside the procedure.

Sometimes, however, you’ll need to use a variable with a broader scope; a variable that’s
available to all procedures within the same file. This variable, which must be declared outside
any procedure, is said to have a module-level scope. In principle, you could declare all variables
outside the procedures that use them, but this would lead to problems. Every procedure in the file
would have access to any variable, and you would need to be extremely careful not to change the
value of a variable without good reason. Variables that are needed by a single procedure (such as
loop counters) should be declared in that procedure.

Another type of scope is the block-level scope. Variables introduced in a block of code,
such as an If statement or a loop, are local to the block but invisible outside the block.
Let’s revise the previous code segment so that it calculates the sum of squares. To carry out
the calculation, we first compute the square of each value and then sum the squares. The square
of each value is stored to a variable that won’t be used outside the loop, so we can define
the sqrValue variable in the loop’s block and make it local to this specific loop, as shown in
Listing 2.5.

Listing 2.5: A Variable Scoped in Its Own Block

Private Sub Button1 Click(ByVal sender As Object,
ByVal e As System.EventArguments)
Handles Button1.Click

Dim i, Sum As Integer
For i = 0 to 100 Step 2

Dim sqrValue As Integer
sqrValue = i * i
Sum = Sum + sqrValue

Next
MsgBox ”The sum of the squares is ” & Sum

End Sub

The sqrValue variable is not visible outside the block of the For. . .Next loop. If you attempt to
use it before the For statement or after the Next statement, VB will throw an exception.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 73

VARIABLES AS OBJECTS 73

The sqrValue variable maintains its value between iterations. The block-level variable is not
initialized at each iteration, even though there’s a Dim statement in the loop.

Finally, in some situations, the entire application must access a certain variable. In this case,
the variable must be declared as Public. Public variables have a global scope: They are visible from
any part of the application. To declare a public variable, use the Public statement in place of the
Dim statement. Moreover, you can’t declare public variables in a procedure. If you have multiple
forms in your application and you want the code in one form to see a certain variable in another
form, you can use the Public modifier.

The Public keyword makes the variable available not only to the entire project, but also to
all projects that reference the current project. If you want your variables to be public within a
project (in other words, available to all procedures in any module in the project) but invisible
to referencing projects, use the Friend keyword in the declaration of the module. Variables you
want to use throughout your project, but to not become available to other projects that reference
this one, should be declared as Friend.

So, why do we need so many types of scope? You’ll develop a better understanding of
scope and which type of scope to use for each variable as you get involved in larger projects.
In general, you should try to limit the scope of your variables as much as possible. If all variables
were declared within procedures, you could use the same name for storing a temporary value
in each procedure and be sure that one procedure’s variables wouldn’t interfere with those of
another procedure, even if you use the same name.

A Variable’s Lifetime
In addition to type and scope, variables have a lifetime, which is the period for which they retain
their value. Variables declared as Public exist for the lifetime of the application. Local variables,
declared within procedures with the Dim or Private statement, live as long as the procedure.
When the procedure finishes, the local variables cease to exist, and the allocated memory is
returned to the system. Of course, the same procedure can be called again. In this case, the local
variables are re-created and initialized again. If a procedure calls another, its local variables retain
their values while the called procedure is running.

You also can force a local variable to preserve its value between procedure calls by using the
Static keyword. Suppose that the user of your application can enter numeric values at any time.
One of the tasks performed by the application is to track the average of the numeric values. Instead
of adding all the values each time the user adds a new value and dividing by the count, you can
keep a running total with the function RunningAvg(), which is shown in Listing 2.6.

Listing 2.6: Calculations with Global Variables

Function RunningAvg(ByVal newValue As Double) As Double
CurrentTotal = CurrentTotal + newValue
TotalItems = TotalItems + 1
RunningAvg = CurrentTotal / TotalItems

End Function

You must declare the variables CurrentTotal and TotalItems outside the function so that
their values are preserved between calls. Alternatively, you can declare them in the function with
the Static keyword, as shown in Listing 2.7.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 74

74 CHAPTER 2 VARIABLES AND DATA TYPES

Listing 2.7: Calculations with Local Static Variables

Function RunningAvg(ByVal newValue As Double) As Double
Static CurrentTotal As Double
Static TotalItems As Integer
CurrentTotal = CurrentTotal + newValue
TotalItems = TotalItems + 1
RunningAvg = CurrentTotal / TotalItems

End Function

The advantage of using static variables is that they help you minimize the number of total
variables in the application. All you need is the running average, which the RunningAvg()
function provides without making its variables visible to the rest of the application. Therefore,
you don’t risk changing the variables’ values from within other procedures.

Variables declared in a module outside any procedure take effect when the form is loaded and
cease to exist when the form is unloaded. If the form is loaded again, its variables are initialized as
if it’s being loaded for the first time.

Variables are initialized when they’re declared, according to their type. Numeric variables
are initialized to zero, string variables are initialized to a blank string, and object variables are
initialized to Nothing.

Constants
Some variables don’t change value during the execution of a program. These variables are
constants that appear many times in your code. For instance, if your program does math
calculations, the value of pi (3.14159. . .) might appear many times. Instead of typing the value
3.14159 over and over again, you can define a constant, name it pi, and use the name of the
constant in your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

You could declare pi as a variable, but constants are preferred for two reasons:

Constants don’t change value. This is a safety feature. After a constant has been declared,
you can’t change its value in subsequent statements, so you can be sure that the value specified
in the constant’s declaration will take effect in the entire program.

Constants are processed faster than variables. When the program is running, the values
of constants don’t have to be looked up. The compiler substitutes constant names with their
values, and the program executes faster.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 75

ARRAYS 75

The manner in which you declare constants is similar to the manner in which you declare
variables, except that you use the Const keyword and in addition to supplying the constant’s
name, you must also supply a value, as follows:

Const constantname As type = value

Constants also have a scope and can be Public or Private. The constant pi, for instance, is
usually declared in a module as Public so that every procedure can access it:

Public Const pi As Double = 3.14159265358979

The name of the constant follows the same rules as variable names. The constant’s value is a
literal value or a simple expression composed of numeric or string constants and operators. You
can’t use functions in declaring constants. By the way, the specific value I used for this example
need not be stored in a constant. Use the pi member of the Math class instead (Math.pi).

Constants can be strings, too, like these:

Const ExpDate = #31/12/1997#
Const ValidKey = ”A567dfe”

Arrays
A standard structure for storing data in any programming language is the array. Whereas
individual variables can hold single entities, such as one number, one date, or one string, arrays
can hold sets of data of the same type (a set of numbers, a series of dates, and so on). An array has
a name, as does a variable, and the values stored in it can be accessed by an index.

For example, you could use the variable Salary to store a person’s salary:

Salary = 34000

But what if you wanted to store the salaries of 16 employees? You could either declare 16
variables — Salary1, Salary2, and so on up to Salary16 — or declare an array with 16 elements.
An array is similar to a variable: It has a name and multiple values. Each value
is identified by an index (an integer value) that follows the array’s name in parentheses. Each
different value is an element of the array. If the array Salaries holds the salaries of 16 employ-
ees, the element Salaries(0) holds the salary of the first employee, the element Salaries(1)
holds the salary of the second employee, and so on up to the element Salaries(15).

Declaring Arrays
Unlike simple variables, arrays must be declared with the Dim (or Public) statement followed by
the name of the array and the index of the last element in the array in parentheses — for example:

Dim Salary(15) As Integer

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 76

76 CHAPTER 2 VARIABLES AND DATA TYPES

Salary is the name of an array that holds 16 values (the salaries of the 16 employees)
with indices ranging from 0 to 15. Salary(0) is the first person’s salary, Salary(1) the second
person’s salary, and so on. All you have to do is remember who corresponds to each salary, but
even this data can be handled by another array. To do this, you’d declare another array of 16
elements:

Dim Names(15) As String

Then assign values to the elements of both arrays:

Names(0) = ”Joe Doe”
Salary(0) = 34000
Names(1) = ”Beth York”
Salary(1) = 62000
...
Names(15) = ”Peter Smack”
Salary(15) = 10300

This structure is more compact and more convenient than having to hard-code the names of
employees and their salaries in variables.

All elements in an array have the same data type. Of course, when the data type is Object,
the individual elements can contain different kinds of data (objects, strings, numbers, and
so on).

Arrays, like variables, are not limited to the basic data types. You can declare arrays that hold
any type of data, including objects. The following array holds colors, which can be used later in
the code as arguments to the various functions that draw shapes:

Dim colors(2) As Color
colors(0) = Color.BurlyWood
colors(1) = Color.AliceBlue
colors(2) = Color.Sienna

The Color class represents colors, and among the properties it exposes are the names of the
colors it recognizes.

A better technique for storing names and salaries is to create a structure and then declare an
array of this type. The following structure holds names and salaries:

Structure Employee
Dim Name As String
Dim Salary As Decimal

End Structure

Insert this declaration in a form’s code file, outside any procedure. Then create an array of the
Employee type:

Dim Emps(15) As Employee

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 77

ARRAYS 77

Each element in the Emps array exposes two fields, and you can assign values to them by using
statements such as the following:

Emps(2).Name = ”Beth York”
Emps(2).Salary = 62000

The advantage of using an array of structures instead of multiple arrays is that the related
information will always be located under the same index. The code is more compact, and you
need not maintain multiple arrays.

Initializing Arrays
Just as you can initialize variables in the same line in which you declare them, you can initialize
arrays, too, with the following constructor (an array initializer, as it’s called):

Dim arrayname() As type = {entry0, entry1, ... entryN}

Here’s an example that initializes an array of strings:

Dim Names() As String = {”Joe Doe”, ”Peter Smack”}

This statement is equivalent to the following statements, which declare an array with two
elements and then set their values:

Dim Names(1) As String
Names(0) = ”Joe Doe”
Names(1) = ”Peter Smack”

The number of elements in the curly brackets following the array’s declaration determines the
dimensions of the array, and you can’t add new elements to the array without resizing it. If you
need to resize the array in your code dynamically, you must use the ReDim statement, as described
in the section called ‘‘Dynamic Arrays,’’ later in this chapter. However, you can change the value
of the existing elements at will, as you would with any other array.

Array Limits
The first element of an array has index 0. The number that appears in parentheses in the Dim
statement is one fewer than the array’s total capacity and is the array’s upper limit (or upper
bound). The index of the last element of an array (its upper bound) is given by the method
GetUpperBound, which accepts as an argument the dimension of the array and returns the
upper bound for this dimension. The arrays we examined so far are one-dimensional and the
argument to be passed to the GetUpperBound method is the value 0. The total number of
elements in the array is given by the method GetLength, which also accepts a dimension
as an argument. The upper bound of the following array is 19, and the capacity of the array is
20 elements:

Dim Names(19) As Integer

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 78

78 CHAPTER 2 VARIABLES AND DATA TYPES

The first element is Names(0), and the last is Names(19). If you execute the following
statements, the highlighted values will appear in the Output window:

Debug.WriteLine(Names.GetLowerBound(0))
0
Debug.WriteLine(Names.GetUpperBound(0))
19

To assign a value to the first and last element of the Names array, use the following
statements:

Names(0) = ”First entry”
Names(19) = ”Last entry”

If you want to iterate through the array’s elements, use a loop like the following one:

Dim i As Integer, myArray(19) As Integer
For i = 0 To myArray.GetUpperBound(0)
myArray(i) = i * 1000

Next

The actual number of elements in an array is given by the expression
myArray.GetUpperBound(0) + 1. You can also use the array’s Length property to retrieve the
count of elements. The following statement will print the number of elements in the array myArray
in the Output window:

Debug.WriteLine(myArray.Length)

Still confused with the zero-indexing scheme, the count of elements, and the index of the
last element in the array? You can make the array a little larger than it needs to be and
ignore the first element. Just make sure that you never use the zero element in your
code — don’t store a value in the element Array(0), and you can then ignore this element.
To get 20 elements, declare an array with 21 elements as Dim MyArray(20) As type and
then ignore the first element.

Multidimensional Arrays
One-dimensional arrays, such as those presented so far, are good for storing long sequences of
one-dimensional data (such as names or temperatures). But how would you store a list of cities and
their average temperatures in an array? Or names and scores; years and profits; or data with more
than two dimensions, such as products, prices, and units in stock? In some situations, you will
want to store sequences of multidimensional data. You can store the same data more conveniently
in an array of as many dimensions as needed.

Figure 2.5 shows two one-dimensional arrays — one of them with city names, the other with
temperatures. The name of the third city would be City(2), and its temperature would be
Temperature(2).

A two-dimensional array has two indices: The first identifies the row (the order of the
city in the array), and the second identifies the column (city or temperature). To access the name

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 79

ARRAYS 79

and temperature of the third city in the two-dimensional array, use the following
indices:

Temperatures(2, 0) ’ is the third city’s name
Temperatures(2, 1) ’ is the third city’s average temperature

Figure 2.5

Two one-dimensional
arrays and the equiv-
alent two-dimensional
array

The benefit of using multidimensional arrays is that they’re conceptually easier to manage.
Suppose that you’re writing a game and want to track the positions of certain pieces on a board.
Each square on the board is identified by two numbers: its horizontal and vertical coordinates.
The obvious structure for tracking the board’s squares is a two-dimensional array, in which the
first index corresponds to the row number, and the second corresponds to the column number.
The array could be declared as follows:

Dim Board(9, 9) As Integer

When a piece is moved from the square in the first row and first column to the square in the
third row and fifth column, you assign the value 0 to the element that corresponds to the initial
position:

Board(0, 0) = 0

And you assign 1 to the square to which it was moved to indicate the new state of the
board:

Board(2, 4) = 1

To find out whether a piece is on the top-left square, you’d use the following statement:

If Board(0, 0) = 1 Then
{ piece found}

Else
{ empty square}

End If

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 80

80 CHAPTER 2 VARIABLES AND DATA TYPES

This notation can be extended to more than two dimensions. The following statement creates
an array with 1,000 elements (10 by 10 by 10):

Dim Matrix(9, 9, 9)

You can think of a three-dimensional array as a cube made up of overlaid two-dimensional
arrays, such as the one shown in Figure 2.6.

Figure 2.6

Pictorial representa-
tions of one-, two-, and
three-dimensional arrays

It is possible to initialize a multidimensional array with a single statement, just as you do with
a one-dimensional array. You must insert enough commas in the parentheses following the array
name to indicate the array’s rank. The following statements initialize a two-dimensional array and
then print a couple of its elements:

Dim a(,) As Integer = {{10, 20, 30}, {11, 21, 31}, {12, 22, 32}}
Console.WriteLine(a(0, 1)) ’ will print 20
Console.WriteLine(a(2, 2)) ’ will print 32

You should break the line that initializes the dimensions of the array into multiple lines to
make your code easier to read. Just insert the line continuation character at the end of each
continued line:

Dim a(,) As Integer = {{10, 20, 30},
{11, 21, 31},
{12, 22, 32}}

If the array has more than one dimension, you can find out the number of dimensions with
the Array.Rank property. Let’s say you have declared an array for storing names and salaries by
using the following statements:

Dim Employees(1,99) As Employee

To find out the number of dimensions, use the following statement:

Employees.Rank

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 81

ARRAYS 81

When using the Length property to find out the number of elements in a multidimensional
array, you will get back the total number of elements in the array (2 × 100 for our example). To
find out the number of elements in a specific dimension, use the GetLength method, passing as an
argument a specific dimension. The following expressions will return the number of elements in
the two dimensions of the array:

Debug.WriteLine(Employees.GetLength(0))
2
Debug.WriteLine(Employees.GetLength(1))
100

Because the index of the first array element is zero, the index of the last element is the length
of the array minus 1. Let’s say you have declared an array with the following statement to store
player statistics for 15 players, and there are five values per player:

Dim Statistics(14, 4) As Integer

The following statements will return the highlighted values shown beneath them:

Debug.WriteLine(Statistics.Rank)
2 ’ dimensions in array
Debug.WriteLine(Statistics.Length)
75 ’ total elements in array
Debug.WriteLine(Statistics.GetLength(0))
15 ’ elements in first dimension
Debug.WriteLine(Statistics.GetLength(1))
5 ’ elements in second dimension
Debug.WriteLine(Statistics.GetUpperBound(0))
14 ’ last index in the first dimension
Debug.WriteLine(Statistics.GetUpperBound(1))
4 ’ last index in the second dimension

Multidimensional arrays are becoming obsolete because arrays (and other collections) of
custom structures and objects are more flexible and convenient.

Dynamic Arrays
Sometimes you may not know how large to make an array. Instead of making it large enough
to hold the (anticipated) maximum number of data (which means that, on the average, part of
the array may be empty), you can declare a dynamic array. The size of a dynamic array can vary
during the course of the program. Or you might need an array until the user has entered a bunch
of data, and the application has processed it and displayed the results. Why keep all the data in
memory when it is no longer needed? With a dynamic array, you can discard the data and return
the resources it occupied to the system.

To create a dynamic array, declare it as usual with the Dim statement (or Public or Private),
but don’t specify its dimensions:

Dim DynArray() As Integer

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 82

82 CHAPTER 2 VARIABLES AND DATA TYPES

Later in the program, when you know how many elements you want to store in the array, use
the ReDim statement to redimension the array, this time to its actual size. In the following example,
UserCount is a user-entered value:

ReDim DynArray(UserCount)

The ReDim statement can appear only in a procedure. Unlike the Dim statement, ReDim is
executable — it forces the application to carry out an action at runtime. Dim statements aren’t
executable, and they can appear outside procedures.

A dynamic array also can be redimensioned to multiple dimensions. Declare it with the Dim
statement outside any procedure, as follows:

Dim Matrix() As Double

Then use the ReDim statement in a procedure to declare a three-dimensional array:

ReDim Matrix(9, 9, 9)

Note that the ReDim statement can’t change the type of the array — that’s why the As clause
is missing from the ReDim statement. Moreover, subsequent ReDim statements can change the
bounds of the array Matrix but not the number of its dimensions. For example, you can’t use the
statement ReDim Matrix(99, 99) later in your code.

The Preserve Keyword

Each time you execute the ReDim statement, all the values currently stored in the array are lost.
Visual Basic resets the values of the elements as if the array were just declared (it resets numeric
elements to zero and String elements to empty strings.) You can, however, change the size of the
array without losing its data. The ReDim statement recognizes the Preserve keyword, which forces
it to resize the array without discarding the existing data. For example, you can enlarge an array
by one element without losing the values of the existing elements:

ReDim Preserve DynamicArray(DynArray.GetUpperBound(0) + 1)

If the array DynamicArray held 12 elements, this statement would add one element to the array:
the element DynamicArray(12). The values of the elements with indices 0 through 11 wouldn’t
change.

The Bottom Line
Declare and use variables. Programs use variables to store information during
their execution, and different types of information are stored in variables of different types.
Dates, for example, are stored in variables of the Date type, while text is stored in variables
of the String type. The various data types expose a lot of functionality that’s specific to a data
type; the methods provided by each data type are listed in the IntelliSense box.

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 83

THE BOTTOM LINE 83

Master It How would you declare and initialize a few variables?

Master It Explain briefly the Explicit, Strict, and Infer options.

Use the native data types. The CLR recognized the following data types, which you can
use in your code to declare variables: Strings, Numeric types, Date and time types, Boolean
data type.

All other variables, or variables that are declared without a type, are Object variables and can
store any data type, or any object.

Master It How will the compiler treat the following statement?

Dim amount = 32

Create custom data types. Practical applications need to store and manipulate multiple
data items, not just integers and strings. To maintain information about people, we
need to store each person’s name, date of birth, address, and so on. Products have a
name, a description, a price, and other related items. To represent such entities in our code,
we use structures, which hold many pieces of information about a specific entity
together.

Master It Create a structure for storing products and populate it with data.

Use arrays. Arrays are structures for storing sets of data, as opposed to single-valued
variables.

Master It How would you declare an array for storing 12 names and another one for
storing 100 names and Social Security numbers?

Petroutsos c02.tex V2 - 01/28/2008 12:12pm Page 84

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 85

Chapter 3

Programming Fundamentals

The one thing you should have learned about programming in Visual Basic so far is that an appli-
cation is made up of small, self-contained segments. The code you write isn’t a monolithic listing;
it’s made up of small segments called procedures, and you work on one procedure at a time.

The two types of procedures supported by Visual Basic are the topics we’ll explore in this
chapter: subroutines and functions — the building blocks of your applications. We’ll discuss them
in detail: how to call them with arguments and how to retrieve the results returned by the func-
tions. You’ll learn how to use the built-in functions that come with the language, as well as how to
write your own subroutines and functions.

The statements that make up the core of the language are actually very few. The flexibility of
any programming language is based on its capacity to alter the sequence in which the statements
are executed through a set of so-called flow-control statements. These are the statements that
literally make decisions and react differently depending on the data, user actions, or external
conditions. Among other topics, in this chapter you’ll learn how to do the following:

◆ Use Visual Basic’s flow-control statements

◆ Write subroutines and functions

◆ Pass arguments to subroutines and functions

Flow-Control Statements
What makes programming languages so flexible and capable of handling every situation and pro-
gramming challenge with a relatively small set of commands is their capability to examine external
or internal conditions and act accordingly. Programs aren’t monolithic sets of commands that carry
out the same calculations every time they are executed; this is what calculators (and extremely sim-
ple programs) do. Instead, they adjust their behavior depending on the data supplied; on external
conditions, such as a mouse click or the existence of a peripheral; even on abnormal conditions
generated by the program itself.

In effect, the statements discussed in the first half of this chapter are what programming is all
about. Without the capability to control the flow of the program, computers would just be bulky
calculators. You have seen how to use the If statement to alter the flow of execution in previous
chapters, and I assume you’re somewhat familiar with these kinds of statements. In this section,
you’ll find a formal discussion of flow-control statements. These statements are grouped into two
major categories: decision statements and looping statements.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 86

86 CHAPTER 3 PROGRAMMING FUNDAMENTALS

Decision Statements
Applications need a mechanism to test conditions and take a different course of action depending
on the outcome of the test. Visual Basic provides three such decision, or conditional, statements:

◆ If. . .Then

◆ If. . .Then. . .Else

◆ Select Case

If...Then

The If. . .Then statement tests an expression, which is known as a condition. If the condition is
True, the program executes the statement(s) that follow. The If. . .Then statement can have a
single-line or a multiple-line syntax. To execute one statement conditionally, use the single-line
syntax as follows:

If condition Then statement

Conditions are logical expressions that evaluate to a True/False value and they usually contain
comparison operators — equals (=), different (<>), less than (<), greater than (>), less than or
equal to (<=), and so on — and logical operators: And, Or, Xor, and Not. Here are a few examples
of valid conditions:

If (age1 < age2) And (age1 > 12) Then ...
If score1 = score2 Then ...

The parentheses are not really needed in the first sample expression, but they make the code
a little easier to read. Sometimes parentheses are mandatory, to specify the order in which the
expression’s parts will be evaluated, just like math formulae may require parentheses to indicate
the precedence of calculations. You can also execute multiple statements by separating them
with colons:

If condition Then statement: statement: statement

Here’s an example of a single-line If statement:

expDate = expDate + 1
If expdate.Month > 12 Then expYear = expYear + 1: expMonth = 1

You can break this statement into multiple lines by using the multiline syntax of the If state-
ment, which delimits the statements to be executed conditionally with the End If statement, as
shown here:

If expDate.Month > 12 Then
expYear = expYear + 1
expMonth = 1

End If

The Month property of the Date type returns the month of the date to which it’s applied as a
numeric value. Most VB developers prefer the multiple-line syntax of the If statement, even if

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 87

FLOW-CONTROL STATEMENTS 87

it contains a single statement. The block of statements between the Then and End If keywords
form the body of the conditional statement, and you can have as many statements in the body
as needed.

Many control properties are Boolean values, which evaluate to a True/False value. Let’s say
that your interface contains a CheckBox control and you want to set its caption to On or Off
depending on whether it’s selected at the time. Here’s an If statement that changes the caption of
the CheckBox:

If CheckBox1.Checked Then
CheckBox1.Text = ”ON”

Else
CheckBox1.Text = ”OFF”

End If

This statement changes the caption of the CheckBox all right, but when should it be executed?
Insert the statement in the CheckBox control’s CheckedChanged event handler, which is fired every
time the control’s check mark is turned on or off, whether because of a user action on the interface
or from within your code.

The expressions can get quite complicated. The following expression evaluates to True if the
date1 variable represents a date earlier than the year 2008 and either one of the score1 and score2
variables exceeds 90:

If (date1 < #1/1/2008) And (score1 < 90 Or score2 < 90) Then
‘ statements

End If

The parentheses around the last part of the comparison are mandatory, because we want the
compiler to perform the following comparison first:

score1 < 90 Or score2 < 90

If either variable exceeds 90, the preceding expression evaluates to True and the initial condi-
tion is reduced to the following:

If (date1 < #1/1/2008) And (True) Then

The compiler will evaluate the first part of the expression (it will compare two dates) and
finally it will combine two Boolean values with the And operator: if both values are True, the entire
condition is True; otherwise, it’s False. If you didn’t use parentheses, the compiler would evaluate
the three parts of the expression:

expression1: date1 < #1/1/2008#
expression2: score1 < 90
expression3: score2 < 90

Then it would combine expression1 with expression2 using the And operator, and finally it
would combine the result with expression3 using the OR operator. If score2 were less than 90,
the entire expression would evaluate to True, regardless of the value of the date1 variable.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 88

88 CHAPTER 3 PROGRAMMING FUNDAMENTALS

If...Then...Else

A variation of the If. . .Then statement is the If. . .Then. . .Else statement, which executes one
block of statements if the condition is True and another block of statements if the condition is
False. The syntax of the If. . .Then. . .Else statement is as follows:

If condition Then
statementblock1

Else
statementblock2

End If

Visual Basic evaluates the condition; if it’s True, VB executes the first block of statements and
then jumps to the statement following the End If statement. If the condition is False, Visual Basic
ignores the first block of statements and executes the block following the Else keyword.

A third variation of the If. . .Then. . .Else statement uses several conditions, with the ElseIf
keyword:

If condition1 Then
statementblock1

ElseIf condition2 Then
statementblock2

ElseIf condition3 Then
statementblock3

Else
statementblock4

End If

You can have any number of ElseIf clauses. The conditions are evaluated from the top, and if
one of them is True, the corresponding block of statements is executed. The Else clause, which is
optional, will be executed if none of the previous expressions is True. Listing 3.1 is an example of
an If statement with ElseIf clauses.

Listing 3.1: Multiple ElseIf Statements

score = InputBox(”Enter score”)
If score < 50 Then

Result = ”Failed”
ElseIf score < 75 Then

Result = ”Pass”
ElseIf score < 90 Then

Result = ”Very Good”
Else

Result = ”Excellent”
End If
MsgBox Result

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 89

FLOW-CONTROL STATEMENTS 89

Multiple If. . .Then Structures versus ElseIf

Notice that after a True condition is found, Visual Basic executes the associated statements and skips
the remaining clauses. It continues executing the program with the statement immediately after End
If. All following ElseIf clauses are skipped, and the code runs a bit faster. That’s why you should
prefer the complicated structure with the ElseIf statements used in Listing 3.1 to this equivalent
series of simple If statements:

If score < 50 Then
Result = ”Failed”

End If
If score < 75 And score >= 50 Then

Result = ”Pass”
End If
If score < 90 And score > =75 Then

Result = ”Very Good”
End If
If score >= 90 Then

Result = ”Excellent”
End If

With the multiple If statements, the compiler will generate code that evaluates all the conditions,
even if the score is less than 50.

The order of the comparisons is vital when you’re using multiple ElseIf statements. Had
you written the previous code segment with the first two conditions switched, like the following
segment, the results would be quite unexpected:

If score < 75 Then
Result = ”Pass”

ElseIf score < 50 Then
Result = ”Failed”

ElseIf score < 90 Then
Result = ”Very Good”

Else
Result = ”Excellent”

End If

Let’s assume that score is 49. The code would compare the score variable to the value 75.
Because 49 is less than 75, it would assign the value Pass to the variable Result, and then it would
skip the remaining clauses. Thus, a student who scored 49 would have passed the test! So be
extremely careful and test your code thoroughly if it uses multiple ElseIf clauses. You must either
make sure they’re listed in the proper order or use upper and lower limits, as in the preceding
sidebar.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 90

90 CHAPTER 3 PROGRAMMING FUNDAMENTALS

The IIf() Function

Not to be confused with the If. . .Then statement, VB provides the IIf() function. This built-in func-
tion accepts as an argument an expression and two values, evaluates the expression, and returns the
first value if the expression is True, or the second value if the expression is False. The syntax of
the IIf() function is the following:

IIf(expression, TruePart, FalsePart)

The TruePart and FalsePart arguments are objects. (They can be integers, strings, or any built-in
or custom object.) The IIf() function is a more compact notation for simple If statements. Let’s
say you want to display one of the strings ‘‘Close’’ or ‘‘Far’’, depending on the value of the distance
variable. Instead of a multiline If statement, you can call the IIf() function as follows:

IIf(distance > 1000, ”Far”, ”Close”)

Another typical example of the IIf() function is in formatting negative values. It’s fairly common in
business applications to display negative amounts in parentheses. Use the IIf() statement to write
a short expression that formats negative and positive amounts differently, like the following one:

IIf(amount < 0, ”(” &
Math.Abs(amount).ToString(”#,###.00”) & ”)”,
amount.ToString(”#,###.00”))

The Abs method of the Math class returns the absolute value of a numeric value, and the string
argument of the ToString method determines that the amount should have two decimal digits.

Select Case

An alternative to the efficient but difficult-to-read code of the multiple ElseIf structure is the
Select Case structure, which compares the same expression to different values. The advantage of
the Select Case statement over multiple If. . .Then. . .ElseIf statements is that it makes the code
easier to read and maintain.

The Select Case structure evaluates a single expression at the top of the structure. The result of
the expression is then compared with several values; if it matches one of them, the corresponding
block of statements is executed. Here’s the syntax of the Select Case statement:

Select Case expression
Case value1

statementblock1
Case value2

statementblock2
.
.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 91

FLOW-CONTROL STATEMENTS 91

.
Case Else

statementblockN
End Select

A practical example based on the Select Case statement is shown in Listing 3.2.

Listing 3.2: Using the Select Case Statement

Dim Message As String
Select Case Now.DayOfWeek

Case DayOfWeek.Monday
message = ”Have a nice week”

Case DayOfWeek.Friday
message = ”Have a nice weekend”

Case Else
message = ”Welcome back!”

End Select
MsgBox(message)

In the listing, the expression that’s evaluated at the beginning of the statement is the
Now.DayOfWeek method. This method returns a member of the DayOfWeek enumeration, and
you can use the names of these members in your code to make it easier to read. The value of
this expression is compared with the values that follow each Case keyword. If they match, the
block of statements up to the next Case keyword is executed, and the program skips to the state-
ment following the End Select statement. The block of the Case Else statement is optional,
and is executed if none of the previous cases matches the expression. The first two Case state-
ments take care of Fridays and Mondays, and the Case Else statement takes care of the
other days.

Some Case statements can be followed by multiple values, which are separated by commas.
Listing 3.3 is a revised version of the previous example.

Listing 3.3: A Select Case Statement with Multiple Cases per Clause

Select Case Now.DayOfWeek
Case DayOfWeek.Monday

message = ”Have a nice week”
Case DayOfWeek.Tuesday, DayOfWeek.Wednesday, DayOfWeek.Thursday

message = ”Welcome back!”
Case DayOfWeek.Friday, DayOfWeek.Saturday, DayOfWeek.Sunday

message = ”Have a nice weekend!”
End Select
MsgBox(message)

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 92

92 CHAPTER 3 PROGRAMMING FUNDAMENTALS

Monday, weekends, and weekdays are handled separately by three Case statements. The
second Case statement handles multiple values (all workdays except for Monday and Friday).
Monday is handled by a separate Case statement. This structure doesn’t contain a Case Else
statement because all possible values are examined in the Case statements; the DayOfWeek method
can’t return another value.

The Case statements can get a little more complex. For example, you may want to distinguish
a case where the variable is larger (or smaller) than a value. To implement this logic, use the Is
keyword, as in the following code segment that distinguishes between the first and second half of
the month:

Select Now.Day
Case Is < 15

MsgBox(”It’s the first half of the month”)
Case Is >= 15

MsgBox(”It’s the second half of the month”)
End Select

Short-Circuiting Expression Evaluation

A common pitfall of evaluating expressions with VB is to attempt to compare a Nothing value
to something. An object variable that hasn’t been set to a value can’t be used in calculations or
comparisons. Consider the following statements:

Dim B As SolidBrush
B = New SolidBrush(Color.Cyan)
If B.Color = Color.White Then

MsgBox(”Please select another brush color”)
End If

These statements create a SolidBrush object variable, the B variable, and then examine the brush
color and prohibit the user from drawing with a white brush. The second statement initializes the
brush to the cyan color. (Every shape drawn with this brush will appear in cyan.) If you attempt
to use the B variable without initializing it, a runtime exception will be thrown: the infamous
NullReferenceException. In our example, the exception will be thrown when the program gets
to the If statement, because the B variable has no value (it’s Nothing), and the code attempts to
compare it to something. Nothing values can’t be compared to anything. Comment out the second
statement by inserting a single quote in front of it and then execute the code to see what will
happen. Then restore the statement by removing the comment mark.

Let’s fix it by making sure that B is not Nothing:

If B IsNot Nothing And B.Color = Color.White Then
MsgBox(”Please select another brush color”)

End If

The If statement should compare the Color property of the B object, only if the B object is not
Nothing. But this isn’t the case. The AND operator evaluates all terms in the expression and then
combines their results (True or False values) to determine the value of the expression. If they’re
all True, the result is also True. However, it won’t skip the evaluation of some terms as soon as
it hits a False value. To avoid unnecessary comparisons, use the AndAlso operator. The AndAlso

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 93

FLOW-CONTROL STATEMENTS 93

operator does what the And operator should have done in the first place: It stops evaluating the
remaining terms or the expression because they won’t affect the result. If one of its operands is
False, the entire expression will evaluate to False. In other words, if B is Nothing, there’s no reason
to compare its color; the entire expression will evaluate to False, regardless of the brush’s color.
Here’s how we use the AndAlso operator:

If B IsNot Nothing AndAlso B.Color = Color.White Then
MsgBox(”Please select another brush color”)

End If

The AndAlso operator is said to short-circuit the evaluation of the entire expression as soon as
it runs into a False value. As soon as one of the parts in an AndAlso operation turns out to be False,
the entire expression is False and there’s no need to evaluate the remaining terms.

There’s an equivalent operator for short-circuiting OR expressions: the OrElse operator. The
OrElse operator can speed the evaluation of logical expressions a little, but it’s not as important
as the AndAlso operator. Another good reason for short-circuiting expression evaluation is to
help performance. If the second term of an And expression takes longer to execute (it has to access
a remote database, for example), you can use the AndAlso operator to make sure that it’s not
executed when not needed.

Loop Statements
Loop statements allow you to execute one or more lines of code repetitively. Many tasks consist of
operations that must be repeated over and over again, and loop statements are an important part
of any programming language. Visual Basic supports the following loop statements:

◆ For. . .Next

◆ Do. . .Loop

◆ While. . .End While

For...Next

Unlike the other two loops, the For. . .Next loop requires that you know the number of times that
the statements in the loop will be executed. The For. . .Next loop has the following syntax:

For counter = start To end [Step increment]
statements

Next [counter]

The keywords in the square brackets are optional. The arguments counter, start, end, and
increment are all numeric. The loop is executed as many times as required for the counter to
reach (or exceed) the end value.

In executing a For. . .Next loop, Visual Basic does the following:

1. Sets counter equal to start.

2. Tests to see whether counter is greater than end. If so, it exits the loop without executing the
statements in the loop’s body, not even once. If increment is negative, Visual Basic tests to
see whether counter is less than end. If it is, it exits the loop.

3. Executes the statements in the block.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 94

94 CHAPTER 3 PROGRAMMING FUNDAMENTALS

4. Increases counter by the amount specified with the increment argument, following the
Step keyword. If the increment argument isn’t specified, counter is increased by 1. If Step
is a negative value, counter is decreased accordingly.

5. Continues with step 3.

The For. . .Next loop in Listing 3.4 scans all the elements of the numeric array data and calcu-
lates their average.

Listing 3.4: Iterating an Array with a For. . .Next Loop

Dim i As Integer, total As Double
For i = 0 To data.GetUpperBound(0)

total = total + data(i)
Next i
Debug.WriteLine (total / Data.Length)

The single most important thing to keep in mind when working with For. . .Next loops is that
the loop’s ending value is set at the beginning of the loop. Changing the value of the end variable
in the loop’s body won’t have any effect. For example, the following loop will be executed 10
times, not 100 times:

Dim endValue As Integer = 10
Dim i as Integer
For i = 0 To endValue

endValue = 100
{ more statements }

Next i

You can, however, adjust the value of the counter from within the loop. The following is an
example of an endless (or infinite) loop:

For i = 0 To 10
Debug.WriteLine(i)
i = i - 1

Next i

This loop never ends because the loop’s counter, in effect, is never increased. (If you try this,
press Ctrl + Break to interrupt the endless loop.)

Do Not Manipulate the Loop’s Counter

Manipulating the counter of a For. . .Next loop is strongly discouraged. This practice will most likely
lead to bugs such as infinite loops, overflows, and so on. If the number of repetitions of a loop isn’t
known in advance, use a Do. . .Loop or a While. . .End While structure (discussed in the following
section). To jump out of a For. . .Next loop prematurely, use the Next For statement.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 95

FLOW-CONTROL STATEMENTS 95

The increment argument can be either positive or negative. If start is greater than end, the
value of increment must be negative. If not, the loop’s body won’t be executed, not even once.

VB 2008 allows you to declare the counter in the For statement. The counter variable ceases to
exist when the program bails out of the loop:

For i As Integer = 1 to 10
Debug.WriteLine(i.ToString)

Next
Debug.WriteLine(i.ToString)

The i variable is used as the loop’s counter and it’s not visible outside the loop. The last state-
ment won’t even compile; the editor will underline it with a wiggly line and will generate the error
message Name ‘i’ is not declared.

Do...Loop

The Do. . .Loop executes a block of statements for as long as a condition is True, or until a condition
becomes True. Visual Basic evaluates an expression (the loop’s condition), and if it’s True, the
statements in the loop’s body are executed. The expression is evaluated either at the beginning
of the loop (before executing any statements) or at the end of the loop (the block statements are
executed at least once). If the expression is False, the program’s execution continues with the
statement following the loop.

There are two variations of the Do. . .Loop statement; both use the same basic model. A loop
can be executed either while the condition is True or until the condition becomes True. These
two variations use the keywords While and Until to specify for how long the statements will be
executed. To execute a block of statements while a condition is True, use the following syntax:

Do While condition
statement-block

Loop

To execute a block of statements until the condition becomes True, use the following syntax:

Do Until condition
statement-block

Loop

When Visual Basic executes these loops, it first evaluates condition. If condition is False,
a Do. . .While loop is skipped (the statements aren’t even executed once), but a Do. . .Until loop
is executed. When the Loop statement is reached, Visual Basic evaluates the expression again; it
repeats the statement block of the Do. . .While loop if the expression is True or repeats the state-
ments of the Do. . .Until loop if the expression is False. In short, the Do. . .While loop is executed
when the condition is True, and the Do. . .Until loop is executed when the condition is False.

A last variation of the Do. . .Loop statement allows you to evaluate the condition at the end of the
loop. Here’s the syntax of both loops, with the evaluation of the condition at the end of the loop:

Do
statement-block

Loop While condition

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 96

96 CHAPTER 3 PROGRAMMING FUNDAMENTALS

Do
statement-block

Loop Until condition

As you can guess, the statements in the loop’s body are executed at least once, because no
testing takes place as the loop is entered.

Here’s a typical example of using a Do. . .Loop: Suppose that the variable MyText holds some
text (like the Text property of a TextBox control), and you want to count the words in the text.
(We’ll assume that there are no multiple spaces in the text and that the space character separates
successive words.) To locate an instance of a character in a string, use the IndexOf method, which
is discussed in detail in Chapter 13, ‘‘Handling Strings, Characters, and Dates.’’ This method
accepts two arguments: the starting location of the search and the character being searched.
The following loop repeats for as long as there are spaces in the text. Each time the IndexOf
method finds another space in the text, it returns the location of the space. When there are no
more spaces in the text, the IndexOf method returns the value –1, which signals the end of the
loop, as shown:

Dim MyText As String =
”The quick brown fox jumped over the lazy dog”

Dim position, words As Integer
position = 0: words = 0
Do While position >= 0

position = MyText.IndexOf(” ”, position + 1)
words += 1

Loop
MsgBox(”There are ” & words & ” words in the text”)

The Do. . .Loop is executed while the IndexOf method function returns a positive number,
which means that there are more spaces (and therefore words) in the text. The variable position
holds the location of each successive space character in the text. The search for the next space starts
at the location of the current space plus 1 (so the program won’t keep finding the same space). For
each space found, the program increments the value of the words variable, which holds the total
number of words when the loop ends. By the way, there are simpler methods of breaking a string
into its constituent words, such as the Split method of the String class, which is discussed in
Chapter 13. This is just an example of the Do. . .While loop.

You might notice a problem with the previous code segment: It assumes that the text contains
at least one word. You should insert an If statement that detects zero-length strings and doesn’t
attempt to count words in them.

You can code the same routine with the Until keyword. In this case, you must continue search-
ing for spaces until position becomes –1. Here’s the same code with a different loop:

Dim position As Integer = 0
Dim words As Integer = 0
Do Until position = -1

position = MyText.IndexOf(” ”, position + 1)
words = words + 1

Loop
MsgBox(”There are ” & words & ” words in the text”)

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 97

FLOW-CONTROL STATEMENTS 97

While...End While

The While. . .End While loop executes a block of statements as long as a condition is True. The loop
has the following syntax:

While condition
statement-block

End While

If condition is True, all statements in the bock are executed. When the End While statement
is reached, control is returned to the While statement, which evaluates condition again. If con-
dition is still True, the process is repeated. If condition is False, the program resumes with the
statement following End While.

The loop in Listing 3.5 prompts the user for numeric data. The user can type a negative value
to indicate he’s done entering values and terminate the loop. As long as the user enters positive
numeric values, the program keeps adding them to the total variable.

Listing 3.5: Reading an Unknown Number of Values

Dim number, total As Double
number = 0
While number => 0

total = total + number
number = InputBox(”Please enter another value”)

End While

I’ve assigned the value 0 to the number variable before the loop starts because this value isn’t
negative and doesn’t affect the total.

Sometimes, the condition that determines when the loop will terminate can’t be evaluated at
the top of the loop. In these cases, we declare a Boolean value and set it to True or False from
within the loop’s body. Here’s the outline of such a loop:

Dim repeatLoop As Boolean
repeatLoop = True
While repeatLoop

{ statements }
If condition Then

repeatLoop = True
Else

repeattLoop = False
End If

End While

You may also see an odd loop statement like the following one:

While True
{ statements }

End While

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 98

98 CHAPTER 3 PROGRAMMING FUNDAMENTALS

It’s also common to express the True condition as follows:

While 1 = 1

This seemingly endless loop must be terminated from within its own body with an Exit While
statement, which is called when a condition becomes True or False. The following loop terminates
when a condition is met in the loop’s body:

While True
{ statements }
If condition Then Exit While
{ more statements }

End While

Nested Control Structures
You can place, or nest, control structures inside other control structures (such as an If. . .Then
block within a For. . .Next loop). Control structures in Visual Basic can be nested in as many levels
as you want. The editor automatically indents the bodies of nested decision and loop structures to
make the program easier to read.

When you nest control structures, you must make sure that they open and close within the
same structure. In other words, you can’t start a For. . .Next loop in an If statement and close
the loop after the corresponding End If. The following code segment demonstrates how to nest
several flow-control statements. (The curly brackets denote that regular statements should appear
in their place and will not compile, of course.)

For a = 1 To 100
{ statements }
If a = 99 Then

{ statements }
End If
While b < a

{ statements }
If total <= 0 Then

{ statements }
End If

End While
For c = 1 to a

{ statements }
Next c

Next a

I’m showing the names of the counter variables after the Next statements to make the code
more readable. To find the matching closing statement (Next, End If, or End While), move down
from the opening statement until you hit a line that starts at the same column. This is the matching
closing statement. Notice that you don’t have to align the nested structures yourself; the editor
reformats the code automatically as you edit. It also inserts the matching closing statement — the
End If statement is inserted automatically as soon as you enter an If statement, for example.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 99

FLOW-CONTROL STATEMENTS 99

Listing 3.6 shows the structure of a nested For. . .Next loop that scans all the elements of a
two-dimensional array.

Listing 3.6: Iterating through a Two-Dimensional Array

Dim Array2D(6, 4) As Integer
Dim iRow, iCol As Integer
For iRow = 0 To Array2D.GetUpperBound(0)

For iCol = 0 To Array2D.GetUpperBound(1)
Array2D(iRow, iCol) = iRow * 100 + iCol
Debug.Write(iRow & ”, ” & iCol & ” = ” &

Array2D(iRow, iCol) & ” ”)
Next iCol
Debug.WriteLine()

Next iRow

The outer loop (with the iRow counter) scans each row of the array. At each iteration, the inner
loop scans all the elements in the row specified by the counter of the outer loop (iRow). After
the inner loop completes, the counter of the outer loop is increased by one, and the inner loop is
executed again — this time to scan the elements of the next row. The loop’s body consists of two
statements that assign a value to the current array element and then print it in the Output window.
The current element at each iteration is Array2D(iRow, iCol).

You can also nest multiple If statements. The code in Listing 3.7 tests a user-supplied value to
determine whether it’s positive; if so, it determines whether the value exceeds a certain limit.

Listing 3.7: Simple Nested If Statements

Dim Income As Decimal
Income = Convert.ToDecimal(InputBox(”Enter your income”))
If Income > 0 Then

If Income > 12000 Then
MsgBox ”You will pay taxes this year”

Else
MsgBox ”You won’t pay any taxes this year”

End If
Else

MsgBox ”Bummer”
End If

The Income variable is first compared with zero. If it’s negative, the Else clause of the If. . .Then
statement is executed. If it’s positive, it’s compared with the value 12,000, and depending on
the outcome, a different message is displayed. The code segment shown here doesn’t perform
any extensive validations and assumes that the user won’t enter a string when prompted for
her income.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 100

100 CHAPTER 3 PROGRAMMING FUNDAMENTALS

The Exit Statement
The Exit statement allows you to exit prematurely from a block of statements in a control struc-
ture, from a loop, or even from a procedure. Suppose that you have a For. . .Next loop that
calculates the square root of a series of numbers. Because the square root of negative numbers
can’t be calculated (the Math.Sqrt method will generate a runtime error), you might want to halt
the operation if the array contains an invalid value. To exit the loop prematurely, use the Exit For
statement as follows:

For i = 0 To UBound(nArray)
If nArray(i) < 0 Then

MsgBox(”Can’t complete calculations” & vbCrLf &
”Item ” & i.ToString & ” is negative! ”

Exit For
End If
nArray(i) = Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues with the
statement following the Next statement.

There are similar Exit statements for the Do loop (Exit Do), the While loop (Exit While), the
Select statement (Exit Select), and for functions and subroutines (Exit Function and Exit
Sub). If the previous loop was part of a function, you might want to display an error and exit not
only the loop, but also the function itself by using the Exit Function statement.

Writing and Using Procedures
The idea of breaking a large application into smaller, more manageable sections is not new to
computing. Few tasks, programming or otherwise, can be managed as a whole. The event handlers
are just one example of breaking a large application into smaller tasks.

For example, when you write code for a control’s Click event, you concentrate on the event
at hand — namely, how the program should react to the Click event. What happens when the
control is double-clicked or when another control is clicked is something you will worry about
later — in another control’s event handler. This divide-and-conquer approach isn’t unique to
programming events. It permeates the Visual Basic language, and even the longest applications are
written by breaking them into small, well-defined, easily managed tasks. Each task is performed
by a separate procedure that is written and tested separately from the others. As mentioned earlier,
the two types of procedures supported by Visual Basic are subroutines and functions.

Subroutines usually perform actions and they don’t return any result. Functions, on the other
hand, perform some calculations and return a value. This is the only difference between subrou-
tines and functions. Both subroutines and functions can accept arguments, which are values you
pass to the procedure when you call it. Usually, the arguments are the values on which the proce-
dure’s code acts. Arguments and the related keywords are discussed in detail in the ‘‘Arguments’’
section later in this chapter.

Subroutines
A subroutine is a block of statements that carries out a well-defined task. The block of state-
ments is placed within a set of Sub. . .End Sub statements and can be invoked by name.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 101

WRITING AND USING PROCEDURES 101

The following subroutine displays the current date in a message box and can be called by its name,
ShowDate():

Sub ShowDate()
MsgBox(Now().ToShortDateString)

End Sub

Normally, the task performed by a subroutine is more complicated than this; but even this
simple subroutine is a block of code isolated from the rest of the application. The statements in a
subroutine are executed, and when the End Sub statement is reached, control returns to the calling
program. It’s possible to exit a subroutine prematurely by using the Exit Sub statement.

All variables declared within a subroutine are local to that subroutine. When the subroutine
exits, all variables declared in it cease to exist.

Most procedures also accept and act upon arguments. The ShowDate() subroutine displays the
current date in a message box. If you want to display any other date, you have to implement it
differently and add an argument to the subroutine:

Sub ShowDate(ByVal birthDate As Date)
MsgBox(birthDate.ToShortDateString)

End Sub

birthDate is a variable that holds the date to be displayed; its type is Date. The ByVal keyword
means that the subroutine sees a copy of the variable, not the variable itself. What this means
practically is that the subroutine can’t change the value of the variable passed by the calling appli-
cation. To display the current date in a message box, you must call the ShowDate() subroutine as
follows from within your program:

ShowDate()

To display any other date with the second implementation of the subroutine, use a statement
like the following:

Dim myBirthDate = #2/9/1960#
ShowDate(myBirthDate)

Or, you can pass the value to be displayed directly without the use of an intermediate variable:

ShowDate(#2/9/1960#)

If you later decide to change the format of the date, there’s only one place in your code you
must edit: the statement that displays the date from within the ShowDate() subroutine.

Functions
A function is similar to a subroutine, but a function returns a result. Because they return values,
functions — like variables — have types. The value you pass back to the calling program from
a function is called the return value, and its type must match the type of the function. Functions

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 102

102 CHAPTER 3 PROGRAMMING FUNDAMENTALS

accept arguments, just like subroutines. The statements that make up a function are placed in a set
of Function. . .End Function statements, as shown here:

Function NextDay() As Date
Dim theNextDay As Date
theNextDay = Now.AddDays(1)
Return theNextDay

End Function

The Function keyword is followed by the function name and the As keyword that specifies its
type, similar to a variable declaration. AddDays is a method of the Date type, and it adds a number
of days to a Date value. The NextDay() function returns tomorrow’s date by adding one day to the
current date. NextDay() is a custom function, which calls the built-in AddDays method to complete
its calculations.

The result of a function is returned to the calling program with the Return statement, which
is followed by the value you want to return from your function. This value, which is usually a
variable, must be of the same type as the function. In our example, the Return statement happens
to be the last statement in the function, but it could appear anywhere; it could even appear several
times in the function’s code. The first time a Return statement is executed, the function terminates,
and control is returned to the calling program.

You can also return a value to the calling routine by assigning the result to the name of the
function. The following is an alternate method of coding the NextDay() function:

Function NextDay() As Date
NextDay = Now.AddDays(1)

End Function

Notice that this time I’ve assigned the result of the calculation to the function’s name directly
and didn’t use a variable. This assignment, however, doesn’t terminate the function like the
Return statement. It sets up the function’s return value, but the function will terminate when
the End Function statement is reached, or when an Exit Function statement is encountered.

Similar to variables, a custom function has a name that must be unique in its scope (which is
also true for subroutines, of course). If you declare a function in a form, the function name must be
unique in the form. If you declare a function as Public or Friend, its name must be unique in the
project. Functions have the same scope rules as variables and can be prefixed by many of the same
keywords. In effect, you can modify the default scope of a function with the keywords Public,
Private, Protected, Friend, and Protected Friend. In addition, functions have types, just like
variables, and they’re declared with the As keyword.

Suppose that the function CountWords() counts the number of words, and the function
CountChars() counts the number of characters in a string. The average length of a word could
be calculated as follows:

Dim longString As String, avgLen As Double
longString = TextBox1.Text
avgLen = CountChars(longString) / CountWords(longString)

The first executable statement gets the text of a TextBox control and assigns it to a variable,
which is then used as an argument to the two functions. When the third statement executes, Visual

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 103

ARGUMENTS 103

Basic first calls the functions CountChars() and CountWords() with the specified arguments, and
then divides the results they return.

You can call functions in the same way that you call subroutines, but the result won’t be stored
anywhere. For example, the function Convert() might convert the text in a text box to uppercase
and return the number of characters it converts. Normally, you’d call this function as follows:

nChars = Convert()

If you don’t care about the return value — you only want to update the text on a TextBox
control — you would call the Convert() function with the following statement:

Convert()

Arguments
Subroutines and functions aren’t entirely isolated from the rest of the application. Most proce-
dures accept arguments from the calling program. Recall that an argument is a value you pass to
the procedure and on which the procedure usually acts. This is how subroutines and functions
communicate with the rest of the application.

Subroutines and functions may accept any number of arguments, and you must supply a value
for each argument of the procedure when you call it. Some of the arguments may be optional,
which means you can omit them; you will see shortly how to handle optional arguments.

The custom function Min(), for instance, accepts two numbers and returns the smaller one:

Function Min(ByVal a As Single, ByVal b As Single) As Single
Min = IIf(a < b, a, b)

End Function

IIf() is a built-in function that evaluates the first argument, which is a logical expression. If
the expression is True, the IIf() function returns the second argument. If the expression is False,
the function returns the third argument.

To call the Min() custom function, use a few statements like the following:

Dim val1 As Single = 33.001
Dim val2 As Single = 33.0011
Dim smallerVal as Single
smallerVal = Min(val1, val2)
Debug.Write(”The smaller value is ” & smallerVal)

If you execute these statements (place them in a button’s Click event handler), you will see the
following in the Immediate window:

The smaller value is 33.001

If you attempt to call the same function with two Double values, with a statement like the
following, you will see the value 3.33 in the Immediate window:

Debug.WriteLine(Min(3.33000000111, 3.33000000222))

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 104

104 CHAPTER 3 PROGRAMMING FUNDAMENTALS

The compiler converted the two values from Double to Single data type and returned one of
them. Which one is it? It doesn’t make a difference because when converted to Single, both values
are the same.

Interesting things will happen if you attempt to use the Min() function with the Strict option
turned on. Insert the statement Option Strict On at the very beginning of the file, or set Option
Strict to On in the Compile tab of the project’s Properties pages. The editor will underline the
statement that implements the Min() function: the IIf() function. The IIf() function accepts
two Object variables as arguments, and returns one of them as its result. The Strict option prevents
the compiler from converting an Object to a numeric variable. To use the IIf() function with the
Strict option, you must change its implementation as follows:

Function Min(ByVal a As Object, ByVal b As Object) As Object
Min = IIf(Val(a) < Val(b), a, b)

End Function

It’s possible to implement a Min() function that can compare arguments of all types (integers,
strings, dates, and so on). We’ll return to this sample function later in this chapter, in the section
‘‘Overloading Functions.’’

Argument-Passing Mechanisms
One of the most important topics in implementing your own procedures is the mechanism used
to pass arguments. The examples so far have used the default mechanism: passing arguments by
value. The other mechanism is passing them by reference. Although most programmers use the
default mechanism, it’s important to know the difference between the two mechanisms and when
to use each.

By Value versus by Reference

When you pass an argument by value, the procedure sees only a copy of the argument. Even if
the procedure changes it, the changes aren’t permanent; in other words, the value of the original
variable passed to the procedure isn’t affected. The benefit of passing arguments by value is that
the argument values are isolated from the procedure, and only the code segment in which they
are declared can change their values. This is the default argument-passing mechanism in Visual
Basic 2008.

In VB 6, the default argument-passing mechanism was by reference, and this is something you
should be aware of, especially if you’re migrating VB 6 code to VB 2008.

To specify the arguments that will be passed by value, use the ByVal keyword in front of the
argument’s name. If you omit the ByVal keyword, the editor will insert it automatically because
it’s the default option. To declare that the Degrees() function’s argument is passed by value, use
the ByVal keyword in the argument’s declaration as follows:

Function Degrees(ByVal Celsius as Single) As Single
Return((9 / 5) * Celsius + 32)

End Function

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 105

ARGUMENTS 105

To see what the ByVal keyword does, add a line that changes the value of the argument
in the function:

Function Degrees(ByVal Celsius as Single) As Single
Return((9 / 5) * Celsius + 32)
Celsius = 0

End Function

Now call the function as follows:

CTemp = InputBox(”Enter temperature in degrees Celsius”)
MsgBox(CTemp.ToString & ” degrees Celsius are ” &

Degrees((CTemp)) & ” degrees Fahrenheit”)

If you enter the value 32, the following message is displayed:

32 degrees Celsius are 89.6 degrees Fahrenheit

Replace the ByVal keyword with the ByRef keyword in the function’s definition and call the
function as follows:

Celsius = 32.0
FTemp = Degrees(Celsius)
MsgBox(Celsius.ToString & ” degrees Celsius are ” & FTemp &

” degrees Fahrenheit”)

This time the program displays the following message:

0 degrees Celsius are 89.6 degrees Fahrenheit

When the Celsius argument was passed to the Degrees() function, its value was 32. But
the function changed its value, and upon return it was 0. Because the argument was passed by
reference, any changes made by the procedure affected the variable permanently. As a result,
when the calling program attempted to use it, the variable had a different value than expected.

Returning Multiple Values

If you want to write a function that returns more than a single result, you will most likely pass
additional arguments by reference and set their values from within the function’s code. The
CalculateStatistics() function, shown a little later in this section, calculates the basic statistics
of a data set. The values of the data set are stored in an array, which is passed to the function
by reference. The CalculateStatistics() function must return two values: the average and
standard deviation of the data set. Here’s the declaration of the CalculateStatistics() function:

Function CalculateStatistics(ByRef Data() As Double,
ByRef Avg As Double, ByRef StDev As Double) As Integer

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 106

106 CHAPTER 3 PROGRAMMING FUNDAMENTALS

The function returns an integer, which is the number of values in the data set. The two impor-
tant values calculated by the function are returned in the Avg and StDev arguments:

Function CalculateStatistics(ByRef Data() As Double,
ByRef Avg As Double, ByRef StDev As Double) As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer
points = Data.Length
For i = 0 To points - 1

sum = sum + Data(i)
sumSqr = sumSqr + Data(i) ˆ 2

Next
Avg = sum / points
StDev = System.Math.Sqrt(sumSqr / points - Avg ˆ 2)
Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Doubles
and declare two variables that will hold the average and standard deviation of the data set:

Dim Values(99) As Double
‘ Statements to populate the data set
Dim average, deviation As Double
Dim points As Integer
points = Stats(Values, average, deviation)
Debug.WriteLine points & ” values processed.”
Debug.WriteLine ”The average is ” & average & ” and”
Debug.WriteLine ”the standard deviation is ” & deviation

Using ByRef arguments is the simplest method for a function to return multiple values. How-
ever, the definition of your functions might become cluttered, especially if you want to return more
than a few values. Another problem with this technique is that it’s not clear whether an argument
must be set before calling the function. As you will see shortly, it is possible for a function to return
an array or a custom structure with fields for any number of values.

Passing Objects as Arguments

When you pass objects as arguments, they’re passed by reference, even if you have specified the
ByVal keyword. The procedure can access and modify the members of the object passed as an
argument, and the new value will be visible in the procedure that made the call.

The following code segment demonstrates this. The object is an ArrayList, which is an enhanced
form of an array. The ArrayList is discussed in detail later in the book, but to follow this example
all you need to know is that the Add method adds new items to the ArrayList, and you can access
individual items with an index value, similar to an array’s elements. In the Click event handler
of a Button control, create a new instance of the ArrayList object and call the PopulateList()
subroutine to populate the list. Even if the ArrayList object is passed to the subroutine by value,
the subroutine has access to its items:

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim aList As New ArrayList()
PopulateList(aList)

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 107

ARGUMENTS 107

Debug.WriteLine(aList(0).ToString)
Debug.WriteLine(aList(1).ToString)
Debug.WriteLine(aList(2).ToString)

End Sub

Sub PopulateList(ByVal list As ArrayList)
list.Add(”1”)
list.Add(”2”)
list.Add(”3”)

End Sub

The same is true for arrays and all other collections. Even if you specify the ByVal keyword,
they’re passed by reference. A more elegant method of modifying the members of a structure from
within a procedure is to implement the procedure as a function returning a structure, as explained
in the section ‘‘Functions Returning Structures,’’ later in this chapter.

Built-in Functions
VB 2008 provides many functions that implement common or complicated tasks, and you can look
them up in the documentation. (You’ll find them in the Visual Studio� Visual Basic � Reference
� Functions branch of the contents tree in the Visual Studio documentation.) There are functions
for the common math operations, functions to perform calculations with dates (these are truly
complicated operations), financial functions, and many more. When you use the built-in functions,
you don’t have to know how they work internally — just how to call them and how to retrieve the
return value.

The Pmt() function, for example, calculates the monthly payments on a loan. All you have to
know is the arguments you must pass to the function and how to retrieve the result. The syntax
of the Pmt() function is the following, where MPay is the monthly payment, Rate is the monthly
interest rate, and NPer is the number of payments (the duration of the loan in months). PV is the
loan’s present value (the amount you took from the bank):

MPay = Pmt(Rate, NPer, PV, FV, Due)

Due is an optional argument that specifies when the payments are due (the beginning or the end
of the month), and FV is another optional argument that specifies the future value of an amount.
This isn’t needed in the case of a loan, but it can help you calculate how much money you should
deposit each month to accumulate a target amount over a given time. (The amount returned by
the Pmt() function is negative because it’s a negative cash flow — it’s money you owe — so pay
attention to the sign of your values.)

To calculate the monthly payment for a $20,000 loan paid off over a period of six years at a
fixed interest rate of 7.25%, you call the Pmt() function, as shown in Listing 3.8.

Listing 3.8: Using the Pmt() Built-in Function

Dim mPay, totalPay As Double
Dim Duration As Integer = 6 * 12
Dim Rate As Single = (7.25 / 100) / 12
Dim Amount As Single = 20000
mPay = -Pmt(Rate, Duration, Amount)

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 108

108 CHAPTER 3 PROGRAMMING FUNDAMENTALS

totalPay = mPay * Duration
MsgBox(”Your monthly payment will be ” & mPay.ToString(”C”) &

vbCrLf & ”You will pay back a total of ” &
totalPay.ToString(”C”))

Notice that the interest (7.25%) is divided by 12 because the function requires the monthly
interest. The value returned by the function is the monthly payment for the loan specified with
the Duration, Amount, and Rate variables. If you place the preceding lines in the Click event
handler of a Button, run the project, and then click the button, the following message will appear
in a message box:

Your monthly payment will be $343.39
You will pay back a total of $24,723.80

Let’s say you want to accumulate $40,000 over the next 15 years by making monthly deposits
of equal amounts. To calculate the monthly deposit amount, you must call the Pmt() function,
passing 0 as the present value and the target amount as the future value. Replace the statements
in the button’s Click event handler with the following and run the project:

Dim mPay As Double
Dim Duration As Integer = 15 * 12
Dim Rate As Single = (4.0 / 100.0) / 12
Dim Amount As Single = -40000.0
mPay = Pmt(Rate, Duration, 0, Amount)
MsgBox(”A monthly deposit of ” & mPay.ToString(”C”) & vbCrLf &

”every month will yield $40,000 in 15 years”)

It turns out that if you want to accumulate $40,000 over the next 15 years to send your kid to
college, assuming a constant interest rate of 4%, you must deposit $162.54 every month. You’ll put
out almost $30,000, and the rest will be the interest you earn.

Pmt() is one of the simpler financial functions provided by the Framework, but most of us
would find it really difficult to write the code for this function. Because financial calculations are
quite common in business programming, many of the functions you might need already exist, and
all you need to know is how to call them. If you’re developing financial applications, you should
look up the financial functions in the documentation.

Let’s look at another useful built-in function, the MonthName() function, which accepts as an
argument a month number and returns the name of the month. This function is not as trivial as you
might think because it returns the month name or its abbreviation in the language of the current
culture. The MonthName() function accepts as arguments the month number and a True/False
value that determines whether it will return the abbreviation or the full name of the month. The
following statements display the name of the current month (both the abbreviation and the full
name). Every time you execute these statements, you will see the current month’s name in the
current language:

Dim mName As String
mName = MonthName(Now.Month, True)
MsgBox(mName) ‘ prints ”Jan”
mName = MonthName(Now.Month, False)
MsgBox(mName) ‘ prints ”January”

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 109

ARGUMENTS 109

A similar function, the WeekDayName() function, returns the name of the week for a specific
weekday. This function accepts an additional argument that determines the first day of the week.
(See the documentation for more information on the syntax of the WeekDayName() function.)

The primary role of functions is to extend the functionality of the language. Many functions that
perform rather common practical operations have been included in the language, but they aren’t
nearly enough for the needs of all developers or all types of applications. Besides the built-in func-
tions, you can write custom functions to simplify the development of your custom applications, as
explained in the following section.

Custom Functions
Most of the code we write is in the form of custom functions or subroutines that are called from
several places in the application. Subroutines are just like functions, except that they don’t return a
value, so we’ll focus on the implementation of custom functions. With the exception of a function’s
return value, everything else presented in this and the following section applies to subroutines
as well.

Let’s look at an example of a fairly simple (but not trivial) function that does something really
useful. Books are identified by a unique international standard book number (ISBN), and every
application that manages books needs a function to verify the ISBN, which is made up of 12 dig-
its followed by a check digit. To calculate the check digit, you multiply each of the 12 digits by a
constant; the first digit is multiplied by 1, the second digit is multiplied by 3, the third digit by 1
again, and so on. The sum of these multiplications is then divided by 10, and we take the remain-
der. The check digit is this remainder subtracted from 10. To calculate the check digit for the ISBN
978078212283, compute the sum of the following products:

9 * 1 + 7 * 3 + 8 * 1 + 0 * 3 + 7 * 1 + 8 * 3 +
2 * 1 + 1 * 3 + 2 * 1 + 2 * 3 + 8 * 1 + 3 * 3 = 99

The sum is 99; when you divide it by 10, the remainder is 9. The check digit is 10 – 9, or 1, and
the book’s complete ISBN is 9780782122831. The ISBNCheckDigit() function, shown in Listing
3.9, accepts the 12 digits of the ISBN as an argument and returns the appropriate check digit.

Listing 3.9: The ISBNCheckDigit() Custom Function

Function ISBNCheckDigit(ByVal ISBN As String) As String
Dim i As Integer, chksum As Integer = 0
Dim chkDigit As Integer
Dim factor As Integer = 3
For i = 0 To 11

factor = 4 - factor
chksum += factor * Convert.ToInt16(ISBN.Substring(i, 1))

Next
Return (((10 - (chksum Mod 10)) Mod 10)).ToString

End Function

The ISBNCheckDigit() function returns a string value because ISBNs are handled as strings,
not numbers. (Leading zeros are important in an ISBN but are totally meaningless, and omitted,
in a numeric value.) The Substring method of a String object extracts a number of characters
from the string to which it’s applied. The first argument is the starting location in the string, and

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 110

110 CHAPTER 3 PROGRAMMING FUNDAMENTALS

the second is the number of characters to be extracted. The expression ISBN.Substring(i, 1)
extracts one character at a time from the ISBN string variable. During the first iteration of the loop,
it extracts the first character; during the second iteration, it extracts the second character, and
so on.

The extracted character is a numeric digit, which is multiplied by the factor variable value
and the result is added to the chkSum variable. This variable is the checksum of the ISBN. After it
has been calculated, we divide it by 10 and take its remainder (the first Mod operator returns the
remainder of this division), which we subtract from 10. The second Mod operator maps the value
10 to 0. This is the ISBN’s check digit and the function’s return value.

You can use this function in an application that maintains a book database to make sure that
all books are entered with a valid ISBN. You can also use it with a web application that allows
viewers to request books by their ISBN. The same code will work with two different applications,
even when passed to other developers. Developers using your function don’t have to know how
the check digit is calculated, just how to call the function and retrieve its result.

To test the ISBNCheckDigit() function, start a new project, place a button on the form, and
enter the following statements in its Click event handler (or open the ISBN project in the folder
with this chapter’s sample projects):

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Console.WriteLine(”The check Digit is ” &
ISBNCheckDigit(”978078212283”))

End Sub

After inserting the code of the ISBNCheckDigit() function and the code that calls the func-
tion, your code editor should look like Figure 3.1. You can place a TextBox control on the form
and pass the Text property of the control to the ISBNCheckDigit() function to calculate the
check digit.

A similar algorithm is used for calculating the check digit of credit cards: the Luhns algo-
rithm. You can look it up on the Internet and write a custom function for validating credit
card numbers.

Figure 3.1

Calling the ISBNCheck-
Digit() function

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 111

ARGUMENTS 111

Passing Arguments and Returning Values
So far you’ve learned how to write and call procedures with a few simple arguments and how to
retrieve the function’s return value and use it in your code. This section covers a few advanced
topics on argument-passing techniques and how to write functions that return multiple values, or
arrays of values and custom data types.

Passing an Unknown Number of Arguments

Generally, all the arguments that a procedure expects are listed in the procedure’s definition,
and the program that calls the procedure must supply values for all arguments. On occasion,
however, you might not know how many arguments will be passed to the procedure. Procedures
that calculate averages or, in general, process multiple values can accept from a few to several
arguments whose count is not known at design time. VB 2008 supports the ParamArray keyword,
which allows you to pass a variable number of arguments to a procedure.

Let’s look at an example. Suppose that you want to populate a ListBox control with elements.
To add an item to the ListBox control, you call the Add method of its Items collection as follows:

ListBox1.Items.Add(”new item”)

This statement adds the string new item to the ListBox1 control. If you frequently add multiple
items to a ListBox control from within your code, you can write a subroutine that performs this
task. The following subroutine adds a variable number of arguments to the ListBox1 control:

Sub AddNamesToList(ByVal ParamArray NamesArray() As Object)
Dim x As Object
For Each x In NamesArray

ListBox1.Items.Add(x)
Next x

End Sub

This subroutine’s argument is an array prefixed with the keyword ParamArray, which holds
all the parameters passed to the subroutine. If the parameter array holds items of the same type,
you can declare the array to be of the specific type (string, integer, and so on). To add items to the
list, call the AddNamesToList() subroutine as follows:

AddNamesToList(”Robert”, ”Manny”, ”Renee”, ”Charles”, ”Madonna”)

If you want to know the number of arguments actually passed to the procedure, use the Length
property of the parameter array. The number of arguments passed to the AddNamesToList()
subroutine is given by the following expression:

NamesArray.Length

The following loop goes through all the elements of the NamesArray and adds them to the list:

Dim i As Integer
For i = 0 to NamesArray.GetUpperBound(0)

ListBox1.Items.Add(NamesArray(i))
Next i

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 112

112 CHAPTER 3 PROGRAMMING FUNDAMENTALS

VB arrays are zero-based (the index of the first item is 0), and the GetUpperBound method
returns the index of the last item in the array.

A procedure that accepts multiple arguments relies on the order of the arguments. To omit
some of the arguments, you must use the corresponding comma. Let’s say you want to call such
a procedure and specify the first, third, and fourth arguments. The procedure must be called as
follows:

ProcName(arg1, , arg3, arg4)

The arguments to similar procedures are usually of equal stature, and their order doesn’t make
any difference. A function that calculates the mean or other basic statistics of a set of numbers,
or a subroutine that populates a ListBox or ComboBox control, are prime candidates for imple-
menting this technique. If the procedure accepts a variable number of arguments that aren’t equal
in stature, you should consider the technique described in the following section. If the function
accepts a parameter array, this must the last argument in the list, and none of the other parameters
can be optional.

Named Arguments

You learned how to write procedures with optional arguments and how to pass a variable number
of arguments to the procedure. The main limitation of the argument-passing mechanism, though,
is the order of the arguments. By default, Visual Basic matches the values passed to a procedure to
the declared arguments by their order (which is why the arguments you’ve seen so far are called
positional arguments).

This limitation is lifted by Visual Basic’s capability to specify named arguments. With named
arguments, you can supply arguments in any order because they are recognized by name and not
by their order in the list of the procedure’s arguments. Suppose you’ve written a function that
expects three arguments: a name, an address, and an email address:

Function Contact(Name As String, Address As String, EMail As String)

When calling this function, you must supply three strings that correspond to the arguments
Name, Address, and EMail, in that order. However, there’s a safer way to call this function: Supply
the arguments in any order by their names. Instead of calling the Contact() function as follows:

Contact(”Peter Evans”, ”2020 Palm Ave., Santa Barbara, CA 90000”,
”PeterEvans@example.com”)

you can call it this way:

Contact(Address:=”2020 Palm Ave., Santa Barbara, CA 90000”,
EMail:=”PeterEvans@example.com”, Name:=”Peter Evans”)

The := operator assigns values to the named arguments. Because the arguments are passed by
name, you can supply them in any order.

To test this technique, enter the following function declaration in a form’s code:

Function Contact(ByVal Name As String, ByVal Address As String,
ByVal EMail As String) As String

Debug.WriteLine(Name)

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 113

ARGUMENTS 113

Debug.WriteLine(Address)
Debug.WriteLine(EMail)
Return (”OK”)

End Function

Then call the Contact() function from within a button’s Click event with the following
statement:

Debug.WriteLine(
Contact(Address:=”2020 Palm Ave., Santa Barbara, CA 90000”,
Name:=”Peter Evans”, EMail:=”PeterEvans@example.com”))

You’ll see the following in the Immediate window:

Peter Evans
2020 Palm Ave., Santa Barbara, CA 90000
PeterEvans@example.com
OK

The function knows which value corresponds to which argument and can process them the
same way that it processes positional arguments. Notice that the function’s definition is the same,
whether you call it with positional or named arguments. The difference is in how you call the
function and not how you declare it.

Named arguments make code safer and easier to read, but because they require a lot of typing,
most programmers don’t use them. Besides, when IntelliSense is on, you can see the definition of
the function as you enter the arguments, and this minimizes the chances of swapping two values
by mistake.

More Types of Function Return Values
Functions are not limited to returning simple data types such as integers or strings. They might
return custom data types and even arrays. The capability of functions to return all types of data
makes them very flexible and can simplify coding, so we’ll explore it in detail in the following
sections. Using complex data types, such as structures and arrays, allows you to write functions
that return multiple values.

Functions Returning Structures

Suppose you need a function that returns a customer’s savings and checking account balances.
So far, you’ve learned that you can return two or more values from a function by supplying
arguments with the ByRef keyword. A more elegant method is to create a custom data type
(a structure) and write a function that returns a variable of this type.

Here’s a simple example of a function that returns a custom data type. This example outlines
the steps you must repeat every time you want to create functions that return custom data types:

1. Create a new project and insert the declarations of a custom data type in the declarations
section of the form:

Structure CustBalance
Dim SavingsBalance As Decimal
Dim CheckingBalance As Decimal

End Structure

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 114

114 CHAPTER 3 PROGRAMMING FUNDAMENTALS

2. Implement the function that returns a value of the custom type. In the function’s body, you
must declare a variable of the type returned by the function and assign the proper values
to its fields. The following function assigns random values to the fields CheckingBalance
and SavingsBalance. Then assign the variable to the function’s name, as shown next:

Function GetCustBalance(ID As Long) As CustBalance
Dim tBalance As CustBalance
tBalance.CheckingBalance = CDec(1000 + 4000 * rnd())
tBalance.SavingsBalance = CDec(1000 + 15000 * rnd())
Return(tBalance)

End Function

3. Place a button on the form from which you want to call the function. Declare a variable
of the same type and assign to it the function’s return value. The example that follows prints
the savings and checking balances in the Output window:

Private Sub Button1 Click(...) Handles Button1.Click
Dim balance As CustBalance
balance = GetCustBalance(1)
Debug.WriteLine(balance.CheckingBalance)
Debug.WriteLine(balance.SavingsBalance)

End Sub

The code shown in this section belongs to the Structures sample project. Create this project from
scratch, perhaps by using your own custom data type, to explore its structure and experiment with
functions that return custom data types. In Chapter 10, ‘‘Building Custom Classes,’’ you’ll learn
how to build your own classes and you’ll see how to write functions that return custom objects.

VB 2008 at Work: The Types Project

The Types project, which you’ll find in this chapter’s folder, demonstrates a function that returns a
custom data type. The Types project consists of a form that displays record fields (see Figure 3.2).

Figure 3.2

The Types project
demonstrates functions
that return custom data
types.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 115

ARGUMENTS 115

Every time you click the Next button, the fields of the next record are displayed in the correspond-
ing TextBox controls on the form. When all records are exhausted, the program wraps back to the
first record.

The project consists of a single form and uses a custom data type, implemented with the follow-
ing structure. The structure’s declaration must appear in the form’s code, outside any procedure,
along with a couple of variable declarations:

Structure Customer
Dim Company As String
Dim Manager As String
Dim Address As String
Dim City As String
Dim Country As String
Dim CustomerSince As Date
Dim Balance As Decimal

End Structure
Private Customers(9) As Customer
Private cust As Customer
Private currentIndex as Integer

The array Customers holds the data for 10 customers, and the cust variable is used as a tem-
porary variable for storing the current customer’s data. The currentIndex variable is the index
of the current element of the array. The array is filled with Customer data, and the currentIndex
variable is initialized to zero.

The Click event handler of the Next button calls the GetCustomer() function with an index
value (which is the order of the current customer) to retrieve the data of the next customer, and
displays the customer’s fields on the Label controls on the form with the ShowCustomer() subrou-
tine. Then it increases the value of the currentIndex variable to point to the current customer’s
index. You can open the Types project in Visual Studio and examine its code, which contains quite
a few comments explaining its operation.

Functions Returning Arrays

In addition to returning custom data types, VB 2008 functions can also return arrays. This is an
interesting possibility that allows you to write functions that return not only multiple values, but
also an unknown number of values.

In this section, we’ll write the Statistics() function, similar to the CalculateStatistics()
function you saw a little earlier in this chapter. The Statistics() function returns the statistics in
an array. Moreover, it returns not only the average and the standard deviation, but the minimum
and maximum values in the data set as well. One way to declare a function that calculates all the
statistics is as follows:

Function Statistics(ByRef DataArray() As Double) As Double()

This function accepts an array with the data values and returns an array of Doubles. To imple-
ment a function that returns an array, you must do the following:

1. Specify a type for the function’s return value and add a pair of parentheses after the type’s
name. Don’t specify the dimensions of the array to be returned here; the array will be
declared formally in the function.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 116

116 CHAPTER 3 PROGRAMMING FUNDAMENTALS

2. In the function’s code, declare an array of the same type and specify its dimensions. If the
function should return four values, use a declaration like this one:

Dim Results(3) As Double

The Results array, which will be used to store the results, must be of the same type as the
function — its name can be anything.

3. To return the Results array, simply use it as an argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without dimensions:

Dim Statistics() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Statistics(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the
Statistics() function. Your code can then retrieve each element of the array with an index
value as usual.

VB 2008 at Work: The Statistics Project

The Statistics sample project demonstrates how to write a procedure that returns an array. When
you run it, the Statistics application creates a data set of random values and then calls the Statis-
tics() function to calculate the data set’s basic statistics. The results are returned in an array,
and the main program displays them in Label controls, as shown in Figure 3.3. Every time the
Calculate Statistics button is clicked, a new data set is generated and its statistics are displayed.

Figure 3.3

The Statistics project
calculates the basic
statistics of a data set
and returns them in an
array.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 117

ARGUMENTS 117

The Statistics() function’s code is based on the preceding discussion, and I will not show it
here. You can open the Statistics project and examine the function’s code, as well as how the main
program uses the array returned by the Statistics() function.

Overloading Functions
There are situations in which the same function must operate on different data types or a differ-
ent number of arguments. In the past, you had to write different functions, with different names
and different arguments, to accommodate similar requirements. The Framework introduced the
concept of function overloading, which means that you can have multiple implementations of
the same function, each with a different set of arguments and possibly a different return value.
Yet all overloaded functions share the same name. Let me introduce this concept by examining
one of the many overloaded functions that come with the .NET Framework.

The Next method of the System.Random class returns an integer value from –2,147,483,648 to
2,147,483,647. (This is the range of values that can be represented by the Integer data type.) We
should also be able to generate random numbers in a limited range of integer values. To emulate
the throw of a die, we want a random value in the range from 1 to 6, whereas for a roulette game
we want an integer random value in the range from 0 to 36. You can specify an upper limit for the
random number with an optional integer argument. The following statement will return a random
integer in the range from 0 to 99:

randomInt = rnd.Next(100)

You can also specify both the lower and upper limits of the random number’s range. The
following statement will return a random integer in the range from 1,000 to 1,999:

randomInt = rnd.Next(1000, 2000)

The same method behaves differently based on the arguments we supply. The behavior of the
method depends either on the type of the arguments, the number of the arguments, or both. As
you will see, there’s no single function that alters its behavior based on its arguments. There are as
many different implementations of the same function as there are argument combinations. All
the functions share the same name, so they appear to the user as a single multifaceted function.
These functions are overloaded, and you’ll see how they’re implemented in the following section.

If you haven’t turned off the IntelliSense feature of the editor, as soon as you type the opening
parenthesis after a function or method name, you see a yellow box with the syntax of the function
or method. You’ll know that a function, or a method, is overloaded when this box contains a
number and two arrows. Each number corresponds to a different overloaded form, and you can
move to the next or previous overloaded form by clicking the two little arrows or by pressing the
arrow keys.

Let’s return to the Min() function we implemented earlier in this chapter. The initial imple-
mentation of the Min() function is shown next:

Function Min(ByVal a As Double, ByVal b As Double) As Double
Min = IIf(a < b, a, b)

End Function

By accepting Double values as arguments, this function can handle all numeric types. VB 2008
performs automatic widening conversions (it can convert Integers and Decimals to Doubles),

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 118

118 CHAPTER 3 PROGRAMMING FUNDAMENTALS

so this trick makes the function work with all numeric data types. However, what about strings?
If you attempt to call the Min() function with two strings as arguments, you’ll get an exception.
The Min() function just can’t handle strings.

To write a Min() function that can handle both numeric and string values, you must, in essence,
write two Min() functions. All Min() functions must be prefixed with the Overloads keyword.
The following statements show two different implementations of the same function:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double
Min = Convert.ToDouble(IIf(a < b, a, b))

End Function

Overloads Function Min(ByVal a As String, ByVal b As String) As String
Min = Convert.ToString(IIf(a < b, a, b))

End Function

We need a third overloaded form of the same function to compare dates. If you call the Min()
function, passing as an argument two dates, as in the following statement, the Min() function will
compare them as strings and return (incorrectly) the first date.

Debug.WriteLine(Min(#1/1/2009#, #3/4/2008#))

This statement is not even valid when the Strict option is on, so you clearly need another over-
loaded form of the function that accepts two dates as arguments, as shown here:

Overloads Function Min(ByVal a As Date, ByVal b As Date) As Date
Min = IIf(a < b, a, b)

End Function

If you now call the Min() function with the dates #1/1/2009# and #3/4/2008#, the function
will return the second date, which is chronologically smaller than the first.

Let’s look into a more complicated overloaded function, which makes use of some topics dis-
cussed later in this book. The CountFiles() function counts the number of files in a folder that
meet certain criteria. The criteria could be the size of the files, their type, or the date they were
created. You can come up with any combination of these criteria, but the following are the most
useful combinations. (These are the functions I would use, but you can create even more combina-
tions or introduce new criteria of your own.) The names of the arguments are self-descriptive, so I
need not explain what each form of the CountFiles() function does.

CountFiles(ByVal minSize As Integer, ByVal maxSize As Integer) As Integer
CountFiles(ByVal fromDate As Date, ByVal toDate As Date) As Integer
CountFiles(ByVal type As String) As Integer
CountFiles(ByVal minSize As Integer, ByVal maxSize As Integer,

ByVal type As String) As Integer
CountFiles(ByVal fromDate As Date, ByVal toDate As Date,

ByVal type As String) As Integer

Listing 3.10 shows the implementation of these overloaded forms of the CountFiles() func-
tion. (I’m not showing all overloaded forms of the function; you can open the OverloadedFunctions
project in the IDE and examine the code.) Because we haven’t discussed file operations yet, most
of the code in the function’s body will be new to you — but it’s not hard to follow. For the benefit

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 119

ARGUMENTS 119

of readers who are totally unfamiliar with file operations, I included a statement that prints in the
Immediate window the type of files counted by each function. The Debug.WriteLine statement
prints the values of the arguments passed to the function, along with a description of the type of
search it will perform. The overloaded form that accepts two integer values as arguments prints
something like this:

You’ve requested the files between 1000 and 100000 bytes

whereas the overloaded form that accepts a string as an argument prints the following:

You’ve requested the .EXE files

Listing 3.10: The Overloaded Implementations of the CountFiles() Function

Overloads Function CountFiles(
ByVal minSize As Integer,
ByVal maxSize As Integer) As Integer

Debug.WriteLine(”You’ve requested the files between ” &
minSize & ” and ” & maxSize & ” bytes”)

Dim files() As String
files = System.IO.Directory.GetFiles(”c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.Length >= minSize And FI.Length <= maxSize Then

fileCount = fileCount + 1
End If

Next
Return(fileCount)

End Function

Overloads Function CountFiles(
ByVal fromDate As Date,
ByVal toDate As Date) As Integer

Debug.WriteLine(”You’ve requested the count of files created from ” &
fromDate & ” to ” & toDate)

Dim files() As String
files = System.IO.Directory.GetFiles(”c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.CreationTime.Date >= fromDate And

FI.CreationTime.Date <= toDate Then
fileCount = fileCount + 1

End If
Next
Return(fileCount)

End Function

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 120

120 CHAPTER 3 PROGRAMMING FUNDAMENTALS

Overloads Function CountFiles(ByVal type As String) As Integer
Debug.WriteLine(”You’ve requested the ” & type & ” files”)
‘ Function Implementation

End Function

Overloads Function CountFiles(
ByVal minSize As Integer,
ByVal maxSize As Integer,
ByVal type As String) As Integer

Debug.WriteLine(”You’ve requested the ” & type &
” files between ” & minSize & ” and ” &
maxSize & ” bytes”)

‘ Function implementation
End Function

Overloads Function CountFiles(ByVal fromDate As Date,
ByVal toDate As Date, ByVal type As String) As Integer

Debug.WriteLine(”You’ve requested the ” & type &
” files created from ” & fromDate & ” to ” & toDate)

‘ Function implementation
End Function

If you’re unfamiliar with the Directory and File objects, focus on the statement that prints to the
Immediate window and ignore the statements that actually count the files that meet the specified
criteria. After reading Chapter 15, ‘‘Accessing Folders and Files,’’ you can revisit this example and
understand the statements that select the qualifying files and count them.

Start a new project and enter the definitions of the overloaded forms of the function on the
form’s level. Listing 3.10 is lengthy, but all the overloaded functions have the same structure and
differ only in how they select the files to count. Then place a TextBox and a button on the form, as
shown in Figure 3.4, and enter a few statements that exercise the various overloaded forms of the
function (such as the ones shown in Listing 3.11) in the button’s Click event handler.

Listing 3.11: Testing the Overloaded Forms of the CountFiles() Function

Private Sub Button1 Click(...) Handles Button1.Click
TextBox1.AppendText(CountFiles(1000, 100000) &

” files with size between 1KB and 100KB” & vbCrLf)
TextBox1.AppendText(CountFiles(#1/1/2006#, #12/31/2006#) &

” files created in 2006” & vbCrLf)
TextBox1.AppendText(CountFiles(”.BMP”) & ” BMP files” & vbCrLf)
TextBox1.AppendText(CountFiles(1000, 100000, ”.EXE”) &

” EXE files between 1 and 100 KB” & vbCrLf)
TextBox1.AppendText(CountFiles(#1/1/2006#, #12/31/2007#, ”.EXE”) &

” EXE files created in 2006 and 2007”)
End Sub

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 121

THE BOTTOM LINE 121

Figure 3.4

The Overloaded
Functions project

The button calls the various overloaded forms of the CountFiles() function one after the other
and prints the results on the TextBox control. From now on, I’ll be omitting the list of arguments
in the most common event handlers, such as the Click event handler, because they’re always the
same and they don’t add to the readability of the code. In place of the two arguments, I’ll insert an
ellipsis to indicate the lack of the arguments.

Function overloading is used heavily throughout the language. There are relatively few func-
tions (or methods, for that matter) that aren’t overloaded. Every time you enter the name of a
function followed by an opening parenthesis, a list of its arguments appears in the drop-down list
with the arguments of the function. If the function is overloaded, you’ll see a number in front of
the list of arguments, as shown in Figure 3.5. This number is the order of the overloaded form
of the function, and it’s followed by the arguments of the specific form of the function. The figure
shows all the forms of the CountFiles() function.

Figure 3.5

The overloaded forms
of the CountFiles()
function

The Bottom Line
Use Visual Basic’s flow-control statements. Visual Basic provides several statements for
controlling the sequence in which statements are executed: decision statements, which change
the course of execution based on the outcome of a comparison, and loop statements, which
repeat a number of statements while a condition is true or false.

Master It Explain briefly the decision statements of Visual Basic.

Petroutsos c03.tex V2 - 01/28/2008 1:01pm Page 122

122 CHAPTER 3 PROGRAMMING FUNDAMENTALS

Write subroutines and functions. To manage large applications, we break our code into
small, manageable units. These units of code are the subroutines and functions. Subroutines
perform actions and don’t return any values. Functions, on the other hand, perform calcula-
tions and return values. Most of the language’s built-in functionality is in the form of functions.

Master It How will you create multiple overloaded forms of the same function?

Pass arguments to subroutines and functions. Procedures and functions communicate with
one another via arguments, which are listed in a pair of parentheses following the procedure’s
name. Each argument has a name and a type. When you call the procedure, you must supply
values for each argument and the types of the values should match the types listed in the pro-
cedure’s definition.

Master It Explain the difference between passing arguments by value and passing
arguments by reference.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 123

Chapter 4

GUI Design and Event-Driven
Programming

The first three chapters of this book introduced you to the basics of designing applications with
Visual Studio 2008 and the components of the Visual Basic language. You know how to design
graphical user interfaces (GUI) and how to use the statements of Visual Basic to program the
events of the various controls. You also know how to write functions and subroutines and how to
call the built-in functions and subroutines of Visual Basic.

In this chapter, you’ll design a few more Windows applications — this time, a few practical
applications with more functional interfaces and a bit of code that does something more practical.
You’ll put together the information presented so far in the book by building Windows applica-
tions with the visual tools of Visual Studio and you’ll see how the application interacts with users
by coding the events of interest. If you are new to Visual Studio, you should design the examples
on your own using the instructions in the text, rather than open the same projects and look at
the code.

In this chapter, you will learn how to do the following:

◆ Design graphical user interfaces

◆ Program events

◆ Write robust applications with error handling

On Designing Windows Applications
As you recall from Chapter 1, ‘‘Getting Started with Visual Basic 2008,’’ the design of a Windows
application consists of two distinct phases: the design of the application’s interface and the cod-
ing of the application. The design of the interface is performed with visual tools and consists of
creating a form with the relevant elements. These elements are the building blocks of Windows
applications and are called controls.

The available controls are shown in the Toolbox and are the same elements used by all Win-
dows applications. In addition to being visually rich, the controls embed a lot of functionality. The
TextBox control, for example, can handle text on its own, without any programming effort on your
part. The ComboBox control expands the list with its items when users click the arrow button and
displays the selected item in its edit box. In general, the basic functionality of the controls is built
into the controls by design, so that all applications maintain a consistent look.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 124

124 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

The interface dictates how users will interact with your application. To prompt users for text or
numeric data, use TextBox controls. When it comes to specifying one or more of several options,
you have many choices: You can use a ComboBox control from which users can select an option,
or a few CheckBox controls on the form that users can select or clear. If you want to display a small
number of mutually exclusive options, place a few RadioButton controls on the form. Every time
the user selects an option, the previously selected one is cleared. To initiate actions, place one or
more Button controls on the form.

Controls expose a large number of properties, which are displayed in the Properties window at
design time. You use these properties to adjust not only the appearance of the controls on the form,
but their functionality as well. The process of designing the interface consists mostly of setting the
properties of the various controls.

An important aspect of the design of your application’s user interface is the alignment of the
controls on the form. Controls that are next to one another should be aligned horizontally. Controls
that are stacked should have either their left or right edges aligned vertically. You should also
make sure that the controls are spaced equally. The integrated development environment (IDE)
provides all the tools for sizing, aligning, and spacing controls on the form, and you’ll see these
tools in action through examples in this chapter.

After you have designed the interface, you know how your application will interact with the
user. The next step is to actually implement the interaction by writing some code. The program-
ming model of Visual Basic is event-driven: As the user interacts with the controls on your form,
some code is executed in response to user actions. The user’s actions cause events, and each con-
trol recognizes its own set of events and handles them through subroutines, which are called event
handlers. When users click a button, the control’s Click event is fired, and you must insert the rele-
vant code in the control’s Click event handler. The event-driven programming model has proven
very successful, because it allows developers to focus on handling specific actions. It allows you to
break a large application into smaller, manageable units of code and implement each unit of code
independently of any other.

Developing Windows applications is a conceptually simple process, but there’s a methodol-
ogy to it and it’s not trivial. Fortunately, the IDE provides many tools to simplify the process;
it will even catch most of the errors in your code as you type. You have seen how to use some
of the tools of the IDE in the first three chapters. In this chapter, I’ll present these tools through
examples.

Building a Loan Calculator
One easy-to-implement, practical application is a program that calculates loan parameters. Visual
Basic provides built-in functions for performing many types of financial calculations, and you need
only a single line of code to calculate the monthly payment given the loan amount, its duration,
and the interest rate. Designing the user interface, however, takes much more effort.

Regardless of the language you use, you must go through the following process to develop an
application:

1. Decide what the application will do and how it will interact with the user.

2. Design the application’s user interface according to the requirements of step 1.

3. Write the actual code behind the events you want to handle.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 125

BUILDING A LOAN CALCULATOR 125

Understanding How the Loan Calculator Application Works
Following the first step of the process outlined previously, you decide that the user should be able
to specify the amount of the loan, the interest rate, and the duration of the loan in months. You
must, therefore, provide three text boxes in which the user can enter these values.

Another parameter affecting the monthly payment is whether payments are made at the begin-
ning or at the end of each month, so you must also provide a way for the user to specify whether
the payments will be early (first day of the month) or late (last day of the month). The most appro-
priate type of control for entering Yes/No or True/False type of information is the CheckBox
control. This control is a toggle: If it’s selected, you can clear it by clicking it; if it’s cleared, you can
select it by clicking again. The user doesn’t enter any data in this control (which means you need
not anticipate user errors with this control), and it’s the simplest method for specifying values
with two possible states.

Figure 4.1 shows a user interface that matches our design specifications. This is the main form
of the LoanCalculator project, which you will find in this chapter’s folder on the book’s project
download site.

Figure 4.1

LoanCalculator is a sim-
ple financial application.

The user enters all the information on the form and then clicks the Monthly Payment button to
calculate the monthly payment. The program will calculate the monthly payment and display it in
the lower TextBox control. All the action takes place in the button’s Click subroutine.

To calculate the monthly payments on a loan, we call the Pmt () built-in function, whose syntax
is the following:

MonthlyPayment = Pmt(InterestRate, Periods, Amount, FutureValue, Due)

The interest rate, argument InterestRate, is specified as a monthly rate. If the yearly inter-
est rate is 16.5 percent, the value entered by the user in the Interest Rate box should be 14.5,
and the monthly rate will be 0.145/12. The duration of the loan, the Periods argument, is

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 126

126 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

specified in number of months, and the Amount argument is the loan’s amount. The FutureValue
argument is the value of the loan at the end of the period, which should be zero (it would be a
positive value for an investment), and the last argument, Due, specifies when payments are due.
The value of Due can be one of the constants DueDate.BegOfPeriod and DueDate.EndOfPeriod.
These two constants are built into the language, and you can use them without knowing their
exact value.

The present value of the loan is the amount of the loan with a negative sign. It’s negative
because you don’t have the money now. You’re borrowing it — it is money you owe to the bank.
Future value represents the value of something at a stated time — in this case, what the loan will
be worth when it’s paid off. This is what one side owes the other at the end of the specified period.
So the future value of a loan is zero.

You don’t need to know how the Pmt () function calculates the monthly payment, just how
to call it and how to retrieve the results. To calculate the monthly payment on a loan of $25,000
with an interest rate of 14.5 percent, payable over 48 months, and payments due the last day
of the payment period (which in our case is a month), you’d call the Pmt() function as
follows:

Pmt(0.145 / 12, 48, -25000, 0, DueDate.EndOfPeriod)

The Pmt() function will return the value 689.448821287218. Because it’s a dollar amount, we
must round it to two decimal digits on our interface. Notice the negative sign in front of the Amount
argument in the statement. If you specify a positive amount, the result will be a negative payment.
The payment and the loan’s amount have different signs because they represent different cash
flows. The loan’s amount is money you owe to the bank, whereas the payment is money you pay
to the bank.

The last two arguments of the Pmt() function are optional. If you omit them, Visual Basic uses
their default values, which are 0 for the FutureValue argument and DueDate.BegOfPeriod for
the Due argument. You can entirely omit these arguments and call the Pmt() function like this:

Pmt(0.145 / 12, 48, -25000)

Calculating the amount of the monthly payment given the loan parameters is quite
simple. What you need to understand are the parameters of a loan and how to pass them to
the Pmt() function. You must also know how the interest rate is specified to avoid invalid val-
ues. Although the calculation of the payment is trivial, designing the interface will take a bit
of effort.

Designing the User Interface
Now that you know how to calculate the monthly payment, you can design the user interface. To
do so, start a new project, name it LoanCalculator, and rename its form to frmLoan. Your first
task is to decide the font and size of the text you’ll use for the controls on the form. The form is
the container of the controls, and they inherit some of the form’s properties, such as the font. You
can change the font later during the design, but it’s a good idea to start with the right font. At any

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 127

BUILDING A LOAN CALCULATOR 127

rate, don’t try to align the controls if you’re planning to change their fonts. The change will, most
likely, throw off your alignment efforts.

The book’s sample project uses the 10-point Verdana font. To change it, select the form with
the mouse, double-click the name of the Font property in the Properties window to open the Font
dialog box, and select the desired font and attributes. I’m using the Verdana and Seago fonts a lot
because they’re clean and they were designed for viewing on monitors. Of course, this is a personal
choice. Avoid elaborate fonts and don’t mix different fonts on the same form (or in different forms
of the same application).

To design the form shown in Figure 4.1, follow these steps:

1. Place four labels on the form and assign the following captions (the Text property of each
control) to them:

Name Text

Label1 Amount

Label2 Duration

Label3 Interest Rate

Label4 Monthly Payment

You don’t need to change the default names of the four Label controls on the form because
their captions are all we need. You aren’t going to program them.

2. Place a TextBox control next to each label. Set their Name and Text properties to the follow-
ing values. I used meaningful names for the TextBox controls because we’ll use them in our
code shortly to retrieve the values entered by the user on these controls. These initial values
correspond to a loan of $25,000 with an interest rate of 14.5 percent and a payoff period of
48 months.

Name Text

txtAmount 25000

txtDuration 48

txtRate 14.5

txtPayment

3. The fourth TextBox control is where the monthly payment will appear. The user isn’t
supposed to enter any data in this box, so you must set its ReadOnly property to True to lock
the control. You’ll be able to change its value from within your code, but users won’t be able
to type anything in it. (We could have used a Label control instead, but the uniform look of
TextBoxes on a form is usually preferred.) You will also notice that the TextBox controls have
a 3D frame. Experiment with the control’s BorderStyle property to discover the available
styles for the control’s frame (I’ve used the Fixed3D setting for the TextBox controls).

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 128

128 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

4. Next, place a CheckBox control on the form. By default, the control’s caption is CheckBox1,
and it appears to the right of the check box. Because we want the titles to be to the left of the
corresponding controls, we’ll change this default appearance.

5. Select the check box with the mouse, and in the Properties window locate the CheckAlign
property. Its value is MiddleLeft. If you expand the drop-down list by clicking the arrow
button, you’ll see that this property has many different settings, and each setting is shown
as a square. Select the button that will center the text vertically and right-align it hori-
zontally. The string MiddleRight will appear in the Properties window when you click the
appropriate button.

6. With the check box selected, locate the Name property in the Properties window, and set it
to chkPayEarly.

7. Change the CheckBox’s caption by entering the string Early Payment in its Text property
field.

8. Place a Button control in the bottom-left corner of the form. Name it bttnShowPayment, and
set its Text property to Monthly Payment.

9. Finally, place another Button control on the form, name it bttnExit, and set its Text prop-
erty to Exit.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 129

BUILDING A LOAN CALCULATOR 129

Aligning the Controls

Your next step is to align the controls on the form. The IDE provides commands to align the
controls on the form, all of which can be accessed through the Format menu. To align the controls
that are already on the form, follow these steps:

1. Select the four labels on the form. The handles of all selected controls will be black, except
for one control whose handles will be white. To specify the control that will be used as a
reference for aligning the other controls, click it after making the selection. (You can select
multiple controls either by drawing a rectangle that encloses them with the mouse, or by
clicking each control while holding down the Ctrl button.)

2. With the four text boxes selected, choose Format � Align � Left to left-align them. Don’t
include the check box in this selection.

3. Resize the CheckBox control. Its left edge should align with the left edges of the Label
controls, and its right edge should align with the right edges of the Label controls.

4. Select all the Labels and the CheckBox controls and choose Format � Vertical Spacing
�Make Equal. This action will space the controls vertically. Then align the baseline of
each TextBox control with the baseline of the matching Label control. To do so, move each
TextBox control with the mouse until you see a magenta line that connects the baseline
of the TextBox control you’re moving and that of the matching Label control.

Your form should now look like the one shown in Figure 4.1. Take a good look at it and check
to see whether any of your controls are misaligned. In the interface design process, you tend
to overlook small problems such as a slightly misaligned control. The user of the application,
however, instantly spots such mistakes.

Programming the Loan Application
Now that you’ve created the interface, run the application and see how it behaves. Enter a few
values in the text boxes, change the state of the check box, and test the functionality already built
into the application. Clicking the Monthly Payment button won’t have any effect because we
have not yet added any code. If this were a prototype you were building for a customer, you
would add a statement in the Monthly Payment button to display a random value in the Monthly
Payment box. The purpose of the prototype is to get the customer’s approval on the appearance
and functionality of an application before you start coding it.

If you’re happy with the user interface, stop the application, open the form, and double-click the
Monthly Payment Button control. Visual Basic opens the code window and displays the definition
of the ShowPayment Click event:

Private Sub bttnShowPayment Click(...)
Handles bttnShowPayment.Click

End Sub

Because all Click event handlers have the same signature (they provide the same two argu-
ments), I’ll be omitting the list of arguments from now on. Actually, all event handlers have two
arguments, and the first of them is always the control that fired the event. The type of the second

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 130

130 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

argument differs depending on the type of the event. Place the pointer between the lines Private
Sub and End Sub, and enter the rest of the lines of Listing 4.1. (You don’t have to reenter the first
and last lines that declare the event handler.)

Listing 4.1: The Code behind the Monthly Payment Button

Private Sub bttnShowPayment Click(...)
Handles bttnShowPayment.Click

Dim Payment As Double
Dim LoanIRate As Double
Dim LoanDuration As Integer
Dim LoanAmount As Integer

LoanAmount = Convert.ToInt32(txtAmount.Text)
LoanIRate = 0.01 * Convert.ToDecimal(txtRate.Text) / 12
LoanDuration = Convert.ToInt32(txtDuration.Text)
Dim payEarly As DueDate
If chkPayEarly.Checked Then

payEarly = DueDate.BegOfPeriod
Else

payEarly = DueDate.EndOfPeriod
End If
Payment = Pmt(LoanIRate, LoanDuration, -LoanAmount, 0, payEarly)
txtPayment.Text = Payment.ToString(”#.00”)

End Sub

The code window should now look like the one shown in Figure 4.2. Notice the underscore
character at the end of the first part of the long line. The underscore lets you break long lines so
that they will fit nicely in the code window. I’m using this convention in this book a lot to fit long
lines on the printed page. The same statement you see as multiple lines in the book may appear in
a single, long line in the project.

You don’t have to break long lines manually as you enter code in the editor’s window.
Open the Edit menu and choose Advanced �Word Wrap. The editor will wrap long lines auto-
matically at a word boundary. While the word wrap feature is on, a check mark appears in front
of the Edit � Advanced �Word Wrap command. To turn off word wrapping, select the same
command again.

In Listing 4.1, the first line of code within the subroutine declares a variable. It lets the applica-
tion know that Payment is a variable for storing a floating-point number (a number with a decimal
part) — the Double data type. The line before the If statement declares a variable of the DueDate
type. This is the type of the argument that determines whether the payment takes place at the
beginning or the end of the month. The last argument of the Pmt() function must be a variable
of this type, so we declare a variable of the DueDate type. As mentioned earlier in this chapter,
DueDate is an enumeration with two members: BegOfPeriod and EndOfPeriod.

The first really interesting statement in the subroutine is the If statement that examines the
value of the chkPayEarly CheckBox control. If the control is selected, the code sets the payEarly
variable to DueDate.BegOfPeriod. If not, the code sets the same variable to DueDate.EndOfPeriod.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 131

BUILDING A LOAN CALCULATOR 131

Figure 4.2

The Show Payment
button’s Click event
subroutine.

The ComboBox control’s Checked property returns True if the control is selected at the time, and
returns False otherwise. After setting the value of the payEarly variable, the code calls the Pmt()
function, passing the values of the controls as arguments:

◆ The first argument is the interest rate. The value entered by the user in the txtRate TextBox
is multiplied by 0.01 so that the value 14.5 (which corresponds to 14.5 percent) is passed to
the Pmt() function as 0.145. Although we humans prefer to specify interest rates as inte-
gers (8 percent) or floating-point numbers larger than 1 (8.24 percent), the Pmt() function
expects to read a number less than 1. The value 1 corresponds to 100 percent. Therefore, the
value 0.1 corresponds to 10 percent. This value is also divided by 12 to yield the monthly
interest rate.

◆ The second argument is the duration of the loan in months (the value entered in the
txtDuration TextBox).

◆ The third argument is the loan’s amount (the value entered in the txtAmount TextBox).

◆ The fourth argument (the loan’s future value) is 0 by definition.

◆ The last argument is the payEarly variable, which is set according to the status of the chk-
PayEarly control.

The last statement in Listing 4.1 converts the numeric value returned by the Pmt() function to a
string and displays this string in the fourth TextBox control. The result is formatted appropriately
with the following expression:

Payment.ToString(”#.00”)

The Payment variable is numeric, and all numeric variables provide the method ToString,
which formats the numeric value and converts it to a string. The character # stands for the integer
part of the variable. The period separates the integer from the fractional part, which is rounded

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 132

132 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

to two decimal digits. The Pmt() function returns a precise number, such as 372.2235687646345,
and you must round it to two decimal digits and format it nicely before displaying it. For more
information on formatting numeric (and other) values, see the section ‘‘Formatting Numbers’’
in Chapter 2, ‘‘Variables and Data Types.’’ Finally, the formatted string is assigned to the Text
property of the TextBox control on the form.

A Code Snippet for Calculating Monthly Loan Payments

If you didn’t know about the Pmt() built-in function, how would you go about calculating loan pay-
ments? Code snippets to the rescue! Right-click somewhere in the code window and from the con-
text menu choose the Insert Snippet command. Double-click the fundamentals to see another list of
items. This time double-click the Math folder and then select the snippet Calculate a Monthly Payment
on a Loan. The following code will be inserted at the location of the pointer (I’ve broken the last long
statement into two lines to fit it on the printed page):

Dim futureValue As Double = 0
Dim payment As Double
payment1 = Pmt(0.05 / 12, 36, -1000, futureValue, DueDate.EndOfPeriod)

The snippet demonstrates the use of the Pmt() function. All you have to do is replace the values of
the various parameters with the data from the appropriate controls on the form.

If you don’t know how to use the arguments of the Pmt() function, rest the pointer over each argu-
ment and you will see a description for each argument, as shown here:

The code of the LoanCalculator sample project is a bit different and considerably longer
than what I have presented here. The statements discussed in the preceding text are the bare
minimum for calculating a loan payment. The user can enter all kinds of unreasonable values
on the form and cause the program to crash. In the next section, you’ll see how you can validate
the data entered by the user, catch errors, and handle them gracefully (that is, give the user a
chance to correct the data and proceed), as opposed to terminating the application with a run-
time error.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 133

BUILDING A LOAN CALCULATOR 133

Validating the Data
If you enter a non-numeric value in one of the fields, the program will crash and display an error
message. For example, if you enter twenty in the Duration text box, the program will display the
error message shown in Figure 4.3. A simple typing error can crash the program. This isn’t the
way Windows applications should work. Your applications must be able to handle all kinds of
user errors, provide helpful messages, and in general, guide the user in running the application
efficiently. If a user error goes unnoticed, your application will either end abruptly or will produce
incorrect results without an indication.

Figure 4.3

The FormatException
error message means
that you supplied a
string where a numeric
value was expected.

Visual Basic will take you back to the application’s code window, in which the statements that
caused the error will be highlighted in green. Obviously, we must do something about user errors.
One way to take care of typing errors is to examine each control’s contents; if the controls don’t
contain valid numeric values, display your own descriptive message and give the user another
chance. Listing 4.2 is the revised Click event handler that examines the value of each text box
before attempting to use it in any calculations.

Listing 4.2: Revised Show Payment Button

Private Sub bttnShowPayment Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnShowPayment.Click

Dim Payment As Double
Dim LoanIRate As Double
Dim LoanDuration As Integer
Dim LoanAmount As Integer

’ Validate amount
If IsNumeric(txtAmount.Text) Then

LoanAmount = Convert.ToInt32(txtAmount.Text)
Else

MsgBox(”Please enter a valid amount”)
Exit Sub

End If
’ Validate interest rate
If IsNumeric(txtRate.Text) Then

LoanIRate = 0.01 * Convert.ToDouble(txtRate.Text) / 12
Else

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 134

134 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

MsgBox(”Invalid interest rate, please re-enter”)
Exit Sub

End If
’ Validate loan’s duration
If IsNumeric(txtDuration.Text) Then

LoanDuration = Convert.ToInt32(txtDuration.Text)
Else

MsgBox(”Please specify the loan’s duration as a number of months”)
Exit Sub

End If
’ If all data were validated, proceed with calculations
Dim payEarly As DueDate
If chkPayEarly.Checked Then

payEarly = DueDate.BegOfPeriod
Else

payEarly = DueDate.EndOfPeriod
End If
Payment = Pmt(LoanIRate, LoanDuration, -LoanAmount, 0, payEarly)
txtPayment.Text = Payment.ToString(”#.00”)

End Sub

First, we declare three variables in which the loan’s parameters will be stored: LoanAmount,
LoanIRate, and LoanDuration. These values will be passed to the Pmt() function as arguments.
Each text box’s value is examined with an If structure. If the corresponding text box holds a valid
number, its value is assigned to the numeric variable. If not, the program displays a warning
and exits the subroutine without attempting to calculate the monthly payment. Before exiting the
subroutine, however, the code moves the focus to the text box with the invalid value because this
is the control that the user will most likely edit. After fixing the incorrect value, the user can click
the Show Payment button again. IsNumeric() is another built-in function that accepts a variable
and returns True if the variable is a number, and returns False otherwise.

You can run the revised application and check it out by entering invalid values in the fields.
Notice that you can’t specify an invalid value for the last argument; the CheckBox control won’t let
you enter a value. You can only select or clear it, and both options are valid. The actual calculation
of the monthly payment takes a single line of Visual Basic code. Displaying it requires another
line of code. Adding the code to validate the data entered by the user, however, is an entire pro-
gram. And that’s the way things are.

Writing Well-Behaved Applications

A well-behaved application must contain data-validation code. If an application such as LoanCalcu-
lator crashes because of a typing mistake, nothing really bad will happen. The user will try again or
else give up on your application and look for a more professional one. However, if the user has been
entering data for hours, the situation is far more serious. It’s your responsibility as a programmer to
make sure that only valid data are used by the application and that the application keeps working, no
matter how the user misuses or abuses it.

The amount of code you write to validate user input is comparable to the amount of code that pro-
duces the results. Our sample application is not typical, because it calculates the result with a single

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 135

BUILDING A LOAN CALCULATOR 135

function call, but in developing typical business applications, you must write a substantial amount
of code to validate user input. The reason for validating user input is that you should provide specific
error messages to help the user identify the error and correct it.

The applications in this book don’t contain much data-validation code because it would obscure the
‘‘useful’’ code that applies to the topic at hand. Instead, they demonstrate specific techniques. You
can use parts of the examples in your applications, but you should provide your own data-validation
code (and error-handling code, as you’ll see in a moment).

Now run the application one last time and enter an enormous loan amount. Try to find out
what it would take to pay off the national debt with a reasonable interest rate in, say, 72 months.
The program will crash again (as if you didn’t know). This time the program will go down with
a different error message, as shown in Figure 4.4. Visual Basic will complain about an overflow.
The exact message is Value was either too large or too small for an Int32, and the program will stop at
the line that assigns the contents of the txtAmount TextBox to the LoanAmount variable. Press the
Break button, and the offending statement in the code will be highlighted.

Figure 4.4

Very large values can
cause the application to
crash and display this
error message.

An overflow is a numeric value too large for the program to handle. This error is usually pro-
duced when you divide a number by a very small value. When you attempt to assign a very large
value to an Integer variable, you’ll also get an overflow exception.

Actually, in the LoanCalculator application, any amount greater than 2,147,483,647 will cause
an overflow condition. This is the largest value you can assign to an Integer variable; it’s plenty
for our banking needs, but not nearly adequate for handling government deficits. As you’ll see
in the next chapter, Visual Basic provides other types of variables, which can store enormous
values (making the national debt look really small). In the meantime, if you want to use the loan
calculator, change the declaration of the LoanAmount variable to the following:

Dim LoanAmount As Double

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 136

136 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

The Double data type can hold much larger values. Besides, the Double data type can also hold
noninteger values. Not that anyone will ever apply for a loan of $25,000 and some cents, but if you
want to calculate the precise monthly payment for a debt you have accumulated, you should be
able to specify a noninteger amount. In short, we should have declared the LoanAmount variable
with the Double data type in the first place. By the way, there’s another integer data type, the Long
data type, which can hold much larger integer values.

An overflow error can’t be caught with data-validation code. There’s always a chance that your
calculations will produce overflows or other types of math errors. Data validation won’t help
here; you just don’t know the result before you carry out the calculations. We need something
called error handling, or exception handling. This is additional code that can handle errors after they
occur. In effect, you’re telling VB that it shouldn’t stop with an error message, which would be
embarrassing for you and wouldn’t help the user one bit. Instead, VB should detect the error
and execute the proper statements that will handle the error. Obviously, you must supply these
statements. (You’ll see examples of handling errors at runtime shortly.)

The sample application works as advertised and it’s fail-safe. Yet there’s one last touch we can
add to our application. The various values on the form are not always in synch. Let’s say you’ve
calculated the monthly payment for a specific loan and then you want to change the duration of
the loan to see how it affects the monthly payment. As soon as you change the duration of the loan,
and before you click the Monthly Payment button, the value in the Monthly Payment box doesn’t
correspond to the parameters of the loan. Ideally, the monthly payment should be cleared as
soon as the user starts editing one of the loan’s parameters. To do so, you must insert a statement
that clears the txtPayment control. But what’s the proper event handler for this statement? The
TextBox control fires the TextChanged event every time its text is changed, and this is the proper
place to execute the statement that clears the monthly payment on the form. Because there are three
TextBox controls on the form, you must program the TextChanged event of all three controls, or
write an event handler that handles all three events:

Private Sub txtAmount TextChanged(...)
Handles txtAmount.TextChanged,

txtDuration.TextChanged, txtRate.TextChanged
txtPayment.Clear()

End Sub

Yes, you can write a common handler for multiple events, as long as the events are of the same
type and they’re all listed after the Handles keyword. You’ll see another example of the same
technique in the following sample project.

One of the sample projects for this chapter is a revised version of the LoanCalculator project, the
LoanCalculator-Dates project, which uses a different interface. Instead of specifying the duration
of the loan in months, this application provides two instances of the DateTimePicker control,
which is used to specify dates. Delete the TextBox control and the corresponding Labels and
insert two new Labels and two DateTimePicker controls on the form. Users can set the loan’s
starting and ending dates on these two controls and the program calculates the duration of the
loan in moths with the following statement:

LoanDuration = DateDiff(DateInterval.Month,
dtFrom.Value, dtTo.Value) + 1

dtFrom and dtTo are the names of the two DateTimePicker controls. The DateDiff() function
returns the difference between two dates in the interval supplier as the first argument to the

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 137

BUILDING A CALCULATOR 137

function. The rest of the code doesn’t change; as long as the LoanDuration variable has the correct
value, the same statements will produce the correct result. If you open the project you’ll find a few
more interesting statements that set the dtFrom control to the first date of the selected month and
the dtTo control to the last date of the selected month.

Building a Calculator
Our next application is more advanced, but not as advanced as it looks. It’s a calculator with
a typical visual interface that demonstrates how Visual Basic can simplify the programming of
fairly advanced operations. If you haven’t tried it, you may think that writing an application such
as this one is way too complicated for a beginner, but it isn’t. The MathCalculator application is
shown in Figure 4.5.

Figure 4.5

Calculator application
window

The application emulates the operation of a hand-held calculator and implements the basic
arithmetic operations. It has the look of a math calculator, and you can easily expand it by adding
more features. In fact, adding features such as cosines and logarithms is actually simpler than
performing the basic arithmetic operations. This interface will also give us a chance to exercise
most of the tools of the IDE for aligning and spacing the controls on a form.

Designing the User Interface
The application’s interface is straightforward, but it takes a bit of effort. You must align the but-
tons on the form and make the calculator look as much like a hand-held calculator as possible.
Start a new project, the MathCalculator project, and rename its main form from Form1.vb to
frmCalculator.vb.

Designing the interface of the application isn’t trivial because it’s made up of many buttons, all
perfectly aligned on the form. To simplify the design, follow these steps:

1. Select a font that you like for the form. All the command buttons you’ll place on the form
will inherit this font. The MathCalculator sample application uses 10-point Verdana font.
I’ve used a size of 12 points for the Period button, because the 10-point period was too
small and very near the bottom of the control.

2. Add the Label control, which will become the calculator’s display. Set its BorderStyle
property to Fixed3D so that it will have a 3D look, as shown in Figure 4.5. Change its

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 138

138 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

ForeColor and BackColor properties too, if you want it to look different from the rest
of the form. The sample project uses colors that emulate the — now extinct — green CRT
monitors.

3. Draw a Button control on the form, change its Text property to 1, and name it bttn1. Size
the button carefully so that its caption is centered on the control. The other buttons on the
form will be copies of this one, so make sure you’ve designed the first button as best as
you can before you start making copies of it. You can also change the button’s style with
the FlatStyle property. (You can experiment with the Popup, Standard, and System set-
tings of this property.)

4. Place the button in its final position on the form. At this point, you’re ready to create the
other buttons for the calculator’s digits. Right-click the button and choose Copy from the
context menu. The Button control is copied to the Clipboard, and now you can paste it on
the form (which is much faster than designing an identical button).

5. Right-click somewhere on the form, choose Paste, and the button copied to the Clipboard
will be pasted on the form. The copy will have the same caption as the button it was
copied from, and its name will be Button1.

6. Now set the button’s Name to bttn2 and its Text property to 2. This button is the digit 2.
Place the new button to the right of the previous button. You don’t have to align the two
buttons perfectly now; later we’ll use the Format menu to align the buttons on the form.
As you move the control around on the form, one or more lines may appear at times.
These lines are called snap lines, and they appear as soon as a control is aligned (verti-
cally or horizontally) with one or more of the existing controls on the form. The snap lines
allow you to align controls with the mouse. Blue snap lines appear when the control’s
edge is aligned with the edge of another control. Red snap lines appear when the control’s
baseline is aligned with the baseline of another control. The baseline is the invisible line on
which the characters of the control’s caption are based.

7. Repeat steps 5 and 6 eight more times, once for each numeric digit. Each time a new
Button control is pasted on the form, Visual Basic names it Button1 and sets its caption
to 1; you must change the Name and Text properties. You can name the buttons any-
thing you like, but a name that indicates their role in the application is preferred.

8. When the buttons of the numeric digits are all on the form, place two more buttons, one
for the C (Clear) operation and one for the Period button. Name them bttnClear and
bttnPeriod, and set their captions accordingly. Use a larger font size for the Period but-
ton to make its caption easier to read.

9. When all the digit buttons of the first group are on the form and in their approximate posi-
tions, align them by using the commands of the Format menu. You can use the snap lines
to align horizontally and vertically the various buttons on the form, but you must still
space the controls manually, which isn’t a trivial task. Here’s how you can align the but-
tons perfectly via the Format menu:

a. First, align the buttons of the top row. Start by aligning the 1 button with the left side
of the lblDisplay Label. Then select all the buttons of the top row and make their
horizontal spacing equal (choose Format � Horizontal Spacing �Make Equal). Then
do the same with the buttons in the first column; this time, make sure that their vertical
distances are equal (Format � Vertical Spacing � Make Equal).

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 139

BUILDING A CALCULATOR 139

b. Now you can align the buttons in each row and each column separately. Use one
of the buttons you aligned in the last step as the guide for the rest of them. The but-
tons can be aligned in many ways, so don’t worry if somewhere in the process you
ruin the alignment. You can always use the Undo command in the Edit menu. Select
the three buttons on the second row and align their Tops by using the first button
as a reference. To set the anchor control for the alignment, click it with the mouse
while holding down the Ctrl key. Do the same for the third and fourth rows of but-
tons. Then do the same for the four columns of buttons, using the top button as a
reference.

10. Now, place the buttons for the arithmetic operations on the form — addition (+), subtrac-
tion (−), multiplication (*), and division (/).

11. Finally, place the Equals button on the form and make it wide enough to span the space of
two operation buttons. Use the commands on the Format menu to align these buttons,
as shown in Figure 4.5. The form shown in Figure 4.5 has a few more buttons, which
you can align by using the same techniques you used to align the numeric buttons.

If you don’t feel quite comfortable with the alignment tools of the IDE, you can still position
the controls on the form through the x and y components of each control’s Location property.
(They’re the x- and y-coordinates of the control’s upper-left corner on the form.) The various
alignment tools are among the first tools of the IDE you’ll master, and you’ll be creating forms
with perfectly aligned controls in no time at all.

Programming the MathCalculator
Now you’re ready to add some code to the application. Double-click one of the digit buttons on
the form, and you’ll see the following in the code window:

Private Sub bttn1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttn1.Click

End Sub

This is the Click event’s handler for a single digit button. Your first attempt is to program
the Click event handler of each digit button, but repeating the same code 10 times isn’t very
productive. (Not to mention that if we decide to edit the code later, the process must be repeated
10 times.) We’re going to use the same event handler for all buttons that represent digits. All
you have to do is append the names of the events to be handled by the same subroutine after
the Handles keyword. You should also change the name of the event handler to something that
indicates its role. Because this subroutine handles the Click event for all the digit buttons, let’s
call it DigitClick(). Here’s the revised declaration of a subroutine that can handle all the digit
buttons:

Private Sub DigitClick(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles bttn0.Click, bttn1.Click, bttn2.Click,
bttn3.Click, bttn4.Click, bttn5.Click, bttn6.Click,
bttn7.Click, bttn8.Click, bttn9.Click

End Sub

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 140

140 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

You don’t have to type all the event names; as soon as you insert the first comma after
bttn0.Click, a drop-down list with the names of the controls will open, and you can select the
name of the next button with the down arrow. Press the spacebar to select the desired control
(bttn1, bttn2, and so on), and then type the period. This time, you’ll see another list with the
names of the events for the selected control. Locate the Click event and select it by pressing the
spacebar. Type the next comma and repeat the process for all the buttons. This extremely conve-
nient feature of the language is IntelliSense: The IDE presents the available and valid keywords as
you type.

When you press a digit button on a hand-held calculator, the corresponding digit is appended
to the display. To emulate this behavior, insert the following line in the Click event handler:

lblDisplay.Text = lblDisplay.Text + sender.Text

This line appends the digit clicked to the calculator’s display. The sender argument of the
Click event represents the control that was clicked (the control that fired the event). The Text
property of this control is the caption of the button that was clicked. For example, if you have
already entered the value 345, clicking the digit 0 displays the value 3450 on the Label control that
acts as the calculator’s display.

The expression sender.Text is not the best method of accessing the Text property of the button
that was clicked, but it will work as long as the Strict option is off. As discussed in Chapter 2, we
must cast the sender object to a specific type (the Button type) and then call its Text method:

CType(sender, Button).Text

The code behind the digit buttons needs a few more lines. After certain actions, the display
should be cleared. After pressing one of the buttons that correspond to math operations, the dis-
play should be cleared in anticipation of the second operand. Actually, the display must be cleared
as soon as the first digit of the second operand is pressed, and not as soon as the math operator
button is pressed. Likewise, the display should also be cleared after the user clicks the Equals
button. Revise the DigitClick event handler, as shown in Listing 4.3.

Listing 4.3: The DigitClick Event

Private Sub DigitClick(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles bttn1.Click, bttn2.Click, bttn3.Click,
bttn4.Click, bttn5.Click, bttn6.Click,
bttn7.Click, bttn8.Click, bttn9.Click

If clearDisplay Then
lblDisplay.Text = ””
clearDisplay = False

End If
lblDisplay.Text = lblDisplay.Text + sender.text

End Sub

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 141

BUILDING A CALCULATOR 141

The clearDisplay variable is declared as Boolean, which means it can take a True or False
value. Suppose that the user has performed an operation and the result is on the calculator’s
display. The user now starts typing another number. Without the If clause, the program would
continue to append digits to the number already on the display. This is not how calculators work.
When the user starts entering a new number, the display must be cleared. And our program uses
the clearDisplay variable to know when to clear the display.

The Equals button sets the clearDisplay variable to True to indicate that the display contains
the result of an operation. The DigitClick() subroutine examines the value of this variable each
time a new digit button is pressed. If the value is True, DigitClick() clears the display and then
prints the new digit on it. The subroutine also sets clearDisplay to False so that when the next
digit is pressed, the program won’t clear the display again.

What if the user makes a mistake and wants to undo an entry? The typical hand-held calculator
has no Backspace key. The Clear key erases the current number on the display. Let’s implement
this feature. Double-click the C button and enter the code of Listing 4.4 in its Click event.

Listing 4.4: Programming the Clear Button

Private Sub bttnClear Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnClear.Click

lblDisplay.Text = ””
End Sub

Now we can look at the Period button. A calculator, no matter how simple, should be able to
handle fractional numbers. The Period button works just like the digit buttons, with one excep-
tion. A digit can appear any number of times in a numeric value, but the period can appear only
once. A number such as 99.991 is valid, but you must make sure that the user can’t enter numbers
such as 23.456.55. After a period is entered, this button must not insert another one. The code in
Listing 4.5 accounts for this.

Listing 4.5: Programming the Period Button

Private Sub bttnPeriodClick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnPeriod.Click

If lblDisplay.Text.IndexOf(”.”) >= 0 Then
Exit Sub

Else
lblDisplay.Text = lblDisplay.Text & ”.”

End If
End Sub

IndexOf is a method that can be applied to any string. The expression lblDisplay.Text
is a string (the text on the Label control), so we can call its IndexOf method. The expression
lblDisplay.Text.IndexOf(‘‘.’’) returns the location of the first instance of the period in the

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 142

142 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

caption of the Label control. If this number is zero or positive, the number entered contains a
period already, and another can’t be entered. In this case, the program exits the subroutine. If the
method returns −1, the period is appended to the number entered so far, just like a regular digit.

Check out the operation of the application. We have already created a functional user interface
that emulates a hand-held calculator with data-entry capabilities. It doesn’t perform any oper-
ations yet, but we have already created a functional user interface with only a small number of
statements.

Coding the Math Operations

Now we can move to the interesting part of the application: the coding of the math operations.
Let’s start by defining three variables:

Operand1 The first number in the operation

Operator The desired operation

Operand2 The second number in the operation

When the user clicks one of the math symbols, the value on the display is stored in the variable
Operand1. If the user then clicks the Plus button, the program must make a note to itself that the
current operation is an addition and set the clearDisplay variable to True so that the user can
enter another value (the second value to be added). The symbol of the operation is stored in the
Operator variable. The user enters another value and then clicks the Equals button to see the
result. At this point, our program must do the following:

1. Read the value on the display into the Operand2 variable.

2. Perform the operation indicated by the Operator variable with the two operands.

3. Display the result and set the clearDisplay variable to True.

The Equals button must perform the following operation:

Operand1 Operator Operand2

Suppose that the number on the display when the user clicks the Plus button is 3342. The user
then enters the value 23 and clicks the Equals button. The program must carry out the addition:

3342 + 23

If the user clicked the Division button, the operation is as follows:

3342 / 23

Variables are local in the subroutines in which they are declared. Other subroutines have no
access to them and can’t read or set their values. Sometimes, however, variables must be accessed
from many places in a program. The variables Operand1, Operand2, and Operator, as well as the
clearDisplay variable, must be accessed from within more than one subroutine, so they must be

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 143

BUILDING A CALCULATOR 143

declared outside any subroutine; their declarations usually appear at the beginning of the code
with the following statements:

Dim clearDisplay As Boolean
Dim Operand1 As Double
Dim Operand2 As Double
Dim Operator As String

These variables are called form-wide variables, or simply form variables, because they are visible
from within any subroutine on the form. Let’s see how the program uses the Operator variable.
When the user clicks the Plus button, the program must store the value ‘‘+’’ in the Operator
variable. This takes place from within the Plus button’s Click event.

All variables that store numeric values are declared as variables of the Double type, which can
store values with the greatest possible precision. The Boolean type takes two values: True and
False. You have already seen how the clearDisplay variable is used.

With the variable declarations out of the way, we can now implement the operator buttons.
Double-click the Plus button and, in the Click event’s handler, enter the lines shown in Listing 4.6.

Listing 4.6: The Plus Button

Private Sub bttnPlus Click(...) Handles bttnPlus.Click
Operand1 = Convert.ToDouble(lblDisplay.Text)
Operator = ”+”
clearDisplay = True

End Sub

The variable Operand1 is assigned the value currently on the display. The Convert.ToDouble()
method converts its argument to a double value. The Text property of the Label control is a string.
The actual value stored in the Text property is not a number. It’s a string such as 428, which is
different from the numeric value 428. That’s why we use the Convert.ToDouble method to con-
vert the value of the Label’s caption to a numeric value. The remaining buttons do the same, and I
won’t show their listings here.

After the second operand is entered, the user can click the Equals button to calculate the result.
When this happens, the code of Listing 4.7 is executed.

Listing 4.7: The Equals Button

Private Sub bttnEquals Click(...) Handles bttnEquals.Click
Dim result As Double
Operand2 = Convert.ToDouble(lblDisplay.Text)
Select Case Operator

Case ”+”
result = Operand1 + Operand2

Case ”-”

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 144

144 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

result = Operand1 - Operand2
Case ”*”

result = Operand1 * Operand2
Case ”/”

If Operand2 <> ”0” Then
result = Operand1 / Operand2

End Select
lblDisplay.Text = result.ToString
clearDisplay = True

End Sub

The result variable is declared as Double so that the result of the operation will be stored with
maximum precision. The code extracts the value displayed in the Label control and stores it in the
variable Operand2. It then performs the operation with a Select Case statement. This statement
compares the value of the Operator variable to the values listed after each Case statement. If
the value of the Operator variable matches one of the Case values, the following statement is
executed.

Division takes into consideration the value of the second operand, because if it’s zero, the
division can’t be carried out. The last statement carries out the division only if the divisor is not
zero. If Operand2 happens to be zero, nothing happens.

Now run the application and check it out. It works just like a hand-held calculator, and you
can’t crash it by specifying invalid data. We didn’t have to use any data-validation code in this
example because the user doesn’t get a chance to type invalid data. The data-entry mechanism is
foolproof. The user can enter only numeric values because there are only numeric digits on the
calculator. The only possible error is to divide by zero, and that’s handled in the Equals button.

Of course, users should be able to just type the numeric values; you shouldn’t force them
to click their digits. To intercept keystrokes from within your code, you must first set the form’s
KeyPreview property to True. Each keystroke is reported to the control that has the focus at the
time and fires the keystroke-related events: the KeyDown, KeyPress, and KeyUp events. Sometimes
we need to handle certain keystrokes from a central place, and we set the form’s KeyPreview
property to True, so that keystrokes are reported first to the form and then to the control that
has the focus. We can intercept the keystrokes in the form’s KeyPress event and handle them
in this event handler. Insert the statements shown in Listing 4.8 in the form’s KeyPress event
handler.

Listing 4.8: Handling Keystrokes at the Form’s Level

Private Sub CalculatorForm KeyPress(...) Handles Me.KeyPress
Select Case e.KeyChar

Case ”1” : bttn1.PerformClick()
Case ”2” : bttn2.PerformClick()
Case ”3” : bttn3.PerformClick()
Case ”4” : bttn4.PerformClick()
Case ”5” : bttn5.PerformClick()
Case ”6” : bttn6.PerformClick()
Case ”7” : bttn7.PerformClick()

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 145

BUILDING A CALCULATOR 145

Case ”8” : bttn8.PerformClick()
Case ”9” : bttn9.PerformClick()
Case ”0” : bttn0.PerformClick()
Case ”.” : bttnPeriod.PerformClick()
Case ”C”, ”c” : bttnClear.PerformClick()
Case ”+” : bttnPlus.PerformClick()
Case ”-” : bttnMinus.PerformClick()
Case ”*” : bttnMultiply.PerformClick()
Case ”/” : bttnDivide.PerformClick()
Case ”=” : bttnEquals.PerformClick()

End Select
End Sub

This event handler examines the key pressed by the user and invokes the Click event handler
of the appropriate button by calling its PerformClick method. This method allows you to ‘‘click’’
a button from within your code. When the user presses the digit 3, the form’s KeyPress event
handler intercepts the keystrokes and emulates the click of the bttn3 button.

Using Simple Debugging Tools
Our sample applications work nicely and are quite easy to test and fix if you discover something
wrong with them (but only because they’re very simple applications). As you write code, you’ll
soon discover that something doesn’t work as expected, and you should be able to find out why
and then fix it. The process of eliminating errors is called debugging, and Visual Studio provides
the tools to simplify the process of debugging. (These tools are discussed in detail in Appendix B.)
There are a few simple debugging techniques you should know, even as you work with simple
projects.

Open the MathCalculator project in the code editor and place the pointer in the line that calcu-
lates the difference between the two operands. Let’s pretend there’s a problem with this line, and
we want to follow the execution of the program closely to find out what’s going wrong with the
application. Press F9, and the line will be highlighted in brown. This line has become a breakpoint:
As soon as it is reached, the program will stop.

Press F5 to run the application and perform a subtraction. Enter a number; then click the minus
button, and then another number, and finally the Equals button. The application will stop, and the
code editor will open. The breakpoint will be highlighted in yellow. You’re still in runtime mode,
but the execution of the application is suspended. You can even edit the code in break mode and
then press F5 to continue the execution of the application. Hover the pointer over the Operand1
and Operand2 variables in the code editor’s window. The value of the corresponding variable will
appear in a small ToolTip box. Move the pointer over any variable in the current event handler
to see its value. These are the values of the variables just prior to the execution of the highlighted
statement.

The result variable is zero because the statement hasn’t been executed yet. If the variables
involved in this statement have their proper values (if they don’t, you know that the problem is
prior to this statement and perhaps in another event handler), you can execute this statement by
pressing F10, which executes only the highlighted statement. The program will stop at the next
line. The next statement to be executed is the End Select statement.

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 146

146 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

Find an instance of the result variable in the current event handler, rest the pointer over it,
and you will see the value of the variable after it has been assigned a value. Now you can press
F10 to execute another statement or press F5 to return to normal execution mode.

You can also evaluate expressions involving any of the variables in the current event handler by
entering the appropriate statement in the Immediate window. The Immediate window appears at
the bottom of the IDE. If it’s not visible, open the Debug menu and choose Windows� Immediate.
The current line in the command window is prefixed with the greater-than symbol (reminiscent of
the DOS days). Place the cursor next to it and enter the following statement:

? Operand1 / Operand2

The quotient of the two values will appear in the following line. The question mark is just a
shorthand notation for the Print command. If you want to know the current value on the calcula-
tor’s display, enter the following statement:

? lblDisplay.Text

This statement requests the value of a control’s property on the form. The current value of
the Label control’s Text property will appear in the following line. You can also evaluate math
expressions with statements such as the following:

? Math.Log(3/4)

Log() is the logarithm function and a method of the Math class. With time, you’ll discover that
the Immediate window is a handy tool for debugging applications. If you have a statement with
a complicated expression, you can request the values of the expression’s individual components
and make sure they can be evaluated.

Now move the pointer over the breakpoint and press F9 again. This will toggle the breakpoint
status, and the execution of the program won’t halt the next time this statement is executed.

If the execution of the program doesn’t stop at a breakpoint, it means that the statement is
never reached. In this case, you must search for the bug in statements that are executed before the
breakpoint is reached. If you didn’t assign the proper value to the Operator variable, the Case
clause for the subtraction operation will never be reached. You should place the breakpoint at the
first executable statement of the Equal button’s Click event handler to examine the values of all
variables the moment this subroutine starts its execution. If all variables have the expected values,
you will continue testing the code forward. If not, you’d have to test the statements that lead to
this statement — the statements in the event handlers of the various buttons.

Another simple technique for debugging applications is to print the values of certain vari-
ables in the Immediate window. Although this isn’t a debugging tool, it’s common among VB
programmers (and very practical, I might add). Many programmers print the values of selected
variables before and after the execution of some complicated statements. To do so, use the state-
ment Debug.WriteLine followed by the name of the variable you want to print, or an expression:

Debug.WriteLine(Operand1)

This statement sends its output to the Immediate window. This is a simple technique, but it
works. You can also use it to test a function or method call. If you’re not sure about the syntax of a

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 147

BUILDING A CALCULATOR 147

function, pass an expression that contains the specific function to the Debug.WriteLine statement
as an argument. If the expected value appears in the Immediate window, you can go ahead and
use it in your code.

In the project’s folder, you will find the MoreFeatures.txt document, which describes how
to add more features to the math calculator. Such features include the inversion of a number (the
1/x button), the negation of a number (the +/− button), and the usual math functions (logarithms,
square roots, trigonometric functions, and so on).

Exception Handling
Crashing this application won’t be as easy as crashing the LoanCalculator application. If you
start multiplying very large numbers, you won’t get an overflow exception. Enter a very large
number by repeatedly typing the digit 9; then multiply this value with another equally large value.
When the result appears, click the multiplication symbol and enter another very large value. Keep
multiplying the result with very large numbers until you exhaust the value range of the Double
data type (that is, until the result is so large that it can’t be stored to a variable of the Double
type). When this happens, the string infinity will appear in the display. This is Visual Basic’s way
of telling you that it can’t handle very large numbers. This isn’t a limitation of VB; it’s the way
computers store numeric values: They provide a limited number of bytes for each variable. (We
discussed oddities such as infinity in Chapter 2.)

You can’t create an overflow exception by dividing a number by zero, either, because the code
will not even attempt to carry out this calculation. In short, the MathCalculator application is
pretty robust. However, we can’t be sure that users won’t cause the application to generate an
exception, so we must provide some code to handle all types of errors.

Exceptions versus Errors

Errors are now called exceptions. You can think of them as exceptions to the normal (or intended)
flow of execution. If an exception occurs, the program must execute special statements to handle
the exception — statements that wouldn’t be executed normally. I think they’re called exceptions
because error is a word nobody likes, and most people can’t admit they wrote code that contains
errors. The term exception can be vague. What would you rather tell your customers: that the appli-
cation you wrote has errors or that your code has raised an exception? You may not have noticed
it, but the term bug is not used as frequently anymore; bugs are now called known issues. The term
debugging, however, hasn’t changed yet.

How do you prevent an exception raised by a calculation? Data validation won’t help. You
just can’t predict the result of an operation without actually performing the operation. And if the
operation causes an overflow, you can’t prevent it. The answer is to add a structured exception han-
dler. Most of the application’s code is straightforward, and you can’t easily generate an exception
for demonstration purposes. The only place where an exception may occur is the handler of the
Equals button, where the calculations take place. This is where we must add an exception handler.
The outline of the structured exception handler is the following:

Try
{ statements block}

Catch Exception

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 148

148 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

{ handler block}
Finally

{ clean-up statements block}
End Try

The program will attempt to perform the calculations, which are coded in the statements block.
If the program succeeds, it continues with the cleanup statements. These statements are mostly
cleanup code, and the Finally section of the statement is optional. If missing, the program exe-
cution continues with the statement following the End Try statement. If an error occurs in the
first block of statements, the Catch Exception section is activated, and the statements in the
handler block are executed.

The Catch block is where you handle the error. There’s not much you can do about errors that
result from calculations. All you can do is display a warning and give the user a chance to change
the values. There are other types of errors, however, that can be handled much more gracefully.
If your program can’t read a file from a CD drive, you can give the user a chance to insert the CD
and retry. In other situations, you can prompt the user for a missing value and continue. If the
application attempts to write to a read-only file, for example, chances are that the user specified
a file on a CD drive, or a file with its read-only attribute set. You can display a warning, exit the
subroutine that saves the data, and give the user a chance to either select another filename or
change the read-only attribute of the selected file.

In general, there’s no unique method to handle all exceptions. You must consider all types
of exceptions that your application may cause and handle them on an individual basis. What’s
important about error handlers is that your application doesn’t crash; it simply doesn’t perform
the operation that caused the exception (this is also known as the offending operation, or offending
statement) and continues.

The error handler for the MathCalculator application must inform the user that an error
occurred and abort the calculations — not even attempt to display a result. If you open the Equals
button’s Click event handler, you will find the statements detailed in Listing 4.9.

Listing 4.9: Revised Equals Button

Private Sub bttnEquals Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnEquals.Click

Dim result As Double
Operand2 = Convert.ToDouble(lblDisplay.Text)
Try

Select Case Operator
Case ”+”

result = Operand1 + Operand2
Case ”-”

result = Operand1 - Operand2
Case ”*”

result = Operand1 * Operand2
Case ”/”

If Operand2 <> ”0” Then result = Operand1 / Operand2
End Select
lblDisplay.Text = result

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 149

THE BOTTOM LINE 149

Catch exc As Exception
MsgBox(exc.Message)
result = ”ERROR”

Finally
clearDisplay = True

End Try
End Sub

Most of the time, the error handler remains inactive and doesn’t interfere with the operation
of the program. If an error occurs, which most likely will be an overflow error, the error-handling
section of the Try. . .Catch. . .End Try statement will be executed. This code displays a message
box with the description of the error, and it also displays the string ERROR on the calculator’s
display. The Finally section is executed regardless of whether an exception occurred. In this
example, the Finally section sets the clearDisplay variable to True so that when another digit
button is clicked, a new number will appear on the display.

The Bottom Line

Design graphical user interfaces. A Windows application consists of a graphical user inter-
face and code. The interface of the application is designed with visual tools and consists of
controls that are common to all Windows applications. You drop controls from the Toolbox
window onto the form, size and align the controls on the form, and finally set their properties
through the Properties window. The controls include quite a bit of functionality right out of the
box, and this functionality is readily available to your application without a single line of code.

Master It Describe the process of aligning controls on a form.

Program events. Windows applications follow an event-driven model: We code the events to
which we want our application to respond. The Click events of the various buttons are typical
events to which an application reacts. You select the actions to which you want your applica-
tion to react and program these events accordingly.

When an event is fired, the appropriate event handler is automatically invoked. Event han-
dlers are subroutines that pass two arguments to the application: the sender object (which is an
object that represents the control that fired the event) and the e argument (which carries addi-
tional information about the event).

Master It How will you handle certain keystrokes regardless of the control that receives
them?

Write robust applications with error handling. Numerous conditions can cause an applica-
tion to crash, but a professional application should be able to detect abnormal conditions and
handle them gracefully. To begin with, you should always validate your data before you attempt
to use them in your code. A well-known computer term is ‘‘garbage in, garbage out’’, which
means you shouldn’t perform any calculations on invalid data.

Master It How will you execute one or more statements in the context of a structured
exception handler?

Petroutsos c04.tex V3 - 01/28/2008 12:36pm Page 150

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 151

Chapter 5

The Vista Interface

With the introduction of Windows Vista and the .NET Framework 3.5, Microsoft has overhauled
its entire graphical presentation technology. The new application programming interface (API)
is known as the Windows Presentation Foundation (WPF). WPF is one of the core technologies in
the .NET Framework 3.5 and is integrated into Windows Vista. WPF is also supported on
Windows XP.

WPF offers a whole new approach to developing graphical user interfaces (UIs) for the
Windows platform. WPF is designed to take advantage of the graphics engines and display
capabilities of the modern computer, and is vector based and resolution independent. This means
that your UIs automatically scale depending on the size and resolution of the user’s screen. This
is enhanced by the ability to place objects using relative positioning (so that objects sit relative to
other objects) rather than the more traditional absolute positioning used in WinForms.

You can create UIs for traditional desktop applications as well as for web-based applications
with WPF. Although initially limited to Internet Explorer for web-based applications, the
introduction of Microsoft’s Silverlight enables WPF to go cross-browser. You can find more
information on Silverlight at www.microsoft.com/silverlight/.

WPF offers the ability to truly separate the UI from the business logic of your application.
Although we will be working with WPF in Visual Studio 2008, there are additional Microsoft
and other third-party tools for creating UIs in WPF. In particular, Microsoft’s Expression Blend
(as part of Expression Studio) offers a powerful graphical tool for creating user interface designs.
More information on Microsoft’s Expression products can be obtained from www.microsoft.com/
expression.

In this chapter, you will learn how to do the following:

◆ Create a simple WPF application

◆ Data-bind controls in WPF

◆ Use a data template to control data presentation

Introducing XAML
Extensible Application Markup Language (XAML) is the XML language used to describe the user
interface definition. When you create a WPF-based UI, it is written into an XAML file. You can
create and edit XAML with a simple text editor such as Notepad if you wish, or use a more
sophisticated tool such as XML Notepad 2007, available from www.microsoft.com/downloads/
details.aspx?familyid = 72 d6aa49-787 d-4118-ba5f-4f30fe913628. When working
with Visual Studio 2008, you have the option to write the code behind your UIs, creating

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 152

152 CHAPTER 5 THE VISTA INTERFACE

functionality along with your user interface; you also have the ability to create and attach any
of the full range of resources available through Visual Studio.

Documents created with XAML have the file extension .xaml. In Visual Studio 2008, the design
surface for XAML documents is a tabbed panel where you can easily swap between the graphical
user interface (GUI) view and source code view of your work.

When projects containing XAML files are compiled, the XAML is converted into Binary
Application Markup Language (BAML) before being included in the assembly. The main
purpose of this is to improve application performance because compiled BAML will process much
faster than raw XAML. From a development point of view, it is not necessary to have an intimate
understanding of BAML because you will be working mainly in XAML. It is, however, possible
to manually compile your XAML into BAML by using the Windows Application Compiler that
ships with the .NET Framework, if you are so inclined.

XAML is very flexible, and can be used to represent everything from layout panels, controls,
and graphics to 3D representations and animations.

The following code snippet gives the basic format of an XAML page. This is the typical code
skeleton that is generated when you create a new WPF window in Visual Studio 2008. Most of the
formatting and layout code will go between the <Grid> tags.

<Window x:Class=”Window3”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Window3” Height=”300” Width=”300”>
<Grid>

</Grid>

The following XAML snippet demonstrates the representation for a TextBox control. Normally,
if we were to drop a TextBox control onto the XAML page shown in the preceding code, the
following code would appear between the <Grid> tags:

<TextBox Height=”21” Margin=”56,106,102,0” Name=”TextBox1”
VerticalAlignment=”Top” BorderThickness=”2”>

<TextBox.BitmapEffect>
<EmbossBitmapEffect />

</TextBox.BitmapEffect>
</TextBox>

This example of the TextBox control not only includes some basic properties for the
control such as Name and Height, but also includes a more sophisticated visual effect property:
EmbossBitmapEffect.

You can also use XAML to generate simple shapes (primitives) such as circles and rectangles.
The following code snippet demonstrates how you can use XAML to generate a simple rectangle:

<Rectangle Height=”74” Margin=”20,0,64,27” Name=”Rectangle1”
Stroke=”Black” VerticalAlignment=”Bottom” Fill=”Red”>

<Rectangle.BitmapEffect>
<DropShadowBitmapEffect />

</Rectangle.BitmapEffect>
</Rectangle>

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 153

INTRODUCING THE WPF CONTROLS 153

In this example, the rectangle has a red fill color and black border. We have also included a
drop shadow effect. These effects were all achieved by simply modifying the Properties window
for the TextBox and Rectangle controls. However, many of WPF’s properties are available to be
used across virtually all the controls, even if they do not appear in the Properties window. For
example, you can rewrite the code snippet for the rectangle to modify the Fill property to create
a linear gradient from red to blue, as follows:

<Rectangle Height=”74” Margin=”20,0,64,27” Name=”Rectangle1”
Stroke=”Black” VerticalAlignment=”Bottom” >

<Rectangle.BitmapEffect>
<DropShadowBitmapEffect />

</Rectangle.BitmapEffect>
<Rectangle.Fill>

<LinearGradientBrush>
<GradientStop Color=”Red” Offset=”0”/>
<GradientStop Color=”Blue” Offset=”1”/>

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

You cannot achieve this effect through the available settings in the Properties window for the
Rectangle — it needs to be typed directly into the XAML.

A number of these additional properties can be picked up from using Microsoft’s Expression
Blend tool to create XAML pages and examining the code generated. Refer to the ‘‘Expression Blend
Overview’’ section later in this chapter.

Introducing the WPF Controls
When you first open a WPF project in Visual Studio 2008, you will notice that the Toolbox contains
a very similar set of controls to those found in the other development environments. However,
although most of the controls appear similar, they can behave very differently.

This section introduces some of the core controls and lists some of the fundamental differences
between them and their traditional Windows counterparts.

One of the first things you will notice when opening up Visual Studio 2008 to a WPF
page is that the page has a magnification control in the top-left corner, and resizing the page
automatically resizes any controls on the page as well. Controls stay placed on the page relative
to each other, rather than fixed into some position relative to the page itself. Controls also behave
differently from the traditional Windows Forms model as you move them around the page, and
the underlying form (or rather window) itself looks a little different.

To create a new WPF project, choose File � New Project. In the New Project dialog box, choose
WPF Application. Keep the default name and click OK. In keeping with the idea that you are
designing an interface separated from the business logic of your application, the default designer
opens to Window1.xaml.

If you examine the Toolbox on the left side of Visual Studio, you will see many familiar items
from the Standard Toolbox there. However, as you will see, some of them exhibit different
behavior. Note that all the WPF controls differ from their WinForms cousins in the wide range

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 154

154 CHAPTER 5 THE VISTA INTERFACE

of style and formatting properties that are available to them. Table 5.1 gives a brief overview of
the roles of some of the new controls and some changes in the existing controls. This is not an
exhaustive list of the controls, but it does look at some key ones.

Table 5.1: The WPF Standard Controls

WPF Control Features

Border Creates a border around an object. A broad range of properties exists to enable you to
change the appearance of the border.

Button Apart from the obvious and extensive range of style properties common to virtually all
the WPF controls, the Button control looks and behaves as you would expect.
Double-clicking the control opens to a code skeleton for the Button Click event
handler in code-behind (typically Window1.xaml.vb).

Grid Defines a tabular area of columns and rows. Useful for displaying data. One of the main
layout controls.

Label Displays data via the Content property.

StackPanel Arranges child components (other controls) either horizontally or vertically. One of the
main layout controls.

TextBox Unlike the Label control, TextBox continues to use the Text property to display data.

Canvas Provides an area where you can explicitly position controls relative to the position of
the Canvas control.

DockPanel Provides a space where you arrange controls vertically or horizontally relative to each
other. One of the main layout controls.

InkCanvas Sets up a drawing surface within your application.

MediaElement Contains audio or video content.

TextBlock Displays small chunks of text.

UniformGrid Creates a grid with fixed cell size.

WrapPanel Displays elements sequentially (depending on the orientation property) and wraps to
the next line where necessary.

Next we will create a couple of simple applications to demonstrate the functionality of the
WPF controls.

Simple ‘‘Hello World’’ WPF Application
In this section, you will come to grips with setting up a basic WPF application and using the
controls by creating a simple ‘‘Hello World’’ application.

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 155

INTRODUCING THE WPF CONTROLS 155

Open Visual Studio 2008 and complete the following steps:

1. Choose File �New Project. From the New Project dialog box, choose WPF Application and
rename the project MyWpfApplication1. Click OK.

2. The Designer should open to Window1.xaml in Split mode (Design And Source Code). If
you need more space, you can collapse the bottom pane (usually the XAML pane, although
this can be swapped around) and tab between the two views.

3. Drag a Button control and a Label control onto your form. Move the controls around on the
form to see how the positioning and resize properties work. The <Grid> tags in XAML
view should now contain the following (without the line breaks and with variations in the
Height and Margin properties):

<Grid>
<Button Height=”23” HorizontalAlignment=”Left” Margin=”43,19,0,0”

Name=”Button1” VerticalAlignment=”Top” Width=”75”>Button</Button>
<Label Height=”23” Margin=”49,83,109,0” Name=”Label1”

VerticalAlignment=”Top”>Label</Label>
</Grid>

4. In Design mode, double-click the Button control to enter code-behind. This should open
up to Window1.xaml.vb with a Button1 Click event code skeleton. Compete the
Button1 Click event with the following code:

Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As
System.Windows.RoutedEventArgs) Handles Button1.Click

Label1.Content = ”Hi There!”
End Sub

Press F5 to run the application. Figure 5.1 illustrates the running application in the Designer
window after Button1 has been clicked.

Figure 5.1

The running
MyWpfApplication

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 156

156 CHAPTER 5 THE VISTA INTERFACE

Simple Drawing Program
This next example illustrates how you can easily create a simple drawing program in WPF with a
few controls and very little code. In this example, we will use the InkCanvas control to create the
drawing surface. The control will be added at runtime, enabling us to dynamically alter properties
such as pen color. We will use a ComboBox control to set the pen color and a Button control to
clear the screen.

Begin by opening Visual Studio 2008 and choosing File � New Project. Then complete the
following steps:

1. From the New Project dialog box, choose WPF Application and rename the project
WpfDraw. Click OK.

2. This should open Window.xaml in Split mode. From the Standard Toolbox, drop a
StackPanel control onto the Window1 form on the Design surface and set the Margin
property of the StackPanel (in the Properties box) to ‘‘0,0,0,25’’. This Margin property will
extend the StackPanel to the top, left, and right borders of the form. The margin will leave
a 25-pixel (px) gutter at the bottom of the form, where we can place a Button control. Keep
the default name for the control of StackPanel1.

3. Set the VerticalAlignment property of StackPanel1 to Top.

4. From the Standard Toolbox, drop a ComboBox control into the StackPanel1 control. In the
Properties window for the ComboBox control, set the HorizontalAlignment property to
Left. Keep the default name of ComboBox1. The ComboBox should be located in the top-left
corner of Window1.

5. In the XAML window, adjust the entry for ComboBox1 to read as shown here. Keep any
of the illustrated line breaks on a single line. This will create the pen color items in the
ComboBox.

<ComboBox Height=”25” Name=”ComboBox1” Width=”120”
HorizontalAlignment=”Left”>

<ComboBoxItem IsSelected=”True”>Red Pen</ComboBoxItem>
<ComboBoxItem>Green Pen</ComboBoxItem>
<ComboBoxItem>Blue Pen</ComboBoxItem>

</ComboBox>

6. From the Standard Toolbox, drop a Button control onto Window1 in the space under
the StackPanel. Keep the default name of Button1. In the Properties window for Button1,
set the Height property to 25, the VerticalAlignment property to Bottom, the
HorizontalAlignment to Left, and the Content property to Clear Screen.

7. The final XAML markup for Button1 should be similar to the following snippet (ignore the
line break):

<Button Height=”25” Name=”Button1” Width=”75” HorizontalAlignment=”Left”
VerticalAlignment=”Bottom”>Clear Screen</Button>

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 157

INTRODUCING THE WPF CONTROLS 157

Listing 5.1 gives the full XAML markup for this stage of the development.

Listing 5.1: Full XAML Markup for WpfDraw

<Window x:Class=”Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Window1” Height=”300” Width=”300”>
<Grid>

<StackPanel Name=”StackPanel1” Margin=”0,0,0,25”
VerticalAlignment=”Top”>

<ComboBox Height=”25” Name=”ComboBox1” Width=”120”
HorizontalAlignment=”Left”>

<ComboBoxItem IsSelected=”True”>Red Pen</ComboBoxItem>
<ComboBoxItem>Green Pen</ComboBoxItem>
<ComboBoxItem>Blue Pen</ComboBoxItem>

</ComboBox>
</StackPanel>
<Button Height=”25” Name=”Button1” Width=”75”

HorizontalAlignment=”Left” VerticalAlignment=”Bottom”>
Clear Screen</Button>

</Grid>
</Window>

The next step is to add the code-behind for the application. In the Design window,
double-click the Button1 control to enter code-behind (Window1.xaml.vb). Continue with the
following steps:

1. Directly under the Class Window declaration, add the following line of code to declare an
instance of the InkCanvas control:

Dim myink As New InkCanvas

2. Select the Window1 Loaded code skeleton (choose Class Name �Window Events, and
Method Name � Loaded).

3. Add the following line of code to the Window Loaded skeleton. This will add the InkCanvas
control to the StackPanel control in Window1 when the window loads:

StackPanel1.Children.Add(myink)

4. In the Button1 Click event handler, add the following line of code. This will enable the
user to erase any drawings he has created:

myink.Strokes.Clear()

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 158

158 CHAPTER 5 THE VISTA INTERFACE

5. Select the code skeleton for ComboBox1 SelectionChanged and add the following snippet.
This code will set the pen color of the InkCanvas control depending on the selected color in
the ComboBox:

If ComboBox1.SelectedIndex = 0 Then
myink.DefaultDrawingAttributes.Color = Colors.Red

ElseIf ComboBox1.SelectedIndex = 1 Then
myink.DefaultDrawingAttributes.Color = Colors.Green

ElseIf ComboBox1.SelectedIndex = 2 Then
myink.DefaultDrawingAttributes.Color = Colors.Blue

End If

Listing 5.2 gives the full code-behind listing for WpfDraw.

Listing 5.2: Full Code-Behind Listing for WpfDraw

Class Window1
Dim myink As New InkCanvas

Private Sub Window1 Loaded(ByVal sender As Object, ByVal e As
System.Windows.RoutedEventArgs) Handles Me.Loaded

StackPanel1.Children.Add(myink)
End Sub

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs) Handles Button1.Click

myink.Strokes.Clear()
End Sub

Private Sub ComboBox1 SelectionChanged(ByVal sender As
System.Object, ByVal e As
System.Windows.Controls.SelectionChangedEventArgs) Handles
ComboBox1.SelectionChanged

If ComboBox1.SelectedIndex = 0 Then
myink.DefaultDrawingAttributes.Color = Colors.Red

ElseIf ComboBox1.SelectedIndex = 1 Then
myink.DefaultDrawingAttributes.Color = Colors.Green

ElseIf ComboBox1.SelectedIndex = 2 Then
myink.DefaultDrawingAttributes.Color = Colors.Blue

End If
End Sub

End Class

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 159

DATA-BINDING WPF CONTROLS 159

Press F5 to test the application. Figure 5.2 illustrates the running application.

Figure 5.2

The running WpfDraw

Data-Binding WPF Controls
The ability to bind WPF controls to external (and internal) data sources is an important aspect of
being able to separate UI design from business logic and functionality.

WPF controls can be bound to data sources as well as style sources. This way, you can set
up a set of styles for your application and then bind each control to those styles, thus enabling
centralized management of the look and feel of your user interfaces.

There are many options available to the developer when connecting to data with WPF. WPF
offers a flexible and powerful framework for data connectivity and management. A full discussion
is beyond the scope of this chapter; refer to the Microsoft documentation for a more detailed view.
The article titled ‘‘Data Binding Overview’’ (search the Help documentation) is a good start.

In this section, you will see how to carry out three basic data-binding tasks with WPF. You will
bind controls to an array, to a data template, and to a database.

Data-Binding Example 1: Binding to an Array and a Data Template
In this example, we will set up a simple class called Contacts to hold Surname and FirstName
elements. We will then use an array of contacts to hold some data that can be accessed from our
XAML page. The presentation of the data in the XAML page will be defined by a data template.
To keep things simple, we will do everything within the one project.

Begin by opening Visual Studio 2008 and choosing File � New Project. Then complete the
following steps:

1. From the New Project dialog box, choose WPF Application and rename the project
WpfBinding1. Click OK.

2. We will begin by creating the Contacts class. You should be open to Window1.xaml in
Split view. From Solution Explorer, click the View Code icon to switch to code-behind

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 160

160 CHAPTER 5 THE VISTA INTERFACE

(Window1.xaml.vb). Alternatively, you can double-click on the Window1 heading in the
Window1 form in the Designer.

3. In code-behind, add the following code for the Contacts class directly under the Class
Window1 declaration. The Contacts class has two properties: FirstName and Surname. You
will find that as you type the following code, much of the code skeleton is automatically
generated by Visual Studio:

Private Class contacts
Dim name As String
Dim surname As String
Public Sub New(ByVal FirstName As String, ByVal Surname As String)

name = FirstName
surname = Surname

End Sub
Public ReadOnly Property FirstName() As String

Get
Return name

End Get
End Property
Public ReadOnly Property Surname() As String

Get
Return surname

End Get
End Property

End Class

4. Select the Window1 Loaded code skeleton (choose Class Name �Window Events, and
Method Name � Loaded).

5. Add the following code to the Window1 Loaded skeleton. This code declares an array of
contacts named person and adds some names to it. The final line uses the DataContext
property of Window1 to bind the person array to Window1.

Dim person As New ArrayList
person.Add(New contacts(”Fred”, ”Bloggs”))
person.Add(New contacts(”Betty”, ”Smith”))
person.Add(New contacts(”Jane”, ”Doe”))
person.Add(New contacts(”Bill”, ”Jones”))
person.Add(New contacts(”Jenny”, ”Day”))

Me.DataContext = person

This completes the code-behind for this project.
The next set of steps involves setting up the XAML for the project. For this example, we will

write directly to the XAML code. You will find that as you continue to work with WPF, it is often
easier to work directly with the XAML and use the Designer only to provide a visual check that
everything is going together as it should.

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 161

DATA-BINDING WPF CONTROLS 161

1. Switch back to XAML view for Window1.xaml. The default XAML should look similar to
the following snippet:

<Window x:Class=”Window4”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Window4” Height=”300” Width=”300” Name=”Window1”>
<Grid>

</Grid>
</Window>

2. Our key areas of interest here are the <Grid> tags. Add a name attribute to the <Grid>
tag to read <Grid Name = ‘‘MyGrid’’>.

3. The next step is to add the data template. This is contained within <GridResources> tags,
which sit within the <Grid Name = ‘‘MyGrid’’> tags. Create the following snippet:

<Grid.Resources>
<DataTemplate x:Key=”NameStyle”>

<Grid>
<Grid.ColumnDefinitions>

<ColumnDefinition Width=”60” />
<ColumnDefinition Width=”*” />

</Grid.ColumnDefinitions>
<TextBlock Grid.Column=”0” Text=”{Binding Path=FirstName}” />
<TextBlock Grid.Column=”1” Text=”{Binding Path=Surname}” />

</Grid>
</DataTemplate>

</Grid.Resources>

The purpose of this code is to define a data template that can be referenced by using its key,
NameStyle. The data template defines a grid with two columns — the first column is 60px
wide, and the second column occupies the remainder of the available space. Attached to
the first column is a TextBlock control that has its Text property bound to the FirstName
element of the person array that we declared in the code-behind. Remember that we used
the DataContext property to attach person to Window1. Similarly, the second TextBlock
has its Text property bound to Surname, and the control is attached to the second column
of the grid.

4. Add the following snippet directly below the <Grid.Resources > . . . < /Grid.Resources>
section. Do not include the line breaks:

<TextBlock Text=”Current Selection = ” />
<TextBlock Text=”{Binding Path=FirstName}” Margin=”110,0,0,0” />
<ListBox Margin=”0,40,0,0”
ItemTemplate=”{StaticResource NameStyle}” ItemsSource=”{Binding} ”
IsSynchronizedWithCurrentItem=”true” Name=”ListBox1” />

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 162

162 CHAPTER 5 THE VISTA INTERFACE

The purpose of this code is to provide the content controls (two TextBlocks and a ListBox)
to present the data on the window. We have used the Margin property to control the layout of
the controls. In this instance, the use of Margin is suitable because we wish to simplify the code,
but laying out in this manner is limiting if you wish to alter text content or styles at a later date.
There are a number of alternative methods for achieving the same layout using combinations of
the layout controls, which provide a little more flexibility. For example, the following snippet
achieves the same result by using Grid rows and a nested StackPanel control to manage the layout
of the content controls:

<Grid.RowDefinitions>
<RowDefinition Height=”40” />
<RowDefinition Height=”*” />

</Grid.RowDefinitions>
<StackPanel Orientation=”Horizontal” Grid.Row=”0”>

<TextBlock Text=”Current Selection = ” />
<TextBlock Text=”{Binding Path=FirstName}” />

</StackPanel>

<ListBox Grid.Row=”1”
ItemTemplate=”{StaticResource NameStyle}” ItemsSource=”{Binding} ”
IsSynchronizedWithCurrentItem=”true” Name=”ListBox1” />

The second TextBlock uses Binding to data-bind the control to the FirstName field of the
person array. The ListBox uses the StaticResource statement to bind to the NameStyle data
layout. By simply writing Binding, we indicate that the control is bound to the data source (in this
case, the person array) attached to the parent container (Window1). In this way, the ListBox will
display the full set of records in the array. The NameStyle data layout ensures that each record
is displayed as a FirstName, Surname combination by using two TextBlock controls set up in
adjacent Grid columns.

Listing 5.3 gives the full XAML source for this project. Delete the line breaks.

Listing 5.3: Full XAML Source Code for the WpfBinding1 Project

<Window x:Class=”Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Window1” Height=”300” Width=”300”>

<Grid Name=”myGrid”>
<Grid.Resources>

<DataTemplate x:Key=”NameStyle”>
<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width=”60” />
<ColumnDefinition Width=”*” />

</Grid.ColumnDefinitions>

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 163

DATA-BINDING WPF CONTROLS 163

<TextBlock Grid.Column=”0” Text=”{Binding
Path=FirstName}” />

<TextBlock Grid.Column=”1”
Text=”{Binding Path=Surname}” />

</Grid>
</DataTemplate>

</Grid.Resources>

<Grid.RowDefinitions>
<RowDefinition Height=”40” />
<RowDefinition Height=”*” />

</Grid.RowDefinitions>
<StackPanel Orientation=”Horizontal” Grid.Row=”0”>

<TextBlock Text=”Current Selection = ” />
<TextBlock Text=”{Binding Path=FirstName}” />

</StackPanel>

<ListBox Grid.Row=”1”
ItemTemplate=”{StaticResource NameStyle}”

ItemsSource=”{Binding} ” IsSynchronizedWithCurrentItem=”true”
Name=”ListBox1” />

</Grid>
</Window>

Finish up by testing the application. Making a selection in the list should be reflected in the
Current Selection TextBlock. The running application is shown in Figure 5.3.

Figure 5.3

The running
WpfBinding1 project

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 164

164 CHAPTER 5 THE VISTA INTERFACE

Data-Binding Example 2: Binding to a Database
In this next example, we will see how to connect the WPF page created in the previous example
to a database. This project not only demonstrates the technique of connecting to a database, but
also emphasizes the way that WPF enables the developer to separate the user interface aspects of
a project from the data and business logic.

Begin by opening the previous project, WpfBinding1. Continue with the following steps:

1. First, we will use SQL Server Express to create a new database. From the Project menu,
choose Add New Item.

2. From the Add New Item dialog box, select Service-Based Database. Name the database
Contacts.mdf and click the Add button.

3. You will be presented with the Data Source Configuration Wizard with a message saying
that the database does not contain any objects. Keep the default name: ContactsDataSet.
Click the Finish button to create an empty dataset and close the wizard. We will return to
the dataset later to complete it.

4. Over in the Toolbox area, click the Server Explorer tab. Under the Data Connections tree,
expand the entry for Contacts.mdf. Right-click the Tables entry and choose Add New
Table from the context menu.

5. The new database table should now be open in the Designer window. Set up the database
fields as shown in Table 5.2.

Table 5.2: Database Fields for Contacts.mdf

Column Name Data Type

ID nchar(10)

FirstName nchar(10)

Surname nchar(10)

6. Right-click the ID entry and choose Set Primary Key from the context menu.

7. Click the Save button on the Standard Toolbar. A Choose Name dialog box should
open for the table. Enter Customers and click OK. The Customers table should now be
visible in the Tables entry of Contacts.mdf in the Data Connections tree in
Server Explorer.

8. Over in Solution Explorer, double-click the entry for ContactsDataSet.xsd to open the
dataset in the Designer window.

9. Return to the Server Explorer. Drag the Customers table from the Data Connections tree in
Server Explorer onto the Design surface for the dataset. This should set up the Customers
DataTable in the dataset and also establish a CustomersTableAdapter.

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 165

DATA-BINDING WPF CONTROLS 165

10. Save your work.

11. In Server Explorer, right-click the Customers table in the Data Connections tree and choose
Show Table Data.

12. Enter the data from Table 5.3 into the Customers table.

Table 5.3: Data Entries for Customers Table

ID FirstName Surname

1 Fred Bloggs

2 Wilma Smith

3 Bill Green

13. You are now ready to attach the database to Window1.xaml. We will do this in
code-behind for Window1.xaml. Double-click the entry for Window1.xaml.vb in
Solution Explorer.

14. Add the following snippet to the code screen just under the entry for Class Window1.
This code declares instances of the ContactsDataSet and the CustomersTableAdapter.

Dim myDataset As New ContactsDataSet
Dim myCustomersAdapter As New

ContactsDataSetTableAdapters.CustomersTableAdapter

15. In the sub for Window1 Loaded, add the following code snippet. The purpose of the
first of these lines is to use the myCustomersAdapter to load the data from the Contacts
database into myDataset. The second line attaches the dataset as the data source
for Window1:

myCustomersAdapter.Fill(myDataset.Tables(”Customers”))
Me.DataContext = myDataset.Tables(”Customers”)

16. Finally, comment out (or delete) the line of code attaching the original person array to
Window1: ‘Me.DataContext = person.

The field names in the dataset are the same as the ones used in the original array, so we
can run the application without needing to change Window1.xaml. Note that you can now
delete or comment out any of the code that we originally used to create the person array or
contacts class.

This project is now completed. Test the application by pressing F5 or clicking the green arrow.
The running version should appear as shown in Figure 5.4.

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 166

166 CHAPTER 5 THE VISTA INTERFACE

Figure 5.4

The updated
WpfBinding1 application

Creating a WPF Browser Application
WPF applications can also be displayed as web applications. The XAML for such an application is
virtually identical to its desktop equivalent. You may have to make only some minor layout and
presentation changes to optimize the appearance of your application in a web browser window as
opposed to on the desktop.

The main limitation to this technology is that such applications are restricted to Internet
Explorer 6 and above unless you create a Silverlight implementation. Microsoft is currently
releasing Silverlight as a cross-platform, cross-browser plug-in. Refer to www.microsoft.com
/silverlight for more information.

In this example, we will create a WPF browser version of the simple drawing program,
WpfDraw, that we created earlier in this chapter.

1. Start Visual Studio 2008 and begin by choosing File � New Project.

2. In the New Project dialog box, choose WPF Browser Application. Keep the default name of
WpfBrowserApplication1 and click OK.

3. This will open up Page1.xaml in Split mode. Switch to XAML view and add the code from
Listing 5.4 (without the line breaks). This is essentially the same markup that we used for
WpfDraw earlier in the chapter, with some layout modifications to control the distribution
of the controls and make the application a little more presentable in a web browser
window.

Listing 5.4: XAML for WpfBrowserApplication1

<Page x:Class=”Page1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Page1”>
<Grid>

<StackPanel Margin=”25”>
<StackPanel Name=”StackPanel1” Margin=”0,0,0,0”

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 167

CREATING A WPF BROWSER APPLICATION 167

VerticalAlignment=”Top”>
<ComboBox Height=”25” Name=”ComboBox1” Width=”120”

HorizontalAlignment=”Left”>
<ComboBoxItem IsSelected=”True”>Red Pen

</ComboBoxItem>
<ComboBoxItem>Green Pen</ComboBoxItem>
<ComboBoxItem>Blue Pen</ComboBoxItem>

</ComboBox>
</StackPanel>
<Button Height=”25” Name=”Button1” Width=”75”

HorizontalAlignment=”Left” VerticalAlignment=”Bottom”>Clear Screen
</Button>

</StackPanel>
</Grid>

</Page>

4. The code-behind for WpfBrowserApplication1 remains virtually unchanged from
WpfDraw as well. Use the Solution Explorer to switch to code-behind (Page1.xaml.vb)
and add the code from Listing 5.5. The only difference with this code from the original
WpfDraw is that we add some additional layout and design properties to myink in the
Page1 Loaded sub to again help with presentation in the web browser window.

Listing 5.5: Code-Behind for WpfBrowserApplication1

Class Page1
Dim myink As New InkCanvas

Private Sub Page1 Loaded(ByVal sender As Object,
ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded

StackPanel1.Children.Add(myink)
myink.Background = Brushes.Cornsilk
myink.HorizontalAlignment = Windows.HorizontalAlignment.Left
myink.Height = 400
myink.Width = 400

End Sub

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.Windows.RoutedEventArgs) Handles Button1.Click

myink.Strokes.Clear()
End Sub
Private Sub ComboBox1 SelectionChanged(ByVal sender As

System.Object, ByVal e As
System.Windows.Controls.SelectionChangedEventArgs) Handles
ComboBox1.SelectionChanged

If ComboBox1.SelectedIndex = 0 Then
myink.DefaultDrawingAttributes.Color = Colors.Red

ElseIf ComboBox1.SelectedIndex = 1 Then
myink.DefaultDrawingAttributes.Color = Colors.Green

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 168

168 CHAPTER 5 THE VISTA INTERFACE

ElseIf ComboBox1.SelectedIndex = 2 Then
myink.DefaultDrawingAttributes.Color = Colors.Blue

End If
End Sub

End Class

Press F5 or click the green arrow to run the application. It will open in a web browser window
and should appear and function as shown in Figure 5.5.

Figure 5.5

The running
WpfBrowserApplication1

Expression Blend Overview
Expression Blend is part of Microsoft’s new Expression Studio package. Expression Studio con-
tains four major components:

Expression Web Website designer

Expression Blend User interface designer

Expression Design Vector and bitmap graphics editor

Expression Media Media manager

Each component can be purchased independently or as part of the Expression Studio
package. A fifth component, Expression Encoder, is currently available as an independent
purchase. Expression Encoder encodes media content into a format suitable for Silverlight.

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 169

EXPRESSION BLEND OVERVIEW 169

More information and trial downloads can be obtained from the Microsoft website at
www.microsoft.com/expression/expression-studio/overview.aspx.

Expression Blend is specifically designed as a tool for creating XAML-based (WPF) interfaces. It
has a much stronger graphical focus on design than the WPF tools in Visual Studio 2008 and would
suit developers who are more focused on visual design than working with code. Expression Blend
also exposes a greater range of tools and properties at the GUI level than Visual Studio 2008,
and as such is a great way to explore the possibilities of UI design with WPF. For example, if
you are interested in animation with WPF, and want to work with Visual Studio 2008 but are
struggling with the documentation, you can create a simple animation in Expression Blend using
the graphical tools, examine the XAML markup that is generated, and transfer it to Visual Studio.

A demonstration version of Expression Blend can be downloaded from the Microsoft website.
A number of samples ship with the package that you can open and work with.

Figure 5.6 illustrates the interface for Expression Blend with a simple animation project.
Figure 5.7 illustrates the simple animation project shown in Figure 5.6, running in a test window.

Figure 5.6

Interface for Expression
Blend

Figure 5.7

Expression Blend with
running project

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 170

170 CHAPTER 5 THE VISTA INTERFACE

We can extract the markup for the animated rectangle from the XAML generated in Expression
Blend and use it in a Visual Studio 2008 WPF project. Two sections of code are used to generate
the animation. The first section is the code defining the rectangle and its behavior, as illustrated
in the following code snippet. This code includes the red-to-blue fill gradient that was illustrated
earlier in the chapter (remove the line breaks):

<Rectangle HorizontalAlignment=”Left” Margin=”57,106,0,0”
VerticalAlignment=”Top” Width=”165” Height=”111”
Stroke=”#FF000000” RenderTransformOrigin=”0.5,0.5”
x:Name=”rectangle”>

<Rectangle.Fill>
<LinearGradientBrush EndPoint=”1,0.5” StartPoint=”0,0.5”>

<GradientStop Color=”Red” Offset=”0”/>
<GradientStop Color=”Blue” Offset=”1”/>

</LinearGradientBrush>
</Rectangle.Fill>
<Rectangle.RenderTransform>

<TransformGroup>
<ScaleTransform ScaleX=”1” ScaleY=”1”/>
<SkewTransform AngleX=”0” AngleY=”0”/>
<RotateTransform Angle=”0”/>
<TranslateTransform X=”0” Y=”0”/>

</TransformGroup>
</Rectangle.RenderTransform>

</Rectangle>

The second code chunk used with the animation is the one generated to handle the actual time
line of the animation and the trigger used to start it. In this example, the code has been doctored
slightly to animate only a single rectangle and to be used in a Page.xaml file in a WPF browser
application. The trigger to fire the animation in this case is the loading of the page. The time line
information is managed in the <Page.Resources> tags while the triggers are handled by the
<Page.Triggers> tags. The code is illustrated in the following snippet (remove the line breaks):

<Page.Resources>
<Storyboard x:Key=”Timeline1”>

<DoubleAnimationUsingKeyFrames BeginTime=”00:00:00”
Storyboard.TargetName=”rectangle”
Storyboard.TargetProperty=”(UIElement.RenderTransform).
(TransformGroup.Children)[2].(RotateTransform.Angle)”>

<SplineDoubleKeyFrame KeyTime=”00:00:05” Value=”500”/>
</DoubleAnimationUsingKeyFrames>

</Storyboard>
</Page.Resources>
<Page.Triggers>

<EventTrigger RoutedEvent=”FrameworkElement.Loaded”>
<BeginStoryboard Storyboard=”{StaticResource Timeline1}”/>

</EventTrigger>
</Page.Triggers>

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 171

THE BOTTOM LINE 171

To test this code in a WPF browser application, create a new WPF Browser Application project.
Copy the contents of the <Page.Resources> and <Page.Triggers > code from the preceding
snippet into the XAML for Page1.xaml, immediately following the class declaration and before
the <Grid> tags. Copy the first code snippet governing the rectangle and its behavior between the
<Grid>. . .</Grid> tags. Run the project and you should have a rectangle performing a rotation
in a web page. If you play with the attribute values in the <SplineDoubleKeyFrame> tag, you can
alter the length and extent of the rotation.

A comprehensive user guide is available under the Help menu of the Expression Blend
package.

The Bottom Line

Create a simple WPF application. WPF is a new and powerful technology for creating user
interfaces. WPF is one of the core technologies in the .NET Framework 3.5 and is integrated
into Windows Vista. WPF is also supported on Windows XP. WPF takes advantage of the
graphics engines and display capabilities of the modern computer and is vector based and res-
olution independent.

Master It Develop a simple ‘‘Hello World’’ type of WPF application that displays a
Button control and Label control. Clicking the button should set the content property of a
Label control to Hi There!

Data-bind controls in WPF. The ability to bind controls to a data source is an essential aspect
of separating the UI from the business logic in an application.

Master It Data-bind a Label control to one field in a record returned from a database on
your computer.

Use a data template to control data presentation. WPF enables a very flexible approach to
presenting data by using data templates. The developer can create and fully customize data
templates for data formatting.

Master It Create a data template to display a Name, Surname, Gender combination in
a horizontal row in a ComboBox control. Create a simple array and class of data to feed the
application.

Petroutsos c05.tex V2 - 01/28/2008 12:46pm Page 172

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 173

Chapter 6

Basic Windows Controls

In previous chapters, we explored the environment of Visual Basic and the principles of
event-driven programming, which is the core of VB’s programming model. In the process,
we briefly explored a few basic controls through the examples. The .NET Framework provides
many more controls, and all of them have a multitude of trivial properties (such as Font,
BackgroundColor, and so on), which you can set either in the Properties window or from within
your code.

This chapter explores in depth the basic Windows controls: the controls you’ll use most often
in your applications because they are the basic building blocks of typical rich client-user
interfaces. Rather than look at controls’ background and foreground color, font, and other trivial
properties, we’ll look at the properties unique to each control and see how these properties are
used in building functional, rich user interfaces.

In this chapter, you’ll learn how to do the following:

◆ Use the TextBox control as a data-entry and text-editing tool

◆ Use the ListBox, CheckedListBox, and ComboBox controls to present lists
of items

◆ Use the ScrollBar and TrackBar controls to enable users to specify sizes and positions with
the mouse

The TextBox Control
The TextBox control is the primary mechanism for displaying and entering text. It is a small text
editor that provides all the basic text-editing facilities: inserting and selecting text, scrolling if the
text doesn’t fit in the control’s area, and even exchanging text with other applications through
the Clipboard.

The TextBox control is an extremely versatile data-entry tool that can be used for entering
and editing single lines of text, such as a number or a password, or an entire text file. Figure 6.1
shows a few typical examples. All the boxes in Figure 6.1 contain text — some a single line, some
several lines. The scroll bars you see in some text boxes are part of the control. You can specify
which scroll bars (vertical and/or horizontal) will be attached to the control, and they will appear
automatically whenever the control’s contents exceed the visible area of the control.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 174

174 CHAPTER 6 BASIC WINDOWS CONTROLS

Figure 6.1

Typical uses of the
TextBox control

Basic Properties
Let’s start with the properties that specify the appearance and, to some degree, the functionality of
the TextBox control; these properties are usually set at design time through the Properties window.
Then, we’ll look at the properties that allow you to manipulate the control’s contents and interact
with users from within your code.

TextAlign

This property sets (or returns) the alignment of the text on the control, and its value is a member
of the HorizontalAlignment enumeration: Left, Right, or Center. The TextBox control doesn’t
allow you to format text (mix different fonts, attributes, or colors), but you can set the font in
which the text will be displayed with the Font property, as well as the control’s background color
with the BackColor property.

MultiLine

This property determines whether the TextBox control will hold a single line or multiple lines
of text. Every time you place a TextBox control on your form, it’s sized for a single line of text
and you can change its width only. To change this behavior, set the MultiLine property to True.
When creating multiline TextBoxes, you will most likely have to set one or more of the MaxLength,
ScrollBars, and WordWrap properties in the Properties window.

MaxLength

This property determines the number of characters that the TextBox control will accept. Its default
value is 32,767, which was the maximum number of characters the VB 6 version of the control
could hold. Set this property to zero, so that the text can have any length, up to the control’s
capacity limit — 2,147,483,647 characters, to be exact. To restrict the number of characters that the
user can type, set the value of this property accordingly.

The MaxLength property of the TextBox control is often set to a specific value in data-entry
applications, which prevents users from entering more characters than can be stored in a database
field. A TextBox control for entering international standard book numbers (ISBNs), for instance,
shouldn’t accept more than 13 characters.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 175

THE TEXTBOX CONTROL 175

ScrollBars

This property lets you specify the scroll bars you want to attach to the TextBox if the text exceeds
the control’s dimensions. Single-line text boxes can’t have a scroll bar attached, even if the text
exceeds the width of the control. Multiline text boxes can have a horizontal or a vertical scroll bar,
or both.

If you attach a horizontal scroll bar to the TextBox control, the text won’t wrap automatically
as the user types. To start a new line, the user must press Enter. This arrangement is useful for
implementing code editors in which lines must break explicitly. If the horizontal scroll bar is
missing, the control inserts soft line breaks when the text reaches the end of a line, and the text is
wrapped automatically. You can change the default behavior by setting the WordWrap property.

WordWrap

This property determines whether the text is wrapped automatically when it reaches the right
edge of the control. The default value of this property is True. If the control has a horizontal scroll
bar, however, you can enter very long lines of text. The contents of the control will scroll to the
left, so the insertion point is always visible as you type. You can turn off the horizontal scroll bar
and still enter long lines of text; just use the left/right arrows to bring any part of the text into
view. You can experiment with the WordWrap and ScrollBars properties in the TextPad sample
application, which is described later in this chapter.

Notice that the WordWrap property has no effect on the actual line breaks. The lines are wrapped
automatically, and there are no hard breaks (returns) at the end of each line. Open the TextPad
project, enter a long paragraph, and resize the window — the text is automatically adjusted to the
new width of the control.

A Functional Text Editor by Design

A TextBox control with its MaxLength property set to 0, its MultiLine and WordWrap properties set
to True, and its ScrollBars property set to Vertical is, on its own, a functional text editor. Place a
TextBox control with these settings on a form, run the application, and check out the following:

◆ Enter text and manipulate it with the usual editing keys: Delete, Insert, Home, and End.

◆ Select multiple characters with the mouse or the arrow keys while holding down the
Shift key.

◆ Move segments of text around with Copy (Ctrl+C), Cut (Ctrl+X), and Paste (Ctrl+V, or Shift+
Insert) operations.

◆ Right-click the control to see its context menu; it contains all the usual text-editing commands.

◆ Exchange data with other applications through the Clipboard.

You can do all this without a single line of code! If you use the My object, you can save and load files
by using two lines of code. Shortly, you’ll see what you can do with the TextBox control if you add
some code to your application, but first let’s continue our exploration of the properties that allow us
to manipulate the control’s functionality.

AcceptsReturn, AcceptsTab

These two properties specify how the TextBox control reacts to the Return (Enter) and Tab keys.
The Enter key activates the default button on the form, if there is one. The default button is usually

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 176

176 CHAPTER 6 BASIC WINDOWS CONTROLS

an OK button that can be activated with the Enter key, even if it doesn’t have the focus. In a
multiline TextBox control, however, we want to be able to use the Enter key to change lines. The
default value of the AcceptsReturn property is True, so pressing Enter creates a new line on the
control. If you set it to False, users can still create new lines in the TextBox control, but they’ll
have to press Ctrl+Enter. If the form contains no default button, the Enter key creates a new line
regardless of the AcceptsReturn setting.

Likewise, the AcceptsTab property determines how the control reacts to the Tab key. Normally,
the Tab key takes you to the next control in the Tab order, and we generally avoid changing the
default setting of the AcceptsTab property. In a multiline TextBox control, however, you may
want the Tab key to insert a Tab character in the text of the control instead; to do this, set the
control’s AcceptsTab property to True (the default value is False). If you change the default value,
users can still move to the next control in the Tab order by pressing Ctrl+Tab. Notice that the
AcceptsTab property has no effect on other controls. Users may have to press Ctrl+Tab to move
to the next control while a TextBox control has the focus, but they can use the Tab key to move
from any other control to the next one.

CharacterCasing

This property tells the control to change the casing of the characters as they’re entered by the user.
Its default value is Normal, and characters are displayed as typed. You can set it to Upper or Lower
to convert the characters to upper- or lowercase automatically.

PasswordChar

This property turns the characters typed into any character you specify. If you don’t want to
display the actual characters typed by the user (when entering a password, for instance), use this
property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display the
characters as entered. If you set this value to an asterisk (*), for example, the user sees an asterisk
in the place of every character typed. This property doesn’t affect the control’s Text property,
which contains the actual characters. If the PasswordChar property is set to any character, the user
can’t copy or cut the text on the control.

ReadOnly, Locked

If you want to display text on a TextBox control but prevent users from editing it (such as for an
agreement or a contract they must read, software installation instructions, and so on), you can set
the ReadOnly property to True. When ReadOnly is set to True, you can put text on the control from
within your code, and users can view it, yet they can’t edit it.

To prevent editing of the TextBox control with VB 6, you had to set the Locked property to
True. Oddly, the Locked property is also supported, but now it has a very different function. The
Locked property of VB 2008 locks the control at design time (so that you won’t move it or change
its properties by mistake as you design the form).

Text-Manipulation Properties
Most of the properties for manipulating text in a TextBox control are available at runtime only.
This section presents a breakdown of each property.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 177

THE TEXTBOX CONTROL 177

Text

The most important property of the TextBox control is the Text property, which holds the control’s
text. You can set this property at design time to display some text on the control initially.

Notice that there are two methods of setting the Text property at design time. For single-line
TextBox controls, set the Text property to a short string, as usual. For multiline TextBox controls,
open the Lines property and enter the text in the String Collection Editor window, which will
appear. In this window, each paragraph is entered as a single line of text. When you’re finished,
click OK to close the window; the text you entered in the String Collection Editor window will
be placed on the control. Depending on the width of the control and the setting of the WordWrap
property, paragraphs may be broken into multiple lines.

At runtime, use the Text property to extract the text entered by the user or to replace
the existing text. The Text property is a string and can be used as an argument with the usual
string-manipulation functions of Visual Basic. You can also manipulate it with the members of the
String class. The following expression returns the number of characters in the TextBox1 control:

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control’s text.
The following statement returns the location of the first occurrence of the string Visual
in the text:

Dim location As Integer
location = TextBox1.Text.IndexOf(”Visual”)

For more information on locating strings in a TextBox control, see the section ‘‘VB 2008 at Work:
The TextPad Project’’ later in this chapter, where we’ll build a text editor with search-and-replace
capabilities. For a detailed discussion of the String class, see Chapter 13, ‘‘Handling Strings,
Characters, and Dates.’’

To store the control’s contents in a file, use a statement such as the following:

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control by using a statement
such as the following:

TextBox1.Text = StrReader.ReadToEnd

where StrReader and StrWriter are two properly declared StreamReader and StreamWriter
variables. File operations are discussed in detail in Chapter 15, ‘‘Accessing Folders and Files.’’ You
will also find out how to print text files in Chapter 20, ‘‘Printing with Visual Basic 2008.’’

To locate all instances of a string in the text, use a loop like the one in Listing 6.1. This loop
locates successive instances of the string Basic and then continues searching from the character
following the previous instance of the word in the text. To locate the last instance of a string in the
text, use the LastIndexOf method. You can write a loop similar to the one in Listing 6.1 that scans
the text backward.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 178

178 CHAPTER 6 BASIC WINDOWS CONTROLS

Listing 6.1: Locating All Instances of a String in a TextBox

Dim startIndex = -1
startIndex = TextBox1.Text.IndexOf(”Basic”, startIndex + 1)
While startIndex > 0

Console.WriteLine ”String found at ” & startIndex
startIndex = TextBox1.Text.IndexOf(”Basic”, startIndex + 1)

End While

To test this code segment, place a multiline TextBox and a Button control on a form; then enter
the statements of the listing in the button’s Click event handler. Run the application and enter
some text on the TextBox control. Make sure that the text contains the word Basic or change the
code to locate another word, and click the button. Notice that the IndexOf method performs a
case-sensitive search.

Use the Replace method to replace a string with another within the line, the Split method
to split the line into smaller components (such as words), and any other method exposed by the
String class to manipulate the control’s text. The following statement appends a string to the
existing text on the control:

TextBox1.Text = TextBox1.Text & newString

This statement has appeared in just about any VB 6 application that manipulated text with the
TextBox control. It is an inefficient method to append text to the control, especially if the control
contains a lot of text already.

Now, you can use the AppendText method to append strings to the control, which is far more
efficient than manipulating the Text property directly. To append a string to a TextBox control,
use the following statement:

TextBox1.AppendText(newString)

The AppendText method appends the specified text to the control as is, without any line breaks
between successive calls. If you want to append individual paragraphs to the control’s text, you
must insert the line breaks explicitly, with a statement such as the following (vbCrLf is a constant
for the carriage return/new line characters):

TextBox1.AppendText(newString & vbCrLf)

Lines

In addition to the Text property, you can access the text on the control by using the Lines
property. The Lines property is a string array, and each element holds a paragraph of text. The
first paragraph is stored in the element Lines(0), the second paragraph in the element Lines(1),
and so on. You can iterate through the text lines with a loop such as the following:

Dim iLine As Integer
For iLine = 0 To TextBox1.Lines.GetUpperBound(0) - 1

{ process string TextBox1.Lines(iLine) }
Next

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 179

THE TEXTBOX CONTROL 179

You must replace the line in brackets with the appropriate code, of course. Because the Lines
property is an array, it supports the GetUpperBound method, which returns the index of the last
element in the array. Each element of the Lines array is a string, and you can call any of the String
class’s methods to manipulate it. Just keep in mind that you can’t alter the text on the control by
editing the Lines array. However, you can set the control’s text by assigning an array of strings to
the Lines property.

Text-Selection Properties
The TextBox control provides three properties for manipulating the text selected by the user:
SelectedText, SelectionStart, and SelectionLength. Users can select a range of text with a
click-and-drag operation, and the selected text will appear in reverse color. You can access the
selected text from within your code through the SelectedText property, and its location in
the control’s text through the SelectionStart and SelectionLength properties.

SelectedText

This property returns the selected text, enabling you to manipulate the current selection from
within your code. For example, you can replace the selection by assigning a new value to the
SelectedText property. To convert the selected text to uppercase, use the ToUpper method of
the String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

SelectionStart, SelectionLength

Use these two properties to read the text selected by the user on the control, or to select text from
within your code. The SelectionStart property returns or sets the position of the first character
of the selected text, somewhat like placing the cursor at a specific location in the text and selecting
text by dragging the mouse. The SelectionLength property returns or sets the length of the
selected text.

Suppose that the user is seeking the word Visual in the control’s text. The IndexOf method
locates the string but doesn’t select it. The following statements select the word in the text,
highlight it, and bring it into view, so that users can spot it instantly:

Dim seekString As String = ”Visual”
Dim strLocation As Long
strLocation = TextBox1.Text.IndexOf(seekString)
If strLocation > 0 Then

TextBox1.SelectionStart = strLocation
TextBox1.SelectionLength = seekString.Length

End If
TextBox1.ScrollToCaret()

These lines locate the string Visual (or any user-supplied string stored in the seekString
variable) in the text and select it by setting the SelectionStart and SelectionLength properties
of the TextBox control. If the located string lies outside the visible area of the control, the user must
scroll the text to bring the selection into view. The TextBox control provides the ScrollToCaret
method, which brings the section of the text with the cursor (the caret position) into view.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 180

180 CHAPTER 6 BASIC WINDOWS CONTROLS

The few lines of code shown previously form the core of a text editor’s Find command.
Replacing the current selection with another string is as simple as assigning a new value to the
SelectedText property, and this technique provides you with an easy implementation of a Find
and Replace operation.

Locating the Cursor Position in the Control

The SelectionStart and SelectionLength properties always have a value even if no text is selected
on the control. In this case, SelectionLength is 0, and SelectionStart is the current position of
the pointer in the text. If you want to insert some text at the pointer’s location, simply assign it to the
SelectedText property, even if no text is selected on the control.

HideSelection

The selected text in the TextBox does not remain highlighted when the user moves to another
control or form; to change this default behavior, set the HideSelection property to False. Use this
property to keep the selected text highlighted, even if another form or a dialog box, such as a Find
& Replace dialog box, has the focus. Its default value is True, which means that the text doesn’t
remain highlighted when the TextBox loses the focus.

Text-Selection Methods
In addition to properties, the TextBox control exposes two methods for selecting text. You can
select some text by using the Select method, whose syntax is shown next:

TextBox1.Select(start, length)

The Select method is equivalent to setting the SelectionStart and SelectionLength prop-
erties. To select the characters 100 through 105 on the control, call the Select method, passing the
values 99 and 6 as arguments:

TextBox1.Select(99, 6)

As a reminder, the order of the characters starts at 0 (the first character’s index is 0, the second
character’s index is 1, and the last character’s index is the length of the string minus 1).

If the range of characters you select contains hard line breaks, you must take them into
consideration as well. Each hard line break counts for two characters (carriage return and line
feed). If the TextBox control contains the string ABCDEFGHI, the following statement will select the
range DEFG:

TextBox1.Select(3, 4)

If you insert a line break every third character and the text becomes the following, the same
statement will select the characters DE only:

ABC
DEF
GHI

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 181

THE TEXTBOX CONTROL 181

In reality, it has also selected the two characters that separate the first two lines, but special
characters aren’t displayed and can’t be highlighted. The length of the selection, however, is 4.

A variation of the Select method is the SelectAll method, which selects all the text on
the control.

Undoing Edits
An interesting feature of the TextBox control is that it can automatically undo the most recent
edit operation. To undo an operation from within your code, you must first examine the value of
the CanUndo property. If it’s True, the control can undo the operation; then you can call the Undo
method to undo the most recent edit.

An edit operation is the insertion or deletion of characters. Entering text without deleting any
is considered a single operation and will be undone in a single step. Even if the user has spent
an hour entering text (without making any corrections), you can make all the text disappear with
a single call to the Undo method. Fortunately, the deletion of the text becomes the most recent
operation, which can be undone with another call to the Undo method. In effect, the Undo method
is a toggle. When you call it for the first time, it undoes the last edit operation. If you call it again,
it redoes the operation it previously undid. The deletion of text can be undone only if no other
editing operation has taken place in the meantime. You can disable the redo operation by calling
the ClearUndo method, which clears the undo buffer of the control. You should call it from within
an Undo command’s event handler to prevent an operation from being redone. In most cases, you
should give users the option to redo an operation, especially because the Undo method can delete
an enormous amount of text from the control.

VB 2008 at Work: The TextPad Project
The TextPad application, shown in Figure 6.2, demonstrates most of the TextBox control’s proper-
ties and methods described so far. TextPad is a basic text editor that you can incorporate into your
programs and customize for special applications. The TextPad project’s main form is covered by a
TextBox control, whose size is adjusted every time the user resizes the form. This feature doesn’t
require any programming — just set the Dock property of the TextBox control to Fill.

Figure 6.2

TextPad demonstrates
the most useful
properties and methods
of the TextBox control.

The name of the application’s main form is frmTextPad, and the name of the Find & Replace
dialog box is frmFind. You can design the two forms as shown in the figures of this chapter, or

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 182

182 CHAPTER 6 BASIC WINDOWS CONTROLS

open the TextPad project. To design the application’s interface from scratch, place a MenuStrip
control on the form and dock it to the top of the form. Then place a TextBox control on the main
form, name it txtEditor, and set the following properties: Multiline to True, MaxLength to 0
(to edit text documents of any length), HideSelection to False (so that the selected text remains
highlighted even when the main form doesn’t have the focus), and Dock to Fill, so that it will fill
the form.

The menu bar of the form contains all the commands you’d expect to find in text-editing
applications; they’re listed in Table 6.1.

Table 6.1: The TextPad Form’s Menu

Menu Command Description

File New Clears the text

Open Loads a new text file from disk

Save Saves the text to its file on disk

Save As Saves the text with a new filename on disk

Print Prints the text

Exit Terminates the application

Edit Undo/Redo Undoes/redoes the last edit operation

Copy Copies selected text to the Clipboard

Cut Cuts the selected text

Paste Pastes the Clipboard’s contents to the editor

Select All Selects all text in the control

Find & Replace Displays a dialog box with Find and Replace options

Process Convert To Upper Converts selected text to uppercase

Convert To Lower Converts selected text to lowercase

Number Lines Numbers the text lines

Format Font Sets the text’s font, size, and attributes

Page Color Sets the control’s background color

Text Color Sets the color of the text

WordWrap Toggle menu item that turns text wrapping on and off

The File menu commands are implemented with the Open and Save As dialog boxes, the
Font command with the Font dialog box, and the Color command with the Color dialog box.
These dialog boxes are discussed in the following chapters, and as you’ll see, you don’t have to

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 183

THE TEXTBOX CONTROL 183

design them yourself. All you have to do is place a control on the form and set a few properties;
the Framework takes it from there. The application will display the standard Open File/Save
File/Font/Color dialog boxes, in which the user can select or specify a filename or select a font
or color. Of course, we’ll provide a few lines of code to actually move the text into a file (or read
it from a file and display it on the control), change the control’s background color, and so on. I’ll
discuss the commands of the File menu in Chapter 8, ‘‘More Windows Controls.’’

The Editing Commands

The options on the Edit menu move the selected text to and from the Clipboard. For the TextPad
application, all you need to know about the Clipboard are the SetText method, which places the
currently selected text on the Clipboard, and the GetText method, which retrieves information
from the Clipboard (see Figure 6.3).

Figure 6.3

The Copy, Cut, and
Paste operations can
be used to exchange text
with any other
application.

The Copy command, for example, is implemented with a single line of code (txtEditor is the
name of the TextBox control). The Cut command does the same, and it also clears the selected text.
The code for these and for the Paste command, which assigns the contents of the Clipboard to the
current selection, is presented in Listing 6.2.

Listing 6.2: The Cut, Copy, and Paste Commands

Private Sub EditCopyItem Click(...)
Handles EditCopyItem.Click

If txtEditor.SelectionLength > 0 Then
Clipboard.SetText(txtEditor.SelectedText)

End If
End Sub

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 184

184 CHAPTER 6 BASIC WINDOWS CONTROLS

Private Sub EditCutItem Click(...)
Handles EditCutItem.Click

Clipboard.SetText(txtEditor.SelectedText)
txtEditor.SelectedText = ””

End Sub

Private Sub EditPasteItem Click(...)
Handles EditPasteItem.Click

If Clipboard.ContainsText Then
txtEditor.SelectedText = Clipboard.GetText

End If
End Sub

If no text is currently selected, the Clipboard’s text is pasted at the pointer’s current location.
If the Clipboard contains a bitmap (placed there by another application) or any other type of
data that the TextBox control can’t handle, the paste operation will fail; that’s why we handle the
Paste operation with an If statement. You could provide some hint to the user by including an
Else clause that informs them that the data on the Clipboard can’t be used with a text-editing
application.

The Process and Format Menus

The commands of the Process and Format menus are straightforward. The Format menu
commands open the Font or Color dialog box and change the control’s Font, ForeColor, and
BackColor properties. You will learn how to use these controls in the following chapter. The
Upper Case and Lower Case commands of the Process menu are also trivial: they select all the text,
convert it to uppercase or lowercase, respectively, and assign the converted text to the control’s
SelectedText property with the following statements:

txtEditor.SelectedText = txtEditor.SelectedText.ToLower
txtEditor.SelectedText = txtEditor.SelectedText.ToUpper

Notice that the code uses the SelectedText property to convert only the selected text, not
the entire document. The Number Lines command inserts a number in front of each text line
and demonstrates how to process the individual lines of text on the control. However, it doesn’t
remove the line numbers, and there’s no mechanism to prevent the user from editing the line
numbers or inserting/deleting lines after they have been numbered. Use this feature to create a
numbered listing or to number the lines of a file just before saving it or sharing it with another user.
Listing 6.3 shows the Number Lines command’s code and demonstrates how to iterate through
the TextBox control’s Lines array.

Listing 6.3: The Number Lines Command

Private Sub ProcessNumberLinesItem Click(...)
Handles ProcessNumberLines.Click

Dim iLine As Integer
Dim newText As New System.Text.StringBuilder()
For iLine = 0 To txtEditor.Lines.Length - 1

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 185

THE TEXTBOX CONTROL 185

newText.Append((iLine + 1).ToString & vbTab &
txtEditor.Lines(iLine) & vbCrLf)

Next
txtEditor.SelectAll()
Clipboard.SetText(newText.ToString)
txtEditor.Paste()

End Sub

This event handler uses a StringBuilder variable. The StringBuilder class, which is discussed
in detail in Chapter 12, ‘‘Designing Custom Windows Controls,’’ is equivalent to the String class;
it exposes similar methods and properties, but it’s much faster at manipulating dynamic strings
than the String class.

Search and Replace Operations

The last option in the Edit menu — and the most interesting — displays a Find & Replace dialog
box (shown in Figure 6.2). This dialog box works like the similarly named dialog box of Microsoft
Word and many other Windows applications. The buttons in the Find & Replace dialog box are
relatively self-explanatory:

Find The Find command locates the first instance of the specified string in the text after
the cursor location. If a match is found, the Find Next, Replace, and Replace All buttons
are enabled.

Find Next This command locates the next instance of the string in the text. Initially,
this button is disabled; it’s enabled only after a successful Find operation.

Replace This replaces the current selection with the replacement string and then locates the
next instance of the same string in the text. Like the Find Next button, it’s disabled until a
successful Find operation occurs.

Replace All This replaces all instances of the string specified in the Search For box with the
string in the Replace With box.

Design a form like the one shown in Figure 6.2 and set its TopMost property to True. We want
this form to remain on top of the main form, even when it doesn’t have the focus.

Whether the search is case-sensitive or not depends on the status of the Case Sensitive
CheckBox control. If the string is found in the control’s text, the program highlights it by
selecting it. In addition, the program calls the TextBox control’s ScrollToCaret method to bring
the selection into view. The Find Next button takes into consideration the location of the pointer
and searches for a match after the current location. If the user moves the pointer somewhere
else and then clicks the Find Next button, the program will locate the first instance of the string
after the current location of the pointer — and not after the last match. Of course, you can always
keep track of the location of each match and continue the search from this location. The Find
button executes the code shown in Listing 6.4.

Listing 6.4: The Find Button

Private Sub bttnFind Click(...) Handles bttnFind.Click
Dim selStart As Integer
If chkCase.Checked = True Then

selStart =

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 186

186 CHAPTER 6 BASIC WINDOWS CONTROLS

frmTextPad.txtEditor.Text.IndexOf(
searchWord.Text, StringComparison.Ordinal)

Else
selStart =

frmTextPad.txtEditor.Text.IndexOf(
searchWord.Text,
StringComparison.OrdinalIgnoreCase)

End If
If selStart = -1 Then

MsgBox(”Can’t find word”)
Exit Sub

End If
frmTextPad.txtEditor.Select(

selStart, searchWord.Text.Length)
bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True
frmTextPad.txtEditor.ScrollToCaret()

End Sub

The Find button examines the value of the chkCase CheckBox control, which specifies whether
the search will be case-sensitive and calls the appropriate form of the IndexOf method. The first
argument of this method is the string we’re searching for; the second argument is the search mode,
and its value is a member of the StringComparison enumeration: Ordinal for case-sensitive
searches and OrdinalIgnoreCase for case-insensitive searches. If the IndexOf method locates
the string, the program selects it by calling the control’s Select method with the appropriate
arguments. If not, it displays a message. Notice that after a successful Find operation, the Find
Next, Replace, and Replace All buttons on the form are enabled.

The code of the Find Next button is the same, but it starts searching at the character following
the current selection. This way, the IndexOf method locates the next instance of the same string.
Here’s the statement that locates the next instance of the search argument:

selStart = frmTextPad.txtEditor.Text.IndexOf(
searchWord.Text,
frmTextPad.txtEditor.SelectionStart + 1,
StringComparison.Ordinal)

The Replace button replaces the current selection with the replacement string and then locates
the next instance of the find string. The Replace All button replaces all instances of the search word
in the document. Listing 6.5 presents the code behind the Replace and Replace All buttons.

Listing 6.5: The Replace and Replace All Operations

Private Sub bttnReplace Click(...)
Handles bttnReplace.Click

If frmTextPad.txtEditor.SelectedText <> ”” Then
frmTextPad.txtEditor.SelectedText = replaceWord.Text

End If
bttnFindNext Click(sender, e)

End Sub

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 187

THE TEXTBOX CONTROL 187

Private Sub bttnReplaceAll Click(...)
Handles bttnReplaceAll.Click

Dim curPos, curSel As Integer
curPos = frmTextPad.txtEditor.SelectionStart
curSel = frmTextPad.txtEditor.SelectionLength
frmTextPad.txtEditor.Text =

frmTextPad.txtEditor.Text.Replace(
searchWord.Text.Trim, replaceWord.Text.Trim)

frmTextPad.txtEditor.SelectionStart = curPos
frmTextPad.txtEditor.SelectionLength = curSel

End Sub

The Replace method is case-sensitive, which means that it replaces instances of the search
argument in the text that have the exact same spelling as its first argument. For a case-insensitive
replace operation, you must write the code to perform consecutive case-insensitive search-
and-replace operations. Alternatively, you can use the Replace built-in function to perform
case-insensitive searches. Here’s how you’d call the Replace function to perform a case-insensitive
replace operation:

Replace(frmTextPad.txtEditor.Text, searchWord.Text.Trim,
replaceWord.Text.Trim, , , CompareMethod.Text)

The last, optional, argument determines whether the search will be case-sensitive
(CompareMethod.Binary) or case-insensitive (CompareMethod.Text).

The Undo/Redo Commands

The Undo command (shown in Listing 6.6) is implemented with a call to the Undo method.
However, because the Undo method works like a toggle, we must also toggle its caption from
Undo to Redo (and vice versa) each time the command is activated.

Listing 6.6: The Undo/Redo Command of the Edit Menu

Private Sub EditUndoItem Click(...)
Handles EditUndoItem.Click

If EditUndoItem.Text = ”Undo” Then
If txtEditor.CanUndo Then

txtEditor.Undo()
EditUndoItem.Text = ”Redo”

End If
Else

If txtEditor.CanUndo Then
txtEditor.Undo()
EditUndoItem.Text = ”Undo”

End If
End If

End Sub

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 188

188 CHAPTER 6 BASIC WINDOWS CONTROLS

If you edit the text after an undo operation, you can no longer redo the last undo operation.
This means that as soon as the contents of the TextBox control change, the caption of the first
command in the Edit menu must become Undo, even if it’s Redo at the time. The Redo command
is available only after undoing an operation and before editing the text. So, how do we know that
the text has been edited? The TextBox control fires the TextChanged event every time its contents
change. We’ll use this event to restore the caption of the Undo/Redo command to Undo. Insert
the following statement in the TextChanged event of the TextBox control:

EditUndoItem.Text = ”Undo”

The TextBox control can’t provide more-granular undo operations — unlike Word, which
keeps track of user actions (insertions, deletions, replacements, and so on) and then undoes them
in steps. If you need a more-granular undo feature, you should use the RichTextBox control, which
is discussed in detail in Chapter 8. The RichTextBox control can display formatted text, but it can
also be used as an enhanced TextBox control. By the way, setting the menu item’s caption from
within the TextChanged event handler is an overkill, because this event takes place every time the
user presses a key. However, the operation takes no time at all and doesn’t make the application
less responsive. A better choice would be the DropDownOpening event of the editFormat item,
which is fired every time the user opens the Edit menu.

Capturing Keystrokes
The TextBox control has a single unique event, the TextChanged event, which is fired every time
the text on the control is changed, either because the user has typed a character or because of
a paste operation. Another event that is quite common in programming the TextBox control
is the KeyPress event, which occurs every time a key is pressed and reports the character that
was pressed. You can use this event to capture certain keys and modify the program’s behavior
depending on the character typed.

Suppose that you want to use the TextPad application to prepare messages for transmission
over a telex line. As you may know, a telex can’t transmit lowercase characters or special symbols.
The editor must convert the text to uppercase and replace the special symbols with their equivalent
strings: DLR for $, AT for @, O/O for %, BPT for #, and AND for &. You can modify the default
behavior of the TextBox control from within the KeyPress event so that it converts these characters
as the user types.

By capturing keystrokes, you can process the data as they are entered, in real time. For example,
you can make sure that a TextBox accepts only numeric or hexadecimal characters and rejects all
others. To implement an editor for preparing text for telex transmission, use the KeyPress event
handler shown in Listing 6.7.

Listing 6.7: Handling Keystrokes for a TELEX message

Private Sub txtEditor KeyPress(
ByVal sender As Object,
ByVal e As System.Windows.

Forms.KeyPressEventArgs)
Handles txtEditor.KeyPress

If System.Char.IsControl(e.KeyChar) Then Exit Sub
Dim ch As Char = Char.ToUpper(e.KeyChar)

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 189

THE TEXTBOX CONTROL 189

Select Case ch.ToString
Case ”@”

txtEditor.SelectedText = ”AT”
Case ”#”

txtEditor.SelectedText = ”BPT”
Case ”$”

txtEditor.SelectedText = ”DLR”
Case ”%”

txtEditor.SelectedText = ”O/O”
Case ”&”

txtEditor.SelectedText = ”AND”
Case Else

txtEditor.SelectedText = ch
End Select
e.Handled = True

End Sub

The very first executable statement in the event handler examines the key that was pressed and
exits if it is a special editing key (Delete, Backspace, Ctrl+V, and so on). If so, the handler exits
without taking any action. The KeyChar property of the e argument of the KeyPress event reports
the key that was pressed. The code converts it to a string and then uses a Case statement to handle
individual keystrokes. If the user pressed the $ key, for example, the code displays the characters
DLR. If no special character was pressed, the code displays the character pressed as is from within
the Case Else clause of the Select statement.

Cancelling Keystrokes

Before you exit the event handler, you must ‘‘kill’’ the original key pressed, so that it won’t appear
on the control. You do this by setting the Handled property to True, which tells VB that it shouldn’t
process the keystroke any further. If you omit this statement, the special characters will be printed
twice: once in their transformed format (DLR$, AT@, and so on) and once as regular characters. You
can also set the SuppressKeyPress property to True to cancel a keystroke; the Common Language
Runtime (CLR) will not pass the keystroke to the appropriate control.

Capturing Function Keys

Another common feature in text-editing applications is the assignment of special operations to
the function keys. The Notepad application, for example, uses the F5 function key to insert the
current date at the cursor’s location. You can do the same with the TextPad application, but you
can’t use the KeyPress event — the KeyChar argument doesn’t report function keys. The events
that can capture the function keys are the KeyDown and KeyUp events. Also, unlike the KeyPress
event, these two events don’t report the character pressed, but instead report the key’s code (a
special number that distinguishes each key on the keyboard, also known as the scancode), through
the e.KeyCode property.

The keycode is unique for each key, not each character. Lower- and uppercase characters have
different ASCII values but the same keycode because they are on the same key. For example,
the number 4 and the $ symbol have the same keycode because the same key on the keyboard

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 190

190 CHAPTER 6 BASIC WINDOWS CONTROLS

generates both characters. When the key’s code is reported, the KeyDown and KeyUp events
also report the state of the Shift, Ctrl, and Alt keys through the e.Shift, e.Alt, and
e.Control properties.

The KeyUp event handler shown in Listing 6.8 uses the F5 and F6 function keys to insert the
current date and time in the document. It also uses the F7 and F8 keys to insert two predefined
strings in the document.

Listing 6.8: KeyUp Event Examples

Private Sub txtEditor KeyUp(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs)
Handles txtEditor.KeyUp

Select Case e.KeyCode
Case Keys.F5 :

txtEditor.SelectedText =
Now().ToLongDateString

Case Keys.F6 :
txtEditor.SelectedText =
Now().ToLongTimeString

Case Keys.F7 :
txtEditor.SelectedText =
”MicroWeb Designs, Inc.”

Case Keys.F8 :
txtEditor.SelectedText =
”Another user-supplied string”

End Select
End Sub

Windows already uses many of the function keys (for example, the F1 key for help), and you
shouldn’t modify their original functions. With a little additional effort, you can provide users with
a dialog box that lets them assign their own strings to function keys. You’ll probably have to take
into consideration the status of the Shift, Control, and Alt properties of the event’s e argument,
which report the status of the Shift, Ctrl, and Alt keys, respectively. To find out whether two of the
modifier keys are pressed along with a key, use the AND operator with the appropriate properties
of the e argument. The following If clause detects the Ctrl and Alt keys:

If e.Control AND e.Alt Then
{ Both Alt and Control keys were down}

End If

Auto-complete Properties
One set of interesting properties of the TextBox control are the autocomplete properties. Have
you noticed how Internet Explorer prompts you with possible matches as soon as you start

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 191

THE TEXTBOX CONTROL 191

typing an address or your username in a text box (or in the address bar of the browser)? You can
easily implement such boxes with a single-line TextBox control and the autocomplete properties.
Basically, you have to tell the TextBox control how it should prompt the user with strings that
match the characters already entered on the control and where the matches will come from. Then,
the control can display in a drop-down list the strings that begin with the characters already typed
by the user. The user can either continue typing (in which case the list of options becomes shorter)
or select an item from the list. The autocomplete properties apply to single-line TextBox controls
only; they do not take effect on multiline TextBox controls.

In many cases, an autocomplete TextBox control is more functional than a ComboBox con-
trol, and you should prefer it. You will see that the ComboBox also supports the autocomplete
properties, because they make the control so much easier to use only with the keyboard.

The AutoCompleteMode property determines whether, and how, the TextBox control will
prompt users, and its setting is a member of the AutoCompleteMode enumeration (AutoSuggest,
AutoAppend, AutoSuggestAppend, and None). In AutoAppend mode, the TextBox control selects
the first matching item in the list of suggestions and completes the text. In AutoSuggestAppend
mode, the control suggests the first matching item in the list, as before, but it also expands the list.
In AutoSuggest mode, the control simply opens a list with the matching items but doesn’t select
any of them. Regular TextBox controls have their AutoCompleteMode property set to False.

The AutoCompleteSource property determines where the list of suggestions comes from; its
value is a member of the AutoCompleteSource enumeration, which is shown in Table 6.2.

Table 6.2: The Members of the AutoCompleteSource

Member Description

AllSystemSources The suggested items are the names of system resources.

AllUrl The suggested items are the URLs visited by the target computer. Does not
work if you’re deleting the recently viewed pages.

CustomSource The suggested items come from a custom collection.

FileSystem The suggested items are filenames.

HistoryList The suggested items come from the computer’s history list.

RecentlyUsedList The suggested items come from the Recently Used folder.

None The control doesn’t suggest any items.

To demonstrate the basics of the autocomplete properties, I’ve included the AutoComplete-
TextBoxes project, whose main form is shown in Figure 6.4. This project allows you to set the
autocomplete mode and source for a single-line TextBox control. The top TextBox control uses
a custom list of words, while the lower one uses one of the built-in autocomplete sources (file
system, URLs, and so on).

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 192

192 CHAPTER 6 BASIC WINDOWS CONTROLS

Figure 6.4

Suggesting words with
the AutoComplete-
Source property

If you set the AutoCompleteSource to CustomSource, you must also populate an
AutoCompleteStringCollection object with the desired suggestions and assign it to
the AutoCompleteCustomSource property. The AutoCompleteStringCollection is just a
collection of strings. Listing 6.9 shows statements in a form’s Load event that prepare such a list
and use it with the TextBox1 control.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 193

THE TEXTBOX CONTROL 193

Listing 6.9: Populating a Custom AutoCompleteSource Property

Private Sub Form1 Load(...)
Handles MyBase.Load

Dim knownWords As New AutoCompleteStringCollection
knownWords.Add(”Visual Basic 2008”)
knownWords.Add(”Visual Basic .NET”)
knownWords.Add(”Visual Basic 6”)
knownWords.Add(”Visual Basic”)
knownWords.Add(”Framework”)
TextBox1.AutoCompleteCustomSource = knownWords
TextBox1.AutoCompleteSource = AutoCompleteSource.CustomSource
TextBox1.AutoCompleteMode =

AutoCompleteMode.Suggest
TextBox2.AutoCompleteSource =

AutoCompleteSource.RecentlyUsedList
TextBox2.AutoCompleteMode =

AutoCompleteMode.Suggest
End Sub

The TextBox1 control on the form will open a drop-down list with all possible matches in the
knownWords collection as soon as the user starts typing in the control, as shown in the top part of
Figure 6.4. To see the autocomplete properties in action, open the AutoCompleteTextBoxes project
and examine its code. The main form of the application, shown in Figure 6.4, allows you to change
the AutoCompleteMode property of both TextBox controls on the form, and the AutoComplete-
Source property of the bottom TextBox control. The first TextBox uses a list of custom words,
which is set up when the form is loaded, with the statements in Listing 6.9.

Real-World Data-Entry Applications

Typical business applications contain numerous forms for data entry, and the most common element
on data-entry forms is the TextBox control. Data-entry operators are very efficient with the keyboard
and they should be able to use your application without reaching for the mouse.

Seasoned data-entry operators can’t live without the Enter key; they reach for this key at the end of
each operation. In my experience, a functional interface should add intelligence to this keystroke: the
Enter key should perform the ‘‘obvious’’ or ‘‘most likely’’ operation at any time. When entering data,
for example, it should take the user to the next control in the Tab order. Consider a data-entry screen
like the one shown in the following image, which contains several TextBox controls, a DataTimePicker
control for entering dates, and two CheckBox controls. This is the main form of the Simple Data Entry
Form sample project, which you will find along with the other chapter’s projects.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 194

194 CHAPTER 6 BASIC WINDOWS CONTROLS

The application uses the Enter key intelligently: every time the Enter key is pressed, the focus is moved
to the next control in the Tab order. Even if the current control is a CheckBox, this keystroke doesn’t
change the status of the CheckBox controls; it simply moves the focus forward.

You could program the KeyUp event of each control to react to the Enter key, but this approach can
lead to maintenance problems if you’re going to add new controls to an existing form. The best approach
is to intercept the Enter keystroke at the form’s level, before it reaches a control. To do so, you must
set the KeyPreview property of the form to True. This setting causes the key events to be fired at the
form’s level first and then to the control that has the focus. In essence, it allows you to handle certain
keystrokes for multiple controls at once. The KeyUp event handler of the sample project’s main form
intercepts the Enter keystroke and reacts to it by moving the focus to the next control in the Tab order
via the ProcessTabKey method. This method simulates the pressing of the Tab key, and it’s called
with a single argument, which is a Boolean value: True moves the focus forward, and False moves it
backward. Here’s the code in the KeyUp event handler of the application’s form that makes the inter-
face much more functional and intuitive:

Private Sub frmDataEntry KeyUp(
ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs)
Handles Me.KeyUp

If e.KeyCode = Keys.Enter And Not (e.Alt Or e.Control) Then
If Me.ActiveControl.GetType Is GetType(TextBox) Or

Me.ActiveControl.GetType Is GetType(CheckBox) Or
Me.ActiveControl.GetType Is
GetType(DateTimePicker) Then

If e.Shift Then
Me.ProcessTabKey(False)

Else
Me.ProcessTabKey(True)

End If
End If

End If
End Sub

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 195

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 195

There are a couple of things you should notice about this handler. First, it doesn’t react to the Enter
key if it was pressed along with the Alt or Ctrl keys. The Shift key, on the other hand, is used to control
the direction in the Tab order. The focus moves forward with the Enter keystroke and moves back-
ward with the Shift + Enter keystroke. Also, the focus is handled automatically only for the TextBox,
CheckBox, and DataTimePicker controls. When the user presses the Enter key when a button has the
focus, the program reacts as expected by invoking the button’s Click event handler.

The ListBox, CheckedListBox, and ComboBox Controls
The ListBox, CheckedListBox, and ComboBox controls present lists of choices, from which the
user can select one or more. The first two are illustrated in Figure 6.5.

Figure 6.5

The ListBox and
CheckedListBox controls

The ListBox control occupies a user-specified amount of space on the form and is populated
with a list of items. If the list of items is longer than can fit on the control, a vertical scroll bar
appears automatically.

The CheckedListBox control is a variation of the ListBox control. It’s identical to the ListBox
control, but a check box appears in front of each item. The user can select any number of items by
selecting the check boxes in front of them. As you know, you can also select multiple items from a
ListBox control by pressing the Shift and Ctrl keys.

The ComboBox control also contains multiple items but typically occupies less space on the
screen. The ComboBox control is an expandable ListBox control: The user can expand it to make a
selection, and collapse it after the selection is made. The real advantage of the ComboBox control,
however, is that the user can enter new information in the ComboBox, rather than being forced to
select from the items listed.

To add items at design time, locate the Items property in the control’s Properties window and
click the ellipsis button. A new window will pop up — the String Collection Editor window — in
which you can add the items you want to display in the list. Each item must appear on a separate
text line, and blank text lines will result in blank lines in the list. These items will appear in the list
when the form is loaded, but you can add more items (or remove existing ones) from within your
code at any time. They appear in the same order as entered on the String Collection Editor window
unless the control has its Sorted property set to True, in which case the items are automatically
sorted, regardless of the order in which you’ve specified them.

This section first examines the ListBox control’s properties and methods. Later, you’ll see how
the same properties and methods can be used with the ComboBox control.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 196

196 CHAPTER 6 BASIC WINDOWS CONTROLS

Basic Properties
In this section, you’ll find the properties that determine the functionality of the three controls.
These properties are usually set at design time, but you can change their setting from within your
application’s code.

IntegralHeight

This property is a Boolean value (True/False) that indicates whether the control’s height will be
adjusted to avoid the partial display of the last item. When set to True, the control’s actual height
changes in multiples of the height of a single line, so only an integer number of rows are displayed
at all times.

Items

The Items property is a collection that holds the control’s items. At design time, you can populate
this list through the String Collection Editor window. At runtime, you can access and manipulate
the items through the methods and properties of the Items collection, which are described shortly.

MultiColumn

A ListBox control can display its items in multiple columns if you set its MultiColumn property to
True. The problem with multicolumn ListBoxes is that you can’t specify the column in which each
item will appear. ListBoxes with many items and their MultiColumn property set to True expand
horizontally, not vertically. A horizontal scroll bar will be attached to a multicolumn ListBox, so
that users can bring any column into view. This property does not apply to the ComboBox control.

SelectionMode

This property, which applies to the ListBox and CheckedListBox controls only, determines how
the user can select the list’s items. The possible values of this property — members of the
SelectionMode enumeration — are shown in Table 6.3.

Table 6.3: The SelectionMode Enumeration

Value Description

None No selection at all is allowed.

One (Default) Only a single item can be selected.

MultiSimple Simple multiple selection: A mouse click (or pressing the spacebar) selects or deselects
an item in the list. You must click all the items you want to select.

MultiExtended Extended multiple selection: Press Shift and click the mouse (or press one of the arrow
keys) to expand the selection. This process highlights all the items between the
previously selected item and the current selection. Press Ctrl and click the mouse to
select or deselect single items in the list.

Sorted

When this property is True, the items remain sorted at all times. The default is False, because it
takes longer to insert new items in their proper location. This property’s value can be set at design
time as well as runtime.

The items in a sorted ListBox control are sorted in ascending and case-sensitive order.
Uppercase characters appear before the equivalent lowercase characters, but both upper- and

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 197

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 197

lowercase characters appear together. All words beginning with B appear after the words begin-
ning with A and before the words beginning with C. Within the group of words beginning with
B, those beginning with a capital B appear before those beginning with a lowercase b. This sorting
order is known as phone book order.

Moreover, the ListBox control won’t sort numeric data. The number 10 will appear in front of
the number 5 because the string 10 is smaller than the string 5. If the numbers are formatted as 010
and 005, they will be sorted correctly.

Text

The Text property returns the selected text on the control. Although you can set the Text property
for the ComboBox control at design time, this property is available only at runtime for the other
two controls. Notice that the items need not be strings. By default, each item is an object. For each
object, however, the control displays a string, which is the same string returned by the object’s
ToString method.

Manipulating the Items Collection
To manipulate a ListBox control from within your application, you should be able to do
the following:

◆ Add items to the list

◆ Remove items from the list

◆ Access individual items in the list

The items in the list are represented by the Items collection. You use the members of the Items
collection to access the control’s items and to add or remove items. The Items property exposes
the standard members of a collection, which are described later in this section.

Each member of the Items collection is an object. In most cases, we use ListBox controls to
store strings, but it’s possible to store objects. When you add an object to a ListBox control, a string
is displayed on the corresponding line of the control. This is the string returned by the object’s
ToString method. This is the property of the object that will be displayed by default. You can
display any other property of the object by setting the control’s ValueMember property to the
name of the property.

If you add a Color object and a Rectangle object to the Items collection with the following
statements:

ListBox1.Items.Add(New Font(”Verdana”, 12,
FontStyle.Bold)
ListBox1.Items.Add(New Rectangle(0, 0, 100, 100))

then the following strings appear on the first two lines of the control:

[Font: Name=Verdana, Size=12, Units=3, GdiCharSet=1, gdiVerticalFont=False]
{X=0, Y=0, Width=100, Height=100}

However, you can access the members of the two objects because the ListBox stores objects, not
their descriptions. The following statement prints the width of the Rectangle object (the output
produced by the statement is highlighted):

Debug.WriteLine(ListBox1.Items.Item(1).Width)
100

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 198

198 CHAPTER 6 BASIC WINDOWS CONTROLS

The expression in the preceding statement is late-bound, which means that the compiler doesn’t
know whether the first object in the Items collection is a Rectangle object and it can’t verify the
member Width. If you attempt to call the Width property of the first item in the collection, you’ll
get an exception at runtime indicating that the code has attempted to access a missing member.
The missing member is the Width property of the Font object.

The proper way to read the objects stored in a ListBox control is to examine the type of the
object first and then attempt to retrieve a property (or call a method) of the object, only if it’s of
the appropriate type. Here’s how you would read the Width property of a Rectangle object:

If ListBox1.Items.Item(0).GetType Is
GetType(Rectangle) Then

Debug.WriteLine(
CType(ListBox1.Items.Item(0), Rectangle).Width)

End If

The Add Method

To add items to the list, use the Items.Add or Items.Insert method. The syntax of the Add
method is as follows:

ListBox1.Items.Add(item)

The item parameter is the object to be added to the list. You can add any object to the ListBox
control, but items are usually strings. The Add method appends new items to the end of the list,
unless the Sorted property has been set to True.

The following loop adds the elements of the array words to a ListBox control, one at a time:

Dim words(100) As String
{ statements to populate array }
Dim i As Integer
For i = 0 To 99

ListBox1.Items.Add(words(i))
Next

Similarly, you can iterate through all the items on the control by using a loop such as the
following:

Dim i As Integer
For i = 0 To ListBox1.Items.Count - 1

{ statements to process item ListBox1.Items(i) }
Next

You can also use the For Each . . . Next statement to iterate through the Items collection, as
shown here:

Dim itm As Object
For Each itm In ListBox1.Items

{ process the current item, represented by the itm variable }
Next

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 199

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 199

When you populate a ListBox control with a large number of items, call the BeginUpdate
method before starting the loop and call the EndUpdate method when you’re done. These
two methods turn off the visual update of the control while you’re populating it and they speed
up the process considerably. When the EndUpdate method is called, the control is redrawn with
all the items.

The Insert Method

To insert an item at a specific location, use the Insert method, whose syntax is as follows:

ListBox1.Items.Insert(index, item)

The item parameter is the object to be added, and index is the location of the new item. The first
item’s index in the list is zero. Note that you need not insert items at specific locations when the list
is sorted. If you do, the items will be inserted at the specified locations, but the list will no longer
be sorted.

The Clear Method

The Clear method removes all the items from the control. Its syntax is quite simple:

List1.Items.Clear

The Count Property

This is the number of items in the list. If you want to access all the items with a For . . . Next loop,
the loop’s counter must go from 0 to ListBox.Items.Count - 1, as shown in the example of the
Add method.

The CopyTo Method

The CopyTo method of the Items collection retrieves all the items from a ListBox control and stores
them in the array passed to the method as an argument. The syntax of the CopyTo method is

ListBox.CopyTo(destination, index)

where destination is the name of the array that will accept the items, and index is the index of
an element in the array where the first item will be stored. The array that will hold the items of the
control must be declared explicitly and must be large enough to hold all the items.

The Remove and RemoveAt Methods

To remove an item from the list, you can simply call the Items collection’s Remove method, passing
the object to be removed as an argument. If the control contains strings, pass the string to be
removed. If the same string appears multiple times on the control, only the first instance will
be removed.

You can also remove an item by specifying its position in the list via the RemoveAt method,
which accepts as argument the position of the item to be removed:

ListBox1.Items.RemoveAt(index)

The index parameter is the order of the item to be removed, and the first item’s order is 0.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 200

200 CHAPTER 6 BASIC WINDOWS CONTROLS

The Contains Method

The Contains method of the Items collection — not to be confused with the control’s Contains
method — accepts an object as an argument and returns a True/False value that indicates whether
the collection contains this object. Use the Contains method to avoid the insertion of identical
objects into the ListBox control. The following statements add a string to the Items collection, only
if the string isn’t already part of the collection:

Dim itm As String = ”Remote Computing”
If Not ListBox1.Items.Contains(itm) Then

ListBox1.Items.Add(itm)
End If

Selecting Items
The ListBox control allows the user to select either one or multiple items, depending on the setting
of the SelectionMode property. In a single-selection ListBox control, you can retrieve the selected
item by using the SelectedItem property, and its index by using the SelectedIndex property.
SelectedItem returns the selected item, which is an object. The text of the selected item is reported
by the Text property.

If the control allows the selection of multiple items, they’re reported with the SelectedItems
property. This property is a collection of objects and exposes the same members as the Items
collection. Because the ComboBox does not allow the selection of multiple items, it provides only
the SelectedIndex and SelectedItem properties.

To iterate through all the selected items in a multiselection ListBox control, use a loop such as
the following:

Dim itm As Object
For Each itm In ListBox1.SelectedItems

Debug.WriteLine(itm)
Next

The itm variable should be declared as Object because the items in the ListBox control are
objects. If they’re all of the same type, you can convert them to the specific type and then call their
methods. If all the items are of the Rectangle type, you can use a loop like the following to print
the area of each rectangle:

Dim itm As Rectangle
For Each itm In ListBox1.SelectedItems

Debug.WriteLine(itm.Width * itm.Height)
Next

VB 2008 at Work: The ListBox Demo Project
The ListBox Demo application (shown in Figure 6.6) demonstrates the basic operations of the
ListBox control. The two ListBox controls on the form operate slightly differently. The first has
the default configuration: Only one item can be selected at a time, and new items are appended
after the existing item. The second ListBox control has its Sorted property set to True and its
MultiSelect property set according to the values of the two RadioButton controls at the bottom
of the form.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 201

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 201

The code for the ListBox Demo application contains much of the logic you’ll need in your
ListBox manipulation routines. It shows you how to do the following:

◆ Add and remove items at runtime

◆ Transfer items between lists at runtime

◆ Handle multiple selected items

◆ Maintain sorted lists

Figure 6.6

ListBox Demo
demonstrates most of
the operations
you’ll perform with
ListBoxes.

The Add Item Buttons

The Add Item buttons use the InputBox() function to prompt the user for input, and then they
add the user-supplied string to the ListBox control. The code is identical for both buttons
(see Listing 6.10).

Listing 6.10: The Add New Element Buttons

Private Sub bttnSourceAdd Click(...)
Handles bttnSourceAdd.Click

Dim ListItem As String
ListItem = InputBox(”Enter new item’s name”)

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 202

202 CHAPTER 6 BASIC WINDOWS CONTROLS

If ListItem.Trim <> ”” Then
sourceList.Items.Add(ListItem)

End If
End Sub

Notice that the subroutine examines the data entered by the user to avoid adding blank strings
to the list. The code for the Clear buttons is also straightforward; it simply calls the Clear method
of the Items collection to remove all entries from the corresponding list.

Removing Items from the Two Lists

The code for the Remove Selected Item button is different from that for the Remove Selected Items
button (both are presented in Listing 6.11). The code for the Remove Selected Item button removes
the selected item, while the Remove Selected Items buttons must scan all the items of the left list
and remove the selected one(s).

Listing 6.11: The Remove Buttons

Private Sub bttnDestinationRemove Click(...)
Handles bttnDestinationRemove.Click

destinationList.Items.Remove(destinationList.SelectedItem)
End Sub

Private Sub bttnSourceRemove Click(...)
Handles bttnSourceRemove.Click

Dim i As Integer
For i = 0 To sourceList.SelectedIndices.Count - 1

sourceList.Items.RemoveAt(sourceList.SelectedIndices(0))
Next

End Sub

Even if it’s possible to remove an item by its value, this is not a safe approach. If two items have
the same name, the Remove method will remove the first one. Unless you’ve provided the code to
make sure that no identical items can be added to the list, remove them by their index, which
is unique.

Notice that the code always removes the first item in the SelectedIndices collection. If you
attempt to remove the item SelectedIndices(i), you will remove the first selected item, but
after that you will not remove all the selected items. After removing an item from the selection,
the remaining items are no longer at the same locations. (In effect, you have to refresh the
SelectedIndices collection.) The second selected item will take the place of the first selected item,
which was just deleted, and so on. By removing the first item in the SelectedIndices collection,
we make sure that all selected items, and only those items, will be eventually removed.

Moving Items between Lists

The two single-arrow buttons that are between the ListBox controls shown in Figure 6.6 transfer
selected items from one list to another. The button with the single arrow pointing to the right

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 203

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 203

transfers the items selected in the left list, after it ensures that the list contains at least one selected
item. Its code is presented in Listing 6.12. First, it adds the item to the second list, and then it
removes the item from the original list. Notice that the code removes an item by passing it as an
argument to the Remove method because it doesn’t make any difference which one of two identical
objects will be removed.

Listing 6.12: Moving the Selected Items

Private Sub bttnSourceMove Click(...)
Handles bttnSourceMove.Click

While sourceList.SelectedIndices.Count > 0
destinationList.Items.Add(sourceList.Items(

sourceList.SelectedIndices(0)))
sourceList.Items.Remove(sourceList.Items(

sourceList.SelectedIndices(0)))
End While

End Sub

The second single-arrow button transfers items in the opposite direction. The destination
control (the one on the right) doesn’t allow the selection of multiple items, so you could use the
SelectedIndex and SelectedItem properties. Because the single selected element is also part of
the SelectedItems collection, you need not use a different approach. The statements that move a
single item from the right to the left ListBox are shown next:

sourceList.Items.Add(destinationList.SelectedItem)
destinationList.Items.RemoveAt(

destinationList.SelectedIndex)

Searching the ListBox
Two of the most useful methods of the ListBox control are the FindString and FindStringExact
methods, which allow you to quickly locate any item in the list. The FindString method locates
a string that partially matches the one you’re searching for; FindStringExact finds an exact
match. If you’re searching for Man, and the control contains a name such as Mansfield, FindString
matches the item, but FindStringExact does not.

Both the FindString and FindStringExact methods perform case-insensitive searches.
If you’re searching for visual, and the list contains the item Visual, both methods will locate it.
Their syntax is the same:

itemIndex = ListBox1.FindString(searchStr As String)

where searchStr is the string you’re searching for. An alternative form of both methods allows
you to specify the order of the item at which the search will begin:

itemIndex = ListBox1.FindString(searchStr As String,
startIndex As Integer)

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 204

204 CHAPTER 6 BASIC WINDOWS CONTROLS

The startIndex argument allows you to specify the beginning of the search, but you can’t
specify where the search will end.

The FindString and FindStringExact methods work even if the ListBox control is not sorted.
You need not set the Sorted property to True before you call one of the searching methods on
the control. Sorting the list will help the search operation, but it takes the control less than 100
milliseconds to find an item in a list of 100,000 items, so time spent to sort the list isn’t worth it.
Before you load thousands of items in a ListBox control, however, you should probably consider
a more-functional interface.

VB 2008 at Work: The ListBoxFind Application

The application you’ll build in this section (seen in Figure 6.7) populates a list with a large
number of items and then locates any string you specify. Click the button Populate List to populate
the ListBox control with 10,000 random strings. This process will take a few seconds and will
populate the control with different random strings every time. Then, you can enter a string in
the TextBox control at the bottom of the form. As you type characters (or even delete characters
in the TextBox), the program will locate the closest match in the list and select (highlight) this item.

Figure 6.7

The ListBoxFind
application

The sample application reacts to each keystroke in the TextBox control and locates the string
you’re searching for instantly. The Find Item button does the same, but I thought I should
demonstrate the efficiency of the ListBox control and the type of functionality you’d expect in a
rich client application.

The code (shown in Listing 6.13) attempts to locate an exact match via the FindStringExact
method. If it succeeds, it reports the index of the matching element. If not, it attempts to locate
a near match with the FindString method. If it succeeds, it reports the index of the near match
(which is the first item on the control that partially matches the search argument) and terminates.
If it fails to find an exact match, it reports that the string wasn’t found in the list.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 205

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 205

Listing 6.13: Searching the List

Private Sub TextBox1 TextChanged(...) Handles TextBox1.TextChanged
Dim srchWord As String = TextBox1.Text.Trim
If srchWord.Length = 0 Then Exit Sub
Dim wordIndex As Integer
wordIndex = ListBox1.FindStringExact(srchWord)
If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
wordIndex = ListBox1.FindString(srchWord)
If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
Debug.WriteLine(”Item ” & srchWord &

” is not in the list”)
End If

End If
End Sub

If you search for SAC, for example, and the control contains a string such as ”SAC” or ”sac” or
”sAc”, the program will return the index of the item in the list and will report an exact match. If
no exact match can be found, the program will return something like ”SACDEF”, if such a string
exists on the control, as a near match. If none of the strings on the control starts with the characters
SAC, the search will fail.

Populating the List

The Populate List button creates 10,000 random items with the help of the Random class. First, it
generates a random value in the range 1 through 20, which is the length of the string (not all strings
have the same length). Then the program generates as many random characters as the length of
the string and builds the string by appending each character to it. These random numbers are
in the range of 65 to 91 and they’re the ANSI values of the uppercase characters.

The ComboBox Control
The ComboBox control is similar to the ListBox control in the sense that it contains multiple items
and the user may select one, but it typically occupies less space onscreen. The ComboBox is
practically an expandable ListBox control, which can grow when the user wants to make a selec-
tion and retract after the selection is made. Normally, the ComboBox control displays one line
with the selected item, as this control doesn’t allow multiple item selection. The essential differ-
ence, however, between ComboBox and ListBox controls is that the ComboBox allows the user to
specify items that don’t exist in the list.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 206

206 CHAPTER 6 BASIC WINDOWS CONTROLS

There are three types of ComboBox controls. The value of the control’s Style property
determines which box is used; these values are shown in Table 6.4.

Table 6.4: Styles of the ComboBox Control

Value Effect

DropDown (Default) The control is made up of a drop-down list, which is visible at all times, and a
text box. The user can select an item from the list or type a new one in the text box.

DropDownList This style is a drop-down list from which the user can select one of its items but can’t
enter a new one. The control displays a single item, and the list is expanded as needed.

Simple The control includes a text box and a list that doesn’t drop down. The user can select
from the list or type in the text box.

The ComboBox Styles project, shown in Figure 6.8, demonstrates the three styles of the
ComboBox control. This is another common element of the Windows interface, and its properties
and methods are identical to those of the ListBox control. Load the ComboBox Styles project in the
Visual Basic IDE and experiment with the three styles of the ComboBox control.

The DropDown and Simple ComboBox controls allow the user to select an item from the
list or enter a new one in the edit box of the control. Moreover, they’re collapsed by default
and they display a single item, unless the user expands the list of items to make a selection.
The DropDownList ComboBox is similar to a ListBox control in the sense that it restricts the user
to selecting an item (the user cannot enter a new one). However, it takes much less space on the
form than a ListBox does, because normally it displays a single item. When the user wants to make
a selection, the DropDownList expands to display more items. After the user has made a selection,
the list contracts to a single line again.

Figure 6.8a

The Simple ComboBox
displays a fixed number
of items at all times.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 207

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 207

Figure 6.8b

The DropDown
ComboBox displays a
single item, and users
can either expand the
items or type something
in the edit box.

Figure 6.8c

The DropDownList
ComboBox expands to
display its items, but
doesn’t allow users to
type anything in the
edit box.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 208

208 CHAPTER 6 BASIC WINDOWS CONTROLS

Most of the properties and methods of the ListBox control also apply to the ComboBox
control. The Items collection gives you access to the control’s items, and the SelectedIndices
and SelectedItems collections give you access to the items in the current selection. If the
control allows only a single item to be selected, use the properties SelectedIndex and
SelectedItem. You can also use the FindString and FindStringExact methods to locate
any item in the control.

There’s one aspect worth mentioning regarding the operation of the control. Although the edit
box at the top allows you to enter a new string, the new string doesn’t become a new item in the
list. It remains there until you select another item or you clear the edit box. You can provide some
code to make any string entered by the user in the control’s edit box be added to the list of
existing items.

The most common use of the ComboBox control is as a lookup table. The ComboBox control
takes up very little space on the form, but it can be expanded at will. You can save even more space
when the ComboBox is contracted by setting it to a width that’s too small for the longest item. Use
the DropDownWidth property, which is the width of the segment of the drop-down list. By default,
this property is equal to the control’s Width property. The second ComboBox control in Figure 6.8
contains an unusually long item. The control is wide enough to display the default selection. When
the user clicks the arrow to expand the control, the drop-down section of the control is wider
than the default width, so that the long items can be read.

Adding Items to a ComboBox at Runtime

Although the ComboBox control allows users to enter text in the control’s edit box, it doesn’t
provide a simple mechanism for adding new items at runtime. Let’s say you provide a ComboBox
with city names. Users can type the first few characters and quickly locate the desired item. But
what if you want to allow users to add new city names? You can provide this feature with two
simple techniques. The simpler one is to place a button with an ellipsis (three periods) right next
to the control. When users want to add a new item to the control, they can click the button and be
prompted for the new item.

A more-elegant approach is to examine the control’s Text property as soon as the control loses
focus, or the user presses the Enter key. If the string entered by the user doesn’t match an item on
the control, you must add a new item to the control’s Items collection and select the new item from
within your code. The FlexComboBox project demonstrates how to use both techniques in your
code. The main form of the project, which is shown in Figure 6.9, is a simple data-entry screen. It’s
not the best data-entry form, but it’s meant for demonstration purposes.

Figure 6.9

The FlexComboBox
project demonstrates
two techniques for
adding new items to
a ComboBox at runtime.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 209

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 209

You can either enter a city name (or country name) and press the Tab key to move to another
control or click the button next to the control to be prompted for a new city/country name. The
application will let you enter any city/country combination. You should provide code to limit
the cities within the selected country, but this is a nontrivial task. You also need to store the new
city names entered on the first ComboBox control to a file (or a database table), so users will find
them there the next time they execute the application. I haven’t made the application elaborate;
I’ve added the code only to demonstrate how to add new items to a ComboBox control at runtime.

VB 2008 At Work: The FlexCombo Project

The ellipsis button next to the City ComboBox control prompts the user for the new item via
the InputBox() function. Then it searches the Items collection of the control via the FindString
method, and if the new item isn’t found, it’s added to the control. Then the code selects the new
item in the list. To do so, it sets the control’s SelectedIndex property to the value returned by the
Items.Add method, or the value returned by the FindString method, depending on whether
the item was located or added to the list. Listing 6.14 shows the code behind the ellipsis button.

Listing 6.14: Adding a New Item to the ComboBox Control at Runtime

Private Sub Button1 Click(...) Button1.Click
Dim itm As String
itm = InputBox(”Enter new item”, ”New Item”)
If itm.Trim <> ”” Then AddElement(itm)

End Sub

The AddElement() subroutine, which accepts a string as an argument and adds it to the control,
is shown in Listing 6.15. If the item doesn’t exist in the control, it’s added to the Items collection.
If the item is a member of the Items collection, it’s selected. As you will see, the same subroutine
will be used by the second method for adding items to the control at runtime.

Listing 6.15: The AddElement() Subroutine

Sub AddElement(ByVal newItem As String)
Dim idx As Integer
If ComboBox1.FindString(newItem) > 0 Then

idx = ComboBox1.FindString(newItem)
Else

idx = ComboBox1.Items.Add(newItem)
End If
ComboBox1.SelectedIndex = idx

End Sub

You can also add new items at runtime by adding the same code in the control’s LostFocus
event handler:

Private Sub ComboBox1 LostFocus(...) Handles ComboBox1.LostFocus
Dim newItem As String = ComboBox1.Text
AddElement(newItem)

End Sub

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 210

210 CHAPTER 6 BASIC WINDOWS CONTROLS

The ScrollBar and TrackBar Controls
The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling a selector
between its minimum and maximum values. In some situations, the user doesn’t know in advance
the exact value of the quantity to specify (in which case, a text box would suffice), so your
application must provide a more-flexible mechanism for specifying a value, along with some
type of visual feedback.

The vertical scroll bar that lets a user move up and down a long document is a typical example
of the use of the ScrollBar control. The scroll bar and visual feedback are the prime mechanisms for
repositioning the view in a long document or in a large picture that won’t fit entirely in its window.

The TrackBar control is similar to the ScrollBar control, but it doesn’t cover a continuous range
of values. The TrackBar control has a fixed number of tick marks, which the developer can label
(for example, Still, Slow, and Warp Speed, as shown in Figure 6.10). Users can place the slider’s
indicator to the desired value. Whereas the ScrollBar control relies on some visual feedback outside
the control to help the user position the indicator to the desired value, the TrackBar control
forces the user to select from a range of valid values.

In short, the ScrollBar control should be used when the exact value isn’t as important as the
value’s effect on another object or data element. The TrackBar control should be used when
the user can type a numeric value and the value your application expects is a number in a specific
range; for example, integers between 0 and 100, or a value between 0 and 5 inches in steps of 0.1
inches (0.0, 0.1, 0.2 . . . 5.0). The TrackBar control is preferred to the TextBox control in similar
situations because there’s no need for data validation on your part. The user can specify only valid
numeric values with the mouse.

Figure 6.10

The TrackBar control
lets the user select one
of several discrete
values.

The ScrollBar Control
There’s no ScrollBar control per se in the Toolbox; instead, there are two versions of it: the HScroll-
Bar and VScrollBar controls. They differ only in their orientation, but because they share the same
members, I will refer to both controls collectively as ScrollBar controls. Actually, both controls
inherit from the ScrollBar control, which is an abstract control: It can be used to implement ver-
tical and horizontal scroll bars, but it can’t be used directly on a form. Moreover, the HScrollBar
and VScrollBar controls are not displayed in the Common Controls tab of the Toolbox. You have
to open the All Windows Forms tab to locate these two controls.

The ScrollBar control is a long stripe with an indicator that lets the user select a value between
the two ends of the control. The left (or bottom) end of the control corresponds to its minimum
value; the other end is the control’s maximum value. The current value of the control is determined
by the position of the indicator, which can be scrolled between the minimum and maximum
values. The basic properties of the ScrollBar control, therefore, are properly named Minimum,
Maximum, and Value.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 211

THE SCROLLBAR AND TRACKBAR CONTROLS 211

Minimum The control’s minimum value. The default value is 0, but because this is an
Integer value, you can set it to negative values as well.

Maximum The control’s maximum value. The default value is 100, but you can set it to any
value that you can represent with the Integer data type.

Value The control’s current value, specified by the indicator’s position.

The Minimum and Maximum properties are Integer values. To cover a range of nonintegers, you
must supply the code to map the actual values to Integer values. For example, to cover a range
from 2.5 to 8.5, set the Minimum property to 25, set the Maximum property to 85, and divide the
control’s value by 10. If the range you need is from –2.5 to 8.5, do the same but set the Minimum
property to –25 and the Maximum value to 85, and divide the Value property by 10.

There are two more properties that allow you to control the movement of the indicator: the
SmallChange and LargeChange properties. The first property is the amount by which the indicator
changes when the user clicks one of the arrows at the two ends of the control. The LargeChange
property is the displacement of the indicator when the user clicks somewhere in the scroll bar
itself. You can manipulate a scroll bar by using the keyboard as well. Press the arrow keys to
move the indicator in the corresponding direction by SmallChange, and the PageUp/PageDown
keys to move the indicator by LargeChange.

VB 2008 at Work: The Colors Project

Figure 6.11 shows the main form of the Colors sample project, which lets the user specify a color
by manipulating the value of its basic colors (red, green, and blue) through scroll bars. Each basic
color is controlled by a scroll bar and has a minimum value of 0 and a maximum value of 255. If
you aren’t familiar with color definition in the Windows environment, see the section ‘‘Specifying
Colors’’ in Chapter 19, ‘‘Manipulating Images and Bitmaps.’’

Figure 6.11

The Colors application
demonstrates the use of
the ScrollBar control.

As the scroll bar is moved, the corresponding color is displayed, and the user can easily specify
a color without knowing the exact values of its primary components. All the user needs to know
is whether the desired color contains, for example, too much red or too little green. With the help
of the scroll bars and the immediate feedback from the application, the user can easily pinpoint
the desired color. Notice that the exact values of the color’s basic components are of no practical
interest; only the final color counts.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 212

212 CHAPTER 6 BASIC WINDOWS CONTROLS

The ScrollBar Control’s Events

The user can change the ScrollBar control’s value in three ways: by clicking the two arrows at its
ends, by clicking the area between the indicator and the arrows, and by dragging the indicator
with the mouse. You can monitor the changes of the ScrollBar’s value from within your code by
using two events: ValueChanged and Scroll. Both events are fired every time the indicator’s
position is changed. If you change the control’s value from within your code, only the
ValueChanged event will be fired.

The Scroll event can be fired in response to many different actions, such as the scrolling of the
indicator with the mouse, a click on one of the two buttons at the ends of the scroll bars, and so
on. If you want to know the action that caused this event, you can examine the Type property of
the second argument of the event handler. The settings of the e.Type property are members of the
ScrollEventType enumeration (LargeDecrement, SmallIncrement, Track, and so on).

Handling the Events in the Colors Application

The Colors application demonstrates how to program the two events of the ScrollBar control. The
two PictureBox controls display the color designed with the three scroll bars. The left PictureBox
is colored from within the Scroll event, whereas the other one is colored from within the
ValueChanged event. Both events are fired as the user scrolls the scrollbar’s indicator, but in
the Scroll event handler of the three scroll bars, the code examines the value of the e.Type
property and reacts to it only if the event was fired because the scrolling of the indicator has ended.
For all other actions, the event handler doesn’t update the color of the left PictureBox.

If the user attempts to change the Color value by clicking the two arrows of the scroll bars or by
clicking in the area to the left or to the right of the indicator, both PictureBox controls are updated.
While the user slides the indicator or keeps pressing one of the end arrows, only the PictureBox to
the right is updated.

The conclusion from this experiment is that you can program either event to provide
continuous feedback to the user. If this feedback requires too many calculations, which would
slow down the reaction of the corresponding event handler, you can postpone the reaction until
the user has stopped scrolling the indicator. You can detect this condition by examining the value
of the e.Type property. When it’s ScrollEventType.EndScroll, you can execute the appropriate
statements. Listing 6.16 shows the code behind the Scroll and ValueChanged events of the scroll
bar that controls the red component of the color. The code of the corresponding events of the other
two controls is identical.

Listing 6.16: Programming the ScrollBar Control’s Scroll Event

Private Sub redBar Scroll(...) Handles redBar.Scroll
If e.Type = ScrollEventType.EndScroll Then

ColorBox1()
lblRed.Text = ”RED ” & redBar.Value.ToString(”###”)

End If
End Sub

Private Sub redBar ValueChanged(...) Handles redBar.ValueChanged
ColorBox2()

End Sub

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 213

THE SCROLLBAR AND TRACKBAR CONTROLS 213

The ColorBox1() and ColorBox2() subroutines update the color of the two PictureBox
controls by setting their background colors. You can open the Colors project in Visual Studio and
examine the code of these two routines.

The TrackBar Control
The TrackBar control is similar to the ScrollBar control, but it lacks the granularity of ScrollBar.
Suppose that you want the user of an application to supply a value in a specific range, such as the
speed of a moving object. Moreover, you don’t want to allow extreme precision; you need only
a few settings, as shown in the examples of Figures 6.10 and 6.12. The user can set the control’s
value by sliding the indicator or by clicking on either side of the indicator.

Figure 6.12

The Inches application
demonstrates the use
of the TrackBar control
in specifying an exact
value in a specific range.

Granularity is how specific you want to be in measuring. In measuring distances between towns,
a granularity of a mile is quite adequate. In measuring (or specifying) the dimensions of a building,
the granularity could be on the order of a foot or an inch. The TrackBar control lets you set the type
of granularity that’s necessary for your application.

Similar to the ScrollBar control, SmallChange and LargeChange properties are available.
SmallChange is the smallest increment by which the Slider value can change. The user can change
the slider by the SmallChange value only by sliding the indicator. (Unlike the ScrollBar
control, there are no arrows at the two ends of the Slider control.) To change the Slider’s value by
LargeChange, the user can click on either side of the indicator.

VB 2008 at Work: The Inches Project

Figure 6.12 demonstrates a typical use of the TrackBar control. The form in the figure is an
element of a program’s user interface that lets the user specify a distance between 0 and 10 inches
in increments of 0.2 inches. As the user slides the indicator, the current value is displayed on a
Label control below the TrackBar. If you open the Inches application, you’ll notice that there are
more stops than there are tick marks on the control. This is made possible with the TickFrequency
property, which determines the frequency of the visible tick marks.

You might specify that the control has 50 stops (divisions), but that only 10 of them will be
visible. The user can, however, position the indicator on any of the 40 invisible tick marks. You can
think of the visible marks as the major tick marks, and the invisible ones as the minor tick marks.
If the TickFrequency property is 5, only every fifth mark will be visible. The slider’s indicator,
however, will stop at all tick marks.

When using the TrackBar control on your interfaces, you should set the TickFrequency
property to a value that helps the user select the desired setting. Too many tick marks are
confusing and difficult to read. Without tick marks, the control isn’t of much help. You might also
consider placing a few labels to indicate the value of selected tick marks, as I have done in
this example.

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 214

214 CHAPTER 6 BASIC WINDOWS CONTROLS

The properties of the TrackBar control in the Inches application are as follows:

Minimum = 0
Maximum = 50
SmallChange = 1
LargeChange = 5
TickFrequency = 5

The TrackBar needs to cover a range of 10 inches in increments of 0.2 inches. If you set the
SmallChange property to 1, you have to set LargeChange to 5. Moreover, the TickFrequency is
set to 5, so there will be a total of five divisions in every inch. The numbers below the tick marks
were placed there with properly aligned Label controls.

The label at the bottom needs to be updated as the TrackBar’s value changes. This is signaled to
the application with the Change event, which occurs every time the value of the control changes,
either through scrolling or from within your code. The ValueChanged event handler of the
TrackBar control is shown next:

Private Sub TrackBar1 ValueChanged(...)
Handles TrackBar1.ValueChanged

lblInches.Text = ”Length in inches = ” &
Format(TrackBar1.Value / 5, ”#.00”)

End Sub

The Label controls below the tick marks can also be used to set the value of the control. Every
time you click one of the labels, the following statement sets the TrackBar control’s value. Notice
that all the Label controls’ Click events are handled by a common handler:

Private Sub Label Click(...)
Handles Label1.Click, Label9.Click

TrackBar1.Value = sender.text * 5
End Sub

The Bottom Line

Use the TextBox control as a data-entry and text-editing tool. The TextBox control is the
most common element of the Windows interface, short of the Button control, and it’s used
to display and edit text. You can use a TextBox control to prompt users for a single line of
text (such as a product name) or a small document (a product’s detailed description).

Master It What are the most important properties of the TextBox control? Which ones
would you set in the Properties windows at design-time?

Master It How will you implement a control that suggests lists of words matching the
characters entered by the user?

Use the ListBox, CheckedListBox, and ComboBox controls to present lists of items. The
ListBox control contains a list of items from which the user can select one or more, depending
on the setting of the SelectionMode property.

Master It How will you locate an item in a ListBox control?

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 215

THE BOTTOM LINE 215

Use the ScrollBar and TrackBar controls to enable users to specify sizes and positions with
the mouse. The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling
a selector between its minimum and maximum values. The ScrollBar control uses some visual
feedback to display the effects of scrolling on another entity, such as the current view in a long
document.

Master It Which event of the ScrollBar control would you code to provide visual feedback to
the user?

Petroutsos c06.tex V3 - 01/28/2008 12:50pm Page 216

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 217

Chapter 7

Working with Forms

In Visual Basic, the form is the container for all the controls that make up the user interface. When
a Visual Basic application is executing, each window it displays on the desktop is a form. The
terms form and window describe the same entity. A window is what the user sees on the desktop
when the application is running. A form is the same entity at design time. The proper term is a
Windows form, as opposed to a web form, but I will refer to them as forms. This term includes both
the regular forms and dialog boxes, which are simple forms you use for very specific actions, such
as to prompt the user for a particular piece of data or to display critical information. A dialog box
is a form with a small number of controls, no menus, and usually an OK and a Cancel button to
close it.

Forms have a built-in functionality that is always available without any programming effort on
your part. You can move a form around, resize it, and even cover it with other forms. You do so
with the mouse or with the keyboard through the Control menu.

In previous chapters, you concentrated on placing the elements of the user interface on forms,
setting their properties, and adding code behind selected events. Now, you’ll look at forms
themselves and at a few related topics. In this chapter, you’ll learn how to do the following:

◆ Use forms’ properties

◆ Design applications with multiple forms

◆ Design dynamic forms

◆ Design menus

Forms have many trivial properties that won’t be discussed here. Instead, let’s jump directly to
the properties that are unique to forms and then look at how to manipulate forms from within an
application’s code.

The Appearance of Forms
Applications are made up of one or more forms — usually more than one. You should craft your
forms carefully, make them functional, and keep them simple and intuitive. You already know
how to place controls on the form, but there’s more to designing forms than populating them with
controls. The main characteristic of a form is the title bar on which the form’s caption is displayed
(see Figure 7.1).

Clicking the icon on the left end of the title bar opens the Control menu, which contains the
commands shown in Table 7.1. On the right end of the title bar are three buttons: Minimize,
Maximize, and Close. Clicking these buttons performs the associated function. When a form is

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 218

218 CHAPTER 7 WORKING WITH FORMS

maximized, the Maximize button is replaced by the Restore button. When clicked, the Restore
button resets the form to the size and position before it was maximized, and it’s replaced by the
Maximize button. To access the Control menu without a mouse, press Alt and then the down
arrow key.

Figure 7.1

The elements of the
form

Table 7.1: Commands of the Control Menu

Command Effect

Restore Restores a maximized form to the size it was before it was maximized; available only if the
form has been maximized.

Move Lets the user move the form around with the arrow keys.

Size Lets the user resize the form with the arrow keys.

Minimize Minimizes the form.

Maximize Maximizes the form.

Close Closes the current form. (Closing the application’s main form terminates the application.)

Properties of the Form Object
You’re familiar with the appearance of forms, even if you haven’t programmed in the Windows
environment in the past; you have seen nearly all types of windows in the applications you’re

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 219

THE APPEARANCE OF FORMS 219

using every day. The floating toolbars used by many graphics applications, for example, are actu-
ally forms with a narrow title bar. The dialog boxes that display critical information or prompt
you to select the file to be opened are also forms. You can duplicate the look of any window or
dialog box through the following properties of the Form object.

AcceptButton, CancelButton

These two properties let you specify the default Accept and Cancel buttons. The Accept button
is the one that’s automatically activated when you press Enter, no matter which control has the
focus at the time, and is usually the button with the OK caption. Likewise, the Cancel button is
the one that’s automatically activated when you hit the Esc key and is usually the button with the
Cancel caption. To specify the Accept and Cancel buttons on a form, locate the AcceptButton and
CancelButton properties of the form and select the corresponding controls from a drop-down
list, which contains the names of all the buttons on the form. For more information on these two
properties, see the section ‘‘Forms versus Dialog Boxes,’’ later in this chapter.

AutoScaleMode

This property determines how the control is scaled, and its value is a member of the AutoScale-
Mode enumeration: None (automatic scaling is disabled), Font (the controls on the form are scaled
relative to the size of their font), Dpi, which stands for dots per inch (the controls on the form are
scaled relative to the display resolution), and Inherit (the controls are scaled according to the
AutoScaleMode property of their parent class). The default value is Font; if you change the form’s
font size, the controls on it are scaled to the new font size.

AutoScroll

The AutoScroll property is a True/False value that indicates whether scroll bars will be auto-
matically attached to the form (as seen in Figure 7.2) if the form is resized to a point that not all
its controls are visible. Use this property to design large forms without having to worry about
the resolution of the monitor on which they’ll be displayed. The AutoScroll property is used in
conjunction with two other properties (described a little later in this section): AutoScrollMargin
and AutoScrollMinSize. Note that the AutoScroll property applies to a few controls as well,
including the Panel and SplitContainer controls. For example, you can create a form with a fixed
and a scrolling pane by placing two Panel controls on it and setting the AutoScroll property of
one of them (the Panel you want to scroll) to True.

AutoScrollPosition

This property is available from within your code only (you can’t set this property at design time),
and it indicates the number of pixels that the form was scrolled up or down. Its initial value is
zero, and it assumes a value when the user scrolls the form (provided that the form’s AutoScroll
property is True). Use this property to find out the visible controls from within your code, or scroll
the form programmatically to bring a specific control into view.

AutoScrollMargin

This is a margin, expressed in pixels, that’s added around all the controls on the form. If the form
is smaller than the rectangle that encloses all the controls adjusted by the margin, the appropriate
scroll bar(s) will be displayed automatically.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 220

220 CHAPTER 7 WORKING WITH FORMS

Figure 7.2

If the controls don’t fit
in the form’s visible
area, scroll bars can be
attached automatically.

AutoScrollMinSize

This property lets you specify the minimum size of the form before the scroll bars are attached.
If your form contains graphics that you want to be visible at all times, set the Width and Height
members of the AutoScrollMinSize property to the dimensions of the graphics. (Of course, the
graphics won’t be visible at all times, but the scroll bars indicate that there’s more to the form than
can fit in the current window.) Notice that this isn’t the form’s minimum size; users can make
the form even smaller. To specify a minimum size for the form, use the MinimumSize property,
described later in this section.

Let’s say the AutoScrollMargin property of the form is 180 × 150. If the form is resized to
fewer than 180 pixels horizontally or 150 pixels vertically, the appropriate scroll bars will appear
automatically, as long as the AutoScroll property is True. If you want to enable the Auto-
Scroll feature when the form’s width is reduced to anything fewer than 250 pixels, set the
AutoScrollMinSize property to (250, 0). In this example, setting AutoScrollMinSize.Width
to anything less than 180, or AutoScrollMinSize.Height to anything less than 150, will have no
effect on the appearance of the form and its scroll bars.

Bringing Selected Controls into View

In addition to the Autoscroll properties, the Form object provides the Scroll method, which
allows you to scroll a form programmatically, and ScrollControlIntoView, which scrolls the form
until the specified control comes into view. The Scroll method accepts as arguments the horizontal
and vertical displacements of the scrolling operation, whereas ScrollControlIntoView accepts as
an argument the control you want to bring into view. Notice that activating a control with the Tab key
automatically brings the control into view if it’s not already visible on the form. Finally, the Scroll
event is fired every time a form is scrolled.

FormBorderStyle

The FormBorderStyle property determines the style of the form’s border; its value is one
of the FormBorderStyle enumeration’s members, which are shown in Table 7.2. You can make
the form’s title bar disappear altogether by setting the form’s FormBorderStyle property to

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 221

THE APPEARANCE OF FORMS 221

FixedToolWindow, the ControlBox property to False, and the Text property (the form’s caption)
to an empty string. However, a form like this can’t be moved around with the mouse and will
probably frustrate users.

Table 7.2: The FormBorderStyle Enumeration

Value Effect

None A borderless window that can’t be resized. This setting is rarely used.

Sizable (default) A resizable window that’s used for displaying regular forms.

Fixed3D A window with a fixed visible border, ‘‘raised’’ relative to the main area. Unlike the
None setting, this setting allows users to minimize and close the window.

FixedDialog A fixed window used to implement dialog boxes.

FixedSingle A fixed window with a single-line border.

FixedToolWindow A fixed window with a Close button only. It looks like a toolbar displayed by
drawing and imaging applications.

SizableToolWindow Same as the FixedToolWindow, but is resizable. In addition, its caption font is
smaller than the usual.

ControlBox

This property is also True by default. Set it to False to hide the control box icon and disable the
Control menu. Although the Control menu is rarely used, Windows applications don’t disable it.
When the ControlBox property is False, the three buttons on the title bar are also disabled. If you
set the Text property to an empty string, the title bar disappears altogether.

MinimizeBox, MaximizeBox

These two properties, which specify whether the Minimize and Maximize buttons will appear on
the form’s title bar, are True by default. Set them to False to hide the corresponding buttons on the
form’s title bar.

MinimumSize, MaximumSize

These two properties read or set the minimum and maximum size of a form. When users resize
the form at runtime, the form won’t become any smaller than the dimensions specified by the
MinimumSize property and no larger than the dimensions specified by the MaximumSize property.
The MinimumSize property is a Size object, and you can set it with a statement like the following:

Me.MinimumSize = New Size(400, 300)

Or you can set the width and height separately:

Me.MinimumSize.Width = 400
Me.MinimumSize.Height = 300

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 222

222 CHAPTER 7 WORKING WITH FORMS

The MinimumSize.Height property includes the height of the form’s title bar; you should take
that into consideration. If the minimum usable size of the form is 400 × 300, use the following
statement to set the MinimumSize property:

Me.MinimumSize = New Size(400, 300 + SystemInformation.CaptionHeight)

The default value of both properties is (0, 0), which means that no minimum or maximum size
is imposed on the form, and the user can resize it as desired.

Use the SystemInformation Class to Read System Information

The height of the caption is not a property of the Form object, even though it’s used to determine
the useful area of the form (the total height minus the caption bar). Keep in mind that the height
of the caption bar is given by the CaptionHeight property of the SystemInformation object. You
should look up the SystemInformation object, which exposes a lot of useful properties — such as
BorderSize (the size of the form’s borders), Border3DSize (the size of three-dimensional borders),
CursorSize (the cursor’s size), and many more.

KeyPreview

This property enables the form to capture all keystrokes before they’re passed to the control that
has the focus. Normally, when you press a key, the KeyPress event of the control with the focus
is triggered (as well as the KeyUp and KeyDown events), and you can handle the keystroke from
within the control’s appropriate handler. In most cases, you let the control handle the keystroke
and don’t write any form code for that.

If you want to use ‘‘universal’’ keystrokes in your application, you must set the KeyPreview
property to True. Doing so enables the form to intercept all keystrokes, so you can process them
from within the form’s keystroke event handlers. To handle a specific keystroke at the form’s level,
set the form’s KeyPreview property to True and insert the appropriate code in the form’s KeyDown
or KeyUp event handler (the KeyPress event isn’t fired for the function keys).

The same keystrokes are then passed to the control with the focus, unless you ‘‘kill’’ the
keystroke by setting its SuppressKeystroke property to True when you process it on the form’s
level. For more information on processing keystrokes at the form level and using special keystrokes
throughout your application, see the Contacts project later in this chapter.

SizeGripStyle

This property gets or sets the style of the sizing handle to display in the bottom-right corner of
the form. You can set it to a member of the SizeGripStyle enumeration: Auto (the size grip is
displayed as needed), Show (the size grip is displayed at all times), or Hide (the size grip is not
displayed, but users can still resize the form with the mouse).

StartPosition, Location

The StartPosition property, which determines the initial position of the form when it’s first
displayed, can be set to one of the members of the FormStartPosition enumeration: Center-
Parent (the form is centered in the area of its parent form), CenterScreen (the form is centered
on the monitor), Manual (the position of the form is determined by the Location property),
WindowsDefaultLocation (the form is positioned at the Windows default location), and

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 223

THE APPEARANCE OF FORMS 223

WindowsDefaultBound (the form’s location and bounds are determined by Windows defaults).
The Location property allows you to set the form’s initial position at design time or to change the
form’s location at runtime.

TopMost

This property is a True/False value that lets you specify whether the form will remain on top of all
other forms in your application. Its default property is False, and you should change it only on rare
occasions. Some dialog boxes, such as the Find & Replace dialog box of any text-processing appli-
cation, are always visible, even when they don’t have the focus. For more information on using
the TopMost property, see the discussion of the TextPad project in Chapter 6, ‘‘Basic Windows
Controls.’’ You can also add a professional touch to your application by providing a CheckBox
control that determines whether a form should remain on top of all other forms of the application.

Size

Use the Size property to set the form’s size at design time or at runtime. Normally, the form’s
width and height are controlled by the user at runtime. This property is usually set from within
the form’s Resize event handler to maintain a reasonable aspect ratio when the user resizes the
form. The Form object also exposes the Width and Height properties for controlling its size.

Placing Controls on Forms
The first step in designing your application’s interface is, of course, the analysis and careful
planning of the basic operations you want to provide through your interface. The second step is
to design the forms. Designing a form means placing Windows controls on it, setting the controls’
properties, and then writing code to handle the events of interest. Visual Studio 2008 is a rapid
application development (RAD) environment. This doesn’t mean that you’re expected to develop
applications rapidly. It has come to mean that you can rapidly prototype an application and show
something to the customer. And this is made possible through the visual tools that come with VS
2008, especially the new Form Designer.

To place controls on your form, you select them in the Toolbox and then draw, on the form,
the rectangle in which the control will be enclosed. Or you can double-click the control’s icon to
place an instance of the control on the form. All controls have a default size, and you can resize
the control on the form by using the mouse.

Each control’s dimensions can also be set in the Properties window through the Size property.
The Size property exposes the Width and Height components, which are expressed in pixels.
Likewise, the Location property returns (or sets) the coordinates of the top-left corner of the
control. In the section ‘‘Building Dynamic Forms at Runtime,’’ later in this chapter, you’ll see how
to create new controls at runtime and place them in a specific location on a form from within
your code.

As you place controls on the form, you can align them in groups by using the commands of the
Format menu. Select multiple controls on the form by using the mouse and the Shift (or Ctrl) key,
and then align their edges or their middles with the appropriate command of the Format menu.
To align the left edges of a column of TextBoxes, choose the Format�Align � Left command. You
can also use the commands of the Format �Make Same Size command to adjust the dimensions
of the selected controls. (To make them equal in size, make their widths or heights equal.)

As you move controls around with the mouse, a blue snap line appears when the controls
become nearly aligned with another control. Release the mouse while the snap line is visible to
leave the control aligned with the one indicated by the snap lines. The blue snap lines indicate edge
alignment. Most of the time, we need to align not the edges of two controls, but their baselines

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 224

224 CHAPTER 7 WORKING WITH FORMS

(the baseline of the text on the control). The snap lines that indicate baseline alignment are red.
Figure 7.3 shows both types of snap lines. When we’re aligning a Label control with its matching
TextBox control on a form, we want to align their baselines, not their frames (especially if you con-
sider that the Label controls are always displayed without borders). If the control is aligned with
other controls in both directions, two snap lines will appear — a horizontal one and a vertical one.

Figure 7.3

Edge alignment (top)
and baseline alignment
(bottom)

Setting the TabOrder Property
Another important issue in form design is the tab order of the controls on the form. As you know,
pressing the Tab key at runtime takes you to the next control on the form. The order of the controls
is the order in which they were placed on the form, but this is never what we want. When you
design the application, you can specify in which order the controls receive the focus (the tab order,
as it is known) with the help of the TabOrder property. Each control has its own TabOrder setting,
which is an integer value. When the Tab key is pressed, the focus is moved to the control whose

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 225

THE APPEARANCE OF FORMS 225

tab order immediately follows the tab order of the current control. The values of the TabOrder
properties of the various controls on the form need not be consecutive.

To specify the tab order of the various controls, you can set their TabOrder property in the
Properties window or you can choose the Tab Order command from the View menu. The tab
order of each control will be displayed on the corresponding control, as shown in Figure 7.4. (The
form shown in the figure is the Contacts application, which is discussed shortly.)

Figure 7.4

Setting the tab order of
the controls on the main
form of the Contacts
project

To set the tab order of the controls, click each control in the order in which you want them to
receive the focus. You must click all of them in the desired order, starting with the first control in
the tab order. Each control’s index in the tab order appears in the upper-left corner of the control.
When you’re finished, choose the Tab Order command from the View menu again to hide these
numbers.

As you place controls on the form, don’t forget to lock them, so that you won’t move them
around by mistake as you work with other controls. You can lock the controls in their places either
by setting each control’s Locked property to True or by locking all the controls on the form at once
via the Format � Lock Controls command.

Design with the User In Mind

Designing functional forms is a crucial step in the process of developing Windows applications. Most
data-entry operators don’t work with the mouse, and you must make sure that all the actions (such as
switching to another control, opening a menu, clicking a button, and so on) can be performed with
the keyboard. This requirement doesn’t apply to graphics applications, of course, but most applica-
tions developed with VB are business applications, and users should be able to perform most of the
tasks with the keyboard, not with the mouse.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 226

226 CHAPTER 7 WORKING WITH FORMS

In my experience, the most important aspect of the user interface of a business application is the
handling of the Enter keystroke. When a TextBox control has the focus, the Enter keystroke should
advance the focus to the next control in the tab order; when a list control (such as the ListBox or
ListView control) has the focus, the Enter keystroke should invoke the same action as double-clicking
the current item. The sample project in the following section demonstrates many of the features
you’d expect from a data-entry application.

If you’re developing a data-entry form, you must take into consideration the needs of the users. Make
a prototype and ask the people who will use the application to test-drive it. Listen to their objections
carefully, collect all the information, and then use it to refine your application’s user interface. Don’t
defend your design — just learn from the users. They will uncover all the flaws of the application and
they’ll help you design the most functional interface. In addition, they will accept the finished appli-
cation with fewer objections and complaints if they know what to expect.

VB 2008 at Work: The Contacts Project
I want to conclude this section with a simple data-entry application that demonstrates many of
the topics discussed here, as well as a few techniques for designing easy-to-use forms. Figure 7.5
shows a data-entry form for maintaining contact information, and I’m sure you will add your own
fields to make this application more useful.

Figure 7.5

A simple data-entry
screen

You can navigate through the contacts by clicking the buttons with the arrows, as well as add
new contacts or delete existing ones by clicking the appropriate buttons. When you’re entering a
new contact, the buttons shown in Figure 7.5 are replaced by the usual OK and Cancel buttons.
The action of adding a new contact, or editing an existing one, must end by clicking one of these
two buttons. After committing a new contact or canceling the action, the usual navigation buttons
appear again.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 227

THE APPEARANCE OF FORMS 227

Place the controls you see in Figure 7.5 on the form and align them appropriately. After the
controls are on the form, the next step is to set their tab order. You must specify a TabOrder
even for controls that never receive focus, such as the Label controls. In addition to the tab order
of the controls, we’ll also use shortcut keys to give the user quick access to the most common
fields. The shortcut keys are displayed as underlined characters on the corresponding labels.
Notice that the Label controls have shortcut keys, even though they don’t receive the focus. When
you press the shortcut key of a Label, the focus is moved to the following control in the tab order,
which is the TextBox control next to it.

If you run the application now, you’ll see that the focus moves from one TextBox to the next
and that the labels are skipped. After the last TextBox control, the focus is moved to the buttons
and then back to the first TextBox control. To add a shortcut key for the most common fields,
determine which fields will have shortcut keys and then which keys will be used for that purpose.
Being the Internet buffs that we all are, let’s assign shortcut keys to the Company, EMail, and URL
fields. Locate each label’s Text property in the Properties window and insert the & symbol in
front of the character you want to act as a shortcut for each Label. The Text properties of the three
controls should be &Company, &EMail, and &URL.

Shortcut keys are activated at runtime by pressing the shortcut character while holding down
the Alt key. The shortcut key will move the focus to the corresponding Label control, but because
labels can’t receive the focus, the focus is moved immediately to the next control in the tab order,
which is the adjacent TextBox control.

The contacts are stored in an ArrayList object, which is similar to an array but a little more
convenient. We’ll discuss ArrayLists in Chapter 14, ‘‘Storing Data in Collections’’; for now, you
can ignore the parts of the application that manipulate the contacts and focus on the design issues.

Start by loading the sample data included with the application. Open the File menu and choose
Load. You won’t be prompted for a filename; the application always opens the same file in its root
folder. After reading about the OpenFileDialog and SaveFileDialog controls, you can modify the
code so that it prompts the user about the file to read from or write to. Then enter a new contact by
clicking the Add button or edit an existing contact by clicking the Edit button. Both actions must
end with the OK or Cancel button. In other words, we require users to explicitly end the operation,
and we won’t allow them to switch to another contact while adding or editing one.

The code behind the various buttons is straightforward. The Add button hides all the nav-
igational buttons at the bottom of the form and clears the TextBoxes. The OK button saves the
new contact to an ArrayList structure and redisplays the navigational buttons. The Cancel button
ignores the data entered by the user and likewise displays the navigational buttons. In all cases,
when the user switches back to the view mode, the TextBoxes are also locked, by setting their
ReadOnly properties to True.

Handling Keystrokes

Although the Tab key is the Windows method of moving to the next control on the form, most
users will find it more convenient to use the Enter key. The Enter key is the most important one
on the keyboard, and applications should handle it intelligently. When the user presses Enter in a
single-line TextBox, for example, the obvious action is to move the focus to the following control.
I included a few statements in the KeyDown event handlers of the TextBox controls to move the
focus to the following one:

Private Sub txtAddress1 KeyDown(...) Handles txtAddress1.KeyDown
If e.KeyData = Keys.Enter Then

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 228

228 CHAPTER 7 WORKING WITH FORMS

e.SuppressKeyPress = True
txtAddress2.Focus()

End If
End Sub

If you use the KeyUp event handler instead, the result won’t be any different, but an annoying
beeping sound will be emitted with each keystroke. The beep occurs when the button is depressed,
so we must intercept the Enter key as soon as it happens, and not after the control receives the
notification for the KeyDown event. The control will still catch the KeyUp event and it will beep
because it’s a single-line TextBox control (an audible warning that the specific key shouldn’t be
used in a single-line TextBox control). To avoid the beep sound, the code ‘‘kills’’ the keystroke by
setting the SuppressKeystroke property to True.

Processing Keys from within Your Code

The code shown in the preceding KeyDown event handler will work, but you must repeat it for every
TextBox control on the form. A more convenient approach is to capture the Enter keystroke in the
form’s KeyDown event handler and process it for all TextBox controls. First, we must figure out
whether the control with the focus is a TextBox control. The property Me.ActiveControl returns a
reference to the control with the focus. To find out the type of the active control and compare it to
the TextBox control’s type, use the following If statement:

If Me.ActiveControl.GetType Is GetType(TextBox) Then
’ process the Enter key
End If

An interesting method of the Form object is the ProcessTabKey method, which imitates the Tab
keystroke. Calling the ProcessTabKey method is equivalent to pressing the Tab key from within your
code. The method accepts a True/False value as an argument, which indicates whether it will move
the focus to the next control in the tab order (if True), or to the previous control in the tab order. Once
you can figure out the active control’s type and you have a method of simulating the Tab keystroke
from within your code, you don’t have to code every TextBox control’s KeyDown event.

Start by setting the form’s KeyPreview property to True and then insert the following statements in
the form’s KeyDown event handler:

If e.KeyCode = Keys.Enter Then
If Me.ActiveControl.GetType Is GetType(TextBox) Then

e.SuppressKeyPress = True
If e.Shift Then

Me.ProcessTabKey(False)
Else

Me.ProcessTabKey(True)
End If

End If
End If

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 229

THE APPEARANCE OF FORMS 229

The last topic demonstrated in this example is how to capture certain keystrokes, regardless of
the control that has the focus. We’ll use the F10 keystroke to display the total number of contacts
entered so far. Assuming that you have already set the form’s KeyPreview property to True, enter
the following code in the form’s KeyDown event:

If e.Keycode = keys.F10 Then
MsgBox(”There are ” & Contacts.Count.ToString &

” contacts in the database”)
e.Handled = True

End If

Listing 7.1 shows the complete handler for the form’s KeyDown event, which also allows you to
move to the next or previous contact by using the Alt+Plus or Alt+Minus keys, respectively.

Listing 7.1: Handling Keystrokes in the Form’s KeyDown Event Handler

Public Sub Form1 KeyDown(ByVal sender As Object,
ByVal e As System.WinForms.KeyEventArgs)

Handles Form1.KeyUp
If e.Keycode = Keys.F10 Then

MsgBox(”There are ” & Contacts.Count.ToString &
” contacts in the database”)

e.Handled = True
End If
If e.KeyCode = Keys.Subtract And e.Modifiers = Keys.Alt Then

bttnPrevious.PerformClick
End If
If e.KeyCode = Keys.Add And e.Modifiers = Keys.Alt Then

bttnNext.PerformClick
End If

End Sub

The KeyCode property of the e argument returns the code of the key that was pressed. All key
codes are members of the Keys enumeration, so you need not memorize them. The name of the
key with the plus symbol is Keys.Add. The Modifiers property of the same argument returns the
modifier key(s) that were held down while the key was pressed. Also, all possible values of the
Modifiers property are members of the Keys enumeration and will appear as soon as you type
the equal sign.

Anchoring and Docking
A common issue in form design is the design of forms that are properly resized. For instance,
you might design a nice form for a given size, but when it’s resized at runtime, the controls are
all clustered in the top-left corner. Or a TextBox control that covers the entire width of the form
at design time suddenly ‘‘cringes’’ on the left when the user drags out the window. If the user
makes the form smaller than the default size, part of the TextBox could be invisible because it’s
outside the form. You can attach scroll bars to the form, but that doesn’t really help — who wants

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 230

230 CHAPTER 7 WORKING WITH FORMS

to type text and have to scroll the form horizontally? It makes sense to scroll vertically because
you get to see many lines at once, but if the TextBox control is wider than the form, you can’t read
entire lines.

Anchoring Controls

The Anchor property lets you attach one or more edges of the control to corresponding edges of
the form. The anchored edges of the control maintain the same distance from the corresponding
edges of the form.

Place a TextBox control on a new form, set its MultiLine property to True, and then open
the control’s Anchor property in the Properties window. You will see a rectangle within a larger
rectangle and four pegs that connect the small control to the sides of the larger box (see Figure 7.6).
The large box is the form, and the small one is the control. The four pegs are the anchors, which
can be either white or gray. The gray anchors denote a fixed distance between the control and
the form. By default, the control is placed at a fixed distance from the top-left corner of the form.
When the form is resized, the control retains its size and its distance from the top-left corner of
the form.

Figure 7.6

The settings of the
Anchor property

We want our TextBox control to fill the width of the form, be aligned to the top of the form, and
leave some space for a few buttons at the bottom. We also want our form to maintain this arrange-
ment, regardless of its size. Make the TextBox control as wide as the form (allowing, perhaps, a
margin of a few pixels on either side). Then place a couple of buttons at the bottom of the form
and make the TextBox control tall enough that it stops above the buttons. This is the form of the
Anchor sample project.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 231

THE APPEARANCE OF FORMS 231

Now open the TextBox control’s Anchor property and make all four anchors gray by clicking
them. This action tells the Form Designer to resize the control accordingly at runtime, so that the
distances between the sides of the control and the corresponding sides of the form are the same as
those you set at design time. Select each button on the form and set their Anchor properties in the
Properties window: Anchor the left button to the left and bottom of the form, and the right button
to the right and bottom of the form.

Resize the form at design time without running the project, and you’ll see that all the controls
are resized and rearranged on the form at all times. Figure 7.7 shows the Anchor project’s main
form in two different sizes.

Figure 7.7

Use the Anchor property
of the various controls
to design forms that can
be resized gracefully at
runtime.

Yet, there’s a small problem: If you make the form very narrow, there will be no room for both
buttons across the form’s width. The simplest way to fix this problem is to impose a minimum size
for the form. To do so, you must first decide the form’s minimum width and height and then set
the MinimumSize property to these values. You can also use the AutoScroll properties, but it’s
not recommended that you add scroll bars to a small form like ours.

Docking Controls

In addition to the Anchor property, most controls provide the Dock property, which determines
how a control will dock on the form. The default value of this property is None.

Create a new form, place a multiline TextBox control on it, and then open the control’s Dock
property. The various rectangular shapes are the settings of the property. If you click the middle
rectangle, the control will be docked over the entire form: It will expand and shrink both hori-
zontally and vertically to cover the entire form. This setting is appropriate for simple forms that
contain a single control, usually a TextBox, and sometimes a menu. Try it out.

Let’s create a more complicated form with two controls (see the Docking sample project). The
form shown in Figure 7.8 contains a TreeView control on the left and a ListView control on the
right. The two controls display folder and file data on an interface that’s very similar to that
of Windows Explorer. The TreeView control displays the directory structure, and the ListView
control displays the selected folder’s files.

Place a TreeView control on the left side of the form and a ListView control on the right side
of the form. Then dock the TreeView to the left and the ListView to the right. If you run the

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 232

232 CHAPTER 7 WORKING WITH FORMS

application now, as you resize the form, the two controls remain docked to the two sides of the
form — but their sizes don’t change. If you make the form wider, there will be a gap between the
two controls. If you make the form narrower, one of the controls will overlap the other.

Figure 7.8

Filling a form with two
controls

End the application, return to the Form Designer, select the ListView control, and set its Dock
property to Fill. This time, the ListView will change size to take up all the space to the right of
the TreeView. The ListView control will attempt to fill the form, but it won’t take up the space of
another control that has been docked already. The TreeView and ListView controls are discussed
in Chapter 9, ‘‘The TreeView and ListView Controls’’; that’s why I’ve populated them with some
fake data at design time. In Chapter 9, you’ll learn how to populate these two controls at runtime
with folder names and filenames, respectively, and build a custom Windows Explorer.

Splitting Forms into Multiple Panes
The form behaves better, but it’s not what you really expect from a Windows application. The
problem with the form in Figure 7.8 is that users can’t change the relative widths of the controls.
In other words, they can’t make one of the controls narrower to make room for the other, which is
a fairly common concept in the Windows interface.

The narrow bar that allows users to control the relative sizes of two controls is a splitter. When
the cursor hovers over a splitter, it changes to a double arrow to indicate that the bar can be
moved. By moving the splitter, you can enlarge one of the two controls while shrinking the other.
The Form Designer provides a special control for placing a splitter between two controls: the
SplitContainer control. We’ll design a new form with two TextBoxes and a splitter between them
so that users can change the relative size of the two controls.

First, place a SplitContainer control on the form. The SplitContainer consists of two Panels, the
Panel1 and Panel2 controls, and a vertical splitter between them. This is the default configuration;
you can change the orientation of the splitter by using the control’s Orientation property. Also
by default, the two panels of the Splitter control are resized proportionally as you resize the form.
If you want to keep one of the panels fixed and have the other take up the rest of the form, set the
control’s FixedPanel property to the name of the panel you want to retain its size.

Next, place a TextBox control in the left panel of the SplitControl and set its Multiline property
to True. You don’t need to do anything about its size because we’ll dock it in the panel to which it

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 233

THE APPEARANCE OF FORMS 233

belongs. With the TextBox control selected, locate its Dock property and set it to Fill. The TextBox
control will fill the left panel of the SplitContainer control. Do the same with another TextBox
control, which will fill the right panel of the SplitContainer control. Set this control’s Multiline
property to True and its Dock property to Fill.

Now run the project and check out the functionality of the SplitContainer. Paste some text on
the two controls and then change their relative sizes by sliding the splitter between them, as shown
in Figure 7.9. You will find this project, called Splitter1, among the sample projects of this chapter.

Figure 7.9

The SplitContainer con-
trol lets you change the
relative size of the con-
trols on either side.

Let’s design a more elaborate form with two SplitContainer controls, such as the one shown in
Figure 7.10. (It’s the form in the Splitter2 sample project.) This form, which resembles the interface
of Microsoft Office Outlook, consists of a TreeView control on the left (where the folders are dis-
played), a ListView control (where the selected folder’s items are displayed), and a TextBox control
(where the selected item’s details are displayed). Because we haven’t discussed the ListView and
TreeView controls yet, I’m using three TextBox controls with different background colors; the
process of designing the form is identical, regardless of the controls you put on it.

Figure 7.10

An elaborate form with
two splitter controls

Start by placing a SplitContainer control on the form. Then place a multiline TextBox control on
the left panel of the SplitContainer control and set the TextBox control’s Dock property to Fill. The
TextBox control will fill the left panel of the SplitContainer control. Place another SplitContainer

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 234

234 CHAPTER 7 WORKING WITH FORMS

in the right panel of the first SplitContainer control. This control will be automatically docked in
its panel and will fill it. Its orientation, however, is vertical, and the splitter will separate the panel
into two smaller vertical panes. Select the second SplitContainer control, locate its Orientation
property in the Properties window, and set it to Horizontal.

Now you can fill each of the panels with a TextBox control. Set each TextBox control’s
BackgroundColor to a different color, its MultiLine property to True, and its Dock property
to Fill. The TextBox controls will fill their containers, which are the panels of the two SplitCon-
tainer controls, not the form. If you look up the properties of a SplitContainer control, you’ll see
that it’s made up of two Panel controls, which are exposed as properties of the SplitContainer
control, the Panel1 and Panel2 controls. You can set many of the properties of these two con-
stituent controls, such as their font and color, their minimum size, and so on. They even expose an
AutoScroll property, so that users can scroll the contents of each one independently of the other.
You can also set other properties of the SplitContainer control, such as the SplitterWidth prop-
erty, which is the width of the splitter bar between the two panels in pixels, and the Splitter-
Increment property, which is the smallest number of pixels that the splitter bar can be moved in
either direction.

So far, you’ve seen what the Form Designer and the Form object can do for your application.
Let’s switch our focus to programming forms and explore the events triggered by the Form object.

The Form’s Events
The Form object triggers several events. The most important are Activated, Deactivate, Form-
Closing, Resize, and Paint.

The Activated and Deactivate Events

When more than one form is displayed, the user can switch from one to the other by using the
mouse or by pressing Alt+Tab. Each time a form is activated, the Activated event takes place.
Likewise, when a form is activated, the previously active form receives the Deactivate event.
Insert in these two event handlers the code you want to execute when a form is activated (set
certain control properties, for example) and when a form loses the focus or is deactivated. These
two events are the form’s equivalents of the Enter and Leave events of the various controls.
Notice an inconsistency in the names of the two events: the Activated event takes place after
the form has been activated, whereas the Deactivate event takes place right before the form is
deactivated.

The FormClosing and FormClosed Events

The FormClosing event is fired when the user closes the form by clicking its Close button. If the
application must terminate because Windows is shutting down, the same event will be fired as
well. Users don’t always quit applications in an orderly manner, and a professional application
should behave gracefully under all circumstances. The same code you execute in the application’s
Exit command must also be executed from within the closing event. For example, you might
display a warning if the user has unsaved data, you might have to update a database, and so on.
Place the code that performs these tasks in a subroutine and call it from within your menu’s Exit
command, as well as from within the FormClosing event’s handler.

You can cancel the closing of a form by setting the e.Cancel property to True. The event han-
dler in Listing 7.2 displays a message box informing the user that the data hasn’t been saved and
gives him a chance to cancel the action and return to the application.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 235

THE APPEARANCE OF FORMS 235

Listing 7.2: Cancelling the Closing of a Form

Public Sub Form1 FormClosing(...) Handles Me.FormClosing
Dim reply As MsgBoxResult
reply = MsgBox(”Document has been edited. ” &

”OK to terminate application, Cancel to ” &
”return to your document.”, MsgBoxStyle.OKCancel)

If reply = MsgBoxResult.Cancel Then
e.Cancel = True

End If
End Sub

The e argument of the FormClosing event provides the CloseReason property, which reports
how the form is closing. Its value is one of the following members of the CloseReason enumera-
tion: FormOwnerClosing, MdiFormClosing, None, TaskManagerClosing, WindowsShutDown. The
names of the members are self-descriptive, and you can query the CloseReason property to deter-
mine how the window is closing.

The FormClosed event fires after the form has been closed. You can find out the action that
caused the form to be closed through the e.CloseReason property, but it’s too late to cancel the
closing of the form.

The Resize, ResizeBegin, and ResizeEnd Events

The Resize event is fired every time the user resizes the form by using the mouse. With previous
versions of VB, programmers had to insert quite a bit of code in the Resize event’s handler to
resize the controls and possibly rearrange them on the form. With the Anchor and Dock properties,
much of this overhead can be passed to the form itself. If you want the two sides of the form
to maintain a fixed ratio, however, you have to resize one of the dimensions from within the
Resize event handler. Let’s say the form’s width-to-height ratio must be 3:4. Assuming that you’re
using the form’s height as a guide, insert the following statement in the Resize event handler to
make the width equal to three-fourths of the height:

Private Form1 Resize(...) Handles Me.Resize
Me.Width = (0.75 * Me.Height)

End Sub

The Resize event is fired continuously while the form is being resized. If you want to keep track
of the initial form’s size and perform all the calculations after the user has finished resizing the
form, you can use the ResizeBegin and ResizeEnd events, which are fired at the beginning and
after the end of a resize operation, respectively. Store the form’s width and height to two global
variables in the ResizeBegin event and use these two variables in the ResizeEnd event handler.

The Scroll Event

The Scroll event is fired by forms that have their AutoScroll property set to True when the
user scrolls the form. The second argument of the Scroll event handler exposes the OldValue
and NewValue properties, which are the displacements of the form before and after the scroll
operation. This event can be used to keep a specific control in view when the form’s contents are
scrolled.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 236

236 CHAPTER 7 WORKING WITH FORMS

The AutoScroll property is handy for large forms, but it has a serious drawback: It scrolls
the entire form. In most cases, we want to keep certain controls in view at all times. Instead of
a scrollable form, you can create forms with scrollable sections by exploiting the AutoScroll
properties of the Panel and/or the SplitContainer controls. You can also reposition certain controls
from within the form’s Scroll event handler. Let’s say you have placed a few controls on a Panel
container and you want to keep this Panel at the top of a scrolling form. The following statements
in the form’s Scroll event handler reposition the Panel at the top of the form every time the user
scrolls the form:

Private Sub Form1 Scroll(...) Handles Me.Scroll
Panel1.Top = Panel1.Top + (e.NewValue - e.OldValue)

End Sub

The Paint Event

This event takes place every time the form must be refreshed, and we use its handler to execute
code for any custom drawing on the form. When you switch to another form that partially or
totally overlaps the current one and then switch back to the first form, the Paint event will be
fired to notify your application that it must redraw the form. The form will refresh its controls
automatically, but any custom drawing on the form won’t be refreshed automatically. We’ll dis-
cuss this event in more detail in Chapter 18, ‘‘Drawing and Painting with Visual Basic 2008,’’ in
the presentation of the Framework’s drawing methods.

Loading and Showing Forms
Most practical applications are made up of multiple forms and dialog boxes, and one of the oper-
ations you’ll have to perform with multiform applications is to load and manipulate forms from
within other forms’ code. For example, you might want to display a second form to prompt the
user for data specific to an application. You must explicitly load the second form and read the
information entered by the user when the auxiliary form is closed. Or you might want to maintain
two forms open at once and let the user switch between them. A text editor and its Find & Replace
dialog box is a typical example.

You can access a form from within another form by its name. Let’s say that your application
has two forms, named Form1 and Form2, and that Form1 is the project’s startup form. To show
Form2 when an action takes place on Form1, call the Show method of the auxiliary form:

Form2.Show

This statement brings up Form2 and usually appears in a button’s or menu item’s Click event
handler. To exchange information between two forms, use the techniques described in the ‘‘Con-
trolling One Form from within Another,’’ section later in this chapter.

The Show method opens a form in a modeless manner: The two forms are equal in stature on the
desktop, and the user can switch between them. You can also display the second form in a modal
manner, which means that users can’t return to the form from which they invoked it without
closing the second form. While a modal form is open, it remains on top of the desktop, and you
can’t move the focus to any other form of the same application (but you can switch to another
application). To open a modal form, use the ShowDialog method:

Form2.ShowDialog

The modal form is, in effect, a dialog box like the Open File dialog box. You must first select a
file on this form and click the Open button, or click the Cancel button to close the dialog box and

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 237

LOADING AND SHOWING FORMS 237

return to the form from which the dialog box was invoked. This brings up the topic of forms and
dialog boxes.

A dialog box is simply a modal form. When we display forms as dialog boxes, we change the
border of the forms to the setting FixedDialog and invoke them with the ShowDialog method.
Modeless forms are more difficult to program because the user may switch among them at any
time. Moreover, the two forms that are open at once must interact with one another. When the
user acts on one of the forms, it might necessitate some changes in the other, and you’ll see shortly
how this is done. If the two active forms don’t need to interact, display one of them as a dialog box.

When you’re finished with the second form, you can either close it by calling its Close method
or hide it by calling its Hide method. The Close method closes the form, and its resources are
returned to the system. The Hide method sets the form’s Visible property to False; you can still
access a hidden form’s controls from within your code, but the user can’t interact with it. Forms
that are displayed often, such as the Find & Replace dialog box of a text-processing application,
should be hidden — not closed. To the user, it makes no difference whether you hide or close a
form. If you hide a form, however, the next time you bring it up with the Show method, its controls
are in the state they were the last time.

The Startup Form
A typical application has more than a single form. When an application starts, the main form is
loaded. You can control which form is initially loaded by setting the startup object in the project
Properties window, shown in Figure 7.11. To open this dialog box, right-click the project’s name in
the Solution Explorer and select Properties. In the project’s Properties pages, select the Application
tab and select the appropriate item in the Startup Form combo box.

Figure 7.11

In the Properties win-
dow, you can specify the
form that’s displayed
when the application
starts.

By default, the IDE suggests the name of the first form it created, which is Form1. If you change
the name of the form, Visual Basic will continue using the same form as the startup form with its
new name.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 238

238 CHAPTER 7 WORKING WITH FORMS

You can also start an application by using a subroutine, without loading a form. This sub-
routine is the MyApplication Startup event handler, which is fired automatically when the
application starts. To display the AuxiliaryForm object from within the Startup event handler,
use the following statement:

Private Sub MyApplication Startup(...) Handles Me.Startup
System.Windows.Forms.Application.Run(New AuxiliaryForm())

End Sub

To view the MyApplication Startup event handler, click the View Application Events button
at the bottom of the Application pane, as shown in Figure 7.11. This action will take you to the
MyApplication code window, where you can select the MyApplication Events item in the object
list and the Startup item in the events list.

Controlling One Form from within Another
Loading and displaying a form from within another form’s code is fairly trivial. In some situations,
this is all the interaction you need between forms. Each form is designed to operate independently
of the others, but they can communicate via public variables (see the following section). In most
situations, however, you need to control one form from within another’s code. Controlling the
form means accessing its controls, and setting or reading values from within another form’s code.

In Chapter 6, you developed the TextPad application, which is a basic text editor and consists
of the main form and an auxiliary form for the Find & Replace operations. All other operations on
the text are performed with menu commands on the main form. When the user wants to search for
and/or replace a string, the program displays another form on which the user specifies the text to
find, the type of search, and so on. When the user clicks one of the Find & Replace form’s buttons,
the corresponding code must access the text on the main form of the application and search for
a word or replace a string with another. The Find & Replace dialog box not only interacts with
the TextBox control on the main form, it also remains visible at all times while it’s open, even if it
doesn’t have the focus, because its TopMost property was set to True.

Sharing Variables between Forms

The preferred method for two forms to communicate with each other is via public variables. These
variables are declared in the form’s declarations section, outside any procedure, with the key-
word Public. If the following declarations appear in Form1, the variable NumPoints and the array
DataValues can be accessed by any procedure in Form1, as well as from within the code of any
form belonging to the same project:

Public NumPoints As Integer
Public DataValues(100) As Double

To access a public variable declared in Form1 from within another form’s code, you must prefix
the variable’s name by the name of the form, as in the following:

Form1.NumPoints = 99
Form1.DataValues(0) = 0.3395022

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 239

LOADING AND SHOWING FORMS 239

You can use the same notation to access the controls on another form. If Form1 contains the
TextBox1 control, you can use the following statement to read its text:

Form1.TextBox1.Text

If a button on Form1 opens the auxiliary form Form2, you can set selected controls to specific
values before showing the auxiliary form. The following statements should appear in a button’s
or menu item’s Click event handler:

Form2.TextBox1.Text = ”some text”
Form2.DateTimePicker1.Value = Today
Form2.Show()

You can also create a variable to represent another form and access the auxiliary form through
this variable. Let’s say you want to access the resources of Form2 from within the code of Form1.
Declare the variable auxForm to represent Form2 and then access the resources of Form2 with the
following statements:

Dim auxForm As Form2
auxForm.TextBox1.Text = ”some text”
auxForm.DateTimePicker1.Value = Today
auxForm.Show

Multiple Instances of a Single Form

Note that the variable that represents an auxiliary form is declared without the New keyword. The
auxForm variable represents an existing form. If we used the New keyword, we’d create a new
instance of the corresponding form. This technique is used when we want to display multiple
instances of the same form, as in an application that allows users to open multiple documents of the
same type.

Let’s say you’re designing an image-processing application, or a simple text editor. Each new docu-
ment should be opened in a separate window. Obviously, we can’t design many identical forms and
use them as needed. The solution is to design a single form and create new instances of it every time
the user opens an existing document or creates a new one. These instances are independent of one
another and they may interact with the main form. Usually they don’t, because they aren’t auxiliary
forms; they contain the necessary interface elements, such as menus, for processing the specific doc-
ument type, and users can arrange them any way they like on the desktop.

The approach described here is reminiscent of Multiple Document Interface (MDI) applications. The
MDI interface requires that all windows be contained within a parent window and, although once
very popular, it’s going slowly out of style. The new interfaces open multiple independent windows
on the desktop. Each window is an instance of a single form and it’s declared with the New keyword.
I’ve used this style of interface to redesign the TextPad application of Chapter 6, and I’ve included the
revised application in this chapter’s projects for your reference. Open the project in Visual Studio and
examine its code, which contains a lot of comments.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 240

240 CHAPTER 7 WORKING WITH FORMS

Forms versus Dialog Boxes
Dialog boxes are special types of forms with very specific functionality, which we use to prompt
the user for data. The Open and Save dialog boxes are two of the most familiar dialog boxes in
Windows. They’re so common that they’re actually known as common dialog boxes. Technically, a
dialog box is a good old form with its FormBorderStyle property set to FixedDialog. Like forms,
dialog boxes might contain a few simple controls, such as Labels, TextBoxes, and Buttons. You
can’t overload a dialog box with controls and functionality, because you’ll end up with a regular
form.

Figure 7.12 shows a few dialog boxes you have certainly seen while working with Windows
applications. The Insert Caption dialog box of Word is a modal dialog box: You must close it before
switching to your document. The Find & Replace dialog box is modeless: It allows you to switch
to your document, yet it remains visible while open even if it doesn’t have the focus.

Figure 7.12

Typical dialog boxes
used by Word

Notice that some dialog boxes, such as Open, Color, and even the humble MessageBox, come
with the Framework, and you can incorporate them in your applications without having to design
them.

A characteristic of dialog boxes is that they provide an OK and a Cancel button. The OK button
tells the application that you’re finished using the dialog box, and the application can process the
information in it. The Cancel button tells the application that it should ignore the information in
the dialog box and cancel the current operation. As you will see, dialog boxes allow you to quickly
find out which buttons were clicked to close them, so that your application can take a different
action in each case.

In short, the difference between forms and dialog boxes is artificial. If it were really important
to distinguish between the two, they’d be implemented as two different objects — but they’re the
same object. So, without any further introduction, let’s look at how to create and use dialog boxes.

To create a dialog box, start with a Windows form, set its FormBorderStyle property to Fixed-
Dialog, and set the ControlBox, MinimizeBox, and MaximizeBox properties to False. Then add the
necessary controls on the form and code the appropriate events, as you would do with a regular
Windows form.

Figure 7.13 shows a simple dialog box that prompts the user for an ID and a password (see the
Password sample project). The dialog box contains two TextBox controls, next to the appropriate
labels, and the usual OK and Cancel buttons. The Cancel button signifies that the user wants to
cancel the operation, which was initiated in the form that displayed the dialog box.

Start a new project, rename the form to MainForm, and place a button on the form. This is the
application’s main form, and we’ll invoke the dialog box from within the button’s Click event

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 241

LOADING AND SHOWING FORMS 241

handler. Then add a new form to the project, name it PasswordForm, and place on it the controls
shown in Figure 7.13.

Figure 7.13

A simple dialog box
that prompts users for a
username and password

To display a modal form, you call the ShowDialog method, instead of the Show method. You
already know how to read the values entered on the controls of the dialog box. You also need
to know which button was clicked to close the dialog box. To convey this information from the
dialog box back to the calling application, the Form object provides the DialogResult property.
This property can be set to one of the values shown in Table 7.3 to indicate which button was
clicked. The DialogResult.OK value indicates that the user has clicked the OK button on the form.
There’s no need to place an OK button on the form; just set the form’s DialogResult property to
DialogResult.OK.

Table 7.3: The DialogResult Enumeration

Value Description

Abort The dialog box was closed with the Abort button.

Cancel The dialog box was closed with the Cancel button.

Ignore The dialog box was closed with the Ignore button.

No The dialog box was closed with the No button.

None The dialog box hasn’t been closed yet. Use this option to find out whether a modeless dialog
box is still open.

OK The dialog box was closed with the OK button.

Retry The dialog box was closed with the Retry button.

Yes The dialog box was closed with the Yes button.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 242

242 CHAPTER 7 WORKING WITH FORMS

The dialog box need not contain any of the buttons mentioned here. It’s your responsibility to
set the value of the DialogResult property from within your code to one of the settings shown in
the table. This value can be retrieved by the calling application. The code behind the two buttons
in the dialog box is quite short:

Private Sub bttnOK Click(...) Handles bttnOK.Click
Me.DialogResult = DialogResult.OK
Me.Close

End Sub

Private Sub bttnCancel Click(...) Handles bttnCancel.Click
Me.DialogResult = DialogResult.Cancel
Me.Close

End Sub

The event handler of the button that displays this dialog box should contain an If statement
that examines the value returned by the ShowDialog method:

If PasswordForm.ShowDialog = DialogResult.OK Then
{ process the user selection }

End If

Depending on your application, you might allow the user to close the dialog box by clicking
more than two buttons. Some of them must set the DialogResult property to DialogResult.OK,
others to DialogResult.Cancel.

If the form contains an Accept and a Cancel button, you don’t have to enter a single line of code
in the modal form. The user can enter values on the various controls and then close the dialog
box by pressing the Enter or Cancel key. The dialog box will close and will return the Dialo-
gResult.OK or DialogResult.Cancel value. The Accept button sets the form’s DialogResult
property to DialogResult.OK automatically, and the Cancel button sets the same property to
DialogResult.Cancel. Any other button must set the DialogResult property explicitly. Listing
7.3 shows the code behind the Log In button on the sample project’s main form.

Listing 7.3: Prompting the User for an ID and a Password

Private Sub Button1 Click(...) Handles Button1.Click
If PasswordForm.ShowDialog() = DialogResult.OK Then

If PasswordForm.txtUserID.Text = ”” Or
PasswordForm.txtPassword.Text = ”” Then

MsgBox(”Please specify a user ID and a password to connect”)
Exit Sub

End If
MsgBox(”You were connected as ” &

passwordForm.txtUserID.Text)
Else

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 243

LOADING AND SHOWING FORMS 243

MsgBox(”Connection failed for user ” &
password.txtPassword.Text)

End If
End Sub

VB 2008 at Work: The MultipleForms Project

It’s time to write an application that puts together the most important topics discussed in this
section. The MultipleForms project consists of a main form, an auxiliary form, and a dialog box.
All three components of the application’s interface are shown in Figure 7.14. The buttons on the
main form display both the auxiliary form and the dialog box.

Figure 7.14

The MultipleForms
project’s interface

Let’s review the various operations we want to perform — they’re typical for many situations,
not for only this application. At first, we must be able to invoke both the auxiliary form and the
dialog box from within the main form; the Show Auxiliary Form and Show Dialog Box buttons
do this. The main form contains a variable declaration: strProperty. This variable is, in effect, a
property of the main form and is declared as public with the following statement:

Public strProperty As String = ”Mastering VB 2008”

The main form calls the auxiliary form’s Show method to display it in a modeless manner. The
auxiliary form button named Read Shared Variable In Main Form reads the strProperty variable
of the main form with the following statement:

Private Sub bttnReadShared Click(...) Handles bttnReadShared.Click
MsgBox(MainForm.strProperty, MsgBoxStyle.OKOnly,

”Public Variable Value”)
End Sub

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 244

244 CHAPTER 7 WORKING WITH FORMS

Using the same notation, you can set this variable from within the auxiliary form. The follow-
ing event handler prompts the user for a new value and assigns it to the shared variable of the
main form:

Private Sub bttnSetShared Click(...) Handles bttnSetShared.Click
Dim str As String
str = InputBox(”Enter a new value for strProperty”)
MainForm.strProperty = str

End Sub

The two forms communicate with each other through public variables. Let’s make this commu-
nication a little more elaborate by adding an event. Every time the auxiliary form sets the value of
the strProperty variable, it will raise an event to notify the main form. The main form, in turn,
will use this event to display the new value of the string on the TextBox control as soon as the code
in the auxiliary form changes the value of the variable and before it’s closed.

To raise an event, you must declare the event’s name in the form’s declaration section. Insert
the following statement in the auxiliary form’s declarations section:

Event strPropertyChanged()

Now add a statement that fires the event. To raise an event, we call the RaiseEvent statement,
passing the name of the event as an argument. This statement must appear in the Click event
handler of the Set Shared Variable In Main Form button, right after setting the value of the shared
variable. Listing 7.4 shows the revised event handler.

Listing 7.4: Raising an Event

Private Sub bttnSetShared Click(...) Handles bttnSetShared.Click
Dim str As String
str = InputBox(”Enter a new value for strProperty”)
MainForm.strProperty = str
RaiseEvent strPropertyChanged

End Sub

The event will be raised, but it will go unnoticed if we don’t handle it from within the main
form’s code. To handle the event, you must create a variable that represents the auxiliary form
with the WithEvents keyword:

Dim WithEvents FRM As New AuxiliaryForm()

The WithEvents keyword tells VB that the variable is capable of raising events. If you
expand the drop-down list with the objects in the code editor, you will see the name of the FRM
variable, along with the other controls you can program. Select FRM in the list and then expand
the list of events for the selected item. In this list, you will see the strPropertyChanged event.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 245

LOADING AND SHOWING FORMS 245

Select it, and the definition of an event handler will appear. Enter these statements in this event’s
handler:

Private Sub FRM strPropertyChanged() Handles FRM.strPropertyChanged
TextBox1.Text = strProperty
Beep()

End Sub

It’s a simple handler, but it’s adequate for demonstrating how to raise and handle custom
events on the form level. If you want, you can pass arguments to the event handler by includ-
ing them in the declaration of the event. To pass the original and the new value through the
strPropertyChanged event, use the following declaration:

Event strPropertyChanged(ByVal oldValue As String,
ByVal newValue As String)

If you run the application now, you’ll see that the value of the TextBox control in the main form
changes as soon as you change the property’s value in the auxiliary form.

Of course, you can update the TextBox control on the main form directly from within the
auxiliary form’s code. Use the expression MainForm.TextBox1 to access the control and then
manipulate it as usual. Events are used to perform some actions on a form when an action takes
place in one of the other forms of the application. The benefit of using events, as opposed to
accessing members of another form from within our code, is that the auxiliary form need not
know anything about the form that called it. The auxiliary form raises the event, and it’s the other
form’s responsibility to handle it.

Let’s see now how the main form interacts with the dialog box. What goes on between a form
and a dialog box is not exactly interaction; it’s a more timid type of behavior. The form displays
the dialog box and waits until the user closes the dialog box. Then it looks at the value of the
DialogResult property to find out whether it should even examine the values passed back by
the dialog box. If the user has closed the dialog box with the Cancel (or an equivalent) button, the
application ignores the dialog box settings. If the user closed the dialog box with the OK button,
the application reads the values and proceeds accordingly.

Before showing the dialog box, the code of the Show Dialog Box button sets the values of certain
controls in it. In the course of the application, it usually makes sense to suggest a few values in the
dialog box, so that the user can accept the default values by pressing the Enter key. The main form
selects a date on the dialog box’s controls and then displays the dialog box with the statements
given in Listing 7.5.

Listing 7.5: Displaying a Dialog Box and Reading Its Values

Protected Sub Button3 Click(...) Handles Button3.Click
’ Preselects the date 4/11/1980

AgeDialog.cmbMonth.Text = ”4”
AgeDialog.cmbDay.Text = ”11”
AgeDialog.CmbYear.Text = ”1980”

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 246

246 CHAPTER 7 WORKING WITH FORMS

AgeDialog.ShowDialog()
If AgeDialog.DialogResult = DialogResult.OK Then

MsgBox(AgeDialog.cmbMonth.Text & ” ” &
AgeDialog.cmbDay.Text & ”, ” &
AgeDialog.cmbYear.Text)

Else
MsgBox(”OK, we’ll protect your vital personal data”)

End If
End Sub

To close the dialog box, you can click the OK or Cancel button. Each button sets the DialogRe-
sult property to indicate the action that closed the dialog box. The code behind the two buttons
is shown in Listing 7.6.

Listing 7.6: Setting the Dialog Box’s DialogResult Property

Protected Sub bttnOK Click(...) Handles bttnOK.Click
Me.DialogResult = DialogResult.OK

End Sub

Protected Sub bttnCancel Click(...) Handles bttnCancel.Click
Me.DialogResult = DialogResult.Cancel

End Sub

Because the dialog box is modal, the code in the Show Dialog Box button is suspended at the
line that shows the dialog box. As soon as the dialog box is closed, the code in the main form
resumes with the statement following the one that called the ShowDialog method of the dialog
box. This is the If statement in Listing 7.5 that examines the value of the DialogResult property
and acts accordingly.

Building Dynamic Forms at Runtime
Sometimes you won’t know in advance how many instances of a given control might be required
on a form. Let’s say you’re designing a form for displaying the names of all tables in a database.
It’s practically impossible to design a form that will accommodate every database users might
throw at your application. Another typical example is a form for entering family related data,
which includes the number of children in the family and their ages. As soon as the user enters
(or changes) the number of children, you should display as many TextBox controls as there are
children to collect their ages.

For these situations, it is possible to design dynamic forms, which are populated at runtime.
The simplest approach is to create more controls than you’ll ever need and set their Visible
properties to False at design time. At runtime, you can display the controls by switching their
Visible properties to True. As you know already, quick-and-dirty methods are not the most
efficient ones. You must still rearrange the controls on the form to make it look nice at all times.
The proper method to create dynamic forms at runtime is to add controls to and remove them
from your form as needed, using the techniques discussed in this section.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 247

BUILDING DYNAMIC FORMS AT RUNTIME 247

Just as you can create new instances of forms, you can also create new instances of any control
and place them on a form. The Form object exposes the Controls collection, which contains all
the controls on the form. This collection is created automatically as you place controls on the form
at design time, and you can access the members of this collection from within your code. It is also
possible to add new members to the collection, or remove existing members, with the Add and
Remove statements accordingly.

The Form’s Controls Collection
All the controls on a form are stored in the Controls collection, which is a property of the Form
object. The Controls collection exposes members for accessing and manipulating the controls at
runtime, and they’re the usual members of a collection:

Add method The Add method adds a new element to the Controls collection. In effect, it
adds a new control on the current form. The Add method accepts a reference to a control as
an argument and adds it to the collection. Its syntax is the following, where controlObj is an
instance of a control:

Controls.Add(controlObj)

To place a new Button control on the form, declare a variable of the Button type, set its proper-
ties, and then add it to the Controls collection:

Dim bttn As New System.WinForms.Button
bttn.Text = ”New Button”
bttn.Left = 100
bttn.Top = 60
bttn.Width = 80
Me.Controls.Add(bttn)

Remove method The Remove method removes an element from the Controls collection. It
accepts as an argument either the index of the control to be removed or a reference to the con-
trol to be removed (a variable of the Control type that represents one of the controls on the
form). The syntax of these two forms of the Remove method is the following:

Me.Controls.Remove(index)
Me.Controls.Remove(controlObj)

Count property This property returns the number of elements in the Controls collection.
Notice that if there are container controls, the controls in the containers are not included in the
count. For example, if your form contains a Panel control, the controls on the panel won’t be
included in the value returned by the Count property. The Panel control, however, has its own
Controls collection.

All method This method returns all the controls on a form (or on a container control) as
an array of the System.WinForms.Control type. You can iterate through the elements of this
array with the usual methods exposed by the Array class.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 248

248 CHAPTER 7 WORKING WITH FORMS

Clear method The Clear method removes all the elements of the Controls array and
effectively clears the form.

The Controls collection is also a property of any control that can host other controls. Many
of the controls that come with VB 2008, such as the Panel control, can host other controls. As you
recall from our discussion of the Anchor and Dock properties, it’s customary to place controls
on a panel and handle them collectively as a section of the form. They are moved along with
the panel at design time, and they’re rearranged as a group at runtime. The panel belongs to the
form’s Controls collection, and it provides its own Controls collection, which lets you access the
controls on the panel.

VB 2008 at Work: The ShowControls Project

The ShowControls project (Figure 7.15) demonstrates the basic methods of the Controls array.
Open the project and add any number of controls on its main form. You can place a panel to act as
a container for other controls as well. Just don’t remove the button at the top of the form (the Scan
Controls On This Form button), which contains the code to list all the controls.

Figure 7.15

Accessing the controls
on a form at runtime

The code behind the Scan Controls On This Form button enumerates the elements of the form’s
Controls collection. The code doesn’t take into consideration containers within containers. This
would require a recursive routine, which would scan for controls at any depth. The code that
iterates through the form’s Controls collection and prints the names of the controls in the Output
window is shown in Listing 7.7.

Listing 7.7: Iterating the Controls Collection

Private Sub Button1 Click(...) Handles Button1.Click
Dim Control As Windows.Forms.Control
For Each Control In Me.Controls

Debug.WriteLine(Control.ToString)
If Control.GetType Is GetType(System.Windows.Forms.Panel) Then

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 249

BUILDING DYNAMIC FORMS AT RUNTIME 249

Dim nestedControl As Windows.Forms.Control
For Each nestedControl In Control.Controls

Debug.WriteLine(” ” & nestedControl.ToString)
Next

End If
Next

End Sub

The form shown in Figure 7.15 produced the following (partial) output (the controls on the
Panel are indented to stand out in the listing):

Panel1: System.Windows.Forms.Panel,
BorderStyle:
System.Windows.Forms.BorderStyle.FixedSingle

CheckBox4: System.Windows.Forms.CheckBox, CheckState: 0
CheckBox3: System.Windows.Forms.CheckBox, CheckState: 0

HScrollBar1: System.Windows.Forms.HScrollBar,
Minimum: 0, Maximum: 100, Value: 0

CheckedListBox1: System.Windows.Forms.CheckedListBox,
Items.Count: 3, Items[0]: Item 1

TextBox2: System.Windows.Forms.TextBox,
Text: TextBox2

TextBox1: System.Windows.Forms.TextBox,
Text: TextBox1

Button4: System.Windows.Forms.Button,
Text: Button4

To find out the type of individual controls, call the GetType method. The following statement
examines whether the control in the first element of the Controls collection is a TextBox:

If Me.Controls(0).GetType Is GetType(system.WinForms.TextBox) Then
MsgBox(”It’s a TextBox control”)

End If

Notice the use of the Is operator in the preceding statement. The equals operator will cause
an exception because objects can be compared only with the Is operator. (You’re comparing
instances, not values.)

If you know the type’s exact name, you can use a statement like the following:

If Me.Controls(i).GetType.Name = ”TextBox” Then ...

To access other properties of the control represented by an element of the Controls collection,
you must first cast it to the appropriate type. If the first control of the collection is a TextBox con-
trol, use the CType() function to cast it to a TextBox variable and then request its Text property:

If Me.Controls(0).GetType Is GetType(system.WinForms.TextBox) Then
Debug.WriteLine(CType(Me.Controls(0), TextBox).Text)

End If

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 250

250 CHAPTER 7 WORKING WITH FORMS

The If statement is necessary, unless you can be sure that the first control is a TextBox control.
If you omit the If statement and attempt to convert the control to a TextBox, a runtime exception
will be thrown if the object Me.Controls(0) isn’t a TextBox control.

VB 2008 at Work: The DynamicForm Project

To demonstrate how to handle controls at runtime from within your code, I included the
DynamicForm project (Figure 7.16), a simple data-entry window for a small number of data points.
The user can specify at runtime the number of data points she wants to enter, and the number of
TextBoxes on the form is adjusted automatically.

Figure 7.16

The DynamicForm
project

The control you see at the top of the form is the NumericUpDown control. All you really need
to know about this control is that it displays an integer in the range specified by its Minimum
and Maximum properties and allows users to select a value. It also fires the ValueChanged event
every time the user clicks one of the two arrows or types another value in its edit area. This event
handler’s code adds or removes controls on the form, so that the number of text boxes (as well
as the number of corresponding labels) matches the value on the control. Listing 7.8 shows the
handler for the ValueChanged event of the NumericUpDown1 control. The ValueChanged event is
fired when the user clicks one of the two arrows on the control or types a new value in the control’s
edit area.

Listing 7.8: Adding and Removing Controls at Runtime

Private Sub NumericUpDown1 ValueChanged(...) Handles NumericUpDown1.ValueChanged
Dim TB As New TextBox()
Dim LBL As New Label()
Dim i, TBoxes As Integer
’ Count all TextBox controls on the Form
For i = 0 To Me.Controls.Count - 1

If Me.Controls(i).GetType Is
GetType(System.Windows.Forms.TextBox) Then

TBoxes = TBoxes + 1
End If

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 251

BUILDING DYNAMIC FORMS AT RUNTIME 251

Next
’ Add new controls if number of controls on the Form is less
’ than the number specified with the NumericUpDown control
If TBoxes < NumericUpDown1.Value Then

TB.Left = 100
TB.Width = 120
TB.Text = ””
For i = TBoxes To CInt(NumericUpDown1.Value) - 1

TB = New TextBox()
LBL = New Label()
If NumericUpDown1.Value = 1 Then

TB.Top = 20
TB.TabIndex = 0

Else
TB.Top = Me.Controls(Me.Controls.Count - 2).Top + 25

End If
’ Set the trivial properties of the new controls
LBL.Left = 20
LBL.Width = 80
LBL.Text = ”Data Point ” & i
LBL.Top = TB.Top + 3
TB.Left = 100
TB.Width = 120
TB.Text = ””
’ add controls to the form
Me.Controls.Add(TB)

Me.Controls.Add(LBL)
TB.TabIndex = Convert.ToInt32(NumericUpDown1.Value)
’ and finally connect their GotFocus/LostFocus events
’ to the appropriate handler
AddHandler TB.Enter,

New System.EventHandler(AddressOf TBox Enter)
AddHandler TB.Leave,

New System.EventHandler(AddressOf TBox Leave)
Next

Else
For i = Me.Controls.Count - 1 To Me.Controls.Count -

2 * (TBoxes - CInt(NumericUpDown1.Value)) Step -2
Me.Controls.Remove(Controls(i))
Me.Controls.Remove(Controls(i - 1))

Next
End If

End Sub

Ignore the AddHandler statements for now; they’re discussed in the following section. First,
the code counts the number of TextBoxes on the form; then it figures out whether it should add
or remove elements from the Controls collection. To remove controls, the code iterates through
the last n controls on the form and removes them. The number of controls to be removed is the

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 252

252 CHAPTER 7 WORKING WITH FORMS

following, where TBoxes is the total number of controls on the form minus the value specified in
the NumericUpDown control:

2 * (TBoxes - NumericUpDown1.Value)

If the value entered in the NumericUpDown control is less than the number of TextBox controls
on the form, the code removes the excess controls from within a loop. At each step, it removes two
controls, one of them a TextBox and the other a Label control with the matching caption. (That’s
why the loop variable is decreased by two.) The code also assumes that the first two controls on the
form are the Button and the NumericUpDown controls. If the value entered by the user exceeds
the number of TextBox controls on the form, the code adds the necessary pairs of TextBox and
Label controls to the form.

To add controls, the code initializes a TextBox (TB) and a Label (LBL) variable. Then, it sets
their locations and the label’s caption. The left coordinate of all labels is 20, their width is 80, and
their Text property (the label’s caption) is the order of the data item. The vertical coordinate is
20 pixels for the first control, and all other controls are 3 pixels below the control on the previous
row. After a new control is set up, it’s added to the Controls collection with one of the following
statements:

Me.Controls.Add(TB) ’ adds a TextBox control
Me.Controls.Add(LBL) ’ adds a Label control

The code contains a few long lines, but it isn’t really complicated. It’s based on the assump-
tion that except for the first few controls on the form, all others are pairs of Label and TextBox
controls used for data entry. You can simplify the code a little by placing the Label and Text-
Box controls on a Panel and manipulate the Panel’s Controls collection. This collection contains
only the data-entry controls, and the form may contain any number of additional controls.

To use the values entered by the user on the dynamic form, we must iterate the Controls col-
lection, extract the values in the TextBox controls, and use them. Listing 7.9 shows how the top
Process Values button scans the TextBox controls on the form and performs some basic calcula-
tions with them (counting the number of data points and summing their values).

Listing 7.9: Reading the Controls on the Form

Private Sub Button1 Click(...) Handles Button1.Click
Dim TBox As TextBox
Dim Sum As Double = 0, points As Integer = 0
Dim iCtrl As Integer
For iCtrl = 0 To Me.Controls.Count - 1

If Me.Controls(iCtrl).GetType Is
GetType(System.Windows.Forms.TextBox) Then

TBox = CType(Me.Controls(iCtrl), TextBox)
If IsNumeric(TBox.Text) Then

Sum = Sum + Val(TBox.Text)
points = points + 1

End If
End If

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 253

BUILDING DYNAMIC FORMS AT RUNTIME 253

Next
MsgBox(”The sum of the ” & points.ToString &

” data points is ” & Sum.ToString)
End Sub

You can add more statements to calculate the mean and other vital statistics, or you can process
the values in any other way. You can even dump all the values into an array and then use the array
notation to manipulate them.

The project’s form has its AutoScroll property set to True, so that users can scroll it up and
down if they specify a number of data points that exceeds the vertical dimension of the form. The
two controls on the top-right side of the form, however, must remain at their location at all times.
I placed them on a Panel control and added some code to the form’s Scroll event handler, so that
every time the user scrolls the form, the Panel control maintains its distance from the top and right
edges of the form (otherwise, the two controls would scroll out of view). A single statement is all
it takes to keep the Panel control in view at all times:

Private Sub Form1 Scroll(ByVal sender As Object,
ByVal e As System.Windows.Forms.ScrollEventArgs)
Handles Me.Scroll

Panel1.Top = Panel1.Top + (e.NewValue - e.OldValue)
End Sub

You should try to redesign this application and place the data-entry controls on a Panel with
its AutoSize and AutoScroll properties set to True.

The second button on the form does the exact same thing as the top one, only this one uses a
For Each ... Next loop structure to iterate through the form’s controls.

Creating Event Handlers at Runtime
You saw how to add controls on your forms at runtime and how to access the properties of these
controls from within your code. In many situations, this is all you need: a way to access the prop-
erties of the controls (the text on a TextBox control or the status of a CheckBox or RadioButton
control). What good is a Button control, however, if it can’t react to the Click event? The only
problem with the controls you add to the Controls collection at runtime is that they don’t react
to events. It’s possible, though, to create event handlers at runtime, and this is what you’ll learn in
this section.

To create an event handler at runtime, create a subroutine that accepts two arguments — the
usual sender and e arguments — and enter the code you want to execute when a specific control
receives a specific event. The type of the e argument must match the definition of the second
argument of the event for which you want to create a handler. Let’s say that you want to add one
or more buttons at runtime on your form, and these buttons should react to the Click event. Create
the ButtonClick() subroutine and enter the appropriate code in it. The name of the subroutine
can be anything; you don’t have to make up a name that includes the control’s or the event’s name.

After the subroutine is in place, you must connect it to an event of a specific control. The But-
tonClick() subroutine, for example, must be connected to the Click event of a Button control.
The statement that connects a control’s event to a specific event handler is the AddHandler state-
ment, whose syntax is as follows:

AddHandler control.event, New System.EventHandler(AddressOf ButtonClick)

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 254

254 CHAPTER 7 WORKING WITH FORMS

For example, to connect the ProcessNow() subroutine to the Click event of the Calculate
button, use the following statement:

AddHandler Calculate.Click,
New System.EventHandler(AddressOf ProcessNow)

Let’s add a little more complexity to the DynamicForm application. We’ll program the Enter
and Leave events of the TextBox controls added at runtime through the Me.Controls.Add method.
When a TextBox control receives the focus, we’ll change its background color to a light yellow, and
when it loses the focus, we’ll restore the background to white, so the user knows which box has
the focus at any time. We’ll use the same handlers for all TextBox controls. (The code of the two
handlers is shown in Listing 7.10.)

Listing 7.10: Event Handlers Added at Runtime

Private Sub TBox Enter(ByVal sender As Object,
ByVal e As System.EventArgs)

CType(sender, TextBox).BackColor = color.LightCoral
End Sub

Private Sub TBox Leave(ByVal sender As Object,
ByVal e As System.EventArgs)

CType(sender, TextBox).BackColor = color.White
End Sub

The two subroutines use the sender argument to find out which TextBox control received or
lost the focus, and they set the appropriate control’s background color. (These subroutines are not
event handlers yet, because they’re not followed by the Handles keyword — at least, not before
we associate them with an actual control and a specific event.) This process is done in the same
segment of code that sets the properties of the controls we create dynamically at runtime. After
adding the control to the Me.Controls collection, call the following statements to connect the new
control’s Enter and Leave events to the appropriate handlers:

AddHandler TB.Enter, New System.EventHandler(AddressOf TBox Enter)
AddHandler TB.Leave, New System.EventHandler(AddressOf TBox Leave)

Run the DynamicForm application and see how the TextBox controls handle the focus-related
events. With a few statements and a couple of subroutines, we were able to create event handlers
at runtime from within our code.

Designing an Application Generator

In the preceding sections of this chapter, you learned how to create new forms from within your code
and how to instantiate them. In effect, you have the basic ingredients for designing applications from
within your code. Designing an application programmatically is not a trivial task, but now you have a
good understanding of how an application generator works. You can even design a wizard that
prompts the user for information about the appearance of the form and then design the form from
within your code.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 255

DESIGNING MENUS 255

Designing Menus
Menus are among the most common and most characteristic elements of the Windows user inter-
face. Even in the old days of character-based displays, menus were used to display methodically
organized choices and guide the user through an application. Despite the visually rich interfaces
of Windows applications and the many alternatives, menus are still the most popular means of
organizing a large number of options. Many applications duplicate some or all of their menus in
the form of toolbar icons, but the menu is a standard fixture of a form. You can turn the toolbars
on and off, but not the menus.

The Menu Editor
Menus can be attached only to forms, and they’re implemented through the MenuStrip control.
The items that make up the menu are ToolStripMenuItem objects. As you will see, the MenuStrip
control and ToolStripMenuItem objects give you absolute control over the structure and appear-
ance of the menus of your application. The MenuStrip control is a variation of the Strip control,
which is the base of menus, toolbars, and status bars.

You can design menus visually and then program their Click event handlers. In principle,
that’s all there is to a menu: You specify its items (the menu’s commands) and then you program
each command’s actions. Depending on the needs of your application, you might want to enable
and disable certain commands, add context menus to some of the controls on your form, and so
on. Because each item in a menu is represented by a ToolStripMenuItem object, you can control
the application’s menus from within your code by manipulating the properties of the ToolStrip-
MenuItem objects. Let’s start by designing a simple menu, and I’ll show you how to manipulate
the menu objects from within your code as we go along.

Double-click the MenuStrip icon in the Toolbox. (You’ll find the MenuStrip control in the
Menus & Toolbars tab of the Toolbox.) An instance of the MenuStrip control will be added to
the form, and a single menu command will appear on your form. Its caption will be Type Here.
If you don’t see the first menu item on the form right away, select the MenuStrip control in the
Components tray below the form. Do as the caption says: Click it and enter the first command’s
caption, File, as seen in Figure 7.17. To add items under the File menu, press Enter. To enter
another command in the main menu, press Tab. Depending on your action, another box will be
added, in which you can type the caption of the next command. Press Enter to move to the next
item vertically, and Tab to move to the next item horizontally. To insert a separator, enter a hyphen
(-) as the item’s caption.

When you hover the pointer over a menu item, a drop-down button appears to the right of
the item. Click this button to select the type of item you’ll place on the menu. This item can be a
MenuItem object, a separator, a ComboBox, or a TextBox. In this chapter, I’ll focus on menu items,
which are by far the most common elements on a menu. The last two options, however, allow you
to build elaborate menus, reminiscent of the Office menus.

Enter the items of the File menu — New, Open, Save, SaveAs, and Exit — and then click
somewhere on the form. All the temporary items (the ones with the Type Here caption) will
disappear, and the menu will be finalized on the form.

To add the Edit menu, select the MenuStrip icon to activate the visual menu editor and then
click the File item. In the new item that appears next to the File item on the control, enter the string
Edit. Press Enter and you’ll switch to the first item of the Edit menu. Fill the Edit menu with the
usual editing commands. Table 7.4 shows the captions (property Text) and names (property Name)
for each menu and each command. You can also insert a standard menu with the Insert Standard
Items command of the MenuStrip object’s context menu.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 256

256 CHAPTER 7 WORKING WITH FORMS

Figure 7.17

Designing a menu on
the form

Table 7.4: The Captions and Names of the File and Edit Menus

Caption Name

File FileMenu

New FileNew

Open FileOpen

Save FileSave

Save As FileSaveAs

Exit FileExit

Edit EditMenu

Copy EditCopy

Cut EditCut

Paste EditPaste

The leftmost items in Table 7.4 are the names of the first-level menus (File and Edit); the
captions that are indented in the table are the commands on these two menus. Each menu item
has a name, which allows you to access its properties from within your code. The same name
is also used in naming the Click event handler of the item. The default names of the menu
items you add visually to the application’s menu are based on the item’s caption followed by the
suffix ToolStripMenuItem (FileToolStripMenuItem, NewToolStripMenuItem, and so on). You’ll

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 257

DESIGNING MENUS 257

probably want to change the default names to something less redundant. To do so, change the
Name property in the Properties window. To view the properties of a menu item, right-click it and
select Properties from the context menu.

The most convenient method of editing a menu is to use the Items Collection Editor window,
which is shown in Figure 7.18. This isn’t a visual editor, but you can set all the properties of each
menu item without having to switch to the Properties window.

Figure 7.18

Editing a menu with the
Items Collection Editor

The Add button adds to the menu an item of the type specified in the combo box next to it (a
menu item, combo box, or text box). To insert an item at a different location, add it to the menu
and then use the arrow buttons to move it up or down. As you add new items, you can set their
Text and Name properties on the right pane of the editor. You can also set their font, set the align-
ment and orientation of the text, and specify an image to be displayed along with the text. To
add an image to a menu item, locate the Image property and click the ellipsis button. A dialog
box will appear, in which you can select the appropriate resource. Notice that all the images you
use on your form are stored as resources of the project. You can add all the images and icons you
might need in a project to the same resource file and reuse them at will. The TextImageRelation
property allows you to specify the relative positions of the text and the image. You can also select
to display text only, images only, or text and images for each menu item with the DisplayStyle
property.

If the menu item leads to a submenu, you must also specify the submenu’s items. Locate the
DropDownItems property and click the ellipsis button. An identical window will appear, in which
you can enter the drop-down items of the current menu item. Notice that the menu on the form is
continuously updated while you edit it in the Items Collection Editor window, so you can see the
effects of your changes on the form. Personally, I’m more productive with the editor than with the
visual tools, mainly because all the properties are right there, and I don’t have to switch between
the design surface and the Properties window.

The ToolStripMenuItem Properties
The ToolStripMenuItem class represents a menu command, at any level. If a command leads to
a submenu, it’s still represented by a ToolStripMenuItem object, which has its own collection of

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 258

258 CHAPTER 7 WORKING WITH FORMS

ToolStripMenuItem objects: the DropDownItems collection, which is made up of ToolStripMenu-
Item objects. The ToolStripMenuItem class provides the following properties, which you can set
in the Properties window at design time or manipulate from within your code:

Checked Some menu commands act as toggles, and they are usually selected (checked) to
indicate that they are on, or are deselected (unchecked) to indicate that they are off. To initially
display a check mark next to a menu command, set its Checked property to True. You can also
access this property from within your code to change the checked status of a menu command
at runtime. For example, to toggle the status of a menu command called FntBold, use this
statement:

FntBold.Checked = Not FntBold.Checked

Enabled Some menu commands aren’t always available. The Paste command, for example,
has no meaning if the Clipboard is empty (or if it contains data that can’t be pasted in the cur-
rent application). To indicate that a command can’t be used at the time, you set its Enabled
property to False. The command then appears grayed out in the menu, and although it can
be highlighted, it can’t be activated. The following statements enable and disable the Undo
command depending on whether the TextBox1 control can undo the most recent operation:

If TextBox1.CanUndo Then
cmdUndo.Enabled = True

Else
cmdUndo.Enabled = False

End If

cmdUndo is the name of the Undo command in the application’s Edit menu. The CanUndo prop-
erty of the TextBox control returns a True/False value that indicates whether the last action can
be undone or not.

IsOnDropDown If the menu command, represented by a ToolStripMenuItem object, belongs
to a submenu, its IsOnDropDown property is True; otherwise, it’s False. The IsOnDropDown
property is read-only and False for the items on the first level of the menu.

Visible To remove a command temporarily from the menu, set the command’s Visible
property to False. The Visible property isn’t used frequently in menu design. In general, you
should prefer to disable a command to indicate that it can’t be used at the time (some other
action is required to enable it). Making a command invisible frustrates users, who might spend
time trying to locate the command in another menu.

Programming Menu Commands

When a menu item is selected by the user, it triggers a Click event. To program a menu item,
insert the appropriate code in the item’s Click event handler. The Exit command’s code would be
something like the following:

Sub menuExit(...) Handles menuExit.Click
End

End Sub

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 259

DESIGNING MENUS 259

If you need to execute any cleanup code before the application ends, place it in the CleanUp()
subroutine and call this subroutine from within the Exit item’s Click event handler:

Sub menuExit(...) Handles menuExit.Click
CleanUp()
End

End Sub

The same subroutine must also be called from within the FormClosing event handler of the
application’s main form because some users might terminate the application by clicking the form’s
Close button.

An application’s Open menu command contains the code that prompts the user to select a file
and then open it. You will see many examples of programming menu commands in the following
chapters. All you really need to know now is that each menu item is a ToolStripMenuItem object,
and it fires the Click event every time it’s selected with the mouse or the keyboard. In most cases,
you can treat the Click event handler of a ToolStripMenuItem object just like the Click event
handler of a Button.

Another interesting event of the ToolStripMenuItem is the DropDownOpened event, which is
fired when the user opens a menu or submenu (in effect, when the user clicks a menu item that
leads to a submenu). In this event’s handler, you can insert code to modify the submenu. The
Edit menu of just about any application contains the ubiquitous Cut/Copy/Paste commands.
These commands are not meaningful at all times. If the Clipboard doesn’t contain text, the Paste
command should be disabled. If no text is selected, the Copy and Cut commands should also be
disabled. Here’s how you could change the status of the Paste command from within the Drop-
DownOpened event handler of the Edit menu:

If My.Computer.Clipboard.ContainsText Then
PasteToolStripMenuItem.Enabled = True

Else
PasteToolStripMenuItem.Enabled = True

End If

Likewise, to change the status of the Cut and Copy commands, use the following statements in
the DropDownOpened event of the ToolStripMenuItem that represents the Edit menu:

If txtEditor.SelectedText.Trim.Length > 0 Then
CopyToolStripMenuItem.Enabled = True
CutToolStripMenuItem.Enabled = True

Else
CopyToolStripMenuItem.Enabled = False
CutToolStripMenuItem.Enabled = False

End If

Using Access and Shortcut Keys

Menus provide a convenient way to display a large number of choices to the user. They allow
you to organize commands in groups, according to their functions, and are available at all times.
Opening menus and selecting commands with the mouse, however, can be an inconvenience.
When using a word processor, for example, you don’t want to have to take your hands off the
keyboard and reach for the mouse. To simplify menu access, Windows forms support access keys
and shortcut keys.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 260

260 CHAPTER 7 WORKING WITH FORMS

Access Keys

Access keys allow the user to open a menu by pressing the Alt key and a letter key. To open the Edit
menu in all Windows applications, for example, you can press Alt+E. E is the Edit menu’s access
key. After the menu is open, the user can select a command with the arrow keys or by pressing
another key, which is the command’s access key, without holding down the Alt key.

Access keys are designated by the designer of the application and are marked with an underline
character. To assign an access key to a menu item, insert the ampersand symbol (&) in front of the
character you want to use as an access key in the ToolStripMenuItem’s Text property.

Default Access Keys Are Based on Item Captions

If you don’t designate access keys, Visual Basic will use the first character in each top-level menu as
its access key. The user won’t see the underline character under the first character, but can open the
menu by pressing the first character of its caption while holding down the Alt key. If two or more
menu captions begin with the same letter, the first (leftmost and topmost) menu will open.

Because the & symbol has a special meaning in menu design, you can’t use it in a menu
item’s caption. To actually display the & symbol in a caption, prefix it with another & symbol.
For example, the caption &Drag produces a command with the caption Drag (the first character
is underlined because it’s the access key). The caption Drag && Drop will create another com-
mand whose caption will be Drag & Drop. Finally, the string &Drag && Drop will create another
command with the caption Drag & Drop.

Shortcut Keys

Shortcut keys are similar to access keys, but instead of opening a menu, they run a command when
pressed. Assign shortcut keys to frequently used menu commands, so that users can reach them
with a single keystroke. Shortcut keys are combinations of the Ctrl key and a function or character
key. For example, the usual access key for the Close command (after the File menu is opened with
Alt+F) is C, but the usual shortcut key for the Close command is Ctrl+W.

To assign a shortcut key to a menu command, drop down the ShortcutKeys list in the Tool-
StripMenuItem’s Properties window and select a keystroke. Specify a modifier (Shift, Ctrl, or Alt)
and a key. You don’t have to insert any special characters in the command’s caption, nor do you
have to enter the keystroke next to the caption. It will be displayed next to the command auto-
matically. When assigning access and shortcut keys, take into consideration the well-established
Windows standards. Users expect Alt+F to open the File menu, so don’t use Alt+F for the Format
menu. Likewise, pressing Ctrl+C universally performs the Copy command; don’t use Ctrl+C as a
shortcut for the Cut command.

Manipulating Menus at Runtime
Dynamic menus change at runtime to display more or fewer commands, depending on the current
status of the program. This section explores two techniques for implementing dynamic menus:

◆ Creating short and long versions of the same menu

◆ Adding and removing menu commands at runtime

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 261

DESIGNING MENUS 261

Creating Short and Long Menus

A common technique in menu design is to create long and short versions of a menu. If a menu
contains many commands, and most of the time only a few of them are needed, you can create
one menu with all the commands and another with the most common ones. The first menu is
the long one, and the second is the short one. The last command in the long menu should be Short
Menu, and when selected, it should display the short version. The last command in the short menu
should be Long Menu, and it should display the long version.

Figure 7.19 shows a long and a short version of the same menu from the LongMenu project.
The short version omits infrequently used commands and is easier to handle.

Figure 7.19

The two versions of the
Format menu of the
LongMenu application

To implement the LongMenu command, start a new project and create a menu with the options
shown in Figure 7.19. Listing 7.11 is the code that shows/hides the long menu in the MenuSize
command’s Click event.

Listing 7.11: The MenuSize Menu Item’s Click Event

Private Sub mnuSize Click(...) Handles mnuSize.Click
If mnuSize.Text = ”Short Menu” Then

mnuSize.Text = ”Long Menu”
Else

mnuSize.Text = ”Short Menu”
End If
mnuUnderline.Visible = Not mnuUnderline.Visible
mnuStrike.Visible = Not mnuStrike.Visible
mnuSmallCaps.Visible = Not mnuSmallCaps.Visible
mnuAllCaps.Visible = Not mnuAllCaps.Visible

End Sub

The subroutine in Listing 7.11 doesn’t do much. It simply toggles the Visible property of
certain menu commands and changes the command’s caption to Short Menu or Long Menu,
depending on the menu’s current status. Notice that because the Visible property is a True/False
value, we don’t care about its current status; we simply toggle the current status with the Not
operator.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 262

262 CHAPTER 7 WORKING WITH FORMS

Adding and Removing Commands at Runtime

I conclude the discussion of menu design with a technique for building dynamic menus, which
grow and shrink at runtime. Many applications maintain a list of the most recently opened files in
the File menu. When you first start the application, this list is empty, and as you open and close
files, it starts to grow.

The RunTimeMenu project demonstrates how to add items to and remove items from a menu at
runtime. The main menu of the application’s form contains the Run Time Menu submenu, which
is initially empty.

The two buttons on the form add commands to and remove commands from the Run Time
Menu. Each new command is appended at the end of the menu, and the commands are removed
from the bottom of the menu first (the most recently added commands are removed first). To
change this order and display the most recent command at the beginning of the menu, use the
Insert method instead of the Add method to insert the new item. Listing 7.12 shows the code
behind the two buttons that add and remove menu items.

Listing 7.12: Adding and Removing Menu Items at Runtime

Private Sub bttnAddItem Click(...) Handles bttnAddItem.Click
Dim Item As New ToolStripMenuItem
Item.Text = ”Run Time Option” &

RunTimeMenuToolStripMenuItem.
DropDownItems.Count.ToString

RunTimeMenuToolStripMenuItem.DropDownItems.Add(Item)
AddHandler Item.Click,

New System.EventHandler(AddressOf OptionClick)
End Sub

Private Sub bttnRemoveItem Click(...) Handles bttnRemoveItem.Click
If RunTimeMenuToolStripMenuItem.DropDownItems.Count > 0 Then

Dim mItem As ToolStripItem
Dim items As Integer =

RunTimeMenuToolStripMenuItem.DropDownItems.Count
mItem = RunTimeMenuToolStripMenuItem.DropDownItems(items - 1)

RunTimeMenuToolStripMenuItem.DropDownItems.Remove(mItem)
End If

End Sub

The Remove button’s code uses the Remove method to remove the last item in the menu by its
index, after making sure the menu contains at least one item. The Add button adds a new item,
sets its caption to Run Time Option n, where n is the item’s order in the menu. In addition, it
assigns an event handler to the new item’s Click event. This event handler is the same for all the
items added at runtime; it’s the OptionClick() subroutine.

All the runtime options invoke the same event handler — it would be quite cumbersome to
come up with a separate event handler for different items. In the single event handler, you can
examine the name of the ToolStripMenuItem object that invoked the event handler and act accord-
ingly. The OptionClick() subroutine used in Listing 7.13 displays the name of the menu item that

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 263

DESIGNING MENUS 263

invoked it. It doesn’t do anything, but it shows you how to figure out which item of the Run Time
Menu was clicked.

Listing 7.13: Programming Dynamic Menu Items

Private Sub OptionClick(...)
Dim itemClicked As New ToolStripMenuItem
itemClicked = CType(sender, ToolStripMenuItem)
MsgBox(”You have selected the item ” &

itemClicked.Text)
End Sub

Creating Context Menus

Nearly every Windows application provides a context menu that the user can invoke by
right-clicking a form or a control. (It’s sometimes called a shortcut menu or pop-up menu.) This
is a regular menu, but it’s not anchored on the form. It can be displayed anywhere on the form
or on specific controls. Different controls can have different context menus, depending on the
operations you can perform on them at the time.

To create a context menu, place a ContextMenuStrip control on your form. The new context
menu will appear on the form just like a regular menu, but it won’t be displayed there at run-
time. You can create as many context menus as you need by placing multiple instances of the
ContextMenuStrip control on your form and adding the appropriate commands to each one. To
associate a context menu with a control on your form, set the control’s ContextMenuStrip property
to the name of the corresponding context menu.

Designing a context menu is identical to designing a regular menu. The only difference is that
the first command in the menu is always ContextMenuStrip and it’s not displayed along with the
menu. Figure 7.20 shows a context menu at design time and how the same menu is displayed at
runtime.

You can create as many context menus as you want on a form. Each control has a ContextMenu
property, which you can set to any of the existing ContextMenuStrip controls. Select the control for
which you want to specify a context menu and locate the ContextMenu property in the Properties
window. Expand the drop-down list and select the name of the desired context menu.

To edit one of the context menus on a form, select the appropriate ContextMenuStrip control at
the bottom of the Designer. The corresponding context menu will appear on the form’s menu bar,
as if it were a regular form menu. This is temporary, however, and the only menu that appears on
the form’s menu bar at runtime is the one that corresponds to the MenuStrip control (and there
can be only one of them on each form).

Iterating a Menu’s Items
The last menu-related topic in this chapter demonstrates how to iterate through all the items of a
menu structure, including their submenus, at any depth. The main menu of an application can be
accessed by the expression Me.MenuStrip1 (assuming that you’re using the default names). This
is a reference to the top-level commands of the menu, which appear in the form’s menu bar. Each
command, in turn, is represented by a ToolStripMenuItem object. All the items under a menu
command form a ToolStripMenuItems collection, which you can scan to retrieve the individual
commands.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 264

264 CHAPTER 7 WORKING WITH FORMS

Figure 7.20

A context menu at
design time (top) and
at runtime (bottom)

The first command in a menu is accessed with the expression Me.MenuStrip1.Items(0); this is
the File command in a typical application. The expression Me.MenuStrip1.Items(1) is the second
command on the same level as the File command (typically, the Edit menu).

To access the items under the first menu, use the DropDownItems collection of the top command.
The first command in the File menu can be accessed by this expression:

Me.MenuStrip1.Items(0).DropDownItems(0)

The same items can be accessed by name as well, and this is how you should manipulate the
menu items from within your code. In unusual situations, or if you’re using dynamic menus to
which you add and subtract commands at runtime, you’ll have to access the menu items through
the DropDownItems collection.

VB 2008 at Work: The MapMenu Project

The MapMenu project demonstrates how to access the items of a menu from within your applica-
tion’s code. The project’s main form contains a menu, a TextBox control, and a Button control that
prints the menu’s structure in the TextBox. You can edit the menu before running the program,
and the code behind the button will print the current structure of the menu items.

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 265

THE BOTTOM LINE 265

The code behind the Map Menu button iterates through the items of the form’s MenuStrip
items and prints their names, as well as the names of their drop-down items, in the Output win-
dow. It scans all the members of the control’s Items collection and prints their captions. After
printing each command’s caption, it calls the PrintSubMenu() subroutine, passing the current
ToolStripMenuItem as an argument. The PrintSubMenu() subroutine iterates through the Drop-
DownItems of the collection passed as an argument and prints their captions. If one of the items
leads to a nested submenu, it calls itself, passing the current ToolStripMenuItem as an argument.
You can open the MapMenu project with Visual Studio and examine its code.

The Bottom Line

Use forms’ properties. Forms expose a lot of trivial properties for setting their appearance.
In addition, they expose a few properties that simplify the task of designing forms that can be
resized at runtime. The Anchor property causes a control to be anchored to one or more edges
of the form to which it belongs. The Dock property allows you to place on the form controls that
are docked to one of its edges. To create forms with multiple panes that the user can resize at
runtime, use the SplitContainer control. If you just can’t fit all the controls in a reasonably sized
form, use the AutoScroll properties to create a scrollable form.

Master It You’ve been asked to design a form with three distinct sections. You should also
allow users to resize each section. How will you design this form?

Design applications with multiple forms. Typical applications are made up of multiple
forms: the main form and one or more auxiliary forms. To show an auxiliary form from within
the main form’s code, call the auxiliary form’s Show method, or the ShowDialog method if you
want to display the auxiliary form modally (as a dialog box).

Master It How will you set the values of selected controls in a dialog box, display them,
and then read the values selected by the user from the dialog box?

Design dynamic forms. You can create dynamic forms by populating them with controls at
runtime through the form’s Controls collection. First, create instances of the appropriate con-
trols by declaring variables of the corresponding type. Then set the properties of the variable
that represents the control. Finally, place the control on the form by adding it to the form’s Con-
trols collection.

Master It How will you add a TextBox control to your form at runtime and assign a han-
dler to the control’s TextChanged event?

Design menus. Both form menus and context menus are implemented through the Menu-
Strip control. The items that make up the menu are ToolStripMenuItem objects. The ToolStrip-
MenuItem objects give you absolute control over the structure and appearance of the menus of
your application.

Master It What are the two basic events fired by the ToolStripMenuItem object?

Petroutsos c07.tex V3 - 01/28/2008 1:11pm Page 266

Petroutsos V1 c08.tex Page 267 01/28/2008 1:24pm

Chapter 8

More Windows Controls

In this chapter, we’ll continue our discussion of the basic Windows controls with the controls that
implement the common dialog boxes and the RichTextBox control.

The .NET Framework provides a set of controls for displaying common dialog boxes, such
as the Open or Color dialog boxes. Each of these controls encapsulates a large amount of
functionality that would take a lot of code to duplicate. The common dialog controls are
fundamental components because they enable you to design user interfaces with the look and feel
of a Windows application.

Besides the common dialog boxes, we’ll also explore the RichTextBox control, which is an
advanced version of the TextBox control. The RichTextBox control provides all the functionality
you’ll need to build a word processor — WordPad is actually built around the RichTextBox
control. The RichTextBox control allows you to format text by mixing fonts and attributes, aligning
paragraphs differently, and so on. You can also embed other objects in the document displayed in
a RichTextBox, such as images. Sure, the RichTextBox control is nothing like a full-fledged word
processor, but it’s a great tool for editing formatted text at runtime.

In this chapter you’ll learn how to do the following:

◆ Use the OpenFileDialog and SaveFileDialog controls to prompt users for filenames

◆ Use the ColorDialog and FontDialog controls to prompt users for colors and typefaces

◆ Use the RichTextBox control as an advanced text editor to present richly formatted text

The Common Dialog Controls
A rather tedious, but quite common, task in nearly every application is to prompt the user for
filenames, font names and sizes, or colors to be used by the application. Designing your own
dialog boxes for these purposes would be a hassle, not to mention that your applications wouldn’t
conform to the basic Windows interface design principles. In fact, all Windows applications use
standard dialog boxes for common operations; two of them are shown in Figure 8.1. These dialog
boxes are implemented as standard controls in the Toolbox. To use any of the common dialog
controls in your interface, just place the appropriate control from the Dialog section of the Toolbox
on your form and activate it from within your code by calling the ShowDialog method.

The common dialog controls are invisible at runtime, and they’re not placed on your forms,
because they’re implemented as modal dialog boxes and they’re displayed as needed. You simply
add them to the project by double-clicking their icons in the Toolbox; a new icon appears in

Petroutsos V1 c08.tex Page 268 01/28/2008 1:24pm

268 CHAPTER 8 MORE WINDOWS CONTROLS

the components tray of the form, just below the Form Designer. The common dialog controls
in the Toolbox are the following:

OpenFileDialog Lets users select a file to open. It also allows the selection of multiple files
for applications that must process many files at once.

SaveFileDialog Lets users select or specify the path of a file in which the current document
will be saved.

FolderBrowserDialog Lets users select a folder (an operation that can’t be performed with
the OpenFileDialog control).

ColorDialog Lets users select a color from a list of predefined colors or specify custom colors.

FontDialog Lets users select a typeface and style to be applied to the current text selection.
The Font dialog box has an Apply button, which you can intercept from within your code and
use to apply the currently selected font to the text without closing the dialog box.

Figure 8.1

The Open and Font
common dialog boxes

There are three more common dialog controls: the PrintDialog, PrintPreviewDialog, and
PageSetupDialog controls. These controls are discussed in detail in Chapter 20, ‘‘Printing with
Visual Basic 2008,’’ in the context of VB’s printing capabilities.

Using the Common Dialog Controls
To display any of the common dialog boxes from within your application, you must first add an
instance of the appropriate control to your project. Then you must set some basic properties of
the control through the Properties window. Most applications set the control’s properties from
within the code because common dialogs interact closely with the application. When you call the
Color common dialog, for example, you should preselect a color from within your application
and make it the default selection on the control. When prompting the user for the color of the
text, the default selection should be the current setting of the control’s ForeColor property. Like-
wise, the Save dialog box must suggest a filename when it first pops up (or the file’s extension,
at least).

Petroutsos V1 c08.tex Page 269 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 269

To display a common dialog box from within your code, you simply call the control’s
ShowDialog method, which is common for all controls. Note that all common dialog controls
can be displayed only modally and they don’t expose a Show method. As soon as you call the
ShowDialog method, the corresponding dialog box appears onscreen, and the execution of the
program is suspended until the box is closed. Using the Open, Save, and FolderBrowser dialog
boxes, users can traverse the entire structure of their drives and locate the desired filename or
folder. When the user clicks the Open or Save button, the dialog box closes and the program’s
execution resumes. The code should read the name of the file selected by the user through the
FileName property and use it to open the file or store the current document there. The folder
selected in the FolderBrowserDialog control is returned to the application through the
SelectedPath property.

Here is the sequence of statements used to invoke the Open common dialog and retrieve the
selected filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
fileName = OpenFileDialog1.FileName
’ Statements to open the selected file

End If

The ShowDialog method returns a value indicating how the dialog box was closed. You should
read this value from within your code and ignore the settings of the dialog box if the operation
was cancelled.

The variable fileName in the preceding code segment is the full pathname of the file selected
by the user. You can also set the FileName property to a filename, which will be displayed when
the Open dialog box is first opened:

OpenFileDialog1.FileName =
”C:\WorkFiles\Documents\Document1.doc”

If OpenFileDialog1.ShowDialog =
Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName
’ Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by using
the following statements:

ColorDialog1.Color = TextBox1.BackColor
If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color
End If

The ShowDialog method is common to all controls. The Title property is also common to all
controls and it’s the string displayed in the title bar of the dialog box. The default title is the name
of the dialog box (for example, Open, Color, and so on), but you can adjust it from within your code
with a statement such as the following:

ColorDialog1.Title = ”Select Drawing Color”

Petroutsos V1 c08.tex Page 270 01/28/2008 1:24pm

270 CHAPTER 8 MORE WINDOWS CONTROLS

The ColorDialog Control
The Color dialog box, shown in Figure 8.2, is one of the simplest dialog boxes. Its Color property
returns the color selected by the user or sets the initially selected color when the user opens the
dialog box.

Figure 8.2

The Color dialog box

The following statements set the initial color of the ColorDialog control, display the dialog box,
and then use the color selected in the control to fill the form. First, place a ColorDialog control in
the form and then insert the following statements in a button’s Click event handler:

Private Sub Button1 Click(...)
Handles Button1.Click

ColorDialog1.Color = Me.BackColor
If ColorDialog1.ShowDialog =

Windows.Forms.DialogResult.OK Then
Me.BackColor = ColorDialog1.Color

End If
End Sub

The following sections discuss the basic properties of the ColorDialog control.

AllowFullOpen

Set this property to True if you want users to be able to open the dialog box and define their own
custom colors, like the one shown in Figure 8.2. The AllowFullOpen property doesn’t open the
custom section of the dialog box; it simply enables the Define Custom Colors button in the dialog
box. Otherwise, this button is disabled.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all available
colors in the set of basic colors.

Petroutsos V1 c08.tex Page 271 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 271

Color

This is the color specified on the control. You can set it to a color value before showing the dialog
box to suggest a reasonable selection. On return, read the value of the same property to find out
which color was picked by the user in the control:

ColorDialog1.Color = Me.BackColor
If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color
End If

CustomColors

This property indicates the set of custom colors that will be shown in the dialog box. The Color
dialog box has a section called Custom Colors, in which you can display 16 additional custom
colors. The CustomColors property is an array of integers that represent colors. To display three
custom colors in the lower section of the Color dialog box, use a statement such as the following:

Dim colors() As Integer = {222663, 35453, 7888}
ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s not.
You can’t create the array CustomColors with a statement such as this one:

Dim colors() As Color =
{Color.Azure, Color.Navy, Color.Teal}

Because it’s awkward to work with numeric values, you should convert color values to integer
values by using a statement such as the following:

Color.Navy.ToArgb

The preceding statement returns an integer value that represents the color navy. This value,
however, is negative because the first byte in the color value represents the transparency of the
color. To get the value of the color, you must take the absolute value of the integer value returned
by the previous expression. To create an array of integers that represent color values, use a
statement such as the following:

Dim colors() As Integer =
{Math.Abs(Color.Gray.ToArgb),
Math.Abs(Color.Navy.ToArgb),
Math.Abs(Color.Teal.ToArgb)}

Now you can assign the colors array to the CustomColors property of the control, and the
colors will appear in the Custom Colors section of the Color dialog box.

SolidColorOnly

This indicates whether the dialog box will restrict users to selecting solid colors only. This
setting should be used with systems that can display only 256 colors. Although today few
systems can’t display more than 256 colors, some interfaces are limited to this number. When

Petroutsos V1 c08.tex Page 272 01/28/2008 1:24pm

272 CHAPTER 8 MORE WINDOWS CONTROLS

you run an application through Remote Desktop, for example, only the solid colors are displayed
correctly on the remote screen, regardless of the remote computer’s graphics card (and that’s for
efficiency reasons).

The FontDialog Control
The Font dialog box, shown in Figure 8.3, lets the user review and select a font and then set its
size and style. Optionally, users can also select the font’s color and even apply the current set-
tings to the selected text on a control of the form without closing the dialog box, by clicking the
Apply button.

Figure 8.3

The Font dialog box

When the dialog is closed by clicking the OK button, you can retrieve the selected font by using
the control’s Font property. In addition to the OK button, the Font dialog box may contain the
Apply button, which reports the current setting to your application. You can intercept the Click
event of the Apply button and adjust the appearance of the text on your form while the common
dialog is still visible.

The main property of this control is the Font property, which sets the initially selected font in
the dialog box and retrieves the font selected by the user. The following statements display the
Font dialog box after setting the initial font to the current font of the TextBox1 control. When
the user closes the dialog box, the code retrieves the selected font and assigns it to the same
TextBox control:

FontDialog1.Font = TextBox1.Font
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

Use the following properties to customize the Font dialog box before displaying it.

Petroutsos V1 c08.tex Page 273 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 273

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be displayed in
the Font dialog box. This combo box allows the user to change the current character set and select
a non-Western language (such as Greek, Hebrew, Cyrillic, and so on).

AllowVerticalFonts

This property is a Boolean value that indicates whether the dialog box allows the display and
selection of both vertical and horizontal fonts. Its default value is False, which displays only
horizontal fonts.

Color, ShowColor

The Color property sets or returns the selected font color. To enable users to select a color for the
font, you must also set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only the selection
of fixed-pitch fonts. Its default value is False, which means that all fonts (fixed- and variable-pitch
fonts) are displayed in the Font dialog box. Fixed-pitch fonts, or monospaced fonts, consist of
characters of equal widths that are sometimes used to display columns of numeric values so that
the digits are aligned vertically.

Font

This property is a Font object. You can set it to the preselected font before displaying the dialog
box and assign it to a Font property upon return. You’ve already seen how to preselect a font and
how to apply the selected font to a control from within your application.

You can also create a new Font object and assign it to the control’s Font property. Upon return,
the TextBox control’s Font property is set to the selected font:

Dim newFont As Font(”Verdana”, 12, FontStyle.Underline)
FontDialog1.Font = newFont
If FontDialog1.ShowDialog() = DialogResult.OK Then

TextBox1.ForeColor = FontDialog1.Color
End If

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the selection of
an existing font. If the user enters a font name that doesn’t correspond to a name in the list
of available fonts, a warning is displayed. Its default value is True, and there’s no reason to
change it.

MaxSize, MinSize

These two properties are integers that determine the minimum and maximum point size the user
can specify in the Font dialog box. Use these two properties to prevent the selection of extremely
large or extremely small font sizes, because these fonts might throw off a well-balanced interface
(text will overflow in labels, for example).

Petroutsos V1 c08.tex Page 274 01/28/2008 1:24pm

274 CHAPTER 8 MORE WINDOWS CONTROLS

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an Apply button.
Its default value is False, so the Apply button isn’t normally displayed. If you set this property to
True, you must also program the control’s Apply event — the changes aren’t applied automatically
to any of the controls in the current form.

The following statements display the Font dialog box with the Apply button:

Private Sub Button2 Click(...) Handles Button2.Click
FontDialog1.Font = TextBox1.Font
FontDialog1.ShowApply = True
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

End Sub

The FontDialog control raises the Apply event every time the user clicks the Apply button. In
this event’s handler, you must read the currently selected font and use it in the form, so that users
can preview the effect of their selection:

Private Sub FontDialog1 Apply(...) Handles FontDialog1.Apply
TextBox1.Font = FontDialog1.Font

End Sub

ShowEffects

This property is a Boolean value that indicates whether the dialog box allows the selection of
special text effects, such as strikethrough and underline. The effects are returned to the
application as attributes of the selected Font object, and you don’t have to do anything special
in your application.

The OpenDialog and SaveDialog Controls
Open and Save As, the two most widely used common dialog boxes (see Figure 8.4), are
implemented by the OpenFileDialog and SaveFileDialog controls. Nearly every application
prompts users for filenames, and the .NET Framework provides two controls for this purpose.
The two dialog boxes are nearly identical, and most of their properties are common, so we’ll start
with the properties that are common to both controls.

When either of the two controls is displayed, it rarely displays all the files in any given folder.
Usually the files displayed are limited to the ones that the application recognizes so that users can
easily spot the file they want. The Filter property limits the types of files that will appear in the
Open or Save As dialog box.

It’s also standard for the Windows interface not to display the extensions of files (although
Windows distinguishes files by their extensions). The file type ComboBox, which appears at the
bottom of the form next to the File Name box, contains the various file types recognized by
the application. The various file types can be described in plain English with long descriptive
names and without their extensions.

Petroutsos V1 c08.tex Page 275 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 275

Figure 8.4

The Open and Save As
common dialog boxes

The extension of the default file type for the application is described by the DefaultExtension
property, and the list of the file types displayed in the Save As Type box is determined by the
Filter property.

To prompt the user for a file to be opened, use the following statements. The Open dialog box
displays the files with the extension .bin only.

OpenFileDialog1.DefaultExt = ”.bin”
OpenFileDialog1.AddExtension = True
OpenFileDialog1.Filter = ”Binary Files|*.bin”
If OpenFileDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then
Debug.WriteLine(OpenFileDialog1.FileName)

End If

The following sections describe the properties of the OpenFileDialog and SaveFileDialog
controls.

AddExtension

This property is a Boolean value that determines whether the dialog box automatically adds an
extension to a filename if the user omits it. The extension added automatically is the one specified

Petroutsos V1 c08.tex Page 276 01/28/2008 1:24pm

276 CHAPTER 8 MORE WINDOWS CONTROLS

by the DefaultExtension property, which you must set before calling the ShowDialog method.
This is the default extension of the files recognized by your application.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the
user enters the name of a file that does not exist in the Open dialog box, or if the user enters
the name of a file that exists in the Save dialog box.

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the
user specifies a path that does not exist, as part of the user-supplied filename.

DefaultExt

This property sets the default extension for the filenames specified on the control. Use this prop-
erty to specify a default filename extension, such as .txt or .doc, so that when a file with no
extension is specified by the user, the default extension is automatically appended to the filename.
You must also set the AddExtension property to True. The default extension property starts with
the period, and it’s a string — for example, .bin.

DereferenceLinks

This property indicates whether the dialog box returns the location of the file referenced by the
shortcut or the location of the shortcut itself. If you attempt to select a shortcut on your desktop
when the DereferenceLinks property is set to False, the dialog box will return to your application
a value such as C:\WINDOWS\SYSTEM32\lnkstub.exe, which is the name of the shortcut, not the
name of the file represented by the shortcut. If you set the DereferenceLinks property to True,
the dialog box will return the actual filename represented by the shortcut, which you can use in
your code.

FileName

Use this property to retrieve the full path of the file selected by the user in the control. If you set
this property to a filename before opening the dialog box, this value will be the proposed filename.
The user can click OK to select this file or select another one in the control. The two controls
provide another related property, the FileNames property, which returns an array of filenames.
To find out how to allow the user to select multiple files, see the discussion of the MultipleFiles
and FileNames properties in ‘‘VB 2008 at Work: Multiple File Selection’’ at the end of
this section.

Filter

This property is used to specify the type(s) of files displayed in the dialog box. To display text files
only, set the Filter property to Text files|*.txt. The pipe symbol separates the description of
the files (what the user sees) from the actual extension (how the operating system distinguishes
the various file types).

If you want to display multiple extensions, such as .BMP, .GIF, and .JPG, use a semicolon to
separate extensions with the Filter property. Set the Filter property to the string Images|*.BMP;

Petroutsos V1 c08.tex Page 277 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 277

.GIF;.JPG to display all the files of these three types when the user selects Images in the Save As
Type combo box, under the box with the filename.

Don’t include spaces before or after the pipe symbol because these spaces will be displayed
on the dialog box. In the Open dialog box of an image-processing application, you’ll probably
provide options for each image file type, as well as an option for all images:

OpenFileDialog1.Filter =
”Bitmaps|*.BMP|GIF Images|*.GIF|” &
”JPEG Images|*.JPG|All Images|*.BMP;*.GIF;*.JPG”

FilterIndex

When you specify more than one file type when using the Filter property of the Open dialog
box, the first file type becomes the default. If you want to use a file type other than the first one,
use the FilterIndex property to determine which file type will be displayed as the default when
the Open dialog box is opened. The index of the first type is 1, and there’s no reason to ever set
this property to 1. If you use the Filter property value of the example in the preceding section
and set the FilterIndex property to 2, the Open dialog box will display GIF files by default.

InitialDirectory

This property sets the initial folder whose files are displayed the first time that the Open and Save
dialog boxes are opened. Use this property to display the files of the application’s folder or to spec-
ify a folder in which the application stores its files by default. If you don’t specify an initial folder,
the dialog box will default to the last folder where the most recent file was opened or saved. It’s
also customary to set the initial folder to the application’s path by using the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application’s
executable file resides.

RestoreDirectory

Every time the Open and Save As dialog boxes are displayed, the current folder is the one that was
selected by the user the last time the control was displayed. The RestoreDirectory property is a
Boolean value that indicates whether the dialog box restores the current directory before closing.
Its default value is False, which means that the initial directory is not restored automatically.
The InitialDirectory property overrides the RestoreDirectory property.

The following four properties are properties of the OpenFileDialog control only: FileNames,
MultiSelect, ReadOnlyChecked, and ShowReadOnly.

FileNames

If the Open dialog box allows the selection of multiple files (see the later section ‘‘VB 2008 at Work:
Multiple File Selection’’), the FileNames property contains the pathnames of all selected files.
FileNames is a collection, and you can iterate through the filenames with an enumerator. This
property should be used only with the OpenFileDialog control, even though the SaveFileDialog
control exposes a FileNames property.

Petroutsos V1 c08.tex Page 278 01/28/2008 1:24pm

278 CHAPTER 8 MORE WINDOWS CONTROLS

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files in the
dialog box. Its default value is False, and users can select a single file. When the MultiSelect
property is True, the user can select multiple files, but they must all come from the same folder
(you can’t allow the selection of multiple files from different folders). This property is unique to
the OpenFileDialog control.

ReadOnlyChecked, ShowReadOnly

The ReadOnlyChecked property is a Boolean value that indicates whether the Read-Only check
box is selected when the dialog box first pops up (the user can clear this box to open a file in
read/write mode). You can set this property to True only if the ShowReadOnly property is also set
to True. The ShowReadOnly property is also a Boolean value that indicates whether the Read-Only
check box is available. If this check box appears on the form, the user can select it so the file will
be opened as read-only. Files opened as read-only shouldn’t be saved onto the same file — always
prompt the user for a new filename.

The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly open the
selected file. Likewise, the SaveFileDialog control exposes the SaveFile method, which allows
you to quickly save a document to the selected file. Normally, after retrieving the name of the
file selected by the user, you must open this file for reading (in the case of the Open dialog box)
or writing (in the case of the Save dialog box). The topic of reading from or writing to files is
discussed in detail in Chapter 15, ‘‘Accessing Folders and Files.’’

When this method is applied to the Open dialog box, the file is opened with read-only permis-
sion. The same method can be applied to the SaveFile dialog box, in which case the file is opened
with read-write permission. Both methods return a Stream object, and you can call this object’s
Read and Write methods to read from or write to the file.

VB 2008 at Work: Multiple File Selection

The Open dialog box allows the selection of multiple files. This feature can come in handy when
you want to process files en masse. You can let the user select many files, usually of the same type,
and then process them one at a time. Or, you might want to prompt the user to select multiple files
to be moved or copied.

To allow the user to select multiple files in the Open dialog box, set the MultiSelect property
to True. The user can then select multiple files with the mouse by holding down the Shift or Ctrl
key. The names of the selected files are reported by the property FileNames, which is an array
of strings. The FileNames array contains the pathnames of all selected files, and you can iterate
through them and process each file individually.

One of this chapter’s sample projects is the MultipleFiles project, which demonstrates how to
use the FileNames property. The application’s form is shown in Figure 8.5. The button at the top
of the form displays the Open dialog box, where you can select multiple files. After closing the
dialog box by clicking the Open button, the application displays the pathnames of the selected
files on a ListBox control.

Petroutsos V1 c08.tex Page 279 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 279

Figure 8.5

The MultipleFiles
project lets the user
select multiple files in
the Open dialog box.

The code behind the Open Files button is shown in Listing 8.1. In this example, I used the
array’s enumerator to iterate through the elements of the FileNames array. You can use any of the
methods discussed in Chapter 2, ‘‘The Visual Basic 2008 Language,’’ to iterate through the array.

Listing 8.1: Processing Multiple Selected Files

Private Sub bttnFile Click(...)
Handles bttnFile.Click

OpenFileDialog1.Multiselect = True
OpenFileDialog1.ShowDialog()
Dim filesEnum As IEnumerator
ListBox1.Items.Clear()
filesEnum = OpenFileDialog1.FileNames.GetEnumerator()
While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)
End While

End Sub

The FolderBrowserDialog Control
Sometimes we need to prompt users for a folder, rather than a filename. An application that
processes files in batch mode shouldn’t force users to select the files to be processed. Instead, it
should allow users to select a folder and process all files of a specific type in the folder (it could

Petroutsos V1 c08.tex Page 280 01/28/2008 1:24pm

280 CHAPTER 8 MORE WINDOWS CONTROLS

encrypt all text documents or resize all image files, for example). As elaborate as the File Open
dialog box might be, it doesn’t allow the selection of a folder. To prompt users for a folder’s path,
use the FolderBrowser dialog box, which is a very simple one; it’s shown in Figure 8.6 in the
section ‘‘VB 2008 at Work: Folder Browsing Demo Project.’’ The FolderBrowserDialog control
exposes a small number of properties, which are discussed next.

RootFolder

This property indicates the initial folder to be displayed when the dialog box is shown. It is not
necessarily a string; it can also be a member of the SpecialFolder enumeration. To see the
members of the enumeration, enter the following expression:

FolderBrowserDialog1.RootFolder =

As soon as you enter the equals sign, you will see the members of the enumeration. The most
common setting for this property is My Computer, which represents the target computer’s file
system. You can set the RootFolder property to a number of special folders (for example, Personal,
Desktop, ApplicationData, LocalApplicationData, and so on). You can also set this property to a
string with the desired folder’s pathname.

SelectedFolder

After the user closes the FolderBrowser dialog box by clicking the OK button, you can retrieve the
name of the selected folder with the SelectedFolder property, which is a string, and you can
use it with the methods of the System.IO namespace to access and manipulate the selected folder’s
files and subfolders.

ShowNewFolderButton

This property determines whether the dialog box will contain a New button; its default value
is True. When users click the New button to create a new folder, the dialog box prompts them
for the new folder’s name, and creates a new folder with the specified name under the
selected folder.

VB 2008 at Work: Folder Browsing Demo Project

The FolderBrowser control is a trivial control, but I’m including a sample application to demon-
strate its use. The same application demonstrates how to retrieve the files and subfolders of the
selected folder and how to create a directory listing in a RichTextBox control, like the one shown in
Figure 8.6. The members of the System.IO namespace, which allow you to access and manipulate
files and folders from within your code, are discussed in detail in Chapter 15.

The FolderBrowser dialog box is set to display the entire file system of the target computer and
is invoked with the following statements:

FolderBrowserDialog1.RootFolder = Environment.SpecialFolder.MyComputer
FolderBrowserDialog1.ShowNewFolderButton = False
If FolderBrowserDialog1.ShowDialog = DialogResult.OK Then
’ process files in selected folder
End If

Petroutsos V1 c08.tex Page 281 01/28/2008 1:24pm

THE COMMON DIALOG CONTROLS 281

Figure 8.6

Selecting a folder via the
FolderBrowser
dialog box

As usual, we examine the value returned by the ShowDialog method of the control and we
proceed if the user has closed the dialog box by clicking the OK button. The code that iterates
through the selected folder’s files and subfolders, shown in Listing 8.2, is basically a demonstration
of some members of the System.IO namespace, but I’ll review it briefly here.

Listing 8.2: Scanning a Folder

Private Sub bttnSelectFiles Click(...)
Handles bttnSelectFiles.Click

FolderBrowserDialog1.RootFolder =
Environment.SpecialFolder.MyComputer

FolderBrowserDialog1.ShowNewFolderButton = False
If FolderBrowserDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

RichTextBox1.Clear()
’ Retrieve initial folder
Dim initialFolder As String =

FolderBrowserDialog1.SelectedPath
Dim InitialDir As New IO.DirectoryInfo(

FolderBrowserDialog1.SelectedPath)

Petroutsos V1 c08.tex Page 282 01/28/2008 1:24pm

282 CHAPTER 8 MORE WINDOWS CONTROLS

’ and print its name w/o any indentation
PrintFolderName(InitialDir, ””)
’ and then print the files in the top folder
If InitialDir.GetFiles(”*.*”).Length = 0 Then

SwitchToItalics()
RichTextBox1.AppendText(

”folder contains no files” & vbCrLf)
SwitchToRegular()

Else
PrintFileNames(InitialDir, ””)

End If
Dim DI As IO.DirectoryInfo
’ Iterate through every subfolder and print it
For Each DI In InitialDir.GetDirectories

PrintDirectory(DI)
Next

End If
End Sub

The selected folder’s name is stored in the initialFolder variable and is passed as an
argument to the constructor of the DirectoryInfo class. The InitialDir variable represents the
specified folder. This object is passed to the PrintFolderName() subroutine, which prints
the folder’s name in bold. Then the code iterates through the same folder’s files and prints them
with the PrintFileNames() subroutine, which accepts as an argument the DirectoryInfo object
that represents the current folder and the indentation level. After printing the initial folder’s name
and the names of the files in the folder, the code iterates through the subfolders of the initial folder.
The GetDirectories method of the DirectoryInfo class returns a collection of objects, one for each
subfolder under the folder represented by the InitialDir variable. For each subfolder, it calls the
PrintDirectory() subroutine, which prints the folder’s name and the files in this folder,
and then iterates through the folder’s subfolders. The code that iterates through the selected
folder’s files and subfolders is shown in Listing 8.3.

Listing 8.3: The PrintDirectory() Subroutine

Private Sub PrintDirectory(ByVal CurrentDir As IO.DirectoryInfo)
Static IndentationLevel As Integer = 0
IndentationLevel += 1
Dim indentationString As String = ””
indentationString =
New String(Convert.ToChar(vbTab), IndentationLevel)
PrintFolderName(CurrentDir, indentationString)
If CurrentDir.GetFiles(”*.*”).Length = 0 Then

SwitchToItalics()
RichTextBox1.AppendText(indentationString &

”folder contains no files” & vbCrLf)
SwitchToRegular()

Petroutsos V1 c08.tex Page 283 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 283

Else
PrintFileNames(CurrentDir, indentationString)

End If
Dim folder As IO.DirectoryInfo
For Each folder In CurrentDir.GetDirectories

PrintDirectory(folder)
Next
IndentationLevel -= 1

End Sub

The code that iterates through the subfolders of a given folder is discussed in detail in
Chapter 15, so you need not worry if you can’t figure out how it works yet. In the following section,
you’ll learn how to display formatted text in the RichTextBox control.

The RichTextBox Control
The RichTextBox control is the core of a full-blown word processor. It provides all the functionality
of a TextBox control; it can handle multiple typefaces, sizes, and attributes, and offers precise
control over the margins of the text (see Figure 8.7). You can even place images in your text on a
RichTextBox control (although you won’t have the kind of control over the embedded images that
you have with Microsoft Word).

Figure 8.7

A word processor based
on the functionality of
the RichTextBox control

The fundamental property of the RichTextBox control is its Rtf property. Similar to the
Text property of the TextBox control, this property is the text displayed on the control. Unlike
the Text property, however, which returns (or sets) the text of the control but doesn’t contain
formatting information, the Rtf property returns the text along with any formatting informa-
tion. Therefore, you can use the RichTextBox control to specify the text’s formatting, including
paragraph indentation, font, and font size or style.

Petroutsos V1 c08.tex Page 284 01/28/2008 1:24pm

284 CHAPTER 8 MORE WINDOWS CONTROLS

RTF, which stands for Rich Text Format, is a standard for storing formatting information along
with the text. The beauty of the RichTextBox control for programmers is that they don’t need
to supply the formatting codes. The control provides simple properties to change the font of
the selected text, change the alignment of the current paragraph, and so on. The RTF code is
generated internally by the control and used to save and load formatted files. It’s possible to
create elaborately formatted documents without knowing the RTF specification.

The WordPad application that comes with Windows is based on the RichTextBox control.
You can easily duplicate every bit of WordPad’s functionality with the RichTextBox control,
as you will see later, in the section ‘‘VB 2008 at Work: The RTFPad Project.’’

The RTF Language
A basic knowledge of the RTF format, its commands, and how it works will certainly help you
understand the RichTextBox control’s inner workings. RTF is a language that uses simple
commands to specify the formatting of a document. These commands, or tags, are ASCII strings,
such as \par (the tag that marks the beginning of a new paragraph) and \b (the tag that turns
on the bold style). And this is where the value of the RTF format lies. RTF documents don’t
contain special characters and can be easily exchanged among different operating systems and
computers, as long as there is an RTF-capable application to read the document. Let’s look at an
RTF document in action.

Open the WordPad application (choose Start � Programs � Accessories � WordPad) and
enter a few lines of text (see Figure 8.8). Select a few words or sentences, and format them in
different ways with any of WordPad’s formatting commands. Then save the document in RTF
format: Choose File � Save As, select Rich Text Format, and then save the file as Document.rtf.
If you open this file with a text editor such as Notepad, you’ll see the actual RTF code that pro-
duced the document. A section of the RTF file for the document shown in Figure 8.8 is shown in
Listing 8.4.

Listing 8.4: The RTF Code for the First Paragraph of the Document in Figure 8.8

{\rtf1\ansi\ansicpg1252\deff0\deflang1033
{\fonttbl{\f0\fnil\fcharset0 Verdana;}{\f1\fswiss\fcharset0 Arial;}}
\viewkind4\uc1\pard\nowidctlpar\fi720 \b\f0\fs18 RTF
\b0 stands for \i Rich Text Format\i0 ,
which is a standard for storing formatting
information along with the text. The beauty
of the RichTextBox control for programmers
is that they don\rquote t need to supply the
formatting codes. The control provides simple
properties that turn the selected text into bold,
change the alignment of the current paragraph, and so on.\par

As you can see, all formatting tags are prefixed with the backslash (\) symbol. The tags
are shown in bold to stand out in the listing. To display the \ symbol itself, insert an additional
slash. Paragraphs are marked with the \par tag, and the entire document is enclosed in a pair
of curly brackets. The \li and \ri tags that are followed by a numeric value specify the amount
of the left and right indentation. If you assign this string to the RTF property of a RichTextBox
control, the result will be the document shown in Figure 8.7, formatted exactly as it appears
in WordPad.

Petroutsos V1 c08.tex Page 285 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 285

Figure 8.8

The formatting applied
to the text by using
WordPad’s commands
is stored along with the
text in RTF format.

RTF is similar to Hypertext Markup Language (HTML), and if you’re familiar with HTML,
a few comparisons between the two standards will provide helpful hints and insight into
the RTF language. Like HTML, RTF was designed to create formatted documents that could be
displayed on different systems. The following RTF segment displays a sentence with a few words
in italics:

\bRTF\b0 (which stands for Rich Text Format) is a \i
document formatting language\i0 that uses simple
commands to specify the formatting of the document.

The following is the equivalent HTML code:

RTF (which stands for Rich Text Format) is a
<i>document formatting language</i> that uses simple
commands to specify the formatting of the document.

The and <i> tags of HTML, for example, are equivalent to the \b and \i tags of RTF.
The closing tags in RTF are \b0 and \i0, respectively.

RTF, however, is much more complicated than HTML. It’s not nearly as easy to understand
an RTF document as it is to understand an HTML document, because RTF was meant to be used
internally by applications. As you can see in Listing 8.3, RTF contains information about the font
being used, its size, and so on. Just as you need a browser to view HTML documents, you need an
RTF-capable application to view RTF documents. WordPad, for instance, supports RTF and can
both save a document in RTF format and read RTF files.

Although you don’t need to understand the RTF specifications to produce formatted text with
the RichTextBox control, if you want to generate RTF documents from within your code, visit the
RTF Cookbook site at http://search.cpan.org/˜sburke/RTF-Writer/lib/RTF/Cookbook.pod.

Petroutsos V1 c08.tex Page 286 01/28/2008 1:24pm

286 CHAPTER 8 MORE WINDOWS CONTROLS

There’s also a Microsoft resource on RTF at http://msdn2.microsoft.com/en-us/library/
aa140277(office.10).aspx.

Text Manipulation and Formatting Properties
The RichTextBox control provides properties for manipulating the selected text on the control.
The names of these properties start with the Selection or Selected prefix, and the most
commonly used ones are shown in Table 8.1. Some of these properties are discussed in further
detail in following sections.

Table 8.1: RichTextBox Properties for Manipulating Selected Text

Property What It Manipulates

SelectedText The selected text

SelectedRtf The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

SelectionBackColor The background color of the selected text

SelectionAlignment The alignment of the selected text

SelectionIndent,
SelectionRightIndent,
SelectionHangingIndent

The indentation of the selected text

RightMargin The distance of the text’s right margin from the left edge of the control

SelectionTabs An array of integers that sets the tab stop positions in the control

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

SelectedText

The SelectedText property represents the selected text, whether it was selected by the user via
the mouse or from within your code. To assign the selected text to a variable, use the following
statement:

selText=RichTextbox1.SelectedText

Petroutsos V1 c08.tex Page 287 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 287

You can also modify the selected text by assigning a new value to the SelectedText property.
The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText =
RichTextbox1.SelectedText.ToUpper

You can assign any string to the SelectedText property. If no text is selected at the time, the
statement will insert the string at the location of the pointer.

SelectionStart, SelectionLength

To simplify the manipulation and formatting of the text on the control, two additional properties,
SelectionStart and SelectionLength, report (or set) the position of the first selected character
in the text and the length of the selection, respectively, regardless of the formatting of the selected
text. One obvious use of these properties is to select (and highlight) some text on the control:

RichTextBox1.SelectionStart = 0
RichTextBox1.SelectionLength = 100

You can also use the Select method, which accepts as arguments the starting location and the
length of the text to be selected.

SelectionAlignment

Use this property to read or change the alignment of one or more paragraphs. This property’s
value is one of the members of the HorizontalAlignment enumeration: Left, Right, and Center.
Users don’t have to select an entire paragraph to align it; just placing the pointer anywhere in the
paragraph will do the trick, because you can’t align part of the paragraph.

SelectionIndent, SelectionRightIndent, SelectionHangingIndent

These properties allow you to change the margins of individual paragraphs. The Selection-
Indent property sets (or returns) the amount of the text’s indentation from the left edge of the
control. The SelectionRightIndent property sets (or returns) the amount of the text’s indentation
from the right edge of the control. The SelectionHangingIndent property indicates the inden-
tation of each paragraph’s first line with respect to the following lines of the same paragraph. All
three properties are expressed in pixels.

The SelectionHangingIndent property includes the current setting of the SelectionIndent
property. If all the lines of a paragraph are aligned to the left, the SelectionIndent property
can have any value (this is the distance of all lines from the left edge of the control), but the
SelectionHangingIndent property must be zero. If the first line of the paragraph is shorter
than the following lines, the SelectionHangingIndent has a negative value. Figure 8.9 shows
several differently formatted paragraphs. The settings of the SelectionIndent and Selection-
HangingIndent properties are determined by the two sliders at the top of the form.

SelectionBullet, BulletIndent

You use these properties to create a list of bulleted items. If you set the SelectionBullet property
to True, the selected paragraphs are formatted with a bullet style, similar to the tag in
HTML. To create a list of bulleted items, select them from within your code and assign the value
True to the SelectionBullet property. To change a list of bulleted items back to normal text,
make the same property False.

Petroutsos V1 c08.tex Page 288 01/28/2008 1:24pm

288 CHAPTER 8 MORE WINDOWS CONTROLS

Figure 8.9

Various combinations
of the Selection-
Indent and
SelectionHanging-
Indent properties
produce all possible
paragraph styles.

The paragraphs formatted as bullets are also indented from the left by a small amount. To set
the amount of the indentation, use the BulletIndent property, which is also expressed in pixels.

SelectionTabs

Use this property to set the tab stops in the RichTextBox control. The Selection tab should be set to
an array of integer values, which are the absolute tab positions in pixels. Use this property to set
up a RichTextBox control for displaying tab-delimited data.

Using the RichTextBox Control to Display Delimited Data

As a developer I tend to favor the RichTextBox control over the TextBox control, even though I don’t
mix font styles or use the more-advanced features of the RichTextBox control. I suggest that you treat
the RichTextBox control as an enhanced TextBox control and use it as a substitute for the TextBox
control. One of the features of the RichTextBox control that I find very handy is its ability to set the
tab positions and display tabular data. You can also display tabular data on a ListView control, as you
will see in the following chapter, but it’s simpler to use a RichTextBox control with its ReadOnly
property set to True and its SelectionTabs property to an array of values that will accommodate
your data. Here’s how to set up a RichTextBox control to display a few rows of tab-delimited data:

RichTextBox1.ReadOnly = True
RichTextBox1.SelectionTabs = New Integer() {100, 160, 340}
RichTextBox1.AppendText(”R1C1” & vbTab &

”R1C2” & vbTab &
”R1C3” & vbCrLf)

RichTextBox1.AppendText(”R2C1” & vbTab &
”R2C2” & vbTab &
”R2C3” & vbCrLf)

This technique is a life-saver when I have to read the delimited data from a file. I just set up the tab
positions and then load the data with the LoadFile method, which is discussed in the following
section.

Petroutsos V1 c08.tex Page 289 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 289

Methods
The first two methods of the RichTextBox control you need to know are SaveFile and LoadFile.
The SaveFile method saves the contents of the control to a disk file, and the LoadFile method
loads the control from a disk file.

SaveFile

The syntax of the SaveFile method is as follows:

RichTextBox1.SaveFile(path, filetype)

where path is the path of the file in which the current document will be saved. By default, the
SaveFile method saves the document in RTF format and uses the .RTF extension. You can specify
a different format by using the second optional argument, which can take on the value of one of
the members of the RichTextBoxStreamType enumeration, described in Table 8.2.

Table 8.2: The RichTextBoxStreamType Enumeration

Format Effect

PlainText Stores the text on the control without any formatting

RichNoOLEObjs Stores the text without any formatting and ignores any embedded OLE objects

RichText Stores the text in RTF format (text with embedded RTF commands)

TextTextOLEObjs Stores the text along with the embedded OLE objects

UnicodePlainText Stores the text in Unicode format

LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is identical to the
syntax of the SaveFile method:

RichTextBox1.LoadFile(path, filetype)

The filetype argument is optional and can have one of the values of the RichTextBoxStream-
Type enumeration. Saving and loading files to and from disk files is as simple as presenting a Save
or Open common dialog to the user and then calling one of the SaveFile or LoadFile methods
with the filename returned by the common dialog box.

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the Selection-
Start and SelectionLength properties. The Select method accepts two arguments: the location
of the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and it selects all the text on the control.

Petroutsos V1 c08.tex Page 290 01/28/2008 1:24pm

290 CHAPTER 8 MORE WINDOWS CONTROLS

Advanced Editing Features
The RichTextBox control provides all the text-editing features you’d expect to find in a text-editing
application, similar to the TextBox control. Among its more-advanced features, the RichTextBox
control provides the AutoWordSelection property, which controls how the control selects text. If
it’s True, the control selects a word at a time.

In addition to formatted text, the RichTextBox control can handle object linking and embedding
(OLE) objects. You can insert images in the text by pasting them with the Paste method. The
Paste method doesn’t require any arguments; it simply inserts the contents of the Clipboard at
the current location in the document.

The RichTextBox control encapsulates undo and redo operations at multiple levels. Each
operation has a name (Typing, Deletion, and so on), and you can retrieve the name of the
next operation to be undone or redone and display it on the menu. Instead of a simple Undo
or Redo caption, you can change the captions of the Edit menu to something like Undo Delete or
Redo Typing. To program undo and redo operations from within your code, you must use the
properties and methods discussed in the following sections.

CanUndo, CanRedo

These two properties are Boolean values you can read to find out whether there’s an operation that
can be undone or redone. If they’re False, you must disable the corresponding menu command
from within your code. The following statements disable the Undo command if there’s no action
to be undone at the time (EditUndo is the name of the Undo command on the Edit menu):

If RichTextBox1.CanUndo Then
EditUndo.Enabled = True

Else
EditUndo.Enabled = False

End If

These statements should appear in the menu item’s Select event handler (not in the Click
event handler) because they must be executed before the menu is displayed. The Select event is
triggered when a menu is opened. As a reminder, the Click event is fired when you click an item,
and not when you open a menu. For more information on programming the events of a menu, see
Chapter 7, ‘‘Working with Forms.’’

UndoActionName, RedoActionName

These two properties return the name of the action that can be undone or redone. The most
common value of both properties is Typing, which indicates that the Undo command will delete
a number of characters. Another common value is Delete, whereas some operations are named
Unknown. If you change the indentation of a paragraph on the control, this action’s name
is Unknown. Even when an action’s name is Unknown, the action can be undone with the Undo
method.

The following statement sets the caption of the Undo command to a string that indicates the
action to be undone (Editor is the name of a RichTextBox control):

If Editor.CanUndo Then
EditUndo.Text = ”Undo ” & Editor.UndoActionName

End If

Petroutsos V1 c08.tex Page 291 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 291

Undo, Redo

These two methods undo or redo an action. The Undo method cancels the effects of the last action
of the user on the control. The Redo method redoes the most recent undo action. The Redo method
does not repeat the last action; it applies to undo operations only.

Cutting and Pasting
To cut, copy, and paste text in the RichTextBox control, you can use the same techniques you use
with the regular TextBox control. For example, you can replace the current selection by assigning
a string to the SelectedText property. The RichTextBox, however, provides a few useful methods
for performing these operations. The Copy, Cut, and Paste methods perform the corresponding
operations. The Cut and Copy methods are straightforward and require no arguments. The Paste
method accepts a single argument, which is the format of the data to be pasted. Because the data
will come from the Clipboard, you can extract the format of the data in the Clipboard at the time
and then call the CanPaste method to find out whether the control can handle this type of data. If
so, you can then paste them in the control by using the Paste method.

This technique requires a bit of code because the Clipboard class doesn’t return the format of
the data in the Clipboard. You must call the following method of the Clipboard class to find out
whether the data is of a specific type and then paste it on the control:

If Clipboard.GetDataObject. –
GetDataPresent(DataFormats.Text) Then

RichTextBox.Paste(DataFormats.Text)
End If

This is a very simple case because we know that the RichTextBox control can accept text. For a
robust application, you must call the GetDataPresent method for each type of data your
application should be able to handle. (You may not want to allow users to paste all types of data
that the control can handle.) By the way, you can simplify the code with the help of the
ContainsText/ContainsImage and GetText/GetImage methods of the My.Application
.Clipboard object.

In the RTFPad project later in this chapter, we’ll use a structured exception handler to allow
users to paste anything in the control. If the control can’t handle it, the data won’t be pasted in
the control.

Searching in a RichTextBox Control
To locate a string in the text of the RichTextBox control, use the Find method. The Find method is
quite flexible, as it allows you to specify the type of the search, whether it will locate entire words,
and so on. The simplest form of this method accepts the search string as an argument and returns
the location of the first instance of the word in the text. If the search argument isn’t found, the
method returns the value −1.

RichTextBox1.Find(string)

Another equally simple syntax of the Find method allows you to specify how the control will
search for the string:

RichTextBox1.Find(string, searchMode)

Petroutsos V1 c08.tex Page 292 01/28/2008 1:24pm

292 CHAPTER 8 MORE WINDOWS CONTROLS

The searchMode argument is a member of the RichTextBoxFinds enumeration, which is
shown in Table 8.3.

Table 8.3: The RichTextBoxFinds Enumeration

Value Effect

MatchCase Performs a case-sensitive search.

NoHighlight The text found will not be highlighted.

None Locates instances of the specified string even if they’re not whole words.

Reverse The search starts at the end of the document.

WholeWord Locates only instances of the specified string that are whole words.

Two more forms of the Find method allow you specify the range of the text in which the search
will take place:

RichTextBox1.Find(string, start, searchMode)
RichTextBox1.Find(string, start, end, searchMode)

The arguments start and end are the starting and ending locations of the search (use them to
search for a string within a specified range only). If you omit the end argument, the search will
start at the location specified by the start argument and will extend to the end of the text.

You can combine multiple values of the searchMode argument with the OR operator. The
default search is case-insensitive, covers the entire document, and highlights the matching text
on the control. The RTFPad application’s Find command demonstrates how to use the Find
method and its arguments to build a Search & Replace dialog box that performs all the types
of text-searching operations you might need in a text-editing application.

Handling URLs in the Document
An interesting feature of the RichTextBox control is the automatic formatting of URLs embedded
in the text. To enable this feature, set the DetectURLs property to True. Then, as soon as the control
determines that you’re entering a URL (usually after you enter the three w’s and the following
period), it will format the text as a hyperlink. When the pointer rests over a hyperlink, its shape
turns into a hand, just as it would in Internet Explorer. Run the RTFDemo project, enter a URL
such as http://www.sybex.com, and see how the RichTextBox control handles it.

In addition to formatting the URL, the RichTextBox control triggers the LinkClicked event
when a hyperlink is clicked. To display the corresponding page from within your code, enter the
following statement in the LinkClicked event handler:

Private Sub RichTextBox1 LinkClicked(
ByVal sender As Object,
ByVal e As System.Windows.Forms.LinkClickedEventArgs)
Handles RichTextBox1.LinkClicked

System.Diagnostics.Process.Start(e.LinkText)
End Sub

Petroutsos V1 c08.tex Page 293 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 293

The System.Diagnostics.Process class provides the Start method, which starts an application.
You can specify either the name of the executable or the path of a file. If you specify, the Start
method will look up the associated application and start it. As you can see, handling embedded
URLs with the RichTextBox control is almost trivial.

Displaying a Formatted Directory Listing
This is a good point to review the subroutines that produced the formatted directory listings
shown in Figure 8.6. Folder names are printed in bold by the PrintFolderName() subroutine,
and filenames are printed in regular style by the PrintFileNames() subroutine. Both subroutines
accept as arguments a DirectoryInfo object that represents the folder whose name (or files) we
want to print, as well as an indentation string. This string is increased every time the code drills
down to a subfolder and is decreased every time it moves up to a parent folder. Listing 8.5 shows
the implementation of the two subroutines.

Listing 8.5: The PrintFolderName() and PrintFileNames() Subroutines

Private Sub PrintFolderName(
ByVal folder As IO.DirectoryInfo,
ByVal Indentation As String)

SwitchToBold()
RichTextBox1.AppendText(Indentation)
RichTextBox1.AppendText(folder.Name & vbCrLf)
SwitchToRegular()

End Sub

Private Sub PrintFileNames(
ByVal folder As IO.DirectoryInfo,
ByVal indentation As String)

Dim file As IO.FileInfo
For Each file In folder.GetFiles(”*.*”)

RichTextBox1.AppendText(
indentation & file.Name & vbCrLf)

Next
End Sub

The code for printing folder names and filenames is trivial. Before calling the AppendText
method to add a new folder name to the control, the code calls the SwitchToBold() subroutine.
After printing the folder name, it calls the SwitchToRegular subroutine to reset the font. The two
subroutines manipulate the SelectionFont property. Because no text is selected at the time, the
subroutines simply change the attributes of the text that will be appended to the control with
the next call to the AppendText method. The implementation of the two subroutines is shown next:

Private Sub SwitchToItalics()
RichTextBox1.SelectionFont =

New Font(RichTextBox1.SelectionFont.Name,
RichTextBox1.SelectionFont.Size, FontStyle.Italic)

End Sub

Petroutsos V1 c08.tex Page 294 01/28/2008 1:24pm

294 CHAPTER 8 MORE WINDOWS CONTROLS

Private Sub SwitchToRegular()
RichTextBox1.SelectionFont =

New Font(RichTextBox1.SelectionFont.Name,
RichTextBox1.SelectionFont.Size, FontStyle.Regular)

End Sub

VB 2008 at Work: The RTFPad Project
Creating a functional — even fancy — word processor based on the RichTextBox control is
unexpectedly simple. The challenge is to provide a convenient interface that lets the user select
text, apply attributes and styles to it, and then set the control’s properties accordingly. The RTFPad
sample application of this section does just that.

The RTFPad application (refer to Figure 8.7) is based on the TextPad application developed
in Chapter 6, ‘‘Basic Windows Controls.’’ It contains the same text-editing commands and some
additional text-formatting commands that can be implemented only with the RichTextBox control;
for example, it allows you to apply multiple fonts and styles to the text, and, of course, multiple
Undo/Redo operations.

The two TrackBar controls above the RichTextBox control manipulate the indentation of the
text. We already explored this arrangement in the discussion of the TrackBar control in Chapter 6,
but let’s review the operation of the two controls again. Each TrackBar control has a width of 816
pixels, which is equivalent to 8.5 inches on a monitor that has a resolution of 96 dots per inch (dpi).
The height of the TrackBar controls is 42 pixels, but unfortunately they can’t be made smaller. The
Minimum property of both controls is 0, and the Maximum property is 16. The TickFrequency is 1.
With these values, you can adjust the indentation in steps of 1/2 inch. Set the Maximum property to
32 and you’ll be able to adjust the indentation in steps of 1/4 inch. It’s not the perfect interface, as
it’s built for A4 pages in portrait orientation only. You can experiment with this interface to build
an even more functional word processor.

Each time the user slides the top TrackBar control, the code sets the SelectionIndent
property to the proper percentage of the control’s width. Because the SelectionHangingIndent
includes the value of the SelectionIndent property, it also adjusts the setting of the
SelectionHangingIndent property. Listing 8.6 is the code that’s executed when the upper
TrackBar control is scrolled.

Listing 8.6: Setting the SelectionIndent Property

Private Sub TrackBar1 Scroll(...)
Handles TrackBar1.Scroll

Editor.SelectionIndent = Convert.ToInt32(
Editor.Width *

(TrackBar1.Value / TrackBar1.Maximum))
Editor.SelectionHangingIndent = Convert.ToInt32(

Editor.Width *
(TrackBar2.Value / TrackBar2.Maximum) - Editor.SelectionIndent)

End Sub

Editor is the name of the RichTextBox control on the form. The code sets the control’s
indentation to the same percentage of the control’s width, as indicated by the value of the top
TrackBar control. It also does the same for the SelectionHangingIndent property, which is

Petroutsos V1 c08.tex Page 295 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 295

controlled by the lower TrackBar control. If the user has scrolled the lower TrackBar control, the
code sets the RichTextBox control’s SelectionHangingIndent property in the event handler, as
presented in Listing 8.7.

Listing 8.7: Setting the SelectionHangingIndent Property

Private Sub TrackBar2 Scroll(...)
Handles TrackBar2.Scroll

Editor.SelectionHangingIndent =
Convert.ToInt32(Editor.Width *
(TrackBar2.Value / TrackBar2.Maximum) -
Editor.SelectionIndent)

End Sub

Enter a few lines of text in the control, select one or more paragraphs, and check out the
operation of the two sliders.

The Scroll events of the two TrackBar controls adjust the text’s indentation. The opposite
action must take place when the user rests the pointer on another paragraph: The sliders’
positions must be adjusted to reflect the indentation of the selected paragraph. The selection of a
new paragraph is signaled to the application by the SelectionChanged event. The statements of
Listing 8.8, which are executed from within the SelectionChanged event, adjust the two slider
controls to reflect the indentation of the text.

Listing 8.8: Setting the Slider Controls

Private Sub Editor SelectionChanged(...)
Handles Editor.SelectionChanged

If Editor.SelectionIndent = Nothing Then
TrackBar1.Value = TrackBar1.Minimum
TrackBar2.Value = TrackBar2.Minimum

Else
TrackBar1.Value = Convert.ToInt32(

Editor.SelectionIndent *
TrackBar1.Maximum / Editor.Width)

TrackBar2.Value = Convert.ToInt32(
(Editor.SelectionHangingIndent /
Editor.Width) *
TrackBar2.Maximum + TrackBar1.Value)

End If
End Sub

If the user selects multiple paragraphs with different indentations, the SelectionIndent
property returns Nothing. The code examines the value of this property and, if it’s Nothing,
it moves both controls to the left edge. This way, the user can slide the controls and set the
indentations for multiple paragraphs. Some applications make the handles gray to indicate
that the selected text doesn’t have uniform indentation, but unfortunately you can’t gray the

Petroutsos V1 c08.tex Page 296 01/28/2008 1:24pm

296 CHAPTER 8 MORE WINDOWS CONTROLS

sliders and keep them enabled. Of course, you can always design a custom control. This wouldn’t
be a bad idea, especially if you consider that the TrackBar controls are too tall for this type of
interface and can’t be made very narrow (as a result, the interface of the RTFPad application isn’t
very elegant).

The File Menu

The RTFPad application’s File menu contains the usual Open, Save, and Save As commands,
which are implemented with the control’s LoadFile and SaveFile methods. Listing 8.9 shows the
implementation of the Open command in the File menu.

Listing 8.9: The Open Command

Private Sub OpenToolStripMenuItem Click(...)
Handles OpenToolStripMenuItem.Click

If DiscardChanges() Then
OpenFileDialog1.Filter =

”RTF Files|*.RTF|DOC Files|*.DOC|” &
”Text Files|*.TXT|All Files|*.*”

If OpenFileDialog1.ShowDialog() =
DialogResult.OK Then

fName = OpenFileDialog1.FileName
Editor.LoadFile(fName)
Editor.Modified = False

End If
End If

End Sub

The fName variable is declared on the form’s level and holds the name of the currently open
file. This variable is set every time a new file is successfully opened and it’s used by the Save
command to automatically save the open file, without prompting the user for a filename.

DiscardChanges() is a function that returns a Boolean value, depending on whether the
control’s contents can be discarded. The function examines the Editor control’s Modified
property. If True, it prompts users as to whether they want to discard the edits. Depending
on the value of the Modified property and the user response, the function returns a Boolean
value. If the DiscardChanges() function returns True, the program goes on and opens a new doc-
ument. If the function returns False, the program aborts the operation to give the user a chance to
save the document. Listing 8.10 shows the DiscardChanges() function.

Listing 8.10: The DiscardChanges() Function

Function DiscardChanges() As Boolean
If Editor.Modified Then

Dim reply As MsgBoxResult
reply = MsgBox(

”Text hasn’t been saved. Discard changes?”,
MsgBoxStyle.YesNo)

Petroutsos V1 c08.tex Page 297 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 297

If reply = MsgBoxResult.No Then
Return False

Else
Return True

End If
Else

Return True
End If

End Function

The Modified property becomes True after typing the first character and isn’t reset back to
False. The RichTextBox control doesn’t handle this property very intelligently and doesn’t reset it
to False even after saving the control’s contents to a file. The application’s code sets the
Editor.Modified property to False after creating a new document, as well as after saving the
current document.

The Save As command (see Listing 8.11) prompts the user for a filename and then stores the
Editor control’s contents to the specified file. It also sets the fName variable to the file’s path, so
that the Save command can use it.

Listing 8.11: The Save As Command

Private Sub SaveAsToolStripMenuItem Click(...)
Handles SaveAsToolStripMenuItem.Click

SaveFileDialog1.Filter =
”RTF Files|*.RTF|DOC Files” &
”|*.DOC|Text Files|*.TXT|All Files|*.*”

SaveFileDialog1.DefaultExt = ”RTF”
If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

fName = SaveFileDialog1.FileName
Editor.SaveFile(fName)
Editor.Modified = False

End If
End Sub

The Save command’s code is similar, only it doesn’t prompt the user for a filename. It calls the
SaveFile method, passing the fName variable as an argument. If the fName variable has no value
(in other words, if a user attempts to save a new document by using the Save command), the
code activates the event handler of the Save As command automatically and resets the control’s
Modified property to False. Listing 8.12 shows the code behind the Save command.

Listing 8.12: The Save Command

Private Sub SaveToolStripMenuItem Click(...)
Handles SaveToolStripMenuItem.Click

If fName <> ”” Then
Editor.SaveFile(fName)
Editor.Modified = False

Petroutsos V1 c08.tex Page 298 01/28/2008 1:24pm

298 CHAPTER 8 MORE WINDOWS CONTROLS

Else
SaveAsToolStripMenuItem Click(sender, e)

End If
End Sub

The Edit Menu

The Edit menu contains the usual commands for exchanging data through the Clipboard (Copy,
Cut, Paste), Undo/Redo commands, and a Find command to invoke the Search & Replace dialog
box. All the commands are almost trivial, thanks to the functionality built into the control. The
basic Cut, Copy, and Paste commands call the RichTextBox control’s Copy, Cut, and Paste
methods to exchange data through the Clipboard. Listing 8.13 shows the implementation of the
Paste command.

Listing 8.13: The Paste Command

Private Sub PasteToolStripMenuItem Click(...)
Handles PasteToolStripMenuItem.Click

Try
Editor.Paste()

Catch exc As Exception
MsgBox(

”Can’t paste current clipboard’s contents”)
End Try

End Sub

As you may recall from the discussion of the Paste command, we can’t use the CanPaste
method because it’s not trivial; you have to handle each data type differently. By using an
exception handler, we allow the user to paste all types of data that the RichTextBox control can
accept, and display a message when an error occurs.

The Undo and Redo commands of the Edit menu are coded as follows. First, we display the
name of the action to be undone or redone in the Edit menu. When the Edit menu is selected,
the DropDownOpened event is fired. This event takes place before the Click event, so I inserted a
few lines of code that read the name of the most recent action that can be undone or redone and
print it next to the Undo or Redo command’s caption. If there’s no such action, the program will
disable the corresponding command. Listing 8.14 is the code that’s executed when the Edit menu
is dropped.

Listing 8.14: Setting the Captions of the Undo and Redo Commands

Private Sub EditToolStripMenuItem DropDownOpened(...)
Handles EditToolStripMenuItem.DropDownOpened

If Editor.UndoActionName <> ”” Then
UndoToolStripMenuItem.Text =

”Undo ” & Editor.UndoActionName
UndoToolStripMenuItem.Enabled = True

Petroutsos V1 c08.tex Page 299 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 299

Else
UndoToolStripMenuItem.Text = ”Undo”
UndoToolStripMenuItem.Enabled = False

End If
If Editor.RedoActionName <> ”” Then

RedoToolStripMenuItem.Text =
”Redo” & Editor.RedoActionName

RedoToolStripMenuItem.Enabled = True
Else

RedoToolStripMenuItem.Text = ”Redo”
RedoToolStripMenuItem.Enabled = False

End If
End Sub

When the user selects one of the Undo or Redo commands, the code simply calls the
appropriate method from within the menu item’s Click event handler, as shown in Listing 8.15.

Listing 8.15: Undoing and Redoing Actions

Private Sub RedoToolStripMenuItem Click(...)
Handles RedoToolStripMenuItem.Click

If Editor.CanRedo Then Editor().Redo()
End Sub

Private Sub UndoToolStripMenuItem Click(...)
Handles UndoToolStripMenuItem.Click

If Editor.CanUndo Then Editor.Undo()
End Sub

Calling the CanUndo and CanRedo method is unnecessary; if the corresponding action can’t be
performed, the two menu items will be disabled, but an additional check does no harm.

The Format Menu

The commands of the Format menu control the alignment and the font attributes of the current
selection. The Font command displays the Font dialog box and then assigns the font selected by
the user to the current selection. Listing 8.16 shows the code behind the Font command.

Listing 8.16: The Font Command

Private Sub FontToolStripMenuItem Click(...)
Handles FontToolStripMenuItem.Click

If Not Editor.SelectionFont Is Nothing Then
FontDialog1.Font = Editor.SelectionFont

Else

Petroutsos V1 c08.tex Page 300 01/28/2008 1:24pm

300 CHAPTER 8 MORE WINDOWS CONTROLS

FontDialog1.Font = Nothing
End If
FontDialog1.ShowApply = True
If FontDialog1.ShowDialog() = DialogResult.OK Then

Editor.SelectionFont = FontDialog1.Font
End If

End Sub

Notice that the code preselects a font in the dialog box, which is the font of the current selection.
If the current selection isn’t formatted with a single font, no font is preselected.

To enable the Apply button of the Font dialog box, set the control’s ShowApply property to True
and insert the following statement in its Apply event handler:

Private Sub FontDialog1 Apply(
ByVal sender As Object,
ByVal e As System.EventArgs)
Handles FontDialog1.Apply

Editor.SelectionFont = FontDialog1.Font
End Sub

The options of the Align menu set the RichTextBox control’s SelectionAlignment property
to different members of the HorizontalAlignment enumeration. The Align � Left command, for
example, is implemented with the following statement:

Editor.SelectionAlignment = HorizontalAlignment.Left

The Search & Replace Dialog Box

The Find command in the Edit menu opens the dialog box shown in Figure 8.10, which per-
forms search-and-replace operations (whole-word or case-sensitive match, or both). The Search &
Replace form (it’s the frmFind form in the project) has its TopMost property set to True, so that
it remains visible while it’s open, even if it doesn’t have the focus. The code behind the buttons
on this form is quite similar to the code for the Search & Replace dialog box of the TextPad appli-
cation, with one basic difference: the RTFPad project’s code uses the RichTextBox control’s Find
method; the simple TextBox control doesn’t provide an equivalent method and we had to use the
methods of the String class to perform the same operations. The Find method of the RichTextBox
control performs all types of searches, and some of its options are not available with the IndexOf
method of the String class.

To invoke the Search & Replace dialog box, the code calls the Show method of the frmFind
form, as discussed in Chapter 6, via the following statement:

frmFind.Show()

The Find method of the RichTextBox control allows you to perform case-sensitive or -insensitive
searches, as well as search for whole words only. These options are specified through an argument
of the RichTextBoxFinds type. The SetSearchMode() function (see Listing 8.17) examines the set-
tings of the two check boxes at the bottom of the form and sets the Find method’s search mode.

Petroutsos V1 c08.tex Page 301 01/28/2008 1:24pm

THE RICHTEXTBOX CONTROL 301

Figure 8.10

The Search & Replace
dialog box of the RTFPad
application

Listing 8.17: Setting the Search Options

Function SetSearchMode() As RichTextBoxFinds
Dim mode As RichTextBoxFinds =

RichTextBoxFinds.None
If chkCase.Checked = True Then

mode = mode Or RichTextBoxFinds.MatchCase
End If
If chkWord.Checked = True Then

mode = mode Or RichTextBoxFinds.WholeWord
End If
Return mode

End Function

The Click event handlers of the Find and Find Next buttons call this function to retrieve the
constant that determines the type of search specified by the user on the form. This value is then
passed to the Find method. Listing 8.18 shows the code behind the Find and Find Next buttons.

Listing 8.18: The Find and Find Next Commands

Private Sub bttnFind Click(...)
Handles bttnFind.Click

Dim wordAt As Integer
Dim srchMode As RichTextBoxFinds
srchMode = SetSearchMode()
wordAt = frmEditor.Editor.Find(

txtSearchWord.Text, 0, srchMode)
If wordAt = -1 Then

MsgBox(”Can’t find word”)
Exit Sub

Petroutsos V1 c08.tex Page 302 01/28/2008 1:24pm

302 CHAPTER 8 MORE WINDOWS CONTROLS

End If
frmEditor.Editor.Select(wordAt,

txtSearchWord.Text.Length)
bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True
frmEditor.Editor.ScrollToCaret()

End Sub

Private Sub bttnFindNext Click(...)
Handles bttnFindNext.Click

Dim selStart As Integer
Dim srchMode As CompareMethod
srchMode = SetSearchMode()
selStart = frmEditor.Editor.Find(

txtSearchWord.Text,
frmEditor.Editor.SelectionStart + 2,
srchMode)

If selStart = -1 Then
MsgBox(”No more matches”)
Exit Sub

End If
frmEditor.Editor.Select(

selStart, txtSearchWord.Text.Length)
frmEditor.Editor.ScrollToCaret()

End Sub

Notice that both event handlers call the ScrollToCaret method to force the selected text to
become visible — should the Find method locate the desired string outside the visible segment
of the text.

The Bottom Line
Use the OpenFileDialog and SaveFileDialog controls to prompt users for filenames.
Windows applications use certain controls to prompt users for common information, such as
filenames, colors, and fonts. Visual Studio provides a set of controls, which are grouped in the
Dialogs section of the Toolbox. All common dialog controls provide a ShowDialog method,
which displays the corresponding dialog box in a modal way. The ShowDialog method returns
a value of the DialogResult type, which indicates how the dialog box was closed, and you
should examine this value before processing the data.

Master It Your application needs to open an existing file. How will you prompt users for
the file’s name?

Master It You’re developing an application that encrypts multiple files (or resizes many
images) in batch mode. How will you prompt the user for the files to be processed?

Use the ColorDialog and FontDialog controls to prompt users for colors and typefaces.
The Color and Font dialog boxes allow you to prompt users for a color value and a font,

Petroutsos V1 c08.tex Page 303 01/28/2008 1:24pm

THE BOTTOM LINE 303

respectively. Before showing the corresponding dialog box, set its Color or Font property
according to the current selection, and then call the control’s ShowDialog method.

Master It How will you display color attributes in the Color dialog box when you open it?
How will you display the attributes of the selected text’s font in the Font dialog box when
you open it?

Use the RichTextBox control as an advanced text editor to present richly formatted text.
The RichTextBox control is an enhanced TextBox control that can display multiple fonts and
styles, format paragraphs with different styles, and provide a few more advanced text-editing
features. Even if you don’t need the formatting features of this control, you can use it as an
alternative to the TextBox control. At the very least, the RichTextBox control provides more
editing features, a more-useful undo function, and more-flexible search features.

Master It You want to display a document with a title in large, bold type, followed by a
couple of items in regular style. How will you create a document like the following one on
a RichTextBox control?

Document’s Title
 Item 1
 Description for item 1
 Item 2
 Description for item 2

Petroutsos V1 c08.tex Page 304 01/28/2008 1:24pm

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 305

Chapter 9

The TreeView and ListView
Controls

In Chapter 6, ‘‘Basic Windows Controls,’’ you learned how to use the ListBox control for
displaying lists of strings and storing objects. The items of a ListBox control can be sorted, but
they have no particular structure. I’m sure most of you wish that the ListBox control had more
‘‘features,’’ such as the means to store additional information along with each item or to present
hierarchical lists. A hierarchical list is a tree that reflects the structure of the list: items that belong
to other items appear under their parent with the proper indentation. For instance, a list of city
and state names should be structured so that each city appears under the corresponding state.

The answer to the shortcomings of the ListBox control can be found in the TreeView and
ListView controls. These two Windows controls are among the more-advanced ones, and they are
certainly more difficult to program than the ones discussed in the preceding chapters. These two
controls, however, are the basic makings of unique user interfaces, as you’ll see in this chapter’s
examples. The TreeView and ListView controls implement two of the more-advanced data struc-
tures and were designed to hide much of the complexity of these structures — and they do this
very well.

In this chapter, you’ll learn how to do the following:

◆ Create and present hierarchical lists by using the TreeView control

◆ Create and present lists of structured items by using the ListView control

Understanding the ListView, TreeView, and ImageList
Controls
I will start with a general discussion of the two controls to help you understand what they do and
when to use them. A basic understanding of the data structures they implement is also required
to use them efficiently in your applications. Then I’ll discuss their members and demonstrate
how to use the controls. If you find the examples too difficult to understand, you can always
postpone the use of these controls in your applications.

Some of the code I present in this chapter can be used as is in many situations, so you should
look at the examples and see whether you can incorporate some of their code in your applications.
The ListView and TreeView controls are excellent tools for designing elaborate Windows inter-
faces, and I feel they deserve to be covered in detail. It’s also common to use the ImageList control
in conjunction with the ListView and TreeView controls. The purpose of the ImageList control is
to store the images that we want to display, along with the items of the other two controls, so I’ll
discuss briefly the ImageList control in this chapter.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 306

306 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Figure 9.1 shows the TreeView and ListView controls used in tandem. What you see in
Figure 9.1 is Windows Explorer, a utility for examining and navigating your hard disk’s struc-
ture. The left pane, where the folders are displayed, is a TreeView control. The folder names are
displayed in a manner that reflects their structure on the hard disk. You can expand and contract
certain branches and view only the segment(s) of the tree structure you’re interested in.

Figure 9.1

Windows Explorer is
made up of a Tree-
View (left pane) and
a ListView (right pane)
control.

The right pane is a ListView control. The items on the ListView control can be displayed in
five ways (as large or small icons, as a list, on a grid, or tiled). They are the various views you
can set through the View menu of Windows Explorer. Although most people prefer to look at the
contents of the folders as icons, the most common view is the Details view, which displays not
only filenames, but also their attributes. In the Details view, the list can be sorted according to any
of its columns, making it easy for the user to locate any item based on various criteria (file type,
size, creation date, and so on). A Windows Explorer window with a detailed view of the files is
shown later in this chapter, in Figure 9.4.

Tree and List Structures
The TreeView control implements a data structure known as a tree. A tree is the most appropriate
structure for storing hierarchical information. The organizational chart of a company, for example,
is a tree structure. Every person reports to another person above him or her, all the way to the
president or CEO. Figure 9.2 depicts a possible organization of continents, countries, and cities
as a tree. Every city belongs to a country, and every country to a continent. In the same way,
every computer file belongs to a folder that may belong to an even bigger folder, and so on up to
the drive level. You can’t draw large tree structures on paper, but it’s possible to create a similar
structure in the computer’s memory without size limitations.

Each item in the tree of Figure 9.2 is called a node, and nodes can be nested to any level. Oddly,
the top node is the root of the tree, and the subordinate nodes are called child nodes. If you try to
visualize this structure as a real tree, think of it as an upside-down tree with the branches emerging
from the root. The end nodes, which don’t lead to any other nodes, are called leaf nodes or
end nodes.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 307

UNDERSTANDING THE LISTVIEW, TREEVIEW, AND IMAGELIST CONTROLS 307

Figure 9.2

The world viewed as a
tree

Berlin Munich Frankfurt

Germany France Spain

Africa Asia Europe S. America 1st level nodes

2nd level nodes

3rd level nodes

Globe Root node

…

…

…

To locate a city, you must start at the root node and select the continent to which the city
belongs. Then you must find the country (in the selected continent) to which the city belongs.
Finally, you can find the city you’re looking for. If it’s not under the appropriate country node, it
doesn’t exist.

TreeView Items Are Just Strings

The items displayed on a TreeView control are just strings. Moreover, the TreeView control doesn’t
require that the items be unique. You can have identically named nodes in the same branch — as
unlikely as this might be for a real application. There’s no property that makes a node unique in the
tree structure or even in its own branch.

You can also start with a city and find its country. The country node is the city node’s parent
node. Notice that there is only one route from child nodes to their parent nodes, which means that
you can instantly locate the country or continent of a city. The data of Figure 9.2 is shown in Figure
9.3 in a TreeView control. Only the nodes we’re interested in are expanded. The plus sign indicates
that the corresponding node contains child nodes. To view them, click the button with the plus
sign to expand the node.

The tree structure is ideal for data with parent-child relations (relations that can be described as
belongs to or owns). The continents-countries-cities data is a typical example. The folder structure
on a hard disk is another typical example. Any given folder is the child of another folder or the
root folder.

Many programs are based on tree structures. Computerized board games use a tree structure
to store all possible positions. Every time the computer has to make a move, it locates the board’s
status on the tree and selects the ‘‘best’’ next move. For instance, in tic-tac-toe, the tree structure
that represents the moves in the game has nine nodes on the first level, which correspond to all the
possible positions for the first token on the board (the X or O mark). Under each possible initial
position, there are eight nodes, which correspond to all the possible positions of the second token
on the board (one of the nine positions is already taken). On the second level, there are 9 × 8,
or 72, nodes. On the third level, there are 7 child nodes under each node that correspond to all
the possible positions of the third token, a total of 72 × 7, or 504 nodes, and so on. In each node,
you can store a value that indicates whether the corresponding move is good or bad. When the
computer has to make a move, it traverses the tree to locate the current status of the board, and
then it makes a good move.

Of course, tic-tac-toe is a simple game. In principle, you could design a chess game by using a
tree. This tree, however, would grow so large so quickly that it couldn’t be stored in any reasonable

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 308

308 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

amount of memory. Moreover, scanning the nodes of this enormous tree would be an extremely
slow process. If you also consider that chess moves aren’t just good or bad (there are better and
not-so-good moves), and you must look ahead many moves to decide which move is the best
for the current status of the board, you’ll realize that this ad hoc approach is totally infeasible.
Practically speaking, such a program requires either infinite resources or infinite time. That’s why
the chess-playing algorithms use heuristic approaches, which store every recorded chess game in a
database and consult this database to pick the best next move.

Figure 9.3

The tree of Figure 9.2
implemented with a
TreeView control

Maintaining a tree structure is a fundamental operation in software design; computer science
students spend a good deal of their time implementing tree structures. Fortunately, with Visual
Basic you don’t have to implement tree structures on your own. The TreeView control is a mech-
anism for storing hierarchically structured data in a control with a visible interface. The TreeView
control hides (or encapsulates, in object-oriented terminology) the details of the implementation
and allows you to set up tree structures with a few lines of code — in short, all the gain without
the pain (almost).

The ListView control implements a simpler structure, known as a list. A list’s items aren’t
structured in a hierarchy; they are all on the same level and can be traversed serially, one after the
other. You can also think of the list as a multidimensional array, but the list offers more features. A
list item can have subitems and can be sorted according to any column. For example, you can set
up a list of customer names (the list’s items) and assign a number of subitems to each customer:
a contact, an address, a phone number, and so on. Or you can set up a list of files with their
attributes as subitems. Figure 9.4 shows a Windows folder mapped on a ListView control. Each
file is an item, and its attributes are the subitems. As you already know, you can sort this list by
filename, size, file type, and so on. All you have to do is click the header of the corresponding
column.

The ListView control is a glorified ListBox control. If all you need is a control to store sorted
objects, use a ListBox control. If you want more features, such as storing multiple items per row,

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 309

UNDERSTANDING THE LISTVIEW, TREEVIEW, AND IMAGELIST CONTROLS 309

sorting them in different ways, or locating them based on any subitem’s value, you must consider
the ListView control. You can also look at the ListView control as a view-only grid.

Figure 9.4

A folder’s files displayed
in a ListView control
(Details view)

The TreeView and ListView controls are commonly used along with the ImageList control. The
ImageList control is a simple control for storing images so they can be retrieved quickly and used
at runtime. You populate the ImageList control with the images you want to use on your interface,
usually at design time, and then you recall them by an index value at runtime. Before we get into
the details of the TreeView and ListView controls, a quick overview of the ImageList control is
in order.

The ImageList Control
The ImageList is a simple control that stores images used by other controls at runtime. For
example, a TreeView control can use icons to identify its nodes. The simplest and quickest method
of preparing these images is to create an ImageList control and add to it all the icons you need for
decorating the TreeView control’s nodes. The ImageList control maintains a series of bitmaps in
memory that the TreeView control can access quickly at runtime. Keep in mind that the ImageList
control can’t be used on its own and remains invisible at runtime.

To use the ImageList control in a project, double-click its icon in the Toolbox (you’ll find it in the
Components tab) to place an instance of the control on your form. To load images to an ImageList
control, locate the Images property in the Properties window and click the ellipsis button next
to the property name. Alternatively, you can select the Choose Images command of the control’s
context menu. The Images Collection Editor dialog box (see Figure 9.5) will pop up, and you can
load all the images you want by selecting the appropriate files. All the images should have the
same dimensions — but this is not a requirement. Notice that the ImageList control doesn’t
resize the images; you must make sure that they have the proper sizes before loading them into
the control.

To add an image to the collection, click the Add button. You’ll be prompted to select an image
file through the Open File dialog box. Each image you select is added to the list. When you select
an image in this list, the properties of the image are displayed in the same dialog box — but you
can’t change these properties, except for the image’s name, which is the file’s name by default. Add
a few images and then close the Images Collection Editor. In the control’s Properties window, you
can set the size of all images and the TransparentColor property, which is a color that will be

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 310

310 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

treated as transparent for all images (this color is also known as the key color). The images will be
resized accordingly by the control as they’re displayed.

Figure 9.5

The Images Collection
Editor dialog box

The other method of adding images to an ImageList control is to call the Add method of the
Images collection, which contains all the images stored in the control. To add an image at runtime,
you must first create an Image object with the image (or icon) you want to add to the control and
then call the Add method as follows:

ImageList1.Images.Add(image)

where image is an Image object with the desired image. You will usually call this method as
follows:

ImageList1.Images.Add(Image.FromFile(path))

where path is the full path of the file with the image.
The Images collection of the ImageList control is a collection of Image objects, not the files in

which the pictures are stored. This means that the image files need not reside on the computer
on which the application will be executed, as long as they have been added to the collection at
design time.

The TreeView Control
Let’s start our discussion with a few simple properties that you can set at design time. To experi-
ment with the properties discussed in this section, open the TreeViewDemo project. The project’s
main form is shown in Figure 9.6. After setting some properties (they are discussed next), run the
project and click the Populate button to populate the control. After that, you can click the other
buttons to see the effect of the various property settings on the control.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 311

THE TREEVIEW CONTROL 311

Figure 9.6

The TreeViewDemo
project demonstrates
the basic properties
and methods of the
TreeView control.

Here are the basic properties that determine the appearance of the control:

ShowCheckBoxes If this property is True, a check box appears in front of each node. If the
control displays check boxes, you can select multiple nodes; otherwise, you’re limited to a
single selection.

FullRowSelect This True/False value determines whether a node will be selected even if the
user clicks outside the node’s caption.

HideSelection This property determines whether the selected node will remain highlighted
when the focus is moved to another control. By default, the selected node doesn’t remain
highlighted when the control loses the focus.

HotTracking This property is another True/False value that determines whether nodes are
highlighted as the pointer hovers over them. When it’s True, the TreeView control behaves like
a web document with the nodes acting as hyperlinks — they turn blue while the pointer hovers
over them. Use the NodeMouseHover event to detect when the pointer hovers over a node.

Indent This property specifies the indentation level in pixels. The same indentation applies
to all levels of the tree — each level is indented by the same number of pixels with respect to its
parent level.

PathSeparator A node’s full name is made up of the names of its parent nodes, separated by
a backslash. To use a different separator, set this property to the desired symbol.

ShowLines The ShowLines property is a True/False value that determines whether the
control’s nodes will be connected to its parent items with lines. These lines help users visualize
the hierarchy of nodes, and it’s customary to display them.

ShowPlusMinus The ShowPlusMinus property is a True/False value that determines
whether the plus/minus button is shown next to the nodes that have children. The plus button
is displayed when the node is collapsed, and it causes the node to expand when clicked. Like-
wise, the minus sign is displayed when the node is expanded, and it causes the node to collapse

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 312

312 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

when clicked. Users can also expand the current node by pressing the left-arrow button and
collapse it with the right-arrow button.

ShowRootLines This is another True/False property that determines whether there will
be lines between each node and root of the tree view. Experiment with the ShowLines and
ShowRootLines properties to find out how they affect the appearance of the control.

Sorted This property determines whether the items in the control will be automatically
sorted. The control sorts each level of nodes separately. In our Globe example, it will sort the
continents, then the countries within each continent, and then the cities within each country.

Adding Nodes at Design Time
Let’s look now at the process of populating the TreeView control. Adding an initial collection of
nodes to a TreeView control at design time is trivial. Locate the Nodes property in the Properties
window, and you’ll see that its value is Collection. To add items, click the ellipsis button, and the
TreeNode Editor dialog box will appear, as shown in Figure 9.7. To add a root item, just click
the Add Root button. The new item will be named Node0 by default. You can change its caption
by selecting the item in the list and setting its Text property accordingly. You can also change the
node’s Name property, as well as the node’s appearance by using the NodeFont, FontColor, and
ForeColor properties.

Figure 9.7

The TreeNode Editor
dialog box

To specify an image for the node, set the control’s ImageList property to the name of an
ImageList control that contains the appropriate images, and then set either the node’s ImageKey
property to the name of the image, or the node’s ImageIndex property to the index of the desired
image in the ImageList control. If you want to display a different image when the control is
selected, set the SelectedImageKey or the SelectedImageIndex property accordingly.

You can add root items by clicking the Add Root button, or you can add items under the
selected node by clicking the Add Child button. Follow these steps to enter the root node with the
string Globe, a child node for Europe, and two more nodes under Europe: Germany and Italy. I’m
assuming that you’re starting with a clean control. If your TreeView control contains any items,
clear them all by selecting one item at a time in the list and pressing the Delete key, or clicking the
delete button (the one with the X icon) on the dialog box.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 313

THE TREEVIEW CONTROL 313

Click the Add Root button first. A new node is added automatically to the list of nodes, and it is
named Node0. Select it with the mouse, and its properties appear in the right pane of the TreeNode
Editor window. Here you can change the node’s Text property to GLOBE. You can specify the
appearance of each node by setting its font and fore/background colors.

Then click the Add Child button, which adds a new node under the GLOBAL root node. Select
it with the mouse as before, and change its Text property to Europe. Then select the newly added
node in the list and click the Add Child button again. Name the new node Germany. You’ve
successfully added a small hierarchy of nodes. To add another node under Europe, select the
Europe node in the list and click the Add Child button again. Name the new item Italy.

Continue adding a few cities under each country. You might add child nodes under the wrong
parent, which can happen if you forget to select the proper parent node before clicking the Add
Child button. To delete a node, select it with the mouse and click the Delete button. Note that when
a node is deleted, all the nodes under it are deleted, too. Moreover, this action can’t be undone. So
be careful when deleting nodes.

Click the OK button to close the TreeNode Editor’s window and return to your form. The
nodes you added to the TreeView control are there, but they’re collapsed. Only the root nodes are
displayed with the plus sign in front of their names. Click the plus sign to expand the tree and see
its child nodes. The TreeView control behaves the same at design time as it does at runtime — as
far as navigating the tree goes, at least.

The nodes added to a TreeView control at design time will appear each time the form is loaded.
You can add new nodes through your code, and you will see how this is done in the following
section.

Adding Nodes at Runtime
Adding items to the control at runtime is a bit more involved. All the nodes belong to the control’s
Nodes collection, which is made up of TreeNode objects. To access the Nodes collection, use
the following expression, where TreeView1 is the control’s name and Nodes is a collection of
TreeNode objects:

TreeView1.Nodes

This expression returns a collection of TreeNode objects and exposes the proper members for
accessing and manipulating the individual nodes. The control’s Nodes property is the collection of
all root nodes.

To access the first node, use the expression TreeView.Nodes(0) (this is the Globe node in our
example). The Text property returns the node’s value, which is a string. TreeView1.Nodes(0).
Text is the caption of the root node on the control. The caption of the second node on the same
level is TreeView1.Nodes(1).Text, and so on.

The following statements print the strings shown highlighted below them (these strings are not
part of the statements; they’re the output that the statements produce):

Debug.WriteLine(TreeView1.Nodes(0).Text)
GLOBE
Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)
Europe
Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)
Italy

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 314

314 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Let’s take a closer look at these expressions. TreeView1.Nodes(0) is the first root node, the
Globe node. Under this node, there is a collection of nodes, the TreeView1.Nodes(0).Nodes
collection. Each node in this collection is a continent name. The first node in this collection is
Europe, and you can access it with the expression TreeView1.Nodes(0).Nodes(0). If you want
to change the appearance of the node Europe, type a period after the preceding expression to
access its properties (the NodeFont property to set its font, the ForeColor property to set it color,
the ImageIndex property, and so on). Likewise, this node has its own Nodes collection, which
contains the countries under the specific continent.

Adding New Nodes

The Add method adds a new node to the Nodes collection. The Add method accepts as an argument
a string or a TreeNode object. The simplest form of the Add method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control. Another form of the Add
method allows you to add a TreeNode object directly (nodeObj is a properly initialized TreeNode
variable):

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode
nodeObj.Text = ”Tree Node”
nodeObj.ForeColor = Color.BlueViolet
TreeView1.Nodes.Add(nodeObj)

The last overloaded form of the Add method allows you to specify the index in the current
Nodes collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj TreeNode object must be initialized as usual.
To add a child node to the root node, use a statement such as the following:

TreeView1.Nodes(0).Nodes.Add(”Asia”)

To add a country under Asia, use a statement such as the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add(”Japan”)

The expressions can get quite lengthy. The proper way to add child items to a node is to create
a TreeNode variable that represents the parent node, under which the child nodes will be added.
Let’s say that the ContinentNode variable in the following example represents the node Europe:

Dim ContinentNode As TreeNode
ContinentNode = TreeView1.Nodes(0).Nodes(2)

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 315

THE TREEVIEW CONTROL 315

Then you can add child nodes to the ContinentNode node:

ContinentNode.Nodes.Add(”France”)
ContinentNode.Nodes.Add(”Germany”)

To add yet another level of nodes, the city nodes, create a new variable that represents a specific
country. The Add method actually returns a TreeNode object that represents the newly added
node, so you can add a country and a few cities by using statements such as the following:

Dim CountryNode As TreeNode
CountryNode = ContinentNode.Nodes.Add(”Germany”)
CountryNode.Nodes.Add(”Berlin”)
CountryNode.Nodes.Add(”Frankfurt”)

Then you can continue adding countries under another continent as follows:

CountryNode = ContinentNode.Nodes.Add(”Italy”)
CountryNode.Nodes.Add(”Rome”)

The Nodes Collection Members

The Nodes collection exposes the usual members of a collection. The Count property returns the
number of nodes in the Nodes collection. Again, this is not the total number of nodes in the control,
just the number of nodes in the current Nodes collection. The expression

TreeView1.Nodes.Count

returns the number of all nodes in the first level of the control. In the case of the Globe example,
it returns the value 1. The expression

TreeView1.Nodes(0).Nodes.Count

returns the number of continents in the Globe example. Again, you can simplify this expression
by using an intermediate TreeNode object:

Dim Continents As TreeNode
Continents = TreeView1.Nodes(0)
Debug.WriteLine(

”There are ” & Continents.Nodes.Count.ToString &
” continents on the control”)

The Clear method removes all the child nodes from the current node. If you apply this method to
the control’s root node, it will clear the control. To remove all the cities under the Germany node,
use a statement such as the following:

TreeView1.Nodes(0).Nodes(2).Nodes(1).Nodes.Clear

This example assumes that the third node under Globe corresponds to Europe, and the second
node under Europe corresponds to Germany.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 316

316 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

The Item property retrieves a node specified by an index value. The expression Nodes.Item(1)
is equivalent to the expression Nodes(1). Finally, the Remove method removes a node from the
Nodes collection. Its syntax is

Nodes.Remove(index)

where index is the order of the node in the current Nodes collection. To remove the selected node,
call the Remove method on the SelectedNode property without arguments:

TreeView1.SelectedNode.Remove

Or you can apply the Remove method to a TreeNode object that represents the node you want
to remove:

Dim Node As TreeNode
Node = TreeView1.Nodes(0).Nodes(7)
Node.Remove

There are four properties that allow you to retrieve any node at the current segment of the
tree: FirstNode, NextNode, PrevNode, and LastNode. Let’s say the current node is the Germany
node. The FirstNode property will return the first city under Germany (the first node in the
current segment of the tree), and LastNode will return the last city under Germany. PrevNode and
NextNode allow you to iterate through the nodes of the current segment: They return the next
and previous nodes on the current segment of the tree (the sibling nodes, as they’re called). See the
section called ‘‘Enumerating the Nodes Collection’’ later in this chapter for an example.

Basic Nodes Properties

There are a few properties you will find extremely handy as you program the TreeView control.
The IsVisible property is a True/False value indicating whether the node to which it’s applied
is visible. To bring an invisible node into view, call its EnsureVisible method:

If Not TreeView1.SelectedNode.IsVisible Then
TreeView1.EnsureVisible

End If

How can the selected node be invisible? It can, if you select it from within your code in a
search operation. The IsSelected property returns True if the specified node is selected, while
the IsExpanded property returns True if the specified node is expanded. You can toggle a node’s
state by calling its Toggle method. You can also expand or collapse a node by calling its Expand
or Collapse method, respectively. Finally, you can collapse or expand all nodes by calling the
CollapseAll or ExpandAll method of the TreeView control.

VB 2008 at Work: The TreeViewDemo Project
It’s time to demonstrate the members discussed so far with an example. The project you’ll build in
this section is the TreeViewDemo project. The project’s main form is shown in Figure 9.6.

The Add Categories button adds the three top-level nodes to the TreeView control via the
statements shown in Listing 9.1. These are the control’s root nodes. The other two Add buttons
add nodes under the root nodes.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 317

THE TREEVIEW CONTROL 317

Listing 9.1: The Add Categories Button

Protected Sub AddCategories Click(...)
Handles AddCategories.Click

TreeView1.Nodes.Add(”Shapes”)
TreeView1.Nodes.Add(”Solids”)
TreeView1.Nodes.Add(”Colors”)

End Sub

When these statements are executed, three root nodes are added to the list. After clicking the
Add Categories button, your TreeView control looks like the one shown here.

To add a few nodes under the node Colors, you must retrieve the Colors Nodes collection and
add child nodes to this collection, as shown in Listing 9.2.

Listing 9.2: The Add Colors Button

Protected Sub AddColors Click(...)
Handles AddColors.Click

Dim cnode As TreeNode
cnode = TreeView1.Nodes(2)
cnode.Nodes.Add(”Pink”)
cnode.Nodes.Add(”Maroon”)
cnode.Nodes.Add(”Teal”)

End Sub

When these statements are executed, three more nodes are added under the Colors node, but
the Colors node won’t be expanded. Therefore, its child nodes won’t be visible. To see its child
nodes, you must double-click the Colors node to expand it (or click the plus sign in front of it,
if there is one). The same TreeView control with its Colors node expanded is shown to the left.
Alternatively, you can add a statement that calls the Expand method of the cnode object, after
adding the color nodes to the control:

cnode.Expand()

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 318

318 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Run the project, click the first button (Add Categories), and then click the second button (Add
Colors). If you click the Add Colors button first, you’ll get a NullReferenceException, indicating
that the node can’t be inserted unless its parent node already exists. I added a few statements in
the TreeViewDemo project’s code to disable the buttons that generate similar runtime errors.

To add child nodes under the Shapes node, use the statements shown in Listing 9.3. This is the
Add Shapes button’s Click event handler.

Listing 9.3: The Add Shapes Button

Protected Sub AddShapes Click(...)
Handles AddShapes.Click

Dim snode As TreeNode
snode = treeview1.Nodes(0)
snode.Nodes.Add(”Square”)
snode.Nodes.Add(”Triangle”)
snode.Nodes.Add(”Circle”)

End Sub

If you run the project and click the three buttons in the order in which they appear on the
form, the TreeView control will be populated with colors and shapes. If you double-click the items
Colors and Shapes, the TreeView control’s nodes will be expanded.

Notice that the code knows the order of the root node to which it’s adding child nodes. This
approach doesn’t work with a sorted tree. If your TreeView control is sorted, you must create a
hierarchy of nodes explicitly by using the following statements:

snode = TreeView1.Nodes.Add(”Shapes”)
snode.Add(”Square”)
snode.Add(”Circle”)
snode.Add(”Triangle”)

These statements will work regardless of the control’s Sorted property setting. The three
shapes will be added under the Shapes node, and their order will be determined automatically.
Of course, you can always populate the control in any way you like and then turn on the Sorted
property.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 319

THE TREEVIEW CONTROL 319

Inserting a Root Node

Let’s revise the code we’ve written so far to display all the nodes under a new header. In other
words, we’ll add a new node called Items that will act as the root node for existing nodes. It’s not
a common operation, but it’s an interesting example of how to manipulate the nodes of a TreeView
control at runtime.

First, we must add the new root node. Before we do so, however, we must copy all the first-level
nodes into local variables. We’ll use these variables to add the current root nodes under the new
(and single) root node. There are three root nodes currently in our control, so we need three local
variables. The three variables are of the TreeNode type, and they’re set to the root nodes of the
original tree. Then we must clear the entire tree, add the new root node (the Items node), and
finally add all the copied nodes under the new root. The code behind the Move Tree button is
shown in Listing 9.4.

Listing 9.4: Moving an Entire Tree

Protected Sub MoveTree Click(...)
Handles bttnMoveTree.Click

Dim colorNode, shapeNode, solidNode As TreeNode
colorNode = TreeView1.Nodes(0)
shapeNode = TreeView1.Nodes(1)
solidNode = TreeView1.Nodes(2)
TreeView1.Nodes.Clear()
TreeView1.Nodes.Add(”Items”)
TreeView1.Nodes(0).Nodes.Add(colorNode)
TreeView1.Nodes(0).Nodes.Add(shapeNode)
TreeView1.Nodes(0).Nodes.Add(solidNode)

End Sub

You can revise this code so that it uses an array of Node objects instead of individual variables
to store all the root nodes. For a routine that will work with any tree, you must assume that the
number of nodes is unknown, so the ArrayList would be a better choice. The following loop stores
all the root nodes of the TreeView1 control to the TVList ArrayList:

Dim TVList As New ArrayList
Dim node As TreeNode
For Each node in TreeView1.Nodes

TVList.Add(node)
Next

Likewise, the following loop extracts the root nodes from the TVList ArrayList:

Dim node As TreeNode
Dim itm As Object
TreeView1.Nodes.Clear
For Each itm In TVList

node = CType(itm, TreeNode)

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 320

320 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

TreeView1.Nodes.Add(node)
Next

Enumerating the Nodes Collection

As you saw in the previous example, a Node object can include an entire tree under it. When we
move a node, it takes with it the entire Nodes collection located under it. You can scan all the
nodes in a Nodes collection by using a loop, which starts with the first node and then moves to the
next node with the help of the FirstNode and NextNode properties. The following loop prints
the names of all continents in the GlobeTree control:

Dim CurrentNode As TreeNode
CurrentNode = GlobeTree.Nodes(0).Nodes(0).FirstNode
While CurrentNode IsNot Nothing

Debug.WriteLine(CurrentNode.text)
CurrentNode = CurrentNode.NextNode

End While

The last property demonstrated by the TreeViewDemo project is the Sorted property, which
sorts the child nodes of the node to which it’s applied. When you set the Sorted property of a
node to True, every child node you attach to it will be inserted automatically in alphabetical order.
If you reset the Sorted property to False, any child nodes you attach will be appended to the end
of the existing sorted nodes.

VB 2008 at Work: The Globe Project
The Globe project demonstrates many of the techniques we’ve discussed so far. It’s not the
simplest example of a TreeView control, and its code is lengthy, but it will help you understand
how to manipulate nodes at runtime. Because TreeView is not a simple control, before ending this
section I want to show you a nontrivial example that you can use as a starting point for your own
custom applications.

The Globe project consists of a single form, which is shown in Figure 9.8. The TreeView control
at the left contains a rather obvious tree structure that shows continents, countries, and cities. The
control is initially populated with the continents, which were added at design time. The countries
and cities are added from within the form’s Load event handler. Although the continents were
added at design time, there’s no particular reason not to add them to the control at runtime. It
would have been simpler to add all the nodes at runtime by using the TreeNode Editor, but I
decided to add a few nodes at design time just for demonstration purposes.

When a node is selected from the TreeView control, its text is displayed in the TextBox controls
at the bottom of the form. When a continent name is selected, the continent’s name appears in
the first TextBox, and the other two TextBoxes are empty. When a country is selected, its name
appears in the second TextBox, and its continent appears in the first TextBox. Finally, when a city
is selected, it appears in the third TextBox, along with its country and continent in the other two
TextBoxes.

You can also use the same TextBox controls to add new nodes. To add a new continent, just
supply the name of the continent in the first TextBox and leave the other two empty. To add a new
country, supply its name in the second TextBox and the name of the continent it belongs to in the
first one. Finally, to add a city, supply a continent, country, and city name in the three TextBoxes.
The program will add new nodes as needed.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 321

THE TREEVIEW CONTROL 321

Figure 9.8

The Globe project

Run the Globe application and expand the continents and countries to see the tree structure
of the data stored in the control. Add new nodes to the control, and enumerate these nodes by
clicking the buttons on the right-hand side of the form. These buttons list the nodes at a given
level (continents, countries, and cities). When you add new nodes, the code places them in their
proper place in the list. If you specify a new city and a new country under an existing continent,
a new country node will be created under the specified continent, and a new city node will be
inserted under the specified country.

Adding New Nodes

Let’s take a look at the code of the Globe project. We’ll start by looking at the code that populates
the TreeView control. The root node (GLOBE) and the continent names were added at design time
through the TreeNode Editor.

When the application starts, the code adds the countries to each continent and adds the cities
to each country. The code in the form’s Load event goes through all the continents already in
the control and examines their Text properties. Depending on the continent represented by the
current node, the code adds the corresponding countries and some city nodes under each
country node.

If the current node is Africa, the first country to be added is Egypt. The Egypt node is added
to the ContinentNode variable. The new node is returned as a TreeNode object and is stored in
the CountryNode variable. Then the code uses this object to add nodes that correspond to cities
under the Egypt node. The form’s Load event handler is quite lengthy, so I’m showing only the
code that adds the first country under each continent and the first city under each country (see
Listing 9.5). The variable GlobeNode is the root node of the TreeView control, and it was declared
and initialized with the following statement:

Dim GlobeNode As TreeNode = GlobeTree.Nodes(0)

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 322

322 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Listing 9.5: Adding the Nodes of Africa

For Each ContinentNode In GlobeNode.Nodes
Select Case ContinentNode.Text

Case ”Europe”
CountryNode = ContinentNode.Nodes.Add(”Germany”)
CountryNode.Nodes.Add(”Berlin”)

Case ”Asia”
CountryNode = ContinentNode.Nodes.Add(”China”)
CountryNode.Nodes.Add(”Beijing”)

Case ”Africa”
CountryNode = ContinentNode.Nodes.Add(”Egypt”)
CountryNode.Nodes.Add(”Cairo”)
CountryNode.Nodes.Add(”Alexandria”)

Case ”Oceania”
CountryNode = ContinentNode.Nodes.Add(”Australia”)
CountryNode.Nodes.Add(”Sydney”)

Case ”N. America”
CountryNode = ContinentNode.Nodes.Add(”USA”)
CountryNode.Nodes.Add(”New York”)

Case ”S. America”
CountryNode = ContinentNode.Nodes.Add(”Argentina”)

End Select
Next

The remaining countries and their cities are added via similar statements, which you can
examine if you open the Globe project. Notice that the GlobeTree control could have been pop-
ulated entirely at design time, but this wouldn’t be much of a demonstration. Let’s move on to a
few more interesting aspects of programming the TreeView control.

Retrieving the Selected Node

The selected node is given by the property SelectedNode. After retrieving the selected node,
you can also retrieve its parent node and the entire path to the root node. The parent node of the
selected node is TreeView1.SelectedNode.Parent. If this node has a parent, you can retrieve
it by calling the Parent property of the previous expression. The FullPath property of a node
retrieves the selected node’s full path. The FullPath property of the Rome node is as follows:

GLOBE\Europe\Italy\Rome

The slashes separate the segments of the node’s path. As mentioned earlier, you can specify
any other character for this purpose by setting the control’s PathSeparator property.

To remove the selected node from the tree, call the Remove method:

TreeView1.SelectedNode.Remove

If the selected node is a parent control for other nodes, the Remove method will take with
it all the nodes under the selected one. To select a node from within your code, set the

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 323

THE TREEVIEW CONTROL 323

control’s SelectedNode property to the TreeNode object that represents the node you want
to select.

One of the operations you’ll want to perform with the TreeView control is to capture the
selection of a node. The TreeView control fires the BeforeSelect and AfterSelect events, which
notify your application about the selection of another node. If you need to know which node was
previously selected, you must use the BeforeSelect event. The second argument of both events
has two properties, TreeNode and Action, which let you find out the node that fired the event
and the action that caused it. The e.Node property is a TreeViewNode object that represents the
selected node. Use it in your code as you would use any other node of the control. The e.Action
property is a member of the TreeViewAction enumeration (ByKeyboard, ByMouse, Collapse,
Expand, Unknown). Use this property to find out the action that caused the event. The actions of
expanding and collapsing a tree branch fire their own events, which are the BeforeExpand/
AfterExpand and the BeforeCollapse/AfterCollapse events, respectively.

The Globe project retrieves the selected node and extracts the parts of the node’s path. The
individual components of the path are displayed in the three TextBox controls at the bottom of
the form. Listing 9.6 shows the event handler for the TreeView control’s AfterSelect event.

Listing 9.6: Processing the Selected Node

Private Sub GlobeTree AfterSelect(...)
Handles GlobeTree.AfterSelect

If GlobeTree.SelectedNode Is Nothing Then Exit Sub
Dim components() As String
txtContinent.Text = ””
txtCountry.Text = ””
txtCity.Text = ””

Dim separators() As Char
separators = GlobeTree.PathSeparator.ToCharArray
components =

GlobeTree.SelectedNode.FullPath.
ToString.Split(separators)

If components.Length > 1 Then
txtContinent.Text = components(1)

If components.Length > 2 Then
txtCountry.Text = components(2)

If components.Length > 3 Then
txtCity.Text = components(3)

End Sub

The Split method of the String data type extracts the parts of a string that are delimited by the
PathSeparator character (the backslash character). If any of the captions contain this character,
you should change the default to a different character by setting the PathSeparator property to
some other character.

The code behind the Delete Current Node and Expand Current Node buttons is simple. To
delete a node, call the selected node’s Remove method. To expand a node, call the selected node’s
Expand method.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 324

324 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Processing Multiple Selected Nodes

The GlobeTree control has its ShowCheckBoxes property set to True so that users can select
multiple nodes. I added this feature to demonstrate how you can allow users to select any number
of nodes and then process them.

As you will notice by experimenting with the TreeView control, you can select a node that has
subordinate nodes, but these nodes will not be affected; they will remain deselected (or selected,
if you have already selected them). In most cases, however, when we select a parent node, we
actually intend to select all the nodes under it. When you select a country, for example, you’re in
effect selecting not only the country, but also all the cities under it. The code of the Process Selected
Nodes button assumes that when a parent node is selected, the code must also select all the nodes
under it.

Let’s look at the code that iterates through the control’s nodes and isolates the selected ones.
It doesn’t really process them; it simply prints their captions in the ListBox control. However,
you can call a function to process the selected nodes in any way you like. The code behind the
Process Selected Nodes button starts with the continents. It creates a TreeNodeCollection with
all the continents and then goes through the collection with a For Each. . .Next loop. At each step,
it creates another TreeNodeCollection, which contains all the subordinate nodes (the countries
under the selected continent) and goes through the new collection. This loop is also interrupted
at each step to retrieve the cities in the current country and process them with another loop. The
code behind the Process Selected Nodes button is straightforward, as you can see in Listing 9.7.

Listing 9.7: Processing All Selected Nodes

Protected Sub bttnProcessSelected Click(...)
Handles bttnProcessSelected.Click

Dim continent, country, city As TreeNode
Dim Continents, Countries, Cities As TreeNodeCollection
ListBox1.Items.Clear()
Continents = GlobeTree.Nodes(0).Nodes
For Each continent In Continents

If continent.Checked Then ListBox1.Items.Add(continent.FullPath)
Countries = continent.Nodes
For Each country In Countries

If country.Checked Or country.Parent.Checked Then
ListBox1.Items.Add(” ” & country.FullPath)

Cities = country.Nodes
For Each city In Cities

If city.Checked Or city.Parent.Checked Or
city.Parent.Parent.Checked Then

ListBox1.Items.Add(” ” & city.FullPath)
Next

Next
Next

End Sub

The code examines the Checked property of the current node, as well as the Checked property
of the parent node, all the way to the root node. If any of them is True, the node is considered

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 325

THE TREEVIEW CONTROL 325

selected. You should try to add the appropriate code to select all subordinate nodes of a parent
node when the parent node is selected (whether you deselect the subordinate nodes when the
parent node is deselected is entirely up to you and depends on the type of application you’re
developing). The Nodes collection exposes the GetEnumerator method, and you can revise the last
listing so that it uses an enumerator in place of each For Each. . .Next loop. If you want to retrieve
the selected nodes only, and ignore the unselected child nodes of a selected parent node, use the
CheckedNodes collection.

Adding New Nodes

The Add This Node button lets the user add new nodes to the tree at runtime. The number and
type of the node(s) added depend on the contents of the TextBox controls:

◆ If only the first TextBox control contains text, a new continent will be added.

◆ If the first two TextBox controls contain text:

◆ If the continent exists, a new country node is added under the specified continent.

◆ If the continent doesn’t exist, a new continent node is added, and then a new country
node is added under the continent’s node.

◆ If all three TextBox controls contain text, the program adds a continent node (if needed),
then a country node under the continent node (if needed), and finally, a city node under
the country node.

Obviously, you can omit a city, or a city and country, but you can’t omit a continent name.
Likewise, you can’t specify a city without a country, or a country without a continent. The code
will prompt you accordingly when it detects any condition that prevents it from adding the new
node. If the node exists already, the program selects the existing node and doesn’t issue any
warnings. The Add This Node button’s code is shown in Listing 9.8.

Listing 9.8: Adding Nodes at Runtime

Private Sub bttnAddNode Click(...)
Handles bttnAddNode.Click

Dim nd As TreeNode
Dim Continents As TreeNode
If txtContinent.Text.Trim <> ”” Then

Continents = GlobeTree.Nodes(0)
Dim ContinentFound, CountryFound, CityFound As Boolean
Dim ContinentNode, CountryNode, CityNode As TreeNode
For Each nd In Continents.Nodes

If nd.Text.ToUpper = txtContinent.Text.ToUpper Then
ContinentFound = True
Exit For

End If
Next
If Not ContinentFound Then

nd = Continents.Nodes.Add(txtContinent.Text)
End If

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 326

326 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

ContinentNode = nd
If txtCountry.Text.Trim <> ”” Then

Dim Countries As TreeNode
Countries = ContinentNode
If Not Countries Is Nothing Then

For Each nd In Countries.Nodes
If nd.Text.ToUpper = txtCountry.Text.ToUpper Then

CountryFound = True
Exit For

End If
Next

End If
If Not CountryFound Then

nd = ContinentNode.Nodes.Add(txtCountry.Text)
End If
CountryNode = nd
If txtCity.Text.Trim <> ”” Then

Dim Cities As TreeNode
Cities = CountryNode
If Not Cities Is Nothing Then

For Each nd In Cities.Nodes
If nd.Text.ToUpper = txtCity.Text.ToUpper Then

CityFound = True
Exit For

End If
Next

End If
If Not CityFound Then

nd = CountryNode.Nodes.Add(txtCity.Text)
End If
CityNode = nd

End If
End If

End If
End Sub

The listing is quite lengthy, but it’s not hard to follow. First, it attempts to find a continent
that matches the name in the first TextBox. If it succeeds, it does not need to add a new continent
node. If not, a new continent node must be added. To avoid simple data-entry errors, the code
converts the continent names to uppercase before comparing them to the uppercase of each node’s
name. The same happens with the countries and the cities. As a result, each node’s pathname
is unique — you can’t have the same city name under the same country more than once. It is
possible, however, to add the same city name to two different countries.

Listing Continents/Countries/Cities

The three buttons ListContinents, ListCountries, and ListCities populate the ListBox control with
the names of the continents, countries, and cities, respectively. The code is straightforward and
is based on the techniques discussed in previous sections. To print the names of the continents,

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 327

THE TREEVIEW CONTROL 327

it iterates through the children of the GLOBE node. Listing 9.9 shows the complete code of the
ListContinents button.

Listing 9.9: Retrieving the Continent Names

Private Sub bttnListContinents Click(...)
Handles bttnListContinents.Click

Dim Nd As TreeNode, continentNode As TreeNode
Dim continent As Integer, continents As Integer
ListBox1.Items.Clear()
Nd = GlobeTree.Nodes(0)
continents = Nd.Nodes.Count
continentNode = Nd.Nodes(0)
For continent = 1 To continents

ListBox1.Items.Add(continentNode.Text)
continentNode = continentNode.NextNode

Next
End Sub

The code behind the ListCountries button is equally straightforward, although longer. It must
scan each continent, and within each continent, it must scan in a similar fashion the continent’s
child nodes. To do this, you must set up two nested loops: the outer one to scan the continents,
and the inner one to scan the countries. The complete code for the ListCountries button is shown
in Listing 9.10. Notice that in this example, I used For. . .Next loops to iterate through the current
level’s nodes, and I also used the NextNode method to retrieve the next node in the sequence.

Listing 9.10: Retrieving the Country Names

Private Sub bttnListCountries Click(...)
Handles bttnListCountries.Click

Dim Nd, CountryNode, ContinentNode As TreeNode
Dim continent, continents, country, countries As Integer
ListBox1.Items.Clear()
Nd = GlobeTree.Nodes.Item(0)
continents = Nd.Nodes.Count
ContinentNode = Nd.Nodes(0)
For continent = 1 To continents

countries = ContinentNode.Nodes.Count
CountryNode = ContinentNode.Nodes(0)
For country = 1 To countries

ListBox1.Items.Add(CountryNode.Text)
CountryNode = CountryNode.NextNode

Next
ContinentNode = ContinentNode.NextNode

Next
End Sub

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 328

328 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

When the ContinentNode.Next method is called, it returns the next node in the Continents
level. Then the property ContinentNode.Nodes(0) returns the first node in the Countries level.
As you can guess, the code of the ListCities button uses the same two nested lists as the previous
listing and an added inner loop, which scans the cities of each country.

The code behind these command buttons requires some knowledge of the information stored
in the tree. The code will work with trees that have two or three levels of nodes such as the Globe
tree, but what if the tree’s depth is allowed to grow to a dozen levels? A tree that represents the
structure of a folder on your hard disk, for example, might easily contain a dozen nested folders.
Obviously, to scan the nodes of this tree, you can’t put together unlimited nested loops. The next
section describes a technique for scanning any tree, regardless of how many levels it contains.

Finally, the application’s File menu contains commands for storing the nodes to a file and load-
ing the same nodes in a later session. These commands use serialization, a topic that’s discussed
in detail in Chapter 16, ‘‘XML and Object Serialization.’’ For now, you can use these commands to
persist the edited nodes to a disk file and read them back.

Scanning the TreeView Control
You have seen how to scan the entire tree of the TreeView control by using a For Each. . .Next
loop that iterates through the Nodes collection. This technique, however, requires that you know
the structure of the tree, and you must write as many nested loops as there are nested levels of
nodes. It works with simple trees, but it’s quite inefficient when it comes to mapping a file system
to a TreeView control. The following section explains how to iterate through a TreeView control’s
node, regardless of the nesting depth.

VB 2008 at Work: The TreeViewScan Project

The TreeViewScan project, whose main form is shown in Figure 9.9, demonstrates the process of
scanning the nodes of a TreeView control. The form contains a TreeView control on the left, which
is populated with the same data as the Globe project, and a ListBox control on the right, in
which the tree’s nodes are listed. Child nodes in the ListBox control are indented according to the
level to which they belong.

Scanning the child nodes in a tree calls for a recursive procedure: a procedure that calls itself.
Think of a tree structure that contains all the files and folders on your C: drive. If this structure
contained no subfolders, you’d need to set up a loop to scan each folder, one after the other.
Because most folders contain subfolders, the process must be interrupted at each folder to scan the
subfolders of the current folder. The process of scanning a drive recursively is described in detail
in Chapter 15, ‘‘Accessing Folders and Files.’’

Recursive Scanning of the Nodes Collection

To scan the nodes of the TreeView1 control, start at the top node of the control by using the
following statement:

ScanNode(GlobeTree.Nodes(0))

This is the code behind the Scan Tree button, and it doesn’t get any simpler. It calls the
ScanNode() subroutine to scan the child nodes of a specific node, which is passed to the sub-
routine as an argument. GlobeTree.Nodes(0) is the root node. By passing the root node to the
ScanNode() subroutine, we’re in effect asking it to scan the entire tree.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 329

THE TREEVIEW CONTROL 329

Figure 9.9

The TreeViewScan appli-
cation demonstrates
how to scan the nodes
of a TreeView control
recursively.

This example assumes that the TreeView control contains a single root node and that all other
nodes are under the root node. If your control contains multiple root nodes, then you must set up
a small loop and call the ScanNode() subroutine once for each root node:

For Each node In GlobeTree.Nodes
ScanNode(node)

Next

Let’s look now at the ScanNode() subroutine shown in Listing 9.11.

Listing 9.11: Scanning a Tree Recursively

Sub ScanNode(ByVal node As TreeNode)
Dim thisNode As TreeNode
Static indentationLevel As Integer
Application.DoEvents()
ListBox1.Items.Add(Space(indentationLevel) & node.Text)
If node.Nodes.Count > 0 Then

indentationLevel += 5
For Each thisNode In node.Nodes

ScanNode(thisNode)
Next
indentationLevel -= 5

End If
End Sub

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 330

330 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

This subroutine is deceptively simple. First, it adds the caption of the current node to the
ListBox1 control. If this node (represented by the Node variable) contains child nodes, the code
must scan them all. The Node.Nodes.Count method returns the number of nodes under the cur-
rent node; if this value is positive, we must scan all the items of the Node.Nodes collection. To do
this, the ScanNode() subroutine must call itself, passing a different argument each time. If you’re
familiar with recursive procedures, you’ll find the code quite simple. You may find the notion of
a function calling itself a bit odd, but it’s no different from calling another function. The execution
of the function that makes the call is suspended until the called function returns.

You can use the ScanNode() subroutine as is to scan any TreeView control. All you need is a
reference to the root node (or the node you want to scan recursively), which you must pass to the
ScanNode() subroutine as an argument. The subroutine will scan the entire subtree and display its
nodes in a ListBox control. The nodes will be printed one after the other. To make the list easier to
read, the code indents the names of the nodes by an amount that’s proportional to the nesting level.
Nodes of the first level aren’t indented at all. Nodes on the second level are indented by 5 spaces,
nodes on the third level are indented by 10 spaces, and so on. The variable indentationLevel
keeps track of the nesting level and is used to specify the indentation of the corresponding node.
It’s increased by 5 when we start scanning a new subordinate node and decreased by the same
amount when we return to the next level up. The indentationLevel variable is declared as Static
so that it maintains its value between calls.

Run the TreeViewScan project and expand all nodes. Then click the Scan Tree button to
populate the list on the right with the names of the continents/countries/cities. Obviously, the
ListBox control is not a substitute for the TreeView control. The data have no particular structure;
even when the names are indented, there are no tree lines connecting the nodes, and users can’t
expand and collapse the control’s contents.

The ListView Control
The ListView control is similar to the ListBox control except that it can display its items in many
forms, along with any number of subitems for each item. To use the ListView control in your
project, place an instance of the control on a form and then set its basic properties, which are
described in the following list.

View and Arrange Two properties determine how the various items will be displayed on
the control: the View property, which determines the general appearance of the items, and the
Arrange property, which determines the alignment of the items on the control’s surface. The
View property can have one of the values shown in Table 9.1.

The Arrange property can have one of the settings shown in Table 9.2.

HeaderStyle This property determines the style of the headers in Details view. It has no
meaning when the View property is set to anything else, because only the Details view has
columns. The possible settings of the HeaderStyle property are shown in Table 9.3.

AllowColumnReorder This property is a True/False value that determines whether the user
can reorder the columns at runtime, and it’s meaningful only in Details view. If this property
is set to True, the user can move a column to a new location by dragging its header with the
mouse and dropping it in the place of another column.

Activation This property, which specifies how items are activated with the mouse, can have
one of the values shown in Table 9.4.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 331

THE LISTVIEW CONTROL 331

Table 9.1: Settings of the View Property

Setting Description

LargeIcon (Default) Each item is represented by an icon and a caption below the icon.

SmallIcon Each item is represented by a small icon and a caption that appears to the right of the icon.

List Each item is represented by a caption.

Details Each item is displayed in a column with its subitems in adjacent columns.

Tile Each item is displayed with an icon and its subitems to the right of the icon. This view is
available only on Windows XP and Windows Server 2003.

Table 9.2: Settings of the Arrange Property

Setting Description

Default When an item is moved on the control, the item remains where it is dropped.

Left Items are aligned to the left side of the control.

SnapToGrid Items are aligned to an invisible grid on the control. When the user moves an item, the item
moves to the closest grid point on the control.

Top Items are aligned to the top of the control.

Table 9.3: Settings of the HeaderStyle Property

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable (Default) Visible column header that does not respond to clicking

None No visible column header

Table 9.4: Settings of the Activation Property

Setting Description

OneClick Items are activated with a single click. When the cursor is over an item, it changes shape, and
the color of the item’s text changes.

Standard (Default) Items are activated with a double-click. No change in the selected item’s text color
takes place.

TwoClick Items are activated with a double-click, and their text changes color as well.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 332

332 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

FullRowSelect This property is a True/False value, indicating whether the user can select an
entire row or just the item’s text, and it’s meaningful only in Details view. When this property
is False, only the first item in the selected row is highlighted.

GridLines Another True/False property. If True, grid lines between items and subitems are
drawn. This property is meaningful only in Details view.

Group The items of the ListView control can be grouped into categories. To use this feature,
you must first define the groups by using the control’s Group property, which is a collection of
strings. You can add as many members to this collection as you want. After that, as you add
items to the ListView control, you can specify the group to which they belong. The control will
group the items of the same category together and display the group’s title above each group.
You can easily move items between groups at runtime by setting the corresponding item’s
Group property to the name of the desired group.

LabelEdit The LabelEdit property lets you specify whether the user will be allowed to edit
the text of the items. The default value of this property is False. Notice that the LabelEdit
property applies to the item’s Text property only; you can’t edit the subitems (unfortunately,
you can’t use the ListView control as an editable grid).

MultiSelect A True/False value, indicating whether the user can select multiple items from
the control. To select multiple items, click them with the mouse while holding down the Shift
or Ctrl key. If the control’s ShowCheckboxes property is set to True, users can select multiple
items by marking the check box in front of the corresponding item(s).

Scrollable A True/False value that determines whether the scroll bars are visible. Even if the
scroll bars are invisible, users can still bring any item into view. All they have to do is select an
item and then press the arrow keys as many times as needed to scroll the desired item
into view.

Sorting This property determines how the items will be sorted, and its setting can be None,
Ascending, or Descending. To sort the items of the control, call the Sort method, which sorts
the items according to their caption. It’s also possible to sort the items according to any of their
subitems, as explained in the section ‘‘Sorting the ListView Control’’ later in this chapter.

The Columns Collection
To display items in Details view, you must first set up the appropriate columns. The first column
corresponds to the item’s caption, and the following columns correspond to its subitems. If you
don’t set up at least one column, no items will be displayed in Details view. Conversely, the
Columns collection is meaningful only when the ListView control is used in Details view.

The items of the Columns collection are of the ColumnHeader type. The simplest way to set up
the appropriate columns is to do so at design time by using a visual tool. Locate and select the
Columns property in the Properties window, and click the ellipsis button next to the property. The
ColumnHeader Collection Editor dialog box will appear, as shown in Figure 9.10, in which you
can add and edit the appropriate columns.

Adding columns to a ListView control and setting their properties through the dialog box
shown in Figure 9.10 is quite simple. Don’t forget to size the columns according to the data you
anticipate storing in them and to set their headers.

It is also possible to manipulate the Columns collection from within your code as follows. Create
a ColumnHeader object for each column in your code, set its properties, and then add it to the
control’s Columns collection:

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 333

THE LISTVIEW CONTROL 333

Dim ListViewCol As New ColumnHeader
ListViewCol.Text = ”New Column”
ListViewCol.TextAlign = HorizontalAlignment.Center
ListViewCol.Width = 125
ListView1.Columns.Add(ListViewCol)

Figure 9.10

The ColumnHeader
Collection Editor dialog
box

Adding and Removing Columns at Runtime

To add a new column to the control, use the Add method of the Columns collection. The syntax of
the Add method is as follows:

ListView1.Columns.Add(header, width, textAlign)

The header argument is the column’s header (the string that appears on top of the items). The
width argument is the column’s width in pixels, and the last argument determines how the text
will be aligned. The textAlign argument can be Center, Left, or Right.

The Add method returns a ColumnHeader object, which you can use later in your code to
manipulate the corresponding column. The ColumnHeader object exposes a Name property, which
can’t be set with the Add method:

Header1 = TreeView1.Add(
”Column 1”, 60, ColAlignment.Left)

Header1.Name = ”Column1”

After the execution of these statements, the first column can be accessed not only by index, but
also by name.

To remove a column, call the Remove method:

ListView1.Columns(3).Remove

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 334

334 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

The indices of the following columns are automatically decreased by one. The Clear method
removes all columns from the Columns collection. Like all collections, the Columns collection
exposes the Count property, which returns the number of columns in the control.

ListView Items and Subitems
As with the TreeView control, the ListView control can be populated either at design time or at
runtime. To add items at design time, click the ellipsis button next to the ListItems property in
the Properties window. When the ListViewItem Collection Editor dialog box pops up, you can
enter the items, including their subitems, as shown in Figure 9.11.

Figure 9.11

The ListViewItem
Collection Editor dialog
box

Click the Add button to add a new item. Each item has subitems, which you can specify as
members of the SubItems collection. To add an item with three subitems, you must populate the
item’s SubItems collection with the appropriate elements. Click the ellipsis button next
to the SubItems property in the ListViewItem Collection Editor; the ListViewSubItem Collection
Editor will appear. This dialog box is similar to the ListViewItem Collection Editor dialog box,
and you can add each item’s subitems. Assuming that you have added the item called Item 1 in
the ListViewItem Collection Editor, you can add these subitems: Item 1-a, Item 1-b, and
Item 1-c. The first subitem (the one with zero index) is actually the main item of the control.

Notice that you can set other properties such as the color and font for each item, the check
box in front of the item that indicates whether the item is selected, and the image of the item. Use
this window to experiment with the appearance of the control and the placement of the items,
especially in Details view because subitems are visible only in this view. Even then, you won’t see
anything unless you specify headers for the columns. Note that you can add more subitems than
there are columns in the control. Some of the subitems will remain invisible.

Unlike the TreeView control, the ListView control allows you to specify a different appearance
for each item and each subitem. To set the appearance of the items, use the Font, BackColor, and
ForeColor properties of the ListViewItem object.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 335

THE LISTVIEW CONTROL 335

Almost all ListView controls are populated at runtime. Not only that, but you should be able
to add and remove items during the course of the application. The items of the ListView control
are of the ListViewItem type, and they expose members that allow you to control the appearance
of the items on the control. These members are as follows:

BackColor/ForeColor properties These properties set or return the background/foreground
colors of the current item or subitem.

Checked property This property controls the status of an item. If it’s True, the item has been
selected. You can also select an item from within your code by setting its Checked property
to True. The check boxes in front of each item won’t be visible unless you set the control’s
ShowCheckBoxes property to True.

Font property This property sets the font of the current item. Subitems can be displayed in a
different font if you specify one by using the Font property of the corresponding subitem
(see the section titled ‘‘The SubItems Collection,’’ later in this chapter). By default, subitems
inherit the style of the basic item. To use a different style for the subitems, set the item’s
UseItemStyleForSubItems property to False.

Text property This property indicates the caption of the current item or subitem.

SubItems collection This property holds the subitems of a ListViewItem. To retrieve a
specific subitem, use a statement such as the following:

sitem = ListView1.Items(idx1).SubItems(idx2)

where idx1 is the index of the item, and idx2 is the index of the desired subitem.*

To add a new subitem to the SubItems collection, use the Add method, passing the text of the
subitem as an argument:

LItem.SubItems.Add(”subitem’s caption”)

The argument of the Add method can also be a ListViewItem object. Create a ListViewItem,
populate it, and then add it to the Items collection as shown here:

Dim LI As New ListViewItem
LI.Text = ”A New Item”
Li.SubItems.Add(”Its first subitem”)
Li.SubItems.Add(”Its second subitem”)
‘ statements to add more subitems
ListView1.Items.Add(LI)

If you want to add a subitem at a specific location, use the Insert method. The Insert method
of the SubItems collection accepts two arguments: the index of the subitem before which the
new subitem will be inserted, and a string or ListViewItem to be inserted:

LItem.SubItems.Insert(idx, subitem)

Like the ListViewItem objects, each subitem can have its own font, which is set with the Font
property.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 336

336 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

The items of the ListView control can be accessed through the Items property, which is a
collection. As such, it exposes the standard members of a collection, which are described in the
following section. Its item has a SubItems collection that contains all the subitems of the
corresponding item.

The Items Collection
All the items on the ListView control form a collection: the Items collection. This collection exposes
the typical members of a collection that let you manipulate the control’s items. These members are
discussed next.

Add method This method adds a new item to the Items collection. The syntax of the Add
method is as follows:

ListView1.Items.Add(caption)

You can also specify the index of the image to be used, along with the item and a collection of
subitems to be appended to the new item, by using the following form of the Add method:

ListView1.Items.Add(caption, imageIndex)

where imageIndex is the index of the desired image on the associated ImageList control.

Finally, you can create a ListViewItem object in your code and then add it to the ListView
control by using the following form of the Add method:

ListView1.Items.Add(listItemObj)

The following statements create a new item, set its individual subitems, and then add the
newly created ListViewItem object to the control:

LItem.Text = ”new item”
LItem.SubItems.Add(”sub item 1a”)
LItem.SubItems.Add(”sub item 1b”)
LItem.SubItems.Add(”sub item 1c”)
ListView1.Items.Add(LItem)

Count property Returns the number of items in the collection.

Item property Retrieves an item specified by an index value.

Clear method Removes all the items from the collection.

Remove method Removes an item from the collection.

The SubItems Collection
Each item in the ListView control may have one or more subitems. You can think of the item as the
key of a record, and the subitems as the other fields of the record. The subitems are displayed only
in Details mode, but they are available to your code in any view. For example, you can display all
items as icons, and when the user clicks an icon, show the values of the selected item’s subitems
on other controls.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 337

THE LISTVIEW CONTROL 337

To access the subitems of a given item, use its SubItems collection. The following statements
add an item and three subitems to the ListView1 control:

Dim LItem As ListViewItem
LItem = ListView1.Items.Add(”Alfred’s Futterkiste”)
LItem.SubItems.Add(”Maria Anders”)
LItem.SubItems.Add(”030-0074321”)
LItem.SubItems.Add(”030-0076545”)

To access the SubItems collection, you need a reference to the item to which the subitems
belong. The Add method returns a reference to the newly added item, the LItem variable, which is
then used to access the item’s subitems, as shown in the preceding code segment.

Displaying the subitems on the control requires some overhead. Subitems are displayed only
in Details view mode. However, setting the View property to Details is not enough. You must first
create the columns of the Details view, as explained earlier. The ListView control displays only as
many subitems as there are columns in the control. The first column, with the header Company,
displays the items of the list. The following columns display the subitems. Moreover, you can’t
specify which subitem will be displayed under each header. The first subitem (Maria Anders in the
preceding example) will be displayed under the second header, the second subitem (030-0074321
in the same example) will be displayed under the third header, and so on. At runtime, the user
can rearrange the columns by dragging them with the mouse. To disable the rearrangement of the
columns at runtime, set the control’s AllowColumnReorder property to False (its default value
is True).

Unless you set up each column’s width, they will all have the same width. The width of
individual columns is specified in pixels, and you can set it to a percentage of the total width of
the control, especially if the control is docked to the form. The following code sets up a ListView
control with four headers, all having the same width:

Dim LWidth As Integer
LWidth = ListView1.Width - 5
ListView1.ColumnHeaders.Add(”Company”, LWidth / 4)
ListView1.ColumnHeaders.Add(”Contact”, LWidth / 4)
ListView1.ColumnHeaders.Add(”Phone”, LWidth / 4)
ListView1.ColumnHeaders.Add(”FAX”, LWidth / 4)
ListView1.View = DetailsView

This subroutine sets up four headers of equal width. The first header corresponds to the item
(not a subitem). The number of headers you set up must be equal to the number of subitems you
want to display on the control, plus one. The constant 5 is subtracted to compensate for the width
of the column separators. If the control is anchored to the vertical edges of the form, you must
execute these statements from within the form’s Resize event handler, so that the columns are
resized automatically as the control is resized.

VB 2008 at Work: The ListViewDemo Project
Let’s put together the members of the ListView control to create a sample application that
populates the control and enumerates its items. The sample application of this section is the
ListViewDemo project. The application’s form, shown in Figure 9.12, contains a ListView control
whose items can be displayed in all possible views, depending on the status of the RadioButton
controls in the List Style section on the right side of the form.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 338

338 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Figure 9.12

The ListViewDemo
project demonstrates
the basic members
of the ListView control.

The control’s headers and their widths were set at design time through the ColumnHeader
Collection Editor, as explained earlier. To populate the ListView control, click the Populate List
button, whose code is shown next. The code creates a new ListViewItem object for each item to be
added. Then it calls the Add method of the SubItems collection to add the item’s subitems (contact,
phone, and fax numbers). After the ListViewItem has been set up, it’s added to the control via the
Add method of its Items collection.

Listing 9.12 shows the statements that insert the first two items in the list. The remaining items
are added by using similar statements, which need not be repeated here. The sample data I used
in the ListViewDemo application came from the Northwind sample database.

Listing 9.12: Populating a ListView Control

Dim LItem As New ListViewItem()
LItem.Text = ”Alfred’s Futterkiste”
LItem.SubItems.Add(”Anders Maria”)
LItem.SubItems.Add(”030-0074321”)
LItem.SubItems.Add(”030-0076545”)
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

LItem = New ListViewItem()
LItem.Text = ”Around the Horn”
LItem.SubItems.Add(”Hardy Thomas”)
LItem.SubItems.Add(”(171) 555-7788”)
LItem.SubItems.Add(”(171) 555-6750”)
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 339

THE LISTVIEW CONTROL 339

Enumerating the List

The Enumerate List button scans all the items in the list and displays them along with their
subitems in the Immediate window. To scan the list, you must set up a loop that enumerates
all the items in the Items collection. For each item in the list, set up a nested loop that scans all the
subitems of the current item. The complete code for the Enumerate List button is shown in
Listing 9.13.

Listing 9.13: Enumerating Items and SubItems

Private Sub bttnEnumerate Click(...)
Handles bttnEnumerate.Click

Dim i, j As Integer
Dim LItem As ListViewItem
For i = 0 To ListView1.Items.Count - 1

LItem = ListView1.Items(i)
Debug.WriteLine(LItem.Text)
For j = 0 To LItem.SubItems.Count - 1

Debug.WriteLine(” ” & ListView1.Columns(j).Text &
” ” & Litem.SubItems(j).Text)

Next
Next

End Sub

Notice that each item may have a different number of subitems. The output of this code in the
Immediate window is shown next. The subitems appear under the corresponding item, and they
are indented by three spaces:

Alfred’s Futterkiste
Company Alfred’s Futterkiste
Contact Anders Maria
Telephone 030-0074321
FAX 030-0076545

Around the Horn
Company Around the Horn
Contact Hardy Thomas
Telephone (171) 555-7788
FAX (171) 555-6750

The code in Listing 9.13 uses a For. . .Next loop to iterate through the items of the control. You
can also set up a For Each. . .Next loop, as shown here:

Dim LI As ListViewItem
For Each LI In ListView1.Items

{ access the current item through the LI variable}
Next

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 340

340 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Sorting the ListView Control
The ListView control provides the Sort method, which sorts the list’s items, and the Sorting
property, which determines how the items will be sorted. The Sort method sorts the items in
the first column alphabetically. Each item may contain any number of subitems, and you should
be able to sort the list according to any column. The values stored in the subitems can represent
different data types (numeric values, strings, dates, and so on), but the control doesn’t provide
a default sorting mechanism for all data types. Instead, it uses a custom comparer object, which
you supply, to sort the items. (The topic of building custom comparers is discussed in detail in
Chapter 14, ‘‘Storing Data in Collections.’’) A custom comparer is a function that compares two
items and returns an integer value (–1, 0, or 1) that indicates the order of the two items. After this
function is in place, the control uses it to sort its items.

The ListView control’s ListViewItemSorter property accepts the name of a custom comparer,
and the items on the control are sorted according to the custom comparer as soon as you call the
Sort method. You can provide several custom comparers and sort the items in many different
ways. If you plan to display subitems along with your items in Details view, you should make the
list sortable by any column. It’s customary for a ListView control to sort its items according to
the values in a specific column each time the header of this column is clicked. And this is
exactly the type of functionality you’ll add to the ListViewDemo project in this section.

The ListViewDemo control displays contact information. The items are company names, and
the first subitem under each item is the name of a contact. We’ll create two custom comparers to
sort the list according to either company name or contact. The two methods are identical because
they compare strings, but it’s not any more complicated to compare dates, distances, and so on.

Let’s start with the two custom comparers. Each comparer must be implemented in its own
class, and you assign the name of the custom comparer to the ListViewItem property of the
control. Listing 9.14 shows the ListCompanyComparer and ListContactComparer classes.

Listing 9.14: The Two Custom Comparers for the ListViewDemo Project

Class ListCompanySorter
Implements IComparer
Public Function CompareTo(ByVal o1 As Object,

ByVal o2 As Object) As Integer
Implements System.Collections.IComparer.Compare

Dim item1, item2 As ListViewItem
item1 = CType(o1, ListViewItem)
item2 = CType(o2, ListViewItem)
If item1.ToString.ToUpper > item2.ToString.ToUpper Then

Return 1
Else

If item1.ToString.ToUpper < item2.ToString.ToUpper Then
Return -1

Else
Return 0

End If
End If

End Function
End Class

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 341

THE LISTVIEW CONTROL 341

Class ListContactSorter
Implements IComparer
Public Function CompareTo(ByVal o1 As Object,

ByVal o2 As Object) As Integer
Implements System.collections.IComparer.Compare

Dim item1, item2 As ListVewItem
item1 = CType(o1, ListViewItem)
item2 = CType(o2, ListViewItem)
If item1.SubItems(1).ToString.ToUpper >

item2.SubItems(1).ToString.ToUpper Then
Return 1

Else
If item1.SubItems(1).ToString.ToUpper <

item2.SubItems(1).ToString.ToUpper Then
Return -1

Else
Return 0

End If
End If

End Function
End Class

The code is straightforward. If you need additional information, see the discussion of the
IComparer interface in Chapter 14. The two functions are identical, except that the first one sorts
according to the item, and the second one sorts according to the first subitem.

To test the custom comparers, you simply assign their names to the ListViewItemSorter
property of the ListView control. To take advantage of our custom comparers, we must write
some code that intercepts the clicks on the control’s headers and calls the appropriate comparer.
The ListView control fires the ColumnClick event each time a column header is clicked. This event
handler reports the index of the column that was clicked through the e.Column property, and
we can use this argument in our code to sort the items accordingly. Listing 9.15 shows the event
handler for the ColumnClick event.

Listing 9.15: The ListView Control’s ColumnClick Event Handler

Public Sub ListView1 ColumnClick(...)
Handles ListView1.ColumnClick

Select Case e.column
Case 0

ListView1.ListViewItemSorter = New ListCompanySorter()
ListView1.Sorting = SortOrder.Ascending

Case 1
ListView1.LisViewtItemSorter = New ListContactSorter()
ListView1.Sorting = SortOrder.Ascending

End Select
End Sub

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 342

342 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Processing Selected Items
The user can select multiple items from a ListView control by default. Even though you can display
a check mark in front of each item, it’s not customary. Multiple items in a ListView control are
selected with the mouse while holding down the Ctrl or Shift key.

The selected items form the SelectedListItemCollection, which is a property of the control.
You can iterate through this collection with a For. . .Next loop or through the enumerator object
exposed by the collection. In the following example, I use a For Each. . .Next loop. Listing 9.16
is the code behind the Selected Items button of the ListViewDemo project. It goes through the
selected items and displays each one of them, along with its subitems, in the Output window.
Notice that you can select multiple items in any view, even when the subitems are not visible.
They’re still there, however, and they can be retrieved through the SubItems collection.

Listing 9.16: Iterating the Selected Items on a ListView Control

Private Sub bttnIterate Click(...)
Handles bttnIterate.Click

Dim LItem As ListViewItem
Dim LItems As ListView.SelectedListViewItemCollection
LItems = ListView1.SelectedItems
For Each LItem In LItems

Debug.Write(LItem.Text & vbTab)
Debug.Write(LItem.SubItems(0).ToString & vbTab)
Debug.Write(LItem.SubItems(1).ToString & vbTab)
Debug.WriteLine(LItem.SubItems(2).ToString & vbTab)

Next
End Sub

Fitting More Data into a ListView Control

A fairly common problem in designing practical user interfaces with the ListView control is how to
display more columns than can be viewed in a reasonably sized window. This is especially true for
accounting applications, which may have several debit/credit/balance columns. It’s typical to display
these values for the previous period, the current period, and then the totals, or to display the period
values along with the corresponding values of the previous year, year-to-date values, and so on.

The first approach is to use a smaller font, but this won’t take you far. A more-practical approach is to
use two (or even more) rows on the control for displaying a single row of data. For example, you can
display credit and debit data in two rows, as shown in the following figure. This arrangement saves
you the space of one column on the screen. You could even display the balance on a third row and use
different colors. The auxiliary rows, which are introduced to accommodate more data on the control,
could have a different background color too.

Adding auxiliary columns is straightforward; just add an empty string for the cells that don’t change
values, because all rows must have the same structure. The first two rows of the ListView control in
the preceding screen capture were added by using the following statements:

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 343

THE LISTVIEW CONTROL 343

Dim LI As ListViewItem
LI = ListView1.Items.Add(”Customer 1”)
LI.SubItems.Add(”Paul Levin”)
LI.SubItems.Add(”NE”)
LI.SubItems.Add(”12,100.90”)
LI = ListView1.Items.Add(””)
LI.SubItems.Add(””)
LI.SubItems.Add(””)
LI.SubItems.Add(”7,489.30”)
LI.SubItems.Add((12100.9 - 7489.3).ToString(”#,###.00”))

If your code reacts to the selection of an item with the mouse, or the double-click event, you must
take into consideration that users may click an auxiliary row. The following If structure in the con-
trol’s SelectedIndexChanged event handler prints the item’s text, no matter which of the two rows
of an item are selected on the control:

If ListView1.SelectedItems.Count = 0 Then Exit Sub
Dim idx As Integer
If ListView1.SelectedItems(0).Index Mod 2 <> 0 Then

idx = ListView1.SelectedItems(0).Index - 1
Else

idx = ListView1.SelectedItems(0).Index
End If
Debug.WriteLine(ListView1.Items(idx).Text)

VB 2008 at Work: The CustomExplorer Project
The last example in this chapter combines the TreeView and ListView controls. It’s a fairly
advanced example, but I included it here for the most ambitious readers. It can also be used as
the starting point for many custom applications, so give it a try. You can always come back to this
project after you’ve mastered other aspects of the Framework, such as the FileIO namespace.

The CustomExplorer project, shown in Figure 9.13, displays a structured list of folders in the left
pane, and a list of files in the selected folder in the right pane. The left pane is populated when the
application starts, and it might take a while. On my Pentium system, it takes nearly 30 seconds to
populate the TreeView control with the structure of the Windows folder (which includes FallBack
folders and three versions of the Framework; more than 50,000 files in 1,700 folders in all). You can
expand any folder in this pane and view its subfolders. To view the files in a folder, click the folder
name, and the right pane will be populated with the names of the selected folder’s files, along with

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 344

344 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

other data, such as the file size, date of creation, and date of last modification. You haven’t seen the
classes for accessing folders and files yet, but you shouldn’t have a problem following the code. If
you have to, you can review the members of the IO namespace in Chapter 15, in which I discuss
in detail the same project’s code.

Figure 9.13

The CustomExplorer
project demonstrates
how to combine a
TreeView and a ListView
control on the same
form.

This section’s project is not limited to displaying folders and files; you can populate the two
controls with data from several sources. For example, you can display customers in the left pane
(and organize them by city or state) and display their related data, such as invoices and payments,
in the right pane. Or you can populate the left pane with product names, and the right pane
with the respective sales. In general, you can use the project as an interface for many types of
applications. You can even use it as a custom Explorer to add features that are specific to
your applications.

The TreeView control on the left pane is populated from within the Form’s Load event handler
subroutine with the subfolders of the C:\Program Files folder:

Dim Nd As New TreeNode()
Nd = TreeView1.Nodes.Add(”C:\Program Files”)
ScanFolder(”c:\Program Files”, ND)

The first argument is the name of the folder to be scanned, and the second argument is the root
node, under which the entire tree of the specified folder will appear. To populate the control with
the files of another folder or drive, change the name of the path accordingly. The code is short, and
all the work is done by the ScanFolder() subroutine. The ScanFolder() subroutine, which
is a short recursive procedure that scans all the folders under a specific folder, is shown in
Listing 9.17.

Listing 9.17: The ScanFolder() Subroutine

Sub ScanFolder(ByVal folderSpec As String,
ByRef currentNode As TreeNode)

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 345

THE LISTVIEW CONTROL 345

Dim thisFolder As FileIO.Folder
Dim allFolders As FileIO.FolderCollection
allFolders = My.Computer.FileSystem.

GetFolder(folderSpec).FindSubFolders(”*.*”)
For Each thisFolder In allFolders

Dim Nd As TreeNode
Nd = New TreeNode(thisFolder.FolderName)
currentNode.Nodes.Add(Nd)
folderSpec = thisFolder.FolderPath
ScanFolder(folderSpec, Nd)
Me.Text = ”Scanning ” & folderSpec
Me.Refresh()

Next
End Sub

The variable FolderSpec represents the current folder (the one passed to the ScanFolder()
subroutine as an argument). The code creates the allFolders collection, which contains all the
subfolders of the current folder. Then it scans every folder in this collection and adds its name to
the TreeView control. After adding a folder’s name to the TreeView control, the procedure must
scan the subfolders of the current folder. It does so by calling itself and passing another folder’s
name as an argument.

Notice that the ScanFolder()subroutine doesn’t simply scan a folder. It also adds a node to the
TreeView control for each new folder it runs into. That’s why it accepts two arguments: the name
of the current folder and the node that represents this folder on the control. All folders are placed
under their parent folder, and the structure of the tree represents the structure of your hard disk
(or the section of the hard disk you’re mapping on the TreeView control). All this is done with a
small recursive subroutine: the ScanFolder() subroutine.

Viewing a Folder’s Files

To view the files of a folder, click the folder’s name in the TreeView control. As explained earlier,
the action of the selection of a new node is detected with the AfterSelect event. The code in this
event handler, shown in Listing 9.18, displays the selected folder’s files on the ListView control.

Listing 9.18: Displaying a Folder’s Files

Private Sub TreeView1 AfterSelect(...)
Handles TreeView1.AfterSelect

Dim Nd As TreeNode
Dim pathName As String
Nd = TreeView1.SelectedNode
pathName = Nd.FullPath
ShowFiles(pathName)

End Sub

The ShowFiles() subroutine actually displays the filenames, and some of their properties, in
the specified folder on the ListView control. Its code is shown in Listing 9.19.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 346

346 CHAPTER 9 THE TREEVIEW AND LISTVIEW CONTROLS

Listing 9.19: The ShowFiles() Subroutine

Sub ShowFiles(ByVal selFolder As String)
ListView1.Items.Clear()
Dim files As FileIO.FileCollection
Dim file As FileIO.File
files = My.Computer.FileSystem.GetFolder(selFolder).FindFiles(”*.*”)
Dim TotalSize As Long
For Each file In files

Dim LItem As New ListViewItem
LItem.Text = file.FileName
LItem.SubItems.Add(file.Size.ToString(”#,###”))
LItem.SubItems.Add(

FormatDateTime(file.CreatedTime,
DateFormat.ShortDate))

Item.SubItems.Add(
FormatDateTime(file.AccessedTime,
DateFormat.ShortDate))

ListView1.Items.Add(LItem)
TotalSize += file.Size

Next
Me.Text = Me.Text & ” [” & TotalSize.ToString(”#,###”) & ” bytes]”

End Sub

The ShowFiles()subroutine creates a ListItem for each file. The item’s caption is the file’s
name, the first subitem is the file’s length, and the other two subitems are the file’s creation and
last access times. You can add more subitems, if needed, in your application. The ListView control
in this example uses the Details view to display the items. As mentioned earlier, the ListView
control will not display any items unless you specify the proper columns through the Columns
collection. The columns, along with their widths and captions, were set at design time through the
ColumnHeader Collection Editor.

Additional Topics
The discussion of the CustomExplorer sample project concludes the presentation of the TreeView
and ListView controls. However, there are a few more interesting topics you might like to read
about, which weren’t included in this chapter. Like all Windows controls, the ListView control
doesn’t provide a Print method, which I think is essential for any application that displays data
on this control. In Chapter 20, ‘‘Printing with Visual Basic 2008,’’ you will find the code for print-
ing the items of the ListView control. The printout we’ll generate will have columns, just like
the control, but it will display long cells (items or subitems with long captions) in multiple text
lines. Finally, in Chapter 16 you’ll learn how to save the nodes of a TreeView control to a disk file
between sessions by using a technique known as serialization. In that chapter, you’ll find the code
behind the Load Nodes and Save Nodes buttons of the Globe project and a thorough explanation
of their function.

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 347

THE BOTTOM LINE 347

The Bottom Line

Create and present hierarchical lists by using the TreeView control. The TreeView control
is used to display a list of hierarchically structured items. Each item in the TreeView con-
trol is represented by a TreeNode object. To access the nodes of the TreeView control, use
the TreeView.Nodes collection. The nodes under a specific node (in other words, the child
nodes) form another collection of Node objects, which you can access by using the expression
TreeView.Nodes(i).Nodes. The basic property of the Node object is the Text property, which
stores the node’s caption. The Node object exposes properties for manipulating its appearance
(its foreground/background color, its font, and so on).

Master It How will you set up a TreeView control with a book’s contents at design time?

Create and present lists of structured items by using the ListView control. The ListView
control stores a collection of ListViewItem objects, the Items collection, and can display them
in several modes, as specified by the View property. Each ListViewItem object has a Text prop-
erty and the SubItems collection. The subitems are not visible at runtime unless you set the
control’s View property to Details and set up the control’s Columns collection. There must be a
column for each subitem you want to display on the control.

Master It How will you set up a ListView control with three columns to display names,
emails, and phone numbers at design time?

Master It How would you populate the same control with the same data at runtime?

Petroutsos c09.tex V2 - 01/28/2008 1:28pm Page 348

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 349

Chapter 10

Building Custom Classes

Classes are practically synonymous with objects and they’re at the very heart of programming
with Visual Basic. The controls you use to build the visible interface of your application are objects,
and the process of designing forms consists of setting the properties of these objects, mostly with
point-and-click operations. The Framework itself is an enormous compendium of classes, and you
can import any of them into your applications and use them as if their members were part of the
language. You simply declare a variable of the specific class type, initialize it, and then use it in
your code.

You have already worked with ListViewItem objects; they’re the items that make up the
contents of a ListView control. You declare an object of this type, then set its properties, and
finally add it to the control’s Items collection:

Dim LI As New ListViewItem
LI.Text = ”Item 1”
LI.Font = New Font(”Verdana”, 12, FontStyle.Regular)

LI is an object of the ListViewItem type. The New keyword creates a new instance of the
ListViewItem class; in other words, a new object. The following two statements set the basic prop-
erties of the LI variable. The Font property is also an object: it’s an instance of the Font class. You
can also add a few subitems to the LI variable and set their properties. When you’re finished,
you can add the LI variable to the ListView control:

ListView1.Items.Add(LI)

Controls are also objects; they differ from other classes in that controls provide a visual inter-
face, whereas variables don’t. However, you manipulate all objects by setting their properties and
calling their methods.

In this chapter, you’ll learn how to do the following:

◆ Build your own classes

◆ Use custom classes in your projects

◆ Customize the usual operators for your classes

Classes and Objects
When you create a variable of any type, you’re creating an instance of a class. The variable lets you
access the functionality of the class through its properties and methods. Even the base data types
are implemented as classes (the System.Integer class, System.Double, and so on). An integer value,

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 350

350 CHAPTER 10 BUILDING CUSTOM CLASSES

such as 3, is an instance of the System.Integer class, and you can call the properties and methods
of this class by using its instance. Expressions such as CDec(3).MinValue and #1/1/2000#.Today
are odd but valid. The first expression returns the minimum value you can represent with the
Decimal data type, whereas the second expression returns the current date. The DataTime data
type exposes the Today property, which returns the current date. The expression #1/1/2000# is a
value of the DataTime type, so you can find out the current date by calling its Today property. If
you enter either one of the preceding expressions in your code, you’ll get a warning, but they will
be executed.

Classes are used routinely in developing applications, and you should get into the habit of
creating and using custom classes, even with simple projects. In team development, classes are
a necessity, because they allow developers to share their work easily. If you’re working in a
corporate environment, in which different programmers code different parts of an application,
you can’t afford to repeat work that someone else has already done. You should be able to get
their code and use it in your application as is. That’s easier said than done, because you can guess
what will happen as soon as a small group of programmers start sharing code — they’ll end up
with dozens of different versions for each function, and every time a developer upgrades a func-
tion, he or she will most likely break the applications that were working with the old version. Or
each time they revise a function, they must update all the projects by using the old version of the
function and test them. It just doesn’t work.

The major driving force behind object-oriented programming (OOP) is code reuse. Classes allow
you to write code that can be reused in multiple projects. You already know that
classes don’t expose their source code. In other words, you can use a class without having access
to its code, and therefore you can’t affect any other projects that use the class. You also know
that classes implement complicated operations and make these operations available to program-
mers through properties and methods. The Array class exposes a Sort method, which sorts its
elements. This is not a simple operation, but fortunately you don’t have to know anything about
sorting. Someone else has done it for you and made this functionality available to your applica-
tions. This is called encapsulation. Some functionality has been built into the class (or encapsulated
into the class), and you can access it from within your applications by using a simple method call.

The Framework is made up of thousands of classes, which allow you to access all the func-
tionality of the operating system. You don’t have to see the code, and you don’t have to know
anything about sorting to sort your arrays, just as you don’t need to know anything about encryp-
tion to encrypt a string by using the System.Security.Cryptography class. In effect, you’re reusing
code that Microsoft has already written. It is also possible to extend these classes by adding
custom members, and even override existing members. When you extend a class, you create a
new class based on an existing one. Projects using the original class will keep seeing the original
class, and they will work fine. New projects that see the derived class will also work.

What Is a Class?
A class is a program that doesn’t run on its own; it’s a collection of methods that must be used by
another application. We exploit the functionality of the class by creating a variable of the same type
as the class and then call the class’s properties and methods through this variable. The methods
and properties of the class, as well as its events, constitute the class’s interface. It’s not a visible
interface, like the ones you’ve learned to design so far, because the class doesn’t interact directly
with the user. To interact with the class, the application uses the class’s interface, just as users will
be interacting with your application through its visual interface.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 351

WHAT IS A CLASS? 351

You have already learned how to use classes. Now is the time to understand what goes on
behind the scenes when you interact with a class and its members. Behind every object, there’s a
class. When you declare an array, you’re invoking the System.Array class, which contains all the
code for manipulating arrays. Even when you declare a simple integer variable, you’re invoking a
class: the System.Integer class. This class contains the code that implements the various properties
(such as MinValue and MaxValue) and methods (such as ToString) of the Integer data type. The
first time you use an object in your code, you’re instantiating the class that implements this object.
The class’s code is loaded into memory, initializes its variables, and is ready to execute. The image
of the class in memory is said to be an instance of the class, and this is an object.

Classes versus Objects

Two of the most misused terms in OOP are object and class, and most people use them interchange-
ably. You should think of the class as the factory that produces objects. There’s only one System.Array
class, but you can declare any number of arrays in your code. Every array is an instance of the
System.Array class. All arrays in an application are implemented by the same code, but they store
different data. Each instance of a class is nothing more than a set of variables: the same code acts
on different sets of variables; each set of variables is a separate instance of the class.

Consider three TextBox controls on the same form. They are all instances of the System.Windows.
Forms.TextBox class, but changing any property of a TextBox control doesn’t affect the other two
controls. Classes are the blueprints on which objects are based. We use the same blueprint to build
multiple buildings with the same structural characteristics, but different properties (wall colors, doors,
and so on).

Objects are similar to Windows controls, except that they don’t have a visible interface. Controls
are instantiated when you place them on a form; classes are instantiated when you use a variable
of the same type — not when you declare the variable by using the Dim statement. To use a control,
you must make it part of the project by adding its icon to the Toolbox, if it’s not already there. To
use a class in your code, you must import the file that implements the class. (This is a Dynamic
Link Library, or DLL, file.) To manipulate a control from within your code, you call its properties
and methods. You do the same with classes. Finally, you program the various events raised by
the controls to interact with the users of your applications. Most classes don’t expose any events
because the user can’t interact with them, but some classes do raise events, which you can program
just as you program the events of Windows controls.

Classes Combine Code with Data
Another way to view classes is to understand how they combine code and data. This simple
idea is the very essence of object-oriented programming. Data is data, and traditional procedural
languages allow you to manipulate data in any way. Meaningful data, however, is processed in
specific ways.

Let’s consider accounting data. You can add or subtract amounts to an account, sum similar
accounts (such as training and travel expenses), calculate taxes on certain account amounts, and
the like. Other types of processing may not be valid for this type of data. We never multiply the
amounts of two different accounts or calculate logarithms of account balances. These types of
processing are quite meaningful with different data, but not with accounting data.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 352

352 CHAPTER 10 BUILDING CUSTOM CLASSES

Because the data itself determines to a large extent the type of processing that will take place
on the data, why not ‘‘package’’ the data along with the code for processing? Instead of simply
creating structures for storing our data, we also write the code to process them. The data and the
code are implemented in a single unit, a class, and the result is an object. After the class has been
built, we no longer write code for processing the data; we simply create objects of this type and
call their methods. To transfer an amount from one account to another, we call a method that
knows how to transfer the amount, and it also makes sure that the amount isn’t subtracted from
one account unless it has been added to the other account (and vice versa).

To better understand how classes combine code with data, let’s take a close look at a class
we’re all too familiar with, the Array class. The role of the array is to store sets of data. In addition
to holding data, the Array class also knows how to process data: how to retrieve an element,
how to extract a segment of the array, and even how to sort its elements. All these operations
require a substantial amount of code. The mechanics of storing data in the array and the code that
implements the properties and the methods of the array are hidden from you, the developer. You
can instruct the array to perform certain tasks by using simple statements. When you call the Sort
method, you’re telling the array to execute some code that will sort its elements. As a developer,
you don’t know how the data are stored in the array, or how the Sort method works. Classes
abstract many operations by hiding the implementation details, and developers can manipulate
arrays by calling methods. An instance of the Array class not only holds the elements that make up
an array, but also exposes the most common operation one would perform on arrays as methods.
Summing the logarithms of the elements of a numeric array is a specialized operation, and you
have to provide the code to implement it on your own. If you type System.Array., you will see a
list of all operations you can perform on an array.

In the following sections, you’ll learn how data and code coexist in a class, and how you can
manipulate the data through the properties and methods exposed by the class. In Chapter 3,
‘‘Programming Fundamentals,’’ you learned how to create Structures to store data. Classes are
similar to Structures, in that they represent custom data structures. In this chapter, we’ll take the
idea of defining custom data structures one step further, by adding properties and methods for
manipulating the custom data, something you can’t do with structures. Let’s start by building a
custom class and then using it in our code.

Building the Minimal Class
Our first example is the Minimal class; we’ll start with the minimum functionality class and keep
adding features to it. The name of the class can be anything — just make sure that it’s suggestive
of the class’s functionality.

A class might reside in the same file as a form, but it’s customary to implement custom classes
in a separate module, a Class module. You can also create a Class project, which contains one or
more classes. However, a class doesn’t run on its own, and you can’t test it without a form. You
can create a Windows application, add the class to it, and then test it by adding the appropriate
code to the form. After debugging the class, you can remove the test form and reuse the class with
any other project. Because the class is pretty useless outside the context of a Windows application,
in this chapter I use Windows applications and add a Class module in the same solution.

Start a new Windows project and name it SimpleClass (or open the sample project by that
name). Then create a new class by adding a Class item to your project. Right-click the project’s
name in the Solution Explorer window and choose Add � Class from the context menu. In the
dialog box that pops up, select the Class icon and enter a name for the class. Set the class’s name
to Minimal, as shown in Figure 10.1.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 353

BUILDING THE MINIMAL CLASS 353

Figure 10.1

Adding a Class item to a
project

The code that implements the class resides in the Minimal.vb file, and we’ll use the existing
form to test our class. After you have tested and finalized the class’s code, you no longer need the
form and you can remove it from the project.

When you open the class by double-clicking its icon in the Project Explorer window, you will
see the following lines in the code window:

Public Class Minimal

End Class

If you’d rather create a class in the same file as the application’s form, enter the Class keyword
followed by the name of the class, after the existing End Class of the form’s code window. The
editor will insert the matching End Class for you. Insert a class’s definition in the form’s code
window if the class is specific to this form only and no other part of the application will use it. At
this point, you already have a class, even if it doesn’t do anything.

Switch back to the Form Designer, add a button to the test form, and insert the following code
in its Click event handler:

Dim obj1 As Minimal

Press Enter and type the name of the variable, obj1, followed by a period, on the following
line. You will see a list of the methods your class exposes already:

Equals
GetHashCode
GetType
ReferenceEqual
ToString

If you don’t see all of these members, switch to the All Members tab of the IntelliSense drop-
down box.

These methods are provided by the Common Language Runtime (CLR), and you don’t have
to implement them on your own (although you will probably have to provide a new, nongeneric
implementation for some of them). They don’t expose any real functionality; they simply reflect

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 354

354 CHAPTER 10 BUILDING CUSTOM CLASSES

the way VB handles all classes. To see the kind of functionality that these methods expose,
enter the following lines in the Button’s Click event handler and then run the application:

Dim obj1 As New Minimal
Debug.WriteLine(obj1.ToString)
Debug.WriteLine(obj1.GetType)
Debug.WriteLine(obj1.GetHashCode)
Dim obj2 As New Minimal
Debug.WriteLine(obj1.Equals(obj2))
Debug.WriteLine(Minimal.ReferenceEquals(obj1, obj2))

The following lines will be printed in the Output window:

SimpleClass.Minimal
SimpleClass.Minimal
18796293
False
False

The name of the object is the same as its type, which is all the information about your new class
that’s available to the CLR. Shortly you’ll see how you can implement your own ToString method
and return a more-meaningful string. The hash value of the obj1 variable is an integer value that
uniquely identifies the object variable in the context of the current application (it happens to be
18796293, but it is of no consequence).

The next line tells you that two variables of the same type are not equal. But why aren’t they
equal? We haven’t differentiated them at all, yet they’re different because they point to two dif-
ferent objects, and the compiler doesn’t know how to compare them. All it can do is figure out
whether the variables point to the same object. To understand how objects are compared, add the
following statement after the line that declares obj2:

obj2 = obj1

If you run the application again, the last two statements will print True in the Output window.
The Equals method compares the two objects and returns a True/False value. Because we haven’t
told it how to compare two instances of the class yet, it compares their references just like the
ReferenceEquals method. The ReferenceEquals method checks for reference equality; that is, it
returns True if both variables point to the same object (the same instance of the class). If you change
a property of the obj1 variable, the changes will affect obj2 as well, because both variables point
to the same object. We can’t modify the object because it doesn’t expose any members that we can
set to differentiate it from another object of the same type. We’ll get to that shortly.

Most classes expose a custom Equals method, which knows how to compare two objects of the
same type (two objects based on the same class). The custom Equals method usually compares
the properties of the two instances of the class and returns True if a set of basic properties (or all
of them) are the same. You’ll learn how to customize the default members of any class later in
this chapter.

Notice the name of the class: SimpleClass.Minimal. Within the current project, you can access
it as Minimal. Other projects can either import the Minimal class and access it as Minimal, or spec-
ify the complete name of the class, which is the name of the project it belongs to followed by the
class name.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 355

BUILDING THE MINIMAL CLASS 355

Adding Code to the Minimal Class
Let’s add some functionality to our bare-bones class. We’ll begin by adding two trivial properties
and two methods to perform simple operations. The two properties are called strProperty (a
string) and dblProperty (a double). To expose these two members as properties, you can simply
declare them as Public variables. This isn’t the best method of implementing properties, but it
really doesn’t take more than declaring something as Public to make it available to code outside
the class. The following statement exposes the two properties of the class:

Public strProperty As String, dblProperty As Double

The two methods we’ll implement in our sample class are the ReverseString and Negate
Number methods. The first method reverses the order of the characters in strProperty and
returns the new string. The NegateNumber method returns the negative of dblProperty. They’re
two simple methods that don’t accept any arguments; they simply operate on the values of the
properties. Methods are exposed as Public procedures (functions or subroutines), just as proper-
ties are exposed as Public variables. Enter the function declarations of Listing 10.1 between the
Class Minimal and End Class statements in the class’s code window. (I’m showing the entire
listing of the class here.)

Listing 10.1: Adding a Few Members to the Minimal Class

Public Class Minimal
Public strProperty As String, dblProperty As Double
Public Function ReverseString() As String

Return (StrReverse(strProperty))
End Function
Public Function NegateNumber() As Double

Return (-dblProperty)
End Function

End Class

Let’s test the members we’ve implemented so far. Switch back to your form and enter the lines
shown in Listing 10.2 in a new button’s Click event handler. The obj variable is of the Minimal
type and exposes the Public members of the class. You can set and read its properties, and call its
methods. In Figure 10.2, you see a few more members than the ones added so far; we’ll extend our
Minimal class in the following section. Your code doesn’t see the class’s code, just as it doesn’t see
any of the built-in classes’ code. You trust that the class knows what it is doing and does it right.

Listing 10.2: Testing the Minimal Class

Dim obj As New Minimal
obj.strProperty = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”
obj.dblProperty = 999999
Debug.WriteLine(obj.ReverseString)
Debug.WriteLine(obj.NegateNumber)

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 356

356 CHAPTER 10 BUILDING CUSTOM CLASSES

Figure 10.2

The members of the
class are displayed auto-
matically by the IDE, as
needed.

Every time you create a new variable of the Minimal type, you’re creating a new instance of the
Minimal class. The class’s code is loaded into memory only the first time you create a variable of
this type, but every time you declare another variable of the same type, a new set of variables is
created. This is called an instance of the class. The code is loaded once, but it can act on different sets
of variables. In effect, different instances of the class are nothing more than different sets of local
variables.

The New Keyword

The New keyword tells VB to create a new instance of the Minimal class. If you omit the New keyword,
you’re telling the compiler that you plan to store an instance of the Minimal class in the obj variable,
but the class won’t be instantiated. All the compiler can do is prevent you from storing an object of
any other type in the obj variable. You must still initialize the obj variable with the New keyword on
a separate line:

obj = New Minimal

It’s the New keyword that creates the object in memory. The obj variable simply points to this object.
If you omit the New keyword, a Null Reference exception will be thrown when the code attempts to
use the variable. This means that the variable is Nothing — it hasn’t been initialized yet. Even as you
work in the editor’s window, the name of the variable will be underlined and the following warning
will be generated: Variable ‘obj’ is used before it has been assigned a value. A null reference exception
could result at runtime. You can compile the code and run it if you want, but everything will proceed
as predicted: As soon as the statement that produced the warning is reached, the runtime exception
will be thrown.

Using Property Procedures
The strProperty and dblProperty properties will accept any value, as long as the type is correct
and the value of the numeric property is within the acceptable range. But what if the generic
properties were meaningful entities, such as email addresses, ages, or zip codes? We should be
able to invoke some code to validate the values assigned to each property. To do so, we implement
each property as a special type of procedure: the so-called Property procedure.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 357

BUILDING THE MINIMAL CLASS 357

Properties are implemented with a special type of procedure that contains a Get and a Set
section (frequently referred to as the property’s getter and setter, respectively). The Set section
of the procedure is invoked when the application attempts to set the property’s value; the Get
section is invoked when the application requests the property’s value. The value passed to the
property is usually validated in the Set section and, if valid, is stored to a local variable. The same
local variable’s value is returned to the application when it requests the property’s value, from
the property’s Get section. Listing 10.3 shows what the implementation of an Age property would
look like.

Listing 10.3: Implementing Properties with Property Procedures

Private m Age As Integer
Property Age() As Integer

Get
Age = m Age

End Get
Set (ByVal value As Integer)

If value < 0 Or value >= 100 Then
MsgBox(”Age must be positive and less than 100”)

Else
m Age = value

End If
End Set

End Property

m Age is the local variable where the age is stored. When a statement such as the following
is executed in the application that uses your class, the Set section of the Property procedure is
invoked:

obj.Age = 39

Because the property value is valid, it is stored in the m Age local variable. Likewise, when
a statement such as the following one is executed, the Get section of the Property procedure is
invoked, and the value 39 is returned to the application:

Debug.WriteLine(obj.Age)

The value argument of the Set procedure represents the actual value that the calling code is
attempting to assign to the property. The m Age variable is declared as private because we don’t
want any code outside the class to access it directly. The Age property is, of course, Public, so that
other applications can set it.

Fields versus Properties

Technically, any variables that are declared as Public in a class are called fields. Fields behave just like
properties in the sense that you can assign values to them and read their values, but there’s a criti-
cal distinction between fields and properties: When a value is assigned to a field, you can’t validate
the value from within your code. If the value is of the wrong type, an exception will occur. Properties

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 358

358 CHAPTER 10 BUILDING CUSTOM CLASSES

should be implemented with a Property procedure, so you can validate their values, as you saw in
the preceding example. Not only that, but you can set other values from within your code. Consider
a class that represents a contract with a starting and ending date. Every time the user changes the
starting date, the code can adjust the ending date accordingly (which is something you can’t do with
fields). If the two dates were implemented as fields, users of the class could potentially specify an
ending date prior to the starting date.

Enter the Property procedure for the Age property in the Minimal class and then switch to
the form to test it. Open the button’s Click event handler and add the following lines to the
existing ones:

obj.Age = 39
Debug.WriteLine(”after setting the age to 39, age is ” &

obj.Age.ToString)
obj.Age = 199
Debug.WriteLine(”after setting the age to 199, age is ” &

obj.Age.ToString)

The value 39 will appear twice in the Output window, which means that the class accepts the
value 39. When the third statement is executed, a message box will appear with the
error’s description:

Age must be positive and less than 100

The value 39 will appear in the Output window again. The attempt to set the age to 199 failed,
so the property retains its previous value.

Throwing Exceptions

Our error-trapping code works fine, but what good is a message box displayed from within a
class? As a developer using the Minimal class in your code, you’d rather receive an exception and
handle it from within your code. So let’s change the implementation of the Age property a little.
The Property procedure for the Age property (Listing 10.4) throws an InvalidArgument exception
if an attempt is made to assign an invalid value to it. The InvalidArgument exception is one of
the existing exceptions, and you can reuse it in your code. Later in this chapter, you’ll learn how
to create and use custom exceptions.

Listing 10.4: Throwing an Exception from within a Property Procedure

Private m Age As Integer
Property Age() As Integer

Get
Age = m Age

End Get
Set (ByVal value As Integer)

If value < 0 Or value >= 100 Then

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 359

BUILDING THE MINIMAL CLASS 359

Dim AgeException As New ArgumentException()
Throw AgeException

Else
M Age = value

End If
End Set

End Property

You can test the revised property definition in your application; switch to the test form, and
enter the statements of Listing 10.5 in a new button’s Click event handler. (This is the code behind
the Handle Exceptions button on the test form.)

Listing 10.5: Catching the Age Property’s Exception

Dim obj As New Minimal
Dim userAge as Integer
UserAge = InputBox(”Please enter your age”)
Try

obj.Age = userAge
Catch exc as ArgumentException

MsgBox(”Can’t accept your value, ” & userAge.ToString & VbCrLf &
”Will continue with default value of 30”)

obj.Age = 30
End Try

This is a much better technique for handling errors in your class. The exceptions can be inter-
cepted by the calling application, and developers using your class can write robust applications by
handling the exceptions in their code. When you develop custom classes, keep in mind that you
can’t handle most errors from within your class because you don’t know how other developers
will use your class.

Handling Errors in a Class

When you design classes, keep in mind that you don’t know how another developer may use
them. In fact, you may have to use your own classes in a way that you didn’t consider when you
designed the class. A typical example is using an existing class with a web application. If your class
displays a message box, it will work fine as part of a Windows Forms application. In the context of a
web application, however, the message box will be displayed on the monitor of the server that hosts
the application, and no one will see it. As a result, the application will keep waiting for a response to a
message box before it continues; however, there’s no user to click the OK button in the message box,
because the code is executing on a server. Even if you don’t plan to use a custom class with a web
application, never interact with the user from within the class’s code. Make your code as robust as
you can, but don’t hesitate to throw exceptions for all conditions you can’t handle from within your
code (Figure 10.3). In general, a class’s code should detect abnormal conditions, but it shouldn’t
attempt to remedy them.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 360

360 CHAPTER 10 BUILDING CUSTOM CLASSES

The application that uses your class may inform the user about an error condition and give the user a
chance to correct the error by entering new data, disable some options on the interface, and so on. As
a class developer, you can’t make this decision — another developer might prompt the user for
another value, and a sloppy developer might let his or her application crash (but this isn’t your
problem). To throw an exception from within your class’s code, call the Throw statement with an
Exception object as an argument. To play well with the Framework, you should try to use one of the
existing exceptions (and the Framework provides quite a few of them). You can also throw custom
exceptions by using a statement such as the following:

Throw New Exception(”your exception’s description”)

Figure 10.3

Raising an exception in
the class’s code

Implementing Read-Only Properties

Let’s make our class a little more complicated. Age is not usually requested on official docu-
ments, because it’s valid only for a year after filling out a questionnaire. Instead, you must furnish
your date of birth, from which your current age can be calculated at any time. We’ll add a BDate
property in our class and make Age a read-only property.

To make a property read-only, you simply declare it as ReadOnly and supply the code for the
Get procedure only. Revise the Age property’s code in the Minimal class, as seen in Listing 10.6.
Then enter the Property procedure from Listing 10.7 for the BDate property.

Listing 10.6: Implementing a Read-Only Property

Private m Age As Integer
ReadOnly Property Age() As Integer

Get
Age = m Age

End Get
End Property

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 361

BUILDING THE MINIMAL CLASS 361

Listing 10.7: The BDate Property

Private m BDate As DateTime
Private m Age As Integer
Property BDate() As DateTime

Get
BDate = m BDate

End Get
Set(ByVal value As Date)

If Not IsDate(value) Then
Dim DataTypeException As

New Exception(”Invalid date value”)
Throw DataTypeException

End If
If value > Now() Or

DateDiff(DateInterval.Year, value, Now()) >= 100 Then
Dim AgeException As New Exception

(”Can’t accept the birth date you specified”)
Throw AgeException

Else
m BDate = value
m Age = DateDiff(DateInterval.Year, value, Now())

End If
End Set

End Property

As soon as you enter the code for the revised Age property, two error messages will appear
in the Error List window. The code in the application’s form is attempting to set the value of a
read-only property, and the editor produces the following error message twice: Property ‘Age’ is
‘ReadOnly.’ As you probably figured out, we must set the BDate property in the code, instead
of the Age property. The two errors are the same, but they refer to two different statements that
attempt to set the Age property.

There are two types of errors that can occur while setting the BDate property: an invalid date
or a date that yields an unreasonable age. First, the code of the BDate property makes sure that
the value passed by the calling application is a valid date. If not, it throws an exception. If the
value variable is a valid date, the code calls the DateDiff() function, which returns the difference
between two dates in a specified interval — in our case, years. The expression DateInterval.Year
is the name of a constant, which tells the DateDiff() function to calculate the difference between
the two dates in years. You don’t have to memorize the constant names — you simply select them
from a list as you type.

So, the code checks the number of years between the date of birth and the current date. If it’s
negative (which means that the person hasn’t been born yet) or more than 100 years (we’ll assume
that people over 100 will be treated as being 100 years old), it rejects the value. Otherwise, it sets
the value of the m BDate local variable and calculates the value of the m Age local variable.

Calculating Property Values on the Fly

There’s still a serious flaw in the implementation of the Age property. Can you see it? The person’s
age is up-to-date the moment the birth date is entered, but what if we read it back from a file or

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 362

362 CHAPTER 10 BUILDING CUSTOM CLASSES

database three years later? It will still return the original value, which is no longer the correct age.
The Age property’s value shouldn’t be stored anywhere; it should be calculated from the person’s
birth date as needed. If we avoid storing the age to a local variable and calculate it on the fly,
users will always see the correct age. Revise the Age property’s code to match Listing 10.8, which
calculates the difference between the date of birth and the current date, and returns the correct
person’s age every time it’s called.

Listing 10.8: A Calculated Property

ReadOnly Property Age() As Integer
Get

Age = Convert.ToInt32(DateDiff(DateInterval.Year, m BDate , Now()))
End Get

End Property

Notice also that you no longer need the m Age local variable because the age is calculated on
the fly when requested, so remove its declaration from the class. As you can see, you don’t always
have to store property values to local variables. A property that returns the number of files in a
directory, for example, also doesn’t store its value in a local variable. It retrieves the requested
information on the fly and furnishes it to the calling application. By the way, the calculations
might still return a negative value if the user has changed the system’s date, but this is a rather
far-fetched scenario.

You can implement write-only properties with the WriteOnly keyword and a Set section only,
but write-only properties are rarely used (in my experience, only for storing passwords).

Our Minimal class is no longer so minimal. It exposes some functionality, and you can easily
add more. Add properties for name, profession, and income, and add methods to calculate insur-
ance rates based on a person’s age and anything you can think of. Experiment with a few custom
members, add the necessary validation code in your Property procedures, and you’ll soon find
out that building and reusing custom classes is a simple and straightforward process. Of course,
there’s a lot more to learn about classes, but you already have a good understanding of the way
classes combine code with data.

Customizing Default Members
As you recall, when you created the Minimal class for the first time, before adding any code,
the class already exposed a few members — the default members, such as the ToString method
(which returns the name of the class) and the Equals method (which compares two objects for ref-
erence equality). You can (and should) provide your custom implementation for these members;
this is what we’re going to do in this section.

Customizing the ToString Method

The custom ToString method is implemented as a Public function, and it must override the
default implementation. The implementation of a custom ToString method is shown next:

Public Overrides Function ToString() As String
Return ”The infamous Minimal class”

End Function

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 363

BUILDING THE MINIMAL CLASS 363

As soon as you enter the keyword Overrides, the editor will suggest the names of the three
members you can override: ToString, Equals, and GetHashCode. Select the ToString method,
and the editor will insert a default implementation for you. The default implementation returns
the string MyBase.ToString. This is the default implementation. (You’ll see later in this chapter
what the MyBase keyword is; it basically references the default class implementation.) Just
replace the statement inserted by the editor with the one shown in the preceding statement. It’s
that simple.

The Overrides keyword tells the compiler that this implementation overwrites the default
implementation of the class. The original method’s code isn’t exposed, and you can’t revise it. The
Overrides keyword tells the compiler to ‘‘hide’’ the original implementation and use your custom
ToString method instead. After you override a method in a class, the application using the class
can no longer access the original method. Ours is a simple method, but you can return any string
you can build in the function. For example, you can incorporate the value of the BDate property
in the string:

Return(”MINIMAL: ” & m BDate.ToShortDateString)

The value of the local variable m BDate is the value of the BDate property of the current instance
of the class. Change the BDate property, and the ToString method will return a different string.

When called through different variables, the ToString method will report different values.
Let’s say that you created and initialized two instances of the Minimal class by using the following
statements:

Dim obj1 As New Minimal()
Obj1.Bdate = #1/1/1963#
Dim obj2 As New Minimal()
Obj2.Bdate = #12/31/1950#
Debug.WriteLine(obj1.ToString)
Debug.WriteLine(obj2.ToString)

The last two statements will print the following lines in the Output window:

MINIMAL: 1963-01-01
MINIMAL: 1950-12-31

Customizing the Equals Method

The Equals method exposed by most of the built-in objects can compare values, not references.
Two Rectangle objects, for example, are equal if their dimensions and origins are the same. The
following two rectangles are equal:

Dim R1 As New Rectangle(0, 0, 30, 60)
Dim R2 As New Rectangle
R2.X = 0
R2.Y = 0
R2.Width = 30
R2.Height = 60
If R1.Equals(R2) Then

MsgBox(”The two rectangles are equal”)
End If

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 364

364 CHAPTER 10 BUILDING CUSTOM CLASSES

If you execute these statements, a message box confirming the equality of the two objects
will pop up. The two variables point to different objects (that is, different instances of the same
class), but the two objects are equal, because they have the same origin and same dimensions. The
Rectangle class provides its own Equals method, which knows how to compare two Rectangle
objects. If your class doesn’t provide a custom Equals method, all the compiler can do is com-
pare the objects referenced by the two variables of the specific type. In the case of our Minimal
class, the Equals method returns True if the two variables point to the same object (which is the
same instance of the class). If the two variables point to two different objects, the default Equals
method will return False, even if the two objects are equal.

You’re probably wondering what makes two objects equal. Is it all their properties or perhaps
some of them? Two objects are equal if the Equals method says so. You should compare the objects
in a way that makes sense, but you’re in no way limited as to how you do this. In a very specific
application, you might decide that two rectangles are equal because they have the same area, or
perimeter, regardless of their dimensions and origin, and override the Rectangle object’s Equals
method. In the Minimal class, for example, you might decide to compare the birth dates and return
True if they’re equal. Listing 10.9 is the implementation of a possible custom Equals method for
the Minimal class.

Listing 10.9: A Custom Equals Method

Public Overrides Function Equals(ByVal obj As Object) As Boolean
Dim O As Minimal = CType(obj, Minimal)
If O.BDate = m BDate Then

Equals = True
Else

Equals = False
End If

End Function

Notice that the Equals method is prefixed with the Overrides keyword, which tells the
compiler to use our custom Equals method in the place of the original one. To test the new Equals
method, place a new button on the form and insert the statements of Listing 10.10 in its Click
event handler.

Listing 10.10: Testing the Custom Equals Method

Dim O1 As New Minimal
Dim O2 As New Minimal
O1.BDate = #3/1/1960#
O2.BDate = #3/1/1960#
O1.strProperty = ”object1”
O2.strProperty = ”OBJECT2”
If O1.Equals(O2) Then

MsgBox(”They’re equal”)
End If

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 365

BUILDING THE MINIMAL CLASS 365

If you run the application, you’ll see the message confirming that the two objects are equal,
despite the fact that their strProperty properties were set to different values. The BDate property
is the same, and this is the only setting that the Equals method examines. So, it’s up to you to
decide which properties fully and uniquely identify an object and to use these properties to deter-
mine when two objects are equal. In a class that represents persons, you’d probably use Social
Security numbers, or a combination of names and birth dates. In a class that represents cars, you’d
use the maker, model, and year, and so on.

Know What You Are Comparing

The Equals method shown in Listing 10.10 assumes that the object you’re trying to compare to
the current instance of the class is of the same type. Because you can’t rely on developers to catch
all their mistakes, you should know what you’re comparing before you attempt to perform the
comparison. A more-robust implementation of the Equals method is shown in Listing 10.11. This
implementation tries to convert the argument of the Equals method to an object of the Minimal
type and then compares it to the current instance of the Minimal class. If the conversion fails, an
InvalidCastException is thrown and no comparison is performed.

Listing 10.11: A More-Robust Equals Method

Public Overrides Function Equals(ByVal obj As Object) As Boolean
Dim O As New Minimal()
Try

O = DirectCast(obj, Minimal)
Catch typeExc As InvalidCastException

Throw typeExc
Exit Function

End Try
If O.BDate = m BDate Then

Equals = True
Else

Equals = False
End If

End Function

The Is Operator

The equals (=) operator can be used in comparing all built-in objects. The following statement is
quite valid, as long as the R1 and R2 variables were declared of the Rectangle type:

If R1 = R2 Then
MsgBox(”The two rectangles are equal”)

End If

This operator, however, can’t be used with the Minimal custom class. Later in this chapter,
you’ll learn how to customize operators in your class. In the meantime, you can use only the
Is operator, which compares for reference equality (whether the two variables reference the

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 366

366 CHAPTER 10 BUILDING CUSTOM CLASSES

same object), and the Equals method. If the two variables R1 and R2 point to the same object, the
following statement will return True:

If obj1 Is obj2 Then
MsgBox(”The two variables reference the same object”)

End If

The Is operator tells you that the two variables point to a single object. There’s no comparison
here; the compiler simply figures out whether they point to same object in memory. It will return
True if a statement such as the following has been executed before the comparison:

obj2 = obj1

If the Is operator returns True, there’s only one object in memory and you can set its properties
through either variable.

Custom Enumerations
Let’s add a little more complexity to our class. Because we’re storing birth dates to our custom
objects, we can classify persons according to their age. Most BASIC developers will see an oppor-
tunity to use constants here. Instead of using constants to describe the various age groups, we’ll
use an enumeration with the following group names:

Public Enum AgeGroup
Infant
Child
Teenager
Adult
Senior
Overaged

End Enum

These statements must appear outside any procedure in the class, and we usually place them
at the beginning of the file, right after the declaration of the class. Public is an access modifier (we
want to be able to access this enumeration from within the application that uses the class). Enum
is a keyword: It specifies the beginning of the declaration of an enumeration and it’s followed by
the enumeration’s name. The enumeration itself is a list of integer values, each one mapped to a
name. In our example, the name Infant corresponds to 0, the name Child corresponds to 1, and
so on. The list of the enumeration’s members ends with the End Enum keyword. You don’t really
care about the actual values of the names because the very reason for using enumerations is to
replace numeric constants with more-meaningful names. You’ll see shortly how enumerations are
used both in the class and the calling application.

As you already know, the Framework uses enumerations extensively, and this is how you
can add an enumeration to your custom class. You should provide an enumeration for any prop-
erty with a relatively small number of predetermined settings. The property’s type should be the
name of the enumeration, and the editor will open a drop-down box with the property’s settings
as needed.

Now add to the class the GetAgeGroup method (Listing 10.12), which returns the name of the
age group to which the person represented by an instance of the Minimal class belongs. The name
of the group is a member of the AgeGroup enumeration.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 367

BUILDING THE MINIMAL CLASS 367

Listing 10.12: Using an Enumeration

Public Function GetAgeGroup() As AgeGroup
Select Case m Age

Case Is < 3 : Return (AgeGroup.Infant)
Case Is < 10 : Return (AgeGroup.Child)
Case Is < 21 : Return (AgeGroup.Teenager)
Case Is < 65 : Return (AgeGroup.Adult)
Case Is < 100 : Return (AgeGroup.Senior)
Case Else : Return (AgeGroup.Overaged)

End Select
End Function

The GetAgeGroup method returns a value of the AgeGroup type. Because the AgeGroup enu-
meration was declared as Public, it’s exposed to any application that uses the Minimal class. Let’s
see how we can use the same enumeration in our application. Switch to the form’s code window,
add a new button, and enter the statements from Listing 10.13 in its event handler.

Listing 10.13: Using the Enumeration Exposed by the Class

Protected Sub Button1 Click(...)
Handles Button1.Click

Dim obj As Minimal
obj = New Minimal()
Try

obj.BDate = InputBox(”Please Enter your birthdate”)
Catch ex As ArgumentException

MsgBox(ex.Message)
Exit Sub

End Try
Debug.WriteLine(obj.Age)
Dim discount As Single
If obj.GetAgeGroup = Minimal.AgeGroup.Infant Or

obj.GetAgeGroup = Minimal.AgeGroup.Child Then discount = 0.4
If obj.GetAgeGroup = Minimal.AgeGroup.Senior Then discount = 0.5
If obj.GetAgeGroup = Minimal.AgeGroup.Teenager Then discount = 0.25
MsgBox(”You age is ” & obj.Age.ToString &

” and belong to the ” &
obj.GetAgeGroup.ToString &
” group” & vbCrLf & ”Your discount is ” &
Format(discount, ”Percent”))

End Sub

This routine calculates discounts based on the person’s age. Notice that we don’t use numeric
constants in our code, just descriptive names. Moreover, the possible values of the enumeration
are displayed in a drop-down list by the IntelliSense feature of the IDE as needed (Figure 10.4),

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 368

368 CHAPTER 10 BUILDING CUSTOM CLASSES

and you don’t have to memorize them or look them up as you would with constants. I’ve used
an implementation with multiple If statements in this example, but you can perform the same
comparisons by using a Select Case statement.

Figure 10.4

The members of an enu-
meration are displayed
automatically in the IDE
as you type.

You could also call the GetAgeGroup method once, store its result to a variable, and then use
this variable in the comparisons. This approach is slightly more efficient, because you don’t have to
call the member of the class repeatedly. The variable, as you can guess, should be of the AgeGroup
type. Here’s an alternate code of the statements of Listing 10.13 using a temporary variable, the
grp variable, and a Select Case statement:

Dim grp As AgeGroup = obj.GetAgeGroup
Select Case grp

Case Minimal.AgeGroup.Infant, Minimal.AgeGroup.Child ...
Case Minimal.AgeGroup.Teenager ...
Case Minimal.AgeGroup.Senior ...
Case Else

End Select

You’ve seen the basics of working with custom classes in a VB application. Let’s switch to a
practical example that demonstrates not only the use of a real-world class, but also how classes
can simplify the development of a project.

VB 2008 at Work: The Contacts Project

In Chapter 7, ‘‘Working with Forms,’’ I discussed briefly the Contacts application. This application
uses a custom Structure to store the contacts and provides four navigational buttons to allow
users to move to the first, last, previous, and next contact. Now that you have learned how to
program the ListBox control and how to use custom classes in your code, we’ll revise the Contacts
application. First, we’ll implement a class to represent each contact. The fields of each contact
(company and contact names, addresses, and so on) will be implemented as properties and they
will be displayed in the TextBox controls on the form.

We’ll also improve the user interface of the application. Instead of the rather simplistic nav-
igational buttons, we’ll place all the company names in a sorted ListBox control. The user can
easily locate the desired company and select it from the list to view the fields of the selected com-
pany. The editing buttons at the bottom of the form work as usual, but we no longer need the
navigational buttons. Figure 10.5 shows the revised Contacts application.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 369

BUILDING THE MINIMAL CLASS 369

Figure 10.5

The interface of the
Contacts application is
based on the ListBox
control.

Make a copy of the Contacts folder from Chapter 7 into a new folder. First, delete the decla-
ration of the Contact structure and add a class to the project. Name the new class Contact and
enter the code from Listing 10.14 into it. The names of the private members of the class are the
same as the actual property names, and they begin with an underscore. (This is a good convention
that lets you easily distinguish whether a variable is private, and the property value it stores.) The
implementation of the properties is trivial, so I’m not showing the code for all of them.

Listing 10.14: The Contact Class

<Serializable()> Public Class Contact
Private companyName As String
Private contactName As String
Private address1 As String
Private address2 As String
Private city As String
Private state As String
Private zip As String
Private tel As String
Private email As String
Private URL As String

Property CompanyName() As String
Get

CompanyName = companyName
End Get
Set(ByVal value As String)

If value Is Nothing Or value = ”” Then
Throw New Exception(”Company Name field can’t be empty”)
Exit Property

End If

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 370

370 CHAPTER 10 BUILDING CUSTOM CLASSES

companyName = value
End Set

End Property

Property ContactName() As String
Get

ContactName = contactName
End Get
Set(ByVal value As String)

contactName = value
End Set

End Property

Property Address1() As String
Get

Address1 = address1
End Get
Set(ByVal value As String)

address1 = value
End Set

End Property
Property Address2() As String

...
End Property

Property City() As String
...

End Property

Property State() As String
...

End Property

Property ZIP() As String
...

End Property

Property tel() As String
...

End Property

Property EMail() As String
Get

EMail = email
End Get
Set(ByVal value As String)

If value.Contains(”@”) Or value.Trim.Length = 0 Then
email = Value

Else
Throw New Exception(”Invalid e-mail address!”)

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 371

BUILDING THE MINIMAL CLASS 371

End If
End Set

End Property

Property URL() As String
Get

URL = URL
End Get
Set(ByVal value As String)

URL = value
End Set

End Property

Overrides Function ToString() As String
If contactName = ”” Then

Return companyName
Else

Return companyName & vbTab & ”(” & contactName & ”)”
End If

End Function

Public Sub New()
MyBase.New()

End Sub

Public Sub New(ByVal CompanyName As String,
ByVal LastName As String, ByVal FirstName As String)

MyBase.New()
Me.ContactName = LastName & ”, ” & FirstName
Me.CompanyName = CompanyName

End Sub

Public Sub New(ByVal CompanyName As String)
MyBase.New()
Me.CompanyName = CompanyName

End Sub
End Class

The first thing you’ll notice is that the class’s definition is prefixed by the <Serializable()>
keyword. The topic of serialization is discussed in Chapter 16, ‘‘XML and Object Serialization,’’
but for now all you need to know is that the .NET Framework can convert objects to a text or
binary format and then store them in files. Surprisingly, this process is quite simple; as you will
see, we’ll be able to dump an entire collection of Contact objects to a file with a single statement.
The <Serializable()> keyword is an attribute of the class, and (as you will see later in this
book) there are more attributes you can use with your classes — or even with your methods. The
most prominent method attribute is the <WebMethod> attribute, which turns a regular function
into a web method.

The various fields of the Contact structure are now properties of the Contact class. The imple-
mentation of the properties is trivial except for the CompanyName and EMail properties, which

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 372

372 CHAPTER 10 BUILDING CUSTOM CLASSES

contain some validation code. The Contact class requires that the CompanyName property have a
value; if it doesn’t, the class throws an exception. Likewise, the EMail property must contain the
symbol @. Finally, the class provides its own ToString method, which returns the name of the
company followed by the contact name in parentheses.

The ListBox control, in which we’ll store all contacts, displays the value returned by the object’s
ToString method, which is why you have to provide your own implementation of the method to
describe each contact. The company name should be adequate, but if there are two companies by
the same name, you can use another field to differentiate them. I used the contact name, but you
can use any of the other properties (the URL would be a good choice).

The ListBox displays a string, but it stores the object itself. In essence, it’s used not only as a nav-
igational tool, but also as a storage mechanism for our contacts. Now, we must change the code of
the main form a little. Start by removing the navigational buttons; we no longer need them. Their
function will be replaced by a few lines of code in the ListBox control’s SelectedIndexChanged
event. Every time the user selects another item on the list, the statements shown in Listing 10.15
display the contact’s properties in the various TextBox controls on the form.

Listing 10.15: Displaying the Fields of the Selected Contact Object

Private Sub ListBox1 SelectedIndexChanged(...)
Handles ListBox1.SelectedIndexChanged

currentContact = ListBox1.SelectedIndex
ShowContact()

End Sub

The ShowContact() subroutine reads the object stored at the location specified by the cur-
rentContact variable and displays its properties in the various TextBox controls on the form. The
TextBox controls are normally read-only, except when editing a contact. This action is signaled by
clicking the Edit or the Add button on the form.

When a new contact is added, the code reads its fields from the controls on the form, creates
a new Contact object, and adds it to the ListBox control. When a contact is edited, a new Contact
object replaces the currently selected object on the control. The code is similar to the code of the
Contacts application. I should mention that the ListBox control is locked while a contact is being
added or edited, because it doesn’t make sense to select another contact at that time.

Adding, Editing, and Deleting Contacts

To delete a contact (Listing 10.16), we simply remove the currently selected object from the ListBox
control. In addition, we must select the next contact on the list (or the first contact if the deleted
one was last in the list).

Listing 10.16: Deleting an Object from the ListBox

Private Sub bttnDelete Click(...) Handles bttnDelete.Click
If currentContact > -1 Then

ListBox1.Items.RemoveAt(currentContact)
currentContact = ListBox1.Items.Count - 1
If currentContact = -1 Then

ClearFields()

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 373

BUILDING THE MINIMAL CLASS 373

MsgBox(”There are no more contacts”)
Else

ShowContact()
End If

Else
MsgBox(”No current contacts to delete”)

End If
End Sub

When you add a new contact, the following code is executed in the Add button’s Click event
handler:

Private Sub bttnAdd Click(...) Handles bttnAdd.Click
adding = True
ClearFields()
HideButtons()
ListBox1.Enabled = False

End Sub

The controls are cleared in anticipation of the new contact’s fields, and the adding variable is set
to True. The OK button is clicked to end either the addition of a new record or an edit operation.
The code behind the OK button is shown in Listing 10.17.

Listing 10.17: Committing a New or Edited Record

Private Sub bttnOK Click(...) Handles bttnOK.Click
If SaveContact() Then

ListBox1.Enabled = True
ShowButtons()

End If
End Sub

As you can see, the same subroutine handles both the insertion of a new record and the editing
of an existing one. All the work is done by the SaveContact() subroutine, which is shown in
Listing 10.18.

Listing 10.18: The SaveContact() Subroutine

Private Function SaveContact() As Boolean
Dim contact As New Contact
Try

contact.CompanyName = txtCompany.Text
contact.ContactName = txtContact.Text
contact.Address1 = txtAddress1.Text
contact.Address2 = txtAddress2.Text
contact.City = txtCity.Text
contact.State = txtState.Text
contact.ZIP = txtZIP.Text

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 374

374 CHAPTER 10 BUILDING CUSTOM CLASSES

contact.tel = txtTel.Text
contact.EMail = txtEMail.Text
contact.URL = txtURL.Text

Catch ex As Exception
MsgBox(ex.Message)
Return False

End Try
If adding Then

ListBox1.Items.Add(contact)
Else

ListBox1.Items(currentContact) = contact
End If
Return True

End Function

The SaveContact() function uses the adding variable to distinguish between an add and
an edit operation, and either adds the new record to the ListBox control or replaces the current
item in the ListBox with the values on the various controls. Because the ListBox is sorted, new
contacts are automatically inserted in the correct order. If an error occurs during the operation,
the SaveContact() function returns False to alert the calling code that the operation failed (most
likely because one of the assignment operations caused a validation error in the class’s code).

The last operation of the application is the serialization and deserialization of the items in the
ListBox control. Serialization is the process of converting an object to a stream of bytes for storing
to a disk file, and deserialization is the opposite process. To serialize objects, we first store them
into an ArrayList object, which is a dynamic array that stores objects and can be serialized as a
whole. Likewise, the disk file is deserialized into an ArrayList to reload the persisted data back to
the application; then each element of the ArrayList is moved to the Items collection of the ListBox
control. ArrayLists and other Framework collections are discussed in Chapter 14, ‘‘Storing Data
in Collections,’’ and object serialization is discussed in Chapter 16. You can use these features
to test the application and examine the corresponding code after you read about ArrayLists and
serialization. I’ll discuss the code of the Load and Save operations of the Contacts sample project
in Chapter 16.

Making the Most of the ListBox Control

This section’s sample application demonstrates an interesting technique for handling a set of data at
the client. We usually need an efficient mechanism to store data at the client, where all the process-
ing takes place — even if the data comes from a database. In this example, we used the ListBox con-
trol, because each item of the control can be an arbitrary object. Because the control displays the
string returned by the object’s ToString method, we’re able to customize the display by providing
our own implementation of the ToString method. As a result, we’re able to use the ListBox control
both as a data-storage mechanism and as a navigational tool. As long as the strings displayed on the
control are meaningful descriptions of the corresponding objects and the control’s items are sorted,
the ListBox control can be used as an effective navigational tool. If you have too many items to display
on the control, you should also provide a search tool to help users quickly locate an item in the list,
without having to scroll up and down a long list of items. Review the ListBoxFind project of Chapter
6 for information on searching the contents of the ListBox control.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 375

BUILDING THE MINIMAL CLASS 375

When data are being edited, you have to cope with another possible problem. The user may edit the
data for hours and forget to save the edits every now and then. If the computer (or, even worse,
the application) crashes, a lot of work will be wasted. Sure the application provides a Save command,
but you should always try to protect users from their mistakes. It would be nice if you could save the
data to a temporary file every time the user edits or adds an item to the list. This way, if the computer
crashes, users won’t lose their edits. When the application starts, it should automatically detect the
presence of the temporary file and reload it. Every time the user saves the data by using the applica-
tion’s Save command, or terminates the application, the temporary file should be removed.

Object Constructors
Let’s switch to a few interesting topics in programming with objects. Objects are instances of
classes, and classes are instantiated with the New keyword. The New keyword can be used with
a number of arguments, which are the initial values of some of the object’s basic properties. To
construct a rectangle, for example, you can use these two statements:

Dim shape1 As Rectangle = New Rectangle()
shape1.Width = 100
shape1.Height = 30

or the following one:

Dim shape1 As Rectangle = New Rectangle(100, 30)

The objects in the Minimal class can’t be initialized to specific values of their properties and
they expose the simple form of the New constructor — the so-called parameterless constructor.
Every class has a parameterless constructor, even if you don’t specify it. You can implement param-
eterized constructors, which allow you to pass arguments to an object as you declare it. These
arguments are usually the values of the object’s basic properties. Parameterized constructors don’t
pass arguments for all the properties of the object; they expect only enough parameter values to
make the object usable.

Parameterized constructors are implemented via Public subroutines that have the name New.
You can have as many overloaded forms of the New() subroutine as needed. Most of the built-in
classes provide a parameterless constructor, but the purists of OOP will argue against param-
eterless constructors. Their argument is that you shouldn’t allow users of your class to create
invalid instances of it. A class for describing customers, for example, should expose at least a Name
property. A class for describing books should expose a Title and an ISBN property. If the corre-
sponding constructor requires that these properties be specified before creating an instance of the
class, you’ll never create objects with invalid data.

Let’s add a parameterized constructor to our Contact class. Each contact should have at least a
name; here’s a parameterized constructor for the Contact class:

Public Sub New(ByVal CompanyName As String)
MyBase.New()
Me.CompanyName = CompanyName

End Sub

The code is trivial, with the exception of the statement that calls the MyBase.New() subroutine.
MyBase is an object that lets you access the members of the base class (a topic that’s discussed

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 376

376 CHAPTER 10 BUILDING CUSTOM CLASSES

in detail later in this chapter). The reason you must call the New method of the base class is that
the base class might have its own constructor, which can’t be called directly. You must always
insert this statement in your constructors to make sure that any initialization tasks that must be
performed by the base class will not be skipped.

The Contact class’s constructor accepts a single argument: the company name (this property
can’t be a blank string). Another useful constructor for the same class accepts two additional
arguments, the contact’s first and last names, as follows:

Public Sub New(ByVal CompanyName As String,
ByVal LastName As String, ByVal FirstName As String)

MyBase.New()
Me.ContactName = LastName & ”, ” & FirstName
Me.CompanyName = CompanyName

End Sub

With the two parameterized constructors in place, you can create new instances of the Contact
class by using statements such as the following:

Dim contact1 As New Contact(”Around the Horn”)

Or the following:

Dim contact1 As New Contact(”Around the Horn”, ”Hardy”, ”Thomas”)

Notice the lack of the Overloads (or Overrides) keyword. Constructors can have multiple
forms and don’t require the use of Overloads — just supply as many implementations of the
New() subroutine as you need.

One last, but very convenient technique to initialize objects was introduced with Visual Basic
2008. This technique allows you to supply values for as many properties of the new object as you
wish, using the With keyword. The following statements create two new instances of the Person
class, and they initialize each one differently:

Dim P1 As New Person With
{.LastName = ”Doe”, .FirstName = ”Joe”})

Dim P2 As New Person With
{.LastName = ”Doe”, .Email = ”Doe@xxx.com”})

This syntax allows you to quickly initialize new objects, regardless of their constructors; in
effect, you can create your own constructor for any class. This technique will be handy when
combining object initialization with other statements, such as in the following example, which
adds a new object to a list:

Persons.Add(New Person With {.LastName = ”Doe”, .FirstName = ”Joe”})
Persons.Add(New Person With {.LastName = ”Doe”})

Using the SimpleClass in Other Projects
The projects we built in this section are Windows applications that contain a Class module. The
class is contained within the project, and it’s used by the project’s main form. What if you want to
use this class in another project?

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 377

BUILDING THE MINIMAL CLASS 377

First, you must change the type of the project. A Windows project can’t be used as a component
in another project. Right-click the SimpleClass project and choose Properties. In the project’s Prop-
erty Pages dialog box, switch to the Application tab, locate the Application Type drop-down list,
and change the project’s type from Windows Forms Application to Class Library, as shown in
Figure 10.6. Then close the dialog box. When you return to the project, right-click the TestForm
and select Exclude From Project. A class doesn’t have a visible interface, and there’s no reason to
include the test form in your project.

Figure 10.6

Setting a project’s prop-
erties through the Prop-
erty Pages dialog box

From the main menu, choose Build � Build SimpleClass. This command will compile the
SimpleClass project and create a DLL file (the file that contains the class’s code and the file you
must use in any project that needs the functionality of the SimpleClass class). The DLL file will be
created in the \bin\Release folder under the project’s folder.

Let’s use the SimpleClass.dll file in another project. Start a new Windows application, open
the Project menu, and add a reference to the SimpleClass. Choose Project � Add Reference and
switch to the Projects tab in the dialog box that appears. Click the Browse button and locate
the SimpleClass.dll file (see Figure 10.7). Select the name of the file and click OK to close the
dialog box.

The SimpleClass component will be added to the project. You can now declare a variable of the
SimpleClass.Minimal type and call its properties and methods:

Dim obj As New SimpleClass.Minimal
obj.BDate = #10/15/1992#
obj.property2 = 5544
MsgBox(obj.Negate())

If you want to keep testing the SimpleClass project, add the TestForm to the original project
(right-click the project’s name, choose Add � Add Existing Item, and select the TestForm in the
project’s folder). Change the project’s type back to Windows Forms Application and then change
its configuration from Release to Debug.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 378

378 CHAPTER 10 BUILDING CUSTOM CLASSES

Figure 10.7

Adding a reference to an
existing class to a new
project

Firing Events
In addition to methods and properties, classes can also fire events. It’s possible to raise events
from within your classes, although not quite as common. Controls have many events because they
expose a visible interface and the user interacts through this interface (clicks, drags and drops, and
so on). But classes can also raise events. Class events can come from three different sources:

Progress events A class might raise an event to indicate the progress of a lengthy process
or indicate that an internal variable or property has changed value. The PercentDone event is
a typical example. A process that takes a while to complete reports its progress to the calling
application with this event, which is fired periodically. These events, which are called progress
events, are the most common type of class events.

Time events Time events are based on a timer. They’re not very common, but you can imple-
ment alarms, job schedulers, and similar applications. You can set an alarm for a specific time
or an alarm that will go off after a specified interval.

External events External events, such as the completion of an asynchronous operation, can
also fire events. A class might initiate a file download and notify the application when the file
arrives.

To fire an event from within a class, you must do the following:

1. First you must declare the event and its signature in your class. The declaration must
appear in the form, not in any procedure. A simple event, with no arguments, should be
declared as follows (ShiftEnd is the name of the event — an event that signals the end of a
shift every eight hours):

Public Event ShiftEnd()

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 379

BUILDING THE MINIMAL CLASS 379

2. Fire the event from within your class’s code with the RaiseEvent method:

RaiseEvent ShiftEnd()

3. That’s all as far as the class is concerned.

4. The application that uses the custom class must declare it with the WithEvents keyword.
Otherwise, it will still be able to use the class’s methods and properties, but the events
raised by the class will go unnoticed. The following statement creates an instance of the
class and listens for any event:

Dim WithEvents obj As New Minimal

5. Finally, the calling application must provide a handler for the specific event. Because the
class was declared with the WithEvents keyword, its name will appear in the list of objects
in the editor window and its ShiftEnd event will appear in the list of events (Figure 10.8).
Insert the code you want to handle this event in the procedure obj.ShiftEnd.

Figure 10.8

Programming a custom
class’s event

Events usually pass information to the calling application. In VB, all events pass two arguments
to the application: a reference to the object that fired the event, and another argument (which is an
object and contains information specific to the event).

The arguments of an event are declared just like the arguments of a procedure. The following
statement declares an event that’s fired when the class completes the download of a file. The event
passes three parameter values to the application that intercepts it:

Public Event CompletedDownload(ByVal fileURL As String,
ByVal fileName As String, ByVal fileLength As Long)

The parameters passed to the application through this event are the URL from which the file
was downloaded, the path of a file where the downloaded information was stored, and the length
of the file. To raise this event from within a class’s code, call the RaiseEvent statement as before,
passing three values of the appropriate type, as shown next:

RaiseEvent CompletedDownload(”http://www.server.com/file.txt”,
”d:\temp\A90100.txt”, 144329)

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 380

380 CHAPTER 10 BUILDING CUSTOM CLASSES

When coding the event’s handler, you can access these arguments and use them as you wish.
Alternatively, you could create a new object, the DownloadedFileArgument type, and expose
these arguments as properties:

Public Class DownloadedFileArgument
Public FileName as String
Public TempLocation As String
Public FileSize As Long

End Class

Then you can declare the event’s signature by using the DownLoadedFileArgument type in the
argument list:

Public Event CompletedDownload(ByVal sender As Object,
ByVal e As DownloadedFileArgument)

To fire the CompletedDownload event from within your class’s code, create an instance of
the DownLoadedFileArgument class, set its properties and then call the RaiseEvent method, as
shown here:

Dim DArgument As New DownloadedFileArgument
DArgument.FileName = ”http://www.server.com/file.txt”
DArgument.TempLocation = ”d:\temp\A90100.txt”
DArgument.FileSize = 144329
RaiseEvent Fired(Me, DArgument)

To intercept this event in your test application, declare an object of the appropriate type with
the WithEvents keyword and write an event handler for the CompletedDownload event:

Public WithEvents obj As New EventFiringClass
Private Sub obj Fired(ByVal sender As Object,

ByVal e As Firing.DownloadedFileArgument)
Handles obj.CompletedDownload

MsgBox(”Event fired” & vbCrLf &
e.FileName & vbCrLf &
e.TempLocation & vbCrLf &
e.FileSize.ToString)

End Sub

That’s all it takes to fire an event from within your custom class. In Chapter 12, ‘‘Building
Custom Windows Controls,’’ you will find several examples of custom events.

Instance and Shared Methods
As you have seen in earlier chapters, some classes allow you to call some of their members without
first creating an instance of the class. The DateTime class, for example, exposes the IsLeapYear
method, which accepts as an argument a numeric value and returns a True/False value that indi-
cates whether the year is a leap year. You can call this method through the DateTime (or Date) class
without having to create a variable of the DateTime type, as shown in the following statement:

If DateTime.IsLeapYear(1999) Then
{ process a leap year}

End If

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 381

BUILDING THE MINIMAL CLASS 381

A typical example of classes that can be used without explicit instances is the Math class. To
calculate the logarithm of a number, you can use an expression such as this one:

Math.Log(3.333)

The properties and methods that don’t require you to create an instance of the class before you
call them are called shared methods. Methods that must be applied to an instance of the class are
called instance methods. By default, all methods are instance methods. To create a shared method,
you must prefix the corresponding function declaration with the Shared keyword, just like a
shared property.

Why do we need shared methods, and when should we create them? If a method doesn’t apply
to a specific instance of a class, make it shared. In other words, if a method doesn’t act on the
properties of the current instance of the class, it should be shared. Let’s consider the DateTime
class. The DaysInMonth method returns the number of days in the month (of a specific year) that
is passed to the method as an argument. You don’t really need to create an instance of a Date object
to find out the number of days in a specific month of a specific year, so the DaysInMonth method
is a shared method and can be called as follows:

DateTime.DaysInMonth(2004, 2)

Think of the DaysInMonth method this way: Do I need to create a new date to find out if a
specific month has 30 or 31 days? If the answer is no, then the method is a candidate for a shared
implementation.

The AddDays method, on the other hand, is an instance method. We have a date to which we
want to add a number of days and construct a new date. In this case, it makes sense to apply the
method to an instance of the class — the instance that represents the date to which we add the
number of days.

If you spend a moment to reflect on shared and instance members, you’ll come to the conclusion
that all members could have been implemented as shared members and accept the data they
act upon as arguments. The idea behind classes, however, is to combine data with code. If you
implement a class with shared members, you lose one of the major advantages of OOP. Building
a class with shared members only is equivalent to a collection of functions, and the Math class of
the Framework is just that.

The SharedMembers sample project is a simple class that demonstrates the differences between
a shared and an instance method. Both methods do the same thing: They reverse the characters
in a string. The IReverseString method is an instance method; it reverses the current instance
of the class, which is a string. The SReverseString method is a shared method; it reverses its
argument. Listing 10.19 shows the code that implements the SharedMembersClass component.

Listing 10.19: A Class with a Shared and an Instance Method

Public Class SharedMembersClass
Private strProperty As String

Sub New(ByVal str As String)
strProperty = str

End Sub

Public Function IReverseString() As String

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 382

382 CHAPTER 10 BUILDING CUSTOM CLASSES

Return (StrReverse(strProperty))
End Function

Public Shared Function SReverseString(ByVal str As String) As String
Return (StrReverse(str))

End Function
End Class

The instance method acts on the current instance of the class. This means that the class must
be initialized to a string, and this is why the New constructor requires a string argument. To test
the class, add a form to the project, make it the Startup object, and add two buttons to it. The code
behind the two buttons is shown next:

Private Sub Button1 Click(...) Handles Button1.Click
Dim testString As String = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”
Dim obj As New SharedMembersClass(testString)
Debug.WriteLine(obj.IReverseString)

End Sub

Private Sub Button2 Click(...) Handles Button2.Click
Dim testString As String = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”
Debug.WriteLine(SharedMembersClass.SReverseString(testString))

End Sub

The code behind the first button creates a new instance of the SharedMembersClass and calls
its IReverseString method. The second button calls the SReverseString method through the
class’s name and passes the string to be reversed as an argument to the method.

A class can also expose shared properties. There are situations in which you want all instances
of a class to see the same property value. Let’s say you want to keep track of the users currently
accessing your class. You can declare a method that must be called to enable the class, and this
method signals that another user has requested your class. This method could establish a connec-
tion to a database or open a file. We’ll call it the Connect method. Every time an application calls
the Connect method, you can increase an internal variable by one. Likewise, every time an appli-
cation calls the Disconnect method, the same internal variable is decreased by one. This internal
variable can’t be private because it will be initialized to zero with each new instance of the class.
You need a variable that is common to all instances of the class. Such a variable should be declared
with the Shared keyword.

Let’s add a shared variable to our Minimal class. We’ll call it LoggedUsers, and it will be
read-only. Its value is reported via the Users property, and only the Connect and Disconnect
methods can change its value. Listing 10.20 is the code you must add to the Minimal class to
implement a shared property.

Listing 10.20: Implementing a Shared Property

Shared LoggedUsers As Integer
ReadOnly Property Users() As Integer

Get
Users = LoggedUsers

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 383

BUILDING THE MINIMAL CLASS 383

End Get
End Property

Public Function Connect() As Integer
LoggedUsers = LoggedUsers + 1
{ your own code here}

End Function

Public Function Disconnect() As Integer
If LoggedUsers > 1 Then

LoggedUsers = LoggedUsers - 1
End If
{ your own code here}

End Function

To test the shared variable, add a new button to the form and enter the code in Listing 10.21
in its Click event handler. (The lines with the bold numbers are the values reported by the class;
they’re not part of the listing.)

Listing 10.21: Testing the LoggedUsers Shared Property

Protected Sub Button5 Click(ByVal sender As Object,
ByVal e As System.EventArgs)

Dim obj1 As New SharedMemberClass
obj1.Connect()
Debug.WriteLine(obj1.Users)

1
obj1.Connect()
Debug.WriteLine(obj1.Users)

2
Dim obj2 As New SharedMemberClass
obj2.Connect()
Debug.WriteLine(obj1.Users)

3
Debug.WriteLine(obj2.Users)

3
Obj2.Disconnect()
Debug.WriteLine(obj2.Users)

2
End Sub

If you run the application, you’ll see the values displayed under each Debug.WriteLine state-
ment in the Output window. As you can see, both the obj1 and obj2 variables access the same
value of the Users property. Shared variables are commonly used in classes that run on a server
and service multiple applications. In effect, they’re the class’s global variables, which can be shared
among all the instances of a class. You can use shared variables to keep track of the total number of
rows accessed by all users of the class in a database, connection time, and other similar quantities.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 384

384 CHAPTER 10 BUILDING CUSTOM CLASSES

A ‘‘Real’’ Class
This section covers a more-practical class that exposes three methods for manipulating strings.
I have used these methods in many projects, and I’m sure many readers will have good use for
them — at least one of them. The first two methods are the ExtractPathName and ExtractFile-
Name methods, which extract the filename and pathname from a full filename. If the full name of
a file is C:\Documents\Recipes\Chinese\Won Ton.txt, the ExtractPathName method will re-
turn the substring C:\Documents\Recipes\Chinese\, and the ExtractFileName method will
return the substring Won Ton.txt.

You can use the Split method of the String class to extract all the parts of a delimited string.
Extracting the pathname and filename of a complete filename is so common in programming that
it’s a good idea to implement the corresponding functions as methods in a custom class. You can
also use the Path object, which exposes a similar functionality. (The Path object is discussed in
Chapter 15, ‘‘Accessing Folders and Files.’’)

The third method, which is called Num2String, converts numeric values (amounts) to the equiv-
alent strings. For example, it can convert the amount $12,544 to the string Twelve Thousand, Five
Hundred And Forty Four dollars. No other class in the Framework provides this functionality,
and any program that prints checks can use this class.

Parsing a Filename
Let’s start with the two methods that parse a complete filename. These methods are implemented
as Public functions, and they’re quite simple. Start a new project, rename the form to TestForm,
and add a Class to the project. Name the class and the project StringTools. Then enter the code of
Listing 10.22 in the Class module.

Listing 10.22: The ExtractFileName and ExtractPathName Methods

Public Function ExtractFileName(ByVal PathFileName As String) As String
Dim delimiterPosition As Integer
delimiterPosition = PathFileName.LastIndexOf(”\”)
If delimiterPosition > 0 Then

Return PathFileName.Substring(delimiterPosition + 1)
Else

Return PathFileName
End If

End Function

Public Function ExtractPathName(ByVal PathFileName As String) As String
Dim delimiterPosition As Integer
delimiterPosition = PathFileName.LastIndexOf(”\”)
If delimiterPosition > 0 Then

Return PathFileName.Substring(0, delimiterPosition)
Else

Return ””
End If

End Function

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 385

A ‘‘REAL’’ CLASS 385

These are two simple functions that parse the string passed as an argument. If the string
contains no delimiter, it’s assumed that the entire argument is just a filename.

Converting Numbers to Strings
The Num2String method is far more complicated, but if you can implement it as a regular func-
tion, it doesn’t take any more effort to turn it into a method. The listing of Num2String is shown in
Listing 10.23. First, it formats the billions in the value (if the value is that large); then it formats
the millions, thousands, units, and finally the decimal part, which can contain no more than two
digits.

Listing 10.23: Converting Numbers to Strings

Public Function Num2String(ByVal number As Decimal) As String
Dim biln As Decimal, miln As Decimal,

thou As Decimal, hund As Decimal
Dim ten As Integer, units As Integer
Dim strNumber As String
If number > 999999999999.99 Then

Return (”***”)
Exit Function

End If
biln = Math.Floor(number / 1000000000)
If biln > 0 Then

strNumber = FormatNum(biln) & ” Billion” & Pad()
miln = Math.Floor((number - biln * 1000000000) / 1000000)
If miln > 0 Then

strNumber = strNumber & FormatNum(miln) & ” Million” & Pad()
thou = Math.Floor((number - biln * 1000000000 - miln * 1000000) / 1000)
If thou > 0 Then

strNumber = strNumber & FormatNum(thou) & ” Thousand” & Pad()
hund = Math.Floor(number - biln * 1000000000 - miln * 1000000 - thou * 1000)
If hund > 0 Then strNumber = strNumber & FormatNum(hund)
If Right(strNumber, 1) = ”,” Then

strNumber = Left(strNumber, Len(strNumber) - 1)
If Left(strNumber, 1) = ”,” Then

strNumber = Right(strNumber, Len(strNumber) - 1)
If number <> Math.Floor(number) Then

strNumber = strNumber &
FormatDecimal(CInt((number - Int(number)) * 100))

Else
strNumber = strNumber & ” dollars”

End If
Return (Delimit(SetCase(strNumber)))

End Function

Each group of three digits (million, thousand, and so on) is formatted by the FormatNum() func-
tion. Then the appropriate string is appended (Million, Thousand, and so on). The FormatNum()
function, which converts a numeric value less than 1,000 to the equivalent string, is shown in
Listing 10.24.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 386

386 CHAPTER 10 BUILDING CUSTOM CLASSES

Listing 10.24: The FormatNum() Function

Private Function FormatNum(ByVal num As Decimal) As String
Dim digit100 As Decimal, digit10 As Decimal, digit1 As Decimal
Dim strNum As String
digit100 = Math.Floor(num / 100)
If digit100 > 0 Then strNum = Format100(digit100)
digit10 = Math.Floor((num - digit100 * 100))
If digit10 > 0 Then

If strNum <> ”” Then
strNum = strNum & ” And ” & Format10(digit10)

Else
strNum = Format10(digit10)

End If
End If
Retutn (strNum)

End Function

The FormatNum() function formats a three-digit number as a string. To do so, it calls the For-
mat100() function to format the hundreds, and the Format10() function formats the tens. The
Format10() function calls the Format1() function to format the units. I will not show the code for
these functions; you can find it in the StringTools project. You’d probably use similar functions to
implement the Num2String method as a function. Instead, I will focus on a few peripheral issues,
such as the enumerations used by the class as property values.

To make the Num2String method more flexible, the class exposes the Case, Delimiter, and
Padding properties. The Case property determines the case of the characters in the string returned
by the method. The Delimiter property specifies the special characters that should appear before
and after the string. Finally, the Padding property specifies the character that will appear between
groups of digits. The values each of these properties can take on are members of the appropriate
enumeration:

PaddingEnum DelimiterEnum CaseEnum

paddingCommas delimiterNone caseCaps

paddingSpaces delimiterAsterisk caseLower

paddingDashes delimiter3Asterisks caseUpper

The values under each property name are implemented as enumerations, and you need not
memorize their names. As you enter the name of the property followed by the equal sign, the
appropriate list of values will pop up, and you can select the desired member. Listing 10.25
presents the UseCaseEnum enumeration and the implementation of the UseCase property.

Listing 10.25: The CaseEnum Enumeration and the UseCase Property

Enum CaseEnum
caseCaps

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 387

A ‘‘REAL’’ CLASS 387

caseLower
caseUpper

End Enum

Private varUseCase As CaseEnum
Public Property [Case]() As CaseEnum

Get
Return (varUseCase)

End Get
Set

varUseCase = Value
End Set

End Property

Notice that the name of the Case property is enclosed in square brackets. This is necessary
when you’re using a reserved keyword as a variable, property, method, or enumeration member
name. Alternatively, you can use a different name for the property to avoid the conflict altogether.
After the declaration of the enumeration and the Property procedure are in place, the coding of the
rest of the class is simplified a great deal. The Num2String() function, for example, calls the Pad()
method after each three-digit group. The separator is specified by the UseDelimiter property,
whose type is clsPadding. The Pad() function uses the members of the UsePaddingEnum enumer-
ation to make the code easier to read. As soon as you enter the Case keyword, the list of values
that can be used in the Select Case statement will appear automatically, and you can select the
desired member. Here’s the code of the Pad() function:

Private Function Pad() As String
Select Case varUsePadding

Case PaddingEnum.paddingSpaces : Return (””)
Case PaddingEnum.paddingDashes : Return (”-”)
Case PaddingEnum.paddingCommas : Return (”,”)

End Select
End Function

To test the StringTools class, create a test form like the one shown in Figure 10.9. Then enter the
code from Listing 10.26 in the Click event handler of the two buttons.

Listing 10.26: Testing the StringTools Class

Protected Sub Button1 Click(...) Handles Button1.Click
TextBox1.Text = Convert.ToDecimal(

TextBox1.Text).ToString(”#,###.00”)
Dim objStrTools As New StringTools()
objStrTools.Case = StringTools.CaseEnum.CaseCaps
objStrTools.Delimiter = StringTools.DelimitEnum.DelimiterNone
objStrTools.Padding = StringTools.PaddingEnum.PaddingCommas
TextBox2.Text = objStrTools.Num2String(Convert.ToDecimal(TextBox1.Text))

End Sub

Protected Sub Button2 Click(...) Handles Button2.Click

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 388

388 CHAPTER 10 BUILDING CUSTOM CLASSES

Dim objStrTools As New StringTools()
openFileDialog1.ShowDialog()
Dim fName as String
fName = OpenFileDialog1.FileName
Debug.writeline(objStrTools.ExtractPathName(fName))
Debug.WriteLine(objStrTools.ExtractFileName(fName))

End Sub

Figure 10.9

The test form of the
StringTools class

Operator Overloading
In this section you’ll learn about an interesting (but quite optional) feature of class design: how to
customize the usual operators. Some operators in Visual Basic act differently on various types of
data. The addition operator (+) is the most typical example. When used with numbers, the addi-
tion operator adds them. When used with strings, however, it concatenates the strings. The same
operator can perform even more complicated calculations with the more-elaborate data types.
When you add two variables of the TimeSpan type, the addition operator adds their durations
and returns a new TimeSpan object. If you execute the following statements, the value 3882 will
be printed in the Output window (the number of seconds in a time span of 1 hour, 4 minutes, and
42 seconds):

Dim TS1 As New TimeSpan(1, 0, 30)
Dim TS2 As New TimeSpan(0, 4, 12)
Debug.WriteLine((TS1 + TS2).TotalSeconds.ToString)

The TimeSpan class is discussed in detail in Chapter 13, ‘‘Handling Strings, Characters, and
Dates,’’ but for the purposes of the preceding example, all you need to know is that variable TS1
represents a time span of 1 hour and 30 seconds, while TS2 represents a time span of 4 minutes
and 12 seconds. Their sum is a new time span of 1 hour, 4 minutes and 42 seconds. So far you saw
how to overload methods and how the overloaded forms of a method can simplify development.
Sometimes it makes sense to alter the default function of an operator. Let’s say you designed a
class for representing lengths in meters and centimeters, something like the following:

Dim MU As New MetricUnits
MU.Meters = 1
MU.Centimeters = 78

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 389

OPERATOR OVERLOADING 389

The MetricUnits class allows you to specify lengths as an integer number of meters and cen-
timeters (presumably, you don’t need any more accuracy). The most common operation you’ll
perform with this class is to add and subtract lengths. However, you can’t directly add two objects
of the MetricUnits type by using a statement such as this:

TotalLength = MU1 + MU2

Wouldn’t it be nice if you could add two custom objects by using the addition operator? For
this to happen, you should be able to overload the addition operator, just as you can overload a
method. Indeed, it’s possible to overload an operator for your custom classes and write statements
like the preceding one. Let’s design a class to express lengths in metric and English units, and then
overload the basic operators for this class.

To overload an operator, you must create an Operator procedure, which is basically a function
with an odd name: the name of the operator you want to overload. The Operator procedure
accepts as arguments two values of the custom type (the type for which you’re overloading the
operator) and returns a value of the same type. Here’s the outline of an Operator procedure that
overloads the addition operator:

Public Shared Operator + (
ByVal length1 As MetricUnits,
ByVal length2 As MetricUnits) As MetricUnits

End Operator

The procedure’s body contains the statements that add the two arguments as units of length,
not as numeric values. Overloading operators is a straightforward process that can help you create
elegant classes that can be manipulated with the common operators.

VB 2008 at Work: The LengthUnits Class
To demonstrate the overloading of common operators, I included the LengthUnits project, which
is a simple class for representing distances in English and metric units. Listing 10.27 shows the
definition of the MetricUnits class, which represents lengths in meters and centimeters.

Listing 10.27: The MetricUnits Class

Public Class MetricUnits
Private Meters As Integer
Private Centimeters As Integer

Public Sub New()

End Sub

Public Sub New(ByVal meters As Integer, ByVal centimeters As Integer)
Me.Meters = meters
Me.Centimeters = centimeters

End Sub

Public Property Meters() As Integer

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 390

390 CHAPTER 10 BUILDING CUSTOM CLASSES

Get
Return Meters

End Get
Set(ByVal Value As Integer)

Meters = Value
End Set

End Property

Public Property Centimeters() As Integer

Get
Return Centimeters

End Get
Set(ByVal Value As Integer)

If value > 100 Then
Meters += Convert.ToInt32(Math.Floor(Value / 100))
Centimeters = (Value Mod 100)

Else
Centimeters = value

End If
End Set

End Property

Public Overloads Function Tostring() As String
Dim str As String = Math.Abs(Meters).ToString & ” meters, ” &

Math.Abs(Centimeters).ToString & ” centimeters”
If Meters < 0 Or (Meters = 0 And Centimeters < 0) Then

str = ”-” & str
End If
Return str

End Function
End Class

The class uses the private variables Meters and Centimeters to store the two values that
determine the length of the current instance of the class. These variables are exposed as the Meters
and Centimeters properties. Notice the two forms of the constructor and the custom ToString
method. Because the calling application may supply a value that exceeds 100 for the Centime-
ters property, the code that implements the Centimeters property checks for this condition
and increases the Meters property, if needed. It allows the calling application to set the Cen-
timeters property to 252, but internally it increases the Meters local variable by 2 and sets
the Centimenters local variable to 52. The ToString method returns the value of the current
instance of the class as a string such as 1.98, but it inserts a minus sign in front of it if it’s negative.
If you open the sample project, you’ll find the implementation of the EnglishUnits class, which
represents lengths in feet and inches. The code is quite similar.

There’s nothing out of the ordinary so far; it’s actually a trivial class. We can turn it into a highly
usable class by overloading the basic operators for the MetricUnits class: namely the addition and
subtraction operators. Add the Operator procedures shown in Listing 10.28 to the class’s code.

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 391

OPERATOR OVERLOADING 391

Listing 10.28: Overloading Operators for the MetricUnits Class

Public Shared Operator + (
ByVal length1 As MetricUnits,
ByVal length2 As MetricUnits) As MetricUnits

Dim result As New metricUnits
result.Meters = 0
result.Centimeters =

length1.Meters * 100 + length1.Centimeters +
length2.Meters * 100 + length2.Centimeters

Return result
End Operator

Public Shared Operator - (
ByVal length1 As MetricUnits,
ByVal length2 As MetricUnits) As MetricUnits

Dim result As New MetricUnits
result.Meters = 0
result.Centimeters =

length1.Meters * 100 + length1.Centimeters -
length2.Meters * 100 - length2.Centimeters

Return result
End Operator

These two procedures turned an ordinary class into an elegant custom data type. You can now
create MetricUnits variables in your code and manipulate them with the addition and subtraction
operators as if they were simple numeric data types. The following code segment exercises the
MetricUnits class:

Dim MU1 As New MetricUnits
MU1.Centimeters = 194
Debug.WriteLine(”194 centimeters is ” & MU1.Tostring & ” meters”)
194 centimeters is 1.94 meters
Dim MU2 As New MetricUnits
MU2.Meters = 1
MU2.Centimeters = 189
Debug.WriteLine(”1 meter and 189 centimeters is ” & MU2.Tostring & ” meters”)
1 meter and 189 centimeters is 2.89 meters
Debug.WriteLine(”194 + 289 centimeters is ” & (MU1 + MU2).Tostring & ” meters”)
194 + 289 centimeters is 4.83 meters
Debug.WriteLine(”194 - 289 centimeters is ” & (MU1 - MU2).Tostring & ” meters”)
The negative of 1.94 is -1.94
MU1.Meters = 4
MU1.Centimeters = 63
Dim EU1 As EnglishUnits = CType(MU1, EnglishUnits)
Debug.WriteLine(”4.62 meters are ” & EU1.Tostring)
4.62 meters are 15’ 2”
MU1 = CType(EU1, MetricUnits)

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 392

392 CHAPTER 10 BUILDING CUSTOM CLASSES

Debug.WriteLine(EU1.Tostring & ” are ” & MU1.Tostring & ” meters”)
15’ 2” are 4.62 meters

If you execute the preceding statements, the highlighted values will appear in the Output win-
dow. (The LengthUnits sample project uses a TextBox control to display its output.) Figure 10.10
shows the test project for the MetricUnits and EnglishUnits classes. The last few statements convert
values between metric and English units, and you’ll see the implementation of these operations
momentarily.

Figure 10.10

Exercising the members
of the MetricUnits class

Implementing Unary Operators

In addition to being the subtraction operator, the minus symbol is also a unary operator (it negates
the following value). If you attempt to negate a MetricUnits variable, an error will be generated
because the subtraction operator expects two values — one on either side of it. In addition to the
subtraction operator (which is a binary operator because it operates on two values), we must
define the negation operator (which is a unary operator because it operates on a single value). The
unary minus operator negates the following value, so a new definition of the subtraction Operator
procedure is needed. This definition will overload the existing one, as follows:

Public Overloads Shared Operator -(
ByVal length1 As MetricUnits) As MetricUnits

Dim result As New MetricUnits
result.Meters = -length1.Meters
result.Centimeters = -length1.Centimeters
Return result

End Operator

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 393

OPERATOR OVERLOADING 393

To negate a length unit stored in a variable of the MetricUnits type, use statements such as the
following:

MU2 = -MU1
Debug.Write(MU2.Tostring)
Debug.Write((-MU1).Tostring)

Both statements will print the following in the Output window:

-1 meters, -94 centimeters

There are several unary operators, which you can overload in your custom classes as needed.
There’s the unary + operator (not a common operator), and the Not, IsTrue, and IsFalse oper-
ators, which are logical operators. The last unary operator is the CType operator, which is exposed
as a method of the custom class and is explained next.

Handling Variants

To make your custom data type play well with the other data types, you must also provide a
CType() function that can convert a value of the MetricUnits type to any other type. It doesn’t
make much sense to convert MetricUnits to dates or any of the built-in objects, but let’s say you
have another class: the EnglishUnits class. This class is similar to the MetricUnits class, but it
exposes the Inches and Feet properties in place of the Meters and Centimeters properties. The
CType() function of the MetricUnits class, which will convert MetricUnits to EnglishUnits, is
shown next:

Public Overloads Shared Widening Operator
CType(ByVal MU As MetricUnits) As EnglishUnits

Dim EU As New EnglishUnits
EU.Inches = Convert.ToInt32(

(MU.Meters * 100 + MU.Centimeters) / 2.54)
Return EU

End Operator

Do you remember the implicit narrowing and widening conversions we discussed in
Chapter 2? An attempt to assign an integer value to a decimal variable will produce a warning,
but the statement will be executed because it’s a widening conversion (no loss of accuracy will
occur). The opposite is not true. If the Strict option is on, the compiler won’t allow narrowing con-
versions because not all Decimal values can be mapped to Integers. To help the compiler enforce
strict types, you can use the appropriate keyword to specify whether the CType() function per-
forms a widening or a narrowing conversion. The CType() procedure is shared and overloads the
default implementation, which explains all the keywords prefixing its declaration. The following
statements exercise the CType method of the MetricUnits class:

Debug.Write(MU1.Tostring)
1 meters, 94 centimeters
Debug.WriteLine(CType(MU1, EnglishUnits).Tostring)
6 feet, 4 inches

Petroutsos c10.tex V3 - 01/28/2008 1:32pm Page 394

394 CHAPTER 10 BUILDING CUSTOM CLASSES

The output of the two statements is highlighted. Both classes expose integer properties, so the
Widening or Narrowing keyword isn’t really important. In other situations, you must carefully
specify the type of the conversion to help the compiler generate the appropriate warnings (or
exceptions, if needed).

The CType operator we added to the MetricUnits class can only convert values of the MetricUnit
type to values of the EnglishUnit type. If it makes sense to convert MetricUnits variables to other
types, you must provide more overloaded forms of the CType() procedure. For example, you
can convert them to numeric values (the numeric value could be the length in centimeters or a
double value that represents the same length in meters). The compiler sees the return type(s) of
the various overloaded forms of the CType operator, knows whether the requested conversion is
possible, and generates the appropriate exception.

In short, operator overloading isn’t complicated, but it adds a touch of elegance to a custom
class and enables variables of this type to mix well with the other data types. If you like math,
you could implement classes to represent matrices, or complex numbers, and overload the usual
operators for addition, multiplication, and so on.

The Bottom Line
Build your own classes. Classes contain code that executes without interacting with the
user. The class’s code is made up of three distinct segments: the declaration of the private
variables, the property procedures that set or read the values of the private variables, and the
methods, which are implemented as Public subroutines or functions. Only the Public entities
(properties and methods) are accessible by any code outside the class. Optionally, you can
implement events that are fired from within the class’s code. Classes are referenced through
variables of the appropriate type, and applications call the members of the class through these
variables. Every time a method is called, or a property is set or read, the corresponding code
in the class
is executed.

Master It How do you implement properties and methods in a custom class?

Master It How would you use a constructor to allow developers to create an instance of
your class and populate it with initial data?

Use custom classes in your projects. To use a custom class in your project, you must add
to the project a reference to the class you want to use. If the class belongs to the same project,
you don’t have to do anything. If the class belongs to another project, you must right-click the
project’s name in the Solution Explorer and select Add Reference from the shortcut menu. In
the Add Reference dialog box that appears, switch to the Browse tab and locate the DLL file
with the class’s implementation (it will be a DLL file in the project’s Bin folder). Select the name
of this file and click OK to add the reference and close the dialog box.

Master It How will you call the two constructors of the preceding Master It sections in an
application that uses the custom class to represent books?

Customize the usual operators for your classes. Overloading is a common theme in coding
classes (or plain procedures) with Visual Basic. In addition to overloading methods, you can
overload operators. In other words, you can define the rules for adding or subtracting two cus-
tom objects, if this makes sense for your application.

Master It When should you overload operators in a custom class, and why?

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 395

Chapter 11

Working with Objects

This chapter continues the discussion of object-oriented programming (OOP) and covers some of
its more-advanced, but truly useful, concepts: inheritance and polymorphism. Instead of jumping
to the topic of inheritance, I’ll start with a quick overview of what you learned in the previous
chapter and how to apply this knowledge.

Inheritance is discussed later in this chapter, along with polymorphism, another powerful OOP
technique, and interfaces. But first make sure that you understand the basics of OOP because
things aren’t always as simple as they look (but are quite often simpler than you think).

In this chapter, you’ll learn how to:

◆ Extend existing classes using inheritance

◆ Develop flexible classes using polymorphism

Issues in Object-Oriented Programming
Building classes and using them in your code is fairly simple, but there are a few points about OOP
that can cause confusion. To help you make the most of OOP and get up to speed, I’m including
a list of related topics that are known to cause confusion to programmers — and not only begin-
ners. If you understand the topics of the following paragraphs and how they relate to the topics
discussed in the previous chapter, you’re more than familiar with the principles of OOP and you
can apply them to your projects immediately.

Classes versus Objects
Classes are templates that we use to create new objects. In effect, they’re the blueprints used to
manufacture objects in our code. Another way to think of classes is as custom types. After you add
the class Customer to your project (or a reference to the DLL that implements the Customer class),
you can declare variables of the Customer type, just as you declare integers and strings. The code
of the class is loaded into the memory, and a new set of local variables is created. This process is
referred to as class instantiation: Creating an object of a custom type is the same as instantiating the
class that implements the custom type. For each object of the Customer type, there’s a set of local
variables, as they’re declared in the class’s code. The various procedures of the class are invoked
as needed by the Common Language Runtime (CLR) and they act on the set of local variables that
correspond to the current instance of the class. Some of the local variables may be common among
all instances of a class: These are the variables that correspond to shared properties (properties
that are being shared by all instances of a class).

When you create a new variable of the Customer type, the New() procedure of the Customer
class is invoked. The New() procedure is known as the class’s constructor. Each class has a default

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 396

396 CHAPTER 11 WORKING WITH OBJECTS

constructor that accepts no arguments, even if the class doesn’t contain a New() subroutine. This
default constructor is invoked every time a statement similar to the following is executed:

Dim cust As New Customer

You can overload the New() procedure by specifying arguments, and you should try to provide
one or more parameterized constructors. Parameterized constructors allow you (or any developer
using your class) to create meaningful instances of the class. Sure, you can create a new Customer
object with no data in it, but a Customer object with a name and company makes more sense. The
parameterized constructor initializes some of the most characteristic properties of the object.

Objects versus Object Variables
All variables that refer to objects are called object variables. (The other type of variables are value
variables, which store base data types, such as characters, integers, strings, and dates.) In declaring
object variables, we usually use the New keyword, which is the only way to create a new object. If
you omit this keyword from a declaration, only a variable of the Customer type will be created,
but no instance of the Customer class will be created in memory, and the variable won’t point to
an actual object. The following statement declares a variable of the Customer type, but doesn’t
create an object:

Dim Cust As Customer

If you attempt to access a member of the Customer class through the Cust variable, the infa-
mous NullReferenceException will be thrown. The description of this exception is Object
reference not set to an instance of an object, which means that the Cust variable doesn’t point to
an instance of the Customer class. Actually, the editor will catch this error and will underline the
name of the variable. If you hover the mouse pointer over the name of the variable in question, the
following explanation will appear on a ToolTip box: Variable Cust is used before it has been assigned
a value. A Null Reference exception could result at runtime. Why bother declaring variables that don’t
point to specific objects? The Cust variable can be set later in the code to reference an existing
instance of the class:

Dim Cust As Customer
Dim Cust2 As New Customer
Cust = Cust2

After the execution of the preceding statements, both variables point to the same object in
memory, and you can set the properties of this object through either variable. You have two object
variables, but only one object in memory because only one of them was declared with the New
keyword. To set the Company property, you can use either one of the following statements, because
they both point to the same object in memory:

Cust.CompanyName = ”New Company Name”

or

Cust2.CompanyName = ”New Company Name”

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 397

ISSUES IN OBJECT-ORIENTED PROGRAMMING 397

The Cust variable is similar to a shortcut. When you create a shortcut to a specific file on your
desktop, you’re creating a reference to the original file. You do not create a new file or a copy of
the original file. You can use the shortcut to access the original file, just as we can use the Cust
variable to manipulate the properties of the Cust2 object in the preceding code sample.

It’s also common to declare object variables without the New keyword when we know we’re
going to use them later in our code, as shown in the following loop:

Dim LI As ListViewItem
For row = 0 To 20

LI = New ListViewItem
LI.Text = ”.....”
’ more statements to set up the LI variable
ListView1.Items.Add(LI)

Next

The LI variable is declared once, and we initialize it many times in the following loop. The
first statement in the loop creates a new ListViewItem object, and the last statement adds it to the
ListView control. Another common scenario is to declare an object variable without initializing it
at the form’s level and initialize it in a procedure, while using its value in other procedures.

When to Use the New Keyword

Many programmers are confused by the fact that most object variables must be declared with the New
keyword, whereas some types don’t support the New keyword. If you want to create a new object in
memory (which is an instance of a class), you must use the New keyword. When you declare a variable
without the New keyword, you’re creating a reference to an object, but not a new object. Only shared
classes must be declared without the New keyword. If in doubt, use the New keyword anyway, and the
compiler will let you know immediately whether the class you’re instantiating has a constructor. If
the New keyword is underlined in error, you know that you must delete the New keyword from the
declaration.

Exploring Value Types

Okay, if the variables that represent objects are called object variables and the types they represent
are called reference types, what other variables are there? They’re the regular variables that store
the basic data types, and they’re called value variables because they store values. An integer, or a
string, is not stored as an object for efficiency. An Integer variable contains an actual value, not
a pointer to the value. Imagine if you had to instantiate the Integer class every time you needed
to use an Integer value in your code. Not that it’s a bad idea, but it would scare away most VB
developers. Value variables are so common in programming and they’re not implemented as
classes for efficiency. Whereas objects require complicated structures in memory, the basic data
types are stored in a few bytes and are manipulated much faster than objects.

Consider the following statements:

Dim age1, age2 As Integer
age2 = 29
age1 = age2
age2 = 40

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 398

398 CHAPTER 11 WORKING WITH OBJECTS

When you assign a value variable to another, the actual value stored in the variable overwrites
the current value of the other variable. The two variables have the same value after the statement
that assigns the value of age2 to the variable age1, but they’re independent of one another. After
the execution of the last statement, the values of age1 and age2 are different again. If they were
object variables, they would point to the same object after the assignment operation, and you
wouldn’t be able to set their values separately. You’d be setting the properties of the same object.

Value types are converted to objects as soon as you treat them as objects. As soon as you enter
a statement like the following, the intValue variable is converted to an object:

intValue.MinValue

You’ll rarely use the methods of the base types, but you can turn value variables into object
variables at any time. This process is known as boxing (the conversion of a value type to an object).

Exploring Reference Types

To better understand how reference types work, consider the following statements that append a
new row with two subitems to a ListView control. (The control’s item is an object of the ListView
Item type.):

ListView1.Items.Clear
Dim LI As New ListViewItem
LI.Text = ”Item 1”
LI.SubItems.Add(”Item 1 SubItem 1.a”)
LI.SubItems.Add(”Item 1 SubItem 1.b”)
ListView1.Items.Add(LI)

After the execution of the preceding statements, the ListView control contains a single row.
This row is an object of the ListViewItem type and exists in memory on its own. Only after the
execution of the last statement is the ListViewItem object referenced by the LI variable associated
with the ListView1 control.

To change the text of the first item, or its appearance, you can manipulate the control’s Items
collection directly, or change the LI variable’s properties. The following pairs of statements are
equivalent:

ListView1.Items(0).Text = ”Revised Item 1”
ListView1.Items(0).BackColor = Color.Cyan

and

LI.Text = ”Revised Item 1”
LI.BackColor = Color.Cyan

There’s yet another method to access the ListView control’s items. Create an object variable
that references a specific item and set the item’s properties through this variable:

Dim selItem As ListViewItem
selItem = ListView1.Items(0)
selItem.Text = ”new caption”
selItem.BackColor = Color.Silver

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 399

ISSUES IN OBJECT-ORIENTED PROGRAMMING 399

These statements are not new to you; you’ve seen these techniques in action in Chapter 9, ‘‘The
TreeView and ListView Controls,’’ where you learned to program the ListView control. Now you
can really understand how they work.

A final question for testing your OOP skills: What do you think will happen if you set the
LI variable to nothing? Should the control’s row disappear? The answer is no. If you thought
otherwise, take a moment now to think about why deleting a variable doesn’t remove the object
from memory. The LI variable points to an object in memory; it’s not the object. The New keyword
created a new ListViewItem object in memory and assigned its address to the variable LI. The
statement that added the LI variable to the control’s Items collection associated the object in
memory with the control. By setting the LI variable to nothing, we simply removed the pointer
to the ListViewItem object in memory, not the object itself. To actually remove the control’s first
item, you must call the Remove method of the LI variable:

LI.Remove

This statement will remove the ListViewItem object from the control’s Items collection, but
the actual object still lives in the memory. If you execute the following statement, the item will be
added again to the control:

ListView1.Items.Add(LI)

So to sum up, the ListViewItem object exists in memory and is referenced by the LI variable.
The Remove method removes the item from the control; it doesn’t delete it from the memory. If
you remove the item from the control and then set the LI variable to Nothing, the object will also
be removed from memory.

By the way, the ListViewItem object won’t be deleted instantly. The CLR uses a special mech-
anism to remove objects from memory, the Garbage Collector (GC). The GC runs every so often
and removes from memory all objects that are not referenced by any variable. These objects even-
tually will be removed from memory, but we can’t be sure when. (There’s no way to force the GC
to run on demand.) The CLR will start the GC based on various criteria (the current CPU load,
the amount of available memory, and so on). Because objects are removed automatically by the
CLR, we say that the lifetime of an object is nondeterministic. However, you can rest assured that
the object will eventually be removed from memory. After you set the LI variable to Nothing and
remove the corresponding item from the ListView control, you’re left with a ListViewItem object
in memory that’s not referenced by any other entity. This object will live a little longer in the
memory, until the GC gets a chance to remove it and reclaim the resources allocated to the object.

Here are the statements I’ve used for this experiment:

’ Create a new ListViewItem object
Dim LI As New ListViewItem
LI.Text = ”Item 1”
LI.SubItems.Add(”Item 1 SubItem 1.a”)
LI.SubItems.Add(”Item 1 SubItem 1.b”)
’ add it to the ListView control
ListView1.Items.Add(LI)
MsgBox(”Item added to the list.” & vbCrLf &

”Click OK to modify the appearance ” &
”of the top item through the LI variable.”)

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 400

400 CHAPTER 11 WORKING WITH OBJECTS

’ Edit the object’s properties
’ The new settings will affect the appearance of the
’ item on the control immediately
LI.Text = ”ITEM 1”
LI.Font = New Font(”Verdana”, 10, FontStyle.Regular)
LI.BackColor = Color.Azure
MsgBox(”Item’s text and appearance modified.” &

vbCrLf & ”Click OK to modify the ” &
”appearance of the top item through ” &
”the ListView1.Items collection.”)

’ Change the first item on the control directly
’ Changes also affect the object in memory
ListView1.Items(0).BackColor = Color.LightCyan
LI.SubItems(2).Text = ”Revised Subitem”
’ Remove the top item from the control
MsgBox(”Will remove the top item from the control.”)
LI.Remove()
MsgBox(”Will restore the deleted item”)
’ The item was removed from list, but not deleted
’ We can add it to the control’s Items collection
ListView1.Items.Add(LI)
MsgBox(”Will remove object from memory”)
’ Remove it again from the control
LI.Remove()
’ and set it to Nothing
LI = Nothing
’ We can no longer access the LI object.
MsgBox(”Can I access it again? ” & vbCrLf &

”NO, YOU’LL GET AN EXCEPTION WHEN THE ” &
”FOLLOWING STATEMENT IS EXECUTED!”)

ListView1.Items.Add(LI)

Properties versus Fields
When you set or read a property’s value, the corresponding Get or Set segment of the Property
procedure is executed. The following statement invokes the Property Set segment of the EMail
public property of the class:

cust.EMail = ”Evangelos.P@Sybex.com”

Obviously, every time you call one of the class’s properties, the corresponding public procedure
in the class is invoked. The following statement invokes both the Set and Get property procedures
of the Customer class’s Balance property:

cust.Balance = cust.Balance + 429.25

Trivial properties can also be implemented as public variables. These variables, which are
called fields, behave like properties, but no code is executed when the application sets or reads
their value. We often implement properties of the enumeration type as fields because they can be

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 401

ISSUES IN OBJECT-ORIENTED PROGRAMMING 401

set only to valid values. If the Set method of a property doesn’t contain any validation code and
simply assigns a new value to the local variable that represents the specific property, there’s no
difference between the property and a field.

Shared versus Instance Members
To really understand classes and appreciate them, you must visualize the way classes combine
code and data. Properties contain the data that live along with the code, which determines the
object’s behavior — its functionality. The functionality of the object is implemented as a number
of methods and events. The properties, methods, and events constitute the class’s interface. Each
instance of the class acts on its own data, and there’s no interference between two objects of the
same type unless they contain shared properties. A shared property is common to all instances of
the class. In other words, there’s no local variable for this property, and all instances of the class
access the same variable. Shared properties are not common — after all, if many of the properties
are common to all instances of the class, why create many objects? Shared methods, on the other
hand, are quite common. The Math class is a typical example. To calculate the logarithm of a
number, you call the Log method of the Math class:

Math.Log(123)

You need not create an instance of the Math class before calling any of its methods (which
are the common math functions). Actually, you can’t create a new instance of the Math class
because the entire class is marked as shared.

Let’s say you’re building a class to represent customers, the Customer class. This class should
expose properties that correspond to the columns of the Customers table in a database. Each
instance of the Customer class stores information about a specific customer. In addition to the
properties, the Customer class should expose a few methods to get data from the database and
commit changes or new customers to the database. The GetCustomerByID method, for example,
should accept the ID of a customer as an argument, retrieve the corresponding customer’s data
from the database, and use them to populate the current instance’s properties. Here’s how you use
this class in your code:

Dim cust As New Customer
cust.GetCustomerByID(”ALFKI”)
Debug.WriteLine cust.CompanyName
Debug.WriteLine cust.ContactName & ” ” & cust.ContactTitle

The GetCustomerByID method can retrieve the customer data from a local database, a remote
web service, or even an XML file. The idea is that a single method call gets the data and uses it
to populate the properties of the current instance of the class. This method is an instance method
because it requires an instance of the class. It populates the properties of this instance, or object.

You could have implemented the GetCustomerByID method as a shared method, but then the
method should return an object of the Customer type. The shared method can’t populate any
object’s properties, because it can’t be applied to an instance of the class. Here’s how you’d use the
Customer class if the GetCustomerByID method were shared:

Dim cust As New Customer
cust = Customer.GetCustomerByID(”ALFKI”)
Debug.WriteLine cust.CompanyName
Debug.WriteLine cust.ContactName & ” ” & cust.ContactTitle

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 402

402 CHAPTER 11 WORKING WITH OBJECTS

As you can see, we call the method of the Customer class, not the method of an object. You
could also call the method with the following statement, but the code becomes obscure (at the
very least, it’s not elegant):

cust = cust.GetCustomerByID(”ALFKI”)

The background compiler will detect that you’re attempting to access a shared method through
an instance of the class and will generate the following warning. (The expression will be evaluated
at runtime, in spite of the warning.)

Access of shared member, constant member,
enum member or nested type through an instance;
qualifying expression will not be evaluated.

Because the class needs to know the database in which the data is stored, you can provide a
Connection property that’s shared. Shared properties are usually set when the class is initialized,
or from within a method that’s called before we attempt to access any other methods, or any of
the class’s properties. All the methods in the class use the Connection property to connect to the
database. There’s no reason to change the setting of this property in the course of an application,
but if you change it, all subsequent operations should switch to the new database.

In summary, any class may expose a few shared properties, if all instances of the class should
access the same property value. It may also expose a few shared methods, which can be called
through the class name, if there’s no need to create an instance of the class in order to call a method.
In extreme situations, you can create a shared class: All properties and methods of this class are
shared by default.

Type Casting
The data type used most in earlier versions of the language up to VB 6 was the Variant (which
was replaced in subsequent versions by the Object type). A variable declared as Object can store
anything, and any variable that hasn’t been declared explicitly is an Object variable. Even if you
turn on the Strict option, which forces you to declare the type of each variable (and you should
always have this option on), you will eventually run into Object variables. When you retrieve an
item from a ListBox control, for example, you get back an object, not a specific data type. In the
previous chapter, we used the ListBox control to store Contact objects. Every time we retrieved a
contact from the control’s Items collection, however, we got back an Object variable. To use this
object in our code, we had to convert it to a more specific type, the Contact type, with the CType()
or DirectCast functions. The same is true for an ArrayList, which stores objects, and we usually
cast its members to specific types.

Variables declared without a specific type are called untyped variables. Untyped variables should
be avoided — and here’s why. The following expression represents a ListBox item, which is an
object:

ListBox1.Items(3)

Even if you add a Customer or a Product object to the list, when you retrieve the same item,
it’s returned as a generic Object variable. If you type the preceding expression followed by a
period, you will see in the IntelliSense drop-down list the members of the generic Object variable,
which you hardly ever need. If you cast this item to a specific type, the IntelliSense box will show
the members of the appropriate type.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 403

ISSUES IN OBJECT-ORIENTED PROGRAMMING 403

The action of changing a variable’s type is known as casting, and there are two methods for
casting variable types — the old VB 6 CType() function and the new DirectCast() function:

Dim currentCustomer As Customer
currentCustomer = CType(ListBox1.Items(3), Customer)

From now on, you can access the members of the currentCustomer object as usual.

The TryCast() Function

If the specified type conversion can’t be carried out, the CType() function will throw an Invalid-
CastException exception. As a reminder, a variation of the CType() and DirectCast() functions
is the TryCast() function, which attempts to convert a variable into another type. If the conversion
is not possible, the TryCast() function doesn’t throw an exception, but returns the Nothing value.
Here’s how the TryCast() function is used:

Dim o As Object
o = New Customer(”Evangelos Petroutsos”, ”SYBEX”)
c = TryCast(o, Contact)
If c Is Nothing Then

MsgBox(”Can’t convert ” & o.GetType.Name & ” to Contact”)
Exit Sub

End If
’ statements to process the c object variable

Early versus Late Binding
Untyped variables can’t be resolved at compile time; these variables are said to be late-bound. An
expression such as the following can’t be resolved at compile time because the compiler has no
way of knowing whether the object retrieved from the ListBox control is of the Customer type (or
any other type that exposes the LastName property):

ListBox1.Items(3).LastName

The preceding statement will compile and execute fine if the fourth item on the ListBox control
is of the Customer type or any other type that provides a LastName property. If not, it will compile
all right, but a runtime exception will be thrown. Moreover, you won’t see any members of interest
in the IntelliSense box, because the editor doesn’t know the exact type of the object retrieved from
the ListBox control.

If you cast the object to a specific type, the compiler won’t let you reference a nonexisting
member, therefore eliminating the chances of runtime exceptions. The last expression in the fol-
lowing code segment is said to be early-bound because the compiler knows its type and won’t
compile a statement that references nonexisting members:

Dim currentCustomer As Customer
currentCustomer = CType(ListBox1.Items(3), Customer)
Debug.WriteLine currentCustomer.LastName

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 404

404 CHAPTER 11 WORKING WITH OBJECTS

Casting an object to the desired type won’t help you, unless you know that the object is
of the same type or can be cast to the desired type. Make your code as robust as it can be by using
the TryCast() function to make sure that the conversion succeeded before attempting to use the
currentCustomer object in your code.

Discovering a Variable’s Type
Sometimes we need to figure out the type of a variable in our code. Even if you declare explicitly
all the variables in your code, you might have to discover a specific variable’s type at runtime.

The Form object exposes the ActiveControl property, which is the control that has the focus.
The ActiveControl property returns a Control object, and you will have to find out its exact type
(whether it’s a TextBox, a ComboBox, or a Button, for example) from within your code.

All classes, including custom ones, expose the GetType() function, which returns the type of
the corresponding object. The GetType() function’s return value isn’t a string; it is an object that
exposes a large number of properties. You can call the IsEnum and IsClass properties to find out
whether it’s been implemented as an enumeration or as a class, as well as the Name property to
retrieve the variable’s type name.

Consider an event handler that handles the same event for multiple controls on a form. The
control that raised the event is passed to the event handler through the sender argument, and
you can determine the type of the control that raised the event by using a statement such as the
following:

If sender.GetType Is GetType(System.Windows.Forms.Button) Then
’ process a button control

End If

You can also retrieve the type’s name with the TypeName() function, which returns a string:

If TypeName(newContact).ToUpper=”CONTACT” Then

Because the TypeName() function returns a string, you don’t have to use the Is operator, but
it’s a good idea to convert this value to uppercase before attempting any comparisons.

Notice that you can’t use the equals operator to compare types. To compare an object’s type to
another type, you must use the Is and IsNot keywords, as shown in the preceding example.

By now you should have a good understanding of developing with objects. In the following
section, you’re going to learn about a powerful concept in OOP, namely how to write new classes
that inherit the functionality of existing ones.

Inheritance
Here’s a scenario we’re all too familiar with: You’ve written some code, perhaps a collection of
functions, which you want to reuse in another project. The key word here is reuse: write once, use
many times. For years, VB developers were reusing code, even sharing it with others, with a very
simple method: copying from one project and pasting it into another. The copy/paste approach
to code reuse has never really worked because the code was never left untouched at its destina-
tion. In the process of reusing the original code in another project, we make changes to better
accommodate the new project. In the process, we also improve the code. At some point, we decide
that we should ‘‘return’’ the improved code to the original project and enhance it. Unfortunately,

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 405

INHERITANCE 405

the improved code doesn’t always fit nicely into a different project. Some of the improvements
break applications that used to work with the not-so-good code. If this has happened to you,
imagine what a mess code sharing can be in a large environment with dozens of programmers.
On a corporate level, this form of code reuse is a nightmare.

The promise of OOP is code reuse. The functionality you place into a class is there for your
projects, and any other developer can access it as well. Inheritance is a technique for reusing and
improving code without breaking the applications that use it. The idea is to export the code we
want to reuse in a format that doesn’t allow editing. If more than two people can edit the same
code (or even a single person is allowed to edit the same code in two different projects), any
benefits of code reuse evaporate immediately. The code to be shared must be packaged as a DLL,
which exposes all the functionality without the risk of being modified in a haphazard way. Only
the original creator of the DLL can edit the code, and it’s likely that this person will make sure
that the interface of the class doesn’t change. However, we should still be able to enhance the code
in different projects. That’s where inheritance comes into the picture. Instead of getting a copy of
the code, we inherit a class. The functionality of the class can’t change. The code in the DLL is well
protected, and there’s no way to edit the executable code; it’s the class’s functionality we inherit.

However, it’s possible to add new functionality to the inherited code or even override some
of the existing functionality. We can add new functionality to the code by adding new members
to the existing classes. This doesn’t break any existing applications that use the original DLL. We
can also override some of the functionality by creating a new method that replaces an existing
one. Applications that use the original version of the DLL won’t see the new members because
they work with the old DLL. Newer projects can use the enhanced functionality of the DLL. The
current solution to the problem of code reuse is inheritance. It’s not a panacea, but it’s a step
forward.

How to Apply Inheritance
Let me give a simple but quite practical example. A lot of functionality has been built into
Windows itself, and we constantly reuse it in our applications. The various Windows Forms con-
trols are a typical example. The functionality of the TextBox control, which we all take for granted,
is packaged in a DLL (the System.Windows.Forms.TextBox class). Yet, many of us enhance the
functionality of the TextBox control to address specific application requirements. Many devel-
opers add a few statements in the control’s Enter and Leave events to change the color of the
TextBox control that has the focus. With VB 2008, it’s possible to write just two event handlers that
react to these two events and control the background color of the TextBox with the focus. These
two handlers handle the corresponding events of all TextBox controls on the form.

A better approach is to design a ‘‘new’’ TextBox control that incorporates all the functionality
of the original TextBox control, and also changes its background color while it has the focus. The
code that implements the TextBox control is hidden from us, but we can reuse it by building
a new control that inherits from the TextBox control. As you will see in Chapter 12, ‘‘Building
Custom Windows Controls,’’ this is not only possible, but almost trivial; we’ll build an enhanced
TextBox control with a few lines of code. Actually, it’ll be more convincing if I show you the code
right now, so here’s the code that implements an enhanced TextBox control, the FocusedTextBox
control. (I copied from an example in Chapter 12.):

Public Class FocusedTextBox
Inherits System.Windows.Forms.TextBox
Private Sub FocusedTextBox Enter(ByVal sender As Object,

ByVal e As System.EventArgs) Handles Me.Enter

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 406

406 CHAPTER 11 WORKING WITH OBJECTS

Me.BackColor = enterFocusColor
End Sub

Private Sub FocusedTextBox Leave(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Leave

Me.BackColor = leaveFocusColor
End Sub

End Class

As you understand, the two Color variables are properties of the control (implemented with
the usual setters and getters), so that different applications can use different colors for the active
TextBox control on the form.

With the Inherits statement, we include all the functionality of the original TextBox control
without touching the control’s code. (The Inherits statement is stored in a different file from the
rest of the code, but this a technicality I’ll address in the following chapter.) Any project that uses
the FocusedTextBox control can take advantage of the extra functionality, yet all existing projects
will continue to work with the original version of the control. We can easily upgrade a project
to take advantage of the enhanced TextBox control by replacing all the instances of the TextBox
control on a form with instances of the new control. Some projects may use the new control, yet not
take advantage of the new functionality and leave the default colors — in which case the enhanced
control behaves just like the original TextBox control.

Inheritance is simply the ability to create a new class based on an existing one. The existing class
is the parent class, or base class. The new class is said to inherit the base class and is called a subclass,
or derived class. The derived class inherits all the functionality of the base class and can add new
members and replace existing ones. The replacement of existing members with other ones is called
overriding. When you replace a member of the base class, you’re overriding it. Or, you can overload
a method by providing multiple forms of the same method that accept different arguments.

To understand how useful inheritance is to team development, I’ll start with an example of
extending an existing class, which is part of the Framework. As you can guess, I will inherit the
functionality of an existing class, because I can’t touch the code of the Framework and introduce
any ‘‘improvements.’’

Inheriting Existing Classes

To demonstrate the power of inheritance, we’ll extend an existing class: the ArrayList class. This
class comes with the Framework and is a dynamic array. (See Chapter 14, ‘‘Storing Data in Col-
lections,’’ for a detailed description of the ArrayList class.) The ArrayList class maintains a list of
objects, similar to an array, but it’s dynamic. The class we’ll develop in this section will inherit
all the functionality of ArrayList, plus it will expose a custom method we’ll implement here:
the EliminateDuplicates method. The project described in this section is the CustomArrayList
sample project.

Let’s call the new class myArrayList. The first line in the new class must be the Inherits
statement, followed by the name of the class we want to inherit, ArrayList. Start a new project,
name it CustomArrayList, and add a new class to it. Name the new class myArrayList:

Class myArrayList
Inherits ArrayList

End Class

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 407

INHERITANCE 407

If you don’t add a single line of code to this class, the myArrayList class will expose exactly
the same functionality as the ArrayList class. If you add a public function to the class, it will
become a method of the new class, in addition to the methods of ArrayList. Add the code of the
EliminateDuplicates() subroutine (see Listing 11.1) to the myArrayList class; this subroutine
will become a method of the new class.

Listing 11.1: EliminateDuplicates Method for the ArrayList Class

Public Sub EliminateDuplicates()
Dim i As Integer = 0
Dim delEntries As ArrayList
While i <= MyBase.Count - 2

Dim j As Integer = i + 1
While j <= MyBase.count - 1

If MyBase.Item(i).ToString = MyBase.item(j).ToString Then
MyBase.RemoveAt(j)

End If
j = j + 1

End While
i = i + 1

End While
End Sub

The code compares each item with all following items and removes any duplicates. The dupli-
cate items are the ones whose ToString property returns the same value. You might wish to
perform specific comparisons, but the ToString method will do for our demo. Notice that the
code accesses the members of the ArrayList class through the MyBase keyword. MyBase is a key-
word that represents the base class, from which the custom class inherits. To test the derived class,
place a button on the test form and insert the code presented by Listing 11.2 in its Click event
handler.

Listing 11.2: Testing the EliminateDuplicates Method

Private Sub bttnTest Click(...) Handles bttnTest.Click
Dim mlist As New myArrayList()
mlist.Add(” 10”)
mlist.Add(”A”)
mlist.Add(”20”)
mlist.Add(”087”)
mlist.Add(”c”)
mlist.Add(”A”)
mlist.Add(”b”)
mlist.Add(”a”)
mlist.Add(”A”)
mlist.Add(”87”)
mlist.Add(10)

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 408

408 CHAPTER 11 WORKING WITH OBJECTS

mlist.Add(100)
mlist.Add(110)
mlist.Add(”1001”)
Console.WriteLine(mlist.GetString())
mlist.EliminateDuplicates()
Console.WriteLine(mlist.GetString())

End Sub

Table 11.1 shows the contents of the ArrayList before and after the elimination of the duplicates.
Notice that the second list contains the item 10 twice. One of the items is a string, and the other
one is a numeric value; therefore, they’re not duplicates.

Table 11.1: The mList ArrayList before and after the Elimination of Duplicates

Original List After Elimination of Duplicates

10 10

A A

20 20

087 087

C C

A B

B A

A 87

A 10

87 100

10 110

100 1001

110

1001

GetString (see Listing 11.3) is not a method of the ArrayList; it’s a method of the extended
ArrayList class, which returns the values of all the items in the list. (It uses each item’s ToString
method to retrieve the string representation of the individual items and concatenates them with a
line feed separator.)

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 409

INHERITANCE 409

Listing 11.3: GetString Method

Function GetString() As String
Dim i As Integer
Dim strValue As String
strValue = MyBase.Item(0).ToString
For i = 1 To MyBase.Count - 1

strValue = strValue & vbCrLf & MyBase.Item(i).ToString
Next
GetString = strValue

End Function

Another problem with the ArrayList class is that it can’t sort its elements if they’re not of the
same type. You can always provide a custom comparer for custom types, but it’s impossible to
write a comparer that can handle all objects. Sometimes, however, we need to know the smallest
or largest numeric element, or the alphabetically first or last element. These methods apply to
numeric or string elements only; if some of the collection’s elements are objects, we can ignore
them. Let’s implement two more custom methods for the myArrayList class (see Listing 11.4). The
Min method returns the alphabetically smallest value; the NumMin method returns the numerically
smallest value.

Listing 11.4: Min and NumMin Methods of the ArrayList Class

Function Min() As String
Dim i As Integer
Dim minValue As String

minValue = MyBase.Item(0).ToString
For i = 1 To MyBase.Count - 1

If MyBase.Item(i).ToString < minValue Then
minValue = MyBase.Item(i).ToString

Next
Min = minValue

End Function

Function NumMin() As Double
Dim i As Integer
Dim minValue As Double

minValue = 1E+230
For i = 1 To MyBase.Count - 1

If IsNumeric(MyBase.item(i)) And
val(MyBase.Item(i).tostring) < minValue Then

minValue = val(MyBase.Item(i).tostring)
Next
NumMin = minValue

End Function

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 410

410 CHAPTER 11 WORKING WITH OBJECTS

You can populate the myArrayList collection with strings and integers and call the Min and
NumMin methods to retrieve the smaller string or numeric value in the list.

What have we done in this section, really? We took an existing class, a powerful one, and
extended it. We did that by writing simple procedures that could have appeared in any applica-
tion. We just inserted the Inherits keyword followed by the name of an existing class on which
we want to base our class, and provided the implementation of the new methods. A few more
keywords to learn, and you can practically customize any class that comes with the Framework.
Existing applications won’t break (the ArrayList class is actually used by some system services,
which will keep working fine); they see the original class, not the customized class. Some of your
new applications will see the enhanced ArrayList. Another developer might further extend the
functionality of your derived class. The old applications will work because ArrayList is still
around, your applications will also work because myArrayList hasn’t been modified, and someone
else’s applications will work with another class derived from yours.

This type of inheritance, in which we inherit an existing class and add new members and/or
revise existing ones, is called implementation inheritance. Implementation inheritance is a powerful
feature and can be used in many situations, besides enhancing an existing class. You can design
base classes that address a large category of objects and then subclass them for specific objects. The
typical example is the Person class, from which classes such as Contact, Customer, Employee, and
so on can be derived. Inheritance is used with large-scale projects to ensure consistent behavior
across the application. Later in this chapter, you’ll see an interesting application of inheritance.
We’ll build classes that describe related objects (shapes), all of which will be based on a single
class that encapsulates the basic characteristics of all derived classes.

Inheriting Custom Classes

In this example, we’ll tackle a very real problem by using inheritance. Consider a structure for
storing product information; in most applications, this structure is optimized for a specific product
type. In my consulting days, I’ve seen designs that try to capture the ‘‘global’’ product: a structure
that can store products of any type. This approach leads to unnecessarily large database tables, name
conflicts, and all kinds of problems that surface after the program has been installed at customers
with different product types. Here’s my suggestion for handling multiple types of products.

Every company makes money by selling products and services, and every company has dif-
ferent requirements. Even two bookstores don’t store the same information in their databases.
However, there are a few pieces of information that any company uses to sell its products: the
product’s code, its description, and its price. This is the minimum information you need to sell
something (it’s the information that’s actually printed in the invoice). The price is usually stored
to a different table, along with the company’s pricing policies. Without being too specific, these
are the three pieces of information for ordering and selling products. We use these items to main-
tain a list of orders and invoices, and keep track of the stock, customer balances, and so on. The
specifics of a product can be stored to different tables in the database, and these tables will be
implemented upon request. If your customer is a book seller, you’ll design tables for storing data
such as publisher and author names, book descriptions, ISBNs, and the like.

You’ll also have to write applications to maintain all this information. To sell the same appli-
cation to an electronics store, you must write another module for maintaining a different type of
product, but the table with the basic data remains the same. Clearly, you can’t design a program
for handling all types of products, nor can you edit the same application to fit different products.
You just have to write different applications for different types of products, but the parts of the
application that deal with buying and selling products, customers, suppliers, and other peripheral
entities won’t change.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 411

INHERITANCE 411

Let’s look at a custom class for storing products, which is part of the Products sample project.
The application’s main form is shown in Figure 11.1.

Figure 11.1

Exercising the Book and
Supply inherited classes

The most basic class stores the information we’ll need in our ordering and invoicing
applications: the product’s ID, its name, and its price. Here’s the implementation of a simple
Product class:

Public Class Product
Public Description As String
Public ProductID As String
Public ProductBarCode As String
Public ListPrice As Decimal

End Class

I included the product’s bar code because this is how products are usually sold at cash registers.
This class can represent any product for the purposes of buying and selling it. Populate a collection
with objects of this type and you’re ready to write a functional interface for creating invoices and
purchase orders.

Now we’ll take into consideration the various types of products. To keep the example simple,
consider a store that sells books and supplies. Each type of product is implemented with a different
class, which inherits from the Product class. Supplies don’t have ISBNs, and books don’t have

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 412

412 CHAPTER 11 WORKING WITH OBJECTS

manufacturers — they have authors and publishers; don’t try to fit everything into a single object,
or (even worse) into a single database table.

Figure 11.2 shows the base class, Product, and the two derived classes, Supply and Book, in
the Class Diagram Designer. The arrows (if they exist) point to the base class of a derived class,
and nested classes (such as the Author and Publisher classes) are contained in the box of their
parent class.

Figure 11.2

Viewing a hierarchy of
classes with the Class
Diagram Designer

Listing 11.5 is a simple class for representing books, the Book class.

Listing 11.5: Simple Class for Representing Books

Public Class Book
Inherits Product
Public Subtitle As String
Public ISBN As String
Public pages As Integer
Public PublisherID As Long
Public Authors() As Author

Public Class Author
Public AuthorID As Long
Public AuthorLast As String
Public AuthorFirst As String

End Class

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 413

INHERITANCE 413

Public Class Publisher
Public PublisherID As Long
Public PublisherName As String
Public PublisherPhone As String

End Class
End Class

In addition to its own properties, the Book class exposes the properties of the Product class as
well. Because the book industry has a universal coding scheme (the ISBN), the product’s code is
the same as its ISBN. This, however, is not a requirement of the application. You will probably
add some extra statements to make sure that the ProductID field of the Product class and the ISBN
field of the Book class always have the same value.

The class that represents supplies is shown in Listing 11.6.

Listing 11.6: Simple Class for Representing Supplies

Public Class Supply
Inherits Product
Public LongDescription As String
Public ManufacturerCode As String
Public ManufacturerID As Long

Public Class Manufacturer
Public ManufacturerID As Long
Public ManufacturerName As String

End Class
End Class

To make sure that this class can accommodate all pricing policies for a company, you can imple-
ment a GetPrice method, which returns the product’s sale price (which can be different at differ-
ent outlets or for different customers). The idea is that some piece of code accepts the product’s
list (or purchase) price and the ID of the customer who buys it. This code can perform all kinds of
calculations, look up tables in the database, or perform any other action, and return the product’s
sale price: the price that will appear on the customer’s receipt. We’ll keep our example simple
and sell with the list price. To implement any other pricing policy, I recommend implementing a
procedure that accepts as arguments the ID of the product being sold and the ID of the buyer, and
returns a price. This procedure can be a class method or even a stored procedure in the database.

Let’s write some code to populate a few instances of the Book and Supply classes. The following
statements populate a HashTable with books and supplies. The HashTable is a structure for storing
objects along with their keys. In this case, the keys are the IDs of the products. The HashTable can
locate items by means of their keys very quickly, and this is why I chose this type of collection to
store the data. HashTables, as well as other collections, are discussed in detail in Chapter 14.

Dim P1 As New Book
P1.ListPrice = 13.24D

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 414

414 CHAPTER 11 WORKING WITH OBJECTS

P1.Description = ”Book Title 1”
P1.ProductID = ”EN0101”
P1.ISBN = ”0172833223”
P1.Subtitle = ”Book Title 1 Subtitle”
Products.Add(P1.ProductID, P1)

Dim P2 As New Supply
P2.Description = ”Supply 1”
P2.ListPrice = 2.25D
P2.LongDescription = ”Long description of item 1”
P2.ProductID = ”S0001-1”
Products.Add(P2.ProductID, P2)

Products is the name of the collection in which the products are stored, and is declared
as follows:

Dim Products As New Hashtable

Each item in the Products collection is either of the Book or of the Supply type, and you can
find out its type with the following expression:

If TypeOf Products.Item(key) Is Book ...

Listing 11.7 shows the code behind the Display Products button on the sample application’s
form. The code iterates through the items of the collection, determines the type of each item, and
adds the product’s fields to the appropriate ListView control.

Listing 11.7: Iterating through a Collection of Book and Supply Products

Private Sub Button2 Click(...) Handles bttnDisplay.Click
Dim key As String
Dim LI As ListViewItem
For Each key In Products.Keys

LI = New ListViewItem
Dim bookItem As Book, supplyItem As Supply
If TypeOf Products.Item(key) Is Book Then

bookItem = CType(Products.Item(key), Book)
LI.Text = bookItem.ISBN
LI.SubItems.Add(bookItem.Description)
LI.SubItems.Add(””)
LI.SubItems.Add(bookItem.ListPrice.ToString(”#,##0.00”))
ListView1.Items.Add(LI)

End If
If TypeOf Products.Item(key) Is Supply Then

supplyItem = CType(Products.Item(key), Supply)
LI.Text = supplyItem.ProductID
LI.SubItems.Add(supplyItem.Description)

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 415

POLYMORPHISM 415

LI.SubItems.Add(supplyItem.LongDescription)
LI.SubItems.Add(supplyItem.ListPrice.ToString(”#,##0.00”))
ListView2.Items.Add(LI)

End If
Next

End Sub

It’s fairly easy to take advantage of inheritance in your projects. The base class encapsulates the
functionality that’s necessary for multiple classes. All other classes inherit from the base class and
add specific members that don’t apply to other classes (at least, not all of them). The actual data
resides in a database, and you’ll have to write code that populates the Products collection from the
database, but this is a topic we’ll discuss in Chapter 21, ‘‘Basic Concepts of Relational Databases.’’

As I mentioned earlier, for the purposes of selling products, you can use the Product class. You
can search for both books and supplier with their ID or bar code and use the product’s description
and price to generate an invoice.

The following statements retrieve a product by its ID and print its description and price:

Dim id As String
id = InputBox(”ID”)
If Products.Contains(id) Then

Dim selProduct As Product
selProduct = CType(Products(id), Product)
Debug.WriteLine(”The price of ” & selProduct.Description &

” is” & selProduct.ListPrice)
End If

If executed, the preceding statements will print the following in the Output window. This is
all the information you need to prepare invoices and orders, and it comes from the Product class,
which is the base class for all products.

The price of Supply 2 is 5.99

Before ending this section, I should point out that you can convert the type of an inherited class
only to that of the parent class. You can convert instances of the Book and Supply class to objects
of the Product type, but not the opposite. The only valid type conversion is a widening conversion
(from a narrower to a wider type).

You won’t be hard-pressed to come up with real-world situations that call for inheritance.
Employees, customers, and suppliers can all inherit from the Person class. Checking and savings
accounts can inherit from the Account class, which stores basic information such as customer info
and balances. Later in this chapter, you’ll develop a class that represents shapes and you’ll use it
as a basis for classes that implement specific shapes such as circles, rectangles, and so on.

Polymorphism
A consequence of inheritance is another powerful OOP technique: polymorphism, which is the
capability of a base type to adjust itself to accommodate many different derived types. Let’s make
it simpler by using some analogies in the English language. Take the word run, for example.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 416

416 CHAPTER 11 WORKING WITH OBJECTS

This verb can be used to describe what athletes, cars, or refrigerators do; they all run. In different
sentences, the same word takes on different meanings. When you use it with a person, it means
going a distance at a fast pace. When you use it with a refrigerator, it means that it’s working.
When you use it with a car, it may take on both meanings. So, in a sense the word run is polymor-
phic (and so are many other English words): Its exact meaning is differentiated by the context.

To apply the same analogy to computers, think of a class that describes a basic object such
as a Shape. This class would be very complicated if it had to describe and handle all shapes. It
would be incomplete, too, because the moment you released it to the world, you’d come up with
a new shape that can’t be described by your class. To design a class that describes all shapes,
you build a simple class to describe shapes at large, and then you build a separate class for each
individual shape: a Triangle class, a Square class, a Circle class, and so on. As you can guess,
all these classes inherit the Shape class. Let’s also assume that all the classes that describe indi-
vidual shapes have an Area method, which calculates the area of the shape they describe. The
name of the Area method is the same for all classes, but it calculates a different formula for differ-
ent shapes.

Developers, however, shouldn’t have to learn a different syntax of the Area method for each
shape; they can declare a Square object and calculate its area with the following statements:

Dim shape1 As New Square(5)’ statements to initialize the square
Dim area As Double = shape1.Area

If shape2 represents a circle, the same method will calculate the circle’s area. (I’m assuming
that the constructors accept as an argument the square’s side and the circle’s radius, respectively.)

Dim shape2 As New Circle(9.90)(
Dim area As Double = shape2.Area

You can go through a list of objects derived from the Shape class and calculate their areas by
calling the Area method. No need to know what shape each object represents — you just call its
Area method. Let’s say you created an ArrayList with various shapes. You can go through the
collection and calculate the total area with a loop like the following:

Dim shapeEnum As IEnumerator
Dim totalArea As Double = 0.0
shapeEnum = aList.GetEnumerator
While shapeEnum.MoveNext

totalArea = totalArea + CType(shapeEnum.Current, Shape).Area
End While

The CType() function converts the current element of the collection to a Shape object; it’s nec-
essary only if the Strict option is on, which prohibits VB from late-binding the expression. (Strict
is off by default.)

One rather obvious alternative is to build a separate function to calculate the area of each shape
(SquareArea, CircleArea, and so on). It will work, but why bother with so many function names,
not to mention the overhead in your code? You must first figure out the type of shape described
by a specific variable, such as shape1, and then call the appropriate method. The code will not
be as easy to read, and the longer the application gets, the more If and Case statements you’ll be
coding. Not to mention that each method would require different arguments for its calculations.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 417

POLYMORPHISM 417

This approach clearly offsets the benefits of object-oriented programming by reducing classes
to collections of functions.

The second, even less-efficient method is a really long Area() function that would be able to
calculate the area of all shapes. This function should be a very long Case statement, such as the
following one:

Public Function Area(ByVal shapeType As String) As Double
Select Case shapeType

Case ”Square”: { calculate the area of a square }
Case ”Circle”: { calculate the area of a circle }
{ . . . more Case statements }

End Select
End Function

The real problem with this approach is that every time you want to add a new segment to
calculate the area of a new shape to the function, you’d have to edit it. If other developers wanted
to add a shape, they’d be out of luck.

In the following section, we’ll build the Shape class, which we’ll extend with individual classes
for various shapes. You’ll be able to add your own classes to implement additional shapes, and
any code written using the older versions of the Shape class will keep working.

Building the Shape Class
In this section, you’ll build a few classes to represent shapes to demonstrate the advantages of
implementing polymorphism. Let’s start with the Shape class, which will be the base class for
all other shapes. This is a really simple class that’s pretty useless on its own. Its real use is to
expose two methods that can be inherited: Area and Perimeter. Even the two methods don’t do
much — actually, they do absolutely nothing. All they really do is provide a naming convention.
All classes that will inherit the Shape class will have an Area and a Perimeter method, and they
must provide the implementation of these methods.

The code shown in Listing 11.8 comes from the Shapes sample project. The application’s main
form, which exercises the Shape class and its derived classes, is shown in Figure 11.3.

Listing 11.8: Shape Class

Class Shape
Overridable Function Area() As Double
End Function
Overridable Function Perimeter() As Double
End Function

End Class

If there are properties common to all shapes, you place the appropriate Property procedures in
the Shape class. If you want to assign a color to your shapes, for instance, insert a Color property
in this class. The Overridable keyword means that a class that inherits from the Shape class can
override the default implementation of the corresponding methods or properties. As you will see
shortly, it is possible for the base class to provide a few members that can’t be overridden in the

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 418

418 CHAPTER 11 WORKING WITH OBJECTS

derived class. The methods that are declared but not implemented in the parent class are called
virtual methods, or pure virtual methods.

Figure 11.3

The main form of the
Shapes project

Next you must implement the classes for the individual shapes. Add another Class module to
the project, name it Shapes, and enter the code shown in Listing 11.9.

Listing 11.9: Square, Triangle, and Circle Classes

Public Class Square
Inherits Shape
Private sSide As Double
Public Property Side() As Double

Get
Return(sSide)

End Get
Set

sSide = Value
End Set

End Property

Public Overrides Function Area() As Double
Area = sSide * sSide

End Function

Public Overrides Function Perimeter() As Double
Return (4 * sSide)

End Function
End Class

Public Class Triangle
Inherits Shape
Private side1, side2, side3 As Double

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 419

POLYMORPHISM 419

Property SideA() As Double
Get

Return(Side1)
End Get
Set

side1 = Value
End Set

End Property

Property SideB() As Double
Get

Return(side2)
End Get
Set

side2 = Value
End Set

End Property

Public Property SideC() As Double
Get

Return(side3)
End Get
Set

side3 = Value
End Set

End Property

Public Overrides Function Area() As Double
Dim perim As Double
perim = Perimeter()
Return (Math.Sqrt(perim * (perim - side1) *

(perim - side2) * (perim - side3)))
End Function

Public Overrides Function Perimeter() As Double
Return (side1 + side2 + side3)

End Function
End Class

Public Class Circle
Inherits Shape
Private cRadius As Double
Public Property Radius() As Double

Get
Return(cRadius)

End Get
Set

cRadius = Value

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 420

420 CHAPTER 11 WORKING WITH OBJECTS

End Set
End Property

Public Overrides Function Area() As Double
Return (Math.Pi * cRadius ˆ 2)

End Function

Public Overrides Function Perimeter() As Double
Return (2 * Math.Pi * cRadius)

End Function
End Class

The Shapes.vb file contains three classes: the Square, Triangle, and Circle classes. All three
expose their basic geometric characteristics as properties. The Triangle class, for example, exposes
the properties SideA, SideB, and SideC, which allow you to set the three sides of the triangle.
In a real-world application, you may opt to insert some validation code, because not any three
sides produce a triangle. You must also insert parameterized constructors for each shape. The
implementation of these constructors is trivial, and I’m not showing it in the listing; you’ll find
the appropriate constructors if you open the project with Visual Studio. The Area and Perimeter
methods are implemented differently for each class, but they do the same thing: They return the
area and the perimeter of the corresponding shape. The Area method of the Triangle class is a bit
involved, but it’s just a formula (the famous Heron’s formula for calculating a triangle’s area).

Testing the Shape Class

To test the Shape class, all you have to do is create three variables — one for each specific shape —
and call their methods. Or, you can store all three variables into an array and iterate through them.
If the collection contains Shape variables only, the current item is always a shape, and as such it
exposes the Area and Perimeter methods. The code in Listing 11.10 does exactly that. First, it
declares three variables of the Triangle, Circle, and Square types. Then it sets their properties and
calls their Area method to print their areas.

Listing 11.10: Testing the Shape Class

Protected Sub bttnAreas Click(...) Handles bttnAreas.Click
Dim shape1 As New Triangle()
Dim shape2 As New Circle()
Dim shape3 As New Square()

’ Set up a triangle
shape1.SideA = 3
shape1.SideB = 3.2
shape1.SideC = 0.94
Console.WriteLine(”The triangle’s area is ” & shape1.Area.ToString)

’ Set up a circle
shape2.Radius = 4
Console.WriteLine(”The circle’s area is ” & shape2.Area.ToString)

’ Set up a square

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 421

WHO CAN INHERIT WHAT? 421

shape3.Side = 10.01
Console.WriteLine(”The square’s area is ” & shape3.Area.ToString)
Dim shapes() As Shape
shapes(0) = shape1
shapes(1) = shape2
shapes(2) = shape3
Dim shapeEnum As IEnumerator
Dim totalArea As Double
shapeEnum = shapes.GetEnumerator
While shapeEnum.MoveNext

totalArea = totalArea + CType(shapeEnum.Current, shape).Area
End While
Console.WriteLine(”The total area of your shapes is ” &

totalArea.ToString)
End Sub

In the last section, the test code stores all three variables into an array and iterates through its
elements. At each iteration, it casts the current item to the Shape type and calls its Area method.
The expression that calculates areas is CType(shapeEnum.Current, shape).Area, and the same
expression calculates the area of any shape.

Casting Objects to Their Parent Type

The trick that makes polymorphism work is that objects of a derived type can be cast to their parent
type. An object of the Circle type can be cast to the Shape type, because the Shape type contains less
information than the Circle type. You can cast objects of a derived type to their parent type, but the
opposite isn’t true. The methods that are shared among multiple derived classes should be declared
in the parent class, even if they contain no actual code. Just don’t forget to prefix them with the
Overridable keyword. There’s another related attribute, the MustOverride attribute, which forces
every derived class to provide its own implementation of a method or property.

Depending on how you will use the individual shapes in your application, you can add prop-
erties and methods to the base class. In a drawing application, all shapes have an outline and a fill
color. These properties can be implemented in the Shape class because they apply to all derived
classes. Any methods with a common implementation for all classes should also be implemented
as methods of the parent class. Methods that are specific to a shape must be implemented in one
of the derived classes.

Who Can Inherit What?
The Shape base class and the Shapes derived class work fine, but there’s a potential problem.
A new derived class that implements a new shape may not override the Area or the Perimeter
method. If you want to force all derived classes to implement a specific method, you can specify
the MustInherit modifier for the class declaration and the MustOverride modifier for the member
declaration. If some of the derived classes may not provide their implementation of a method, this
method of the derived class must also be declared with the Overridable keyword.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 422

422 CHAPTER 11 WORKING WITH OBJECTS

The Shapes project uses the MustInherit keyword in the definition of the Shape class. This
keyword tells the CLR that the Shape class can’t be used as is; it must be inherited by another class.
A class that can’t be used as is, is known as an abstract base class, or a virtual class. The definition
of the Area and Perimeter methods are prefixed with the MustOverride keyword, which tells
the compiler that derived classes (the ones that will inherit the members of the base class) must
provide their own implementation of the two methods:

Public MustInherit Class Shape
Public MustOverride Function Area() As Double
Public MustOverride Function Perimeter() As Double

End Class

Notice that there’s no End Function statement, just the declaration of the function that must be
inherited by all derived classes. If the derived classes may override one or more methods option-
ally, these methods must be implemented as actual functions. Methods that must be overridden
need not be implemented as functions — they’re just placeholders for a name. You must also spec-
ify their parameters, if any. The definitions of the methods you specify are known as the methods’
signature.

There are other modifiers you can use with your classes, such as the NotInheritable modifier,
which prevents your class from being used as a base class by other developers. The System.Array
class is an example of a Framework class can’t be inherited.

In the following section, you’ll look at the class-related modifiers and learn when to use them.
The various modifiers are keywords, such as the Public and Private keywords that you can use
in variable declarations. These keywords can be grouped according to the entity they apply to,
and I used this grouping to organize them in the following sections.

Parent Class Keywords
These keywords apply to classes that can be inherited, and they appear in front of the Class
keyword. By default, all classes can be inherited, but their members can’t be overridden. You can
change this default behavior with the following modifiers:

NotInheritable This prevents the class from being inherited. The base data types, for
example, are not inheritable. In other words, you can’t create a new class based on the Integer
data type. The Array class is also not inheritable.

MustInherit This class must be inherited. Classes prefixed with the MustInherit attribute
are called abstract classes, and the Framework contains quite a few of them. You can’t create an
object of this class in your code and, therefore, you can’t access its methods. The Shape class is
nothing more than a blueprint for the methods it exposes and can’t be used on its own; that’s
why it was declared with the MustInherit keyword.

Derived Class Keywords
The following keywords may appear in a derived class; they have to do with the derived class’s
parent class:

Inherits Any derived class must inherit an existing class. The Inherits statement tells the
compiler which class it derives from. A class that doesn’t include the Inherits keyword is by
definition a base class.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 423

WHO CAN INHERIT WHAT? 423

MyBase Use the MyBase keyword to access a derived class’s parent class from within the
derived class’s code.

Parent Class Member Keywords
These keywords apply to the members of classes that can be inherited, and they appear in front
of the member’s name. They determine how derived classes must handle the members (that is,
whether they can or must override their properties and methods):

Overridable Every member with this modifier can be overwritten. If a member is declared
as Public only, it can’t be overridden. You should allow developers to override as many of
the members of your class as possible, as long as you don’t think there’s a chance that they
might break the code by overriding a member. Members declared with the Overridable key-
word don’t necessarily need to be overridden, so they must provide some functionality.

NotOverridable Every member declared with this modifier can’t be overridden in the inher-
iting class.

MustOverride Every member declared with this modifier must be overridden. You can skip
the overriding of a member declared with the MustOverride modifier in the derived class,
as long as the derived class is declared with the MustInherit modifier. This means that the
derived class must be inherited by some other class, which then receives the obligation to over-
ride the original member declared as MustOverride.

The two methods of the Shape class must be overridden, and we’ve done so in all the derived
classes that implement various shapes. Let’s also assume that you want to create different types
of triangles with different classes (an orthogonal triangle, an isosceles triangle, and a generic
triangle). Let’s also assume that these classes would inherit the Triangle class. You can skip the
definition of the Area method in the Triangle class, but you’d have to include it in the derived
classes that implement the various types of triangles. Moreover, the Triangle class would have
to be marked as MustInherit.

Public This modifier tells the CLR that the specific member can be accessed from any appli-
cation that uses the class. This, as well as the following keywords, are access modifiers and are
strictly inheritance related, but I’m listing them here for completeness.

Private This modifier tells the CLR that the specific member can be accessed only in the
module in which it was declared. All the local variables must be declared as Private, and no
other class (including derived classes) or application will see them.

Protected Protected members have scope between public and private, and they can be
accessed in the derived class, but they’re not exposed to applications using either the parent
class or the derived classes. In the derived class, they have a private scope. Use the Protected
keyword to mark the members that are of interest to developers who will use your class as a
base class, but not to developers who will use it in their applications.

Protected Friend This modifier tells the CLR that the member is available to the class that
inherits the class, as well as to any other component of the same project.

Derived Class Member Keyword
The Overrides keyword applies to members of derived classes and indicates whether a member
of the derived class overrides a base class member. Use this keyword to specify the member of the

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 424

424 CHAPTER 11 WORKING WITH OBJECTS

parent class you’re overriding. If a member has the same name in the derived class as in the parent
class, this member must be overridden. You can’t use the Overrides keyword with members that
were declared with the NotOverridable or Protected keywords in the base class.

VB 2008 At Work: The InheritanceKeywords Project
A few examples are in order. The sample application of this section is the InheritanceKeywords
project, and it contains a few classes and a simple test form. Create a simple class by entering the
statements of Listing 11.11 in a Class module, and name the module ParentClass.

Listing 11.11: InheritanceKeywords Class

Public MustInherit Class ParentClass
Public Overridable Function Method1() As String

Return (”I’m the original Method1”)
End Function
Protected Function Method2() As String

Return (”I’m the original Method2”)
End Function
Public Function Method3() As String

Return (”I’m the original Method3”)
End Function
Public MustOverride Function Method4() As String

’ No code in a member that must be overridden !
’ Notice the lack of the matching End Function here

Public Function Method5() As String
Return (”I’m the original Method5”)

End Function
Private prop1, prop2 As String
Property Property1() As String

Get
Property1 = ”Original Property1”

End Get
Set

prop1 = Value
End Set

End Property
Property Property2() As String

Get
Property2 = ”Original Property2”

End Get
Set

prop2 = Value
End Set

End Property
End Class

This class has five methods and two properties. Notice that Method4 is declared with the
MustOverride keyword, which means it must be overridden in a derived class. Notice also the

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 425

WHO CAN INHERIT WHAT? 425

structure of Method4. It has no code, and the End Function statement is missing. Method4 is
declared with the MustOverride keyword, so you can’t instantiate an object of the ParentClass
type. A class that contains even a single member marked as MustOverride must also be declared
as MustInherit.

Place a button on the class’s test form, and in its code window attempt to declare a variable
of the ParentClass type. VB will issue a warning that you can’t create a new instance of a class
declared with the MustInherit keyword. Because of the MustInherit keyword, you must create
a derived class. Enter the lines from Listing 11.12 in the ParentClass module after the end of the
existing class.

Listing 11.12: Derived Class

Public Class DerivedClass
Inherits ParentClass
Overrides Function Method4() As String

Return (”I’m the derived Method4”)
End Function
Public Function newMethod() As String

Console.WriteLine(”<This is the derived Class’s newMethod ” &
”calling Method2 of the parent Class> ”)

Console.WriteLine(” ” & MyBase.Method2())
End Function

End Class

The Inherits keyword determines the parent class. This class overrides the Method4 member
and adds a new method to the derived class: newMethod. If you switch to the test form’s code
window, you can now declare a variable of the DerivedClass type:

Dim obj As DerivedClass

This class exposes all the members of ParentClass except for the Method2 method, which is
declared with the Protected modifier. Notice that the newMethod() function calls this method
through the MyBase keyword and makes its functionality available to the application. Normally,
we don’t expose Protected methods and properties through the derived class.

Let’s remove the MustInherit keyword from the declaration of the ParentClass class. Because
it’s no longer mandatory that the ParentClass be inherited, the MustInherit keyword is no longer
a valid modifier for the class’ members. So, Method4 must be either removed or implemented.
Let’s delete the declaration of the Method4 member. Because Method4 is no longer a member of
the ParentClass, you must also remove the entry in the DerivedClass that overrides it.

MyBase and MyClass
The MyBase and MyClass keywords let you access the members of the base class and the derived
class explicitly. To see why they’re useful, edit the ParentClass, as shown here:

Public Class ParentClass
Public Overridable Function Method1() As String

Return (Method4())

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 426

426 CHAPTER 11 WORKING WITH OBJECTS

End Function
Public Overridable Function Method4() As String

Return (”I’m the original Method4”)
End Function

Override Method4 in the derived class, as shown here:

Public Class DerivedClass
Inherits ParentClass
Overrides Function Method4() As String
Return(”Derived Method4”)

End Function

Switch to the test form, add a button, declare a variable of the derived class, and call its
Method4:

Dim objDerived As New DerivedClass()
Debug.WriteLine(objDerived.Method4)

What will you see if you execute these statements? Obviously, the string Derived Method4.
So far, all looks reasonable, and the class behaves intuitively. But what if we add the following
method in the derived class?

Public Function newMethod() As String
Return (Method1())

End Function

This method calls Method1 in the ParentClass class because Method1 is not overridden in the
derived class. Method1 in the base class calls Method4. But which Method4 gets invoked? Sur-
prised? It’s the derived Method4! To fix this behavior (assuming you want to call the Method4 of
the base class), change the implementation of Method1 to the following:

Public Overridable Function Method1() As String
Return (MyClass.Method4())

End Function

If you run the application again, the statement

Console.WriteLine(objDerived.newMethod)

will print this string:

I’m the original Method4

Is it reasonable for a method of the base class to call the overridden method? It is reasonable
because the overridden class is newer than the base class, and the compiler tries to use the newest
members. If you had other classes inheriting from the DerivedClass class, their members would
take precedence.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 427

WHO CAN INHERIT WHAT? 427

Use the MyClass keyword to make sure that you’re calling a member in the same class, and not
an overriding member in an inheriting class. Likewise, you can use the keyword MyBase to call
the implementation of a member in the base class, rather than the equivalent member in a derived
class. MyClass is similar to MyBase, but it treats the members of the parent class as if they were
declared with the NotOverridable keyword.

The Class Diagram Designer
Classes are quite simple to build and use, and so is OOP. There are even tools to help you design
and build your classes, which I’ll describe briefly here. You can use the Class Diagram Designer
to build your classes with point-and-click operations, but you can’t go far on this tool alone. The
idea is that you specify the name and the type of a property, and the tool emits the Get and Set
procedures for the property (the getters and setters, as they’re known in OOP jargon). The default
implementation of setters and getters is trivial, and you’ll have to add your own validation code.
You can also create new methods by specifying their names and arguments, but the designer won’t
generate any code for you; you must implement the methods yourself. Tools such as the Class
Diagram Designer or Visio allow you to visualize the classes that make up a large project and
the relations between them, and they’re a necessity in large projects. Many developers, however,
build applications of substantial complexity without resorting to tools for automating the process
of building classes. You’re welcome to explore these tools, however.

Right-click the name of a class in Solution Explorer and choose View Class Diagram from the
context menu. You’ll see a diagram of the class on the design surface, showing all the members of
the class. You can add new members, select the type of the properties, and edit existing members.
The diagram of a trivial class like the Contact class is also trivial, but the class diagram becomes
more helpful as you implement more interrelated classes.

Figure 11.2, from earlier in the chapter, shows the Product, Book, and Supply classes in the Class
Diagram Designer. You can use the commands of each class’s context menu to create new members
and edit/remove existing ones. To add a new property, for example, you specify the property’s
name and type, and the designer generates the outline of the Set and Get procedures for you. Of
course, you must step in and insert your custom validation code in the property’s setter.

To add a new class to the diagram, right-click on the designer’s surface and choose Add Class
from the context menu. You’ll be prompted to enter the name of the class and its location: the
VB file in which the autogenerated class’s code will be stored. You can specify a new name, or
select the file of an existing class and add your new class to it. To create a derived class, you must
double-click the box that represents the new class and manually insert the Inherits statement
followed by the name of the base class. After you specify the parent class, a line will be added to
the diagram joining the two classes. The end of the line at the parent class has an arrow. In other
words, the arrow points to the parent class. In addition to classes, you can add other items, includ-
ing structures, enumerations, and comments. Experiment with the tools of the Class Diagram
Designer to jumpstart the process of designing classes. You can also create class diagrams from
existing classes. At the very least, you should use this tool to document your classes, especially in
a team environment.

To add members to a class, right-click the box that represents the class and choose Add from
the context menu. This will lead to a submenu with the members you can add to a class: Method,
Property, Field, and Event. You can also add a constructor (although you will have to supply the
arguments and the code for parameterized constructors), a destructor, and a constant. To edit a
member, such as the type of a property or the arguments of a method, switch to the Class Details
window, where you will see the members of the selected class. Expand any member to see its
parameters: the type of a property and the arguments and the return value of a method.

Petroutsos c11.tex V2 - 01/28/2008 1:36pm Page 428

428 CHAPTER 11 WORKING WITH OBJECTS

The Bottom Line
Use inheritance. Inheritance, which is the true power behind OOP, allows you to create
new classes that encapsulate the functionality of existing classes without editing their code.
To inherit from an existing class, use the Inherits statement, which brings the entire class into
your class.

Master It Explain the inheritance-related attributes of a class’s members.

Use polymorphism. Polymorphism is the ability to write members that are common to a
number of classes but behave differently, depending on the specific class to which they apply.
Polymorphism is a great way of abstracting implementation details and delegating the imple-
mentation of methods with very specific functionality to the derived classes.

Master It The parent class Person represents parties, and it exposes the GetBalance
method, which returns the outstanding balance of a person. The Customer and Supplier
derived classes implement the GetBalance method differently. How will you use this
method to find out the balance of a customer and/or supplier?

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 429

Chapter 12

Building Custom Windows Controls

Just as you can design custom classes, you can use Visual Studio to design custom controls. The
process is very similar, in the sense that custom controls have properties, methods, and events,
which are implemented with code that’s identical to the code you’d use to implement these mem-
bers with classes. The difference is that controls have a visual interface and interact with the user.
In short, you must provide the code to draw the control’s surface, as well as react to selected user
actions from within the control’s code.

In this chapter, you’ll learn how to enhance the functionality of existing controls, a common
practice among developers. You’ve already seen in the preceding chapter how to inherit an exist-
ing class and add custom members. You can do the same with the built-in controls.

There are several methods of designing custom controls. In this chapter, you’ll learn how to do
the following:

◆ Extend the functionality of existing Windows Forms controls with inheritance

◆ Build compound custom controls that combine multiple existing controls

◆ Build custom controls from scratch

◆ Customize the rendering of the items in a ListBox control

On Designing Windows Controls
Before I get to the details of how to build custom controls, I want to show you how they relate
to other types of projects. I’ll discuss briefly the similarities and differences among Windows
controls, classes, and Windows projects. This information will help you get the big picture and
put together the pieces of the following sections.

A standard application consists of a main form and several (optional) auxiliary forms. The
auxiliary forms support the main form because they usually accept user data that are processed by
the code in the main form. You can think of a custom control as a form and think of its Properties
window as the auxiliary form.

An application interacts with the user through its interface. The developer decides how the
forms interact with the user, and the user has to follow these rules. Something similar happens
with custom controls. The custom control provides a well-defined interface, which consists of
properties and methods. This is the only way to manipulate the control. Just as users of your
applications don’t have access to the source code and can’t modify the application, developers
can’t see the control’s source code and must access it through the interface exposed by the control.
After an instance of the custom control is placed on the form, you can manipulate it through its
properties and methods, and you never get to see its code.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 430

430 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

In preceding chapters, you learned how to implement interfaces consisting of properties and
methods and how to raise events from within a class. This is how you build the interface of a cus-
tom Windows control: You implement properties with Property procedures, and you implement
methods as Public procedures. Although a class can provide a few properties and any number
of methods, a control must provide a large number of properties. A developer who places your
custom control on a form expects to see the properties that are common to all the controls (prop-
erties to set the control’s dimensions, its color, the text font, the Index and Tag properties, and so
on). Fortunately, many of the standard properties are exposed automatically. The developer also
expects to be able to program all the common events, such as the mouse and keyboard events, as
well as some events that are unique to the custom control.

The design of a Windows control is similar to the design of a form. You place controls on
a form-like object, called UserControl, which is the control’s surface. It provides nearly all the
methods of a standard form, and you can adjust its appearance with the drawing methods. In
other words, you can use familiar programming techniques to draw a custom control or you can
use existing controls to build a custom control.

The forms of an application are the windows you see on the desktop when the application is
executed. When you design the application, you can rearrange the controls on a form and program
how they react to user actions. Windows controls are also windows, only they can’t exist on their
own and can’t be placed on the desktop. They must be placed on forms.

The major difference between forms and custom controls is that custom controls can exist
in two runtime modes. When the developer places a control on a form, the control is actually
running. When you set a control’s property through the Properties window, something happens
to the control — its appearance changes or the control rejects the changes. It means that the code of
the custom control is executing, even though the project on which the control is used is in design
mode. When the developer starts the application, the custom control is already running. However,
the control must be able to distinguish when the project is in design or execution mode and behave
accordingly. Here’s the first property of the UserControl object you will be using quite frequently
in your code: the DesignMode property. When the control is positioned on a form and used in the
Designer, the DesignMode property is True. When the developer executes the project that contains
the control, the DesignMode property is False.

This dual runtime mode of a Windows control is something you’ll have to get used to. When
you design custom controls, you must also switch between the roles of Windows control developer
(the programmer who designs the control) and application developer (the programmer who uses
the control).

In summary, a custom control is an application with a visible user interface as well as an invis-
ible programming interface. The visible interface is what the developer sees when an instance of
the control is placed on the form, which is also what the user sees on the form when the project is
placed in runtime mode. The developer using the control can manipulate it through its properties
and methods. The control’s properties can be set at both design time and runtime, whereas meth-
ods must be called from within the code of the application that uses the control. The properties
and methods constitute the control’s invisible interface (or the developer interface, as opposed to the
user interface). You, the control developer, will develop the visible user interface on a UserControl
object, which is almost identical to the Form object; it’s like designing a standard application. As
far as the control’s invisible interface goes, it’s like designing a class.

Enhancing Existing Controls
The simplest type of custom Windows control you can build is one that enhances the functionality
of an existing control. Fortunately, they’re the most common types of custom controls, and many

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 431

ENHANCING EXISTING CONTROLS 431

developers have their own collections of ‘‘enhanced’’ Windows controls. The Windows controls
are quite functional, but you won’t be hard-pressed to come up with ideas to make them better.

The TextBox control, for example, is a text editor on its own, and you have seen how easy
it is to build a text editor by using the properties and methods exposed by this control. Many
programmers add code to their projects to customize the appearance and the functionality of
the TextBox control. Let’s say you’re building data-entry forms composed of many TextBox con-
trols.
To help the user identify the current control on the form, it would be nice to change its color
while it has the focus. If the current control has a different color from all others, users will quickly
locate the control that has the focus.

Another feature you can add to the TextBox control is to format its contents as soon as it loses
focus. Let’s consider a TextBox control that must accept dollar amounts. After the user enters a
numeric value, the control could automatically format the numeric value as a dollar amount and
perhaps change the text’s color to red for negative amounts. When the control receives the focus
again, you can display the amount without any special formatting, so that users can edit it quickly.
As you will see, it’s not only possible but actually quite easy to build a control that incorporates
all the functionality of a TextBox and some additional features that you provide through the
appropriate code. You already know how to add features such as the ones described here to a
TextBox from within the application’s code. But what if you want to enhance multiple TextBox
controls on the same form or reuse your code in multiple applications?

The best approach is to create a new Windows control with all the desired functionality and
then reuse it in multiple projects. To use the proper terminology, you can create a new custom
Windows control that inherits the functionality of the TextBox control. The derived control includes
all the functionality of the control being inherited, plus any new features you care to add to it. This
is exactly what we’re going to do in this section.

Building the FocusedTextBox Control
Let’s call our new custom control FocusedTextBox. Start a new VB project and, in the New
Project dialog box, select the template Windows Control Library. Name the project Focused-
TextBox. The Solution Explorer for this project contains a single item, the UserControl1 item.
UserControl1 (see Figure 12.1) is the control’s surface — in a way, it’s the control’s form. This
is where you’ll design the visible interface of the new control using the same techniques as for
designing a Windows form.

Start by renaming the UserControl1 object to FocusedTextBox. Then save the project by choos-
ing File � Save All. To inherit all the functionality of the TextBox control into our new control, we
must insert the appropriate Inherits statement in the control’s code. Click the Show All button in
the Solution Explorer to see all the files that make up the project. Under the FocusedTextBox.vb
file is the FocusedTextBox.Designer.vb file. Open this file by double-clicking its name and you’ll
see that it begins with the following two statements:

Partial Public Class FocusedTextBox
Inherits System.Windows.Forms.UserControl

The first statement says that the entire file belongs to the FocusedTextBox class; it’s the part
of the class that contains initialization code and other statements that the user does not need to
see because it’s left unchanged in most cases. To design an inherited control, we must change the
second statement to the following:

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 432

432 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Inherits System.Windows.Forms.TextBox

Figure 12.1

A custom control in
design mode

This statement tells the compiler that we want our new control to inherit all the functionality
of the TextBox control. You must also modify the InitializeComponent method in the Focused-
TextBox.Designer.vb file by removing the statement that sets the control’s AutoSizeMode
property. This statement applies to the generic UserControl object, but not to the TextBox control.

As soon as you specify that your custom control inherits the TextBox control, the UserControl
object will disappear from the Designer. The Designer knows exactly what the new control must
look like (it will look and behave exactly like a TextBox control), and you’re not allowed to change
it its appearance.

If you switch to the FocusedTextBox.vb file, you’ll see that it’s a public class called Focused-
TextBox. The Partial class by the same name is part of this class; it contains the code that was
generated automatically by Visual Studio. When compiled, both classes will produce a single DLL
file. Sometimes we need to split a class’s code into two files, and one of them should contain the
Partial modifier. This keyword signifies that the file contains part of the class. The Focused-
TextBox.vb file is where you will insert your custom code. The Partial class contains the code
emitted by Visual Studio, and you’re not supposed to touch it. Inherited controls are an exception
to this rule, because we have to be able to modify the Inherits statement.

Let’s test our control and verify that it exposes the same functionality as the TextBox control.
Figure 12.2 shows the IDE while developing an inherited control. Notice that the FocusedTextBox
control has inherited all the properties of the TextBox control, such as the MaxLength and Pass-
wordChar properties.

To test the control, you must add it to a form. A control can’t be executed outside the context
of a host application. Add a new project to the solution (a Windows Application project) with the
File � Add � New Project command. When the Add New Project dialog box appears,
select the Windows Application template and set the project’s name to TestProject. A new folder
will be created under the FocusedTextBox folder — the TestProject folder — and the new

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 433

ENHANCING EXISTING CONTROLS 433

project will be stored there. The TestProject must also become the solution’s startup object. (This
is the very reason we added the project to our solution: to have an executable for testing the
custom control.) Right-click the test project’s name in the Solution Explorer and select Set As
StartUp Object in the context menu.

Figure 12.2

The IDE during the
design of an inherited
control

To test the control you just ‘‘designed,’’ you need to place an instance of the custom control
on the form of the test project. First, you must build the control. Select the FocusedTextBox item
in the Solution Explorer, and from the Build menu, select the Build FocusedTextBox command
(or right-click the FocusedTextBox component in the Solution Explorer and select Build from the
context menu). The build process will create a DLL file with the control’s executable code in the
Bin folder under the project’s folder.

Then switch to the test project’s main form and open the ToolBox. You will see a new tab,
the FocusedTextBox Components tab, which contains all the custom components of the current
project. The new control has already been integrated into the design environment, and you can use
it like any of the built-in Windows controls. Every time you edit the code of the custom control,
you must rebuild the control’s project for the changes to take effect and update the instances of
the custom control on the test form. The icon that appears before the custom control’s name is the
default icon for all custom Windows controls. You can associate a different icon with your custom
control, as explained in the ‘‘Classifying the Control’s Properties’’ section, later in this chapter.

Place an instance of the FocusedTextBox control on the form and check it out. It looks, feels,
and behaves just like a regular TextBox. In fact, it is a TextBox control by a different name. It
exposes all the members of the regular TextBox control: You can move it around, resize it, change
its Multiline and WordWrap properties, set its Text property, and so on. It also exposes all the
methods and events of the TextBox control.

Adding Functionality to Your Custom Control

As you can see, it’s quite trivial to create a new custom control by inheriting any of the built-in
Windows controls. Of course, what good is a control that’s identical to an existing one? Let’s add
some extra functionality to our custom TextBox control. Switch to the control project and view the

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 434

434 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

FocusedTextBox object’s code. In the code editor’s pane, expand the Objects list and select the item
FocusedTextBox Events. This list contains the events of the TextBox control because it is the base
control for our custom control.

Expand the Events drop-down list and select the Enter event. The following event handler
declaration will appear:

Private Sub FocusedTextBox Enter(...) Handles Me.Enter

End Sub

This event takes place every time our custom control gets the focus. To change the color of the
current control, insert the following statement in the event handler:

Me.BackColor = Color.Cyan

(Or use any other color you like; just make sure it mixes well with the form’s default back-
ground color. You can also use the members of the SystemColors enumeration, to help ensure
that it mixes well with the background color.) We must also program the Leave event, so that the
control’s background color is reset to white when it loses the focus. Enter the following statement
in the Leave event’s handler:

Private Sub FocusedTextBox Leave(...) Handles Me.Leave
Me.BackColor = Color.White

End Sub

Having a hard time picking the color that signifies that the control has the focus? Why not
expose this value as a property, so that you (or other developers using your control) can set it
individually in each project? Let’s add the EnterFocusColor property, which is the control’s
background color when it has the focus.

Because our control is meant for data-entry operations, we can add another neat feature.
Some fields on a form are usually mandatory, and some are optional. Let’s add some visual
indication for the mandatory fields. First, we need to specify whether a field is mandatory with
the Mandatory property. If a field is mandatory, its background color will be set to the value
of the MandatoryColor property, but only if the control is empty.

Here’s a quick overview of the control’s custom properties:

EnterFocusColor When the control receives the focus, its background color is set to this
value. If you don’t want the currently active control to change color, set its EnterFocusColor
to white.

Mandatory This property indicates whether the control corresponds to a required field if
Mandatory is True or to an optional field if Mandatory is False.

MandatoryColor This is the background color of the control if its Mandatory property is
set to True. The MandatoryColor overwrites the control’s default background color. In other
words, if the user skips a mandatory field, the corresponding control is painted with the
MandatoryColor, and it’s not reset to the control’s background color. Required fields behave
like optional fields after they have been assigned a value.

If you have read the previous chapter, you should be able to implement these properties easily.
Listing 12.1 is the code that implements the four custom properties. The values of the properties
are stored in the private variables declared at the beginning of the listing. Then the control’s
properties are implemented as Property procedures.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 435

ENHANCING EXISTING CONTROLS 435

Listing 12.1: Property Procedures of the FocusedTextBox

Dim mandatory As Boolean
Dim enterFocusColor, leaveFocusColor As Color
Dim mandatoryColor As Color

Property Mandatory() As Boolean
Get

Mandatory = mandatory
End Get
Set(ByVal value As Boolean)

mandatory = Value
End Set

End Property

Property EnterFocusColor() As System.Drawing.Color
Get

Return enterFocusColor
End Get
Set(ByVal value As System.Drawing.Color)

enterFocusColor = value
End Set

End Property

Property MandatoryColor() As System.Drawing.Color
Get

Return mandatoryColor
End Get
Set(ByVal value As System.Drawing.Color)

mandatoryColor = value
End Set

End Property

The last step is to use these properties in the control’s Enter and Leave events. When the
control receives the focus, it changes its background color to EnterFocusColor to indicate that it’s
the active control on the form (the control with the focus). When it loses the focus, its background
is restored to the usual background color, unless it’s a required field and the user has left it blank.
In this case, its background color is set to MandatoryColor. Listing 12.2 shows the code in the two
focus-related events of the UserControl object.

Listing 12.2: Enter and Leave Events

Private backColor As Color
Private Sub FocusedTextBox Enter(...) Handles MyBase.Enter

backColor = Me.BackColor
Me.BackColor = enterFocusColor

End Sub

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 436

436 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Private Sub FocusedTextBox Leave(...) Handles MyBase.Leave
If Trim(Me.Text).Length = 0 And mandatory Then

Me.BackColor = mandatoryColor
Else

Me.BackColor = backColor
End If

End Sub

Testing the FocusedTextBox Control

Build the control again with the Build � Build FocusedTextBox command and switch to the test
form. Place several instances of the custom control on the form, align them, and then select each
one and set its properties in the Properties window. The new properties are appended at the
bottom of the Properties window, on the Misc tab (for miscellaneous properties). You will see
shortly how to add each property under a specific category, as shown in Figure 12.3. Set the custom
properties of a few controls on the form and then press F5 to run the application. See how the
FocusedTextBox controls behave as you move the focus from one to the other and how they handle
the mandatory fields.

Figure 12.3

Custom properties of
the FocusedTextBox con-
trol in the Properties
window

Pretty impressive, isn’t it? I’m certain that many readers will incorporate this custom control
in their projects — perhaps you may already be considering new features. Even if you have no

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 437

ENHANCING EXISTING CONTROLS 437

use for an enhanced TextBox control, you’ll agree that building it was quite simple. Next time you
need to enhance one of the Windows controls, you know how to do it. Just build a new control
that inherits from an existing control, add some custom members, and use it. Create a project with
all the ‘‘enhanced’’ controls and use them regularly in your projects. All you have to do is add a
reference to the DLL that implements the control in a new project, just like reusing a custom class.

Classifying the Control’s Properties

Let’s go back to our FocusedTextBox control — there are some loose ends to take care of. First, we
must specify the category in the Properties window under which each custom property appears.
By default, all the properties you add to a custom control are displayed in the Misc section of the
Properties window. To specify that a property be displayed in a different section, use the Category
attribute of the Property procedure. As you will see, properties have other attributes too, which
you can set in your code as you design the control.

Properties have attributes, which appear in front of the property name and are enclosed in
a pair of angle brackets. All attributes are members of the System.ComponentModel class, and
you must import this class to the module that contains the control’s code. The following attribute
declaration in front of the property’s name determines the category of the Properties window in
which the specific property will appear:

<Category(”Appearance”)> Public Property ...

If none of the existing categories suits a specific property, you can create a new category in the
Properties window by specifying its name in the Category attribute. If you have a few properties
that should appear in a section called Conditional, insert the following attribute in front of the
declarations of the corresponding properties:

<Category(”Conditional”)> Public Property ...

When this control is selected, the Conditional section will appear in the Properties window,
and all the properties with this attribute under it.

Another attribute is the Description attribute, which determines the property’s description
that appears at the bottom of the Properties window when the property is selected. To specify
multiple attributes, separate them with commas, as shown here:

<Description(”Indicates whether the control can be left blank”),
Category(”Appearance”)>

Property Mandatory() As Boolean
{ the property procedure’s code }
End Property

The most important attribute is the DefaultValue attribute, which determines the property’s
default (initial) value. The DefaultValue attribute must be followed by the default value in paren-
theses:

<Description(”Indicates whether the control can be left blank”)
Category(”Appearance”), DefaultValue(False)>
Property Mandatory() As Boolean

{ the property procedure’s code }

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 438

438 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Some attributes apply to the class that implements the custom controls. The DefaultProperty
and DefaultEvent attributes determine the control’s default property and event. To specify that
Mandatory is the default property of the FocusedTextBox control, replace the class declaration
with the following:

<DefaultProperty(”Mandatory”)> Public Class FocusedTextBox

Events are discussed later in the chapter, but you already know how to raise an event from
within a class. Raising an event from within a control’s code is quite similar. Open the Focused-
TextBox project, examine its code, and experiment with new properties and methods.

As you may have noticed, all custom controls appear in the Toolbox with the same icon. You
can specify the icon to appear in the Toolbox with the ToolboxBitmap attribute, whose syntax is
the following, where imagepath is a string with the absolute path to a 16 × 16 pixel bitmap:

<ToolboxBitmap(imagepath)> Public Class FocusedTextBox

The bitmap is actually stored in the control’s DLL and need not be distributed along with the
control.

Now we’re ready to move on to something more interesting. This time, we’ll build a control
that combines the functionality of several controls, which is another common scenario. You will lit-
erally design its visible interface by dropping controls on it, just like designing the visible interface
of a Windows form.

Building Compound Controls
A compound control provides a visible interface that consists of multiple Windows controls.
The controls that make up a compound control are known as constituent controls. As a result,
this type of control doesn’t inherit the functionality of any specific control. You must implement its
properties and methods with custom code. This isn’t as bad as it sounds, because a compound con-
trol inherits the UserControl object, which exposes quite a few members of its own (the Anchoring
and Docking properties, for example, are exposed by the UserControl object, and you need not
implement these properties — thank Microsoft). You will add your own members, and in most
cases you’ll be mapping the properties and methods of the compound controls to a property or
method of one of its constituent controls. If your control contains a TextBox control, for example,
you can map the custom control’s WordWrap property to the equivalent property of the TextBox.
The following property procedure demonstrates how to do it:

Property WordWrap() As Boolean
Get

WordWrap = TextBox1.WordWrap
End Get
Set(ByVal Value As Boolean)

TextBox1.WordWrap = Value
End Set

End Property

You don’t have to maintain a private variable for storing the value of the custom control’s
WordWrap property. When this property is set, the Property procedure assigns the property’s

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 439

BUILDING COMPOUND CONTROLS 439

value to the TextBox1.WordWrap property. Likewise, when this property’s value is requested,
the procedure reads it from the constituent control and returns it. In effect, the custom control’s
WordWrap property affects directly the functionality of one of the constituent controls.

The same logic applies to events. Let’s say your compound control contains a TextBox and a
ComboBox control, and you want to raise the TextChanged event when the user edits the TextBox
control, and the SelectionChanged event when the user selects another item in the
ComboBox control. First, you must declare the two events:

Event TextChanged
Event SelectionChanged

Then, you must raise the two events from within the appropriate event handlers: the Text-
Changed event from the TextBox1 control’s TextChanged event handler, and the SelectionChanged
event from the ComboBox1 control’s SelectedIndexChanged event handler:

Private Sub TextBox1 TextChanged(...)
Handles FocusedTextBox1.TextChanged

RaiseEvent TextChanged()
End Sub

Private Sub ComboBox1 SelectedIndexChanged(...)
Handles ComboBox1.SelectedIndexChanged

RaiseEvent SelectionChanged()
End Sub

VB 2008 at Work: The ColorEdit Control
In this section, you’re going to build a compound control that’s similar to the Color dialog box. The
ColorEdit control allows you to specify a color by adjusting its red, green, and blue components
with three scroll bars, or to select a color by name. The control’s surface at runtime on a form is
shown in Figure 12.4.

Figure 12.4

The ColorEdit control on
a test form

Create a new Windows Control Library project, the ColorEdit project. Save the solution and
then add a new Windows Application project, the TestProject, and make it the solution’s startup
project, just as you did with the first sample project of this chapter.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 440

440 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Now open the UserControl object and design its interface, as shown in Figure 12.4. Place the
necessary controls on the UserControl object’s surface and align them just as you would do with
a Windows form. The three ScrollBar controls are named RedBar, GreenBar, and BlueBar, respec-
tively. The Minimum property for all three controls is 0; the Maximum for all three is 255. This is the
valid range of values for a color component. The control at the top-left corner is a Label control
with its background color set to Black. (We could have used a PictureBox control in its place.) The
role of this control is to display the selected color.

The ComboBox at the bottom of the custom control is the NamedColors control, which is pop-
ulated with color names when the control is loaded. The Color class exposes 140 properties,
which are color names (Beige, Azure, and so on). Don’t bother entering all the color names in the
ComboBox control; just open the ColorEdit project and you will find the AddNamedColors() sub-
routine, which does exactly that.

The user can specify a color by sliding the three ScrollBar controls or by selecting an item in the
ComboBox control. In either case, the Label control’s Background color will be set to the selected
color. If the color is specified with the ComboBox control, the three ScrollBars will adjust to reflect
the color’s basic components (red, green, and blue). Not all possible colors that you can specify
with the three ScrollBars have a name (there are approximately 16 million colors). That’s why the
ComboBox control contains the Unknown item, which is selected when the user specifies a color
by setting its basic components.

Finally, the ColorEdit control exposes two properties: NamedColor and SelectedColor. The
NamedColor property retrieves the selected color’s name. If the color isn’t selected from the Com-
boBox control, the value Unknown will be returned. The SelectedColor property returns or sets
the current color. Its type is Color, and it can be assigned any expression that represents a color
value. The following statement will assign the form’s BackColor property to the SelectedColor
property of the control:

UserControl1.SelectedColor = Me.BackColor

You can also specify a color value with the FromARGB method of the Color object:

UserControl1.SelectedColor = Color.FromARGB(red, green, blue)

The implementation of the SelectedColor property (shown in Listing 12.3) is straightforward.
The Get section of the procedure assigns the Label’s background color to the SelectedColor prop-
erty. The Set section of the procedure extracts the three color components from the value of the
property and assigns them to the three ScrollBar controls. Then it calls the ShowColor subroutine
to update the display. (You’ll see shortly what this subroutine does.)

Listing 12.3: SelectedColor Property Procedure

Property SelectedColor() As Color
Get

SelectedColor = Label1.BackColor
End Get
Set(ByVal Value As Color)

HScrollBar1.Value = Value.R
HScrollBar2.Value = Value.G

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 441

BUILDING COMPOUND CONTROLS 441

HScrollBar3.Value = Value.B
ShowColor()

End Set
End Property

The NamedColor property (see Listing 12.4) is read-only and is marked with the ReadOnly
keyword in front of the procedure’s name. This property retrieves the value of the ComboBox
control and returns it.

Listing 12.4: NamedColor Property Procedure

ReadOnly Property NamedColor() As String
Get

NamedColor = ComboBox1.SelectedItem
End Get

End Property

When the user selects a color name in the ComboBox control, the code retrieves the corre-
sponding color value with the Color.FromName method. This method accepts a color name as an
argument (a string) and returns a color value, which is assigned to the namedColor variable. Then
the code extracts the three basic color components with the R, G, and B properties. (These proper-
ties return the red, green, and blue color components, respectively.) Listing 12.5 shows the code
behind the ComboBox control’s SelectedIndexChanged event, which is fired every time a new
color is selected by name.

Listing 12.5: Specifying a Color by Name

Private Sub ComboBox1 SelectedIndexChanged(...)
Handles ComboBox1.SelectedIndexChanged

Dim namedColor As Color
Dim colorName As String
colorName = ComboBox1.SelectedItem
If colorName <> ”Unknown” Then

namedColor = Color.FromName(colorName)
HScrollBar1.Value = namedColor.R
HScrollBar2.Value = namedColor.G
HScrollBar3.Value = namedColor.B
ShowColor()

End If
End Sub

The ShowColor() subroutine simply sets the Label’s background color to the value specified by
the three ScrollBar controls. Even when you select a color value by name, the control’s code sets

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 442

442 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

the three ScrollBars to the appropriate values. This way, we don’t have to write additional code to
update the display. The ShowColor() subroutine is quite trivial:

Sub ShowColor()
Label1.BackColor = Color.FromARGB(255, HScrollBar1.Value,

HScrollBar2.Value, HScrollBar3.Value)
End Sub

The single statement in this subroutine picks up the values of the three basic colors from the
ScrollBar controls and creates a new color value with the FromARGB method of the Color object.
The first argument is the transparency of the color (the A, or alpha channel), and we set it to
255 for a completely opaque color. You can edit the project’s code to take into consideration the
transparency channel as well. If you do, you must replace the Label control with a PictureBox
control and display an image in it. Then draw a rectangle with the specified color on top of it. If
the color isn’t completely opaque, you’ll be able to see the underlying image and visually adjust
the transparency channel.

Testing the ColorEdit Control

To test the new control, you must place it on a form. Build the ColorEdit control and switch to
the test project (add a new project to the current solution if you haven’t done so already). Add
an instance of the new custom control to the form. You don’t have to enter any code in the test
form. Just run it and see how you specify a color, either with the scroll bars or by name. You can
also read the value of the selected color through the SelectedColor property. The code behind
the Color Form button on the test form does exactly that (it reads the selected color and paints the
form with this color):

Private Sub Button1 Click(...) Handles Button1.Click
Me.BackColor = ColorEdit1.SelectedColor

End Sub

Building User-Drawn Controls
This is the most complicated but most flexible type of control. A user-drawn control consists of
a UserControl object with no constituent controls. You are responsible for updating the control’s
visible area with the appropriate code, which must appear in the control’s OnPaint method. (This
method is invoked automatically every time the control’s surface must be redrawn.)

To demonstrate the design of user-drawn controls, we’ll develop the Label3D control, which
is an enhanced Label control and is shown in Figure 12.5. It provides all the members of the
Label control plus the capability to render its caption in three-dimensional type. The new custom
control is called Label3D, and its project is the FlexLabel project. It contains the Label3D project
(which is a Windows Control Library project) and the usual test project (which is a Windows
Application project).

At this point, you’re probably thinking about the code that aligns the text and renders it as
carved or raised. A good idea is to start with a Windows project, which displays a string on a form
and aligns it in all possible ways. A control is an application packaged in a way that allows it to
be displayed on a form instead of on the Desktop. As far as the functionality is concerned, in most
cases it can be implemented on a regular form. Conversely, if you can display 3D text on a form,
you can do so with a custom control.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 443

BUILDING USER-DRAWN CONTROLS 443

Figure 12.5

The Label3D control
is an enhanced Label
control.

Designing a Windows form with the same functionality is fairly straightforward. You haven’t
seen the drawing methods yet, but this control doesn’t involve any advanced drawing techniques.
All we need is a method to render strings on the control. To achieve the 3D effect, you must display
the same string twice, first in white and then in black on top of the white. The two strings must be
displaced slightly, and the direction of the displacement determines the effect (whether the text
will appear as raised or carved). The amount of displacement determines the depth of the effect.
Use a displacement of 1 pixel for a light effect, and a displacement of 2 pixels for a heavy one.

VB 2008 at Work: The Label3D Control
The first step of designing a user-drawn custom control is to design the control’s interface: what
it will look like when placed on a form (its visible interface) and how developers can access this
functionality through its members (the programmatic interface). Sure, you’ve heard the same
advice over and over, and many of you still start coding an application without spending much
time designing it. In the real world, especially if you are not a member of a programming team,
people design as they code (or the other way around).

The situation is quite different with Windows controls. Your custom control must provide
properties, which will be displayed automatically in the Properties window. The developer should
be able to adjust every aspect of the control’s appearance by manipulating the settings of these
properties. In addition, developers expect to see the standard properties shared by most controls
(such as the background color, the text font, and so on) in the Properties window. You must
carefully design the methods so that they expose all the functionality of the control that should
be accessed from within the application’s code, and the methods shouldn’t overlap. Finally, you
must provide the events necessary for the control to react to external events. Don’t start coding
a custom control unless you have formulated a clear idea of what the control will do and how
developers will use it at design time.

Label3D Control Specifications

The Label3D control displays a caption like the standard Label control, so it must provide a Font
property, which lets the developer determine the label’s font. The UserControl object exposes its
own Font property, so we need not implement it in our code. In addition, the Label3D control
can align its caption both vertically and horizontally. This functionality will be exposed by the
Alignment property, whose possible settings are the members of the Align enumeration: TopLeft,
TopMiddle, TopRight, CenterLeft, CenterMiddle, CenterRight, BottomLeft, BottomMiddle,
and BottomRight. The (self-explanatory) values are the names that will appear in the drop-down
list of the Alignment property in the Properties window.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 444

444 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Similarly, the text effect is manipulated through the Effect property, whose possible settings
are the members of the Effect3D custom enumeration: None, Carved, CarvedHeavy, Raised, and
RaisedHeavy. There are basically two types of effects (raised and carved text) and two variations
on each effect (normal and heavy).

In addition to the custom properties, the Label3D control should also expose the standard
properties of a Label control, such as Tag, BackColor, and so on. Developers expect to see stan-
dard properties in the Properties window, and you should implement them. The Label3D control
doesn’t have any custom methods, but it should provide the standard methods of the Label con-
trol, such as the Move method. Similarly, although the control doesn’t raise any special events, it
must support the standard events of the Label control, such as the mouse and keyboard events.

Most of the custom control’s functionality exists already, and there should be a simple tech-
nique to borrow this functionality from other controls instead of implementing it from scratch.
This is indeed the case: The UserControl object, from which all user-drawn controls inherit,
exposes a large number of members.

Designing the Custom Control

Start a new project of the Windows Control Library type, name it FlexLabel, and then rename
the UserControl1 object to Label3D. Open the UserControl object’s code window and change the
name of the class from UserControl1 to Label3D.

Every time you place a Windows control on a form, it’s named according to the UserControl
object’s name and a sequence digit. The first instance of the custom control you place on a form will
be named Label3D1, the next one will be named Label3D2, and so on. Obviously, it’s important
to choose a meaningful name for your UserControl object.

As you will soon see, the UserControl is the ‘‘form’’ on which the custom control will be
designed. It looks, feels, and behaves like a regular VB form, but it’s called a UserControl.
UserControl objects have additional unique properties that don’t apply to a regular form, but
to start designing new controls, think of them as regular forms.

You’ve set the scene for a new user-drawn Windows control. Start by declaring the Align and
Effect3D enumerations, as shown in Listing 12.6.

Listing 12.6: Align and Effect3D Enumerations

Public Enum Align
TopLeft
TopMiddle
TopRight
CenterLeft
CenterMiddle
CenterRight
BottomLeft
BottomMiddle
BottomRight

End Enum

Public Enum Effect3D
None
Raised

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 445

BUILDING USER-DRAWN CONTROLS 445

RaisedHeavy
Carved
CarvedHeavy

End Enum

The next step is to implement the Alignment and Effect properties. Each property’s type is an
enumeration; Listing 12.7 shows the implementation of the two properties.

Listing 12.7: Alignment and Effect Properties

Private Shared mAlignment As Align
Private Shared mEffect As Effect3D
Public Property Alignment() As Align

Get
Alignment = mAlignment

End Get
Set(ByVal Value As Align)

mAlignment = Value
Invalidate()

End Set
End Property

Public Property Effect() As Effect3D
Get

Effect = mEffect
End Get
Set(ByVal Value As Effect3D)

mEffect = Value
Invalidate()

End Set
End Property

The current settings of the two properties are stored in the private variables mAlignment
and mEffect. When either property is set, the Property procedure’s code calls the Invalidate
method of the UserControl object to force a redraw of the string on the control’s surface. The call
to the Invalidate method is required for the control to operate properly in design mode. You can
provide a method to redraw the control at runtime (although developers shouldn’t have to call a
method to refresh the control every time they set a property), but this isn’t possible at design time.
In general, when a property is changed in the Properties window, the control should be able to
update itself and reflect the new property setting, and this is done with a call to the Invalidate
method. Shortly, you’ll see an even better way to automatically redraw the control every time a
property is changed.

Finally, you must add one more property, the Caption property, which is the string to be
rendered on the control. Declare a private variable to store the control’s caption (the mCaption
variable) and enter the code from Listing 12.8 to implement the Caption property.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 446

446 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Listing 12.8: Caption Property Procedure

Private mCaption As String
Property Caption() As String

Get
Caption = mCaption

End Get
Set(ByVal Value As String)

mCaption = Value
Invalidate()

End Set
End Property

The core of the control’s code is in the OnPaint method, which is called automatically before
the control repaints itself. The same event’s code is also executed when the Invalidate method
is called, and this is why we call this method every time one of the control’s properties changes
value. The OnPaint method enables you to take control of the paint process and supply your own
code for painting the control’s surface. The single characteristic of all user-drawn controls is that
they override the default OnPaint method. This is where you must insert the code to draw the
control’s surface — that is, draw the specified string, taking into consideration the Alignment and
Effect properties. The OnPaint method’s code is shown in Listing 12.9.

Listing 12.9: UserControl Object’s OnPaint Method

Protected Overrides Sub OnPaint(
ByVal e As System.Windows.Forms.PaintEventArgs)

Dim lblFont As Font = Me.Font
Dim lblBrush As New SolidBrush(Color.Red)
Dim X, Y As Integer
Dim textSize As SizeF =

e.Graphics.MeasureString(mCaption, lblFont)
Select Case Me.mAlignment

Case Align.BottomLeft
X = 2
Y = Convert.ToInt32(Me.Height - textSize.Height)

Case Align.BottomMiddle
X = CInt((Me.Width - textSize.Width) / 2)
Y = Convert.ToInt32(Me.Height - textSize.Height)

Case Align.BottomRight
X = Convert.ToInt32(Me.Width - textSize.Width - 2)
Y = Convert.ToInt32(Me.Height - textSize.Height)

Case Align.CenterLeft
X = 2
Y = Convert.ToInt32((Me.Height - textSize.Height) / 2)

Case Align.CenterMiddle
X = Convert.ToInt32((Me.Width - textSize.Width) / 2)

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 447

BUILDING USER-DRAWN CONTROLS 447

Y = Convert.ToInt32((Me.Height - textSize.Height) / 2)
Case Align.CenterRight

X = Convert.ToInt32(Me.Width - textSize.Width - 2)
Y = Convert.ToInt32((Me.Height - textSize.Height) / 2)

Case Align.TopLeft
X = 2
Y = 2

Case Align.TopMiddle
X = Convert.ToInt32((Me.Width - textSize.Width) / 2)
Y = 2
Case Align.TopRight
X = Convert.ToInt32(Me.Width - textSize.Width - 2)
Y = 2

End Select
Dim dispX, dispY As Integer
Select Case mEffect

Case Effect3D.None : dispX = 0 : dispY = 0
Case Effect3D.Raised : dispX = 1 : dispY = 1
Case Effect3D.RaisedHeavy : dispX = 2 : dispY = 2
Case Effect3D.Carved : dispX = -1 : dispY = -1
Case Effect3D.CarvedHeavy : dispX = -2 : dispY = -2

End Select
lblBrush.Color = Color.White
e.Graphics.DrawString(mCaption, lblFont, lblBrush, X, Y)
lblBrush.Color = Me.ForeColor
e.Graphics.DrawString(mCaption, lblFont, lblBrush, X + dispX, Y + dispY)

End If
End Sub

This subroutine calls for a few explanations. The Paint method passes a PaintEventArgs
argument (the ubiquitous e argument). This argument exposes the Graphics property, which
represents the control’s surface. The Graphics object exposes all the methods you can call to
create graphics on the control’s surface. The Graphics object is discussed in detail in Chapter 18,
‘‘Drawing and Painting with Visual Basic 2008,’’ but for this chapter all you need to know is that
the MeasureString method returns the dimensions of a string when rendered in a specific font,
and the DrawString method draws the string in the specified font. The first Select Case statement
calculates the coordinates of the string’s origin on the control’s surface, and these coordinates
are calculated differently for each type of alignment. Then another Select Case statement sets
the displacement between the two strings, so that when superimposed they produce a three-
dimensional effect. Finally, the code draws the string of the Caption property on the Graphics
object. It draws the string in white first, then in black. The second string is drawn dispX pixels to
the left and dispY pixels below the first one to give the 3D effect. The values of these two variables
are determined by the setting of the Effect property.

The event handler of the sample project contains a few more statements that are not shown
here. These statements print the strings DesignTime and RunTime in a light color on the control’s
background, depending on the current status of the control. They indicate whether the control is

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 448

448 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

currently in design (if the DesignMode property is True) or runtime (if DesignMode is False), and
you will remove them after testing the control.

Testing Your New Control

To test your new control, you must first add it to the Toolbox and then place instances of it on the
test form. You can add a form to the current project and test the control, but you shouldn’t add
more components to the control project. It’s best to add a new project to the current solution.

A Quick Way to Test Custom Windows Controls

Visual Studio 2008 introduced a new, simple method of testing custom controls. Instead of using a
test project, you can press F5 to ‘‘run’’ the Windows Control project. Right-click the name of the
Label3D project (the Windows Control project in the solution) in Solution Explorer and from the
context menu choose Set As Startup Project. Then press F5 to start the project. A dialog box (shown
in the following figure) will appear with the control at runtime and its Properties window.

In this dialog box, you can edit any of the control’s properties and see how they affect the control at
runtime. If the control reacts to any user actions, you can see how the control’s code behaves
at runtime.

You can’t test the control’s methods, or program its events, but you’ll get an idea of how the control
will behave when placed on a form. Use this dialog box while you’re developing the control’s interface
to see how it will behave when placed on a test form and how it reacts when you change its proper-
ties. When you’re happy with the control’s interface, you should test it with a Windows project, from
which you can call its methods and program its events.

Add the TestProject to the current solution and place on its main form a Label3D control, as
well as the other controls shown earlier in Figure 12.5. If the Label3D icon doesn’t appear in the

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 449

BUILDING USER-DRAWN CONTROLS 449

Toolbox, build the control’s project, and a new item will be added to the FlexLabel Components
tab of the ToolBox.

Now double-click the Label3D control on the form to see its events. Your new control has its
own events, and you can program them just as you would program the events of any other control.
Enter the following code in the control’s Click event:

Private Sub Label3D1 Click(...) Handles Label3D1.Click
MsgBox(My properties are ”& vbCrLf &

Caption = ” Label3D1.Caption.ToString & vbCrLf &
Alignment = ” Label3D1.Alignment.ToString & vbCrLf &
Effect = ” Label3D1.Effect.ToString)

End Sub

To run the control, press F5 and then click the control. You will see the control’s properties
displayed in a message box.

The other controls on the test form allow you to set the appearance of the custom control at
runtime. The two ComboBox controls are populated with the members of the appropriate enumer-
ation when the form is loaded. In their SelectedIndexChanged event handler, you must set the
corresponding property of the FlexLabel control to the selected value, as shown in the following
code:

Private Sub AlignmentBox SelectedIndexChanged(...)
Handles AlignmentBox.SelectedIndexChanged

Label3D1.Alignment = AlignmentBox.SelectedItem
End Sub

Private Sub EffectsBox SelectedIndexChanged(...)
Handles EffectsBox.SelectedIndexChanged

Label3D1.Effect = EffectsBox.SelectedItem
End Sub

The TextBox control at the bottom of the form stores the Caption property. Every time you
change this string, the control is updated because the Set procedure of the Caption property calls
the Invalidate method.

Changed Events

The UserControl object exposes many of the events you need to program the control, such as the
key and mouse events. In addition, you can raise custom events. The Windows controls raise an
event every time a property value is changed. If you examine the list of events exposed by the
Label3D control, you’ll see the FontChanged and SizeChanged events. These events are provided
by the UserControl object. As a control developer, you should expose similar events for your
custom properties, the OnAlignmentChanged, OnEffectChanged, and OnCaptionChanged events.
This isn’t difficult to do, but you must follow a few steps. Start by declaring an event handler for
each of the Changed events:

Private mOnAlignmentChanged As EventHandler
Private mOnEffectChanged As EventHandler
Private mOnCaptionChanged As EventHandler

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 450

450 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Then declare the actual events and their handlers:

Public Event AlignmentChanged(ByVal sender As Object,
ByVal ev As EventArgs)

Public Event EffectChanged(ByVal sender As Object,
ByVal ev As EventArgs)

Public Event CaptionChanged(ByVal sender As Object,
ByVal ev As EventArgs)

When a property changes value, you must call the appropriate method. In the Set section of
the Alignment property procedure, insert the following statement:

OnAlignmentChanged(EventArgs.Empty)

And finally, invoke the event handlers from within the appropriate OnEventName method:

Protected Overridable Sub OnAlignmentChanged(ByVal e As EventArgs)
Invalidate()
If Not (mOnAlignmentChanged Is Nothing) Then

mOnAlignmentChanged.Invoke(Me, e)
End Sub

Protected Overridable Sub OnEffectChanged(ByVal e As EventArgs)
Invalidate()
If Not (mOnEffectChanged Is Nothing) Then

mOnEffectChanged.Invoke(Me, e)
End Sub

Protected Overridable Sub OnCaptionChanged(ByVal e As EventArgs)
Invalidate()
If Not (mOnCaptionChanged Is Nothing) Then

mOnCaptionChanged.Invoke(Me, e)
End Sub

As you can see, the OnPropertyChanged events call the Invalidate method to redraw the
control when a property’s value is changed. As a result, you can now remove the call to the
Invalidate method from the Property Set procedures. If you switch to the test form, you will see
that the custom control exposes the AlignmentChanged, EffectChanged, and CaptionChanged
events. The OnCaptionChanged method is executed automatically every time the Caption prop-
erty changes value, and it fires the CaptionChanged event. The developer using the Label3D
control shouldn’t have to program this event.

Raising Custom Events
When you select the custom control in the Objects drop-down list of the editor and expand the list
of events for this control, you’ll see all the events fired by UserControl. Let’s add a custom event
for our control. To demonstrate how to raise events from within a custom control, we’ll return for
a moment to the ColorEdit control you developed a little earlier in this chapter.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 451

BUILDING USER-DRAWN CONTROLS 451

Let’s say you want to raise an event (the ColorClick event) when the user clicks the Label
control displaying the selected color. To raise a custom event, you must declare it in your control
and call the RaiseEvent method. Note that the same event may be raised from many different
places in the control’s code.

To declare the ColorClick event, enter the following statement in the control’s code. This line
can appear anywhere, but placing it after the private variables that store the property values is
customary:

Public Event ColorClick(ByVal sender As Object, ByVal e As EventArgs)

To raise the ColorClick event when the user clicks the Label control, insert the following
statement in the Label control’s Click event handler:

Private Sub Label1 Click(...) Handles Label1.Click
RaiseEvent ColorClick(Me, e)

End Sub

Raising a custom event from within a control is as simple as raising an event from within a
class. It’s actually simpler to raise a custom event than to raise the usual PropertyChanged events,
which are fired from within the OnPropertyChanged method of the base control.

The RaiseEvent statement in the Label’s Click event handler maps the Click event of the
Label control to the ColorClick event of the custom control. If you switch to the test form and
examine the list of events of the ColorEdit control on the form, you’ll see that the new event was
added. The ColorClick event doesn’t convey much information. When raising custom events, it’s
likely that you’ll want to pass additional information to the developer.

Let’s say you want to pass the Label control’s color to the application through the second
argument of the ColorClick event. The EventArgs type doesn’t provide a Color property, so we
must build a new type that inherits all the members of the EventArgs type and adds a property:
the Color property. You can probably guess that we’ll create a custom class that inherits from the
EventArgs class and adds the Color member. Enter the statements of Listing 12.10 at the end of
the file (after the existing End Class statement).

Listing 12.10: Declaring a Custom Event Type

Public Class ColorEvent
Inherits EventArgs
Public color As Color

End Class

Then, declare the following event in the control’s code:

Public Event ColorClick(ByVal sender As Object, ByVal e As ColorEvent)

And finally, raise the ColorClick event from within the Label’s Click event handler
(see Listing 12.11).

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 452

452 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Listing 12.11: Raising a Custom Event

Private Sub Label1 Click(...) Handles Label1.Click
Dim ev As ColorEvent
ev.color = Label1.BackColor
RaiseEvent ColorClick(Me, ev)

End Sub

Not all events fired by a custom control are based on property value changes. You can fire
events based on external conditions or a timer. The AlarmControl sample project, which isn’t
discussed in this chapter because of space limitations, demonstrates how to design an alarm that
can be set to go off at a certain time and trigger a TimeOut event. To examine the sample projects
code, open the AlarmControl project with Visual Studio. In the project’s folder, you will find a
Readme file with a detailed discussion of the application.

Using the Custom Control in Other Projects
By adding a test project to the Label3D custom control project, we designed and tested the control
in the same environment. A great help, indeed, but the custom control can’t be used in other
projects. If you start another instance of Visual Studio and attempt to add your custom control to
the Toolbox, you won’t see the Label3D entry there.

To add your custom component in another project, open the Choose Toolbox Items dialog box
and then click the .NET Framework Components tab. Be sure to carry out the steps described
here while the .NET Framework Components tab is visible. If the COM Components tab is visible
instead, you can perform the same steps, but you’ll end up with an error message (because the
custom component is not a COM component).

Click the Browse button in the dialog box and locate the FlexLabel.dll file. It’s in the Bin
folder under the FlexLabel project’s folder. The Label3D control will be added to the list of .NET
Framework components, as shown in Figure 12.6. Select the check box in front of the control’s
name; then click the OK button to close the dialog box and add Label3D to the Toolbox. Now you
can use this control in your new project.

Figure 12.6

Adding the Label3D
control to another
project’s Toolbox

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 453

DESIGNING IRREGULARLY SHAPED CONTROLS 453

Designing Irregularly Shaped Controls
The UserControl object has a rectangular shape by default. However, a custom control need not
be rectangular. It’s possible to create irregularly shaped forms, too, but unlike irregularly shaped
controls, an irregularly shaped form is still quite uncommon. Irregularly shaped controls are used
in fancy interfaces, and they usually react to movement of the mouse. (They may change color
when the mouse is over them or when they’re clicked, for example.)

To change the default shape of a custom control, you must use the Region object, which is
another graphics-related object that specifies a closed area. You can even use Bezier curves to
make highly unusual and smooth shapes for your controls. In this section, we’ll do something
less ambitious: We’ll create controls with the shape of an ellipse, as shown in the upper half of
Figure 12.7. To follow the code presented in this section, open the NonRectangularControl project;
the custom control is the RoundControl Windows Control Library project, and Form1 is the test
form for the control.

Figure 12.7

A few instances of an
ellipse-shaped control

You can turn any control to any shape you like by creating the appropriate Region object
and then applying it to the Region property of the control. This must take place from within the
control’s Paint event. Listing 12.12 shows the statements that change the shape of the control.

Listing 12.12: Creating a Nonrectangular Control

Protected Sub PaintControl(ByVal sender As Object,
ByVal pe As PaintEventArgs) Handles Me.Paint

pe.Graphics.TextRenderingHint =
Drawing.Text.TextRenderingHint.AntiAlias

Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)

End Sub

First, we retrieve the Graphics object of the UserControl; then we create a GraphicsPath object,
the roundPath variable, and add an ellipse to it. The ellipse is based on the enclosing rectangle.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 454

454 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

The R object is used temporarily to specify the ellipse. The new path is then used to create a Region
object, which is assigned to the Region property of the UserControl object. This gives our control
the shape of an ellipse.

Listing 12.12 shows the statements that specify the control’s shape. In addition, you must
insert a few statements to display the control’s caption, which is specified by the control’s Caption
property. The caption is rendered normally in yellow color, unless the mouse is hovering over the
control, in which case the same caption is rendered with a 3D effect. You already know how to
achieve this effect: by printing the same string twice in different colors with a slight displacement
between them.

Listing 12.13 shows the code in the control’s MouseEnter and MouseLeave events. When the
mouse enters the control’s area (this is detected by the control automatically — you won’t have
to write a single line of code for it), the currentState variable is set to State.Active (State
is an enumeration in the project’s code), and the control’s caption appears in raised type. In the
control’s MouseLeave event handler, the currentState variable is reset to State.Inactive and
the control’s caption appears in regular font. In addition, each time the mouse enters and leaves
the control, the MouseInsideControl and MouseOutsideControl custom events are fired.

Listing 12.13: RoundButton Control’s MouseEnter and MouseLeave Events

Private Sub RoundButton MouseEnter(...)
Handles MyBase.MouseEnter

currentState = State.Active
Me.Refresh()
RaiseEvent MouseInsideButton(Me)

End Sub

Private Sub RoundButton MouseLeave(...)
Handles MyBase.MouseLeave

currentState = State.Inactive
Me.Refresh()
RaiseEvent MouseOusideButton(Me)

End Sub

These two events set up the appropriate variables, and the drawing of the control takes place
in the Paint event’s handler, which is shown in Listing 12.14.

Listing 12.14: RoundButton Control’s Paint Event Handler

Protected Sub PaintControl(ByVal sender As Object,
ByVal pe As PaintEventArgs)
Handles Me.Paint

pe.Graphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 455

DESIGNING IRREGULARLY SHAPED CONTROLS 455

Dim Path As New GraphicsPath
Path.AddEllipse(R)
Dim grBrush As LinearGradientBrush
If currentState = State.Active Then

grBrush = New LinearGradientBrush(
New Point(0, 0),
New Point(R.Width, R.Height),
Color.DarkGray, Color.White)

Else
grBrush = New LinearGradientBrush(

New Point(R.Width, R.Height),
New Point(0, 0), Color.DarkGray,
Color.White)

End If
pe.Graphics.FillPath(grBrush, Path)
Dim X As Integer =

(Me.Width - pe.Graphics.MeasureString(
currentCaption, currentFont).Width) / 2

Dim Y As Integer = (Me.Height - pe.Graphics.MeasureString(
currentCaption, currentFont).Height) / 2

If currentState = State.Active Then
pe.Graphics.DrawString(currentCaption,

currentFont, Brushes.Black, X, Y)
pe.Graphics.DrawString(currentCaption,

currentFont,
New SolidBrush(currentCaptionColor), X - 1, Y - 1)

Else
pe.Graphics.DrawString(currentCaption,

currentFont,
New SolidBrush(currentCaptionColor), X, Y)

End If
End Sub

The OnPaint method uses graphics methods to fill the control with a gradient and center the
string on the control. They’re the same methods we used in the example of the user-drawn control
earlier in this chapter. The drawing methods are discussed in detail in Chapter 18.

The code uses the currentState variable, which can take on two values: Active and Inactive.
These two values are members of the State enumeration, which is shown next:

Public Enum State
Active
Inactive

End Enum

The test form of the project shows how the RoundButton control behaves on a form. You can
use the techniques described in this section to make a series of round controls for a totally different
feel and look.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 456

456 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

The Play button’s Click event handler in the test form changes the caption of the button
according to the control’s current state. It also disables the other RoundButton controls on the
test form. Here’s the Click event handler of the Play button:

Private Sub bttnplay Click(...) Handles bttnPlay.Click
If bttnPlay.Caption = ”Play” Then

Label1.Text = ”Playing...”
bttnPlay.Caption = ”STOP”
bttnPlay.Color = Color.Red
bttnRecord.Enabled = False
bttnClose.Enabled = False

Else
Label1.Text = ”Stoped Playing”
bttnPlay.Caption = ”Play”
bttnPlay.Color = Color.Yellow
bttnRecord.Enabled = True
bttnClose.Enabled = True

End If
End Sub

In Chapter 18, you’ll learn more about shapes and paths, and you may wish to experiment
with other oddly shaped controls. How about a progress indicator control that looks like a
thermometer? Or a button with an LED that turns on or changes color when you press the button,
like the buttons in the lower half of Figure 12.7? The two rectangular buttons are instances of the
LEDButton custom control, which is included in the NonRectangularControl project. Open the
project in Visual Studio and examine the code that renders the rectangular buttons emulating an
LED in the left corner of the control.

Customizing List Controls
In this section, I’ll show you how to customize the list controls (such as the ListBox, ComboBox,
and TreeView controls). You won’t build new custom controls in this section; actually, you’ll hook
custom code into certain events of a control to take charge of the rendering of its items.

Some of the Windows controls can be customized far more than it is possible through their
properties. These are the list controls that allow you to supply your own code for drawing each
item. You can use this technique to create a ListBox control that displays its items in different fonts,
uses alternating background colors, and so on. You can even put bitmaps on the background of
each item, draw the text in any color, and create items of varying heights. This is an interesting
technique because without it, as you recall from our discussion of the ListBox control, all items
have the same height and you must make the control wide enough to fit the longest item (if this is
known at design time). The controls that allow you to take charge of the rendering process of their
items are the ListBox, CheckedListBox, ComboBox, and TreeView controls.

To create an owner-drawn control, you must program two events: the MeasureItem and
DrawItem events. In the MeasureItem event, you determine the dimensions of the rectangle in
which the drawing will take place. In the DrawItem event, you insert the code for rendering the
items on the control. Every time the control is about to display an item, it fires the Measure-
Item event first and then the DrawItem event. By inserting the appropriate code in the two event
handlers, you can take control of the rendering process.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 457

CUSTOMIZING LIST CONTROLS 457

These two events don’t take place unless you set the DrawMode property of the control
accordingly. Because only controls that expose the DrawMode property can be owner-drawn, you
have a quick way of figuring out whether a control’s appearance can be customized with the tech-
niques discussed in this section. The DrawMode property can be set to Normal (the control draws
its own surface), OwnerDrawnFixed (you can draw the control, but the height of the drawing area
remains fixed), or OwnerDrawnVariable (you can draw the control and use a different height for
each item). The same property for the TreeView control has three different settings: None, Owner-
DrawText (you provide the text for each item), and OwnerDrawAll (you’re responsible for drawing
each node’s rectangle).

Designing Owner-Drawn ListBox Controls
The default look of the ListBox control will work fine with most applications, but you might have
to create owner-drawn ListBoxes if you want to use different colors or fonts for different types of
items, or to populate the list with items of widely different lengths.

The example you’ll build in this section, shown in Figure 12.8, uses an alternating background
color, and each item has a different height, depending on the string it holds. Lengthy strings are
broken into multiple lines at word boundaries. Because you’re responsible for breaking the string
into lines, you can use any other technique — for example, you can place an ellipsis to indicate
that the string is too long to fit on the control, use a smaller font, and so on. The fancy ListBox of
Figure 12.8 was created with the OwnerDrawnList project.

Figure 12.8

An unusual, but quite
functional, ListBox
control

To custom-draw the items in a ListBox control (or a ComboBox, for that matter), you use the
MeasureItem event to calculate the item’s dimensions, and the DrawItem event to actually draw
the item. Each item is a rectangle that exposes a Graphics object, and you can call any of the
Graphics object’s drawing methods to draw on the item’s area. The drawing techniques we’ll use
in this example are similar to the ones we used in the previous section, but after you learn more
about the drawing methods in Chapter 18, you can create even more elaborate designs than the
ones shown here.

Each time an item is about to be drawn, the MeasureItem and DrawItem events are fired in this
order. In the MeasureItem event handler, we set the dimensions of the item with the statements
shown in Listing 12.15.

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 458

458 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

Listing 12.15: Setting Up an Item’s Rectangle in an Owner-Drawn ListBox Control

Private Sub ListBox1 MeasureItem(ByVal sender As Object,
ByVal e As System.Windows.Forms.MeasureItemEventArgs)
Handles ListBox1.MeasureItem

If fnt Is Nothing Then Exit Sub
Dim itmSize As SizeF
Dim S As New SizeF(ListBox1.Width, 200)
itmSize = e.Graphics.MeasureString(ListBox1.Items(e.Index).ToString, fnt, S)
e.ItemHeight = itmSize.Height
e.ItemWidth = itmSize.Width

End Sub

The MeasureString method of the Graphics object accepts as arguments a string, the font in
which the string will be rendered, and a SizeF object. The SizeF object provides two members:
the Width and Height members, which you use to pass to the method information about the area
in which we want to print the string. In our example, we’ll print the string in a rectangle that’s
as wide as the ListBox control and as tall as needed to fit the entire string. I’m using a height of
200 pixels (enough to fit the longest string that users might throw at the control). Upon return,
the MeasureString method sets the members of the SizeF object to the width and height actually
required to print the string.

The two members of the SizeF object are then used to set the dimensions of the current item
(properties e.ItemWidth and e.ItemHeight). The custom rendering of the current item takes
place in the ItemDraw event handler, which is shown in Listing 12.16. The Bounds property of
the handler’s e argument reports the dimensions of the item’s cell as you calculated them in the
MeasureItem event handler.

Listing 12.16: Drawing an Item in an Owner-Drawn ListBox Control

Private Sub ListBox1 DrawItem(ByVal sender As Object,
ByVal e As System.Windows.Forms.DrawItemEventArgs)
Handles ListBox1.DrawItem

If e.Index = -1 Then Exit Sub
e.DrawBackground()
Dim txtBrush As SolidBrush
Dim bgBrush As SolidBrush
Dim txtfnt As Font
If e.Index / 2 = CInt(e.Index / 2) Then
‘ color even numbered items

txtBrush = New SolidBrush(Color.Blue)
bgBrush = New SolidBrush(Color.LightYellow)

Else
‘ color odd numbered items

txtBrush = New SolidBrush(Color.Blue)
bgBrush = New SolidBrush(Color.Cyan)

End If

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 459

THE BOTTOM LINE 459

If e.State And DrawItemState.Selected Then
‘ use red color and bold for the selected item

txtBrush = New SolidBrush(Color.Red)
txtfnt = New Font(fnt.Name, fnt.Size, FontStyle.Bold)

Else
txtfnt = fnt

End If
e.Graphics.FillRectangle(bgBrush, e.Bounds)
e.Graphics.DrawRectangle(Pens.Black, e.Bounds)
Dim R As New RectangleF(e.Bounds.X, e.Bounds.Y,

e.Bounds.Width, e.Bounds.Height)
e.Graphics.DrawString(ListBox1.Items(e.Index).ToString, txtfnt, txtBrush, R)
e.DrawFocusRectangle()

End Sub

To test the custom-drawn ListBox control, place two buttons on the form, as shown in
Figure 12.8. The Add New Item button prompts the user for a new item (a string) and adds it
to the control’s Items collection. Listing 12.17 shows the code that adds a new item to the list.

Listing 12.17: Adding an Item to the List at Runtime

Private Sub Button2 Click(...) Handles Button2.Click
Dim newItem As String
newItem = InputBox(”Enter item to add to the list”)
ListBox1.Items.Add(newItem)

End Sub

The Bottom Line

Extend the functionality of existing Windows Forms controls with inheritance. The sim-
plest type of control you can build is one that inherits an existing control. The inherited control
includes all the functionality of the original control plus some extra functionality that’s specific
to an application and that you implement with custom code.

Master It Describe the process of designing an inherited custom control.

Build compound controls that combine multiple existing controls. A compound control
provides a visible interface that combines multiple Windows controls. As a result, this type of
control doesn’t inherit the functionality of any specific control; you must expose its properties
by providing your own code. The UserControl object, on which the compound control is based,
already exposes a large number of members, including some fairly advanced ones such as the
Anchoring and Docking properties, and the usual mouse and key events.

Master It How will you map certain members of a constituent control to custom members
of the compound control?

Build custom controls from scratch. User-drawn controls are the most flexible custom
controls, because you’re in charge of the control’s functionality and appearance. Of course, you

Petroutsos c12.tex V2 - 01/28/2008 2:25pm Page 460

460 CHAPTER 12 BUILDING CUSTOM WINDOWS CONTROLS

have to implement all the functionality of the control from within your code, so it takes sub-
stantial programming effort to create user-drawn custom controls.

Master It Describe the process of developing a user-drawn custom control.

Customize the rendering of items in a ListBox control. To create an owner-drawn list
control, you must set the DrawMode property to a member of the DrawMode enumeration and
program two events: MeasureItem and DrawItem.

Master It Outline the process of creating a ListBox control that wraps the contents of
lengthy items.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 461

Chapter 13

Handling Strings, Characters,
and Dates

This chapter is a formal discussion of the .NET Framework’s string- and date-manipulation capa-
bilities. We have used strings extensively in previous chapters, and you already know many of
the properties and methods of the String class. Almost every application manipulates strings, so
String and StringBuilder are two classes that you’ll use more than any other.

Previous versions of Visual Basic provided numerous functions for manipulating strings. These
functions are supported by VB 2008, and not just for compatibility reasons; they’re part of the core
of Visual Basic. The string-manipulation functions are still a major part of Visual Basic.

Another group of functions deals with dates. The date-manipulation functions are also part
of the core of the language and were not moved to a special class. Many of these functions are
duplicated in the DateTime class, in the form of properties and methods.

In this chapter, you’ll learn how to do the following:

◆ Use the Char data type to handle characters

◆ Use the String data type to handle strings

◆ Use the StringBuilder class to manipulate large or dynamic strings

◆ Use the DateTime and TimeSpan classes to handle dates and times

Handling Strings and Characters
The .NET Framework provides two basic classes for manipulating text: the String and String-
Builder classes.

The String class exposes a large number of practical methods, and they’re all reference methods:
They don’t act on the string directly but return another string instead. After you assign a value to
a String object, that’s it. You can examine the string, locate words in it, and parse it, but you can’t
edit it. The String class exposes methods such as the Replace and Remove methods, which replace
a section of the string with another and remove a range of characters from the string, respectively.
These methods, however, don’t act on the string directly: They replace or remove parts of the
original string and then return the result as a new string.

The StringBuilder class is similar to the String class: It stores strings, but it can manipulate them
in place. In other words, the methods of the StringBuilder class are instance methods.

The distinction between the two classes is that the String class is better suited for static strings,
whereas the StringBuilder class is better suited for dynamic strings. Use the String class for strings
that don’t change frequently in the course of an application, and use the StringBuilder class for
strings that grow and shrink dynamically. The two classes expose similar methods, but the String

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 462

462 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

class’s methods return new strings; if you need to manipulate large strings extensively, using the
String class might fill the memory quite quickly.

Any code that manipulates strings must also be able to manipulate individual characters. The
Framework supports the Char class, which not only stores characters but also exposes numer-
ous methods for handling them. Both the String and StringBuilder classes provide methods for
storing strings into arrays of characters, as well as for converting character arrays into strings.
After extracting the individual characters from a string, you can process them with the members
of the Char class. We’ll start our discussion of the text-handling features of the Framework with
an overview of the Char data type, and we’ll continue with the other two major components, the
String and StringBuilder classes.

The Char Class
The Char data type stores characters as individual, double-byte (16-bit), Unicode values; and it
exposes methods for classifying the character stored in a Char variable. You can use methods
such as IsDigit and IsPunctuation on a Char variable to determine its type, and other similar
methods that can simplify your string validation code.

To use a character variable in your application, you must declare it with a statement such as
the following one:

Dim ch As Char
ch = Convert.ToChar(”A”)

The expression ”A” represents a string, even if it contains a single character. Everything you
enclose in double quotes is a string. To convert it to a character, you must cast it to the Char
type. If the Strict option is off (which is the default value), you need not perform the conversion
explicitly. If the Strict option is on, you must use one of the CChar() or the CType() functions, or
the Convert class, to convert the single-character string in the double quotes to a character value, as
shown in the preceding statement. There’s also a shorthand notation for converting one-character
strings to characters — just append the c character to a single-character string:

Dim ch As Char = ”A”c

If you let the compiler decipher the type of the variable from its value, a single-character string
will be interpreted as a string, not a Char data type. If you later assign a string value to a Char
variable by using a statement such as the following, only the first character of the string will be
stored in the ch variable:

ch = ”ABC” ‘ the value ”A” is assigned to ch!

Properties

The Char class provides two trivial properties: MaxValue and MinValue. They return the largest
and smallest character values you can represent with the Char data type.

Methods

The Char data type exposes several useful methods for handling characters. All the methods
described here have the same syntax: They accept either a single argument, which is the character
they act upon, or a string and the index of a character in the string on which they act.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 463

HANDLING STRINGS AND CHARACTERS 463

GetNumericValue

This method returns a positive numeric value if called with an argument that is a digit, and the
value −1 otherwise. If you call the GetNumericValue with the argument 5, it will return the
numeric value 5. If you call it with the symbol @, it will return the value −1.

GetUnicodeCategory

This method returns a numeric value that is a member of the UnicodeCategory enumeration
and identifies the Unicode group to which the character belongs. The Unicode groups charac-
ters into categories such as math symbols, currency symbols, and quotation marks. Look up the
UnicodeCategory enumeration in the documentation for more information.

IsLetter, IsDigit, IsLetterOrDigit

These methods return a True/False value indicating whether their argument, which is a character,
is a letter, decimal digit, or letter/digit, respectively. You can write an event handler by using the
IsDigit method to accept numeric keystrokes and to reject letters and punctuation symbols.

We commonly use these methods to intercept keystrokes from within a control’s KeyPress (or
KeyUp and KeyDown) events. The e.KeyChar property of the e argument returns the character that
was pressed by the user and that fired the KeyPress event. To reject non-numeric keys as the user
enters text in a TextBox control, use the event handler shown in Listing 13.1.

Listing 13.1: Rejecting Non-numeric Keystrokes

Private Sub TextBox1 KeyPress(...)
Handles TextBox1.KeyPress

Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) or Char.IsControl(c)) Then

e.Handled = True
End If

End Sub

This code ignores any keystrokes that don’t represent numeric digits and are not control
characters. Control characters are not rejected, because we want users to be able to edit the text
on the control. The Backspace key, for example, is captured by the KeyPress event, and you
shouldn’t ‘‘kill’’ it. For more information on handling keystrokes from within your code, see the
section ‘‘Capturing Keystrokes’’ in Chapter 6, ‘‘Basic Windows Controls.’’ If the TextBox control
is allowed to accept fractional values, you should allow the period character as well, by using the
following If clause:

Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) or c = ”.” or

Char.IsControl(c)) Then
e.Handled = True

End If

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 464

464 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

IsLower, IsUpper

These methods return a True/False value indicating whether the specified character is lowercase
or uppercase, respectively.

IsNumber

This method returns a True/False value indicating whether the specified character is a number.
The IsNumber method takes into consideration hexadecimal digits (the characters 0123456789-
ABCDEF) in the same way as the IsDigit method does for decimal numbers.

IsPunctuation, IsSymbol, IsControl

These methods return a True/False value indicating whether the specified character is a
punctuation mark, symbol, or control character, respectively. The Backspace and Esc keys, for
example, are ISO (International Organization for Standardization) control characters.

IsSeparator

This method returns a True/False value indicating whether the character is categorized as a
separator (space, new-line character, and so on).

IsWhiteSpace

This method returns a True/False value indicating whether the specified character is white
space. Any sequence of spaces, tabs, line feeds, and form feeds is considered white space. Use
this method along with the IsPunctuation method to remove all characters in a string that are
not words.

ToLower, ToUpper

These methods convert their argument to a lowercase or uppercase character, respectively, and
return it as another character.

ToString

This method converts a character to a string. It returns a single-character string, which you can use
with other string-manipulation methods or functions.

The String Class
The String class implements the String data type, which is one of the richest data types in terms of
the members it exposes. We have used strings extensively in earlier chapters, but this is a formal
discussion of the String data type and all of the functionality it exposes.

To create a new instance of the String class, you simply declare a variable of the String type.
You can also initialize it by assigning to the corresponding variable a text value:

Dim title As String = ”Mastering VB2008”

Everything enclosed in double quotes is a string, even if it’s the representation of a number.
String objects are immutable: Once created, they can’t be modified. The names of some of the

methods of the String class may lead you to think that they change the value of the string, but
they don’t; instead, they return a new string. The Replace method, for example, doesn’t replace

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 465

HANDLING STRINGS AND CHARACTERS 465

any characters in the original string, but it creates a new string, replaces some characters, and then
returns the new string:

Dim title As String = ”Mastering VB 2008”
Dim newTitle As String
newTitle = title.Replace(”VB”, ”Visual Basic”)
‘ to replace the original string use the statement:
title = title.Replace(”VB”, ”Visual Basic”)

The Replace method, like all other methods of the String class, doesn’t operate directly on the
string to which it’s applied. Instead, it creates a new string and returns it as a new string. You can
also use Visual Basic’s string-manipulation functions to work with strings. For example, you can
replace the string VB with Visual Basic by using the following statement:

newTitle = Replace(title, ”VB”, ”Visual Basic”)

Like the methods of the String class, the string-manipulation functions don’t act on the original
string; they return a new string.

If you plan to create and manipulate long strings in your code often, use the StringBuilder
class instead, which is extremely fast compared to the String class and VB’s string-manipulation
functions. This doesn’t mean that the String data type is obsolete, of course. The String class
exposes many more methods for handling strings (such as locating a smaller string in a larger
one, comparing strings, changing individual characters, and so on). The StringBuilder class, on
the other hand, is much more efficient when you build long strings bit by bit, when you need to
remove part of a string, and so on. To achieve its speed, however, it consumes considerably more
memory than the equivalent String variable. The methods of both classes are presented in the
following sections.

Properties

The String class exposes only two properties, the Length and Chars properties, which return a
string’s length and its characters, respectively. Both properties are read-only.

Length

The Length property returns the number of characters in the string and is read-only. To find out
the number of characters in a string variable, use the following statement:

chars = myString.Length

You can apply the Length property to any expression that evaluates to a string. The following
statement formats the current date in long date format (this format includes the day’s and month’s
names) and then retrieves the string’s length:

StrLen = Format(Now(), ”dddd, MMMM dd, yyyy”).Length

The Format() function, which formats numbers and dates, is discussed in Chapter 2, ‘‘The
Visual Basic 2008 Language.’’ The function returns a string, so we can call this expression’s Length
property.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 466

466 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Chars

The Chars property is an array of characters that holds all the characters in the string. Use this
property to read individual characters from a string based on their location in the string (the index
of the first character in the array is zero). The Chars array is read-only, and you can’t edit a string
by setting individual characters.

The loop detailed in Listing 13.2 rejects strings (presumably passwords) that are fewer than six
characters long and don’t contain a special symbol.

Listing 13.2: Validating a Password

Private Function ValidatePassword(
ByVal password As String) As Boolean

If password.Length < 6 Then
MsgBox(

”The password must be at least 6 characters long”)
Return False

End If
Dim i As Integer
Dim valid As Boolean = False
For i = 0 To password.Length - 1

If Not Char.IsLetterOrDigit(password.Chars(i)) Then
Return True

End If
Next
MsgBox(”The password must contain at least one ” &

”character that is not a letter or a digit.”)
Return False

End Function

The code checks the length of the user-supplied string and makes sure that it’s at least six
characters long. If not, it issues a warning and returns False. Then it starts a loop that scans all
the characters in the string. Each character is accessed by its index in the string. If one of them
is not a letter or digit — in which case the IsLetterOrDigit method will return False — the
function terminates and returns True to indicate a valid password. If the loop is exhausted, the
password argument contains no special symbols, and the function displays another message and
returns False.

Methods

All the functionality of the String class is available through methods, which are described next.
They are all shared methods: They act on a string and return a new string with the modified value.

Compare

This method compares two strings and returns a negative value if the first string is less than
the second, a positive value if the second string is less than the first, and zero if the two strings are

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 467

HANDLING STRINGS AND CHARACTERS 467

equal. Of course, the simplest method of comparing two strings is to use the comparison operators,
as shown here:

If name1 < name 2 Then
‘ name1 is alphabetically smaller than name 2

Else If name 1 > name 2 Then
‘ name2 is alphabetically smaller than name 1

Else
‘ name1 is the same as name2

End If

The Compare method is overloaded, and the first two arguments are always the two strings
to be compared. The method’s return value is 0 if the two strings are equal, 1 if the first string is
smaller than the second, and −1 if the second is smaller than the first. The simplest form of the
method accepts two strings as arguments:

String.Compare(str1, str2)

The following form of the method accepts a third argument, which is a True/False value and
determines whether the search will be case-sensitive (if True) or not:

String.Compare(str1, str2, case)

Another form of the Compare method allows you to compare segments of two strings. Its syntax
is as follows:

String.Compare(str1, index1, str2, index2, length)

index1 and index2 are the starting locations of the segment to be compared in each string. The
two segments must have the same length, which is specified by the last argument.

The following statements return the values highlighted below each:

Debug.WriteLine(str.Compare(”the quick brown fox”,
”THE QUICK BROWN FOX”))

-1
Debug.WriteLine(str.Compare(”THE QUICK BROWN FOX”,

”the quick brown fox”))
1
Debug.WriteLine(str.Compare(”THE QUICK BROWN FOX”,

”THE QUICK BROWN FOX”))
0

If you want to specify a case-sensitive search, append yet another argument and set it to True.
The forms of the Compare method that perform case-sensitive searches can accept yet another
argument, which determines the CultureInfo object to be used in the comparison. (This argument
applies to some combination of characters in foreign languages, such as Turkish.)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 468

468 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

CompareOrdinal

The CompareOrdinal method compares two strings similar to the Compare method, but it doesn’t
take into consideration the current locale. This method returns zero if the two strings are the same,
and a positive or negative value if they’re different. These values, however, are not 1 and −1; they
represent the numeric difference between the Unicode values of the first two characters that are
different in the two strings.

Concat

This method concatenates two or more strings (places them one after the other) and forms a new
string. The simpler form of the Concat method has the following syntax and it is equivalent to the
& operator:

newString = String.Concat(string1, string2)

This statement is equivalent to the following:

newString = string1 & string2

A more-useful form of the same method concatenates a large number of strings stored in an
array:

newString = String.Concat(strings())

To use this form of the method, store all the strings you want to concatenate into a string
array and then call the Concat method. If you want to separate the individual strings with special
delimiters, append them to each individual string before concatenating them. Or you can use the
Join method discussed later in this section. The Concat method simply appends each string to the
end of the previous one. If you want to concatenate very long strings or a large number of strings,
you should use the StringBuilder class.

Copy

The Copy method copies the value of one string variable to another. Notice that the value to be
copied must be passed to the method as an argument. The Copy method doesn’t apply to the
current instance of the String class. Most programmers will use the assignment operator and will
never bother with the Copy method.

EndsWith, StartsWith

These two methods return True if their argument ends or starts with a user-supplied substring.
The syntax of these methods is as follows:

found = str.EndsWith(string)
found = str.StartsWith(string)

These two methods are equivalent to the Left() and Right() functions, which extract a given
number of characters from the left or right end of the string, respectively. The two statements
following the declaration of the name variable are equivalent:

Dim name As String = ”Visual Basic.NET”
If Left(name, 3) = ”Vis” Then ...
If String.StartsWith(”Vis”) Then ...

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 469

HANDLING STRINGS AND CHARACTERS 469

Notice that the comparison performed by the StartsWith method is case-sensitive. If you
don’t care about the case, you can convert both the string and the substring to uppercase, as in the
following example:

If name.ToUpper.StartsWith(”VIS”) Then ...

IndexOf, LastIndexOf

These two methods locate a substring in a larger string. The IndexOf method starts searching
from the beginning of the string, and the LastIndexOf method starts searching from the end of
the string. Both methods return an integer, which is the order of the substring’s first character
in the larger string (the order of the first character is zero).

To locate a string within a larger one, use the following forms of the IndexOf method:

pos = str.IndexOf(searchString)
pos = str.IndexOf(SearchString, startIndex)
pos = str.IndexOf(SearchString, startIndex, endIndex)

The startIndex and the endIndex arguments delimit the section of the string where the search
will take place, and pos is an integer variable.

The last three overloaded forms of the IndexOf method search for an array of characters in
the string:

str.IndexOf(Char())
str.IndexOf(Char(), startIndex)
str.IndexOf(Char(), startIndex, endIndex)

The following statement will return the position of the string Visual in the text of the TextBox1
control or will return −1 if the string isn’t contained in the text:

Dim pos As Integer
pos = TextBox1.IndexOf(”Visual”)

Both methods perform a case-sensitive search, taking into consideration the current locale. To
make case-insensitive searches, use uppercase for both the string and the substring. The following
statement returns the location of the string visual (or VISUAL, Visual, and even vISUAL) within
the text of TextBox1:

Dim pos As Integer
pos = TextBox1.Text.ToUpper.IndexOf(”VISUAL”)

The expression TextBox1.Text is the text on the control and its type is String. First, we apply
the method ToUpper to convert the text to uppercase. Then we apply the IndexOf method to this
string to locate the first instance of the word VISUAL.

IndexOfAny

This is an interesting method that accepts as an argument an array of arguments and returns
the first occurrence of any of the array’s characters in the string. The syntax of the IndexOfAny
method is

Dim pos As Integer = str.IndexOfAny(chars)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 470

470 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

where chars is an array of characters. This method attempts to locate the first instance of any
member of the chars array in the string. If the character is found, its index is returned. If not, the
process is repeated with the second character, and so on until an instance is found or the array has
been exhausted. If you want to locate the first delimiter in a string, call the IndexOfAny method
with an array such as the following:

Dim chars() As Char = {”.”c, ”,”c, ”;”c, ” ”c}
Dim mystring As String = ”This is a short sentence”
Debug.WriteLine(mystring.IndexOfAny(chars))

When the last statement is executed, the value 4 will be printed in the Output window. This
is the location of the first space in the string. Notice that the space delimiter is the last one in the
chars array.

To locate the first number in a string, pass the nums array to the IndexOfAny method, as shown
in the following example:

Dim nums() As Char = {”1”c, ”2”c, ”3”c, ”4”c, ”5”c,
”6”c, ”7”c, ”8”c, ”9”c, ”0”c}

Insert

The Insert method inserts one or more characters at a specified location in a string and returns
the new string. The syntax of the Insert method is as follows:

newString = str.Insert(startIndex, subString)

startIndex is the position in the str variable, where the string specified by the second argu-
ment will be inserted. The following statement will insert a dash between the second and third
characters of the string CA93010.

Dim Zip As String = ”CA93010”
Dim StateZip As String
StateZip = Zip.Insert(2, ”-”)

The StateZip string variable will become CA-93010 after the execution of these statements.

Join

This method joins two or more strings and returns a single string with a separator between the
original strings. Its syntax is the following, where separator is the string that will be used as the
separator, and strings is an array with the strings to be joined:

newString = String.Join(separator, strings)

If you have an array of many strings and you want to join a few of them, you can specify the
index of the first string in the array and the number of strings to be joined by using the following
form of the Join method:

newString = String.Join(
separator, strings, startIndex, count)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 471

HANDLING STRINGS AND CHARACTERS 471

The following statement will create a full path by joining folder names:

Dim path As String
Dim folders(3) As String = {”My Documents”, ”Business”, ”Expenses”}
path = String.Join(”/”, folders)

The value of the path variable after the execution of these statements will be as follows:

My Documents/Business/Expenses

Split

Just as you can join strings, you can split a long string into smaller ones by using the Split method,
whose syntax is the following, where delimiters is an array of characters and str is the string to
be split:

strings() = String.Split(delimiters, str)

The string is split into sections that are separated by any one of the delimiters specified with
the first argument. These strings are returned as an array of strings.

Splitting Strings with Multiple Separators

The delimiters array allows you to specify multiple delimiters, which makes it a great tool for iso-
lating words in a text. You can specify all the characters that separate words in text (spaces, tabs, peri-
ods, exclamation marks, and so on) as delimiters and pass them along with the text to be parsed to
the Split method.

The statements in Listing 13.3 isolate the parts of a path, which are delimited by a backslash
character.

Listing 13.3: Extracting a Path’s Components

Dim path As String = ”c:\My Documents\Business\Expenses”
Dim delimiters() As Char = {”\”c}
Dim parts() As String
parts = path.Split(delimiters)
Dim iPart As IEnumerator
iPart = parts.GetEnumerator
While iPart.MoveNext

Debug.WriteLine(iPart.Current.tostring)
End While

If the path ends with a slash, the Split method will return an extra empty string. If you want
to skip the empty strings, pass an additional argument to the function, which is a member of the
StringSplitOptions enumeration: None or RemoveEmptyEntries.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 472

472 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Notice that the parts array is declared without a size. It’s a one-dimensional array that will be
dimensioned automatically by the Split method, according to the number of substrings separated
by the specified delimiter(s). The second half of the code iterates through the parts of the path and
displays them in the Output window.

If you execute the statements of Listing 13.3 (place them in a button’s Click event handler and
run the program), the following strings will be printed in the Output window:

c:
My Documents
Business
Expenses

If you add the colon character to the list of delimiters, the first string will be C instead of C:.

Remove

The Remove method removes a given number of characters from a string, starting at a specific
location, and returns the result as a new string. Its syntax is the following, where startIndex is
the index of the first character to be removed in the str string variable and count is the number
of characters to be removed:

newSrting = str.Remove(startIndex, count)

Replace

This method replaces all instances of a specified character (or substring) in a string with a new
one. It creates a new instance of the string, replaces the characters as specified by its arguments,
and returns this string. The syntax of this method is

newString = str.Replace(oldChar, newChar)

where oldChar is the character in the str variable to be replaced, and newChar is the char-
acter to replace the occurrences of oldChar. You can also specify strings instead of characters as
arguments to the Replace method. The string after the replacement is returned as the result of
the method. The following statements replace all instances of the tab character with a single space.
You can change the last statement to replace tabs with a specific number of spaces — usually three,
four, or five spaces.

Dim txt, newTxt As String
Dim vbTab As String = vbCrLf
txt = ”some text with two tabs”
newTxt = txt.Replace(vbTab, ” ”)

Use the following statements to replace all instances of VB 2005 in a string with the substring
VB 2008:

Dim txt, newTxt As String
txt = ”Welcome to VB 2005”
newTxt = txt.Replace(”VB 2005”, ”VB 2008”)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 473

HANDLING STRINGS AND CHARACTERS 473

PadLeft, PadRight

These two methods align the string left or right in a specified field and return a fixed-length string
with spaces to the right (for right-padded strings) or to the left (for left-padded strings). After the
execution of these statements

Dim LPString, RPString As String
RPString = ”[” & ”Mastering VB”.PadRight(20) & ”]”
LPString = ”[” & ”Mastering VB”.PadLeft(20) & ”]”

the values of the LPString and RPString variables are as follows:

[Mastering VB]
[Mastering VB]

There are eight spaces to the left of the left-padded string and eight spaces to the right of the
right-padded string.

Another form of these methods allows you to specify the character to be used in padding the
strings with an additional argument.

You can use the padding methods for visual alignment only if you’re using a monospaced
font such as Courier. These two methods can be used to create text files with rows made up
of fields that have a fixed length (a common task in transferring data to legacy applications on
mainframes).

The StringBuilder Class
The StringBuilder class stores dynamic strings and exposes methods to manipulate them much
faster than the String class. As you will see, the StringBuilder class is extremely fast, but it uses
considerably more memory than the string it holds. To use the StringBuilder class in an applica-
tion, you must import the System.Text namespace (unless you want to fully qualify each instance
of the StringBuilder class in your code). Assuming that you have imported the System.Text class
in your code module, you can create a new instance of the class via the following statement:

Dim txt As New StringBuilder

Because the StringBuilder class handles dynamic strings in place, it’s good to declare in advance
the size of the string you intend to store in the current instance of the class. The default capacity is
16 characters, and it’s doubled automatically every time you exceed it. To set the initial capacity
of the StringBuilder class, use the Capacity property.

To create a new instance of the StringBuilder class, you can call its constructor without any
arguments, or pass the initial string as an argument:

Dim txt As New StringBuilder(”some string”)

If you can estimate the length of the string you’ll store in the variable, you can specify this
value by using the following form of the constructor, so that the variable need not be resized
continuously as you add characters to it:

Dim txt As New StringBuilder(initialCapacity)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 474

474 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

The size you specify is not a hard limit; the variable might grow longer at runtime, and the
StringBuilder will adjust its capacity.

If you want to specify a maximum capacity for your StringBuilder variable, use the following
constructor:

Dim txt As New StringBuilder (
intialcapacity, maxCapacity)

Finally, you can initialize a new instance of the StringBuilder class by using both an initial and
a maximum capacity, as well as its initial value, by using the following form of the constructor:

Dim txt As New StringBuilder(
string, intialcapacity, maxCapacity)

Properties

You have already seen the two basic properties of the StringBuilder class: the Capacity and
MaxCapacity properties. In addition, the StringBuilder class provides the Length and Chars
properties, which are the same as the corresponding properties of the String class. The Length
property returns the number of characters in the current instance of the StringBuilder class, and
the Chars property is an array of characters. Unlike the Chars property of the String class, this one
is read/write. You can not only read individual characters, but also set them from within your
code. The index of the first character is zero.

Methods

Many of the methods of the StringBuilder class are equivalent to the methods of the String class,
but they act directly on the string to which they’re applied, and they don’t return a new string.

Append

The Append method appends a base type to the current instance of the StringBuilder class, and its
syntax is the following, where the value argument can be a single character, a string, a date, or
any numeric value:

SB.Append(value)

When you append numeric values to a StringBuilder, they’re converted to strings; the value
appended is the string returned by the type’s ToString method. You can also append an object to
the StringBuilder — the actual string that will be appended is the value of the object’s ToString
property. Another form of the Append method allows you to append an array of characters, and it
has the following syntax:

SB.Append(chars, startIndex, count)

Or, you can append a segment of a string by specifying the starting location of the segment in
the string and the number of characters to be copied:

SB.Append(string, startIndex, count)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 475

HANDLING STRINGS AND CHARACTERS 475

AppendFormat

The AppendFormat method is similar to the Append method. Before appending the string, how-
ever, AppendFormat formats it. The string to be appended contains format specifications and the
appropriate values. The syntax of the AppendFormat method is as follows:

SB.AppendFormat(string, values)

The first argument is a string with embedded format specifications, and values is an array with
values (objects, in general) — one for each format specification in the string argument. If you
have a small number of values to format, up to four, you can supply them as separate arguments
separated by commas:

SB.AppendFormat(string, value1, value2, value3, value4)

The following statement appends the string Your balance as of Thursday, August 2, 2007 is
$19,950.40 to a StringBuilder variable:

Dim statement As New StringBuilder
statement.AppendFormat(

”Your balance as of {0:D} is ${1: #,###.00}”,
#8/2/2007#, 19950.40)

Each format specification is enclosed in a pair of curly brackets, and they’re numbered sequen-
tially (from zero). Then there’s a colon followed by the actual specification. The D format spec-
ification tells the AppendFormat method to format the specified string in long date format. The
second format specification, #,###.00, uses the thousands separator and two decimal digits for
the amount.

The following statements append the same string, but they pass the values through an array:

Dim accountStatement As New StringBuilder
Dim values() As Object = {#8/2/2007#, 19950.4}
accoutnStatement.AppendFormat(

”Your balance as of {0:D} is ${1:#,###.00} ”, values)

In both cases, the accountStatement variable will hold a string like this one:

Your balance as of Wednesday,
August 2, 2007 is $19,950.40

For more information on date and time formatting options, see the description of the ToString
method of the Date type, later in this chapter.

Insert

This method inserts a string into the current instance of the StringBuilder class, and its syntax is as
follows:

SB.Insert(index, value)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 476

476 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

The index argument is the location where the new string will be inserted in the current instance
of the StringBuilder, and value is the string to be inserted. As with the Append method, the value
argument can be any object. The Insert method will insert the string returned by the object’s
ToString method. This means that you can use the Insert method to insert numeric values and
dates directly into a StringBuilder variable.

A variation of the syntax shown here inserts multiple copies of the specified string into the
StringBuilder:

SB.Insert(index, string, count)

Yet another form of the Insert method inserts an array of characters at the location specified
by the index argument in the current instance of the StringBuilder (chars is a properly declared
and initialized array of characters):

SB.Insert(index, chars)

Remove

This method removes a number of characters from the current StringBuilder, starting at a specified
location; its syntax is the following, where startIndex is the position of the first character to be
removed from the string, and count is the number of characters to be removed:

SB.Remove(startIndex, count)

Replace

This method replaces all instances of a string in the current StringBuilder object with another
string. The syntax of the Replace method is the following, where the two arguments can be either
strings or characters:

SB.Replace(oldValue, newValue)

Unlike the String class, the replacement takes place in the current instance of the StringBuilder
class and the method doesn’t return another string. Another form of the Replace method limits
the replacements to a specified segment of the StringBuilder instance:

SB.Replace(oldValue, newValue, startIndex, count)

This method will replace all instances of oldValue with newValue in the section starting at
location startIndex and extending count characters from the starting location.

ToString

Use this method to convert the StringBuilder instance to a string and assign it to a String variable.
The ToString method returns the string represented by the StringBuilder variable to which it’s
applied.

VB 2008 at Work: The StringReversal Project
To get an idea of how efficiently the StringBuilder manipulates strings, Figure 13.1 shows an
application that reverses a string. The program reverses two strings — one declared as String,

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 477

HANDLING STRINGS AND CHARACTERS 477

and another one declared as StringBuilder. Note that neither the String nor the StringBuilder class
exposes a method for reversing the order of the characters in a string. Actually, the String
class exposes a Reverse method, which returns a collection of characters — the least useful
implementation of a string reversal method, in my humble opinion. However, you can use the
StrReverse() function in this project to reverse a string with a single function call. In this example,
we’ll reverse the strings by swapping individual characters to time the two classes.

Figure 13.1

The StringReversal
project’s main form

On my computer, it took less than a hundredth of a second to reverse a string of approximately
90,000 characters (the text of this chapter) with the StringBuilder class and nearly 15 seconds to do
the same with the String class. Obviously, the StringBuilder class is optimized for manipulating
strings dynamically. If you have VB 6 applications that manipulate strings extensively, port them
to VB 2008, replace the string variables with instances of the StringBuilder class, and watch them
run circles around the old applications written with the String class.

The StringReversal project reads the text on the TextBox control and appends it to the STR
StringBuilder variable. Then it goes through the first half of the string, one character at a time,
and swaps it with the matching character in the second half of the array. The first character in
the string, STR.Chars(0), is swapped with the last character, STR.Chars(STR.Length-1).
The second character, STR.Chars(1), is swapped with the second-to-last character, STR.Chars
(STR.Length − 2), and so on. Notice that we subtract one from the indices because the indexing
of the characters in both String and StringBuilder variables starts at zero, and the location of the
last character is the length of the string minus one. The code stores the length of the StringBuilder
to the txtLen variable to avoid calling the Length property at each iteration.

Listing 13.4 shows the code that reverses a string by using a StringBuilder variable; this is the
code behind the Reverse Text (StringBuilder) button. The actual implementation contains a few
statements that time the operation, which are not shown in the listing.

Listing 13.4: Reversing a StringBuilder Variable

Dim STR As New StringBuilder()
Dim txtLen As Integer = TextBox1.Text.Length
STR.Capacity = txtLen
STR.Append(TextBox1.Text)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 478

478 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Dim ichar As Integer
Dim chr As Char
For ichar = 0 To Convert.ToInt32(txtLen / 2 - 1)

chr = STR.Chars(ichar)
STR.Chars(ichar) = STR.Chars(txtLen - ichar - 1)
STR.Chars(txtLen - ichar - 1) = chr

Next
Dim revCrLf As String
revCrLf = vbCrLf.Chars(1) & vbCrLf.Chars(0)
STR.Replace(revCrLf, vbCrLf)
TextBox1.Text = STR.ToString

To reverse a string variable, we use the string-manipulation functions of VB, because the String
class doesn’t provide any methods that act directly on the string (you cannot even manipulate
a string through its Chars property, because this property is read-only). Unlike the methods of
the StringBuilder class, the equivalent VB functions use the index 1 for the first character of the
string. The Mid() function extracts a character from a string, and the Mid statement replaces one of
the existing characters with another one. Listing 13.5 is the code of the Click event handler of the
Reverse Text (String) button. The project contains a few more statements to time the operations,
and they’re discussed in the following section.

Listing 13.5: Reversing a String Variable

Dim txt As String = TextBox1.Text
Dim txtLen As Integer = txt.Length
Dim aChar As String
For iChar As Integer = 1 To

Convert.ToInt32(txtLen / 2))
aChar = Mid(txt, iChar, 1)
Mid(txt, iChar, 1) =

Mid(txt, txtLen - iChar + 1, 1)
Mid(txt, txtLen - iChar + 1) = aChar

Next
Dim revCrLf As String = vbCrLf.Chars(1) &

vbCrLf.Chars(0)
txt = txt.Replace(revCrLf, vbCrLf)
TextBox1.Text = txt

Notice the statement that replaces carriage returns and line feeds. On the TextBox control, each
line is terminated with the sequence Chr(10) & Chr(13) (the vbCrLf constant). When the order
of these two characters is reversed, they will no longer change lines on the TextBox control. This
statement restores the line-feed/carriage-return combination back to its original state.

To reverse the characters by using the String data type, I’ve used the straightforward approach
that most VB developers would. The string-manipulation functions are so slow compared
to the methods of the StringBuilder class, there just had to be a better way. Indeed, you can store
the characters that make up the text in an array and then reverse the elements of this array.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 479

HANDLING STRINGS AND CHARACTERS 479

The operation is much faster than using string-manipulation functions; it takes almost half a
second to reverse a 90,000 character string. However, it takes the StringBuilder class a few mil-
liseconds to do the same. If you’re interested in seeing an example of manipulating a string as an
array of characters, see the code behind the Reverse Text (Chars) button on the application’s form.
The core of the string reversal code is the following:

Dim chars() As Char = txt.ToCharArray
Dim reversedChars() As Char = chars.ToArray
For iChar As Integer = 0 To

Convert.ToInt32(Math.Floor(txtLen / 2)) - 1
reversedChars.SetValue(

chars(iChar), (txtLen - iChar - 1))
reversedChars.SetValue(

chars(txtLen - iChar - 1), iChar)
Next
TextBox1.Text = reversedChars

VB 2008 at Work: The CountWords Project
The StringBuilder class doesn’t provide as many methods as the String class. It’s used primarily to
build long strings and manipulate them dynamically. If you want to locate words or other patterns
in the text, align strings in fixed-length fields, and perform other similar operations, use the String
class. We frequently combine both classes in an application: the StringBuilder class for its speed
and the String class for its manipulation methods. To extract the text from a StringBuilder, use its
ToString method. To assign a string to the StringBuilder variable, use its Append method:

Dim strB As New StringBuilder
Dim str1, str2 As String
str1 = ”some text”
strB.Append(str1)
‘ statements to process the strB variable
str2 = strB.ToString

The ToString method of the StringBuilder class returns a string, which can be processed
with the methods of the String class. For instance, the StringBuilder class lacks the IndexOf and
LastIndexOf methods. To locate an instance of a word in a StringBuilder variable, use the follow-
ing statement, where SB is a properly declared and initialized StringBuilder variable and pos is
the index of the first instance of the word visual in the StringBuilder’s text:

pos = SB.ToString.IndexOf(”visual”)

The CountWords application, shown in Figure 13.2, counts all instances of a user-supplied
word in a StringBuilder variable. You can do the same with the String class, but if you want to
further process the text, you’ll have to use the StringBuilder class anyway.

The program prompts the user for a string and attempts to locate it in the text by using the
following statement:

startIndex = SB.ToString.ToUpper.IndexOf(searchWord.ToUpper)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 480

480 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Figure 13.2

The CountWords project
counts the instances of
a user-supplied word
in a text.

The preceding statement performs the search operation by using the uppercase of the string and
the search argument to avoid mismatches due to the casing of the strings. The sample project sets
up a loop that locates one instance of the user-supplied word at a time. The following statement
searches for the word in the text, starting at the location startIndex + searchWord.Length + 1.
This expression is the location of the first character following the most recently located instance of
the search argument in the text. At each iteration of the loop, the IndexOf method starts searching
for the word in the text following the previous instance of the word. Here’s the statement that
locates the next instance of the word in the text:

startIndex =
SB.ToString.ToUpper.IndexOf(searchWord.ToUpper,

startIndex + searchWord.length + 1)

This statement appears in a loop that’s repeated for as long as the startIndex variable is
positive. When all instances of the word in the text have been located, the IndexOf method returns
the value −1 and the loop terminates. The complete code of the Count Words button is shown in
Listing 13.6.

Listing 13.6: The CountWords Project’s Code

Dim SB As New System.[Text].StringBuilder()
Dim searchWord As String
searchWord = InputBox(

”Please enter the word to search for”,
”StringBuilder Search Example”, ”BASIC”)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 481

HANDLING DATES AND TIMES 481

Dim startIndex As Integer
SB.Append(Textbox1.Text)
startIndex =

SB.ToString.ToUpper.IndexOf(searchWord.ToUpper)
Dim count As Integer
If startIndex = -1 Then

MsgBox(”No instances of the string found”)
End If
While startIndex >= 0 And startIndex +

searchWord.Length < SB.Length
count = count + 1
startIndex = SB.ToString.ToUpper.IndexOf(

searchWord.ToUpper,
startIndex + searchWord.Length + 1)

End While
Dim msg As String
msg = ”Located ” & count.ToString &

” instances of the word ” & searchWord &
””” in the text”

MsgBox(msg)
End Sub

When executed, this code will pop up a message box with a statement like the following:

Located 22 instances of the word in 270 milliseconds

The last few statements calculate the time it took the program to locate all the instances of the
word with the methods of the TimeSpan object, which is discussed in the following section.

Handling Dates and Times
Another common task in coding business applications is the manipulation of dates and times. To
aid the coding of these tasks, the Framework provides the DateTime and TimeSpan classes. The
DateTime class handles date and time values, whereas the TimeSpan class handles date and time
differences. Date is a data type, and there’s no equivalent class in the Framework. All date variables
are implemented by the DateTime class in the Framework. In effect, the Date data type is an alias
for the DateTime data type, and both types are implemented by the System.DateTime class of the
Framework.

The DateTime Class
The DateTime class is used for storing date and time values, and it’s one of the Framework’s
base data types. Date and time values are stored internally as Double numbers. The integer part
of the value corresponds to the date, and the fractional part corresponds to the time. To con-
vert a DateTime variable to a Double value, use the method ToOADateTime, which returns a
value that is an OLE (Object Linking and Embedding) Automation-compatible date. The value
0 corresponds to midnight of December 30, 1899. The earliest date you can represent as an OLE

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 482

482 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Automation-compatible date corresponds to the Double value is −657,434, and it’s the first day of
the year 100.

To initialize a DateTime variable, supply a date value enclosed in a pair of pound symbols. If
the value contains time information, separate it from the date part by using a space:

Dim date1 As Date = #4/15/2007#
Dim date2 As Date = #4/15/2007 2:01:59#

If you have a string that represents a date, and you want to assign it to a DateTime variable for
further processing, use the DateTime class’s Parse and ParseExact methods. The Parse method
parses a string and returns a date value if the string can be interpreted as a date value. Let’s say
your code prompts the user for a date and then it uses it in date calculations. The user-supplied
date is read as a string, and you must convert it to a date value:

Dim sDate1 As String
Dim dDate1 As DateTime
sDate1 = InputBox(”Please enter a date after 1/1/2002”)
Try

dDate1 = DateTime.Parse(sDate1)
‘ use dDate1 in your calculations

Catch exc As Exception
MsgBox(”You’ve entered an invalid date”)

End Try

The Parse method will convert a string that represents a date to a DateTime value, regardless
of the format of the date. You can enter dates such as 1/17/2007, Jan. 17, 2007, or January 17, 2007
(with or without the comma). The ParseExact method allows you to specify more options, such
as the possible formats of the date value.

Different Cultures, Different Dates

Different cultures use different date formats, and Windows supports them all. However, you must
make sure that the proper format is selected in the Regional And Language Options. By default, dates
are interpreted as specified by the current date format in the target computer’s regional settings.
The Parse method allows you to specify the culture to be used in the conversion. The following
statements prompt the user for a date value and then interpret it in a specific culture (I’m using the
English date format for the example):

Dim sDate1 As String
Dim dDate1 As DateTime
sDate1 = InputBox(”Please enter a date”)
Try

Dim culture As CultureInfo =
New CultureInfo(”en-GB”, True)

dDate1 = DateTime.Parse(sDate1, culture)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 483

HANDLING DATES AND TIMES 483

Debug.WriteLine(dDate1.ToLongDateString)
Catch exc As Exception

MsgBox(”You’ve entered an invalid date”)
End Try

To use the CultureInfo class in your code, you must import the System.Gobalization namespace in
your project. These statements will convert any English date regardless of the regional settings. If you
enter the string 16/3/2007 in the input box, the preceding statements will produce the following
output:

Friday, March 16, 2007

Let’s see how the same date will be parsed in two different cultures. Insert the following code seg-
ment in a button’s Click event handler:

Dim sDate1 As String
Dim dDate1 As DateTime
sDate1 = InputBox(”Please enter a date”)
Try

Dim culture As CultureInfo =
New CultureInfo(”en-GB”, True)

dDate1 = DateTime.Parse(sDate1, culture)
Debug.WriteLine(dDate1.ToLongDateString)
culture = New CultureInfo(”en-US”, True)
dDate1 = DateTime.Parse(sDate1, culture)
Debug.WriteLine(dDate1.ToLongDateString)

Catch exc As Exception
MsgBox(”You’ve entered an invalid date”)

End Try

The method ToLongDateString returns the verbose description of the date, so that we can read the
name of the month instead of guessing it. Run the code and enter a date that can be interpreted dif-
ferently in the two cultures, such as 4/9/2007. The following output will be produced:

Tuesday, September 04, 2007
Monday, April 09, 2007

If the month part of the date exceeds 12, the exception handler will be activated. Dates are always a
tricky issue in programming, and you should include the appropriate culture in the Parse method
so that user-supplied dates will be converted correctly, even if the user’s culture hasn’t been set cor-
rectly in the regional settings.

Properties

The DateTime class exposes the following properties, which are straightforward.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 484

484 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Date, TimeOfDay

The Date property returns the date from a date/time value and sets the time to midnight. The
TimeOfDay property returns the time part of the date. The following statements

Dim date1 As DateTime
date1 = Now()
Debug.WriteLine(date1)
Debug.WriteLine(date1.Date)
Debug.WriteLine(date1.TimeOfDay)

will print something like the following values in the Output window:

8/5/2007 9:41:55 AM
8/5/2007 12:00:00 AM
09:41:55.5296000

DayOfWeek, DayOfYear

These two properties return the day of the week (a string such as Monday) and the number of the
day in the year (an integer from 1 to 365, or 366 for leap years), respectively.

Hour, Minute, Second, Millisecond

These properties return the corresponding time part of the date value passed as an argument. If
the current time is 9:47:24 p.m., the three properties of the DateTime class will return the integer
values 9, 47, and 24 when applied to the current date and time:

Debug.WriteLine(”The current time is ” & Date.Now.ToString)
Debug.WriteLine(”The hour is ” & Date.Now.Hour)
Debug.WriteLine(”The minute is ” & Date.Now.Minute)
Debug.WriteLine(”The second is ” & Date.Now.Second)

Day, Month, Year

These three properties return the day of the month, the month, and the year of a DateTime value,
respectively. The Day and Month properties are numeric values, but you can convert them to the
appropriate string (the name of the day or month) with the WeekDayName() and MonthName()
functions. Both functions accept as an argument the number of the day (a value from 1 to 7)
or month (from 1 to 13), and they return the name. Use the value 13 with a 13-month calendar
(applies to non-U.S. and non-European calendars). They also accept a second optional argument
that is a True/False value and indicates whether the function should return the abbreviated name
(if True) or full name (if False). The WeekDayName() function accepts a third optional argument,
which determines the first day of the week. Set this argument to one of the members of the
FirstDayOfWeek enumeration. By default, the first day of the week is Sunday.

Ticks

This property returns the number of ticks from a date/time value. Each tick is 100 nanoseconds
(or 0.0001 milliseconds). To convert ticks to milliseconds, multiply them by 10,000 (or use the
TimeSpan object’s TicksPerMillisecond property, discussed later in this chapter). We use this

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 485

HANDLING DATES AND TIMES 485

property to time operations precisely: The Ticks property is a long value, and you can read its
value before and after the operation you want to time. The difference between the two values is
the duration of the operation in tenths of nanoseconds. Divide it by 10,000 to get the duration in
milliseconds.

Methods

The DateTime class exposes several methods for manipulating dates. The most practical methods
add and subtract time intervals to and from an instance of the DateTime class.

Compare

Compare is a shared method that compares two date/time values and returns an integer value
indicating the relative order of the two values. The syntax of the Compare method is the following,
where date1 and date2 are the two values to be compared:

order = System.DateTime.Compare(date1, date2)

The method returns an integer, which is −1 if date1 is less than date2, 0 if they’re equal, and 1
if date1 is greater than date2. Of course, you can compare dates directly with a statement such as
this one:

If date1 > date2 Then ...

When comparing dates, keep in mind that older dates are smaller than newer dates. The pre-
ceding comparison is true if date1 follows date2. You can also use the Subtract method to find
out the difference between two dates in days, weeks, months, and years.

DaysInMonth

This shared method returns the number of days in a specific month. Because February contains a
variable number of days depending on the year, the DaysInMonth method accepts as arguments
both the month and the year:

monDays = DateTime.DaysInMonth(year, month)

FromOADate

This shared method creates a date/time value from an OLE Automation-compatible date.

newDate = DateTime.FromOADate(dtvalue)

The argument dtvalue must be a Double value in the range from −657,434 (first day of year
100) to 2,958,465 (last day of year 9999).

IsLeapYear

This shared method returns a True/False value that indicates whether the specified year is a
leap year:

Dim leapYear As Boolean = DateTime.IsLeapYear(year)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 486

486 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Add

This method adds a TimeSpan object to the current instance of the DateTime class. The TimeSpan
object represents a time interval, and there are many methods to create a TimeSpan object, which
are all discussed in the section ‘‘The TimeSpan Class’’ later in this chapter. The following state-
ments create a new TimeSpan object that represents 3 days, 6 hours, 2 minutes, and 50 seconds
and add this TimeSpan object to the current date and time. Depending on when these statements
are executed, the two date/time values will differ, but the difference between them will always be
3 days, 6 hours, 2 minutes, and 50 seconds:

Dim TS As New TimeSpan()
Dim thisMoment As Date = Now()
TS = New TimeSpan(3, 6, 2, 50)
Debug.WriteLine(thisMoment)
Debug.WriteLine(thisMoment.Add(TS))

The values printed in the Output window when I tested this code segment were as follows:

9/1/2007 10:10:49 AM
9/4/2007 4:13:39 PM

Subtract

This method is the counterpart of the Add method; it subtracts a TimeSpan object from the current
instance of the DateTime class and returns another Date value.

Adding Intervals to Dates

Various methods add specific intervals to a date/time value. Each method accepts the number
of intervals to add (days, hours, milliseconds, and so on) to the current instance of the DateTime
class. These methods are the following: AddYears, AddMonths, AddDays, AddHours, AddMinutes,
AddSeconds, AddMilliseconds, and AddTicks. As stated earlier, a tick is 100 nanoseconds and is
used for really fine timing of operations. None of the Add xxx methods act on the current instance
of the DateTime class; instead, they return a new DateTime value with the appropriate value.

To add 3 years and 12 hours to the current date, use the following statements:

Dim aDate As Date
aDate = Now()
aDate = aDate.AddYears(3)
aDate = aDate.AddHours(12)

If the argument is a negative value, the corresponding intervals are subtracted from the current
instance of the class.

ToString

This method converts a date/time value to a string, using a specific format. The DateTime class
recognizes numerous format patterns, which are listed in the following two tables. Table 13.1 lists
the standard format patterns, and Table 13.2 lists the characters that can format individual parts
of the date/time value. You can combine the custom format characters to format dates and times
in any way you wish.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 487

HANDLING DATES AND TIMES 487

The syntax of the ToString method is the following, where formatSpec is a format
specification:

aDate.ToString(formatSpec)

The D named date format, for example, formats a date value as a long date; the following
statement will return the highlighted string shown below the statement:

Debug.Writeline(#9/17/2010#.ToString(”D”))
Friday, September 17, 2010

Table 13.1 lists the named formats for the standard date and time patterns. The format
characters are case-sensitive — for example, g and G represent slightly different patterns.

Table 13.1: The Date and Time Named Formats

Named Format Output Format Name

d MM/dd/yyyy ShortDatePattern

D dddd, MMMM dd, yyyy LongDatePattern

F dddd, MMMM dd, yyyy
HH:mm:ss.mmm

FullDateTimePattern (long date and
long time)

f dddd, MMMM dd, yyyy HH:mm.ss FullDateTimePattern (long date and
short time)

g MM/dd/yyyy HH:mm general (short date and short time)

G MM/dd/yyyy HH:mm:ss General (short date and long time)

M, m MMMM dd MonthDayPattern (month and day)

r, R ddd, dd MMM yyyy HH:mm:ss GMT RFC1123Pattern

s yyyy-MM-dd HH:mm:ss SortableDateTimePattern

t HH:mm ShortTimePattern (short time)

T HH:mm:ss LongTimePattern (long time)

u yyyy-MM-dd HH:mm:ss UniversalSortableDateTimePattern
(sortable GMT value)

U dddd, MMMM dd, yyyy HH:mm:ss UniversalSortableDateTimePattern
(long date, long GMT time)

Y, y MMMM, yyyy YearMonthPattern (month and year)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 488

488 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Table 13.2: Date Format Specifier

Format Character Description

d The date of the month

ddd The day of the month with a leading zero for single-digit days

ddd The abbreviated name of the day of the week (a member of the
AbbreviatedDayNames enumeration)

dddd The full name of the day of the week (a member of the DayNamesFormat
enumeration)

M The number of the month

MM The number of the month with a leading zero for single-digit months

MMM The abbreviated name of the month (a member of the AbbreviatedMonthNames
enumeration)

MMMM The full name of the month

y The year without the century (the year 2001 will be printed as 1)

yy The year without the century (the year 2001 will be displayed as 01)

yyyy The complete year

gg The period or era (this pattern is ignored if the date to be formatted does not
have an associated period, such as A.D. or B.C.)

h The hour in 12-hour format

hh The hour in 12-hour format with a leading zero for single-digit hours

H The hour in 24-hour format

HH The hour in 24-hour format with a leading zero for single-digit hours

m The minute of the hour

mm The minute of the hour with a leading zero for single-digit minutes

s The second of the hour

ss The second of the hour with a leading zero for single-digit seconds

t The first character in the a.m./p.m. designator

tt The a.m./p.m. designator

z The time-zone offset (applies to hours only)

zz The time-zone offset with a leading zero for single-digit hours (applies to
hours only)

zzz The full time-zone offset (hour and minutes) with leading zeros for single-digit
hours and minutes

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 489

HANDLING DATES AND TIMES 489

The following examples format the current date by using all the format patterns listed in
Table 13.1. An example of the output produced by each statement is shown under each statement,
indented and highlighted.

Debug.WriteLine(now().ToString(”d”))
6/1/2008

Debug.WriteLine(now().ToString(”D”))
Sunday, June 01, 2008

Debug.WriteLine(now().ToString(”f”))
Sunday, June 01, 2008 10:29 AM

Debug.WriteLine(now().ToString(”F”))
Sunday, June 01, 2008 10:29:35 AM

Debug.WriteLine(now().ToString(”g”))
6/1/2008 10:29 AM

Debug.WriteLine(now().ToString(”G”))
6/1/2008 10:29:35 AM

Debug.WriteLine(now().ToString(”m”))
June 01

Debug.WriteLine(now().ToString(”r”))
Sun, 01 Jun 2008 10:29:34 GMT

Debug.WriteLine(now().ToString(”s”))
2008-06-01T10:29:35

Debug.WriteLine(now().ToString(”t”))
10:29 AM

Debug.WriteLine(now().ToString(”T”))
10:29:00 AM

Debug.WriteLine(now().ToString(”u”))
2008-06-01 10:29:35Z

Debug.WriteLine(now().ToString(”U”))
Sunday, June 01, 2008 7:29:35 AM

Debug.WriteLine(now().Format(”y”))
June, 2008

Table 13.2 lists the format characters that can be combined to build custom format date and
time values. The patterns are case-sensitive. If the custom pattern contains spaces or characters
enclosed in single quotation marks, these characters will appear in the formatted string.

The following examples format the current time by using a few of the format patterns listed in
Table 13.2. The output produced by each statement is shown under each statement, indented and
highlighted.

Debug.WriteLine(now().ToString(”m/d/yyyy”))
6/1/2008

Debug.WriteLine(now().ToString(”dddd”))
Sunday

Debug.WriteLine(now().ToString(”M/yyyy”))
6/2008

Debug.WriteLine(now().ToString(”MMM”))

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 490

490 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Jun
Debug.WriteLine(now().ToString(”MMMM”))

June
Debug.WriteLine(now().ToString(”yyyy”))

2008
Debug.WriteLine(now().ToString(”HH”))

10
Debug.WriteLine(now().ToString(”h:m:s”))

10:48:41
Debug.WriteLine(now().ToString(”hh:mm:ss”))

10:48:41
Debug.WriteLine(now().ToString(”h:m:s t”))

10:48:41 A
Debug.WriteLine(now().ToString(”zzz”))

+03:00

To display the full month name and the day in the month, for instance, use the following
statement:

Debug.WriteLine(now().ToString(”MMMM d”))
July 27

You may have noticed some overlap between the named formats and the format characters.
The character d signifies the short date pattern when used as a named format, and the number
of the day when used as format character. The compiler figures out how it’s used based on the
context. If the format argument is d/mm, it will display the day and month number, whereas the
format argument d, mmm will display the number of the day followed by the month’s name. If you
use the character d on its own, however, it will be interpreted as the named format for the short
date format.

Date Conversion Methods

The DateTime class supports methods for converting a date/time value to many of the other base
types, which are presented here briefly.

ToFileTime, FromFileTime

The ToFileTime method converts the value of the current Date instance to the format of the local
system file time. There’s also an equivalent FromFileTime method, which converts a file time
value to a Date value.

ToLongDateString, ToShortDateString

These two methods convert the date part of the current DateTime instance to a string with
the long (or short) date format. The following statement will return a value like the one
highlighted, which is the long date format:

Debug.WriteLine(Now().ToLongDateString)
Tuesday, July 15, 2008

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 491

HANDLING DATES AND TIMES 491

ToLongTimeString, ToShortTimeString

These two methods convert the time part of the current instance of the Date class to a string
with the long (or short) time format. The following statement will return a value like the one
highlighted:

Debug.WriteLine(Now().ToLongTimeString)
6:40:53 PM

ToOADate

This method converts the DateTime instance into an OLE Automation-compatible date (a long
value).

ToUniversalTime, ToLocalTime

ToUniversalTime converts the current instance of the DateTime class into universal coordinated
time (UCT). If you convert the local time of a system in New York to UCT, the value returned by
this method will be a date/time value that’s five hours ahead. The date may be the same or the
date of the following day. If the statement is executed after 7 p.m. local time, the date will be that
of the following day. The method ToLocalTime converts a UCT time value to local time.

Dates as Numeric Values

The Date type encapsulates complicated operations, and it’s worth taking a look at the inner
workings of the classes that handle dates and times. Let’s declare two variables to experiment a
little with dates: a Date variable, which is initialized to the current date, and a Double variable.

Dim Date1 As Date = Now()
Dim dbl As Double

Insert a couple of statements to convert the date to a Double value and print it:

dbl = Date1.ToOADate
Debug.WriteLine(dbl)

On the date I tested this code, June 1, 2007, the value was 39234.6418796643. The integer part of
this value is the date, and the fractional part is the time. If you add one day to the current date and
then convert it to a double again, you’ll get a different value:

dbl = (Now().AddDays(1)).ToOADate
Debug.WriteLine(dbl)

This time, the value 39235.6426065857 was printed; its integer part is tomorrow’s value. You
can add two days to the current date by adding (48 × 60) minutes. The original integer part of the
numeric value will be increased by two:

dbl = Now().AddMinutes(48 * 60).ToOADate
Debug.WriteLine(dbl)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 492

492 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

The value printed this time will be 39236.6435319329.
Let’s see how the date-manipulation methods deal with leap years. We’ll add 10 years to the

current date via the AddYears method, and we’ll print the new value with a single statement:

Debug.WriteLine(Now().AddYears(10).ToLongDateString)

The value that will appear in the Immediate window will be Thursday, June 01, 2017. The
Double value of this date is 42887.6470126852. If you add 3,650 days, you’ll get a different value
because the 10-year span contains at least two leap years:

Debug.WriteLine(Now().AddDays(3650).ToLongDateString)
Debug.WriteLine(Now().AddDays(3650).ToOADate)

The new value that will be printed in the Immediate window will be Monday, May 29, 2004,
and the corresponding Double value will be 42884.6450151968.

Can you figure out what time it was when I executed the preceding statements? If you multiply
the fractional part (0.6426065857) by 24, you’ll get 15.4225580568, which is 15:00 hours and some
minutes. If you multiply the fractional part of this number by 60, you’ll get 25.353483408, which
is 25 minutes and some seconds. Finally, you can multiply the new fractional part by 60 to get the
number of seconds: 21.20900448. So, it was 3:25:21 p.m. And the last fractional part corresponds to
209 milliseconds.

The TimeSpan Class
The last class discussed in this chapter is the TimeSpan class, which represents a time interval and
can be expressed in many different units — from ticks and milliseconds to days. The TimeSpan
is usually the difference between two date/time values, but you can also create a TimeSpan for a
specific interval and use it in your calculations.

To use the TimeSpan variable in your code, just declare it with a statement such as the
following:

Dim TS As New TimeSpan

To initialize the TimeSpan object, you can provide the number of days, hours, minutes, seconds,
and milliseconds that make up the time interval. The following statement initializes a TimeSpan
object to a duration of 9 days, 12 hours, 1 minute, and 59 seconds:

Dim TS As TimeSpan = New TimeSpan(9, 12, 1, 59)

As you have seen, the difference between two dates calculated by the Date.Subtract method
returns a TimeSpan value. You can initialize an instance of the TimeSpan object by creating two
date/time values and getting their difference, as in the following statements:

Dim TS As New TimeSpan
Dim date1 As Date = #4/11/1985#
Dim date2 As Date = Now()
TS = date2.Subtract(date1)
Debug.WriteLine(TS)

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 493

HANDLING DATES AND TIMES 493

Depending on the day on which you execute these statements, they will print something like
the following in the Output window:

8086.15:37:01.6336000

The days are separated from the rest of the string with a period, whereas the time parts
are separated with colons. Notice that a TimeSpan object might represent an interval of many
years, but it doesn’t provide members to report months or years. The difference represented
by this value is 8,086 days, 15 hours, 37 minutes, 1 second, and 633,600 nanoseconds (or 633.6
milliseconds).

Properties

The TimeSpan type exposes the properties described in the following sections. Most of these
properties are shared.

Field Properties

TimeSpan exposes the simple properties shown in Table 13.3, which are known as fields and are
all shared.

Table 13.3: The Fields of the TimeSpan Object

Property Returns

Empty An empty TimeSpan object

MaxValue The largest interval you can represent with a TimeSpan object

MinValue The smallest interval you can represent with a TimeSpan object

TicksPerDay The number of ticks in a day

TicksPerHour The number of ticks in an hour

TicksPerMillisecond The number of ticks in a millisecond

TicksPerMinute The number of ticks in one minute

TicksPerSecond The number of ticks in one second

Zero A TimeSpan object of zero duration

Interval Properties

In addition to the fields, the TimeSpan class exposes two more groups of properties that return
the various intervals in a TimeSpan value (shown in Tables 13.4 and 13.5). The members of the
first group of properties return the number of specific intervals (days, hours, and so on) in a
TimeSpan value. The second group of properties returns the entire TimeSpan’s duration in one of
the intervals recognized by the TimeSpan method.

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 494

494 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Table 13.4: The Intervals of a TimeSpan Value

Property Returns

Days The number of whole days in the current TimeSpan.

Hours The number of whole hours in the current TimeSpan.

Milliseconds The number of whole milliseconds in the current TimeSpan. The largest value of
this property is 999.

Minutes The number of whole minutes in the current TimeSpan. The largest value of this
property is 59.

Seconds The number of whole seconds in the current TimeSpan. The largest value of this
property is 59.

Ticks The number of whole ticks in the current TimeSpan.

Table 13.5: The Total Intervals of a TimeSpan Value

Property Returns

TotalDays The number of days in the current TimeSpan

TotalHours The number of hours in the current TimeSpan

TotalMilliseconds The number of whole milliseconds in the current TimeSpan

TotalMinutes The number of whole minutes in the current TimeSpan

TotalSeconds The number of whole seconds in the current TimeSpan

If a TimeSpan value represents 2 minutes and 10 seconds, the Seconds property will return
the value 10. The TotalSeconds property, however, will return the value 130, which is the total
duration of the TimeSpan in seconds.

Similar Method Names, Different Results

Be very careful when choosing the property to express the duration of a TimeSpan in a specific
interval. The Seconds property is totally different from the TotalSeconds property. Because both
properties will return a value, you may not notice that you’re using the wrong property for the task
at hand.

Duration

This property returns the duration of the current instance of the TimeSpan class. The duration
is expressed as the number of days followed by the number of hours, minutes, seconds, and

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 495

HANDLING DATES AND TIMES 495

milliseconds. The following statements create a TimeSpan object of a few seconds (or minutes,
if you don’t mind waiting) and print its duration in the Output window. The first few statements
initialize a new instance of the DateTime type, the T1 variable, to the current date and time. Then
a message box is displayed that prompts to click the OK button to continue. Wait for several
seconds before closing the message box. The last group of statements subtracts the T1 variable
from the current time and displays the duration (how long you kept the message box open on
your screen):

Dim T1, T2 As DateTime
T1 = Now
MsgBox(”Click OK to continue”)
T2 = Now
Dim TS As TimeSpan
TS = T2.Subtract(T1)
Debug.WriteLine(”Total duration = ” & TS.Duration.ToString)
Debug.WriteLine(”Minutes = ” & TS.Minutes.ToString)
Debug.WriteLine(”Seconds = ” & TS.Seconds.ToString)
Debug.WriteLine(”Ticks = ” & TS.Ticks.ToString)
Debug.WriteLine(”Milliseconds = ” & TS.TotalMilliseconds.ToString)
Debug.WriteLine(”Total seconds = ” & TS.TotalSeconds.ToString)

If you place these statements in a button’s Click event handler and execute them, you’ll see a
series of values like the following in the Immediate window:

Total duration = 00:01:34.2154752
Minutes = 1
Seconds = 34
Ticks = 942154752
Milliseconds = 94215,4752
Total seconds = 94,2154752

The duration of the TS TimeSpan is 1 minute and 34 seconds. Its total duration in milliseconds
is 94,215.4752, or 94.2154752 seconds.

Methods

There are various methods for creating and manipulating instances of the TimeSpan class, and
they’re described in the following sections.

Interval Methods

The methods in Table 13.6 create a new TimeSpan object of a specific duration. The TimeSpan’s
duration is specified as a number of intervals, accurate to the nearest millisecond.

All methods accept a single argument, which is a Double value that represents the number of
the corresponding intervals (days, hours, and so on).

Parse(string)

This method creates a new TimeSpan object from a string with the TimeSpan format (days;
followed by a period; followed by the hours, minutes, and seconds separated by colons). The

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 496

496 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

following statements create a new TimeSpan variable with a duration of 3 days, 12 hours, 20
minutes, 30 seconds, and 500 milliseconds:

Dim SP As New TimeSpan()
SP = TimeSpan.Parse(”3.12:20:30.500”)
Debug.WriteLine(SP)
3.12:20:30.5000000

Table 13.6: Interval Methods of the TimeSpan Object

Method Creates a New TimeSpan of This Length

FromDays Number of days specified by the argument

FromHours Number of hours specified by the argument

FromMinutes Number of minutes specified by the argument

FromSeconds Number of seconds specified by the argument

FromMilliseconds Number of milliseconds specified by the argument

FromTicks Number of ticks specified by the argument

Add

This method adds a TimeSpan object to the current instance of the class; its syntax is the following,
where TS, TS1, and newTS are all TimeSpan variables:

newTS = TS.Add(TS1)

The following statements create two TimeSpan objects and then add them:

Dim TS1 As New TimeSpan = ”1:00:01”
Dim TS2 As New TimeSpan = ”2:01:09”
Dim TS As New TimeSpan
TS = TS1.Add(TS2)

The duration of the new TimeSpan variable is 3 hours, 1 minute, and 10 seconds. A more-
practical example is the following, which constructs a TimeSpan object by using the From xxx
methods described in the preceding section. The following statements create a TimeSpan object
with a duration of 3 hours, 2 minutes, 16 seconds, and 500 milliseconds:

Dim TS As New system.TimeSpan()
TS = System.TimeSpan.FromHours(3)
TS = TS.Add(System.TimeSpan.FromMinutes(2))
TS = TS.Add(TimeSpan.FromSeconds(16))
TS = TS.Add(TimeSpan.FromMilliseconds(500))

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 497

THE BOTTOM LINE 497

Subtract

The Subtract method subtracts a TimeSpan object from the current instance of the TimeSpan
class. The following statements create two TimeSpan objects with different durations. Then, the
two time spans are subtracted and their difference is printed in three different ways:

Dim T1, T2 As TimeSpan
T1 = New TimeSpan(3, 9, 10, 12)
T2 = New TimeSpan(0, 1, 0, 59, 3)
Dim TS As TimeSpan = T2.Subtract(T1)
Debug.WriteLine(TS.Duration())
Debug.WriteLine(TS.Days)
Debug.WriteLine(TS.TotalDays)

The last three statements printed the following values in the Output window:

3.08:09:12.9970000
-3
-3.33973376157407

The duration of the span is 3 days, 8 hours, 9 minutes, 12 seconds, and 997 milliseconds. The
Days method returns the number of days in the TimeSpan as a whole number. The TotalDays
method returns the TimeSpan’s duration as a number of days with a fractional part. You have
already seen how to manipulate fractional parts of a time interval in the section ‘‘Dates as Numeric
Values,’’ earlier in this chapter.

Negate

This method negates the current TimeSpan instance. A positive TimeSpan (which will yield a
future date when added to the current date) becomes negative (which will yield a past date when
added to the current date).

The Bottom Line

Use the Char data type to handle characters. The Char data type, which is implemented
with the Char class, exposes methods for handling individual characters (IsLetter, IsDigit,
IsSymbol, and so on). We use the methods of the Char class to manipulate users’ keystrokes
as they happen in certain controls (mostly the TextBox control) and to provide immediate
feedback.

Master It You want to develop an interface that contains several TextBox controls that
accept numeric data. How will you intercept the user’s keystrokes and reject any charac-
ters that are not numeric?

Use the String data type to handle strings. The String data type represents strings and
exposes members for manipulating them. Most of the String class’s methods are equivalent
to the string-manipulation methods of Visual Basic. The members of the String class are shared:
they do not modify the string to which they’re applied. Instead, they return a new string.

Master It How would you extract the individual words from a large text document?

Petroutsos c13.tex V2 - 01/28/2008 2:27pm Page 498

498 CHAPTER 13 HANDLING STRINGS, CHARACTERS, AND DATES

Use the StringBuilder class to manipulate large or dynamic strings. The StringBuilder
class is very efficient at manipulating long strings, but it doesn’t provide as many
methods for handling strings. The StringBuilder class provides a few methods to insert,
delete, and replace characters within a string. Unlike the equivalent methods of the String
class, these methods act directly on the string stored in the current instance of the String-
Builder class.

Master It Assuming that you have populated a ListView control with thousands of lines
of data from a database, how will you implement a function that copies all the data to the
Clipboard?

Use the DateTime and TimeSpan classes to handle dates and times. The Date class
represents dates and time, and it exposes many useful shared methods (such as the IsLeap
method, which returns True if the year passed to the method as an argument is leap; the
DaysInMonth method; and so on). It also exposes many instance methods (such as AddYears,
AddDays, AddHours, and so on) for adding time intervals to the current instance of the Date
class, as well as many options for formatting date and time values.

The TimeSpan class represents time intervals — from milliseconds to days — with the
FromDays, FromHours, and even FromMilliseconds methods. The difference between two
date variables is a TimeSpan value, and you can convert this value to various time units
by using methods such as TotalDays, TotalHours, TotalMilliseconds, and so on. You
can also add a TimeSpan object to a date variable to obtain another date variable.

Master It How will you use the TimeSpan class to accurately time an operation?

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 499

Chapter 14

Storing Data in Collections

One of the most common operations in programming is the storage of large sets of data. There
are databases, of course, which can store any type of data and preserve their structure as well,
but not all applications use databases. If your application needs to store custom objects, such as
the ones you designed in Chapter 10, ‘‘Building Custom Classes,’’ or a few names and contact
information, you shouldn’t have to set up a database. A simple collection like the ones described
in this chapter will suffice.

Traditionally, programmers used arrays to store related data. Because arrays can store custom
data types, they seem to be the answer to many data-storage and data-manipulation issues. Arrays,
however, don’t expose all the functionality you might need in your application. To address the
issues of data storage outside databases, the Framework provides, in addition to arrays, of course,
certain classes known as collections.

In this chapter, you’ll learn how to do the following:

◆ Make the most of arrays

◆ Store data in specialized collections such as ArrayLists and HashTables

◆ Sort and search collections

Advanced Array Topics
Arrays are indexed sets of data, and this is how we’ve used them so far in this book. In this chapter,
you will learn about additional members that make arrays extremely flexible. The System.Array
class provides methods for sorting arrays, searching for an element, and more. In the past, pro-
grammers spent endless hours writing code to perform the same operations on arrays, but the
Framework frees them from similar counterproductive tasks.

This chapter starts with a discussion of the advanced features of the Array class. After you
know how to make the most of arrays, I’ll discuss the limitations of arrays and then move on to
other collections that overcome these limitations.

Sorting Arrays
To sort an array, call its Sort method. This method is heavily overloaded and, as you will see,
it is possible to sort an array based on the values of another array, or even supply your own
custom sorting routines. If the array is sorted, you can call the BinarySearch method to locate an
element very efficiently. If not, you can still locate an element in the array by using the IndexOf
and LastIndexOf methods. The Sort method is a reference method: It requires that you supply

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 500

500 CHAPTER 14 STORING DATA IN COLLECTIONS

the name of the array to be sorted as an argument. The simplest form of the Sort method accepts
a single argument, which is the name of the array to be sorted:

Array.Sort(arrayName)

This method sorts the elements of the array according to the type of its elements, as long as the
array is strictly typed and was declared as a simple data type (String, Decimal, Date, and so on).
If the array contains data that are not of the same type, or they’re objects, the Sort method will fail.
The Array class just doesn’t know how to compare integers to strings or dates, so don’t attempt to
sort arrays whose elements are not of the same type. If you can’t be sure that all elements are of
the same type, use a Try. . .Catch statement.

You can also sort a section of the array by using the following form of the Sort method, where
startIndex and endIndex are the indices that delimit the section of the array to be sorted:

System.Array.Sort(arrayName, startIndex, endIndex)

An interesting variation of the Sort method sorts the elements of an array according to the
values of the elements in another array. Let’s say you have one array of names and another of
matching Social Security numbers. It is possible to sort the array of names according to their Social
Security numbers. This form of the Sort method has the following syntax:

System.Array.Sort(array1, array2)

array1 is the array with the keys (the Social Security numbers), and array2 is the array with
the actual elements to be sorted. This is a very handy form of the Sort method. Let’s say you have
a list of words stored in one array and their frequencies in another. Using the first form of the
Sort method, you can sort the words alphabetically. With the third form of the Sort method, you
can sort them according to their frequencies (starting with the most common words and ending
with the least common ones). The two arrays must be one-dimensional and have the same number
of elements. If you want to sort a section of the array, just supply the startIndex and endIndex
arguments to the Sort method, after the names of the two arrays.

The SortArrayByLength application, shown in Figure 14.1, demonstrates how to sort an array
based on the length of its elements (short elements appear at the top of the array, whereas longer
elements appear near the bottom of the array). First, it populates the array MyStrings with a
few strings and then it assigns the lengths of these strings to the matching elements of the array
MyStringsLen. The MyStrings(0) element’s value is Visual Basic, and the MyStringsLen(0)
element’s value is 12. After the two arrays have been populated, the code sorts the elements of the
MyStrings array according to the values of the MyStringsLen array. The statement that sorts the
array is the following:

System.Array.Sort(MyStringsLen, MyStrings)

The code, which also displays the arrays before and after sorting, is shown in Listing 14.1.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 501

ADVANCED ARRAY TOPICS 501

Figure 14.1

The SortArrayByLength
application

Listing 14.1: Sorting an Array According to the Length of Its Elements

Protected Sub Button1 Click(...) Handles Button1.Click
Dim MyStrings(3) As String
’ populate MyStrings array
Dim MyStringsLen(3) As Integer
MyStrings(0) = ”Visual Basic”
MyStrings(1) = ”C++”
MyStrings(2) = ”C#”
MyStrings(3) = ”HTML”
’ populate MyStringsLen array
Dim i As Integer
For i = 0 To UBound(MyStrings)

MyStringsLen(i) = len(MyStrings(i))
Next
ListBox1.Items.Clear()
ListBox1.Items.Add(”Original Array”)
ListBox1.Items.Add(”*************************”)
Dim str As Integer
For str = 0 To UBound(MyStrings)

ListBox1.Items.Add(MyStrings(str) & ” ” & MyStringsLen(str).ToString)
Next
ListBox1.Items.Add(”*************************”)
ListBox1.Items.Add(”Array Sorted According to String Length ”)
ListBox1.Items.Add(”*************************”)

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 502

502 CHAPTER 14 STORING DATA IN COLLECTIONS

’ sort MyStrings array based on MyStringsLen array
System.Array.Sort(MyStringsLen, MyStrings)
For str = 0 To UBound(MyStrings)

ListBox1.Items.Add(MyStrings(str) & ” ” &
MyStringsLen(str).ToString)

Next
End Sub

The output produced by the SortArrayByLength application in the ListBox control is
shown here:

Original Array

Visual Basic 12
C++ 3
C# 2
HTML 4

Array Sorted According to String Length

C# 2
C++ 3
HTML 4
Visual Basic 12

Notice that the Sort method sorts both the auxiliary array (the one with the lengths of the
strings) and the main array, so that the two arrays are always in synch. After the call to the Sort
method, the first element in the MyStrings array is C#, and the first element in the MyStringsLen
array is 2.

The array with the keys that determine the order of the elements can be anything. If the array
to be sorted holds some rectangles, you can create an auxiliary array that contains the area of the
rectangles and sort the original array according to the area of its rectangles. Likewise, an array of
colors can be sorted according to the hue or the luminance of each color component, and so on.

Another form of the Sort method uses a user-supplied function to sort arrays of custom objects.
As you recall, arrays can store all types of objects. But the Framework doesn’t know how to sort
your custom objects. To sort an array of objects, you must provide your own class that implements
the IComparer interface (basically, a function that can compare two instances of a custom class).
This form of the Sort method is described in detail in the section titled ‘‘Custom Sorting,’’ later
in this chapter. By the way, you can create a function to sort an array based on the length of its
elements or any other property of its elements, similar to the Sort method that uses the items of
an auxiliary array as keys.

Searching Arrays
Arrays can be searched in two ways: with the BinarySearch method, which works on
sorted arrays and is extremely fast, and with the IndexOf (and LastIndexOf) methods, which
work regardless of the order of the elements. All three methods search for an instance of an

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 503

ADVANCED ARRAY TOPICS 503

item and return its index, and they’re all reference methods. The IndexOf and LastIndexOf
methods are similar to the methods by the same name of the String class. They return the index
of the first (or last) instance of an object in the array, or the value −1 if the object isn’t found in
the array. Both methods are overloaded, and the simplest form of the IndexOf method is the
following, where arrayName is the name of the array to be searched and object is the item you’re
searching for:

itemIndex = System.Array.IndexOf(arrayName, object)

The LastIndexOf method’s syntax is identical, but the LastIndexOf method starts searching
from the end of the array. If the item you’re searching for is unique in the array, both methods will
return the same index.

Another form of the IndexOf and LastIndexOf methods allows you to begin the search at a
specific index:

itemIndex = System.Array.IndexOf(arrayName, object, startIndex)

This form of the method starts searching in the segment of the array from startIndex to the
end of the array. Finally, you can specify a range of indices in which the search will take place by
using the following form of the method:

itemIndex = System.Array.IndexOf(
arrayName, object, startIndex, endIndex)

You can search large arrays more efficiently with the BinarySearch method if the array is
sorted. The simplest form of the BinarySearch method is the following:

System.Array.BinarySearch(arrayName, object)

The BinarySearch method returns an integer value, which is the index of the object you’re
searching for in the array. If the object argument is not found, the method returns a negative
value, which is the negative of the index of the next larger item minus one. This transformation,
the negative of a number minus one, is called the one’s complement, and other languages provide
an operator for it: the tilde (∼). The one’s complement of 10 is −11, and the one’s complement of
−3 is 2.

Why all this complexity? Zero is a valid index, so only a negative value could indicate a
failure in the search operation. A value of −1 would indicate that the operation failed, but the
BinarySearch method does something better. If it can’t locate the item, it returns the index of the
item immediately after the desired item (the first item in the array that exceeds the item you’re
searching for). This is a near match, and the BinarySearch method returns a negative value to
indicate near matches. A near match is usually the same string with different character casing,
or a slightly different spelling. It may also be a string that’s totally irrelevant to the one you’re
searching for. Notice that there will always be a near match unless you’re searching for a value
larger than the last value in the array. In this case, the BinarySearch method will return the one’s
complement of the array’s upper bound (−100 for an array of 100 elements, if you consider that
the index of the last element is 99).

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 504

504 CHAPTER 14 STORING DATA IN COLLECTIONS

Arrays Perform Case-Sensitive Searches

The BinarySearch, IndexOf, and LastIndexOf methods perform case-sensitive searches.
However, because the BinarySearch method reports near matches, it appears as if it performs case-
insensitive searches. If the array contains the element Charles and you search for charles, the IndexOf
method will not find the string and will report a no-match, whereas the BinarySearch method will
find the element Charles and report it as a near match. My recommendation is to standardize the case
of the data and the search argument when you plan to perform searches (such as uppercase for titles,
camel case for names, and so on). To perform case-insensitive searches, you must implement your
own custom comparer, a process that’s described later in this chapter. Also the Option Compare
statement has no effect on the comparisons performed by either the BinarySearch or the
IndexOf/LastIndexOf methods.

VB2008 At Work: The ArraySearch Application

The ArraySearch application, shown in Figure 14.2, demonstrates how to handle exact and near
matches reported by the BinarySearch method. The Populate Array button populates an array
with 10,000 random strings. The same strings are also displayed in a sorted ListBox control, so you
can view them. The elements have the same order in both the array and the ListBox, so we can
use the index reported by the BinarySearch method to locate and select instantly the same item
in the ListBox.

Each of the 10,000 random strings has a random length of 3 to 15 characters. When you run the
application, message boxes will pop up, displaying the time it took for each operation: how long it
took to populate the array, how long it took to sort it, and how long it took to populate the ListBox.
You might want to experiment with large arrays (100,000 elements or more) to get an idea of how
efficiently VB 2008 handles arrays.

Figure 14.2

Searching an array and
locating the same ele-
ment in the ListBox
control

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 505

ADVANCED ARRAY TOPICS 505

The Search Array button prompts the user for a string via the InputBox() function and then
locates the string in the array by calling the BinarySearch method in the array. The result is either
an exact or a near match, and it’s displayed in a message box. At the same time, the item reported
by the BinarySearch method is also selected in the ListBox control.

Run the application, populate the ListBox control, and then click the Search Array button. Enter
an existing string (you can use lowercase or uppercase characters; it doesn’t make a difference)
and verify that the application reports an exact match and locates the item in the ListBox. The
program appears to perform case-insensitive searches because all the strings stored in the array
are in uppercase, and the search argument is also converted to uppercase before the BinarySearch
method is called. Then enter a string that doesn’t exist in the list (or the beginning of an existing
string) and see how the BinarySearch handles near matches.

The code behind the Search Array button calls the BinarySearch method and stores the integer
returned by the method to the wordIndex variable. Then it examines the value of this variable. If
wordIndex is positive, there was an exact match, and it’s reported. If wordIndex is negative, the
program calculates the one’s complement of this value, which is the index of the nearest match.
The element at this index is reported as a near match. Finally, regardless of the type of the match,
the code selects the same item in the ListBox and makes it visible. Listing 14.2 is the code behind
the Search Array button.

Listing 14.2: Locating Exact and Near Matches with BinarySearch

Private Sub bttnSearch Click(...) Handles bttnSearch.Click
Dim srchWord As String ’ the word to search for
Dim wordIndex As Integer ’ the index of the word
srchWord = InputBox(

”Enter word to search for”).ToUpper
wordIndex = System.Array.BinarySearch(words, srchWord)

If wordIndex >= 0 Then ’ exact match!
ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex
MsgBox(”An exact match was found for ” &

” the word [” & words(wordIndex) &
”] at index ” & wordIndex.ToString,,
”EXACT MATCH”)

Else ’ Near match
ListBox1.TopIndex = -wordIndex - 1
ListBox1.SelectedIndex = -wordIndex - 1
MsgBox(”The nearest match is the word [” &

words(-wordIndex - 1) & ”] at index ” &
(-wordIndex - 1).ToString, , ”NEAR MATCH”)

End If
End Sub

Notice that all methods for sorting and searching arrays work with the base data types only.
If the array contains custom data types, you must supply your own functions for comparing
elements of this type, a process described in detail in the section ‘‘Custom Sorting,’’ later in
this chapter.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 506

506 CHAPTER 14 STORING DATA IN COLLECTIONS

The Binary Search Algorithm

The BinarySearch method uses a powerful search algorithm, the binary search algorithm, but it
requires that the array be sorted. You need not care about the technical details of the implemen-
tation of a method, but in the case of the binary search algorithm, a basic understanding of how it
works will help you understand how it performs near matches.

To locate an item in a sorted array, the BinarySearch method compares the search string
to the array’s middle element. If the search string is smaller, we know that the element is in the
first half of the array and we can safely ignore the second half. The same process is repeated with
the remaining half of the elements. The search string is compared with the middle element of the
reduced array, and after the comparison, we can ignore one-half of the reduced array. At each
step, the binary search algorithm rejects one-half of the items left until it reduces the list to a single
item. This is the item we’re searching for. If not, the item is not in the list. To search a list of 1,024
items, the binary search algorithm makes 10 comparisons. At the first step, it rejects 512 elements,
then 256, then 128, and so on, until it reaches a single element. For an array of 1,024 × 1,024 (that’s
a little more than a million) items, the algorithm makes 20 comparisons to locate the desired item.

If you apply the BinarySearch method to an array that hasn’t been sorted, the method will
carry out all the steps and report that the item wasn’t found, even if the item belongs to the array.
The algorithm doesn’t check the order of the elements; it just assumes that they’re sorted. The
binary search algorithm always halves the number of elements in which it attempts to locate the
search argument. That’s why you should never apply the BinarySearch method to an array that
hasn’t been sorted yet.

To see what happens when you apply the BinarySearch method to an array that hasn’t been
sorted, remove the statement that calls the Sort method in the ArraySearch sample application.
The application will keep reporting near matches, even if the string you’re searching is present in
the array. Of course, the near match reported by the BinarySearch method in an unsorted array
isn’t close to the element you’re searching for — it’s just an element that happens to be there when
the algorithm finishes.

Performing Other Array Operations
The Array class exposes additional methods, which are described briefly in this section. The
Reverse method reverses the order of the elements in an array. The syntax of the Reverse method
is the following:

reversedArray = System.Array.Reverse(arrayName)

The Reverse method can’t be applied to an array and reverse its elements. Instead, it returns a
new array with the elements of the array passed as an argument, only in reverse order.

The Copy and CopyTo methods copy the elements of an array (or segment of an array) to another
array. The syntax of the Copy method is the following:

System.Array.Copy(sourceArray, destinationArray, count)

sourceArray and destinationArray are the names of the two arrays, and count is the number
of elements to be copied. The copying process starts with the first element of the source array
and ends after the first count elements have been copied. If count exceeds the length of either
array, an exception will be thrown.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 507

ADVANCED ARRAY TOPICS 507

Another form of the Copy method allows you to specify the range of elements in the source
array to be copied and a range in the destination array in which these elements will be copied.
The syntax of this form of the method is as follows:

System.Array.Copy(sourceArray, sourceStart,
destinationArray, destinationStart, count)

This method copies count elements from the source array, starting at location sourceStart,
and places them in the destination array, starting at location destinationStart. All indices must
be valid, and there should be count elements after the sourceStart index in the source array, as
well as count elements after the destinationStart in the destination array. If not, an exception
will be thrown.

The CopyTo method is similar, but it doesn’t require the name of the source array. It copies
the elements of the array to which it’s applied into the destination array, where sourceArray is a
properly dimensioned and initialized array:

sourceArray.CopyTo(destinationArray, sourceStart)

Finally, you can filter array elements by using the Filter() function, which is not a method
of the Array class; it’s a VB function that acts on arrays. The Filter() function performs an
element-by-element comparison and rejects the elements that don’t meet the user-specified cri-
teria. The filtered elements are returned as a new array, while the original array remains intact.
The syntax of the Filter() function is as follows:

filteredArray = Filter(source, match, include, compare)

source is the array to be searched, and it must be a one-dimensional array of strings or objects.
The match argument is the string to search for. Every element that includes the specified string
is considered a match. The remaining arguments are optional: include is a True/False value
indicating whether the method will return the elements that include (if True) or exclude (if False)
the matching elements. The compare argument is a member of the CompareMethod enumeration:
It can be Binary (for binary or case-sensitive comparisons) or Text (for textual or case-insensitive
comparisons). If no match is found, the method will return an empty array.

The following code segment filters out the strings that don’t contain the word visual from the
words array:

Dim words() As String = {”Visual Basic”, ”Java”, ”Visual Studio”}
Dim selectedWords() As String
selectedWords = Filter(words, ”visual”, True, CompareMethod.Text)
Dim selword As String
Dim msg As String = ””
For Each selword In selectedWords

msg &= selword & vbCrLf
Next
MsgBox(msg)

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 508

508 CHAPTER 14 STORING DATA IN COLLECTIONS

If you execute the preceding statements, the message box will display the following:

Visual Basic
Visual Studio

Change the last argument of the Filter function to CompareMethod.Binary, and no elements
will be displayed. The method will return an empty array, because no element contains the search
argument with the exact spelling as specified by the match argument.

Among the new array features introduced with version 3.5 of the Framework, I’ve singled
out the FindAll method, which selects multiple elements and returns them as a new array. The
FindAll method accepts two arguments: the array to be searched and a predicate, which is a
pointer to a function that selects the desired elements. Here’s the syntax of the FindAll method:

System.Array.FindAll(array, match)

The array argument must be strongly typed, and the match predicate must be a function that
accepts as an argument a value of the same type as the array. The formal syntax of the FindAll
method in the documentation is the following:

Array.FindAll(Of T)(array() As T,
match As System.Predicate(Of T)) As T()

It’s not as bad as it looks: T stands for Type. The FindAll method returns an array with ele-
ments of the T type. The array it accepts as an argument must also be of the same type. Finally, the
predicate is a function that accepts as an argument an object of the T type.

Let’s say you have an array of integers and you want to select the ones that are positive and
less than 100. Start by writing a function that accepts as an argument an integer value and returns
it if it meets the specified criteria:

Private Function smallValue(ByVal v As Integer) As Integer
If v > 0 and v < 100 Then Return v

End Function

Then call the FindAll method, passing a pointer to the smallValue() function with the
AddressOf operator:

Dim values(999) As Integer
’ statements to populate array
Dim selected() As Integer
Selected = System.Array.FindAll(values, AddressOf smallValue)

The FindAll method is a shortcut to a loop that iterates through all the elements of the array
and calls the same function to select or reject each element. The predicate is a regular function that
can get as complicated as dictated by the needs of your application.

A similar method of the Array class, the TrueForAll method, applies a function to all the
elements of the array and returns True if the function returns True for every element in the array.
You can use this method to make sure that an array’s elements are of the same type, or that they
all meet a specified requirement. The function you must provide should examine each element of

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 509

THE ARRAYLIST COLLECTION 509

the array and return True if it meets the criteria, as shown in the following sample function, which
assumes that the elements are Rectangle objects and returns True if their area exceeds 1:

Private Function largeRectangle(ByVal R As Rectangle) As Boolean
If R.Width * R.Height > 1 Then

Return True
Else

Return False
End If

End Function

The following statements show how you would use this function with the TrueForAll method.
If True, then all the elements of the Rects array are large (their area exceeds 1):

Dim Rects(10000) As Rectangle
’ statements to populate array
MsgBox(System.Array.TrueForAll(Rects, AddressOf largeRectangle))

Array Limitations
As implemented in version 3.5 of the Framework, arrays are more flexible than ever. They’re
very efficient, and the most demanding tasks programmers had to perform with arrays are now
implemented as methods of the Array class. However, arrays aren’t perfect for all types of data
storage. The most important shortcoming of arrays is that they’re not dynamic. Inserting or
removing elements entails that all the following elements be moved up or down. The ArrayList
collection is similar to the array, but it’s a dynamic structure. You can insert and remove elements
to an ArrayList without having to worry about reordering the other elements in the collection.
Arrays are the most efficient collection in the Framework, but when you need a dynamic
structure for adding and removing elements in the course of an application, you should use an
ArrayList object.

The ArrayList Collection
The ArrayList collection allows you to maintain multiple elements, similar to an array;
however, the ArrayList collection allows the insertion of elements anywhere in the collection,
as well as the removal of any element. In other words, it’s a dynamic structure that can also grow
automatically as you add/remove elements. Like an array, the ArrayList’s elements can be sorted
and searched. In effect, the ArrayList is a more ‘‘convenient’’ array, a dynamic array. You can also
remove elements by value, not only by index. If you have an ArrayList populated with names,
you remove the item Charles by passing the string itself as an argument. Notice that Charles is
not an index value; it’s the element you want to remove.

Creating an ArrayList
To use an ArrayList in your code, you must first create an instance of the ArrayList class by using
the New keyword, as in the following statement:

Dim aList As New ArrayList

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 510

510 CHAPTER 14 STORING DATA IN COLLECTIONS

The aList variable represents an ArrayList that can hold only 16 elements (the default size).
You can set the initial capacity of the ArrayList by setting its Capacity property, which is the
number of elements the ArrayList can hold. The ArrayList’s capacity can be increased or reduced
at any time, just by setting the Capacity property. You can also specify the collection’s initial
capacity in the ArrayList’s constructor:

Dim aList As New ArrayList(1000)

Notice that you don’t have to prepare the collection to accept a specific number of items. Every
time you exceed the collection’s capacity, it’s doubled automatically. However, it’s not decreased
automatically when you remove items.

The exact number of items currently in the ArrayList is given by the Count property, which is
always less than (or, at most, equal to) the Capacity property. (Both properties are expressed in
terms of items.) If you decide that you will no longer add more items to the collection, you can call
the TrimToSize method, which will set the collection’s capacity to the number of items in the list.

Adding and Removing ArrayList Items
To add a new item to an ArrayList, use the Add method, whose syntax is as follows:

index = aList.Add(obj)

aList is a properly declared ArrayList, and obj is the item you want to add to the ArrayList
collection (it could be a number, a string, or an object). The Add method appends the specified
item to the collection and returns the index of the new item. If you’re using an ArrayList named
Capitals to store the names of the state capitals, you can add an item by using the following
statement:

Capitals.Add(”Sacramento”)

If the Persons ArrayList holds variables of a custom type, prepare a variable of that type and
then add it to the collection. Let’s say you created a structure called Person by using the following
declaration:

Structure Person
Dim LastName As String
Dim FirstName As String
Dim Phone As String
Dim EMail As String

End Structure

To store a collection of Person items in an ArrayList, create a variable of the Person type, set
its fields, and then add it to the ArrayList, as shown in Listing 14.3.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 511

THE ARRAYLIST COLLECTION 511

Listing 14.3: Adding a Structure to an ArrayList

Dim Persons As New ArrayList
Dim p As New Person
p.LastName = ”Last Name”
p.FirstName = ”First Name”
p.Phone = ”Phone”
p.EMail = ”name@server.com”
Persons.Add(p)
p = New Person
p.LastName = ”another name”
{ statements to set the other fields}
Persons.Add(p)

If you execute these statements, the ArrayList will hold two items, both of the Person type.
Notice that you can add multiple instances of the same object to the ArrayList collection. To find
out whether an item belongs to the collection already, use the Contains method, which accepts as
an argument an object and returns a True or False value, depending on whether the object belongs
to the list:

If Persons.Contains(p) Then
MsgBox(”Duplicate element rejected”)

Else
Persons.Add(p)
MsgBox(”Element appended successfully”)

End If

By default, items are appended to the ArrayList. To insert an item at a specific location, use the
Insert method, which accepts as an argument the location at which the new item will be inserted
and, of course, an object to insert in the ArrayList, as shown next:

aList.Insert(index, object)

Unlike the Add method, the Insert method doesn’t return a value — the location of the new
item is already known.

You can also add multiple items via a single call to the AddRange method. This method appends
a collection of items to the ArrayList. These items could come from an array or from another
ArrayList. The following statement appends the elements of an array to the aList collection:

Dim colors() As Color = {Color.Red, Color.Blue, Color.Green}
aList.AddRange(colors)

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 512

512 CHAPTER 14 STORING DATA IN COLLECTIONS

The AddRange method in this example appends three items of the same type to the aList
collection. The array could have been declared as Object, too; it doesn’t have to be strongly typed
because the ArrayList collection is not strongly typed.

To insert a range of items anywhere in the ArrayList, use the InsertRange method. Its syntax is
the following, where index is the index of the ArrayList where the new elements will be inserted,
and objects is a collection of the elements to be inserted:

aList.InsertRange(index, objects)

Finally, you can overwrite a range of elements in the ArrayList with a new range by using
the SetRange method. To overwrite the items in locations 5 through 9 in an ArrayList, use a few
statements like the following:

Dim words() As String =
{”Just”, ”a”, ”few”, ”more”, ”words”}

aList.SetRange(5, words)

This code segment assumes that the aList collection contains at least 10 items, and it replaces
half of them.

To remove an item, use the Remove method, whose syntax is the following:

aList.Remove(object)

The object argument is the value to be removed, not an index value. If the collection contains
multiple instances of the same item, only the first instance of the object will be removed.

Notice that the Remove method compares values, not references. If the ArrayList contains a
Rectangle object, you can search for this item by creating a new Rectangle variable and setting its
properties to the properties of the Rectangle object you want to remove:

Dim R1 As New Rectangle(10, 10, 100, 100)
Dim R2 As Rectangle = R1
aList.Add(R1)
aList.Add(R2)
Dim R3 As Rectangle
R3 = New Rectangle(10, 10, 100, 100)
aList.Remove(R3)

If you execute these statements, they will add two identical rectangles to the aList ArrayList.
The last statement will remove the first of the two rectangles.

If you attempt to remove an item that doesn’t exist, no exception is thrown — simply, no item
is removed from the list. You can also remove items by specifying their index in the list via the
RemoveAt method. This method accepts as an argument the index of the item to remove, which
must be less than the number of items currently in the list.

To remove more than one consecutive item, use the RemoveRange method, whose syntax is the
following:

aList.RemoveRange(startIndex, count)

The startIndex argument is the index of the first item to be removed, and count is the number
of items to be removed.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 513

THE ARRAYLIST COLLECTION 513

The following statements are examples of the methods that remove items from an ArrayList
collection. The first two statements remove an item by value. The first statement removes an object,
and the second removes a string item. The following statement removes the third item, and the
last one removes the third through the fifth items.

aList.Remove(Color.Red)
aList.Remove(”Richard”)
aList.RemoveAt(2)
aList.RemoveRange(2, 3)

Extracting Items from an ArrayList

To access the items in the ArrayList, use an index value, similar to the array. The first item’s
index is 0 and the last item’s index is AL.Count-1, where AL is a properly initialized ArrayList
collection. You can also extract a range of items from the list by using the GetRange method. This
method extracts a number of consecutive elements from the ArrayList and stores them to a new
ArrayList, where index is the index of the first item to copy, and count is the number of items to
be copied:

newList = ArrayList.GetRange(index, count)

The GetRange method returns another ArrayList with the proper number of items. The follow-
ing statement copies three items from the aList ArrayList and inserts them at the beginning of the
bList ArrayList. The three elements copied are the fourth through sixth elements in the original
collection:

bList.InsertRange(0, aList.GetRange(3, 3))

The Repeat method, which fills an ArrayList with multiple instances of the same item, has the
following syntax:

newList = ArrayList.Repeat(item, count)

This method returns a new ArrayList with count elements, all of them being identical to the
item argument.

Another method of the ArrayList class is the Reverse method, which reverses the order of the
elements in an ArrayList collection, or a portion of it.

Sorting ArrayLists
To sort the ArrayList, use the Sort method, which has three overloaded forms:

aList.Sort()
aList.Sort(comparer)
aList.Sort(startIndex, endIndex, comparer)

The ArrayList’s Sort method doesn’t require you to pass the name of the ArrayList to be sorted
as an argument; unlike the Sort method of the Array class, this is an instance method and sorts the

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 514

514 CHAPTER 14 STORING DATA IN COLLECTIONS

ArrayList object to which it’s applied. aList is a properly declared and initialized ArrayList object.
The first form of the Sort method sorts the ArrayList alphabetically or numerically, depending on
the data type of the objects stored in it. If the items are not all of the same type, an exception will
be thrown. You’ll see how you can handle this exception shortly.

If the items stored in the ArrayList are of a data type other than the base data types, you must
supply your own mechanism to compare the objects. The other two forms of the Sort method
use a custom function for comparing items; you will see how they’re used in the section ‘‘Custom
Sorting,’’ later in this chapter. Notice that there is no overloaded form of the Sort method that
sorts a section of the ArrayList.

If the list contains items of widely different types, the Sort method will fail. To prevent
a runtime exception (the InvalidOperationException), you must make sure that all items
are of the same type. If you can’t ensure that all the items are of the same type, catch the
possible errors and handle them from within a structured exception handler, as demonstrated
in Listing 14.4.

Listing 14.4: Foolproof Sorting

Dim sorted As Boolean = True
Try

aList.Sort()
Catch SortException As InvalidOperationException

MsgBox(”You can’t sort an ArrayList whose items ” &
”aren’t of the same type”)

sorted = False
Catch GeneralException As Exception

MsgBox(”The following exception occurred:” &
vbCrLf & GeneralException.Message) sorted = False

End Try
If sorted Then

{ process sorted ArrayList}
Else

{ process unsorted list}
End If

The sorted Boolean variable is initially set to True because the Sort method will most likely
succeed. If not, an exception will be thrown, in which case the code resets the sorted variable
to False and uses it later to distinguish between sorted and unsorted collections. Notice the two
clauses of the Catch statement that distinguish between the most common exception that the Sort
method can throw (the invalid operation exception) and any other type of exception.

The Sort method can’t even sort a collection of various numeric data types. If some of its
elements are doubles and some are integers or decimals, the Sort method will fail. You must
either make sure that all the items in the ArrayList are of the same type, or provide your own
function for comparing the ArrayList’s items. The best practice is to make sure that your collection
contains items of the same type. If a collection contains items of different types, how likely is it
that you’ll have to sort such a collection?

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 515

THE ARRAYLIST COLLECTION 515

Searching ArrayLists
Like arrays, the ArrayList class exposes the IndexOf and LastIndexOf methods to search in an
unsorted list and the BinarySearch method for sorted lists. The IndexOf and LastIndexOf meth-
ods accept as an argument the object to be located and return an index:

Dim index As Integer = aList.IndexOf(object)

Here, object is the item you’re searching. The LastIndexOf method has the same syntax, but
it starts scanning the array from its end and moves backward toward the beginning. The IndexOf
and LastIndexOf methods are overloaded. The other two forms of the IndexOf method are these:

aList.IndexOf(object, startIndex)
aList.IndexOf(object, startIndex, length)

The two additional arguments determine where the search starts and ends. Both methods
return the index of the item if it belongs to the collection. If not, they return the value −1. The
IndexOf and LastIndexOf methods of the ArrayList class perform case-sensitive searches, and
they report exact matches only.

If the ArrayList is sorted, use the BinarySearch method, which accepts as an argument the
object to be located and returns its index in the collection, where object is the item you’re
looking for:

Dim index As Integer = aList.BinarySearch(object)

There are two more forms of this method. To search for an item in an ArrayList with custom
objects, use the following form of the BinarySearch method:

Dim index As Integer = aList.BinarySearch(object, comparer)

The first argument is the object you’re searching for, and the second is the name of an ICom-
parer object. Another form of the BinarySearch method allows you to search for an item in a
section of the collection; its syntax is as follows:

Dim index As Integer =
aList.BinarySearch(startIndex, length, object, comparer)

The first argument is the index at which the search will begin, and the second argument is the
length of the subrange. object and comparer are the same as with the second form of the method.

Iterating an ArrayList
To iterate through the elements of an ArrayList collection, you can set up a For. . .Next loop like
the following one:

For i = 0 To aList.Count - 1
{ process item aList(i)}

Next

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 516

516 CHAPTER 14 STORING DATA IN COLLECTIONS

This is a trivial operation, but the processing itself can get as complicated as required by
the type of objects stored in the collection. The current item at each iteration is the aList(i).
It’s recommended that you cast the object to the appropriate type and then process it.

You can also use the For Each. . .Next loop with an Object variable, as shown next:

Dim itm As Object
For Each itm In aList

{ process item itm}
Next

If all the items in the ArrayList are of the same type, you can use a variable of this type to
iterate through the collection, instead of a generic object variable. If all the elements are decimals,
for example, you can declare the itm variable as Decimal.

An even better method is to create an enumerator for the collection and use it to iterate through
its items. This technique applies to all collections and is discussed in the ‘‘Enumerating
Collections’’ section later in this chapter.

The ArrayList class addresses most of the problems associated with the Array class, but one
last problem remains — that of accessing the items in the collection through a meaningful key.
This is the problem addressed by the HashTable collection.

The HashTable Collection
As you saw, the ArrayList addresses most of the problems of the Array class, while it supports all
the convenient array features. Yet, the ArrayList, like the Array, has a major drawback: You must
access its items by an index value. Another collection, the HashTable collection, is similar to the
ArrayList, but it allows you to access the items by a key.

Each item in a HashTable has a value and a key. The value is the same value you’d store in an
array, but the key is a meaningful entity for accessing the items in the collection, and each element’s
key must be unique. Both the values stored in a HashTable and their keys can be objects. Typically,
the keys are short strings or integers.

The HashTable collection exposes most of the properties and methods of the ArrayList, with a
few notable exceptions. The Count property returns the number of items in the collection as usual,
but the HashTable collection doesn’t expose a Capacity property. The HashTable collection uses
fairly complicated logic to maintain the list of items, and it adjusts its capacity automatically.
Fortunately, you need not know how the items are stored in the collection.

To create a HashTable in your code, declare it with the New keyword:

Dim hTable As New HashTable

To add an item to the HashTable, use the Add method with the following syntax:

hTable.Add(key, value)

value is the item you want to add (it can be any object), and key is a value you supply, which
represents the item. This is the value you’ll use later to retrieve the item. If you’re setting up a
structure for storing temperatures in various cities, use the city names as keys:

Dim Temperatures As New HashTable
Temperatures.Add(”Houston”, 81)
Temperatures.Add(”Los Angeles”, 78)

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 517

THE HASHTABLE COLLECTION 517

To find out the temperature in Houston, use the following statement:

MsgBox(Temperatures(”Houston”).ToString)

Notice that you can have duplicate values, but the keys must be unique. If you attempt to use
an existing key, an InvalidArgumentException exception will be thrown. To find out whether a
specific key or value is already in the collection, use the ContainsKey and ContainsValue
methods. The syntax of the two methods is quite similar, and they return True if the specified
value is already in use in the collection:

hTable.ContainsKey(object)
hTable.ContainsValue(object)

The HashTable collection exposes the Contains method, too, which is identical to the
ContainsKey method.

To find out whether a specific key is in use already, use the ContainsKey method, as shown
in the following statements, which add a new item to the HashTable only if its key doesn’t
exist already:

Dim value As New Rectangle(100, 100, 50, 50)
Dim key As String = ”Rect1”
If Not hTable.ContainsKey(key) Then

hTable.Add(key, value)
End If

The Values and Keys properties allow you to retrieve all the values and the keys in the
HashTable, respectively. Both properties are collections and expose the usual members of a
collection. To iterate through the values stored in the HashTable hTable, use the following loop:

Dim itm As Object
For Each itm In hTable.Values

Debug.WriteLine(itm)
Next

There is only one method to remove items from a HashTable — the Remove method, which
accepts as an argument the key of the item to be removed:

hTable.Remove(key)

To extract items from a HashTable, use the CopyTo method. This method copies the items to a
one-dimensional array, and its syntax is as follows:

newArray = HTable.CopyTo(arrayName)

You must set up the array that will accept the items beforehand, but you need not supply its
dimensions in the declaration. The CopyTo method can throw several different exceptions for
various error conditions. The array that accepts the values must be one-dimensional, and there
should be enough space in the array for the HashTable’s values. Moreover, the array’s type must
be Object because a HashTable stores objects.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 518

518 CHAPTER 14 STORING DATA IN COLLECTIONS

Listing 14.5 demonstrates how to scan the keys of a HashTable through the Keys property and
then use these keys to access the matching items through the Item property.

Listing 14.5: Iterating a HashTable

Private Function ShowHashTableContents(
ByVal table As Hashtable) As String

Dim msg As String
Dim element, key As Object
msg = ”The HashTable contains ” &

table.Count.tostring & ” elements: ” & vbCrLf
For Each key In table.keys

element = table.Item(key)
msg = msg & vbCrLf
msg = msg & ” Element Type = ” & element.GetType.ToString
msg = msg & vbCrLf & ” Element Key= ” & Key.ToString
msg = msg & ” Element Value= ” & element.ToString & vbCrLf

Next
Return(msg)

End Sub

To print the contents of a HashTable variable in the Output window, call the ShowHashTable-
Contents() function, passing the name of the HashTable as an argument, and then print the string
returned by the function:

Dim HT As New HashTable
{ statements to populate HashTable}
Debug.WriteLine(ShowHashTableContents(HT))

VB 2008 at Work: The WordFrequencies Project
In this section, you’ll develop an application that counts word frequencies in a text. The Word-
Frequencies application scans text files and counts the occurrences of each word in the text. As
you will see, the HashTable is the natural choice for storing this information because you want
to access a word’s frequency by using the actual word as the key. To retrieve (or update) the
frequency of the word elaborate, for example, you will use this expression:

Words(”ELABORATE”).Value

where Words is a properly initialized HashTable object.
When the code runs into another instance of the word elaborate, it simply increases the matching

item of the Words HashTable by one:

Words(”ELABORATE”).Value += 1

Arrays and ArrayLists are out of the question because they can’t be accessed by a key. You
could also use the SortedList collection (described later in this chapter), but this collection

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 519

THE HASHTABLE COLLECTION 519

maintains its items sorted at all times. If you need this functionality as well, you can modify the
application accordingly. The items in a SortedList are also accessed by keys, so you won’t have
to introduce substantial changes in the code.

Let me start with a few remarks. First, all words we locate in the various text files will be
converted to uppercase. Because the keys of the HashTable are case-sensitive, converting them to
uppercase eliminates the usual problem of case-sensitivity (hello being a different word than Hello
and HELLO) by eliminating multiple possible spellings for the same word.

The frequencies of the words can’t be calculated instantly because we need to know the total
number of words in the text. Instead, each value in the HashTable is the number of occurrences of
a specific word. To calculate the actual frequency of the same word, we must divide this value by
the number of occurrences of all words, but this can happen only after we have scanned the entire
text file and counted the occurrences of each word.

The application’s interface is shown in Figure 14.3. To scan a text file and process its words,
click the Read Text File button. The Open dialog box will prompt you to select the text file to be
processed, and the application will display in a message box the number of unique words read
from the file. Then you can click the Show Word Count button to count the number of occurrences
of each word in the text. The last button on the form calculates the frequency of each word and
sorts the words according to their frequencies.

Figure 14.3

The WordFrequencies
project demonstrates
how to use the
HashTable collection.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 520

520 CHAPTER 14 STORING DATA IN COLLECTIONS

The application maintains a single HashTable collection, the Words collection, and it updates
this collection rather than counting word occurrences from scratch for each file you open. The
Frequency Table menu contains the commands to save the words and their counts to a disk file
and read the same data from the file. The commands in this menu can store the data either to a text
file (Save XML/Load XML commands) or to a binary file (Save Binary/Load Binary commands).
Use these commands to store the data generated in a single session, load the data in a later session,
and process more files.

The WordFrequencies application uses techniques and classes we haven’t discussed yet. The
topic of serialization is discussed in detail in Chapter 16, ‘‘XML and Object Serialization,’’ whereas
the topic of reading from (or writing to) files is discussed in Chapter 15, ‘‘Accessing Folders and
Files.’’ You don’t really have to understand the code that opens a text file and reads its lines; just
focus on the segments that manipulate the items of the HashTable.

To test the project, I used some large text files I downloaded from the Project Gutenberg website
(http://promo.net/pg/). This site contains entire books in electronic format (plain text files), and
you can borrow some files to test any program that manipulates text. (Choose some titles you will
also enjoy reading.)

The code reads the text into a string variable and then it calls the Split method of the String
class to split the text into individual words. The Split method uses the space, comma, period,
quotation mark, exclamation mark, colon, semicolon, and new-line characters as delimiters. The
individual words are stored in the Words array; after this array has been populated, the program
goes through each word in the array and determines whether it’s a valid word by calling the
IsValidWord() function. This function returns False if one of the characters in the word is not
a letter; strings such as B2B or U2 are not considered proper words. IsValidWord() is a custom
function, and you can edit it as you wish.

Any valid word becomes a key to the WordFrequencies HashTable. The corresponding value
is the number of occurrences of the specific word in the text. If a key (a new word) is added to
the table, its value is set to 1. If the key exists already, its value is increased by 1 via the following
If statement:

If Not WordFrequencies.ContainsKey(word) Then
WordFrequencies.Add(word, 1)

Else
WordFrequencies(word) = CType(WordFrequencies(word), Integer) + 1

End If

The code that reads the text file and splits it into individual words is shown in Listing 14.6. The
code reads the entire text into a string variable, the txtLine variable, and the individual words
are isolated with the Split method of the String class. The Delimiters array stores the characters
that the Split method will use as delimiters, and you can add more delimiters depending on
the type of text you’re processing. If you’re counting keywords in program listings, for example,
you’ll have to add the math symbols and parentheses as delimiters.

Listing 14.6: Splitting a Text File into Words

Private Sub bttnRead Click(...) Handles bttnRead.Click
OpenFileDialog1.DefaultExt = ”TXT”
OpenFileDialog1.Filter = ”Text|*.TXT|All Files|*.*”
If OpenFileDialog1.ShowDialog() <>

Windows.Forms.DialogResult.OK Then Exit Sub

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 521

THE HASHTABLE COLLECTION 521

Dim str As StreamReader = File.OpenText(OpenFileDialog1.FileName)
Dim txtLine As String
Dim Words() As String
Dim Delimiters() As Char =

{CType(” ”, Char), CType(”.”, Char), CType(”,”, Char),
CType(”?”, Char), CType(”!”, Char), CType(”;”, Char),
CType(”:”, Char), Chr(10), Chr(13), vbTab}

txtLine = str.ReadToEnd
Words = txtLine.Split(Delimiters)
Dim uniqueWords As Integer
Dim iword As Integer, word As String
For iword = 0 To Words.GetUpperBound(0)

word = Words(iword).ToUpper
If IsValidWord(word) Then

If Not WordFrequencies.ContainsKey(word) Then
WordFrequencies.Add(word, 1)
uniqueWords += 1

Else
WordFrequencies(word) =

CType(WordFrequencies(word), Integer) + 1
End If

End If
Next
MsgBox(”Read ” & Words.Length & ” words and found ” &

uniqueWords & ” unique words”)
RichTextBox1.Clear()

End Sub

This event handler keeps track of the number of unique words and displays them in a
RichTextBox control. In a document with 90,000 words, it took less than a second to split the
text and perform all the calculations. The process of displaying the list of unique words in
the RichTextBox control was very fast, too, thanks to the StringBuilder class. The code behind the
Show Word Count button (see Listing 14.7) displays the list of words along with the number of
occurrences of each word in the text.

Listing 14.7: Displaying the Count of Each Word in the Text

Private Sub bttnCount Click(...) Handles bttnCount.Click
Dim wEnum As IDictionaryEnumerator
Dim allWords As New System.Text.StringBuilder
wEnum = WordFrequencies.GetEnumerator
While wEnum.MoveNext

allWords.Append(wEnum.Key.ToString &
vbTab & ”-->” & vbTab &
wEnum.Value.ToString & vbCrLf)

End While
RichTextBox1.Text = allWords.ToString

End Sub

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 522

522 CHAPTER 14 STORING DATA IN COLLECTIONS

The last button on the form calculates the frequency of each word in the HashTable, sorts the
words according to their frequencies, and displays the list. Its code is detailed in Listing 14.8.

Listing 14.8: Sorting the Words According to Frequency

Private Sub bttnShow Click(...) Handles bttnSort.Click
Dim wEnum As IDictionaryEnumerator
Dim Words(WordFrequencies.Count) As String
Dim Frequencies(WordFrequencies.Count) As Double
Dim allWords As New System.Text.StringBuilder
Dim i, totCount As Integer
wEnum = WordFrequencies.GetEnumerator
While wEnum.MoveNext

Words(i) = CType(wEnum.Key, String)
Frequencies(i) = CType(wEnum.Value, Integer)
totCount = totCount + Convert.ToInt32(Frequencies(i))
i = i + 1

End While
For i = 0 To Words.GetUpperBound(0)

Frequencies(i) = Frequencies(i) / totCount
Next
Array.Sort(Frequencies, Words)
RichTextBox1.Clear()
For i = Words.GetUpperBound(0) To 0 Step -1

allWords.Append(Words(i) & vbTab & ”-->” &
vbTab & Format(100 * Frequencies(i),
”#.000”) & vbCrLf)

Next
RichTextBox1.Text = allWords.ToString

End Sub

Handling Large Sets of Data

Incidentally, my first attempt was to display the list of unique words in a ListBox control. The process
was incredibly slow. The first 10,000 words were added in a couple of seconds, but as the number of
items increased, the time it took to add them to the control increased exponentially (or so it seemed).
Adding thousands of items to a ListBox control is a very slow process. You can call the BeginUpdate/
EndUpdate methods, but they won’t help a lot. It’s likely that sometimes a seemingly simple task will
turn out to be detrimental to your application’s performance.

You should try different approaches but also consider a total overhaul of your user interface. Ask your-
self this: Who needs to see a list with 10,000 words? You can use the application to do the calculations
and then retrieve the count of selected words, display the 100 most common ones, or even display 100
words at a time. I’m displaying the list of words because this is a demonstration, but a real application

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 523

THE SORTEDLIST COLLECTION 523

shouldn’t display such a long list. The core of the application counts unique words in a text file, and
it does it very efficiently.

Even if you decide to display an extremely long list of items on your interface, you should perform
some worst-case scenarios (that is, attempt to load the control with too many items), and if this
causes serious performance problems, consider different controls. I’ve decided to append all the items
to a StringBuilder variable and then display this variable in a RichTextBox control. I could have
used a plain TextBox control — after all, I’m not formatting the list of words and their frequencies —
but the RichTextBox allowed me to specify the absolute tab positions. The tab positions of the
TextBox control are fixed and weren’t wide enough for all words.

The SortedList Collection
The SortedList collection is a combination of the Array and HashTable classes. It maintains a list
of items that can be accessed either with an index or with a key. When you access items by their
indices, the SortedList behaves just like an ArrayList; when you access items by their keys, the
SortedList behaves like a HashTable. What’s unique about the SortedList is that this collection is
always sorted according to the keys. The items of a SortedList are always ordered according to
the values of their keys, and there’s no method for sorting the collection according to the values
stored in it.

To create a new SortedList collection, use a statement such as the following:

Dim sList As New SortedList

As you might have guessed, this collection can store keys that are of the base data types. If you
want to use custom objects as keys, you must specify an argument of the IComparer type, which
tells VB how to compare the custom items. This information is crucial; without it, the SortedList
won’t be able to maintain its items sorted. You can still store items in the SortedList, but they will
appear in the order in which they were added. This form of the SortedList constructor has the
following syntax, where comparer is the name of a custom class that implements the IComparer
interface (which is discussed in detail later in this chapter):

Dim sList As New SortedList(New comparer)

There are also two more forms of the constructor, which allow you to specify the initial capacity
of the SortedList collection, as well as a Dictionary object, whose data (keys and values) will be
automatically added to the SortedList.

Like the other two collections examined in this chapter, the SortedList collection supports the
Capacity and Count properties. To add an item to a SortedList collection, use the Add method,
whose syntax is the following, where key is the key of the new item and item is the item to
be added:

sList.Add(key, item)

Both arguments are objects. But remember, if the keys are objects, the collection won’t be auto-
matically sorted; you must provide your own comparer, as discussed later in this chapter. The
Add method is the only way to add items to a SortedList collection, and all keys must be unique;
attempting to add a duplicate key will throw an exception.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 524

524 CHAPTER 14 STORING DATA IN COLLECTIONS

The SortedList class also exposes the ContainsKey and ContainsValue methods, which allow
you to find out whether a key or item already exists in the list. To add a new item, use the following
statement to make sure that the key isn’t in use:

If Not sList.ContainsKey(myKey) Then
sList.Add(myKey, myItem)

End If

It’s okay to store duplicate values in the same SortedList collection, but you can still detect the
presence of an item in the list via a similar If statement.

To replace an existing item, use the SetByIndex method, which replaces the value at a specific
index. The syntax of the method is the following, where the first argument is the index at which
the value will be inserted, and item is the new item to be inserted in the collection:

sList.SetByIndex(index, item)

This object will replace the value that corresponds to the specified index. The key, however,
remains the same. There’s no equivalent method for replacing a key; you must first remove the
item and then insert it again with its new key.

To remove items from the collection, use the Remove and RemoveAt methods. The Remove
method accepts a key as an argument and removes the item that corresponds to that key. The
RemoveAt method accepts an index as an argument and removes the item at the specified index.
To remove all the items from a SortedList collection, call its Clear method. After clearing the col-
lection, you should also call its TrimToSize method to restore its capacity to the default size (16).

VB 2008 at Work: The SortedList Project
Let’s build a SortedList and print out its elements (this section’s sample project is the SortedList
project). Listing 14.9 declares the sList SortedList and then adds 10 items to the collection. The
keys are integers, and the values are strings. The items are added in no specific order. However,
as soon as they’re added, they’re inserted at the proper location in the collection, so that their keys
are in ascending order.

Create a new project, place a button on its form, the Show Keys and Values button, and enter
the statements of Listing 14.9 in its Click event handler.

Listing 14.9: Populating a Simple SortedList

Private Sub bttnShow Click(...) Handles bttnShow.Click
Dim sList As New System.Collections.SortedList
sList.Add(116, ”item 3”): sList.Add(110, ”item 9”)
sList.Add(115, ”item 4”): sList.Add(217, ”item 2”)
sList.Add(211, ”item 8”): sList.Add(214, ”item 5”)
sList.Add(318, ”item 1”): sList.Add(312, ”item 7”)
sList.Add(319, ”item 0”): sList.Add(313, ”item 6”)

Dim SLEnum As IDictionaryEnumerator
SLEnum = sList.GetEnumerator()

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 525

THE SORTEDLIST COLLECTION 525

ListBox1.Items.Clear()
ListBox1.Items.Add(”The HashTable’s Keys and Values”)
While SLEnum.MoveNext

ListBox1.Items.Add(”Key = ” &
SLEnum.Key.ToString & ”, Value= ” &
SLEnum.Value.ToString)

End While
ListBox1.Items.Add(”The HashTable’s Values by Index”)
Dim idx As Integer
For idx = 0 To sList.Count - 1

ListBox1.Items.Add(”Item ” &
sList.GetByIndex(idx).ToString &
” is at location ” &
sList.IndexOfValue(sList.GetByIndex(idx)).ToString)

Next
ListBox1.Items.Add(”The HashTable’s Keys by Index”)
For idx = 0 To sList.Count - 1

ListBox1.Items.Add(”The key at location ” &
idx.ToString & ” is ” &
sList.GetKey(idx).ToString)

Next
End Sub

The first segment of the code populates the collection, and the second segment of the
code prints all the key-value pairs in the order in which the enumerator retrieves them. The enu-
merator is the built-in mechanism for scanning a collection’s items (it will be discussed in detail
later in this chapter).

If you execute these statements, they will produce the following output:

Key = 110, Value= item 9
Key = 115, Value= item 4
Key = 116, Value= item 3
Key = 211, Value= item 8
Key = 214, Value= item 5
Key = 217, Value= item 2
Key = 312, Value= item 7
Key = 313, Value= item 6
Key = 318, Value= item 1
Key = 319, Value= item 0

The items are sorted according to their keys, regardless of the order in which they were
inserted into the collection.

Working with Keys and Values

Let’s look now at a few methods for extracting keys and values. To find out the index of a value in
the SortedList, use the IndexOfValue method, which accepts an object as an argument. If the object
exists in the collection, it returns its index; if not, it returns the value −1. If the same value appears
more than once in the collection, the IndexOfValue property will return the first instance of the

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 526

526 CHAPTER 14 STORING DATA IN COLLECTIONS

value. Notice that the IndexOfValue property performs a case-sensitive search when applied
to strings. The following statement will return the index 6 (the item you’re looking for is in the
seventh place in the original SortedList):

Debug.WriteLine(sList.IndexOfValue(”item 7”))

You can also find out the index of a specific key, with the IndexOfKey method, whose syntax
is similar. Instead of a value, it locates a key. The following statement will return the index 3
(the key you’re looking for is in the fourth place in the SortedList):

Debug.WriteLine(sList.IndexOfKey(211))

If either the key or the value you’re searching for can’t be found, the IndexOfKey and
IndexOfValue methods will return −1.

The GetKey and GetValue methods allow you to retrieve the index that corresponds to a
specific key or value in the SortedList. Both methods accept an object as an argument and return
an index.

Finally, you can combine the two methods to retrieve the key that corresponds to a value with
a statement like the following one:

Debug.WriteLine(
sList.GetKey(sList.IndexOfValue(”item 7”)))

This statement will print the value 12, based on the contents of the sList collection in
Listing 14.9.

You can retrieve the keys in a SortedList collection and create another list by using
the GetKeyList method. Likewise, the GetValueList method returns all the values in the
SortedList. The following code extracts the keys from the sList SortedList and stores them in
the keys list. Then, it scans the list with the help of the key variable and prints all the keys:

Dim keys As IList
keys = slist.GetKeyList()
Dim key As Integer
For Each key In Keys

Debug.WriteLine(key)
Next

You can also extract both the keys and the values from a SortedList and store them in an
ArrayList, as shown here:

Dim AllKeys As New ArrayList()
AllKeys.InsertRange(0, sList.GetValueList)

Each item is stored at a specific location in the SortedList, and you can find the location of each
item via a loop like the following:

Dim idx As Integer
For idx = 0 To sList.Count - 1

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 527

OTHER COLLECTIONS 527

Debug.WriteLine(”ITEM: ” & sList.GetByIndex(idx).ToString &
” is at location ” & idx.Tostring)

Next

The partial output produced by this code segment is this:

ITEM: item 9 is at location 0
ITEM: item 4 is at location 1
ITEM: item 3 is at location 2
ITEM: item 8 is at location 3

You can also find the location of each key by using a loop like the following:

For idx = 0 To sList.Count - 1
Debug.WriteLine(”The key at location ” & idx.ToString & ” is ” &

sList.GetKey(idx).ToString)
Next

The partial output produced by the preceding code segment is as follows:

The key at location 0 is 110
The key at location 1 is 115
The key at location 2 is 116
The key at location 3 is 211

Notice that the keys are rearranged as they’re added to the list, and they’re always
physically sorted; you can’t assume that an element’s position remains the same in the course
of the application.

Remember the WordFrequencies project we built earlier to demonstrate the use of the
HashTable class? Change the declaration of the WordFrequencies variable from HashTable
to SortedList, and the project will work as before. The only difference is that the words will
appear in the RichTextBox control sorted alphabetically when you click the Show Word
Count button.

Other Collections
The System.Collections class exposes a few more collections, including the Queue and the Stack
collections. The main characteristic of these two collections is how you add and remove items to
them. When you add items to a Queue collection, the items are appended to the collection. When
you remove items, they’re removed from the top of the collection. Queues are known as last in,
first out (LIFO) structures because you can extract only the oldest item in the queue. You’d use this
collection to simulate the customer line in a bank or a production line.

The Stack collection inserts new items at the top, and you can remove only the top item.
The Stack collection is a first in, first out (FIFO) structure. You’d use this collection to emulate
the stack maintained by the CPU, one of the most crucial structures for the operating system and
applications alike. Stack and Queue collections are used heavily in computer science but hardly
ever in business applications, so I won’t discuss them further in this book.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 528

528 CHAPTER 14 STORING DATA IN COLLECTIONS

The IEnumerator and IComparer Interfaces
IEnumerator and IComparer are two classes that unlock some of the most powerful features of
collections. The proper term for IEnumerator and IComparer is interface, a term I will describe
shortly. Every class that implements the IEnumerator interface is capable of retrieving a list of
pointers for all the items in a collection, and you can use this list to iterate through the items
in a collection. Every collection has a built-in enumerator, and you can retrieve it by calling its
GetEnumerator method. Every class that implements the IComparer interface exposes the
Compare method, which tells the compiler how to compare two objects of the same type. After
the compiler knows how to compare the objects, it can sort a collection of objects with the
same type.

The IComparer interface consists of a function that compares two items and returns a value
indicating their order (which one is the smaller item or whether they’re equal). The Framework
can’t compare objects of all types; it knows only how to compare the base types. It doesn’t even
know how to compare built-in objects such as two rectangles or two color objects. If you have a
collection of colors, you might want to sort them according to their luminance, saturation, bright-
ness, and so on. Rectangles can be sorted according to their area or perimeter. The Framework
can’t make any assumptions as to how you might wish to sort your collection and, of course, it
doesn’t expose members to sort a collection in all possible ways. Instead, it gives you the option to
specify a function that compares two colors (or two objects of any other type, for that matter) and
uses this function to sort the collection. The same function is used by the BinarySearch method to
locate an item in a sorted collection. In effect, the IComparer interface consists of a single function
that knows how to compare two specific custom objects.

So, what is an interface? An interface is another term in object-oriented programming that
describes a very simple technique. When we write the code for a class, we might not know how
to implement a few operations, but we do know that they’ll have to be implemented later. We
insert a placeholder for these operations (one or more function declarations) and expect that the
application that uses the class will provide the actual implementation of these functions. All
collections expose a Sort method, which sorts the items in the collection by comparing them to one
another. To do so, the Sort method calls a function that compares two items and returns a value
indicating their relative order. Custom objects must provide their own comparison function — or
more than a single function, if you want to sort them in multiple ways. Because you can’t edit the
collection’s Sort method code, you must supply your comparison function through a mechanism
that the class can understand. This is what the IComparer interface is all about.

Enumerating Collections
All collections expose the GetEnumerator method. This method returns an object of the
IEnumerator type, which allows you to iterate through the collection without having to know any-
thing about its items, not even the count of the items. To retrieve the enumerator for a collection,
call its GetEnumerator method by using a statement like the following:

Dim ALEnum As IEnumerator
ALEnum = aList.GetEnumerator

The IEnumerator class exposes two methods: the MoveNext and Reset methods. The MoveNext
method moves to the next item in the collection and makes it the current item (property Current).
When you initialize the IEnumerator object, it’s positioned in front of the very first item, so you
must call the MoveNext method to move to the first item. The Reset method does exactly the same
thing: It repositions the IEnumerator in front of the first element.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 529

THE IENUMERATOR AND ICOMPARER INTERFACES 529

The MoveNext method doesn’t return an item, as you might expect. It returns a True/False
value that indicates whether it has successfully moved to the next item. After you have reached
the end of the collection, the MoveNext method will return False. Here’s how you can enumerate
through an ArrayList collection by using an enumerator:

Dim aItems As IEnumerator
aItems = aList.GetEnumerator
While aItems.MoveNext

{ process item aItems.Current}
End While

At each iteration, the current item is given by the Current property of the enumerator. After
you reach the last item, the MoveNext method will return False, and the loop will terminate. To
rescan the items, you must reset the enumerator by calling its Reset method.

To process the current item, you can call its methods through the aItems.Current object.
Because the Current property is an object, you must first cast it to the appropriate type. If the
collection holds Rectangles, for example, you can access their sizes by using these expressions:

CType(aItems.Current, Rectangle).Width
CType(aItems.Current, Rectangle).Height

The Strict option necessitates the explicit conversion of the Current property to a Rectangle
object. In other words, you can’t use an expression such as aItems.Current.Width with the Strict
option on (which is the recommended setting for this option).

The event handler in Listing 14.10 populates an ArrayList with Rectangle objects and then
iterates through the collection and prints the area of each Rectangle.

Listing 14.10: Iterating an ArrayList with an Enumerator

Dim aList As New ArrayList()
Dim R1 As New Rectangle(1, 1, 10, 10)
aList.Add(R1)
R1 = New Rectangle(2, 2, 20, 20)
aList.Add(R1)
aList.add(New Rectangle(3, 3, 2, 2))
Dim REnum As IEnumerator
REnum = aList.GetEnumerator
Dim R As Rectangle()
While REnum.MoveNext

R = CType(REnum.Current, Rectangle)
Debug.WriteLine((R.Width * R.Height).ToString)

End While

The REnum variable is set up and used to iterate through the items of the collection. At each
iteration, the code saves the current Rectangle to the R variable, and it uses this variable to access
the properties of the Rectangle object (its width and height).

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 530

530 CHAPTER 14 STORING DATA IN COLLECTIONS

Of course, you can iterate a collection without the enumerator, but with a For Each. . .Next
loop. To iterate through a HashTable, you can use either the Keys or the Values collection. The
code shown in Listing 14.11 populates a HashTable with Rectangle objects. Then it scans the items
and prints their keys, which are strings, and the area of each rectangle.

Listing 14.11: Iterating a HashTable with Its Keys

Dim hTable As New HashTable()
Dim r1 As New Rectangle(1, 1, 10, 10)
hTable.Add(”R1”, r1)
r1 = New Rectangle(2, 2, 20, 20)
hTable.Add(”R2”, r1)
hTable.add(”R3”, New Rectangle(3, 3, 2, 2))
Dim key As Object
Dim R As Rectangle
For Each key In hTable.keys

R = CType(hTable(key), Rectangle)
Debug.WriteLine(String.Format(

”The area of Rectangle {0} is {1}”,
key.ToString, R.Width * R.Height))

Next

The code adds three Rectangle objects to the HashTable and then iterates through the
collection using the Keys properties. Each item’s key is a string (R1, R2, and R3). The Keys property
is itself a collection and can be scanned with a For Each. . .Next loop. At each iteration, we access
a different item through its key with the expression hTable(key). The output produced by this
code is shown here:

The area of Rectangle R1 is 100
The area of Rectangle R3 is 4
The area of Rectangle R2 is 400

Alternatively, you can iterate a HashTable with an enumerator, but be aware that the
GetEnumerator method of the HashTable collection returns an object of the IDictionary-
Enumerator type, not an IEnumerator object. The IDictionaryEnumerator class is quite
similar to the IEnumerator class, but it exposes additional properties. They are the Key and Value
properties, and they return the current item’s key and value. The IDictionaryEnumerator class
also exposes the Entry property, which contains both the key and the value. You can access the
current item’s key and value either as DEnum.Key and DEnum.Value, or as DEnum.Entry.Key and
DEnum.Entry.Value. The DEnum variable is a properly declared enumerator for the HashTable:

Dim DEnum As IDictionaryEnumerator

Assuming that you have populated the hTable collection with the same three Rectangle objects,
you can use the statements in Listing 14.12 to iterate through the collection’s items.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 531

THE IENUMERATOR AND ICOMPARER INTERFACES 531

Listing 14.12: Iterating a HashTable with an Enumerator

Dim hEnum As IDictionaryEnumerator
hEnum = hTable.GetEnumerator
While hEnum.MoveNext

Debug.WriteLine(
String.Format(”The area of rectangle ” &
”{0} is {1}”, hEnum.Key,
CType(hEnum.Value, Rectangle).Width *
CType(hEnum.Value, Rectangle).Height))

End While

If you execute these statements after populating the HashTable collection with three Rectangles,
they will produce the same output as Listing 14.11.

The Enumerations project shows how to iterate through an ArrayList and a HashTable with
and without an enumerator. The code should be quite familiar to you by now, so I do not list it
here. You can open the project and examine its code and routines.

Custom Sorting
The Sort method allows you to sort collections, as long as the items are of the same base data type.
If the items are objects, however, the collection doesn’t know how to sort them. If you want to sort
objects, you must help the collection a little by telling it how to compare the objects. A sorting
operation is nothing more than a series of comparisons. Sorting algorithms compare items and
swap them if necessary.

All the information needed by a sorting algorithm to operate on an item of any type is a function
that compares two objects. Let’s say you have a list of persons, and each person is a structure that
contains names, addresses, e-addresses, and so on. The System.Collections class can’t make any
assumptions as to how you want your list sorted. This collection can be sorted by any field in the
structure (names, e-addresses, postal codes, and so on).

The comparer is implemented as a separate class, outside all other classes in the project, and is
specific to a custom data type. Let’s say you have created a custom structure for storing contact
information. The Person object is declared as a structure with the following fields:

Structure Person
Dim Name As String
Dim BDate As Date
Dim EMail As String

End Structure

You’ll probably build a class to represent persons, but I’m using a Structure to simplify the
code. To add an instance of the Person object to an ArrayList or HashTable, create a variable of
Person type, initialize its fields, and then add it to the aList ArrayList via the Add method. This
collection can’t be sorted with the simple forms of the Sort method because the compiler doesn’t
know how to compare two Person objects. You must provide your own function for comparing
two variables of the Person type. After this function is written, the compiler can compare items

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 532

532 CHAPTER 14 STORING DATA IN COLLECTIONS

and therefore sort the collection. This custom function, however, can’t be passed to the Sort and
BinarySearch methods by name. You must create a new class that implements the IComparer
interface and pass an IComparer object to the two methods.

Implementing the IComparer Interface

Here’s the outline of a class that implements the IComparer interface:

Class customComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

{ function’s code }
End Function

End Class

The name of the class can be anything. It should be a name that indicates the type of
comparison it performs or the type of objects it compares. After the class declaration, you
must specify the interface implemented by the class. As soon as you type the first line of the
preceding code segment, the editor will insert automatically the stub of the Compare function.
The name of the custom function must be Compare and it must implement the IComparer.Compare
interface. The interface declares a placeholder for a function, whose code must be provided by
the developer.

Let’s get back to our example. To use the custom function, you must create an object of the
customComparer type (or whatever you have named the class) and then pass it to the Sort and
BinarySearch methods as an argument:

Dim CompareThem As New customComparer
aList.Sort(CompareThem)

You can combine the two statements in one by initializing the customComparer variable in the
line that calls the Sort method:

aList.Sort(New customComparer)

You can also use the equivalent syntax of the BinarySearch method to locate a custom object
that implements its own IComparer interface:

aList.BinarySearch(object, New customComparer)

This is how you can use a custom function to compare two objects. Everything is the same,
except for the name of the comparer, which is different every time.

The last step is to implement the function that compares the two objects and returns an integer
value, indicating the order of the elements. This value should be −1 if the first object is smaller
than the second object, 0 if the two objects are equal, and 1 if the first object is larger than the
second object. Smaller here means that the element appears before the larger one when sorted in
ascending order. Listing 14.13 is the function that sorts Person objects according to the BDate field.
The sample code for this and the following section comes from the CustomComparer project.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 533

THE IENUMERATOR AND ICOMPARER INTERFACES 533

The main form contains a single button, which populates the collection and then prints the original
collection, the collection sorted by name, and the collection sorted by birth date.

Listing 14.13: A Custom Comparer

Class PersonAgeComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.BDate < person2.BDate Then

Return -1
Else

If person1.BDate > person2.BDate Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

The code could have been considerably simpler, but I’ll explain momentarily why the Try
statement is necessary. The comparison takes place in the If statement. If the first person’s birth
date is chronologically earlier than the second person’s, the function returns the value −1. If the
first person’s birth date is chronologically later than the second person’s, the function returns 1.
Finally, if the two values are equal, the function returns 0.

The code is straightforward, so why the error-trapping code? Before we perform any of the
necessary operations, we convert the two objects into Person objects. It’s not unthinkable that the
collection with the objects you want to sort contains objects of different types. If that’s the case, the
CType() function won’t be able to convert the corresponding argument to the Person type, and
the comparison will fail. The same exception that would be thrown in the function’s code is raised
again from within the error handler, and it’s passed back to the calling code.

Implementing Multiple Comparers

The Person objects can be sorted in many ways. You might wish to sort them by ID, name, and
so on. To accommodate multiple sorts, you must implement several classes, each one with a dif-
ferent Compare function. Listing 14.14 shows two classes that implement two different Compare
functions for the Person class. The PersonNameComparer class compares the names, whereas the

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 534

534 CHAPTER 14 STORING DATA IN COLLECTIONS

PersonAgeComparer class compares the ages. Both classes, however, implement the IComparer
interface.

Listing 14.14: A Class with Two Custom Comparers

Class PersonNameComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.Name < person2.Name Then

Return -1
Else

If person1.Name > person2.Name Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

Class PersonAgeComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.BDate > person2.BDate Then

Return -1
Else

If person1.BDate < person2.BDate Then
Return 1

Else

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 535

THE IENUMERATOR AND ICOMPARER INTERFACES 535

Return 0
End If

End If
End Function

End Class

To test the custom comparers, create a new application and enter the code of Listing 14.14
(the two classes) in a separate Class module. Don’t forget to include the declaration of the Person
structure. Then place a button on the form and enter the code of Listing 14.15 in its Click event
handler. This code adds three persons with different names and birth dates to an ArrayList.

Listing 14.15: Testing the Custom Comparers

Private Sub Button1 Click(...) Handles Button1.Click
Dim aList As New ArrayList()
Dim p As Person
’ Populate collection
p.Name = ”C Person”
p.EMail = ”PersonC@sybex.com”
p.BDate = #1/1/1961#
If Not aList.Contains(p) Then aList.Add(p)
p.Name = ”A Person”
p.EMail = ”PersonA@sybex.com”
p.BDate = #3/3/1961#
If Not aList.Contains(p) Then aList.Add(p)
p.Name = ”B Person”
p.EMail = ”PersonB@sybex.com”
p.BDate = #2/2/1961#
If Not aList.Contains(p) Then aList.Add(p)
’ Print collection as is
Dim PEnum As IEnumerator
PEnum = aList.GetEnumerator
ListBox1.Items.Add(”Original Collection”)
While PEnum.MoveNext

ListBox1.Items.Add(
CType(PEnum.Current, Person).Name &
vbTab & CType(PEnum.Current, Person).BDate)

End While
’ Sort by name, then print collection
ListBox1.Items.Add(” ”)
ListBox1.Items.Add(”Collection Sorted by Name”)
aList.Sort(New PersonNameComparer())
PEnum = aList.GetEnumerator
While PEnum.MoveNext

ListBox1.Items.Add(
CType(PEnum.Current, Person).Name &

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 536

536 CHAPTER 14 STORING DATA IN COLLECTIONS

vbTab & CType(PEnum.Current, Person).BDate)
End While
’ Sort by age, then print collection
ListBox1.Items.Add(” ”)
ListBox1.Items.Add(”Collection Sorted by Age”)
aList.Sort(New PersonAgeComparer())
PEnum = aList.GetEnumerator
While PEnum.MoveNext

ListBox1.Items.Add(
CType(PEnum.Current, Person).Name &
vbTab & CType(PEnum.Current, Person).BDate)

End While
End Sub

The four sections of the code are delimited by comments in the listing. The first section popu-
lates the collection with three variables of the Person type. The second section prints the items in
the order in which they were added to the collection:

C Person 1/1/1961
A Person 3/3/1961
B Person 2/2/1961

The third section of the code calls the Sort method, passing the PersonNameComparer custom
comparer as an argument, and it again prints the contents of the ArrayList. The names are listed
now in alphabetical order:

A Person 3/3/1961
B Person 2/2/1961
C Person 1/1/1961

In the last section, it calls the Sort method again — this time to sort the items by age — and
prints them:

C Person 1/1/1961
B Person 2/2/1961
A Person 3/3/1961

It is straightforward to write your own custom comparers and sort your custom object in
any way that suits your application. Custom comparisons might include more-complicated
calculations, not just comparisons. For example, you can sort Rectangles by their area, color values
by their hue or saturation, and customers by the frequency of their orders.

Custom Sorting of a SortedList

The items of a SortedList are sorted according to their keys. Of course, the SortedList cannot
maintain the order of the keys unless the keys are of a base type, such as integers or strings. If
you need to use objects as keys, you must simply provide a function to implement the IComparer
interface, as you know well by now, and pass the name of the class that implements the interface
to the constructor of the SortedList class.

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 537

GENERIC COLLECTIONS 537

Generic Collections
All collections we examined so far were designed to store objects because they should
accommodate all data types, built-in or custom. In most practical situations, however, we want
to make sure that collections store elements of the same type, just like arrays that were declared
with a specific type. Why not be able to declare collections that can store only variables of a
specific type? The obvious advantage of such a collection is performance because we wouldn’t
have to convert variables of the Object type to and from other more-specific types. This can have a
substantial performance penalty. You can still process the ArrayList’s items without casting them
to their corresponding type, but then you give up the benefits of type-safe programming. If your
code calls a member that’s not supported by the specific object, the compiler won’t catch the error
and an exception will be thrown when the statement is executed.

Let’s say you created the Rects ArrayList and you plan to store Rectangle objects in it.
There’s no mechanism to prevent you from storing a Color object in this ArrayList. If the Color
object was stored in the collection by mistake, it’s possible (if not likely) that you would attempt to
treat it later as a Rectangle object. An attempt to request the Width property of a Color object will
throw an exception. The compiler can’t catch this error at design time because collections are
not typed.

If we can turn a collection into a typed collection, we’ll be able to use its items without casting
them to a different type, and the collection itself would reject items of any other type. This is
what a generic collection does: It is a typed collection that allows you to specify the type of objects
you’ll store to the collection when you declare it. The generic collections are implemented in
the System.Collection.Generic namespace; they’re equivalent to the regular collections but have
different names.

Let’s consider a collection for storing employees. Each employee is defined with the
following class:

Public Class Employee
Public ID As Long
Public Title As String
Public LastName As String
Public FirstName As String
Public SSN As String
Public HiredOn As Date
Public ReportsTo As Integer

End Class

One of the generic collections of the Framework is the List collection, which is similar to the
ArrayList. The List collection provides the same functionality as the ArrayList collection, but it
stores objects of the same type only: the type specified in the collection’s declaration. The following
statement declares a List collection for storing Employee objects:

Dim LEmployees As New List(Of Employee)

The Of keyword in the constructor of the collection is followed by a data type. The
LEmployees collection won’t accept elements of any other type, other than the Employee type.
The List collection is also strongly typed, and you can use expressions such as the following:

LEmployees(0).SSN

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 538

538 CHAPTER 14 STORING DATA IN COLLECTIONS

This expression is early bound and as soon as you enter the dot following an element, the
IntelliSense box will display the members of the Employee type.

A better example is that of a Dictionary collection. If you store the employees to a Dictionary
and use the employee’s SSN as a key, you must declare the type of both the keys and the items
you want to store to the Dictionary collection. In this case, the Of keyword will be followed by two
types: one for the keys and another one for the elements (I’m assuming that you have imported
the System.Collections.Generic namespace):

Dim Employees As New Dictionary(Of String, Employee)

This form of the declaration tells the compiler that the keys of the Dictionary will be strings, and
the values will be Employee objects. To add the newEmployee object to the Employees Dictionary,
use a few statements like the following:

Dim Emp As Employee
Emp.SSN = ”334-19-0020”
Employees.Add(Emp.SSN, Emp)

After the collection has been populated, you can access the items of the collection by their keys
with an expression like this one:

Employees(”334-19-0020”)

The employee’s name is given by the following expression:

Employees(”334-19-0020”).LastName & ”,” &
Employees(”334-19-0020”).FirstName

You can do the same with a regular Dictionary (a nongeneric dictionary), but the editor won’t
prevent you from requesting a nonexistent member such as FullName with a late-bound expres-
sion. To take advantage of type-safe programming, you must cast the items to their proper types.
The reason for including generic collections in the Framework is performance, because the com-
piler generates code optimized for the type of objects you store in the collection. If you store the
same collection of Employee objects to an ArrayList and a List collection, the ArrayList is at least
five times slower than the List. The most important benefit of generic collections, however, is that
they enable type-safe programming.

As far as the members of the generic collections are concerned, they’re the same as the members
of the corresponding regular collections. The Dictionary generic collection, for example, is the
typed version of the HashTable collection and it exposes the ContainsKey and ContainsValue
methods, the Keys and Values properties to iterate through the items of the collection as described
earlier in this chapter, the Add and Remove methods to manipulate its contents, and so on. The same
is true for the List collection, which is the typed version of the ArrayList collection and it allows
you to find specific items by using the FindIndex, FindIndexLast, and BinarySearch methods;
sort its items via the Sort method; extract items via the CopyTo and ToArray methods; and so on.
If the collection stores objects and not value types, you must pass to the Sort and BinarySearch
methods the appropriate comparer.

The generic collections are implemented in the System.Collections.Generic namespace, and
there are quite a few generic collections. However, not all collections implemented by the

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 539

THE BOTTOM LINE 539

Framework have a generic counterpart. You can create generic Dictionary (equivalent to the
HashTable untyped collection), SortedDictionary (it’s a typed Dictionary sorted by its keys), and
List (it’s equivalent to the untyped ArrayList) collections. Note that the generic collections don’t
have the same name as their regular counterparts, because if they did, you’d have to fully qualify
their names in your code.

My recommendation is to use generic collections, which allow you to write strongly typed code.
If you need a collection for storing elements of different types, use one of the regular collections.
Eventually, all collections should be replaced by generic collections, and the usual collections will
become special cases of generic collections. You can actually declare a generic collection for storing
variables of the Object type.

In this chapter, we discussed how to use collections to store data in memory. To make the most
of collections, however, you should be able to store them to disk files and read them back at a later
session. This topic is covered a little later in the book, in Chapter 16.

The Bottom Line
Make the most of arrays. The simplest method of storing sets of data is to use arrays. They’re
very efficient and they provide methods to perform advanced operations such as sorting and
searching their elements. Use the Sort method of the Array class to sort an array’s elements. To
search for an element in an array, use the IndexOf and LastIndexOf methods, or the Binary-
Search method if the array is sorted. The BinarySearch method always returns an element’s
index, which is a positive value for exact matches and a negative value for near matches.

Master It Explain how you can search an array and find exact and near matches.

Store data in specialized collections such as ArrayLists and HashTables. In addition
to arrays, the Framework provides collections, which are dynamic data structures. The
most commonly used collections are the ArrayList and the HashTable. ArrayLists are sim-
ilar to arrays, but they’re dynamic structures. ArrayLists store lists of items, whereas
HashTables store key-value pairs and allow you to access their elements via a key. You
can add elements by using the Add method and remove existing elements by using the
Remove and RemoveAt methods.

HashTables provide the ContainsKey and ContainsValue methods to find out whether the
collection already contains a specific key or value, and the GetKeys and GetValues methods
to retrieve all the keys and values from the collection, respectively.

Master It How will you populate a HashTable with a few pairs of keys/values and then
iterate though the collection’s items?

Sort and search collections. Collections provide the Sort method for sorting their items
and several methods to locate items: IndexOf, LastIndexOf, and BinarySearch. Both sort
and search operations are based on comparisons, and the Framework knows how to com-
pare values types only (Integers, Strings, and the other primitive data types). If a collection
contains objects, you must provide a custom function that knows how to compare two
objects of the same type.

Master It How do you specify a custom comparer function for a collection that contains
Rectangle objects?

Petroutsos c14.tex V2 - 01/28/2008 2:35pm Page 540

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 541

Chapter 15

Accessing Folders and Files

Files have always been an important aspect of programming. We use files to store data, and in
many cases we have to manipulate files and folders from within applications. I need not give
examples: Just about any application that allows user input must store its data to a file (or multiple
files) for later retrieval — databases excluded, of course.

Manipulating files and folders is quite common, too. Organizing files into folders and process-
ing files en masse are two typical examples. I recently ran into a few web-related tasks that are
worth mentioning here. A program for placing watermarks on pictures was the first. A watermark
is a graphic that’s placed over an image to indicate its origin. The watermark is transparent, so it
doesn’t obscure the image, but it makes the image unusable on any site other than the original one.
You will see how to place a semitransparent graphic on top of an image in Chapter 19, ‘‘Manip-
ulating Images and Bitmaps,’’ and with the help of the information in this chapter, you’ll be able
to scan a folder that has thousands of image files and to automate the process of watermarking
the images.

Another example has to do with matching filenames to values stored in a database.
Product images are usually named after the product’s ID and stored in separate files. There’s a
need for programs to match product IDs to images, to find out whether there’s an image for a
specific product in the database, or to simply move the image files around (store the images for
different product categories into different folders and so on).

In this chapter, you’ll learn how to do the following:

◆ Handle files with the My object

◆ Manipulate folders and files

◆ Save data to a file

◆ Monitor changes in the file system and react to them

The IO Namespace and the FileSystem Component
To manipulate folders and files, as well as file input/output (I/O) operations, the Framework
provides the System.IO namespace. The My object provides My.Computer.FileSystem component,
which simplifies the basic file tasks. Obviously, there’s an enormous overlap between the two
components.

The FileSystem component is a subset of the IO namespace in terms of the functionality it
exposes, but it’s considerably simpler to use. The My object was designed to simplify some of the
most common tasks for the VB developer and, as you may recall from Chapter 1, ‘‘Getting Started
with Visual Basic 2008,’’ it’s a speed-dial into the Framework. You can perform all common file
I/O operations with a single line of code. (Okay, sometimes you may need a second line, but you

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 542

542 CHAPTER 15 ACCESSING FOLDERS AND FILES

get the idea.) To access the full power of the Framework’s I/O capabilities, use the IO namespace.
There’s nothing you can do with the My object that you can’t do with the Framework; the opposite
isn’t true. The My object was designed to simplify the most common programming tasks, but it’s
not a substitute for the Framework.

That said, I will start with a brief overview of the My.Computer.FileSystem component and
then I’ll discuss the IO namespace, which is the whole enchilada. Old VB developers will use the
My object to access the file system, because VB is about productivity and the My object is simpler.
The Framework, on the other hand, is the core of Windows programming and you shouldn’t
ignore it.

Using the My.Computer.FileSystem Component
Using the My object, you can write some text to a file via a single statement. The WriteAllText
method accepts as arguments a path and the string to be written to the file (as well as a third
optional argument that determines whether the text will be appended to the file or will replace the
current contents), writes some text to the file (the contents of a TextBox control in the following
sample), and then closes the file:

My.Computer.FileSystem.WriteAllText(fName, TextBox1.Text, True)

If the specified file does not exist, the write method creates it. To write binary data to a file, use
the WriteAllBytes method, whose syntax is almost identical, but the second argument is an array
of bytes instead of a string.

By the way, because My is not a class, you can’t import it to a file and shorten the statements
that access its members; you have to fully qualify the member names. You can still use the With
statement, as shown here:

With My.Computer.FileSystem
.WriteAllText(fname, TextBox1.Text, True)

End With

To read back the data saved with the WriteAllText and WriteAllBytes methods, use the
ReadAllText and ReadAllBytes methods, respectively. The ReadAllText method accepts as
an argument the path of a file and returns its contents as a string. ReadAllBytes accepts the same
argument, but returns the file’s contents as an array of bytes. This is all you need to know in
order to save data to disk files between sessions with the My object. The following code segment
saves the contents of the TextBox1 control to a user-specified file, clears the control, reads the text
from the same file, and populates the TextBox1 control:

’ Set up the SaveFileDialog control
SaveFileDialog1.DefaultExt = ”*.txt”
SaveFileDialog1.AddExtension = True
SaveFileDialog1.FileName = ””
SaveFileDialog1.Filter = ”Text Files|*.txt|All Files|*.*”
If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
’ Use the WriteAllText method to save the text

My.Computer.FileSystem.WriteAllText(
SaveFileDialog1.FileName, TextBox1.Text, False)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 543

USING THE MY.COMPUTER.FILESYSTEM COMPONENT 543

End If
’ Clear the control
TextBox1.Clear()
’ Set up the OpenFileDialog control
OpenFileDialog1.DefaultExt = ”txt”
OpenFileDialog1.Filter = ”Text Files|*.txt|All Files|*.*”
OpenFileDialog1.FileName = ”Test File.txt”
If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
’ Use the ReadAllText method to read back the text
’ and display it on the TextBox control

TextBox1.Text = My.Computer.FileSystem.ReadAllText(
OpenFileDialog1.FileName)

End If

As you can see, it takes two statements to send the data to the file and read it back. All other
statements set up the Open and Save As dialog boxes.

Here’s another example of using the FileSystem object. To delete a folder, call the Delete-
Directory method of the My.Computer.FileSystem component, which accepts three arguments:
the name of the folder to be deleted, a constant that specifies whether the DeleteDirectory
method should delete the contents of the specified folder if the folder isn’t empty, and another
constant that determines whether the folder will be deleted permanently or moved to the Recycle
Bin. This constant is a member of the FileIO.RecycleOption enumeration: DeletePermanently
(to remove the file permanently from the file system) and SendToRecycleBin (moves the file to
the Recycle Bin). To delete a file, use the DeleteFile method, which has the same syntax. (The
first argument is the path of a file, not a folder.)

Another interesting member of the FileSystem object is the SpecialDirectories property,
which allows you to access the special folders on the target computer (folders such as My
Documents, the Desktop, the Program Files folder, and so on). Just enter the name of the
SpecialDirectories property followed by a period to see the names of the special folders in the
IntelliSense box. To find out the application’s current folder, call the CurrentDirectory method.

The RenameDirectory and RenameFile methods allow you to rename folders and files, respec-
tively. Both methods accept as arguments the original folder name or filename and the new name,
and perform the operation. They do not return a value to indicate whether the operation was
successful, but they throw an exception if the operation fails.

The CopyFile and CopyDirectory methods copy a single file and an entire folder, respectively.
They accept as arguments the path of the file or folder to be copied, the destination path, and an
argument that determines which dialog boxes will be displayed during the copying operation. The
value of this argument is a member of the FileIO.UIOption enumeration: AllDialogs (shows
the progress dialog box and any error dialog boxes) and OnlyErrorDialogs (shows only error
dialog boxes). The following code segment copies a fairly large folder. It’s interesting to see how it
displays the usual file copy animation and prompts users every time it can’t copy a folder (because
the user doesn’t have adequate privileges or because a file is locked, and so on).

Dim dir as String
dir = ”C:\Program Files\Microsoft Visual Studio 9.0”
Try

My.Computer.FileSystem.CopyDirectory(
dir, ”E:\Copy of ” &

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 544

544 CHAPTER 15 ACCESSING FOLDERS AND FILES

My.Computer.FileSystem.GetName(dir),
Microsoft.VisualBasic.FileIO.
UIOption.AllDialogs,
FileIO.UICancelOption.ThrowException)

Catch ex As Exception
MsgBox(ex.Message)

End Try

Please do change the destination drive (E: in the preceding sample code segment); you may
not have an E: drive, or you may overwrite a working installation of Visual Studio 2008.

Notice that I used the GetName method of the FileSystem component to extract the last part of
the path and then combine it with the new drive name. The last argument of the CopyDirectory
method, which is a member of the UICancelOption enumeration: DoNothing or ThrowException,
determines how the method reacts when the user clicks the Cancel button on the copy animation
(see Figure 15.1). I used the ThrowException member and embedded the entire statement in an
exception handler. If you click the Cancel button while the folder’s files are being copied, the
following message will appear:

The operation was canceled.

Figure 15.1

Copying a large folder
by using the
DirectoryCopy method

Cancelling a copy operation doesn’t reset the destination folder. You must insert some addi-
tional code to remove the files that have been copied to the destination folder, or notify the user
that some files have copied already and they’re not automatically removed.

To manipulate folders, use the CreateDirectory and DirectoryExists methods, which
accept as an argument the path of a folder. To find out whether a specific file exists, call the File-
Exists method, passing the file’s path as the argument.

To retrieve information about drives, folders, and files, use the GetDriveInfo, GetDirectory-
Info, and GetFileInfo methods, respectively. These methods accept as an argument the name of
the drive or the path to a folder/file, respectively, and return the relevant information as an object.
Drive properties are described with the IO.DriveInfo class, folder properties are described with the
IO.DirectoryInfo class, and file properties with the IO.FileInfo class. These objects are part of the
Framework’s IO namespace and they provide properties such as a directory’s path and attributes,
a file’s path, size, creation and last modification date, and so on. The three objects are described in

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 545

USING THE MY.COMPUTER.FILESYSTEM COMPONENT 545

detail later in this chapter, in the discussion of the IO namespace. To find out the properties of the
C: drive on your system, execute a statement such as the following:

Dim DI As IO.DriveInfo =
My.Computer.FileSystem.GetDriveInfo(”C”)

Debug.WriteLine(”DRIVE ” & DI.Name & vbCrLf &
”VOLUME ” & DI.VolumeLabel & vbCrLf &
”TYPE ” & DI.DriveType.ToString & vbCrLf &
”TOTAL SIZE ” & DI.TotalSize.ToString & vbCrLf &
”FREE SPACE ” & DI.AvailableFreeSpace.ToString)

This statement produced the following output on my system:

DRIVE C:\
VOLUME VAIO
TYPE Fixed
TOTAL SIZE 3100019372032
FREE SPACE 50142416896

To retrieve information about all drives in your system, call the Drives method, which returns
a read-only collection of DriveInfo objects. If you want to search a folder for specific files, use the
FindInFiles method, which is quite flexible. The FindInFiles method goes through all files in
a specified folder and selects files by a wildcard specification, or by a string in their contents. The
method has two overloaded forms; their syntax is the following:

FindInFiles(dir, containsText, ignoreCase, FileIO.SearchOption)

and

FindInFiles(dir, containsText, ignoreCase,
FileIO.SearchOption,fileWildCards() String)

Both methods return the list of matching files as a read-only collection of strings. The dir argu-
ment is the folder to be searched, and the containsText argument is the string we want to locate
in the files. The ignoreCase argument is a True/False value that determines whether the search
is case-sensitive, and the SearchOption argument is a member of the FileIO.SearchOption enu-
meration and specifies whether the method will search in the specified folder or will include the
subfolders as well: SearchAllSubdirectories, SearchTopLevelOnly. The second overloaded
form of the method accepts an additional argument, which is an array of strings with the patterns
to be matched (for example, *.txt, Sales*.doc, *.xls, and so on). The following statements
locate all text, .doc, and .xml files in the Program Files folder that contain the string Visual Basic.
The search is case-insensitive and includes the all subfolders under Program Files.

Dim patterns() As String = {”*.txt”, ”*.doc”, ”*.xml”}
Dim foundFiles As System.Collections.ObjectModel.

ReadOnlyCollection(Of String)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 546

546 CHAPTER 15 ACCESSING FOLDERS AND FILES

foundFiles = My.Computer.FileSystem.FindInFiles(
”C:\Program Files”, ”visual basic”, True,
FileIO.SearchOption.SearchAllSubDirectories, patterns)

Dim file As String
For Each file In foundFiles

Debug.WriteLine(file)
Next

A Simpler Method of Saving Data to Files

The Framework provides an attractive alternative to writing data to files: the serialization mechanism.
You can create collections of objects and persist them to a file via a few simple statements. Actually,
it’s much simpler to create a collection of customer/product/sales data and persist it as a whole, than
to write code to write every field to a file (let’s not forget the code for reading the data back into the
application). Serialization is a major component of .NET, and it’s discussed in detail in Chapter 16,
‘‘XML and Object Serialization.’’

This concludes the overview of the file-related methods of the FileSystem component. This
component doesn’t expose many members, and their syntax is quite simple. You can experiment
with the methods and properties of the FileSystem component to get a better idea of the type
of operations you can perform with it. In the remainder of this chapter, you’ll find a detailed
discussion of the IO namespace.

Manipulating Folders and Files with the IO Namespace
In this section, you’ll learn how to access and manipulate files and folders with the help of the
Directory and File classes of the System.IO namespace. The Directory class provides methods for
manipulating folders, and the File class provides methods for manipulating files. These two objects
allow you to perform just about any of the usual operations on folders and files, respectively, short
of storing data into or reading from files. By the way, directory is another name for folder; the two
terms mean the same thing, but folder is the more-familiar term in Windows. When it comes to
developers and administrators, Microsoft still uses directory (the Active Directory, the Directory
object, and so on), especially with command-line utilities.

Keep in mind that Directory and File objects don’t represent folders or files. Directory and
File are shared classes, and you must supply the name of the folder or file they will act upon as
an argument to the appropriate method. The two classes that represent folders and files are the
DirectoryInfo and FileInfo classes. If you’re in doubt about which class you should use in your
code, consider that the members of the Directory and File classes are shared: You can call them
without having to explicitly create an instance of the corresponding object first, and you must
supply the name of the folder or file their methods will act upon as an argument. The methods of
the DirectoryInfo and FileInfo classes are instance methods: Their methods apply to the folder or
file represented by the current instance of the class.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 547

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 547

Both the Directory and the DirectoryInfo classes allow you to delete a folder, including its
subfolders. The Delete method of the DirectoryInfo class will act on a directory you specified
when you instantiated the class:

Dim DI As New System.IO.DirectoryInfo(”C:\Work Files\Assignments”)
DI.Delete()

But you can’t call Delete on a DirectoryInfo object that you haven’t specifically declared. The
DirectoryInfo.Delete method doesn’t accept the name of a folder as an argument. The Delete
method of the Directory class, on the other hand, deletes the folder passed as an argument to
the method:

System.IO.Directory.Delete(”C:\Work Files\Assignments”)

The Directory Class
The System.IO.Directory class exposes all the members you need to manipulate folders. Because
the Directory class belongs to the System.IO namespace, you must import the IO namespace into
any project that might require the Directory object’s members with the following statement:

Imports System.IO

Methods

The Directory object exposes methods for accessing folders and their contents, which are described
in the following sections.

CreateDirectory

This method creates a new folder, whose path is passed to the method as a string argument:

Directory.CreateDirectory(path)

path is the path of the folder you want to create and can be either an absolute or a relative
path. If it’s a relative path, its absolute value is determined by the current drive and path (use
the GetCurrentDirectory method to find out the absolute current path). The CreateDirectory
method returns a DirectoryInfo object, which contains information about the newly created folder.
The DirectoryInfo object is discussed later in this chapter, along with the FileInfo object.

Notice that the CreateDirectory method can create multiple nested folders in a single call.
The following statement will create the folder folder1 (if it doesn’t exist), folder2 (if it doesn’t
exist) under folder1, and finally folder3 under folder2 in the C: drive:

Directory.CreateDirectory(”C:\folder1\folder2\folder3”)

If folder1 exists already, but it doesn’t contain a subfolder named folder2, then folder2
will be automatically created. An exception will be thrown if the total path is too long or if your

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 548

548 CHAPTER 15 ACCESSING FOLDERS AND FILES

application doesn’t have permission to create a folder in the specified path. However, no exception
will be thrown if the specified path already exists on the disk. The method will simply not create
any new folders. It will still return a DirectoryInfo object, which describes the existing folder.

Delete

This method deletes a folder and all the files in it. If the folder contains subfolders, the Delete
method will optionally remove the entire directory tree under the node you’re removing. The
simplest form of the Delete method accepts as an argument the path of the folder to be deleted:

Directory.Delete(path)

This method will delete the specified path only. If the specified folder contains subfolders, they
will not be deleted and, therefore, the specified folder won’t be deleted, either. To delete a folder
recursively (that is, also delete any subfolders under it), use the following form of the Delete
method, which accepts a second argument:

Directory.Delete(path, recursive)

The recursive argument is a True/False value. Set it to True to delete recursively the subfold-
ers under the specified folder. This method deletes folders permanently (it doesn’t send them to
the Recycle Bin).

The statements in Listing 15.1 attempt to delete a single folder. If the folder contains subfolders,
the Delete method will fail, and the structured exception handler will be activated. The exception
handler examines the type of the exception, and if it was caused because the folder isn’t empty,
the exception handler prompts the user about whether it should delete the contents of the folder.
If the user gives permission to delete the folder’s contents, the code calls the second form of the
Delete method, forcing it to delete the folder recursively.

Listing 15.1: Deleting a Directory

Private Sub bttnDelete Click(...) Handles bttnDelete.Click
Directory.CreateDirectory(”c:/folder1/folder2/folder3”)

Try
Directory.Delete(”c:\folder1”, False)

Catch exc As IOException
If exc.Message.IndexOf(

”The directory is not empty”) > -1 Then
Dim reply As MsgBoxResult
reply = MsgBox(

”Delete all files and subfolders?”,
MsgBoxStyle.YesNo, ”Directory Not Empty”)

If reply = MsgBoxResult.Yes Then
Try

Directory.Delete(”c:\folder1”, True)
Catch ex As Exception

MsgBox(”Failed to delete folder” & vbCrLf &
ex.Message)

End Try
Else

MsgBox(exc.Message)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 549

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 549

End If
End If

End Try
End Sub

Notice the nested Try. . .Catch statement that catches unauthorized exceptions (you may not
have the rights to delete the specific folder).

Exists

This method accepts a path as an argument and returns a True/False value indicating whether the
specified folder exists:

Directory.Exists(path)

The Delete method will throw an exception if you attempt to delete a folder that doesn’t
exist, so you can use the Exists method to make sure the folder exists before attempting to
delete it:

If Directory.Exists(path) Then Directory.Delete(path)

Move

This method moves an entire folder to another location in the file system; its syntax is the fol-
lowing, where source is the name of the folder to be moved and destination is the name of the
destination folder:

Directory.Move(source, destination)

The Move method doesn’t work along different volumes, and the destination can’t be the
same as the source argument, obviously.

Notice the lack of a Copy method that would copy an entire folder to a different location. To
copy a folder, you must manually create an identical folder structure and then copy the corre-
sponding files to the proper subfolders. The FileSystem component provides a MoveFile and a
MoveFolder method, which move a single file and an entire folder, respectively.

GetCurrentDirectory, SetCurrentDirectory

Use these methods to retrieve and set the path of the current directory. The current directory is a
basic concept when working with files. This is the folder in which all files specified by name will
be saved and where the application will look for files specified by their name, not their complete
path. Also, relative paths are resolved according to their relation to the current directory. By
default, the GetCurrentDirectory method returns the folder in which the application is running.
SetCurrentDirectory accepts a string argument, which is a path, and sets the current directory
to the specified path. You can change the current folder by specifying an absolute or a relative
path, such as the following:

Directory.SetCurrentDirectory(”..\Resources”)

The two periods are a shortcut for the parent folder. From the application folder, we move up to
the parent folder and then to the Resources folder under the application’s folder. This is where any

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 550

550 CHAPTER 15 ACCESSING FOLDERS AND FILES

resources (such as images and sounds) used by the application are stored. Notice that the value
you pass to the SetCurrentDirectory method as an argument must be the name of an existing
folder. If not, a DirectoryNotFoundException exception will be thrown. You can also switch to a
folder on another drive if you specify the full folder’s path, including its drive letter.

If you’re working on a new project that hasn’t been saved yet, the current directory is the appli-
cation’s folder (WindowsApplication1 or something similar) under the Temporary
Projects folders.

GetDirectoryRoot

This method returns the root part of the path passed as argument, and its syntax is the following:

root = Directory.GetDirectoryRoot(path)

The path argument is a string, and the return value is also a string, such as C:\ or D:\. Notice
that the GetDirectoryRoot method doesn’t require that the path argument exists. It will return
the name of the root folder of the specified path.

GetDirectories

This method retrieves all the subfolders of a specific folder and returns their names as an array of
strings:

Dim Dirs() As String
Dirs = Directory.GetDirectories(path)

The path argument is the path of the folder whose subfolders you want to retrieve.
Another form of the GetDirectories method allows you to specify search criteria for the

folders you want to retrieve, and its syntax is the following:

Dirs = Directory.GetDirectories(path, pattern)

This statement returns an array of strings with the names of the subfolders that match the
search criteria. To retrieve all the subfolders of the C:\Windows folder with the string System in
their names, use the following statement:

Dirs = Directory.GetDirectories(”C:\Windows”, ”*SYSTEM*”)

This statement will go through the subfolders of C:\WINDOWS and return those that contain the
string SYSTEM (including System32 and MySystem). The only special characters you can use in
the criteria specification are the question mark, which stands for any single character, and the
asterisk, which stands for any string. Listing 15.2 retrieves the names of the folders that contain
the string System under the C:\WINDOWS folder and prints them in the Output window.

Listing 15.2: Retrieving Selected Subfolders of a Folder

Dim Dirs() As String
Dirs = Directory.GetDirectories(”C:\WINDOWS”, ”*SYSTEM*”)
Dim dir As String
Debug.WriteLine(Dirs.Length & ” folders match the pattern ’*SYSTEM*’ ”)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 551

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 551

For Each dir In Dirs
Debug.WriteLine(dir)

Next

The GetDirectories method doesn’t work recursively; it returns the subfolders of the speci-
fied folder, but not their subfolders.

GetFiles

This method returns the names of the files in the specified folder as an array of strings. The syntax
of the GetFiles method is the following, where path is the path of the folder whose files you want
to retrieve and files is an array of strings that’s filled with the names of the files:

Dim files() As String = Directory.GetFiles(path)

Another form of the GetFiles method allows you to specify a pattern and retrieve only the
names of the files that match the pattern. This form of the method accepts a second argument,
which is a string similar to the pattern argument of the GetDirectories method:

Dim files() As String = Directory.GetFiles(path, pattern)

The statements in Listing 15.3 retrieve all the .exe files under the C:\WINDOWS folder and print
their names in the Output window.

Listing 15.3: Retrieving Selected Files of a Folder

Dim files() As String
files = Directory.GetFiles(”C:\WINDOWS”, ”*.EXE”)
MsgBox(”Found ” & files.Length & ” EXE files”)
Dim file As String
For Each file In files

Debug.WriteLine(file)
Next

GetFileSystemEntries

This method returns an array of all items (files and folders) in a path. The simplest form of the
method is

items = Directory.GetFileSystemEntries(path)

where items is an array of strings. As with the GetFiles method, you can specify a second
argument, which filters the entries you want to retrieve. To iterate through the items of a folder,
use a loop such as the following:

Dim itm As String
For Each itm In Directory.GetFileSystemEntries(”C:\windows”)

Debug.WriteLine(itm)
Next

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 552

552 CHAPTER 15 ACCESSING FOLDERS AND FILES

Because the GetFileSystemEntries method returns an array of strings, use the Exists method
of the Directory object to distinguish between folders and files. The File object, which is equivalent
to the Directory object and is discussed in the following section, also exposes an Exists method.
The loop shown in Listing 15.4 goes through the file system items in the C:\Program Files folder
and displays their names, along with the indication FOLDER or FILE, depending on the type of
each item.

Listing 15.4: Retrieving the File System Items of a Folder

Dim items() As String
Dim path As String = ”c:\Program Files”
items = Directory.GetFileSystemEntries(path)
Dim itm As String
For Each itm In items

If Directory.Exists(itm) Then
Debug.WriteLine(”FOLDER ” & itm)

Else
Debug.WriteLine(”FILE ” & itm)

End If
Next

If you execute these statements, you will see a list such as the following in the Output window
(only considerably longer):

FOLDER c:\Program Files\Microsoft.NET
FOLDER c:\Program Files\HTML Help Workshop
FOLDER c:\Program Files\Microsoft Web Controls 0.6
FILE c:\Program Files\folder.htt
FILE c:\Program Files\desktop.ini

The My.Computer.FileSystem component doesn’t expose a method to retrieve folders and files
at once. Instead, you must use the GetFiles and GetDirectories methods to retrieve either the
files or the folders under a specific folder.

GetCreationTime, SetCreationTime

These methods read or set the date that a specific folder was created. The GetCreationTime
method accepts a path as an argument and returns a Date value:

Dim CreatedOn As Date
CreatedOn = Directory.GetCreationTime(path)

SetCreationTime accepts a path and a date value as arguments and sets the specified folder’s
creation time to the value specified by the second argument:

Directory.SetCreationTime(path, datetime)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 553

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 553

GetLastAccessTime, SetLastAccessTime

These two methods are equivalent to the GetCreationTime and SetCreationTime methods,
except they return and set the most recent date and time that the file was accessed. The most
common reason to change the last access time for a file is so that the specific file will be excluded
from a routine that deletes old files or to include it in a list of backup files (with an automated
procedure that backs up only the files that have been changed since their last backup).

GetLastWriteTime, SetLastWriteTime

These two methods are equivalent to the GetCreationTime and SetCreationTime methods, but
they return and set the most recent date and time the file was written to.

GetLogicalDrives

This method returns an array of strings, which are the names of the logical drives on the computer.
The statements in Listing 15.5 print the names of all logical drives.

Listing 15.5: Retrieving the Names of All Drives on the Computer

Dim drives() As String
drives = Directory.GetLogicalDrives
Dim drive As String
For Each drive In drives

Debug.WriteLine(drive)
Next

When executed, these statements will produce a list such as the following:

C:\
D:\
E:\
F:\

Notice that the GetLogicalDrives method doesn’t return any floppy drives, unless there’s a
disk inserted into the drive.

GetParent

This method returns a DirectoryInfo object that represents the properties of a folder’s parent
folder. The syntax of the GetParent method is as follows:

Dim parent As DirectoryInfo = Directory.GetParent(path)

The name of the parent folder, for example, is parent.Name, and its full name is
parent.FullName.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 554

554 CHAPTER 15 ACCESSING FOLDERS AND FILES

The File Class
The System.IO.File class exposes methods for manipulating files (copying them, moving them
around, opening them, and closing them), similar to the methods of the Directory class. The names
of the methods are self-descriptive, and most of them accept as an argument the path of the file
on which they act. Use these methods to implement the common operations that users normally
perform through the Windows interface, from within your application.

Methods

Many of the following methods allow you to open existing or create new files. We’ll use some of
these methods later in the chapter to write data to, and read from, text and binary files.

AppendText

This method appends some text to a file, whose path is passed to the method as an argument,
along with the text to be written:

File.AppendText(path, text)

Copy

This method copies an existing file to a new location; its syntax is the following, where source is
the path of the file to be copied and destination is the path where the file will be copied to:

File.Copy(source, destination)

If the destination file exists, the Copy method will fail. An exception will be thrown also if either
the source or the destination folder does not exist.

To overwrite the destination file, use the following form of the method, which allows you to
specify whether the destination file can be overwritten with a True/False value (the overwrite
argument):

File.Copy(source, destination, overwrite)

The Copy method works across volumes. The following statement copies the file faces.jpg
from the folder C:\My Documents\Screen\ to the folder D:\Fun Images and changes its name to
Bouncing Face.jpg:

File.Copy(”C:\My Documents\Screen\faces.jpg”,
”D:\Fun Images\Bouncing Face.jpg”)

The Copy method doesn’t accept wildcard characters; you can’t copy multiple files via a single
call to the Copy method.

Create

This method creates a new file and returns a FileStream object, which you can use to write to or
read from the file. (The FileStream object is discussed in detail later in this chapter, along with the
methods for writing to or reading from the file.) The simplest form of the Create method accepts
a single argument, which is the path of the file you want to create:

Dim FStream As FileStream = File.Create(path)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 555

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 555

You can also create a new file and specify the size of the buffer to be associated with this file by
using the following form of the method, where bufferSize is an Integer (Int32) value:

FStream = File.Create(path, bufferSize)

If the specified file exists already, it’s replaced. The new file is opened for read-write operations,
and it’s opened exclusively by your application. Other applications can access it only after your
application closes it. After the file has been created, you can use the methods of the FileStream
object to write to it. These methods are discussed in the section ‘‘Accessing Files,’’ later in this
chapter.

The Create method can raise several exceptions, which are described in Table 15.1. Pathnames
are limited to 248 characters, and filenames are limited to 259 characters.

Table 15.1: Exceptions of the Create Method

Exception Description

IOException The folder you specified doesn’t exist.

ArgumentNullException The path you specified doesn’t reference a file.

SecurityException The user of your application doesn’t have permission to create a
new file in the specified folder.

ArgumentException The path you specified is invalid.

AccessException The file can’t be opened in read-write mode. Most likely, you’ve
attempted to open a read-only file, but the File.Create method
opens a file in read-write mode.

DirectoryNotFoundException The folder you specified doesn’t exist.

CreateText

This method is similar to the Create method, but it creates a text file and returns a StreamWriter
object for writing to the file. The StreamWriter object is similar to the FileStream object but is used
for text files only, whereas the FileStream object can be used with both text and binary files.

Dim SW As StreamWriter = File.CreateText(path)

Delete

This method removes the specified file from the file system. The syntax of the Delete method is
the following, where path is the path of the file you want to delete:

File.Delete(path)

This method will raise an exception if the file is open at the time for reading or writing, or if the
file doesn’t exist.

Notice that the Delete method of the File object deletes files permanently and doesn’t send
them to the Recycle Bin. Moreover, it doesn’t recognize wildcard characters. To delete all the files
in a folder, you must call the Directory object’s Delete method to remove the entire folder.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 556

556 CHAPTER 15 ACCESSING FOLDERS AND FILES

Exists

This method accepts as an argument the path of a file and returns a True/False value that indicates
whether a file exists. The following statements delete a file, after making sure that the file exists:

If File.Exists(path) Then
File.Delete(path)

Else
MsgBox(”The file ” & path & ” doesn’t exist”)

End If

The File.Delete method will not raise an exception if the file doesn’t exist, so you don’t have
to make sure that a file exists before deleting it.

GetAttributes

The GetAttributes method accepts a file path as an argument and returns the attributes of the
specified file as a FileAttributes object. A file can have more than a single attribute (for instance, it
can be hidden and compressed). Table 15.2 lists all possible attributes a file can have.

Table 15.2: Attributes of a File

Value Description

Archive The file’s archive status. Most of the files in your file system have the Archive
attribute.

Compressed The file is compressed.

Encrypted The file is encrypted.

Hidden The file is hidden, and it doesn’t appear in an ordinary directory listing.

Normal Normal files have no other attributes, so this setting excludes all other
attributes.

NotContentIndexed The file isn’t indexed by the operating system’s content-indexing service.

Offline The file is offline, and its contents might not be available at all times.

ReadOnly The file is read-only.

SparseFile The file is sparse (a large file whose data are mostly zeros).

System A file that is part of the operating system or is used exclusively by the
operating system.

Temporary The file is temporary. Temporary files are created by applications and they’re
deleted by the same applications that created them when they terminate.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 557

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 557

To examine whether a file has an attribute set, you must check the value returned by the
GetAttributes method with the desired attribute, which is a member of the FileAttributes
enumeration. To find out whether a file is read-only, use the following If statement:

If File.GetAttributes(fpath) And FileAttributes.ReadOnly Then
Debug.WriteLine(”The file ” & fpath & ” is read only”)

Else
Debug.WriteLine(”You can write to the file ” & fpath)

End If

You can also retrieve a file’s attributes through the FileInfo object, described later in
this chapter.

GetCreationTime, SetCreationTime

The GetCreationTime method returns a date value, which is the date and time the file was cre-
ated. This value is set by the operating system, but you can change it with the SetCreationTime
method. SetCreationTime accepts as an argument the file’s path and the new creation time:

File.SetCreationTime(path, datetime)

GetLastAccessTime, SetLastAccessTime

The GetLastAccessTime method returns a date value, which is the date and time the specified file
was accessed for the last time. Use the SetLastAccessTime method to set this value. (Its syntax
is identical to the syntax of the SetCreationTime method.) Changing the last access of a file is
sometimes called touching the file. If you have a utility that manipulates files according to when
they were last used (for example, one that moves data files that haven’t been accessed in the last
three months to tape), you can touch a few files to exclude them from the operation.

GetLastWriteTime, SetLastWriteTime

The GetLastWriteTime method returns a date value, which is the date and time that the specified
file was written to for the last time. To change this attribute, use the SetLastWriteTime method.

Move

This method moves the specified file to a new location. You can also use the Move method to
rename a file by simply moving it to another name in the same folder. Moving a file is equivalent
to copying it to another location and then deleting the original file. The Move method works across
volumes:

File.Move(sourceFileName, destFileName)

The first argument is the path of the file to be moved, and the second argument is the path of
the destination file. The Move method will throw an exception if the source file or the destination
does not exist, if the application doesn’t have write permission on the destination folder, or if one
of the arguments is invalid.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 558

558 CHAPTER 15 ACCESSING FOLDERS AND FILES

Open

This method opens an existing file for read-write operations. The simplest form of the method is
the following, which opens the file specified by the path argument and returns a FileStream object
to this file:

FStream = File.Open(path)

You can use the FStream object’s methods to write to or read from the file. The following form
of the method allows you to specify the mode in which you want to open the file, where the
fileMode argument can have one of the values shown in Table 15.3.

FStream = File.Open(path, fileMode)

Table 15.3: FileMode Enumeration

Value Effect

Append Opens the file in write mode, and all the data you write to the file are appended to
its existing contents.

Create Requests the creation of a new file. If a file by the same name exists, this will be
overwritten.

CreateNew Requests the creation of a new file. If a file by the same name exists, an exception
will be thrown. This mode will create and open a file only if it doesn’t already exist
and it’s the safest mode.

Open Requests that an existing file be opened.

OpenOrCreate Opens the file in read-write mode if the file exists, or creates a new file and opens it
in read-write mode if the file doesn’t exist.

Truncate Opens an existing file and resets its size to zero bytes. As you can guess, this file
must be opened in write mode.

Another form of the Open method allows you to specify the access mode in addition to the file
mode, where the accessMode argument can have one of the values listed in Table 15.4:

FStream = File.Open(path, fileMode, accessMode)

You can also specify a fourth argument to the Open method, which specifies how the file will
be shared with other applications. This form of the method requires that the other two arguments
(fileMode and accessMode) be supplied as well:

FStream = File.Open(path, fileMode, accessMode, shareMode)

The shareMode argument determines how the file will be shared among multiple applications
and can have one of the values in Table 15.5.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 559

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 559

Table 15.4: AccessMode Enumeration

Value Effect

Read The file is opened in read-only mode. You can read from the Stream object that
is returned, but an exception will be thrown if you attempt to write to the file.

ReadWrite The file is opened in read-write mode. You can either write to the file or read
from it.

Write The file is opened in write mode. You can write to the file, but if you attempt to
read from it, an exception will be thrown.

Table 15.5: ShareMode Enumeration

Value Effect

None The file can’t be shared for reading or writing. If another application attempts to
open the file, it will fail until the current application closes the file.

Read The file can be opened by other applications for reading, but not for writing.

ReadWrite The file can be opened by other applications for reading or writing.

Write The file can be opened by other applications for writing, but not for reading.

OpenRead

This method opens an existing file in read mode and returns a FileStream object associated with
this file. You can use this stream to read from the file. The syntax of the OpenRead method is the
following:

Dim FStream As FileStream = File.OpenRead(path)

The OpenRead method is equivalent to opening an existing file with read-only access via the
Open method.

OpenText

This method opens an existing text file for reading and returns a StreamReader object associated
with this file. Its syntax is the following:

Dim SR As StreamReader = File.OpenText(path)

Why do we need an OpenText method in addition to the Open, OpenRead, and OpenWrite
methods? The answer is that text can be stored in different formats. It can be plain text (UTF-8

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 560

560 CHAPTER 15 ACCESSING FOLDERS AND FILES

encoding), ASCII text, or Unicode text. The StreamReader object associated with the text file will
perform the necessary conversions, and you will always read the correct text from the file. The
default encoding for the OpenText method is UTF-8.

OpenWrite

This method opens an existing file in write mode and returns a FileStrem object associated with
this file. You can use this stream to write to the file, as you will see later in this chapter.

The syntax of the OpenRead method is as follows, where path is the path of the file:

Dim FStream As FileStream = File.OpenWrite(path)

To write data to the file, use the methods of the FileStream object, which are discussed later in
this chapter. This ends our discussion of the Directory and File classes, which are the two major
objects for manipulating files and folders. In the following section, I will present the DriveInfo,
DirectoryInfo, and FileInfo classes briefly, and then we’ll build an application that puts together
much of the information presented so far.

Drive, Folder, and File Properties
The IO namespace provides three objects that represent drives, folders, and files: the DriveInfo,
DirectoryInfo, and FileInfo classes. These classes, in turn, expose a number of basic properties of
the entities they represent. Notice that they’re instance objects, and you must create a new instance
of the corresponding class by specifying the name of a drive/folder/file in its constructor.

The same three objects are returned by the GetDriveInfo, GetDirectoryInfo and GetFile-
Info methods of the FileSystem object.

The DriveInfo Class

The DriveInfo class provides basic information about a drive. Its constructor accepts as an argu-
ment a drive name, and you can use the object returned by the method to retrieve information
about the specific drive, as shown here:

Dim Drive As New DriveInfo(”C”)

The argument is the name of a drive (you can include the colon, if you want). Notice that you
can’t specify a Universal Naming Convention (UNC) path with the constructor of the DriveInfo
object. You can only access local drives or network drives that have been mapped to a drive name
on the target system.

To retrieve information about the specified drive, use the following properties of the
DriveInfo class:

DriveFormat A string describing the drive’s format (FAT32, NTFS).

DriveType A string describing the drive’s type (fixed, CD-ROM, and so on).

TotalSize The drive’s total capacity, in bytes.

TotalFreeSize The total free space on the drive, in bytes.

AvailableFreeSpace The available free space on the drive, in bytes.

VolumeLabel The drive’s label. You can change the drive’s label by setting this property.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 561

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 561

IsReady A True/False value indicating whether the drive is ready to be used. Retrieve this
property’s setting before calling any of the other properties to make sure that you’re not
attempting to access an empty floppy or CD drive.

Discovering the System’s Drives

The DriveInfo class exposes the GetDrives method, which returns an array of DriveInfo objects,
one for each drive on the system. This method is similar to the GetLogicalDrives method of the
Directory object, which is a shared method and doesn’t require that you create an object explicitly.

The DirectoryInfo Class

To create a new instance of the DirectoryInfo class that references a specific folder, supply the
folder’s path in the class’s constructor:

Dim DI As New DirectoryInfo(path)

The members of the DirectoryInfo class are equivalent to the members of the Directory class,
and you will recognize them as soon as you see them in the IntelliSense drop-down list. Here are
a couple of methods that are unique to the DirectoryInfo class.

CreateSubdirectory

This method creates a subfolder under the folder specified by the current instance of the class, and
its syntax is as follows:

DI.CreateSubdirectory(path)

The CreateSubdirectory method returns a DirectoryInfo object that represents the new sub-
folder. The path argument need not be a single folder’s name. If you specified multiple nested
folders, the CreateSubdirectory method will create the appropriate hierarchy, similar to the
CreateDirectory method of the Directory class.

GetFileSystemInfos

This method returns an array of FileSystemInfo objects, one for each item in the folder referenced
by the current instance of the class. The items can be either folders or files. To retrieve informa-
tion about all the entries in a folder, create an instance of the DirectoryInfo class and then call its
GetFileSystemInfos method:

Dim DI As New DirectoryInfo(path)
Dim itemsInfo() As FileSystemInfo
itemsInfo = DI.GetFileSystemInfos()

You can also specify an optional search pattern as an argument when you call this method:

itemsInfo = DI.GetFileSystemInfos(pattern)

The FileSystemInfo objects expose a few properties, which are not new to you. The Name, Full-
Name, and Extension properties return a file’s or folder’s name, or full path, or a file’s extension,

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 562

562 CHAPTER 15 ACCESSING FOLDERS AND FILES

respectively. CreationTime, LastAccessTime, and LastWriteTime are also properties of the
FileSystemInfo object, as well as the Attributes property.

You will notice that there are no properties that determine whether the current item is a folder
or a file. To find out the type of an item, use the Directory member of the Attributes property:

If itemsInfo(i).Attributes And FileAttributes.Directory Then
{ current item is a folder }

Else
{ current item is a file }

End If

The code in Listing 15.6 retrieves all the items in the C:\Program Files folder and prints their
names along with the FOLDER or FILE characterization.

Listing 15.6: Processing a Folder’s Items with the FileSystemInfo Object

Dim path As String = ”C:\Program Files”
Dim DI As New DirectoryInfo(path)
Dim itemsInfo() As FileSystemInfo
itemsInfo = DI.GetFileSystemInfos()
Dim item As FileSystemInfo
For Each item In itemsInfo

If (item.Attributes And FileAttributes.Directory)=
FileAttributes.Directory Then

Debug.Write(”FOLDER ”)
Else

Debug.Write(”FILE ”)
End If
Debug.WriteLine(item.Name)

Next

Notice the differences between the GetFileSystemInfos method of the DirectoryInfo class
and the GetFileSystemEntries of the Directory object. GetFileSystemInfos returns an array of
objects that contains information about the current item (file or folder). GetFileSystemEntries
returns an array of strings (the names of the folders and files).

The FileInfo Class

The FileInfo class exposes many properties and methods, which are equivalent to the members
of the File class, so I’m not going to repeat all of them here. The Copy/Delete/Move methods
allow you to manipulate the file represented by the current instance of the FileInfo class, similar
to the methods by the same name of the File class. Although there’s substantial overlap between
the members of the FileInfo and File classes, the difference is that with FileInfo you don’t have to
specify a path; its members act on the file represented by the current instance of the FileInfo class,
and this file is passed as an argument to the constructor of the FileInfo class. The FileInfo
class exposes a few rather trivial properties, which are mentioned briefly here.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 563

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 563

Length Property
This property returns the size of the file represented by the FileInfo object in bytes. The File class
doesn’t provide an equivalent property or method.

CreationTime, LastAccessTime, LastWriteTime Properties
These properties return a date value, which is the date the file was created, accessed for the last
time, or written to for the last time, respectively. They are equivalent to the methods of the File
object by the same name and the Get prefix.

Name, FullName, Extension Properties
These properties return the filename, full path, and extension, respectively, of the file represented
by the current instance of the FileInfo class. They have no equivalents in the File class because
the File class’s methods require that you specify the path of the file, so its path and extension
are known.

CopyTo, MoveTo Methods
These two methods copy or move, respectively, the file represented by the current instance of the
FileInfo class. Both methods accept a single argument, which is the destination of the operation
(the path to which the file will be copied or moved). If the destination file exists already, you can
overwrite it by specifying a second optional argument, which has a True/False value:

FileInfo.CopyTo(path, force)

Both methods return an instance of the FileInfo class, which represents the new file — if the
operation completed successfully.

Directory Method
This method returns a DirectoryInfo value that contains information about the file’s parent
directory.

DirectoryName Method
This method returns a string with the name of the file’s parent directory. The following statements
return the two (identical) strings shown highlighted in this code segment:

Dim FI As FileInfo
FI = New FileInfo(”c:\folder1\folder2\folder3\test.txt”)
Debug.WriteLine(FI.Directory().FullName)
c:\folder1\folder2\folder3
Debug.WriteLine(FI.DirectoryName()) c:\folder1\folder2\folder3

Of course, the Directory method returns an object, which you can use to retrieve other prop-
erties of the parent folder.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 564

564 CHAPTER 15 ACCESSING FOLDERS AND FILES

The Path Class
The Path class contains an interesting collection of methods, which you can think of as util-
ities. The Path class’s methods perform simple tasks such as retrieving a file’s name and exten-
sion, returning the full path description of a relative path, and so on. The Path class’s members are
shared, and you must specify the path on which they will act as an argument.

Properties

The Path class exposes the following properties. Notice that none of these properties applies
to a specific path; they’re general properties that return settings of the operating system. The
FileSystem component doesn’t provide equivalent properties to the ones discussed in this section.

DirectorySeparatorChar

This property returns the directory separator character, which is the backslash character (\).

InvalidPathChars

This property returns the list of invalid characters in a path as an array of the following characters:

/ \ ” < > —

You can use these characters to validate user input or pathnames read from a file. If you have
a choice, let the user select the files through the Open dialog box, so that their pathnames will
always be valid.

PathSeparator, VolumeSeparatorChar

These properties return the separator characters that appear between multiple paths (:) and vol-
umes (;), respectively.

Methods

The most useful methods exposed by the Path class are utilities for manipulating filenames and
pathnames, described in the following sections. Notice that the methods of the Path class are
shared: You must specify the path on which they will act as an argument.

ChangeExtension

This method changes the extension of a file. Its syntax is as follows:

newExtension = Path.ChangeExtension(path, extension)

The return value is the new extension of the file (a string value), and you can examine it from
within your code to make sure that the operation completed successfully. The first argument is the
file’s path, and the second argument is the file’s new extension. If you want to remove the file’s
extension, set the second argument to Nothing. The following statement changes the extension of
the specified file from .bin to .dat:

Dim path As String = ”c:\My Documents\NewSales.bin”
Dim newExt As String = ”.dat”
Path.ChangeExtension(path, newExt)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 565

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 565

Combine

This method combines two path specifications into one. Its syntax is as follows:

newPath = Path.Combine(path1, path2)

Use this method to combine a folder path with a file path. The following expression will return
the highlighted string:

Path.Combine(”c:\textFiles”, ”test.txt”)
c:\textFiles\test.txt

Notice that the Combine method inserted the separator, as needed. It’s a simple operation, but
if you had to code it yourself, you’d have to examine each path and determine whether a separator
must be inserted.

GetDirectoryName

This method returns the directory name of a path. The following statement:

Path.GetDirectoryName(”C:\folder1\folder2\folder3\Test.txt”)

will return this string:

C:\folder1\folder2\folder3

GetFileName, GetFileNameWithoutExtension

These two methods return the filename in a path, with and without its extension, respectively.

GetFullPath

This method returns the full path of the specified path; you can use it to convert relative pathnames
to fully qualified pathnames. The following statement returned the highlighted string on my
computer (it will be quite different on your computer, depending on the current directory):

Console.WriteLine(Path.GetFullPath(”..\..\Test.txt”))
C:\WorkFiles\Mastering VB\Chapters\Chapter 15\Projects\Test.txt

The pathname passed to the method as an argument need not exist. The GetFullPath method
will return the fully qualified pathname of a nonexistent file, as long as the path doesn’t contain
invalid characters.

GetTempFile, GetTempPath

The GetTempFile method returns a unique filename, which you can use as a temporary storage
area from within your application. The name of the temporary file can be anything, because no
user will ever access it. In addition, the GetTempFile method creates a zero-length file on the disk,
which you can open with the Open method. A typical temporary filename is the following:

C:\DOCUME˜1\TOOLKI˜1\LOCALS˜1\Temp\tmp105.tmp

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 566

566 CHAPTER 15 ACCESSING FOLDERS AND FILES

It was returned by the following statement on my system:

Debug.WriteLine(Path.GetTempFile)

The GetTempPath method returns the system’s temporary folder. All temporary files should
be created in this folder, so that the operating system can remove them when it’s running out of
space. Your applications should remove all the temporary files they create, but more often than
not, programmers leave temporary files around.

HasExtension

This method returns a True/False value, indicating whether a path includes a file extension.

VB 2008 at Work: The CustomExplorer Project
The CustomExplorer application, which demonstrates the basic properties and methods of the
Directory and File classes, duplicates the functionality of Windows Explorer. Its user interface,
shown in Figure 15.2, was discussed in Chapter 9, ‘‘The TreeView and ListView Controls.’’ In this
chapter, you’ll see how to access the file system and populate the two controls with folder names
and filenames, using the basic members of the Directory and File classes of the System.IO name-
space. You can implement the same application with the FileSystem component as an exercise. I
will post the same application implemented with the FileSystem component of the My object in
this chapter’s Projects folder for your convenience.

Figure 15.2

The CustomExplorer
project

When you start the application, the names of the subfolders under the C:\Program Files
folder are displayed in the TreeView control, in a hierarchical structure. This operation takes a
few seconds because the code must scan the entire folder, including its subfolders, and generate
the necessary nodes on the TreeView control. The more programs you have installed on your C:
drive, the longer it will take to scan them. Change the value of the initFolder variable in Listing
15.7 to scan a different folder. As the code iterates through the subfolders, it displays the name of
the current folder on the form’s title bar, so that you can monitor the progress of the operation.
This is one form of feedback you can provide for this operation.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 567

MANIPULATING FOLDERS AND FILES WITH THE IO NAMESPACE 567

Listing 15.7: CustomExplorer’s Form Load Event Handler

Private Sub Form1 Load(...) Handles Me.Load
Dim Nd As New TreeNode
Dim initFolder As String = ”C:\Program Files”
Nd = TreeView1.Nodes.Add(initFolder)
Me.Show()
Application.DoEvents()
Me.Cursor = Cursors.WaitCursor
ScanFolder(initFolder, Nd)
Me.Cursor = Cursors.Default

End Sub

As you can guess, all the work is done by the ScanFolder() subroutine, which accepts as argu-
ments the path of the folder to scan and the current node on the TreeView control. The subfolders
of the specified folder will be added to the TreeView control as child nodes of the current node,
and this is why the ScanFolder() subroutine needs a reference to the current node.

The ScanFolder() subroutine iterates through the subfolders of the specified folder recur-
sively and creates a new node for each subfolder. If a subfolder contains subfolders of its own, the
ScanFolder() subroutine calls itself, passing the name of the subfolder as an argument. This way,
each folder is scanned completely, regardless of it depth (the levels of nested subfolders). Listing
15.8 shows the code of the ScanFolders() subroutine.

Listing 15.8: Displaying the Subfolders of the Selected Folder

Sub ScanFolder(ByVal folderSpec As String,
ByRef currentNode As TreeNode)

Dim thisFolder As String
Dim allFolders() As String
allFolders = IO.Directory.GetDirectories(folderSpec)
For Each thisFolder In allFolders

Dim Nd As TreeNode
Nd = New TreeNode(Path.GetFileName(thisFolder))
currentNode.Nodes.Add(Nd)
folderSpec = thisFolder
ScanFolder(folderSpec, Nd)
Me.Text = ”Scanning ” & folderSpec
Me.Refresh()

Next
End Sub

The ScanFolder() subroutine is surprisingly simple because it’s recursive: It calls itself again
and again to iterate through all the subfolders of the specified folder. The GetDirectories method

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 568

568 CHAPTER 15 ACCESSING FOLDERS AND FILES

retrieves the names of the subfolders of the current folder and returns them as an array of strings:
the allFolders array. The following loop iterates through the elements of this array. For each
element, it adds a new node under the current node on the TreeView control and then calls itself,
passing the current folder’s name as an argument. If the current folder contains subfolders, they
will be added to the TreeView control as well.

In the Form’s Load event handler, we populate the TreeView control with the hierarchy of the
initial folder’s subfolders. You should probably provide a Browse For Folder dialog box to allow
users to select the folder (or drive) to be mapped on the TreeView control. To view the files in a
specific folder, you can click the folder’s name in the TreeView control. The ListView control on
the left will be populated with the names and basic properties of the files in the selected folder. The
code that displays the list of files in the selected folder resides in the AfterSelect event handler
of the TreeView control (it’s shown in Listing 15.9).

Listing 15.9: Displaying a Folder’s Files

Private Sub TreeView1 AfterSelect(
ByVal sender As System.Object,
ByVal e As System.Windows.Forms.TreeViewEventArgs)
Handles TreeView1.AfterSelect

Dim Nd As TreeNode
Dim pathName As String
Nd = TreeView1.SelectedNode
pathName = Nd.FullPath
Me.Text = pathName
ShowFiles(pathName)

End Sub

The ShowFiles() subroutine accepts as an argument a folder path and displays the files in the
folder, along with their basic properties. Its code, which is shown in Listing 15.10, iterates through
the array with the filenames returned by the Directory.GetFiles method and uses the FileInfo
class to retrieve each file’s basic properties.

Listing 15.10: ShowFiles() Subroutine

Sub ShowFiles(ByVal selFolder As String)
ListView1.Items.Clear()
Dim files() As String
Dim file As String
files = IO.Directory.GetFiles(selFolder)
Dim TotalSize As Long
Dim FI As IO.FileInfo
For Each file In files

Dim LItem As New ListViewItem
LItem.Text = IO.Path.GetFileName(file)
FI = New IO.FileInfo(file)
LItem.SubItems.Add(FI.Length.ToString(‘‘#,###’’))
LItem.SubItems.Add(

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 569

ACCESSING FILES 569

FI.CreationTime.ToShortDateString)
LItem.SubItems.Add(

FI.LastAccessTime.ToShortDateString)
ListView1.Items.Add(LItem)
TotalSize += FI.Length

Next
Me.Text = Me.Text & ‘‘ [‘‘ & TotalSize.ToString(‘‘#,###’’) & ‘‘ bytes]’’

End Sub

Accessing Files
In the first half of the chapter, you learned how to manipulate files and folders. Now we’ll discuss
how to access files (write data to files and read it back). You’ve already seen the various Open
methods of the File class, which return a Stream object. It’s this object that provides the methods
for writing to and reading from files.

There are two types of files: text files and binary files. Of course, you can classify files in any
way you like, but when it comes to writing to and reading from files, it’s convenient to treat them
as either text or binary. A binary file is any file that doesn’t contain plain text. Text files are usually
read line by line or in their entirety into a String variable. Binary files must be read according
to the type of information stored in them. A bitmap file, for instance, must be read 1 byte at a
time. Each pixel is usually represented by 3 or 4 bytes, and you must combine the values read to
reconstruct the pixel’s color. You can also read Long values from an image file. Or you can read
a Color variable directly from the stream. Most binary files contain multiple data types, and you
must know the organization of a file before you can read it.

To access a file, you must first set up a Stream object. Stream objects are created by the vari-
ous methods that open or create files, as you have seen in the previous sections, and they return
information about the file they’re connected to.

After the Stream object is in place, you create a Reader or Writer object, which enables you to
read information from or write information into the Stream, respectively. The Reader and Writer
classes are abstracts that you can’t use directly in your code. There are two classes that inherit from
the Reader class: the StreamReader class for text files and the BinaryReader class for binary files.
Likewise, there are two classes that inherit the Writer class: the StreamWriter and the BinaryWriter
classes. These classes expose a few properties and methods for writing to files and reading from
them, and their members are discussed shortly.

Using Streams, Readers, and Writers

The FileStream class is derived from the Stream abstract class and represents a stream of bytes. Use
its methods to find the length of the stream, to lock the stream, and to navigate to a specific location
in the stream. FileStream also provides methods of writing to the stream and reading from it. The
Write and WriteByte methods write an array of bytes and a single byte to the stream, respectively.
The Read and ReadByte methods read the same data back from the stream. These methods are not
used frequently, because developers usually manipulate more-specific data types (such as strings and
decimals) or custom data types, not bytes. If you’re dealing with bytes, or you don’t mind converting
your data to and from Byte arrays, use the methods of the FileStream class to write data to a file. For
most applications, however, you’ll use the methods of the Stream class.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 570

570 CHAPTER 15 ACCESSING FOLDERS AND FILES

Typical Windows applications set up a FileStream object to open a channel between the application
and a file, and then a StreamWriter/StreamReader object on top of it. These two classes provide
more-flexible methods for sending data to the underlying file and reading them back. For binary files,
use the BinaryWriter/BinaryReader classes. The Reader/Writer classes know how to send data to a
Stream object and read them back, while the Stream object knows how to interact with the underly-
ing file. The IO namespace provides many ways to exchange data with a file and you’ll rarely use the
FileStream class’s methods to write or read data directly to or from a file.

Using Streams
You can think of the Stream as a channel between your application and the source or destination
of the data. In most cases, the source (or destination) is a file. The Stream abstracts a very basic
operation: the operation of sending or receiving data. Does it really make any difference whether
you write to a file or send data to a web client? Technically, it’s a world of difference, but wouldn’t
it be nice if we could specify the destination and then send the data (or request data from a source)?
The Framework abstracts this basic operation by establishing a Stream between the application
and the source, or destination, of the data. Consider an application that successfully writes data
to a file. If you change the definition of the stream, you can send the same data to a different
destination via the same statements. You can send the data to another machine or a web client.

Another benefit of using streams is that you can combine them. The typical example is that of
encrypting and decrypting data. Data is encrypted through a special type of Stream, the Crypto-
Stream. You write plain data to the CryptoStream, and they’re encrypted by the stream itself. In
other words, the CryptoStream object accepts plain data and emits encrypted data. You can con-
nect the CryptoStream object to another Stream object that represents a file and write the encrypted
data directly to the file. Your code uses simple statements to write data to the CryptoStream object,
which encrypts the data and then passes it to another stream that writes the encrypted data to
a file.

The FileStream Class

The Stream class is an abstract one, and you can’t use it directly in your code. To prepare your
application to write to a file, you must set up a FileStream object, which is the channel between
your application and the file. The methods for writing and reading data are provided by the
StreamReader/StreamWriter or BinaryReader/BinaryWriter classes, which are created on top of
the FileStream object.

The FileStream object’s constructor is overloaded; its most common forms require that you
specify the path of the file and the mode in which the file will be opened (for reading, appending,
writing, and so on). The simpler form of the constructor is as follows:

Dim FS As New FileStream(path, fileMode)

The fileMode argument is a member of the FileMode enumeration (see Table 15.3). It’s the
same argument used by the Open method of the File class. Also similar to the Open method of the
File class, another overloaded form of the constructor allows you to specify the file’s access mode;
the syntax of this method is the following:

Dim FS As New FileStream(path, fileMode, fileAccess)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 571

ACCESSING FILES 571

The last argument is a member of the FileAccess enumeration (see Table 15.4). The last
overloaded form of the constructor accepts a fourth argument, which determines the file’s sharing
mode:

Dim FS As New FileStream(path, fileMode, fileAccess, fileShare)

The fileShare argument’s value is a member of the FileShare enumeration (see Table 15.5).

Properties

You can use the following properties of the FileStream object to retrieve information about the
underlying file.

CanRead, CanSeek, CanWrite

These three properties are read-only and they determine whether the current stream supports
reading, seeking, and writing, respectively. If the file associated with a specific FileStream object
can be read, the CanRead property returns True. A seek operation in the context of files doesn’t
locate a specific value in the file. It simply moves the current position to any location within the
file. The CanWrite property is a True/False value that’s True if the file associated with a specific
FileStream object can be written to and False if the file can’t be written.

Length

This read-only property returns the length of the file associated with the FileStream current object
in bytes.

Position

This property gets or sets the current position within the stream. You can compare the Position
property to the Length property to find out whether you have reached the end of an existing file.
When these two properties are equal, there are no more data to read.

Methods

The FileStream object exposes a few methods, which are discussed here. The methods for accessing
a file’s contents are discussed in the following section.

Lock

This method allows you to lock the file you’re accessing, or part of it. The syntax of the Lock
method is the following, where position is the starting position and length is the length of the
range to be locked:

Lock(position, length)

To lock the entire file, use this statement:

FileStream.Lock(1, FileStream.Length)

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 572

572 CHAPTER 15 ACCESSING FOLDERS AND FILES

Seek

This method sets the current position in the file represented by the FileStream object:

FileStream.Seek(offset, origin)

The new position is offset bytes from the origin. In place of the origin argument, use one of
the SeekOrigin enumeration members, listed in Table 15.6.

Table 15.6: SeekOrigin Enumeration

Value Effect

Begin The offset is relative to the beginning of the file.

Current The offset is relative to the current position in the file.

End The offset is relative to the end of the file.

SetLength

This method sets the length of the file represented by the FileStream object. Use this method after
you have written to an existing file to truncate its length. The syntax of the SetLength method
is this:

FileStream.SetLength(newLength)

If the specified value is less than the length of the file, the file is truncated; otherwise, the file is
expanded. To completely overwrite the contents of an existing file, call this method as soon as you
open the file to set its length to zero — in effect, initializing the file.

The StreamWriter Class

The StreamWriter class is the channel through which you send data to a text file. To create a new
StreamWriter object, declare a variable of the StreamWriter type. The first overloaded form of the
constructor accepts a file’s path as an argument and creates a new StreamWriter object for the file:

Dim SW As New StreamWriter(path)

The new object has the default encoding and the default buffer size. The encoding scheme deter-
mines how characters are saved (the default encoding is UTF-8), and the buffer size determines
the size of a buffer where data are stored before they’re sent to the file. The following statement
creates a new StreamWriter object and associates it with the specified file:

Dim SW As New StreamWriter(”c:\TextFile.txt”)

Another form of the same constructor creates a new StreamWriter object for the specified file
by using the default encoding and buffer size, but it allows you to overwrite existing files. If the
overwrite argument is True, you can overwrite the contents of an existing file.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 573

ACCESSING FILES 573

Dim SW As New StreamWriter(path, overwrite)

You can also specify the encoding for the StreamWriter with the following form of the
constructor:

Dim SW As New StreamWriter(path, overwrite, encoding)

The last form of the constructor that accepts a file’s path allows you to specify both the encoding
and the buffer size:

Dim SW As New StreamWriter(path, overwrite, encoding, bufferSize)

The same forms of the constructor can be used with a FileStream object. The simplest form of
its constructor is as follows:

Dim SW As New StreamWriter(stream)

This form creates a new StreamWriter object for the FileStream specified by the stream argu-
ment. To use this form of the constructor, you must first create a new FileStream object and then
use it to instantiate a StreamWriter object:

Dim FS As FileStream
FS = New FileStream(‘‘C:\TextData.txt’’, FileMode.Create)
Dim SW As StreamWriter
SW = New StreamWriter(FS)

Finally, there are two more forms of the StreamWriter constructor that accept a FileStream
object as the first argument. These forms are simply listed here:

New StreamWriter(stream, encoding)
New StreamWriter(stream, encoding, bufferSize)

After you have created the StreamWriter object, you can call its members to manipulate the
underlying file. They are described in the following sections.

NewLine Property

The StreamWriter object provides a handy property, the NewLine property, which allows you to
change the string used to terminate each line in the file. This terminator is written to the text file by
the WriteLine method, following the text. The default line-terminator string is a carriage return
followed by a line feed (\r\n). The StreamReader object doesn’t provide a similar property. It
reads lines terminated by the carriage return (\r), line feed (\n), or carriage return/line feed (\r\n)
characters only.

Methods

To send information to the underlying file, use the following methods of the StreamWriter object.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 574

574 CHAPTER 15 ACCESSING FOLDERS AND FILES

AutoFlush

This property is a True/False value that determines whether the methods that write to the file
(the Write and WriteString methods) will also flush their buffer. If you set this property to False,
the buffer will be flushed when the operating system gets a chance, when the Flush method is
called, or when you close the FileStream object. When AutoFlush is True, the buffer is flushed
with every write operation.

Close

This method closes the StreamWriter object and releases the resources associated with it to the
system. Always call the Close method after you finish using the StreamWriter object. If you have
created the StreamWriter object on top of a FileStream object, you must also close the underlying
stream too.

Flush

This method writes any data in the buffer to the underlying file.

Write(data)

This method writes the value specified by the data argument to the Writer object on which it’s
applied. The Write method is overloaded and can accept any data type as an argument. When
you pass a numeric value as an argument, the Write method stores it to the file as a string. This
is the same string you’d get with the number’s ToString method. To save dates to a text file, you
must convert them to strings with one of the methods of the Date data type.

There’s one form of the Write method I want to discuss here. This overloaded form accepts
a string with embedded format arguments, followed by a list of values, one for each argument.
The following statement writes a string with two embedded numeric values in it, as shown in the
following line:

SW.Write(‘‘Your price is ${0} plus ${1} for shipping’’, 86.50, 12.99)
Your price is $86.50 plus $12.99 for shipping

WriteLine(data)

This method is identical to the Write method, but it appends a line break after saving the data
to the file. You will find examples on using the StreamWriter class after we discuss the methods
of the StreamReader class.

The StreamReader Class

The StreamReader class provides the necessary methods for reading from a text file and exposes
methods that match those of the StreamWriter class (the Write and WriteLine methods).

The StreamReader class’s constructor is overloaded. You can specify the FileStream object it
will use to read data from the file, the encoding scheme, and the buffer size. The simplest form of
the constructor is the following:

Dim SR As New StreamReader(FS)

This declaration associates the SR variable with the file on which the FS FileStream object was
created. This is the most common form of the StreamReader class’s constructor. To prepare your

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 575

ACCESSING FILES 575

application for reading the contents of the file C:\My Documents\Meeting.txt, use the following
statements:

Dim FS As FileStream
Dim SR As StreamReader
FS = New FileStream(‘‘c:\My Documents\Meeting.txt’’,

System.IO.FileMode.OpenOrCreate, System.IO.FileAccess.Write)
SR = New StreamReader(FS)

You can also create a new StreamReader object directly on a file, with the following form of the
constructor:

Dim SR As New StreamReader(path)

With both forms of the constructor, you can specify the character encoding with a second
argument, as well as a third argument that determines the size of the buffer to be used for the IO
operations.

Methods

The StreamReader class provides the following methods for writing data to the underlying file.

Close

The Close method closes the current instance of the StreamReader class and releases any system
resources associated with this object.

Peek

The Peek method returns the next character as an integer value, without actually removing it from
the input stream. The Peek method doesn’t change the current position in the stream. If there are
no more characters left in the stream, the value −1 is returned. The Peek method will also return
−1 if the current stream doesn’t allow peeking.

Read

This method reads a number of characters from the StreamReader class to which it’s applied
and returns the number of characters read. This value is usually the same as the number of char-
acters you specified unless there aren’t as many characters in the file. If you have reached the
end of the stream (which is the end of the file), the method returns the value −1. The syntax of the
Read method is as follows, where count is the number of characters to be read, starting at
the startIndex location in the file:

charsRead = SR.Read(chars, startIndex, count)

The characters are stored in the chars array of characters, starting at the index specified by the
second argument. A simpler form of the Read method reads the next character from the stream
and returns it as an integer value, where SR is a properly declared StreamReader class:

Dim newChar As Integer
newChar = SR.Read()

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 576

576 CHAPTER 15 ACCESSING FOLDERS AND FILES

ReadBlock

This method reads a number of characters from a text file and stores them in an array of characters.
It accepts the same arguments as the Read method and returns the number of characters read.

Dim chars(count - 1) As Char
charsRead = SR.Read(chars, startIndex, count)

ReadLine

This method reads the next line from the text file associated with the StreamReader class and
returns a string. If you’re at the end of the file, the method returns the Null value. The syntax of
the ReadLine method is the following:

Dim txtLine As String
txtLine = SR.ReadLine()

A text line is a sequence of characters followed by a carriage return (\r), line feed (\n), or
carriage return and line feed (\r\n). Notice that the NewLine character you might have specified
for the specific file with the StreamWriter class is ignored by the ReadLine method. The string
returned by the method doesn’t include the line terminator.

ReadToEnd

The last method for reading characters from a text file reads all the characters from the current
position to the end of the file. We usually call this method once to read the entire file with a sin-
gle statement and store its contents to a string variable. The syntax of the ReadToEnd method is
as follows:

allText = SR.ReadToEnd()

To make sure you’re reading the entire file with the ReadToEnd method, reposition the file
pointer at the beginning of the file with the Seek method of the underlying stream before calling
the ReadToEnd method of the StreamReader class:

FS.Seek (0, SeekOrigin.Begin)

Sending Data to a File

The statements in Listing 15.11 demonstrate how to send various data types to a file. You can
place the statements of this listing in a button’s Click event handler and then open the file with
Notepad to see its contents. Everything is in text format, including the numeric values. Don’t
forget to import the System.IO namespace to your project.

Listing 15.11: Writing Data to a Text File

Dim SW As StreamWriter
Dim FS As FileStream

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 577

ACCESSING FILES 577

FS = New FileStream(‘‘C:\TextData.txt’’, FileMode.Create)
SW = New StreamWriter(FS)
SW.WriteLine(9.009)
SW.WriteLine(1 / 3)
SW.Write(‘‘The current date is ‘‘)
SW.Write(Now())
SW.WriteLine()
SW.WriteLine(True)
SW.WriteLine(New Rectangle(1, 1, 100, 200))
SW.WriteLine(Color.YellowGreen)
SW.Close()
FS.Close()

The contents of the TextData.txt file that was generated by the statements of Listing 15.11 are
shown next:

9.009
0.333333333333333
The current date is 9/19/2005 9:06:46 AM
True
{X=1,Y=1,Width=100,Height=200}
Color [YellowGreen]

Notice that the WriteLine method without an argument inserts a new line character in the file.
The statement SW.Write(Now()) prints the current date but doesn’t switch to another line. The
following statements demonstrate a more-complicated use of the Write method with formatting
arguments:

Dim BDate As Date = #2/8/1960 1:04:00 PM#
SW.WriteLine(‘‘Your age in years is {0}, in months is {1}, ‘‘ &

‘‘in days is {2}, and in hours is {3}.’’,
DateDiff(DateInterval.year, BDate, Now),
DateDiff(DateInterval.month, BDate, Now),
DateDiff(DateInterval.day, BDate, Now),
DateDiff(DateInterval.hour, BDate, Now))

The SW variable must be declared with the statements at the beginning of Listing 15.11. The day
I tested these statements, the following string was written to the file:

Your age in years is 47, in months is 569, in days is 17321, and in hours is 415726.

Of course, the data to be stored to a text file need not be hard-coded in your application. The
code of Listing 15.12 stores the contents of a TextBox control to a text file. If you compare it
to the single statement it takes to write the same data to a file with the FileSystem component,
you’ll understand how much the My object can simplify file IO operations.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 578

578 CHAPTER 15 ACCESSING FOLDERS AND FILES

Listing 15.12: Storing the Contents of a TextBox Control to a Text File

Dim SW As StreamWriter
Dim FS As FileStream
FS = New FileStream(‘‘C:\TextData.txt’’, FileMode.Create)
SW = New StreamWriter(FS)
SW.Write(TextBox1.Text)
SW.Close ()
FS.Close ()

The BinaryWriter Class

To prepare your application to write to a binary file, you must set up a BinaryWriter object, with
the statement shown here, where FS is a properly initialized FileStream object:

Dim BW As New BinaryWriter(FS)

You can also create a new BinaryWriter class directly on a file with the following form of the
constructor:

Dim BW As New StreamReader(path)

To specify the encoding of the text in the binary file, use the following form of the method:

Dim BW As New BinaryWriter(FS, encoding)
Dim BW As New BinaryWriter(path, encoding)

You can also specify a third argument indicating the size of the buffer to be used with the file
input/output operations:

Dim BW As New BinaryWriter(FS, encoding, bufferSize)
Dim BW As New BinaryWriter(path, encoding, bufferSize)

Methods

The BinaryWriter class exposes the following methods for manipulating binary files.

Close

This method flushes and closes the current BinaryWriter and releases any system resources asso-
ciated with it.

Flush

This method clears all buffers for the current writer and writes all buffered data to the under-
lying file.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 579

ACCESSING FILES 579

Seek

This method sets the position within the current stream. Its syntax is the following, where origin
is a member of the SeekOrigin enumeration (see Table 15.6) and offset is the distance from the
origin:

Seek(offset, origin)

Write

The Write method writes a value to the current stream. This method is heavily overloaded, but it
accepts a single argument, which is the value to be written to the file. The data type of its argument
determines how it will be written. The Write method can save all the base types to the file in their
native format, unlike the Write method of the TextWriter class, which stores them as strings.

WriteString

Whereas all other data types can be written to a binary file with the Write method, strings must
be written with the WriteString method. This method writes a length-prefixed string to the file
and advances the current position by the appropriate number of bytes. The string is encoded by
the current encoding scheme, and the default value is UTF8Encoding.

You will find examples of using the Write and WriteString methods of the BinaryWriter
object at the end of the following section, which describes the methods of the BinaryReader class.

The BinaryReader Class

The BinaryReader class provides the methods you need to read data from a binary file. As you
have seen, binary files might also hold text, and the BinaryReader class provides the ReadString
method to read strings written to the file by the WriteString method.

To use the methods of the BinaryReader class in your code, you must first create an instance of
the class. The BinaryReader object must be associated with a FileStream object, and the simplest
form of its constructor is the following, where streamObj is the FileStream object:

Dim BR As New BinaryReader(streamObj)

You can also specify the character-encoding scheme to be used with the BR object, using the
following form of the constructor:

Dim BR As New BinaryReader(streamObj, encoding)

If you omit the encoding argument, the default UTF-8Encoding will be used.

Methods

The BinaryReader class exposes the following methods for accessing the contents of a binary file.

Close

This method is the same as the Close method of the StreamReader class. It closes the current
reader and releases the underlying stream.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 580

580 CHAPTER 15 ACCESSING FOLDERS AND FILES

PeekChar

This method returns the next available character from the stream without repositioning the current
pointer. The character read is returned as an integer, or −1 if there are no more characters to
be read from the stream. The name of the method doesn’t quite comply with the BinaryReader
class, and here’s why. Peeking at the next byte makes sense only if the next byte is a character.
Reading the first byte of a Double value, for example, wouldn’t help you much. A character is
usually stored in a single byte (ASCII text), but it can also be stored in 2 bytes (Unicode text). The
PeekChar method knows how many bytes it must read from the text (they’re determined by the
current encoding), and it always returns a character, regardless of its size in bytes. The PeekChar
method’s return value is an integer, not a character.

The Read Methods

The BinaryReader class exposes methods for reading the same base data types you can write to a
file through the BinaryWriter class. Whereas there’s only one Write method that writes any data
type to the binary file, there are many methods to read the same data. Each method returns a value
of the corresponding type (the ReadBoolean method returns a Boolean value, the ReadDecimal
returns a Decimal type, and so on) and only a single value of this type. To read multiple values of
the same type, you must call the same method repeatedly. The various methods for reading the
base data types from the file are briefly described in Table 15.7.

To use these methods, you’re supposed to know the structure of the data stored in the file. A
file with a price list, for example, contains the same items for each product. The first two fields are
the product’s ID and description, followed by the product’s price and other pieces of information,
which are repeated for each product. If you know the types of values stored in the file, you can
call the appropriate methods to read the correct values. If you misread even a single value, none
of the following values will be read correctly.

VB 2008 at Work: The RecordSave Project
Let’s look at the code for saving structured information to a binary file. In this section, you’ll build
the RecordSave application, which demonstrates how to store a price list to a disk file and read
it later from the same file. The main form of the application is shown in Figure 15.3. The Save
Records button creates a few records and then saves them to disk. The Read Records button reads
the records from the file and displays them in the ListBox control.

Each record of the price list contains the following fields:

◆ The product’s ID (a String)

◆ The product’s description (a String)

◆ The product’s price (a Single value)

◆ The product’s availability (a Boolean value)

◆ The minimum reorder quantity (an Integer value)

The program saves each field as a separate entity, using the Write method of the BinaryStream
class. Only the string is written to the file with the WriteString method because we want to be
able to read the string back with the ReadString method.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 581

ACCESSING FILES 581

Table 15.7: The Read Methods of the BinaryReader Class

Value Effect

Read Reads the next character from the stream and returns it as an
integer value. An overloaded form of the method reads a number
of characters into an array of characters.

ReadBoolean Reads and returns a True/False value.

ReadByte Reads and returns a single byte.

ReadBytes(byteArray, count) Reads and returns count bytes from the file and stores them into
the Byte array passed as the first argument.

ReadChar Reads and returns a character. Depending on how text was stored
in the file, the ReadChar method might read 1 or 2 bytes (in the
case of Unicode text), but it always returns a character.

ReadChars(charArray, count) Reads and returns count characters from the file and stores them
in the character array specified as the first argument.

ReadDecimal Reads and returns a Decimal value from the file.

ReadDouble Reads and returns a Double value from the file.

ReadInt16 Reads and returns a short Integer (two-byte) value.

ReadInt32 Reads and returns an Integer (four-byte) value.

ReadInt64 Reads and returns a Long Integer (eight-byte) value.

ReadSByte Reads and returns a signed byte.

ReadSingle Reads a Single (four-byte) value from the file.

ReadString Reads and returns a string from the file. The string must be stored
in the file prefixed by its length. This is how the WriteString
method stored strings to a text file, so there’s nothing you have to
do from within your code. If the string isn’t prefixed by its length,
the ReadString method will read a string with the wrong number
of characters. The method will interpret the first byte as the
string’s length.

ReadUInt16 Reads and returns an unsigned short Integer (two-byte) value.

ReadUInt32 Reads and returns an unsigned Integer (four-byte) value.

ReadUInt64 Reads and returns an unsigned long Integer (eight-byte) value.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 582

582 CHAPTER 15 ACCESSING FOLDERS AND FILES

Figure 15.3

The RecordSave project
demonstrates how to
store records in a binary
file.

Because the price list contains many products, you will most likely store it in an array of custom
structures. The Product structure shown next is a simple, yet quite adequate, structure for our
price list:

Structure Product
Dim ProdID As String
Dim prodDescription As String
Dim listPrice As Single
Dim available As Boolean
Dim minStock As Integer

End Structure

The code that writes the structure to a binary file is shown in Listing 15.13.

Listing 15.13: Saving a Record to a Binary File

Private Sub bttnSave Click(...) Handles bttnSave.Click
Dim BW As BinaryWriter
Dim FS As FileStream
FS = New FileStream(”Records.bin”, System.IO.FileMode.OpenOrCreate,

System.IO.FileAccess.Write)
BW = New BinaryWriter(FS)
BW.BaseStream.Seek(0, SeekOrigin.Begin)
Dim p As New Product()

‘ Save first record
p.ProdID = ”100-A39”
p.prodDescription = ”Cellular Phone with built-in TV”

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 583

ACCESSING FILES 583

p.listPrice = 497.99
p.available = True
p.minStock = 40
SaveRecord(BW, p)

‘ Save second record
p = New Product()
p.ProdID = ”100-U300”
p.prodDescription = ”Wireless Handheld”
p.listPrice = 315.5
p.available = False
p.minStock = 12
SaveRecord(BW, p)

‘ Save third record
p = New Product()
p.ProdID = ”ZZZ”
p.prodDescription = ”Last Gadget”
p.listPrice = .99
p.available = True
p.minStock = 1000
SaveRecord(BW, p)

BW.Close()
FS.Close()

End Sub

The code of the SaveRecord() subroutine is shown in Listing 15.14. It accepts as arguments the
BinaryWriter class that represents the binary file to which the data will be written and a Product
structure to be saved to the file.

Listing 15.14: SaveRecord() Subroutine

Sub SaveRecord(ByVal writer As BinaryWriter, ByVal record As Product)
writer.Write(record.ProdID)
writer.Write(record.prodDescription)
writer.Write(record.listPrice)
writer.Write(record.available)
writer.Write(record.minStock)

End Sub

To read the records stored in the file, set up a BinaryReader associated with the Records.bin
file and call the appropriate Read method for each field of the record. Because we don’t know
in advance how many records are in the file, we set up a loop that keeps reading one record at
a time, while the current position (property Position of the FileStream object) is less than the
length of the file (property Length of the FileStream object). Listing 15.15 is the code behind the
Read Records button.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 584

584 CHAPTER 15 ACCESSING FOLDERS AND FILES

Listing 15.15: Reading Records from a Binary File

Private Sub bttnRead Click(...) Handles bttnRead.Click
Dim BR As BinaryReader
Dim FS As FileStream
FS = New System.IO.FileStream(”Records.bin”, FileMode.Open,

FileAccess.Read)
BR = New System.IO.BinaryReader(FS)
BR.BaseStream.Seek(0, SeekOrigin.Begin)
Dim p As New Product()
TextBox1.Clear()
Dim c As Integer
c = BR.PeekChar
While FS.Position < FS.Length

p = Nothing
‘ Read fields and populate structure
p.ProdID = BR.ReadString
p.prodDescription = BR.ReadString
p.listPrice = BR.ReadSingle
p.available = BR.ReadBoolean
p.minStock = BR.ReadInt32
‘ Display structure
ShowRecord(p)
c = BR.PeekChar

End While
BR.Close()
FS.Close()

End Sub

Notice that the product’s price is read with the ReadSingle method because it was saved as a
Single variable. The ShowRecord() subroutine appends the fields of the current structure to the
TextBox control at the bottom of the form.

Using a custom structure to store the fields simplifies the structure of the application at large,
but it doesn’t help the file I/O operation much. It’s quicker to use the Serializer class to store an
entire collection to the file at once, rather than each member of the collection individually. The
Serializer class, which is discussed in detail in Chapter 16, addresses many of the file I/O needs
of your applications. There will be situations, however, in which you must store widely different
pieces of information to a text or binary file, and the information presented in this chapter should
be adequate for these situations.

Reading Legacy Data with the FileSystem Object

A convenient feature of the My.Computer.FileSystem component is the OpenTextFieldParser
method, which reads the fields of a delimited or fixed-width text file. These files are created by many
applications when they export their data in text format. The ParseLegacyData project demonstrates
how to use the FileSystem object, and the OpenTextFieldParser method in specific, to read legacy
data. In the project’s folder you’ll find a Readme file that explains the process in detail.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 585

THE FILESYSTEMWATCHER COMPONENT 585

The FileSystemWatcher Component
FileSystemWatcher is a special component that has no visible interface and allows your application
to monitor changes in the file system. You can use the FileSystemWatcher component to monitor
changes in the local computer’s file system, a network drive, and even a remote computer’s file
system (as long as the remote machine is running Windows 2000 or a later version). The compo-
nent exposes a few properties that let you specify what types of changes you want to monitor and
the folders/files that will be monitored. Once activated, the FileSystemWatcher component fires
an event every time one of the specified items changes.

The items you can monitor are folders and files. You can specify the folders you want to monitor
as well as the file types to be monitored. You can also specify the types of actions you want to
monitor; each action fires its own event. The actions you can monitor are the creation, deletion, and
renaming of a file or folder and the modification of a file. The corresponding events are appropriately
named Changed, Created, Deleted, and Renamed. There’s also a special event, the Error event,
that is fired when too many changes occur and the FileSystemWatcher component can’t keep track
of them all. (The internal buffer overflows, and this condition is signaled with the Error event.)
It’s not recommended that you monitor very large folders, or folders with lots of activity.

Properties
To use a FileSystemWatcher component in your project, open the Components tab of the Toolbox
and double-click the FileSystemWatcher component’s icon. An instance of the component will be
placed in your project, and you can set the following properties in the Properties window.

NotifyFilter

This property determines the types of changes you want to monitor. It can have one of the values
shown in Table 15.8, which are the members of the IO.NotifyFilters enumeration.

Table 15.8: The NotifyFilters Enumeration

Value Description

Attributes The attributes of the file or folder

CreationTime The date of the file’s or folder’s creation

DirectoryName The directory name

FileName The filename

LastAccess The date of the file’s or folder’s last access

LastWrite The date of the file’s or folder’s last edit

Security The security settings of the file or folder

Size The size of the file or folder

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 586

586 CHAPTER 15 ACCESSING FOLDERS AND FILES

You can combine multiple types of changes by using the Or operator. The following statement
prepares the FileSystemWatcher1 component to monitor for changes in the date and time of a
file’s last write and last access:

FileSystemWatcher1.NotifyFilter =
IO.NotifyFilters.LastWrite Or
IO.NotifyFilters.LastAccess

The NotifyFilter property can also be set in the Properties window, but you can’t combine
multiple notification types there.

Path, IncludeSubdirectories

Set the Path property to the path you want to monitor. The component will watch for changes
in files in the specified path. If you want to include the path’s subfolders, set the Include
Subdirectories property to True. The default value of this property is False.

Filter

This property filters the files you want to monitor through a string with wildcards. A Filter
value of *.txt tells the component to monitor for changes in text files only. The default value of
the Filter property is *.*, which includes all the files. An empty string will also have the same
effect. Notice that you can’t specify multiple extensions with the Filter property.

EnableRaisingEvents

To start monitoring for changes in the file system, set the EnableRaisingEvents property to True.
While the EnableRaisingEvents property is True, the FileSystemWatcher component fires an
event for the changes you have specified through its properties. To stop monitoring the changes
in the file system, set this property to False.

Events
To notify your application about the changes, the FileSystemWatcher component raises the fol-
lowing events, which you can handle from within your code: Changed, Created, Deleted, and
Renamed. Like all events, they include two arguments: the sender and the e argument. The second
argument of these events carries information about the type of the change through the ChangeType
property. The e.ChangeType property’s value is a member of the IO.WatcherChangeTypes enu-
meration: All, Changed, Created, Deleted, and Renamed. The e.FullPath and e.Name properties
are the path and filename of the file that was changed, created, or deleted. In the case of a folder,
use the FullPath property to retrieve the name of the changed folder. Finally, the Renamed event’s
argument exposes the OldFullPath and OldName members, which let you retrieve the old path
and name of the renamed file.

You can write a common event handler for the Changed, Created, and Deleted events because
they share the same arguments. The Rename event must have its own handler, because the e
argument is of a different type.

All the changes detected by the FileSystemWatcher component are stored in an internal buffer,
which can overflow if too many changes take place in a short period of time. To avoid overflowing
the buffer, you should limit the number of files you monitor by setting the Filter and Path
properties appropriately. You should always limit the type of changes. (You’ll rarely have to
monitor for all types of changes in a folder.) If the buffer overflows, the Error event will be raised.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 587

THE FILESYSTEMWATCHER COMPONENT 587

In this event’s handler, you can increase the size of the buffer by setting the InternalBufferSize
property. You can double the buffer’s size from within the Error event handler to prevent the loss
of additional events by using the following statement:

FileSystemWatcher1.InternalBufferSize =
2 * FileSystemWatcher1.InternalBufferSize

VB 2008 at Work: The FileSystemWatcher Project
The FileSystemWatcher project, shown in Figure 15.4, demonstrates how to set up a File-
SystemWatcher component and how to process the events raised by the component. The
FileSystemWatcher component is initialized when the Start Monitoring button is clicked. This
button’s Click event handler prepares the FileSystemWatcher component to monitor changes in
text files on the root of the C: drive. I’ve chosen the root folder because it’s easy to locate and it has
very few files on most systems. You can create, edit, rename, and then delete a few text files in the
root folder to test the application.

Figure 15.4

FileSystemWatcher
project

After setting the Path, Filter and NotifyFilter properties, the code sets the component’s
EnableRaisingEvents property to True to start watching for changes. These changes will be
signaled though the component’s events, which are programmed to print in the ListBox control
at the bottom of the form the type of change detected and the name of the corresponding file.
The type of change is reported to the event handler through the ChangeType member of the e
argument. When a file is renamed, the program prints both the old and the new name.

The Start Monitoring button is a toggle. When clicked for the first time, its caption changes to
Stop Monitoring; if you click it again, it will stop monitoring the file system.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 588

588 CHAPTER 15 ACCESSING FOLDERS AND FILES

The properties of the FileSystemWatcher component are set in the form’s Load event, which is
shown in Listing 15.16.

Listing 15.16: Programming the FileSystemWatcher Component

Private Sub Form1 Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

FileSystemWatcher1.Path = ”c:\”
FileSystemWatcher1.IncludeSubdirectories = False
FileSystemWatcher1.Filter = ”*.txt”
FileSystemWatcher1.NotifyFilter = IO.NotifyFilters.CreationTime Or

IO.NotifyFilters.LastWrite Or IO.NotifyFilters.LastAccess Or
IO.NotifyFilters.FileName

FileSystemWatcher1.EnableRaisingEvents = False
End Sub

The code behind the button’s Click event handler (Listing 15.17) toggles the EnableRaising-
Events property and the button’s caption. When this property is set to True, the FileSystem-
Watcher component starts monitoring the changes in the file system.

Listing 15.17: Code of the Start Monitoring Button

Private Sub Button1 Click(...) Handles Button1.Click
If Button1.Text = ”Start Monitoring” Then

FileSystemWatcher1.EnableRaisingEvents = True
Button1.Text = ”Stop Monitoring”

Else
FileSystemWatcher1.EnableRaisingEvents = False
Button1.Text = ”Start Monitoring”

End If
End Sub

Now you must program the handlers of the FileSystemWatcher component. You need not
program all the events, only the ones you want to monitor. Because the Changed, Created, and
Deleted event handlers have the same arguments, you can write a common handler for all three
and a separate one for the Renamed event. Listing 15.18 details the event handlers of the sample
applications.

Listing 15.18: Event Handlers of the FileSystemWatcher Component

Private Sub WatcherHandler(...) Handles
FileSystemWatcher1.Changed,
FileSystemWatcher1.Created,

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 589

THE BOTTOM LINE 589

FileSystemWatcher1.Deleted
ListBox1.Items.Add(e.ChangeType & vbTab & e.FullPath)

End Sub

Private Sub FileSystemWatcher1 Renamed(...) Handles
FileSystemWatcher1.Renamed

ListBox1.Items.Add(e.ChangeType & vbTab &
e.OldFullPath & ” TO ” & e.FullPath)

End Sub

If you want to handle the Error event, you must stop monitoring the file system momentarily,
double the value of the InternalBufferSize property, and then enable the monitoring again, as
shown in Listing 15.19.

Listing 15.19: Programming the FileSystemWatcher’s Error Event

Private Sub FileSystemWatcher1 Error(..) Handles FileSystemWatcher1.Error
Dim status As Boolean
status = FileSystemWatcher1.EnableRaisingEvents
FileSystemWatcher1.EnableRaisingEvents = False
FileSystemWatcher1.InternalBufferSize =

2 * FileSystemWatcher1.InternalBufferSize
FileSystemWatcher1.EnableRaisingEvents = status

End Sub

Some file operations might cause multiple events. The actions of moving and copying a file
from one folder to another fire the Changed event several times. The same happens when you
create a file with the desktop context menu because several attributes of the new file are set as
soon as it’s created. To avoid multiple notifications, you should monitor for a few events only.
A common use of the FileSystemWatcher component is to detect the creation of a new file in a
special folder and act on it (such as when applications or users leave a file to a specific folder or
when remote users upload a file to an FTP server). To detect the creation of new files, leave the
NotifyFilter property to its default value and program the control’s Created event handler.

The Bottom Line

Handle Files with the My object. The simplest method of saving data to a file is to call one of
the WriteAllBytes or WriteAllText methods of the My.Computer.FileSystem object. You can
also use the IO namespace to set up a Writer object to send data to a file, and a Reader object to
read data from the file.

Master It Show the statements that save a TextBox control’s contents to a file and the
statements that reload the same control from the data file. Use the My.Computer.FileSystem
component.

Petroutsos c15.tex V2 - 01/28/2008 2:59pm Page 590

590 CHAPTER 15 ACCESSING FOLDERS AND FILES

Write data to a file with the IO namespace To send data to a file you must set up a File-
Stream object, which is a channel between the application and the file. To send data to a file,
create a StreamWriter or BinaryWriter object on the appropriate FileStream object. Likewise, to
read from a file, create a StreamReader or BinaryReader on the appropriate FileStream object.
To send data to a file, use the Write and WriteString methods of the appropriate Stream-
Writer object. To read data from the file, use the Read, ReadBlock, ReadLine, and ReadToEnd
methods of the StreamReader object.

Master It Write the contents of a TextBox control to a file using the methods of the IO
namespace.

Manipulate folders and files. The IO namespace provides the Directory and File classes,
which represent the corresponding entities. Both classes expose a large number of methods
for manipulating folders (CreateDirectory, Delete, GetFiles, and so on) and files (Create,
Delete, Copy, OpenRead, and so on).

Master It How will you retrieve the attributes of a drive, folder, and file using the IO
namespace’s classes?

Monitor changes in the file system and react to them. The FileSystemWatcher is a special
component that allows your application to monitor changes in the file system. You can spec-
ify the types of changes you want to monitor by using the NotifyFilter property, the types
of files you want to monitor by using the Filter property, and the path you want to monitor
by using the Path property. The FileSystemWatcher component fires the Changed, Created,
Deleted, and Renamed events, depending on the type of change(s) you specified. Once acti-
vated, the FileSystemWatcher component fires an event every time one of the specified items
changes.

Master It Assume that an application running on a remote computer creates a file in the
E:\Downloaded\Orders folder for each new order. How will you set up a FileSystem-
Watcher component to monitor this folder and notify your application about the arrival of
each new order?

Petroutsos V1 c16.tex Page 591 01/28/2008 3:13pm

Chapter 16

Serialization and XML

You have seen how the various collections store items, how to access their elements, and even how
to sort and search the collections. To make the most of collections and to use them to store large
sets of data, you should also learn how to persist collections to disk files.

Persisting data means to store them on disk at the end of one session and reload them into
the same application in a later session. The file with the persisted data can also be shared among
different applications and even different computers, as long as there’s an application that knows
what to do with the data. What good is it to create a large collection if your application can’t save
it and retrieve it from a disk file in another session?

Since time immemorial, programmers had to write code to save their data to disk. In this
chapter, you’ll see how to convert objects to streams with a technique known as serialization, which
is the process of converting arbitrary objects to streams of bytes. After you obtain the serialized
stream for a specific object, you can persist the object to disk, as well as read it back. The process
of reconstructing an object from its serialized form is called deserialization. Together, serialization
and deserialization allow you to store objects of any type to disk files and reuse them at a later
session. Serialization is not limited to saving data to files, however. You can serialize objects to
any stream, including a memory stream, a network stream, or even a cryptographic stream that
emits encrypted data.

In this chapter, you’ll learn how to do the following:

◆ Serialize objects and collections into byte streams

◆ Deserialize streams and reconstruct the original objects

◆ Create XML files in your code

Understanding Serialization Types
There are three types of serialization: binary serialization, SOAP (Simple Object Access Protocol
or Service Oriented Architecture Protocol) serialization, and XML (Extensible Markup Language)
serialization. Binary and SOAP serialization are very similar; XML serialization is a little different,
but it allows you to customize the serialization process.

Binary serialization is performed with the BinaryFormatter class, and it converts the values
of the object’s properties into a binary stream. The result of the binary serialization is compact and
efficient. However, binary-serialized objects can be used only by applications that have access to
the class that produced the objects and can’t be used outside .NET. Another limitation of binary
serialization is that the output it produces is not human readable, and you can’t do much with
a file that contains a binary serialized object without access to the original application’s code.
Because binary serialization is very compact and very efficient, it’s used almost exclusively to
persist objects between sessions of an application or between applications that share the same

Petroutsos V1 c16.tex Page 592 01/28/2008 3:13pm

592 CHAPTER 16 SERIALIZATION AND XML

classes. For example, you can create an ArrayList of Person objects, serialize them to a file, and
reload the collection of the serialized objects from the file at a later time or another session.

SOAP serialization produces a SOAP-compliant envelope that describes its contents and seri-
alizes the objects in SOAP-compliant format. SOAP-serialized data is suitable for transmission
to any system that understands SOAP, and it’s implemented by the SoapFormatter class. Unlike
binary serialization, SOAP-serialized data are firewall friendly, and SOAP serialization is used to
remote objects to a server on a different domain.

XML serialization, which is implemented by the XmlSerializer class, is a different type of seri-
alization. The XmlSerializer class serializes public, read-write properties only. Because it doesn’t
serialize the private members or read-only properties, XmlSerializer doesn’t quite preserve the
state of the object. Another limitation of XmlSerializer is that it doesn’t serialize collections, with
the exception of arrays and ArrayLists. However, it can be customized with the use of attributes
(special keywords that prefix the members of a class), and it’s as close as we can get to a universal
data-exchange format. As you will see at the end of this chapter, you can open the file generated
by XmlSerializer with an XML editor and not only view, but also edit it. In the following chapter,
you will learn how to query the contents of an XML file.

Using Binary and SOAP Serialization
Let’s start with binary serialization, which is implemented in the following namespace (you must
import it into your application):

Imports System.Runtime.Serialization.Formatters.Binary

This namespace isn’t loaded by default, and you must add a reference to the corresponding
namespace. Right-click the project’s name in the Solution Explorer and choose Add Reference
from the context menu. In the Add Reference dialog box that appears, select the same namespace
as in the Imports statement shown earlier.

To use a SOAP serializer, add the appropriate reference and import the following namespace:

Imports System.Runtime.Serialization.Formatters.Soap

After the appropriate namespace has been imported to the current project, you can serialize
individual objects as well as collections of objects. Let’s start with single-object serialization.

Serializing Individual Objects
To serialize an object, you must call the Serialize method of the System.Runtime.Serialization
.Formatters.Binary object. First, declare an object of this type with a statement like the following:

Dim BFormatter As New BinaryFormatter()

The BinaryFormatter class persists objects in binary format. You can also persist objects in text
format by using the SoapFormatter class. SoapFormatter persists the objects in XML format, which
is quite verbose, and the corresponding files are considerably lengthier. To use the SoapFormatter
class, declare a SoapFormatter variable with the following statement:

Dim SFormatter As Soap.SoapFormatter

SOAP is a protocol for accessing objects over HTTP — in other words, it’s a protocol that allows
the encoding of objects in text format. SOAP was designed to enable distributed computing over

Petroutsos V1 c16.tex Page 593 01/28/2008 3:13pm

USING BINARY AND SOAP SERIALIZATION 593

the Internet. SOAP uses text to transfer all kinds of objects, including images and audio, and
therefore it’s not rejected by firewalls.

The methods of BinaryFormatter and SoapFormatter are equivalent, so I will use Binary
Formatter in the examples of this section. To serialize an object, call the Serialize method of the
appropriate formatter, whose syntax is the following, where stream is a variable that represents a
stream and object is the object you want to serialize:

BFormatter.Serialize(stream, object)

Because we want to persist our objects to disk files, the stream argument represents a stream
to a file where the serialized data will be stored. The File object and its methods were discussed
in detail in Chapter 15, ‘‘Accessing Folders and Files.’’ Here I will explain only briefly the state-
ments we’ll use to store data to a disk file and read it back. The following statements create such a
Stream object:

Dim saveFile As FileStream
saveFile = File.Create(”C:\Shapes.bin”)

The saveFile variable represents the stream to a specific file on the disk, and the Create
method of the same variable creates a stream to this file.

After you have set up the Stream and BinaryFormatter objects, you can call the Serialize
method to serialize any object. To serialize a Rectangle object, for example, use the following
statements:

Dim R As New Rectangle(0, 0, 100, 100)
BFormatter.Serialize(saveFile, R)

Listing 16.1 serializes two Rectangle objects to the Shapes.bin file in the root folder. The file’s
extension can be anything. Because the file is binary, I used the BIN extension.

Listing 16.1: Serializing Distinct Objects

Dim R1 As New Rectangle()
R1.X = 1
R1.Y = 1
R1.Size.Width = 10
R1.Size.Height = 20
Dim R2 As New Rectangle()
R2.X = 10
R2.Y = 10
R2.Size.Width = 100
R2.Size.Height = 200
Dim saveFile As FileStream
saveFile = File.Create(”C:\SHAPES.BIN”)
Dim formatter As BinaryFormatter
formatter = New BinaryFormatter()
formatter.Serialize(saveFile, R1)
formatter.Serialize(saveFile, R2)
saveFile.Close()

Petroutsos V1 c16.tex Page 594 01/28/2008 3:13pm

594 CHAPTER 16 SERIALIZATION AND XML

Notice that the Serialize method serializes a single object at a time. To save the two
rectangles, the code calls the Serialize method once for each rectangle. To serialize multiple
objects with a single statement, you must create a collection, append all the objects to the collec-
tion, and then serialize the collection itself, as explained in the following section. If you serialize
multiple objects of different types into the same stream, you can’t deserialize them unless you
know the order in which the objects were serialized and deserialize them in the same order.

Deserializing Individual Objects
To deserialize a serialized object, you must create a new binary or SOAP formatter object and call
its Deserialize method. Because the serialized data doesn’t contain any information about the
original object, you can’t reconstruct the original object from the serialized data, unless you know
the type of object that was serialized. Deserialization is always more difficult than serialization,
and you have to know what you’re doing. Whereas the Serialize method will always serialize
the object you pass as an argument, the Deserialize method won’t reconstruct the original object
unless you know the type of the object you’re deserializing. The Shapes.bin file of Listing 16.1
contains the serialized versions of two Rectangle objects. The Deserialize method needs to know
that it will deserialize two Rectangle objects. If you attempt to extract the information of this file
into any other type of object, a runtime exception will occur.

To deserialize the contents of a file, create a formatter object as you did for the serialization
process, by using one of the following statements (depending on the type of serialization):

Dim SFormatter As Soap.SoapFormatter
Dim BFormatter As BinaryFormatter

Then establish a stream to the source of the serialized data, which in our case is the
Shapes.bin file:

Dim Strm As New FileStream(”..\Objects.Bin”, FileMode.Open)

Finally, deserialize the stream’s data by calling the Deserialize method. The Deserialize
method accepts a single argument, which is the stream from which the data is coming, and it
returns an object, which is the persisted object. We usually cast the object returned by the Deseri-
alize method to the appropriate type:

Dim R1, R2 As Rectangle
R1 = CType(SFormatter.Deserialize(Strm), Rectangle)
R2 = CType(SFormatter.Deserialize(Strm), Rectangle)

You can serialize as many objects as you like into the same stream, one after the other, and read
them back in the same order. You can open the files with the serialized data and view their data.
The contents of a SOAP file with two serialized Rectangle objects is shown next:

<SOAP-ENV:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:clr=”http://schemas.microsoft.com/soap/encoding/clr/1.0”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

Petroutsos V1 c16.tex Page 595 01/28/2008 3:13pm

USING BINARY AND SOAP SERIALIZATION 595

<SOAP-ENV:Body>
<a1:Rectangle id=”ref-1” xmlns:a1=”http://schemas.microsoft.com/clr/nsassem

/System.Drawing/System.Drawing%
2C%20Version%3D2.0.3600.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%
3Db03f5f7f11d50a3a”>

<x>0</x>
<y>0</y>
<width>100</width>
<height>100</height>
</a1:Rectangle>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
<SOAP-ENV:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:clr=”http://schemas.microsoft.com/soap/encoding/clr/1.0”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>
<a1:Rectangle id=”ref-1” xmlns:a1=”http://schemas.microsoft.com/clr/nsassem

/System.Drawing/System.Drawing%
2C%20Version%3D2.0.3600.0%2C%20Culture%3D

neutral%2C%20PublicKeyToken%3Db03f5f7f11d50a3a”>
<x>65</x>
<y>30</y>
<width>19</width>
<height>199</height>
</a1:Rectangle>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You’ll never have to create your own SOAP files, so don’t panic if they look complicated. There
are, however, a few points of interest. First, you see a reference to the System.Drawing class,
which indicates that the serialized data can’t be used outside the context of the Framework; this
file contains serialized data describing an instance of a specific class. The section of the file with
the data contains the values of the two basic properties of the Rectangle object. Second, the SOAP
format uses an XML notation to delimit its fields, but it’s not an XML file. If you attempt to open
the same file with Internet Explorer, you’ll see a message indicating that it’s not a valid XML
document. Don’t worry if you’re not familiar with XML; I’ll discuss this format a little later in this
chapter. Just keep in mind that SOAP is not the same as XML, even though they’re similar. If you
remove the SOAP-related tags, you’ll be left with a valid XML file.

Serializing Collections
Serializing a collection is quite similar to serializing any single object, because collections are
objects themselves. The second argument to the Serialize method is the object you want to
serialize, and this object can be anything, including a collection. To demonstrate the serialization
of an ArrayList, we’ll modify the previous code a little, so that instead of persisting individual
items, it will persist an entire collection. Declare the two Rectangle objects as before, but append

Petroutsos V1 c16.tex Page 596 01/28/2008 3:13pm

596 CHAPTER 16 SERIALIZATION AND XML

them to an ArrayList collection. Then add a few Color values to the collection, as shown in Listing
16.2, which serializes an ArrayList collection to the file C:\ShapesColors.bin.

Listing 16.2: Serializing a Collection

Private Sub Button2 Click(...) Handles Button2.Click
Dim R1 As New Rectangle()
R1.X = 1
R1.Y = 1
R1.Width = 10
R1.Height = 20
Dim R2 As New Rectangle()
R2.X = 10
R2.Y = 10
R2.Width = 100
R2.Height = 200
Dim shapes As New ArrayList()
shapes.Add(R1)
shapes.Add(R2)
shapes.Add(Color.Chartreuse)
shapes.Add(Color.DarkKhaki.GetBrightness)
shapes.Add(Color.DarkKhaki.GetHue)
shapes.Add(Color.DarkKhaki.GetSaturation)
Dim saveFile As FileStream
saveFile = File.OpenWrite(”C:\ShapesColors.bin”)
saveFile.Seek(0, SeekOrigin.End)
Dim formatter As BinaryFormatter = New BinaryFormatter()
formatter.Serialize(saveFile, shapes)
saveFile.Close()
MsgBox(”ArrayList serialized successfully”)

End Sub

The last three calls to the Add method add the components of another color to the collection.
Instead of adding the color as is, we’re adding three color components, from which we can recon-
struct the color Color.DarkKhaki. Then we proceed to save the entire collection to a file by using
the same statements as before. The difference is that we don’t call the Serialize method for each
object. We call it once and pass the entire ArrayList as an argument.

Deserializing Collections
To read a file with the description of an object that has been persisted with the Serialize method,
you simply call the formatter object’s Deserialize method and assign the result to an appropri-
ately declared variable. In the preceding example, the value returned by the Deserialize method
must be assigned to an ArrayList variable. The syntax of the Deserialize method is the following,
where str is a Stream object pointing to the file with the data:

object = Bformatter.Deserialize(str)

Petroutsos V1 c16.tex Page 597 01/28/2008 3:13pm

USING BINARY AND SOAP SERIALIZATION 597

Because the Deserialize method returns an Object variable, you must cast it to the ArrayList
type with the CType() function. To use the Deserialize method, declare a variable that can
hold the value returned by the method. If the data to be deserialized is a Rectangle, declare a
Rectangle variable. If it’s a collection, declare a variable of the same collection type. Then call
the Deserialize method and cast the value returned to the appropriate type. The following
statements outline the process:

Dim object As <type>
{ code to set up a Stream variable (str) and BinaryFormatter}
object = CType(Bformatter.Serialize(str), <type>)

Listing 16.3 is the code that retrieves the items from the ShapesColors.bin file and stores them
into an ArrayList. I added a few statements to print all the items of the ArrayList.

Listing 16.3: Deserializing a Collection

Private Sub Button1 Click(...) Handles Button1.Click
Dim readFile As FileStream
readFile = File.OpenRead(”C:\ShapesColors.bin”)
Dim BFormatter As BinaryFormatter
BFormatter = New BinaryFormatter()
Dim Shapes As New ArrayList()
Dim R1 As Rectangle
Shapes = CType(BFormatter.Deserialize(readFile), ArrayList)
Dim i As Integer
TextBox1.AppendText(”The ArrayList contains ” & Shapes.Count &

” objects ” & vbCrLf & vbCrLf)
For i = 0 To Shapes.Count - 1

TextBox1.AppendText(Shapes(i).ToString & vbCrLf)
Next

End Sub

You can find the code presented in this section in the SimpleSerialization sample project. The
application’s main form contains buttons to serialize and deserialize both individual objects and
collections in binary and SOAP formats. The SOAP-serialized data are displayed in a TextBox
control on the form, as shown in Figure 16.1.

The serialization classes can substantially simplify an application’s code because they allow you
to save objects, or large sets of objects, with a few statements. Moreover, you can easily deserialize
the data from within any other application. A fairly common task in programming is to save large
sets of data to a file and read them back in a later session. You’ve seen two such examples so
far: the WordFrequencies application of Chapter 14, ‘‘Storing Data in Collections,’’ persisted a
collection of words and their frequencies to a disk file, and the Globe application of Chapter 9,
‘‘The TreeView and ListView Controls,’’ persisted the Nodes collection of a TreeView control to a
file between sessions. I didn’t discuss the code in the corresponding chapters, and this is a good
place to explain the code that serializes HashTables and the Nodes collection.

Petroutsos V1 c16.tex Page 598 01/28/2008 3:13pm

598 CHAPTER 16 SERIALIZATION AND XML

Figure 16.1

The SimpleSerialization
project demonstrates the
process of binary and
SOAP serialization.

Persisting a HashTable
In this section, you’ll look at the code for persisting a HashTable to disk. The code I present in
this section belongs to the WordFrequencies project, which was presented in Chapter 14. The
WordFrequencies application calculates word frequencies, stores the results to a HashTable, and
persists them to a file between sessions. Figure 16.2 shows the interface of the WordFrequencies
sample project.

This process allows us to process one document at a time yet accumulate the results over many
documents. Each unique word is a key to the HashTable, and the word’s count is the corre-
sponding item’s value. The application’s main menu, the Frequency Table menu, contains four
commands, which save the HashTable to, and read it from, a text file and a binary file. Table 16.1
shows the four commands of the menu.

By the way, the Save XML and Load XML commands use a Soap Formatter, but the files they
produce (or consume) are XML files, so I’ve chosen not to use the SOAP term in the menu com-
mands. The code behind the Save Binary command is shown in Listing 16.4. The code is quite
simple: It creates an instance of the BinaryFormatter class (variable Formatter) and uses its
Serialize method to persist the entire HashTable with a single statement.

Listing 16.4: Persisting the HashTable to a Binary File

Private Sub SaveBin(...) Handles SaveBinary.Click
Dim saveFile As FileStream
SaveFileDialog1.DefaultExt = ”BIN”

Petroutsos V1 c16.tex Page 599 01/28/2008 3:13pm

PERSISTING A HASHTABLE 599

If SaveFileDialog1.ShowDialog = DialogResult.OK Then
saveFile = File.OpenWrite(SaveFileDialog1.FileName)
saveFile.Seek(0, SeekOrigin.End)
Dim Formatter As BinaryFormatter = New BinaryFormatter()
Formatter.Serialize(saveFile, WordFrequencies)
saveFile.Close()

End If
End Sub

Figure 16.2

The WordFrequencies
project uses serialization
to persist word frequen-
cies between sessions.

Table 16.1: The Four Commands of the Frequency Table Menu

Command Effect

Save Binary Saves the HashTable to a binary file with the default extension BIN

Load Binary Loads the HashTable with data from a binary file

Save XML Saves the HashTable to a text file with the default extension XML

Load XML Loads the HashTable with data from a text file

Petroutsos V1 c16.tex Page 600 01/28/2008 3:13pm

600 CHAPTER 16 SERIALIZATION AND XML

The equivalent Load Binary command is just as simple. It sets up a BinaryFormatter object and
calls its Deserialize method to read the data. The code of the Save XML command (Listing 16.5)
sets up a SoapFormatter object and uses its Serialize method to persist the HashTable. The code
that reads the data from the file and populates the HashTable is equally simple, and it’s shown in
Listing 16.6.

Listing 16.5: Persisting the HashTable to a Text File

Private Sub SaveText(...) Handles SaveText.Click
Dim saveFile As FileStream
SaveFileDialog1.DefaultExt = ”XML”
If SaveFileDialog1.ShowDialog = DialogResult.OK Then

saveFile = File.OpenWrite(SaveFileDialog1.FileName)
saveFile.Seek(0, SeekOrigin.End)
Dim Formatter As Soap.SoapFormatter = New Soap.SoapFormatter()
Formatter.Serialize(saveFile, WordFrequencies)
saveFile.Close()

End If
End Sub

Listing 16.6: Loading a HashTable from a Text File

Private Sub LoadText(...) Handles LoadText.Click
Dim readFile As FileStream
OpenFileDialog1.DefaultExt = ”XML”
If OpenFileDialog1.ShowDialog = DialogResult.OK Then

readFile = File.OpenRead(OpenFileDialog1.FileName)
Dim Formatter As Soap.SoapFormatter
Formatter = New Soap.SoapFormatter()
WordFrequencies = CType(Formatter.Deserialize(readFile), HashTable)
readFile.Close

End If
End Sub

You can open the binary file with a text editor, and you will see the words but not the numeric
values, which are stored in binary format. If you open the text file, you will see a SOAP file with
the words and their counts. The words are in the first half of the file, and their counts are in the
second half. Here are the first few lines of this file (I omitted the headers):

<item id=”ref-5” xsi:type=”SOAP-ENC:string”>A</item>
<item id=”ref-6” xsi:type=”SOAP-ENC:string”>ABADDIRS</item>
<item id=”ref-7” xsi:type=”SOAP-ENC:string”>ABANDON</item>
<item id=”ref-8” xsi:type=”SOAP-ENC:string”>ABANDONED</item>
<item id=”ref-9” xsi:type=”SOAP-ENC:string”>ABANDONING</item>

Petroutsos V1 c16.tex Page 601 01/28/2008 3:13pm

PERSISTING A TREEVIEW’S NODES 601

The corresponding counts are the following:

<item xsi:type”=”xsd:int””>2064</item>
<item xsi:type=””xsd:int””>1</item>
<item xsi:type=””xsd:int””>5</item>
<item xsi:type=””xsd:int””>10</item>
<item xsi:type=””xsd:int””>2</item>

Most of us shouldn’t really care how the Serialize method stores the data to the file (SOAP
or binary), as long as the Deserialize method can read them back and load them into an object
so that we don’t have to write code to parse this file.

Persisting a TreeView’s Nodes
In Chapter 9, you learned how to populate the TreeView and ListView controls, how to manipulate
them at runtime, and how to sort the ListView control in any way you want. But what good are all
these techniques unless you can save the tree’s nodes or the ListViewItems to a disk file and then
reuse them in a later session?

It would be nice if the TreeNode object were serializable — you could serialize the root node
and all the nodes under it with a single call to the Serialize method. Unfortunately, this is not the
case. Well, how about subclassing the TreeNode object? Create a new class that inherits from
the TreeNode class and is serializable. This is an option, but it’s not simple.

The main reason that the Nodes collection can’t be easily serialized is that a node’s Tag property
can store an object that’s not serializable. To serialize the Nodes collection, we must make a few
assumptions that are specific to an application, or a class of applications, but not to all TreeView
controls. In this section, I assume that the Tag property won’t be persisted. You can easily modify
the code to persist nodes whose tags are strings, numbers, or any serializable object. The code pre-
sented in this section can be used to persist most TreeView controls, but not any TreeView control
you can throw at it. Just remember that serialization is limited to the objects that are themselves
serializable, and not all classes are serializable.

To serialize the nodes of a TreeView control, we’ll store the individual nodes in an ArrayList
and then serialize the ArrayList, as discussed earlier in this chapter. The code of this section serial-
izes the strings displayed on a TreeView control. You know how to scan the nodes of a TreeView
control, and the code for serializing the control’s nodes seems trivial. It’s not quite so.

The ArrayList has a linear structure: Each item is independent of any other. The TreeView
control, however, has a hierarchical structure. Most of its nodes are children of other nodes, as
well as parents of other nodes. Therefore, we must store not only the data (strings), but also their
structure. To store this information, we’ll create a new structure with two fields: one for the node’s
value and another one for the node’s indentation:

<Serializable()> Structure sNode
Dim node As String
Dim level As Integer

End Structure

We want to be able to serialize this structure, so we must prefix it with the <Serializable>
attribute. The level field is the node’s indentation. The level field of all root nodes is zero. The
nodes immediately under the root have a level of 1, and so on. To serialize the TreeView control,

Petroutsos V1 c16.tex Page 602 01/28/2008 3:13pm

602 CHAPTER 16 SERIALIZATION AND XML

we’ll iterate through its nodes and store each node to an sNode variable. Each time we switch to a
child node, we’ll increase the current value of the level variable by one; each time we move up to
a parent node, we’ll decrease the same value accordingly. All the sNode structures will be added
to an ArrayList, which will then be serialized.

Likewise, when we read the ArrayList from the disk file, we must reconstruct the original tree.
Items with a level value of zero are root nodes. The first item with a level value of 1 is the first
child node under the most recently added root node. As long as the level field doesn’t change, the
new nodes are added under the same parent. When this value increases, we must create a new
child node under the current node. When this value decreases, we must move up to the current
node’s parent and create a new child under it. The only complication is that a level value might
decrease by more than one. In this case, we must move up to the parent’s parent — or even higher
in the hierarchy. Figure 16.3 shows a typical TreeView control and how its nodes are stored in the
ArrayList.

Figure 16.3

The structure of the
nodes of a TreeView
control

The control on the left is a TreeView control, populated at design time. The control on the right
is a ListBox control with the items of the ArrayList. The first column is the level field (the node’s
indentation), whereas the second column is the node’s text.

Now we can look at the code for serializing the control. The code presented in this section is part
of the Globe project — namely, it’s the code behind the Save Nodes and Load Nodes commands of
the File menu. The File � Save Nodes command prompts the user with the File Save dialog box
for the path of a file in which the nodes will be stored. Then it calls the CreateList() subrou-
tine, passing the root node of the control and the path of the file where the items will be stored.
Listing 16.7 shows this menu item’s Click event handler.

Petroutsos V1 c16.tex Page 603 01/28/2008 3:13pm

PERSISTING A TREEVIEW’S NODES 603

Listing 16.7: File� Save Nodes Menu Item’s Event Handler

Private Sub FileSave Click(...) Handles FileSave.Click
SaveFileDialog1.DefaultExt = ”XML”
If SaveFileDialog1.ShowDialog = DialogResult.OK Then

CreateList(GlobeTree.Nodes(0), SaveFileDialog1.FileName)
End If

End Sub

The CreateList() subroutine goes through the subnodes of the root node and stores them
into the GlobeNodes ArrayList. This ArrayList is declared at the form level with the following
statement:

Dim GlobeNodes As New ArrayList()

CreateList() is a recursive subroutine that scans the immediate children of the node passed as
an argument. If a child node contains its own children, the subroutine calls itself to iterate through
the children. This process may continue to any depth. The code of the subroutine is shown in
Listing 16.8.

Listing 16.8: The CreateList() Subroutine

Sub CreateList(ByVal node As TreeNode, ByVal fName As String)
Static level As Integer
Dim thisNode As TreeNode
Dim myNode As sNode
Application.DoEvents()
myNode.level = level
myNode.node = node.Text
GlobeNodes.Add(myNode)
If node.Nodes.Count > 0 Then

level = level + 1
For Each thisNode In node.Nodes

CreateList(thisNode, fName)
Next
level = level - 1

End If
SaveNodes(fName)

End Sub

After the ArrayList has been populated, the code calls the SaveNodes() subroutine, which
persists the ArrayList to a disk file. The path of the file is the second argument of the CreateList()

Petroutsos V1 c16.tex Page 604 01/28/2008 3:13pm

604 CHAPTER 16 SERIALIZATION AND XML

subroutine. SaveNodes(), shown in Listing 16.9, is a straightforward subroutine that serializes the
GlobeNodes ArrayList to disk. (The process of serializing ArrayLists and other collections was
discussed earlier in this chapter.)

Listing 16.9: The SaveNodes() Subroutine

Sub SaveNodes(ByVal fName As String)
Dim formatter As SoapFormatter
Dim saveFile As FileStream
saveFile = File.Create(fName)
formatter = New SoapFormatter()
formatter.Serialize(saveFile, GlobeNodes)
saveFile.Close()

End Sub

The File � Load Nodes command prompts the user for a filename and then calls the
LoadNodes() subroutine to read the ArrayList persisted in this file and load the control with
its nodes. The Click event handler of the Load Nodes command is shown in Listing 16.10.

Listing 16.10: Reading the Persisted Nodes

Private Sub FileLoad Click(...) Handles FileLoad.Click
OpenFileDialog1.DefaultExt = ”XML”
If OpenFileDialog1.ShowDialog = DialogResult.OK Then

LoadNodes(GlobeTree, OpenFileDialog1.FileName)
End If

End Sub

The LoadNodes() subroutine loads the items read from the file into the GlobeNodes ArrayList
and then calls the ShowNodes() subroutine to load the nodes from the ArrayList onto the control.
The LoadNodes() subroutine is shown in Listing 16.11.

Listing 16.11: Loading the GlobeNodes ArrayList

Sub LoadNodes(ByVal TV As TreeView, ByVal fName As String)
TV.Nodes.Clear()
Dim formatter As SoapFormatter
Dim openFile As FileStream
openFile = File.Open(fName, FileMode.Open)
formatter = New SoapFormatter()
GlobeNodes = CType(formatter.Deserialize(openFile), ArrayList)
openFile.Close()
ShowNodes(TV)

End Sub

Petroutsos V1 c16.tex Page 605 01/28/2008 3:13pm

PERSISTING A TREEVIEW’S NODES 605

The most interesting code is in the ShowNodes() subroutine, which goes through the items in
the ArrayList and re-creates the original structure of the TreeView control. At each iteration, the
subroutine examines the value of the item’s level field. If it’s the same as the current node’s level,
the new node is added under the same node as the current node (we’re on the same indentation
level.) If the current item’s level field is larger than the current node’s level, the new node is added
under the current node (it’s a child of the current node.) Finally, if the current item’s level field
is smaller than the current node’s level, the code moves up to the parent of the current node.
This step can be repeated several times, depending on the difference between the two levels. If
the current node’s level is 4 and the level field of the new node is 1, the code will move up three
levels. (It will actually be added under the most recent root node.) Listing 16.12 is the code of the
ShowNodes() subroutine.

Listing 16.12: The ShowNodes() Subroutine

Sub ShowNodes(ByVal TV As TreeView)
Dim o As Object
Dim currNode As TreeNode
Dim level As Integer = 0
Dim fromLowerLevel As Integer

Dim i As Integer
For i = 0 To GlobeNodes.Count - 1

o = GlobeNodes(i)
If o.level = level Then

If currNode Is Nothing Then
currNode = TV.Nodes.Add(o.node.ToString)

Else
currNode = currNode.Parent.Nodes.Add(o.node.ToString)

End If
Else

If o.level > level Then
currNode = currNode.Nodes.Add(o.node.ToString)
level = o.level

Else
While o.level <= level

currNode = currNode.Parent
level = level - 1

End While
currNode = currNode.Nodes.Add(o.node.ToString)

End If
End If
TV.ExpandAll()
Application.DoEvents()

Next
End Sub

Why did I use a SoapFormatter and not a BinaryFormatter to persist the data? I just wanted to
see the structure of the data in text format. You will probably change the code to save the data in

Petroutsos V1 c16.tex Page 606 01/28/2008 3:13pm

606 CHAPTER 16 SERIALIZATION AND XML

binary format because it’s much more compact. Of course, XML and SOAP are quite fashionable
these days. You can also claim that the data can be read on any other system and that you’re fol-
lowing industry standards. I suggest that you use mostly the binary format for storing application
data. If you want to exchange data with another system, use the XmlSerialization class instead.

The technique shown here persists the strings displayed on the control, and it works with most
applications. If you’re using a TreeView control to store objects, you must adjust the code of this
section to persist the objects, not just strings. It goes without saying that all objects you store to the
TreeView control must be serializable; if not, you won’t be able to serialize the Nodes collection.

If you’re wondering what the persisted nodes look like in the XML file, here’s how the first few
items of the Globe tree are persisted.

- <item xsi:type=”a3:NodeSerializer+sNode”
xmlns:a3=”http://schemas.microsoft.com/clr/

nsassem/Globe/Globe%2C%20
Version%3D1.0.638.15776%2C%20
Culture%3Dneutral%2C%20
PublicKeyToken%3Dnull”>

<node id=”ref-4”>Globe</node>
<level>0</level>
</item>

- <item xsi:type=”a3:NodeSerializer+sNode”
xmlns:a3=”http://schemas.microsoft.com/clr/

nsassem/Globe/Globe%2C%20
Version%3D1.0.638.15776%2C%20
Culture%3Dneutral%2C%20
PublicKeyToken%3Dnull”>

<node id=”ref-5”>Africa</node>
<level>1</level>
</item>

- <item xsi:type=”a3:NodeSerializer+sNode”
xmlns:a3=”http://schemas.microsoft.com/clr/

nsassem/Globe/Globe%2C%20
Version%3D1.0.638.15776%2C%20
Culture%3Dneutral%2C%20
PublicKeyToken%3Dnull”>

<node id=”ref-6”>Egypt</node>
<level>2</level>
</item>

- <item xsi:type=”a3:NodeSerializer+sNode”
xmlns:a3=”http://schemas.microsoft.com/clr/

nsassem/Globe/Globe%2C%20
Version%3D1.0.638.15776%2C%20
Culture%3Dneutral%2C%20
PublicKeyToken%3Dnull”>

<node id=”ref-7”>Alexandria</node>
<level>3</level>
</item>

Petroutsos V1 c16.tex Page 607 01/28/2008 3:13pm

USING XML SERIALIZATION 607

Persisting the items of a ListView control is even simpler. You must create a new structure that
reflects the structure of each row (the item and subitems of each row) and then create an ArrayList
with items of this type. Persisting the ArrayList is straightforward, and so is the loading of the
control, because the ListView control doesn’t have a hierarchical structure. Its items are organized
in a linear fashion, just like the items of the ArrayList.

To reuse the subroutines that serialize and deserialize the nodes of a TreeView control, you can
create a new class that exposes the CreateList() and LoadNodes() subroutines as methods. The
other two subroutines that save the ArrayList to disk and load a disk file into the ArrayList are
private to the class and can be called only from within the code of the two methods.

The Globe sample project contains the NodeSerializer custom class. This class contains the code
and the declarations discussed in this section, and I will not repeat the code here. To use this class
in your code, you must create an instance of the class and call the appropriate method. To persist
the TreeView control to a file, use the following statements:

Dim NS As New NodeSerializer()
NS.CreateList(GlobeTree.Nodes(0), SaveFileDialog1.FileName)

To load a TreeView control previously saved to a file, use the following statements:

Dim NS As New NodeSerializer()
NS.LoadNodes(GlobeTree, OpenFileDialog1.FileName)

I included these statements in the Globe project, but they’re commented out. To test the Globe
application’s File menu commands, add a few items to the TreeView control (countries and cities)
and save the tree to a disk file. Then select the root node and delete it by clicking the Delete Current
Node button, and load the file you just saved to disk.

One last remark about the code that loads a TreeView control from a disk file: Because
the TreeView is persisted to an XML file, the user might attempt to open an XML file that
contains irrelevant data. You must insert a structured exception handler to avoid runtime errors
or use a new extension for these files. After looking at the XML files generated by the Serial-
ize method for a couple of TreeView controls, you should change the SoapFormatter to a Binary
Formatter.

In this section, you learned how to serialize the TreeView control’s Nodes collection, which
holds the control’s data. You might wish to persist the appearance of the control as well, by includ-
ing each node’s font, background, and foreground colors, and so on. To serialize each node’s
attributes, add more fields to the sNode structure. To store each node’s font along with the text,
add a new member to the structure (the nodeFont field) and set this field to the current node’s
Font property.

Using XML Serialization
In addition to the Serialization namespace, which contains the SOAP and BinaryFormatter classes
for serializing data into SOAP and binary format, the .NET Framework provides another name
space for serializing data: the XmlSerialization namespace. As you can guess, the XmlSerialization
namespace provides methods for serializing and deserializing objects in XML format. XML serial-
ization differs from the other two serialization forms in that it serializes only public properties and
fields; read-only and private properties are not serialized. Therefore, XML serialization doesn’t
preserve the state of the object being serialized. The output of XML serialization is both human

Petroutsos V1 c16.tex Page 608 01/28/2008 3:13pm

608 CHAPTER 16 SERIALIZATION AND XML

and machine readable and doesn’t require that classes be marked with the <Serializable>
attribute. Moreover, you have control over the schema of the XML document that’s produced
with the help of attributes.

As you already know, XML is a standard protocol for transferring data between computers
and operating systems. The result of XML serialization is an XML document, which can be used
outside the context of the specific application or even the Framework itself. In other words, you
don’t need the classes that describe the objects being serialized to use the XML document.

To use XML serialization, you must create an instance of the XmlSerializer class and then call
its Serialize method (or the Deserialize method to extract data from an XML stream and
populate an instance of a custom class). There’s a major difference, however. The XmlSerializer
class must be told in its constructor the type of object it’s going to serialize. The constructor of the
XmlSerializer class requires an argument, which is the type of objects it will serialize or deserialize.
Here’s how to set up a new instance of the XmlSerializer class:

Imports System.Xml.Serialization
Dim serializer As New XmlSerializer(CO.GetType)
Dim FS As FileStream
FS = New FileStream(path, FileMode.Create)
serializer.Serialize(FS, CO)
FS.Close()

The first statement imports the System.Xml.Serialization namespace so that we won’t have
to fully qualify our references to the members of this class. The CO variable is an instance of the
custom class, whose instances we intend to serialize through the XmlSerializer class. You can also
pass the name of the class itself to the constructor by using a statement such as the following:

Dim serializer As New XmlSerializer(GetType(CustomClass))

The serializer object can be used to serialize only instances of the specific class, and it will
throw an exception if you attempt to deserialize a different class with it. Note also that all classes
are XML-serializable by default, and you don’t have to prefix them with the <Serializable>
attribute.

XmlSerializer can’t serialize arbitrary objects. You must tell the XmlSerializer class the type of
object it will serialize. In the background, CLR will create a temporary assembly, a process that
will take a few moments. The temporary assembly, however, will remain in memory as long as
the application is running. After the initial delay, XML serialization will be quite fast.

Serializing and Deserializing Individual Objects
Serializing a single object in XML format is as simple as the other types of serialization. However,
you can’t serialize multiple objects into the same file because of the specifications of an XML
document. An XML document has a single root element, so all the objects must have a common
root. In other words, you can’t serialize two Rectangle objects one after the other, as you did in the
previous section with the SOAP and binary formatters. However, you can create an array with as
many objects as you like and serialize it in XML format. The array is a single object, which can be
serialized. Because XML is a universal standard, you can’t use it to serialize data structures that
are specific to the Framework. You can’t serialize ArrayLists, HashTables, and other collections to
XML format.

Petroutsos V1 c16.tex Page 609 01/28/2008 3:13pm

USING XML SERIALIZATION 609

How about the objects you can serialize? The XmlSerializer class serializes the public properties
of objects and doesn’t care about the source of the data. When you serialize a Rectangle object, the
following data is created:

<?xml version=”1.0” encoding=”utf-8”?>
<Rectangle xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<Location>

<X>10</X>
<Y>10</Y>

</Location>
<Size>

<Width>100</Width>
<Height>160</Height>

</Size>
<X>10</X>
<Y>10</Y>
<Width>100</Width>
<Height>160</Height>

</Rectangle>

This is a well-formed XML document. XML is discussed in more detail later in this chapter, but
for the purposes of XML serialization, you don’t have to know anything about XML. Just keep in
mind that every item in this document is delimited by a pair of tags in angle brackets. The tags are
named after the properties of the object, and you need not be a rocket scientist to understand that
this document represents a Rectangle object. As you can see, the XmlSerializer extracted the basic
properties of the Rectangle object. There’s some redundancy in this file because the values of the
properties appear twice. This isn’t part of the XML specification; the document contains the values
of the following properties: Location, Size, X, Y, Width, and Height. The Rectangle object exposes
additional properties, such as the Top, Bottom, and so on, but these values aren’t serialized. The
Location property is an object, which in turn exposes the X and Y properties. The values of these
properties appear within the Location segment of the document, as well as separate values near
the end of the file. The same happens with the Size property.

To deserialize the data and create a new Rectangle object with the same properties as the origi-
nal one, set up a Stream object and an XmlSerializer object, and then call the XmlSerializer object’s
Deserialize method:

Imports System.Xml.Serialization
Dim serializer As New XmlSerializer(Rectangle.GetType)
Dim FS As FileStream
FS = New FileStream(path, FileMode.Open)
Dim R As Rectangle
R = serializer.Deserialize(FS)
FS.Close()

Serializing Custom Objects
Listing 16.13 shows a class that describes books. The Book class is quite trivial, except that each
book can have any number of authors. The authors are stored in an array of Book.Author objects.

Petroutsos V1 c16.tex Page 610 01/28/2008 3:13pm

610 CHAPTER 16 SERIALIZATION AND XML

Listing 16.13: Book Class

Public Class Book
Private title As String
Private pages As Integer
Private price As Decimal
Private authors() As Author

Public Sub New()

End Sub

Public Property Title() As String
Get

Return title
End Get
Set(ByVal Value As String)

If Value.Length > 100 Then
title = Value.Substring(0, 99)

Else
title = Value

End If
End Set

End Property

Public Property Pages() As Integer
Get

Return pages
End Get
Set(ByVal Value As Integer)

pages = Value
End Set

End Property

Public Property Price() As Decimal
Get

Return price
End Get
Set(ByVal Value As Decimal)

price = Value
End Set

End Property

Public Property Authors() As Author()
Get

Return (authors)
End Get
Set(ByVal Value As Author())

Petroutsos V1 c16.tex Page 611 01/28/2008 3:13pm

USING XML SERIALIZATION 611

authors = Value
End Set

End Property

Public Class Author
Private firstname As String
Private lastname As String

Public Property FirstName() As String
Get

Return firstname
End Get
Set(ByVal Value As String)

If Value.Length > 50 Then
firstname = Value.Substring(0, 49)

Else
firstname = Value

End If
End Set

End Property

Public Property LastName() As String
Get

Return lastname
End Get
Set(ByVal Value As String)

If Value.Length > 50 Then
lastname = Value.Substring(0, 49)

Else
lastname = Value

End If
End Set

End Property
End Class

End Class

The following statements create a new Book object, which includes three authors:

Private BK0 As New Book
Dim authors(2) As Book.Author
authors(0) = New Book.Author
authors(0).FirstName = ”Author1 First”
authors(0).LastName = ”Author1 Last”
authors(1) = New Book.Author
authors(1).FirstName = ”Author2 First”
authors(1).LastName = ”Author2 Last”

Petroutsos V1 c16.tex Page 612 01/28/2008 3:13pm

612 CHAPTER 16 SERIALIZATION AND XML

authors(2) = New Book.Author
authors(2).FirstName = ”Author3 First”
authors(2).LastName = ”Author3 Last”
BK0.Title = ”Book Title”
BK0.Pages = 234
BK0.Price = 29.95
BK0.Authors = authors

Let’s see how to serialize arrays of objects in XML format, starting with a hard rule: The array
to be serialized must be typed. All the elements of the array should have the same type, which
must match the type you pass to the constructor of the XmlSerializer class. You can’t create an
array of objects and store objects of different types to it. No warning will be issued at design time,
but a runtime exception will be thrown as soon as your code reaches the Serialize method. The
XmlSerializer is constructed for a specific type of object, and any given instance of this class can
handle objects of the specific type and nothing else.

To serialize the Book objects created with the preceding statements, we’ll first create an array of
the Book type and store a few properly initialized instances of the Book class to its elements. Then
we’ll pass this array to the Serialize method of the XmlSerializer class, as shown in Listing 16.14.

Listing 16.14: XML Serialization of an Array of Objects

Private Sub bttnSaveArrayXML Click(...)Handles bttnSaveArrayXML.Click
Me.Cursor = Cursors.WaitCursor
Dim AllBooks(3) As Book
AllBooks(0) = BK0
AllBooks(1) = BK1
AllBooks(2) = BK2
AllBooks(3) = BK3

Dim serializer As New XmlSerializer(AllBooks.GetType)

Dim FS As FileStream
Try

FS = New FileStream(”..\SerializedXMLArray.xml”,
FileMode.Create)

serializer.Serialize(FS, AllBooks)
Catch exc As Exception

MsgBox(exc.InnerException.ToString)
Exit Sub

Finally
FS.Close()

End Try
Me.Cursor = Cursors.Default
bttnLoadArrayXML.Enabled = True
TextBox1.Clear()
TextBox1.Text =

”Array of Book objects saved in file SerializedXMLArray.xml”
End Sub

Petroutsos V1 c16.tex Page 613 01/28/2008 3:13pm

USING XML SERIALIZATION 613

The XmlSerializer class’s constructor accepts as an argument the array type. Because the array
is typed, it can figure out the type of custom objects it will serialize.

There’s a substantial overhead the first time you create an instance of the XmlSerializer class,
but the process isn’t repeated during the course of the application. There is overhead because the
CLR creates a temporary assembly for serializing and deserializing the specific type. This assem-
bly, however, remains in memory for the course of the application, and the initial overhead won’t
recur. This means that although there will be an additional delay of a couple of seconds when the
application starts (or whenever you load the settings), you can persist the class with the appli-
cation’s configuration every time the user changes one of the settings without any performance
penalty.

Serializing ArrayLists and HashTables
Although ArrayLists and HashTables aren’t serializable in XML format, there will be occasions
when you want to serialize data stored in collections of these two types (and perhaps other types
of nonserializable collections). I singled out ArrayLists and HashTables because they’re the most
common collections in Windows programming. Because the only collection that XML serialization
classes can serialize is the array, it’s possible to serialize any collection by converting it to an array.
It’s trivial to export the elements of an ArrayList to an array and then serialize the array. Of course,
the array should contain elements of the same type, which must appear in the array’s declaration.

Let’s consider an ArrayList of Book objects: the BooksList collection. You can move the
elements of the ArrayList to an array of Book objects with a few statements like the following:

Dim BooksArray(BooksList.Count - 1) As Book
Dim BK As Book, i As Integer
For Each BK In BooksList

BooksArray(i) = BK
i += 1

Next

Having populated the BooksArray array with the collection of Book objects, you can serialize
them into XML with the techniques discussed already. You can also export the ArrayList’s data
to an array by using the method ToArray. The ArrayList’s elements will be exported to an array
of the appropriate type. The reverse process will be used to deserialize the collection: First, you
deserialize the data into an array, and then you move the array’s elements into the ArrayList:

‘’ Statements to deserialize the BooksArray array
Dim i As Integer
For i = 0 To BooksArray.GetLength(0) - 1

BooksList.Add BooksArray(i)
Next

Serializing HashTables might take a few more statements because it involves keys, not just
data. Usually, each element’s key is one of the custom object’s properties. For Book objects, the
most likely candidate for a key is the book’s ISBN. In this case, you just export all the objects
from the HashTable into an ArrayList and proceed as explained already. If the collection’s key,
however, isn’t a property of the custom object, you must create a new class that has the exact same
structure as the Book class and an additional property for the key.

Petroutsos V1 c16.tex Page 614 01/28/2008 3:13pm

614 CHAPTER 16 SERIALIZATION AND XML

Public Class KeyBook
Public Book As Book
Public Key As String

End Class

Couldn’t I take advantage of inheritance and derive the KeyBook class from the Book class?
The answer is no, because the Book class can’t be cast into a derived class. In other words, you
can cast KeyBook objects to Book objects but not the opposite. (Remember widening versus nar-
rowing conversions from Chapter 3, ‘‘Programming Fundamentals’’?) That’s why I had to create
a new class with the custom type and a field for the key. (I’m not using a property procedure for
the Key property because no application will ever access this member, except for the code that
serializes/deserializes the collection.) The following statements extract the Book objects from the
HashTable, convert them to KeyBook objects, and store them into the BooksArray array:

Dim BooksArray(HT.Count - 1) As KeyBook
Dim bkey As Integer, i As Integer = 0
Dim KeyBook As New KeyBook
For Each bkey In HT.Keys

KeyBook.Book = HT(bkey)
KeyBook.Key = bkey
BooksArray(i) = KeyBook
i += 1

Next

Serializing Generic Collections

As you’ll recall from Chapter 14, there are several collections that belong to the Collections.Generic
namespace, and they’re typed collections. The drawback of these collections is that they can be used
to store objects of the same type — but in most applications this is an advantage, not a drawback.
Typical collections contain objects of the same type, and you should use generic collections whenever
possible.

Unlike the general collections, such as ArrayLists and HashTables, the generic collections are typed
and can be serialized, because the compiler knows the type of objects stored in them. The List
collection, for example, is the typed equivalent of the ArrayList collection. Although the ArrayList col-
lection can’t be serialized with the XmlSerializer class, the List collection can be serialized with the
same class. When you create a new instance of the XmlSerializer class, you pass the type of the object
you intend to serialize as an argument:

Dim Persons As New System.Collections.Generic.List(Of Person)
Dim XMLSRLZR As New XmlSerializer(Persons.GetType)

The compiler knows that the collection will be used to store objects of the Person type, and it can gen-
erate the appropriate XML structure. The statements for serializing and deserializing the collection
are identical to the ones you’d use to serialize any other object:

Petroutsos V1 c16.tex Page 615 01/28/2008 3:13pm

WORKING WITH XML FILES 615

‘ To serialize a typed collection:
Dim strmWriter As New IO.StreamWriter(file path)
XMLSRLZR.Serialize(strmWriter, Persons)
‘ To deserialize a typed collection:
Dim Rstrm As New IO.FileStream(file path, IO.FileMode.Open)
newPersons = CType(XMLSRLZR.Deserialize(Rstrm),

System.Collections.Generic.List(Of Person))

Working with XML Files
Two advantages of the XML format are that humans can read it and there are many tools for
manipulating it. To pave the way to the following chapter, let’s examine the structure of an XML
document and look briefly at the tools for editing XML documents.

Understanding XML Structure
Switch to the XMLBooks project and add the XML file with the serialized books to the project or
to a new Windows project. Right-click the name of the project and from the context menu choose
Add Existing Item to open the Add Existing Item dialog box. Select Data Files in the File Type
combo box and move up to the project’s main folder. Select the SerializedXMLArray.xml file and
add it to the project by selecting the Add option from the Add drop-down list on the dialog box.

Then double-click the newly added file to open it in the editor, as shown in Figure 16.4. The
XML editor will figure out the structure of the document and indent the file’s contents. XML
files are made up of tags, which are embedded in angle brackets. Each tag has a name, and the
tags go in pairs: the opening tag and the closing tag. Everything between an opening and closing
tag is an element. As you can see, elements may contain other elements, to any depth. In fact, the
entire document (with the exception of its header) is enclosed in a pair of <ArrayOfBook> and
</ArrayOfBook> tags. This is the document’s root element, and a valid XML file should have a
single root element that encloses all other elements. Moreover, the remaining elements must nest
properly; each element must be closed under the parent element in which it was opened, just like
nesting flow control structures in VB.

The first line in the file is the document’s prologue, and it identifies an XML file. The ver-
sion keyword identifies the version of the XML specification. Note that the prologue tag has no
closing tag.

The document’s body is embedded in the ArrayOfBook element. This is the document’s root
element, and each XML document must have one, and only one, root element.

Each entity is mapped to an element, and each element may have zero or more subelements.
An XML file with customers should probably have a <Customers> root element, which in turn
should contain any number of <Customer> elements. Each <Customer> element is made up of
more-specific elements, such as <Name>, <Address>, <Email>, and so on. The names of the tags
make sense to us humans, but to the computer, they’re just names. Computers can’t manipulate
an XML document based on the names of the elements; they can understand only the structure of
the document. For example, you can request the total number of elements in the document, the
child elements of a specific element, the Email element of a specific Customer element, and so on.

Petroutsos V1 c16.tex Page 616 01/28/2008 3:13pm

616 CHAPTER 16 SERIALIZATION AND XML

Figure 16.4

The XML Editor of
Visual Studio

Each element may have one or more attributes. Instead of specifying all the items as elements,
we can specify them as attributes of the element to which they belong. Instead of nesting the
LastName and FirstName elements under the Author element, you can specify the LastName
and FirstName fields as attributes:

<Author FirstName=”author First” LastName=”author Last”/>

Using attributes in place of elements is just a way to organize the information in an XML docu-
ment. Using attributes doesn’t change the nature of the document, just its structure.

You can actually determine how the XmlSerializer class will create the XML file with the proper
attributes. Say you modify the declaration of the Authors class in the Books sample project by
prefixing the FirstName and LastName properties with the <XmlAttribute> attribute, as shown
here:

<Serializable()> Public Class Author
<XmlAttribute(AttributeName:=”FirstName”)>

Public Property FirstName() As String
Get

Return firstname
End Get
Set(ByVal Value As String)

If Value.Length > 50 Then

Petroutsos V1 c16.tex Page 617 01/28/2008 3:13pm

WORKING WITH XML FILES 617

firstname = Value.Substring(0, 49)
Else

firstname = Value
End If

End Set
End Property
<XmlAttribute(AttributeName:=”LastName”)>

Property LastName() As String
Get

Return lastname
End Get
Set(ByVal Value As String)

If Value.Length > 50 Then
lastname = Value.Substring(0, 49)

Else
lastname = Value

End If
End Set

End Property

The XmlSerializer will insert the author’s first and last names as attributes of the <Author>
tag. Here’s an <Author> tag generated by the XmlSerializer with the revised class definition:

<Authors>
<Author FirstName=”Author1 First” LastName=”Author1 Last” />
<Author FirstName=”Author2 First” LastName=”Author2 Last” />

</Authors>

There are other attributes for customizing the output of the XmlSerializer, but a discussion of
these attributes is beyond the scope of this book.

Editing XML Files
You can easily edit this file. Apart from changing the values of existing elements, such as a book’s
price or page count, you can insert new elements.

Let’s add a new author to the second book. Create a new line before the closing tag </Authors>
of the second book, and insert the following tag: Author. As soon as you type the closing bracket,
the editor inserts the matching closing tag, and leaves the pointer between the two tags, so you
can enter the value of the newly inserted element. The Author element is not a simple element; it
contains two nested elements, FirstName and LastName. Enter the tag FirstName, and the editor
inserts the matching closing tag. Type the author’s first name between the two tags. Then move
after the closing </Author> tag and press Enter. In the new line, enter another author.

If you experiment a little with the XML Editor, you’ll realize that this isn’t a straight text editor.
It reacts to your actions and makes sure that the XML document is constantly a valid document.

If you deserialize the edited file, you’ll see that the AllBooks array will be populated with the
data of the edited XML file: One of the books will have an additional author. It’s fairly straight-
forward to edit existing XML files or to create new ones with the XML Editor that comes with
Visual Studio. The XML Editor makes sure that the file you’re editing follows the rules of a valid
XML file — that is, the file’s tags open and close within the element they belong to, and there are

Petroutsos V1 c16.tex Page 618 01/28/2008 3:13pm

618 CHAPTER 16 SERIALIZATION AND XML

no spaces or invalid characters in the tag names. If you make a mistake, the editor will instantly
underline the offending element. If you hover the pointer over the element in error, you’ll see a
description of the error.

The XML Editor can do more than help you generate valid XML files. With the Serialized
XMLArray.xml file open in the editor, choose the Create Schema command from the XML menu.
A new file is generated, the SerializedXMLArray.xsd file. XSD stands for XML Schema Defini-
tion, and the XSD files describe the schema (structure) of a class of XML files. The schema of the
XML file with the books is another XML document, made up of nested tags. These tags, however,
describe the names and structure of the elements that may appear in the document and their type.
The following statements specify the data types of three elements:

<xs:element name=”Title” type=”xs:string” />
<xs:element name=”Pages” type=”xs:unsignedShort” />
<xs:element name=”Price” type=”xs:decimal” />

Authors is a complex element that may contain one or more Author elements, and each Author
tag has two attributes: the FirstName and LastName attributes.

<xs:element name=”Authors”>
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs=”unbounded” name=”Author”>

<xs:complexType>
<xs:attribute name=”FirstName”

type=”xs:string” use=”required” />
<xs:attribute name=”LastName”

type=”xs:string” use=”required” />
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

It’s fairly easy to understand the structure of both XML and XSD files, but it’s not nearly as easy
to create an XSD file from scratch. The XML Editor, however, can apply a schema file to an XML
document and make sure that the file you’re generating conforms to its schema. And this is how
schemas are used: The editor reads the schema and makes sure that the XML document you’re
reading complies with the specified schema.

Enter a new <Book> tag in the file and you will see in IntelliSense the valid tags that may
appear within this element every time you type the opening bracket. If you enter the <Author>
tag, which must appear under an <Authors> tag, you will see in the IntelliSense box the two
attributes that may appear in the <Author> tag: the LastName and FirstName attributes (see
Figure 16.5).

If you omit the Authors element, the editor will underline the closing </Book> tag. This indi-
cates that the <Book> element may be invalid. Hover the pointer over the tag in error and you’ll
see the error description in a ToolTip box. The error message indicates that the cause of the prob-
lem could be a missing <Authors> tag. If you examine the schema of the XML file, you’ll see that

Petroutsos V1 c16.tex Page 619 01/28/2008 3:13pm

WORKING WITH XML FILES 619

some of the elements contain a MinOccurs and a MaxOccurs attribute. The <Authors> tag doesn’t
contain any of these attributes, and the editor thinks that each Book element should contain at least
one Authors subelement. This happened because the schema was generated from a sample XML
document in which all books had at least one author. Edit the XSD file by inserting the MinOccurs
attribute in the definition of the Authors element:

<xs:element name=”Authors” minOccurs=”0”>

Figure 16.5

The XML Editor can
assist you in conforming
to a specific schema.

The warning will go away, because the revised schema allows books to have no authors.
The newly generated schema is applied to the open document immediately. You can specify

which schema is applied to the document you’re editing with the Schemas property of the docu-
ment. Click the ellipses button in the Schemas property to see the XML Schemas dialog box, which
contains a number of schemata. Click the Add button to open the File Open dialog box and locate
the desired schema in your hard drive. To apply a specific schema to the current document,
select the Use option in the first column of the XML Schemas dialog box, as shown in Figure 16.6.

Figure 16.6

Specifying the schema
of the XML document
you’re editing in Visual
Studio

Petroutsos V1 c16.tex Page 620 01/28/2008 3:13pm

620 CHAPTER 16 SERIALIZATION AND XML

Initially, the Target Namespace column for the schema created by Visual Studio will be empty.
This column’s setting won’t affect your document in any way, but it does help you select the
proper schema when you need it. To specify a value for the target namespace, insert a target-
Namespace attribute in the <xsd:schema> tag at the beginning of the file:

targetNamespace=”urn:schemas-YourCompany-com:BooksSchema”

You may be thinking, ‘‘Why bother with editing XML files?’’ The reason for this short intro-
duction to XML will become obvious in the following chapter, where you’ll learn how to create
XML documents programmatically and how to process XML files in your application.

The Bottom Line

Serialize objects and collections into byte streams. Serialization is the process of converting
an object into a stream of bytes. This process (affectionately known as dehydration) generates
a stream of bytes or characters, which can be stored or transported. To serialize an object, you
can use the BinaryFormatter or SoapFormatter class. You can also use the XmlSerializer class
to convert objects into XML documents. All three classes expose a Serialize class that accepts as
arguments the object to be serialized and a stream object, and writes the serialized version of
the object to the specified stream.

Master It Describe the process of serializing an object with a binary or SOAP formatter.

Deserialize streams to reconstruct the original objects. The opposite of serialization is
called deserialization. To reconstruct the original object, you use the Deserialize method of
the same class you used to serialize the object.

Master It Describe the process of serializing an object with a binary or SOAP formatter.

Create XML files in your code. XML is a standard for storing data. In addition to the data,
an XML document also describes the structure of its contents by using elements and attributes.
Elements represent entities and their properties. Attributes represent the properties of the ele-
ments to which they’re applied.

Master It How would you create an XML document to describe structured data?

Petroutsos V1 c17.tex Page 621 01/28/2008 3:48pm

Chapter 17

Querying Collections and XML
with LINQ

In Chapter 14, ‘‘Storing Data in Collections,’’ you learned how to create collections, from simple
arrays to specialized collections such as HashTables and Lists, and how to iterate through them
with loops to locate items. Typical collections contain objects, and you already know how to create
and manipulate custom objects. In Chapter 16, ‘‘Serialization and XML,’’ you learned how to
serialize these collections into XML documents, as well as how to create XML documents from
scratch. And in Chapter 2, ‘‘Basic Concepts of Relational Databases,’’ you’ll learn how to manipu-
late large amounts of data stored in databases.

Each data source provides its own technique for searching and manipulating individual items.
What’s common in all data sources is the operations we perform with the data: We want to be able
to query the data and select the values we’re interested in. It’s therefore reasonable to assume a
common query language for all data sources. This common query language was introduced with
version 3 of the Framework and is now part of all .NET languages. It’s the LINQ component.

LINQ stands for Language Integrated Query, a small language for querying data sources. For all
practical purposes, it’s an extension to Visual Basic. However, LINQ has a peculiar
syntax. More specifically, LINQ consists of statements that you can embed into a program to select
items from a collection based on various criteria. Unlike a loop that examines each object’s prop-
erties and either selects or rejects it, LINQ is a declarative language: It allows you to specify the
criteria, instead of specifying how to select the objects. A declarative language, as opposed to a
procedural language, specifies the operation you want to perform, and not the steps to take. VB is
a procedural language; the language of SQL Server, T-SQL, is a declarative language.

In this chapter, you’ll learn how to do the following:

◆ Perform simple LINQ queries

◆ Create and process XML files with LINQ to XML

◆ Process relational data with LINQ to SQL

What Is LINQ?
Although defining LINQ is tricky, a simple example will demonstrate the structure of LINQ and
its role in an application. Let’s consider an array of integers:

Dim data() As Int16 = {3, 2, 5, 4, 6, 4, 12, 43, 45, 42, 65}

Petroutsos V1 c17.tex Page 622 01/28/2008 3:48pm

622 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

To select specific elements of this array, you’d write a For. . .Next loop, examine each element
of the array, and either select it by storing it into a new array or reject it. To select the elements that
are numerically smaller than 10, you’d write a loop like the following:

Dim smallNumbers(data.Length-1) As Integer
Dim itm As Integer = 0
For i As Integer = 0 To data.Length

If data(i) < 10 Then
smallNumbers(itm) = data(i)
itm += 1

End If
Next
ReDim smallNumbers(itm)

Just the statements for indexing the smallNumbers array add a degree of complexity to the
code. It would be simpler to store the selected elements into an ArrayList by using a loop like the
following:

Dim smallNumbers As New ArrayList
Dim itm As Integer
For Each itm In data

If itm < 10 Then
smallNumbers.Add(itm)

End If
Next

Let’s do the same with LINQ:

Dim smallNumbers = From n In data
Where n < 10
Select n

This is a peculiar statement indeed, unless you’re familiar with SQL, in which case you can
easily spot the similarities. LINQ, however, is not based on SQL, and not every operation has
an equivalent in both. Both SQL and LINQ, however, are declarative languages that have many
similarities. If you’re familiar with SQL, you have already spotted the similarities and the fact that
LINQ rearranges the basic elements. The equivalent SQL statement would be something like the
following:

SELECT *
FROM data
WHERE data.n < 10

(You can’t process arrays or other data structures with SQL; this example assumes the existence
of a database with a table called data, and that this table contains a column named n.) You’d use
the exact same LINQ query to select items from an ArrayList, and a similar statement to select
elements from an XML document.

Petroutsos V1 c17.tex Page 623 01/28/2008 3:48pm

WHAT IS LINQ? 623

Let’s start with the structure where the selected elements will be stored, which is the result of
the query. The smallNumbers variable is declared without a type, because its type is determined
by the type of the collection where the data will come from. We select elements from the data
array, so smallNumbers is an array of integers. Actually, it’s not exactly an array of integers; it’s
a typed collection of integers that implements the IEnumerable interface. The LINQ query starts
with the From keyword, which is followed by a variable that represents the current item in the
collection, followed by the In keyword and the name of the collection. The first part of the query
specifies the collection we’re going to query. As with the result of the query, the variable need not
be declared; it has the same type as the elements of the collection.

Then comes the Where keyword that limits the selection. The Where keyword is followed by
an expression that involves the variable of the From clause; the expression limits our selection. In
this extremely trivial example, we select the elements that are less than 10. The last keyword in
the expression, the Select keyword, determines what we’re selecting. In most cases, we select the
same value we specified after the From keyword, but not always. Here’s a variation of the previous
query expression:

Dim = From n In data
Where m mod 2 = 0
Select ”Number ” & n.ToString & ” is even”

Here we select even numbers from the original array and then form a string for each of the
selected values. The Where part of the statement is an expression, which evaluates to a True/False
value and determines whether the current element will be included in the result of the query. As
you will see shortly, the criteria can get quite complicated, but the idea is to express a filtering
expression that limits our selection.

But why bother with a new component to select values from an array? A For. . .Each loop that
processes each item in the collection is not really complicated and is quite efficient. For the time
being, LINQ is actually less efficient than the equivalent loop. The promise of LINQ isn’t efficiency
(not yet, at least), but its potential for becoming a universal querying language. LINQ isn’t limited
to arrays: It applies to collections, XML files, objects, even relational data, and it provides a uniform
querying language regardless of the data source. LINQ is an extension to the .NET Framework
that allows developers to query any data source that implements the IEnumerable or IQueryable
interfaces. Collections, XML files, and DataSets implement these interfaces and can be queried
with LINQ. The DataSet is a structure for storing data you retrieve from a database at the client,
and it’s discussed in detail in Chapters 22 and 23.

LINQ Components
To support such a wide range of data sources, LINQ is comprised by multiple components, which
are the following:

LINQ to XML This component enables you to search XML documents in many ways. In
effect, it replaces XQuery expressions that are used today to select the items of interest in an
XML document. Because of LINQ to XML, some new classes that support XML were intro-
duced to Visual Basic, and XML has become a basic data type of the language. The following
statement declares an XML variable, and it’s quite valid VB code:

Dim Employees = <Employees>
<Employee ID=”1001”>

<Title>Developer</Title>

Petroutsos V1 c17.tex Page 624 01/28/2008 3:48pm

624 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

<Name>John Doe</Name>
</Employee>
<Employee ID=”1002”>

<Title>Manager</Title>
<Name>Joe Doe</Name>

</Employee>
</Employees>

If you enter this statement in a VB project and hover the pointer over the Employees variable,
you’ll see that its type is XElement. This type belongs to the System.Xlinq namespace and is
new to VB 2008 and treated by VB as a new type. Notice that there are no line-continuation
symbols in the XML segment, because line breaks are of no consequence to XML documents.
Moreover, as you enter XML statements in the editor, the XML Editor’s facilities are activated.

LINQ to Objects This component enables you to search collections of built-in or custom
objects. If you have a collection of Color objects, for example, you can select the colors with an
intensity of 0.5 or more via the following expression:

Dim colors() As Color = {Color.White,
Color.LightYellow, Color.Cornsilk,
Color.Linen, Color.Blue, Color.Violet}

Dim brightColors = From c In colors
Where c.GetBrightness > 0.5

Likewise, you can select the rectangles with a minimum or maximum area by using a query
like the following:

Dim rects() As Rectangle =
{New Rectangle(0, 0, 100, 120),
New Rectangle(10, 10, 6, 8)}

Dim query = From R In rects
Where R.Width * R.Height > 100

LINQ to SQL This component enables you to query relational data by using LINQ rather
than SQL. You will find examples of LINQ to SQL samples later in this chapter.

LINQ to DataSet This component is similar to LINQ to SQL, in the sense that they both
query relational data. The LINQ to DataSet component allows you query data that have already
been stored in a DataSet at the client. DataSets are discussed in detail later in this book, but I
won’t discuss the LINQ to DataSet component, because the DataSet is an extremely rich object
and quite functional on its own.

LINQ to Entities This is similar to the LINQ to Objects component, only the objects are based
on relational data. Entities are not discussed in this book.

Petroutsos V1 c17.tex Page 625 01/28/2008 3:48pm

LINQ TO OBJECTS 625

LINQ to Objects
This section focuses on querying collections of objects. As you can guess, the most interesting
application of LINQ to Objects is to select items from a collection of custom objects. Let’s create a
custom class to represent products:

Public Class Product
Private productID As String
Private productName As String
Private productPrice As Decimal
Private productExpDate As Date

Public Property ProductID() As String
End Property

Public Property ProductName() As String
End Property

Public Property ProductPrice() As Decimal
End Property

Public Property ProductExpDate() As Date
End Property

I’m not showing the implementation of various properties, because they’re quite trivial (noth-
ing more than the default setters and getters). The Products collection is a List object that contains
several instances of the class, and it’s populated with statements like the following:

Dim Products As New System.Collections.Generic.List(Of Product)
Dim P As Product
P = New Product
P.ProductID = ”10A-Y”
P.ProductName = ”Product 1”
P.ProductPrice = 21.45
P.ProductExpDate = #8/1/2009#
Products.add(P)

Now we can use LINQ to query our collection of products based on any property (or combina-
tion of properties) of its items. To find out the products that cost more than $20 and have expired
already, we can formulate the following query:

Dim query = From prod In products
Where prod.ProductPrice < 20

And Year(prod.ProductExpDate) < 2008
Select prod

Petroutsos V1 c17.tex Page 626 01/28/2008 3:48pm

626 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

The result of the query is also a List collection, and it contains the products that meet the
specified criteria. To iterate through the selected items and display them in a TextBox control,
we use a For. . .Each loop, as shown next:

For Each P In query
TextBox1.AppendText(P.ProductID & vbTab &

P.ProductName & vbTab &
P.ProductPrice.ToString(”##0.00”) & vbTab &
P.ProductExpDate.ToShortDateString & vbCrLf)

Next

Okay, if we have to write the loop, why not examine each item in the loop’s body and not
bother with an embedded query? For starters, the same query will work with other data sources.
You can replace the collection with an XML document, and the same query will work. More-
over, displaying the data manually is not your only option. In Chapter 23, ‘‘Building Data-Bound
Applications,’’ you’ll learn about DataGridView, which is a data-bound control. You set the con-
trol’s DataSource property to a collection of data, and the control displays all the data in its data
source in a tabular format. The items of the collection are mapped to rows of the control, and the
properties of the objects stored in the collection are mapped to columns, as shown in the grid of
Figure 17.1. This is the frmLINQBasics form of the VBLINQ project. In Chapter 23, you’ll learn
how to customize the appearance of the DataGridView control as well.

Figure 17.1

Querying a collection of
custom objects

Petroutsos V1 c17.tex Page 627 01/28/2008 3:48pm

LINQ TO OBJECTS 627

The DataGridView control not only is a highly customizable control for browsing sets of data,
but also allows the editing of its contents. You can edit the selected items on the control and then
access them from within your code through the control’s DataSource property. First, you must
cast the control’s DataSource property to a BindingSource object and then access the rows of the
control. Each row must be cast in turn into the Product type. The following loop displays the
ProductName field of the first row on the control:

Dim prods = CType(DataGridView1.DataSource, BindingSource)
Debug.WriteLine(CType(prods(0), Product).ProductName)

The DataGridView control is a flexible tool for browsing and editing sets of data. You’ll see in
Chapter 23 how to bind the DataGridView control to data; in this example, I wanted to show only
that you can bind it to any collection.

Another component of a LINQ expression is the Order By clause, which determines how the
objects will be ordered in the output list. To sort the output of the preceding example in descend-
ing order, append the following Order By clause to the expression:

Dim query = From prod In products
Where prod.ProductPrice < 20

And Year(prod.ProductExpDate) < 2010
Select prod
Order By prod.ProductName

Querying Collections
As I mentioned already, LINQ can be applied to all objects that implement the IEnumerable
interface. Many methods of the Framework return their results as a collection that implements
the IEnumerable interface. As you recall from Chapter 15, ‘‘Accessing Folders and Files,’’ the
GetFiles method of the IO.Directory class retrieves the files of a specific folder and returns them
as a collection of strings:

Dim files = Directory.GetFiles(”C:\”)

I’m assuming that you have turned on type inference for this project (it’s on by default), so I’m
not declaring the type of the files collection. If you hover the pointer over the files keyword,
you’ll see that its type is String() — an array of strings. This is the GetFiles method’s return
type, so we need not declare the files variable with the same type. The variable’s type is inferred
from its value.

The GetFiles method returns an array of strings. To find out the properties of each file, you
must create a new FileInfo object for each file and then examine the values of the FileInfo object’s
properties. To create an instance of the FileInfo class that represents a file, you’d use the following
statement:

Dim FI As New FileInfo(file name)

(As a reminder, the FileInfo class as well as the Directory class belong to the IO namespace.
You must either import the namespace into the current project or prefix the class names with the

Petroutsos V1 c17.tex Page 628 01/28/2008 3:48pm

628 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

IO namespace: IO.FileInfo). The value of the FI object must now be used in the Where clause of the
expression to specify a filter for the query:

Dim smallFiles =
From file In Directory.GetFiles(”C:\”)
Where New FileInfo(file).Length > 10000
Order By file
Select file

The file variable is local to the query, and you cannot access it from the rest of the code. You
can actually create a new file variable in the loop that iterates through the selected files, as shown
in the following code segment:

For Each file In smallFiles
Debug.WriteLine(file)

Next

The selection part of the query is not limited to the same variable as specified in the From clause.
To select the name of the qualifying files, instead of their paths, use the following selection clause:

Select New FileInfo(file).Name

The smallFiles object should still be an array of strings, right? Not quite. This time, if you
hover the pointer over the name of the smallFiles variable, you’ll see that its type is IEnumer-
able(Of String). And it makes sense, because the result of the query is not of the same type as
its source. This time we created a new string for each of the selected items, and so smallFiles is
an IEnumerable type. Let’s select each file’s name and size with the following query:

Dim smallFiles =
From file In Directory.GetFiles(”C:\”)
Where New FileInfo(file).Length > 10000
Select New FileInfo(file).Name,

New FileInfo(file).Length

This time, smallFiles is of the IEnumerable(Of <anonymous type>) type. And what exactly
is the anonymous type? It’s simply a type with no name. Its structure is known, but there’s no
name for this type. Because we have selected the two properties of interest in the query itself (the
file’s name and size), we can display them with the following loop:

For Each file In smallFiles
Debug.WriteLine(file.Name & vbTab &

file.Length.ToString)
Next

As soon as you type in the name of the file variable and the following period, you will see the
Name and Length properties of the anonymous type in the IntelliSense box. As you can see, the
editor created a new type behind the scenes for you that exposes the selected values as properties.

Petroutsos V1 c17.tex Page 629 01/28/2008 3:48pm

LINQ TO OBJECTS 629

The properties of the new type are named after the items you specified in the Select clause
and they have the same type. Because the type has no name, it’s called an anonymous type. What
this means, practically, is that you can’t declare a new variable of the same type, except by assign-
ing a value of this type to the variable. You can also control the names of the properties of the
anonymous type with the following syntax:

Select New With {.FileName = New FileInfo(file).Name,
.FileSize = New FileInfo(file).Length}

This time we select a new object, which is created on-the-fly and has two properties named
FileName and FileSize. The values of the two properties are specified as usual. The new object is
still of the anonymous type. To display each selected file’s name and size, modify the For. . .Each
loop as follows:

For Each file In smallFiles
Debug.WriteLine(file.FileName & vbTab &

file.FileSize.ToString)
Next

As you can see, LINQ is not a trivial substitute for a loop that examines the properties of the
collection’s items; it’s a powerful and expressive syntax for querying data in your code, it creates
data types on the fly and exposes them in your code.

You can also limit the selection by applying the Where method directly to the collection:

Dim smallFiles =
Directory.GetFiles(”C:\”).Where (Function(file)
(New FileInfo(file).Length > 10000))

The functions you specify in certain extended methods are called lambda functions, and they’re
declared either inline, if they’re single line functions, or as delegates.

Let me explain how the Where clause of the last sample code segment works. The Where clause
should be followed by an expression that evaluates to a True/False value, the lambda function.
First, you specify the signature of a function; in our case, the function accepts a single argument,
which is the current item in the collection. Obviously, the Where clause will be evaluated for each
item in the collection, and for each item, the function will accept a different object as argument.
In the following section, you’ll see lambda functions that accept two arguments. The name of the
argument can be anything; it’s a name that you will use in the definition of the function to access
the current collection item. Then comes the definition of the function, which is the expression that
compares the current file’s size to 100,000 bytes. If the size exceeds 100,000 bytes, the function will
return True — otherwise, False.

In this example, the lambda function is implemented inline. To implement more-complicated
logic, you can write a function and pass the address of this function to the Where clause. Let’s
consider that the function implementing the filtering is the following:

Private Function IsLargeTIFFFile(ByVal fileName As String) As Boolean
Dim file As FileInfo
file = New FileInfo(fileName)
If file.Length > 100000 And file.Extension.ToUpper = ”.TIF” Then

Petroutsos V1 c17.tex Page 630 01/28/2008 3:48pm

630 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

Return True
Else

Return False
End If

End Function

To call this function from within a LINQ expression, use the following syntax:

Dim largeImages =
Directory.GetFiles(”C:\”).Where(AddressOf IsLargeTIFFFile)

MsgBox(smallFiles.Count)

Aggregating with LINQ
LINQ allows you to query for aggregates too. By default, it adds a few extended methods for
calculating aggregates to all collections. Let’s return to our array of integers, the data array. To
calculate the count of all values, call the Count method of the data array. The count of elements in
the data array is given with the following expression:

Dim count = data.Count

Of course, the Array class doesn’t provide a Count method, so where did it come from? Count,
as well as a number of other methods, is an extended method. An extended method is added to a
class without having to inherit the original class and create a derived class (as you recall, the array
cannot even be inherited). The Framework allows you to add methods to a class by extending it,
and this technique is used heavily by LINQ.

In addition to the Count method, any LINQ-capable class exposes the Sum method, which sums
the values of a specific element or attribute in the collection. To calculate the sum of the selected
values from the data array, use the following LINQ expression:

Dim sum = From n data
Where n > 10
Select n.Sum

You can also calculate arbitrary aggregates by using the Aggregate method, which accepts
as an argument a lambda expression. This expression, in turn, accepts two arguments: the cur-
rent value and the aggregate. The implementation of the function calculates the aggregate. Let’s
consider a lambda expression that calculates the sum of the squares over a sequence of numeric
values. The declaration of the function is as follows:

Function(aggregate, value)

Its implementation is shown here:

aggregate + value ˆ 2

Petroutsos V1 c17.tex Page 631 01/28/2008 3:48pm

LINQ TO XML 631

To calculate the sum of the squares of all items in the data array, use the following LINQ
expression:

Dim sumSquares = data.Aggregate(
Function(sumSquare As Long, n As Integer)

sumSquare + n ˆ 2

The single statement that implements the aggregate adds the square of the current element
to the sumSquare argument. When we’re done, the sumSquare variable holds the sum of the
squares of the array’s elements. Aggregates are not limited to numeric values. Here’s an interesting
example of a LINQ expression that reverses the words in a sentence. The code starts by splitting
the sentence into words, which are returned in an array of strings. Then it calls the Aggregate
method, passing as an argument a lambda expression. This expression is a function that prefixes
the aggregate (the string with words in reverse order) with the current word:

Dim sentence =
”The quick brown fox jumped over the lazy dog”

Dim reverseSentence =
sentence.Split(” ”.c).Aggregate(
Function (newSentence, word)
word & ” ” & newSentence

A few more interesting extended methods are the following:

Take (N) Selects the first n elements from the collection

TakeWhile (Expression) Keeps selecting elements from the collection while the expression
is True. To select values while they’re smaller than 10, use the following lambda expression:

Function(n) n < 10

This expression selects values until it finds one that exceeds 10. The selection stops there,
regardless of whether some of the following elements drop below 10.

Skip and SkipWhile The Skip and SkipWhile methods are equivalent to the Take and Take-
While methods: They skip a number of items and select the remaining ones.

Distinct The Distinct method, finally, returns the distinct values in the collection:

Dim uniqueValues = data.Distinct

LINQ to XML
In this section, we’ll move on to a more interesting component of LINQ, the LINQ to XML com-
ponent. XML is gaining in popularity and acceptance, and Microsoft has decided to promote XML

Petroutsos V1 c17.tex Page 632 01/28/2008 3:48pm

632 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

to a basic data type. Yes, XML is a data type like integers and strings! To understand how far VB
is taking XML, type the following in a procedure or event handler:

Dim products = <Books>
<Book ISBN=”0000000000001”>

<Name>Book Title 1</Name>
<Price>11.95</Price>

</Book>
<Book ISBN=”000000000002”>

<Name>Book Title 2</Name>
<Price>10.25</Price>

</Book>
</Books>

You need not worry too much about getting the document exactly right, because the editor
works just like the XML Editor. Every time you type an opening tag, it inserts the matching closing
tag and ensures that what you’re typing is a valid XML document. You can’t apply a schema to the
XML document you’re creating, but you should expect this feature in a future version of Visual
Studio.

You can create a new XML document in your code, but what can you do with it? We need
a mechanism to manipulate the XML document with simple tools, and these tools are available
through the following XML helper objects:

XDocument represents the XML document.

XComment represents a comment in the XML document.

XElement represents an XML element.

XAttribute represents an attribute in an XML element.

These objects can be used to access the document but also to create it. Instead of creating
an XML document directly in your code, you can use the XML helper objects and a structural
approach to create the same document. A simple XML document consists of elements, which
may include attributes. To create a new XElement object, pass the element’s name and value to its
constructor:

New XElement(element name, element value)

The following statement will create a very simple XML document:

Dim XmlDoc = New XElement(”Books”)
MsgBox(XmlDoc.ToString)

You will see the string <Books /> in a message box. This is a trivial, yet valid, XML document.
To create the same book collection as we did earlier by using the helper objects, insert the following
statements in a button’s Click event handler:

Dim doc =
New XElement(”Books”,

New XElement(”Book”,

Petroutsos V1 c17.tex Page 633 01/28/2008 3:48pm

LINQ TO XML 633

New XAttribute(”ISBN”, ”0000000000001”),
New XElement(”Price”, 11.95),
New XElement(”Name”, ”Book Title 1”),
New XElement(”Stock”,

New XAttribute(”InStock”, 12),
New XAttribute(”OnOrder”, 24))),

New XElement(”Book”,
New XAttribute(”ISBN”, ”0000000000002”),

New XElement(”Price”, 10.25),
New XElement(”Name”, ”Book Title 2”),
New XElement(”Stock”,

New XAttribute(”InStock”, 7),
New XAttribute(”OnOrder”, 10))))

I’ve added a twist to the new document to demonstrate the use of multiple attributes in the
same element. The Stock element contains two attributes, InStock and OnOrder. Each element’s
value can be a basic data type, such as a string or a number, or another element. The Price element
is a decimal value, and the Name element is a string. The Book element, however, contains three
subelements: the Price, Name, and Stock elements.

The doc variable is of the XElement type. An XML document is not necessarily based on the
XDocument class. The two basic operations you can perform with an XElement (and XDocu-
ment) object are to save it to a file and reload an XElement object from a file. The operations are
performed with the Save and Load methods, which accept the file’s name as an argument.

Traversing XML Documents
Let’s look at how we can process an XML document by using the XML helper objects. If you’re
familiar with the XML tools for manipulating XML documents from previous versions of Visual
Basic, you’ll be impressed by the simplicity of the new approach. Each element may have one or
more parent elements, which you can access via the Ancestors property, and one or more child
elements, which you can access via the Descendants property. Both methods return a collection
of XElement objects. In addition, elements may have attributes, which you can access via the
Attribute property.

For Each book In doc.Elements(”Book”)
Debug.WriteLine(”ISBN ” & book.Attribute(”ISBN”).Value.ToString)
Debug.WriteLine(” Title: ” & book.Descendants(”Name”).Value.ToString)
Debug.WriteLine(” Price: ” & book.Descendants(”Price”).Value.ToString)
Dim stock = book.Element(”Stock”)
Debug.WriteLine(” Books in stock ” & stock.Attribute(”InStock”).Value)
Debug.WriteLine(” Books on order ” & stock.Attribute(”OnOrder”).Value)

Next

The loop iterates through the Book elements in the XML file. The expression doc.Elements
(”Book”) returns a collection of XElement objects, each of which has an Attribute property and
a Descendants property. The Attribute property lets you access each attribute of the current
element by name. The Descendants property returns a collection of XElement objects, one for
each subelement of the element represented by the book XElement. One of the elements, the Stock
element, has its own attributes. To read their values, the code creates a variable that represents the

Petroutsos V1 c17.tex Page 634 01/28/2008 3:48pm

634 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

Stock element and uses its Attribute property to retrieve an attribute by name. The output of
the preceding code segment is shown here:

ISBN 0000000000001
Title: Book Title 1
Price: 32.3

Books in stock 12
Books on order 24

ISBN 0000000000002
Title: Book Title 2
Price: 12.55

Books in stock 7
Books on order 10

There’s a shorthand notation for accessing attributes, elements, and descendants in an XML file:
The @ symbol is shorthand for the Attribute property, a pair of angle brackets (<>) is shorthand
for the Element property, and two periods (..) are shorthand for the Descendants property. The
following code segment is identical to the preceding one, only this time I’m using the shorthand
notation. The output will be exactly the same as before.

For Each book In doc.Elements(”Book”)
Debug.WriteLine(”ISBN ” & book.@ISBN.ToString)
Debug.WriteLine(” Title: ” &

book...<Name>.Value.ToString)
Debug.WriteLine(” Price: ” &

book...<Price>.Value.ToString)
Dim stock = book.Element(”Stock”)
Debug.WriteLine(” Books in stock ” &

stock.@InStock.ToString)
Debug.WriteLine(” Books on order ” &

stock.@OnOrder.ToString)
Next

Notice that attributes are returned as strings and have no Value property.

Adding Dynamic Content to an XML Document
The XML documents we’ve built in our code so far were static. Because XML support is built
into VB, you can also create dynamic context, and this is where things get quite interesting. To
insert some dynamic content into an XML document, insert the characters <%=. The editor will
automatically insert the closing tag, which is %>. Everything within these two tags is treated as
VB code and compiled. The two special tags create a placeholder in the document (or an expression
hole), and the expression you insert in them is an embedded expression: You embed a VB expression
in your document, and the compiler evaluates the expression and inserts the result in the XML
document.

Petroutsos V1 c17.tex Page 635 01/28/2008 3:48pm

LINQ TO XML 635

Here’s a trivial XML document with an embedded expression. It’s the statement that creates a
Books document with a Book element (I copied it from a code segment presented earlier in this
chapter), and I inserted the current date as an element:

Dim doc =
New XElement(”Books”,

New XElement(”Book”,
New XAttribute(”ISBN”, ”0000000000001”),
New XAttribute(”RecordDate”, <%= Today %>),
New XElement(”Price”, 11.95),
New XElement(”Name”, ”Book Title 1”),
New XElement(”Stock”,

New XAttribute(”InStock”, 12),
New XAttribute(”OnOrder”, 24))),

Let’s say you have an array of Product objects and you want to create an XML document with
these objects. Listing 17.1 shows the array with the product names.

Listing 17.1: An Array of Product Objects

Dim Products() As Product =
{New Product With

{.ProductID = 3, .ProductName = ”Product A”,
.ProductPrice = 8.75,
.ProductExpDate = #2/2/2009#},

New Product With
{.ProductID = 4, .ProductName = ”Product B”,
.ProductPrice = 19.5},

New Product With
{.ProductID = 5, .ProductName = ”Product C”,
.ProductPrice = 21.25,
.ProductExpDate = #12/31/2010#}}

The code for generating an XML document with three elements is quite short, but what if you
had thousands of products? Let’s assume that the Products array contains instances of the Product
class. You can use the XMLSerializer class to generate an XML document with the array’s contents.
An alternative approach is to create an inline XML document with embedded expressions, as
shown in Listing 17.2.

Listing 17.2: An XML Document with Product Objects

Dim prods = <Products>
<%= From prod In Products
Select <Product>

Petroutsos V1 c17.tex Page 636 01/28/2008 3:48pm

636 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

<ID><%= prod.ProductID %></ID>
<Name><%= prod.ProductName %></Name>
<Price><%= prod.ProductPrice %></Price>
<ExpirationDate>

<%= prod.ProductExpDate %></ExpirationDate>
</Product> %>
</Products>

This code segment looks pretty ugly, but here’s how it works: In the first line, we start a new
XML document. (The prods variable is actually of the XElement type, but an XElement is in its
own right an XML document.) Notice that there’s no line-continuation character at the end of the
first line of the XML document. Then comes a LINQ query embedded in the XML document with
the <%= and %> tags. Notice the line continuation symbol at the end of this line. When we’re in an
expression hole, we’re writing VB code, so line breaks matter. That makes the line continuation
symbol necessary. Here’s a much simplified version of the same code:

Dim prods = <Products>
<%= From prod In Products

Select <Product>some product</Product> %>
</Products>

This code segment will generate the following XML document:

<Products>
<Product>some product</Product>
<Product>some product</Product>
<Product>some product</Product>

</Products>

The file contains no real data but is a valid XML document. The two tags with the percent sign
switch into VB code, and the compiler executes the statements embedded in them. The embedded
statement of our example is a LINQ query, which iterates through the elements of the Products
array and selects literals (the XML tags shown in the output). To insert data between the tags, we
must switch to VB again and insert the values we want to appear in the XML document. In other
words, we must replace the string some product in the listing with some embedded expressions
that return the values you want to insert in the XML document. These values are the properties of
the Product class, as shown in Listing 17.1. The code shown in Listing 17.2 will produce the output
shown in Listing 17.3.

Listing 17.3: An XML Document with the Data of the Array Initialized in Listing 17.2

<Products>
<Product>

<ID>3</ID>
<Name>Product A</Name>
<Price>8.75</Price>
<ExpirationDate>2009-02-02T00:00:00</ExpirationDate>

</Product>

Petroutsos V1 c17.tex Page 637 01/28/2008 3:48pm

LINQ TO XML 637

<Product>
<ID>4</ID>
<Name>Product B</Name>
<Price>19.5</Price>
<ExpirationDate>0001-01-01T00:00:00</ExpirationDate>

</Product>
<Product>

<ID>5</ID>
<Name>Product C</Name>
<Price>21.25</Price>
<ExpirationDate>2010-12-31T00:00:00</ExpirationDate>

</Product>
</Products>

Transforming XML Documents

A common operation is the transformation of an XML document. If you have worked with XML
in the past, you already know Extensible Stylesheet Language Transformations (XSLT), which is a
language for transforming XML documents. If you’re new to XML, you’ll probably find it easier to
transform XML documents with the LINQ to XML component. Even if you’re familiar with XSLT,
you should be aware that transforming XML documents with LINQ is straightforward. The idea
is to create an inline XML document that contains HTML tags and an embedded LINQ query, like
the following:

Dim HTML = <htlm>Products
<table border=”all”><tr>
<td>Product</td><td>Price</td>
<td>Expiration</td></tr>
<%= From item In prods.Descendants(”Product”)

Select <tr><td><%= item.<Name> %></td>
<td><%= item.<Price> %></td>
<td><%= Convert.ToDateTime(
item.<ExpirationDate>.Value).

ToShortDateString %>
</td></tr> %></table>
</htlm>

HTML.Save(”Products.html”)
Process.Start(”Products.html”)

The HTML variable stores plain HTML code. HTML is a subset of XML, and the editor will treat
it like XML: It will insert the closing tags for you and will not let you nest tags in the wrong order.
The Select keyword in the query is followed by a mix of HTML tags and embedded holes for
inline expressions, which are the fields of the item object. Note the VB code for formatting the date
in the last inline expression.

The last two statements save the HTML file generated by our code and then open it in Internet
Explorer (or whichever application you’ve designated to handle by default the HTML
documents).

Petroutsos V1 c17.tex Page 638 01/28/2008 3:48pm

638 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

Using Custom Functions with LINQ to XML

The embedded expressions are not limited to simple, inline expressions. You can call custom func-
tions to transform your data. In a hotel reservation system I developed recently, I had to transform an
XML file with room details to an HTML page. The transformation involved quite a few lookup oper-
ations, which I implemented with custom functions. Here’s a simplified version of the XLINQ query
I used in the project. I’m showing the query that generates a simple HTML table with the elements
of the XML document. The RoomType element is a numeric value that specifies the type of the room.
This value may differ from one supplier to another, so I had to implement the lookup operation with
a custom function.

Dim hotels = <html>
<table><tr><td>Hotel</td<td>Room Type</td><td>Price</td></tr>
<%= From hotel In Hotels

Select <tr><td><%= hotel.<HotelName>.Value %></td>
<td><%= GetRoomType(hotel.<RoomTypeID>)</td>
<td><%= CalculatePrice(hotel.<Base>)</td>

</tr>
%>

</table>
</html>

The GetRoomType() and CalculatePrice() functions must be implemented in the same module
that contains the LINQ query. In my case, they accept more arguments than shown here, but you get
the idea. To speed up the application, I created HashTables using the IDs of the various entities in
their respective tables in the database. The CalculatePrice() function, in particular, is quite
complicated, because it incorporates the pricing policy of the agency. Yet, all the business logic imple-
mented in a standard VB function was easily incorporated into the LINQ query that generates the
HTML page with the available hotels and prices.

Working with XML Files

In this section, we’re going to build a functional interface for viewing customers and orders. And
this time we aren’t going to work with a small sample file. We’ll actually get our data from one
of the sample databases that come with SQL Server: the Northwind database. The structure of
this database is discussed in Chapter 21, ‘‘Basic Concepts of Relational Databases,’’ in detail, but
for now I’ll show you how to extract data in XML format from SQL Server. If you don’t have
SQL Server installed, or if you’re unfamiliar with databases, you can use the sample XML files
in the folder of the VBLINQ project. The frmXMLFiles form of the VBLINQ project is shown in
Figure 17.2.

You may be wondering why you would extract relational data and process them with LINQ
instead of executing SQL statements against the database. XML is the standard data- exchange
format, and you may get data from any other source in this format. You may get an XML file
generated from someone’s database, or even an Excel spreadsheet. In the past, you had to

Petroutsos V1 c17.tex Page 639 01/28/2008 3:48pm

LINQ TO XML 639

convert the data to another, more flexible format and then process it. With LINQ, you can directly
query the XML document, transform it into other formats, and of course save it.

Figure 17.2

Displaying related data
from XML files

Start SQL Server and execute the following query:

SELECT * FROM Customers FOR XML AUTO

This statement selects all columns and all rows for the Customers table and generates an ele-
ment for each row. The field values are stored in the document as attributes of the corresponding
row. The output of this statement is not a valid XML document because its elements are not
embedded in a root element. To request an XML document in which all elements are embedded
in a root element, use the ROOT keyword:

SELECT * FROM Customers FOR XML AUTO, ROOT(’AllCustomers’)

I’m using the root element AllCustomers because the elements of the XML document are
named after the table. The preceding statement will generate an XML document with the following
structure:

<AllCustomers>
<Customers CustomerID=”...” CompanyName=”xxx” ... />
<Customers CustomerID=”...” CompanyName=”xxx” ... />
...

</AllCustomers>

It would make more sense to generate an XML document with the Customers root element and
name the individual elements Customer. To generate this structure, use the following statement:

SELECT * FROM Customers Customer FOR XML AUTO, ROOT(’Customers’)

Petroutsos V1 c17.tex Page 640 01/28/2008 3:48pm

640 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

Here’s a segment of the XML document with the customers:

<Customers>
<Customer CustomerID=”ALFKI” CompanyName=
”Alfreds Futterkiste” ContactName=”Maria Anders”
ContactTitle=”Sales Representative”
Country=”Germany” />

<Customer CustomerID=”ANATR” CompanyName=
”Ana Trujillo Emparedados y helados”
ContactName=”Ana Trujillo” ContactTitle=”Owner”
Country=”Mexico” />

Finally, you can create an XML document where the fields are inserted as elements, rather than
attributes. To do so, use the ELEMENTS keyword:

SELECT * FROM Customers Customer FOR XML AUTO,
ELEMENTS ROOT(’Customers’)

The other statements that generated the XML files with the rows of the tables Orders, Order
Details, and Products are as follows:

SELECT * FROM Orders Order FOR XML AUTO, ROOT(’Orders’)
SELECT * FROM [Order Details] Detail FOR XML AUTO,

ELEMENTS, ROOT(’Details’)
SELECT ProductID, ProductName FROM Products

FOR XML AUTO, ELEMENTS ROOT(’Products’)

Notice that all files are attribute based, except for the Details.xml file, which is element based.
I had no specific reason for choosing this structure; I just wanted to demonstrate both styles for
processing XML in the sample project’s code. Also, the reason I’ve included the Products table
is because the Order Details table, which contains the lines of the order, stores the IDs of the
products, not the product names. When displaying orders, as shown in Figure 17.2, we must show
product names, not just product IDs. The four collections with the entities we extracted from the
Northwind database are declared and populated at the form’s level via the following statements:

Dim customers As XElement = XElement.Load(”..\..\..\Customers.xml”)
Dim orders As XElement = XElement.Load(”..\..\..\Orders.xml”)
Dim details As XElement = XElement.Load(”..\..\..\Details.xml”)
Dim products As XElement = XElement.Load(”..\..\..\Products.xml”)

As it’s apparent from the code, I’ve placed the four XML files created with the SQL statements
shown earlier in the project’s folder. The Display Data button populates the top ListView control
with the rows of the Customers table, via the following statements:

Private Sub bttnShow Click(...) Handles bttnShow.Click
For Each c In customers.Descendants(”Customer”)

Dim LI As New ListViewItem
LI.Text = c.@CustomerID
LI.SubItems.Add(c.@CompanyName)
LI.SubItems.Add(c.@ContactName)
LI.SubItems.Add(c.@ContactTitle)

Petroutsos V1 c17.tex Page 641 01/28/2008 3:48pm

LINQ TO XML 641

ListView1.Items.Add(LI)
Next

End Sub

The code is quite simple. It doesn’t even use LINQ; it iterates through the Customer elements of
the customers collection and displays their attributes on the control. Notice the use of the shortcut
for the Attribute property of the current XElement.

When the user clicks a customer name, the control’s SelectedIndexChanged event is fired.
The code in this handler executes a LINQ statement that selects the rows of the Orders table that
correspond to the ID of the selected customer. Then, it iterates through the selected rows, which
are the orders of the current customer, and displays their fields on the second ListView control via
the following statements:

Private Sub ListView1 SelectedIndexChanged(...)
Handles ListView1.SelectedIndexChanged

If ListView1.SelectedItems.Count = 0 Then Exit Sub
ListView2.Items.Clear()
Dim scustomerID = ListView1.SelectedItems(0).Text
Dim query = From o In orders.Descendants(”Order”)

Where Convert.ToString(o.@CustomerID) = scustomerID
Select o

For Each o In query
Dim LI As New ListViewItem
LI.Text = o.@OrderID.ToString
LI.SubItems.Add(Convert.ToDateTime

(o.@OrderDate).ToShortDateString)
LI.SubItems.Add(Convert.ToDecimal

(o.@Freight).ToString(”#,###.00”))
LI.SubItems.Add(o.@ShipName.ToString)
ListView2.Items.Add(LI)

Next
End Sub

The LINQ query selects Order elements based on their CustomerID attribute. Finally, when an
order is clicked, the following LINQ query retrieves the selected order’s details:

Dim query = From itm In details.Descendants(”Detail”)
Where Convert.ToInt32(itm.<OrderID>.Value) = orderID
Select itm

The Details.xml file contains elements for all columns, not attributes, and I use statements
such as dtl.<UnitPrice> to access the subelements of the current element. To display product
names, the code selects the row of the Products collection that corresponds to the ID of each detail
line as follows:

Dim product =
From p In products.Descendants(”Product”)
Where Convert.ToInt32(p.@ProductID) =

Convert.ToInt32(dtl.<ProductID>.Value)
Select p

Petroutsos V1 c17.tex Page 642 01/28/2008 3:48pm

642 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

The product variable is actually a collection of XElements, even though it can never contain
more than a single element (product IDs are unique). We access the ProductName column of the
selected row with the expression product(0).@productName. You can call the First method to
make sure you’ve selected a single product, no matter what:

Dim product =
(From p In products.Descendants(”Product”)
Where Convert.ToInt32(p.@ProductID) =

Convert.ToInt32(dtl.<ProductID>.Value)
Select p).First

LINQ to SQL
SQL stands for Structured Query Language, a language for querying databases. SQL is discussed
in detail in Chapter 21, and as you will see, SQL resembles LINQ. If you are not familiar with
databases and SQL, you should read Chapter 21 and then return to this section. SQL is a simple
language, and I will explain the SQL statements used in this section’s examples; readers who are
somewhat familiar with databases should be able to follow the examples of this section.

In this section, we’re going to build an application for displaying customers, orders, and order
details, just as we did in the preceding section. The difference is that this time we won’t get our
data from an XML document; we’ll retrieve them directly from the database. As you will see, the
same LINQ queries will be used to process the rows returned by the queries. The code you’ll see
in this section comes from the frmDB form of the VBLINQ sample project. This form is identical
to the frmXMLFiles form shown in Figure 17.2; it just uses a different data source. The code isn’t
identical to the code presented in the preceding section, but the differences are minor. The same
principles will be applied to a very different data source.

We need a mechanism to connect to the database so we can retrieve data, and this mechanism
is the DataContext class. The DataContext class talks to the database, retrieves data, and submits
changes back to the database. To create a DataContext object, pass a string with the information
about the database server, the specific database, and your credentials to the DataContext class’s
constructor, as shown here:

Dim db As New DataContext(”Data Source=localhost;
initial catalog=northwind;
Integrated Security=True”)

To use the DataContext class in your code, you must add a reference to the System.Data.Linq
namespace and then import it into your code with this statement:

Imports System.Data.Linq

You will find more information on connecting to databases in Chapter 22. For the purposes
of this chapter, the preceding connection string will connect your application to the Northwind
database on the local database server, assuming that you have installed SQL Server or SQL Server
Express on the same machine as Visual Studio.

After you have initialized the DataContext object, you’re ready to read data from tables into
variables. To do so, call the GetTable method of the db object to retrieve the rows of a table. Note
that the name of the table is not specified as an argument. Instead, the table is inferred from the
type passed to the GetTable method as an argument. The GetTable(Of Customer) method will

Petroutsos V1 c17.tex Page 643 01/28/2008 3:48pm

LINQ TO SQL 643

retrieve the rows of the Customers table, because the name of the table is specified in the definition
of the class, as you will see shortly.

customers = From cust In db.GetTable(Of Customer)()
Select New Customer With
{.CustomerID = cust.CustomerID,
.CompanyName = cust.CompanyName,
.ContactName = cust.ContactName,
.ContactTitle = cust.ContactTitle}

orders = From ord In db.GetTable(Of Order)()
Select New Order With
{.OrderID = ord.OrderID,
.OrderDate = ord.OrderDate,
.CustomerID = ord.CustomerID,
.Freight = ord.Freight,
.ShipName = ord.ShipName}

details = From det In db.GetTable(Of Detail)()
Select New Detail With
{.OrderID = det.OrderID,
.ProductID = det.ProductID,
.Quantity = det.Quantity,
.UnitPrice = det.UnitPrice,
.Discount = det.Discount}

products = From prod In db.GetTable(Of NWProduct)()
Select New NWProduct With
{.ProductID = prod.ProductID,
.ProductName = prod.ProductName}

The type of the customers, orders, details, and products variables is IQueryable(of entity),
where entity is the appropriate type for the information you’re reading from the database. The
four variables that will store the rows of the corresponding tables must be declared at the form’s
level with the following statements:

Dim customers As System.Linq.IQueryable(Of Customer)
Dim orders As System.Linq.IQueryable(Of Order)
Dim details As System.Linq.IQueryable(Of Detail)
Dim products As System.Linq.IQueryable(Of NWProduct)

The variables must be declared explicitly at the form’s level, because they will be accessed from
within multiple event handlers.

To make the most of LINQ to SQL, you must first design a separate class for each table that you
want to load from the database. You can also specify the mapping between your classes and the
tables from which their instances will be loaded, by prefixing them with the appropriate attributes.
The Customer class, for example, will be loaded with data from the Customers table. To specify
the relationship between the class and the table, use the Table attribute, as shown here:

<Table(Name:=”Customers”)>Public Class Customer
End Class

Petroutsos V1 c17.tex Page 644 01/28/2008 3:48pm

644 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

Each property of the Customer class will be mapped to a column of the Customers table.
In a similar manner, decorate each property with the name of the column that will populate
the property:

<Column(Name:=”CompanyName”)>Public Property Name
End Property

If the name of the property matches the name of the relevant column, you can omit the column’s
name:

<Column()>Public Property Name
End Property

Listing 17.4 shows the definition of the four classes we’ll use to store the four tables (Customers,
Orders, Order Details and Products).

Listing 17.4: The Classes for Storing Customers and Orders

<Table(Name:=”Customers”)> Public Class Customer
Private CustomerID As String
Private CompanyName As String
Private ContactName As String
Private ContactTitle As String

<Column()> Public Property CustomerID() As String
Get

Return customerID
End Get
Set(ByVal value As String)

customerID = value
End Set

End Property

<Column()> Public Property CompanyName() As String
Get

Return CompanyName
End Get
Set(ByVal value As String)

CompanyName = value
End Set

End Property

<Column()> Public Property ContactName() As String
....

End Property

<Column()> Public Property ContactTitle() As String
....

End Property
End Class

Petroutsos V1 c17.tex Page 645 01/28/2008 3:48pm

LINQ TO SQL 645

<Table(Name:=”Orders”)> Public Class Order
Private OrderID As Integer
Private CustomerID As String
Private OrderDate As Date
Private Freight As Decimal
Private ShipName As String

<Column()> Public Property OrderID() As Integer
....

End Property

<Column()> Public Property CustomerID() As String
....

End Property

<Column()> Public Property OrderDate() As Date
....

End Property

<Column()> Public Property Freight() As Decimal
....

End Property

<Column()> Public Property ShipName() As String
....

End Property
End Class

<Table(Name:=”Order Details”)> Public Class Detail
Private OrderID As Integer
Private ProductID As Integer
Private Quantity As Integer
Private UnitPrice As Decimal
Private Discount As Decimal

<Column()> Public Property OrderID() As Integer
....

End Property

<Column()> Public Property ProductID() As Integer
....

End Property

<Column()> Public Property Quantity() As Short
....

End Property

Petroutsos V1 c17.tex Page 646 01/28/2008 3:48pm

646 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

<Column()> Public Property UnitPrice() As Decimal
....

End Property

<Column()> Public Property Discount() As Double
....

End Property
End Class

<Table(Name:=”Products”)> Public Class NWProduct
Private ProductID As Integer
Private ProductName As String

<Column()> Public Property ProductID() As Integer
....

End Property

<Column()> Public Property ProductName() As String
....

End Property

End Class

I’m not showing the implementation of most properties, because it’s trivial. What’s interesting
in this listing are the Table and Column attributes that determine how the instances of the classes
will be populated from the database, as you saw earlier.

The code that displays the selected customer’s orders and the selected order’s details is similar
to the code you saw in the previous section that displays the data from the XML files. It selects the
matching rows in the relevant table and shows them in the corresponding ListView control.

Retrieving Data with the ExecuteQuery Method
You can also retrieve a subset of the table by executing an SQL query against the database. The
ExecuteQuery method, which accepts as arguments the SELECT statement to be executed and an
array with parameter values, returns a collection with the selected rows as objects. To call the
ExecuteQuery method, you must specify the class that will be used to store the results with the
Of keyword in parentheses following the method’s name. Then you specify the SELECT state-
ment that will retrieve the desired rows. If this query contains any parameters, you must also
supply an array of objects with the parameter values. Parameters are identified by their order in
the query, and not a name. The first parameters is 0, the second parameter is 1, and so on. The
following statement will retrieve all customers from Germany and store them in instances of the
Customer class:

Dim params() = {”Germany”}
Dim GermanCustomers =

db.ExecuteQuery(Of Customer)(
”SELECT CustomerID, CompanyName, ” &

Petroutsos V1 c17.tex Page 647 01/28/2008 3:48pm

THE BOTTOM LINE 647

”ContactName, ContactTitle ” &
”FROM Customers WHERE Country={0}”, params)”

After the GermanCustomers collection has been populated, you can iterate through its items as
usual, with a loop like the following:

For Each cust In GermanCustomers
Debug.WriteLine(cust.CompanyName & ” ” &

cust.ContactName)
Next

You can also execute LINQ queries against it. To find out the number of customers from Ger-
many, use the following expression:

Dim custCount = GermanCustomers.Count

To apply a filtering expression and then retrieve the count, use the following LINQ expression:

Dim g = GermanCustomers.Where(Function(c As Customer)
c.CompanyName.ToUpper Like ”*DELIKATESSEN*”).Count

To appreciate the role of the DataContext class in LINQ to SQL, you should examine the
ToString property of a LINQ query that’s executed against the database. Insert a statement to
display the expression GermanCustomers.ToString in your code and you will see that the Data-
Context class has generated and executed the following statement against the database. If you’re
familiar with SQL Server, you can run the SQL Server Profiler and trace all commands executed
against SQL Server. Start SQL Server Profiler (or ask the database administrator to create a log of
all statements executed by your workstation against a specific database) and then execute a few
LINQ to SQL queries. Here’s the statement for selecting the German customers as reported by
the profiler:

exec sp executesql N’SELECT Customers.CompanyName,
Orders.OrderID, SUM(UnitPrice*Quantity) AS

OrderTotal FROM Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
INNER JOIN [Order Details] ON

[Order Details].OrderID = Orders.OrderID
WHERE Customers.Country=@p0
GROUP BY Customers.CompanyName,
Orders.OrderID’,N’@p0 nvarchar(7)’,@p0=N’Germany’

The Bottom Line

Perform simple LINQ queries. A LINQ query starts with the structure From variable In
collection, where variable is a variable name and collection is any collection that imple-
ments the IEnumerable interface (such as an array, a typed collection, or any method that
returns a collection of items). The second mandatory part of the query is the Select part,

Petroutsos V1 c17.tex Page 648 01/28/2008 3:48pm

648 CHAPTER 17 QUERYING COLLECTIONS AND XML WITH LINQ

which determines the properties of the variable we want in the output. Quite often we select
the same variable that we specify in the From keyword. In most cases, we apply a filtering
expression with the Where keyword. Here’s a typical LINQ query that selects filenames from a
specific folder:

Dim files =
From file In

IO.Directory.GetFiles(”C:\Documents”)
Where file.EndsWith(”doc”)

Select file

Master It Write a LINQ query that calculates the sum of the squares of the values in
an array.

Create and process XML files with LINQ to XML. LINQ to SQL allows you to create XML
documents with the XElement and XAttribute classes. You simply create a new XElement
object for each element in your document, and a new XAttribute object for each attribute in the
current element. Alternatively, you can simply insert XML code in your VB code. To create an
XML document dynamically, you can insert embedded expressions that will be evaluated by
the compiler and replaced with their results.

Master It How would you create an HTML document with the filenames in a specific
folder?

Process relational data with LINQ to SQL. LINQ to SQL allows you to query relational data
from a database. To access the database, you must first create a DataContext object. Then you
can call this object’s GetTable method to retrieve a table’s rows, or the ExecuteQuery method
to retrieve selected rows from one or more tables with an SQL query. The result is stored in
a class designed specifically for the data you’re retrieving via the DataContext object.

Master It Explain the attributes you must use in designing a class for storing a table.

Petroutsos V1 c18.tex Page 649 01/28/2008 3:55pm

Chapter 18

Drawing and Painting with Visual
Basic 2008

Some of the most interesting and fun parts of a programming language are its graphics elements.
In general, graphics fall into two major categories: vector and bitmap. Vector graphics are images
generated by graphics methods such as DrawLine and DrawEllipse. The drawing you create is
based on mathematical descriptions of the various shapes. Bitmap graphics are images made up of
pixels arranged in rows and columns. Each pixel is represented by a Long numeric value, which
is the pixel’s color. The difference between vector and bitmap graphics is that vector graphics
aren’t tied to a specific monitor resolution; that is, they can be displayed at various resolutions.
Bitmap graphics, on the other hand, have a fixed resolution. An image that is 1,024 pixels wide and
768 pixels tall has that specific resolution. If you attempt to use that image to fill a monitor that’s
1,280 pixels wide and 1,024 pixels tall, you’ll have to repeat some pixels. Image-processing soft-
ware can interpolate between pixels, but when you blow up a bitmap, you see its block-like
structure.

In this chapter, you will learn how to do the following:

◆ Display and size images

◆ Generate graphics by using the drawing methods

◆ Display text in various ways, including gradient fills

Displaying and Sizing Images
The primary control for displaying images is the PictureBox control. To load an image to a Picture-
Box control, locate the Image property in the Properties window and click the button with the
ellipsis next to it. The Select Resource dialog box will appear, in which you can select the image
to be displayed (see Figure 18.1). The image, along with every other image or icon you use in the
same project, is stored in the Resources folder under the project’s folder. As a result, you don’t
have to distribute the image with your application; it will be included in the setup file that the
installer will create for your application.

After the image is loaded, you must make sure that it fills the available space. The PictureBox
control exposes the SizeMode property, which determines how the image will be sized and aligned
on the control. The SizeMode property can be set to a member of the PictureBoxSizeMode enu-
meration: AutoSize, CenterImage, Normal, StretchImage, and Zoom. Its default setting is Normal,
and in this mode the control displays the image at its normal magnification. If the image is larger
than the control, part of the image will be invisible. If the image is smaller than the control, part

Petroutsos V1 c18.tex Page 650 01/28/2008 3:55pm

650 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Figure 18.1

Adding image resources
to a project through the
Select Resource dialog
box

of the control will be empty. In this case, you can set the SizeMode property to CenterImage to
center the image on the control.

The StretchImage setting resizes the image so that it fills the control. If the control’s aspect
ratio isn’t the same as the aspect ratio of the image, the image will be distorted in the process.
If you want to use the StretchImage setting, you must also resize one of the dimensions of the
control, so that the image will be properly resized. You’ll see how to do this shortly. The AutoSize
setting causes the control to be resized according to the image’s dimensions. This is not the most
convenient setting because the control might cover other controls on the form.

The Zoom setting of the SizeMode property resizes the image without distorting its aspect
ratio. In this mode, the control attempts to resize the image as well as it can in the given area while
maintaining its aspect ratio. If the image’s aspect ratio is different from the aspect ratio of the
control, this setting will fill the control vertically or horizontally and will center the image in the
other direction.

Figure 18.2 shows a PictureBox control with an image in four of the five settings (the AutoSize
mode, which isn’t shown in the figure, stretches the PictureBox control to the size of the image)
Notice that the Zoom mode filled the PictureBox vertically, but left a margin on either side of the
image to avoid distortion of the image’s aspect ratio.

Designing a Scrolling PictureBox

A problem with the PictureBox control is that it doesn’t provide an AutoScroll property; thus you
can’t display a large image at its original resolution and scroll any part of it into view at runtime. A
scrollable PictureBox would be highly desirable in many applications (images are so common in many
types of applications today), but because the control doesn’t support this functionality, here’s the next
best thing you can do:

Petroutsos V1 c18.tex Page 651 01/28/2008 3:55pm

DISPLAYING AND SIZING IMAGES 651

1. Place a Panel control on the form and set its AutoSize property to True. Set its AutoScroll
property to True also, so that the appropriate scroll bars will appear automatically as soon
as the control’s contents exceed its dimensions. Finally, set it Dock property to Fill, so that it
will cover the entire form.

2. Place a PictureBox control on the Panel control and set its SizeMode property to AutoSize.
We want the PictureBox control to be sized according to the image it contains.

3. Finally, assign a large image to the PictureBox control (any of the images in the folder
Pictures/Sample Pictures will do). As soon as you assign the image to the control, the neces-
sary scroll bars will be displayed and you can scroll any part of the image into view, even at
design time.

Open the Scrolling PictureBox project, shown in the following figure, and experiment with large ima-
ges. The sample project’s main form contains a menu and a status bar, which remain in place as you
scroll the PictureBox control with the image in the Panel control. The menu contains commands to
zoom in and out of the image as well as commands to rotate the image.

I’ve also added a few statements to display the coordinates of the upper-left corner of the visible sec-
tion of the image and the current zoom on the form’s status bar. Every time the Panel’s contents are
scrolled, the Scroll event takes place. I’m using this event handler’s arguments to read the horizon-
tal and vertical displacement of the image and print them with the following statements:

Private Sub Panel1 Scroll(ByVal sender As Object,
ByVal e As System.Windows.Forms.ScrollEventArgs)
Handles Panel1.Scroll

If e.ScrollOrientation = ScrollOrientation.HorizontalScroll Then
X = e.NewValue

Petroutsos V1 c18.tex Page 652 01/28/2008 3:55pm

652 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Else
Y = e.NewValue

End If
ToolStripStatusLabel1.Text =

”[X: ” & X.ToString &
”, Y: ” & Y.ToString & ”]”

End Sub

Figure 18.2

The settings of the
SizeMode property

Petroutsos V1 c18.tex Page 653 01/28/2008 3:55pm

DRAWING WITH GDI+ 653

Drawing with GDI+
You have seen the basics of displaying images on your forms; now let’s move on to some
real graphics operations, namely how to create your own graphics with the Framework. Win-
dows graphics are based on a graphics engine, known as GDI. GDI, which stands for Graphics
Design Interface, is a collection of classes that enable you to create graphics, text, and images.
The most recent version on GDI is called GDI+.

One of the basic characteristics of GDI is that it’s stateless. This means that each graphics oper-
ation is totally independent of the previous one and can’t affect the following one. To draw a line,
you must specify a Pen object and the two endpoints of the line. You must do the same for the next
line you’ll draw. You can’t assume that the second line will use the same pen or that it will start at
the point where the previous line ended. There isn’t even a default font for text-drawing methods.
Every time you draw some text, you must specify the font in which the text will be rendered, as
well as the Brush object that will be used to draw the text.

The GDI+ classes reside in the following namespaces, and you must import one or more
of them in your projects: System.Drawing, System.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text. This chapter explores all three aspects of GDI+ — namely vector drawing,
imaging, and typography.

Before you start drawing, you must select the surface you want to draw on, the types of
shapes you want to draw, and the instrument you’ll use to draw them. The surface on which
you can draw is a Graphics object, which is your canvas, and it’s the control’s Graphics prop-
erty. Most controls expose a Graphics property, but most applications draw on either forms or
PictureBox controls. The Graphics property is an object that exposes numerous methods for
drawing basic (and not-so-basic) shapes.

The next step is to decide which instrument you’ll use to draw. There are two major drawing
instruments: the Pen object and the Brush object. You use pens to draw stroked shapes (lines,
rectangles, curves) and brushes to draw filled shapes (any area enclosed by a shape, including
text). The main characteristics of the Pen object are its color and its width (the size of the trace left
by the pen). The main characteristic of the Brush object is the color or pattern with which it fills
the shape. An interesting variation of the Brush object is the gradient brush, which changes color
as it moves from one point of the shape you want to fill to another. You can start filling a shape
with red in the middle and specify that as you move toward the edges of the shape, the fill color
fades to yellow.

After you have specified the drawing surface and the drawing instrument, you draw the actual
shape by calling the appropriate method of the Graphics object. To draw lines, call the DrawLine
method of the Graphics object; to draw text, call the DrawString method of the same object. There
are many drawing methods, as well as other methods that support the main drawing methods,
and they’re all discussed later in this chapter. Here are the statements to draw a line on the form:

Dim redPen As Pen = New Pen(Color.Red, 2)
Dim point1 As Point = New Point(10,10)
Dim point2 As Point = New Point(120,180)
Me.CreateGraphics.DrawLine(redPen, point1, point2)

The first statement declares a new Pen object, which is initialized to draw in red with a width
of 2 pixels. The following two statements declare and initialize two points, which are the line’s
starting and ending points. The coordinates are expressed in pixels, and the origin is at the form’s
top-left corner. The last statement draws the line by calling the DrawLine method. The expression
Me.CreateGraphics retrieves the Graphics object of the form, which exposes all the drawing

Petroutsos V1 c18.tex Page 654 01/28/2008 3:55pm

654 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

methods, including the DrawLine method. You can also create a new Graphics object and associate
it with the form:

’ set up a pen and the two endpoints as before
Dim G As Graphics
G = Me.CreateGraphics
G.DrawLine(redPen, point1, point2)

The DrawLine method accepts as an argument the pen it will use to draw and the line’s starting
and ending points. I have used two Point objects to make the code easier to read. The DrawLine
method, like all other drawing methods, is heavily overloaded. You can also omit the declarations
of the various objects and initialize them in the same statement that draws the line:

Me.CreateGraphics.DrawLine(New Pen(Color.Red, 2),
New Point(10, 10), New Point(120, 180))

All coordinates are expressed by default in pixels. It’s possible to specify coordinates in differ-
ent units and let GDI+ convert them to pixels before drawing. For now, we’ll use pixels, which
are quite appropriate for simple objects. After you familiarize yourself with the drawing meth-
ods, you can specify different coordinate systems. For more information, see the discussion of the
PageUnit property of the Graphics object in the following section.

The Basic Drawing Objects
This is a good point to introduce some of the objects we’ll be using all the time when drawing. No
matter what you draw or which drawing instrument you use, one or more of the objects discussed
in this section will be required.

The Graphics Object

The Graphics object is the drawing surface — your canvas. All the controls you can draw on
expose a Graphics property, which is an object, and you can retrieve it with the CreateGraphics
method. Conversely, if an object doesn’t expose the CreateGraphics method, you can’t draw on
its surface. It goes without saying that the PictureBox control exposes a Graphics property, but
so does the TextBox control, as well as many controls you wouldn’t expect. It’s not recommended
that you draw on a TextBox control, of course, unless you’re coding a peculiar application. Bear in
mind that anything you draw on the TextBox control will disappear as you start typing. You must
first place the text on the control and then draw on its surface — or make the control read-only.

The Graphics object exposes all the methods and properties you will use to create graphics
on the control. If you enter the string Me.CreateGraphics and a period, you will see a list of the
members of the Graphics object in a drop-down list.

Start by declaring a variable of the Graphics type and initialize it to the Graphics object returned
by the control’s CreateGraphics method:

Dim G As Graphics
G = PictureBox1.CreateGraphics

At this point, you’re ready to start drawing on the PictureBox1 control with the methods
presented in the following sections. In essence, the CreateGraphics method returns the drawing
surface of the control or form on which you wish to draw.

Petroutsos V1 c18.tex Page 655 01/28/2008 3:55pm

DRAWING WITH GDI+ 655

When Do We Initialize a Graphics Object?

The Graphics object is initialized to the control’s drawing surface at the moment you create it. If the
form is resized at runtime, the Graphics object won’t change, and part of the drawing surface might
not be available for drawing. If you create a Graphics object to represent a form in the form’s Load
event handler and the form is resized at runtime, the drawing methods you apply to the Graphics
object will take effect in part of the form. The most appropriate event for initializing the Graphics obj-
ect and inserting the painting code is the form’s Paint event. This event is fired when the form must
be redrawn — when the form is uncovered or resized. Insert your drawing code there and create a
Graphics object in the Paint event handler. Then draw on the Graphics object and release it when
you’re done.

The Graphics object exposes the following basic properties, in addition to the drawing methods
discussed in the following sections.

DpiX, DpiY These two properties return the horizontal and vertical resolutions of the
drawing surface, respectively. Resolution is expressed in pixels per inch (or dots per inch,
if the drawing surface is your printer). On an average monitor, these two properties return a
resolution of 96 dots per inch (dpi).

PageUnit This property determines the units in which you want to express the coordinates
on the Graphics object; its value can be a member of the GraphicsUnit enumeration
(Table 18.1). If you set the PageUnit property to World, you must also set the PageScale
property to a scaling factor that will be used to convert world units to pixels.

Table 18.1: The GraphicsUnit Enumeration

Value Description

Display The unit is 1/75 of an inch.

Document The unit is 1/300 of an inch.

Inch The unit is 1 inch.

Millimeter The unit is 1 millimeter.

Pixel The unit is 1 pixel (the default value).

Point The unit is a printer’s point (1/72 of an inch).

World The developer specifies the unit to be used.

TextRenderingHint This property specifies how the Graphics object will render text; its value
is one of the members of the TextRenderingHint enumeration: AntiAlias, AntiAliasGrid-
Fit, ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit, and
SystemDefault.

SmoothingMode This property is similar to the TextRenderingHint, but it applies to shapes
drawn with the Graphics object’s drawing methods. Its value is one of the members of the

Petroutsos V1 c18.tex Page 656 01/28/2008 3:55pm

656 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

SmoothingMode enumeration: AntiAlias, Default, HighQuality, HighSpeed, Invalid,
and None.

Figure 18.3 shows the effect of the TextRenderingHint property on text. The anti-aliased text
looks much better on the monitor, because anti-aliased text is smoother. The edges of the char-
acters contain shades between the drawing and background colors. The ClearType setting has
no effect on Cathode Ray Tube (CRT) monitors. You can see the difference only when you ren-
der text on Liquid Crystal Display (LCD) monitors, such as flat-panel or notebook monitors.
Text in ClearType style looks best when rendered black on a white background. You won’t be
able to see the differences among the various settings on the printed image, but you can open the
TextRenderingHint project, which I used to create the figure, and examine how the Text-
RenderingHint property affects the rendering of the text. You can also capture the form by
pressing Alt+PrtSc, paste it into Paint or your favorite image-processing application, and zoom
into the details of the various characters.

Figure 18.3

The effect of the Text-
RenderingHint setting
on the rendering of text

Many of the drawing methods of the Graphics object use some helper classes, such as the Point
class that’s used to specify coordinates, the Color class that’s used to specify colors, and so on. I’ll
go quickly through these classes, and then I’ll discuss the drawing methods in detail.

Petroutsos V1 c18.tex Page 657 01/28/2008 3:55pm

DRAWING WITH GDI+ 657

The Point Class

The Point class represents a point on the drawing surface and is expressed as a pair of (x, y)
coordinates. The x-coordinate is its horizontal distance from the origin, and the y-coordinate is its
vertical distance from the origin. The origin is the point with coordinates (0, 0), and this is the
top-left corner of the drawing surface.

The constructor of the Point class is the following, where X and Y are the point’s horizontal and
vertical distances from the origin:

Dim P1 As New Point(X, Y)

You can also set the X and Y properties of the P1 variable. As you will see later, coordinates can
be specified as single numbers, not integers (if you choose to use a coordinate system other than
pixels). In this case, use the PointF class, which is identical to the Point class except that its coordi-
nates are nonintegers. (F stands for floating-point, and floating-point numbers are represented by
the Single or Double data type.)

The Rectangle Class

Another class that is often used in drawing is the Rectangle class. The Rectangle object is used to
specify areas on the drawing surface. Its constructor accepts as arguments the coordinates of the
rectangle’s top-left corner and its dimensions:

Dim box As Rectangle
box = New Rectangle(X, Y, width, height)

The following statement creates a rectangle whose top-left corner is 1 pixel to the right and 1
pixel down from the origin, and its dimensions are 100 by 20 pixels:

box = New Rectangle(1, 1, 100, 20)

The box variable represents a rectangle, but it doesn’t generate any output on the monitor.
If you want to draw the rectangle, you can pass it as argument to the DrawRectangle or Fill-
Rectangle method, depending on whether you want to draw the outline of the rectangle or a
filled rectangle.

Another form of the Rectangle constructor uses a Point and a Size object to specify the location
and dimensions of the rectangle:

box = New Rectangle(point, size)

The point argument is a Point object that represents the coordinates of the rectangle’s upper-
left corner. To create the same Rectangle object as in the preceding example with this form of the
constructor, use the following statement:

Dim P As New Point(1, 1)
Dim S As New Size(100, 20)
box = New Rectangle(P, S)

Petroutsos V1 c18.tex Page 658 01/28/2008 3:55pm

658 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Figure 18.4

Specifying rect-
angles with
the coordinates of
their top-left corner
and their dimensions

Both sets of statements create a rectangle that extends from point (1, 1) to the point (1 + 100,
1 + 20) or (101, 21), in the same manner as the ones shown in Figure 18.4. Alternatively, you can
declare a Rectangle object and then set its X, Y, Width, and Height properties.

The Size Class

The Size class represents the dimensions of a rectangle; it’s similar to a Rectangle object, but it
doesn’t have an origin, just dimensions. To create a new Size object, use the following constructor:

Dim S1 As New Size(100, 400)

If you want to specify coordinates as fractional numbers, use the SizeF class, which is identical
to the Size class except that its dimensions are nonintegers.

The Color Class

The Color class represents colors, and there are many ways to specify a color. We’ll discuss the
Color class in more detail in Chapter 19, ‘‘Manipulating Images and Bitmaps.’’ In the meantime,
you can specify colors by name. Declare a variable of the Color type and initialize it to one of the
named colors exposed as properties of the Color class:

Dim myColor As Color
myColor = Color.Azure

The 128 color names of the Color class will appear in the IntelliSense box as soon as you enter
the period following the keyword Color. You can also use the FromARGB method, which creates
a new color from its basic color components (the Red, Green, and Blue components). For more
information on specifying colors with this method, see the section called ‘‘Specifying Colors’’ in
Chapter 19.

The Font Class

The Font class represents fonts, which are used when rendering strings via the DrawString
method. To specify a font, you must create a new Font object; set its family name, size, and style;

Petroutsos V1 c18.tex Page 659 01/28/2008 3:55pm

DRAWING WITH GDI+ 659

and then pass it as argument to the DrawString method. Alternatively, you can prompt the user
for a font via the Font common dialog box and use the object returned by the dialog box’s Font
property as an argument with the DrawString method. To create a new Font object, use a state-
ment like the following:

Dim drawFont As New Font(”Verdana”, 12, FontStyle.Bold)

The Font constructor has 13 forms in all. Two of the simpler forms of the constructor, which
allow you to specify the size and the style of the font, are shown in the following code lines, where
size is an integer and style is a member of the FontStyle enumeration (Bold, Italic, Regular,
Strikeout, and Underline):

Dim drawFont As New Font(name, size)
Dim drawFont As New Font(name, size, style)

To specify multiple styles, combine them with the OR operator:

FontStyle.Bold Or FontStyle.Italic

You can also initialize a Font variable to an existing font. The following statement creates a
Font object and initializes it to the current font of the form:

Dim textFont As New Font
textFont = Me.Font

The Pen Class

The Pen class represents virtual pens, which you use to draw on the Graphics object’s surface. To
construct a new Pen object, you must specify the pen’s color and width in pixels. The following
statements declare three Pen objects with the same color and different widths:

Dim thinPen, mediumPem, thickPen As Pen
thinPen = New Pen(Color.Black, 1)
mediumPen = New Pen(Color.Black, 3)
thickPen = New Pen(Color.Black, 5)

If you omit the second argument, a pen with a width of a single pixel will be created by default.
Another form of the Pen object’s constructor allows you to specify a brush instead of a color, as
follows, where brush is a Brush object (discussed later in this chapter):

Dim patternPen as Pen
patternPen = New Pen(brush, width)

The quickest method of creating a new Pen object is to use the built-in Pens collection, which
creates a Pen with a width of 1 pixel and the color you specify. The following statement can appear
anywhere a Pen object is required and will draw shapes in blue color:

Pens.Blue

Petroutsos V1 c18.tex Page 660 01/28/2008 3:55pm

660 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

The Pen object exposes these properties:

Alignment Determines the alignment of the Pen, and its value is one of the members of
the PenAlignment enumeration: Center or Inset. When set to Center, the width of the pen
is centered on the outline (half the width is inside the shape, and half is outside). When set
to Inset, the entire width of the pen is inside the shape. The default value of this property is
PenAlignment.Center.

LineJoin Determines how two consecutive line segments will be joined. Its value is one of
the members of the LineJoin enumeration: Bevel, Miter, MiterClipped, and Round.

StartCap, EndCap Determines the caps at the two ends of a line segment, respectively. Their
value is one of the members of the LineCap enumeration: Round, Square, Flat, Diamond, and
so on.

DashCap Determines the caps to be used at the beginning and end of a dashed line. Its
value is one of the members of the DashCap enumeration: Flat, Round, and Triangle.

DashStyle Determines the style of the dashed lines drawn with the specific Pen. Its value is
one of the members of the DashStyle enumeration (Solid, Dash, DashDot, DashDotDot, Dot,
and Custom).

PenType Determines the style of the Pen; its value is one of the members of the PenType
enumeration: HatchFilled, LinearGradient, PathGradient, SolidColor, and TextureFill.

The Brush Class

The Brush class represents the instrument for filling shapes; you can create brushes that fill with
a solid color, a pattern, or a bitmap. In reality, there’s no Brush object. The Brush class is actually
an abstract class that is inherited by all the classes that implement a brush, but you can’t declare a
variable of the Brush type in your code. The brush objects are shown in Table 18.2.

Table 18.2: Brush Styles

Brush Fill Effect

SolidBrush Fills shapes with a solid color

HatchBrush Fills shapes with a hatched pattern

LinearGradientBrush Fills shapes with a linear gradient

PathGradientBrush Fills shapes with a gradient that has one starting color and many ending colors

TextureBrush Fills shapes with a bitmap

Solid Brushes

To fill a shape with a solid color, you must create a SolidBrush object with the following construc-
tor, where brushColor is a color value, specified with the help of the Color object:

Dim sBrush As SolidBrush
sBrush = New SolidBrush(brushColor)

Petroutsos V1 c18.tex Page 661 01/28/2008 3:55pm

DRAWING WITH GDI+ 661

Every filled object you draw with the sBrush object will be filled with the color of the brush.

Hatched Brushes

To fill a shape with a hatch pattern, you must create a HatchBrush object with the following
constructor:

Dim hBrush As HatchBrush
HBrush = New HatchBrush(hatchStyle, hatchColor, backColor)

The first argument is the style of the hatch, and it can have one of the values shown in Table 18.3
and in the following illustration. The HatchStyle enumeration has 54 members, so Table 18.3
shows only a few common patterns. You can fill shapes with plaid, spheres, waves, and a lot more
patterns that aren’t listed here, but you will see their names in the IntelliSense box. The other
two arguments are the colors to be used in the hatch. The hatch is a pattern of lines drawn on
a background, and the two color arguments are the color of the hatch lines and the color of the
background on which the hatch is drawn.

Petroutsos V1 c18.tex Page 662 01/28/2008 3:55pm

662 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Table 18.3: The HatchStyle Enumeration

Value Effect

BackwardDiagonal Diagonal lines from top-right to bottom-left

Cross Vertical and horizontal crossing lines

DiagonalCross Diagonally crossing lines

ForwardDiagonal Diagonal lines from top-left to bottom-right

Horizontal Horizontal lines

Vertical Vertical lines

Gradient Brushes

A gradient brush fills a shape with a specified gradient. The LinearGradientBrush fills a shape with
a linear gradient, and the PathGradientBrush fills a shape with a gradient that has one starting
color and one or more ending colors. Gradient brushes are discussed in detail in the section titled
‘‘Gradients,’’ later in this chapter.

Textured Brushes

In addition to solid and hatched shapes, you can fill a shape with a texture by using a TextureBrush
object. The texture is a bitmap that is tiled as needed to fill the shape. Textured brushes are used
to create rather fancy graphics, and we won’t explore them in this book.

The Path Class

The Path class represents shapes made up of various drawing entities, such as lines, rectangles,
and curves. You can combine as many of these drawing entities as you’d like and build a new
entity, which is called a path. Paths are usually closed and filled with a color, a gradient, or a
bitmap. You can create a path in several ways. The simplest method is to create a new Path object
and then use one of the following methods to append the appropriate shape to the path:

AddArc AddEllipse AddPolygon

AddBezier AddLine AddRectangle

AddCurve AddPie AddString

These methods add to the path the same shapes you can draw on the Graphics object with
the methods discussed in the following section. There’s even an AddPath method, which adds
an existing path to the current one. The syntax of the various methods that add shapes to a path
is identical to the corresponding methods that draw. We simply omit the first argument (the
Pen object) because all the shapes that make up a path will be rendered with the same pen. The
following method draws an ellipse:

Me.CreateGraphics.DrawEllipse(mypen, 10, 30, 40, 50)

Petroutsos V1 c18.tex Page 663 01/28/2008 3:55pm

DRAWING WITH GDI+ 663

To add the same ellipse to a Path object, use the following statement:

Dim myPath As New Path
myPath.AddEllipse(10, 30, 40, 50)

To display the path, call the DrawPath method, passing a Pen and Path object as arguments:

Me.CreateGraphics.DrawPath(myPen, myPath)

Why combine shapes into paths instead of drawing individual shapes? After the shape has
been defined, you can draw multiple instances of it, draw the same path with a different pen, or
fill the path’s interior with a gradient. Paths are also used to create the ultimate type of gradient,
the PathGradient (as you will see in the section called ‘‘Path Gradients,’’ later in this chapter).

Drawing Shapes
Now that we’ve covered the auxiliary drawing objects, we can look at the drawing methods of
the Graphics class. Before getting into the details of the drawing methods, however, let’s write a
simple application that draws a couple of simple shapes on a form. First, we must create a Graphics
object with the following statements:

Dim G As Graphics
G = Me.CreateGraphics

Everything you’ll draw on the surface represented by the G object will appear on the form.
Then, we must create a Pen object to draw with. The following statement creates a Pen object
that’s 1 pixel wide and draws in blue:

Dim P As New Pen(Color.Blue)

We created the two basic objects for drawing: the drawing surface and the drawing instrument.
Now we can draw shapes by calling the Graphics object’s drawing methods. The following state-
ment will print a rectangle with its top-left corner near the top-left corner of the form (at a point
that’s 10 pixels to the right and 10 pixels down from the form’s corner) and is 200 pixels wide and
150 pixels tall. These are the values you must pass to the DrawRectangle method as arguments,
along with the Pen object that will be used to render the rectangle:

G.DrawRectangle(P, 10, 10, 200, 150)

Let’s add the two diagonals of the rectangle with the following statements:

G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

We wrote all the statements to create a shape on the form, but where do we insert them? Let’s
try a button. Start a new project, place a button on it, and then insert the statements of Listing 18.1
in the button’s Click event handler.

Petroutsos V1 c18.tex Page 664 01/28/2008 3:55pm

664 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Listing 18.1: Drawing Simple Shapes

Private Sub Button1 Click(...) Handles Button1.Click
Dim G As Graphics
G = Me.CreateGraphics
Dim P As New Pen(Color.Blue)
G.DrawRectangle(P, 10, 10, 200, 150)
G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

End Sub

Run the application and click the Draw On Graphics button. You will see the shape shown in
Figure 18.5. This figure was created by the SimpleShapes sample application.

Figure 18.5

The output of
Listing 18.1

Persistent Drawing

If you switch to the Visual Studio IDE or any other window, and then return to the form of the
SimpleShapes application, you’ll see that the drawing has disappeared! The same will happen
if you minimize the window and then restore it to its normal size. Everything you draw on the
Graphics object is temporary. It doesn’t become part of the Graphics object and is visible only
while the control, or the form, need not be redrawn. As soon as the form is redrawn, the shapes
disappear.

So, how do we make the output of the various drawing methods permanent on the form?
Microsoft suggests placing all the graphics statements in the Paint event handler, which is trig-
gered automatically when the form is redrawn. The Paint event handler passes the e argument,
which (among other properties) exposes the form’s Graphics object. You can create a Graphics
object in the Paint event handler and then draw on this object.

Listing 18.2 is the Paint event handler that creates the shape shown in Figure 18.5 and refreshes
the form every time it’s totally or partially covered by another form. Delete the code in the button’s
Click event handler and insert the statements of Listing 18.2 into the Paint event’s handler, as

Petroutsos V1 c18.tex Page 665 01/28/2008 3:55pm

DRAWING WITH GDI+ 665

shown here. (Notice that the Graphics object is a property of the PaintEventArgs argument of the
event handler.)

Listing 18.2: Drawing Simple Shapes in the Paint Event

Private Sub Form1 Paint(ByVal sender As Object,
ByVal e As System.Windows.Forms.PaintEventArgs)
Handles Me.Paint

Dim G As Graphics
G = e.Graphics
Dim P As New Pen(Color.Blue)
G.DrawRectangle(P, 10, 10, 200, 150)
G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

End Sub

If you run the application now, it works like a charm. The shapes appear to be permanent,
even though they’re redrawn every time you switch to the form. This technique is fine for a few
graphics elements you want to place on the form to enhance its appearance. But many applica-
tions draw something on the form in response to user actions, such as the click of a button or a
menu command. Using the Form’s Paint event in a similar application is out of the question. The
drawing isn’t always the same, and you must figure out from within your code which shapes you
have to redraw at any given time. The solution is to make the drawing permanent on the Graphics
object, so it won’t have to be redrawn every time the form is hidden or resized.

Forcing Refreshes

A caveat of drawing from within the Paint event is that it isn’t fired when the form is resized by defa-
ult. To force a refresh when the form is resized, you must insert the following statement in the form’s
Load event handler:

Me.SetStyle(ControlStyles.ResizeRedraw, True)

It is possible to make the graphics permanent by drawing not on the Graphics object, but
directly on the control’s (or the form’s) bitmap. The Bitmap object contains the pixels that make up
the image and is very similar to the Image object. As you will see in the following chapter, you can
create a Bitmap object and assign it to an Image object. To create this ‘‘permanent’’ drawing sur-
face, you must first create a Bitmap object that has the same dimensions as the form (or PictureBox
control) on which you want to draw:

Dim bmp As Bitmap
bmp = New Bitmap(Me.Width, Me.Height)

The bmp variable represents an empty bitmap. Set the control’s Image property to this bitmap
by using the following statement:

Me.BackGroundImage = bmp

Petroutsos V1 c18.tex Page 666 01/28/2008 3:55pm

666 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Immediately after that, you must set the bitmap to the control’s background color via the
Clear method:

G.Clear(Me.BackColor)

If you’re using the PictureBox control to draw on, replace the BackgroundImage property with
the Image property. After the execution of this statement, anything we draw on the bmp bitmap is
shown on the surface of the PictureBox control and is permanent. All we need is a Graphics object
that represents the bitmap, so that we can draw on the control. The following statement creates a
Graphics object based on the bmp variable:

Dim G As Graphics
G = Graphics.FromImage(bmp)

Now, we’re in business. We can call the G object’s drawing methods to draw and create per-
manent graphics on the form. You can put all the statements presented so far in a function that
returns a Graphics object (Listing 18.3) and use it in your applications.

Listing 18.3: Retrieving a Graphics Object from a Form’s Bitmap

Function GetGraphicsObject(ByVal PBox As PictureBox) As Graphics
Dim bmp As Bitmap
bmp = New Bitmap(Me.Width, Me.Height)
Dim G As Graphics
Me.BackgroundImage = bmp
G = Graphics.FromImage(bmp)
Return G

End Function

To create permanent drawings on the surface of the form, you must call the GetGraphics-
Object() function to obtain a Graphics object from the form’s bitmap. Listing 18.4 is the revised
GetGraphicsObject() function for the PictureBox control.

Listing 18.4: Retrieving a Graphics Object from a PictureBox Control’s Bitmap

Function GetGraphicsObject() As Graphics
Dim bmp As Bitmap
bmp = New Bitmap(PBox.Width, PBox.Height)
PBox.Image = bmp
Dim G As Graphics
G = Graphics.FromImage(bmp)
Return G

End Function

Petroutsos V1 c18.tex Page 667 01/28/2008 3:55pm

DRAWING WITH GDI+ 667

Now that you know how to draw on the Graphics object and you’re familiar with the basic
drawing objects, we can discuss the drawing methods in detail. In the following sections, I use
the CreateGraphics method to retrieve the drawing surface of a PictureBox or form to keep the
examples short. You can modify any of the projects to draw on the Graphics object derived from
a bitmap. All you have to do is replace the statements that create the G variable with a call to the
CreateGraphics() function.

Drawing Methods
The Framework provides several drawing methods, one for each basic shape. You can create much
more elaborate shapes by combining the methods described in the following sections.

All drawing methods have a few things in common. The first argument is always a Pen object,
which will be used to render the shape on the Graphics object. The following arguments are the
parameters of a shape: They determine the location and dimensions of the shape. The DrawLine
method, for example, needs to know the endpoints of the line to draw, whereas the DrawRectangle
method needs to know the origin and dimensions of the rectangle to draw. The parameters needed
to render the shape are passed as arguments to each drawing method, following the Pen object.

The drawing methods can also be categorized in two major groups: the methods that draw
stroked shapes (outlines) and the methods that draw filled shapes. The methods in the first group
start with the Draw prefix (DrawRectangle, DrawEllipse, and so on). The methods of the second
group start with the Fill prefix (FillRectangle, FillEllipse, and so on). Of course, some
DrawXXX methods don’t have an equivalent FillXXX method. For example, you can’t fill a line or
an open curve, so there are no FillLine or FillCurve methods.

Another difference between the drawing and filling methods is that the filling methods use
a Brush object to fill the shape — you can’t fill a shape with a pen. So, the first argument of the
methods that draw filled shapes is a Brush object, not a Pen object. The remaining arguments are
the same because you must still specify the shape to be filled. In the following sections, I present
in detail the shape-drawing methods but not the shape-filling methods. If you can use a drawing
method, you can just as easily use its filling counterpart.

Table 18.4 shows the names of the drawing methods. The first column contains the methods for
drawing stroked shapes, and the second column contains the corresponding methods for drawing
filled shapes (if there’s a matching method).

Some of the drawing methods allow you to draw multiple shapes of the same type, and they’re
properly named DrawLines, DrawRectangles, and DrawBeziers. We simply supply more shapes
as arguments, and they’re drawn one after the other with a single call to the corresponding
method. The multiple shapes are stored in arrays of the same type as the individual shapes. The
DrawRectangle method, for example, accepts as an argument the Rectangle object to be drawn.
The DrawRectangles method accepts as an argument an array of Rectangle objects and draws all
of them at once.

DrawLine

The DrawLine method draws a straight-line segment between two points with a pen supplied as
an argument. The simplest forms of the DrawLine method are the following, where point1 and
point2 are either Point or PointF objects, depending on the coordinate system in use:

Graphics.DrawLine(pen, X1, Y1, X2, Y2)
Graphics.DrawLine(pen, point1, point2)

Petroutsos V1 c18.tex Page 668 01/28/2008 3:55pm

668 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Table 18.4: The Drawing Methods

Drawing Method Filling Method Description

DrawArc Draws an arc

DrawBezier Draws very smooth curves with fixed endpoints, whose
exact shape is determined by two control points

DrawBeziers Draws multiple Bezier curves in a single call

DrawClosedCurve FillClosedCurve Draws a closed curve

DrawCurve Draws curves that pass through certain points

DrawEllipse FillEllipse Draws an ellipse

DrawIcon Renders an icon on the Graphics object

DrawImage Renders an image on the Graphics object

DrawLine Draws a line segment

DrawLines Draws multiple line segments in a single call

DrawPath FillPath Draws a GraphicsPath object

DrawPie FillPie Draws a pie section

DrawPolygon FillPolygon Draws a polygon (a series of line segments between points)

DrawRectangle FillRectangle Draws a rectangle

DrawRectangles FillRectangles Draws multiple rectangles in a single call

DrawString Draws a string in the specified font on the drawing surface

FillRegion Fills a Region object

DrawRectangle

The DrawRectangle method draws a stroked rectangle and has two forms:

Graphics.DrawRectangle(pen, rectangle)
Graphics.DrawRectangle(pen, X1, Y1, width, height)

The rectangle argument is a Rectangle object that specifies the shape to be drawn. In the
second form of the method, the arguments X1 and Y1 are the coordinates of the rectangle’s top-left
corner, and the other two arguments are the dimensions of the rectangle. All these arguments can
be integers or singles, depending on the coordinate system in use. However, they must be all of
the same type.

Petroutsos V1 c18.tex Page 669 01/28/2008 3:55pm

DRAWING WITH GDI+ 669

The following statements draw two rectangles, one inside the other. The outer rectangle
is drawn with a red pen with the default width, whereas the inner rectangle is drawn with a
3-pixel-wide green pen and is centered within the outer rectangle:

G.DrawRectangle(Pens.Red, 100, 100, 200, 100)
G.DrawRectangle(New Pen(Color.Green, 3),

125, 125, 150, 50)

DrawEllipse

An ellipse is an oval or circular shape, determined by the rectangle that encloses it. The two
dimensions of this rectangle are the ellipse’s major and minor diameters. Instead of giving you
a mathematically correct definition of an ellipse, I prepared a few ellipses with different ratios of
their two diameters (these ellipses are shown in Figure 18.6). The figure was prepared with the
GDIPlus sample application, which demonstrates a few more graphics operations. The ellipse is
oblong along the direction of the major diameter and squashed along the direction of the minor
diameter. If the two diameters are exactly equal, the ellipse becomes a circle. Indeed, the circle is
just a special case of the ellipse, and there’s no DrawCircle method.

To draw an ellipse, call the DrawEllipse method, which has two basic forms:

Graphics.DrawEllipse(pen, rectangle)
Graphics.DrawEllipse(pen, X1, Y1, width, height)

The arguments are the same as with the DrawRectangle method because an ellipse is basically
a circle deformed to fit in a rectangle. The two ellipses and their enclosing rectangles shown in
Figure 18.6 were generated with the statements of Listing 18.5.

Figure 18.6

Two ellipses with their
enclosing rectangles

Petroutsos V1 c18.tex Page 670 01/28/2008 3:55pm

670 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Listing 18.5: Drawing Ellipses and Their Enclosing Rectangles

Private Sub bttnEllipses Click(...) Handles bttnEllipses.Click
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias
Dim R1, R2 As Rectangle
R1 = New Rectangle(10, 10, 160, 320)
R2 = New Rectangle(200, 85, 320, 160)
G.DrawEllipse(New Pen(Color.Black, 3), R1)
G.DrawRectangle(Pens.Black, R1)
G.DrawEllipse(New Pen(Color.Black, 3), R2)
G.DrawRectangle(Pens.Red, R2)

End Sub

The ellipses were drawn with a 3-pixel-wide pen. As you can see in the figure, the width of
the ellipse is split to the inside and outside of the enclosing rectangle, which is drawn with a
1-pixel-wide pen.

DrawPie

A pie is a shape similar to a slice of pie (an arc along with the two line segments that connect its
endpoints to the center of the circle or the ellipse, to which the arc belongs). The DrawPie method
accepts as arguments the pen with which it will draw the shape, the circle to which the pie belongs,
the arc’s starting angle, and its sweep angle. The circle (or the ellipse) of the pie is defined with
a rectangle. The starting and sweeping angles are measured clockwise. The DrawPie method has
two forms:

Graphics.DrawPie(pen, rectangle, start, sweep)
Graphics.DrawPie(pen, X, Y, width, height, start, sweep)

The two forms of the method differ in how the rectangle is defined (a Rectangle object versus
its coordinates and dimensions). The start argument is the pie’s starting angle, and sweep is
the angle of the pie. The ending angle is start + sweep. Angles are measured in degrees (there
are 360 degrees in a circle) and increase in a clockwise direction. The 0 angle corresponds to the
horizontal axis.

The statements of Listing 18.6 create a pie chart by drawing individual pie slices. Each pie starts
where the previous one ends, and the sweeping angles of all pies add up to 360 degrees, which
corresponds to a full rotation (a full circle). Unlike the other samples of this section, I’ve used the
FillPie method, because we hardly ever draw the outlines of the pies; we fill each one with a
different color instead. Figure 18.7 shows the output produced by Listing 18.6.

Listing 18.6: Drawing a Simple Pie Chart with the FillPie Methods

Private Sub bttnPie Click(...) Handles bttnPie.Click
Dim G As System.Drawing.Graphics
G = Me.CreateGraphics

Petroutsos V1 c18.tex Page 671 01/28/2008 3:55pm

DRAWING WITH GDI+ 671

Dim brush As System.drawing.SolidBrush
Dim rect As Rectangle
brush = New System.Drawing.SolidBrush(Color.Green)
Dim Angles() As Single = {0, 43, 79, 124, 169, 252, 331, 360}
Dim Colors() As Color = {Color.Red, Color.Cornsilk,

Color.Firebrick, Color.OliveDrab,
Color.LawnGreen, Color.SandyBrown,
Color.MidnightBlue}

G.Clear(Color.Ivory)
rect = New Rectangle(100, 10, 300, 300)
Dim angle As Integer
For angle = 1 To Angles.GetUpperBound(0)

brush.Color = Colors(angle - 1)
G.FillPie(brush, rect, Angles(angle - 1),

Angles(angle) - Angles(angle - 1))
Next
G.DrawEllipse(Pens.Black, rect)

End Sub

Figure 18.7

A simple pie chart gen-
erated with the FillPie
method

The code sets up two arrays: one with angles and another with colors. The Angles array holds
the starting angle of each pie. The sweep angle of each pie is the difference between its own starting
angle and the starting angle of the following pie. The sweep angle of the first pie is Angles(1) –
Angles(0), which is 43 degrees. The loop goes through each pie and draws it with a color it picks
from the Colors array, based on the angles stored in the Angles array. In your application, you
must calculate the total of a quantity (such as all customers, or all units of a product sold in a
territory) and then use the individual percentages to set the starting and ending angles of each pie.
If there are 800 customers and 20 of them belong to a specific area, this area’s sweep angle should
be 1/40 of the circle, which is 9 degrees.

Notice that the FillPie method doesn’t connect the pie’s endpoints to the center of the ellipse.
The second button on the PieChart project’s form draws the same pie chart, but it also connects

Petroutsos V1 c18.tex Page 672 01/28/2008 3:55pm

672 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

each slice’s endpoints to the center of the circle. The code behind this button is identical to the
code shown in Listing 18.6 — with the exception that after calling the FillPie method, it calls the
DrawPie method to draw the outline of the pie.

DrawPolygon

The DrawPolygon method draws an arbitrary polygon. It accepts two arguments: the Pen that
it will use to render the polygon and an array of points that define the polygon. The polygon
has as many sides (or vertices) as there are points in the array, and it’s always closed, even if the
first and last points are not identical. In fact, you do not need to repeat the starting point at the
end because the polygon will be automatically closed. The syntax of the DrawPolygon method is
the following:

Graphics.DrawPolygon(pen, points())

where points is an array of points, which can be declared with a statement like the following:

Dim points() As Point = {New Point(x1, y1), New Point(x2, y2), ...}

DrawCurve

Curves are smooth lines drawn as cardinal splines. A real spline is a flexible object (made of soft
wood) that designers used to flex on the drawing surface with spikes. The spline goes through
all the fixed points and assumes the smoothest possible shape, given the restrictions imposed
by the spikes. If the spline isn’t flexible enough, it breaks. In modern computer graphics, there
are mathematical formulas that describe the path of the spline through the fixed points and
take into consideration the tension (the degree of flexibility) of the spline. A more flexible spline
yields a curve that bends easily. Less-flexible splines do not bend easily around their fixed points.
Computer-generated splines do not break, but they can take unexpected shapes.

To draw a curve with the DrawCurve method, you specify the locations of the spikes (the points
that the spline must go through) and the spline’s tension. If the tension is 0, the spline is totally
flexible, like a rubber band: All the segments between points are straight lines. The higher the
tension, the smoother the curve will be. Figure 18.8 shows four curves passing through the same
points, but each curve is drawn with a different tension value. The curves shown in the figure
were drawn with the GDIPlus project (using the Ordinal Curves button).

The simplest form of the DrawCurve method has the following syntax, where points is an array
of points:

Graphics.DrawCurve(pen, points, tension)

The first and last elements of the array are the curve’s endpoints, and the curve will go through
the remaining points as well.

The curves shown in Figure 18.8 were produced by the code shown in Listing 18.7. Notice
that a tension of 0.5 is practically the same as 0 (the spline bends around the fixed points like a
rubber band). If you drew the same curve with a tension of 5, you’d get an odd curve indeed
because although a physical spline would break, the mathematical spline takes an unusual shape
to accommodate the fixed points.

Petroutsos V1 c18.tex Page 673 01/28/2008 3:55pm

DRAWING WITH GDI+ 673

Figure 18.8

These curves go through
the same points, but
they have
different tensions.

Listing 18.7: Curves with Common Fixed Points and Different Tensions

Private Sub bttnCurves Click(...) Handles bttnCurves.Click
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.Clear(PictureBox1.BackColor)
G.FillRectangle(Brushes.Silver, ClientRectangle)
G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.HighQuality
Dim points() As Point = {

New Point(20, 50), New Point(220, 190),
New Point(330, 80), New Point(450, 280)}

G.DrawCurve(Pens.Blue, points, 0.1)
G.DrawCurve(Pens.Red, points, 0.5)
G.DrawCurve(Pens.Green, points, 1)
G.DrawCurve(Pens.Black, points, 2)

End Sub

DrawBezier

The DrawBezier method draws Bezier curves, which are smoother than cardinal splines. A Bezier
curve is defined by two endpoints and two control points. The control points act as magnets.
The curve is the trace of a point that starts at one of the endpoints and moves toward the second
one. As it moves, the point is attracted by the two control points. Initially, the first control point’s
influence is predominant. Gradually, the curve comes into the second control point’s field and it
ends at the second endpoint.

Petroutsos V1 c18.tex Page 674 01/28/2008 3:55pm

674 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

The DrawBezier method accepts a pen and four points as arguments:

Graphics.DrawBexier(pen, X1, Y1, X2, Y2, X3, Y3, X4, Y4)
Graphics.DrawBezier(pen, point1, point2, point3, point4)

Figure 18.9 shows four Bezier curves, which differ in the y-coordinate of the third control point.
All control points are marked with little squares: one each for the three points that are common to
all curves, and four in a vertical column for the point that differs in each curve.

Figure 18.9

Bezier curves and their
control points

The code of Listing 18.8 draws the four Bezier curves (I’m not showing the statements that
draw the small rectangles; they simply call the FillRectangle method). The endpoints and
one control point (P1, P2, and P4) remain the same, whereas the other control point (P3) is set
to four different values. Notice how far the control point must go to have a significant effect on the
curve’s shape.

Listing 18.8: Drawing Bezier Curves and Their Control Points

Private Sub bttnBezier Click(...) Handles bttnBezier.Click
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias
G.FillRectangle(Brushes.Silver, ClientRectangle)
Dim P1 As New Point(120, 150)
Dim P2 As New Point(220, 90)
Dim P3 As New Point(330, 30)
Dim P4 As New Point(410, 110)
Dim sqrSize As New Size(6, 6)
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)
P3 = New Point(330, 130)

Petroutsos V1 c18.tex Page 675 01/28/2008 3:55pm

DRAWING WITH GDI+ 675

G.DrawBezier(Pens.Blue, P1, P2, P3, P4)
P3 = New Point(330, 230)
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)
P3 = New Point(330, 330)
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)

End Sub

To draw the curve, all you need is to specify the four control points and pass them along with
a Pen object to the DrawBezier method.

DrawPath

This method accepts a Pen object and a Path object as arguments and renders the specified path
on the screen:

Graphics.DrawPath(pen, path)

To construct the Path object, use the AddXXX methods (AddLine, AddRectangle, and so on) —
refer to the section called ‘‘The Path Class,’’ earlier in this chapter. You will find an example of
how to use the Path object later in this chapter, when you’ll learn how to plot functions.

DrawString, MeasureString

The DrawString method renders a string in a single line or multiple lines. As a reminder,
the TextRenderingHint property of the Graphics object allows you to specify the quality
of the rendered text. The simplest form of the DrawString method is the following:

Graphics.DrawString(string, font, brush, X, Y)

The first argument is the string to be rendered in the font specified by the second argument.
The text will be rendered with the Brush object specified by the brush argument. X and Y, finally,
are the coordinates of the top-left corner of a rectangle that completely encloses the string.

While working with strings, in most cases you need to know the actual dimensions of the string
when rendered with the DrawString method in the specified font. The MeasureString method
allows you to retrieve the metrics of a string before actually drawing it. This method returns a
SizeF structure with the width and height of the string when rendered on the same Graphics
object with the specified font. We’ll use this method extensively in Chapter 20, ‘‘Printing with
Visual Basic 2008,’’ to position text precisely on the printed page. You can also pass a Rectangle
object as an argument to the MeasureString method to find out how many lines it will take to
render the string on the rectangle.

The simplest form of the MeasureString method is the following, where string is the string
to be rendered and font is the font in which the string will be rendered:

Dim textSize As SizeF
textSize = Me.Graphics.MeasureString(string, font)

To center a string on the form, use the x-coordinate returned by the MeasureString method, as
in the following code segment:

Dim textSize As SizeF
Dim X As Integer, Y As Integer = 0

Petroutsos V1 c18.tex Page 676 01/28/2008 3:55pm

676 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

textSize = Me.Graphics.MeasureString(string, font)
X = (Me.Width - textSize.Width) / 2
G.DrawString(”Centered string”, font, brush, X, Y)

We subtract the rendered string’s length from the form’s width, and we split the difference in
half at the two sides of the string.

Figure 18.10 shows a string printed at the center of the form and the two lines passing through
the same point. Listing 18.9 shows the statements that produced the string. This listing is part
of the TextEffects sample project.

Figure 18.10

Centering a string on a
form

Listing 18.9: Printing a String Centered on the Form

Private Sub Center(...) Handles bttnCentered.Click
Dim G As Graphics
G = Me.CreateGraphics
G.FillRectangle(New SolidBrush(Color.Silver), ClientRectangle)
G.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
FontDialog1.Font = Me.Font
FontDialog1.ShowDialog()
Dim txtFont As Font
txtFont = FontDialog1.Font
G.DrawLine(New Pen(Color.Green), CInt(Me.Width / 2), CInt(0),

CInt(Me.Width / 2), CInt(Me.Height))
G.DrawLine(New Pen(Color.Green), 0, CInt(Me.Height / 2),

CInt(Me.Width), CInt(Me.Height / 2))
Dim txtLen, txtHeight As Integer
Dim str As String = ”Visual Basic 2008”
Dim txtSize As SizeF
txtSize = G.MeasureString(str, txtFont)
Dim txtX, txtY As Integer
txtX = (Me.Width - txtSize.Width) / 2
txtY = (Me.Height - txtSize.Height) / 2

Petroutsos V1 c18.tex Page 677 01/28/2008 3:55pm

DRAWING WITH GDI+ 677

G.DrawString(str, txtFont,
New SolidBrush(Color.Red), txtX, txtY)

Me.Invalidate ()
End Sub

The coordinates passed to the DrawString method (variables txtX and txtY) are the coordi-
nates of the top-left corner of the rectangle that encloses the first character of the string.

Another form of the DrawString method accepts a rectangle as an argument and draws the
string in this rectangle, breaking the text into multiple lines if needed. The syntax of this form of
the method is as follows:

Graphics.DrawString(string, font, brush, rectanglef)
Graphics.DrawString(string, font, brush, rectanglef, stringFormat)

If you want to render text in a box, you will most likely use the equivalent form of the Measure-
String method to retrieve the metrics of the text in the rectangle. This form of the MeasureString
method returns the number of lines it will take to render the string in the supplied rectangle, and
it has the following syntax, where string is the text to be rendered, and font is the font in which
the string will be rendered:

e.Graphics.MeasureString(string, font, fitSize,
stringFormat, lines, cols)

The fitSize argument is a SizeF object that represents the width and height of a rectangle,
where the string must fit. The lines and cols variables are passed by reference, and they are set
by the MeasureString method to the number of lines and number of characters that will fit in
the specified rectangle. The exact location of the rectangle doesn’t make any difference — only its
dimensions matter, and that’s why the third argument is a SizeF object, not a Rectangle object.

Figure 18.11 shows a string printed in two different rectangles by the TextEffects sample project;
the figure was created with the Draw Boxed Text button. The code that produced the figure is
shown in Listing 18.10.

Figure 18.11

Printing text in
a rectangle

Petroutsos V1 c18.tex Page 678 01/28/2008 3:55pm

678 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Listing 18.10: Printing Text in a Rectangle

Private Sub BoxedText(...) Handles bttnBoxed.Click
Dim G As Graphics
G = GetGraphicsObject()
G.FillRectangle(New SolidBrush(Color.Silver), ClientRectangle)
FontDialog1.Font = Me.Font
FontDialog1.ShowDialog()
Dim txtFont As Font
txtFont = FontDialog1.Font
Dim txt As String = ”This text was rendered in a rectangle ” &

”with the DrawString method of the Form’s ” &
”Graphics object. ”

txt = txt & txt & txt & txt & txt
G.DrawString(txt, txtFont, Brushes.Black,

New RectangleF(100, 80, 180, 250))
G.DrawRectangle(Pens.Red, 100, 80, 180, 250)
G.DrawString(txt, txtFont, Brushes.Black,

New RectangleF(350, 100, 400, 150))
G.DrawRectangle(Pens.Red, 350, 100, 400, 150)
Me.Invalidate()

End Sub

The StringFormat Object

Some of the overloaded forms of the DrawString method accept an argument of the StringFormat
type. This argument determines characteristics of the text and exposes a few properties of its own,
which include the following:

Alignment Determines the alignment of the text; its value is a member of the StringAlignment
enumeration: Center (text is aligned in the center of the layout rectangle), Far (text is aligned
far from the origin of the layout rectangle), and Near (text is aligned near the origin of the lay-
out rectangle).

Trimming Determines how text will be trimmed if it doesn’t fit in the layout rectangle. Its
value is one of the members of the StringTrimming enumeration: Character (text is trimmed
to the nearest character), EllipsisCharacter (text is trimmed to the nearest character and an
ellipsis is inserted at the end to indicate that some of the text is missing), EllipsisPath (text at
the middle of the string is removed and replaced by an ellipsis), EllipsisWord (text is trimmed
to the nearest word and an ellipsis is inserted at the end), None (no trimming), and Word (text is
trimmed to the nearest word).

FormatFlags Specifies layout information for the string. Its value can be one of the mem-
bers of the StringFormatFlags enumeration. The two members of this enumeration that you
might need often are DirectionRightToLeft (prints to the left of the specified point) and
DirectionVertical.

Petroutsos V1 c18.tex Page 679 01/28/2008 3:55pm

DRAWING WITH GDI+ 679

To use the stringFormat argument of the DrawString method, instantiate a variable of this
type, set the desired properties, and then pass it as an argument to the DrawString method, as
shown here:

Dim G As Graphics = Me.CreateGraphics
Dim SF As New StringFormat()
SF.FormatFlags = StringFormatFlags.DirectionVertical
G.DrawString(”Visual Basic”, Me.Font, Brushes.Red, 80, 80, SF)

The call to the DrawString method will print the string from top to bottom. It will also rotate
the characters. The DirectionRightToLeft setting will cause the DrawString method to print the
string to the left of the specified point, but it will not mirror the characters.

You can find additional examples of the MeasureString method in Chapter 20, in which we’ll
use this method to fit strings on the width of the page. The third button on the form of the
TextEffects project draws text with a three-dimensional look by overlaying a semitransparent
string over an opaque string. This technique is explained in the ‘‘Alpha Blending’’ section in
Chapter 19, in which you’ll learn how to use transparency. You might also wonder why none of
the DrawString methods’ forms accept as an argument an angle of rotation for the text. You can
draw text or any shape at any orientation as long as you set up the proper rotation transformation.
This topic is discussed in the ‘‘Applying Transformations’’ section later in this chapter, as well as
in Chapter 20.

DrawImage

The DrawImage method, which renders an image on the Graphics object, is a heavily overloaded
and quite flexible method. The following form of the method draws the image at the specified loca-
tion. Both the image and the location of its top-left corner are passed to the method as arguments
(as Image and Point arguments, respectively):

Graphics.DrawImage(img, point)

Another form of the method draws the specified image within a rectangle. If the rectangle
doesn’t match the original dimensions of the image, the image will be stretched to fit in the rect-
angle. The rectangle should have the same aspect ratio as the Image object, to avoid distorting the
image in the process.

Graphics.DrawImage(img, rectangle)

Another form of the method allows you to change not only the magnification of the image, but
also its shape. This method accepts as an argument not a rectangle, but an array of three points
that specifies a parallelogram. The image will be sheared to fit in the parallelogram, where points
is an array of points that define a parallelogram:

Graphics.DrawImage(img, points())

Petroutsos V1 c18.tex Page 680 01/28/2008 3:55pm

680 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

The array holds three points, which are the top-left, top-right, and bottom-left corners of the
parallelogram. The fourth point is determined uniquely by the other three, and you need not
supply it. The ImageCube sample project, shown later in this chapter, uses this overloaded form
of the DrawImage method to draw a cube with a different image on each face.

Another interesting form of the method allows you to set the attributes of the image:

Graphics.DrawImage(image, points(), srcRect, units, attributes)

The first two arguments are the same as in the previous forms of the method. The srcRect
argument is a rectangle that specifies the portion of image to draw, and units is a constant of the
GraphicsUnit enumeration. It determines how the units of the rectangle are measured (pixels,
inches, and so on). The last argument is an ImageAttributes object that contains information about
the attributes of the image you want to change (such as the gamma value, and a transparent color
value or color key). The properties of the ImageAttributes class are discussed shortly.

The DrawImage method is quite flexible, and you can use it for many special effects, including
wipes. A wipe is the gradual appearance of an image on a form or PictureBox control. You can use
this method to draw stripes of the original image, or start with a small rectangle in the middle that
grows gradually until it covers the entire image.

You can also correct the color of the image by specifying the attributes argument. To
specify the attributes argument, create an ImageAttributes object with a statement like
the following:

Dim attr As New System.Drawing.Imaging.ImageAttributes

Then call one or more of the ImageAttributes class’s methods:

SetWrapMode Specifies the wrap mode that is used to decide how to tile a texture
across a shape. This attribute is used with textured brushes (a topic that isn’t discussed in
this book).

SetGamma This method sets the gamma value for the image’s colors and accepts a Single
value, which is the gamma value to be applied. A gamma value of 1 doesn’t affect the colors of
the image. A smaller value darkens the colors, whereas a larger value makes the image colors
brighter. Notice that the gamma correction isn’t the same as manipulating the brightness of the
colors. The gamma correction takes into consideration the entire range of values in the image;
it doesn’t apply equally to all the colors. In effect, it takes into consideration both the brightness
and the contrast and corrects them in tandem with a fairly complicated algorithm. The syntax
of the SetGamma method is as follows:

ImageAttributes.SetGamma(gamma)

The following statements render the image stored in the img Image object on the G Graphics
object, and they gamma-correct the image in the process by a factor of 1.25:

Dim attrs As New System.Drawing.Imaging.ImageAttributes()
attrs.SetGamma(1.25)
Dim dest As New Rectangle(0, 0, PictureBox1.Width, PictureBox1.Height)
G.DrawImage(img, dest, 0, 0, img.Width, img.Height,

GraphicsUnit.Pixel, attrs)

Petroutsos V1 c18.tex Page 681 01/28/2008 3:55pm

DRAWING WITH GDI+ 681

Gradients
In this section, you’ll look at the tools for creating gradients. The techniques for gradients can get
quite complicated, but I will limit the discussion to the types of gradients you’ll need for business
or simple graphics applications.

Linear Gradients

Let’s start with linear gradients. Like all other gradients, they’re part of the System.Drawing class
and are implemented as brushes. To draw a linear gradient, you must create an instance of the
LinearGradientBrush class with a statement like the following:

Dim lgBrush As LinearGradientBrush
lgBrush = New LinearGradientBrush(rect, startColor, endColor, gradientMode)

To understand how to use the arguments, you must understand how the linear gradient works.
This method creates a gradient that fills a rectangle, specified by the rect object passed as the first
argument. This rectangle isn’t filled with any gradient; it simply tells the method how long (or
how tall) the gradient should be. The gradient starts with the startColor at the left side of the
rectangle and ends with the endColor at the opposite side. The gradient changes color slowly as it
moves from one end to the other. The last argument, gradientMode, specifies the direction of the
gradient and can have one of the values shown in Table 18.5.

Table 18.5: The LinearGradientMode Enumeration

Value Effect

BackwardDiagonal The gradient fills the rectangle diagonally from the top-right corner (startColor)
to the bottom-left corner (endColor).

ForwardDiagonal The gradient fills the rectangle diagonally from the top-left corner (startColor) to
the bottom-right corner (endColor).

Horizontal The gradient fills the rectangle from left (startColor) to right (endColor).

Vertical The gradient fills the rectangle from top (startColor) to bottom (endColor).

Notice that in the descriptions of the various modes in the table, I state that the gradient fills the
rectangle, not the shape. The gradient is calculated according to the dimensions of the rectangle
specified with the first argument. If the actual shape is smaller than this rectangle, only a section
of the gradient will be used to fill the shape. If the shape is larger than this rectangle, the gradient
will repeat as many times as necessary to fill the shape. We usually fill a shape that’s as wide (or
as tall) as the rectangle used to specify the gradient.

Let’s say you want to use the same gradient that extends 300 pixels horizontally to fill two
rectangles: one that’s 200 pixels wide and another that’s 600 pixels wide. The first rectangle, which
is 200 pixels wide, will be filled with two thirds of the gradient; the second rectangle, which is
600 pixels wide, will be filled with a gradient that’s repeated twice. The code in Listing 18.11
corresponds to the Linear Gradient button of the Gradients project.

Petroutsos V1 c18.tex Page 682 01/28/2008 3:55pm

682 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Listing 18.11: Filling Rectangles with a Linear Gradient

Private Sub LinearGradient Click(...) Handles bttnLinearGradient.Click
Dim G As Graphics
G = Me.CreateGraphics
Dim R As New RectangleF(20, 20, 300, 100)
Dim startColor As Color = Color.BlueViolet
Dim EndColor As Color = Color.LightYellow
Dim LGBrush As New System.Drawing.Drawing2D.LinearGradientBrush

(R, startColor, EndColor, LinearGradientMode.Horizontal)
G.FillRectangle(LGBrush, New Rectangle(20, 20, 200, 100))
G.FillRectangle(LGBrush, New Rectangle(20, 150, 600, 100))

End Sub

For a horizontal gradient, only the width of the rectangle is used; the height is irrelevant. For
a vertical gradient, only the height of the rectangle matters. When you draw a diagonal gradient,
both dimensions are taken into consideration.

You can create gradients at various directions by setting the gradientMode argument of the
LinearGradientBrush object’s constructor. The Diagonal Linear Gradient button on the Gradients
project does exactly that.

The button Gradient Text on the form of the Gradients project renders some text filled with a
linear gradient. As you recall from our discussion of the DrawString method, strings are rendered
with a Brush object, not a Pen object. If you specify a LinearGradientBrush object, the text will be
rendered with a linear gradient. The text shown in Figure 18.12 was produced by the Gradient
Text button, whose code is shown in Listing 18.12.

Figure 18.12

Drawing a string filled
with a gradient

Listing 18.12: Rendering Strings with a Linear Gradient

Private Sub bttnGradientText Click(...) Handles bttnGradientText.Click
Dim G As Graphics
G = Me.CreateGraphics
G.Clear (me.BackColor)
G.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAlias

Petroutsos V1 c18.tex Page 683 01/28/2008 3:55pm

DRAWING WITH GDI+ 683

Dim largeFont As New Font(
”Comic Sans MS”, 48, FontStyle.Bold, GraphicsUnit.Point)

Dim gradientStart As New PointF(0, 0)
Dim txt As String = ”Gradient Text”
Dim txtSize As New SizeF()
txtSize = G.MeasureString(txt, largeFont)
Dim gradientEnd As New PointF()
gradientEnd.X = txtSize.Width
gradientEnd.Y = txtSize.Height
Dim grBrush As New LinearGradientBrush(gradientStart, gradientEnd,

Color.Yellow, Color.Blue)
G.DrawString(txt, largeFont, grBrush, 20, 20)

End Sub

The code of Listing 18.12 is a little longer than it could be (or than you might expect). Because
linear gradients have a fixed size and don’t expand or shrink to fill the shape, you must call the
MeasureString method to calculate the width of the string and then create a linear gradient with
the exact same width. This way, the gradient’s extent matches that of the string.

Path Gradients

This is the ultimate gradient tool. Using a PathGradientBrush, you can create a gradient that
starts at a single point and fades into multiple different colors in different directions. You can
fill a rectangle starting from a point in the interior of the rectangle, which is colored, say, black.
Each corner of the rectangle might have a different ending color. The PathGradientBrush will
change color in the interior of the shape and will generate a gradient that’s smooth in all directions.
Figure 18.13 shows a rectangle filled with a path gradient, although the gray shades on the printed
page won’t show the full impact of the gradient. Open the Gradients project to see the same figure
in color (use the Path Gradient button).

Figure 18.13

A path gradient starting
at the middle of the
rectangle

To fill a shape with a path gradient, you must first create a Path object. The PathGradientBrush
will be created for the specific path and can be used to fill this path — but not any other shape.
Actually, you can fill any other shape with the PathGradientBrush created for a specific path, but

Petroutsos V1 c18.tex Page 684 01/28/2008 3:55pm

684 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

the gradient won’t fit the new shape. To create a PathGradientBrush, use the following syntax,
where path is a properly initialized Path object:

Dim pgBrush As New PathGradientBrush(path)

The pgBrush object provides properties that determine the exact coloring of the gradient. First,
you must specify the color of the gradient at the center of the shape by using the CenterColor
property. The SurroundColors property is an array with as many elements as there are vertices
(corners) in the Path object. Each element of the SurroundColors array must be set to a color
value, and the resulting gradient will have the color of the equivalent element of the Surround-
Colors array.

The following declaration creates an array of three different colors and assigns the colors to the
SurroundColors property of a PathGradientBrush object:

Dim Colors() As Color = {Color.Yellow, Color.Green, Color.Blue}
pgBrush.SurroundColors = Colors

After setting the PathGradientBrush, you can fill the corresponding Path object by calling the
FillPath method. The Path Gradient button on the Gradient application’s main form creates a
rectangle filled with a gradient that’s red in the middle of the rectangle and has a different color at
each corner. Listing 18.13 shows the code behind the Path Gradient button.

Listing 18.13: Filling a Rectangle with a Path Gradient

Private Sub bttnPathGradient Click(...) Handles bttnPathGradient.Click
Dim G As Graphics
G = Me.CreateGraphics
Dim path As New System.Drawing.Drawing2D.GraphicsPath()
path.AddLine(New Point(10, 10), New Point(400, 10))
path.AddLine(New Point(400, 10), New Point(400, 250))
path.AddLine(New Point(400, 250), New Point(10, 250))
Dim pathBrush As New System.Drawing.Drawing2D.PathGradientBrush(path)
pathBrush.CenterColor = Color.Red
Dim surroundColors() As Color =

{Color.Yellow, Color.Green, Color.Blue, Color.Cyan}
pathBrush.SurroundColors = surroundColors
G.FillPath(pathBrush, path)

End Sub

The gradient’s center point is, by default, the center of the shape. You can also specify the center
of the gradient (the point that will be colored according to the CenterColor property). You can
place the center point of the gradient anywhere by setting its CenterPoint property to a Point or
PointF value.

The Gradients application has a few more buttons that create interesting gradients, which you
can examine on your own. The Rectangle Gradient button fills a rectangle with a gradient that has
a single ending color all around. All the elements of the SurroundColors property are set to the

Petroutsos V1 c18.tex Page 685 01/28/2008 3:55pm

DRAWING WITH GDI+ 685

same color. The Animated Gradient animates the same gradient by changing the coordinates of
the PathGradientBrush object’s CenterPoint property slowly over time.

Clipping
Anyone who has used drawing or image-processing applications already knows that many of the
application’s tools use masks. A mask is any shape that limits the area in which you can draw. If
you want to place a star or heart on an image and print something in it, you create the shape in
which you want to limit your drawing tools and then you convert this shape into a mask. When
you draw with the mask, you can start and end your strokes anywhere on the image. Your actions
will have no effect outside of the mask, however.

The mask of the various image-processing applications is a clipping region, which can be any-
thing, as long as it’s a closed shape. While the clipping region is activated, drawing takes place
in the area of the clipping region. To specify a clipping region, you must call the SetClip method
of the Graphics object. The SetClip method accepts the clipping area as an argument, and the clip-
ping area can be the Graphics object itself (no clipping), a Rectangle, a Path, or a Region. A region
is a structure made up of simple shapes, just like a path. There are many methods for creating a
Region object — you can combine and intersect shapes, or exclude shapes from a region — but
we aren’t going to discuss the Region object in this chapter because it’s not among the common
objects we use to generate the type of graphics discussed in the context of this book.

The SetClip method has the following forms:

Graphics.SetClip(Graphics)
Graphics.SetClip(Rectangle)
Graphics.SetClip(GraphicsPath)
Graphics.SetClip(Region)

All methods accept a second optional argument, which determines how the new clipping area
will be combined with the existing one. The combineMode argument’s value is one of the members
of the CombineMode enumeration: Complement, Exclude, Intersect, Replace, Union, and XOR.

After a clipping area has been set for the Graphics object, drawing is limited to that area. You
can specify any coordinates, but only the part of the drawing that falls inside the clipping area is
visible. The Clipping project demonstrates how to clip text and images within an elliptical area
(see Figure 18.14). The Boxed Text button draws a string in a rectangle. The Clipped Text button
draws the same text but first applies a clipping area, which is an ellipse. The Clipped Image button
uses the same ellipse to clip an image. Because there’s no form of the SetClip method that accepts
an ellipse as an argument, we must construct a Path object, add the ellipse to the path, and then
create a clipping area based on the path.

Figure 18.14

Clipping text (left) and
images (right) in an
ellipse

Petroutsos V1 c18.tex Page 686 01/28/2008 3:55pm

686 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

The following statements create the clipping area for the text, which is an ellipse. The path is
created by calling the AddEllipse method of the GraphicsPath object. This path is then passed as
an argument to the Graphics object’s SetClip method:

Dim P As New System.Drawing.Drawing2D.GraphicsPath()
Dim clipRect As New RectangleF(30, 30, 250, 150)
P.AddEllipse(clipRect)
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SetClip(P)

Listing 18.14 shows the code behind the Boxed Text and Clipped Text buttons. The Boxed Text
button prints some text in a rectangular area that is centered over the clipping area. The Clipped
Text button shows how the text is printed within the rectangle. Both the rectangle and the ellipse
are based on the same Rectangle object.

Listing 18.14: The Boxed Text and Clipped Text Buttons

Private Sub bttnBoxedText Click(...) Handles bttnBoxedText.Click
Dim G As Graphics
G = GetGraphicsObject()
Dim Rect As New Rectangle(

Convert.ToInt32((PictureBox1.Width - 250) / 2),
Convert.ToInt32((PictureBox1.Height - 150) / 2), 250, 150)

G.ResetTransform()
G.ResetClip()
Dim format As StringFormat = New StringFormat()
format.Alignment = StringAlignment.Center
G.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
G.DrawString(txt & txt,

New Font(”Verdana”, 12, FontStyle.Regular),
Brushes.DarkGreen, Rect, format)

G.DrawRectangle(Pens.Yellow, Rect)
PictureBox1.Invalidate()

End Sub

Private Sub bttnClippedText Click(...) Handles bttnClippedText.Click
Dim G As Graphics
G = GetGraphicsObject()
Dim P As New System.Drawing.Drawing2D.GraphicsPath()
Dim clipRect As New RectangleF(

Convert.ToSingle((PictureBox1.Width - 250) / 2),
Convert.ToSingle((PictureBox1.Height - 150) / 2), 250, 150)

P.AddEllipse(clipRect)
G.ResetTransform()
G.DrawEllipse(Pens.Red, clipRect)
G.SetClip(P)
Dim format As StringFormat = New StringFormat()

Petroutsos V1 c18.tex Page 687 01/28/2008 3:55pm

APPLYING TRANSFORMATIONS 687

format.Alignment = StringAlignment.Center
G.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
G.DrawString(txt & txt,

New Font(”Verdana”, 12, FontStyle.Regular),
Brushes.DarkBlue, clipRect, format)

PictureBox1.Invalidate()
End Sub

The difference between the two subroutines is that the second sets an ellipse as the clipping
area; anything we draw on it is automatically clipped.

The Clipped Image button sets up a similar clipping area and then draws an image cen-
tered behind the clipping ellipse. As you can see in Figure 18.14, only the segment of the image
that’s inside the clipping area is visible. The code behind the Clipped Image button is shown in
Listing 18.15.

Listing 18.15: The Clipped Image Button

Private Sub bttnClippedImage Click(...) Handles bttnClippedImage.Click
Dim G As Graphics
G = CreateGraphicsObject
G.ResetClip()
Dim P As New System.Drawing.Drawing2D.GraphicsPath()
Dim clipRect As New RectangleF(10, 10,

PictureBox1.Width - 20), PictureBox1.Height - 20)
P.AddEllipse(clipRect)
G.SetClip(P)
G.DrawImage(Image.FromFile(fileName), -150, -150)
PictureBox1.Invlidate()

End Sub

An easy and interesting technique for creating paths is to use the AddString method of the
GraphicsPath object. Then you can draw an image over this path. The net effect is seeing sections
of the image through the string’s characters. You can open the StringPath sample project to see
how you can clip an image with text; just be sure you select an interesting image to show through
the string’s characters.

Applying Transformations
In computer graphics, there are three types of transformations: scaling, translation, and rotation:

◆ The scaling transformation changes the dimensions of a shape but not its basic form. If you
scale an ellipse by 0.5, you’ll get another ellipse that’s half as wide and half as tall as the
original one.

◆ The translation transformation moves a shape by a specified distance. If you translate a rect-
angle by 30 pixels along the x-axis and 90 pixels along the y-axis, the new origin will be
30 pixels to the right and 90 pixels down from the original rectangle’s top-left corner.

Petroutsos V1 c18.tex Page 688 01/28/2008 3:55pm

688 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

◆ The rotation transformation rotates a shape by a specified angle, expressed in degrees;
360 degrees correspond to a full rotation, and the shape appears the same. A rotation by
180 degrees is equivalent to flipping the shape vertically and horizontally.

Transformations are stored in a 5 × 5 matrix, but you need not set it up yourself. The Graphics
object provides the ScaleTransform, TranslateTransform, and RotateTransform methods, and
you can specify the transformation to be applied to the shape by calling one or more of these meth-
ods and passing the appropriate argument(s). The ScaleTransform method accepts as arguments
scaling factors for the horizontal and vertical directions:

Graphics.ScaleTransformation(Sx, Sy)

If an argument is smaller than one, the shape will be reduced in the corresponding direction;
if it’s larger than one, the shape will be enlarged in the corresponding direction. We usually scale
both directions by the same factor to retain the shape’s aspect ratio. If you scale a circle by different
factors in the two dimensions, the result will be an ellipse, and not a smaller or larger circle.

The TranslateTransform method accepts two arguments, which are the displacements along
the horizontal and vertical directions:

Graphics.TranslateTransform(Tx, Ty)

The Tx and Ty arguments are expressed in the coordinates of the current coordinate system.
The shape is moved to the right by Tx units and down by Ty units. If one of the arguments is
negative, the shape is moved in the opposite direction (to the left or up).

The RotateTransform method accepts a single argument, which is the angle of rotation
expressed in degrees:

Graphics.RotateTransform(rotation)

The rotation takes place about the origin. As you will see, the final position and orientation
of a shape is different if two identical rotation and translation transformations are applied in a
different order.

Every time you call one of these methods, the elements of the transformation matrix are set
accordingly. All transformations are stored in this matrix, and they have a cumulative effect. If
you specify two translation transformations, for example, the shape will be translated by the sum
of the corresponding arguments in either direction. These two transformations:

Graphics.TranslateTransform(10, 40)
Graphics.TranslateTransform(20, 20)

are equivalent to the following one:

Graphics.TranslateTransform(30, 60)

To start a new transformation after drawing some shapes on the Graphics object, call the Reset-
Transform method, which clears the transformation matrix.

The effect of multiple transformations might be cumulative, but the order in which trans-
formations are performed makes a big difference. You will find some real-world examples of

Petroutsos V1 c18.tex Page 689 01/28/2008 3:55pm

APPLYING TRANSFORMATIONS 689

transformations in Chapter 20, where I discuss printing with Visual Basic. In specific, you’ll see
how to apply transformations to print rotated strings on a page. I’ve also included the Transforma-
tions sample project in this chapter. This project allows you to apply transformations to an entity
that consists of a rectangle that contains a string and a small bitmap, as shown in Figure 18.15.
Each button on the right performs a different transformation or combination of transformations.
The code is quite short, and you can easily insert additional transformations or change their order,
and see how the shape is transformed. Keep in mind that some transformations might bring the
shape entirely outside the form. In this case, just apply a translation transformation in the opposite
direction.

The code behind the Translate Shape, Rotate Shape, and Scale Shape buttons is shown in
Listing 18.16. The code in the Click event handlers of the buttons sets the appropriate trans-
formations and then calls the DrawShape() subroutine, passing the current Graphics object as an
argument. The DrawShape() subroutine draws the same shape, but its actual output (the position
and size of the shape) is affected by the transformation matrix in effect.

Figure 18.15

The Transformations
project

Listing 18.16: The Buttons of the GDIPlusTransformations Project

Private Sub bttnTranslate Click(...) Handles bttnTranslate.Click
Dim G As Graphics = PictureBox1.CreateGraphics
G.TranslateTransform(200, 90)
DrawShape(G)

End Sub

Private Sub bttnRotate Click(...) Handles bttnRotate.Click
Dim G As Graphics = PictureBox1.CreateGraphics
G.RotateTransform(45)
DrawShape(G)

End Sub

Petroutsos V1 c18.tex Page 690 01/28/2008 3:55pm

690 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

Private Sub bttnTranslateRotate Click(...)
Handles bttnTranslateRotate.Click

Dim G As Graphics = PictureBox1.CreateGraphics
G.TranslateTransform(200, 90)
G.RotateTransform(45)
DrawShape(G)

End Sub

VB 2008 at Work: The ImageCube Project
As discussed earlier in this chapter, the DrawImage method can render images on any parallelo-
gram, not just a rectangle, with the necessary distortion. A way to look at these images is not as
distorted images, but as perspective images. Looking at a printout from an unusual angle is equiv-
alent to rendering an image within a parallelogram. Imagine a cube with a different image glued
on each side. To display such a cube on your monitor, you must calculate the coordinates of the
cube’s edges and then use these coordinates to define the parallelograms on which each image
will be displayed. Figure 18.16 shows a cube with a different image on each side.

Figure 18.16

This cube was created
with a call to the Draw-
Image method for each
visible face of the cube.

If you’re good at math, you can rotate a cube around its vertical and horizontal axes and then
map the rotated cube on the drawing surface. You can even apply a perspective transformation,
which will make the image look more like the rendering of a three-dimensional cube. This process
is more involved than the topics discussed in this book. Instead of doing all the calculations, I
came up with a set of coordinates for the parallelogram that represents each vertex (corner) of the
cube. For a different orientation, you can draw a perspective view of a cube on paper and measure

Petroutsos V1 c18.tex Page 691 01/28/2008 3:55pm

THE BOTTOM LINE 691

the coordinates of its vertices. After you define the parallelogram that corresponds to each visible
side, you can draw an image on each face by using the DrawImage method. The DrawImage method
will shear the image as necessary to fill the specified area. The result is a 3D-looking cube covered
with images. You can open the sample project and examine its code, which contains comments to
help you understand how it works.

VB 2008 at Work: Plotting Functions
In this last section of this chapter, I address a fairly common task in scientific programming: the
plotting of functions or user-supplied data sets. If you have no use for such an application, you
can skip this section. I decided to include this application because many readers (especially college
students) might use it as a starting point for developing a custom plotting application.

A plot is a visual representation of a function’s values over a range of an independent variable.
Figure 18.17 shows the following function plotted against time in the range from −0.5 to 5:

10 + 35 * Sin(2 * X) * Sin(0.80 / X)

The plot of Figure 18.17 was created with the FunctionPlotting project. The variable x represents
time and goes from −0.5 to 5. The time is mapped to the horizontal axis, and the vertical axis is the
magnitude of the function. For each pixel along the horizontal axis, we calculate the value of the
function and turn on the pixel that corresponds to the calculated value.

Figure 18.17

Plotting math functions
with Visual Basic

The application’s code is fairly lengthy, and I will not show it in the printed version of this
book. You will find a detailed discussion of the FunctionPlotting application in the Readme.doc
file in the application’s folder. The application’s code is also well documented, and you should be
able to easily follow it and adjust it to suit your custom requirements.

The Bottom Line

Display and size images. The most appropriate control for displaying images is the Picture-
Box control. You can assign an image to the control through its Image property, either at design

Petroutsos V1 c18.tex Page 692 01/28/2008 3:55pm

692 CHAPTER 18 DRAWING AND PAINTING WITH VISUAL BASIC 2008

time or at runtime. To display a user-supplied image at runtime, call the DrawImage method of
the control’s Graphics object.

Master It How would you implement a form that displays a large image and allows users
to scroll the image to bring any segment of it into view?

Generate graphics by using the drawing methods. Every object you draw on, such as forms
and PictureBox controls, exposes the CreateGraphics method, which returns a Graphics
object. The Paint event’s e argument also exposes the Graphics object of the control or form.
To draw something on a control, retrieve its Graphics object and then call the Graphics object’s
drawing methods.

Master It Show how to draw a circle on a form from within the form’s Paint event
handler.

Display text in various ways, including gradient fills. The Graphics object provides the
DrawString method, which prints a user-supplied string on a control. You can also specify
the coordinates of the string’s upper-left corner and its font. To position the string, you need
to know its dimensions. You can use the MeasureString method to retrieve the dimensions
of the image when rendered on the Graphics object in a specific font. Text is drawn with a
Brush object, and you can use a SolidBrush object to draw the string in a solid color, the Linear-
GradientBrush object to fill the text with a linear gradient, the PathGradientBrush object to fill
the text with an arbitrary gradient defined by a path, or the TextureBush object to fill the text
with
a texture.

Master It How will you print a string centered on a PictureBox control?

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 693

Chapter 19

Manipulating Images and Bitmaps

The graphics you explored in Chapter 18, ‘‘Drawing and Painting with Visual Basic 2008,’’ are
called vector graphics because they’re based on geometric descriptions and they can be scaled to
any extent. Because they’re based on mathematical equations, you can draw any details of the
picture without losing any accuracy. You can zoom into a tiny section of an ellipse, for example,
and never lose any detail because the ellipse is redrawn every time.

Vector graphics, however, can’t be used to describe the type of images you capture with your
digital camera. These images belong to a different category of graphics: bitmap graphics or raster
graphics. A bitmap is a collection of colored pixels arranged in rows and columns. As you will see,
a bitmap is nothing more than a two-dimensional array of integers that represent colors, and you
can achieve interesting effects with simple arithmetic operations on the pixels of an image.

In this chapter, you’ll learn how to do the following:

◆ Specify colors

◆ Manipulate images and bitmaps

◆ Process images

Specifying Colors
You’re already familiar with the Color common dialog box, which lets you specify colors by
manipulating their basic components. To specify a Color value through this dialog box, you’ll see
three boxes — Red, Green, and Blue (RGB) — whose values change as you move the cross-shaped
pointer over the color spectrum. These are the values of the three basic components that comput-
ers use to specify colors. Any color that can be represented on a computer monitor is specified by
means of these three colors. By mixing percentages of these basic colors, you can design almost
any color in the spectrum.

The model of designing colors based on the intensities of their RGB components is called the
RGB model, and it’s a fundamental concept in computer graphics. If you aren’t familiar with this
model, this section is well worth reading. Nearly every color you can imagine can be constructed
by mixing the appropriate percentages of the three basic colors. Each color, therefore, is repre-
sented by a triplet of byte values that represent the basic color components of red, green, and
blue. The smallest value, 0, indicates the absence of the corresponding color. The largest value,
255, indicates full intensity, or saturation. The triplet (0, 0, 0) is black because all colors are miss-
ing, and the triplet (255, 255, 255) is white — it contains all three basic colors in full intensity.
Other colors have various combinations: (255, 0, 0) is a pure red tone, (0, 255, 255) is a pure cyan
tone (what you get when you mix green and blue), and (0, 128, 128) is a mid-cyan tone (a mix of
mid-green and mid-blue tones). The possible combinations of the three basic color components

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 694

694 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

are 256 × 256 × 256, or 16,777,216 colors. Graphics cards that can display all 16 million colors are
said to have a color depth of 24 bits (3 bytes). Most graphics cards today support a color depth of
32 bits: 24 bits for color and 8 bits for a transparency layer. (The topic of transparency is discussed
in the ‘‘Alpha Blending’’ section later in this chapter.)

Notice that we use the term basic colors, not primary colors, which are the three colors used
in designing colors with paint. The concept is the same: You mix these colors until you get the
desired result. The primary colors used in painting, however, are different. They are the colors red,
yellow, and blue. Painters can create any shade imaginable by mixing the appropriate percentages
of red, yellow, and blue paint. On a computer monitor, you can design any color by mixing the
appropriate percentages of red, green, and blue.

There are other color specification models besides the RGB model. Modern color printers use
four primary colors: cyan, magenta, yellow, and black (the CMYK model). The color specification
model used by computers is called additive (you must add all three basic colors to get white on your
monitor). The color specification model used by printers, on the other hand, is called subtractive
(absence of all colors gives white, which is the color of the paper on which an image is printed). For
more information on the various color-specification models, see the additive color and subtractive
color entries in Wikipedia. In this chapter, we’ll focus on the RGB color model, which is used to
specify colors in all graphics applications.

The RGB Color Cube
The process of generating colors with three basic components is based on the RGB color cube,
which is shown in Figure 19.1. The three dimensions of the color cube correspond to the three
basic colors. The cube’s corners are assigned each of the three primary colors, their complements,
and the colors black and white. Complementary colors are easily calculated by subtracting their
basic colors from 255. For example, the color (0, 0, 255) is a pure blue tone. Its complementary color
is (255 – 0, 255 – 0, 255 – 255) or (255, 255, 0), which is a pure yellow tone. Blue and yellow thus are
mapped to opposite corners of the cube. The same is true for red and cyan, green and magenta,
and black and white. If you add a color to its complement, you get white.

Figure 19.1

Color specification of the
RGB color cube

Yellow
(255, 255, 0)

Green
(0, 255, 0)

Black
(255, 255, 255)

White
(0, 0, 0)

Cyan
(0, 255, 255)

Blue
(0, 0, 255)

Magenta
(255, 0, 255)

Red
(255, 0, 0)

Notice that the components of the colors at the corners of the cube have either zero or full
intensity. As you move from one corner to another along the same edge of the cube, only one
of its components changes value. For example, as you move from the green to the yellow cor-
ner, the red component changes from 0 to 255. The other two components remain the same.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 695

SPECIFYING COLORS 695

As you move between these two corners, you get all the available tones from green to yellow
(256 in all). Similarly, as you move from the yellow to the red corner, the only component that
changes is the green, and you get all the available shades from yellow to red. As you move from
one corner to another on the same face of the cube along the diagonal, two components change
value. To go from the yellow corner (255, 255, 0) to the cyan corner (0, 255, 255), you must change
the red component from 255 to 0 and the blue component from 0 to 255. Finally, as you move along
a diagonal of the cube — when you go blue to yellow, for instance — all three components must
change value. As you can guess, this is how GDI + calculates the gradients: It draws an (imag-
inary) line between the two points that represent the starting and ending colors of the gradient
in the RGB cube and picks the colors along this line. These colors are then used to generate the
gradient.

To see an interactive animated color cube with the actual colors on its surface, visit this URL:
http://processing.org/learning/examples/rgbcube.html. In addition to the colors on the
surface of the color cube, its inside is also filled with colors. At the very center of the cube, you’ll
find a mid-gray shade, and you’ll run into this shade as you move from black to white, from green
to magenta, from red to cyan, and so on.

Defining Colors
To manipulate colors, use the Color class of the Framework. This is a shared class, and you need
not create new Color objects; just call the appropriate property or method of the Color class.
The Color class exposes 128 predefined colors as properties, which you can access by name, and
additional members for specifying custom colors. For example, you can define colors by using
the FromARGB method of the Color class. This method accepts three arguments, which are the
components of the primary colors in the desired color:

Color.FromARGB(Red, Green, Blue)

The method returns a Color value, which you can assign to a variable of the same type, or use
it directly as the value of a Color property. To change the form’s background color to yellow,
you can assign the value returned by the FromARGB method to the BackColor property of a form
or control:

Form1.BackColor = FromARGB(255, 128, 128)

There’s another form of the FromARGB method that accepts four arguments. The first argument
in the method is the transparency of the color, or the alpha channel (which explains the A in the
method’s name). This component is similar to the other three color components, in the sense that
it can be a value from 0 (totally transparent) to 255 (totally opaque). The other three arguments
are the usual red, green, and blue color components. For more information on transparent colors,
see the following section, ‘‘Alpha Blending.’’

You can also retrieve the three basic components of a Color value with the R, G, and B methods.
(Yes, they’re single-letter method names!) The following statements print the values of the three
components of one of the named colors in the Output window:

Dim clr As Color = Color.Beige
Debug.WriteLine ”Red Component = ” & clr.R.ToString
Debug.WriteLine ”Green Component = ” & clr.G.ToString
Debug.WriteLine ”Blue Component = ” & clr.B.ToString

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 696

696 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

Image-processing applications read the image’s pixel values, isolate their basic color compo-
nents, and then process them separately. Then they combine the processed components to produce
the new pixel value.

Alpha Blending

Besides the red, green, and blue components, a Color value might also contain a transparency
component. This value determines whether the color is opaque (255) or transparent (0). In the
case of transparent colors, you can specify the degree of transparency. This component is the alpha
component. The following statement creates a new color value, which is yellow and 25 percent
transparent:

Dim trYellow As Color
trYellow = Color.FromARGB(192, Color.Yellow)

If you want to ‘‘wash out’’ the colors of an image on a form, draw a white rectangle with a
transparency of 50 percent or more on top of the image. The size of the rectangle must be the
same as the size of the form, so you can use the ClientRectangle form’s property to retrieve
the area taken by the form. Then create a solid brush with a semitransparent color by using the
Color.FromARGB method. The following code segment does exactly that:

Dim brush As New SolidBrush(Color.FromARGB(128, Color.White))
Me.CreateGraphics.FillRectangle(brush, Me.ClientRectangle)

If you execute these statements repeatedly, the form will eventually become white. Another
use of transparent drawing is to place watermarks on images that you’ll publish on the Web. A
watermark is a string or logo that’s drawn transparently on the image. It doesn’t really disturb the
viewers, but it makes the image unusable on another site. It’s a crude but effective way to protect
your images on the Web. (If all images have your site’s URL or your company name on them,
they’re useless to anyone else.)

The following statements place a watermark with the string MySite.Com on top of the image of
a PictureBox control. The font is fairly large and bold, and the code assumes that the text fits in the
width of the image.

Private Sub Button1 Click(...) Handles Button1.Click
Dim WMFont As New Font(”Impact”, 36, FontStyle.Bold)
Dim WMBrush As New SolidBrush(Color.FromArgb(64, 192, 255, 255))
PictureBox1.CreateGraphics.DrawString(

”MySite.com”, WMFont, WMBrush, 240, 0)
WMBrush.Color = Color.FromArgb(128, 0, 0, 0)
PictureBox1.CreateGraphics.DrawString(

”MySite.com”, WMFont, WMBrush, 10, 320)
End Sub

The preceding statements print the logo at two locations on the image of the PictureBox1
control with different colors, as shown in Figure 19.2. Run the ImageWatermarks project and run
it to see the watermarked image, or open the Watermark.tif image in the project’s folder.

You can also experiment with the watermark’s size, color, and transparency. You can combine
these statements with a simple program that scans all the images in a folder, to write an application

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 697

SPECIFYING COLORS 697

that watermarks a large number of files en masse (you learned how to iterate through all the files
in a folder in Chapter 15, ‘‘Accessing Folders and Files’’) Notice that if you click the Watermark
Image button repeatedly, the watermark will become more and more evident, because the same
string will be printed on top of the previous one, in effect reducing the transparency effect.

Figure 19.2

Watermarking an image
with a semitransparent
string

Another interesting application of transparency is to superimpose a semitransparent drawing
over an opaque one. Figure 19.3 shows some text with a 3D look. To achieve this effect, you render
a string by using a totally opaque brush. Then you superimpose the same string drawn with a
partially transparent brush. The superimposed string is displaced by a few pixels in relation to
the first one. The amount of displacement, its direction, and the colors you use determine the
type of 3D effect (raised or depressed). The second brush can have any color, as long as the color
combination produces a pleasant effect. The strings shown in Figure 19.3 were generated with
the TextEffects project (via the Draw Semi-Transparent Text button), which was discussed in the
preceding chapter. If you run the application and look at the rendered strings carefully, you’ll see
that they’re made up of three colors. The two original colors appear around the edges. The inner
area of each character is what the transparency of the second color allows us to see.

Figure 19.3

Creating a 3D effect by
superimposing trans-
parency on an opaque
and a semitransparent
string

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 698

698 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

The code behind the Draw Semi-Transparent Text button is quite simple, really. First it draws
the string with the solid blue brush:

brush = New SolidBrush(Color.FromARGB(255, 0, 0, 255))

Then another instance of the same string is drawn, this time with a different brush:

brush.Color = Color.FromARGB(192, 0, 255, 255)

This is a semitransparent shade of cyan. The two superimposed strings are displaced a little
with respect to one another. The statements in Listing 19.1 produced the strings of Figure 19.3.

Listing 19.1: Simple Text Effects with Transparent Brushes

Dim G As Graphics
Dim brush As SolidBrush

G = GetGraphicsObject()
G.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
G.FillRectangle(New SolidBrush(Color.Silver), ClientRectangle)
Dim drawFont As Font
Dim drawString As String = ”Visual Basic 2008”
’ Draw string
brush = New SolidBrush(Color.FromArgb(255, 0, 0, 255))
drawFont = New Font(”Comic Sans MS”, 60, Drawing.FontStyle.Bold)
’ Draw string
G.DrawString(drawString, drawFont, brush, 10, 30)
brush.Color = Color.FromArgb(192, 0, 255, 255)
’ Draw same string with a displacement (-3, -3) pixels
G.DrawString(drawString, drawFont, brush, 7, 27)
brush.Color = Color.FromArgb(255, 0, 0, 255)
G.DrawString(drawString, drawFont, brush, 10, 130)
brush.Color = Color.FromArgb(128, 0, 255, 255)
G.DrawString(drawString, drawFont, brush, 7, 127)
’ Draw same string with a displacement (3, 3) pixels
brush.Color = Color.FromArgb(255, 128, 64, 255)
G.DrawString(drawString, drawFont, brush, 10, 230)
brush.Color = Color.FromArgb(128, 255, 128, 64)
G.DrawString(drawString, drawFont, brush, 13, 233)
Me.Invalidate()

The Image Object
Images are two-dimensional arrays that hold the color values of the pixels making up the image.
This isn’t how images are stored in their respective files: JPG or JPEG (Joint Photographic Experts
Group), GIF (Graphics Interchange Format), TIFF (Tagged Image File Format), and so on, but it’s
a convenient abstraction for the developer. To access a specific pixel of an image, you need to
specify only the horizontal and vertical coordinates of the desired pixel. Let’s turn our attention

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 699

THE IMAGE OBJECT 699

to images, starting with the discussion of the Image object. Each pixel is a Long value; the first byte
is the pixel’s alpha value and the other three bytes are the red, green, and blue components.

The Image property of the PictureBox or Form control is an Image object, and there are several
ways to create such an object. You can declare a variable of the Image type and then assign the
Image property of the PictureBox control or the Form object to the variable:

Dim img As Image
img = PictureBox1.Image

The img Image variable holds the bitmap of the PictureBox1 control. This code segment
assumes that an image was assigned to the control at design time. As you will see shortly, you
can call the Save method of the Image class to save the image to a disk file.

You can also create a new Image object from an image file by using the Image class’s FromFile
method:

Dim img As Image
img = Image.FromFile(”Butterfly.jpg”)

After the img variable has been set up, you can assign it to the Image property of a PictureBox
control:

PictureBox1.Image = img

Properties
The Image class exposes several members, some of which are discussed next. Let’s start with a few
simple properties and then we’ll examine the methods of the Image class.

HorizontalResolution, VerticalResolution

These are read-only properties that return the horizontal and vertical resolution of the image,
respectively, in pixels per inch.

Width, Height

These are read-only properties that return the width and height of the image, respectively, in pix-
els. If you divide the dimensions of the image (properties Width and Height) by the corresponding
resolutions (properties HorizontalResolution and VerticalResolution), you’ll get the actual
size of the image in inches — the dimensions of the image when printed, for instance.

PixelFormat

This is another read-only property that returns the image’s pixel format, which determines the
quality of the image. There are many pixel formats and they’re all members of the PixelFormat
enumeration. For now, I assume that you’re using a color display with a depth of 24 bits per pixel.
Images with 24-bit color are of the Format24bppRgb type. Rgb stands for red, green, blue, and 24bpp
stands for 24 bits per pixel. Each of the basic colors in this format is represented by 1 byte (8 bits).

Methods
In addition to the basic properties, the Image class exposes methods for manipulating images,
which are discussed next.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 700

700 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

RotateFlip

This method rotates and/or flips an image, and its syntax is the following, where the type argu-
ment determines how the image will be rotated:

Image.RotateFlip(type)

This argument can have one of the values of the RotateFlipType enumeration, shown in
Table 19.1.

Table 19.1: The RotateFlipType Enumeration

Member Description

Rotate180FlipNone Rotates image by 180 degrees

Rotate180FlipX Rotates image by 180 degrees and then flips it horizontally

Rotate180FlipXY Rotates image by 180 degrees and then flips it vertically and horizontally

Rotate180FlipY Rotates image by 180 degrees and then flips it vertically

Rotate270FlipNone Rotates image by 270 degrees (which is equivalent to rotating it by −90 degrees)

Rotate270FlipX Rotates image by 270 degrees (which is equivalent to rotating it by −90 degrees)
and then flips it horizontally

Rotate270FlipXY Rotates image by 270 degrees (which is equivalent to rotating it by −90 degrees)
and then flips it vertically and horizontally

Rotate270FlipY Rotates image by 270 degrees (which is equivalent to rotating it by −90 degrees)
and then flips it vertically

Rotate90FlipNone Rotates image by 90 degrees

Rotate90FlipX Rotates image by 90 degrees and then flips it horizontally

Rotate90FlipXY Rotates image by 90 degrees and then flips it horizontally and vertically

Rotate90FlipY Rotates image by 90 degrees and then flips it vertically

RotateNoneFlipNone No rotation and no flipping

RotateNoneFlipX Flips image horizontally

RotateNoneFlipXY Flips image vertically and horizontally

RotateNoneFlipY Flips image vertically

To vertically flip the image displayed on a PictureBox control, use the following statement:

PictureBox1.Image.RotateFlip(RotateFlipType.RotateNoneFlipY)
PictureBox1.Invalidate()

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 701

THE IMAGE OBJECT 701

The Invalidate method redraws the control, and you must call it to display the new (flipped)
image on the control. The first statement rotates the image, but it doesn’t refresh the control. If you
omit the call to the Refresh method, you won’t see the effect of the RotateFlip method. If you
switch to another window and then back to the application’s window, the image will be flipped
because Windows refreshes the form automatically when it brings it to the top of the z-order
(in front of all other windows).

GetThumbnailImage

This method returns the thumbnail of the specified image. The thumbnail is a miniature version
of the image, whose exact dimensions you specify as arguments. Thumbnail images are used as
visual enhancements for selecting images in dialog boxes. The thumbnail takes a small fraction of
the space taken by the actual image, and we can display many thumbnails on a form to let the user
select the desired one(s) instead of selecting filenames. Thumbnails are usually stored in the same
folder as the images and are updated as needed. You can also create a hidden subfolder under
each folder of images and populate the subfolder with the thumbnails. Of course, you must also
maintain the list of thumbnails as images are added, modified, and removed. Alternatively, you
can create the thumbnails as needed and display them to the user, without having to worry about
maintaining the thumbnail version of each image. This approach works quite well on fast systems,
unless you run into a folder with thousands of large images.

The syntax of the GetThumbnailImage method is as follows:

Image.GetThumbnailImage(width, height, Abort, Data)

The first two arguments are the dimensions of the thumbnail. The other two arguments are
callbacks, which are used when the process is aborted. Because thumbnails don’t take long to gen-
erate, we’ll ignore these two arguments for the purposes of this book and we’ll set them both to
Nothing. These two arguments enable you to request the generation of a large number of thumb-
nails, without waiting for each thumbnail to be generated. As soon as each thumbnail is generated,
a user-supplied procedure (the callback procedure) is called.

The following statements create a thumbnail of the image selected by the user and display it
on a PictureBox control. To test these statements, place a PictureBox and a Button on the form.
Then add an instance of the Open dialog box to the form and insert the following statements in
the Button’s Click event handler:

’ Display the FileOpen dialog box
Dim img As Image
img = Image.FromFile(OpenFileDialog1.FileName)
PictureBox1.Image = img.GetThumbnailImage(32, 32, Nothing, Nothing)

Save

If your application processes the displayed image during the course of its execution and you
want to save the image, you can use the Save method of the Image object. The simplest syntax of
the Save method accepts a single argument, which is the path of the file in which the image will
be saved:

Image.Save(path)

To save the contents of the PictureBox1 control to a file, you must use a statement like the
following:

PictureBox1.Image.Save(”c:\tmpImage.bmp”)

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 702

702 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

The image will be saved in BMP format, not because of the specified file extension (which could
be anything), but because this is the default format of the Save method. Another form of the Save
method allows you to specify the format in which the image will be saved, where the format
argument’s value can be one of the members of the ImageFormat enumeration:

PictureBox1.Image.Save(”c:\tmpImage.bmp”, format)

The fully qualified name of the enumeration is System.Drawing.Imaging.ImageFormat, so you
should import the library System.Drawing.Imaging into any project that uses the enumerations
mentioned in this chapter. Thus, you won’t have to fully qualify the name of the enumeration.

The ImageFormat enumeration contains members for all common image formats (see
Table 19.2). After you import the System.Drawing.Imaging namespace to your project, use the
following statement to save the image on the PictureBox1 control in GIF format:

PictureBox1.Image.Save(”c:\tmpImage.gif”, ImageFormat.Gif)

Table 19.2: The ImageFormat Enumeration

Member Description Extension

Bmp Bitmap image BMP

Emf Enhanced Metafile Format EMF

Exif Exchangeable Image Format EXIF

Gif Graphics Interchange Format GIF

Icon Windows icon ICO

Jpeg Joint Photographic Experts Group format JPEG, JPG

MemoryBmp Saves the image to a memory bitmap

Png W3C Portable Network Graphics format PNG

Tiff Tagged Image File Format TIF

Wmf Windows metafile WMF

VB 2008 at Work: The Thumbnails Project
You can combine the GetThumbnailImage method of the Image object with the techniques
described in Chapter 15 to scan a folder, retrieve all the image files, and create a thumbnail for
each. As for displaying them, I suggest that you create as many PictureBox controls as there are
images in the folder and then arrange them horizontally and vertically on a form. Chapter 7,
‘‘Working with Forms,’’ describes how to create instances of Windows controls at runtime and
position them on the form from within your code.

Because this isn’t a trivial project, I have included a sample project that demonstrates how
to display thumbnails on a form. The project is called Thumbnails, and you will find it in this
chapter’s folder. I copied the CustomExplorer project of Chapter 15, renamed the main form to

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 703

THE IMAGE OBJECT 703

ThumbnailsForm, and removed the ListView control in which the names of the files in the selected
folder were displayed. In its place, the program displays the PictureBox controls with the thumb-
nails. When the user clicks an image, the program loads the selected image on the PictureBox
control of another form and displays it. Figure 19.4 shows the main form of the Thumbnails appli-
cation. You can double-click a thumbnail to preview the corresponding image on another form.

Figure 19.4

The Thumbnails appli-
cation displays the
images in a folder as
thumbnails.

Then I adjusted the code to accommodate the display of thumbnails instead of filenames. The
ShowFilesInFolder() subroutine of the original application displayed the names of the files
in the current folder on a ListBox control. This subroutine was replaced by the ShowImagesIn-
Folder() subroutine, which is shown in Listing 19.2.

Listing 19.2: The ShowImagesInFolder Subroutine

Sub ShowImagesInFolder()
Dim file As String
Dim FI As FileInfo
Dim PBox As PictureBox, img As Image
Dim thmbLeft As Integer = 10
Dim thmbTop As Integer = 10
Dim PictureWidth As Integer = 64
Panel1.Controls.Clear()
Me.Invalidate()
Dim pnlWidth As Integer = Panel1.Width
For Each file In Directory.GetFiles(Directory.GetCurrentDirectory)

FI = New FileInfo(file)
If FI.Extension = ”.GIF” Or

FI.Extension = ”.JPG” Or
FI.Extension = ”.TIFF” Then
PBox = New PictureBox()

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 704

704 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

PBox.SizeMode = PictureBoxSizeMode.Zoom
PBox.BorderStyle = BorderStyle.FixedSingle
img = Image.FromFile(FI.FullName)
PBox.Image = img.GetThumbnailImage(

PictureWidth,
PictureWidth * (img.Height / img.Width),
Nothing, Nothing)

If thmbLeft + PictureWidth > pnlWidth Then
thmbLeft = 10
thmbTop += PictureWidth + 10

End If
PBox.Left = thmbLeft
PBox.Top = thmbTop
PBox.Width = PictureWidth
PBox.Height = PictureWidth
PBox.Visible = True
PBox.Tag = FI.FullName
Me.Controls.Item(”Panel1”).

Controls.Add(PBox)
AddHandler PBox.Click,

New System.EventHandler(
AddressOf OpenImage)

thmbLeft += PictureWidth + 10
Application.DoEvents()

End If
FoldersList.Items.Add(FI.Name)

Next
End Sub

The PictureBox controls with the thumbnails are not added directly on the form; instead,
they’re added to a Panel control with its AutoScroll property set to True, so that users can scroll
them independently of the other controls on the form. The subroutine starts by removing all con-
trols from the Panel1 control. Then the code goes through each file in the selected folder and
examines its extension. If it’s JPG, GIF, or TIFF (you can add more file extensions if you want), it
creates a new PictureBox control, sets its size and location, loads the thumbnail of the image, and
then adds it to the Controls collection of the Panel1 control. Each image’s path is stored in the
PictureBox control’s Tag property, and it is retrieved later to load the image on the second form,
where it can be previewed.

Notice that the code adds a handler for the Click event of each PictureBox control. All the
PictureBox controls share a common handler for their Click event, the OpenImage() subroutine.
This subroutine reads the selected image’s path from the Tag property of the control that fired the
Click event and displays the corresponding image on the auxiliary form. The implementation of
the OpenImage() subroutine is shown here:

Sub OpenImage(ByVal sender As Object, ByVal e As System.EventArgs)
Dim imgForm As New previewForm()

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 705

THE IMAGE OBJECT 705

imgForm.PictureBox1.Image = Image.FromFile(sender.tag)
imgForm.Show()

End Sub

previewForm is the name of the second form of the application, where the selected image is pre-
viewed. If you need more information about this project, please review the material in Chapter 7,
which explains how to create instances of controls at runtime. This application is more of an
exercise on designing dynamic forms instead of a demo of the GetThumbnailImage method, but
it’s an interesting application, and some readers might have a good use for the techniques demon-
strated here. Notice that all the thumbnail bitmaps have a width of 64 pixels. To avoid possible
distortion, I set the height of the thumbnail to a value that’s close to 64 pixels, but proportionate
to the image’s width-to-height ratio.

Exchanging Images through the Clipboard
Whether you use bitmap images or create graphics from scratch with the Framework’s drawing
methods, sooner or later you’ll want to exchange them with other Windows applications. To do
so, you use the Clipboard and its GetImage and SetImage methods. The SetImage method accepts
an image object as an argument and places it on the Clipboard. To copy the bitmap displayed on
the PictureBox1 control to the Clipboard, use the following statement:

Clipboard.SetImage(PictureBox1.Image)

The GetImage method returns the image on the Clipboard as an Image object. To read the
bitmap stored in the Clipboard and display it on the PictureBox1 control, you must use a state-
ment like the following:

PictureBox1.Image = Clipboard.GetImage

Another interesting method of the Clipboard object is the GetDataObject method, which
allows you to find out whether the Clipboard contains data of a specific type. This method returns
an object of the IDataObject type, which in turns exposes the GetData and GetDataPresent
methods. The GetData method returns the data on the Clipboard in the format specified by its
argument, which is a member of the DataFormats enumeration (Bitmap, WaveAudio, RTF, and
so on). The GetDataPresent method also accepts as an argument a member of the DataFormats
enumeration and returns a True/False value indicating whether the Clipboard’s contents are of
the specific type.

The GetImage method will attempt to read the Clipboard’s data as an Image object. To read the
bitmap stored in the Clipboard and display it on the PictureBox1 control, you should make sure
that the Clipboard contains an image before calling the GetImage method:

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Bitmap) Then
PictureBox1.Image = Clipboard.GetImage

Else
MsgBox(”The Clipboard doesn’t contain a bitmap!”)

End If

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 706

706 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

Accessing the Clipboard with the My Object

The Clipboard access techniques discussed in the preceding section are those exposed by the Frame-
work’s Clipboard class. The My object offers a simpler alternative through its My.Computer.Clipboard
component. This component exposes the ContainsXXX properties, which return True if the
Clipboard contains a specific format (ContainsText for text, ContainsImage for images, and so on).
To retrieve the corresponding item from the Clipboard, use the GetXXX method (GetText for text,
GetImage for images, and so on). The following If statement retrieves the image stored in the Clip-
board, but only if the Clipboard contains image data:

Dim img As Image = Nothing
If My.Computer.Clipboard.ContainsImage Then

img = My.Computer.Clipboard.GetImage
End If

If the Clipboard doesn’t contain an image, the img variable will have a value of Nothing.

One of this chapter’s sample projects is the ImageClipboard project, which demonstrates
how to exchange images between a VB application and any other image-aware application
running under Windows through the Clipboard. You can copy the image displayed in a
PictureBox control on the application’s main form to the Clipboard and then paste it to another
application, or copy an image in any image-processing application and paste it on the same
PictureBox. The application is straightforward, and you can open it with Visual Studio to examine
its code. This example concludes our discussion of the Image object. In the following section, you’ll
explore the Bitmap object, and you’ll learn how to access and manipulate individual pixels in
an image.

The Bitmap Object
The Image class doesn’t provide any methods for manipulating a bitmap; it’s a class for storing
bitmaps only. The Bitmap class, on the other hand, provides methods that allow you to read
and set its pixels. In the last section of this chapter, you’re going to build an image-processing
application. The Bitmap object’s constructor is heavily overloaded, and you can create empty
bitmaps with specific properties or import images from files and streams. Two of the simplest
forms of the Bitmap object’s constructors are shown here:

Dim bmp As New Bitmap(filename)
Dim bmp As New Bitmap(stream)

They both create a new Bitmap object and initialize it to the bitmap of an image. This image is
read from a file (with the first form of the constructor) or from a Stream object (with the second
form of the constructor). The properties of the Bitmap object (its dimensions and color depth) are
determined by the image assigned to it. You can also create empty bitmaps with specific properties
by using the following form of the constructor:

Dim bmp As New Bitmap(width, height, pixelformat)

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 707

THE BITMAP OBJECT 707

The first two arguments are the bitmap’s dimensions in pixels, and the last argument is the
same as the PixelFormat property of the Image object. An image’s pixel format is fixed; you can’t
change it. When you create an empty Bitmap object, however, you can specify the format of its
pixels. You can also retrieve an image’s bitmap by initializing the Bitmap object with an Image
object, where img is a properly initialized Image object:

Dim bmp As New Bitmap(img)

The Bitmap object doesn’t expose a Graphics property, and therefore you can’t draw any
shapes directly on a bitmap. The Bitmap object, however, exposes two methods for accessing its
pixels: the GetPixel and SetPixel methods. The syntax of these two methods is as follows, where
X and Y are the coordinates of the pixel whose value you’re reading, or setting:

color = Bitmap.GetPixel(X, Y)
Bitmap.SetPixel(X, Y, color)

The GetPixel method returns the color of the specified pixel, whereas the SetPixel method
sets the pixel’s color to the specified value. (You’ll see how these two methods are used in the
following section.) To rotate the bitmap, you can use the RotateFlip method, whose syntax is
identical to the syntax of the RotateFlip method of the Image object.

It’s possible to place graphics on a bitmap by using the drawing methods, but you must first
create a Graphics object that represents the Bitmap object’s surface. One way to obtain a Graphics
object for the bitmap is to call the Graphics class’s FromImage method, passing the Bitmap object
as an argument:

Dim G As Graphics
G = Graphics.FromImage(bmp)

After you obtain the Graphics object, you can draw on it by using all the drawing methods
discussed in the preceding chapter. Eventually, you’ll have to display the bitmap on a control to
see what it looks like. The following statements create an Image object based on the bitmap and
display it on a PictureBox control:

Dim img As Image
img = CType(bmp, Image)
PictureBox1.Image = img

When you’re finished editing the bitmap, you can save it as an image file via the Save method
of the Bitmap object. The Save method accepts as arguments the path of the file in which the image
will be stored and the type of the image:

Bitmap.Save(path, imageType)

The second argument is a member of the ImageFormat enumeration (its members were shown
in Table 19.2). The project BitmapManipulation, whose main form is shown in Figure 19.5, demon-
strates how to create a bitmap in memory from within your code, save it to a file, and load
the image. I hard-coded the file’s path for the purposes of a simple demo, and it’s always
BitmapImage.jpg.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 708

708 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

Figure 19.5

The BitmapManipulation
application demon-
strates how to draw on
a bitmap from within
your code.

The JPG format compresses the image at the expense of its quality. If you carefully examine
the image saved and reloaded to the PictureBox control, you’ll notice artifacts. Change the image
format to TIFF, and you’ll see that this format doesn’t sacrifice image quality for size compression.

An interesting application of this technique of generating bitmaps in memory is to create
graphics on-the-fly. For example, you can create a stack of boxes, books, and so on to indicate
the sales volume in a period (the higher the volume, the taller the stack). The exact image depends
on some live data and is different every time. Instead of storing dozens of images and selecting
the proper one every time, create the image on-the-fly. The same technique can be used to create
fancy counter images on web pages.

One last interesting method of the Bitmap object is the MakeTransparent method, which
accepts a color as an argument and treats it as transparent. Any areas of the bitmap you want
to treat as transparent (for example, as ‘‘holes’’ in the bitmap) should be filled with this color.
When this image is placed on a form or another image, the transparent areas allow the underlying
colors to show through.

Processing Bitmaps
A bitmap is a two-dimensional array of color values. These values are stored in disk files, and
when an image is displayed on a PictureBox or Form control, each of its color values is mapped
to a pixel on the PictureBox or form. This is true when the image isn’t resized, of course. When
the image is resized (when displayed on a PictureBox control with its SizeMode property set
to Stretch or Zoom, for example), the mapping between the monitor pixels and image pixels
is no longer one to one. The image is resized via some interpolation technique. Yet the Image
object returned by the control’s Image property isn’t affected; the control ‘‘sees’’ the
original image.

As you’ll see, image processing is nothing more than simple arithmetic operations on the values
of the image’s pixels. The ImageProcessing application we’ll build to demonstrate the vari-
ous image-processing techniques doesn’t have the features of a professional application, but it
demonstrates the principles of these techniques and can be used as a starting point for custom
applications.

We’ll build a simple image-processing application that can read all the image types that
the Framework can handle (BMP, GIF, TIFF, JPG, and so on), process them, and then display

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 709

THE BITMAP OBJECT 709

the processed images. There are simpler ways to demonstrate the pixel-manipulation methods,
but image processing is an intriguing topic, and I hope you’ll experiment with the techniques
presented in this section.

Let’s look at a simple technique: the inversion of an image’s colors. To invert an image, you
must change all pixels to their complementary colors — black to white, green to magenta, and
so on. (The complementary colors are on opposite corners of the RGB cube, which was shown in
Figure 19.1.)

To calculate complementary colors, you subtract each of the three color components from 255.
For example, a pure green pixel whose value is (0, 255, 0) will be converted to (255 – 0, 255 – 255,
255 – 0) or (255, 0, 255), which is magenta. Similarly, a mid-yellow tone (0, 128, 128) will be con-
verted to (255 – 0, 255 – 128, 255 – 128) or (255, 127, 127), which is a mid-brown tone. If you apply
this color transformation to all the pixels of an image, the result will be the negative of the original
image (what you’d see if you looked at the negative, back in the days of film cameras).

Other image-processing techniques aren’t as simple, but image processing is generally as
straightforward as arithmetic operations on the image’s pixels. After we go through the Image-
Processing application, you’ll probably come up with your own techniques and be able to
implement them.

Refreshing the Image

When you draw on a bitmap, which is associated with the Image property of a PictureBox control, the
image on the control isn’t refreshed every time the bitmap is modified. Instead, the image is modified
when the Paint event has a chance to be serviced. The processing is implemented with two nested
loops that iterate through the bitmap’s rows and columns, as in the following code:

For pxlCol As Integer = 0 To PictureBox1.Image.Height - 1
For pxlRow As Integer = 0 To PictureBox1.Image.Width - 1

’ statements to process current pixel:
’ (pxlRow, pxlCol)

Next
Next

The image on the control won’t be refreshed until the outer loop has finished. As a result, users can’t
see the progress of the operation; they will see the new image after all its pixels have been
processed.

To force the PictureBox control to refresh its image, you must call the Refresh method. This method,
however, isn’t instant. If you insert it in the inner loop, it will make the processing time simply unac-
ceptable. You can insert this statement between the two Next statements, so that users will see each
new column of pixels as they’re processed. Even so, the Refresh method introduces a substantial
delay. On my computer, it took less than 2 seconds to copy the pixels of a 1,024 × 768 image from
one PictureBox control to another. When I introduced a call to the Refresh method after processing
an entire column of pixels, the time jumped to 8 seconds.

It’s actually much faster to update a ProgressBar control from within your code than to update an
image. The obvious solution is to avoid refreshing the PictureBox control too often, but then again
you’re giving up the immediate feedback.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 710

710 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

VB 2008 at Work: The ImageProcessing Project
The application we’ll develop in this section is called ImageProcessing, and its main form is
shown in Figure 19.6. It’s not a professional tool, but it can be easily implemented in Visual Basic
2008 and it will give you the opportunity to explore various image-processing techniques on
your own.

Figure 19.6

The Image-
Processing application
demonstrates several
image-processing tech-
niques, all implemented
with VB 2008.

To process an image with the application, choose File � Open to load it to the PictureBox con-
trol and then select the type of action from the Process menu. You can also zoom in or out by
using the commands of the View menu, and you can rotate the image by using the commands of
the Rotate menu.

The sample application implements the following image-processing techniques:

Smooth Reduces the amount of detail in the image by smoothing areas with abrupt changes
in color and/or intensity. Smoothing blurs the image, and extreme smoothing results in total
loss of detail.

Sharpen Brings out the detail in the image by amplifying the differences between similarly
colored pixels.

Emboss Adds a raised (embossed) look to the image.

Diffuse Gives the image a ‘‘painterly’’ look.

Next, let’s look at how each algorithm works and how it’s implemented in Visual Basic.

How the Application Works

Let’s start with a general discussion of the application’s operation before looking at the actual
code. After the image is loaded on a PictureBox control, you can access the values of its pixels
with the GetPixel method of the Bitmap object that holds the image. The GetPixel method
returns a Color value; you can use the R, G, and B methods of the Color object to extract the basic

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 711

THE BITMAP OBJECT 711

color components. This is a time-consuming step, and for most algorithms it must be performed
more than once for each pixel.

All image-processing algorithms read a few pixel values and process them to calculate the new
value of a pixel. This value is then written into the new bitmap via the SetPixel method.

To process an image, we set up two nested loops: an outer loop scans the rows of pixels, and an
inner loop scans the pixels in each row. In the inner loop’s body, we calculate the current pixel’s
new value, taking into consideration the values of the surrounding pixels. Because of this, we
can’t save the new pixel values to the original bitmap. When processing the next pixel, some of the
surrounding pixels will have their original values, whereas others will have the new values. As
a result, we must create a copy of the original bitmap and use this bitmap to retrieve the original
values of the pixels. The processed values are displayed on the bitmap of the PictureBox control,
so that you can watch the progress of the processing. The following is the outline of all the
algorithms that we’ll implement shortly:

bmp = New Bitmap(PictureBox1.Image)
PictureBox1.Image = bmp
Dim tempbmp As New Bitmap(PictureBox1.Image)
Dim pixRow, pixCol As Integer
With tempbmp

For pixRow = DX To .Height - DX - 1
For pixCol = DY To .Width - DY - 1

{ calculate new pixel value }
bmp.SetPixel(pixRow, pixCol, new pixel value)

Next
If i Mod 10 = 0 Then

PictureBox1.Invalidate()
End If

Next
End With

Here’s how it works. First, we create a Bitmap object from the image on the PictureBox control.
This is the bmp variable, which is then assigned back to the Image property of the control. Every-
thing you draw on the bmp object will appear on the control’s surface. We then create another
identical Bitmap object, the tempbmp variable. This object holds the original values of all the pixels
of the image.

The two nested loops go through every pixel in the image. In the inner loop’s body, we calcu-
late the new value of the current pixel and then write this value to the matching location of the bmp
object. The new pixel will appear on the control when we refresh it by calling the control’s Invali-
date method. This method isn’t called every time we display a new pixel. It would introduce a sig-
nificant delay, so we invalidate the control after processing 10 rows of pixels. This is a good balance
between performance and a visual feedback of the process’s progress. We could have displayed a
dialog box with a progress bar to indicate the progress of the operation. If a simple indication will
do, you can simply display the percentage of the completed work on the form’s title bar.

Applying Effects

In this section, you’ll find a short description of the algorithm that implements each effect. You
can open the ImageProcessing project with Visual Studio and examine the code, which contains a
lot of comments explaining the various operations.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 712

712 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

Smoothing Images

One of the simplest and most common operations in all image-processing programs is the smooth-
ing (or blurring) operation. The smoothing operation is equivalent to low-pass filtering: Just as you
can cut off a stereo’s high-frequency sounds with the help of an equalizer, you can cut off the high
frequencies of an image. If you’re wondering what the high frequencies of an image are, think of
them as the areas with abrupt changes in the image’s intensity. These are the areas that are mainly
affected by the blurring filter.

The smoothed image contains fewer abrupt changes than the original and looks a lot like
the original image seen through a semitransparent glass. Figure 19.7 shows a smoothed image
obtained with the ImageProcessing application. This image is a good candidate for smoothing,
given that it has a lot of detail, especially in the area of the water drops.

Figure 19.7

Smoothing an image
reduces its detail, but
can make the image less
‘‘noisy’’ and ‘‘busy.’’

To smooth an image, you must reduce the large differences between adjacent pixels. Let’s take a
block of 9 pixels, centered on the pixel we want to blur. This block contains the pixel to be blurred
and its eight immediate neighbors. Let’s assume that all the pixels in this block are green except
for the middle one, which is red. This pixel is drastically different from its neighbors, and for it to
be blurred, it must be pulled toward the average value of the other pixels. Taking the average of
a block of pixels is, therefore, a good choice for a blurring operation. If the current pixel’s value is
similar to the values of its neighbors, the average won’t significantly affect its value. If its value
is drastically different, the remaining pixels will ‘‘pull’’ the current pixel’s value toward them. In
other words, if the middle pixel were green, the average wouldn’t affect it. Because it’s the only
red pixel in the block, however, it will come closer to the average value of the remaining pixels. It
will assume a green tone.

The intensity of blurring depends on the size of the block over which the average is calculated.
We used a 3 × 3 block in our example, which yields an average blur. To blur the image even more,
use a 5 × 5 block. Even larger blocks will blur the image to the point that useful information is lost.
The actual code of the Smooth operation scans all the pixels of the image (excluding the edge pixels
that don’t have neighbors all around them) and takes the average of their RGB components (one

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 713

THE BITMAP OBJECT 713

value per component). It then combines the three values by using the method Color.FromARGB to
produce the new value of the pixel.

Sharpening Images

Because the basic operation for smoothing an image is addition, the opposite operation will result
in sharpening the image. The sharpening effect is more subtle than smoothing, but is also more
common and more useful. Nearly every image published, especially in monochrome (‘‘one-color’’)
publications, must be sharpened to some extent. Sharpening an image consists of highlighting the
edges of the objects in it, which are the very same pixels blurred by the previous algorithm. Edges
are areas of an image with sharp changes in intensity between adjacent pixels.

In a smooth area of an image, the difference between two adjacent pixels will be zero or a very
small number. If the difference is zero, the two pixels are nearly identical, which means that there’s
nothing to sharpen. This is called a flat area of the image. If the pixels are on an edge, the difference
between two adjacent pixels will be a large value (perhaps negative). This is an area of the image
with some degree of detail that can be sharpened. The difference between adjacent pixels iso-
lates the areas with detail and completely flattens out the smooth areas. The question now is how
to bring out the detail without leveling the rest of the image. How about adding the difference to
the original pixel? Where the image is flat, the difference is negligible, and the processed pixel
will be practically the same as the original one. If the difference is significant, the processed
pixel will be the original plus a value that’s proportional to the magnitude of the detail. The
sharpening algorithm can be expressed as follows:

new value = original value + 0.5 * difference

If you simply add the difference to the original pixel, the algorithm brings out too much detail.
You usually add a fraction of the difference; a 50 percent factor is common. You can also use dif-
ferent factors for different components (use a 60 percent factor for the green component and a 40
percent factor for the red component, for example).

Embossing Images

To sharpen an image, we add the difference between adjacent pixels to the pixel value. What do
you think would happen to a processed image if you took the difference between adjacent pixels
only? The flat areas of the image would be totally leveled, and only the edges would remain vis-
ible. The result would be an image like the one shown in Figure 19.8. This effect clearly sharpens
the edges and flattens the smooth areas of the image. By doing so, it gives depth to the image. The
processed image looks as if it’s raised and illuminated from the right side. This effect is known as
embossing or bas relief .

The actual algorithm is based on the difference between adjacent pixels. For most of the image,
however, the difference between adjacent pixels is a small number, and the image will turn black.
The Emboss algorithm adds a constant to the difference to bring some brightness to areas of the
image that would otherwise be dark. The algorithm can be expressed as follows:

new value = difference + 128

As usual, you can take the difference between adjacent pixels in the same row, adjacent pixels
in the same column, or diagonally adjacent pixels. The code that implements the Emboss filter in
the ImageProcessing application uses differences in the x and y directions. (Set one of the variables
DispX or DispY to 0 to take the difference in one direction only.)

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 714

714 CHAPTER 19 MANIPULATING IMAGES AND BITMAPS

Figure 19.8

The Emboss special
effect

Diffusing Images

The Diffuse special effect is different from the previous ones, in the sense that it’s not based on the
sums or the differences of pixel values. This effect uses the Random class to introduce some ran-
domness to the image and give it a ‘‘painterly’’ look, as demonstrated in Figure 19.9. You can
control the intensity of the effect by applying the same type of processing repeatedly to the image.

Figure 19.9

The Diffuse special
effect gives the image
a painterly look.

This time, we won’t manipulate the values of the pixels. Instead, the current pixel will assume
the value of another one, selected randomly in its 5 × 5 neighborhood with the help of the Random
class.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 715

THE BOTTOM LINE 715

The Diffuse algorithm is the simplest one. It generates two random variables, DX and DY, in the
range −3 to 3. These two variables are added to the coordinates of the current pixel to yield the
coordinates of another pixel in the neighborhood. The original pixel is replaced by the value of the
pixel that is (DX, DY) pixels away.

Open the ImageProcessing application to explore the code that implements the various effects.
Change the parameters of the various algorithms and see how they affect the processed image.
You can easily implement new algorithms by inserting the appropriate code in the inner loop’s
body. The rest of the code remains the same. Some simple ideas include clipping one or more col-
ors (force the red color component of each pixel to remain within a range of values), substituting
one component for another (replace the red component of each pixel with the green or blue com-
ponent of the same pixel), inverting the colors of the image (subtract all three color components
of each pixel from 255), and so on. With a little imagination, you can create interesting effects for
your images.

The Bottom Line

Specify colors. Color values are based on the RGB cube. Each color is a point in the RGB
code and is expressed as a triplet of integer values that represent the intensity of the red, green,
and blue components of the color. You can also use the named colors of the Color class.

Master It How do you draw with semitransparent colors?

Manipulate images and bitmaps. The Framework provides two classes for representing
images: the Image and Bitmap classes. The Image class represents images. You use Image
objects to read images from files or streams and to store them in memory. You can’t use the
Image object to create a new image. The Bitmap class also represents images, but you can use
the Bitmap object to create new images from within your code.

Master It When will you use an Image object versus a Bitmap object in a graphics
application?

Process images. Images are two-dimensional arrays of color values, one value per pixel,
arranged in rows and columns. To process an image’s pixels, start by reading the image into a
Bitmap object. Then set up two nested loops that iterate through each row and each column of
pixels. Use the GetPixel method to read pixel values, and the SetPixel method to change a
pixel’s value.

Master It Outline the code that processes the pixels of an image.

Petroutsos c19.tex V2 - 01/28/2008 4:03pm Page 716

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 717

Chapter 20

Printing with Visual Basic 2008

The topic of printing with Visual Basic is a not trivial, and many developers use third-party tools to
add print capabilities to their applications. As you already know, there’s no control with built-in
printing capabilities. It would be nice if certain controls, such as the TextBox or the ListView
control, would print their contents, but this is not the case. Even to print a few text paragraphs
entered by the user on a TextBox control, you must provide your own code.

Printing with VB isn’t complicated, but it requires a lot of code — most of it calling graphics
methods. You must carefully calculate the coordinates of each graphic element placed on the
paper, take into consideration the settings of the printer and the current page, and start a new
page when the current one is filled. It’s like generating graphics for the monitor, so you need
a basic understanding of the graphics methods, even if you’re only going to develop business
applications. If you need to generate elaborate printouts, I suggest that you look into third-party
controls with built-in printing capabilities, because the controls that come with Visual Studio have
no built-in printing capabilities.

The examples of this chapter will address many of your day-to-day needs, and I’m including
examples that will serve as your starting point for some of the most typical printing needs, from
printing tabular data to bitmaps.

In this chapter, you’ll learn how to do the following:

◆ Use the printing controls and dialog boxes

◆ Print plain text and images

◆ Print tabular data

The Printing Components
We’ll start our exploration of Visual Basic’s printing capabilities with an overview of the printing
process, which is the same no matter what you print. In this section, you’ll find a quick overview of
the printing controls (you’ll find more information on them, as well as examples, in the following
sections). You don’t need to use all these components in your project. Only the PrintDocument
component is required, and you will have to master the members of this control.

The PrintDocument Control
This object represents your printer, and you must add a PrintDocument control to any project
that generates printouts. In effect, everything you draw on the PrintDocument object is sent to
the printer. The PrintDocument object represents the printing device, and it exposes a Graphics
object that represents the printing surface, just like the Graphics property of all Windows con-
trols. You can program against the Graphics object by using all the graphics methods discussed

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 718

718 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

in Chapter 18, ‘‘Drawing and Painting with Visual Basic 2008.’’ If you can create drawings on
a form, you can just as easily print them on your printer. To print text, for example, you must
call the DrawString method. You can also print frames around the text with the DrawLine or
DrawRectangle method. In general, you can use all the methods of the Graphics object to prepare
the printout.

The PrintDocument control is invisible at runtime, and its icon will appear in the Components
tray at design time. When you’re ready to print, call the PrintDocument object’s Print method.
This method doesn’t produce any output, but it does raise the control’s BeginPrint and Print-
Page events. The BeginPrint event is fired as soon as you call the Print method, and this is where
you insert the printout’s initialization code. The PrintPage event is fired once for every page of
the printout, and this is where you must insert the code that generates output for the printer.
Finally, the EndPrint event is fired when the printout ends, and this is where you insert the code
to reset any global variables.

The following statement initiates the printing:

PrintDocument1.Print

This statement is usually placed in a button’s or a menu item’s Click event handler. To exper-
iment with simple printouts, create a new project, place a button on the form, add an instance of
the PrintDocument object to the form, and enter the preceding statement in the button’s Click
event handler.

After the execution of this statement, the PrintDocument1 PrintPage event handler takes
over. This event is fired for each page, so you insert the code to print the first page in this event’s
handler. The PrintPage event exposes the e argument, which gives you access to the Graph-
ics property of the current Printer object. This is the same object we used in the two preceding
chapters to generate all kinds of graphics. The printer has its own Graphics object, which repre-
sents the page you print on. If you need to print additional pages, you set the
e.HasMorePages property to True just before you exit the event handler. This will fire another
PrintPage event. The same process will repeat until you’ve printed everything. After you
finish, you set the e.HasMorePages property to False, and no more PrintPage events will be fired.
Instead, the EndPrint event will be fired and the printing process will come to an end. Figure 20.1
outlines the printing process.

Figure 20.1

All printing takes place
in the PrintPage event
handler of the Print-
Document object.

Initialize the printing process… and program these events to handle the printing.

PrintDocument.Print

Event Handlers

BeginPrint
Insert initialization code here

PrintPage
Insert code to print next page

EndPrint
Insert clean-up code here

HasMorePages = True

HasMorePages = False

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 719

THE PRINTING COMPONENTS 719

The code in Listing 20.1 shows the structure of a typical PrintPage event handler. The
PrintPage event handler prints three pages with the same text but a different page number on
each page.

Listing 20.1: A Simple PrintPage Event Handler

Private Sub PrintDocument1 PrintPage(
ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocument1.PrintPage

Static pageNum As Integer
Dim prFont As New Font(”Verdana”, 24, GraphicsUnit.Point)
e.Graphics.DrawString(

”PAGE ” & pageNum + 1, prFont,
Brushes.Black, 700, 1050)

e.Graphics.DrawRectangle(Pens.Blue, 0, 0, 300, 100)
e.Graphics.DrawString(

”Printing with VB 2005”, prFont,
Brushes.Black, 10, 10)

’ Add more printing statements here
’ Following is the logic that determines whether we’re done printing
pageNum = pageNum + 1
If pageNum <= 3 Then

e.HasMorePages = True
Else

e.HasMorePages = False
pageNum = 0

End If
End Sub

Notice that the page number is printed at the bottom of the page, but the corresponding state-
ment is the first one in the subroutine. I assume that you’re using a letter-size page, so I hard-coded
the coordinates of the various elements in the code. Later in this chapter, you’ll learn how to take
into consideration not only the dimensions of the physical page, but also its orientation.

The pageNum variable is declared as Static, so it retains its value between invocations of the
event handler and isn’t reset automatically. The last statement resets the pageNum variable in
anticipation of another printout. Without this statement, the first page of the second printout (if
you clicked the button again) would be page 4, and so on. Moreover, the printout would never
come to an end because the pageNum variable would never become less than 3. Every time you
repeat a printout, you must reset the global and static variables. This is a common task in printing
with the PrintDocument control, and is a common source of many bugs.

Initialization of Static Variables

You can also declare variables such as the pageNum variable at the form’s level, so that they’ll retain
their value between successive invocations of the PrintPage event handler. These variables can be
reset in the PrintDocument’s BeginPrint event handler, which is fired every time you start a new
printout by calling the PrintDocument.Print method.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 720

720 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

The code of Listing 20.1 uses the methods of the e.Graphics object to generate the printout.
After printing something and incrementing the page number, the code sets the e.HasMorePages
property to True, to fire the PrintPage event again, this time to print the next page. As long as
there are more pages to be printed, the program sets the e.HasMorePages property to True. After
printing the last page, it sets the same argument to False to prevent further invocations of the
PrintPage event. If you want to print a single page, you can ignore everything in this listing,
except for the drawing methods that produce the output.

The entire printout is generated by the same subroutine, one page at a time. Because pages are
not totally independent of one another, we need to keep some information in variables
that are not initialized every time the PrintPage event handler is executed. The page number,
for example, must be stored in a variable that will maintain its value between successive invoca-
tions of the PrintPage event handler, and it must be increased every time a new page is printed.
If you’re printing a text file, you must keep track of the current text line, so that each page will
pick up where the previous one ended, not from the beginning of the document. You can use
static variables or declare variables on the form’s level, whatever suits you best. This is a recurring
theme in programming the PrintPage event, and you’ll see many more examples of this tech-
nique in the following sections. I can’t stress enough the importance of resetting these variables at
the end of a printout (or initializing them at the beginning of the printout).

The PrintDialog Control
The PrintDialog control displays the standard Print dialog box, shown in Figure 20.2, which allows
users to select a printer and set its properties. If you don’t display this dialog box, the output will
be sent automatically to the default printer and will use the default settings of the printer.

Figure 20.2

The Print dialog box

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 721

THE PRINTING COMPONENTS 721

To display the Print dialog box, call the PrintDialog control’s ShowDialog method. However,
you must set the control’s PrinterSettings property first; if not, a runtime exception will be
thrown. We usually display the Print dialog box via the following statements:

PrintDialog1.PrinterSettings = PrintDocument1.PrinterSettings
If PrintDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

PrintDocument1.PrinterSettings = PrintDialog1.PrinterSettings
End If

Among other settings, the Print dialog box allows you to specify the range of pages to be
printed. Before allowing users to select a range, be sure that you have a way to skip any number
of pages. If the user specifies pages 10 through 19, your code must calculate the section of the
document that would normally be printed on the first nine pages, skip it, and start printing after
that. If the printout is a report with a fixed number of rows per page, skipping pages is trivial. If
the printout contains formatted text, you must execute all the calculations to generate the first nine
pages and ignore them (skip the statements that actually print the graphics). Starting a printout at
a page other than the first one can be a challenge, so make sure that your code will work before
enabling the Print Range zone in the Print dialog box.

When users select a printer in this dialog box, it automatically becomes the active printer.
Any printout generated after the printer selection will be sent to that printer; you don’t have to
insert any code to switch printers. The actual printer to which you will send the output of your
application is almost transparent to the printing code. The same commands will generate the
same output on any printer. It is also possible to set the printer from within your code by using a
statement like the following, where printer is the name of one of the installed printers:

PrintDocument1.PrinterSettings.PrinterName = printer

For more information on selecting a printer from within your code, see the section called
‘‘Printer and Page Properties,’’ later in this chapter. There are times when you want to set a printer
from within your code and not give users a chance to change it. An application that prints invoices
and reports, for example, must use a different printer for each type of printout.

The PageSetupDialog Control
The PageSetupDialog control displays the Page Setup dialog box, which allows users to set
up the page (its orientation and margins). The dialog box, shown in Figure 20.3, returns the cur-
rent page settings in a PageSettings object, which exposes the user-specified settings as properties.
These settings don’t take effect on their own; you simply read their values and take them into con-
sideration as you prepare the output for the printer from within your code. As you can see, there
aren’t many parameters to set in this dialog box, but you should display it and take into account
the settings specified by the user.

To use this dialog box in your application, drop the PageSetupDialog control on the form and
call its ShowDialog method from within the application’s code. The single property of this control
that you’ll be using exclusively in your projects is the PageSettings property. PageSettings is
an object that exposes a number of properties reflecting the current settings of the page (margins
and orientation). These settings apply to the entire document. The PrintDocument object has an
analogous property: the DefaultPageSettings property. After the user closes the Page Setup

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 722

722 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

dialog box, we assign its PageSettings property to the DefaultPageSettings property of the
PrintDocument object to make the user-specified settings available to our code. Here’s how we
usually display the Page Setup dialog box from within our application and retrieve its Page-
Settings property:

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() = DialogResult.OK Then

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
End If

Figure 20.3

The Page Setup dialog
box

Notice that the first line that initializes the dialog box is mandatory. If you attempt to display
the dialog box without initializing its PageSettings property, an exception will be thrown. You
will learn the properties of the PageSettings object later in this chapter, and we’ll use it in most of
the examples of this chapter. You can also create a new PageSettings object, set its properties, and
then use it to initialize the Page Setup dialog box.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 723

THE PRINTING COMPONENTS 723

The statements that manipulate the printing objects can get fairly lengthy. It’s common to use
the With structure to make the statements shorter. The preceding code segment can also be coded
as follows:

With PageSetupDialog1
.PageSettings = PrintDocument1.DefaultPageSettings
If .ShowDialog() = DialogResult.OK Then

PrintDocument1.DefaultPageSettings = .PageSettings
End With

To change the default margins in the Page Setup dialog box before displaying it, you can create
a new PageSettings object and set its Margins property as shown in the following code segment.
The margins are specified in the default coordinate system, and they correspond to 1.25, 1.75, 1,
and 2 inches because the default coordinate system of the page is 1/100 of an inch.

Dim PS As New System.Drawing.Printing.PageSettings
PS.Margins.Left = 125
PS.Margins.Right = 175
PS.Margins.Top = 100
PS.Margins.Bottom = 200
PageSetupDialog1.PageSettings = PS
If PageSetupDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
PrintDocument1.Print()

End If

Different Locales Use Different Units

If the application is running on a computer with a European locale, the margins will be con-
verted to tenths of a millimeter (or hundredths of a centimeter). The values of the previous
example will be mapped to 12.5, 17.5, 10, and 20 millimeters. The default coordinates of
the page, however, are always expressed in hundredths of an inch. If you request the values
of the Margins.Left and Margins.Right properties of the PrintDocument1.DefaultPageSettings
object, you’ll get back the values 49 and 69. 49/100 of an inch corresponds (practically)
to half an inch, which is the same as 12.5 millimeters (there are 25.4 millimeters in an
inch). The value 125 corresponds to one and a quarter inches if the target computer uses
the American locale, but only half an inch if the computer is using a European locale. The
PageSetupDialog control, however, will display the appropriate units in the Margins section
(inches or millimeters).

The PrintPreviewDialog Control
Print Preview is another dialog box that displays a preview of the printed document. It exposes
a lot of functionality and allows users to examine the output and, optionally, to send it to the
printer. The Print Preview dialog box, shown in Figure 20.4, is made up of a preview pane, where
you can display one or more pages at the same time at various magnifications, and a toolbar.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 724

724 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

The buttons on the toolbar allow users to select the magnification, set the number of pages that
will be displayed on the preview pane, move to any page of a multipage printout, and send the
preview document to the printer.

Figure 20.4

The Print Preview dialog
box

After you write the code to generate the printout, you can direct it to the PrintPreviewDialog
control. You don’t have to write any additional code; just place an instance of the control on the
form and set its Document property to the PrintDocument control on the form. Then show the
control instead of calling the Print method of the PrintDocument object:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

After the execution of these two lines, the PrintDocument control takes over. It fires the Print-
Page event as usual, but it sends its output to the Print Preview dialog box, not to the printer. The
dialog box contains a Print button, which the user can click to send the document being previewed
to the printer. The exact same code that generated the preview document will print the document
on the printer.

The PrintPreviewDialog control can save you a lot of paper and toner when you test your
printing code, because you don’t have to print every page to see what it looks like. Because the
same code generates both the preview and the actual printed document, and the Print Preview
option adds a professional touch to your application, there’s no reason why you shouldn’t add
this feature to your projects.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 725

PRINTER AND PAGE PROPERTIES 725

You Can’t Use the PrintPreviewDialog Control without a Printer

The PrintPreviewDialog control generates output that would normally be printed by the default
printer (or the printer selected in the Print dialog box). If this printer is a networked printer that your
computer can’t access at the time, the PrintPreview dialog box will not be displayed. Instead, an
exception will be thrown, which you must catch from within your code.

Of course, this control is no substitute for actual printing tests. You should also try to generate phys-
ical printouts (on several types of printers, if possible) to uncover any problems with your printing
code before your customers do. For example, most printers can’t print near their page edges, but this
isn’t a problem for the PrintPreviewDialog control. If you print near the edges, the printout will
appear fine on the preview pane, but some unexpected cropping might occur on the hard copy. Some
black-
and-white printers might translate colors to gray shades poorly, and what appears light gray on the
monitor during a preview might show as black on a printout.

I mentioned earlier that the PageSettings class exposes the Margins property, which returns the mar-
gins specified by the user on the PageSetupDialog control. The PageSettings class also exposes the
HardMarginX and HardMarginY properties, which return the width and height of the unprintable
area of the page, respectively. For my ink-jet printer, the two values are 25 and 11 (in hundredths of
an inch). Use these two properties in your code to make sure that the margins specified by the user
are at least equal to the page’s hard margins.

The first example of this chapter (refer to Listing 20.1) prints three simple pages to the printer.
To redirect the output of the program to the PrintPreview control, add an instance of the Print-
Preview control to the form and replace the statement that calls the PrintDocument1.Print
method in the button’s Click event handler with the following statements:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

Run the project, and this time you preview the document on your monitor. If you’re satisfied
with its appearance, you can click the Print button to send the document to the printer.

To avoid runtime errors, you can use the following exception handler, whether you print
directly to the printer or you’re displaying a printout preview:

Try
PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

Catch exc As Exception
MsgBox ”The printing operation failed” & vbCrLf & exc.Message

End Try

Printer and Page Properties
Before you can generate a printout, you must retrieve the settings of the current printer and page,
and this is a good place to present the members of these two objects because we’ll use them exten-
sively in the examples of the following sections. The properties of these two items are reported to

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 726

726 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

your application through the PrinterSettings and the PageSettings objects. The PageSettings
object is a property of the PrintPageEventArgs class, and you can access it through the e argu-
ment of the PrintPage event handler. The DefaultPageSettings property of the PrintDocument
component exposes the current page’s settings.

The PrinterSettings object is a property of the PrintDocument object, as well as a property
of the PageSetupDialog and PrintDialog controls. Finally, one of the properties exposed by the
PageSettings object is the PrinterSettings object. These two objects provide all the information
you might need about the selected printer and the current page through the properties listed in
Tables 20.1 and 20.2.

Table 20.1: The Properties of the PageSettings Object

Property Description

Bounds Returns the bounds of the page (Bounds.Width and Bounds.Height). If the
current orientation is landscape, the width is larger than the height.

Color Returns, or sets, a True/False value that indicates whether the current page
should be printed in color. On a monochrome printer, this property is always
False.

Landscape A True/False value that indicates whether the page is printed in landscape or
portrait orientation.

Margins The margins for the current page (Margins.Left, Margins.Right,
Margins.Bottom, and Margins.Top).

PaperSize The size of the current page (PaperSize.Width and PaperSize.Height).

PaperSource The page’s paper tray.

PrinterResolution The printer’s resolution for the current page.

PrinterSettings This property returns, or sets, the printer settings associated with the page. For
more information on the PrinterSettings object and the properties it exposes, see
Table 20.2.

Retrieving the Printer Names
To retrieve the names of the installed printers, use the InstalledPrinters collection of the
PrinterSettings object. This collection contains the names of the printers as strings, and you can
access them with the following loop:

Dim i As Integer
With PrintDocument1.PrinterSettings.InstalledPrinters

For i = 0 To .Count - 1
Debug.WriteLine(.Item(i))

Next
End With

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 727

PRINTER AND PAGE PROPERTIES 727

Table 20.2: The Members of the PrinterSettings Object

Member Description

InstalledPrinters This method retrieves the names of all printers installed on the
computer. The same printer names also appear in the Print dialog
box, in which the user can select any one of them.

CanDuplex A read-only property that returns a True/False value indicating
whether the printer supports double-sided printing.

Collate Another read-only property that returns a True/False value
indicating whether the printout should be collated.

Copies This property returns the requested number of copies of the
printout.

DefaultPageSettings This property is the PageSettings object that returns, or sets, the
default page settings for the current printer.

Duplex This property returns, or sets, the current setting for double-sided
printing.

FromPage, ToPage The printout’s starting and ending pages, as specified in the Print
dialog box by the user.

IsDefaultPrinter Returns a True/False value that indicates whether the selected
printer (the one identified by the PrinterName property) is the
default printer. Note that selecting a printer other than the default
one in the Print dialog box doesn’t change the default printer.

IsPlotter Returns a True/False value that indicates whether the printer is a
plotter.

IsValid Returns a True/False value that indicates whether the
PrinterName corresponds to a valid printer.

LandscapeAngle Returns an angle, in degrees, by which the portrait orientation
must be rotated to produce the landscape orientation.

MaximumCopies Returns the maximum number of copies that the printer allows
you to print at a time.

MaximumPage Returns, or sets, the largest value that the FromPage and ToPage
properties can have.

MinimumPage Returns, or sets, the smallest value that the FromPage and ToPage
properties can have.

PaperSizes Returns all the paper sizes that are supported by this printer.

(CONTINUED)

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 728

728 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

Table 20.2: The Members of the PrinterSettings Object (CONTINUED)

Member Description

PaperSources Returns all the paper source trays on the selected printer.

PrinterName Returns, or sets, the name of the printer to use.

PrinterResolutions Returns all the resolutions that are supported by this printer.

PrintRange Returns, or sets, the numbers of the pages to be printed, as
specified by the user. When you set this property, the value
becomes the default setting when the Print dialog box is opened.

SupportsColor Returns a True/False value that indicates whether this printer
supports color printing.

CreateMeasurement-
Graphics

Returns a Graphics object that contains printer information you
can use in the PrintDocument.Print event handler.

These statements will produce output such as the following when executed:

Fax
HPLaser
\\TOOLKIT\XEROX

The first two printers are local (Fax isn’t even a printer; it’s a driver for the fax and it’s installed
by Windows). The last printer’s name is XEROX, and it’s a network printer connected to the
TOOLKIT workstation.

You can also change the current printer by setting the PrinterName property of the Printer-
Settings property with either of the following statements:

PrintDocument1.PrinterSettings.PrinterName = ”HPLaser”
PrintDocument1.PrinterSettings.PrinterName =

PrintDocument1.PrinterSettings.InstalledPrinters(1)

Another property that needs additional explanation is the PrinterResolution property. The
PrinterResolution property is an object that exposed provides the Kind property, which returns,
or sets, the current resolution of the printer, and its value is one of the PrinterResolutionKind
enumeration’s members: Custom, Draft, High, Low, and Medium. To find out the exact horizontal
and vertical resolutions, read the X and Y properties of the PrinterResolution property. When
you set the PrinterResolutionKind property to Custom, you must specify the X and Y properties.

Page Geometry
Printing on a page is similar to generating graphics onscreen. Like the drawing surface on the
monitor (the client area), the page on which you’re printing has a fixed size and resolution. The
most challenging aspect of printing is the calculation of the coordinates and dimensions of each
graphic element on the page. In business applications, the most common elements are strings

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 729

PRINTER AND PAGE PROPERTIES 729

(rendered in various fonts, styles, and sizes), lines, and rectangles, which are used as borders for
tabular data.

Although you can print anywhere on the page, we usually print one element at a time, calculate
the space it takes on the page, and then print the next element next to or below it. Printing code
makes heavy use of the MeasureString method, and nearly all the examples in this chapter use
this method.

The printable area is determined by the size of the paper you’re using, and in most cases it’s
8.5 × 11 inches (keep in mind that most printers can’t print near the edge of the page). Printed
pages have a margin on all four sides, and users can set a different margin on each side through
the Page Setup dialog box. Your program should confine its printing within the specified margins.

To access the current page’s margins, use the Margins property of the PrintDocument1.Default-
PageSettings object. This object exposes the Left, Right, Top, and Bottom properties, which are
the values of the four margins. The margins, as well as the page coordinates, are expressed in
hundredths of an inch. The width of a standard letter-sized page, for example, is 8,500 units, and
its height is 11,000 units. Of course, you can use noninteger values for even greater granularity,
but you won’t see two straight lines printed at less than one-hundredth of an inch apart. You can
use other units, which are all members of the PageUnit enumeration (refer to Chapter 18). In the
examples of this chapter, I’m using the default units (1/100 of an inch).

Another property exposed by the DefaultSettings object is the PageSize property, which rep-
resents the dimensions of the page. The width and height of the page are given by the following
expressions:

PrintDocument1.DefaultPageSettings.PaperSize.Width
PrintDocument1.DefaultPageSettings.PaperSize.Height

The top of the page is at coordinates (0, 0), which correspond to the top-left corner of the page.
We never actually print at this corner. The coordinates of the top-left corner of the printable area
of the page are given by the following expressions:

PrintDocument1.DefaultPageSettings.Margins.Top
PrintDocument1.DefaultPageSettings.Margins.Left

Now that you have seen how to use the printing components, their basic properties, and the
page’s geometry, you can look at some examples that demonstrate how to generate practical
printouts.

VB 2008 at Work: The SimplePrintout Project
Let’s put the information of the preceding paragraphs together to build a simple application
that prints a string at the top-left corner of the page (the origin of the page) and a rectangle that
delimits the page’s printable area. To print something, start by dropping the PrintDocument object
on your form. Then place a button on the form and enter the following statement in its Click
event handler:

PrintDocument1.Print()

This statement tells the PrintDocument object that you’re ready to print. The PrintDocument
object will fire the BeginPrint event, in which you can place any initialization code (reset the

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 730

730 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

variables that must maintain their value between consecutive invocations of the PrintPage event
handler, for example). Then, it will fire the PrintPage event, whose definition is the following:

Private Sub PrintDocument1 PrintPage(
ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocument1.PrintPage

End Sub

As implied by its name, the PrintPage event is fired once for each page. You must place the
VB code required to produce the desired output in this event’s handler. To access the page in
the printer from within the PrintPage event’s handler, use the e.Graphics property, which is a
Graphics object. Anything you draw on this object is printed on paper.

To print a string at the page’s top-left corner, call the Graphics object’s DrawString method, as
shown here:

Dim pFont As Font
pFont = New Font(”Comic Sans MS”, 20)
e.Graphics.DrawString(”ORIGIN”, pFont, Brushes.Black, 0, 0)

The last two arguments of the DrawString method are the coordinates of a point where the
string will be printed. The string is printed right below the origin, so that it’s visible. If you attempt
to print a string at the bottom-right corner of the page, the entire string will fall just outside the
page, and no visible output will be produced. The coordinates passed to the DrawString method
are the coordinates of the upper-left corner of a box that encloses the specified string.

No matter what your default printer is, it’s highly unlikely that it’s been set to no margins. The
page’s margins aren’t enforced by the PrintDocument object; you must respect them from within
your code because it is possible to print anywhere on the page. To take into consideration the
page’s margins, change the coordinates from (0, 0) to the left and top margins.

You can also use the other members of the Graphics object to generate graphics. The following
statement will render the text on the page by using an anti-alias technique (anti-aliased text looks
much smoother than text rendered with the default method):

e.Graphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias

Next, we’ll print a rectangle around the area of the page in which we’re allowed to print — a
rectangle delimited by the margins of the page. To draw this rectangle, we need to know the size
of all four margins and the size of the page (obviously). To read (or set) the page’s margins, use
the PrintDocument1.DefaultPageSettings.Margin object, which provides the Left, Right, Top,
and Bottom properties. We’re also going to need the dimensions of the page, which we can read
through the Width and Height properties of the PrintDocument1.DefaultPageSettings.PaperSize
object. The four margins are calculated and stored in four variables via the following statements:

Dim Lmargin, Rmargin, Tmargin, Bmargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

Lmargin = .Left
Rmargin = .Right
Tmargin = .Top
Bmargin = .Bottom

End With

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 731

PRINTER AND PAGE PROPERTIES 731

The rectangle we want to draw should start at the point (Lmargin, Tmargin) and extend
PrintWidth units to the right and PrintHeight units down. These two variables are the width
and height of the page minus the respective margins, and they’re calculated with the following
statements:

Dim PrintWidth, PrintHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - Lmargin - Rmargin
PrintHeight = .Height - Tmargin - Bmargin

End With

Then insert the following statements in the PrintPage event handler to draw the rectangle:

Dim R As Rectangle
R = New Rectangle(Lmargin, Tmargin, PrintWidth, PrintHeight)
e.Graphics.DrawRectangle(Pens.Black, R)

The printing takes place from within the PrintPage event handler, which is shown in Listing
20.2. The event handler contains all the statements presented in the previous paragraphs and a
few comments.

Listing 20.2: Generating a Simple Printout

Private Sub PrintDocument1 PrintPage(ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocument1.PrintPage

’ Turn on antialias for text
e.Graphics.TextRenderingHint =

Drawing.Text.TextRenderingHint.AntiAlias
’ Print a string at the origin

Dim pFont As Font
pFont = New Font(”Comic Sans MS”, 20)
e.Graphics.DrawString(”ORIGIN”, pFont, Brushes.Black, 0, 0)

’ Read margins into local variables
Dim Lmargin, Rmargin, Tmargin, Bmargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

Lmargin = .Left
Rmargin = .Right
Tmargin = .Top
Bmargin = .Bottom

End With
’ Calculate the dimensions of the printable area

Dim PrintWidth, PrintHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - Lmargin - Rmargin
PrintHeight = .Height - Tmargin - Bmargin

End With

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 732

732 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

’ Now print the rectangle
Dim R As Rectangle
R = New Rectangle(Lmargin, Tmargin, PrintWidth, PrintHeight)
e.Graphics.DrawRectangle(Pens.Black, R)

End Sub

VB 2008 at Work: The PageSettings Project
In this section, we’ll write a more elaborate application to print a rectangle bounded by the mar-
gins of the page as before. In addition to printing the rectangle, the application also prints four
strings, one in each margin, with different orientations (as seen in Figure 20.5). The project that
generated the output is called PageSettings, and it also demonstrates how to display the Page
Setup dialog box from within your code and then generate a printout according to the settings on
this dialog box.

Figure 20.5

The output of the Page-
Settings project

You saw the statements that print a rectangle enclosing the printable area of the page. Printing
the labels is a bit involved. Because the four strings appear in all four orientations, some rotation
transformation is involved. We’ll discuss the code for printing the captions later. For now, let’s
examine the PageSetupDialog control and how you take into consideration the settings in this
dialog box from within your code.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 733

PRINTER AND PAGE PROPERTIES 733

Setting Up the Page

To display the Page Setup dialog box, first place an instance of the PageSetupDialog control on
your form. Then set its PageSettings property to a PageSettings object that contains the default
settings for the printer. We usually set this property to the DefaultPageSettings property of the
PrintDocument object, although you can create a new PageSettings object and set its properties
from within your code. Finally, display the dialog box by calling its ShowDialog method:

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
End If

Upon return, we assign the PageSettings property of the control to the DefaultPage-
Settings property of the PrintDocument1 control. Now, we must take into consideration the
settings specified in the dialog box from within the PrintPage event’s code. The area on the page
in which we must restrict our output is a rectangle with its top-left corner at the left and top mar-
gins, and its dimensions being the width and height of the page (less the corresponding margins).
The following statements set up a few variables to hold the page’s dimensions:

Dim PrintWidth, PrintHeight As Single
Dim PageWidth, PageHeight As Single
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - LMargin - RMargin
PrintHeight = .Height - TMargin - BMargin
PageWidth = .Width
PageHeight = .Height

End With

A few additional statements are required if the user changes the orientation of the page. When
you’re printing in landscape mode, the size of the paper doesn’t change. If you examine the Width
and Height properties of the PaperSize object, you’ll realize that the page is always taller than it
is wide. This means that we must swap the width and height from within our code. The margins,
however, remain the same. Notice that as you change the orientation of the page in the Page Setup
dialog box, the margins are swapped automatically (the left and right margins become top and
bottom, respectively).

To find out whether the user has changed the page’s orientation, examine the Landscape prop-
erty of the DefaultPageSettings object. If this property is True, it means that the user wants to
print in landscape mode, and you must swap the page’s width and height. The following state-
ments calculate the dimensions of the page area within the margins when the orientation is set to
landscape:

If PrintDocument1.DefaultPageSettings.Landscape Then
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Height - Tmargin - Bmargin
PrintHeight = .Width - Rmargin - Lmargin

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 734

734 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

PageWidth = .Height
PageHeight = .Width

End With
End If

Printing the Labels

Now we can focus on the code that prints the captions in the space of the four margins, which
is considerably more elaborate. The top margin’s caption isn’t rotated; it’s printed at the default
orientation. The caption in the right margin is rotated by 90 degrees, and the caption in the bottom
margin is rotated by 180 degrees. The caption in the left margin is rotated by −90 degrees. These
rotations take place around the origin, so the labels must also be moved to their places with a
translation transformation. Let’s look at the code that prints the Right Margin String caption,
shown in Listing 20.3.

Listing 20.3: Printing a Caption in the Right Margin

strWidth = e.Graphics.MeasureString(RMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(RMarginCaption, pFont).Height
X = PageWidth - (Rmargin - strHeight) / 2
Y = TMargin + (PrintHeight - strWidth) / 2
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(X, Y)
e.Graphics.RotateTransform(90)
e.Graphics.DrawString(RMarginCaption, pFont, Brushes.Black, 0, 0)

First, we calculate the string’s width and height by using the MeasureString method and store
them in the strWidth and strHeight variables. The string will be rotated by 90 degrees before
being printed. The rotation alone would place the string just outside the left margin, so we must
translate it to the right. The amount of the translation is the page’s width minus half the difference
between the string’s height and the right margin. Translating the caption by the width of the page
would bring it to the very right edge of the paper. To center it in the right margin, we must split the
difference of the string’s height from the right margin on either side of the string. We’re using
the string’s height in calculating the x-coordinate and the string’s width in calculating the
y-coordinate because after the string is rotated by 90 degrees, the width and height will be
swapped. X and Y are the amounts by which the string must be moved along the horizontal and
vertical axes. The rotation of the string will be performed by a rotation transformation (for more
information on transformations, see Chapter 18). Because transformations are cumulative, the
code resets any existing transformations and applies two new ones.

Then, the DrawString method is called to print the string. The DrawString method draws the
string at the point (0, 0), but the two transformations will place it at the proper location. This is
the simplest method for printing transformed strings (or any other graphic element): Set up the
appropriate transformation(s) and then draw the string at the origin.

The code for placing the other three captions is quite analogous. It uses the proper translation
and rotation transformations, and the only complication is the calculation of the coordinates of the
translation transformation. The listing of the PrintPage event handler of the PageSettings project
is fairly lengthy. Listing 20.4 shows the code that prints the caption in the right margin.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 735

PRINTER AND PAGE PROPERTIES 735

Listing 20.4: Printing the Rectangle and the Margin Captions

Private Sub PrintDocument1 PrintPage(...)
Handles PrintDocument1.PrintPage

Dim R As Rectangle
Dim strWidth, strHeight As Integer
Dim pFont As Font
pFont = New Font(”Comic Sans MS”, 20)
e.Graphics.DrawString(”ORIGIN”, pFont, Brushes.Black, 0, 0)
pFont = New Font(”Comic Sans MS”, 40)
Dim X, Y As Integer
Dim TMarginCaption As String = ”Top Margin String”
Dim LMarginCaption As String = ”Left Margin String”
Dim RMarginCaption As String = ”Right Margin String”
Dim BMarginCaption As String = ”Bottom Margin String”
Dim LMargin, RMargin, TMargin, BMargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

LMargin = .Left
RMargin = .Right
TMargin = .Top
BMargin = .Bottom

End With
Dim PrintWidth, PrintHeight, PageWidth, PageHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - LMargin - RMargin
PrintHeight = .Height - TMargin - BMargin
PageWidth = .Width
PageHeight = .Height

End With
If PrintDocument1.DefaultPageSettings.Landscape Then

With PrintDocument1.DefaultPageSettings.PaperSize
PrintWidth = .Height - TMargin - BMargin
PrintHeight = .Width - RMargin - LMargin
PageWidth = .Height
PageHeight = .Width

End With
End If

’ Draw rectangle
R = New Rectangle(LMargin, TMargin, PageWidth - LMargin - RMargin,

PageHeight - BMargin - TMargin)
e.Graphics.DrawRectangle(Pens.Black, R)
strWidth = e.Graphics.MeasureString(RMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(RMarginCaption, pFont).Height
X = PageWidth - (RMargin - strHeight) / 2
Y = TMargin + (PrintHeight - strWidth) / 2
e.Graphics.ResetTransform()

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 736

736 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

e.Graphics.TranslateTransform(X, Y)
e.Graphics.RotateTransform(90)
e.Graphics.DrawString(RMarginCaption, pFont, Brushes.Black, 0, 0)

As always, you must call the PrintDocument object’s Print method for this event handler to
be activated. You can use the Print method of the PrintDocument object, but the sample project
uses the PrintPreviewDocument object to display a preview of the printout. Listing 20.5 shows the
code behind the button on the form.

Listing 20.5: The Print Button

Private Sub Button1 Click(...)
Handles Button1.Click

Try
PrintPreviewDialog1.Document = PrintDocument1
PageSetupDialog1.PageSettings =

PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then
PrintDocument1.DefaultPageSettings =
PageSetupDialog1.PageSettings
PrintPreviewDialog1.ShowDialog()

End If
Catch exc As Exception

MsgBox(”Printing Operation Failed” & vbCrLf &
exc.Message)

End Try
End Sub

The code uses an exception handler to prevent the program from crashing with a runtime
exception if there’s a problem with the printer. The application should work if there’s a default
printer; it will fail to generate a preview only if the default printer is a network printer and you
have no access to it at the time.

The first statement sets up the PrintPreview control by setting its Document property to the
PrintDocument object. The second statement assigns the default page settings to the PageSetup-
Dialog control, and the following statement displays the Page Setup dialog box. After the user has
specified the desired settings and closed the dialog box, the new settings are assigned to the Print-
Document object’s DefaultPageSettings property. The last statement displays the Print Preview
dialog box. This statement initiates the printing process, which sends its output to the preview
pane instead of the printer. That’s all it takes to add a preview feature to your application.

If you feel uncomfortable with the transformations, especially the rotation transformation,
Figure 20.6 shows what happens to a string when it’s rotated in all four directions around the
origin. The origin — the point with coordinates (0, 0) — is where the two axes meet.

The statements in the PrintPage event handler rotate the string GDI + Graphics around the
origin by 90, 180, and 270 degrees. The numbers in parentheses indicate the angle of rotation for

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 737

PRACTICAL PRINTING EXAMPLES 737

each string. Of course, I couldn’t print to the left of the origin or above the origin, so I had to rotate
the translated string by 50 percent of the page’s width to the right and 50 percent of the page’s
height down, to appear at the middle of the page. The two axes were also translated by the same
amounts in the two directions. This illustration’s purpose is to help you visualize how the string
is rotated around the origin. Besides the string itself, the enclosing rectangle is also printed. This is
the rectangle returned by the MeasureString method, subject to the same transformations as the
string it encloses. To examine the code that produced Figure 20.6, open the RotatedStrings sample
project in Visual Studio; the printing code is well documented in the code, and you should be able
to understand and experiment with it.

Figure 20.6

Rotating a string around
the origin

Practical Printing Examples
In principle, using the Framework’s printing components is straightforward. Depending on the
type of printout you want to generate, however, the code of the PrintPage event handler can get
quite complicated. Because there are no techniques that you can apply to all situations, I included
a few typical examples to demonstrate how to use the same objects to perform very different tasks.
The first example demonstrates how to print tabular reports, which is the most common report
type for business applications. A tabular report has the form of a grid, with columns of different
widths and rows of different heights.

The second example is the printing of text, and even if this is the least exciting type of printout,
you should be able to send text to the printer. As it turns out, it’s not a trivial operation. The last
example prints bitmaps, probably the simplest type of printout. The only challenge with printing
bitmaps is that you might have to reduce the size of the bitmap to make it fit in the width or the
height of the page, or a rectangular area within the page.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 738

738 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

Printing Tabular Data
The printing operation you’ll be using most often in typical business applications that require
custom printing is that of tabular data. Figure 20.7 shows an example of a printout with tabular
data. This printout was generated by the PrintTable project.

Figure 20.7

Using the PrintTable
application to print data
in a tabular arrangement

The ISBN column contains a 10-character string, and it’s quite simple to handle. All you have to
do is make sure that the ISBN will fit in the corresponding column. If you allow the user to select
the font at runtime and you can’t set a fixed width for this column, you should print only as many
characters as will fit in the reserved width. In this example, we won’t do anything special with the
ISBN column. You can also retrieve the width of a 10-character string in the specific font and use
this value (plus a small margin) as the column’s width.

The Title column has a variable length, and you might have to break long titles into two or
more printed lines — this is the real challenge of the application. As you recall from Chapter 18,
the DrawString method can print a string in a rectangle you pass as an argument. The width of this
rectangle must be the same as the width of the Title column. The height of the rectangle should be
enough for the entire text to fit in it. In our code, we’ll use a rectangle with the appropriate width
and adequate height to make sure that the entire title will be printed. Alternatively, you can trim
the title if it’s too long, but there’s no point in trimming substantial information.

The last intricacy of this application is the Author(s) column. Each book might have no authors,
one author, or more, and we’ll print each author on a separate line. The total height of each row
depends on the height of the Title or Author(s) cell: Note in Figure 20.7 that the height of some
lines is determined by the height of the Title cell, while the height of others is determined by
the height of the Author(s) cell. We must keep track of the height of these two cells and move

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 739

PRACTICAL PRINTING EXAMPLES 739

down accordingly before printing the following row. Where the height of the Author(s) cells is
determined by the number of authors (we’ll print each author on a single line and assume that
the name does not exceed the width of the page), we must provide the code to break the title into
multiple lines. If an author’s name does not fit in a single line, it will be truncated and an ellipsis
will appear in the place of the missing characters.

So, where does the data come from? It could come from a text file, an XML document, or a
database. It doesn’t really make a difference, as long as you can access one row at a time and
extract its fields. For the purposes of this example, and because we haven’t discussed databases
yet, I’m using a ListView control to store the data. The ListView control is populated with the
Load Data button on the form of Figure 20.8 (the project’s main form). Each book is a different
item in the ListView, and the various fields are subitems. Each item’s Text property is the book’s
ISBN, and the remaining fields are stored as subitems. I took sample data from an online bookstore
and, in some cases, edited their titles to make them long or added fictitious authors. Here are the
statements that populate the ListView control with the first two items:

Dim BookItem As New ListViewItem
BookItem.Text = ”0393049515”
BookItem.SubItems.Add(

”The Dream of Reason:
A History of Philosophy from
the Greeks to the Renaissance”)

BookItem.SubItems.Add(”Anthony Gottlieb”)
ListView1.Items.Add(BookItem)

BookItem = New ListViewItem
BookItem.Text = ”0156445085”
BookItem.SubItems.Add(”In Search of the Miraculous :

Fragments of an Unknown Teaching ”)
BookItem.SubItems.Add(”P. D. Ouspensky”)
ListView1.Items.Add(BookItem)

Figure 20.8

The PrintTable project’s
main form

Notice that the ListView control has four columns (one for the ISBN, one for the title, and two
for author names), but you can add as many authors to each title as you wish. Subitems beyond

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 740

740 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

the fourth one are invisible on the ListView control, but they’re there. After the list has been
populated, you can click the Preview & Print Data button to generate the preview and print the
report. The main form of the PrintTable project, populated with the data shown in the sample
printout, is shown in Figure 20.8.

Formatting the Cells

The report is generated one row at a time. The vertical coordinate of the current row is stored in
the variable y, which is incremented accordingly for each new row. This coordinate applies to
all the cells of the current row, and if a cell contains multiple lines, the y-coordinate is adjusted
accordingly for the following row. The x-coordinate of each column is the same for all rows. These
coordinates are calculated at the beginning and don’t change from row to row.

Breaking a string into multiple lines isn’t trivial. You should include as many words as you can
on each line without exceeding the available width. Fortunately, the Graphics object’s Measure-
String method can break a string into the required number of lines to fit the string into a rectangle
and report the number of lines. This form of the MeasureString method is as follows:

Graphics.MeasureString(string, font, size, format, cols, lines)

The first argument is the string to be printed, and it will be rendered in the font specified by the
second argument. The size argument is the width and height of the rectangle in which the string
must fit. In our case, the width is that of the cell in which the string must fit. The format argument
is a StringFormat object that lets you specify various options for printing text (its orientation, for
example). You will find more information about this argument in the following section. For the
purposes of this example, we’ll use the default FormatString object. The last two arguments are
the number of characters that will fit across the rectangle and the number of lines the string must
be broken into, and they’re set by the MeasureString method. Even if we don’t know the height
of the rectangle in advance, we can use an absurdly large value. The MeasureString method
will tell you how many text lines it needs, and you’ll use this value to calculate the height of
the rectangle. To calculate the height of the cell in which the title will fit, the program uses the
following statements:

Dim cols, lines As Integer
e.Graphics.MeasureString(strTitle, tableFont,

New SizeF(W2, 100), New StringFormat(),
lines, cols)

strTitle is a string variable that holds the title, and tableFont is the font in which the string
will be rendered. W2 is the width of the second column of the grid, in which the title appears. This
is a fixed value, calculated ahead of time. The initial height of the rectangle is 100 pixels, but this
value is totally arbitrary. It is possible for a given cell’s text to be so long that it will take a page
and a half to print. The PrintTable project can’t handle similar extreme situations. You will have
to provide additional code to handle the overflow of a cell to the following page.

The lines and cols variables are passed by reference, so they can be set by the MeasureString
method to the number of lines and number of characters that will fit in the specified rectangle.
After we have the number of lines it takes for the title to be printed in the specified width, we can
advance the vertical coordinate by the following amount:

lines * tableFont.GetHeight(e.Graphics)

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 741

PRACTICAL PRINTING EXAMPLES 741

where tableFont is the font we use to print the table. Its GetHeight method returns the height
of the font when rendered on the Graphics object passed as an argument. The few statements
shown here will take care of breaking long titles into multiple lines, which is the most challenging
aspect of the code. The last cell in each row contains a line for each author. The following loop
goes through all the authors and prints them, each one on a separate line:

For subitm = 2 To ListView1.Items(itm).SubItems.Count - 1
str = ListView1.Items(itm).SubItems(subitm).Text
e.Graphics.DrawString(str, tableFont, Brushes.Black, X3, Yc)
Yc = Yc + tableFont.Height + 2

Next

The y-coordinate of the last author is stored in the variable Yc. To calculate the y-coordinate
of the next row of the table, we compare the Y and Yc variables and keep the larger value. This
value, plus a small displacement, is used as the y-coordinate for the following line. Listing 20.6 is
the complete listing of the PrintPage event handler of the PrintTable project.

Listing 20.6: The PrintPage Event Handler of the PrintTable Project

Private Sub PrintDocument1 PrintPage(
ByVal sender As Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocument1.PrintPage

Y = PrintDocument1.DefaultPageSettings.Margins.Top + 20
e.Graphics.DrawString(”ISBN”, TitleFont, Brushes.Black, X1, Y)
e.Graphics.DrawString(”Title”, TitleFont, Brushes.Black, X2, Y)
e.Graphics.DrawString(”Author(s)”, TitleFont, Brushes.Black, X3, Y)
Y = Y + 30
While itm < ListView1.Items.Count

Dim str As String
str = ListView1.Items(itm).Text
e.Graphics.DrawString(str, tableFont, Brushes.Black, X1, Y)
str = ListView1.Items(itm).SubItems(1).Text
Dim R As New RectangleF(X2, Y, W2, 80)
e.Graphics.DrawString(str, tableFont, Brushes.Black, R)
Dim lines, cols As Integer
e.Graphics.MeasureString(str, tableFont,

New SizeF(W2, 50), New StringFormat(),
cols, lines)

Dim subitm As Integer, Yc As Integer
Yc = Y
For subitm = 2 To ListView1.Items(itm).SubItems.Count - 1

str = ListView1.Items(itm).SubItems(subitm).Text
e.Graphics.DrawString(str, tableFont, Brushes.Black, X3, Yc)
Yc = Yc + tableFont.Height + 2

Next
Y = Y + lines * tableFont.Height + 5
Y = Math.Max(Y, Yc)

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 742

742 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

With PrintDocument1.DefaultPageSettings
e.Graphics.DrawLine(Pens.Black,

.Margins.Left, Y, PaperSize.Width -

.Margins.Right, Y)
If Y > 0.95 * (.PaperSize.Height - .Margins.Bottom) Then

e.HasMorePages = True
Exit Sub

End If
End With
itm = itm + 1

End While
e.HasMorePages = False

End Sub

The code uses a few variables that are declared on the form level with the following statements:

Dim tableFont, titleFont As Font
Dim X1, X2, X3 As Integer
Dim W1, W2, W3 As Integer
Dim Y As Integer
Dim itm As Integer

Setting the Column Widths

Before we can print, we must specify the widths of the columns. Because we know the information
we’re going to display in each column, we can make a good estimate of the column widths. The
first column, in which the ISBN is displayed, starts at the left margin of the page and extends 120
units to the right, which is an adequate width for printing 13 characters. The default unit is 1/100
of an inch, so the ISBN column’s width is 1.2 inches. The Title column should take up most of
the page’s width. In the PrintTable example, I gave 50 percent of the available page width to this
column. The remaining space goes to the Author(s) column. You can’t use fixed widths for all
columns, because you don’t know the paper size or the page’s orientation. That’s why I’m mixing
percentages and allow the last column to fill the space to the right edge of the page. The variables
X1, X2, and X3 are the x-coordinates of the left edge of each column, whereas the variables W1, W2,
and W3 are the widths of the columns. These variables are set in the Print button’s Click event
handler. Then, the subroutine displays the Print Preview dialog box with the document’s preview.
Listing 20.7 shows the Print button’s Click event handler. I’m also using different fonts for the
headers and the table’s cells.

Listing 20.7: Setting Up the Columns and Printing the Table

Private Sub Button2 Click(...)
Handles Button2.Click

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() Then

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
End If

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 743

PRACTICAL PRINTING EXAMPLES 743

tableFont = New Font(”Arial”, 8)
titleFont = New Font(”Arial”, 12, FontStyle.Bold)
X1 = PrintDocument1.DefaultPageSettings.Margins.Left
Dim pageWidth As Integer
With PrintDocument1.DefaultPageSettings

pageWidth = .PaperSize.Width - .Margins.Left - .Margins.Right
End With
X2 = X1 + 100
X3 = X2 + pageWidth * 0.5
W1 = X2 - X1
W2 = X3 - X2
W3 = pageWidth - X3
PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()
itm = 0

End Sub

After setting the coordinates and widths of the columns, you can call the ShowDialog method of
the PrintPreviewDialog control to preview the document. This method fires the PrintPage event,
where we start printing the report by printing the header of the table via the following statements:

Y = PrintDocument1.DefaultPageSettings.Margins.Top + 20
e.Graphics.DrawString(”ISBN”, titleFont, Brushes.Black, X1, Y)
e.Graphics.DrawString(”Title”, titleFont, Brushes.Black, X2, Y)
e.Graphics.DrawString(”Author(s)”, titleFont, Brushes.Black, X3, Y)
Y = Y + 30

titleFont is a Font object that represents the font we use for the table header and is declared on
the form level. The rest of the program uses the tableFont object, which represents the font in
which the table’s cells will be rendered.

Then we set up two nested loops. The outer loop goes through all the items on the ListView
control, and the inner loop goes through the subitems of the current item. The structure of the two
loops is the following:

While itm < ListView1.Items.Count
{ print current item }
For subitm = 2 To ListView1.Items(itm).SubItems.Count - 1

{ print all subitems }
Next

End While

The PrintTable project is based on the assumption that the author names will fit in the specified
width. If not, part of the author name will be truncated. Alternatively, you can print the report in
landscape mode — you will have to adjust the widths of the Title and Author(s) columns.

The PrintTable project is the starting point for tabular reports, and it demonstrates the core
of an application that prints tables. You will have to add a title to each page, a header and a
footer for each page (with page numbers and dates), and quite possibly a grid to enclose the cells.
Experiment with the PrintTable project by adding more features to it. You can become as creative

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 744

744 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

as you want with this application. I should also bring to your attention the fact that the PrintTable
application ends the page when the report’s height exceeds 95 percent of the page’s printable area.
This test takes place after printing each item. If the last title printed on a page has a dozen different
authors, it will run over the bottom of the page. You can change this value depending on the type
of report and the font you’re using. I’m assuming that no row can fit comfortably in 5 percent of
the available printable area, so I end the current page when this point it reached. Note that there’s
no mechanism to prevent the last row from overflowing the bottom margin (not by a whole lot,
of course). If your report’s cells may contain from 1 to 10 lines of text, you’ll have to come up
with a more elaborate test for the end-of-page condition. The application’s code is adequately
commented, and you’ll be able to tweak it to your needs.

Because you’re printing the contents of a ListView control, you base the widths of the printout’s
columns on the widths of the columns of the ListView control. A column that takes up 20 percent
of the control’s width should also take up 20 percent of the width of the form’s printable area. This
way, you won’t have to come up with any arbitrary rules for the column widths.

Using Static Variables

The PrintPage event handler produces all the pages, one after the other. These pages, however,
are not independent of one another. When you print a long text file, for example, you must keep
track of the pages printed so far or the current line. When printing a tabular report, you might
have to keep track of the current row. If you set up a variable that keeps track of the current line,
you shouldn’t reset this variable every time the PrintPage event handler is executed. One way to
maintain the value of a variable between consecutive calls of the same procedure is to declare it
with the Static keyword. Static variables maintain their values between calls, unlike the private
variables.

In the PrintTable project, I used the itm variable to keep track of the item being printed. By
making the variable itm static, we’re sure that it won’t be reset every time the PrintPage event
handler is entered. After the completion of the printout, however, we must reset the static variables
in anticipation of a new printout. If you neglect to reset the itm variable, the next you time you
click the Preview & Print Data button, the code will attempt to print rows past the last one on the
ListView control.

Printing Plain Text
In this section, we’ll examine a less-exciting operation: the printing of a text file. It should be a
trivial task after the program that prints the tabular reports, but it’s not nearly as trivial as you
might think. But why bother with a simple operation such as printing plain text? The reason is
that no control has built-in printing capabilities, and text files are still quite common. Printing
formatted text is even more complicated, so we’ll start with plain-text files.

Plain text means that all characters are printed in the same font, size, and style — just like the
text you enter in a TextBox control. Your task is to start a new page when the current one fills and
to break the lines at or before the right margin. Because the text is totally uniform, you know in
advance the height of each line and you can easily calculate the number of lines per page ahead
of time.

VB 2008 at Work: The PrintText Project

In this section, we’ll build the PrintText application. The main form of this application contains a
TextBox control and a button that prints the text on the control. The program displays a preview
of the text in a Print Preview dialog box, and you can print the text by clicking the Print button in
the dialog box. Figure 20.9 shows a section of text previewed with the PrintText application.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 745

PRACTICAL PRINTING EXAMPLES 745

Figure 20.9

Printing and preview-
ing documents with the
PrintText application

The idea is to instantiate a Rectangle object that represents the printable area of the page. Then
call the MeasureString method to find out how many characters will fit into the rectangle, and
print that many characters with the DrawString method. Just two method calls, and the first page
is ready. Repeat the same process for the following pages, starting with the character following
the last character printed on the previous page.

The text to be printed is stored in the textToPrint variable, which is declared at the form’s
level. To make the application more flexible, I added a Page Setup dialog box, in which users can
specify the margins and the orientation of the printout. The application displays the Page Setup
dialog box by calling the ShowDialog method of the PageSetupDialog control. Then it initiates
printing on an instance of the PrintPreviewDialog control by calling its ShowDialog method.
Listing 20.8 shows the code behind the Preview Printout button on the form, which initiates the
printing, and the PrintPreview() subroutine.

Listing 20.8: Initiating the Printing of Plain Text

Private Sub bttnPreview Click(...) Handles bttnPreview.Click
PrintPreview()

End Sub

Public Sub PrintPreview()
PD = New Printing.PrintDocument
PSetup.PageSettings = PD.DefaultPageSettings
If PSetup.ShowDialog() = DialogResult.OK Then

PPView.Document = PD
PPView.ShowDialog()

End If
End Sub

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 746

746 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

The ShowDialog method of the PrintPreviewDialog control is equivalent to calling the Print
method of the PrintDocument control. After that, a series of PrintPage events will follow. Listing
20.9 shows the code in the PrintPage event’s handler.

Listing 20.9: Printing Plain Text

Private Sub PD PrintPage(ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles PD.PrintPage

Static currentChar As Integer
Static currentLine As Integer
Dim txtFont As Font = TextBox1.Font
Dim txtH, txtW As Integer
Dim LMargin, TMargin As Integer
’ Calculate the dimensions of the printable area of the page
With PD.DefaultPageSettings

txtH = .PaperSize.Height -
.Margins.Top - .Margins.Bottom

txtW = .PaperSize.Width -
.Margins.Left - .Margins.Right

LMargin = PD.DefaultPageSettings.Margins.Left
TMargin = PD.DefaultPageSettings.Margins.Top

End With
e.Graphics.DrawRectangle(Pens.Blue,

New Rectangle(LMargin, TMargin, txtW, txtH))
’ If the text is printed sideways, swap the printable area’s
’ width and height
If PD.DefaultPageSettings.Landscape Then

Dim tmp As Integer
tmp = txtH
txtH = txtW
txtW = tmp

End If
’ Calculate the number of lines per page
Dim linesperpage As Integer =

CInt(Math.Round(txtH / txtFont.Height))
’ R is the rectangle in which the text should fit
Dim R As New RectangleF(LMargin, TMargin, txtW, txtH)
Dim fmt As StringFormat
If Not TextBox1.WordWrap Then

fmt = New StringFormat(StringFormatFlags.NoWrap)
fmt.Trimming = StringTrimming.EllipsisWord
Dim i As Integer
For i = currentLine To Math.Min(currentLine + linesperpage,

TextBox1.Lines.Length - 1)

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 747

PRACTICAL PRINTING EXAMPLES 747

e.Graphics.DrawString(
TextBox1.Lines(i), txtFont,
Brushes.Black,
New RectangleF(LMargin,
TMargin + txtFont.Height * (i - currentLine),
txtW, txtFont.Height), fmt)

Next
currentLine += linesperpage
If currentLine >= TextBox1.Lines.Length Then

e.HasMorePages = False
currentLine = 0

Else
e.HasMorePages = True

End If
Exit Sub

End If
fmt = New StringFormat(StringFormatFlags.LineLimit)
Dim lines, chars As Integer
e.Graphics.MeasureString(Mid(TextBox1.Text, currentChar + 1),

txtFont,
New SizeF(txtW, txtH), fmt, chars, lines)

If currentChar + chars < TextBox1.Text.Length Then
If TextBox1.Text.Substring(currentChar + chars, 1) <> ” ” And
TextBox1.Text.Substring(currentChar + chars, 1) <> vbLf Then

While chars > 0
AndAlso TextBox1.Text.Substring

(currentChar + chars, 1)<> ”
AndAlso
TextBox1.Text.Substring(currentChar + chars, 1) <> vbLf
chars -= 1

End While
chars += 1

End If
End If
e.Graphics.DrawString(TextBox1.Text.Substring(currentChar, chars),

txtFont, Brushes.Black, R, fmt)
currentChar = currentChar + chars
If currentChar < TextBox1.Text.Length Then

e.HasMorePages = True
Else

e.HasMorePages = False
currentChar = 0

End If
End Sub

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 748

748 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

The PrintPage event handler is quite lengthy, but if you open the PrintText project, you will
find a lot of comments that will help you understand how it works. The core of the printing code
is concentrated in the following three statements:

e.Graphics.MeasureString(textToPrint.SubString(currentChar + 1),
txtFont, New SizeF(txtW, txtH), fmt, chars, lines)

e.Graphics.DrawString(textToPrint.SubString(currentChar + 1),
txtFont, Brushes.Black, R, fmt)

currentChar = currentChar + chars

The first statement determines the number of characters that will fit in a rectangle with dimen-
sions txtW and txtH when rendered on the page in the specified font. The fmt argument is crucial
for the proper operation of the application, and I will explain it momentarily. The MeasureString
method calculates the number of characters that will fit in the specified rectangle, because all
characters will be rendered in the same font and carriage returns are normal characters (in a way,
they’re printed and move to the next line).

The second statement prints the segment of the text that will fit in this rectangle. Notice that
the code is using the SubString method to pass not the entire text, but a segment starting at the
location following the last character on the previous page. The location of the first character on
the page is given by the currentChar variable, which is increased by the number of characters
printed on the current page. The number of characters printed on the current page is retrieved by
the MeasureString method and stored in the chars variable.

And the trick that makes this code work is how the fmt StringFormat object is declared. The
height of the printable area of the page might not (and usually does not) accommodate an integer
number of lines. The MeasureString method will attempt to fit as many text lines in the specified
rectangle as possible, even if the last line fits only partially. To force the MeasureString and
DrawString methods to work with an integer number of lines, create a FormatString object passing
the constant StringFormatFlags.LineLimit as an argument:

Dim fmt As New StringFormat(StringFormatFlags.LineLimit)

If you pass the fmt object as argument to both the MeasureString and DrawString methods,
they ignore partial lines, and the rest of the printing code works as expected.

If the user changes the orientation of the page, the code switches the page’s width and height
(see the If PD.DefaultPageSettings.Landscape block in the listing). This is all it takes to print
text in landscape orientation. The page’s margins are also accounted for.

The program also takes into consideration the control’s WordWrap property. If word wrapping
has been turned off, the program prints only the section of the line that will fit across the page.
You can adjust the code to handle program listings. Program listings are plain-text files, like the
ones you can print with this application, but you must mark long code lines that are broken to fit
on the page. You can insert a special symbol either at the end of a code line that continues on the
following line on the page, or in front of the continued line. This symbol is usually a bent arrow
that resembles the Enter key. You can also number the lines while printing them.

Printing Bitmaps
If you have a color printer, you probably want to print images, too. Actually, most black-and-white
printers print images in grayscale too, so you can experiment with the material of this chapter
even if you have only a black-and-white laser printer. As you have probably guessed, you call

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 749

PRACTICAL PRINTING EXAMPLES 749

the DrawImage method to send the bitmap to the printer. As a reminder, the simplest form of the
DrawImage method of the Graphics object accepts two arguments, the bitmap to be drawn (an
Image object) and a rectangle in which the image will be drawn:

Graphics.DrawImage(image, rectangle)

The method will stretch the bitmap specified by the image argument to fill the rectangle spec-
ified by the rectangle argument. It’s imperative that you carefully calculate the dimensions
of the rectangle, so that they will retain their original aspect ratio. If not, the image will be dis-
torted in the process. Most applications will let the user specify a zoom factor, and then apply it to
both dimensions. If the image fits on the page in actual size, you can make the rectangle equal to
the dimensions of the image and not worry about distortions.

Because the reduced image will, most likely, be smaller than the dimensions of the paper on
which it will be printed, you must also center the image on the paper. To do so, you can subtract
the image’s width from the paper’s width and split the difference on the two sides of the image
(you will do the same for the vertical margins). These operations will be demonstrated with the
code of the PrintBitmap application, whose main form is shown in Figure 20.10. The application
allows you to load an image and zoom in or out. The Zoom � Auto command resizes the image
to fit the current size of the form as best as possible, while the Zoom�Normal command displays
the image in actual size, regardless of whether it fits on the form or not. If not, the appropriate
scroll bars will be attached automatically, because the form’s AutoSize property is set to True.

Figure 20.10

The PrintBitmap appli-
cation resizes and
rotates bitmaps to best
fit the width of the page
and prints them.

If you specify a rectangle the same size as the image, the image will be printed at its actual
size. A common image resolution is 72 dots per inch. If the bitmap is 1,024 pixels wide, it will take
approximately 14 inches across the page — this means that part of the image won’t be printed.

If the bitmap is too large for a letter-size page, you must reduce its size. The following state-
ments, which must appear in the PrintDocument event, print the image centered on the page.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 750

750 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

If the image doesn’t fit on the page, its top-left corner is printed at the origin, and the rightmost
and bottommost parts of the image will be cropped. Notice also that the image isn’t printed in
actual size; instead, it’s printed at the current magnification. Listing 20.10 provides the code of the
PrintPage event handler.

Listing 20.10: Scaling and Printing a Bitmap

Private Sub PrintDocument1 PrintPage(
ByVal sender As Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocument1.PrintPage

Dim R As Rectangle
Dim PictWidth, PictHeight, PictLeft, PictTop As Integer
PictWidth = PictureBox1.Width
PictHeight = PictureBox1.Height
With PrintDocument1.DefaultPageSettings.PaperSize

If PictWidth < .Width Then
PictLeft = (.Width - PWidth) / 2

Else
PictLeft = 0

End If
If PictHeight < .Height Then

PictTop = (.Height - PHeight) / 2
Else

PictTop = 0
End If

End With
R = New Rectangle(PictLeft, PictTop, PictWidth, PictHeight)
e.Graphics.DrawImage(PictureBox1.Image, R)

End Sub

The PictWidth and PictHeight variables hold the dimensions of the scaled image, whereas
PictLeft and PictTop are the coordinates of the image’s top-left corner on the page. To initi-
ate the printing process, you must call the PrintDocument object’s Print method, or you can
display the Print Preview dialog box, which is what the following code does:

Private Sub bttnPrint Click(...) Handles bttnPrint.Click
PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()

End Sub

The PrintBitmap application allows the user to resize and rotate the image before printing it.
These rotation commands can be found in the main form’s Process menu; the Zoom menu has four
options: Auto, Normal, Zoom In, and Zoom Out (Figure 20.11). The last two commands zoom in
and out, respectively, by 25 percent at a time. These commands change the size of the PictureBox
control that holds the image, and the PrintPage event handler uses the dimensions of this control

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 751

THE BOTTOM LINE 751

to determine the dimensions of the printed image. The Normal command resets the image to its
actual size, and the Auto command resizes the image proportionally so that its height is 400 pixels.

Figure 20.11

The PrintBitmap appli-
cation’s main form

The Bottom Line

Use the printing controls and dialog boxes. To print with the .NET Framework, you must
add an instance of the PrintDocument control to your form and call its Print method. To
preview the same document, you simply assign the PrintDocument object to the Document
property of the PrintPreviewDialog control and then call the ShowDialog method of the Print-
PreviewDialog control to display the preview window. You can also display the Print dialog
box, where users can select the printer to which the output will be sent, and the Page Setup dia-
log box, where users can specify the page’s orientation and margins. The two dialog boxes are
implemented with the PrintDialog and PageSetupDialog controls.

Master It Explain the process of generating a simple printout. How will you handle multi-
ple report pages?

Master It Assuming that you have displayed the Page Setup dialog box control to the
user, how will you draw a rectangle that delimits the printing area on the page, taking into
consideration the user-specified margins?

Print plain text and images. Typical business applications generate printouts with text and a
few borders or grids. The DrawString method of the Graphics object can print a string at a spe-
cific location on the page. To print images, call the DrawImage method of the Graphics object,
passing as an argument the image you want to print and the rectangle on the page where you
want the image to appear.

Petroutsos c20.tex V2 - 01/28/2008 6:32pm Page 752

752 CHAPTER 20 PRINTING WITH VISUAL BASIC 2008

Master It Outline the process of printing the contents of a TextBox control.

Print tabular data. Business applications make heavy use of reports, and you should provide
a mechanism to print these out. Printing tabular data isn’t a simple task, but after you break the
page into rows and columns, you can draw the appropriate string into its corresponding cell.

Master It Describe the process of building a tabular report.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 753

Chapter 21

Basic Concepts of Relational
Databases

In this and the following three chapters, you’ll explore databases and data drive programming,
starting with the basics: how databases store data, how to update a database, and how to retrieve
the information you need from a database. The database-related topics discussed in this book were
chosen to help you get started with database programming. I’ve selected topics that will help you
master basic concepts of databases and ADO, rather than attempt to touch on a large number
of topics.

In this chapter, you’ll look at the basic concepts of relational databases, the visual data tools,
and the Structured Query Language (SQL). This chapter isn’t about VB, and you can skip it if
you’re familiar with databases and SQL. Because I can’t assume that all readers are comfort-
able with these topics, I’m including this chapter to help readers understand the foundations of
database programming. Databases are among the most complicated objects in programming, yet
they’re based on common-sense principles. Once you understand these principles, you’ll find that
database programming isn’t as complicated as you may have thought.

In this chapter, you’ll learn how to do the following:

◆ Use relational databases

◆ Utilize the data tools of Visual Studio

◆ Use the Structured Query Language for accessing tables

What Is a Database?
A database is a container for storing complex structured information. The same is true for a file, or
even for the file system on your hard disk. What makes a database unique is that databases are
designed to make data easily retrievable. The purpose of a database is not so much the storage of
information as its quick retrieval. In other words, you must structure your database so that it can
be queried quickly and efficiently.

Databases are maintained by special programs, such as Microsoft Office Access and SQL Server.
These programs are called database management systems (DBMSs), and they’re among the most
complicated applications. A fundamental characteristic of a DBMS is that it isolates much of the
complexity of the database from the developer. Regardless of how each DBMS stores data on disk,
you see your data organized in tables with relationships between tables. To access or update the
data stored in the database, you use a special language, Structured Query Language (SQL). Unlike
other areas of programming, SQL is a truly universal language, and all major DBMSs support this
language.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 754

754 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

The recommended DBMS for Visual Studio 2008 is SQL Server 2008. In fact, the Visual Studio
2008 setup program offers to install a developer version of SQL Server 2008 called SQL Server 2008
Express. However, you can use Access or even non-Microsoft databases such as Oracle. Although
this chapter was written with SQL Server 2008, most of the examples will work with Access as well.

Data is stored in tables, and each table contains entities of the same type. In a database that
stores information about books, there will be a table with titles, another table with authors, and a
table with publishers. The table with the titles contains information such as the title of the book, the
number of pages, and the book’s description. Author names are stored in a different table because
each author might appear in multiple titles. If author information were stored along with each title,
we’d be repeating author names. So every time we wanted to change an author’s name, we’d have
to modify multiple entries in the titles table. Even retrieving a list of unique author names would
be a challenge because you’d have to scan the entire table with the titles, retrieve all the authors,
and then get rid of the duplicate entries. The same is true for publishers. Publishers are stored in
a separate table, and each title contains a pointer to the appropriate row in the publishers table.

The reason for breaking the information we want to store in a database into separate tables is to
avoid duplication of information. This is a key point in database design. Duplication of informa-
tion will sooner or later lead to inconsistencies in the database. The process of breaking the data
into related tables that eliminate all possible forms of information duplication is called normal-
ization, and there are rules for normalizing databases. The topic of database normalization is not
discussed further in this book. However, all it really takes to design a functional database is com-
mon sense. After you learn how to extract data from your database’s tables with SQL statements,
you’ll develop a better understanding of the way databases should be structured.

Using Relational Databases
The databases we’re interested in are called relational because they are based on relationships
among the data they contain. The data is stored in tables, and tables contain related data, or entities,
such as persons, products, orders, and so on. The idea is to keep the tables small and manageable;
thus, separate entities are kept in their own tables. If you start mixing customers and invoices,
products and their suppliers, or books, publishers, and authors in the same table, you’ll end up
repeating information — a highly undesirable situation. If there’s one rule to live by as a database
designer and programmer, this is it: Do not duplicate information.

Of course, entities are not independent of each other. For example, orders are placed by specific
customers, so the rows of the Customers table must be linked to the rows of the Orders table that
stores the orders of the customers. Figure 21.1 shows a segment of a table with customers (top)
and the rows of a table with orders that correspond to one of the customers (bottom).

As you can see in Figure 21.1, relationships are implemented by inserting columns with match-
ing values in the two related tables; the CustomerID column is repeated in both tables. The rows
with a common value in the CustomerID fields are related. In other words, the lines that connect
the two tables simply indicate that there are two fields, one on each side of the relationship, with
a common value. The customer with the ID value ALFKI has placed the orders 10643 and 10692
(among others). To find all the orders placed by a customer, we can scan the Orders table and
retrieve the rows in which the CustomerID field has the same value as the ID of the specific cus-
tomer in the Customers table. Likewise, you can locate customer information for each order by
looking up the row of the Customers table that has the same ID as the one in the CustomerID field
of the Orders table.

The two fields used in a relationship are called key fields. The CustomerID field of the Customers
table is the primary key because it identifies a single customer. Each customer has a unique value
in the CustomerID field. The CustomerID field of the Orders table is the foreign key of the rela-
tionship. A CustomerID value appears in a single row of the Customers table and identifies that

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 755

WHAT IS A DATABASE? 755

row; it’s the table’s primary key. However, it might appear in multiple rows of the Orders table
because the CustomerID field is the foreign key in this table. In fact, it will appear in as many rows
of the Orders table as there are orders for the specific customer. Note that the primary and foreign
keys need not have the same names, but it’s convenient to use the same name because they both
represent the same entity.

Figure 21.1

Linking customers and
orders with relationships

Primary Key

Foreign Key Orders placed by customer ALFKI

Customers Table

CustomerID EmployeeID OrderDate

8/25/1997 12:00:00 AM 9/22/1997 12:00:00 AM

10/31/1997 12:00:00 AM

11/24/1997 12:00:00 AM

2/12/1998 12:00:00 AM

4/27/1998 12:00:00 AM

5/7/1998 12:00:00 AM

10/3/1997 12:00:00 AM

10/13/1997 12:00:00 AM

1/15/1998 12:00:00 AM

3/16/1998 12:00:00 AM

4/9/1998 12:00:00 AM

RequiredDate

ALFKI 6

4

4

1

1

3

ALFKI

ALFKI

ALFKI

ALFKI

ALFKI

OrderID

10643

10692

10702

10835

10952

11011

CustomerID CompanyName ContactName

Maria Anders

Ana Trujillo

Antonio Moreno

Thomas Hardy

ContactTiltle

Sales Representative

Sales Representative

Owner

Owner

Alfreds Futterkiste

Ana Trujillo Emparedados y helados

Antonio Moreno Taqueria

Around the Horn

ALFKI

ANATR

AROUT

ANTON

The operation of matching rows in two tables based on their primary and foreign keys is called
a join. Joins are basic operations in manipulating tables and are discussed in detail in the section
‘‘Structured Query Language’’ later in this chapter.

To help you understand relational databases, I will present the structure of the two sample
databases used for the examples in this and the following chapters. If you’re not familiar with the
Northwind and Pubs databases, read the following two sections and you’ll find it easier to follow
the examples.

Obtaining the Northwind and Pubs Sample Databases
SQL Server 2008 developers will wonder where the Northwind and Pubs databases have gone.
Microsoft has replaced both databases with a single new database called AdventureWorks.
Microsoft made the change to demonstrate new SQL Server features in an environment that more
closely matches large enterprise systems. Because the AdventureWorks database is extremely
complex and not very friendly for teaching database principles, this book won’t rely on it. How-
ever, you might want to look at the AdventureWorks database anyway to see what it provides
and understand how complex databases can become.

Many developers are used to working with the Northwind and Pubs databases with other
Microsoft products. These two databases have become so standard that many authors, includ-
ing myself, rely on the presence of these databases to ensure that everyone can see example code
without a lot of extra effort. Unfortunately, you won’t find an option for installing them as part
of the standard SQL Server 2008 installation. However, you can find scripts for creating these
databases in SQL Server Express online at www.microsoft.com/downloads/details.aspx?
familyid=06616212-0356-46a0-8da2-eebc53a68034. The name of the file you’ll receive is
SQL2000SampleDb.MSI. Even though Microsoft originally created this file for SQL Server 2000,
it works just fine with SQL Server 2008.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 756

756 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

After you download the script files, you need to install them. Right-click the file and choose
Install from the context menu. You will see a Welcome dialog box, telling you that this file contains
the sample databases for SQL Server 2000. Click Next, read the licensing agreement, and agree to
it. Keep following the prompts until you install the sample database scripts in the appropriate
directory.

At this point, you have two scripts for creating the sample databases. If you used the default
installation settings, these files appear in the \Program Files\Microsoft SQL Server 2000 Sample
Database Scripts folder of your machine. The InstNwnd.SQL file will create the Northwind
database, and the InstPubs.SQL file will create the Pubs database.

Double-click the name of each SQL file, and each will open in SQL Server’s Management Studio.
Then click the Execute button in the toolbar (it’s the button with the icon of an exclamation mark)
to run the script, which will install the appropriate database.

To install the databases for the Express version of SQL Server 2008, open a command prompt.
Type OSQL -E -i InstNwnd.SQL and press Enter. The OSQL utility will create the Northwind
database for you (this process can take quite some time). After the Northwind database is
complete, type OSQL -E -i InstPubs.SQL and press Enter. The process will repeat itself.

If you try to run the OSQL utility and receive an error message at the command prompt, the
SQL Server 2008 installation didn’t modify the path information for your system as it should have.
In some cases, this makes your installation suspect, and you should reinstall the product if you
experience other problems. To use the installation scripts, copy them from the installation folder to
the \Program Files\Microsoft SQL Server\90\Tools\binn folder. You can run the OSQL utility
at the command prompt from this folder to create the two sample databases.

You’ll want to test the installation to make sure it worked. Open Visual Studio and choose View
� Server Explorer to display the Server Explorer. Right-click Data Connections and choose Add
Connection from the context menu. Server Explorer will display the Add Connection dialog box
shown in Figure 21.2 (this one already has all the information filled out).

In the Server Name field, type the name of your machine or select one with the mouse. Click
the down arrow in the Select Or Enter A Database Name field. You should see both the Northwind
and Pubs databases, as shown in Figure 21.2. If you don’t see these entries, it means that an error
occurred. Try running the scripts a second time.

You need to make sure that you can access the databases. Choose the Northwind database.
Click Test Connection. When the scripts install the databases properly and you can access them,
you’ll see a message indicating that you have successfully connected to the selected database.

Exploring the Northwind Database
In this section, you’ll explore the structure of the Northwind sample database. The Northwind
database stores products, customers, and sales data, and many of you are already familiar with
the structure of the database.

To view a table’s contents, expand the Table section of the tree under the Northwind connection
in Server Explorer and locate the name of the table you want to examine. Right-click the name and
choose Show Table Data from the context menu. This will open the table, and you can view and
edit its rows. If you choose the Open Table Definition command from the same menu, you will see
the definitions of the table’s columns. You can change the type of the columns (each column stores
items of the same type), their length, and set a few more properties that are discussed a little later
in this chapter. To follow the description of the sample databases, open the tables in view mode.

If you have installed Visual Studio 2008, you can use the SQL Server Managements Studio to
explore the same database. Just right-click the Northwind database and from the context menu
select Open Table to view the data, or Design to change the table’s definition.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 757

WHAT IS A DATABASE? 757

Figure 21.2

Use the Add Connection
dialog box to check for
the two databases.

Products Table

The Products table stores information about the products of the Northwind Corporation. This
information includes the product’s name, packaging information, price, and other relevant fields.
Each product (or row) in the table is identified by a unique numeric ID. Because each ID is unique,
the ProductID column is the table’s primary key. The rows of the Products table are referenced by
invoices (the Order Details table, which is discussed later), so the product IDs appear in the Order
Details table as well.

Suppliers Table

Each product has a supplier, too. Because the same supplier can offer more than one product,
the supplier information is stored in a different table, and a common field, the SupplierID field,

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 758

758 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

is used to link each product to its supplier (as shown in Figure 21.3). For example, the products
Chai, Chang, and Aniseed Syrup are purchased from the same supplier: Exotic Liquids. Their
SupplierID fields all point to the same row in the Suppliers table.

Figure 21.3

Linking products to
their suppliers and their
categories

ProductID ProductName

Product Table

Chai1

2

3

4

5

6

Chang

Aniseed Syrup

1 1

11

1

2

2

2

2

2

2

3

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Grandma’s Boysenberry Spread

SupplierID CategoryID QuantityPerUnit

10 boxes × 20 bags

24 - 12 oz bottles

12 - 550 ml bottles

48 - 6 oz jars

36 boxes

12 - 8 oz jars

SupplierID CompanyName ContactName ContactTitle

Suppliers Table

Purchasing Manager

Order Administrator

Sales Representative

Marketing ManagerYoshi Nagase

Regina Murphy

Shelly Burke

Charlotte CooperExotic Liquids

New Orleans Cajun Delights

Grandma Kelly’s Homestead

Tokyo Traders

Categories Table
CategoryID CategoryName Description

Soft drinks, coffees, teas, beers, and ales

Sweet and savory sauces, relishes, spreads, and seasonings

Deserts, candies, and sweet breads

CheesesDairy Products

Confections

Condiments

Beverages1

2

3

4

1

2

3

4

18,0000

19,0000

10,0000

22,0000

21,3500

25,0000

UnitPrice

Categories Table

In addition to having a supplier, each product belongs to a category. Categories are not stored
along with product names; they are stored separately in the Categories table. Again, each category
is identified by a numeric value (field CategoryID) and has a name (field CategoryName). In
addition, the Categories table has two more columns: Description, which contains text, and
Picture, which stores a bitmap. The CategoryID field in the Categories table is the primary key,
and the field by the same name in the Products table is the corresponding foreign key.

Customers Table

The Customers table stores information about the company’s customers. Each customer is stored
in a separate row of this table, and customers are referenced by the Orders table. Unlike product
IDs, customer IDs are five-character strings and are stored in the CustomerID column. This is an
unusual choice for IDs, which are usually numeric values.

Orders Table

The Orders table stores information about the orders placed by Northwind’s customers. The
OrderID field, which is an integer value, identifies each order. Orders are numbered sequentially,
so this field is also the order’s number. Each time you append a new row to the Orders table, the
value of the new OrderID field is generated automatically by the database. The OrderID column is
not only the table’s primary key, it’s also an AutoIncrement column: Every time a new column
is added to the table, the OrderID field is assigned the next available integer value automatically

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 759

WHAT IS A DATABASE? 759

by SQL Server. Usually, the primary key in any table is an AutoIncrement column and SQL Server
ensures that this column has unique values.

The Orders table is linked to the Customers table through the CustomerID column. By matching
rows that have identical values in their CustomerID fields in the two tables, we can recombine
customers with their orders. Figure 21.1 showed how customers are linked to their orders.

Order Details Table

The Orders table doesn’t store any details about the items ordered; this information is stored in the
Order Details table (see Figure 21.4). Each order is made up of one or more items; and each item
has a price, a quantity, and a discount. In addition to these fields, the Order Details table contains
an OrderID column, which holds the ID of the order to which the detail line belongs.

Figure 21.4

Customers, Orders, and
Order Details tables and
their relations

Customers Table
CustomerID CompanyName

Ana Trujilo Emparedados y helados
Antonio Moreno Taqueria
Around the Horn
Berglunds snabbkop
Blauer See Delikatessen
Blondesddsl pere et fils
Bolido Comidas preparadas
Bon app'

Orders Table Orders Details Table
OrderID
10265

10265
10297
10297
10360
10360
10360
10360
10360
10436
10436
10436
10436 75

31,2000

12,0000
14,4000
27,8000
36,4000
99,0000
210,8000
16,0000
5,9000
9,6000
30,4000
26,6000
6,2000 24

30
40
5
28
35
10
35
30
20
60
20

30 0

0
0
0
0
0
0
0
0
0
0.1
0.1
0.1

56
46
54
49
38
29
28
72
39
70

17

64

ProductID UnitPrice Quantity DiscountCustomerID OrderID
BLONP 10265

10297
10360
10436
10449
10559
10566
10584
10628
10679

BLONP
BLONP
BLONP
BLONP
BLONP
BLONP
BLONP
BLONP
BLONP

Laurence Lebihan
Martin Sommer
Frederique Citeaux
Hanna Moos
Christina Berglund
Thomas Hardy
Antonio Moreno
Ana Trujillo
ContactName

ANATR
ANTON
AROUT

BLAUS
BERGS

BLONP
BOLID
BONAP

The reason why details aren’t stored along with the order’s header is that the Orders and
Order Details tables store different entities. The order’s header, which contains information about
the customer who placed the order, the date of the order, and so on, is quite different from the
information you must store for each item ordered. If you attempt to store the entire order into a
single table, you’ll end up repeating a lot of information. Notice also that the Order Details table
stores the IDs of the products, not the product names.

Employees Table

This table holds employee information. Each employee is identified by a numeric ID, which
appears in each order. When a sale is made, the ID of the employee who made the sale is recorded

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 760

760 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

in the Orders table. An interesting technique was used in the design of the Employees table: Each
employee has a manager, which is another employee. The employee’s manager is identified by
the ReportsTo field, which is set to the ID of the employee’s manager. The rows of the Employ-
ees table contain references to the same table. This table contains a foreign key that points to the
primary key of the same table, a relation that allows you to identify the hierarchy of employees in
the corporation.

Shippers Table

Each order is shipped with one of the three shippers stored in the Shippers table. The appropriate
shipper’s ID is stored in the Orders table.

Exploring the Pubs Database
Before looking at SQL and more practical techniques for manipulating tables, let’s look at the
structure of another sample database I’m going to use in this chapter, the Pubs database. Pubs is
a database for storing book, author, and publisher information, not unlike a database you might
build for an online bookstore.

The Pubs database is made up of really small tables, but it was carefully designed to demon-
strate many of the features of SQL, so it’s a prime candidate for sample code. Just about any book
about SQL Server uses the Pubs database. In the examples of the following sections, I will use the
Northwind database because it’s closer to a typical business database, and the type of information
stored in the Northwind database is closer to the needs of the average VB programmer than the
Pubs database. Some of the fine points of SQL, however, can’t be demonstrated with the data of
the Northwind database, and so in this section I’ll show examples that use the ubiquitous Pubs
database.

Titles Table

The Titles table contains information about individual books (the book’s title, ID, price, and so
on). Each title is identified by an ID, which is not a numeric value, that’s stored in the title id
column. The IDs of the books look like this: BU2075.

Authors Table

The Authors table contains information about authors. Each author is identified by an ID, which
is stored in the au id field. This field is a string with a value such as 172-32-1176 (they resemble
U.S. Social Security numbers).

TitleAuthor Table

The Titles and Authors tables are not directly related because they can’t be joined via a one-to-
many relationship; the relationship between the two tables is many-to-many. The relations you
have seen so far are one-to-many because they relate one row in the table that has the primary key
to one or more rows in the table that has the foreign key: One order contains many detail lines,
one customer has many orders, one category contains many products, and so on.

The relation between titles and authors is many-to-many, because each book may have multi-
ple authors, and each author may have written multiple titles. If you stop and think about the
relationship between these two tables, you’ll realize that it can’t be implemented with a primary
and a foreign key (like the Order-Customer relationship or the Order-Shipper relationship in the
Northwind database). To establish a many-to-many relationship, you must create a table between
the other two, and this table must have a one-to-many relationship with both tables.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 761

WHAT IS A DATABASE? 761

Figure 21.5 shows how the Titles and Authors tables of the Pubs database are related to one
another. The table between them holds pairs of title IDs and author IDs. If a book was written by
two authors, the TitleAuthor table contains two entries with the same title ID and different author
IDs. The book with a title id of BU1111 was written by two authors. The IDs of the authors
appear in the TitleAuthor table along with the ID of the book. The IDs of these two authors are
267-41-2394 and 724-80-9391. Likewise, if an author has written more than one book, the author’s
ID will appear many times in the TitleAuthor table — each time paired with a different title ID.

Figure 21.5

The TitleAuthor table
links titles to authors.

Titles Table
title_id

PS1372

BU1111

PS7777

TC4203

PS2091

PS2106

PC9999

title

Computer Phobic AND Non-Phobic Individuals: Behavior Variations

Cooking with Computers: Surreptitious Balance Sheets

Emotional Security: A New Algorithm

Fifty Years in Buckingham Palace Kitchens

Is Anger the Enemy?

psychology 0877

1389

0736

0877

0736

0736

1389

21,5900

11,9500

7,9900

11,9500

10,9500

7,0000

NULL

psychology

psychology

psychology

popular_comp

au_id

756-30-7391

486-29-1786

724-80-9391

893-72-1158

267-41-2394

807-91-6654

998-72-3567

899-46-2035

341-22-1782

274-80-9391

Karsen

Locksley

MacFeather

McBadden

O’Leary

Panteley

Ringer

Ringer

Smith

Straight Dean

Meander

Anne

Albert

Sylvia

Michael

Heather

Stearns

Charlene

Livia

Author TableTitleAuthor Table

au_Iname au_fname

trad_cook

business

Life Without Fear

Net Etiquette

au_id title_id au_ord

2

2

2

1

1

1

1

1

1

BU1032

BU1032

BU1111

BU1111

BU2075

BU7832

MC2222

MC3021

MC3021

213-46-8915

409-56-7008

267-41-2394

724-80-9391

213-46-8915

274-80-9391

712-45-1867

722-51-5454

899-46-2035

type pup_id price

At times you won’t be able to establish the desired relationship directly between two tables
because the relationship is many-to-many. When you discover a conflict between two tables, you
must create a third one between them. A many-to-many relation is actually implemented as two
one-to-many relations.

Publishers Table

The Publishers table contains information about publishers. Each title has a pub id field, which
points to the matching row of the Publishers table. Unlike the other major tables of the Pubs
database, the Publishers table uses a numeric value to identify each publisher.

Understanding Relations
In a database, each table has a field with a unique value for every row. As indicated earlier in this
chapter, this field is the table’s primary key. The primary key does not have to be a meaningful
entity because in most cases there’s no single field that’s unique for each row. Books can be identi-
fied by their ISBNs, and employees by their SSNs, but these are exceptions to the rule. In general,
you can’t come up with a meaningful key that’s universally unique. The primary key need not
resemble the entity it identifies. The only requirement is that primary keys be unique in the entire
table. In most designs, we use an integer as the primary key. To make sure they’re unique, we
even let the DBMS generate a new integer for each row added to the table. Each table can have
one primary key only, and the DBMS can automatically generate an integer value for a primary

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 762

762 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

key field every time a new row is added. SQL Server uses the term Identity for this data type, and
there can be only one Identity field in each table.

The related rows in a table repeat the primary key of the row they are related to in another
table. The copies of the primary keys in all other tables are called foreign keys. Foreign keys need
not be unique (in fact, they aren’t), and any field can serve as a foreign key. What makes a field
a foreign key is that it matches the primary key of another table. The CategoryID field is the
primary key of the Categories table because it identifies each category. The CategoryID field in
the Products table is the foreign key because the same value might appear in many rows (many
products can belong to the same category). Whereas the primary key refers to a table, the foreign
key refers to a relationship. The CategoryID column of the Products table is the foreign key in
the relationship between the Categories and Products tables. The Products table contains another
foreign key, the SupplierID column, which forms the relationship between the Suppliers and
Products tables.

Referential Integrity

Maintaining the links between tables is not a trivial task. When you add an invoice line, for
instance, you must make sure that the product ID that you insert in the Order Details table cor-
responds to a row in the Products table. An important aspect of a database is its integrity. To be
specific, you must ensure that the relations are always valid, and this type of integrity is called
referential integrity. There are other types of integrity (for example, setting a product’s value to a
negative value will compromise the integrity of the database), but this is not nearly as important
as referential integrity. The wrong price can be easily fixed. But issuing an invoice to a customer
who doesn’t exist isn’t easy (if even possible) to fix. Modern databases come with many tools to
help ensure their integrity, especially referential integrity. These tools are constraints you enter
when you design the database, and the DBMS makes sure that the constraints are not violated as
the various programs manipulate the database.

When you relate the Products and Categories tables, for example, you must also make sure of
the following:

◆ Every product added to the foreign table must point to a valid entry in the primary table.
If you are not sure which category the product belongs to, you can leave the CategoryID
field of the Products table empty (the field will have a Null value). Or, you can create a
generic category, the UNKNOWN or UNDECIDED category, and use this category if no
information is available.

◆ No rows in the Categories table should be removed if there are rows in the Products table
pointing to the specific category. This situation would make the corresponding rows of
the Products table point to an invalid category (the rows that have no matching row in the
primary table are called orphan rows).

These two restrictions would be quite a burden on the programmer if the DBMS didn’t pro-
tect the database against actions that could impair its integrity. The referential integrity of your
database depends on the validity of the relations. Fortunately, all DBMSs can enforce rules to
maintain their integrity, and you’ll learn how to enforce rules that guarantee the integrity of your
database later in this chapter. In fact, when you create the relationship, you can select a couple of
check boxes that tell SQL Server to enforce the relationship (that is, not to accept any changes in
the data that violate the relationship). If you leave these check boxes deselected, be ready to face a
real disaster sooner or later.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 763

SERVER EXPLORER 763

Visual Database Tools

To simplify the development of database applications, Visual Studio 2008 comes with some visual
tools, the most important of which are briefly described here and then discussed in the following
sections:

Server Explorer This is the first and most prominent tool. Server Explorer is the toolbox for
database applications, in the sense that it contains all the basic tools for connecting to databases
and manipulating their objects.

Query Builder This is a tool for creating SQL queries (statements that retrieve the data we
want from a database or update the data in the database). SQL is a language in its own right,
and we’ll discuss it later in this chapter. Query Builder lets you specify the operations you
want to perform on the tables of a database with point-and-click operations. In the background,
Query Builder builds the appropriate SQL statement and executes it against the database.

Database Designer and Tables Designer These tools allow you to work with an entire
database or its tables. When you work with the database, you can add new tables, establish
relationships between the tables, and so on. When you work with individual tables, you can
manipulate the structure of the tables, edit their data, and add constraints. You can use these
tools to manipulate a complicated object — the database — with point-and-click operations.

Server Explorer
Your starting point for developing database applications with VB 2008 is the Server Explorer.
This toolbox is your gateway to the databases on your system or network, and you can use it to
locate and retrieve the tables you’re interested in. Place the pointer over the Server Explorer tab
to expand the corresponding toolbox, which looks something like the one shown in Figure 21.6.
The two main objects in the Server Explorer are Data Connections and the Servers object. Under
the Data Connections branch, you see the connections to databases you’re programming against.
Under the Servers branch, you see the servers you can access from your computer and various
objects they expose.

Under the Data Connections item, you may see one or more connections to existing databases
(if you have already experimented with the visual data tools of Visual Studio). If you don’t see a
connection to the Northwind database, you must create one. Right-click the Data Connections icon
and choose Add Connection from the context menu. Every new connection you add remains under
the Data Connections branch until you decide to remove it, and you can use it in any number
of projects.

To add a new connection, choose the Add Connection command. The first time you create a
connection in Visual Studio, you’ll see the Change Data Source dialog box. For the examples in
this part of the book, I will use SQL Server databases. Select the Microsoft SQL Server entry and
click OK.

After you click OK in the Change Data Source dialog box, you see the Add Connection dialog
box, shown earlier in Figure 21.2. Here you must enter the User Name and Password in the appro-
priate text boxes. If you (or the administrator) have set up SQL Server to use Windows integrated
security, just select the Use Windows Authentication radio button. Then drop down the top list
box at the bottom of the dialog box to select one of the SQL Server databases your computer can
access. You will see the local SQL Server database, as well as any other SQL Server database on the
network. (If you don’t see the SQL Server database you need to use, make sure that the SQL Server

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 764

764 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Browser and SQL Server Agent services are both started. When you know the server is running,
you can also type its name into the field.) Select the local SQL Server, or type the string localhost
in the Server Name box; then, select the Northwind database in the second drop-down list in the
dialog box.

Figure 21.6

The Server Explorer
contains the database
objects you can access
on your computer.

If you have Access 2007 installed on your system, click the Change button to see the Change
Data Source dialog box, where you can select the Microsoft Access Database File entry, and then
locate the MDF file of the database on your disk. On the Connection tab, click the Test Connection
button to make sure that you can connect to the database. If not, make sure that SQL Server is
running and that the username and password you specified are correct.

Click OK to close the Add Connection dialog box, and the name of the new connection appears
under the Data Connections branch of the tree in the Server Explorer window. The default name of
the connection is made up of the name of the computer followed by the name of the database — for

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 765

SERVER EXPLORER 765

my server, Powerkit.Northwind — but you can change it. Right-click a connection and choose
Rename from the context menu.

Switch back to the Server Explorer tab and expand the new connection. You will see the
following entries under it:

Database Diagrams This is where you can examine the various diagrams of the database. A
database diagram is a visual representation of a set of related tables and the relations between
the tables. Relations are indicated by line segments between two related tables, and you can
quickly learn a lot about the structure of a database by looking at a database diagram.

Right-click the Database Diagrams item in Server Explorer and choose New Diagram from
the context menu. You will see a dialog box with the names of the tables, and you must
select the ones you want to add to the diagram. Add the following tables by clicking each
table’s name and then the Add button: Orders, Order Details, Customers, and Employees. You
will see a diagram like the one shown in Figure 21.7 (you will have to rearrange the tables on
the designer to view them all at once). Each table is represented by a box with the names of
its columns. You can specify the items that will be displayed for each column by choosing the
Table View options from the context menu of each table. All the relations in the selected tables
are one-to-many: On one side of the relation there is a key icon, which signifies the primary key
of the relation, and on the other side of the same relation there’s an infinity icon, which signifies
the foreign key. The same customer, for example, can place multiple items. Conversely, many
orders belong to the same customer.

Figure 21.7

Viewing the database
diagram of a section
of the database

You can extend the diagram by adding more tables to it: The rows of the Order Details table
reference products with the ProductID column. To view this relation, add the Products table to

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 766

766 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

the diagram by right-clicking in the designer and choosing Add Table (you’ll see the same dia-
log box, where you can select one or more tables to add to the diagram). The relation between
the Order Details and Products tables will be added automatically for you in the diagram.

Tables This is where you can select a table and edit it, or add a new table to the database.
You can edit the table itself (change its design by adding/removing columns or change the
data types of one or more columns) or edit the table’s rows. To edit the table’s structure, choose
Open Table Definition from the table’s context menu. To view or edit the table’s data, choose
Show Table Data from the same menu.

Views This is where you specify the various views you want to use in your applications.
Sometimes the tables are not the most convenient (or even the most expedient) method of
looking at your data. If the database contains a table of employees, and this table includes
wages or other sensitive data, you can create a view that’s identical to the table but excludes
selected columns.

Views are created with SQL SELECT statements, which are discussed in detail later in this
chapter. A SELECT statement allows you to specify the information you want to retrieve from
the database. This information can be stored in a View object, which is just like another table
to your application. You can use views in your code as you would use tables — you just can’t
design views like tables: Views are based on selection queries and are discussed later in
this chapter.

Stored Procedures Stored procedures are (usually small) programs that are stored in the data-
base and perform specific and often repetitive tasks. By coding many of the operations you
want to perform against the database as stored procedures, you won’t have to access the data-
base directly. Moreover, you can call the same stored procedure from several places in your
VB code, and you can be sure that the same action is performed every time. Once created, the
stored procedure becomes part of the database, and programmers (as well as users) can call it
by name, passing the appropriate arguments if necessary. A typical example is a stored proce-
dure for removing orders. The stored procedure must remove the order details first and then
remove the order (and possibly update the customer’s balance, the stock, and so on). Once
written and tested, all parts of the application (or all applications) that need to remove orders
from the database will call this procedure, passing the ID of the order as argument.

Functions The functions of SQL Server are just like VB functions: They perform specific tasks
on the database (retrieve or update data), taking into consideration the arguments passed to
the functions when they were called. ADO.NET is built around SQL statements and stored
procedures, so we won’t discuss SQL Server functions in this book.

Synonyms Using a synonym lets you refer to a SQL Server object by using another name.
Although this might not seem a useful feature, you can use it to make your code more readable.
Using synonyms can also protect your code from changes to the objects within the database.
The object can change, but the synonym remains the same. For example, you might originally
locate the Price table on Server1, but then move the table to Server2 when it gets too large. Your
code can still use the same synonym, despite the move from one server to another.

Types The Types entry defines all the types for the database and includes the following
folders: System Data Types, User-Defined Data Types, User-Defined Types, and XML Schema
Collections. The System Data Types folder contains a list of all the data types that SQL Server
natively understands, categorized by type. The User-Defined Data Types folder contains a list
of the special data types that you define based on the system data types; for example, you could

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 767

SERVER EXPLORER 767

create a special part number data type to hold company part information. The User-Defined
Types folder contains a list of other types that you create to express special database needs. You
always define a user-defined type as part of an assembly. Finally, the XML Schema Collections
defines the content of the XML data that a database contains.

Assemblies The Assemblies folder contains a list of specialized code modules that you create
by using VB 2008. You use assemblies to define unique data-processing requirements that are
difficult or impossible to do when using other techniques. An assembly can contain functions,
stored procedures, triggers, user-defined types, and user-defined aggregate functions. Gen-
erally, you don’t need to resort to using assemblies except with complex and large databases.
Stored procedures and other standard SQL techniques usually work fine and require less work
to implement.

Working with Tables
Expand the connection to the database under the Data Connections item of Server Explorer to
view the database’s objects. One of them is the Tables item that contains the database’s tables.
Expand the Tables tree under the connection to the Northwind database you created earlier to
see the list of tables in the Northwind database. If you right-click one of them, you will see the
following (among other trivial options).

Show Table Data

This command displays the entire table onto a grid. You can edit any row, and even delete rows
or add new ones. To experiment with tables, open the Categories table by right-clicking its entry
and choosing Show Table Data from the context menu. Select a row by clicking the gray button
in front of the row and then click the Delete button. First, you’ll be warned that you’re about to
remove a row and that the action can’t be undone. If you click Yes, the row should be removed.
If you attempt to remove a row from the Categories table, however, you’ll get the following
warning:

No rows were deleted.

A problem occurred trying to delete row 1.
Error Source: .Net SqlClient Data Provider
Error Message: The DELETE statement conflicted with the
REFERENCE constraint ”FK Products Categories”. The
conflict occurred in database ”Northwind”, table
”Products”, column ”CategoryID”.
The statement has been terminated.

Correct errors and attempt to delete the row again or
press ”ESC” to cancel the change(s).

This warning means that there’s a constraint in the database that will be violated if you remove
this line. The constraint is between the Products and Categories tables. Each product belongs to
a category, and if you remove a category, some of the products will be left without a category.
The designers of the Northwind database added the appropriate constraints so that users won’t
accidentally violate the integrity of the database. As you will see, it’s easy to add new constraints to
a table and to protect the integrity of the database from mistakes of programmers and users alike.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 768

768 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

To add a row, press Ctrl+End to go to the last line, place the cursor in the first cell of the row
marked with an asterisk (this is the new row), and start typing. To move to the next cell, press Tab.
To commit the new row to the database, move the pointer to another row. As long as you’re editing
a row, the pen icon appears in the first column of the grid. While this icon is displayed, the original
row in the table hasn’t changed yet. After you’re finished entering values, move the pointer to
another row, and the pen icon will disappear, indicating that the row has been successfully added.
If the data are not consistent with the structure of the database, the changes will be aborted by
the database. If you attempt to enter a new product with a category ID that doesn’t exist in the
Categories table, the new row will not be accepted. Likewise, if you attempt to create a new order
for a nonexistent customer, the new row will be rejected. If you click on a cell that belongs to
an Identity column, like the CategoryID column of the Categories table, the warning ‘‘Cell is
read-only’’ will appear in the status bar. This warning tells you that you can’t edit the CategoryID
field of the new row; this cell will be assigned a value automatically by the DBMS as soon as you
submit the new row to the database.

Open Table Definition

Close the table, return to the Server Explorer, right-click one of the tables, and this time choose
Open Table Definition. The table’s structure will appear on a grid, as shown in Figure 21.8. The
first column contains the table’s column names (the fields of each row).

Each column has a name, a data type, and a length. To set the data type of a column, click the
Data Type cell of a field. This cell is a ComboBox displaying all available data types.

The most common data types are the char and varchartypes, which store strings, and the
numeric types, including the money data type. There’s also a special field for storing dates and
times. Basically, you can use all the data types available in VB and a few more data types that are
unique to SQL Server.

The difference between the char and varchar data types is that the char type stores strings of
fixed length (the length is specified by the value in parentheses following the data type’s name),
and the varchar type stores strings of variable length. The value in parentheses is the maximum
allowed length of the string for variable-length strings. Always use the varchar type for storing
text, because the char fields are padded with spaces to the specified length. Use the char data type
for fields that have an exact length, such as book ISBNs, Social Security numbers, zip codes, and
so on.

You can also set the Allow Nulls field to indicate whether a field may have no value. Null is a
special value in database programming. It’s not the numeric zero and it’s not an empty string, as
with Visual Basic; Null means that the field has no value.

In the lower section of the window, you see additional information about the selected field.
Each field has a Description, a Default Value, and a Collation setting (the last setting applies to
character fields only). The Default Value is a value that will be placed in this field automatically
when a new row is added to the table, unless a different value is specified. The Collation set-
ting determines how the rows will be sorted, as well as how the database will search for values
in the specific column. Normally, you set a collation sequence when you set up the database.
You can specify a different sort order for a specific field by setting its Collation property. If you
click the ellipses button next to the Collation setting, you’ll see a large number of settings. The
strings CS and CI stand for case-sensitive and case-insensitive, respectively. Searches are usually
case-insensitive, so that the argument McDonald will locate MCDonald and McDONALD. The
strings AS and AI stand for accent-sensitive and accent-insensitive; they’re used with languages that
recognize accent marks.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 769

SERVER EXPLORER 769

Figure 21.8

The Customers table in
design view

Integer data types have an Identity property: In each table, you can have one identity field,
which is an integer value. This value is incremented by the DBMS every time a new row is added,
and it’s guaranteed to be unique. The actual value is of no interest to users; they don’t even have
to see this field. All you really want is for the primary key in one row to have the same value as
the foreign key(s) in the related table(s).

Add New Table

This command adds a new table to the database. If you select it, you will see a grid like the one
shown in Figure 21.8, only all rows will be empty. You can start adding fields by specifying a
name, a data type, and its Allow Nulls property. For the purposes of this book, I assume that the
database has already been designed for you. Designing databases is no trivial task, and program-
mers shouldn’t be adding tables to simplify their code. We organize our data into tables, create the

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 770

770 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

tables, and set up relations between them. And only then can we code against the database. It’s
not uncommon to add a table to an existing database at a later stage, but this reveals some flaw in
the initial database design.

Working with Relationships, Indices, and Constraints
To manipulate relationships, indices, and constraints, open one of the tables in design mode. The
Table Designer menu contains a list of tasks you can perform with the table, including changing
the relationships, indexes, and constraints.

Relationships

Relationships are the core of a relational database, because they relate tables to one another.
To create a relationship, double-click a table’s name in Server Explorer and then choose Table
Designer � Relationships, which displays the Foreign Key Relationships dialog box shown in
Figure 21.9. This figure shows that there is already a relationship between the Categories table
and the Products table. The relationship is called FK Products Categories, and it relates the pri-
mary and foreign keys of the two tables (field CategoryID). The names of the two related tables
appear in two read-only boxes. When you create a new relationship, you can select a table from
a drop-down list. Under each table’s name, you see a list of fields. Here you select the matching
fields in the two tables. Most relationships are based on a single field, which is common to both
tables. However, you can relate two tables based on multiple fields (in which case, all pairs must
match in a relationship). The check boxes at the bottom of the page specify how the DBMS will
handle the relationship (they are discussed shortly).

Figure 21.9

The Foreign Key Rela-
tionships dialog box for
the Categories table

To create a new relationship with another table, click the Add button. A new relationship will
be added with a default name, which you can change. Like all other objects, relationships have
unique names, too. Expand the Tables And Columns Specification entry and click the ellipses
button in this field. You’ll see the Tables And Columns dialog box. In the Primary Key Table
column, you can select the name of the table that has the primary key in the relationship. The
Foreign Key Table column always defaults to the current table, so when you create a relationship,
you must create it in the table where the foreign key will appear. The default relationship names

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 771

SERVER EXPLORER 771

starts with the string FK (which stands for foreign key), followed by an underscore character and
the name of the foreign table, then followed by another underscore and the name of the primary
table. You can change the relationship’s name to anything you like.

If the relationship is based on a compound key, select all the fields that make up the primary
and foreign keys, in the same order. After you select the fields, click OK to create the relationship.
At the right side of the Foreign Key Relationships dialog box, you see a few options that you
can change:

Check Existing Data On Creation Or Re-enabling If the existing data violate the relation-
ship, the new relationship won’t be established. You will have to fix the data and then attempt
to establish the relationship again.

Enforce For Replication The relationship is enforced when the database is replicated.

Enforce Foreign Key Constraint The relationship is enforced when you add new data or
update existing data. If you attempt to add data that violate the relationship, the new data (or
the update) will be rejected.

Update Rule, Delete Rule When you change the primary key in one table, or delete it, some
rows of a related table may be left with an invalid foreign key. If you delete a publisher, for
example, all the titles that pointed to this publisher will become invalid after you change the
publisher’s ID. If you change a publisher’s key, you may leave some books without a pub-
lisher. You can set this option to take no action at all, automatically cascade the change (or
deletion), set the affected data to Null, or set the data to the default value that you selected as
part of the design.
You can also create relationships on a database diagram by dragging the primary key field

from its table and dropping it onto the foreign key of the related table. Just click the gray header
of the primary key to select it, not the name of the field.

To view or edit the details of a relationship, right-click the line that represents the relationship,
and you will see the following commands:

Delete Relationship From Database This command removes the relationship between the
two tables.

Properties This command brings up the Properties pages of the primary table, in which you
can specify additional relationships or constraints.

Earlier in this chapter, you saw that you couldn’t remove a row from the Categories table
because this action conflicted with the FK Products Categories constraint. If you open the first
diagram you created in this section and examine the properties of the relation between the Product
and Categories tables, you’ll see that the FK Products Categories relationship is enforced. If
you want to be able to delete categories, you must delete all the products that are associated
with the specific category first. SQL Server can take care of deleting the related rows for you if
you select Cascade option in the Delete Rule field. This is a rather dangerous practice, and you
shouldn’t select it without good reason. In the case of the Products table, you shouldn’t enable
cascade deletions. The products are also linked to the Order Details table, which means that the
corresponding detail lines would also disappear from the database. Allowing cascade deletion in
a database such as Northwind will result in loss of valuable information irrevocably.

There are other situations in which cascade deletion is not such a critical issue. You can enable
cascade deletions in the Pubs database, for instance, so that each time you delete a title, the cor-
responding rows in the TitleAuthor table will also be removed. When you delete a book, you
obviously don’t need any information about this book in the TitleAuthor table.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 772

772 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Indices/Keys

You created a few tables and have entered some data into them. Now the most important thing
you can do with a database is extract data from it (or else, why store the information in the first
place?). We rarely browse the rows of a single table. Instead, we’re interested in summary infor-
mation that will help us make business decisions. We need answers to questions such as ‘‘What’s
the most popular product in California?’’ or ‘‘What month has the largest sales for a specific prod-
uct?’’ To retrieve this type of information, you must combine multiple tables. To answer the first
question, you must locate all the customers in California, retrieve their orders, sum the quantities
of the items they have purchased, and then select the product with the largest sum of quantities.
As you can guess, a DBMS must be able to scan the tables and locate the desired rows quickly.

Computers use a special technique, called indexing, to locate information quickly. This tech-
nique requires that the data be maintained in some order. The indexed rows need not be in a
specific physical order, as long as you can retrieve them in a specific order. Indeed, an index is an
ordering of the rows, and you can maintain the same rows sorted in many different ways. Depend-
ing on the operation, the DBMS will select the appropriate index to speed up the operation. If you
want to retrieve the name of the category of a specific product, the rows of the Categories table
must be ordered according to the CategoryID field, which is the value that links each row in the
Products table to the corresponding row in the Categories table. The DBMS retrieves the Catego-
ryID field of a specific product and then instantly locates the matching row in the Categories table
because the rows of this table are indexed according to their CategoryID field.

Fortunately, you don’t have to maintain the rows of the tables in any order yourself. All you
have to do is define the order, and the DBMS will maintain the indices for you. Every time a new
row is added or an existing row is deleted or edited, the table’s indices are automatically updated.
To speed up the searches, you can maintain an index for each field you want to search. Of course,
although indexing will help the search operations, maintaining too many indices will slow the
insertion and update operations. At any rate, all columns that are used in joins must be indexed,
or else the selection process will be very slow.

Use the Table Designer � Indexes/Keys command to display the Indexes/Keys dialog box
for the Categories table. Figure 21.10 shows the properties of the PK Categories index of the
Categories table. This index is based on the column CategoryID of the table and maintains the
rows of the Categories table in ascending order according to their ID. The prefix PK stands for
primary key. To specify that an index is also the table’s primary key, you must set the Is Unique
property to Yes. You can create as many indices as necessary for each table, but only one of them
can be the primary key. The Is Unique property in Figure 21.10 is disabled because the primary
key is involved in one or more relationships — therefore, you can’t change the table’s primary key
because you’ll break some of the existing relationships with other tables.

To create a new index, click the Add button. Specify the column on which the new index will
be based by clicking the ellipses in the Columns property and choosing the columns in the Index
Columns dialog box. Enter a name for the new index (or accept the default one) using the (Name)
property.

Check Constraints

A constraint is another important object of a database. The entity represented by a field can be
subject to physical constraints. The Discount field, for example, should be a positive value no
greater than 1 (or 100, depending on how you want to store it). Prices are also positive values.
Other fields are subject to more-complicated constraints. The DBMS can make sure that the values
assigned to those fields do not violate the constraints. Otherwise, you’d have to make sure that all
the applications that access the same fields conform to the physical constraints.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 773

STRUCTURED QUERY LANGUAGE 773

Figure 21.10

The Indexes/Keys tab of
the Properties pages

To make a constraint part of the database, open the table that contains the field on which you
want to impose a constraint, in design view. Use the Table Designer � Check Constraints com-
mand to display the Check Constraints dialog box. The names of the constraints start with the
CK prefix, followed by an underscore, the name of the table, another underscore, and finally the
name of the field to which the constraint applies. The CK Products UnitPrice constraint is the
expression that appears in the Expression property (the UnitPrice field must be positive):

([UnitPrice]>=(0))

Constraints have a syntax similar to the syntax of SQL restrictions and are quite trivial. (I’ll get
into SQL in the following section.) Another interesting constraint exists in the Employees table,
and it’s expressed as follows:

([BirthDate]<GetDate())

This constraint prevents users and programs from inserting an employee that hasn’t been born
yet. GetDate()is a built-in function that returns the current date and time.

So far, you should have a good idea about how databases are organized, what the relation-
ships are for, and why they’re so critical for the integrity of the data stored in the tables. Now
you’ll look at ways to retrieve data from a database. To specify the rows and columns you want
to retrieve from one or more tables, you must use SQL statements, which are the topic of the
following section.

Structured Query Language
Structured Query Language (SQL) is a universal language for manipulating tables. Almost every
DBMS supports it, so you should invest the time and effort to learn it. You can generate SQL
statements with point-and-click operations (the Query Builder is a visual tool for generating SQL
statements), but this is no substitute for understanding SQL and writing your own statements. The
visual tools are nothing more than a user-friendly interface for specifying SQL statements. In the

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 774

774 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

background, they generate the appropriate SQL statement, and you will get the most out of these
tools if you understand the basics of SQL. I will start with an overview of SQL and then I’ll show
you how to use the Query Builder utility to specify a few advanced queries.

By the way, the SQL version of SQL Server is called T-SQL, which stands for Transact-SQL.
T-SQL is a superset of SQL and provides advanced programming features that are not available
with SQL. I’m not going to discuss T-SQL in this book, but once you have understood SQL you’ll
find it easy to leverage this knowledge to T-SQL.

SQL is a nonprocedural language, which means that SQL doesn’t provide traditional program-
ming structures such as If statements or loops. Instead, it’s a language for specifying the operation
you want to perform against a database at a high level. The details of the implementation are left to
the DBMS. SQL is an imperative language, like Language Integrated Query (LINQ), as opposed
to a traditional programming language, such as VB. Traditional languages are declarative: The
statements you write tell the compiler how to perform the desired actions. This is good news for
nonprogrammers, but many programmers new to SQL might wish it had the structure of a more
traditional language. You will get used to SQL and soon be able to combine the best of both worlds:
the programming model of VB and the simplicity of SQL. Besides, there are many similarities
between SQL and LINQ, and you’ll be able to leverage your skills in any of the two areas.

SQL Is Not Case-Sensitive

SQL is not case-sensitive, but it’s customary to use uppercase for SQL statements and keywords. In
the examples in this book, I use uppercase for SQL statements. This is just a style to help you distin-
guish between the SQL keywords and the table/field names of the query. Also, unlike VB, SQL literals
must be embedded in single quotes, not double quotes.

To retrieve all the company names from the Customers table of the Northwind database, you
issue a statement like this one:

SELECT CompanyName
FROM Customers

To select customers from a specific country, you must use the WHERE clause to limit the selected
rows, as in the following statement:

SELECT CompanyName
FROM Customers
WHERE Country = ’Germany’

The DBMS will retrieve and return the rows you requested. As you can see, this is not the way
you’d retrieve rows with Visual Basic. With a procedural language such as VB, you’d have to
write loops to scan the entire table, examine the value of the Country column, and either select or
reject the row. Then you would display the selected rows. With SQL, you don’t have to specify
how the selection operation will take place; you simply specify what you want the database to do
for you — not how to do it.

SQL statements are divided into two major categories, which are actually considered separate
languages: the statements for manipulating the data, which form the Data Manipulation Language
(DML), and the statements for defining database objects, such as tables or their indexes, which
form the Data Definition Language (DDL). The DDL is not of interest to every database developer,

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 775

STRUCTURED QUERY LANGUAGE 775

and we will not discuss it in this book. The DML is covered in depth because you’ll use these
statements to retrieve data, insert new data into the database, and edit or delete existing data.

The statements of the DML part of the SQL language are also known as queries, and there are
two types of queries: selection queries and action queries. Selection queries retrieve information
from the database. A selection query returns a set of rows with identical structure. The columns
can come from different tables, but all the rows returned by the query have the same number of
columns. Action queries modify the database’s objects, or create new objects and add them to the
database (new tables, relationships, and so on).

Executing SQL Statements
If you are not familiar with SQL, I suggest that you follow the examples in this chapter and exper-
iment with the sample databases. To follow the examples, you have two options: the SQL Server
Management Studio (SSMS) and the Query Designer of Visual Studio. The SSMS helps you man-
age databases in various ways, including creating queries to extract data. The Query Designer is
an editor for SQL statements that also allows you to execute them and see the results. In addition
to the Query Designer, you can also use the Query Builder, which is part of the SSMS and Visual
Studio. The Query Builder lets you build the statements with visual tools and you don’t have to
know the syntax of SQL in order to create queries with the Query Builder. After a quick overview
of the SQL statements, I will describe the Query Builder and show you how to use its interface to
build fairly elaborate queries.

Using the SQL Server Management Studio (SSMS)

One of the applications installed with SQL Server is the SSMS. To start it, choose Start� Programs
� SQL Server� SQL Server Management Studio. When this application starts, you see the Connect
To Server dialog box (Figure 21.11). Choose Database Engine in the Server Type field so you can
work with databases on your system. Select the server you want to use in the Server Name field.
Provide your credentials and click Connect.

Figure 21.11

SSMS provides access
to all the database
engine objects, including
databases.

After you’re connected, right-click the database you want to use and choose New Query from
the context menu. Enter the SQL statement you want to execute in the blank query that SSMS

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 776

776 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

creates. The SQL statement will be executed against the selected database when you press Ctrl+E
or click the Execute button (it’s the button with the exclamation point icon). Alternatively, you can
prefix the SQL statement with the USE statement, which specifies the database against which the
statement will be executed. To retrieve all the Northwind customers located in Germany, enter
this statement:

USE Northwind
SELECT CompanyName FROM Customers
WHERE Country = ’Germany’

The USE statement isn’t part of the query; it simply tells SSMS the database against which it
must execute the query. I’m including the USE statement with all the queries so you know the
database used for each example. If you’re executing the sample code from within Visual Studio,
you need not use the USE statement, because all queries are executed against the selected database.
Actually, the statement isn’t supported by the Query Designer of Visual Studio.

The results of the query, known as the result set, will appear in a grid in the lower pane. An
action query that updates a table (adds a new row, edits, or deletes an existing row) doesn’t return
any rows; it simply displays the number of rows affected on the Messages tab.

To execute another query, enter another statement in the upper pane, or edit the previous
statement and press Ctrl+E again. You can also save SQL statements into files, so that you won’t
have to type them again. To do so, open the File menu, choose Save As or Save, and enter the name
of the file in which the contents of the Query pane will be stored. The statement will be stored in a
text file with the extension .sql.

Using Visual Studio

To execute the same queries with Visual Studio, open the Server Explorer window and right-click
the name of the database against which you want to execute the query. From the context menu,
choose New Query, and a new query window will open. You will also see a dialog box prompting
you to select one or more tables. For the time being, close this dialog box, because you will supply
the names of the tables in the query; later in this chapter, you’ll learn how to use the visual tools
to build queries.

The Query Designer of Visual Studio is made up of four panes (Figure 21.12). The upper pane
(which is the Table Diagram pane) displays the tables involved in the query, their fields, and the
relationships between the tables — if any. The next pane shows the fields that will be included in
the output of the query. Here you specify the output of the query, as well as the selection criteria.
This pane is the Query Builder, the tool that lets you design queries visually. It’s discussed later
in this chapter. In the next pane, the SQL pane, you see the SQL statement produced by the visual
tools. If you modify the query with the visual tools, the SQL statement is updated automatically;
likewise, when you edit the query, the other two panes are updated automatically to reflect the
changes. The last pane, the Results pane, contains a grid with the query’s output. Every time you
execute the query by clicking the button with the exclamation mark in the toolbar, the bottom
pane is populated with the results of the query. For the examples in this section, ignore the top
two panes. Just enter the SQL statements in the SQL pane and execute them.

Using Selection Queries
We’ll start our discussion of SQL with the SELECT statement. After you learn how to express the
criteria for selecting the desired rows with the SELECT statement, you can apply this information
to other data-manipulation statements. The simplest form of the SELECT statement is

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 777

STRUCTURED QUERY LANGUAGE 777

SELECT fields
FROM tables

Figure 21.12

Executing queries with
Visual Studio

where fields and tables are comma-separated lists of the fields you want to retrieve from the
database and the tables they belong to. The list of fields following the SELECT statement is referred
to as the selection list. To select the contact information from all the companies in the Customers
table, use this statement:

USE Northwind
SELECT CompanyName, ContactName, ContactTitle
FROM Customers

To retrieve all the fields, use the asterisk (*). The following statement selects all the fields from the
Customers table:

SELECT * FROM Customers

As soon as you execute a statement that uses the asterisk to select all columns, the Query
Designer will replace the asterisk with the names of all columns in the table.

Limiting the Selection with WHERE

The unconditional form of the SELECT statement used in the previous section is quite trivial. You
rarely retrieve data from all rows in a table. Usually you specify criteria, such as ‘‘all companies

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 778

778 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

from Germany,’’ ‘‘all customers who have placed three or more orders in the last six months,’’
or even more-complicated expressions. To restrict the rows returned by the query, use the WHERE
clause of the SELECT statement. The most common form of the SELECT statement is the following:

SELECT fields
FROM tables
WHERE condition

The fields and tables arguments are the same as before, and condition is an expression that
limits the rows to be selected. The syntax of the WHERE clause can get quite complicated, so we’ll
start with the simpler forms of the selection criteria. The condition argument can be a relational
expression, such as the ones you use in VB. To select all the customers from Germany, use the
following condition:

WHERE Country = ’Germany’

To select customers from multiple countries, use the OR operator to combine multiple
conditions:

WHERE Country = ’Germany’ OR
Country = ’Austria’

You can also combine multiple conditions with the AND operator.

Selecting Columns from Multiple Tables

It is possible to retrieve data from two or more tables by using a single statement. (This is the most
common type of query, actually.) When you combine multiple tables in a query, you can use the
WHERE clause to specify how the rows of the two tables will be combined. Let’s say you want a
list of all product names, along with their categories. For this query, you must extract the product
names from the Products table and the category names from the Categories table and specify that
the ProductID field in the two tables must match. The statement

USE Northwind
SELECT ProductName, CategoryName
FROM Products, Categories
WHERE Products.CategoryID = Categories.CategoryID

retrieves the names of all products, along with their category names. Here’s how this statement
is executed. For each row in the Products table, the SQL engine locates the matching row in the
Categories table and then appends the ProductName and CategoryName fields to the result.

If a product has no category, that product is not included in the result. If you want all the
products, even the ones that don’t belong to a category, you must use the JOIN keyword, which is
described later in this chapter. Using the WHERE clause to combine rows from multiple tables might
lead to unexpected results because it can combine rows only with matching fields. If the foreign
key in the Products table is Null, this product is not selected. This is a fine point in combining
multiple tables, and many programmers abuse the WHERE clause. As a result, they retrieve fewer
rows from the database and don’t even know it.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 779

STRUCTURED QUERY LANGUAGE 779

Resolving Column Names

When fields in two tables have the same names, you must prefix them with the table’s name to
remove the ambiguity. When you execute a SQL statement, the Query Builder automatically prefixes
all column names with the name of the table they belong to. Also, some field names might contain
spaces. These field names must appear in square brackets. The Publishers table of the Pubs sample
database contains a field named Publisher Name. To use this field in a query, enclose it in brackets:
Publishers.[Publisher Name]. The table prefix is optional (no other table contains a column by
that name), but the brackets are mandatory.

To retrieve all the titles published by a specific publisher, the New Moon Books publisher,
use a statement like the following:

USE pubs
SELECT titles.title
FROM titles, publishers
WHERE titles.pub id = publishers.pub id AND publishers.pub name = ’New Moon Books’

This statement combines two tables and selects the titles of a publisher specified by name.
To match titles and publisher, it requests the following:

◆ The publisher’s name in the Publishers table should be New Moon Books.

◆ The pub id field in the Titles table should match the pub id field in the Publishers
table.

Knowing WHERE You’re Going

If you specify multiple tables without the WHERE clause, the SQL statement will return an enormous
set of rows, which is known as a cursor. If you issue the following statement, you will not get a line
for each product name followed by its category:

SELECT ProductName, CategoryName FROM Categories, Products

You will get a cursor with 616 rows, which are all possible combinations of product names and cate-
gory names. In this example, the Categories table has 8 rows, and the Products table has 77 rows, so
their cross-product contains 616 rows. It’s extremely rare to request the cross-product of two tables. If
the two tables have many rows, you will have to stop the execution of the query by clicking the round
button with the red square in the status bar of the Query Designer window, next to the number of
selected rows.

Notice that we did not specify the publisher’s name (field pub name) in the selection list. All
the desired books have the same publisher, so we need not include the publisher’s names in the
result set.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 780

780 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Aliasing Table Names

To avoid typing long table names, you can alias them with a shorter name and use this shorthand
notation in the rest of the query. The query that retrieves titles and publishers can be written as
follows:

USE pubs
SELECT T.title
FROM titles T, publishers P
WHERE T.pub id = P.pub id AND

P.pub name = ’New Moon Books’

The table names are aliased in the FROM clause, and the alias is used in the rest of the query.
You can use the AS keyword, but this is optional:

FROM titles AS T, publishers AS P

Aliasing Column Names with AS

By default, each column of a query is labeled after the actual field name in the output. If a table
contains two fields named CustLName and CustFName, you can display them with different
labels by using the AS keyword. The following SELECT statement produces two columns labeled
CustLName and CustFName:

SELECT CustLName, CustFName

The query’s output looks much better if you change the labels of these two columns with a
statement like the following:

SELECT CustLName AS [Last Name],
CustFName AS [First Name]

It is also possible to concatenate two fields in the SELECT list with the concatenation operator.
Concatenated fields are labeled automatically as Expr1, Expr2, and so on, so you must supply
your own name for the combined field. The following statement creates a single column for the
customer’s name and labels it Customer Name:

SELECT CustLName + ’, ’ + CustFName AS [Customer Name]

Skipping Duplicates with DISTINCT

The DISTINCT keyword eliminates from the cursor any duplicates retrieved by the SELECT
statement. Let’s say you want a list of all countries with at least one customer. If you retrieve
all country names from the Customers table, you’ll end up with many duplicates. To eliminate
them, use the DISTINCT keyword, as shown in the following statement:

USE Northwind
SELECT DISTINCT Country
FROM Customers

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 781

STRUCTURED QUERY LANGUAGE 781

The LIKE Operator

The LIKE operator uses pattern-matching characters like the ones you use to select multiple files
in DOS. The LIKE operator recognizes several pattern-matching characters (or wildcard characters)
to match one or more characters, numeric digits, ranges of letters, and so on. These characters are
listed in Table 21.1.

Table 21.1: SQL Wildcard Characters

Wildcard Character Description

% Matches any number of characters. The pattern program% will find
program, programming, programmer, and so on. The pattern %program%
will locate strings that contain the words program, programming,
nonprogrammer, and so on.

(Underscore character.) Matches any single alphabetic character. The
pattern b y will find boy and bay, but not boysenberry.

[] Matches any single character within the brackets. The pattern Santa
[YI]nez will find both Santa Ynez and Santa Inez.

[ˆ] Matches any character not in the brackets. The pattern %q[ˆ u]% will find
words that contain the character q not followed by u (they are misspelled
words).

[-] Matches any one of a range of characters. The characters must be
consecutive in the alphabet and specified in ascending order (A to Z, not Z
to A). The pattern [a-c]% will find all words that begin with a, b, or c (in
lowercase or uppercase).

Matches any single numeric character. The pattern D1## will find D100
and D139, but not D1000 or D10.

You can use the LIKE operator to retrieve all titles about Windows from the Pubs database, by
using a statement like the following one:

USE pubs
SELECT titles.title
FROM titles
WHERE titles.title LIKE ’%Windows%’

The percent signs mean that any character(s) may appear in front of or after the word Windows
in the title.

To include a wildcard character itself in your search argument, enclose it in square brackets.
The pattern %50[%]% will match any field that contains the string 50%.

Null Values and the ISNULL Function

A common operation for manipulating and maintaining databases is to locate Null values in fields.
The expressions IS NULL and IS NOT NULL find field values that are (or are not) Null. To locate the

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 782

782 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

rows of the Customers table that have a Null value in their CompanyName column, use the following
WHERE clause:

WHERE CompanyName IS NULL

You can easily locate the products without prices and edit them. The following statement
locates products without prices:

USE Northwind
SELECT * FROM Products WHERE UnitPrice IS NULL

A related function, the ISNULL() function, allows you to specify the value to be returned when
a specific field is Null. The ISNULL() SQL function accepts two arguments: a column name and a
string. The function returns the value of the specified column, unless this value is Null, in which
case it returns the value of the second argument. To return the string *** for customers without a
company name, use the following expression:

USE Northwind
SELECT CustomerID,
ISNULL(CompanyName, ’***’) AS Company,

ContactName
FROM Customers

Sorting the Rows with ORDER BY

The rows of a query are not in any particular order. To request that the rows be returned in a
specific order, use the ORDER BY clause, which has this syntax:

ORDER BY col1, col2, . . .

You can specify any number of columns in the ORDER BY list. The output of the query is ordered
according to the values of the first column. If two rows have identical values in this column,
they are sorted according to the second column, and so on. The following statement displays the
customers ordered by country and then by city within each country:

USE Northwind
SELECT CompanyName, ContactName, Country, City
FROM Customers
ORDER BY Country, City

Limiting the Number of Rows with TOP

Some queries retrieve a large number of rows, but you’re interested in the top few rows only. The
TOP N keyword allows you to select the first N rows and ignore the remaining ones. Let’s say you
want to see the list of the 10 top-selling products. Retrieve the products and the number of items
sold for each item, order the rows according to the number of items sold, and keep the first 10
rows with the TOP keyword. To limit the number of rows returned by the query, specify the TOP
keyword followed by the desired number of rows after the SELECT statement, as shown here:

SELECT TOP 10
FROM ...

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 783

STRUCTURED QUERY LANGUAGE 783

You can also limit the percentage of the selected rows, not just their absolute number. To return
the top 3 percent of the qualifying rows, use the following statement:

SELECT TOP (3) PERCENT
FROM ...

The TOP keyword is used only when the rows are ordered according to some meaningful crite-
ria. Limiting a query’s output to the alphabetically top N rows isn’t very practical. However, when
the rows are sorted according to items sold, revenue generated, and so on, it makes sense to limit
the query’s output to N rows.

Working with Calculated Fields
In addition to column names, you can specify calculated columns in the SELECT statement.
The Order Details table contains a row for each invoice line. Invoice 10248, for instance, contains
four lines (four items sold), and each detail line appears in a separate row in the Order Details
table. Each row holds the number of items sold, the item’s price, and the corresponding discount.
To display the line’s subtotal, you must multiply the quantity by the price minus the discount, as
shown in the following statement:

USE Northwind
SELECT Orders.OrderID, [Order Details].ProductID,

[Order Details].[Order Details].UnitPrice *
[Order Details].Quantity *
(1 - [Order Details].Discount) AS SubTotal

FROM Orders INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID

(Because the Order Details table’s name contains spaces, it’s embedded in square
brackets).

Here the selection list contains an expression based on several fields of the Order Details
table. This statement calculates the subtotal for each line in the invoices issued to all Northwind
customers and displays them along with the order number, as shown in Figure 21.13. The order
numbers are repeated as many times as there are products in the order (or lines in the invoice).
In the following section, ‘‘Calculating Aggregates,’’ you will find out how to calculate totals too.

Calculating Aggregates
SQL supports some aggregate functions, which act on selected fields of all the rows returned by
the query. The basic aggregate functions listed in Table 21.2 perform basic calculations such as
summing, counting, and averaging numeric values. There are a few more aggregate functions for
calculating statistics such as the variance and standard deviation, but I have omitted them from
Table 21.2. Aggregate functions accept field names (or calculated fields) as arguments and return
a single value, which is the sum (or average) of all values.

These functions operate on a single column (which could be a calculated column) and return
a single value. The rows involved in the calculations are specified with the proper WHERE clause.
The SUM() and AVG() functions can process only numeric values. The other three functions can
process both numeric and text values.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 784

784 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Figure 21.13

Calculating the subtotals
for each item sold

Table 21.2: SQL’s Common Aggregate Functions

Function Returns

COUNT() The number (count) of values in a specified column

SUM() The sum of values in a specified column

AVG() The average of the values in a specified column

MIN() The smallest value in a specified column

MAX() The largest value in a specified column

The aggregate functions are used to summarize data from one or more tables. Let’s say you
want to know the number of Northwind database customers located in Germany. The following
SQL statement returns the desired value:

USE Northwind
SELECT COUNT(CustomerID)
FROM Customers
WHERE Country = ’Germany’

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 785

STRUCTURED QUERY LANGUAGE 785

The aggregate functions ignore the Null values unless you specify the * argument. The follow-
ing statement returns the count of all rows in the Customers table, even if some of them have a
Null value in the Country column:

USE Northwind
SELECT COUNT(*)
FROM Customers

The SUM() function is used to total the values of a specific field in the specified rows. To find out
how many units of the product with ID = 11 (queso Cabrales) have been sold, use the following
statement:

USE Northwind
SELECT SUM(Quantity)
FROM [Order Details]
WHERE ProductID = 11

The SQL statement that returns the total revenue generated by a single product is a bit more
complicated. To calculate it, you must multiply the quantities by their prices and then add the
resulting products together, taking into consideration each invoice’s discount:

USE Northwind
SELECT SUM(Quantity * UnitPrice * (1 - Discount))
FROM [Order Details]
WHERE ProductID = 11

Queso Cabrales generated a total revenue of $12,901.77. If you want to know the number of
items of this product that were sold, add one more aggregate function to the query to sum the
quantities of each row that refers to the specific product ID:

USE Northwind
SELECT SUM(Quantity),

SUM(Quantity * UnitPrice * (1 - Discount))
FROM [Order Details]
WHERE ProductID = 11

If you add the ProductID column in the selection list and delete the WHERE clause to retrieve
the totals for all products, the query will generate an error message to the effect that the columns
haven’t been grouped. You will learn how to group the results a little later in this chapter.

Using SQL Joins
Joins specify how you connect multiple tables in a query. There are four types of joins:

◆ Left outer, or left, join

◆ Right outer, or right, join

◆ Full outer, or full, join

◆ Inner join

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 786

786 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

A join operation combines all the rows of one table with the rows of another table. Joins are
usually followed by a condition that determines which records on either side of the join appear
in the result. The WHERE clause of the SELECT statement is similar to a join, but there are some fine
points that will be explained momentarily.

The left, right, and full joins are sometimes called outer joins to differentiate them from an
inner join. Left join and left outer join mean the same thing, as do right join and right outer join.

Left Joins

The left join displays all the records in the left table and only those records of the table on the
right that match certain user-supplied criteria. This join has the following syntax:

FROM (primary table) LEFT JOIN (secondary table) ON
(primary table).(field) = (secondary table).(field)

The left outer join retrieves all rows in the primary table and the matching rows from a sec-
ondary table. The following statement retrieves all the titles from the Pubs database along with
their publisher. If some titles have no publisher, they will be included in the result:

USE pubs
SELECT title, pub name
FROM titles LEFT JOIN publishers

ON titles.pub id = publishers.pub id

Right Joins

The right join is similar to the left outer join, except that it selects all rows in the table on the right,
and only the matching rows from the left table. This join has the following syntax:

FROM (secondary table) RIGHT JOIN (primary table)
ON (secondary table).(field) = (primary table).(field)

The following statement retrieves all the publishers from the Pubs database along with their
titles. If a publisher has no titles, the publisher name will be included in the result set. Notice that
this statement is almost exactly the same as the example of the left outer join entry. I changed only
LEFT to RIGHT:

USE pubs
SELECT title, pub name
FROM titles RIGHT JOIN publishers

ON titles.pub id = publishers.pub id

Full Joins

The full join returns all the rows of the two tables, regardless of whether there are matching rows.
In effect, it’s a combination of left and right joins. To retrieve all titles and all publishers, and to
match publishers to their titles, use the following join:

USE pubs
SELECT title, pub name

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 787

STRUCTURED QUERY LANGUAGE 787

FROM titles FULL JOIN publishers
ON titles.pub id = publishers.pub id

This query will include titles without a publisher, as well as publishers without a title.

Inner Joins

The inner join returns the matching rows of both tables, similar to the WHERE clause, and has the
following syntax:

FROM (primary table) INNER JOIN (secondary table)
ON (primary table).(field) = (secondary table).(field)

The following SQL statement combines records from the Titles and Publishers tables of the
Pubs database if their pub id fields match. It returns all the titles and their publishers. Titles
without publishers, or publishers without titles, will not be included in the result.

USE pubs
SELECT titles.title, publishers.pub name FROM titles, publishers
WHERE titles.pub id = publishers.pub id

You can retrieve the same rows by using an inner join, as follows:

USE pubs
SELECT titles.title, publishers.pub name
FROM titles INNER JOIN publishers ON titles.pub id = publishers.pub id

Do Not Join Tables with the WHERE Clause

The proper method of retrieving rows from multiple tables is to use joins. It’s not uncommon to write
a dozen joins one after the other (if you have that many tables to join). You can also join two tables
by using the WHERE clause. Here are two statements that return the total revenue for each of the cus-
tomers in the Northwind database. The first one uses the INNER JOIN statement, and the second one
uses the WHERE clause. The INNER JOIN is equivalent to the WHERE clause: they both return the
same rows.

Query 1

SELECT
C.CompanyName,
SUM((OD.UnitPrice * OD.Quantity) * (1 - OD.Discount)) AS Revenue

FROM Customers AS C
INNER JOIN Orders AS O ON C.CustomerID = O.CustomerID
INNER JOIN [Order Details] AS OD ON O.OrderID = OD.OrderID

GROUP BY C.CompanyName

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 788

788 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Query 2

SELECT
C.CompanyName,
SUM((OD.UnitPrice * OD.Quantity) * (1 - OD.Discount)) AS Revenue

FROM Customers AS C
INNER JOIN Orders AS O ON C.CustomerID = O.CustomerID
INNER JOIN [Order Details] AS OD ON O.OrderID = OD.OrderID

GROUP BY C.CompanyName

Both statements assume that all customers have placed an order. If you change the INNER JOIN in
the first statement to a LEFT JOIN, the result will contain two more rows: The customers FISSA and
PARIS have not placed any orders and they’re not included in the output. If you know that all your
customers have placed an order, or you don’t care about customers without orders, use the WHERE
clause or an inner join. It’s important to keep in mind that if you want to see all customers, regardless
of whether they have placed an order, you must use joins.

An even better example is that of retrieving titles along with their authors. An inner join will return
titles that have one (or more) authors. A left join will return all titles, even the ones without authors.
A right join will return all authors, even if some of them are not associated with any titles. Finally,
a full outer join will return both titles without authors and authors without titles. Here’s the state-
ment that retrieves titles and authors from the Pubs database. Change the type of joins to see how
they affect the result set:

SELECT titles.title,
authors.au lname + ’, ’ + authors.au fname AS Author

FROM authors
INNER JOIN titleauthor ON authors.au id = titleauthor.au id
INNER JOIN titles ON titleauthor.title id = titles.title id

ORDER BY titles.title

There’s a shorthand notation for specifying left and right joins with the WHERE clause. When you use
the operator *= in a WHERE clause, a left join will be created. Likewise, the =* operator is equivalent
to a right join.

Grouping Rows
Sometimes you need to group the results of a query so that you can calculate subtotals. Let’s
say you need not only the total revenues generated by a single product, but a list of all products
and the revenues they generated. The example of the earlier section ‘‘Calculating Aggregates’’
calculates the total revenue generated by a single product. It is possible to use the SUM() function
to break the calculations at each new product ID, as demonstrated in the following statement. To
do so, you must group the product IDs together with the GROUP BY clause:

USE Northwind
SELECT ProductID,

SUM(Quantity * UnitPrice *(1 - Discount)) AS [Total Revenues]

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 789

STRUCTURED QUERY LANGUAGE 789

FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

The preceding statement produces the following output:

ProductID Total Revenues
1 12788.10
2 16355.96
3 3044.0
4 8567.89
5 5347.20
6 7137.0
7 22044.29

The aggregate functions work in tandem with the GROUP BY clause (when there is one) to pro-
duce subtotals. The GROUP BY clause groups all the rows with the same values in the specified
column and forces the aggregate functions to act on each group separately. SQL Server sorts the
rows according to the column specified in the GROUP BY clause and starts calculating the aggregate
functions. Every time it runs into a new group, it generates a new row and resets the aggregate
function(s).

If you use the GROUP BY clause in a SQL statement, you must be aware of the following rule:

All the fields included in the SELECT list must be either part of an aggregate function or part of the
GROUP BY clause.

Let’s say you want to change the previous statement to display the names of the products rather
than their IDs. The following statement does just that. Notice that the ProductName field doesn’t
appear as an argument to an aggregate function, so it must be part of the GROUP BY clause:

USE Northwind
SELECT ProductName,

SUM(Quantity * [Order Details].UnitPrice * (1 - Discount))
AS [Total Revenues]

FROM [Order Details], Products
WHERE Products.ProductID = [Order Details].ProductID
GROUP BY ProductName
ORDER BY ProductName

These are the first few lines of the output produced by this statement:

ProductName Total Revenues
Alice Mutton 32698.38
Aniseed Syrup 3044.0
Boston Crab Meat 17910.63
Camembert Pierrot 46927.48
Carnarvon Tigers 29171.87

If you omit the GROUP BY clause, the query will generate an error message indicating that the
ProductName column in the selection list is not involved in an aggregate or a GROUP BY clause.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 790

790 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

You can also combine multiple aggregate functions in the selection list. The following statement
calculates the total number of items sold for each product, along with the revenue generated and
the number of invoices that contain the specific product:

USE Northwind
SELECT ProductID AS Product,

COUNT(ProductID) AS Invoices,
SUM(Quantity) AS [Units Sold],
SUM(Quantity * UnitPrice *(1 - Discount)) AS Revenue

FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

Here are the first few lines returned by the preceding query:

Product Invoices Units Sold Revenue
1 38 828 12788.1000595092
2 44 1057 16355.9600448608

You should try to revise the preceding statement so that it displays product names instead of
IDs, by adding another join to the query as explained already.

Limiting Groups with HAVING
The HAVING clause limits the groups that will appear at the cursor. In a way, it is similar to the
WHERE clause, but the HAVING clause is used with aggregate functions and the GROUP BY clause,
and the expression used with the HAVING clause usually involves one or more aggregates. The
following statement returns the IDs of the products whose sales exceed 1,000 units:

USE NORTHWIND
SELECT ProductID, SUM(Quantity)
FROM [Order Details]
GROUP BY ProductID
HAVING SUM(Quantity) > 1000

You can’t use the WHERE clause here, because no aggregates may appear in the WHERE clause. To
see product names instead of IDs, join the Order Details table to the Products table by matching
their ProductID columns. Note that the expression in the HAVING clause need not be included in
the selection list. You can change the previous statement to retrieve the total quantities sold with
a discount of 10 percent or more with the following HAVING clause:

HAVING Discount >= 0.1

However, the Discount column must be included in the GROUP BY clause, because it’s not part
of an aggregate.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 791

ACTION QUERIES 791

Selecting Groups with IN and NOT IN
The IN and NOT IN keywords are used in a WHERE clause to specify a list of values that a column
must match (or not match). They are more of a shorthand notation for multiple OR operators. The
following statement retrieves the names of the customers in all German-speaking countries:

USE Northwind
SELECT CompanyName
FROM Customers
WHERE Country IN (’Germany’, ’Austria’, ’Switzerland’)

Selecting Ranges with BETWEEN
The BETWEEN keyword lets you specify a range of values and limit the selection to the rows that
have a specific column in this range. The BETWEEN keyword is a shorthand notation for an
expression like this:

column >= minValue AND column <= maxValue

To retrieve the orders placed in 1997, use the following statement:

USE Northwind
SELECT OrderID, OrderDate, CompanyName
FROM Orders, Customers
WHERE Orders.CustomerID = Customers.CustomerID AND

(OrderDate BETWEEN ’1/1/1997’ AND ’12/31/1997’)

Action Queries
In addition to the selection queries we examined so far, you can also execute queries that alter
the data in the database’s tables. These queries are called action queries, and they’re quite simple
compared with the selection queries. There are three types of actions you can perform against
a database: insertions of new rows, deletions of existing rows, and updates (edits) of existing
rows. For each type of action, there’s a SQL statement, appropriately named INSERT, DELETE, and
UPDATE. Their syntax is very simple, and the only complication is how you specify the affected
rows (for deletions and updates). As you can guess, the rows to be affected are specified with a
WHERE clause, followed by the criteria discussed with selection queries.

The first difference between action and selection queries is that action queries don’t return any
rows. They return the number of rows affected, but you can disable this feature by calling the
following statement:

SET NOCOUNT ON

This statement can be used when working with a SQL Server database. Let’s look at the syntax
of the three action SQL statements, starting with the simplest: the DELETE statement.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 792

792 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Deleting Rows
The DELETE statement deletes one or more rows from a table; its syntax is as follows:

DELETE table name WHERE criteria

The WHERE clause specifies the criteria that the rows must meet in order to be deleted. The
criteria expression is no different from the criteria you specify in the WHERE clause of the selection
query. To delete the orders placed before 1998, use a statement like this one:

USE Northwind
DELETE Orders
WHERE OrderDate < ’1/1/1998’

Of course, the specified rows will be deleted only if the Orders table allows cascade deletions
or if the rows to be deleted are not linked to related rows. If you attempt to execute the preceding
query, you’ll get an error with the following description:

The DELETE statement conflicted with the REFERENCE
constraint ”FK Order Details Orders”. The conflict
occurred in database ”Northwind”,
table ”dbo.Order Details”, column ’OrderID’.

This error message tells you that you can’t delete rows from the Orders table that are referenced
by rows in the Order Details table. If you were allowed to delete rows from the Orders table, some
rows in the related table would remain orphaned (they would refer to an order that doesn’t exist).
To delete rows from the Orders table, you must first delete the related rows from the Order Details
table, and then delete the same rows from the Orders table. Here are the statements that will
delete orders placed before 1998. (Do not execute this query unless you’re willing to reinstall the
Northwind database; there’s no undo feature when executing SQL statements against a database.):

USE Northwind
DELETE [Order Details]
WHERE (OrderID IN

(SELECT OrderID
FROM Orders
WHERE (OrderDate < ’1/1/1998’)))

DELETE Orders WHERE OrderDate < ’1/1/1998’

As you can see, the operation takes two action queries: one to delete rows from the Order
Details table, and another to delete the corresponding rows from the Orders table.

The DELETE statement returns the number of rows deleted. You can retrieve a table with the
deleted rows by using the OUTPUT clause:

DELETE Customers
OUTPUT DELETED.*
WHERE Country IS NULL

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 793

ACTION QUERIES 793

To test the OUTPUT clause, insert a few fake rows in the Customers table:

INSERT Customers (CustomerID, CompanyName)
VALUES (’AAAAA’, ’Company A)
INSERT Customers (CustomerID, CompanyName)
VALUES (’BBBBB’, ’Company B)

And then delete them with the following statement:

DELETE Customers
OUTPUT DELETED.*
WHERE Country IS NULL

If you execute the preceding statements, the deleted rows will be returned as the output of the
query. If you want to be safe, you can insert the deleted rows into a temporary table, so you can
insert them back into the database (should you delete more rows than intended). My suggestion
is that you first execute a selection query that returns the rows you plan to delete, examine the
output of this query, and, if you see only the rows you want to delete and no more, write a DELETE
statement with the same WHERE clause. To insert the deleted rows to a temporary table, use the
INSERT INTO statement, which is described in the following section.

Inserting New Rows
The INSERT statement inserts new rows in a table; its syntax is as follows:

INSERT table name (column names) VALUES (values)

column names and values are comma-separated lists of columns and their respective values.
Values are mapped to their columns by the order in which they appear in the two lists.

Notice that you don’t have to specify values for all columns in the table, but the values list
must contain as many items as there are column names in the first list. To add a new row to the
Customers table, use a statement like the following:

INSERT Customers (CustomerID, CompanyName) VALUES (’FRYOG’, ’Fruit & Yogurt’)

This statement inserts a new row, provided that the FRYOG key isn’t already in use. Only two of
the new row’s columns are set, and they’re the columns that can’t accept Null values.

If you want to specify values for all the columns of the new row, you can omit the list of
columns. The following statement retrieves a number of rows from the Products table and inserts
them into the SelectedProducts table, which has the exact same structure:

INSERT INTO SelectedProducts VALUES (values)

If the values come from a table, you can replace the VALUES keyword with a SELECT statement:

INSERT INTO SelectedProducts
SELECT * FROM Products WHERE CategoryID = 4

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 794

794 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

The INSERT INTO statement allows you to select columns from one table and insert them into
another one. The second table must have the same structure as the output of the selection query.
Note that you need not create the new table ahead of time; you can create a new table with the
CREATE TABLE statement. The following statement creates a new table to accept the CustomerID,
CompanyName, and ContactName columns of the Customers table:

DECLARE @tbl table
(ID char(5),
name varchar(100),
contact varchar(100))

After the table has been created, you can populate it with the appropriate fields of the
deleted rows:

DELETE Customers
OUTPUT DELETED.CustomerID,

DELETED.CompanyName, DELETED.ContactName
INTO @tbl
WHERE Country IS NULL
SELECT * FROM @tbl

Execute these statements and you will see in the Results pane the two rows that were inserted
momentarily into the Customers table and then immediately deleted.

Editing Existing Rows
The UPDATE statement edits a row’s fields; its syntax is the following:

UPDATE table name SET field1 = value1, field2 = value2,. . .
WHERE criteria

The criteria expression is no different from the criteria you specify in the WHERE clause of
selection query. To change the country from UK to United Kingdom in the Customers table, use
the following statement:

UPDATE Customers SET Country=’United Kingdom’
WHERE Country = ’UK’

This statement will locate all the rows in the Customers table that meet the specified criteria
(their Country field is UK) and change this field’s value to United Kingdom.

The Query Builder
The Query Builder is a visual tool for building SQL statements, and it’s available with both SQL
Server Management Studio (SSMS) and Visual Studio. It’s a highly useful tool that generates
SQL statements for you — you just specify the data you want to retrieve with point-and-click
operations, instead of typing complicated expressions. A basic understanding of SQL is obviously
required, which is why I described the basic keywords of SQL in the previous section, but it is
possible to build SQL queries with the Query Builder without knowing anything about SQL.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 795

THE QUERY BUILDER 795

I suggest you use this tool to quickly build SQL statements, but don’t expect it to do your work
for you. It’s a great tool for beginners, but you can’t get far by ignoring SQL. The Query Builder is
also a great tool for learning SQL because you specify the query with point-and-click operations
and the Query Builder builds the appropriate SQL statement. You can also edit the SQL statement
manually and see how the other panes are affected.

When working in SSMS, you can click Design Query In Editor on the SQL Editor toolbar or
you can use the Query � Design Query In Editor command. Using either of these methods creates
a new query. You can also right-click the Views folder for a particular database and choose New
View from the context menu. You can also create new queries by creating a new view. A view is
the result of a query: It’s a virtual table that consists of columns from one or more tables selected
with a SQL SELECT statement. The Query Builder’s window is shown earlier in Figure 21.12.

The Query Builder Interface
As mentioned earlier, the Query Builder contains four panes: Diagram, Criteria, SQL, and Results.
You can open or close any of these panes by clicking the Show Diagram Pane, Show Criteria Pane,
Show SQL Pane, and Show Results Pane buttons on the Query Builder toolbar.

Diagram Pane

In the Diagram pane, you can select the tables you want to use in your queries — the tables in
which the required data reside. To select a table, right-click anywhere on the Diagram pane and
choose Add Table from the context menu. You will see the Add Table dialog box. Select as many
tables as you need and then close the dialog box.

The selected tables appear on the Diagram pane as small boxes, along with their fields, as
shown earlier in Figure 21.12. The tables involved in the query are related to one another, and the
relations are indicated as lines between the tables. These lines connect the primary and foreign
keys of the relation. The symbol of a key at one end of the line shows the primary key of the
relationship, and the other end of the arrow is either a key (indicating a one-to-one relationship)
or the infinity symbol (indicating a one-to-many relationship).

The little shape in the middle of the line indicates the type of join that must be performed on the
two tables, and it can take several shapes. To change the type of the relation, you can right-click
the shape and choose one of the options in the context menu when working in SSMS. When work-
ing in Visual Studio, you select the relation and change the type by using the Properties window.
The diamond-shaped icon that you can see in Figure 21.12 indicates an inner join, which requires
that only rows with matching primary and foreign keys will be retrieved. By default, the Query
Builder treats all joins as inner joins, but you can change the type of join.

The first step in building a query is the selection of the fields that will be included in the result.
Select the fields you want to include in your query by selecting the check box in front of their
names, in the corresponding tables. As you select and deselect fields, their names appear in the
Criteria pane. Notice that all fields are prefixed by the name of the table they came from, so there
will be no ambiguities.

Right-click the Diagram pane and choose Add Table. In the dialog box that pops up, select the
Products and Categories tables from the Tables tab, click Add, and then click Close to close the
dialog box.

Criteria Pane

The Criteria pane contains the selected fields. Some fields might not be part of the output — you
can use them only for selection purposes — but their names appear in this pane. To exclude them
from the output, clear the check box in the Output column.

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 796

796 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

The Alias column contains a name for the field. By default, the column’s name is the alias. This
is the heading of each column in the output, and you can change the default name to any string
that suits you.

SQL Pane

As you build the statement with point-and-click operations, the Query Builder generates the SQL
statement that must be executed against the database to retrieve the specified data. The statement
that retrieves product names along with their categories is shown next:

SELECT dbo.Products.ProductName, dbo.Categories.CategoryName
FROM dbo.Categories INNER JOIN dbo.Products

ON dbo.Categories.CategoryID = dbo.Products.CategoryID

If you paste this statement in the SQL pane and then execute it, you see a list of product names
along with their categories. To execute the query, right-click somewhere in the Query Builder
window and choose Execute SQL from the context menu. The Query Builder first fills out the
remaining panes (if you chose to enter the SQL statement) and then executes the query. It displays
the tables involved in the query in the Tables pane, inserts the appropriate rows in the Criteria
pane, executes the query, and displays the results in the Results pane.

Results Pane

When you execute a statement, the Query Builder displays the results in the Results pane at the
bottom of the window. The heading of each column is the column’s name, unless you specified an
alias for the column. In the following section, you’ll build a few fairly complicated queries with
the visual tools of Query Builder, and in the process I will discuss additional features of the Query
Builder.

SQL at Work: Calculating Sums
Let’s use the Query Builder to build a query that uses aggregates to retrieve all the products along
with the quantities sold. The names of the products come from the Products table, whereas the
quantities must be retrieved from the Order Details table. Because the same product appears in
multiple rows of the Order Details table (each product appears in multiple invoices with different
quantities), you must sum the quantities of all rows that refer to the same product.

Create a new view in the Server Explorer to start the Query Builder, right-click the upper
pane, and choose Add Table. In the Add Table dialog box, select the tables Products and Order
Details, and then close the dialog box. The two tables will appear in the Diagram pane with a
relationship between them.

Now select the columns you want to include in the query: Select the ProductName column in
the Products table and the Quantity column in the Order Details table. Expand the options in the
Sort Type box in the ProductName row and select Ascending. The Query Builder generates the
following SQL statement:

SELECT dbo.Products.ProductName, dbo.[Order Details].Quantity
FROM dbo.Products INNER JOIN dbo.[Order Details]

ON dbo.Products.ProductID = dbo.[Order Details].ProductID
ORDER BY dbo.Products.ProductName

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 797

THE QUERY BUILDER 797

Execute this statement, and the first few lines in the Results pane are the following:

Alice Mutton 30
Alice Mutton 15
Alice Mutton 15
Alice Mutton 40

The Query Builder knows how the two tables are related (it picked up the relationship from
the database) and retrieved the matching rows from the two tables. It also inserted a line that
links the two tables in the Tables pane. Now you’ll specify that you want the sum of the quanti-
ties. Right-click the Quantity column in the Criteria pane and choose the Add Group By option
from the context menu. A new column is inserted after the Sort Order column. This column is set
automatically to Group By for all the fields.

Now select the Group By cell of the Quantity row, expand the drop-down list, and select the
Sum option. You have just specified that the Quantity column must be summed. The Group By
option tells the Query Builder to group together all the rows that refer to the same product. This
ensures that the sum includes all the products because the rows of the Order Details table that
refer to the same product are grouped together.

Notice that the Alias cell of the Quantity row has become Expr1 (it’s no longer a column, but an
aggregate). Set the alias to [Total Items]. (Make sure to include the square brackets, because the
name contains a space.) Something has changed in the Diagram pane, too. The summation symbol
has appeared next to the Quantity column (even though this column isn’t selected to appear in
the output of the query), and the grouping symbol (the nested brackets) has appeared next to the
ProductName column, as shown in Figure 21.14.

Run the query now and see the results in the lower pane. Each product name appears only
once, and the number next to it is the total number of items sold.

If you close the Query Builder window now, you’ll be prompted about whether you want to
save the new view and to specify a name for it. The definition will be saved to the Northwind
database, along with the other objects of the database.

SQL at Work: Counting Rows
Let’s say you want to find out the number of orders in which each product appears. Go back to the
Server Explorer and open the previous view. Add the Orders table, which will be automatically
related to the Order Details table via the OrderID field. Click the OrderID field in the Orders table.
A new line will be added to the Criteria pane, and its Group By column will be set automatically
to Group By. Set it to Count Distinct and its alias to [# Of Orders]. You’ll sum the orders in which
each product appears. The Count Distinct aggregate function is similar to the Count function, but
it does not include the same order twice (if the same product appears in two rows of the same
order). Run the query. This time you’ll get one line per product. The Alice Mutton item has been
ordered 37 times, and the total items sold are 978, as in the preceding query.

Alice Mutton 978 37
Aniseed Syrup 328 12
Boston Crab Meat 1103 41
Camembert Pierrot 1577 51

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 798

798 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Figure 21.14

A query with totals

The SELECT statement generated by the Query Builder is the following. Notice that the Orders
table isn’t involved in the query. All the information needed resides in the Order Details table. The
Products table is included, so you can display product names instead of product IDs.

SELECT Products.ProductName,
SUM([Order Details].Quantity) AS [Total Items],
COUNT(DISTINCT Orders.OrderID) AS [# Of Orders]

FROM [Order Details]
INNER JOIN Products ON [Order Details].ProductID = Products.ProductID
INNER JOIN Orders ON [Order Details].OrderID = Orders.OrderID
GROUP BY Products.ProductName
ORDER BY Products.ProductName

Parameterized Queries
How about running the same query with different dates? Let’s modify our query so that it prompts
us for two dates and then calculates the totals in the corresponding period. Select the [Order Date]
field from the Orders table and then switch to the following pane and enter this expression in the
Filter cell for this row:

Between ? And ?

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 799

THE QUERY BUILDER 799

The Designer will replace the two question marks with two generic parameter names:

Between @param1 and @param2

You should change their names to something more meaningful, such as @startDate and
@endDate. If you run the query, you’ll be prompted to enter the values of the two parameters
(Figure 21.15). A question mark in a query corresponds to a parameter, and you must supply the
values for the parameters in the order in which they appear in the query. Every time you execute
this query, the Define Query Parameters dialog will be displayed, where you must enter the val-
ues of the two parameters. When you close this dialog box, the query will be executed and you’ll
see its output in the Results pane.

Figure 21.15

Specifying the parame-
ters for a query

Calculated Columns
Let’s add yet another step of complexity to our query. We’ll modify our query so that it calculates
the total revenues generated by each product. Move down in the Field column of the Criteria
pane, and enter the following expression in the first free cell:

Quantity * UnitPrice * (1 - Discount)

The wizard replaces the field names with fully qualified names:

([Order Details].Quantity * [Order Details].UnitPrice)
* (1 - [Order Details].Discount)

This expression calculates the subtotal for each line in the Order Details table. You multiply the
price by the quantity, taking into consideration the discount. Shortly, you’ll sum the subtotals for
each product.

Because this is a calculated column, its Alias becomes Expr1. Change this value to Revenue. In
the Group By column of the row that corresponds to the order total, select Sum. Make sure that

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 800

800 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

the Output column is selected and then run the query. You’ll have the same results as before,
only this time with an extra column, which is the revenue generated by the corresponding
product:

Alice Mutton 978 37 32698.379981994629
Aniseed Syrup 328 12 3044
Boston Crab Meat 1103 41 17910.629892349243

The SQL statement generated by the Query Builder is as follows:

SELECT Products.ProductName,
SUM([Order Details].Quantity) AS [Total Items],
COUNT(DISTINCT Orders.OrderID) AS [# Of Orders],
SUM(([Order Details].Quantity * [Order Details].UnitPrice) *
(1 - [Order Details].Discount)) AS Revenue

FROM [Order Details]
INNER JOIN Products ON [Order Details].ProductID = Products.ProductID
INNER JOIN Orders ON [Order Details].OrderID = Orders.OrderID
WHERE (Orders.OrderDate BETWEEN @Param1 AND @Param2)
GROUP BY Products.ProductName
ORDER BY Products.ProductName

This is a fairly complicated statement, and we won’t get into any more complicated statements
in this book. As you can see, you can create quite elaborate SQL statements to retrieve information
from the database with point-and-click operations. But even if you don’t want to enter your own
SQL statements, some understanding of this language is required. All the keywords have been
explained previously, and you can test your knowledge of SQL by examining the code generated
by the Query Builder.

Stored Procedures
Stored procedures are short programs that are executed on the server and perform specific tasks.
Any action you perform frequently against the database can be coded as a stored procedure, so
that you can call it from within any application or from different parts of the same application. A
stored procedure that retrieves customers by name is a typical example, and you’ll call this stored
procedure from many different places in your application.

You should use stored procedures for all the operations you want to perform against the
database. Stored procedures isolate programmers from the database and minimize the risk of
impairing the database’s integrity. When all programmers access the same stored procedure to
add a new invoice to the database, they don’t have to know the structure of the tables involved or
in what order to update these tables. They simply call the stored procedure, passing the invoice’s
fields as arguments. Another benefit of using stored procedures to update the database is that you
don’t risk implementing the same operation in two different ways. This is especially true for a
team of developers because some developers might have not understood the business rules thor-
oughly. If the business rules change, you can modify the stored procedures accordingly, without
touching the other parts of the application.

There’s no penalty in using stored procedures versus SQL statements, and any SQL statement
can be easily turned into a stored procedure, as you will see in this section. Stored procedures

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 801

STORED PROCEDURES 801

contain traditional programming statements that allow you to validate arguments, use default
argument values, and so on. The language you use to write stored procedures is called T-SQL,
which is a superset of SQL.

The SalesByCategory Stored Procedure
Let’s explore stored procedures by looking at an existing one. Open the Server Explorer Tool-
box, connect to the Northwind database, and then expand the Stored Procedures node. Locate
the SalesByCategory stored procedure and double-click its name. The SalesByCategory stored
procedure contains the statements from Listing 21.1, which appears in the editor’s window.

Listing 21.1: The SalesByCategory Stored Procedure

ALTER PROCEDURE dbo.SalesByCategory
@CategoryName nvarchar(15),
@OrdYear nvarchar(4) = ’1998’

AS
IF @OrdYear != ’1996’ AND @OrdYear != ’1997’ AND @OrdYear != ’1998’
BEGIN

SELECT @OrdYear = ’1998’
END
SELECT ProductName,

TotalPurchase = ROUND(SUM(CONVERT(decimal(14,2),
OD.Quantity * (1-OD.Discount) * OD.UnitPrice)), 0)

FROM [Order Details] OD, Orders O, Products P, Categories C
WHERE OD.OrderID = O.OrderID

AND OD.ProductID = P.ProductID
AND P.CategoryID = C.CategoryID
AND C.CategoryName = @CategoryName
AND SUBSTRING(CONVERT(nvarchar(22), O.OrderDate, 111), 1, 4) = @OrdYear

GROUP BY ProductName
ORDER BY ProductName

This type of code is probably new to you. You’ll learn it quite well as you go along because
it’s really required in coding database applications. You can rely on the various wizards to create
stored procedures for you, but you should be able to understand how they work. While you’re
editing a stored procedure, the sections of the stored procedure that are pure SQL are enclosed in
a rectangle.

The first statement alters the procedure SalesByCategory, which is already stored in the
database. If it’s a new procedure, you can use the CREATE statement, instead of ALTER, to attach a
new stored procedure to the database. The following lines until the AS keyword are the parame-
ters of the stored procedure. All variables in T-SQL start with the @ symbol. @CategoryName is a
15-character string, and @OrdYear is a string that also has a default value. If you omit the second
argument when calling the SalesByCategory procedure, the year 1998 will be used automatically.

The AS keyword marks the beginning of the stored procedure. The first IF statement makes
sure that the year is a valid one (from 1996 to 1998). If not, it will use the year 1998. The BEGIN and
END keywords mark the beginning and end of the IF block (the same block that’s delimited by the
If and End If statements in VB code).

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 802

802 CHAPTER 21 BASIC CONCEPTS OF RELATIONAL DATABASES

Following the IF statement is a long SELECT statement that uses the arguments passed
to the stored procedure as parameters. This is a straight SQL statement that implements a
parameterized query.

The second half of the stored procedure’s code appears in a box in the editor’s window.
Right-click anywhere in this box and choose Design SQL Block. This block is a SQL statement
that retrieves the total sales for the specified year and groups them by category. You can edit
it either as a SQL segment or through the visual interface of the Query Builder. You already
know how to handle SQL statements, so everything you learned about building SQL statements
applies to stored procedures as well. The only difference is that you can embed traditional control
structures — such as IF statements and WHILE loops — and mix them with SQL.

Right-click anywhere in the editor and choose Execute. A dialog box pops up and prompts you
to enter the values for the two parameters the query expects: the name of the category and the
year. Type Beverages and 1997 in the dialog box and then click OK. The stored procedure returns
the qualifying rows, which display in the Output window.

The SalesByCategory stored procedure returned the following lines when executed with these
parameters:

ProductName TotalPurchase
-- -------------
Chai 4887
Chang 7039
Chartreuse verte 4476
Côte de Blaye 49198
GuaranÆ FantÆstica 1630
No more results.
(12 row(s) returned)
@RETURN VALUE = 0
Finished running dbo.”SalesByCategory”.

The Bottom Line

Use relational databases. Relational databases store their data in tables and are based on
relationships between these tables. The data is stored in tables, and tables contain related data,
or entities, such as persons, products, orders, and so on. Relationships are implemented by
inserting columns with matching values in the two related tables.

Master It How will you relate two tables with a many-to-many relationship?

Utilize the data tools of Visual Studio. Visual Studio 2008 provides visual tools for
working with databases. The Server Explorer is a visual representation of the databases you
can access from your computer and their data. You can create new databases, edit existing
ones, and manipulate their data. You can also create queries and test them right in the IDE.

Master It Describe the process of establishing a new relationship between two tables.

Use the Structured Query Language for accessing tables. Structured Query Language (SQL)
is a universal language for manipulating tables. SQL is a nonprocedural language, which

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 803

THE BOTTOM LINE 803

specifies the operation you want to perform against a database at a high level, unlike tra-
ditional languages such as Visual Basic, which specifies how to perform the operation. The
details of the implementation are left to the DBMS. SQL consists of a small number of
keywords and is optimized for selecting, inserting, updating, and deleting data.

Master It How would you write a SELECT statement to retrieve data from multiple tables?

Petroutsos c21.tex V3 - 01/28/2008 6:33pm Page 804

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 805

Chapter 22

Programming with ADO.NET

In Chapter 21, ‘‘Basic Concepts of Relational Databases,’’ you learned how to access data stored in
databases by using a universal data-manipulation language, SQL, and the Transact-SQL (T-SQL)
extensions of SQL Server 2008. However, you can’t maintain a real database by executing SQL
statements from within SQL Server’s Management Studio. You need special applications that
access the database, display relevant data on a Windows or web form, and submit the changes
made to the data by the user back to the database. These applications are known as front-end
applications, because they interact with the user and update the data on a database server, or a
back-end data store. They’re also known as data-driven applications, because they interact not only
with the user, but primarily with the database.

In this chapter, you’ll explore the basic mechanisms of ADO.NET to interact with the sample
databases. As you will see, it’s fairly straightforward to write a few VB statements to execute SQL
queries against the database in order to either edit or retrieve selected rows. The real challenge
is the design and implementation of functional interfaces that display the data requested by the
user (the data you’ll retrieve via SELECT statements from the database), allow the user to navigate
through the data and edit it, and finally submit the changes to the database. You’ll learn how to
execute SELECT statements against the database, retrieve data, and submit modified or new data
to the database.

In this chapter, you’ll learn how to do the following:

◆ Create and populate DataSets

◆ Establish relations between tables in the DataSet

◆ Submit changes in the DataSet back to the database

Stream- versus Set-Based Data Access
ADO.NET provides two basic methods of accessing data: stream-based data access, which establishes
a stream to the database and retrieves the data from the server, and set-based data access, which
creates a special data structure at the client and fills it with data.

This structure is the DataSet, which resembles a section of the database: It contains one or
more DataTable objects, which correspond to tables and are made up of DataRow objects. These
DataRow objects have the same structure as the rows in their corresponding tables. DataSets are
populated by retrieving data from one or more database tables into the corresponding DataTables.
As for submitting the data to the database with the stream-based approach, you must create the
appropriate INSERT/UPDATE/DELETE statements and then execute them against the database.

The stream-based approach relies on the DataReader object, which makes the data returned
by the database available to your application. The client application reads the data returned by a

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 806

806 CHAPTER 22 PROGRAMMING WITH ADO.NET

query through the DataReader object and must store it somehow at the client. Quite frequently,
we use business objects to store the data at the client.

The set-based approach uses the same objects as the stream-based approach behind the scenes,
and it abstracts most of the grunt work required to set up a link to the database, retrieve the
data, and store it in the client computer’s memory. So, it makes sense to start by exploring the
stream-based approach and the basic objects provided by ADO.NET for accessing databases. After
you understand the nature of ADO.NET and how to use it, you’ll find it easy to see the abstraction
introduced by the set-based approach and how to make the most of DataSets. As you will see in
the following chapter, you can create DataSets and the supporting objects with the visual tools of
the IDE.

The Basic Data-Access Classes
A data-driven application should be able to connect to a database and execute queries against
it. The selected data is displayed on the appropriate interface, where the user can examine it or
edit it. Finally, the edited data is submitted to the database. This is the cycle of a data-driven
application:

1. Retrieve data from the database.

2. Present data to the user.

3. Allow the user to edit the data.

4. Submit changes to the database.

Of course, there are many issues that are not obvious from this outline. Designing the appropri-
ate interface for navigating through the data (going from customers to their orders and from the
selected order to its details) can be quite a task. Developing a functional interface for editing the
data at the client is also a challenge, especially if several related tables are involved. We must also
take into consideration that there are other users accessing the same database. What will happen
if the product we’re editing has been removed in the meantime by another user? Or what if a user
has edited the same customer’s data since our application read it? Do we overwrite the changes
made by the other user, or do we reject the edits of the user who submits the edits last? I’ll address
these issues in this and the following chapter, but we need to start with the basics: the classes for
accessing the database.

To connect to a database, you must create a Connection object, initialize it, and then call its Open
method to establish a connection to the database. The Connection object is the channel between
your application and the database; every command you want to execute against the same database
must use this Connection object. When you’re finished, you must close the connection by call-
ing the Connection object’s Close method. Because ADO.NET maintains a pool of Connection
objects that are reused as needed, it’s imperative that you keep connections open for the shortest
possible time.

The object that will actually execute the command against the database is the Command object,
which you must configure with the statement you want to execute and associate with a Connec-
tion object. To execute the statement, you can call one of the Command object’s methods. The
ExecuteReader method returns a DataReader object that allows you to read the data returned by
the selection query. To execute a statement that updates a database table but doesn’t return a set
of rows, use the ExecuteNonQuery method, which executes the specified command and returns
an integer, which is the number of rows affected by the statement. The following sections describe
the Connection and Command classes in detail.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 807

THE BASIC DATA-ACCESS CLASSES 807

To summarize, ADO.NET provides three core classes for accessing databases: the Connection,
Command, and DataReader classes. There are more data access–related classes, but they’re all
based on these three basic classes. After you understand how to interact with a database by using
these classes, you’ll find it easy to understand the additional classes, as well as the code generated
by the visual data tools that come with Visual Studio.

The Connection Class
The Connection class is an abstract one, and you can’t use it directly. Instead, you must use one
of the classes that derive from the Connection class. Currently, there are three derived classes:
SqlConnection, OracleConnection, and OleDbConnection. Likewise, the Command class is also an
abstract class with three derived classes: SqlCommand, OracleCommand, and OleDbCommand.

The SqlConnection and SqlCommand classes belong to the SqlClient namespace, which you
must import into your project via the following statement:

Imports System.Data.SqlClient

The examples of this book use the SQL Server 2008 DBMS, and it’s implied that the SqlClient
namespace is imported into every project that uses SQL Server.

To connect the application to a database, the Connection object must know the name of the
server on which the database resides, the name of the database itself, and the credentials that
will allow it to establish a connection to the database. These credentials are either a username
and password or a Windows account that has been granted rights to the database. You obviously
know what type of DBMS you’re going to connect to, so you can select the appropriate Con-
nection class. The most common method of initializing a Connection object in your code is the
following:

Dim CN As New SqlConnection(”Data Source = localhost;
Initial Catalog = Northwind; uid = user name;
password = user password”)

localhost is a universal name for the local machine, Northwind is the name of the database,
and user name and user password are the username and password of an account configured by
the database administrator. The Northwind sample database isn’t installed along with SQL Server
2008, but you can download it from MSDN and install it yourself. The process was described in
the section ‘‘Obtaining the Northwind and Pubs Sample Databases’’ in Chapter 21. I’m assuming
that you’re using the same computer both for SQL Server and to write your VB applications. If
SQL Server resides on a different computer in the network, use the server computer’s name (or
IP address) in place of the localhost name. If SQL Server is running on another machine on the
network, use a setting like the following for the Data Source key:

Data Source = \\PowerServer

If the database is running on a remote machine, use the remote machine’s IP address. If you’re
working from home, for example, you can establish a connection to your company’s server with a
connection string like the following:

Data Source = 213.16.178.100; Initial Catalog = BooksDB; uid = xxx; password = xxx

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 808

808 CHAPTER 22 PROGRAMMING WITH ADO.NET

The uid and password keys are those of an account created by the database administrator, and
not a Windows account. If you want to connect to the database by using each user’s Windows
credentials, you should omit the uid and password keys and use the Integrated Security key
instead. If your network is based on a domain controller, you should use integrated security so
that users can log in to SQL Server with their Windows account. This way you won’t have to store
any passwords in your code, or even an auxiliary file with the application settings.

If you’re using an IP address to specify the database server, you may also have to include
SQL Server’s port by specifying an address such as 213.16.178.100, 1433. The default port
for SQL Server is 1433, and you can omit it. If the administrator has changed the default port, or
has hidden the server’s IP address behind another IP address for security purposes, you should
contact the administrator to get the server’s address. If you’re connecting over a local network, you
shouldn’t have to use an IP address. If you want to connect to the company server remotely, you
will probably have to request the server’s IP address and the proper credentials from the server’s
administrator.

The basic property of the Connection object is the ConnectionString property, which is a
semicolon-separated string of key-value pairs and specifies the information needed to establish a
connection to the desired database. It’s basically the same information you provide in various dia-
log boxes when you open the SQL Server Management Studio and select a database to work with.
An alternate method of setting up a Connection object is to set its ConnectionString property:

Dim CN As New SqlConnection
CN.ConnectionString =

”Data Source = localhost; Initial Catalog = Northwind; ” &
”Integrated Security = True”

One of the Connection class’s properties is the State property, which returns the state of a
connection; its value is a member of the ConnectionState enumeration: Connecting, Open, Exe-
cuting, Fetching, Broken and Closed. If you call the Close method on a Connection object that’s
already closed, or the Open method on a Connection that’s already open, an exception will be
thrown. To avoid the exception, you must examine the Connection’s State property and act
accordingly.

The following code segment outlines the process of opening a connection to a database:

Dim CNstring As String =
”Data Source=localhost;Initial ” &
”Catalog=Northwind;Integrated Security=True”

CNstring = InputBox(
”Please enter a Connection String”,
”CONNECTION STRING”, CNstring)

If CNstring.Trim = ”” Then Exit Sub
Dim CN As New SqlConnection(CNstring)
Try

CN.Open()
If CN.State = ConnectionState.Open Then

MsgBox(”Workstation ” & CN.WorkstationId &
” connected to database ” & CN.Database &
” on the ” & CN.DataSource & ” server”)

End If

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 809

THE BASIC DATA-ACCESS CLASSES 809

Catch ex As Exception
MsgBox(

”FAILED TO OPEN CONNECTION TO DATABASE DUE TO THE FOLLOWING ERROR” &
vbCrLf & ex.Message)

End Try
‘ use the Connection object to execute statements
‘ against the database and then close the connection
If CN.State = ConnectionState.Open Then CN.Close()

The Command Class
The second major component of the ADO.NET model is the Command class, which allows you to
execute SQL statements against the database. The two basic parameters of the Command object
are a Connection object that specifies the database where the command will be executed, and
the actual SQL command. To execute a SQL statement against a database, you must initialize a
Command object and set its Connection property to the appropriate Connection object. It’s the
Connection object that knows how to connect to the database; the Command object simply submits
a SQL statement to the database and retrieves the results.

The Command object exposes a number of methods for executing SQL statements against
the database, depending on the type of statement we want to execute. The ExecuteNonQuery
method executes INSERT/DELETE/UPDATE statements that do not return any rows, just an inte-
ger value, which is the number of rows affected by the query. The ExecuteScalar method
returns a single value, which is usually the result of an aggregate operation, such as the count
of rows meeting some criteria, the sum or average of a column over a number of rows, and so on.
Finally, the ExecuteReader method is used with SELECT statements that return rows from one or
more tables.

To execute an UPDATE statement, for example, you must create a new Command object and
associate the appropriate SQL statement with it. One overloaded form of the constructor of the
Command object allows you to specify the statement to be executed against the database, as well
as a Connection object that points to the desired database as arguments:

Dim CMD As New SqlCommand(
”UPDATE Products SET UnitPrice = UnitPrice * 1.07 ” &

”WHERE CategoryID = 3”, CN)
CN.Open
Dim rows As Integer
rows = CMD.ExecuteNonQuery
If rows = 1 Then

MsgBox(”Table Products updated successfully”)
Else

MsgBox(”Failed to update the Products table”)
End If
If CN.State = ConnectionState.Open Then CN.Close

The ExecuteNonQuery method returns the number of rows affected by the query, and it’s
the same value that appears in the Output window of SQL Server’s Management Studio when
you execute an action query. The preceding statements mark up the price of all products in
the Confections category by 7 percent. You can use the same structure to execute INSERT and
DELETE statements; all you have to change is the actual SQL statement in the SqlCommand object’s

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 810

810 CHAPTER 22 PROGRAMMING WITH ADO.NET

constructor. You can also set up a Command object by setting its Connection and CommandText
properties:

Command.Connection = Connection
Command.CommandText = ”SELECT COUNT(*) FROM Customers”

After you’re finished with the Command object, you should close the Connection object.
Although you can initialize a Connection object anywhere in your code, you should call its Open
method as late as possible (that is, just before executing a statement) and its Close method as early
as possible (that is, as soon as you have retrieved the results of the statement you executed).

The ExecuteScalar method executes the SQL statement associated with the Command object
and returns a single value, which is the first value that the SQL statement would print in the
Output window of SQL Server’s Management Studio. The following statements read the num-
ber of rows in the Customers table of the Northwind database and store the result in the count
variable:

Dim CMD As New SqlCommand(
”SELECT COUNT(*) FROM Customers”, CN)

Dim count As Integer
CN.Open
count = CMD.ExecuteScalar
If CN.State = ConnectionState.Open Then CN.Close

If you want to execute a SELECT statement that retrieves multiple rows, you must use the
ExecuteReader method of the Command object, as shown here:

Dim CMD As New SqlCommand(
”SELECT * FROM Customers”, CN)

CN.Open
Dim Reader As SqlDataReader
Reader = CMD.ExecuteReader
While Reader.Read

‘ process the current row in the result set
End While
If CN.State = ConnectionState.Open Then CN.Close

You’ll see shortly how to access the fields of each row returned by the ExecuteReader method
through the properties of the SqlDataReader class.

Executing Stored Procedures

The command to be executed through the Command object is not always a SQL statement;
it could be the name of a stored procedure, or the name of a table, in which case it retrieves
all the rows of the table. You can specify the type of statement you want to execute with the
CommandType property, whose value is a member of the CommandType enumeration: Text (for
SQL statements), StoredProcedure (for stored procedures), and TableDirect (for a table). You
don’t have to specify the type of the command you want to execute, but then the Command
object will have to figure it out, a process that will take a few moments, and you can avoid
this unnecessary delay. The Northwind database comes with the Ten Most Expensive Products

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 811

THE BASIC DATA-ACCESS CLASSES 811

stored procedure. To execute this stored procedure, set up a Command object with the following
statements:

Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = ”[Ten Most Expensive Products]”
CMD.CommandType = CommandType.StoredProcedure

Finally, you can retrieve all the rows of the Customers table by setting up a Command object
like the following:

Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = ”Customers”
CMD.CommandType = CommandType.TableDirect

Executing Selection Queries

The most common SQL statements, the SELECT statements, retrieve a set of rows from one or more
joined tables, the result set. These statements are executed with the ExecuteReader method, which
returns a DataReader object — a SqlDataReader object for statements executed against SQL Server
databases. The DataReader class provides the members for reading the results of the query in
a forward-only manner. The connection remains open while you read the rows returned by the
query, so it’s imperative to read the rows and store them in a structure in the client computer’s
memory as soon as possible, and then close the connection. The DataReader object is read-only
(you can’t use it to update the underlying rows), so there’s no reason to keep it open for long
periods. Let’s execute the following SELECT statement to retrieve selected columns of the rows of
the Employees table of the Northwind database:

SELECT LastName + ’ ’ + FirstName AS Name,
Title, Extension, HomePhone

FROM Employees

Here are the VB statements that set up the appropriate Command object and retrieve the Sql-
DataReader object with the result set:

Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText =

”SELECT LastName + ’ ’ + FirstName AS Name, ” &
”Title, Extension, HomePhone FROM Employees”

Connection.Open()
Dim Reader As SqlDataReader
Reader = Command.ExecuteReader
While Reader.Read

str &= Convert.ToString(Reader.Item(”Name”)) & vbTab
str &= Convert.ToString(Reader.Item(”Title”)) & vbTab
str &= Convert.ToString(Reader.Item(”Extension”)) & vbTab
str &= Convert.ToString(Reader.Item(”HomePhone”)) & vbTab

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 812

812 CHAPTER 22 PROGRAMMING WITH ADO.NET

str &= vbCrLf
count += 1

End While
Debug.WriteLine(vbCrLf & vbCrLf & ”Read ” & count.ToString &

” rows:” & vbCrLf & vbCrLf & str)
Connection.Close()

The DataReader class provides the Read method, which advances the current pointer to the
next row in the result set. To read the individual columns of the current row, you use the Item
property, which allows you to specify the column by name and returns an object variable. It’s your
responsibility to cast the object returned by the Item property to the appropriate type. Initially,
the DataReader is positioned in front of the first line in the result set, and you must call its Read
method to advance to the first row. If the query returns no rows, the Read method will return
False and the While loop won’t be executed at all. In the preceding sample code, the fields of each
row are concatenated to form the str string, which is printed in the Immediate window; it looks
something like this:

Davolio Nancy Sales Representative 5467 (206) 555-9857
Fuller Andrew Vice President, Sales 3457 (206) 555-9482
Leverling Janet Sales Representative 3355 (206) 555-3412

Using Commands with Parameters

Most SQL statements and stored procedures accept parameters, and you should pass values for
each parameter before executing the query. Consider a simple statement that retrieves the cus-
tomers from a specific country, whose name is passed as an argument:

SELECT * FROM Customers WHERE Country = @country

The @country parameter must be set to a value, or an exception will be thrown as you attempt
to execute this statement. Stored procedures also accept parameters. The Sales By Year stored
procedure of the Northwind database, for example, expects two Date values and returns sales
between the two dates. To accommodate the passing of parameters to a parameterized query or
stored procedure, the Command object exposes the Parameters property, which is a collection of
Parameter objects. To pass parameter values to a command, you must set up a Parameter object for
each parameter; set its name, type, and value; and then add the Parameter object to the Parameters
collection of the Command object. The following statements set up a Command object with a
parameter of the varchar type with a maximum size of 15 characters:

Dim Command As New SqlCommand
Command.CommandText = ”SELECT * FROM Customers WHERE Country = @country”
Command.Parameters.Add(”@country”, SqlDbType.VarChar, 15)
Command.Parameters(”@country”).Value = ”Italy”

At this point, you’re ready to execute the SELECT statement with the ExecuteReader method
and retrieve the customers from Italy. You can also configure the Parameter object in its
constructor:

Dim param As New SqlParameter(paramName, paramType, paramSize)

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 813

THE BASIC DATA-ACCESS CLASSES 813

Here’s the constructor of the @country parameter of the preceding example:

Dim param As New SqlParameter(”@country”, SqlDbType.VarChar, 15)
param.Value = ”Italy”
Command.Parameters.Add param

Finally, you can combine all these statements into a single one:

Command.Parameters.Add(”@country”, SqlDbType.VarChar, 15).Value = ”Italy”

In the last statement, I initialize the parameter as I add it to the Parameters collection and then
set its value to the string Italy. Oddly, there’s no overloaded form of the Add method that allows
you to specify the parameter’s value, but there is an AddWithValue method, which adds a new
parameter and sets its value. This method accepts two arguments: a string with the parameter’s
name, and an object with the parameter’s value. The actual type of the value is determined by
the type of the query or stored procedure’s argument, and it’s resolved at runtime. The simplest
method of adding a new parameter to the Command.Parameters collection is the following:

Command.Parameters.Add(”@country”, ”Italy”)

After the parameter has been set up, you can call the ExecuteReader method to retrieve the cus-
tomers from the country specified by the argument and then read the results through an instance
of the DataReader class.

Retrieving Multiple Values from a Stored Procedure

Another property of the Parameter class is the Direction property, which determines whether
the stored procedure can alter the value of the parameter. The Direction property’s setting is a
member of the ParameterDirection enumeration: Input, Output, InputOutput, and Return-
Value. A parameter that’s set by the procedure should have its Direction property set to Output:
the parameter’s value is not going to be used by the procedure, but the procedure’s code can set it
to return information to the calling application. If the parameter is used to pass information to the
procedure, as well as to pass information back to the calling application, its Direction property
should be set to InputOutput.

Let’s look at a stored procedure that returns the total of all orders, as well as the total number
of items ordered by a specific customer. This stored procedure accepts as a parameter the ID of
a customer, obviously, and it returns two values: the total of all orders placed by the specified
customer and the number of items ordered. A procedure (be it a SQL Server stored procedure or
a regular VB function) can’t return two or more values. The only way to retrieve multiple results
from a single stored procedure is to pass output parameters, so that the stored procedure can set
their value. To make the stored procedure a little more interesting, we’ll add a return value, which
will be the number of orders placed by the customer. Listing 22.1 shows the implementation of the
CustomerTotals stored procedure.

Listing 22.1: The CustomerTotals Stored Procedure

CREATE PROCEDURE CustomerTotals
@customerID varchar(5),

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 814

814 CHAPTER 22 PROGRAMMING WITH ADO.NET

@customerTotal money OUTPUT,
@customerItems int OUTPUT
AS
SELECT @customerTotal = SUM(UnitPrice * Quantity * (1 - Discount))
FROM [Order Details] INNER JOIN Orders
ON [Order Details].OrderID = Orders.OrderID
WHERE Orders.CustomerID = @customerID
SELECT @customerItems = SUM(Quantity)
FROM [Order Details] INNER JOIN Orders
ON [Order Details].OrderID = Orders.OrderID
WHERE Orders.CustomerID = @customerID

DECLARE @customerOrders int
SELECT @customerOrders = COUNT(*) FROM Orders
WHERE Orders.CustomerID = @customerID

RETURN @customerOrders

To attach the CustomerTotals stored procedure to the database, create a new stored procedure,
paste the preceding statements in the code window, and press F5 to execute it. The stored proce-
dure calculates three totals for the specified customer and stores them to three local variables.
The @customerTotal and @customerItems variables are output parameters, which the calling
application can read after executing the stored procedure. The @customerOrders variable is the
procedure’s return value. We can return the number of orders for the customer through the stored
procedure’s return value, because this variable happens to be an integer, and the return value is
always an integer. In more-complex stored procedures, we’d use output parameters for all the
values we want to return to the calling application, and the procedure would return a value to
indicate the execution status: 0 or 1 if the procedure completed its execution successfully, and a
negative value to indicate the error, should the procedure fail to execute.

Before using the CustomerTotals stored procedure with our VB application, let’s test it in the
SQL Server Management Studio. We must declare a variable for each of the output parameters:
the @Total, @Items, and @Orders variables. These three variables must be passed to the stored
procedure with the OUTPUT attribute, as shown here:

DECLARE @Total money
DECLARE @Items int
DECLARE @Orders int
DECLARE @custID varchar(5)
SET @custID = ’BLAUS’
EXEC @orders = CustomerTotals @custID,

@customerTotal OUTPUT, @customerItems OUTPUT
PRINT ’Customer ’ + @custId + ’ has placed a total of ’ +

CAST(@orders AS varchar(8)) + ’ orders ’ +
’ totaling $’ + CAST(ROUND(@customerTotal, 2) AS varchar(12)) +
’ and ’ + CAST(@customerItems AS varchar(4)) + ’ items.’

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 815

THE BASIC DATA-ACCESS CLASSES 815

Open a new query window in the Management Studio and enter the preceding statements.
Press F5 to execute them and you will see the following message printed in the output window:

Customer BLAUS has placed a total of 8 orders totaling $10355.45 and 653 items.

The customer’s ID is an INPUT parameter, and we could pass it to the procedure as a literal. You
can omit the declaration of the @custID variable and call the stored procedure with the following
statement:

EXEC @orders =
CustomerTotals ’BLAUS’, @customerTotal OUTPUT, @customerItems OUTPUT

Now that we’ve tested our stored procedure and know how to call it, we’ll do the same from
within our sample application. To execute the CustomerTotals stored procedure, we must set
up a Command object, create the appropriate Parameter objects (one Parameter object per stored
procedure parameter plus another Parameter object for the stored procedure’s return value), and
then call the Command.ExecuteNonQuery method. Upon return, we’ll read the values of the output
parameters and the stored procedure’s return value. Listing 22.2 shows the code that executes the
stored procedure (see the SimpleQueries sample project).

Listing 22.2: Executing a Stored Procedure with Output Parameters

Private Sub bttnExecSP Click(...) Handles bttnExecSP.Click
Dim customerID As String = InputBox(”Please a customer’s ID”,

”CustomerTotals Stored Procedure”, ”ALFKI”)
If customerID.Trim.Length = 0 Then Exit Sub
Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = ”CustomerTotals”
CMD.CommandType = CommandType.StoredProcedure
CMD.Parameters.Add(

”@customerID”, SqlDbType.VarChar, 5).Value = customerID
CMD.Parameters.Add(”@customerTotal”, SqlDbType.Money)
CMD.Parameters(”@customerTotal”).Direction = ParameterDirection.Output
CMD.Parameters.Add(”@customerItems”, SqlDbType.Int)
CMD.Parameters(”@customerItems”).Direction = ParameterDirection.Output
CMD.Parameters.Add(”@orders”, SqlDbType.Int)
CMD.Parameters(”@orders”).Direction = ParameterDirection.ReturnValue
CN.Open()
CMD.ExecuteNonQuery()
CN.Close()
Dim items As Integer
Items = Convert.ToInt32(CMD.Parameters(”@customerItems”).Value
Dim orders As Integer

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 816

816 CHAPTER 22 PROGRAMMING WITH ADO.NET

Orders = Convert.ToInt32(CMD.Parameters(”@orders”).Value
Dim ordersTotal As Decimal
ordersTotal = Convert.ToDouble(

CMD.Parameters(”@customerTotal”).Value
MsgBox(”Customer BLAUS has placed ” &

orders.ToString & ” orders ” &
”totaling $” & Math.Round(
orderTotal, 2).ToString(”#,###.00”) &
” and ” & items.ToString & ” items”)

End Sub

In most applications, the same Command object will be reused again and again with different
parameter values, so it’s common to add the parameters to a Command object’s Parameters
collection and assign values to them every time we want to execute the command. Let’s say you’ve
designed a form with text boxes, where users can edit the values of the various fields; here’s how
you’d set the values of the UPDATECMD object’s parameters:

UPDATECMD.Parameters(”@CustomerID”).Value = txtID.Text.Trim
UPDATECMD.Parameters(”@CompanyName”).Value = txtCompany.Text.Trim

After setting the values of all parameters, you can call the ExecuteNonQuery method to sub-
mit the changes to the database. To update another customer, just assign different values to the
existing parameters and call the UPDATECMD object’s ExecuteNonQuery method.

Security Issue: SQL Injection Attacks

You may be wondering why we have to go through the process of creating SQL statements with
parameters and setting up Parameter objects, instead of generating straightforward SQL statements
on-the-fly. A statement that picks some user-supplied values and embeds them in a SQL state-
ment can be exploited by a malicious user as a Trojan horse to execute any SQL statement against
your database. Can you guess what will happen when the user enters a SQL statement in one of the
TextBox controls on the form and your code uses this string to build a SQL statement on-the-
fly? The code will pick it up, insert it into the larger statement, and then execute it against the
database. This technique is known as SQL injection, and I’ll show you how it works with a simple
example. It’s a known issue with any DBMS that can execute multiple SQL statements in a batch
mode, and SQL Server is certainly vulnerable to SQL injection attacks.

How would you validate the users of an application? You’d most likely store the usernames and pass-
words in a table and execute a few statements to locate the row with the specified ID and password,
right? If you didn’t know any better, you’d probably write some code to extract the values from two
TextBox controls and build the following SQL statement:

Dim CMD As New SqlClient.SqlCommand(
”SELECT COUNT(*) FROM Customers WHERE CompanyName = ”’ &
txtName.Text & ”’ AND CustomerID = ”’ & txtPsswd.Text & ””’)

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 817

THE BASIC DATA-ACCESS CLASSES 817

Then you’d execute this statement and examine the number of rows that match the specified
criteria:

Dim count As Integer
count = Convert.ToInt32(CMD.ExecuteScalar)

If the value of the count variable is 1, the user can log in. (I’ve assumed that the CompanyName field
is the username and that the password for each user is the CustomerID field of the Customers table.)
If the values in the two text boxes are Frankenversan and FRANK, the following statement will be
executed against the database and will return the numeric value 1:

SELECT COUNT(*) FROM Customers
WHERE CompanyName = ’Frankenversan’ AND CustomerID = ’FRANK’

A malicious user might enter the following username (and no password at all):

xxx’ ; DROP TABLE [Orders] --

If you examine the value of the Command.CommandText property before this statement is executed,
you’ll see the following SQL statement:

SELECT COUNT(*) FROM Customers
WHERE CompanyName = ’xxx’ ;
DROP TABLE [Orders] --’ AND CustomerID = ”

This statement contains two SQL statements and a comment: the SELECT statement, followed by
another statement that drops the Orders table! The comments symbol (the two dashes) is required
to disable the last part of the original statement, which otherwise would cause a syntax error. The
Orders table can’t be dropped, because it contains related rows in the Order Details table, but nothing
will stop you from dropping the Order Details or the Employees table.

If you want to demonstrate to someone that their software isn’t secure, you can replace the DROP
TABLE statement with the SHUTDOWN statement. The following statement shuts down the server
immediately:

SHUTDOWN WITH NOWAIT

Handling Special Characters

Another problem you will avoid with parameterized queries and stored procedures is that of
handling single quotes, which are used to delimit literals in T-SQL. Consider the following UPDATE

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 818

818 CHAPTER 22 PROGRAMMING WITH ADO.NET

statement, which picks up the company name from a TextBox control and updates a single row in
the Customers table:

CMD.CommandText =
”UPDATE Customers SET CompanyName = ”’ &
txtCompany.Text & ””’ &
”WHERE CustomerID = ”’ & txtID.Text & ””’

If the user enters a company name that contains a single quote, such as B’s Beverages, the com-
mand will become the following:

UPDATE Customers SET CompanyName = ’B’s Beverages’ WHERE CustomerID = ’BSBEV’

If you attempt to execute this statement, SQL Server will reject it because it contains a syntax
error (you should be able to figure out the error easily by now). The exact error message is as
follows:

Msg 102, Level 15, State 1, Line 1
Incorrect syntax near ’s’.
Msg 105, Level 15, State 1, Line 1
Unclosed quotation mark after the character string ”.

The single quote is used to delimit literals, and there should be an even number of single
quotes in the statement. The compiler determines that there’s an unclosed quotation mark in the
statement and doesn’t execute it. If the same statement was written as a parameterized query, such
as the following, you could pass the same company name to the statement:

CMD.CommandText =
”UPDATE Customers SET CompanyName = @CompanyName ” &
”WHERE CustomerID = @ID”

CMD.Parameters.Add(”@CompanyName”,
SqlDbType.VarChar, 40).Value = ”B’s Beverages”

CMD.Parameters.Add(”@ID”,
SqlDbType.Char, 5).Value = ”BSBEV”

CMD.ExecuteNonQuery

The same is true for other special characters, such as the percentage symbol. It’s possible to
escape the special symbols; you can replace the single-quote mark with two consecutive single
quotes, but the most elegant method of handling special characters, such as quotation marks,
percent signs, and so on, is to use parameterized queries or stored procedures. You just assign
a string to the parameter and don’t have to worry about escaping any characters; the Command
object will take care of all necessary substitutions.

Empty Strings versus Null Values

The values you assign to the arguments of a query or stored procedure usually come from controls
on a Windows form, and in most cases from TextBox controls. The following statement reads the
text in the txtFax TextBox control and assigns it to the @FAX parameter of a Command object:

Command.Parameters(”@FAX”).Value = txtFax.Text

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 819

THE BASIC DATA-ACCESS CLASSES 819

But what if the user has left the txtFax TextBox blank? Should we pass to the INSERT statement
an empty string or a Null value? If you collect the values from various controls on a form and use
them as parameter values, you’ll never send Null values to the database. If you want to treat
empty strings as Null values, you must pass a Null value to the appropriate parameter explicitly.
Let’s say that the txtFax TextBox control on the form corresponds to the @FAX parameter. You can
use the IIf() statement of Visual Basic to assign the proper value to the corresponding parameter
as follows:

UPDATECommand.Parameters(”@FAX”).Value =
IIf(txtFax.Text.Trim.Length = 0,

System.DBNull.Value, txtFax.Text)

This is a lengthy statement, but here’s how it works. The IIf() function evaluates the specified
expression. If the length of the text in the txtFax control is zero, it returns the value specified by
its second argument, which is the Null value. If not — in other words, if the TextBox control isn’t
empty — it returns the text on the control. This value is then assigned to the @FAX parameter of
the UPDATECommand object.

The DataReader Class
To read the rows returned by a selection query, you must call the Command object’s
ExecuteReader method, which returns a DataReader object (a SqlDataReader object for queries
executed against SQL Server). The DataReader is a stream to the data retrieved by the query, and
it provides many methods for reading the data sent to the client by the database. The underlying
Connection object remains open while you read the data off the DataReader, so you must read it
as quickly as possible, store it at the client, and close the connection as soon as possible.

To read a set of rows with the DataReader, you must call its Read method, which advances
the pointer to the next row in the set. Initially, the pointer is in front of the first row, so you must
call the Read method before accessing the first row. Despite its name, the Read method doesn’t
actually fetch any data; to read individual fields, you must use the various Get methods of the
DataReader object, described next (GetDecimal, GetString, and so on). After reading the fields
of the current row, call the Read method again to advance to the next row. There’s no method to
move to a previous row, so make sure you’ve read all the data of the current row before moving
to the next one. The basic properties and methods of the DataReader object are explained here:

HasRows This is a Boolean property that specifies whether there’s a result set to read data
from. If the query selected no rows at all, the HasRows property will return False.

FieldCount This property returns the number of columns in the current result set. Note that
the DataReader object doesn’t know the number of rows returned by the query. Because it
reads the rows in a forward-only fashion, you must iterate through the entire result set to find
out the number of rows returned by the query.

Read This method moves the pointer in front of the next row in the result set. Use this
method to read the rows of the result set, usually from within a While loop.

Get<type> There are many versions of the Get method with different names, depending on
the type of column you want to read. To read a Decimal value, use the GetDecimal method;
to retrieve a string, use the GetString method; to retrieve an integer, call one of the GetInt16,
GetInt32, or GetSqlInt64 methods; and so on. To specify the column you want to read, use an
integer index value that represents the column’s ordinal, such as Reader.GetString(2). The
index of the first column in the result set is zero.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 820

820 CHAPTER 22 PROGRAMMING WITH ADO.NET

GetSql<type> There are many versions of the GetSql method with different names, depend-
ing on the SQL type of the column you want to read. To read a Decimal value, use the Get-
SqlDecimal method; to retrieve a string, use the GetSqlString method; to retrieve an integer,
call one of the GetSqlInt16, GetSqlInt32, or GetSqlInt64 methods; and so on. To specify the
column you want to read, use an integer index value that represents the column’s ordinal, such
as Reader.GetSqlString(2). The index of the first column in the result set is zero.

CLR Types versus SQL Types

The Get<Type> methods return data types recognized by the Common Language Runtime (CLR),
whereas the GetSql<Type> methods return data types recognized by SQL Server. There’s a one-
to-one correspondence between most types, but not always. In most cases, we use the Get<Type>
methods and store the values in VB variables, but you may wish to store the value of a field in its
native format.

GetValue If you can’t be sure about the type of a column, use the GetValue method, which
returns a value of the Object type. This method accepts as an argument the ordinal of the col-
umn you wish to read.

GetValues This method reads all the columns of the current row and stores them into an
array of objects, which is passed to the method as an argument. This method returns an integer
value, which is the number of columns read from the current row.

GetName Use this method to retrieve the name of a column, which must be specified by
its order in the result set. To retrieve the name of the first column, use the expression Reader
.GetName(0). The column’s name in the result set is the original column name, unless the
SELECT statement used an alias to return a column with a different name.

GetOrdinal This is the counterpart of the GetName method, and it returns the ordinal of a
specific column from its name. To retrieve the ordinal of the CompanyName column, use the
expression Reader.GetName(”CompanyName”).

IsDbNull This method returns True if the column specified by its ordinal in the current
row is Null. If you attempt to assign a Null column to a variable, a runtime exception will be
thrown, so you should use this method to determine whether a column has a value and handle
the Null values from within your code.

Note that you can’t reset the DataReader object and reread the same result set. To go through
the same rows, you must execute the query again. However, there’s no guarantee that the same
query executed a few moments later will return the same result set. Rows may have been added
to, or removed from, the database, so your best bet is to go through the result set once and store
all the data to a structure at the client computer’s memory. Moreover, while you’re using the
DataReader, the connection to the server remains open. This means that you shouldn’t process
the data as you read it, unless it is a trivial form of processing, such as keeping track of sums
and counts. If you need to perform some substantial processing on your data, read the data into
an ArrayList or other structure in the client computer’s memory, close the connection, and then
access the data in the ArrayList. Later in this chapter, you’ll learn about the DataSet object, which
was designed to maintain relational data at the client. The DataSet is a great structure for storing
relational data at the client; it’s almost like a small database that resides in the client computer’s
memory. However, the DataSet is not ideal for all situations.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 821

THE BASIC DATA-ACCESS CLASSES 821

Listing 22.3 shows the code that retrieves all products along with category names and sup-
plier names and populates a ListView control. The ListView control’s columns aren’t specified at
design time; the code adds the appropriate columns at runtime (as long as the View property has
been set to Details). The code goes through the columns of the result set and adds a new col-
umn to the ListView control for each data column. Then it reads the rows returned by the query
and displays them on the control. The statements in Listing 22.3 are part of the SimpleQueries
sample project.

Listing 22.3: Displaying Product Information on a ListView Control

Dim Command As New SqlCommand
Command.Connection = CN
’ a simple SELECT query
Command.CommandText =

”SELECT ProductName AS Product, ” &
”CategoryName AS Category, ” &
”CompanyName AS Supplier, UnitPrice AS Price ” &
”FROM Products LEFT JOIN Categories ” &
”ON Products.CategoryID = Categories.CategoryID ” &
”LEFT JOIN Suppliers ON Products.SupplierID = Suppliers.SupplierID”

Connection.Open()
Dim count As Integer = 0
Dim Reader As SqlDataReader
Reader = Command.ExecuteReader
ListView1.Clear()
Dim i As Integer
’ setup ListView control to display the headers
’ of the columns read from the database
For i = 0 To Reader.FieldCount - 1

ListView1.Columns.Add(Reader.GetName(i), 130)
Next
While Reader.Read

Dim LI As New ListViewItem
LI.Text = Convert.ToString(Reader.Item(”Product”))
LI.SubItems.Add(Convert.ToString(

Reader.Item(”Category”)))
LI.SubItems.Add(Convert.ToString(

Reader.Item(”Supplier”)))
LI.SubItems.Add(Convert.ToString(

Reader.Item(”Price”)))
ListView1.Items.Add(LI)
Count += 1

End While
MsgBox(”Read ” & count.ToString & ” Product rows”)
Connection.Close()

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 822

822 CHAPTER 22 PROGRAMMING WITH ADO.NET

Reading Multiple Result Sets

Another interesting aspect of the DataReader object is that you can use it to read multiple result
sets, such as the ones returned by multiple queries. You can execute a batch query such as the
following with a single Command object:

Command.CommandText = ”SELECT * FROM Customers; SELECT * FROM Employees”
Dim Reader As SqlDataReader = Command.ExecuteReader

We’ll use the same DataReader object to read the rows of both tables, but we need to know
when we’re finished with the first result set (the customers) and start reading the second result
set. The NextResult property of the DataReader does exactly that: After exhausting the first result
set (by iterating through its rows with the Read method), we can request the NextResult property
to find out whether the DataReader contains additional result sets. If so, we can start reading the
next result set with the Read method. Here’s the outline of the code for reading two result sets
from the same DataReader:

While Reader.Read
’ read the fields of the current row in the 1st result set

End While
If Reader.NextResult

While Reader.Read
’ read the fields of the current row in the 2nd result set

End While
End If

Storing Data in DataSets
The process of building data-driven applications isn’t complicated and to a large extent is
abstracted by the Connection, Command, and DataReader classes. You have seen a few interest-
ing examples of these classes and should be ready to use them in your applications. The problem
with these classes is that they don’t offer a consistent method for storing the data at the client. The
approach of converting the data into business objects and working with classes is fine, but you
must come up with a data-storage mechanism at the client. You can store the data in a ListBox
control, as we have done in some examples. You can also create an ArrayList of custom objects.
The issue of storing data at the client isn’t pressing when the client application is connected to
the database and all updates take place in real time. As soon as the user edits a row, the row is
submitted to the database and no work is lost.

In some situations, however, the client isn’t connected at all times. There’s actually a class of
applications called occasionally connected or disconnected, and the techniques presented so far do
not address the needs of these applications. Disconnected applications read some data when a
connection is available and then they disconnect from the server. Users are allowed to interact
with the data at the client, but they work with a local cache of the data; they can insert new rows,
edit existing ones, and delete selected rows. The changes, however, are not submitted immediately
to the server. It’s imperative that the data is persisted at the client. (We don’t want users to lose
their edits because their notebook ran out of batteries or because of a bug in the application.) When
a connection becomes available again, the application should be able to figure out the rows that
have been edited and submit the appropriate changes to the server. To simplify the storage of data
at the client, ADO.NET offers a powerful mechanism, the DataSet.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 823

STORING DATA IN DATASETS 823

You can think of the DataSet as a small database that lives in memory. It’s not actually a
database, but it’s made up of related tables that have the same structure as database tables. The
similarities end there, however, because the DataSet doesn’t impose all types of constraints and
you can’t exploit its data with SQL statements. It’s made up of DataTable objects, and each Data-
Table in the DataSet corresponds to a separate query. Like database tables, the DataTable objects
are made up of DataColumn and DataRow objects. The DataColumn objects specify the structure
of the table, and the DataRow objects contain the rows of the table. You can also establish relations
between the tables in the DataSet, and these relations are represented with DataRelation objects.
As you realize, the DataSet lets you copy a small section of the database at the client, work with it,
and then submit the changes made at the client back to the database.

The real power of the DataSet is that it keeps track of the changes made to its data. It knows
which rows have been modified, added, or deleted, and it provides a mechanism for submitting
the changes automatically. Actually, it’s not the DataSet that submits the changes, but a class that’s
used in tandem with the DataSet: the DataAdapter class. Moreover, the DataSet class provides the
WriteXml and ReadXml methods, which allow you to save its data to a local file. Note that these
methods save the data to a local file so you can reload the DataSet later, but they do not submit
the data to the database.

Filling DataSets
DataSets are filled with DataAdapters, and there are two ways to create a DataSet: You can use the
visual tools of Visual Studio or create a DataSet entirely from within your code. DataSets created at
runtime are not typed, because the compiler doesn’t know what type of information you’re going
to store in them. DataSets created at design time with the visual tools are strongly typed, because
the compiler knows what type of information will be stored in them.

The following statements demonstrate the difference between untyped and typed DataSets. To
access the ProductName column of the first row in the Products table in an untyped DataSet, you’d
use an expression like the following:

Products1.Products.Rows(0).Item(”ProductName”)

If the Products1 DataSet is typed, you can create an object of the Products.ProductsRow type
with the following statement:

Dim productRow As Products.ProductsRow = Products1.Products.Rows(0)

Then use the productRow variable to access the columns of the corresponding row:

productRow.ProductName
productRow.UnitPrice

As you can understand, the visual tools generate a number of classes on-the-fly, such as the
ProductsRow class, and expose them to your code. As soon as you enter the string productRow
and the following period in the code window, you will see the members of the ProductsRow class,
which include the names of the columns in the corresponding table. In this chapter, I discuss
untyped DataSets. In the following chapter, I’ll discuss in detail typed DataSets and how to use
them in building data-bound applications.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 824

824 CHAPTER 22 PROGRAMMING WITH ADO.NET

The DataAdapter Class

To use DataSets in your application, you must first create a DataAdapter object, which is the
preferred technique of populating the DataSet. The DataAdapter is nothing more than a collection
of Command objects that are needed to execute the various commands against the database. As
you recall from our previous discussion, we interact with the database by using four different
Command objects: one to select the data and load them to the client computer with the help of a
DataReader object (a Command object with the SELECT statement), and three more to submit to
the database the new rows (a Command object with the INSERT statement), update existing rows
(a Command object with the UPDATE statement) and delete existing rows (a Command object with
the DELETE statement). A DataAdapter is a container for Connection and Command objects. If you
declare a SqlDataAdapter object with a statement like the following:

Dim DA As New SqlDataAdapter

you’ll see that it exposes the following properties:

InsertCommand A Command object that’s executed to insert a new row

UpdateCommand A Command object that’s executed to update a row

DeleteCommand A Command object that’s executed to delete a row

SelectCommand A Command object that’s executed to retrieve selected rows

Each of these properties is an object and has its own Connection property, because each
may not act on the same database (as unlikely as it may be). These properties also expose their
own Parameters collection, which you must populate accordingly before executing a
command.

The DataAdapter class performs the two basic tasks of a data-driven application: It retrieves
data from the database to populate a DataSet, and submits the changes to the database. To
populate a DataSet, use the Fill method, which fills a specific DataTable object. There’s one
DataAdapter per DataTable object in the DataSet, and you must call the corresponding
Fill method to populate each DataTable. To submit the changes to the database, use the Update
method of the appropriate DataAdapter object. The Update method is overloaded, and you can
use it to submit a single row to the database or all edited rows in a DataTable. The Update method
uses the appropriate Command object to interact with the database.

Passing Parameters through the DataAdapter

Let’s build a DataSet in our code to demonstrate the use of the DataAdapter objects. Start by
declaring a DataSet variable:

Dim DS As New DataSet

Then create the various commands that will interact with the database:

Dim cmdSelectCustomers As String = ”SELECT * FROM Customers ” &
”WHERE Customers.Country=@country”

Dim cmdDeleteCustomer As String = ”DELETE Customers WHERE CustomerID=@CustomerID”
Dim cmdEditCustomer As String = ”UPDATE Customers ” &

”SET CustomerID = @CustomerID, CompanyName = @CompanyName, ” &

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 825

STORING DATA IN DATASETS 825

”ContactName = @ContactName, ContactTitle = @ContactTitle ” &
”WHERE CustomerID = @CustID”

Dim cmdInsertCustomer As String = ”INSERT Customers ” &
”(CustomerID, CompanyName, ContactName, ContactTitle) ” &
”VALUES(@CustomerID, @CompanyName, @ContactName, @ContactTitle) ”

I’ve included only a few columns in the examples to keep the statements reasonably short. The
various commands use parameterized queries to interact with the database, and we must add the
appropriate parameters to each Command object. After the SQL statements are in place, we can
build the four Command properties of the DataAdapter object. Start by declaring a DataAdapter
object:

Dim DACustomers As New SqlDataAdapter()

Because all Command properties of the DataAdapter object will act on the same database, we
can create a Connection object and reuse it as needed:

Dim CN As New SqlConnection(ConnString)

The ConnString variable is a string with the proper connection string. Now we can create the
four Command properties of the DACustomers DataAdapter object.

Let’s start with the SelectCommand property of the DataAdapter object. The following state-
ments create a new Command object based on the preceding SELECT statement and then set up a
Parameter object for the @country parameter of the SELECT statement:

DACustomers.SelectCommand = New SqlClient.SqlCommand(cmdSelectCustomers)
DACustomers.SelectCommand.Connection = CN
Dim param As New SqlParameter
param.ParameterName = ”@Country”
param.SqlDbType = SqlDbType.VarChar
param.Size = 15
param.Direction = ParameterDirection.Input
param.IsNullable = False
param.Value = ”Germany”
DACustomers.SelectCommand.Parameters.Add(param)

This is the easier, but rather verbose, method of specifying a Parameter object. You are familiar
with the Parameter object’s properties and already know how to configure and add parame-
ters to a Command object via a single statement. As a reminder, an overloaded form of the Add
method allows you to configure and attach a Parameter object to a Command object’s Parameters
collection with a single, but lengthy, statement:

DA.SelectCommand.Parameters.Add(
New System.Data.SqlClient.qlParameter(
paramName, paramType, paramSize, paramDirection,
paramNullable, paramPrecision, paramScale,
columnName, rowVersion, paramValue)

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 826

826 CHAPTER 22 PROGRAMMING WITH ADO.NET

The paramPrecsion and paramScale arguments apply to numeric parameters, and you can set
them to 0 for string parameters. The paramNullable argument determines whether the parameter
can assume a Null value. The columnName argument is the name of the table column to which the
parameter will be matched. (We need this information for the INSERT and UPDATE commands.)
The rowVersion argument determines which version of the field in the DataSet will be used — in
other words, whether the DataAdapter will pass to the parameter object the current version
(DataRowVersion.Current) or the original version (DataRowVersion.Original) of the field.
The last argument, paramValue, is the parameter’s value. You can specify a value as we did in the
example of the SelectCommand, or set this argument to Nothing and let the DataAdapter object
assign the proper value to each parameter. (You’ll see in a moment how this argument is used
with the INSERT and UPDATE commands.)

Finally, you can open the connection to the database and then call the DataAdapter’s Fill
method to populate a DataTable in the DataSet:

CN.Open
DACustomers.Fill(DS, ”Customers”)
CN.Close

The Fill method accepts as arguments a DataSet object and the name of the DataTable it will
populate. The DACustomers DataAdapter is associated with a single DataTable and knows how
to populate it, as well as how to submit the changes back to the database. The DataTable’s name is
arbitrary and need not match the name of the database table where the data originates. The four
basic operations of the DataAdapter (which are no other than the four basic data-access operations
of a client application) are also known as CRUD operations: Create/Retrieve/Update/Delete.

The CommandBuilder Class

Each DataAdapter object that you set up in your code is associated with a single SELECT query,
which may select data from one or multiple joined tables. The INSERT/UPDATE/DELETE queries of
the DataAdapter can submit data to a single table. So far you’ve seen how to manually set up each
Command object in a DataAdapter object. There’s a simpler method to specify the queries: You
start with the SELECT statement, which selects data from a single table, and then let a Command-
Builder object infer the other three statements from the SELECT statement. Let’s see this technique
in action.

Declare a new SqlCommandBuilder object by passing the name of the adapter for which you
want to generate the statements:

Dim CustomersCB As SqlCommandBuilder =
New SqlCommandBuilder(DA)

This statement is all it takes to generate the InsertCommand, UpdateCommand, and Delete-
Command objects of the DACustomers SqlDataAdapter object. When the compiler runs into
the previous statement, it will generate the appropriate Command objects and attach them to the
DACustomers SqlDataAdapter. Here are the SQL statements generated by the CommandBuilder
object for the Products table of the Northwind database:

UPDATE Command

UPDATE [Products] SET [ProductName] = @p1,
[CategoryID] = @p2, [UnitPrice] = @p3,

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 827

STORING DATA IN DATASETS 827

[UnitsInStock] = @p4, [UnitsOnOrder] = @p5
WHERE (([ProductID] = @p6))

INSERT Command

INSERT INTO [Products]
([ProductName], [CategoryID],
[UnitPrice], [UnitsInStock],
[UnitsOnOrder])
VALUES (@p1, @p2, @p3, @p4, @p5)

DELETE Command

DELETE FROM [Products] WHERE (([ProductID] = @p1))

These statements are based on the SELECT statement and are quite simple. You may notice
that the UPDATE statement simply overrides the current values in the Products table. The Com-
mandBuilder can generate a more elaborate statement that takes into consideration concurrency.
It can generate a statement that compares the values read into the DataSet to the values stored
in the database. If these values are different, which means that another user has edited the same
row since the row was read into the DataSet, it doesn’t perform the update. To specify the type of
UPDATE statement you want to create with the CommandBuilder object, set its ConflictOption
property, whose value is a member of the ConflictOption enumeration: CompareAllSearch-
Values (compares the values of all columns specified in the SELECT statement), CompareRow-
Version (compares the original and current versions of the row), and OverwriteChanges (simply
overwrites the fields of the current row in the database).

The OverwriteChanges option generates a simple statement that locates the row to be updated
with its ID and overwrites the current field values unconditionally. If you set the ConflictOption
property to CompareAllSearchValues, the CommandBuilder will generate the following UPDATE
statement:

UPDATE [Products]
SET [ProductName] = @p1, [CategoryID] = @p2,

[UnitPrice] = @p3, [UnitsInStock] = @p4,
[UnitsOnOrder] = @p5

WHERE (([ProductID] = @p6) AND ([ProductName] = @p7)
AND ((@p8 = 1 AND [CategoryID] IS NULL) OR
([CategoryID] = @p9)) AND
((@p10 = 1 AND [UnitPrice] IS NULL) OR
([UnitPrice] = @p11)) AND
((@p12 = 1 AND [UnitsInStock] IS NULL) OR
([UnitsInStock] = @p13)) AND
((@p14 = 1 AND [UnitsOnOrder] IS NULL) OR
([UnitsOnOrder] = @p15)))

This is a lengthy statement indeed. The row to be updated is identified by its ID, but the oper-
ation doesn’t take place if any of the other fields don’t match the value read into the DataSet. This
statement will fail to update the corresponding row in the Products table if it has already been
edited by another user.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 828

828 CHAPTER 22 PROGRAMMING WITH ADO.NET

The last member of the ConflictOption enumeration, the CompareRowVersion option, works
with tables that have a TimeStamp column, which is automatically set to the time of the update.
If the row has a time stamp that’s later than the value read when the DataSet was populated, it
means that the row has been updated already by another user and the UPDATE statement will fail.

The SimpleDataSet sample project, which is discussed later in this chapter and demonstrates
the basic DataSet operations, generates the UPDATE/INSERT/DELETE statements for the Categories
and Products tables with the help of the CommandBuilder class and displays them on the form
when the application starts. Open the project to examine the code and change the setting of the
ConflictOption property to see how it affects the autogenerated SQL statements.

Accessing the DataSet’s Tables
The DataSet is made up of tables, which are represented by the DataTable class. Each DataTable
in the DataSet may correspond to a table in the database or a view. When you execute a query that
retrieves fields from multiple tables, all selected columns will end up in a single DataTable of the
DataSet. You can select any DataTable in the DataSet by its index or its name:

DS.Tables(0)
DS.Tables(”Customers”)

Each table contains columns, which you can access through the Columns collection. The
Columns collection is made up of DataColumn objects, one DataColumn object for each column
in the corresponding table. The Columns collection is the schema of the DataTable object, and the
DataColumn class exposes properties that describe a column. ColumnName is the column’s name,
DataType is the column’s type, MaxLength is the maximum size of text columns, and so on. The
AutoIncrement property is True for Identity columns, and the AllowDBNull property determines
whether the column allows Null values. In short, all the properties you can set visually as you
design a table are also available to your code through the Columns collection of the DataTable
object. You can use the DataColumn class’s properties to find out the structure of the table or to
create a new table. To add a table to a DataSet, you can create a new DataTable object. Then create
a DataColumn object for each column, set its properties, and add the DataColumn objects to the
DataTable’s Columns collection. Finally, add the DataTable to the DataSet. The process is described
in detail in the online documentation, so I won’t repeat it here.

Working with Rows
As far as data are concerned, each DataTable is made up of DataRow objects. All DataRow objects
of a DataTable have the same structure and can be accessed through an index, which is the row’s
order in the table. To access the rows of the Customers table, use an expression like the following:

DS.Customers.Rows(iRow)

where iRow is an integer value from zero (the first row in the table) up to DS.Customers.
Rows.Count – 1 (the last row in the table). To access the individual fields of a DataRow object,
use the Item property. This property returns the value of a column in the current row by either its
index or its name:

DS.Customers.Rows(0).Item(0)

or

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 829

STORING DATA IN DATASETS 829

DS.Customers.Rows(0).Item(”CustomerID”)

To iterate through the rows of a DataSet, you can set up a For. . .Next loop like the following:

Dim iRow As Integer
For iRow = 0 To DSProducts1.Products.Rows.Count - 1

‘ process row: DSProducts.Products.Rows(iRow)
Next

Alternatively, you can use a For Each. . .Next loop to iterate through the rows of the DataTable:

Dim product As DataRow
For Each product In DSProducts1.Products.Rows

‘ process prodRow row:
‘ product.Item(”ProductName”),
‘ product.Item(”UnitPrice”), and so on

Next

To edit a specific row, simply assign new values to its columns. To change the value of the
ContactName column of a specific row in a DataTable that holds the customers of the Northwind
database, use a statement like the following:

DS.Customers(3).Item(”ContactName”) = ”new contact name”

The new values are usually entered by a user on the appropriate interface, and in your code
you’ll most likely assign a control’s property to a row’s column with statements like the following:

If txtName.Text.Trim <> ”” Then
DS.Customers(3).Item(”ContactName”) = txtName.Text

Else
DS.Customers(3).Item(”ContactName”) = DBNull.Value

End If

The code segment assumes that when the user doesn’t supply a value for a column, this column
is set to Null (if the column is nullable, of course). If the control contains a value, this value is
assigned to the ContactName column of the fourth row in the Customers DataTable of the DS
DataSet.

Handling Null Values
An important (and quite often tricky) issue in coding data-driven applications is the handling of
Null values. Null values are special, in the sense that you can’t assign them to control properties
or use them in other expressions. Every expression that involves Null values will throw a runtime
exception. The DataRow object provides the IsNull method, which returns True if the column
specified by its argument is a Null value:

If customerRow.IsNull(”ContactName”) Then
‘ handle Null value

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 830

830 CHAPTER 22 PROGRAMMING WITH ADO.NET

Else
‘ process value

End If

In a typed DataSet, DataRow objects provide a separate method to determine whether a specific
column has a Null value. If the customerRow DataRow belongs to a typed DataSet, you can use
the IsContactNameNull method instead:

If customerRow.IsContactNameNull Then
‘ handle Null value for the ContactName

Else
‘ process value: customerRow.ContactName

End If

If you need to map Null columns to specific values, you can do so with the ISNULL() function
of T-SQL, as you retrieve the data from the database. In many applications, we want to display an
empty string or a zero value in place of a Null field. We can avoid all the comparisons in our code
by retrieving the corresponding field with the ISNULL() function in our SQL statement. Where the
column name would appear in the SELECT statement, use an expression like the following:

ISNULL(customerBalance, 0.00)

If the customerBalance column is Null for a specific row, SQL Server will return the numeric
value zero. This value can be used in reports or other calculations in your code. Notice that the
customer’s balance shouldn’t be Null. A customer always has a balance, even if it’s zero. When a
product’s price is Null, it means that we don’t know the price of the product (and therefore can’t
sell it). In this case, a Null value can’t be substituted with a zero value. You must always carefully
handle Null columns in your code, and how you’ll handle them depends on the nature of the data
they represent.

Adding and Deleting Rows
To add a new row to a DataTable, you must first create a DataRow object, set its column values,
and then call the Add method of the Rows collection of the DataTable to which the new row belongs,
passing the new row as an argument. If the DS DataSet contains the Customers DataTable, the
following statements will add a new row for the Customers table:

Dim newRow As New DataRow = dataTable.NewRow
newRow.Item(”CompanyName”) = ”new company name”
newRow.Item(”CustomerName”) = ”new customer name”
newRow.Item(”ContactName”) = ”new contact name”
DS.Customers.Rows.Add(newRow)

Notice that we need not set the CustomerID column. This Identity column is assigned a new
value automatically by the DataSet. Of course, when the row is submitted to the database, the
ID assigned to the new customer by the DataSet may already be taken. SQL Server will assign
a new unique value to this column when it inserts it into the table. It’s recommended that you
set the AutoIncrementSeed property of an Identity column to 0, and the AutoIncrement to −1,
so that new rows are assigned consecutive negative IDs in the DataSet. Presumably, the

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 831

STORING DATA IN DATASETS 831

corresponding columns in the database have a positive AutoIncrement setting, so when these
rows are submitted to the database, they’re assigned the next Identity value automatically. If
you’re designing a new database, use globally unique identifiers (GUIDs) instead of identity val-
ues. A GUID can be created at the client and is unique. The same GUID that will be generated by
the client will also be inserted in the table, when the row is committed. To create GUIDs, call the
NewGuid method of the Guid class:

newRow.Item(”CustomerID”) = Guid.NewGuid

To delete a row, you can either remove it from the Rows collection via the Remove or the
RemoveAt methods of the Rows collection, or call the Delete method of the DataRow object that
represents the row. The Remove method accepts as an argument a DataRow object and removes it
from the collection:

Dim customerRow As DS.CustomerRow
customerRow = DS.Customers.Rows(2)
DS.Customers.Remove(customerRow)

The RemoveAt method accepts as an argument the index of the row you want to delete in the
Rows collection. Finally, the Delete method is a method of the DataRow class, and you must apply
it to a DataRow object that represents the row to be deleted:

customerRow.Delete

Deleting versus Removing Rows

The Remove method removes a row from the DataSet as if it were never read when the DataSet was
filled. Deleted rows are not always removed from the DataSet, because the DataSet maintains
its state. If the row you’ve deleted exists in the underlying table (in other words, if it’s a row that was
read into the DataSet when you filled it), the row will be marked as deleted but will not be removed
from the DataSet. If it’s a row that was added to the DataSet after it was read from the database, the
deleted row is actually removed from the Rows collection.

You can physically remove deleted rows from the DataSet by calling the DataSet’s AcceptChanges
method. However, after you’ve accepted the changes in the DataSet, you can no longer submit any
updates to the database. If you call the DataSet’s RejectChanges method, the deleted rows will be
restored in the DataSet.

Navigating through a DataSet
The DataTables making up a DataSet may be related, and they usually are. There are methods
that allow you to navigate from table to table following the relations between their rows. For
example, you can start with a row in the Customers DataTable, retrieve its child rows in the Orders
DataTable (the orders placed by the selected customer), and then drill down to the details of each
of the selected orders.

The relations of a DataSet are DataRelation objects and are stored in the Relations property
of the DataSet. Each relation is identified by a name, the two tables it relates to, and the fields
of the tables on which the relation is based. It’s possible to create relations in your code, and the

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 832

832 CHAPTER 22 PROGRAMMING WITH ADO.NET

process is really quite simple. Let’s consider a DataSet that contains the Categories and Products
tables. To establish a relation between the two tables, create two instances of the DataTable object
to reference the two tables:

Dim tblCategories As DataTable = DS.Categories
Dim tblProducts As DataTable = DS.Products

Then create two DataColumn objects to reference the columns on which the relation is based.
They’re the CategoryID columns of both tables:

Dim colCatCategoryID As DataColumn =
tblCategories.Columns(”CategoryID”)

Dim colProdCategoryID As DataColumn =
tblProducts.Columns(”CategoryID”)

And finally, create a new DataRelation object and add it to the DataSet:

Dim DR As DataRelation
DR = New DataRelation(”Categories2Products”,

colCatCategoryID, colProdCategoryID)

Notice that we need to specify only the columns involved in the relation, and not the tables
to be related. The information about the tables is derived from the DataColumn objects. The first
argument of the DataRelation constructor is the relation’s name. If the relation involves multiple
columns, the second and third arguments of the constructor become arrays of DataColumn objects.

To navigate through related tables, the DataRow object provides the GetChildRows method,
which returns the current row’s child rows as an array of DataRow objects, and the GetParent-
Row/GetParentRows methods, which return the current row’s parent row(s). GetParentRow
returns a single DataRow object, and GetParentRows returns an array of DataRow objects. Because
a DataTable may be related to multiple DataTables, you must also specify the name of the relation.
Consider a DataSet with the Products, Categories, and Suppliers tables. Each row of the Products
table can have two parent rows, depending on which relation you want to follow. To retrieve the
product’s category, use a statement like the following:

DS.Products(iRow).GetParentRow(”CategoriesProducts”)

The product’s supplier is given by the following expression:

DS.Products(iRow).GetParentRow(”SuppliersProducts”)

If you start with a category, you can find out the related products with the GetChildRows
method, which accepts as an argument the name of a Relation object:

DS.Categories(iRow).GetChildRows(”CategoriesProducts”)

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 833

STORING DATA IN DATASETS 833

To iterate through the products of a specific category (in other words, the rows of the Products
table that belong to a category), set up a loop like the following:

Dim product As DataRow
For Each product In DS.Categories(iRow).

GetChildRows(”CategoriesProducts”)
‘ process product
Next

Row States and Versions

Each row in the DataSet has a State property. This property indicates the row’s state and its value
if a member of the DataRowState enumeration, whose members are the following:

Added The row has been added to the DataTable, and the AcceptChanges method has not
been called.

Deleted The row was deleted from the DataTable, and the AcceptChanges method has not
been called.

Detached The row has been created with its constructor but has not yet been added to a
DataTable.

Modified The row has been edited, and the AcceptChanges method has not been called.

Unchanged The row has not been edited or deleted since it was read from the database or
the AcceptChanges was last called. (In other words, the row’s fields are identical to the values
read from the database.)

You can use the GetChanges method to find out the rows that must be added to the underlying
table in the database, the rows to be updated, and the rows to be removed from the underlying
table.

If you want to update all rows of a DataTable, call an overloaded form of the DataAdapter’s
Update method, which accepts as an argument a DataTable and submits its rows to the database.
The edited rows are submitted through the UpdateCommand object of the appropriate
DataAdapter, the new rows are submitted through the InsertCommand object, and the deleted
rows are submitted through the DeleteCommand object. Instead of submitting the entire table,
however, you can create a subset of a DataTable that contains only the rows that have been edited,
inserted, or deleted. The GetChanges method of the DataTable object retrieves a subset of rows,
depending on the argument you pass to it, and this argument is a member of the DataRowState
enumeration:

Dim DT As New DataTable =
Products1.Products.GetChanges(DataRowState.Deleted)

This statement retrieves the rows of the Customers table that were deleted and stores them
into a new DataTable. The new DataTable has the same structure as the one from which the rows
were copied, and you can access its rows and their columns as you would access any DataTable
of a DataSet. You can even pass this DataTable as an argument to the appropriate DataAdapter’s

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 834

834 CHAPTER 22 PROGRAMMING WITH ADO.NET

Update method. This form of the Update method allows you to submit selected changes to the
database.

In addition to a state, rows have a version. What makes the DataSet such a powerful tool for
disconnected applications is that it maintains not only data, but also the changes in its data. The
Rows property of the DataTable object is usually called with the index of the desired row, but it
accepts a second argument, which determines the version of the row you want to read:

DS.Tables(0).Rows(i, version)

This argument is a member of the DataRowVersion enumeration, whose values are the
following:

Current Returns the row’s current values (the fields as they were edited in the DataSet).

Default Returns the default values for the row. For added, edited, and current rows, the
default version is the same as the current version. For deleted rows, the default versions
are the same as the original versions. If the row doesn’t belong to a DataTable, the default ver-
sion is the same as the proposed version.

Original Returns the row’s original values (the values read from the database).

Proposed Returns the row’s proposed value (the values assigned to a row that doesn’t yet
belong to a DataTable).

If you attempt to submit an edited row to the database and the operation fails, you can give the
user the option to edit the row’s current version or to restore the row’s original values. To retrieve
the original version of a row, use an expression like the following:

DS.Tables(0).Row(i, DataRowVersion.Original)

Although you can’t manipulate the version of a row directly, you can use the AcceptChanges
and RejectChanges methods to either accept the changes or reject them. These two methods are
exposed by the DataSet, DataTable, and DataRow classes. The difference is the scope: Applying
RejectChanges to the DataSet restores all changes made to the DataSet (not a very practical oper-
ation), whereas applying RejectChanges to a DataTable object restores the changes made to the
specific table’s rows; applying the same method to the DataRow object restores the changes made
to a single row.

The AcceptChanges method sets the original value of the affected row(s) to the proposed
value. Deleted rows are physically removed. The RejectChanges method removes the proposed
version of the affected row(s). You can call the RejectChanges method when the user wants to get
rid of all changes in the DataSet. Notice that after you call the AcceptChanges method, you can no
longer update the underlying tables in the database, because the DataSet no longer knows which
rows were edited, inserted, or deleted. Call the AcceptChanges method only for DataSets you plan
to persist on disk and not submit to the database.

Update Operations
One of the most important topics in database programming is how to submit changes back to the
database. There are basically two modes of operation: single updates and multiple updates. A
client application running on a local area network as the database server can (and should) submit
changes as soon as they occur. If the client application is not connected to the database server

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 835

UPDATE OPERATIONS 835

at all times, changes may accumulate at the client and can be submitted in batch mode when a
connection to the server is available.

From a developer’s point of view, the difference between the two modes is how you handle
update errors. If you submit individual rows to the database and the update operation fails, you
can display a warning and let the user edit the data again. You can write code to restore the row
to its original state, or not. In any case, it’s fairly easy to handle isolated errors. If the application
submits a few dozen rows to the database, several of these rows may fail to update the underlying
table and you’ll have to handle the update errors from within your code. At the very least, you
must validate the data as best as you can at the client before submitting them to the database.
No matter how thoroughly you validate your data, however, you can’t be sure that they will be
inserted into the database successfully.

Another factor you should consider is the nature of the data you work with. Let’s consider
an application that maintains a database of books and an application that takes orders. The book
maintenance application handles publishers, authors, translators, and other data. If two dozen
users are entering and correcting titles, they will all work with the same authors. If you allow
them to work in disconnected mode, the same author name may be entered several times, because
no user can see the changes made by any other user. This application should be connected: Every
time a user adds a new author, the table with the author names in the database must be updated,
so that other users can see the new author. The same goes for publishers, translators, topics,
and so on. A disconnected application of this type should also include utilities to consolidate
multiple author and publisher names.

An order-taking application can safely work in a disconnected mode, because orders entered
by one user are not aware of and don’t interfere with the orders entered by another user. You can
install the client application on the notebooks of several salespersons so they can take orders on
the go and upload them after establishing a connection between the notebook and the database
server (which may even happen when the salespersons return to the company’s offices).

Updating the Database with the DataAdapter
The simplest method of submitting changes to the database is to use each DataAdapter’s Update
method. The DataTable object provides the members you need to retrieve the rows that failed
to update the database, as well as the messages returned by the database server, and you’ll see
how these members are used in this section. The Update method may not have updated all the
rows in the underlying tables. If a product was removed in the meantime from the Products table
in the database, the DataAdapter’s UpdateCommand will not be able to submit the changes made
to the specific product. A product with a negative value may very well exist at the client, but the
database will reject this row, because it violates one of the constraints of the Products table.

If the database returned any errors during the update process, the HasErrors property of the
DataSet object will be set to True. You can retrieve the rows in error from each table with the
GetErrors method of the DataTable class. This method returns an array of DataRow objects, and
you can process them in any way you see fit. The code shown in Listing 22.4 iterates through the
rows of the Categories table that are in error and prints the description of the error in the Output
window.

Listing 22.4: Retrieving and Displaying the Update Errors

If Products1.HasErrors Then
If Products1.Categories.GetErrors.Length = 0 Then

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 836

836 CHAPTER 22 PROGRAMMING WITH ADO.NET

Console.WriteLine(”Errors in the Categories DataTable”)
Else

Dim RowsInError() As Products.CategoriesRow
RowsInError = Products1.Categories.GetErrors
Dim row As Products.CategoriesRow
Console.WriteLine(”Errors in the Categories table”)
For Each row In RowsInError

Console.WriteLine(vbTab & row.CategoryID & vbTab &
row.RowError)

Next
End If

Endif

The DataRow object exposes the RowError property, which is a description of the error that
prevented the update for the specific row. It’s possible that the same row has more than a single
error. To retrieve all columns in error, call the DataRow object’s GetColumnsInError method,
which returns an array of DataColumn objects that are the columns in error.

Handling Identity Columns
An issue that deserves special attention in coding data-driven applications is the handling of
Identity columns. Identity columns are used as primary keys, and each row is guaranteed to have
a unique Identity value because this value is assigned by the database the moment the row is
inserted into its table. The client application can’t generate unique values. When new rows are
added to a DataSet, they’re assigned Identity values, but these values are unique in the context of
the local DataSet. When a row is submitted to the database, any Identity column will be assigned
its final value by the database. The temporary Identity value assigned by the DataSet is also used
as a foreign key value by the related rows, and we must make sure that every time an Identity
value is changed, the change will propagate to the related tables.

Handling Identity values is an important topic, and here’s why: Consider an application for
entering orders or invoices. Each order has a header and a number of detail lines, which are related
to a header row with the OrderID column. This column is the primary key in the Orders table and
is the foreign key in the Order Details table. If the primary key of a header is changed, the foreign
keys of the related rows must change also.

The trick in handling Identity columns is to make sure that the values generated by the DataSet
will be replaced by the database. We do so by specifying that the Identity column’s starting value
is −1 and its autoincrement is −1. The first ID generated by the DataSet will be −1, the second
one will be −2, and so on. Negative Identity values will be rejected by the database, because the
AutoIncrement properties in the database schema are positive. By submitting negative Identity
values to SQL Server, we make sure that new, positive values will be generated and used by SQL
Server.

We must also make sure that the new values will replace the old ones in the related rows.
In other words, we want these values to propagate to all related rows. The DataSet allows you
to specify that changes in the primary key will propagate through the related rows with the
UpdateRule property of the Relation.ChildKeyConstraint property. Each relation exposes

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 837

VB 2008 AT WORK: THE SIMPLEDATASET PROJECT 837

the ChildKeyConstraint property, which determines how changes in the primary key of a
relation affect the child rows. This property is an object that exposes a few properties of its own.
The two properties we’re interested in are UpdateRule and DeleteRule (what happens to the
child rows when the parent row’s primary key is changed, or when the primary key is deleted).
You can use one of the following rules:

Cascade Foreign keys in related rows change every time the primary key changes value, so
that they’ll always remain related to their parent row.

None The foreign key in the related row(s) is not affected.

SetDefault The foreign key in the related row(s) is set to the DefaultValue property for the
same column.

SetNull The foreign key in the related rows is set to Null.

As you can understand, setting the UpdateRule property to anything other than Cascade will
break the relation. If the database doesn’t enforce the relation, you may be able to break it. If the
relation is enforced, however, UpdateRule must be set to Rule.Cascade, or the database will not
accept changes that violate its referential integrity.

If you set UpdateRule to None, you may be able to submit the order to the database. However,
the detail rows may refer to a different order. This will happen when the ID of the header is
changed because the temporary value is already taken. The detail rows will be inserted with the
temporary key and added to the details of another order. Notice that no runtime exception will
be thrown, and the only way to catch this type of error is by examining the data inserted into the
database by your application. By using negative values at the DataSet, we make sure that the ID
of both the header and all detail rows will be rejected by the database.

VB 2008 at Work: The SimpleDataSet Project
Let’s put together the topics discussed so far to build an application that uses a DataSet to store
and edit data at the client. The sample application is called SimpleDataSet, and its interface is
shown in Figure 22.1.

Click the large Read Products and Related Tables button at the top to populate a DataSet
with the rows of the Products and Categories tables of the Northwind database. The
application displays the categories and the products in each category in a RichTextBox control.
Instead of displaying all the columns in a ListView control, I’ve chosen to display only a few
columns of the Products table. The Edit DataSet button edits a few rows of both tables. The code
behind this button changes the name and price of a couple of products in random, deletes a row,
and adds a new row. It actually sets the price of the edited products to a random value in the
range from −10 to 40 (negative prices are invalid and they will be rejected by the database). The
DataSet keeps track of the changes, and you can review them at any time by clicking the Show
Edits button, which displays the changes in the DataSet in a message box, like the one shown in
Figure 22.2.

You can undo the changes and reset the DataSet to its original state by clicking the Reject
Changes button, which calls the RejectChanges method of the DataSet class to reject the edits. It
removes the new rows, restores the deleted ones, and undoes the edits in the modified rows.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 838

838 CHAPTER 22 PROGRAMMING WITH ADO.NET

Figure 22.1

The SimpleDataSet
project populates a
DataSet at the client
with categories and
products.

Figure 22.2

Viewing the changes in
the client DataSet

The Save DataSet and Load DataSet buttons persist the DataSet at the client, so that you can
reload it later without having to access the database. The code shown in Listing 22.5 calls the
WriteXml and ReadXml methods and uses a hard-coded filename. WriteXml and ReadXml save the
data only, and you can’t create a DataSet by calling the ReadXml method; this method will populate

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 839

VB 2008 AT WORK: THE SIMPLEDATASET PROJECT 839

an existing DataSet. To actually load a DataSet, you must first specify its structure. Fortunately,
the DataSet exposes the WriteXmlSchema and ReadXmlSchema methods, which store and read the
schema of the DataSet. WriteXmlSchema saves the schema of the DataSet, so you can regenerate an
identical DataSet with the ReadXmlSchema method, which reads an existing schema and structures
the DataSet accordingly. The code behind the Save DataSet and Load DataSet buttons first calls
these two methods to take care of the DataSet’s schema, and then calls the WriteXml and ReadXml
methods to save/load the data.

Listing 22.5: Saving and Loading the DataSet

Private Sub bttnSave Click(...) Handles bttnSave.Click
Try

DS.WriteXmlSchema(”DataSetSchema.xml”)
DS.WriteXml(”DataSetData.xml”, XmlWriteMode.DiffGram)

Catch ex As Exception
MsgBox(”Failed to save DataSet” & vbCrLf & ex.Message)
Exit Sub

End Try
MsgBox(”DataSet saved successfully”)

End Sub

Private Sub bttnLoad Click(...) Handles bttnLoad.Click
Try

DS.ReadXmlSchema(”DataSetSchema.xml”)
DS.ReadXml(”DataSetData.xml”, XmlReadMode.DiffGram)

Catch ex As Exception
MsgBox(”Failed to load DataSet” & vbCrLf & ex.Message)
Exit Sub

End Try
ShowDataSet()

End Sub

The Submit Edits button, finally, submits the changes to the database. The code attempts to sub-
mit all edited rows, but some of them may fail to update the database. The local DataSet doesn’t
enforce any check constraints, so when the application attempts to submit a product row with a
negative price to the database, the database will reject the update operation. The DataSet rows
that failed to update the underlying tables are shown in a message box like the one shown in
Figure 22.3. You can review the values of the rows that failed to update the database and the
description of the error returned by the database, and edit them further. The rows that failed to
update the underlying table(s) in the database remain in the DataSet. Of course, you can always
call the RejectChanges method for each row that failed to update the database, to undo the
changes of the invalid rows. As is, the application doesn’t reject any changes on its own. If you
click the Show Edits button after an update operation, you will see the rows that failed to update
the database, because they’re marked as inserted/modified/deleted in the DataSet.

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 840

840 CHAPTER 22 PROGRAMMING WITH ADO.NET

Figure 22.3

Viewing the rows that
failed to update the
database and the error
message returned by the
DBMS

Let’s start with the code that loads the DataSet. When the form is loaded, the code initializes two
DataAdapter objects, which load the rows of the Categories and Products tables. The names of the
two DataAdapters are DACategories and DAProducts. They’re initialized to the CN connection
object and a simple SELECT statement, as shown in Listing 22.6.

Listing 22.6: Setting Up the DataAdapters for the Categories and Products Tables

Private Sub Form1 Load(...) Handles MyBase.Load
Dim CN As New SqlClient.SqlConnection(

”data source=localhost;initial catalog=northwind; ” &
”Integrated Security=True”)

DACategories.SelectCommand = New SqlClient.SqlCommand(
”SELECT CategoryID, CategoryName, Description FROM Categories”)

DACategories.SelectCommand.Connection = CN
Dim CategoriesCB As SqlCommandBuilder = New SqlCommandBuilder(DACategories)
CategoriesCB.ConflictOption = ConflictOption.OverwriteChanges
DAProducts.SelectCommand = New SqlClient.SqlCommand(

”SELECT ProductID, ProductName, ” &
”CategoryID, UnitPrice, UnitsInStock, ” &
”UnitsOnOrder FROM Products ”)

DAProducts.SelectCommand.Connection = CN

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 841

VB 2008 AT WORK: THE SIMPLEDATASET PROJECT 841

DAProducts.ContinueUpdateOnError = True
Dim ProductsCB As SqlCommandBuilder = New SqlCommandBuilder(DAProducts)
ProductsCB.ConflictOption = ConflictOption.CompareAllSearchableValues

End Sub

I’ve specified the SELECT statements in the constructors of the two DataAdapter objects and
let the CommandBuilder objects generate the update statement. You can change the value of the
ConflictOption property to experiment with the different styles of update statements that the
CommandBuilder will generate. When the form is loaded, all the SQL statements generated for
the DataAdapters are shown in the RichTextBox control. (The corresponding statements are not
shown in the listing, but you can open the project in Visual Studio to examine the code.)

The Read Products and Related Tables button populates the DataSet and then displays the
categories and products in the RichTextBox control by calling the ShowDataSet() subroutine, as
shown in Listing 22.7.

Listing 22.7: Populating and Displaying the DataSet

Private Sub bttnCreateDataSet Click(...)
Handles bttnCreateDataSet.Click

DS.Clear()
DACategories.Fill(DS, ”Categories”)
DAProducts.Fill(DS, ”Products”)
DS.Relations.Clear()
DS.Relations.Add(New Data.DataRelation(”CategoriesProducts”,

DS.Tables(”Categories”).Columns(”CategoryID”),
DS.Tables(”Products”).Columns(”CategoryID”)))

ShowDataSet()
End Sub

Private Sub ShowDataSet()
RichTextBox1.Clear()
Dim category As DataRow
For Each category In DS.Tables(”Categories”).Rows

RichTextBox1.AppendText(
category.Item(”CategoryName”) & vbCrLf)

Dim product As DataRow
For Each product In category.GetChildRows(”CategoriesProducts”)

RichTextBox1.AppendText(
product.Item(”ProductID”) & vbTab &
product.Item(”ProductName”) & vbTab)

If product.IsNull(”UnitPrice”) Then
RichTextBox1.AppendText(” *** ” & vbCrLf)

Else
RichTextBox1.AppendText(
Convert.ToDecimal(
product.Item(”UnitPrice”))

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 842

842 CHAPTER 22 PROGRAMMING WITH ADO.NET

.ToString(”#.00”) & vbCrLf)
End If

Next
Next

End Sub

After calling the Fill method to populate the two DataTables, the code sets up a DataRelation
object to link the products to their categories through the CategoryID column and then displays
the categories and the corresponding products under each category. Notice the statement that
prints the products. Because the UnitPrice column may be Null, the code calls the IsNull method
of the product variable to find out whether the current product’s price is Null. If so, it doesn’t
attempt to call the product.Item(”UnitPrice”) expression, which would result in a runtime
exception, and prints three asterisks in its place.

The Edit DataSet button modifies a few rows in the DataSet. Here’s the statement that changes
the name of a product selected at random (it appends the string NEW to the product’s name):

DS.Tables(”Products”).Rows(
RND.Next(1, 78)).Item(”ProductName”) &= ” - NEW”

The same button randomly deletes a product and sets the price of another row to a random
value in the range from −10 to 40, and inserts a new row with a price in the same range. If you
click the Edit DataSet button a few times, you’ll very likely get a few invalid rows. The Show
Edits button retrieves the edited rows of both tables and displays them. It uses the DataRowState
property to discover the state of the row (whether it’s new, modified, or deleted) and displays
the row’s ID and a couple of additional columns. Notice that you can retrieve the proposed and
original versions of the edited rows (except for the deleted rows, which have no proposed version)
and display the row’s fields before and after the editing on a more elaborate interface. Listing 22.8
shows the code behind the Show Edits button.

Listing 22.8: Viewing the Edited Rows

Private Sub bttnShow Click(...)Handles bttnShow.Click
Dim product As DataRow
Dim msg As String = ””
For Each product In DS.Tables(”Products”).Rows

If product.RowState = DataRowState.Added Then
msg &= ”ADDED PRODUCT: ” &

product.Item(”ProductName”) & vbTab &
product.Item(”UnitPrice”).ToString & vbCrLf

End If
If product.RowState = DataRowState.Modified Then

msg &= ”MODIFIED PRODUCT: ” &
product.Item(”ProductName”) & vbTab &
product.Item(”UnitPrice”).ToString & vbCrLf

End If
If product.RowState = DataRowState.Deleted Then

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 843

THE BOTTOM LINE 843

msg &= ”DELETED PRODUCT: ” &
product.Item(”ProductName”,
DataRowVersion.Original) & vbTab &
product.Item(”UnitPrice”,
DataRowVersion.Original).ToString & vbCrLf

End If
Next
If msg.Length > 0 Then

MsgBox(msg)
Else

MsgBox(”There are no changes in the dataset”)
End If

End Sub

I’m showing only the statements that print the edited rows of the Products DataTable in the
listing. Notice that the code retrieves the proposed versions of the modified and added rows, but
the original version of the deleted rows.

The Submit Edits button submits the changes to the two DataTables to the database by
calling the Update method of the DAProducts DataAdapter and then the Update method of the DA-
Categories DataAdapter. After that, it retrieves the rows in error with the GetErrors method and
displays the error message returned by the DBMS with statements similar to the ones shown in
Listing 22.5.

The Bottom Line

Create and populate DataSets. DataSets are data containers that reside at the client and
are populated with database data. The DataSet is made up of DataTables, which correspond
to database tables, and you can establish relationships between DataTables, just like relating
tables in the database. DataTables, in turn, are made up of DataRow objects.

Master It How do we populate DataSets and then submit the changes made at the client
back to the database?

Establish relations between tables in the DataSet. The DataSet can be thought of as a small
database that resides at the client, because it’s made up of tables and relationships between
them. The relations in a DataSet are DataRelation objects, which are stored in the Relations
property of the DataSet. Each relation is identified by a name, the two tables it relates, and the
fields of the tables on which the relation is based.

Mater It How do we navigate through the related rows of two tables?

Submit changes in the DataSet back to the database. The DataSet maintains not only data
at the client, but their states and versions too. It knows which rows were added, deleted, or
modified (the DataRowState property) and it also knows the version of each row read from the
database and the current version (the DataRowVersion property).

Master It How will you submit the changes made to a disconnected DataSet to
the database?

Petroutsos c22.tex V2 - 01/28/2008 4:34pm Page 844

Petroutsos V1 c23.tex Page 845 01/28/2008 4:43pm

Chapter 23

Building Data-Bound Applications

In the previous chapter, you learned about the two basic classes for interacting with databases:
The Connection class provides the members you need to connect to the database, and the
Command class provides the members you need to execute commands against the database.
A data-driven application also needs to store data at the client, and you know how to use a
DataReader to grab data from the database, and a DataAdapter to populate a DataSet at the client.

In addition to the DataSets we’ve created in the previous chapter, Visual Studio also allows
you to create typed DataSets. A typed DataSet is designed with visual tools at design time and its
structure is known to the compiler, which can generate very efficient code for the specific type of
data you’re manipulating in your application. Another advantage of typed DataSets is that they
can be bound to Windows controls on a form. When a field is bound to a Windows control, every
time you move to another row in the table, the control is updated to reflect the current value of
the field. When the user edits the control on the form, the new value replaces the original value
of the field in the DataSet. The form is said to be bound to the data source, which is usually
a DataSet.

Data binding is a process for building data-driven applications with visual tools: You map the
columns of a table to controls on the form, and Visual Studio generates the code for displaying
the data on the bound controls, as well as updating the DataSet when the user edits the value of
a bound control. These applications are called data bound, and they’re similar to the applications
you designed in the previous chapter. The difference is that Visual Studio generates the necessary
code for you.

In this chapter, you’ll learn how to do the following:

◆ Design and use typed DataSets

◆ Bind Windows forms to typed DataSets

Working with Typed DataSets
The DataSets you explored in the preceding chapter were untyped: Their exact structure was
determined at runtime, when they were populated through the appropriate DataAdapters.
In this chapter, I’ll discuss in detail the typed DataSets. A typed DataSet is a DataSet with known
structure, because it’s created at design time with visual tools. The compiler knows the structure of
the DataSet (that is, the DataTables it contains and the structure of each DataTable) and it generates
code that’s specific to the data at hand.

The most important characteristic of typed DataSets is that they allow you to write strongly
typed code and practically eliminate the chances of exceptions due to syntax errors. Whereas

Petroutsos V1 c23.tex Page 846 01/28/2008 4:43pm

846 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

in an untyped DataSet you had to access its DataTables by name with an expression such as
DS.Tables(”Products”), the equivalent typed DataSet exposes the name of the table as a prop-
erty: DS.Products. To find out whether a specific field of an untyped DataSet is Null, you must
use an expression like the following:

DS.Tables (”Products”).Rows(0).Item(”UnitPrice”).IsNull

With a typed DataSet, you can declare a variable that represents a row of the Products table
like this:

Dim prod As NorthwindDataSet.ProductsRow =
DS.Products.Rows(0)

You can then access the fields of the row as properties, with expressions like this: prod.
ProductName, prod.UnitPrice, and so on. To find out whether the UnitPrice field is Null,
call the method prod.IsUnitPriceNull. You can also set a field to Null with a method call:
prod.SetUnitPriceNull. As you can guess, after the structure of the DataSet is known, the editor
can generate a class with many members that will enormously simplify the coding of the applica-
tion using the typed DataSet. The typed DataSet is a class that’s generated by a wizard on-the-fly,
and it becomes part of your solution.

Let’s start by looking at the process of generating typed DataSets with visual data tools. Then
you’ll see how to bind Windows controls to typed DataSets and generate functional interfaces
with point-and-click operations.

Generating a Typed DataSet
In this section, we’ll create a typed DataSet with the three basic tables of the Northwind database:
Products, Categories, and Suppliers. Create a new project, the DataSetOperations project. (This
is the name of the sample project included with the chapter.) Then open the Data menu and choose
the Add Data Source command. You will see the Data Source Configuration Wizard, which will
take you through the steps of building a DataSet at design time. In the first dialog box of the
wizard, you’ll be asked to select the data source type, which can be a database, a service (such
as a web service), or an object, as in Figure 23.1. Select the Database icon and click the
Next button.

The Service option in the dialog box of Figure 23.1 will create a DataSet that retrieves its data
from a service (usually a web service). The Object option allows you to create a DataSet from a
collection of custom objects. You’ll find an example of binding a form to a collection of custom
objects in Chapter 24, ‘‘Advanced DataSet Operations.’’

In the next dialog box of the wizard, the Choose Your Data Connection dialog box shown in
Figure 23.2, you must specify a connection string for the database you want to use. Click the New
Connection button to create a new connection only if there’s no connection for the database you
want to use. If you’ve experimented already with the visual tools of Visual Basic, you may already
have an existing connection, in which case you simply select it from the drop-down list.

To create a new connection, you must specify your credentials: whether you’ll connect with a
username and password or use Windows authentication. Once connected to the server, you can
select the desired database from a ComboBox control. If you click the New Connection button

Petroutsos V1 c23.tex Page 847 01/28/2008 4:43pm

WORKING WITH TYPED DATASETS 847

to create a new connection to the Northwind database, you will see the Add Connection dialog
box, as shown in Figure 23.3. This dialog box is not new to you; it’s the same dialog box you use
to create a new data connection in the Server Explorer. If you haven’t created a connection to the
Northwind database yet, do it now. Otherwise, select the existing connection.

Figure 23.1

Choosing the data source
type in the Data Source
Configuration Wizard

Figure 23.2

The Choose Your Data
Connection dialog box
of the Data Source
Configuration Wizard

Petroutsos V1 c23.tex Page 848 01/28/2008 4:43pm

848 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

Figure 23.3

Use the Add Connection
dialog box to specify a
new connection to the
Northwind database

It’s recommended that you use Windows authentication to connect to the database. If this
isn’t possible, because the database server is running on a remote computer, you must specify
a username and password in the boxes shown in Figure 23.3. In this case, the wizard will ask
whether you want to store sensitive information (the account’s password) to the connection string.
You can choose to either include the password in the connection string (not a very safe approach)
or supply it from within your code. You can always set the Password property of a Connection
object in your code. To secure the password, you can prompt the user for a password when the
application starts and save it to an application variable. The password isn’t stored anywhere.
Alternatively, you can store an encrypted version of the password and decrypt and use it from
within your code. The best approach for a local network is to use Windows authentication.

Click the OK button to close the Add Connection dialog box and then click Next again and you
will see a dialog box with the default connection name: NorthwindConnectionString. This is the
name of a new application setting that will store the connection information. You can edit this, as

Petroutsos V1 c23.tex Page 849 01/28/2008 4:43pm

WORKING WITH TYPED DATASETS 849

well as the other application settings, in the Settings tab of the project’s Properties pages. (To see
the project’s Properties pages, choose Project Properties from the Project menu.)

Click Next again and you will see the Choose Your Database Objects dialog box, shown in
Figure 23.4, where you can select the tables and columns you want to load to the DataSet. Notice
that you can’t use a SELECT statement to select the data you want from a table: You must select
the entire table. Of course, you can write a stored procedure to limit your selection and then select
it in the dialog box. If you select multiple tables and they’re related, the relationship between
them will also be imported for you (no need to create a DataRelation object for each relationship
between the DataSet’s tables). For this example, select the Categories, Suppliers, and Products
tables of the Northwind database. Select all columns of the Products and Categories tables, except
for the Picture column of the Categories table. From the Suppliers table, select the SupplierID
and CompanyName columns.

Figure 23.4

Selecting the tables and
columns you want to
include in your typed
DataSet

At the bottom of the dialog box of Figure 23.4, you can specify the name of the DataSet that will
be generated for you. I’ll use the default name, NorthwindDataSet. Click Finish to close the wizard
and create the DataSet, which will be added automatically to the Solution Explorer window.

In the Data Sources window, shown in Figure 23.5, you will see a tree that represents the tables
in the DataSet. The DataSet contains three DataTables, and each DataTable is made of the columns
you selected in the wizard. This DataSet is typed, because it knows the structure of the data we’re
going to store in it. The interesting part of this tree is that it contains the Products table twice: in the
first level along with the Categories table, and once again under the Categories and Suppliers table.
(You must expand either table to see it, as in Figure 23.5.) Whereas the Products table on the first
level represents the entire table, the nested ones represent the products linked to their categories

Petroutsos V1 c23.tex Page 850 01/28/2008 4:43pm

850 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

and their suppliers respectively. You will see later in the chapter how to use the multiple Products
DataTables.

Figure 23.5

The Northwind DataSet
created by the Data
Source Configuration
Wizard

The typed DataSet is actually a class, which is generated on-the-fly. It’s no longer a generic
DataSet we will populate at runtime with any table we wish through a DataAdapter; it’s a specific
object that can be populated only with the tables we specified in its design. If you want to see the
code of the class generated by the wizard, click the Show All Files button in the Solution Explorer
and double-click the NorthwindDataSet.Designer.vb item under the Northwind DataSet. You
shouldn’t edit the code, because if you decide to edit the DataSet (you’ll see how you can edit it
with visual tools), the wizard will create a new class and your changes will be lost. If you want
to add some custom members to the Northwind class, create a new Partial class with the custom
members and name it NorthwindDataSet.vb.

Exploring the Typed DataSet
Let’s exercise the members of the typed DataSet a little and see how it differs from the equiva-
lent untyped DataSet. The operations we’ll perform are similar to the ones we performed in the
preceding chapter with an untyped DataSet; you should focus on the different syntax. The code

Petroutsos V1 c23.tex Page 851 01/28/2008 4:43pm

WORKING WITH TYPED DATASETS 851

shown in this section belongs to the DataSetOperations sample project. This project contains three
forms, and you will have to change the project’s Startup object to view each one.

Figure 23.6 shows Form1 of the project, which demonstrates the basic operations on a typed
DataSet: how to populate it, edit some of its tables, and submit the changes back to the database.
They’re basically the same operations you’d perform with an untyped DataSet, but you will see
that it’s much simpler to work with typed DataSets.

Figure 23.6

Form1 of the
DataSetOperations
project demonstrates
the basic operations on
a typed DataSet

To populate the three DataTables of the DataSet, we need three DataAdapter objects. Instead of
the generic DataAdapter, the class generated by the wizard has created a TableAdapter class for
each DataTable: the CategoriesTableAdapter, SuppliersTableAdapter, and ProductsTableAdapter
classes. Declare three objects of the corresponding type at the form’s level:

Dim CategoriesTA As New
NorthwindDataSetTableAdapters.CategoriesTableAdapter

Dim SuppliersTA As New
NorthwindDataSetTableAdapters.SuppliersTableAdapter

Dim ProductsTA As New
NorthwindDataSetTableAdapters.ProductsTableAdapter

The classes create the three objects that will retrieve the data from the database and submit the
edited rows back to the database from the SELECT statements you specified with point-and-click

Petroutsos V1 c23.tex Page 852 01/28/2008 4:43pm

852 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

operations. These objects derive from the TableAdapter class, which in turn is based on the
DataAdapter class. If you examine the code of the Northwind class, you will find the code that
creates the SQL statements for querying and updating the three tables and how these statements
are used to create a DataAdapter object. The code is similar to the code we used in the preceding
chapter to create DataAdapters from within our code.

We must also create a DataSet object to store the data. This time, however, we can use a specific
type that describes the structure of the data we plan to store at the client, and not a generic DataSet.
Insert the following declaration at the form’s level:

Dim DS As New NorthwindDataSet

Now place the Populate Tables button on the form and insert the code shown in Listing 23.1 in
its Click event handler.

Listing 23.1: Populating a Typed DataSet with the Proper TableAdapters

Private Sub bttnPopulate Click(...) Handles bttnPopulate.Click
Dim categories As Integer = CategoriesTA.Fill(DS.Categories)
Dim suppliers As Integer = SuppliersTA.Fill(DS.Suppliers)
Dim products As Integer = ProductsTA.Fill(DS.Products)

As you can see, the Fill method doesn’t accept any DataTable as an argument; instead, the
type of its argument is determined by the TableAdapter object to which it’s applied. The Fill
method of the ProductsTA TableAdapter accepts as an argument an object of the ProductsData-
Table type. The event handler of the sample project includes a few more statements that print the
count of rows in each of the three tables.

To go through the rows of the Products table, write a simple loop like the following:

Dim prod As NorthwindDataSet.ProductsRow
For Each prod In DS.Products.Rows

TextBox1.AppendText(prod.ProductName & vbTab &
prod.UnitPrice.ToString(”#,###.00”) & vbCrLf)

Next

As you can see, the names of the fields are properties of the ProductsRow class. Some products
may have no price (a Null value in the database). If you attempt to access the UnitPrice property
of the ProductsRow class, a NullReferenceException exception will be thrown. To prevent it,
you can make sure that the field is not Null from within your code, with an If structure like the
following:

If prod.IsUnitPriceNull Then
TextBox1.AppendText(”Not for sale!”)

Else
TextBox1.AppendText(prod.UnitPrice.ToString(”#,###.00”))

End If

Petroutsos V1 c23.tex Page 853 01/28/2008 4:43pm

WORKING WITH TYPED DATASETS 853

To read data from linked tables in a hierarchical way, you don’t have to specify the relationship
between the tables as you did with untyped DataSets, because the typed DataTables expose the
appropriate methods.

Now place another button on your form, the Read Products By Supplier button, and in its Click
handler insert the code shown in Listing 23.2 to iterate through suppliers and related products.
Notice that the SuppliersRow class exposes the GetProductsRows method, which retrieves the
Products rows that are associated with the current supplier. The GetProductsRows method is
equivalent to the GetChildRows of an untyped DataSet, only with the latter you have to supply a
relationship name as an argument. Moreover, the GetProductsRows method returns an array of
ProductsRow objects, not generic DataRow objects.

Listing 23.2: Iterating through Linked DataTables

Private Sub bttnSuppliersProducts Click(...)
Handles bttnSuppliersProducts.Click

TextBox1.Clear()
Dim supp As NorthwindDataSet.SuppliersRow
For Each supp In DS.Suppliers.Rows

TextBox1.AppendText(supp.CompanyName & vbCrLf)
Dim prod As NorthwindDataSet.ProductsRow
For Each prod In supp.GetProductsRows

TextBox1.AppendText(vbTab &
prod.ProductName & vbTab &
prod.UnitPrice.ToString(”#,###.00”) & vbCrLf)

Next
Next

End Sub

The ProductsRow object exposes the SuppliersRow and CategoriesRow methods, which
return the current product’s parent rows in the Suppliers and Categories DataTables.

The most useful method of the typed DataTable is the FindByID method, which locates a row
by its ID in the DataTable. To locate a product by its ID, call the FindByProductID method passing
a product ID as argument. The method returns a ProductsRow object that represents the matching
product. The method’s return value is not a copy of the found row, but a reference to the actual
row in the DataTable, and you can edit it. The code behind the Update Products button, which is
shown in Listing 23.3, selects a product at random by its ID and prompts the user for a new price.
Then it sets the UnitPrice field to the user-supplied value.

Listing 23.3: Updating a Row of a Typed DataTable

Private Sub bttnUpdate Click(...) Handles bttnUpdate.Click
Dim selProduct As NorthwindDataSet.ProductsRow
Dim RND As New System.Random
selProduct = DS.Products.FindByProductID(RND.Next(1, 77))
Dim newPrice As Decimal

Petroutsos V1 c23.tex Page 854 01/28/2008 4:43pm

854 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

newPrice = Convert.ToDecimal(InputBox(
”Enter product’s new price”,
selProduct.ProductName,
selProduct.UnitPrice.ToString))

selProduct.UnitPrice = newPrice
End Sub

As you can see, manipulating the rows of typed DataTables is much simpler than the equivalent
operations with untyped DataSets, because the fields are exposed as properties of the appropriate
class (the ProductsRow class for rows of the Products DataTable, the CategoriesRow class for rows
of the Categories DataTable, and so on).

Let’s look at the code for updating the database. The first step is to retrieve the edited rows with
the GetChanges method, which returns a typed DataTable object, depending on the DataTable to
which it was applied. To retrieve the modified rows of the Products DataTable, use the following
statements:

Dim DT As NorthwindDataSet.ProductsDataTable
DT = DS.Products.GetChanges

You can pass an argument of the DataRowState type to the GetChanges method to retrieve the
inserted, modified, or deleted rows. Because this is a typed DataSet, you can write a For Each loop
to iterate through its rows (they’re all of the ProductsRow type) and find out the edits. One feature
you’d expect to find in a typed DataTable is a method for retrieving the original versions of a row
by name. Unfortunately, the class generated by the wizard doesn’t include such a method; you
must use the Item property, passing as an argument the name of the row. A row’s original field
versions are given by the expression:

prod.Item(”UnitPrice”, DataRowVersion.Original)

To submit the edited rows to the database, you can call the appropriate TableAdapter’s Update
method. The code behind the Submit Edits button does exactly that, and it’s shown in Listing 23.4.

Listing 23.4: Submitting the Edited Rows of a Typed DataTable to the Database

Private Sub bttnSubmit Click(...) Handles bttnSubmit.Click
If DS.HasChanges Then

Dim DT As NorthwindDataSet.ProductsDataTable
DT = DS.Products.GetChanges
If DT IsNot Nothing Then

Try
ProductsTA.Update(DT)

Catch ex As Exception
MsgBox(ex.Message)
Exit Sub

End Try
MsgBox(DT.Rows.Count.ToString &

Petroutsos V1 c23.tex Page 855 01/28/2008 4:43pm

DATA BINDING 855

” rows updated successfully.”)
End If

End If
End Sub

Typed DataSets are quite convenient when it comes to coding. The real advantage of typed
DataSets is that they can simplify enormously the generation of data-bound forms, which is the
main topic of this chapter.

Data Binding
Data binding is the process of linking the contents of a field to a control on the form. Every time the
application modifies the field’s value, the control is updated automatically. Likewise, every time
the user edits the control’s value on the form, the underlying field in the DataSet is also updated.
The DataSet keeps track of the changes (the modified, added, and deleted rows), regardless of how
they were changed. In short, data binding relieves you from having to map field values to controls
on the form when a row is selected and moving values from the controls back to the DataSet when
a row is edited.

In addition to binding simple controls such as TextBox controls to a single field, you can bind
an entire column of a DataTable to a list control, such as the ListBox or the ComboBox control.
And of course, you can bind an entire DataTable to a special control, the DataGridView control.
You can build a data-browsing and data-editing application by binding the Products DataTable to
a DataGridView control without a single line of code.

To explore the basics of data binding, add a second form to the project and make it the project’s
startup object. The new form of the DataSetOperations, Form2, is shown in Figure 23.7.

Figure 23.7

Viewing an entire
DataTable on a
data-bound
DataGridView control

Then drop a DataGridView control on the form and set the control’s DataSource property
to bind it to the Products DataTable. Select the DataGridView control on the form and locate its

Petroutsos V1 c23.tex Page 856 01/28/2008 4:43pm

856 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

DataSource property in the Properties window. Expand the DataSource property and you will
see the project’s data sources. The form contains no data source for the time being, so all data
sources are listed under Other Data Sources. Expand this item of the tree to see the Project Data
Sources item, which in turn contains the NorthwindDataSet data source (or whatever you have
named the typed DataSet). Expand this item and you will see the names of the DataTables in the
DataSet, as shown in Figure 23.8. Select the Products DataTable.

Figure 23.8

Binding the DataGrid-
View control to a
DataTable

The editor will populate the DataGridView control with the table’s columns: it will map each
column in the Products DataTable to a column in the DataGridView control. All columns have
the same width and are displayed as text boxes, except for the Discontinued column, which
is mapped to a CheckBox control. (This is the last column of the controls, and you will see it at
runtime, because you can’t scroll the control at design time.) The control’s columns were named
after the DataTable’s columns, but we’ll change the appearance of the grid shortly. Press F5 to
run the application, and the form will come up populated with the Products rows! Obviously, the
editor has generated some code for us to populate the control. The code generated by the editor is
a single statement in the form’s Load event handler:

Me.ProductsTableAdapter.Fill(Me.NorthwindDataSet.Products)

As far as browsing the data, we’re all set. All we have to do is adjust the appearance of the
DataGridView control with point-and-click operations. You can also edit the rows, but there’s no
code to submit the edits to the database. Submitting the changes to the database shouldn’t be a

Petroutsos V1 c23.tex Page 857 01/28/2008 4:43pm

DATA BINDING 857

problem for you; just copy the corresponding code statement from Form1 of the project. Place the
Submit Edits button on the form, and in its Click handler insert the following statements:

If NorthwindDataSet.HasChanges Then
Dim DT As NorthwindDataSet.ProductsDataTable
DT = NorthwindDataSet.Products.GetChanges
If DT IsNot Nothing Then

Try
ProductsTableAdapter.Update(DT)

Catch ex As Exception
MsgBox(ex.Message)
Exit Sub

End Try
MsgBox(DT.Rows.Count.ToString &

” rows updated successfully.”)
End If

End If

I changed the name of the DataSet from DS to NorthwindDataSet and the name of the
TableAdapter from ProductsTA to ProductsTableAdapter. And where did these names come
from? If you switch to the form’s Designer, you’ll see that while you were setting the Data-
GridView control’s properties, three items were added to the Components tray of the form: the
NorthwindDataSet component (which is the typed DataSet), the ProductsTableAdapter (which is
responsible for populating the control and submitting the edited rows to the database), and the
ProductsBindingSource (which is the liaison between the DataGridView control and the DataSet).
The ProductsBindingSource is basically a data source, and it’s discussed in the following section.

Using the BindingSource Class
To understand the functionality of the BindingSource class, look up its members. Enter its name
and the following period in the code window and you will see a list of members. The Position
property reads (or sets) the current item’s index in the underlying DataTable. The DataGridView
control doesn’t maintain the order of the rows in the underlying table; besides, you can sort the
DataGridView control’s rows in any way you like, but the DataTable’s rows won’t be sorted. Use
the Position property to find out the index of the selected row in the DataTable. The MoveFirst,
MovePrevious, MoveNext, and MoveLast methods are simple navigational tools provided by the
BindingSource class. You can place four buttons on the form and insert a call to these methods to
move to the first, previous, next, and last rows, respectively. The four navigational buttons at the
lower-left corner of the form shown in Figure 23.7 call these methods to select another row on
the grid.

The two most interesting members of the BindingSource class are the Find method and the
Filter property. The Filter property is set to an expression similar to the WHERE clause of
an SQL statement to filter the data on the grid. Place a new button on the form, set its caption to
Filter and its name to bttnFilter, and insert the following statements in its Click even handler
to filter the rows of the grid with their product name:

Private Sub bttnFilter Click(...) Handles bttnFilter.Click
Dim filter As String
filter = InputBox(”Enter product name, or part of it”)

Petroutsos V1 c23.tex Page 858 01/28/2008 4:43pm

858 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

ProductsBindingSource.Filter =
”ProductName LIKE ’%” & filter.Trim & ”%’”

End Sub

Run the application, and click the Filter button to limit the rows displayed on the grid by their
product name. If you’re searching for products that contain the string sauce in their name, the
Filter property limits the selection as if you had requested products with the following WHERE
clause (the percent sign is an SQL wildcard that matches any string):

WHERE ProductName LIKE ’%sauce%’

To restore the original selection, set the filter expression to a blank string. You can design an
auxiliary form on which users can enter multiple criteria and filter products by their price or stock,
their supplier, and so on. With a bit of programming effort, you can apply multiple criteria, such
as products of a specific category that are on order, out-of-stock items from a specific supplier,
and so on.

The Find method searches a value in a specific column. Both the column name and search
argument are specified as arguments to the method, and the return value is the row’s position in
the DataTable. To select the row, set the BindingSource object’s Position property to the value
returned by the Find method. The code behind the Find button in the sample project is the
following:

Dim search As String
search = InputBox(”Enter product name, or part of it”)
Dim idx As Integer =

ProductsBindingSource.Find(”ProductName”, search)
ProductsBindingSource.Position = idx

The Find method is not the most convenient search tool, because you have to specify the exact
value of the field you’re looking for. To retrieve the current row in the DataTable mapped to the
BindingSource, use the Current property; to determine the number of rows in the same DataTable,
read the value of the Count property. The Current property returns an object, which you must cast
to the DataRowView type and call its Row property:

CType(ProductsBindingSource.Current, DataRowView).Row

This expression returns a DataRow object, which you can cast to a ProductsRow type. You will
see examples of using the Current property of the BindingSource class to access the underlying
row in the DataTable later in this chapter.

Handling Identity Columns

If you attempt to add a row to the DataGridView control, the new row’s ID will be –1 (or another
negative value if you have added multiple rows). This is a valid value for an Identity column,
as long as its AutoIncrement property is set to –1. But the ProductID column in the database
has an AutoIncrement value of 1 — why is it different in the DataSet? When the editor created
the DataSet, it changed this setting to avoid conflicts during the updates. If new products were
assigned valid IDs (positive values following the last ID in the DataSet) at the client, consider

Petroutsos V1 c23.tex Page 859 01/28/2008 4:43pm

DATA BINDING 859

what might happen when the edits were submitted to the database. The IDs provided by the
DataSet might be taken in the database, and the Insert operation would fail. To avoid this conflict,
the DataSet uses negative identity values. When these rows are submitted to the database, they’re
assigned a new ID by the database, which is a positive value.

However, a problem remains. The new ID isn’t transferred back to the client, and the DataSet
displays negative IDs. One solution is to populate the DataSet again; however, there’s a lot more
to learn about submitting edited rows to the database, and we’ll return to this topic in the section
‘‘Binding Hierarchical Tables,’’ later in this chapter.

You can experiment with this form of the DataSetOperations project by editing the products,
adding new ones, and deleting rows. If you attempt to add a new row, you’ll get an error message
indicating that the Discontinued column doesn’t accept Nulls. The default value of the check box
on the DataGrid control is neither True nor False (it’s Null), and we must validate its value. The
simplest solution to the problem is to apply a default value to the Discontinued column, and the
following section describes how to edit the properties of the DataSet.

Adjusting the DataSet

To adjust the properties of the DataSet, right-click the DataSet in the Data Sources window and
choose Edit DataSet With Designer from the context menu. The DataSet’s Designer window will
appear, shown in Figure 23.9.

Figure 23.9

Editing the DataSet with
visual tools

Right-click the header of the Discontinued column in the Products table and choose Proper-
ties to see the properties of the DataColumn. One of them is the DefaultValue property, which
is set by default to Null. Change it to 0 or False to impose a default value for this column. On
this designer, you can examine the data types of the columns of each table, drop or create new
relations between tables, and set other interesting properties, such as the Caption property of a
column, which will be used to name the column of the bound DataGridView control, or the
NullValue property, which determines how the DataSet will handle Null values. The default
value of the NullValue property is Throw Exception. Every time the application requests
the value of a Null field, a runtime exception is thrown. You can set it to Empty (in which case

Petroutsos V1 c23.tex Page 860 01/28/2008 4:43pm

860 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

an empty string is returned) or Nothing (in which case a Nothing value is returned). You can also
set the autoincrement values of Identity columns here. If you select the ProductID column in the
Products table, you’ll see that the wizard has set the column’s AutoIncrementSeed and Auto-
IncrementStep to –1, for the reasons explained already.

While you’re in the DataSet Designer, right-click a DataTable and choose Configure. This starts
the TableAdapter Configuration Wizard. The first dialog box of the wizard, shown in Figure 23.10,
shows the SQL statement that the Data Source Configuration Wizard generated while you were
selecting the columns you wanted to include in the DataSet. You can edit this statement by adding
more columns, a WHERE clause to limit the number of rows to be selected, and an ORDER BY clause.
To edit the SELECT statement, you modify it right in the dialog box of Figure 23.10, or click the
Query Builder button to view the Query Builder dialog box that lets you specify complicated
queries with visual tools.

Figure 23.10

Editing the SELECT
statement that
populates the
Products DataTable with
the TableAdapter
Configuration Wizard

If you click the Advanced Options button, you will see the Advanced Options dialog box,
shown in Figure 23.11. Here you must specify which statements should be generated by the
wizard. If you’re developing a browser application, deselect the first check box: Generate
Insert, Update, and Delete Statements. If you clear this option, the other two options will be
disabled.

The Use Optimistic Concurrency option affects the UPDATE and DELETE statements generated by
the wizard. If this check box is selected, the two statements will not update or delete a row if it has
been edited by another user since it was read. The wizard will generate two long statements that
take into consideration the values read from the database into the DataSet at the client (the row’s
original values), and if any of the row’s columns in the database are different from the original
version of the same row in the DataSet, it won’t update or delete the row. By using optimistic
concurrency, you’re assuming that it’s rather unlikely that two users will update the same row at
the same time. If the row being updated has already been modified by another user, the update
operation fails. If you clear this option, the UPDATE/DELETE statements take into consideration the

Petroutsos V1 c23.tex Page 861 01/28/2008 4:43pm

DATA BINDING 861

row’s primary key and are executed, even if the row has been modified since it was read. In effect,
the last user to update a row overwrites the changes made by other users.

Figure 23.11

The Advanced Options
dialog box lets you know
how the TableAdapter
will submit the updates
to the underlying tables

The last option in the Advanced Options dialog box specifies whether the TableAdapter reads
back the inserted/updated rows. You should leave this check box selected, so that the identity
values assigned by the database to new rows will be read back and update the DataSet.

Implementing Optimistic Concurrency

Curious about the statements that take into consideration the original values of the row being updated?
Here’s the DELETE statement for the Products row that uses optimistic concurrency:

DELETE FROM [dbo].[Products]
WHERE (([ProductID] = @Original ProductID) AND

([ProductName] = @Original ProductName) AND
((@IsNull SupplierID = 1 AND

[SupplierID] IS NULL) OR
([SupplierID] = @Original SupplierID)) AND

((@IsNull CategoryID = 1 AND
[CategoryID] IS NULL) OR

([CategoryID] = @Original CategoryID)) AND
((@IsNull QuantityPerUnit = 1 AND

[QuantityPerUnit] IS NULL) OR
([QuantityPerUnit] = @Original QuantityPerUnit)) AND

((@IsNull UnitPrice = 1 AND
[UnitPrice] IS NULL) OR

([UnitPrice] = @Original UnitPrice)) AND
((@IsNull UnitsInStock = 1 AND

[UnitsInStock] IS NULL) OR
([UnitsInStock] = @Original UnitsInStock)) AND

((@IsNull UnitsOnOrder = 1 AND
[UnitsOnOrder] IS NULL) OR

([UnitsOnOrder] = @Original UnitsOnOrder)) AND

Petroutsos V1 c23.tex Page 862 01/28/2008 4:43pm

862 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

((@IsNull ReorderLevel = 1 AND
[ReorderLevel] IS NULL) OR

([ReorderLevel] = @Original ReorderLevel)) AND
([Discontinued] = @Original Discontinued))

The same statement with the optimistic concurrency off is quite short:

DELETE FROM [dbo].[Products]
WHERE ([ProductID] = @Original ProductID)

Examine the long statement to understand how optimistic concurrency is handled. The first term in
the WHERE clause locates a single row based on the product ID, which is unique. This is the row that
should be deleted (or updated by the UPDATE statement). However, the statement will not select the
row if any of its fields have been edited since we read it from the database. If another user has changed
the price of a specific product, the following term will evaluate to false and the WHERE clause will
return no row to be deleted.

When you return to the configuration wizard, click Next and you will see the dialog box shown
in Figure 23.12, where you can specify the methods that the wizard will generate for you. The
Fill method populates a DataTable, and the GetData method returns a DataTable object with the
same data; the last option in the dialog box specifies whether the DataSet will expose methods for
inserting/updating/deleting rows directly against the database.

Figure 23.12

Selecting the methods
to be generated by the
TableAdapter
Configuration Wizard

Click Next again, and the wizard will regenerate the NorthwindDataSet class, taking into
consideration the options you specified in the steps of the wizard.

Petroutsos V1 c23.tex Page 863 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 863

In the following section, we’ll let the editor build simple data-driven applications for us.
You’re going to see how to bind other controls to typed DataSets and how to customize the
DataGridView control.

Designing Data-Driven Interfaces the Easy Way
Instead of binding the DataGridView control through its properties, you can let Visual Studio
perform the binding for you:

1. Add a third form to the DataSetOperations sample project, the Form3 form, and make it the
project’s Startup object.

2. To display the rows of the Products table on a DataGridView control, open the Data
Sources window and select the Products table. As soon as you select it, an arrow appears
next to its name. Click this arrow to open a drop-down list with the binding options for the
DataTable. The DataTable can be bound to the following:

◆ A DataGridView control, which will display all rows and all columns of the table

◆ A ListBox or ComboBox control, which will display a single column of all rows

◆ A number of TextBox controls (the Details option), one for each column

3. Select the DataGridView option and then drop the Products DataTable on the form.

The editor will create a DataGridView control and bind it to the Products DataTable. In
addition, it will create a toolbar at the top of the form with a few navigational and editing buttons,
as shown in Figure 23.13 (shown at design time so you can see the components generated by the
editor). Notice that the toolbar contains one button for deleting rows (the button with the X icon)
and one button for submitting the edits to the database (the button with the disk icon). The Filter,
Find, and Refresh Data buttons were not generated by the editor; I’ve added them to the toolbar
and inserted the appropriate code in their Click event handlers. You’ve already seen the code that
implements all three operations.

The designer will also generate the following components, which will appear in the
Components tray:

NorthwindDataSet The typed DataSet for the data specified with the Data Source
Configuration Wizard.

ProductBindingSource A BindingSource object for the Products table.

ProductsTableAdapter An enhanced DataAdapter that exposes the methods for reading
data from the database and submitting the changes made at the client back to the database.
The TableAdapter class differs from the DataAdapter class in that its Fill method accepts as
an argument an object of the Products type, and not generic DataSet and DataTable objects.
The methods of the TableAdapter object know how to handle rows of the specific type, and
not any DataRow object.

TableAdapterManager This encapsulates the functionality of all TableAdapter objects on
the form. If you drop additional tables on the form, the editor will create the corresponding
TableAdapter for each one. The TableAdapterManager encapsulates the functionality of all
individual TableAdapter objects and exposes the UpdateAll method, which submits the entire
DataSet to the database. The UpdateAll method of the TableAdapterManager calls the Update
method of each individual TableAdapter in the proper order.

Petroutsos V1 c23.tex Page 864 01/28/2008 4:43pm

864 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

Figure 23.13

Binding a form to a
DataTable

ProductsBindingNavigator This component represents the toolbar added to the form. The
toolbar is a ToolStrip control with custom items and the appropriate code. The navigational
tools generated by the editor are rather primitive, and you can remove them from the control.
Just keep the code for the Save button, which you’ll need if your application allows editing of
the data.

As for the code generated by the editor, here it is:

Private Sub ProductsBindingNavigatorSaveItem Click(...)
Handles ProductsBindingNavigatorSaveItem.Click

Me.Validate()
Me.ProductsBindingSource.EndEdit()
Me.TableAdapterManager.UpdateAll(Me.DSProducts)

End Sub

Private Sub Form2 Load(...) Handles MyBase.Load
Me.ProductsTableAdapter.Fill(Me.DSProducts.Products)

End Sub

In the form’s Load event handler, the Products DataTable is filled with a call to the Products-
TableAdapter class’s Fill method. The other event handler corresponds to the Click event of the
Save button on the toolbar, and it calls the TableAdapterManager class’s UpdateAll method. This
is all it takes to submit the changes made to the data at the client.

Let’s see how far this autogenerated application will take us. Run the application and edit a few
products. Change a few names, set a couple of prices to negative values, set a product’s category to
an invalid category ID (any value exceeding 7 is invalid, unless you have added new categories),
add a couple of new products (they will be assigned negative IDs, as expected), and delete some

Petroutsos V1 c23.tex Page 865 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 865

products. As you can guess, you can’t delete rows from the Products table, because they’re all
referenced by the Order Details table, but this table doesn’t exist in the DataSet, so it’s perfectly
legal to delete products in the context of the DataSet. When the edits are submitted to the database,
the deletions will be rejected, of course.

Let’s see how the Save button on the toolbar handles the updates. Click the Save button on
the toolbar and you will get an error message indicating that a row has violated a referential or
check constraint, depending on the order in which the rows were submitted to the database. The
UpdateAll method of the ProductsTableAdapter object will give up after the first failure.

As you recall, the DataAdapter class, on which the TableAdapter class is based, exposes the
ContinueUpdateOnError property. Unfortunately, the TableAdapter class doesn’t expose this
property. However, you can access the underlying DataAdapter through the Adapter property
and set the ContinueUpdateOnError property to True. Insert the following method in front of the
statement that calls the UpdateAll method:

Me.TableAdapterManager.ProductsTableAdapter.
Adapter.ContinueUpdateOnError = True

Run the application again, edit the data on the grid, and submit the changes to the database.
This time the application won’t crash with an error message. Instead, the rows that failed to update
the underlying table in the database will be marked with an exclamation mark icon in the row’s
header, as shown in Figure 23.14. We managed to submit all the rows to the database, regardless of
whether they successfully updated the Products table, through the ProductsTableAdapter object.
The UpdateAll method retrieved the error messages returned by the DBMS and displayed them
on the control. To see the reason why each row failed to update the Products table, hover the
pointer over the error icon and you will see the description of the error in a ToolTip box.

Figure 23.14

Viewing the update
errors on the
DataGridView control

You can also create a list of the rows that failed to update their underlying table along with
the error message returned by the database. The code for iterating through a table’s rows and
examining the RowError property was presented in the preceding chapter. You can easily add an
extra button on the toolbar and use it to display an auxiliary form with the update errors.

Petroutsos V1 c23.tex Page 866 01/28/2008 4:43pm

866 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

By the way, the error messages displayed on the DataGridView control are the ones returned
by the DBMS (SQL Server in our case). If you want, you can set each row’s RowError property to
a different, more meaningful description.

Enhancing the Navigational Tools
The navigational tools on the BindingNavigator are quite primitive. Let’s enhance the toolbar at
the top of the form by adding two buttons, the Filter and Find buttons of the preceding section.
Stop the application and open Form3 in design mode.

To add a new element to the ToolBar control, expand the combo box that’s displayed at design
time after the existing elements. From the drop-down list, select the Button item to add a Button
control to the toolbar. Select the newly added button and set its DisplayStyle property to Text.
(Normally this property is set to Image, because the items on a toolbar are identified by an icon;
you should find a few good icons and use them in your applications.) Set its Text property to
Filter and its name to bttnFilter. Follow similar steps for the Find button as well. Then copy
the code of the two buttons in Form2 and paste it in the Click event handlers of the two ToolStrip
buttons. You just added a filtering and search feature to your application.

The Find feature isn’t very practical with product names, because users have to specify the full
and exact product name. This feature should be used with fields such as IDs, book ISBNs, and
email addresses. To find a product by name, most users would use the Filter button to limit the
selection on the grid and then locate the desired product.

You can also use two TextBox controls in place of the two Button controls on the toolbar.
If you’d rather allow users to enter their search and filter arguments on the toolbar, you must
intercept the Enter keystroke from within the respective control’s KeyUp event and call the same
code to filter or search the rows of the grid.

Now add yet another button to the toolbar and set its caption to Refresh Data. This button
will reload the data from the database by calling the Fill method of the TableAdapter. Before
loading the data, however, we must make sure that the DataSet doesn’t contain any changes by
examining the HasChanges property. If it’s True, we must prompt the user accordingly. Notice
that if a row failed to update the database, the DataSet will contain changes, even though the edits
were submitted to the database. Some of the changes can be undone, but not all of them. A deleted
row, for example, is no longer visible on the control, and users can’t restore it. The code behind
the Refresh Data button is shown in Listing 23.5.

Listing 23.5: Refreshing the DataSet

Private Sub ToolStripButton1 Click(...) Handles ToolStripButton1.Click
If DSCustomers.HasChanges Then

Dim reply As MsgBoxResult =
MsgBox(”The DataSet contains changes.” &
vbCrLf & ”Reload data anyway?”,
MsgBoxStyle.YesNo Or MsgBoxStyle.Exclamation)

If reply = MsgBoxResult.No Then Exit Sub
End If
Me.CustomersTableAdapter.Fill(

Me.DSCustomers.Customers)
End Sub

Petroutsos V1 c23.tex Page 867 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 867

We developed a fairly functional application for browsing and editing one of the basic tables
of the Northwind database, the Products table. The interface of the application is a bit rough
around the edges (that’s the least you can say about an interface that displays category and
supplier IDs instead of category and supplier names), but we’ll come back and adjust the interface
of the application in a moment. First, I’d like to discuss another way of using the DataGridView
control, namely how to bind related tables to two or more DataGridView controls. This
arrangement is the most common one, because we rarely work with a single table.

Binding Hierarchical Tables
In this section, you’ll build an interface to display categories and products on two DataGridView
controls, as shown in Figure 23.15. The top DataGridView control is bound to the Categories
DataTable and displays all the category rows. The lower DataGridView control displays the
products of the category selected in the top control. In effect, we’ll create two DataGridView
controls linked together.

Figure 23.15

Viewing related data on
two DataGridView
controls with the
LinkedDataTables
application

Follow these steps:

1. Start a new project (it’s the LinkedDataTables project), and create a new DataSet that
contains the Products, Categories, and Suppliers tables. Name it DS.

2. In the Data Sources window, select each table and set its binding option to
DataGridView.

3. Drop the Categories table on the form. The editor will place an instance of the DataGrid-
View control on the form and will bind it to the Categories table. It will also create a
BindingNavigator object, which we don’t really need, so you can delete it. When you drop
multiple tables on a form, the editor generates a single toolbar. The navigational buttons
apply to the first DataGridView control, but the Save button submits the changes made in
all DataTables.

Petroutsos V1 c23.tex Page 868 01/28/2008 4:43pm

868 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

4. Locate the Products table under the Categories table in the Data Sources window and
drop it onto the form. If you drop the Products table of the original DataSet onto the form,
you’ll end up with two grids that are independent of one another. For a more meaningful
interface, you must link the two grids, so that when the user selects a category in the upper
grid, the corresponding tables are shown automatically in the lower grid. The Products
table under the Categories table in the data source represents the rows of the Products table
that are related to each row of the Categories table.

Now you can run the application and see how it behaves. Every time you select a category,
the selected category’s products appear in the lower grid. If you change the CategoryID field of a
product, it disappears from the grid, as expected. You must select its new category to see it.

Experiment with the new interface. Start editing the two tables on the form. Add new
categories, and then add products that belong to these categories. If you attempt to delete a
category, the DataGridView will happily remove the row from its table. But didn’t the DataSet
pick the relationships from the database’s definition? Now that both tables are at the client as
DataTables with a relationship between them, shouldn’t the DataSet reject this operation?

Let’s take a look at the properties of the relationship between the two tables. Right-click the DS
DataSet in the Data Sources window and from the context menu select Edit DataSet With Designer
to see the DataSet Designer window. Right-click the line that connects the Products and Categories
tables (this line represents the relationship between the two tables) and select Edit Relation to open
the Relation dialog box, shown in Figure 23.16.

Figure 23.16

Setting relation
properties

Petroutsos V1 c23.tex Page 869 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 869

The FK Products Categories relation is marked as Relation Only. In the database, this
is a relation and a foreign key constraint. The relation simply relates the two tables if their
CategoryID fields match. Most importantly, the constraint won’t let you insert a product that
points to a nonexisting category, or delete a category that has related rows in the Products table.
Check the radio button Both Relation And Foreign Key Constraint, and then close the dialog box.

Foreign key constraints are subject to three rules: the Update, Delete, and Accept/Reject rules,
as shown in Figure 23.16. These rules determine what should happen when a parent row is
removed from its table (the Delete rule), when a parent ID is modified (the Update rule), and
when users accept or reject changes in the DataSet (the last rule). A rule can be set to None (no
action is taken, which means that a runtime exception will be thrown), Cascade (the child rows are
updated or deleted), SetNull (the foreign keys of the related rows are set to Null), and SetDefault
(the foreign keys of the related rows are set to their default value).

We usually don’t change the rules of a relationship in the DataSet, unless you’ve used rules in
the database. Leave them set to None and run the application again. You should avoid setting the
Delete and Update rules to Cascade, because this can lead to irrecoverable errors. If you delete
a category, for example, it will take with it the related products, and each deleted product will
take with it the related rows in the Order Details table. A simple error can ruin the database.
There are other situations, which aren’t as common, where the Cascade rule can be used safely.
When you delete a book in the Pubs database, for example, you want the book’s entries in the
TitleAuthors table to be removed as well. No rows in the Authors table will be removed, because
they’re primary, and not foreign, keys in the relation between the TitleAuthors and Authors tables.

Let’s return to our interface for editing products and categories. Attempt again to remove a
category. This time you’ll get a lengthy error message that ends with the following suggestion:

To replace this default dialog please handle the DataError event.

Let’s do exactly that to avoid displaying a totally meaningless message to our users. Open the
DataError event handler for both controls and insert the following statement:

MsgBox(e.Exception.Message)

Run the application again and delete a category. This time you’ll see the following error
message, and the program won’t remove the category from the DataGridView, because it can’t
remove it from its DataSet:

Cannot delete this row because constraints are enforced
on relation FL Products Categories, and deleting this

row will strand child rows.

You can still delete products and set their prices to negative values. These two operations are
invalid in the context of the database, but quite valid in the client DataSet.

Using the BindingSource as a Data Source

As you recall, binding a DataGridView control to a DataTable is possible by setting the control’s
DataSource property. Binding to two related tables is a bit more involved, so let’s see how it’s
done (short of dropping the two tables on the form and letting the editor handle the details).

Petroutsos V1 c23.tex Page 870 01/28/2008 4:43pm

870 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

To link the two DataGridView controls, you must create a BindingSource object for each one.
The BindingSource class encapsulates a data source and is itself a data source. Initialize an instance
of this class by setting its DataSource and DataMember properties for the Categories table:

Dim categoriesBS As New BindingSource
categoriesBS.DataSource = DS
categoriesBS.DataMember = ”Categories”

Then set the upper grid’s DataSource property to the categoriesBS object. As for the lower
grid, you must create a new BindingSource object and set its DataSource property not to the actual
DataSet, but to the BindingSource object of the upper grid:

Dim productsBS As New BindingSource
productsBS.DataSource = categoriesBS

Now here’s the tricky part: the DataMember property must be set to the name of the relationship
between the two tables in the DataSet, so that it’s linked to the products of the category selected in
the upper control:

productsBS.DataMember = ”FK Categories Products”

After the two BindingSource objects have been set up, assign them to the DataSource property
of their corresponding controls:

DataGridView1.DataSource = categoriesBS
DataGridView2.DataSource = productsBS

These actions were performed for you automatically, as you dropped the two tables on the
form. If you want to bind two related tables of an untyped DataSet, you must set these properties
from within your code.

Adjusting the Appearance of the DataGridView Control
The DataGridView control is bound to a single table as soon as you drop the table on the form,
but its default appearance leaves a lot to be desired. To begin with, we must set the widths of
the columns and hide certain columns. The product IDs, for example, need not be displayed. The
numeric fields should be formatted properly and aligned to the right, and the foreign key fields
should be replaced by the corresponding descriptions in the primary table. We also should display
category and supplier names, instead of IDs.

The DataGridView control exposes a large number of properties, and you can experiment with
them in the Properties window. They have obvious names, and you can see the effects of each
property on the control as you edit it. Beyond the properties that apply to the entire control, you
can also customize the individual columns through the Edit Columns dialog box.

To tweak the appearance of the columns of the DataGridView control, select the control with
the mouse and open the Tasks menu by clicking the little arrow in the upper-right corner of the
control. This menu contains four check boxes that allow you to specify whether the user is allowed
to add/edit/delete rows and reorder columns. To adjust the appearance of the grid’s columns,

Petroutsos V1 c23.tex Page 871 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 871

click the Edit Columns hyperlink in the menu and you will see the Edit Columns dialog box,
shown in Figure 23.17, where you can set each column’s properties.

Figure 23.17

Use the Edit Columns
dialog box to customize
the appearance of the
DataGridView control

In the Edit Columns dialog box, you can set each column’s header and width, as well as
the minimum width of the column. (Users won’t be allowed to make the column narrower than its
minimum width.) You can also set the AutoSize property to True to let the control decide about
column widths, but this may result in a very wide control. You can lock certain columns during
editing by setting their ReadOnly property, or make other columns invisible with the Visible
property. The most interesting setting in this dialog box is the ColumnType property, which is the
type of the column. By default, all columns are of the DataGridViewTextBoxColumn type, unless
the corresponding field is a Boolean or Image type. A DataGridView column can be one of the
following types:

DataGridViewButtonColumn This displays a button whose caption is the bound field. Use
buttons to indicate that users can click them to trigger an action. To program the Click event of
a button column, insert the appropriate code in the control’s CellContentClick event handler.
Your code must detect whether a column with buttons was clicked and, if so, act accordingly.
Change the column that displays the product names into a button column and then insert the
following statements in the CellContentClick event handler of the DataGridView control:

Private Sub ProductsDataGridView CellContentClick(
ByVal sender As System.Object,
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs)

Handles ProductsDataGridView.CellContentClick
If e.ColumnIndex = 1 Then

MsgBox(ProductsDataGridView.Rows(e.RowIndex).
Cells(e.ColumnIndex).Value.ToString)

End If
End Sub

Petroutsos V1 c23.tex Page 872 01/28/2008 4:43pm

872 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

The code shown here reads the caption of the button that was clicked. You can just as easily
read the product’s ID and use it to retrieve product details and display them on another form.

DataGridViewCheckBoxColumn This column type is used with True/False columns (the
bit data type in SQL Server). The Discontinued column of the Products table, for example, is
mapped automatically to a DataGridView column of this type.

DataGridViewComboBoxColumn This column type is used for foreign keys or lookup
fields. You will shortly see how to change the CategoryID and SupplierID columns into
ComboBox columns, so that users can see category and supplier names instead of IDs. When
editing the table, users can expand the list and select another item, instead of having to enter
the ID of the corresponding item. Figure 23.18 shows the DataGridView control for displaying
products with a ComboBox column for categories and suppliers.

Figure 23.18

Displaying product
categories and
suppliers in a ComboBox
control on the
DataGridView control

DataGridViewLinkColumn This is similar to the DataGridViewButtonColumn type, only
it displays a hyperlink instead of a button. Use the same technique outlined earlier for the
Button columns to detect the click of a hyperlink.

DataGridViewImageColumn Use this column type to display images. In general, you
shouldn’t store images in your databases. Use separate files for your images and include only
their paths in the database. Keep in mind that all rows of a DataGridView control have the
same height, and if one of them contains an image, the remaining cells will contain a lot of
white space.

DataGridViewTextBoxColumn This is the most common column type, and it displays the
field in a text box.

Notice that as you change the style of a column, the Bound Column Properties pane of the Edit
Columns dialog box is populated with the properties that apply to the specific column type. For
a combo box column, for example, you can set the DropDownWidth and the MaxDropDownItems

Petroutsos V1 c23.tex Page 873 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 873

properties. You can even populate the combo box with a set of values through the Items property,
just as you would with a regular combo box on the form.

There aren’t any properties in the Edit Columns dialog box to adjust the appearance of the
selected column. To change the appearance of a column, select the DefaultCellStyle property
and click the button with the ellipses next to it to see the CellStyle Builder dialog box, which is
shown in Figure 23.19.

Figure 23.19

Use this dialog box to
adjust the appearance of
a column in a
DataGridView control

In the CellStyle Builder dialog box, you can set the column’s font, set its foreground and
background colors, specify whether the text should wrap in its cell, and determine the alignment of
the cell’s contents. Turning on the wrap mode with the WrapMode property doesn’t cause the rows
to be resized automatically to the height of the tallest cell. To have rows resized automatically,
you must set the control’s AutoSizeRowsMode property to All. The other possible settings for
this property are None, AllHeaders, AllCellsExceptHeaders, DisplayedHeaders, Displayed-
CellsExceptHeaders, and DisplayedCells. Finally, you must set the Format property for all
numeric and date fields, and size the columns according to the data that will be displayed on
the control.

This feast of customization techniques is possible because the DataGridView control is bound to
a typed DataSet. If you want to use the techniques of the previous chapter to bind a DataGridView
control to an untyped DataSet, you can still use the Edit Columns dialog box to add and customize
the control’s columns, but the process isn’t nearly as convenient. You must also remember to
set the control’s AutoGenerateColumns property to False and each column’s DataPropertyName

Petroutsos V1 c23.tex Page 874 01/28/2008 4:43pm

874 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

property to the name of the database column that will be mapped to the corresponding grid
column. If the AutoGenerateColumns property is left to its default value, which is True, the control
will generate a new column for each data column in its data source.

Displaying Lookup Columns in a DataGridView Control

In this section, we’re going to customize the CategoryID and SupplierID columns, which display
the product’s category and supplier ID in a text box. Instead of IDs, we must display category and
supplier names. Moreover, we will display each product’s category and supplier in a ComboBox
control, so that users can quickly select another value when editing the product. Let’s return to the
LinkedDataTables project and set up the bottom GridView control.

Select the DataGridView control with the products, and from the Task menu choose Edit
Columns. In the Edit Columns dialog box, select the CategoryID column and make it invisible
by setting its Visible property to False. Then click the Add button to add a new column. In the
Add Column dialog box, which is shown in Figure 23.20, click the Unbound radio button, set the
column’s Name property to colCategory and its HeaderText property to Category. Click Add to
add the column to the DataGridView control and then Close to close the dialog box.

Figure 23.20

Adding a new column
to the DataGridView
control

Back in the Edit Columns dialog box, move the new column to the desired position by using
the arrow buttons. You must now set up the new column so that it displays the name of the
category that corresponds to the CategoryID column of the selected product. Locate the

Petroutsos V1 c23.tex Page 875 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 875

DataSource property and click the arrow to expand the data sources. Select the CategoriesBind-
ingSource entry. Then set the DisplayName property to CategoryName and the ValueMember
to CategoryID. Click OK to close the dialog box. If you run the application now, you’ll see that
the CategoryID column has been replaced by the Category column, which displays a ComboBox
with the list of all categories. However, the product’s category isn’t automatically selected; you
have to drop down the items in the combo box to see the categories, and you still don’t know the
selected product’s category. To link the appropriate category name to the selected product’s
CategoryID value, you must set yet another property, the DataPropertyName property. If you
expand the list of available columns for this property, you’ll see the columns of the Products table.
Select the CategoryID column, so that the combo box will display the category name that corre-
sponds to the category ID of the selected product row. Now you have a much better interface for
editing the products — you no longer need to enter IDs; you see the name of the selected product’s
category and you can select a product’s category from a drop-down list by using the mouse.

Of course, you must do the same with the Suppliers table. Right-click the NorthwindDataSet
object in the Data Sources window and choose Edit DataSet With Designer from the context menu
to open the DataSet in design mode.

If the table with the lookup values isn’t part of your DataSet, you can easily add a new
DataTable to the DataSet. Right-click somewhere on the DataSet Designer’s surface and choose
Add � Query from the context menu. A new DataTable will be added to the DataSet, and you’ll
be prompted with a wizard similar to the Data Source Configuration Wizard to select the rows
that will be used to populate the DataTable. Select the SupplierID and CompanyName columns of
the Suppliers table. The wizard will add the Suppliers table to the DataSet, and you’re ready to
hide the SupplierID column and replace it with a ComboBox column that contains the names of
the suppliers. Select the Edit Column command from the second grid’s Tasks menu and set the
properties as follows:

ColumnType DataGridViewComboBoxColumn

DataSource Suppliers

DisplayMember CompanyName

ValueMember SupplierID

PropertyName SupplierID

Notice that the ValueMember property is the SupplierID column of the Suppliers table, but
the PropertyName property’s value is the SupplierID column of the Products DataTable,
because the control is bound to the Products table. The designer will replace the name of the
Suppliers DataTable with the SupplierBindingSource1 object. Run the application now, edit a
few products, and then save the edits. You can also edit the categories (names and descriptions
only). As a reminder, even the DataSet that was generated by the wizard doesn’t enforce check
constraints, and you can set the price of a product to a negative value. When you attempt to submit
the changes to the database, a runtime exception will be thrown.

The code behind the Submit Edits button isn’t new to you. The code sets the ContinueUpdateOn-
Error property of the underlying DataAdapter objects to True and then calls the UpdateAllmethod
of the TableAdapterManager to submit the changes made to all tables.

The rows that will fail to update the underlying tables in the database will be marked as errors.
The DataGridView control marks the rows in error with an icon of an exclamation mark in the

Petroutsos V1 c23.tex Page 876 01/28/2008 4:43pm

876 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

column’s header, as shown earlier in Figure 23.14. If you hover the mouse pointer over this icon,
you’ll see a description of the error in a Tooltip box.

Updating hierarchical DataSets isn’t as simple as calling the Update or UpdateAll method.
In the LinkedDataTables sample project, I’ve called the UpdateAll method of the TableAdapter-
Manager class, which submits first the changes in the parent table (the Categories table) and then
the changes in the related table(s). Unless you commit the new rows to the Categories table
first, the database will refuse to insert any products that use the IDs of the categories that do not
exist in the Categories table. But even if you update the Categories table first and then the Products
table, it’s not guaranteed that all updates will take place. The order of updates in a hierarchical
DataSet is very important, and here’s why: Let’s say you’ve deleted all products of a specific
category and then the category itself. As soon as you attempt to remove the specific row from the
Categories table in the database, the database will return an error indicating that you can’t delete
a category that has related rows, because the relevant products haven’t been removed from the
Products table in the database yet.

The proper update order is to submit the deleted rows of the Products table, then perform all
updates in the Categories table, and finally submit the insertions and modifications in the Products
table. You’ll see shortly how to retrieve deleted/modified/new rows from a DataTable at the client
(we’ll use each row’s DataRowVersion property) and then how to pass these rows to the Update
method.

In the meantime, you can experiment with the LinkedDataTables project and perform a few
updates at a time. Let’s say you want to delete all products in a specific category and then the
category itself. To submit the changes without violating the primary/foreign key relationship
between the two tables, you must first delete the products and then update the database by
clicking the Submit Edits button. After the Products table is updated, you can delete the category
from the Categories table and then submit the changes to the database again.

In this section, we’ve built a functional interface for editing the categories and products of the
Northwind database. We started by creating a DataSet with the three tables, and then dropped
them on the form to instantiate two DataGridView controls and tweaked the appearance of the
two controls with point-and-click operations. We even managed to display combo boxes right
in the DataGridView control without a single line of code. The DataGridView control provides
the basic editing features, and we were able to put together an interface for our data without
any code. We did have to write a bit of code to submit the changes to the database, because the
code generated by the wizard couldn’t handle anything but the best case scenario. Real-world
applications must take into consideration all possible scenarios and handle them gracefully.

Data binding allows you to write data-driven applications quickly, mostly with point-and-click
operations, but the default interfaces generated by the wizards are not perfect. You’ll see shortly
how to use data binding to produce more-elegant interfaces, but they’ll require a bit of code.
Another problem with data binding is that in most cases you’ll end up filling large DataSets at the
client — and this is not the best practice with data-driven applications. If your application is going
to be used by many users against a single server, you must retrieve a relatively small number of
rows from the database and submit the edits as soon as possible. If you keep too much data at the
client and postpone the submission of edited rows to the database, you’re increasing the chances
of concurrency errors. Other users may already have changed the same rows that your application
is attempting to update. Of course, you can disable optimistic concurrency and overwrite the
changes made by other users, if the nature of the data allows it.

The most common approach is to design a form with search criteria, on which users will specify
as best as they can the rows they need. Then you can populate the client DataSet with the rows
that meet the specified criteria. If you’re writing a connected application, submit the changes to the
database as soon as they occur. If you want the users to control when the updates are submitted
to the database, display the number of modified/inserted/deleted rows in the form’s status bar.
You can even pop up a message when the number of edited rows exceeds a limit.

Petroutsos V1 c23.tex Page 877 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 877

Building More-Functional Interfaces
Editing large tables on a grid isn’t the most flexible method. In this section, we’ll build an alternate
interface for editing the Products table, as shown in Figure 23.21. This is the form of the Products
sample project, which uses a data-bound ListBox control to display product names and text boxes
for the individual fields. The toolbar at the top allows you to add new rows, delete existing ones,
and submit the changes to the database. All the controls on the form are data bound, and the
application contains very little code.

Figure 23.21

An alternate interface
for editing the Products
table

Here’s how to get started:

1. Start a new project, the Products project, and create a new DataSet, the NorthwindDataSet,
with three usual tables: Products, Categories, and Suppliers.

2. Change the binding option for the Products DataTable to ListBox and drop the Products
DataTable onto the form. In the Properties window, you must make sure that the ListBox
control is properly bound: Its DataSource property has been set to the ProductsBinding-
Source object that was generated by the editor when you dropped the DataTable on the
form, its DisplayMember property to ProductName (because it’s the first text column in the
table), and its ValueMember property to ProductID (because it’s the table’s key). If you want
to display a different field to identify the products, change the DisplayMember property.

3. Now drop all the fields of the Products DataTable onto the form. The editor will create the
appropriate text boxes and bind them to their fields.

4. Rearrange the controls on the form and delete the text boxes that correspond to the
CategoryID and SupplierID columns. Place two ComboBox controls in their place. By
the way, even if you set the binding option for the CategoryID and SupplierID columns
to ComboBox, you’ll end up displaying IDs in the corresponding controls, not category
and supplier names. You can’t use any data-binding techniques to automatically set up
two lookup fields.

5. Drop two instances of the ComboBox control on the form and name them cbCategoryName
and cbCompanyName. Select the first one and set the data-binding properties as follows:

◆ The DataSource is where the control will get its data and it should be Categories-
BindingSource, because we want to populate the control with all category names.

◆ The DisplayMember property is the column we want to view on the control and must
be set to the CategoryName column of the Categories DataTable.

◆ The ValueMember property is the column that will bind the contents of the combo box
control to the related table and must be set to the CategoryID column of the Categories
DataTable.

Petroutsos V1 c23.tex Page 878 01/28/2008 4:43pm

878 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

◆ Finally, you must set the SelectedValue property, in the DataBindings section of the
Properties window, to the matching column of the child table, which is the CategoryID
column of the ProductsBindingSource. The control will automatically select the row of
the Categories table whose category ID matches the CategoryID column of the
Products DataTable.

6. Perform similar steps with the other combo box, which displays the CompanyName column
of the Suppliers DataTable and is bound to the SupplierID column of the ProductsTable.

Run the application and see how it behaves. Every time you select a product in the list, the
product’s details appear in the data-bound text boxes, and its category and supplier are displayed
in the two combo box controls. Use the list to navigate through the products, the Add button to
add a new product, and the Delete button to delete a product. You can edit the product’s fields on
the form, and the edits will be written to the DataSet as soon as you move to another row.

You have created a functional application for selecting products and viewing their details. If
all you need is a browsing application for the products, you can set the ReadOnly property of all
TextBox controls on the form to True.

If you attempt to enter a new product and leave its Discontinued column to Null, a runtime
exception will be raised. This problem is easy to fix by specifying a default value for the
Discontinued column. To do so, open the DataSet in the designer, locate the Discontinued
column in the Products table, and select Properties from the context menu. The DefaultValue
property’s value is DBNull. Set it to False, so that unspecified fields will be automatically set
to False.

You’ll also get an error message if you attempt to submit the edits and the DataSet contains
a product with a negative price. Such trivial errors can be caught and handled from within your
code — no need to send the rows to the database and get back an error message. We’ll write a few
statements to detect trivial errors, such as negative prices (or negative stocks, for that matter). First
we must decide how to handle these errors. Do we pop up a message box every time we detect
an error condition? This will drive users crazy. Do we reject changes until the user enters a valid
value? It’s a better approach, but remember: Data-entry operators don’t look at the monitor. They
expect that the Tab (or Enter) key will take them to the next field. The best approach is to do what
the DataGridView control does: display an error icon next to the control in error.

Add an instance of the ErrorProvider control on the form. This control displays the exclamation
mark icon next to a control. To display the error icon, you must call the control’s SetError method,
passing as arguments the control in error and the message for the error. (The message will be
displayed in a ToolTip box when users hover the pointer over the icon.)

To detect errors from within your code, you need to insert some code in the CurrentItem-
Changed event handler of the ProductsBindingSource. Insert the statements shown in Listing 23.6
in this event handler.

Listing 23.6: Catching Data-Entry Errors in Your Code

Private Sub ProductsBindingSource CurrentItemChanged(
ByVal sender As Object,
ByVal e As System.EventArgs) Handles
ProductsBindingSource.CurrentItemChanged

ErrorProvider1.Clear()
Dim product As DSProducts.ProductsRow

Petroutsos V1 c23.tex Page 879 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 879

product = CType(CType(
ProductsBindingSource.Current,
DataRowView).Row, DSProducts.ProductsRow)

If Not product.IsUnitPriceNull AndAlso
Convert.ToDecimal(product.UnitPrice) < 0 Then

ErrorProvider1.SetError(UnitPriceTextBox,
”PRICE CAN’T BE NEGATIVE!”)

End If
If ProductNameTextBox.Text.Trim.Length = 0 Then

If CType(ProductsBindingSource.Current,
DataRowView).Row.RowState <>

DataRowState.Detached Then
ErrorProvider1.SetError(

ProductNameTextBox,
”PRODUCT NAME CAN’T BE BLANK!”)

End If
End If

End Sub

This code segment requires some explanation. The CurrentItemChanged event is fired every
time the user selects another row or column on the control. The code in this event handler retrieves
the current row with the Current property of the ProductBindingSource object. This property
returns an object, which is a DataRowView object. This is why I cast it to the DataRowView type,
then retrieve its Row property, and finally cast it to the ProductsRowtype. The product variable
represents the currently selected row in the DataSet. This is a typed variable, and I can access the
columns of the current row as properties. If the UnitPrice column has a negative value, the code
sets an ErrorProvider control to display the error next to the corresponding text box.

Viewing the Deleted Rows

One unique aspect of this interface is that it provides a link to display the deleted rows. These
rows exist in the DataSet, but they’re not shown on the interface. The inserted and modified rows
are on the ListBox control, and users can review them. You may even provide a button to display
the old and new versions of the edited rows. But users have no way of reviewing the deleted rows.

The Show Deleted Rows link opens an auxiliary form, like the one shown in Figure 23.22,
which displays the deleted rows in a CheckedListBox control. Users are allowed to select some of
the deleted rows and restore them.

Listing 23.7 shows the code that retrieves the deleted rows and displays them on the
auxiliary form.

Listing 23.7: Retrieving and Displaying the Deleted Rows

Private Sub LinkLabel1 LinkClicked(...)
Handles LinkLabel1.LinkClicked

Form2.CheckedListBox1.Items.Clear()
For Each row As DataRow In DSProducts.Products.Rows

If row.RowState = DataRowState.Deleted Then

Hamid
Sticky Note
برای پروژه کانان

Petroutsos V1 c23.tex Page 880 01/28/2008 4:43pm

880 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

Form2.CheckedListBox1.Items.Add(
row.Item(”ProductID”,
DataRowVersion.Original) & ” ” &
row.Item(”ProductName”,
DataRowVersion.Original))

End If
Next
Form2.ShowDialog()
Dim SelectedIDs As New ArrayList
For Each itm As String In Form2.CheckedListBox1.CheckedItems

SelectedIDs.Add(Convert.ToInt32(
itm.Substring(0, itm.IndexOf(” ”) + 1)))

Next
Dim cust As DSProducts.ProductsRow
For Each cust In DSProducts.Products

If cust.RowState = DataRowState.Deleted
AndAlso SelectedIDs.Contains(cust.Item(
”ProductID”, DataRowVersion.Original)) Then
cust.RejectChanges()

End If
Next

End Sub

Figure 23.22

Reviewing the deleted
rows in the DataSet

The code goes through the Rows collection of the Products DataTable and examines the
RowState property of each row. If its value is RowState.Deleted, it adds the row’s ProductID
and ProductName fields to the CheckedListBox control of the auxiliary form. Then it displays the

Petroutsos V1 c23.tex Page 881 01/28/2008 4:43pm

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 881

form modally, and when the user closes it, the code retrieves the IDs of the selected rows into
the SelectedIDs ArrayList. The last step is to restore the selected rows. The code goes through
all rows again, examines their RowState property, and if a row is deleted and its ID is in the
SelectedIDs ArrayList, it calls the RejectChanges method to restore the row. The restored rows
are automatically displayed in the ListBox control because this control is bound to the DataSet.

Hand-Crafting an Application’s Interface

A practical feature you can add to the interface of a disconnected application is the ability to review
the modifications. You can display the original and proposed versions of the inserted/modified rows,
as well as the original versions of the deleted rows on an auxiliary form, as we have done in the
preceding example.

If you don’t mind writing a bit of code, you can display the original values of the edited rows in the
same controls on your form. Because the controls are data bound, you can’t display any different
values on them; if you do, they’ll be stored in the DataSet as well. But you can place nonbound
controls, such as Label controls, in the place of the data-bound control. The Labels normally will be
invisible, but when the user presses a function key, they can become visible, hiding the regular
editable controls. When the user requests the original versions of the fields, you must populate the
Labels from within your code and display them by toggling their Visible property. You must also
hide the regular controls on the form.

Another approach would be to suspend data binding momentarily by calling the SuspendBinding
method of the BindingSource class. After data binding has been suspended, you can populate the text
boxes on the form at will, because the values you display on them won’t propagate to the DataSet. To
display the bound values again, call the ResumeBinding method.

Another interesting feature you can add to a data-driven application is to display the state of the
current row in the form’s status bar. You can also give users a chance to undo the changes by press-
ing a button on the status bar. All you have to do in this button’s Click event handler is to call the
RejectChanges method on the current row. Use the Current property of the ProductsBindingSource
to retrieve the current row and cast it to the ProductsRow type, and then call the RejectChanges
method.

You can select one of the data-editing applications presented in this chapter, perhaps the Prod-
ucts application, and add as many professional features as you can to it. Start by adding a status
bar to the form and display on it the state of the current row. For modified rows, display a button
on the toolbar that allows users to view and/or undo the changes to the current row. Program
the form’s KeyUp event handler, as explained in Chapter 4, ‘‘Graphical Interface Design,’’ so that
the Enter key behaves like the Tab key. Users should be able to move to the next field by pressing
Enter. Finally, you can display an error message for the current row on a label in the form’s status
bar. Or display a message such as Row has errors as a hyperlink and show the actual error message
when users click the hyperlink. Test the application thoroughly and insert error handlers for all
types of errors that can be caught at the client. Finally, make the edited rows a different color in

Petroutsos V1 c23.tex Page 882 01/28/2008 4:43pm

882 CHAPTER 23 BUILDING DATA-BOUND APPLICATIONS

the two DataGridView controls on the form of the LinkedDataTables sample project. To do so,
you must insert some code in the control’s RowValidated event, which is fired after the validation
of the row’s data. You’ll need to access the same row in the DataSet and examine its RowState
property by retrieving the Current property of the ProductsBindingSource object, as shown in
Listing 23.8.

Listing 23.8: Coloring the Edited and Inserted Rows on the DataGridView Control

Private Sub ProductsDataGridView RowValidated(...)
Handles ProductsDataGridView.RowValidated

Dim row As DS.ProductsRow
row = CType(CType(ProductsBindingSource.Current,

DataRowView).Row, DS.ProductsRow)
If row.RowState = DataRowState.Modified Then

ProductsDataGridView.Rows(e.RowIndex).
DefaultCellStyle.ForeColor = Color.Green

Else
ProductsDataGridView.Rows(e.RowIndex).

DefaultCellStyle.ForeColor = Color.Black
End If
If row.RowState = DataRowState.Added Then

ProductsDataGridView.Rows(e.RowIndex).
DefaultCellStyle.ForeColor = Color.Blue

Else
ProductsDataGridView.Rows(e.RowIndex).

DefaultCellStyle.ForeColor = Color.Black
End If

End Sub

The code in the listing sets the foreground color of modified rows to green and the foreground
color of inserted rows to blue. From within the same event’s code, you can set the text of a Label on
the form’s status bar to the row’s error description. If you run the application now, you’ll see that
it paints modified and inserted cells differently, but only while you’re working with products of
the same category. If you select another category and then return to the one whose products you
were editing, they’re no longer colored differently, because the RowValidated event is no longer
fired. To draw rows differently, you must duplicate the same code in the control’s RowPostPaint
event as well.

If you carefully test the revised application, you’ll realize that the DataGridView control doesn’t
keep track of modified rows very intelligently. If you append a character to the existing product
name and then delete it (without switching to another cell between the two operations), the Data-
GridView control considers the row modified, even though the original and proposed versions
are identical. As a result, the application will render the row in green. Moreover, the UpdateAll
method will submit the row to the database.

For a truly disconnected application, you should give users a chance to store the data locally at
the client. The LinkedDataTables application’s main form contains two more buttons: the Save
Data Locally and Load Local Data buttons. The first one saves the DataSet to a local file via

Petroutsos V1 c23.tex Page 883 01/28/2008 4:43pm

THE BOTTOM LINE 883

the WriteXml method of the DataSet, and the second button loads the DataSet via the ReadXml
method. The application uses the tmpData.#@# filename in the application’s folder to store
the data. It also uses an overloaded form of the two methods to accept an additional argument
that stores not only the data, but the changes as well. Here’s the code behind the two buttons:

Private Sub Button1 Click(...) Handles Button1.Click
DS.WriteXml(”tmpData.#@#”, XmlWriteMode.DiffGram)

End Sub

Private Sub Button2 Click(...) Handles Button2.Click
ProductsBindingSource.SuspendBinding()
DS.ReadXml(”tmpData.#@#”, XmlReadMode.DiffGram)
ProductsBindingSource.ResumeBinding()

End Sub

The Bottom Line

Design and use typed DataSets. Typed DataSets are created with visual tools at design time
and allow you to write type-safe code. A typed DataSet is a class created by the wizard on the
fly and it becomes part of the project. The advantage of typed DataSets is that they expose func-
tionality specific to the selected tables and can be easily bound to Windows forms. The code
that implements a typed DataSet adds methods and properties to a generic DataSet, so all the
functionality of the DataSet object is included in the autogenerated class.

Master It Describe the basic components generated by the wizard when you create a
typed DataSet with the visual tools of Visual Studio.

Bind Windows forms to typed DataSets. The simplest method of designing a data-bound
form is to drop a DataTable, or individual columns, on the form. DataTables are bound to
DataGridView controls, which display the entire DataTable. Individual columns are bound to
simple controls such as TextBox, CheckBox, and DateTimePicker controls, depending on the
column’s type. In addition to the data-bound controls, the editor generates a toolbar control
with some basic navigational tools and the Add/Delete/Save buttons.

Master It Outline the process of binding DataTables to a DataGridView control.

Petroutsos V1 c23.tex Page 884 01/28/2008 4:43pm

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 885

Chapter 24

Advanced DataSet Operations

As you know very well by now, DataSets are miniature databases that reside in the client
computer’s memory. They’re made up of tables related to one another, they enforce relations,
and they’re practically as close to a client-side database as you can get without installing an actual
database management system at every client. However, you can’t execute SQL statements directly
against the DataSet’s data. You can’t update a DataTable by issuing an UPDATE statement, and
can’t add rows with an INSERT statement. You know how to iterate through the rows of a Data-
Table and how to locate its related rows in other tables, and how to select rows from a DataTable
with the Select method. You can iterate through the rows of a table, locate the ones that meet
certain criteria, and process their columns in any way you wish: calculate aggregates on selected
columns, update rows in other tables based on the values of certain columns, format text columns,
even create new columns and set their values. And, of course, you know how to edit, add and
delete rows, and submit the DataSet to the server.

You can also process the data in the DataSet at the client with LINQ. Besides LINQ to SQL,
which was discussed briefly in Chapter 17, ‘‘Querying Collections and XML with LINQ,’’ there’s
another component, the LINQ to DataSet component, which enables you to query the DataSet’s
data. In this chapter, I’ll focus on more-traditional querying techniques.

In this chapter, you’ll learn how to do the following:

◆ Use SQL to query DataSets

◆ Add calculated columns to DataTables

◆ Compute aggregates over sets of rows

Working with SQL Expressions
Let’s consider a DataSet that contains the Orders and Order Details tables of the Northwind
database. In Chapter 22, ‘‘Programming with ADO.NET,’’ you saw how to populate a DataSet
with data from one or more database tables, how to iterate through a table’s rows, and how
to traverse the related rows. In this chapter, you’ll look at some more-advanced features, such
as adding custom columns to the DataSet’s DataTables and filtering a DataTable’s rows with
SQL-like expressions.

You can add a new column to the Order Details DataTable of the DataSet (and not the actual
table in the database) and use this column to store each line’s total. You can calculate the line’s
total by multiplying the quantity by the price and then subtracting the discount. Similarly, you
can add a column to the Orders DataTable and store the order’s total there. To calculate an
order’s total, you can sum the line totals in the Order Details DataTable over all the rows that

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 886

886 CHAPTER 24 ADVANCED DATASET OPERATIONS

belong to the specific order. Writing VB code to accomplish these tasks is almost trivial; the
simplest approach is to write a loop that iterates through a DataTable’s rows and calculates
the aggregate. This approach, however, is neither the most elegant nor the most efficient. A better
approach is to use SQL expressions to define calculated columns, as well as use SQL expressions to
select rows.

Do we really need all this functionality at the client? We can certainly write code to retrieve the
rows needed at any time from the database. A connected application should request data from
the database as needed. If you’re writing a disconnected or eventually connected application, you
should be able to load a DataSet with the data you’re interested in and process it at the client. Even
connected applications may benefit from the richness of the DataSet.

Selecting Rows
The Select method of the DataTable object allows you to select the rows that meet certain
criteria. The criteria are expressed with statements similar to the WHERE clause of a SELECT
statement. There are several overloaded versions of the Select method. The simplest form of the
method accepts no arguments at all and returns all the rows in the DataTable to which it’s applied.
Another form accepts a string argument, which is a filter expression equivalent to the WHERE clause
of the SELECT statement, and returns the rows that match the specified criteria. Another form of
the Select method accepts the filter expression and a second string argument that determines
the order in which the rows will be returned. The last overloaded form of the method accepts the
same two arguments and a third one that determines the state of the rows you want to retrieve:

DataTable.Select(filter, ordering, DataRowState)

The Select method returns an array of DataRow objects, which are not linked to the original
rows. In other words, if you edit one of the rows in the array returned by the Select method,
the matching row in the DataTable will not be modified. Even if the DataSet is strongly typed,
the Select method returns an array of generic DataRow objects, not an array of the same type
as the rows of the DataTable to which the Select method was applied. The following statements
retrieve the ‘‘expensive’’ products from the Products DataTable:

Dim expensive() As DataRow
expensive = DS.Products.Select(”UnitPrice > 100”)

After the execution of the Select method, the expensive array will hold the rows whose
UnitPrice field is more than $100. You can also combine multiple filter expressions with the
usual Boolean operators. To retrieve the expensive product with a stock over three units, use
the following filter expression:

”UnitPrice > 100 AND UnitsInStock > 3”

Assuming that the Orders DataTable holds the rows of the Orders table, you can retrieve the
headers of the orders placed in the first three months of 1998 via the following statements:

Dim Q1 1998() As DataRow
Q1 1998 = DS.Orders.Select(

”OrderDate >= ’1/1/1998’ AND OrderDate <= ’3/31/1998’”)

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 887

SIMPLE CALCULATED COLUMNS 887

If you want the rows sorted by shipment date, add an argument indicating the name of the
column on which the columns will be sorted and the ASC or DESC keyword:

DS.Orders.Select(
”OrderDate >= ’1/1/1998’ AND OrderDate <= ’3/31/1998’”,
”DateShipped DESC”)

You can select the rows that have been added to the DataSet by specifying the third argument
to the Select method and two empty strings in place of the first two arguments:

Dim newRows() As DataRow
newRows = DS.Orders.Select(””,””, DataRowState.Added)

Simple Calculated Columns
Sometimes you’ll need to update a column’s value based on the values of other columns. For
example, you may wish to maintain a column in the Orders DataTable that has the order’s total.
For this column to be meaningful, its value should be updated every time a related row in the
Order Details DataTable is modified. In the actual database, you’d do this with a trigger. However,
we want to avoid adding too many triggers to our tables because they slow all data-access oper-
ations, not to mention that you’ll be duplicating information. If a trigger fails to execute, the line
total may not agree with the actual fields of the same row. One of the most basic rules in database
design is to never duplicate information in the database. Because duplication of information some-
times helps programmers in retrieving totals from the database quickly, many developers chose
to break this rule and maintain totals, even though the totals can be calculated from row data.

To maintain totals in a DataSet, you can add calculated columns to its DataTables. You specify
a formula for the calculated column, and every time one of the columns involved in the formula
changes, the calculated column’s value changes accordingly. Note that calculated columns may
involve columns in the same table, or aggregates that involve columns in related tables. As you
will see, calculated columns can simplify many complex reporting applications.

To add a new DataColumn object to a DataTable, use the Add method of the table’s Columns
collection. The Columns property of the DataTable object is a collection, and you can create new
columns to the table by adding the DataColumn object to this collection. One of the overloaded
forms of this method allows you to specify not only the column’s name and data type, but also its
contents. The following statement adds the LineTotal column to the Order Details table and sets
its value to the specified expression:

DS.Tables[”Order Details”].Columns.Add(
”LineTotal”, System.Type.GetType(”System.Decimal”),
”(UnitPrice * Quantity) * (1 - Discount)”)

The last argument of the Add method is an expression, which calculates the detail line’s
extended price. This expression isn’t calculated when the DataSet is loaded; it’s calculated on-the-fly,
every time the column is requested. You can change the values of the columns involved in the
expression at will, and every time you request the value of the LineTotal column, you’ll get
back the correct value. You should notice that order and invoice data isn’t changed after it’s been
recorded. In other words, you shouldn’t edit the contents of an order, or an invoice, after the

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 888

888 CHAPTER 24 ADVANCED DATASET OPERATIONS

receipt has been printed. Because order data is static, you can include the line total in your query
with a statement like the following:

SELECT [Order Details].*,
UnitPrice * Quantity * (1 - Discount) AS LineTotal

FROM [Order Details]

The LineTotal column won’t change after it’s been read, even if you change the row’s quan-
tity, price, or discount. If the application is going to use the DataSet for browsing only, you
can populate it with the preceding SQL statement. But what if you want to run some ‘‘what if’’
scenarios? For example, you may allow users to edit the discount for selected customers and see
how it affects profit. In this case, reading the line’s total from the database isn’t going to do you
any good, unless you want to update the LineTotal column from within your code. If you add
the same column as a calculated column to the Order Details table, you can freely edit discounts
and the LineTotal column will be always up-to-date.

The LineTotal calculated column is as simple as it can get because it involves the values of a
few other columns in the same row. Another trivial example is the concatenation of two or more
columns, as in the following example:

DS.Employees.Columns.Add(”EmployeeName”,
System.Type.GetType(”System.String”),
”LastName + ’ ’ + FirstName”)

You can also use functions in the calculated column expressions. The following calculated
column has the value Out of Stock if the AvailableQuantity column is 0 or negative, and the
value Immediate Availability if the same column is positive:

Ds.Tables[”Stock”].Columns.Add(”Availability”,
System.Type.GetType(”System.String”),
”IIF(AvailableQuantity > 0, ” &
”’Immediate Availability’, ’Out of Stock’)

You can use any of the functions of T-SQL in your calculated column (string functions, date
and time functions, math functions, and so on). You can also combine multiple conditions with
the AND, OR, and NOT operators. Finally, you can use the IN and LIKE operators for advanced
comparisons.

By the way, the calculated column we just added to our DataSet doesn’t violate any database
design rules, because the extra column lives in the DataSet and is used primarily for browsing
purposes. We haven’t touched the database.

Calculated Columns with Aggregates
In addition to the simple calculated columns you explored in the preceding section, you can create
calculated columns based on the values of multiple related rows. An aggregate column based on
the values of related columns in other tables uses a slightly different syntax. To use aggregates,
you must learn two new functions: Child() and Parent(). They both accept a relation name as an
argument and retrieve the child rows or the parent row, respectively, of the current row, according
to the specified relation.

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 889

SIMPLE CALCULATED COLUMNS 889

Let’s consider again a DataSet with the Orders and Order Details tables. The function Child
(Orders Order Details)returns the rows of the Order Details table that belong to the current row
of the Orders table: the child rows of the current order under the Orders Order Details relation.
Likewise, the function Parent(Orders Order Details) returns the row of the Orders table, to
which the current Order Details row belongs. The Child() function can be applied to the rows of
the parent table in a relation, and the Parent() function can be applied to the rows of the child table.
If the table to which either function applies has a single relation to another table, you can omit the
relation’s name. If the DataSet contains only the Orders and Order Details tables, you can use the
functions Child and Parent to refer the current row’s child and parent row(s) without specifying
the name of the relation.

To add the Items calculated column to the Orders table and store the total number of items in
the order to this column, use the following statement:

DS.Orders.Columns.Add(”Items”,
System.Type.GetType(”System.Int32”,
SUM(child.Quantity))

or the following equivalent statement:

DS.Orders.Columns.Add(”Items”,
System.Type.GetType(”System.Int32”,
SUM(child(Orders Order Details).Quantity))

The last statement is longer but easier to read, and the same code will work even after you
add new relations to the Orders table. The Items calculated column is based on an aggregate over
selected rows in another table and it can simplify reporting applications that need to display totals
along with each order. You can use a similar but slightly more complicated expression to calculate
the total of each order:

DS.Orders.Columns.Add(”OrderTotal”,
System.Type.GetType(”System.Decimal”),
SUM(child(Orders Order Details).UnitPrice *

child(Orders Order Details).Quantity *
(1 - child(Orders Order Details).Discount)”)

What if we wanted to include the freight cost in the order’s total? A calculated column can
either be a simple one or contain aggregates over related rows, but not both. If you need a column
with the grand total of the order, you must add yet another calculated column to the Orders table
and set it to the sum of the OrderTotal and Freight columns.

Computing Expressions

In addition to calculated columns, you can use the Compute method of the DataTable object to
perform calculations that involve the current DataTable’s rows, their child rows, and their parent
rows. The following statement returns an integer value, which is the number of orders placed by
a specific customer:

DS.Orders.Compute(”COUNT(OrderID)”, ”CustomerID = ’ALFKI’”)

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 890

890 CHAPTER 24 ADVANCED DATASET OPERATIONS

Actually, the Compute method returns an object, which you must cast to the desired data type.
To store the value returned by the preceding statement to an integer variable, use the following
expression:

Dim count As Integer
count = Convert.ToInt32(DS.Orders.

Compute(”COUNT(OrderID)”, ”CustomerID = ’ALFKI’”))

The Compute method returns a value; it doesn’t save the value to another column. Moreover, the
Compute method allows you to limit the rows that participate in the aggregate with an expression
identical to the WHERE clause of a SELECT statement.

Consider again a DataSet with the Orders and Order Details DataTables. If you need the total
of all orders for a specific customer, you must call the Calculate method, passing a restriction as
an argument, as shown in the preceding statement. If the DataSet contained the Customers table
as well, you could add a calculated column to the Customers table and store there each customer’s
total for all orders. This value should be identical to the one returned by the Compute method.

VB 2008 at Work: The SQL Expressions Project
In this sample application, we’ll put together all the information presented so far in this chapter
to build a functional application for exploring the Northwind Corporation’s sales. The applica-
tion’s main form consists of a TabControl with five tab pages, which are shown in Figures 24.1
through 24.5. To use the application, you must click the Populate DataSet button at the bottom of
the form.

Figure 24.1

On the Orders tab of the
SQL Expressions appli-
cation, you can select
orders based on various
user-supplier criteria

On the Orders tab, you can select orders based on various criteria. Note that you can’t combine
the criteria, but it wouldn’t be too much work to take into consideration multiple criteria and
combine them with the AND operator. On the Customer Orders tab, you can view the customers
and select one to see that customer’s orders, as well as a summary of the selected customer’s
orders. The Employee Orders tab is almost identical; it displays orders according to employees. On
the Best Sellers tab, you can click the Top Products and Customers button to view the best-selling
products and the top customers. If you click a customer name, you’ll be switched to the Customer
Orders tab, where the same customer will be selected on the list and the customer’s orders will

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 891

VB 2008 AT WORK: THE SQL EXPRESSIONS PROJECT 891

appear in the ListView control at the bottom of the form. On the Order Details tab, you see the
selected order’s details. No matter where you select an order by double-clicking it, its details will
appear on this tab.

Figure 24.2

On the Customer Orders
tab, you can review cus-
tomers and their orders.

Figure 24.3

On the Employee Orders
tab, you can review
employees and their
orders.

Figure 24.4

On the Best Sellers
tab, you can view the
best-selling products
and the customers with
the largest sales figures.

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 892

892 CHAPTER 24 ADVANCED DATASET OPERATIONS

Figure 24.5

On the Order Details
tab, you can view an
order’s details.

The SQL Expressions project demonstrates how to write an application for navigating through
related tables in all possible ways (at least, in all meaningful ways). This application is unique
in that it populates a DataSet at the client and uses the data for its calculations. After the data is
downloaded to the client, not a single trip to the server will be required, and as you can guess, the
code uses calculated columns and the Select and Compute methods of the DataTable class.

First, you must create a new DataSet, the NorthwindDataSet, with the following tables: Orders,
Order Details, Customers, Employees, and Products. The relations between any two of these tables
will be picked up by the DataSet Designer and added to the DataSet. I was interested in the sales
of the Northwind Corporation, but I’ve included the Employees, Customers, and Products tables
to display actual names (product, customer, and employee names) instead of meaningless IDs.
When the form is loaded, the code adds a bunch of calculated columns to the DataSet’s tables, as
shown here:

[Order Details].Subtotal A simple calculated column for storing each detail line’s total:

If NorthwindDataSet1.Order Details.Columns
(”DetailSubtotal”) Is Nothing Then

NorthwindDataSet1.Order Details.Columns.Add
(”DetailSubtotal”,
System.Type.GetType(”System.Decimal”),
”(UnitPrice * Quantity) * (1 - Discount)”)

End If

Orders.OrderTotal A calculated column with aggregates for storing the order’s total:

If NorthwindDataSet1.Orders.Columns(”OrderTotal”)
Is Nothing Then

NorthwindDataSet1.Orders.Columns.Add(”OrderTotal”,
System.Type.GetType(”System.Decimal”), ”SUM(Child.DetailSubtotal)”)

End If

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 893

VB 2008 AT WORK: THE SQL EXPRESSIONS PROJECT 893

Customers.CustomerTotal A calculated column with aggregates for storing the customer’s
total:

If NorthwindDataSet1.Customers.Columns
(”CustomerTotal”) Is Nothing Then

NorthwindDataSet1.Customers.Columns.Add
(”CustomerTotal”,
System.Type.GetType(”System.Decimal”),
”SUM(Child.OrderTotal)”)

End If

Products.ItemsSold A calculated column with aggregates for storing the number of items of
the specific product that were sold:

If NorthwindDataSet1.Products.Columns
(”ItemsSold”) Is Nothing Then

NorthwindDataSet1.Products.Columns.Add
(”ItemsSold”,
System.Type.GetType(”System.Int32”),
”SUM(Child(FK Order Details Products).Quantity)”)

End If

Employees.Employee A simple calculated column for storing the employee name as a single
string (instead of two columns):

If NorthwindDataSet1.Employees.Columns
(”Employee”) Is Nothing Then

NorthwindDataSet1.Employees.Columns.Add
(”Employee”,

System.Type.GetType(”System.String”),
”LastName + ’ ’ + FirstName”)

End If

Notice that the code checks to make sure that the column it’s attempting to add to the DataTable
doesn’t exist already. In addition, the Quantity column’s type is changed from Integer to Decimal.
This conversion is necessary because the Quantity column is used in aggregates later in the code,
and the result of the aggregate is the same as the column’s type. Specifically, we’re going to calcu-
late the average quantity per order with the AVG(Quantity) function of T-SQL. If the argument of
the function is an integer, the result will also be an integer, even though the average is rarely an
integer. The following statement changes the type of a DataColumn in the DataSet:

NorthwindDataSet1.Order Details.Columns(”Quantity”).DataType =
System.Type.GetType(”System.Decimal”)

See the section ‘‘Aggregate Functions’ Return Values’’ a little later in this chapter for more on
handling the return values of aggregate T-SQL values.

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 894

894 CHAPTER 24 ADVANCED DATASET OPERATIONS

Then the code clears the DataSet and loads its tables with the following statements:

NorthwindDataSet1.Clear()
Me.Order DetailsTableAdapter1.Fill(NorthwindDataSet1.Order Details)
Me.OrdersTableAdapter1.Fill(NorthwindDataSet1.Orders)
Me.ProductsTableAdapter1.Fill(NorthwindDataSet1.Products)
Me.ShippersTableAdapter1.Fill(NorthwindDataSet1.Shippers)
Me.CustomersTableAdapter1.Fill(NorthwindDataSet1.Customers)
Me.EmployeesTableAdapter1.Fill(NorthwindDataSet1.Employees)

Now, on the Orders tab, we can look at the statements that perform the search operations.
All the buttons on this tab pick up the appropriate values from the controls on the right side of the
form and submit them to the Select method of the Orders DataTable. The Search By Order Date
button executes the Select method shown in Listing 24.1 to retrieve the orders that were placed
between the two specified dates.

Listing 24.1: Retrieving Orders by Date

Private Sub bttnSearchOrderByDate Click(...)
Handles bttnSearchOrderByDate.Click

Dim selectedRows() As DataRow
selectedRows = NorthwindDataSet1.Orders.Select(

”OrderDate>=’” &
dtOrderFrom.Value & ”’ AND
OrderDate <= ’” &
dtOrderTo.Value & ”’”, ”OrderDate DESC”)

ShowOrders(selectedRows)
lblOrderSearchCount.Text = ”Search returned ” &

selectedRows.Length.ToString & ” rows”
End Sub

The first argument to the Select method is an SQL expression that selects orders by data,
and the second argument determines the order in which the rows of the Orders table will be
returned. When the various date values are substituted, the following Select method is exe-
cuted:

Select(”OrderDate>=’1/1/1996’ AND
OrderDate <= ’8/31/1996’”, OrderDate DESC”)

The arguments passed to the Select method are identical to the WHERE and ORDER BY clauses
of a SELECT statement you’d execute against the database with the Command object. The Select
method, however, will act on the data in the DataSet at the client; it will not contact the server.
If you need live, up-to-the-minute data, you should execute your queries directly against the
database. But for many reporting tools, you can move all the relevant information to the client and
work with it without additional trips to the server. The sample application shown in this section
is a typical example of the type of applications that will benefit the most from working with a
disconnected DataSet.

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 895

VB 2008 AT WORK: THE SQL EXPRESSIONS PROJECT 895

Should We Move Large Tables to the Client?

You’ll probably wonder how wise it is to load a large chunk of the database to the client. In some
cases, it makes sense to move a lot of data to the client. If a manager needs all this information, for
example, the data will be moved to the client, either in small pieces or as a whole.

You should impose some limits to the amount of data you move to the client as always, such as lim-
iting the orders by date or the customers by geographical area, but still you’ll end up downloading a
whole lot of data to the client. Think of these applications as reports: If you need to print a detailed
sales report, you’ll move all the required information to the client. Besides, this type of application is
used by decision makers and is not used on a daily basis either.

As long as you don’t move all the customers and products to the client every time the user must select
a client or a product to issue an invoice, your applications won’t cause network traffic problems. In
other situations, you can afford to move large result sets to the client, because the application will not
connect to the server again for a long time — not to mention that you can persist the DataSet at the
client and reuse the same data in a later session.

An advantage of moving large sets of data to the client is that we free the server by moving a lot of
operations that would otherwise be executed by SQL Server to the client. Again, this makes sense only
if the user of the application is going to work for a while with the data and won’t be populating the
client DataSet every few minutes.

You can also persist the DataSet to a disk file and allow managers to examine the sales figures of last
month, or last quarter, for as long as they wish on their workstations, even on their laptops. After
the DataSet has been saved to a local file, the end user can disconnect from the database and work
with the data in a totally disconnected fashion. With a powerful client, this approach is even more
efficient than executing queries against the database as needed, especially if the database server is
overwhelmed by other tasks that must be performed in a connected fashion.

Selecting and Viewing an Order’s Details
Let’s continue with the other operations of the application. When you double-click an order on
the Orders tab, you’ll see its details in a ListView control as usual, in the Order Details tab.
The application’s code extracts the ID of the selected order and passes it as an argument to the
DisplayOrder() subroutine, which populates the controls on the Order Details tab.

The code of the DisplayOrder() subroutine is a bit lengthy, so I’ll explain the basic operations
here. You can open the project to see the entire listing of the subroutine. The DisplayOrder()
subroutine starts by selecting the details of the specified order with the following statements:

Dim selectedRows() As DataRow
selectedRows = NorthwindDataSet1.Order Details.Select(

”OrderID=” & OrderID.ToString, ”ProductID”)

Then it populates the customer controls on the tab by calling the ShowOrderCustomer() sub-
routine, passing as an argument the order’s ID. The ShowOrderCustomer() subroutine retrieves
the order’s row from the Orders table by calling the FindByOrderID method. This method is

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 896

896 CHAPTER 24 ADVANCED DATASET OPERATIONS

exposed automatically by the DataSet, because typed DataSets always provide a method to find
rows by their ID value. Then it retrieves the customer row from the Customers table by calling
the FindByCustomerID method of the Customers table. After reading the customer row, it can
populate the appropriate controls on the tab.

Dim custOrder As NorthwindDataSet.OrdersRow =
NorthwindDataSet1.Orders.FindByOrderID(OrderID)

Dim customer As NorthwindDataSet.CustomersRow =
NorthwindDataSet1.Customers.FindByCustomerID(custOrder.CustomerID)

Back to the DisplayOrder() subroutine: After the customer data have been displayed, the
DisplayOrder() subroutine goes through the selectedRows array, which contains the order’s
detail lines: one DataRow object per element. Note that the Select statement returns an array of
generic DataRow objects, not a specific row object such as NorthwindDataSet.Order DetailsRow.
The code in the DisplayOrders() subroutine iterates through the entire array, casts each element
of the array to the specific type, and displays its fields in the lvOrderDetails ListView control
of the Order Details tab. Listing 24.2 shows only the statements that retrieve the detail fields and
create a new ListViewItem, which is then added to the ListView control.

Listing 24.2: Displaying the Items of a Detail Line

Dim Product As String =
NorthwindDataSet1.Products.FindByProductID(CType(selectedRows(i),
NorthwindDataSet.Order DetailsRow).ProductID).ProductName

Dim Qty As Integer = CType(CType(selectedRows(i),
NorthwindDataSet.Order DetailsRow).Quantity, Integer)

Dim Disc As Decimal = CType(CType(selectedRows(i),
NorthwindDataSet.Order DetailsRow).Discount, Decimal)

Dim Price As Decimal = CType(CType(selectedRows(i),
NorthwindDataSet.Order DetailsRow).UnitPrice, Decimal)

LI.Text = Product
LI.SubItems.Add(Qty.ToString(”#,###”))
LI.SubItems.Add(Price.ToString(”#,###”))
LI.SubItems.Add(Disc.ToString(”#,###.00”))

The Order Details table contains product IDs, which are of no interest to the user, so the first
statement extracts the ProductID field of the current detail row and passes it as an argument to
the FindByProductID method of the Products DataTable. This method returns the matching row
of the Products DataTable, and the code uses it to display the product’s name. The statements that
extract the other detail fields (quantity, price, and discount) are trivial.

The Customer Orders and Employee Orders tabs are similar: They display a list of customers
and employees, respectively, and every time the user selects a customer or employee in the appro-
priate list, the code displays the selected item’s orders (the orders placed by a customer or the
orders made by an employee, respectively) in a ListView control. At the same time, it displays
a summary for the selected entity in a TextBox control, as you can see in the corresponding
figures. The most interesting piece of code in these two pages is the statements that calculate
the summary data. The statements of Listing 24.3 calculate the average order quantity, the average
order amount, and the total order amount for the selected customer.

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 897

VB 2008 AT WORK: THE SQL EXPRESSIONS PROJECT 897

Listing 24.3: Calculating Customer Averages

avgQuantity =
CType(NorthwindDataSet1.Order Details.Compute(”AVG(Quantity)”,

”Parent(FK Order Details Orders).CustomerID=’” &
CustomerID & ”’”), Decimal)

avgOrder = CType(NorthwindDataSet1.Orders.Compute(
”AVG(OrderTotal)”, ”CustomerID=’” &
CustomerID & ”’”), Decimal)

totalQuantity = CType(NorthwindDataSet1.Order Details.
Compute(”SUM(Quantity)”,
”Parent(FK Order Details Orders).CustomerID=’” &
CustomerID & ”’”), Integer)

Total = CType(NorthwindDataSet1.Orders.Compute(
”SUM(OrderTotal)”, ”CustomerID=’” &
CustomerID & ”’”), Integer)

The first statement uses the Compute method of the Order Details DataTable to compute
the average of the Quantity column over the subset of rows specified by the second argument
(the underscore was inserted by the DataSet designer, because the actual table name contains
a space). This argument limits the rows of the Order Details DataTable to the ones that belong
to the orders with CustomerID equal to the ID value of the selected customer. The expression
Parent(FK Order Details Orders) returns the rows of the Orders table that are related to the
rows of the Order Details DataTable with the FK Order Details Orders relation. From these
rows, we select the ones with the specified CustomerID field. The result of the Compute method is
an object, which is cast to a Decimal value with the CType() function.

Without the ability to evaluate SQL expressions over the client’s DataSet data, you’d have to
iterate through the rows of the Customers table, locate the child Order rows for each customer, and
then the Order Detail rows of each order, calculate the line totals, and add them. This approach
takes a lot of complicated code, is not nearly as efficient, and (most important, in my view) is not
elegant. In my experience, an elegant approach is usually more efficient, not to mention that it
simplifies the application’s code overall and is easier to maintain. Of course, if you’re not familiar
with SQL expressions and the Compute method of the DataTable object, you’ll find the preceding
code hard to understand and even harder to apply to other situations.

If you still consider the preceding statements cryptic, consider the equivalent SQL statement
you’d execute in SQL Server’s Management Studio (or Query Analyzer, for users of SQL Server
2000) and try to map its clauses to the arguments of the Compute method. The following SQL
statement returns the average and total order quantities for a specific customer:

SELECT AVG(Quantity)
FROM [Order Details] INNER JOIN Orders
ON [Order Details].OrderID = Orders.OrderID
WHERE Orders.CustomerID = ’BLAUS’

In effect, the Parent() function corresponds to the INNER JOIN clause, and the AVG(Quantity)
function is the SELECT statement’s selection list. The join operation in the SQL expression is

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 898

898 CHAPTER 24 ADVANCED DATASET OPERATIONS

identified by the argument to the Parent() function: The FK Order Details Orders relation
associated the rows of the Order Details DataTable with the rows of the Orders DataTable, just as
the JOIN operator does in the SQL statement.

Aggregate Functions’ Return Values

Let me digress here for a moment to explain a tricky aspect of the aggregate functions. If you
execute the preceding SQL statement, the result that it will return for the specific customer is 26.
The SQL Expressions application will report a slightly different (and more likely) value: 26.12.

Please recall that we had to change the data type of the Quantity column in the Order Details
DataTable from Integer to Decimal to get the correct results. The AVG() function returns a value
of the same type as the column specified in its argument list. The Quantity column is an integer
value, and so is the average over this column. This is a technicality you can easily forget and, as a
result, get the wrong results from your database. Chances are that you will calculate the average
quantities for many customers and notice that all results are integers, a highly unlikely situation
for averages. At any rate, one could easily think that the query worked fine because it returned a
result that’s not ‘‘unrealistically’’ incorrect. To fix the previous SQL statement, you must cast the
column you’re averaging to the desired type, as shown here:

SELECT AVG(CAST(Quantity AS Numeric(8,2)))
FROM [Order Details] INNER JOIN Orders
ON [Order Details].OrderID = Orders.OrderID
WHERE Orders.CustomerID = ’BLAUS’

This SQL statement will return the same result as the SQL Expressions application.
The Top Products And Customers button on the Best Sellers tab retrieves the 10 products with

the largest sales and the 10 best customers in terms of revenue they generated for the corporation.
The results are displayed in two ListView controls, lvBestProducts and lvBestCustomers. The
code behind this button is quite short and is shown in Listing 24.4.

Listing 24.4: Retrieving the Best-Selling Products and Best Customers

Private Sub bttnBestSellers Click(...)
Handles bttnBestSellers.Click

Dim selectedRows() As DataRow
selectedRows =

NorthwindDataSet1.Customers.Select(””, ”CustomerTotal DESC”)
Dim i As Integer
Dim customerItems As Integer
Dim LI As ListViewItem
lvBestCustomers.Items.Clear()
For i = 0 To 9

LI = New ListViewItem
Dim custRow As NorthwindDataSet.CustomersRow =

CType(selectedRows(i), NorthwindDataSet.CustomersRow)
LI.Tag = custRow.CustomerID
LI.Text = NorthwindDataSet1.Customers.

FindByCustomerID

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 899

VB 2008 AT WORK: THE SQL EXPRESSIONS PROJECT 899

(custRow.CustomerID).
CompanyName.ToString

Dim custTotal As Decimal = Convert.ToDecimal(
NorthwindDataSet1.Customers.
FindByCustomerID(

custRow.CustomerID).
Item(”CustomerTotal”))

LI.SubItems.Add(custTotal.ToString(”#,###.00”))
customerItems =

CType(NorthwindDataSet1.
Order Details.Compute(”SUM(Quantity)”,
”Parent(FK Order Details Orders).
CustomerID=’” &
custRow.CustomerID & ”’”), Integer)

LI.SubItems.Add(customerItems.ToString(”#,###”))
lvBestCustomers.Items.Add(LI)

Next

selectedRows = NorthwindDataSet1.Products.
Select(””, ”ItemsSold DESC”)

lvBestPoducts.Items.Clear()
For i = 0 To 9

LI = New ListViewItem
Dim prodRow As NorthwindDataSet.ProductsRow =

CType(selectedRows(i), NorthwindDataSet.ProductsRow)
LI.Text = NorthwindDataSet1.Products.FindByProductID

(prodRow.ProductID).ProductName.ToString
Dim itemTotal As Integer = Convert.ToInt32(

NorthwindDataSet1.Products.FindByProductID(
prodRow.ProductID).Item(”ItemsSold”))

LI.SubItems.Add(itemTotal.ToString(”#,###”))
lvBestPoducts.Items.Add(LI)

Next
End Sub

The code starts by selecting the rows of the Customers DataTable sorted by the Customer-
Total column in descending order. Then it iterates through the top 10 rows, casts each row to
the NorthwindDataSet.CustomersRow type (so we can work with a strongly typed object), and
displays the appropriate fields on the lvBestCustomers ListView control. Next it populates the
selectedRows array again, this time with the rows of the Products table, sorted by the ItemsSold
column in descending order. The top 10 rows are the best-selling products, and the code displays
the appropriate fields in the lvBestProducts ListView control.

Note how the code uses the FindByProductID method to retrieve the matching product row
and read its ItemsSold column. Even though we’re working with a typed DataSet, the ItemsSold
column was added to the DataTable control and was not available when the DataSet was created,
which explains why you won’t see this member when you enter the name of the variable of the
ProductRow type followed by a period.

Petroutsos c24.tex V2 - 01/28/2008 4:48pm Page 900

900 CHAPTER 24 ADVANCED DATASET OPERATIONS

Open the SQL Expressions project, explore its operations, and take a closer look at its code. I’ve
included many comments to explain the application’s operation and ease your way through the
code. (This application has more comments than a college student’s homework!) It’s a functional
report-style application, and you can write similar applications for your company’s data. You’ll
be really hard-pressed to achieve this level of functionality with a reporting tool, not to mention
that you can add printing capabilities to the application by using the techniques discussed in
Chapter 20, ‘‘Printing with VB 2008.’’

The idea is to duplicate a small section of the database in the client’s computer memory by
populating a DataSet with the tables we want to work with (or segments of the tables). The sample
application uses the same data over and over again, so it makes sense to move all the required data
to the client, because this will save our application from making a trip to the server every time the
user clicks one of the items on the form (a customer/employee, an order, and so on). Tables have
a tendency to grow quickly, so you should always try to limit the number of rows you move to
the client, as well as the number of columns you select from each table. For instance, you can work
with the orders of all customers from Germany, or the customers that have placed an order in the
last two months, and so on.

The Bottom Line

Use SQL to query DataSets. Although DataSets resemble small databases that reside in the
client computer’s memory, you can’t manipulate them with SQL statements. However, it’s
possible to query their tables by using the Select method and SQL-like criteria. The Select
method filters the rows of the table to which it’s applied and returns an array of DataRow
objects, which you can use as a data source for data-bound controls.

Master It How would you select the rows of interest from a DataTable?

Add calculated columns to DataTables. Sometimes you’ll need to update a column’s value
based on the values of other columns. For example, you may wish to maintain a column in the
Orders DataTable with the order’s total. For this column to be meaningful, its value should
be updated every time a related row in the Order Details DataTable is modified. In the actual
database, you’d do this with a trigger, but we want to avoid adding too many triggers to our
tables because they slow all data-access operations, not to mention that you’ll be duplicating
information. To maintain totals in a DataSet, you can add calculated columns to its Data-
Tables. You specify a formula for the calculated column, and every time one of the columns
involved in the formula changes, the calculated column’s value changes accordingly.

Master It Add a calculated column to the Customers DataTable that combines the first
and last columns.

Compute aggregates over sets of rows. To calculate aggregates over sets of rows in a Data-
Table, use the Compute method, which accepts two arguments: an SQL-like aggregate function
and a filtering expression, which is similar to an SQL WHERE clause. The aggregate function
isn’t limited to columns of the table to which it’s applied; you can use the Child()function to
access the current row’s child row in a given relation, and the Parent() function to access the
current row’s parent row(s) in a given relation, which is passed to the method as an argument.

Master It Show the statement for adding a new column to the Orders table with each
order’s total.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 901

Chapter 25

Building Web Applications

Developing web applications in Visual Studio 2008 has many similarities to developing traditional
desktop applications. You drag and drop controls onto a form and build your business logic by
using your language of choice — in our case, Visual Basic 2008.

However, as you will see, there are also many differences. There are underlying technologies
that you, the developer, should have a solid understanding of, additional control sets to work
with, and some fundamental differences in the way that the standard controls behave.

In this chapter, you will learn how to do the following:

◆ Create a basic XHTML/HTML page

◆ Format a page with CSS

◆ Set up a master page for your website

◆ Use some of the ASP.NET intrinsic objects

Developing for the Web
In the early days of web development (not all that long ago!), a developer could earn big money
creating what were essentially online brochures by using a basic knowledge of Hypertext Markup
Language (HTML) and some simple design skills.

These days we expect a great deal from our websites and web applications. Entertainment sites
are now fully equipped to engage the visitor with rich user interfaces incorporating a wide range
of visual and aural experiences. Members of the corporate world expect their virtual presence to
mirror their full range of business practices.

In addition, web development, although still seen as a specialized area, is now part of the cor-
porate mainstream, and the developer is expected to be well versed across a range of technologies
and techniques.

The modern web application combines a wide range of sophisticated technologies grafted
onto the HTTP/HTML backbone. Cascading Style Sheets (CSS) are used to control the layout and
appearance of a website. Data is managed with the use of Extensible Markup Language (XML)
and back-end databases such as SQL Server, while rich user interfaces are developed using XML,
JavaScript, and other technologies such as Adobe Flash. AJAX, a clever implementation of existing
technologies, combines XML, JavaScript, and asynchronous technologies to enable the developer
to create online applications that exhibit traditional desktop behavior. XML web services, multi-
media content, RSS feeds, and the use of microformats to assist data aggregators have all become
typical features of modern websites.

In addition, the developer can now expect a website to be accessed by more than just a desktop
computer. Mobile phones, PDAs, and other small form factor devices are all used to access the

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 902

902 CHAPTER 25 BUILDING WEB APPLICATIONS

web in the 21st century. Websites, to be truly ubiquitous, are increasingly expected to be able to
dynamically render their content into an appropriate format.

Visual Studio 2008 provides a range of tools that enable the modern developer to meet the
demands of website creation from the comfort of a Visual Basic environment. Database connec-
tivity is simplified from the traditional complexity of hand-coding scripted server-side pages, and
sites can be developed that dynamically render to suit a wide range of devices without the need to
build multiple versions of an individual site. By compiling much of the code used to drive a site,
many of the security issues that plagued scripted sites are avoided.

Typically, a modern website or web application relies on code that is executed both at the
client (web browser) and server (web server) ends. In addition, there may be a whole range of
other services provided by other servers on the hosting network such as media or databases, and
even services sourced from other websites. Visual Studio 2008 provides the tools to tie all this
together.

This chapter gives an overview of the core technologies that drive the modern web application
and demonstrates the basic tools available to the developer in Visual Studio 2008.

I will begin with some basic concepts. If you are already familiar with HTML, JavaScript, and
server technologies, you may wish to skip ahead to material that is new to you, such as the
‘‘Cascading Style Sheets’’ section.

Understanding HTML and XHTML
HTML is essentially a language to describe text formatting and enable linking of documents (web
pages) delivered over the Web. HTML has grown since its original inception but is still funda-
mentally limited. The area where it does excel is in its ability to act as a framework in which other
technologies such as JavaScript can be embedded.

Extensible HTML (XHTML) is the latest incarnation of HTML. It was developed by the World
Wide Web Consortium (W3 C) to bring HTML syntax into line with other markup languages such
as XML. Most of the tags from HTML 4 (the most recent update to HTML) remained the same, but
much stricter syntax rules apply. The basic changes are as follows:

◆ XHTML is case sensitive, and all tags are in lower case.

◆ All tags must be closed. You can no longer get away with using multiple <p> tags with-
out corresponding closing </p> tags. This includes tags such as that previously
had no corresponding closing tag. Close these tags with a trailing backslash before the final
angle bracket. For example:

◆ All tag attributes must be enclosed in quotation marks (either single or double).

◆ All pages must include an XHTML !DOCTYPE definition and an XML version declaration.

◆ JavaScript must also conform to case syntax — for example, onmouseover not
onMouseOver.

The W3 C encourages developers to use XHTML over HTML. However, for practical purposes,
web browsers still support HTML, and you can get away with not updating older sites and contin-
uing to work with HTML’s lack of strict syntax. See the following sidebar if you wish to upgrade
older sites.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 903

WORKING WITH HTML 903

Upgrading from HTML to XHTML

Converters exist for porting your HTML sites to XHTML. There are also tools to assist in the process
manually. W3 C provides an online validator at http://validator.w3.org.

You can use the validator to initially ensure that your pages conform to the HTML 4 specification and
that they all contain a !DOCTYPE definition such as the following:

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01//EN”
”http://www.w3.org/TR/html4/strict.dtd”>

After your pages are validated for HTML 4, you will need to add the XML declaration to the top of
each page:

<?xml version=”1.0” encoding=”iso-8859-1”?>

Then convert the !DOCTYPE definition to the XHTML version:

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

Finally, modify the <HTML> tag to read as follows:

<HTML xmlns=”http://www.w3.org/1999/xhtml”>

Assuming that you have made all the correct syntax changes, run the validator again and see how
your page performs.

Working with HTML
As a Visual Studio programmer, knowledge of HTML and XHTML can prove invaluable when
sorting out the inevitable formatting and design issues that arise when developing complex web
applications. In addition, understanding the technologies involved can aid in optimizing the
interactions between server and client.

To keep things simple, I will dispense with some of the finer points of XHTML and focus
mainly on ‘‘straight’’ HTML. This section is meant as a basic HTML primer (and is by no means
comprehensive), so feel free to skip ahead if you are already familiar with the language.

More information on HTML can be found easily on the Web or in Mastering Integrated HTML
and CSS by Virginia DeBolt (Sybex, 2007). Useful websites for tutorials include www.w3schools.
com and www.htmlcodetutorial.com.

You can use any standard text editor to author your HTML. Notepad is fine. More-
sophisticated tools that indent and highlight code, such as Notepad2 or EditPad Pro, are avail-
able on the Web. EditPad Pro is a commercial application available from www.editpadpro.com.
Notepad2 is freeware and available from www.flos-freeware.ch/notepad2.html.

Remember to save your files with an .html file extension for them to be recognized as HTML
pages.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 904

904 CHAPTER 25 BUILDING WEB APPLICATIONS

Page Construction
HTML pages have two main sections nested between the opening and closing <html>. . .</html>
tags.

The first section is known as the head area, and it is used to contain information not usually
displayed on the page. (The main exception to this is the page title.) The head area is created by
using the <head>. . .</head> tags and contains meta-information about the page such as the
!DOCTYPE definition, author details, keywords, and the like. It is also used to hold style sheet
information and scripts that may be called later in the page.

The second section of the page is the body, and it contains information that is typically displayed
on the page in a web browser. The body is declared by using the <body>. . .</body> tags.

HTML tags are used to describe the formatting or nature of the information contained within
the opening and closing tags. Tags may also contain attributes, which are used to apply further
information to the content between the opening and closing tags. For example, the body tag can
use the attribute bgcolor to set the background color of the web page. The syntax for setting a
page color to blue is <body bgcolor =”blue”> .

A basic page may appear as shown in Listing 25.1. Some long lines are wrapped here in print,
but you can leave them all on one line in your code.

Listing 25.1: A Basic HTML Page

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01//EN”
”http://www.w3.org/TR/html4/strict.dtd”>
<html>

<head>
<title>Basic Page</title>
<meta name=”description” content=”basic page” />

</head>
<body bgcolor=”cornsilk”>

<p>Hello World</p>
</body>

</html>

Save the page as index.html. You must include the .html as the file extension. Figure 25.1
illustrates how such a page might appear in a web browser.

Figure 25.1

A simple web page run-
ning in a web browser
window

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 905

WORKING WITH HTML 905

The <title> tag enables the title of the page to appear in the title bar of Internet Explorer. The
<meta> tag provides a description phrase that can be accessed by search engines. The bgcolor
attribute of the <body> tag sets the background color to blue, and the <p> tag is used to denote
a simple block of text.

Note that I have used the !DOCTYPE definition for HTML 4. Also note that not closing the
<title> tag correctly can cause the rest of the page to break.

Text Management
There are a range of text management tags, including the previously mentioned <p> tag. The
principal tags are as follows:

◆ The heading tags,<h1>. . .</h1>, <h2>. . .</h2> through to <h6>. . .</h6>, are used to
control the size of text. <h1> is the largest format.

◆ The font tag, . . ., has a number of attributes including face for font type,
color for text color, and size for font size. Font sizes range from 1 to 7, where 7 is the
largest. An example of the tag’s usage is <font face =”verdana” color =”red” size
=”3”>Hello World.

◆ The small and big tags — <small>. . .</small>, <big>. . .</big> — can be used to
quickly adjust the relative size of text.

Styles can be managed with tags such as the following:

◆ Bold: . . .

◆ Underline: <u>. . .</u>

◆ Italic: <i>. . .</i>

◆ Strong: . . .

Another useful tag when working with text is the line break tag:
. In HTML, this tag does
not require a closing tag.

Spaces between text can be generated and controlled with more precision than simply relying
on the client browser to insert your preferred amount of white space by using the following special
character: .

A number of other special characters exist to accommodate symbols such as quotes, ques-
tion marks, or copyright symbols. A comprehensive list of HTML tags and their attributes can
be found at www.w3schools.com/tags/default.asp. You can also refer to the W3 C specifica-
tion for HTML 4.01 at www.w3.org/TR/html401/. The XHTML 1.1 specification can be found at
www.w3.org/TR/2007/CR-xhtml-basic-20070713/.

Horizontal Rules
The <hr> tag can be used to draw a line across the page. Its attributes include align, noshade,
size, and width. Width can be declared as a percentage or as an exact amount in pixels.
In HTML 4, there is no closing tag.

Images
Images can be added to web pages by using the tag. This tag is not typically closed under
HTML 4. Attributes for this tag include the following:

◆ The path to the image, src, which can be relative or absolute. (Required.)

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 906

906 CHAPTER 25 BUILDING WEB APPLICATIONS

◆ A text alternative to the image, alt, which is normally recommended for accessibility.

◆ align is used to align an image on a page and to wrap text around the image.

◆ border is used to create a border around the image.

◆ width and height are used to help the page load more quickly, and can also be used to
scale an image.

◆ usemap is used to create image maps.

A typical use of the tag might be the following:

<img src=‘images/myimage.jpg’ border=‘0’ width=‘150’
height=‘150’ align=‘left’ alt=‘Test Image’>

For use in web pages, images must be in one of the following formats: GIF, PNG, or JPG. You
usually use the GIF or PNG formats for drawings or line art, and the JPG format for photographs.

Links
Links can be created on web pages that link to other web pages within the site, other websites,
other types of documents, e-mail, or other locations within the host page. Links are created by
using the <a>. . . tag.

Typically, the <a> tag is used with the href attribute to define the destination of the link. For
example:

Microsoft

The text contained between the tags (Microsoft) is what appears as the link on the page. The text
can be formatted by using the tag inside the <a> tags.

Other attributes commonly used include target (used inside framesets) and name (used for
setting up in-page links such as tables of contents).

Embedding Media
Media objects such as Windows Media Player, Apple’s QuickTime, and Flash can be embedded
in a page by using the <embed> tag. At its very simplest, the tag can be made to work by simply
specifying the source file for the media and the display size, and then trusting the browser to have
the required plug-in and to be able to sort it out. For example:

<embed src=‘multimedia/myvideo.avi’ height=‘200’ width=‘200’></embed>

At a more sophisticated level, you can specify a range of options including the type of plug-in,
the controls to display, whether it should start automatically, and loop properties.

Comments
To insert comments into your HTML, use <!-- . . . -->. For example:

<!-- This is a comment -->

Comments enclosed in this tag are not displayed within the web page.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 907

WORKING WITH HTML 907

Scripts
The <script>. . .</script> tag can be used to insert non-HTML script code such as JavaScript
into your pages. Scripts can be written into the header area and called from the body or used
directly in the body of the page. Before support for more-recent HTML versions and before
JavaScript could be found in virtually every web browser, developers would typically comment
out the code by using <!-- . . . --> to prevent the code from appearing in the browser page. This
is still common practice, although it is no longer usually necessary.

A simple example of the script tag’s usage is as follows:

<script language=‘javascript’>
function mygreatscript(){

etc etc
}

</script>

Lists
Bulleted and numbered lists can be displayed in a web page by using the list tags . . .
for a bulleted list or . . . for a numbered list. Individual items within the list are
denoted by using the . . . tags. An example of creating a bulleted list is as follows:

Item 1
Item 2

Tables
Tables are used extensively in HTML, not only to display data but also to reassemble sliced images
(a technique for minimizing the file size of large images) and to format pages. However, using
tables to format pages is no longer recommended by the W3 C. For accessibility reasons, technolo-
gies such as CSS are the recommended method for creating sophisticated layouts.

Tables are made of rows of cells. When constructing your table, you need to consider the
desired width of the table, the number of rows, and the number of columns required. Other factors
that you may wish to take into account are the padding between cells, and the padding between
the border of a cell and its contents.

Another important consideration is that a badly constructed table is one of the few things that
can truly break an HTML page. You must ensure that all your tags are correctly closed. Tables can
be nested within one another, but excessive nesting can place undue strain on the rendering engine
of the browser and cause unexpected results.

A range of tags are used to create a typical table, and each has its own family of attributes:

◆ The <table>. . .</table> tag acts as the major framework for the table.

◆ <tr>. . .</tr> tags are used to create rows.

◆ Within a given row, <td>. . .</td> tags are used to create the individual cells. The num-
ber of cells defined in the first row sets the number of columns in the table. This is
important to consider in subsequent rows if you wish to add or subtract from the number

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 908

908 CHAPTER 25 BUILDING WEB APPLICATIONS

of cells. The rowspan and colspan attributes are used to alter the number of columns and
rows employed at various points in the table. For example: colspan = ‘2’ will force a cell
to span over two columns.

◆ For headings, you can use <th>. . .</th> tags to create cells in the first row. These offer a
slightly different format than the <td> cells offer.

The following code snippet demonstrates a simple data table of three rows (one header) and
three columns. The resulting table is shown in Figure 25.2.

<table width=‘400’ border=‘1’>
<tr bgcolor=‘silver’>

<th width=‘100’>ID</th>
<th width=‘200’>Name</th>
<th width=‘100’>Age</th>

</tr>
<tr align=‘center’>

<td valign=‘middle’>1</td>
<td valign=‘middle’>Fred</td>
<td valign=‘middle’>23</td>

</tr>
<tr align=‘center’>

<td valign=‘middle’ bgcolor=‘lightblue’>2</td>
<td valign=‘middle’ bgcolor=‘lightblue’>Mary</td>
<td valign=‘middle’ bgcolor=‘lightblue’>21</td>

</tr>
<tr align=‘center’>

<td valign=‘middle’>3</td>
<td valign=‘middle’>Wilma</td>
<td valign=‘middle’>25</td>

</tr>
</table>

Figure 25.2

A simple data table

The following code snippet illustrates how a table might be used to reconstruct a sliced image.
Note the use of the align attribute to set horizontal alignment and the valign attribute to set
vertical alignment:

<table width=‘400’ border=0 cellspacing=‘0’ cellpadding=‘0’>
<tr>

<td valign=‘bottom’ align=‘right’></td>
<td valign=‘bottom’ align=‘left’></td>

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 909

WORKING WITH HTML 909

</tr>
<tr>

<td valign=‘top’ align=‘right’></td>
<td valign=‘top’ align=‘left’></td>

</tr>
</table>

Figure 25.3 illustrates how this image will appear in a web page (the left-hand image) and how
the table cells come together to reassemble the image (the right-hand image).

Figure 25.3

A sliced image reassem-
bled using an HTML
table

Page Formatting
Various methods can be used to format pages in HTML. They all have inherent limitations, but
the <div> tag offers the most flexibility. The methods are as follows:

Flow format This relies on the browser to format the page according to the order of items in
the HTML. Flow format is easy to implement, but of limited usefulness.

A table This is one of the more popular methods, although it is no longer officially recom-
mended by the W3 C for accessibility reasons.

Frames These effectively create the different parts of your page in separate HTML docu-
ments. You would use a frameset to reassemble them as a single page in the browser.

Inline frames (iFrames) These create a floating frame that can be placed within an HTML
page. This is a popular method of displaying content from another website (such as a news
feed) within your web page.

<div> tags These can be used to precisely locate content on your page. Combined with CSS,
<div> tags offer a powerful and flexible method of organizing a page. The output of ASP.NET
is largely driven by <div> tags for layout purposes.

Later, when you look at Cascading Style Sheets, you will see how <div> tags can be used to
lay out a page.

Forms and Form Elements
Forms are the traditional method by which users can communicate information back to the web
server that is hosting the website being viewed. Information sent back by a form can then be
processed in some way at the server, and the outcome can be dynamically incorporated into a
new page that the user can view.

For example, a login page would likely use a form to collect the username and password from
the user and return this information to the server for authentication before access to the rest of the
site is granted. In addition, personal preferences for the site can be applied to the returned pages
according to the stored preferences of the registered user.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 910

910 CHAPTER 25 BUILDING WEB APPLICATIONS

A form is created by using the <form>. . .</form> tags. The commonly used attributes include
the following:

Name Defines a unique name for the form.

Action Specifies the Uniform Resource Locator (URL), or Internet address, of the resource to
process the form’s response. (Required.)

Method Either post or get (default). This specifies the HTTP method used to return the
form’s data. The get method sends the data as part of the URL (limited to a maximum of 100
ASCII characters), and post sends the form’s content in the body of the request.

Within the form, you create your HTML as usual. However, information that you wish to be
processed by the form needs to be collected by using form controls. The controls that are available
include the following:

Buttons Your form must have at least one button for submitting data. Another button that is
commonly used clears the form’s contents. Syntax for the buttons are as follows:

<input type=‘submit’ value=‘Submit data’>
<input type=‘reset’ value=‘Reset form’>

It is not necessary to include the value attribute because this sets the text that will appear in
the button, and there are default text values of Submit and Reset.

You can use the following to create other buttons on your forms to run client-side scripts:

<input type=‘button’ value=‘Mybutton’ onclick=‘myscript’>

A more flexible control, however, is the <button> tag. This can be used anywhere on the
HTML page to run scripts and can replace the traditional Submit and Reset buttons in your
forms. It offers greater flexibility for formatting its appearance (especially when used with
CSS). Its basic syntax is as follows:

<button type=‘button’ name=‘name’ onclick=‘myscript’>Click Here</button>

By using an image tag in place of Click Here, you can set an image to be the button. Syntax
for using the button as a submit button is simply the following:

<button type=submit’ >Submit</button>

Text The Text control enables the user to enter a single line of text. This can be set as a pass-
word field to mask the user’s entry. The syntax is as follows:

<input type=‘text’ name=‘identity of input data’
value=‘data to be initially displayed in field’>

The name attribute specifies the identity of the data to be processed at the server end (for
example, the username). The value attribute displays text that you may wish to appear
initially in the field (for example, Type user name here). You can also set other attributes
such as size and maxlength. To create a password field, set the type attribute to
password.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 911

CASCADING STYLE SHEETS (CSS) 911

TextArea For larger amounts of text, use the <textarea> tag. Its syntax is as follows:

<textarea name=‘details’ rows=‘10’ cols=‘40’ >Type your details here</textarea>

Note that this control requires a closing tag.

Lists To create lists, use the <select> tag. Lists can be either single select or multiple select,
which is created by using the multiple attribute (simply typing multiple). The size attribute
specifies the number of rows to display. Omitting the size attribute renders the control as a
drop-down combo box. The contents of the value attribute are returned to the server. Individ-
ual items are denoted by using the <option> tags. By typing selected within one of the
option tags, that item is automatically highlighted in the list. The syntax for the tag is as
follows:

<select name=‘items’ size=‘4’ multiple>
<option value=‘1’ selected>Chair</option>
<option value=‘2’>Couch</option>
<option value=‘3’>Arm Chair</option>
<option value=‘4’>Lounge Chair</option>

</select>

Check boxes To create a check box, you use a variation on the <input> tag and set the type
attribute to ‘checkbox’. To initially select a check box, type the attribute checked. The syntax
is <input type = ‘checkbox’ name = ‘Check1’ checked>.

Radio buttons These are yet another variation on the <input> tag. Set the type attribute
to ‘radio’. If you are using a set of linked radio buttons, type the same name attribute for
each radio button in the set. The value attribute is used to return appropriate data when the
radio button is selected. Here is the syntax:

<input type=‘radio’ name=‘radioset’ value=‘1’ checked>
<input type=‘radio’ name=‘radioset’ value=‘2’>
<input type=‘radio’ name=‘radioset’ value=‘3’>

Hidden fields Hidden fields contain information that you may want to make the round-trip
to the server, but that you do not want displayed on the client’s web page. You can use this
field to help maintain state (discussed later in this chapter in the ‘‘Maintaining State’’ section).
Using this field is particularly useful when a client has disabled cookies or when the
information is too long or sensitive to incorporate into the URL. For example, you may wish to
maintain information gathered in previous forms from the client. ASP.NET uses hidden fields
extensively. Here is the syntax:

<input type=‘hidden’ name=‘name of information’
value=‘information to be stored’>

Cascading Style Sheets (CSS)
Cascading style sheets offer a powerful method of controlling the format and layout of the pages
and content of your websites. Styles can be written directly into your HTML pages or created in a
separate text document with the .css extension. The advantage to the developer of using separate

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 912

912 CHAPTER 25 BUILDING WEB APPLICATIONS

CSS pages is that the format and layout of an entire site can be controlled from a single page. In
large sites, consisting of tens or even hundreds of pages, this can be a huge time-saver as well as
introducing a much higher level of consistency and reliability.

In addition, styles are applied sequentially and can override previously set styles. This enables
the web developer to create specific styles for specific sections of the site that may modify the
global settings. You can create and apply multiple style sheets in this manner and even write indi-
vidual style settings onto individual pages if necessary. Styles can also be applied directly to
individual elements within a page. As long as the desired settings are the last to be applied, the
page will appear as required.

Syntax for CSS is quite different from syntax for HTML and is quite strict. You can apply styles
directly to HTML tags (for example, you may wish to format the <h1> tag with a particular font
and color) or set them up in their own classes that can be applied when required. For example,
you may wish to create your own <h8> class.

An external style sheet is included in an HTML page by using the <link> tag, which is typ-
ically placed in the head area of the web page. The following example incorporates a style sheet
titled mystylesheet.css from the styles directory into the web page:

<link rel=‘stylesheet’ type=‘text/css’ href=‘styles/mystylesheet.css’>

An internal style sheet can be created directly in the HTML page by using the <style>. . .

</style> tags. Again, this is typically created in the head area of the document.
If you wish to create a style locally to a particular tag, you add the style attributes inside the

tag. For example, to extend the style of the <p> tag, you would use the following:

<p style=‘font-size:18pt; color:red;’>

Formatting Styles with CSS
Listing 25.2 illustrates a sample style sheet. It demonstrates several simple style attributes that can
be applied to text. You can use the styles directly in a web page by inserting the listing between
<style>. . .</style> tags or you can use it externally by saving the listing out to a separate
text document with a .css file extension. (for example, mystylesheet.css). Some long lines are
wrapped here in print, but you can leave them all on one line in your code.

Listing 25.2: A Sample Style Sheet

h1 {font-weight: bold; font-size: 24pt; color:red;
background: silver; text-align: center;}
p {font-family: arial, sans serif; font-size: 120%;}
p.quote {font-face:verdana; font-size: 10pt; font-style: italic;}
a {text-decoration:none; color:blue;}
a:visited {text-decoration:none; color:blue;}
a:hover {text-decoration:none; font-weight: bold;
font-size: 120%; color:darkblue;}

a:active {text-decoration:none; color:blue;}

If you were to use Listing 25.2 as an external style sheet, you could link it to your web page by
inserting <link rel = ‘stylesheet’ type = ‘text/css’ href = ‘mystylesheet.css’>

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 913

CASCADING STYLE SHEETS (CSS) 913

somewhere in the head area of your web page. This also assumes that the style sheet is sitting in
the same directory as your web page.

Points to note in Listing 25.2 include the following:

◆ The creation of a separate quote class for use with the <p> tag. To employ this class in your
HTML, simply use <p class = ‘quote’>. . .</p>.

◆ By setting styles for the various permutations of the <a> tag, I have also created a sim-
ple rollover effect for use with links. (The order in which these are applied is important for
the rollover effect to work.)

Rollovers can be created by using other methods such as JavaScript, but CSS offers a simple
way of globally controlling the effect. You can also create quite sophisticated-looking buttons
around your links by using the formatting and style properties of CSS.

Page Formatting with CSS
CSS also can be used to define page formatting and layout for an HTML document. CSS is typically
used to define and control <div> tags for this purpose, although you can also use it to set and
control table properties.

Listing 25.3 demonstrates a CSS style sheet used to control basic formatting. Most of the items
should be self-explanatory. (I have used named colors for the background colors for purposes of
clarity. Usually it is preferable to use the hexadecimal equivalents.)

Listing 25.3: Style Sheet to Control Page Layout

.title{
height:80px;
background:lightblue;
margin:5px 10px 10px 10px;
text-align: center;
}

.menu{
position: absolute;
top: 110px;
left: 20px;
width: 130px;
background: silver;
padding: 10px;
bottom: 20px;
}

.content{
background: lightblue;
padding: 30px;
position: absolute;
top: 110px;
bottom: 20px;

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 914

914 CHAPTER 25 BUILDING WEB APPLICATIONS

left: 180px;
right: 20px
}

I have created three classes — title, menu, and content — to describe the three main areas of my
page. The size of the area can be defined as well as its precise location. In the case of the title class,
I haven’t specified an exact location, and the title area will appear relative to where it is written
into the code. Other properties of the areas can also be defined such as padding (distance between
the area’s border and its internal elements) and background color. We use the margin property to
set the width of the title area by defining how far it is located from adjacent elements and the page
border.

Using the margin property in this context can be a little confusing. If four values are listed, they
refer to top, right, bottom, and left, respectively. However, listing just one value will apply it to all
four borders. Listing two values will apply them to the top/bottom and right/left in combination.
If there are three values listed, the missing values are taken from the opposite side. It is sometimes
easier to refer specifically to the margin-right, margin-top, etc. properties.

You can either embed Listing 25.3 into an HTML page or access it by using an external style
sheet. Listing 25.4 demonstrates the code embedded into an HTML page and utilized to set the
layout of the page. Some long lines are wrapped here in print, but you can leave them all on one
line in your code.

Listing 25.4: Using a Style Sheet to Set the Layout of a Web Page

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01//EN”
”http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
<title>Layout Page</title>

<style>

.title{
height:80px;
background:lightblue;
margin:5px 10px 10px 10px;
text-align: center;
}

.menu{
position: absolute;
top: 110px;
left: 20px;
width: 130px;
background: silver;
padding: 10px;
bottom: 20px;
}

.content{
background: lightblue;

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 915

CASCADING STYLE SHEETS (CSS) 915

padding: 30px;
position: absolute;
top: 110px;
bottom: 20px;
left: 180px;
right: 20px
}

</style>
</head>

<body>
<div class=‘title’>

<h1>Heading</h1>
</div>
<div class=‘menu’>

<p>Menu Item 1</p>
<p>Menu Item 2</p>

</div>
<div class=‘content’>

<p>Some Content</p>
</div>

</body>
</html>

Figure 25.4 illustrates how the layout from Listing 25.4 appears in a web page. Carefully look
at the code and you will see how the individual layout classes are used inside the <div> tags to
generate the layout structure of the page.

Figure 25.4

Listing 25.4 running as a
web page

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 916

916 CHAPTER 25 BUILDING WEB APPLICATIONS

This is a very brief overview of CSS. For more-comprehensive coverage, please refer to Master-
ing Integrated HTML and CSS by Virginia DeBolt. There are also many online tutorials available,
such as www.w3schools.com/css/.

JavaScript
You can embed JavaScript into your HTML pages to create interactive and dynamic elements at
the client end. JavaScript can be used to create named functions inside the script tags that can be
called later in the page. You can also use JavaScript attached directly to HTML elements.

Currently, 18 events specified in HTML 4 and XHTML 1 can be used as triggers to run individ-
ual scripts. Table 25.1 lists these events.

Table 25.1: Events Available for Use in HTML

Keyboard Events (Not Valid in Base, BDO, BR,

Frame, Frameset, Head, HTML, iFrame, Meta,

Param, Script, Style, and Title Elements)

onkeydown When a keyboard key is pressed

onkeypress When a keyboard key is pressed and
released

onkeyup When a keyboard key is released

Mouse Events (Not Valid in Base, BDO, BR, Frame,

Frameset, Head, HTML, iFrame, Meta, Param,

Script, Style, and Title Elements)

onclick When an object is clicked with the
mouse

ondblclick When an object is double-clicked with
the mouse

onmousedown When the mouse is clicked on an object

onmousemove When the mouse is moved

onmouseover When the mouse is moved over the
object

onmouseout When the mouse is moved away from
the object

onmouseup When the mouse button is released

Form Element Events (Valid Only in Forms)

onchange When the content of the field changes

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 917

JAVASCRIPT 917

Table 25.1: Events Available for Use in HTML (CONTINUED)

onsubmit When the form is submitted by clicking
the submit button

onreset When the form is reset by clicking the
reset button

onselect When some content of the field is
selected

onblur When an object loses focus

onfocus When an object gains focus as the user
selects the object

Window Events (Valid Only in Body and Frameset

Elements)

onload When the page is loaded

onunload When the page is unloaded

The following code snippet gives an example of using JavaScript to create a rollover effect on a
link:

<font color=‘blue’ face=”verdana” onmouseover=”this.style.color = ‘lightblue’;”
onmouseout=”this.style.color = ‘blue’;” size=1>New Page

This script sets the link color to blue. Rolling the mouse over the link changes it to a light blue.
Moving the mouse off the link resets it to the normal blue.

Listing 25.5 demonstrates how a JavaScript function can be embedded into a web page and then
called from a button press. In this example, clicking the Test button will set the background color
of the web page to blue. Note that the use of bgColor in the JavaScript function is case sensitive.
Some long lines are wrapped here in print, but you can leave them all on one line in your code.

Listing 25.5: Demonstration of a JavaScript Function

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01//EN”
”http://www.w3.org/TR/html4/strict.dtd
<html>
<head>
<title>Javascript example</title>
<script language=‘javascript’>

function changecolor(){
document.bgColor=‘blue’

}
</script>
</head>

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 918

918 CHAPTER 25 BUILDING WEB APPLICATIONS

<body>
<button type=‘button’ onclick=‘changecolor()’>Test</button>
</body>
</html>

We have only touched on the possibilities of JavaScript in these examples. Please refer to
JavaScript Bible, Sixth Edition, by Danny Goodman and Michael Morrison (Wiley, 2007) for
more-thorough coverage. There are many online tutorials also available. A good starting point is
at www.w3schools.com/js/.

AJAX
Asynchronous JavaScript and XML (AJAX) enables the web developer to create online applications
that behave more like standard desktop apps. The asynchronous nature of the technology enables
you to make an HTTP request to the server and continue to process data while waiting for the
response. Data transfers are handled by using the XMLHTTPRequest object. This combines with
the Document Object Model (DOM), which combines with JavaScript to dynamically update page
elements without the need for a browser refresh.

A detailed exploration of AJAX is beyond the scope of this book. For our purposes, it is impor-
tant to note that AJAX has been incorporated into ASP.NET 3.5 and can be leveraged into your
web applications from Visual Studio 2008. We will look at this in more detail in Chapter 26,
‘‘ASP.NET 3.5.’’

An online AJAX tutorial is available from www.w3schools.com/ajax/default.asp.

Microformats
You can use microformats to list data on your website so that it can be accessed by various
data-aggregation tools. Microformats are really just specifications for formatting data such as
address book details or calendar information. Thousands of microformats exist. The
Microformats.org website (http://microformats.org) is a good starting point for the various
specifications.

The hCard is an example of how microformats work. The hCard specification is modeled on
the vCard specification, which is widely used for address books. You can use the hCard creator on
the Microformats website to automatically generate the code for use on your own site. You can
also hand-roll your own code according to the specification. The advantage of listing your address
details in the hCard format is that anyone visiting your site can automatically add your details to
their own address book according to the vCard specification.

Server-Side Technologies
So far you have looked mainly at the technologies that drive the client side of a web-based
application. This is only half of the equation. The website itself is normally hosted on some form of
server platform and managed with a web server package. On a Microsoft platform, the web server
is typically Microsoft’s Internet Information Services (IIS). Requests from the client are processed by
the web server, and appropriate web pages are supplied. The server can also be used to process
information supplied by the client as part of the request to provide a more interactive
experience.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 919

CREATING A WEB APPLICATION 919

Although the range of technologies available at the client end is fairly limited, the server-side
applications can be written in any language or form supported by the web server. In the case of
IIS running an ASP.NET application, the application may be written in any of the .NET-supported
languages.

Prior to ASP.NET, developers working in the Microsoft platform created web applications
mainly using Active Server Pages (ASP). ASPs are scripted pages that combine a variety of tech-
nologies including HTML, JavaScript, server objects, Structured Query Language (SQL), and
Visual Basic Script (VBScript). ASPs are created as plain-text files and saved with the .asp file
extension. ASP is powerful and flexible, but maintaining large sites can be time-consuming, and
achieving and maintaining a decent level of security can be problematic.

With the introduction of ASP.NET, Microsoft gave developers a much tidier approach to creat-
ing their web applications. You can use Visual Studio to create your applications, and superficially
at least, the process of building the application is not terribly different from building standard
Windows applications. Much of the plumbing for connecting to back-end databases or sophisti-
cated objects (which in ASP you would have to lovingly hand-craft) is now taken care of. You also
have the option to write much of the code into code-behind, where it can be safely compiled away
from prying eyes and offer the performance enhancements integral to a compiled environment.
Code-behind is the familiar coding interface normally used to develop desktop applications. Code
written into code-behind is compiled into a library that is kept physically distinct from the scripted
pages of the web application. At the scripted end of ASP.NET, files are plain text and saved with
the .aspx file extension.

However, there are differences between the desktop and web development environments, and
to really take advantage of .NET and fully optimize your web applications, you need to be aware
of the differences and how they can be accommodated and exploited.

My favorite example of the differences between desktop and web development in Visual Studio
is in the use of fragment caching. Fragment caching can be used to cache portions of an ASPX
page that are constantly reused (such as headings). This helps create a performance boost over an
equivalent page that is completely regenerated each time it is called.

Another area where I have seen developers caught out while making the transition from desk-
top to web applications is in the use of view state. View state is used to maintain information about
the current property state of the various controls on a page. It is stored on the client’s web page in
a hidden field and thus makes the round-trip to the server. Depending on the application, it can
get very big very quickly, and even fairly plain pages can suddenly start taking long periods to
download to the client if view state is not managed correctly.

For the remainder of this chapter, we will discuss how to begin creating a web application in
Visual Studio 2008 and examine the available web form and HTML controls.

Creating a Web Application
Developers have two project models in Visual Studio 2008. You can use either the ASP.NET Web
Application from the New Project dialog box or the New Web Site option from the File menu. It is
mainly a matter of preference. In the Web Application option, project resources are defined explic-
itly, and the developer has tighter control over the project. It tends to suit the VB programmer
coming into web programming. The New Web Site option is more flexible and tends to suit the
web programmer migrating to Visual Studio.

To create a web application, open Visual Studio and select the New Project option from the File
menu. From the New Project dialog box, expand the Visual Basic tree and select the Web option.
From this screen, choose ASP.NET Web Application, as shown in Figure 25.5.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 920

920 CHAPTER 25 BUILDING WEB APPLICATIONS

Figure 25.5

Choosing an ASP.NET
web application from
the New Project dialog
box

To create a new website project, open Visual Studio and select New Web Site from the File
menu. This will open the New Web Site dialog box. From here, choose ASP.NET Web Site, as
shown in Figure 25.6.

Figure 25.6

Choosing an ASP.NET
website from the New
Web Site dialog box

After the new project is open, the main difference between the interface for building a web
application and that used for building a standard Windows application is that the Designer for
web applications has three views: Design, Split, and Source. This enables you to alternate between
a graphical view of the page and controls, an ASPX view, and a split view showing both.

The contents of the Toolbox also include HTML controls. You use the Standard controls mainly
to create interactive applications, while the HTML controls are essentially client-side controls that
mimic many of the traditional HTML elements such as tables and horizontal rules.

You can drag and drop controls onto the page in Design view and edit properties by using the
traditional Properties window, or you can switch to Source or Split view and directly edit
the code.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 921

CREATING A WEB APPLICATION 921

You can actually do most of your coding directly onto the ASPX page in Source view. This
includes not only your design elements but also your business logic. However, it makes sense to
separate your business logic from your design and use code-behind by hitting F7, by choosing
View Code from the Solution Explorer, or by double-clicking the control in question.

When you view your application, it will open in your default browser. You may get a message
warning Debugging Not Enabled if you have used F5 or the green arrow. You can choose to either
run the project without debugging or enable debugging in the Web.config file. You can
either modify Web.config manually or choose to allow Visual Studio to do it for you. However,
you will need to remember to disable debugging when you go to deploy your project. To manually
modify Web.config, double-click the Web.config entry in Solution Explorer. Web.config should
open as a page of code. Under compilation, set debug =”true” as shown in the following code
snippet:

<compilation debug=”true” strict=”false” explicit=”true”>

Figure 25.7

Enabling script debug-
ging in Internet Explorer

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 922

922 CHAPTER 25 BUILDING WEB APPLICATIONS

The Web.config file is a text file that holds many of the global settings for your website or
application. The file is automatically generated when you create a new project and it can be edited
manually or through various Visual Studio 2008 wizards. You need to be careful when editing the
file because unlike HTML, the XML in the Web.config file is case sensitive. Making a mistake in
Web.config can break your whole application.

You may also need to enable script debugging in Internet Explorer. From the Tools menu,
choose Internet Options and click the Advanced tab. Under Browsing, deselect the Disable Script
Debugging check box, as shown in Figure 25.7.

Controls
Several sets of controls are available to the developer when creating web applications. These are
accessible from the traditional Toolbox and are separated into several categories. These include
Standard, Data, Validation, Navigation, Login, WebParts, AJAX Extensions, Reporting, and
HTML. Many of these controls exhibit behavior similar to that of their desktop counterparts.

Standard Controls
The Standard controls are also known as web form controls and have intrinsic server-side func-
tionality that you can program against. We will explore some of these controls in more detail in
Chapter 26.

Table 25.2 contains a list of the Standard controls and a brief description of each.

Table 25.2: Standard Controls

Standard Control Description

AdRotator Randomly inserts content (advertisements) within a specified area according
to a weighted index.

BulletedList Displays a bulleted list.

Button Displays a command-style button to enact code back on the server.

Calendar Renders a calendar with calendar-style functionality on the target page.

CheckBox Displays a single check box.

CheckBoxList Renders a list with check box functionality against each item.

ContentPlaceHolder Used in master pages for replaceable content.

DropDownList Enables creation of a drop-down list of items from which the user can make a
selection.

FileUpload Creates a text box and button combination that can be used to upload a file
from the client to the server.

HiddenField Creates an <input type = ‘hidden’> element that can be programmed
with server code.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 923

CONTROLS 923

Table 25.2: Standard Controls (CONTINUED)

Standard Control Description

HyperLink Creates links for navigating internally and externally to the site.

Image Places an image on a page.

ImageButton Enables a graphic to be specified as a button.

ImageMap Displays an image with clickable regions.

Label Standard control for rendering text on a page.

LinkButton Renders a button as a link. Effectively creates a link that posts back to the
server and executes whatever code has been set for it.

ListBox Displays a list of items that may be selected individually or in multiples by
the user.

Literal Similar to the Label control in that it is used to render text to a web page,
but does so without adding any additional HTML tags.

Localize Displays text in a specific area of the page — similar to the Literal control.

MultiView Contains View controls and allows you to programmatically display different
content.

Panel Container control that can be used to set global properties (style, etc.) for a
group of controls.

PlaceHolder Is used as a container by controls that are added at runtime and that may
vary in number.

RadioButton Displays a single radio button control.

RadioButtonList Renders a list with radio button functionality against each item.

Substitution Contains updateable cache content.

Table Enables the establishment of dynamically rendered tables at runtime. Should
not be used for page layout — use the HTML version of the control.

TextBox Provides a data-entry field on a web page. Can be set as a password box with
the contents obscured.

View A panel to display a MultiView control.

Wizard Creates a multipane control for creating wizards.

XML Can be used to write an XML document into a web page.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 924

924 CHAPTER 25 BUILDING WEB APPLICATIONS

Data Controls
Table 25.3 lists the controls available for data access, display, and manipulation in ASP.NET.

Table 25.3: Data Controls

Data Control Description

DataList Control for displaying and interacting with data as a list.

DataPager Provides paging functionality for controls such as ListView.

DetailsView Renders a single record as a table and allows the user to page through
multiple records. Used for master-details forms. Provides ability to create,
delete, and modify records.

FormView Similar to DetailsView without predefined layout.

GridView Displays data as a table.

ListView Displays data as a list and supports create, delete, and update
functionality.

Repeater For creating customized lists out of any data available to a page. List
format is specified by the developer.

AccessDataSource For connecting to an Access database.

LinqDataSource For connecting to a Linq data source.

ObjectDataSource For connecting to a business object as a data source.

SiteMapDataSource For use with site navigation. Retrieves navigation information from a
site-map provider.

SqlDataSource For connecting to a SQL database.

XmlDataSource For connecting to an XML data source.

Validation Controls
Validation controls are used to establish rules for validating data entry in web forms. Table 25.4
lists the Validation controls available.

Table 25.4: Validation Controls

Validation Control Description

CompareValidator Compares the contents of two fields — for example, when constructing a
password-creation confirmation check

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 925

CONTROLS 925

Table 25.4: Validation Controls (CONTINUED)

Validation Control Description

CustomValidator Enables customized validation requirements to be set

RangeValidator Checks that specified content or entries fall within a set range of values

RegularExpressionValidator Checks that a field entry follows a particular specified template — for
example, zip code

RequiredFieldValidator Checks that a user has made an entry into a specified field

ValidationSummary Reports validation status of other validation controls being used on the
form

Navigation Controls
Three controls exist for assisting in the creation of navigation menus in ASP.NET. Table 25.5 lists
the Navigation controls available.

Table 25.5: Navigation Controls

Navigation Control Description

Menu Creates static and/or dynamic menus

SiteMapPath Displays the navigation path and obtains information from the site map

TreeView Displays hierarchical data (such as an index)

Login Controls
ASP.NET includes a membership system that can be used to look after authentication, authorization,
and member details on your site. It is enabled by default and can be configured by using the
Web Site Administration tool. You access this tool by choosing ASP.NET Configuration from
the Website menu. (Note that if you are using the Web Application development environment,
ASP.NET Configuration is accessed from the Project menu.)

Figure 25.8 illustrates the Web Site Administration tool. Table 25.6 lists the Login controls
available.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 926

926 CHAPTER 25 BUILDING WEB APPLICATIONS

Figure 25.8

The Web Site Adminis-
tration tool

Table 25.6: Login Controls

Login Control Description

ChangePassword Allows users to change their passwords

CreateUserWizard Displays a wizard for gathering information from a new user

Login Displays an interface for user authentication

LoginName Displays user’s login name

LoginStatus Displays logout link for authenticated user and login link for
nonauthenticated user

LoginView Displays different information for anonymous and authenticated users

PasswordRecovery Recovers passwords based on email details entered when account was
created

WebParts Controls
WebParts enable users to personalize their view of your website by modifying the content, appear-
ance, and behavior of the web pages from their browsers. Table 25.7 lists the WebParts controls
available.

AJAX Extensions Controls
To fully utilize AJAX in your applications, you will also need to download the ASP.NET AJAX
Control Toolkit from the ASP.NET Ajax website at http://asp.net/ajax/. Table 25.8 lists the
available AJAX Extensions controls that ship in Visual Studio 2008.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 927

CONTROLS 927

Table 25.7: WebParts Controls

WebParts Control Description

AppearanceEditorPart Enables end user to edit certain appearance properties of an associated
WebPart control

BehaviorEditorPart Enables end user to edit certain behavior properties of an associated
WebPart control

WebPartManager Used once on a page to manage all WebParts controls on that page

CatalogZone Contains CatalogPart controls — catalog of controls that users can select
for use

ConnectionsZone Contains WebPartConnection controls — two web part controls that are
linked

DeclarativeCatalogPart Used with CatalogZone control to enable you to add a catalog of web
parts to your web page

EditorZone Area in which users can personalize controls

ImportCatalogPart Imports a description file for a WebPart control — enabling the user to
add the web part with predefined settings

LayoutEditorPart Editor control for users to edit layout properties of a web part

PageCatalogPart Provides a catalog of all web parts that a user has closed on a web
page — enabling the user to add the controls back again

PropertyGridEditorPart Editor control for user to edit properties of a web part

ProxyWebPartManager For use in a content page to declare static connections when a WebPart
Manager has been used in the associated master page

WebPartZone Provides overall layout for WebPart controls

Table 25.8: AJAX Extensions Controls

AJAX Extensions Control Description

ScriptManager Manages script resources for clients — required for Timer, UpdatePane,
and UpdateProgress controls. Use only once on a page.

ScriptManagerProxy For use in circumstances where a page already has a ScriptManager
control.

Timer Performs postbacks at specified interval.

UpdatePanel Enables you to asynchronously refresh portions of a page.

UpdateProgress Provides progress details on partial page updates.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 928

928 CHAPTER 25 BUILDING WEB APPLICATIONS

Reporting Controls
Four Reporting controls exist to create data-driven reports in ASP.NET. Table 25.9 lists the Report-
ing controls available.

Table 25.9: Reporting Controls

Reporting Control Description

CrystalReportViewer For hosting a report in a web application

CrystalReportPartsViewer Displays a Crystal report as a series of linked parts

CrystalReportSource Data source control for Crystal Reports

MicrosoftReportViewer Tool for creating and displaying a report

HTML Controls
Table 25.10 lists the HTML controls available. These are not typically exposed to the server for you
to program. However, you can convert any HTML control to an HTML server control by adding
the attribute runat =”server” to the control in ASPX view. This will allow you to manipulate the
HTML control’s functionality from the server. If you wish to reference the control within your
code, you will need to add an id attribute as well.

Table 25.10: HTML Controls

HTML Control Default HTML Generated

Div <div style=”width: 100px; height: 100px”>
</div>

Horizontal Rule <hr />

Image

Input (Button) <input id=”Button2” type=”button” value=”button” />

Input (Reset) <input id=”Reset1” type=”reset” value=”reset” />

Input (Submit) <input id=”Submit1” type=”submit” value=”submit” />

Input (Text) <input id=”Text1” type=”text” />

Input (File) <input id=”File1” type=”file” />

Input (Password) <input id=”Password1” type=”password” />

Input (Checkbox) <input id=”Checkbox1” type=”checkbox” />

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 929

MAINTAINING STATE 929

Table 25.10: HTML Controls (CONTINUED)

HTML Control Default HTML Generated

Input (Radio) <input id=”Radio1” checked=”checked” name=”R1” type=”radio”
value=”V1” />

Input (Hidden) <input id=”Hidden1” type=”hidden” />

Select <select id=”Select1” name=”D1”>
<option></option>
</select>

Table <table style=”width:100%;”>
<tr>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
</tr>
</table>

Textarea <textarea id=”TextArea1” cols=”20” name=”S1” rows=”2”></textarea>

Maintaining State
An issue for developers when working with web-based applications is that a web server does
not intrinsically maintain an ongoing connection with the client, and each request (even by the
same client viewing the same website) is treated as an entirely separate request. The business of
persisting information about the client and what the client is doing from one request to the next
is called maintaining state. A set of related requests originating from a client viewing a particular
website or using a web application is called the client’s session.

As a web developer, you need to consider how you will maintain state for your clients and web
applications. You need to come up with a way for the server to remember your client and the client
session between requests, and for your client to identify itself to the server with each request. The
issue is complicated by the fact that there are multiple methods of maintaining state, and each
comes with its own set of advantages and disadvantages. At the client end, these methods include
the following:

Using cookies Cookies are small files deposited in the client browser’s cache. Many users
turn these off or restrict their usage because of security and privacy concerns.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 930

930 CHAPTER 25 BUILDING WEB APPLICATIONS

Using hidden fields in the web page This method is reliable, but you will need to code
specifically at the server to read the content. Hidden fields can also end up carrying a lot of
data, can pose a security risk because the information is available in clear text in the page’s
source code, and can get messy if your client uses unexpected navigation techniques such as
the browser’s back button rather than your built-in site navigation.

Incorporating state information into the URL This method is reliable but restrictive. It also
can be a security risk (with data stored in a browser’s history, for example) and may cause
issues with unexpected navigation techniques.

At the server end, typical methods of maintaining state (after the client has been identified)
include the following:

Using session variables This is the simplest method. It uses the Session object. Session vari-
ables behave a bit like global variables, and all the usual warnings apply.

Storing information in a database This is a powerful and flexible method, but it adds over-
head, particularly for a simple site.

Sending the information back to the client in hidden fields This works well but issues
exist, as outlined previously.

For simple sites, ASP.NET takes care of most of these issues for you by using a combination of
techniques. You can use session variables to manage small amounts of data between pages, and
a database for anything more involved. It is, however, a good idea for you to keep an eye on the
ViewState settings of your controls so as to minimize the amount of data making the round-trip
from server to client and back again. You can enable/disable ViewState for any individual control
by using the EnableViewState property in that control’s Property window.

To create a session variable, simply type Session(”MyVariableName”) =”variable content”.
Insert a relevant name and content. Be careful that you do not reuse a variable name for another
purpose because the contents of the original variable will be overwritten.

To access the session variable, you refer to the full Session(”MyVariableName”).
If you are setting up a site that will employ identification of its users, require some form of

authentication, and/or offer customization of settings, it is a good idea to use Microsoft’s member-
ship system, which is available through the Web Site Administration tool and the Login controls.
Refer to the ‘‘Login Controls’’ section earlier in this chapter. You will also see how to use this
system in the next chapter, on ASP.NET 3.5.

Master Pages
ASP.NET 2 introduced the idea of master pages as a method of maintaining a consistent look and
feel for a website or application. This approach has been continued with ASP.NET 3.5.

The idea is to create a page (or a number of pages), known as a master page, from which your
web pages derive their common elements. Web pages linked to master pages are known as content
pages. It is a little like using CSS style sheets to control your web page styles and structure in a
scripted setting.

To add a master page to a site, simply choose the Master Page template from the Add New Item
option in the Website (for ASP.NET Web Site) or Project (for ASP.NET Web Application) menu.
The master page has the file extension .master. You can rename the master page appropriately,
but do not change the file extension!

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 931

ASP.NET OBJECTS 931

In the master page, you can set up standard items that remain consistent across your site such
as headers, footers, and navigation bars. You can also place ContentPlaceHolder controls in those
areas where you are planning on customizing your content pages. The ContentPlaceHolder con-
trols provide editable locations where you can add additional controls and information. You will
need to right-click the master controls and choose the Create Custom Content option. In addition,
you can create a style sheet to control the appearance of your master page (and hence its attached
content pages).

If you make changes to your master pages, these changes will be reflected in your attached
content pages. (You will need to save your changes to the master page before the updates are
reflected through the content pages.)

A master page is not automatically added to your pages. You must explicitly attach it. For
example, to attach it to a new page, choose Web Form from the Add New Item dialog box and
select the Select Master Page check box. Click the Add button, and this will open another dialog
from which you can choose the appropriate master page. Click OK and you are ready to go. You
can add content into the ContentPlaceHolder controls inherited from the master page.

If you already have your master page open in the IDE, you can simply use the Add Content
Page option from the Website menu to directly create a content page attached to the particular
master page you are browsing.

Trying to connect an existing page, such as the default.aspx page initially created in the
application, to a master page can be problematic, so it is often a good idea to delete it. To set a new
default page for your website, right-click the desired page in Solution Explorer and choose the Set
As Start Page option.

In the next chapter, you will see how a master page is applied.

ASP.NET Objects
Objects are available in ASP.NET that can be used to provide you with information about the state
of your application, each user session, HTTP requests, and more. You need to be familiar with
some of these because they can be useful in your code. Many of them also expose useful utility
methods for managing your web application. For example, you have already seen how you can
use the Session object to create a session variable. In this section, you will briefly look at the main
objects and some of their methods and properties.

Application Object
The Application object stores information related to the full web application, including variables
and objects that exist for the lifetime of the application.

Context Object
The Context object provides access to the entire current context and can be used to share informa-
tion between pages. This includes the current Request and Response objects.

Request Object
The Request object stores information related to the HTTP request, such as cookies, forms, and
server variables. You can use this object to see everything passed back to the server from the
client.

The Request object includes the properties shown in Table 25.11. Table 25.12 shows the methods
for the Request object.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 932

932 CHAPTER 25 BUILDING WEB APPLICATIONS

Table 25.11: Properties for the Request Object

ApplicationPath Indicates the virtual path of the application

Browser Gets or sets information about the client’s browser and its capabilities

ClientCertificate Gets the client’s security certificate

Cookies Gets the cookies sent by the client

FilePath Gets the virtual path of the request

Form Gets a collection of form variables

IsAuthenticated Indicates whether the request has been authenticated

IsLocal Indicates whether the request originates from a local computer

Item Gets specified object from Cookies, Form QueryString, or ServerVariables

LogonUserIdentity Gets Windows identity for user

QueryString Gets the collection of HTTP query string variables

ServerVariables Gets the collection of web server variables

URL Gets the URL of the request

UserHostAddress Gets the IP address of the client

UserHostName Gets the DNS name of the client

MapPath Maps the virtual path in the requested URL to the physical path on the
server

SaveAs Saves the request to disk

Response Object
The Response object contains the content sent to the client from your server. You can use the
Response object to send data such as cookies to your client.

The Response object includes the properties shown in Table 25.12 and the methods shown in
Table 25.13.

Server Object
The Server object exposes methods that can be used to handle various server tasks. You can use
these methods to create objects, to map paths, and to get error conditions.

The properties for the Server object are shown in Table 25.14, and the methods are in
Table 25.15.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 933

ASP.NET OBJECTS 933

Table 25.12: Properties for the Response Object

Buffer Gets or sets the value as to whether to buffer output

Cookies Returns the response cookies collection

ContentType Gets or sets HTTP MIME type in output

Expires Gets or sets the cache expiration of a page (in minutes)

IsClientConnected Indicates whether a client is still connected

Table 25.13: Methods for the Response Object

AppendCookie Adds a cookie to the collection

AppendHeader Adds an HTTP header

ApplyAppPathModifier Adds the session ID to the virtual path if a cookieless session is being used

Clear Clears all content output from the buffer

End Sends all buffered output to the client and stops execution of the page

Flush Sends all buffered output to the client

Redirect Redirects the client to a new URL

SetCookie Updates an existing cookie

Write Writes additional text to the response output

Table 25.14: Properties for the Server Object

MachineName Returns the server’s name

ScriptTimeout Gets and sets time-out value for requests in seconds

Table 25.15: Methods for the Server Object

Execute Commonly used to execute a URL to open another page from within your
code

HTMLDecode Decodes a string that has been encoded to remove illegal HTML characters

HTMLEncode Encodes a string to display in a browser

MapPath Gets physical file path of the specified virtual path on the server

UrlEncode Encodes a string for transmission through the URL

UrlDecode Decodes a string encoded for transmission through a URL

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 934

934 CHAPTER 25 BUILDING WEB APPLICATIONS

Session Object
The Session object stores information related to the user’s session, including variables, session ID,
and objects. Properties for the Session object are shown in Table 25.16; methods are in Table 25.17.

Table 25.16: Properties for the Session Object

Count Returns the number of items in the current session state collection

Item Gets or sets individual session values

LCID Gets or sets the locale identifier

SessionID Gets the identifier for the session

Timeout Gets or sets the time between requests in minutes before the session terminates

Table 25.17: Methods for the Session Object

Abandon Terminates the current session

Add Adds a new item to the session state collection

Clear Clears all values from the session state collection

Remove Removes an item from the session state collection

RemoveAll Removes all items from the session state collection

Trace Object
The Trace object can be used to display system and custom diagnostics in the page output. Prop-
erties for the Trace object are shown in Table 25.18, and methods are shown in Table 25.19.

Table 25.18: Properties for the Trace Object

IsEnabled Gets or sets whether tracing is enabled

TraceMode Gets or sets the order in which trace messages are written to the browser

Table 25.19: Methods for the Trace Object

Write Writes trace information to the trace log

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 935

THE BOTTOM LINE 935

Postback
An important aspect of the way that ASP.NET operates is that controls that run on the server are
able to post back to the same page. This process is called postback. This is different from the old
ASP model, in which often there would be two or three pages set up to host the controls, process
the code, and provide a response.

Any ASP.NET page that has at least one visible control will include the JavaScript function
doPostBack. This function records the control that initiated the postback, plus additional infor-

mation about the initiating event, and includes it in the data submitted back to the server.
The Postback property is a read-only value that is set to False when a page is first loaded and

is then set to True when the page is subsequently submitted and processed. At the server end, you
can use the function Page.IsPostBack() to determine the state of a page’s postback and write
code accordingly — this is particularly useful when deriving your page content from a database.

The Bottom Line
Create a basic XHTML/HTML page. Building a basic HTML page is a straightforward pro-
cess using a simple text editor such as Notepad. Knowledge of XHTML/HTML is still a major
asset when developing web applications with Visual Studio 2008.

Master It Develop a web page using HTML that features a heading, some text, an image,
and a link to another page. Convert the page to XHTML and verify it by using the W3 C
verification tool at http://validator.w3.org. You might find that you will need to run the
validation a couple of times to get everything right. If you attach and use the style sheet in
the following Master It challenge, you will find that the validation will be less problematic.

Format a page with CSS. Cascading Style Sheets (CSS) are a powerful tool for controlling the
styles and format of a website. You can manually create style sheets by using a text editor. An
understanding of their operation and syntax is a useful skill when manipulating CSS in Visual
Studio .2008.

Master It Create a CSS style sheet that defines the layout of the web page that you devel-
oped in the previous task, including a header section, a left-hand navigation section, and a
main content section. Include a rollover for the link and apply formatting to the tags that
you have used for your heading and text tags. Attach the style sheet to your web page.

Set up a master page for your website. Using master pages is a reliable method of controlling
the overall layout, and look and feel of your websites and applications. Master pages enable
you to achieve a high level of consistency in your design and are particularly useful if the site
has multiple developers working on it.

Master It Create a website with a master page and attached content page. Use appropriate
controls to give the master page a page heading, My Page, which will appear on all attached
content pages. Use a combination of Button and Label controls on the content page to create
a simple Hello World application.

Petroutsos c25.tex V2 - 01/28/2008 4:57pm Page 936

936 CHAPTER 25 BUILDING WEB APPLICATIONS

Use some of the ASP.NET intrinsic objects. ASP.NET objects such as the Response, Request,
Session, and Server objects offer a range of important utilities in developing, running, and
maintaining your websites and applications. In addition, they also give you access to vital
information about the client, the server, and any current sessions at runtime.

Master It Create a simple website with a master page and two attached content pages.
Use the Server.Execute method attached to a LinkButton control to navigate between the
two content pages.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 937

Chapter 26

ASP.NET 3.5

ASP.NET 3.5 is the latest incarnation of Microsoft’s principal technology for developing and
delivering websites and web-based applications.

As you saw in Chapter 25, ‘‘Building Web Applications,’’ building a modern web-based
application with ASP.NET involves working with a range of different technologies around the
ASP.NET backbone. The modern web developer needs to be conversant with technologies such
as Hypertext Markup Language (HTML), Extensible Markup Language (XML), Cascading Style
Sheets (CSS), databases, JavaScript and, in our case, Visual Basic 2008.

Visual Studio 2008 brings all these technologies together underneath one umbrella. Visual
Studio 2008 provides web developers with seamless access to the various technologies as well as
the familiar and supportive environment of the Visual Studio interface.

Developing with ASP.NET offers you the choice of coding within the scripted ASPX environ-
ment or working with a language such as Visual Basic 2008 in code-behind. You can also split
your code between the two. This offers the advantage of combining the ease and flexibility of
the scripted environment with the performance and security of a compiled environment. It also
enables you to neatly separate your business logic from your user interface (UI). You have full
access to Microsoft’s IntelliSense and AutoComplete support in the scripted environment as well
as in the more traditional code-behind environment.

In this chapter, we will build a demonstration web application to showcase a number of the
technologies, controls, and methodologies available within Visual Studio 2008. In particular, you
will see how Visual Studio 2008 greatly simplifies complex tasks such as setting up authentication,
managing navigation, and connecting to data sources with a range of graphical tools and wizards.

In this chapter, you will learn how to do the following:

◆ Create cascading style sheets

◆ Use web form controls

◆ Create a web user control

Planning the Demonstration Site
In this chapter, we will build a sample website with various interactive features for the mythical
company Wilson’s Computer Parts Online. The purpose of the website is to demonstrate the
various techniques, controls, and technologies available to you in ASP.NET 3.5. The full source
code for this example can be downloaded from this book’s website (www.sybex.com).

The site will include a main front page (default.aspx) with its format and content controlled
from a single master page and cascading style sheet. A separate master page and style sheet will
be created to define the layout and content of the daughter pages of the site. The structure and
function of master pages and their associated content pages were discussed in Chapter 25.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 938

938 CHAPTER 26 ASP.NET 3.5

Other techniques that we will showcase with this web application include the following:

◆ Creating and managing an authentication process using the range of Login controls

◆ Handling site navigation by creating a site map and using the Menu and SiteMapPath
controls

◆ Creating user-defined controls that can be centrally managed and reused throughout the
application

◆ Creating and connecting to data sources, including an XML page and a database

◆ Working with the data-bound GridView control to display data from the XML page

◆ Working with the data-bound DropDownList and ListView controls to create a master/
detail form capable of viewing and editing data on the database

◆ Using the Microsoft Report Viewer to display a report of data on the database

Getting Started
Begin by opening Visual Studio 2008. Choose File � New Web Site to open the New Web Site
dialog box. Complete the following steps:

1. From the New Web Site dialog box, choose ASP.NET Web Site.

2. In the Location field, keep the default path but rename the site WilsonsComputerParts-
Online. Click the OK button.

3. The next step is to delete the default.aspx page. You need to do this because you will
be using master pages to define the layout and content of all your pages. As described in
Chapter 25, it is difficult to attach a master page to an existing page. Right-click default.
aspx in Solution Explorer and choose Delete from the context menu.

4. Next you need to create the master page that will define the layout and content of the main
page for our site. Create a new master page by choosing Add New Item from the Website
menu. This opens the Add New Item dialog box. Choose Master Page from the Templates
window. You may need to click the path and name of your website in Solution Explorer
(at the top of the tree) to get the correct view of the Add New Item dialog box. Keep the
default name of MasterPage.master, and then click Add.

Working with the Add New Item Dialog Box

Your view of items available in the Add New Item dialog box can vary according to which item you
currently have selected in the Solution Explorer tree. In particular, if you have the App Code or App
Data folder selected, you will see a very limited range of items in the Add New Item dialog box.

We will leave our master page for the time being to create the style sheet that will determine
the layout and style properties of MasterPage.master.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 939

BUILDING THE STYLE SHEET FOR MASTERPAGE.MASTER 939

Building the Style Sheet for MasterPage.master
As you saw in Chapter 25, a cascading style sheet may be used to both define the styles used in a
web page and set the layout for the page. In this example, we will use the style sheet primarily to
determine the layout for our master page.

MasterPage.master defines the default entry page for our website. We want something that
will provide a large heading or title area at the top of the page, a menu or navigation area down
the left-hand side of the page, a main content area, and a footer area along the bottom of the page.
Figure 26.1 illustrates how this page should appear.

Figure 26.1

Page layout for the mas-
ter page

The various layout areas of MasterPage.master will be defined by using a style sheet. Within
the style sheet, we will define the following four classes, one for each layout section:

.title The main heading area of the page

.menu The navigation pane on the left side of the page

.content The main content area of the page

.footer The footer at the bottom of the page

In CSS, creating footers can be difficult because of the uncertainty of the actual height of the
other sections of the page. In particular, this causes issues if ‘‘absolute’’ positioning has been used

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 940

940 CHAPTER 26 ASP.NET 3.5

to lay out the page. To overcome this problem, we will use the float layout property to control
the layout of the menu in combination with the default static layout property used for the other
sections. Because static is the default layout property, it does not have to be specified.

Creating the Style Sheet
To create the style sheet, start by opening the Website menu and choosing Add New Item. In the
Add New Item dialog box, create a new style sheet. Name the style sheet MainStyleSheet.css
and click the Add button. This opens MainStyleSheet.css as an editable script document.

When creating a style sheet, you have the option of using the Visual Studio 2008 graphical
development tools or writing your code directly. Writing code directly tends to be a lot quicker,
and you can use the IntelliSense support to help with correct syntax. On the other hand, the graph-
ical tools are great when you know what you want to achieve but are unsure of how to actually
do it.

As with most things in Visual Studio 2008, there are various ways to access the graphical style
tools — from the Styles menu, the Styles toolbar, or the Styles window tab at the bottom of the
Toolbox. Each offers you options to create a style rule and then to build the style. (You may need
to click somewhere on your style sheet page to have these options active.)

We will begin by creating the style for the ‘‘body’’ element of our style sheet by using the
graphical designer tools. The body element should be a default entry in MainStyleSheet.css.
Follow these steps:

1. Click inside the braces of the body element and then choose Styles � Build Style.

2. In the Modify Style dialog box, select the Background category and type #FFF8DC into the
background-color area. This sets the background color to Cornsilk. Click the OK button.
The following entry should now appear in the code listing for MainStyleSheet.css:

body
{

background-color: #FFF8DC;
}

3. Next, you will use the same tools to create the title class. This class will define the heading
area of our web page. Click somewhere below the body element on your style sheet and
then choose Styles � Add Style Rule. This opens the Add Style Rule dialog box. Click the
Class Name radio button and type title into the text box. Click the OK button to exit the dia-
log box.

4. Open the Styles menu and select Build Style to open the Modify Style dialog box. Table 26.1
lists the properties that you need to set for each of the categories. Click the OK button to exit
the dialog box and set the styles.

Alternatively, you can directly type the CSS formatting code. All of the properties in this
class should be self-explanatory, with the possible exception of overflow:hidden. This
style hides any content that may spill outside the title box. The background color of this area
has been set to light blue. The completed code should resemble the following snippet (the
order of items may vary):

.title
{

margin: 5px 10px 10px 5px;
vertical-align: middle;

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 941

BUILDING THE STYLE SHEET FOR MASTERPAGE.MASTER 941

text-align: center;
background-color: #ADD8E6;
height: 80px;
overflow: hidden;

}

Table 26.1: Property Settings for Each Category for the Title Class

Category Property Value

Block vertical-align middle

text-align center

Background background-color #ADD8E6

Box margin-top 5

margin-right 10

margin-bottom 10

margin-left 5

Position height 80px

Layout overflow hidden

5. Next, you will create the navigation menu sidebar area. Either use the graphical tools as
described previously or type the following snippet directly below your completed entry
for title on MainStyleSheet.css. In this case, we are using the float property to set the
positioning of the menu area. This is to overcome some of the issues described previously
for when we create the footer area. The background color of the menu area has been set
to silver.

.menu
{

Background-color: #C0C0C0;
overflow:hidden;
float: left;
padding: 10px;
margin-left:5px;
margin-right:10px;
width: 130px;
height:400px;

}

6. The next step is to add the main content area. Again, use the graphical tools or type the fol-
lowing code snippet directly underneath your completed entry for menu. The background
color for the menu area is light blue.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 942

942 CHAPTER 26 ASP.NET 3.5

.content
{

background-color: #ADD8E6;
overflow:hidden;
height:400px;
margin-right: 10px;
margin-top:10px;
padding: 10px;

}

7. The final step is to create the footer area. Add the following code snippet directly under-
neath your completed entry for content. Setting the clear property to both for the footer
ensures that any other elements are kept clear of either side of the footer. The background
color for this area is light blue.

.footer
{

background-color: #ADD8E6;
clear:both;
padding: 10px;
height: 20px;
margin-top:10px;
margin-left: 5px;
margin-right: 10px;

}

This completes setting up MainStyleSheet.css. Save your work at this stage. The complete
code listing for MainStyleSheet.css is available from the website for this book.

For more information on working with CSS, the following URL is a good starting point:
www.w3schools.com/css/default.asp.

Attaching the Style Sheet to the Master Page
The next step is to add a reference to the completed MainStyleSheet.css into the Master-
Page.master that we created earlier. As with most things in Visual Studio, there are several ways
of achieving this. By far, the simplest is the drag-and-drop method. Complete the following:

1. From Solution Explorer, double-click the entry for MasterPage.master to open the page
in Design view. Click the Source tab at the bottom of the page to switch to Source view.

2. Locate the entry for MainStyleSheet.css. Select the entry and drag it across to the Source
view of MasterPage.master. Drop the entry into the <head> area of the markup for
MasterPage.master — just above the closing </head> tag is suitable. An entry similar to
the following snippet should be created.

<link href=”MainStyleSheet.css” rel=”stylesheet” type=”text/css” />

If you prefer, you can just type this manually into the code. You now need to reference the
layout classes on the master page.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 943

BUILDING THE STYLE SHEET FOR MASTERPAGE.MASTER 943

3. Switch back to Design view. There is a default Div control already on the form.

4. Drag and drop a Div control from the HTML toolbox into the existing Div control on the
form. You do not really need this containing Div control except when you are using
the graphical Toolbox controls. Keeping and using the default Div control ensures that con-
trols that you add to the page fall within the page’s <form> tags. (However, it is a good
idea to switch to Source view and check that this has happened — you may still need to
adjust the code manually, by shifting the <div> tags inside the opening and closing form
tags.) If you are working directly within Source view, you can ensure that this happens
without keeping the default <div> container.

5. In the Properties window for the Div control that you have just added, delete the default
entry for the Style property and set the Class property to title.

6. Add three more Div controls directly underneath the first one that you added (and into the
default containing Div control). Delete the default entry for the Style property for each of
these Div controls. Set the Class property of the second Div control to menu, for the third
Div control to content, and for the fourth Div control to footer.

7. Switch to Source view and delete the <ContentPlaceHolder> tags from the Form section
of the page. Switch back to Design view and add a ContentPlaceHolder control from the
Standard toolbox to the Content area of the master page.

8. Click Save and switch back to Design view. The page layout should now look similar to
that shown originally in Figure 26.1.

If you switch back to Source view, the code for the page should appear as in Listing 26.1.
There may be some variations depending on how much you have relied on the Visual Designer or
worked directly in Source view. Delete any line breaks.

Listing 26.1: ASPX Code for MasterPage.master

<%@ Master Language=”VB” CodeFile=”MasterPage.master.vb”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title>Untitled Page</title>
<asp:ContentPlaceHolder id=”head” runat=”server”>
</asp:ContentPlaceHolder>
<link rel=”stylesheet” type=”text/css” href=”MainStyleSheet.css”/>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<div class=”title”>
</div>

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 944

944 CHAPTER 26 ASP.NET 3.5

<div class=”menu”>
</div>
<div class=”content”>

<asp:ContentPlaceHolder id=”ContentPlaceHolder1”
runat=”server”>

</asp:ContentPlaceHolder>
</div>
<div class=”footer”>
</div>

</div>
</form>

</body>
</html>

Refer back to Chapter 25 for a detailed explanation of the various sections of this markup. Two
things to note here are that there are two ContentPlaceHolder controls. The one in the <head>
area enables you to add metadata to a content page, and the one in the content section enables you
to add content to a content page.

This completes the layout for MainMasterPage.master. Next we will set up a new master page
(and associated style sheet) to manage the daughter pages of the site.

Creating the Content Master Page
The purpose of the content master page (ContentMasterPage.master) is to act as a template
for the daughter pages of the website. This page will also have its style and layout set by a style
sheet. In this example, to keep things simple, we will set up a separate style sheet. However, in a
real-world implementation, you might find it more convenient to keep all your styles together in
the one sheet.

The ContentMasterPage.master file will have a heading (title) area with a horizontal navi-
gation bar (navbar) directly beneath the heading. This will be followed by a large content area
(content) filling the full width of the page, and finished with the standard footer (footer) at the
bottom of the page. Figure 26.2 illustrates how the completed page layout will appear.

We’ll begin by adding a new master page. Complete the following steps:

1. Choose Website � Add New Item.

2. From the Add New Item dialog box, select Master Page and name it
ContentMasterPage.master. Click the Add button to exit.

3. Next you will create the style sheet to set the layout for ContentMasterPage.master.
Open the Website menu and again choose Add New Item. Select Style Sheet and name it
ContentStyleSheet.css. Click the Add button to exit the dialog box.

4. Click the Save All button on the Standard toolbar to save your work.

5. At this stage, we can attach ContentStyleSheet.css to ContentMasterPage.master
before building the classes in the style sheet. Open ContentMasterPage.master in Design
mode by double-clicking its entry in Solution Explorer.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 945

CREATING THE CONTENT MASTER PAGE 945

6. Switch to Source view and locate the entry for ContentStyleSheet.css in the Solution
Explorer. Drag the ContentStyleSheet.css entry into Source view and drop the entry
just above the closing </head> tag. This should create an entry in the ASPX code for
ContentMasterPage.master similar to the following snippet:

<link rel=”stylesheet” type=”text/css” href=”ContentStyleSheet.css”/>

Figure 26.2

Page layout for the con-
tent master page

Next, we will create the layout classes in ContentStyleSheet.css.

Creating ContentStyleSheet.css
ContentStyleSheet.css sets the layout for ContentMasterPage.master. This in turn acts as a
template for the daughter pages in the website. Within ContentStyleSheet.css, we will define
four classes, one for each of the following layout sections:

.title The main heading area of the page

.navbar The navigation bar directly below the title area

.content The main content area of the page

.footer The footer at the bottom of the page

As with MainStyleSheet.css, you can either use the graphical development tools to create the
style sheet or simply type the code directly.

The classes for this style sheet are similar to those we created in MainStyleSheet.css, with
the exception of the navbar area. By having the navbar as a narrow area that runs the full width
of the page, we have simplified the layout. The layout areas are stacked vertically down the page,
so we can rely on the default static layout property (which does not need to be specified) for all

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 946

946 CHAPTER 26 ASP.NET 3.5

the classes and do not need to use the flow layout property as we did previously. Specifying the
left and right margins of each of the layout areas ensures that they extend right across the page.

Begin by opening MainStyleSheet.css by double-clicking its entry in Solution Explorer. Com-
plete the following steps:

1. Set the background color of the page by completing the following entry in the default body
code skeleton:

body
{

background-color: #FFF8DC;
}

2. Create the title class by adding the following snippet immediately underneath the com-
pleted body element:

.title
{

height:80px;
background-color: #ADD8E6;
margin:5px 10px 10px 5px;
text-align: center;

}

3. Create the navbar class by adding the following snippet directly beneath the completed
title class:

.navbar
{

background-color: #C0C0C0;
overflow:hidden;
height:10px;
padding: 10px;
text-align: left;
margin-left: 5px;
margin-right: 10px

}

4. Create the content class by adding the following snippet directly beneath the completed
navbar class:

.content
{

background-color: #ADD8E6;
overflow:hidden;
padding: 20px;
height:400px;
margin-top:10px;
margin-left: 5px;
margin-right: 10px

}

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 947

CREATING THE CONTENT MASTER PAGE 947

5. Finally, complete the style sheet by adding the following snippet for the footer class
immediately beneath the completed content class:

.footer
{

background-color: #ADD8E6;
overflow:hidden;
padding: 10px;
clear:both;
height: 20px;
margin-top: 10px;
margin-left: 5px;
margin-right: 10px

}

Save your work. The full code listing for ContentStyleSheet.css is available from the website
for this book.

Next, we will finish setting the layout for ContentMasterPage.master.

Completing ContentMasterPage.master
Now that we have created the style sheet, we need to apply the layout classes to ContentMaster-
Page.master. Open ContentMasterPage.master in Design view by double-clicking its entry in
Solution Explorer. Then complete the following steps:

1. From the HTML toolbox, drop a Div control into the default Div control already present
in ContentMasterPage.master. Again, you can type these directly into Source view and
do away with the need for the containing Div tag. However, if you continue to use the
Visual Designer, using the default containing Div tag will help ensure that any controls
you add will fall within the page’s <form> tags. (Although it is always a good idea to
switch to Source view to check — the Visual Designer does not always play nice.)

2. In the Properties box for the Div control that you have just added, delete the default entry
for the Style property and set the Class property to title.

3. Add three more Div controls from the HTML toolbox so that they fall within the default
containing Div control. Delete the default entry for the Style property for each Div control.
Set the Class property of the second Div control to navbar, the third Div control to content,
and the fourth Div control to footer.

4. Switch to Source view and delete the <ContentPlaceHolder> tags from the Form section
of the page. Switch back to Design view and add a ContentPlaceHolder control from the
Standard toolbox to the Content area of the master page.

5. Click Save and switch back to Design view. The page layout should now look similar to that
shown originally in Figure 26.2.

If you switch to Source view, Listing 26.2 illustrates how the ASPX code should look for the
page at this stage. Again, there may be some minor variations depending on how much you
have worked directly in Source view and how much you have relied on the tools from the Visual
Designers. Some long lines are wrapped here in print, but you can leave them all on one line in
your code.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 948

948 CHAPTER 26 ASP.NET 3.5

Listing 26.2: ASPX Code for ContentPageMaster.master

<%@ Master Language=”VB” CodeFile=”ContentMasterPage.master.vb”
Inherits=”ContentMasterPage” %>

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title>Untitled Page</title>
<asp:ContentPlaceHolder id=”head” runat=”server”>
</asp:ContentPlaceHolder>
<link rel=”stylesheet” type=”text/css” href=”ContentStyleSheet.css”/>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<div class = ”title”>
</div>
<div class = ”navbar”>
</div>
<div class=”content”>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
runat=”server”>

</asp:ContentPlaceHolder>
</div>
<div class=”footer”>
</div>

</div>
</form>

</body>
</html>

Look through Listing 26.2. You can use it to repair any inconsistencies that may have appeared
in your version of the project at this stage.

Adding Elements to the Main Master Page
Now that we have created our master pages and set the layout properties, we can start to add
elements to the pages that will be inherited by any content pages attached to the master pages.

A useful technique is creating custom user controls or web user controls. The advantage of
creating a user control is that you can combine a number of controls and appropriate business
logic into a single reusable object that you can then apply across as many pages as necessary.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 949

ADDING ELEMENTS TO THE MAIN MASTER PAGE 949

The control can be centrally managed, which is an advantage if you have used the control across a
number of master, content, or normal ASPX pages.

For our purposes, we will create two examples to illustrate the technique:

◆ The first user control is a simple header object that demonstrates the technique for creating
and consuming a web user control. It combines a number of controls, HTML elements, and
style elements.

◆ The second user control is a simple footer control that we will use across the two master
pages. In this example, there is information (the year) that must be updated annually. This
process is simplified by encapsulating the footer into a user control.

We will begin by creating a web user control to act as the website header.

Creating the Web User Control
To create the web user control, do the following:

1. Choose Website � Add New Item, and choose the Web User Control option from the Add
New Item dialog box. Name the control MainHeader.ascx and click the Add button. This
opens MainHeader.ascx as a blank template in Design view.

2. Add a Table control from the HTML controls to the design surface. Switch to Source view
and edit the HTML for the control so that the table has only one row and two columns. The
code should appear as follows:

<table style=”width:100%;>
<tr>
<td> </td>
<td> </td>
</tr>
</table>

If the style attribute for width hasn’t been added, you can add it manually. Note that the
 entries explicitly create blank white space entries in each table cell.

3. Switch back to Design view and set the following attributes for the table by editing the
entries in the Properties box:

◆ Border: 0

◆ CellPadding: 10

◆ Style: width:100%; height: 80px

When you add the Style attribute for height, you can either type directly into Source view
or expand the ellipsis for the Style entry in the Properties tab and use the Modify Style dia-
log box shown in Figure 26.3.

You need to be careful when selecting the table to modify its properties because clicking
inside an individual cell opens the Properties box for that particular cell. You can explore
this by clicking in the right-hand cell of the table and setting the align property to right.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 950

950 CHAPTER 26 ASP.NET 3.5

Figure 26.3

The Modify Style
dialog box

4. Add a Label control to Design view and drag it inside the left-hand cell of the table. Set the
following properties for the Label control:

◆ (ID): Label1

◆ EnableViewState: False

◆ Font – Name: Impact

◆ Font – Size: XX-Large

◆ ForeColor: #990000

◆ Text:Wilson’s Computer Parts – Online

5. Add a LinkButton control to the design surface and drag it inside the right-hand cell of the
table. Set the following properties for the LinkButton control:

◆ (ID): LinkButton1

◆ EnableViewState: False

◆ Font – Bold: True

◆ Font – Size: Medium

◆ ForeColor: #990000

◆ Text: >> home

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 951

ADDING ELEMENTS TO THE MAIN MASTER PAGE 951

Note that we have disabled the EnableViewState property for both of these controls
because leaving it enabled would slightly degrade performance for no actual benefit to the
application.

6. Double-click the LinkButton control from Design view to open the LinkButton1 Click
event handler in code-behind (MainHeader.ascx.vb). Add the following line to the handler:

Response.Redirect(”default.aspx”)

The code for the Click handler should now look like this:

Protected Sub LinkButton1 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles LinkButton1.Click

Response.Redirect(”default.aspx”)
End Sub

The purpose of the LinkButton control in this example is to provide a link back to the main
page of the website. In this example, we have used a server-side control employing the
Response object to redirect to the main page. We could have also used a simple client-side
link or the Server.transfer method.

7. Save your work at this stage by using the Save All option from the Standard toolbar, as
shown in Figure 26.4.

Figure 26.4

Save All toolbar option

You have now completed the user control. The full code for the MainHeader.ascx control is
given in Listing 26.3. (Delete the line breaks.)

Listing 26.3: The MainHeader.ascx Web User Control

<%@ Control Language=”VB” AutoEventWireup=”false”
CodeFile=”MainHeader.ascx.vb” Inherits=”MainHeader” %>

<table style=”width:100%;height: 80px;” border=”0” cellpadding=”10”>
<tr>

<td>
<asp:Label ID=”Label1” runat=”server” Font-Bold=”False”

Font-Names=”Impact” Font-Size=”XX-Large” ForeColor=”#990000”

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 952

952 CHAPTER 26 ASP.NET 3.5

Text=”Wilson’s Computer Parts - Online” EnableViewState=”False”>
</asp:Label>

</td>
<td align=”right”>

<asp:LinkButton ID=”LinkButton1” runat=”server”
EnableViewState=”False” ForeColor=”#990000”
Font-Underline=”False” Font-Bold=”True” Font-Size=”Medium”>
>> home</asp:LinkButton>

</td>
</tr>

</table>

Adding the Web User Control to Your Page
From the Solution Explorer, double-click the entry for MasterPage.master to open the page in
Design view. Drag and drop MainHeader.ascx from the Solution Explorer into the title area of the
MasterPage.master layout on the main Design surface. Your MasterPage.master should now
look like Figure 26.5.

Figure 26.5

MasterPage.master
with the Main-
Header.ascx Web User
control

If you select the instance of the web user control that you have dropped onto your page, you
will see that you can set some properties for the control from the Properties box. Use the Properties
box to set the EnableViewState property to False.

We will use the MainHeader user control to set the heading of the ContentMasterPage.master
as well. Open ContentMasterPage.master in Design view and drag an instance of the Main-
Header.ascx control from Solution Explorer into the title area of the ContentMasterPage.master
layout. Set the EnableViewState property of the MainHeader web user control to False.

The next step is to create a footer user control for the master pages. The Footer control will be
used across all pages and can be created as a web user control.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 953

ADDING ELEMENTS TO THE MAIN MASTER PAGE 953

Creating the Footer.ascx Web User Control
The Footer control is a simple example of a reusable control that has updateable content. In this
case, if you wish to update the calendar year in the control, it can be managed from a single
interface. Complete the following steps:

1. From the Website menu, click Add New Item to open the Add New Item dialog box.

2. Create a new web user control. Name the control Footer.ascx and click Add. This opens
the Design surface for Footer.ascx.

3. Add a Table control from the HTML tools to the Design surface. Switch to Source view and
edit the table code as follows:

<table style=”width:100%;” border=”0” cellpadding=”2”>
<tr>

<td>
 </td>

<td align=”right”>
 </td>

</tr>
</table>

4. Continue to edit the table code by adding <p> tags, special characters, and text as shown
in the following code snippet:

<table style=”width:100%;” border=”0” cellpadding=”2”>
<tr>

<td>
<p>© Wilson's Computer Parts P/L</p></td>

<td align=”right”>
<p>2007</p></td>

</tr>
</table>

5. You can now switch back to Design view and add font and size styles to the <p> tags.
Click in the left-hand table cell. A small p symbol should appear above the table cell on
the left side to indicate that the <p> tag is being actively edited. In the Properties box,
you can select the Style property for the <p> tag. Click the ellipsis to open the Mod-
ify Style dialog box. Under the Font category, set the font-family style to Verdana and
the font-size style to Small. Repeat this for the <p> tag of the right-hand table cell. The
final markup for the Footer control is shown in Listing 26.4. (Delete any line breaks.)

There are other ways to set these styles. You could have applied a style sheet, used the
 tag directly in Source view, or written the styles directly in Source view.

6. Save all at this stage and switch back to MasterPage.master in Design view. Drag an
instance of the Footer.ascx control from the Solution Explorer into the footer area of the
MasterPage.master layout. Set its EnableViewState property to False.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 954

954 CHAPTER 26 ASP.NET 3.5

7. Switch to the ContentsMasterPage.master in Design view and drop an instance of
Footer.ascx into the footer area of this page. Again, set the EnableViewState property of
the control to False.

Listing 26.4: Final Markup for the Footer.ascx Web User Control

<%@ Control Language=”VB” AutoEventWireup=”false”
CodeFile=”Footer.ascx.vb” Inherits=”Footer” %>
<table style=”width:100%;” border=”0” cellpadding=”2”>

<tr>
<td>

<p style=”font-family: Verdana;font-size: small”>
© Wilson's Computer Parts P/L</p></td>

<td align=”right”>
<p style=”font-family: Verdana;font-size: small”>

2007</p></td>
</tr>

</table>

Note the use of the escape character (') instead of the apostrophe in Wilson’s. We use
this character to ensure that the script engine isn’t confused between symbols that we wish dis-
played as text and those used as instructions. A list of common escape codes can be found at
www.petterhesselberg.com/charcodes.html.

Figure 26.6 illustrates MasterPage.master with the Footer.ascx control added.

Figure 26.6

MasterPage.master
with the Footer.ascx
web user control

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 955

BUILDING THE SITE NAVIGATION 955

Building the Site Navigation
Maintaining site navigation can be a major task for the web developer in terms of meeting the need
for adding and removing links reliably and seamlessly across what can be hundreds of pages for
large sites. Most enterprise-level web-development packages offer this level of functionality. In
Visual Studio 2008, site navigation can be managed by using the controls from the Navigation
toolbox and the SiteMap template.

In our sample web application, we investigate two methods for setting up site navigation
elements that can be dynamically updated from a central source:

◆ Setting up a navigation menu in the menu area of MasterPage.master

◆ Creating a path of links from the root page to the current page in the navbar area of
ContentMasterPage.master

We will begin by creating the menu area for MasterPage.master. We will use the Navigation
tools from the Navigation toolbox. At this stage, we do not have any URLs to add as menu items,
so we will simply set up the menu control for later editing.

To use the menu control, you can either statically add items or have the control dynamically
populated from a data source such as a SiteMap located in the root of the site. In this example, we
will use a SiteMap.

Creating a SiteMap
To create a SiteMap, follow these steps:

1. From the Website menu, choose Add New Item to open the Add New Item dialog box.

2. Click the SiteMap option. Keep the default name of Web.sitemap and click the Add button.

3. Web.sitemap is an XML document. Edit the first node of the document to read as follows:

<siteMapNode url=”Web.sitemap” title=”Sitemap” description=”Sitemap”>

As you add pages to your website, you can add additional nodes to the SiteMap. Depending
on the complexity of your site, the nodes can be added at different levels to aid navigation by
providing submenu and rollout navigation menus for your site.

In this example, we have used the SiteMap as the root node because it is our only available
page. Later we will modify this node as we add pages to the site and create the true default page.

Configuring the Menu Control for MasterPage.master
Now that we have set up a SiteMap, we can apply it to navigation elements in our master pages.
We will begin with the menu section of MasterPage.master. Complete the following steps:

1. In Solution Explorer, double-click MasterPage.master to open the page in Design view.

2. Drop a Menu control from the Navigation toolbox onto the menu part of the MasterPage.
master layout. It automatically opens a Common Menu Tasks dialog box, where you can
statically edit menu items, attach a DataSource linking to the SiteMap, and set styles. To
select a style, click the Auto Format option and choose Colorful. You can also switch to
Source view and directly edit these styles once applied.

3. Click Choose Data Source and then select New Data Source from the drop-down box. This
opens the Data Source Configuration Wizard. Select the SiteMap option, keep the default
name of SiteMapDataSource1, and click OK.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 956

956 CHAPTER 26 ASP.NET 3.5

4. In Design view, you will see a SiteMapDataSource1 object created under the Menu
control. Click SiteMapDataSource1 and in the Properties window, click the ellipsis in the
StartingNodeUrl and select Web.sitemap. If you set the StartingNodeOffset property to
1, it will keep the Menu control large and manageable if you wish to continue editing it.
(Otherwise, the Menu control tends to disappear behind the SiteMapDataSource.) You will
need to change this property back to 0 later on.

5. Switch to Source view and edit Font-Size in the source of Menu1 to read 0.9em. This makes
the size of the links a little more agreeable.

6. Finish by saving your work.

Creating the Navbar in ContentsMasterPage.master
In this example, we will use the SiteMapPath control to display the location of the current page as
a path of links relative to the root of the site. The SiteMapPath control displays the location of the
current page relative to its position in the SiteMap hierarchy. Simply drag and drop a SiteMap-
Path control from the Navigation toolbox into the Navbar area of the ContentsMasterPage.
master layout.

A Common Tasks dialog box will open with the control. Select the Auto Format option and
choose Colorful. Again, you can switch to Source view and edit the styles for this control.

Switch to Source view and alter the Font-Size attribute for the <SiteMapPath> tag to read
1.0em. Figure 26.7 illustrates how this page should now look in Design view.

Figure 26.7

ContentsMasterPage
.master with SiteMap-
Path control

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 957

ADDING AUTHENTICATION 957

Adding Authentication
Giving your users the ability to log in to your website has never been easier than with ASP.NET
3.5. A range of controls is available from the Login section of the Toolbox menu that enables you
to create a login form, new user wizard, and logged-in user status indicators. You have the option
of two types of authentication: Windows authentication for an application designed to run within
a local area network (LAN) or forms-based authentication for use with an application run over the
Internet.

Using the Login Control
The Login control is a combination control (involving TextBox, Label, and Validation controls)
that enables a user to enter a username and password for access to your site.

Double-click the entry for MasterPage.master in Solution Explorer to open the page in Design
view. From the Login tools in the Toolbox, add an instance of the Login control to the menu area
of your master page (underneath the existing Menu control). You may wish to add a Horizontal
Rule control from the HTML tools between Menu and Login controls.

A Common Login Tasks dialog box appears next to the Login control. Select the Auto Format
option and choose the Colorful style. The page should appear as shown in Figure 26.8.

Figure 26.8

Adding the Login control

In the Properties box for the Login control, set the VisibleWhenLoggedIn property to False.

Establishing Forms-Based Authentication
The next step is to establish the type of authentication your users will employ to access your site.
As mentioned earlier, there are two main types:

◆ Windows authentication

◆ Forms-based authentication

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 958

958 CHAPTER 26 ASP.NET 3.5

Forms-based authentication enables your users to create new logins, change passwords, and
manage their accounts over the Internet. Windows authentication is very secure, but your users
need to have been set up with a Windows domain account before they can log in. You can use
Windows authentication over the Internet, but it would be for company employees accessing
resources rather than for the general public accessing your services.

To set up authentication, select the Administer Website option from the Common Login
Tasks dialog box of the Login control. Alternatively, you can open the Website menu and choose
ASP.NET Configuration.

This opens the Web Site Administration tool. Select the Security tab to open the section where
you can configure your authentication options. Click the Select Authentication Type link and
choose the From The Internet option. This sets up your site to use forms-based authentication.

Click Done to return to the main Security screen. From this screen, you can create and manage
users, set roles, and create and manage access rules. By default, Visual Studio creates an instance
of SQL Server Express to store all relevant site information. If you wish to use a different data
store, you can change this from the Provider tab.

To begin configuring the authentication, you need to create a new user. Click the New User
link and complete the New User form with appropriate details. Figure 26.9 illustrates the use of
this form. Save your user and click back to the main Security page.

Figure 26.9

Using the New User
form

Adding an Access Rule
Now that you have a user, you will want to set up an access rule that will limit your site to authen-
ticated visitors. When building your site, you can set up subdirectories within your site containing
various pages. You can apply access rules to each of these subdirectories that limit access to either
individual users, authenticated users, or particular roles that you may have defined; for example,
you may have created a Sales Representative role. You can assign various users to this role and

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 959

ADDING AUTHENTICATION 959

then limit access to a particular directory containing resources relevant to sales representatives to
the Sales Representative role. To create an access rule, do the following:

1. Select the Create Access Rules link.

2. Select the root of the WilsonsComputerPartsDirectory. Under Rule Applies To, click the
Anonymous Users radio button.

3. Under Permission, click Allow.

4. Click the OK button to return to the main Security screen.

You can check your rule by clicking the Manage Access Rules link. If you maintain this level of
security for your site, you will need to create a login.aspx page. This page will become the default
page for your site and will need to contain all the necessary controls for users to authenticate or,
where appropriate, set up new accounts.

For our purposes, we will relax security and keep the site fully open to all users. Click the
Manage Access Rules link and delete the access rule that you have created. You will notice that a
default rule exists that cannot be edited, which allows all users access to the site. Normally, as you
add your own access rules, the additional rules override and limit the default rule.

After you have finished establishing your security settings, close the Administration tool. You
may be confronted by a dialog box asking about modifying Web.config and whether you wish to
reload it. Click the Yes To All option.

Adding a LoginName Control to MasterPage.master
The LoginName control displays the login name of the current authenticated user. It is useful for
personalizing the pages of your site and also provides a handy security check.

We will add the LoginName control to both of our master pages. Begin by opening Master-
Page.master in Design view by double-clicking its entry in Server Explorer. Then complete the
following steps:

1. From the Login section of the Toolbox, add a LoginName control to the content section of
your master page above the <ContentPlaceHolder>. You may find it easier to add the
control and then switch to Source view to move the control to the appropriate place. This
is illustrated in the following code snippet:

<div class=”content”>
<asp:LoginName ID=”LoginName1” runat=”server” />
<asp:ContentPlaceHolder id=”ContentPlaceHolder1” runat=”server”>

<p>
</p>

</asp:ContentPlaceHolder>
</div>

2. Add a Label control just before the LoginName control and set the Text property to Wel-
come. Keep the ID property as (Label1).

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 960

960 CHAPTER 26 ASP.NET 3.5

3. Double-click somewhere on your page to open up code-behind at the Page Load code
skeleton. We will now add some functionality to determine whether the user is authen-
ticated and to show the Welcome label only if the username is present. Complete the code
skeleton for the Page Load sub as shown in Listing 26.5.

Listing 26.5: Page Load Routine to Hide/Show Welcome Label

Protected Sub Page Load(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Me.Load

If Request.IsAuthenticated = False Then
Label1.Visible = False

Else
Label1.Visible = True

End If
End Sub

Adding a LoginName Control to ContentMasterPage.master
Using the same approach as you used for MasterPage.master, add a LoginName control and
a Label control to your ContentMasterPage.master. Set the Label control’s text property to
Welcome, and use Listing 26.5 to create the show/hide functionality.

Later we will create pages for handling new logins and password change and retrieval.
ContentMasterPage.master is now complete. You can obtain the full ASPX source code for

ContentMasterPage.master from the website for this book.

Adding Content Pages
Content pages are the pages that your visitors actually see when they visit your site. They inherit
their structure (and much of their content) from their associated master page. We will begin by
adding the first content page to the site. This will be the main default page that visitors to the site
will initially experience.

There are three main ways to add a content page to your project:

◆ Right-click MasterPage.master in the Solution Explorer and choose Add Content Page
from the context menu. Right-click the newly created page in Solution Explorer and choose
the Rename option. Name the page Default.aspx. (This should be the default name.)

◆ With the MasterPage.master open in Design view, choose Website � Add Content Page.
If necessary, rename the page as described in the preceding list item.

◆ Use the Add New Item dialog box from the Website menu. Choose the Web Form option
and select the Select Master Page check box. Give the page an appropriate name in the
Name text box. Click the Add button to open the Select A Master Page dialog box. Choose
the master page and click OK.

The third method described is the preferred method for creating content pages, particularly
if you have to rename them. If you have renamed a page by using the context menu in Solution
Explorer (as in the first two methods), the new name will need to be set in the Inherits property

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 961

ADDING CONTENT PAGES 961

of the Page directive, and for the Partial class in code-behind. To do this, switch to Source view
and set the Inherits property in the Page directive to the name of the page. For example, for
Default.aspx use Default. Then open code-behind for the page (Default.aspx.vb) and set the
Partial class to the name of that page as well.

After you have created your page in Solution Explorer, right-click Default.aspx and choose
the Set As Start Page option from the context menu. Select Default.aspx in Design view and
set the Title property for the document in the Properties box to Wilson’s Computer Parts
Online - Home.

Adding an Entry to the SiteMap
We can now update the SiteMap to reflect the new page. Switch to the SiteMap by selecting the
Web.sitemap tab and alter the root siteMapNode node to read as follows:

<siteMapNode url=”Default.aspx” title=”Home” description=”Home” />

The code listing for the SiteMap should now be as shown in Listing 26.6.

Listing 26.6: Web.sitemap

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode url=”Default.aspx” title=”Home” description=”Home”>
<siteMapNode url=”” title=”” description=” ” />
<siteMapNode url=”” title=”” description=”” />

</siteMapNode>
</siteMap>

Updating the SiteMapDataSource Control
To update the control, switch to MasterPage.master and select the SiteMapDataSource control
that you have used in your page. In the Properties box, set the StartingNodeURL property to
∼/Default.aspx. You can either type this directly or click the ellipsis and select the file. You will
also need to ensure that the StartingNodeOffset property has been set to 0.

If you leave the ShowStartingNode property at its default value of True, the Menu control will
be rendered as a rollout menu from the Home node in the menu column. Set the value to False,
and the individual subnodes of the SiteMap will be listed separately in the menu column. In this
example, we will use the False setting.

Running the Application
Running the application should produce a web page like the one shown in Figure 26.10. Note
that when running the site for the first time by using the start arrow, you will be asked whether
you wish to turn on debugging, as shown in Figure 26.11. It’s a good idea to turn on debugging
while building the application, but you will need to disable it in the Web.config file before you
distribute the site. This was discussed in Chapter 25.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 962

962 CHAPTER 26 ASP.NET 3.5

Figure 26.10

The running application

Figure 26.11

Turning on debugging

You can now add controls and content to the ContentPlaceHolder that you set up in the con-
tent section of the main page layout. Remember to set the ContentPlaceHolder control to Create
Custom Content from the Common Content Tasks rollout menu; otherwise, you will not be able
to add content to the ContentPlaceHolder1 control.

Typically, when adding content, you use combinations of server-side controls such as Label,
TextBox, and Image. These are particularly useful for data-driven applications, where content is
managed from a database. In situations where you do not need to use server-side functionality, it
is a good idea to use the controls from the HTML toolbox because they have a smaller footprint
and improve application performance.

You can also add your content to the ASPX source code (in Source view) by using HTML tags
and writing your HTML directly on the page. You can set styles for your HTML tags in a number
of ways, either through your CSS style sheet or applying styles directly to the tags or to the page.
You can use the various style-builder tools in Visual Studio to assist in this process.

In addition, in Design view, text can be written directly to the design surface. You can format
the text by using the Formatting toolbar.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 963

ADDING FURTHER CONTENT PAGES 963

Adding Further Content Pages
We will now add content pages based on the ContentsPageMaster.master template. These will
become the daughter pages of the website. Complete the following steps:

1. From the Website menu, choose Add New Item to open the Add New Item dialog box.

2. Select the Web Form template and rename the page Password.aspx. Select the Select
Master Page check box and click the Add button. This opens the Select A Master Page
dialog box.

3. Select ContentMasterPage.master and click OK. This opens Password.aspx in Design
view. In the Properties box for Password.aspx, set the Title property for the document
to Wilsons Computer Parts Online – Password Management.

4. Repeat these steps to add three more pages and name the pages NewUser.aspx, Parts
.aspx, and Computers.aspx.

5. In the Properties box for NewUser.aspx, set the Title property for the document to
Wilsons Computer Parts Online – New User; for Parts.aspx, set it to Wilsons Computer
Parts Online – Parts; and for Computers.aspx, set it to Wilsons Computer Parts Online –
Computers.

Adding Items to the SiteMap
We will include the Parts.aspx and Computers.aspx pages in the SiteMap. Switch to the Web
.sitemap page and add entries for the Parts Catalog and Computers pages as shown in Listing 26.7
(you can ignore the line breaks). The NewUser.aspx and Password.aspx pages will be kept out of
the SiteMap because we will set up command button–based navigation for them.

Listing 26.7: Updated SiteMap Code

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode url=”default.aspx” title=”Home” description=”Home”>
<siteMapNode url=”parts.aspx” title=”Catalogue”

description=”Catalogue” />
<siteMapNode url=”computers.aspx” title=”Computers”

description=”Computers” />
</siteMapNode>

</siteMap>

At this point, use the Save All command to save your work.

Using Buttons for Navigation
Rather than use SiteMap entries for the NewUser and Password pages, we will add three
Button controls under the Login control in MasterPage.master and attach custom navigation to
the buttons.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 964

964 CHAPTER 26 ASP.NET 3.5

From Solution Explorer, switch to MasterPage.master in Design view. Complete the
following steps:

1. Add three Button controls immediately under the Login control in the menu area of
the layout.

2. Stretch the width of each Button control to 130px. You can either use the mouse handles on
the control or set the width property in the Properties box.

3. Set the Text property of Button1 to Change Password, for Button2 to Recover Password,
and for Button3 to Create New Login.

4. Double-click Button1 to enter the handler for the Click event in code-behind
(MasterPage.master.vb). Listing 26.8 gives the completed handlers for each of the three
buttons.

In the Click events, we use two session variables (ChangePassword and RetrievePassword)
to record which button has been clicked. This is used because the Password Recovery control and
Change Password control will be set up on the one page. We will display the active control to the
user that is determined by which of the buttons is clicked.

We then use the Response.Redirect method to open the Password page. You can also use the
Server.Transfer method to achieve a similar result. Be aware, however, that Server.Transfer
does not always play nicely with the SiteMapPath control. If you were to add a page to the SiteMap
and use the Server.Transfer method to navigate to the page, the path to the page would not be
fully articulated in the SiteMapPath control.

Listing 26.8: Click Events for the Three Navigation Buttons

Protected Sub Button1 Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button1.Click

Session(”ChangePassword”) = True
Session(”RetrievePassword”) = False
Response.Redirect(”∼/Password.aspx”)

End Sub

Protected Sub Button2 Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button2.Click

Session(”ChangePassword”) = False
Session(”RetrievePassword”) = True
Response.Redirect(”∼/Password.aspx”)

End Sub

Protected Sub Button3 Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button3.Click

Response.Redirect(”∼/NewUser.aspx”)
End Sub

At this point, MasterPage.master is complete. The website for this book contains the full ASPX
source code for MasterPage.master.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 965

ADDING FURTHER CONTENT PAGES 965

Building the Password Page
The next step is to build the Password page. From Solution Explorer, open Password.aspx in
Design view. Complete the following steps:

1. Set the ContentPlaceHolder control to Create Custom Content from the Common Content
Tasks rollout menu.

2. From the Login controls in the Toolbox, drag and drop a ChangePassword control onto the
design surface.

3. From the rollout Common ChangePassword Tasks dialog box, use the Auto Format option
to set the Scheme to Colorful. You can use the drop-down Views box to see how each of the
different stages of the ChangePassword control will appear. Note that you should leave
the Views box set to the first view of the control, because this will be the view that the user
will first see.

4. There is a wide range of properties available that you can change to customize this con-
trol. In the Properties box for the ChangePassword control, set the following properties:

◆ CancelDestinationPageUrl: ∼/Default.aspx

◆ ContinueDestinationPageUrl: ∼/Default.aspx

◆ CreateUseText: Create New User

◆ CreateUserUrl: ∼NewUser.aspx

5. The next step is to add a PasswordRecovery control to the page. Drag and drop an
instance of this control onto the page from the Login toolbox. Keep the default ID of
PasswordRecovery1.

6. From the rollout dialog for the PasswordRecovery control, use the Auto Format option to set
the Scheme to Colorful.

7. In the Properties box, set the SuccessPageUrl property to ∼/Default.aspx and the Visible
property to False.

8. We will now use absolute positioning to place the PasswordRecovery control on top of the
ChangePassword control. With PasswordRecovery1 selected, from the main Visual Stu-
dio menu bar at the top of the screen choose Format � Set Position � Absolute. You can
now move the PasswordRecovery1 control to exactly where it is to be rendered on the
page. Move the control so that it sits over the top of the ChangePassword control.

Relative and Absolute Positioning

Using the Relative and Absolute options from the Format � Set Position menu enables you to pre-
cisely control the positioning of controls on your pages. However, be aware that using these options
(particularly the Absolute settings) can produce unexpected formatting results depending on individ-
ual browser settings.

The PasswordRecovery control requires some additions to the Web.config file as well as a func-
tioning Simple Mail Transfer Protocol (SMTP) service on your web server. Listing 26.9 illustrates
the additions that you will need to make to the Web.config file. (Web.config is accessed from

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 966

966 CHAPTER 26 ASP.NET 3.5

the Solution Explorer.) You will need to modify this listing to meet your local requirements and
settings. Add the listing somewhere in the <configuration>. . .</configuration> section,
after the <configSections>. . .</configSections> tags.

Listing 26.9: Additional Code to Add to Web.config for the PasswordRecovery Control

<system.net>
<mailSettings>

<smtp deliveryMethod=”Network” from=”me@my.web.address.com”>
<network
host=”localhost”
port=”25”
defaultCredentials=”true”

/>
</smtp>

</mailSettings>
</system.net>

Figure 26.12 illustrates how the Password.aspx page should now appear.

Figure 26.12

The completed
Password.aspx page

Writing the Code-Behind for Password.aspx

Double-click the Password.aspx page to switch to code-behind (Password.aspx.vb) and com-
plete the Page Load sub with the code from Listing 26.10.

Listing 26.10: Code-Behind for Password.aspx

Protected Sub Page Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

If Session(”ChangePassword”) = True Then

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 967

WORKING WITH DATA 967

ChangePassword1.Visible = True
PasswordRecovery1.Visible = False

ElseIf Session(”RetrievePassword”) = True Then
ChangePassword1.Visible = False
PasswordRecovery1.Visible = True

End If

End Sub

The purpose of Listing 26.10 is to show the appropriate control depending on the state of the
ChangePassword and RetrievePassword session variables.

Save your work and run the application to test the behavior of the Change Password and
Recover Password buttons.

You can find the full ASPX source code for the Password.aspx page on the website for
this book.

Building the NewUser.aspx page
From Solution Explorer, switch to NewUser.aspx in Design view. Complete the following steps:

1. Set the ContentPlaceHolder control to Create Custom Content from the Common Content
Tasks rollout menu.

2. From the Login controls, add a CreateUserWizard control to the page. A rollout Common
CreateUserWizard Tasks dialog box opens. Select the Colorful scheme from the Auto
Format option.

3. A wide range of properties is available for you to customize the wizard to meet your own
needs. In the Properties box for the CreateUserWizard, set the following properties:

◆ CancelDestinationPageUrl: ∼/Default.aspx

◆ ContinueDestinationPageUrl: ∼/Default.aspx

◆ FinishDestinationPageUrl: ∼/Default.aspx

Again, you can check the appearance of each of the steps in this wizard from the Step drop-
down box in the Common CreateUserWizard Tasks dialog. Make sure that you leave the control
at the first step before deploying your application.

Figure 26.13 illustrates the completed NewUser.aspx page.
The full ASPX source code for the NewUser.aspx page is available from the Website for

this book.

Working with Data
In this section, you will see how to connect to two different data sources (an XML document and
a SQL Server database) to create simple data-driven elements in our application. You will explore
the GridView control and find out how to create a basic master/detail form by using a combination
of the DetailsView and DropDownList controls. You will also see how to create a simple online
report by using the MicrosoftReportViewer control.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 968

968 CHAPTER 26 ASP.NET 3.5

Figure 26.13

The completed
NewUser.aspx page

Visual Studio 2008 ships with the SQL Server Express database package. This is sufficient for
creating the SQL Server database that we will be using later in the chapter.

Creating the XML Database
You will begin by creating the XML document that will act as a data source for the GridView
control. Complete the following steps:

1. From the Website menu, choose Add New Item to open the Add New Item dialog box.
Choose XML File.

2. Name the file Parts.xml and click the Add button. This will be a simple database of
computer parts and prices. Each catalog item has five fields: id, item, type, price, and
availability.

3. Add the contents of Listing 26.11 to the XML page. Some long lines are wrapped here in
print, but you can leave them all on one line in your code.

Listing 26.11: Parts.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<catalogue>

<CatalogueItem id=”1” item=”Random Access Memory”
type=”256 MB” price=”25.00” availability=”In Stock” />
<CatalogueItem id=”2” item=”Random Access Memory”
type=”512 MB” price=”50.00” availability=”In Stock” />
<CatalogueItem id=”3” item=”Random Access Memory”
type=”1 GB” price=”80.00” availability=”In Stock” />

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 969

WORKING WITH DATA 969

<CatalogueItem id=”4” item=”Random Access Memory”
type=”2 GB” price=”120.00” availability=”Not In Stock” />
<CatalogueItem id=”5” item=”Random Access Memory”

type=”256 MB” price=”25.00” availability=”In Stock” />
<CatalogueItem id=”6” item=”Random Access Memory”
type=”512 MB” price=”50.00” availability=”In Stock” />
<CatalogueItem id=”7” item=”Random Access Memory”
type=”1 GB” price=”80.00” availability=”In Stock” />
<CatalogueItem id=”8” item=”Random Access Memory”

type=”2 GB” price=”120.00” availability=”Not In Stock” />
<CatalogueItem id=”9” item=”Hard Drive”

type=”80 GB” price=”100.00” availability=”In Stock” />
<CatalogueItem id=”10” item=”Hard Drive”
type=”120 GB” price=”120.00” availability=”In Stock” />
<CatalogueItem id=”11” item=”Hard Drive”

type=”180 GB” price=”150.00” availability=”In Stock” />
<CatalogueItem id=”12” item=”Hard Drive”

type=”200 GB” price=”180.00” availability=”Not In Stock” />
<CatalogueItem id=”13” item=”Hard Drive”

type=”320 GB” price=”220.00” availability=”In Stock” />
<CatalogueItem id=”14” item=”Hard Drive”

type=”500 GB” price=”300.00” availability=”In Stock” />
<CatalogueItem id=”15” item=”Hard Drive”

type=”750 GB” price=”420.00” availability=”In Stock” />
<CatalogueItem id=”16” item=”Case” type=”Type 1”

price=”25.00” availability=”Not In Stock” />
<CatalogueItem id=”17” item=”Case” type=”Type 2”

price=”55.00” availability=”In Stock” />
<CatalogueItem id=”18” item=”Case” type=”Type 3”

price=”50.00” availability=”In Stock” />
<CatalogueItem id=”19” item=”Case” type=”Type 4”

price=”80.00” availability=”In Stock” />
<CatalogueItem id=”20” item=”Case” type=”Type 5”

price=”120.00” availability=”Not In Stock” />
<CatalogueItem id=”21” item=”Case” type=”Type 6”

price=”25.00” availability=”In Stock” />
<CatalogueItem id=”22” item=”Case” type=”Type 7”

price=”50.00” availability=”In Stock” />
<CatalogueItem id=”23” item=”Case” type=”Type 8”

price=”80.00” availability=”In Stock” />
<CatalogueItem id=”24” item=”Case” type=”Type 9”

price=”120.00” availability=”Not In Stock” />

</catalogue>

We have included 24 items in this example so that we can demonstrate pagination in the final
working example. Feel free to shorten it. Save your work, and from Solution Explorer open the
Parts.aspx page in Design view.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 970

970 CHAPTER 26 ASP.NET 3.5

Working with the GridView Control
The GridView control enables you to create a tabular view of data. It is the ASPX equivalent
of the Windows forms DataGrid control, although the GridView control has less built-in
functionality.

You can enable a Select option in the GridView control to allow users to select individual
rows. You can then programmatically manipulate the selection in code-behind and perform a
range of operations such as returning information to the server, populating a session variable,
updating a database, or writing to a file. The GridView control also enables you to automatically
generate Update, New, and Delete functionality for an editable database. A wide variety of prop-
erties are available to manage the appearance and behavior of the control, including pagination,
which allows you to limit the number of rows of data displayed at any one time. In this instance,
we will link a GridView control to the Parts.xml file.

Begin by setting the ContentPlaceHolder control to Create Custom Content from the Common
Content Tasks rollout menu. Then complete the following steps:

1. Drag and drop a GridView control onto ContentPlaceHolder in the main content section
of Parts.aspx in Design view. This creates an instance of the control with the default name
GridView1.

2. The Common GridView Tasks rollout dialog box will open. Select the Auto Format option
and choose the Mocha scheme. Click OK.

3. Click the Choose Data Source drop-down box and select New Data Source. This opens the
Data Source Configuration Wizard, as shown in Figure 26.14.

Figure 26.14

Data Source Configu-
ration Wizard

4. In the Data Source Configuration Wizard, choose the XML File option; keep the default
name of XMLDataSource1 and click OK.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 971

WORKING WITH DATA 971

5. The next screen of the wizard asks you to browse for the data file. Click the Browse
button and select Parts.xml. In this example, we will not be working with a Transform file
or XPath expression, so you can leave these options blank and click OK.

6. You should now be returned to the Common GridView Tasks dialog box, which will be
expanded to include two additional check box options: Enable Paging and Enable Selection.
Select both check boxes and close the dialog box.

The GridView control should now be populated (in Design view) with some of the data from
Parts.xml, as shown in Figure 26.15.

Figure 26.15

The completed GridView
control

Underneath GridView1, you will see that an XMLDataSource object (XMLDataSource1) has
been created as well. If you need to further edit the data source for the GridView control, you can
do it from here, using the rollout dialog box for the XMLDataSource control.

Further Configuration of the GridView Control
After you have the GridView control installed and data bound, you can do a lot to make the
control more presentable and usable. As an example, complete the following steps:

1. Select the GridView control and use the resize handles to stretch it out across the screen.

2. Alter the column headings rendered at runtime. Click the small arrow in the top-right
corner of the control to open the Common GridView Tasks dialog box, and select the Edit
Columns link. This opens the Fields dialog box shown in Figure 26.16.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 972

972 CHAPTER 26 ASP.NET 3.5

Figure 26.16

The Fields dialog box

From the Fields dialog box, you can add and remove columns from the GridView control by
using the Available Fields box and the Add and Remove (red cross) buttons. You can also change
the order of the columns by using the up/down arrow buttons next to the Selected Fields box.

Within the Selected Fields box, you can click any field and edit the properties and appearance
of the associated column in the GridView control. In this example, we will set the Header Text
property for each of the columns:

◆ Click the ID field and set the Header Text property to Catalog ID.

◆ Click the item field and set the Header Text property to Item.

◆ Click the type field and set the Header Text property to Type.

◆ Click the price field and set the Header Text property to Price.

◆ Click the availability field and set Header Text to Availability.

If you click the Select field and examine the properties, you will see the options to turn on
Edit, Delete, and Insert buttons. The properties are ShowEditButton, ShowDeleteButton, and
ShowInsertButton, respectively. Although not applicable to this example, you can use these
buttons to provide additional functionality when you are using an editable database with relevant
update, delete, and insert statements. Later, in the section ‘‘Adding the DetailsView Control,’’ you
will see how this is used.

Working with the Select Button

At this stage, we have not given any meaningful employment to the Select button that we have
set up in the GridView control. Change to code-behind (Parts.aspx.vb) for Parts.aspx by
double-clicking the page, and select the code skeleton for the GridView1 SelectedIndexChanged
event. This event fires whenever your user makes a new selection in the GridView control.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 973

WORKING WITH DATA 973

You can use GridView1.SelectedRow to gather information about your user’s selection that you
can then use programmatically. For example:

ListBox1.Items.Add(GridView1.SelectedRow.Cells(3).Text)

This code snippet can be used to populate a ListBox control with the contents of the Type field
(column 3) from selections made by a user.

The final step is to run and test Parts.aspx and the GridView control. The control should
display the first 10 items and paging options to view the remaining items. Figure 26.17 illustrates
the running Parts.aspx page.

Figure 26.17

The running
Parts.aspx page

You can obtain the full ASPX source code for Parts.aspx from the website for this book.

Creating the SQL Database

The next step in the project is to build an SQL database that will act as a data source for the Com-
puters.aspx page and the Report page that we will build later.

If you have Microsoft’s SQL Server installed on your machine, you can use it to create the
database; otherwise, the SQL Server Express package that ships with Visual Studio 2008 is quite
sufficient. SQL Server Express is a cut-down version of the complete SQL server package.

Complete the following steps:

1. From the Website menu, choose Add New Item to open the Add New Item dialog box.
Select the SQL Database option.

2. Name the database Computers.mdf and click the Add button. You will be presented with a
dialog box asking whether you wish to place the database inside the App Data folder. Click
the Yes option. This opens a new entry for Computers.mdf in the Data Connections section
of the Server Explorer window on the left side of Visual Studio. There should already be an
entry for ASPNETDB.mdf. In practice, you would most likely have used the existing database
and added additional tables.

3. Right-click the Tables entry for Computers.mdf and choose the Add New Table option. This
opens a table template on the design surface of Visual Studio.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 974

974 CHAPTER 26 ASP.NET 3.5

4. Under Column Name, enter ID. Keep the default Data Type of nchar10. Right-click the
small box to the left of Column Name for the ID field and choose the Set Primary Key option
from the context menu.

5. Continue to add three more columns with the following properties:

◆ Item: nvarchar(50)

◆ Details: varchar(MAX)

◆ Price: nchar(10)

6. Click the Save All option. This opens a dialog box asking you to name the table. Name the
table Catalog. Figure 26.18 illustrates how the database should appear at this stage.

Figure 26.18

Creating the
Computers.mdf
database

7. In Server Explorer, you can now right-click on the entry for the Catalog table and choose
Show Table Data to commence adding some data to the database. You may have to expand
Tables for Computers.mdf to see the table, and refresh Server Explorer if the entry still
doesn’t appear.

Table 26.2 illustrates the data to enter into the database.
This is only a simple flat-file database. Visual Studio 2008 allows you to do much more when

creating databases. You can set up relationships, write stored procedures, and build complex
relational databases.

The next step is to build the Computers.aspx page so that we can create database-driven ele-
ments for our application.

Building the Computers.aspx Page
The purpose of Computers.aspx is to display a master/detail form that enables the user to nav-
igate to different database entries from a DropDownList control. The details for the entries are
displayed in a DetailsView control, and the user has the option to select and edit the details for
individual entries in the database.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 975

BUILDING THE COMPUTERS.ASPX PAGE 975

Table 26.2: Data for Computers.mdf

ID Item Detail Price

1 Computer 1 Entry Model 699.00

2 Computer 2 Intermediate Model 899.00

3 Computer 3 Advanced Model 1199.00

4 Computer 4 Business Model 1099.00

5 Computer 5 Gaming Model 1599.00

Adding the DropDownList Control
The DropDownList control will be populated with the list of items from the database. In our
master/details scenario, you choose the item for which you want further detail from the Drop-
DownList control.

Begin by opening Computers.aspx in Design view from Solution Explorer. To set up the Drop-
DownList control in Computers.aspx, complete the following steps:

1. Set the ContentPlaceHolder control in Computers.aspx to Create Custom Content from the
Common Content Tasks rollout dialog box .

2. Begin by placing a DropDownList control from the Standard toolbox onto ContentPlace-
Holder1 of Computers.aspx in Design view

3. From the Common DropDownList Tasks rollout dialog box, select Choose Data Source. This
opens the Data Source Configuration Wizard

4. From the opening screen of the Data Source Configuration Wizard, choose Select A Data
Source and then New Data Source from the drop-down box. This opens the Choose A
Data Source Type window .

5. Choose the Database option and keep the default name SqlDataSource1. From here you
will be taken to the Choose A Connection pane

6. Select the connection string for Computers.mdf from the drop-down data connection box.
Click the Next button. This takes you to the Configure The Select Statement window. The
Catalog table should be identified .

7. Check the ID and Item columns .

8. Click the Next button to move to the Test Query window. It is a good idea to click the Test
Query button at this point to make sure that everything is working properly. Clicking the
Test Query button should return the ID and Item values out of the Computers.mdf database

9. If everything is okay, click Finish. This returns you to the Choose A Data Source page of
the wizard .

10. From the Data Field To Display drop-down list, choose Item. From the Select A Data Field
For The Value drop-down list, choose ID. Click OK to exit the wizard

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 976

976 CHAPTER 26 ASP.NET 3.5

11. Finally, from the Properties box for the DropDownList, set the AutoPostBack property to
True. This sets the control to automatically post back to the server every time a change of
selection is made.

Save your work. You can run the application and test that the DropDownList is populating
properly on the page.

Adding the DetailsView Control
The DetailsView control forms the Details part of our master/details construction. It will
provide the details of the item selected in the DropDownList and also (in this case) enable the
user to edit those details.

With Computers.aspx open in Design view, complete the following steps:

1. Drag and drop a DetailsView control from the Data toolbox underneath your DropDown-
List in the Computers.aspx page.

2. From the rollout Common DetailsView Tasks menu, click Auto Format and choose the
Mocha scheme, and click OK.

3. From the Choose Data Source drop-down box in Common DetailsView Tasks, choose
New Data Source to open the Data Source Configuration Wizard. Select the Database
option and keep the default name of SqlDataSource2. Click OK.

4. In the Choose Your Data Connection pane, select the Computers.mdf connection from the
drop-down box and click the Next button.

5. In the Configure The Select Statement pane, select all the columns of the Catalog
table. Click the Advanced button to open the Advanced SQL Generation Options
dialog box.

6. Select the Generate Insert, Update, and Delete Statements check box and the Use
Optimistic Concurrency option. Click the OK button. This generates the appropriate state-
ments to enable your users to edit the data in the database.

7. Still within the Configure The Select Statement pane of the wizard, click the Where but-
ton. This opens the Add Where Clause pane, which enables you to link the content of the
DetailsView control to the DropDownList control.

8. From the Column drop-down box, choose ID. Keep the default Operator selection as =
and choose Control from the Source drop-down menu. To the right of these menus, under
Parameter Properties, set the ControlID to DropDownList1, as shown in Figure 26.19.
Click the Add button to finalize the process and then click OK. This returns you to the
Configure The Select Statement pane.

9. Click the Next button to open the Test Query window. Click the Test Query button. This
opens a dialog box asking for a parameter. Type 1 into the Value field and click OK. If
your query has successfully worked, you will see the full entry for Item 1 in the Test
Query window.

10. Click the Finish button to return to the design surface.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 977

BUILDING THE COMPUTERS.ASPX PAGE 977

Figure 26.19

Setting up the WHERE
clause

Further Configuring the DetailsView Control
As with the GridView control, the DetailsView control offers a wide range of options to further
configure the way it presents data and extend its functionality. In our example, we will perform
a few simple further configurations to clean up its appearance and to enable users to edit data
displayed in the control. Complete the following:

1. The rollout Common DetailsView Tasks menu for the DetailsView control should now
include some additional entries allowing you to enable inserting, editing, and deleting.
Select all three check boxes.

2. Click the Edit Fields item to open the Fields dialog box.

3. Click the Price field and scroll the BoundField Properties box down to the DataFormat-
String property. Set the DataFormatString property to ${0:c}. This sets a dollar sign ($)
before each entry in this field.

4. Click the OK button to exit the dialog.

5. Close the Common DetailsView Tasks menu and select the resize handles on the Details
View control. Stretch the control out to a suitable width on your page.

You will notice that the SqlDataSource1 and SqlDataSource2 objects are both located under
the DetailsView control. You can use the SqlDataSource controls to edit your data sources if nec-
essary.

Run and test the application. Changing the selection in the DropDownList control should
automatically produce a relevant change in the item details displayed in the DetailsView control.
In addition, you should be able to use the Edit, Delete, and New links to update the informa-
tion in your database.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 978

978 CHAPTER 26 ASP.NET 3.5

Figure 26.20 demonstrates the running Computers.aspx page.

Figure 26.20

The running Comput-
ers.aspx page

You can obtain the full ASPX source code for Computers.aspx from the website for this book.

Building the Report.aspx page
Visual Studio 2008 provides two tools for generating online data reports: Crystal Reports and the
Microsoft Report Viewer. In this example, you will see how to use the MicrosoftReportViewer
control to produce an online report for the data in the Computers.mdf database.

Adding the MicrosoftReportViewer Control
The first step is to create a content page linked to ContentMasterPage.master that will host the
report. Complete the following steps:

1. Begin by choosing Add New Item from the Website menu to open the Add New Item
dialog box.

2. Choose the Web Form option and select the Select Master Page check box. Name the page
Report.aspx in the Name text box. Click the Add button. This should open the Select A
Master Page dialog box. Choose the master page and click OK.

3. Report.aspx should now be open in Design view. Expand the Common Content Tasks
rollout menu for the ContentPlaceHolder1 control and select Create Custom Content.

4. In the Properties box for Report.aspx, set the Title property of the page to Wilson’s
Online Computer Parts – Report.

5. From the Reporting toolbox, drop an instance of the MicrosoftReportViewer control
(MicrosoftReportViewer1) into ContentPlaceHolder1. This opens the Common Report-
Viewer Tasks rollout menu.

Creating the Report
The next stage is to create the report that will be linked to the MicrosoftReportViewer control.
Complete the following steps:

1. From the Common ReportViewer Tasks menu, click the Design A New Report link to open
the Report Wizard.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 979

BUILDING THE REPORT.ASPX PAGE 979

2. In the Report Wizard, click Next to open the Select The Data Source window. Click the Add
Data Source button. This opens the Data Source Configuration Wizard.

3. Choose the connection to the Computers.mdf database. This may be listed in the drop-down
menu as ConnectionString(Web.config), depending on how you named your original con-
nection string. Click the Next button.

4. This opens the Choose Your Database Objects window. It may take a few second to popu-
late, but after the items are listed, open Tables and choose Catalog, as shown in Figure 26.21.

Figure 26.21

Using the Choose
Your Database Objects
window

5. Click the Finish button to return to the Data Source window. The window should now be
populated with a DatabaseDataSet object. Open the object, select Catalog, and click the
Next button.

6. The Report Wizard will now allow you to start designing your report. In the Select Report
Type window, choose the Tabular option and click Next.

7. In the Design The Table window, move the four available fields into the Details window.
Click Next.

8. In the Choose The Table Layout window, select Stepped and click Next. In Choose The
Table Style, select Slate and click Next.

9. In the Completing The Report Wizard window, set the report name to Computer Report
and click the Finish button.

10. This opens a new page: Computer Report.rdlc[Design]. You may need to select Computer
Report.rdlc in the Choose Report option in the Common Report Viewer Tasks menu that
will be open on this page. You can edit this control directly. For example, select the heading
text report1 and change it to Computers.

Petroutsos c26.tex V3 - 01/28/2008 5:13pm Page 980

980 CHAPTER 26 ASP.NET 3.5

11. Click back to Report.aspx and resize the MicrosoftReportViewer control to stretch it across
the page.

12. You will also need to add an entry to the Report.aspx page into the SiteMap. Switch to
the Web.sitemap page and add the following entry: <siteMapNode url=‘‘report.aspx’’
title=‘‘Report’’ description=‘‘Report’’ />.

13. Run the application. Figure 26.22 illustrates how the running report should appear.

Figure 26.22

Report.aspx at
runtime

You can obtain the full ASPX source code for Report.aspx from the website for this book.

The Bottom Line

Create cascading style sheets. Even though you may have created a main content area for
your page, you will still need to lay out the various text items and images that compose the
area. You can employ CSS to create content containers that can be used for layout and styles
within the main style sheet areas defined for a page.

Master It Develop a text container using CSS that will occupy the full width of the con-
taining area and expand vertically to accommodate the content. Include style attributes for
the <p> tag that set the font to Verdana, the text color to dark blue, and the font size to
8 point. Set vertical alignment to top, and horizontal alignment to left.

Use web form controls. Images are an important part of any web page. The Image control
from the Standard toolbox gives you a control that combines the ability to display an image
with server-side functionality.

Master It Place an Image control onto an ASPX page and use it to display an image.

Create a web user control. Web user controls enable you to create reusable combinations of
controls and functionality.

Master It Create a web user control with two TextBox controls and a Label control that
calculates a percentage based on amounts entered into the TextBox controls.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 981

Chapter 27

ASP.NET Web Services

An ASP.NET web service is a program capable of communicating across a network such as the
Internet by using a combination of the open standard SOAP and XML technologies. (Note that
SOAP was previously known as the Simple Object Access Protocol.)

Web services are ideal for creating data-, content-, or processing-related services that can be
made available to associated or third-party applications and clients across distributed networks
such as the Internet.

In this chapter, you will see how to create a simple ASP.NET web service and a client
application to consume, or use, the web service.

In addition, this chapter covers the technologies associated with ASP.NET web services, such as
SOAP and the Web Services Description Language (WSDL). The chapter briefly covers Microsoft’s
latest addition to the web service stable — the Windows Communication Foundation (WCF) —
and you will see how to use Asynchronous JavaScript and XML (AJAX) technology to create
seamless interactions between web services and their consuming applications.

In this chapter, you’ll learn how to do the following:

◆ Create a simple ASP.NET web service

◆ Consume an ASP.NET web service

◆ Work with AJAX technologies

Using ASP.NET Web Services and WCF
Microsoft offers two flavors of web service technology:

◆ ASP.NET web services

◆ Windows Communication Foundation (WCF)

ASP.NET web services (also known as XML web services) have been around through all the
incarnations of ASP.NET and offer a simple and effective methodology for making software com-
ponents and other resources available over the Internet.

WCF is a recent inclusion into the .NET Framework and is built around the web services
architecture. WCF enables broader integration and interoperability with all the .NET Framework
distributed system technologies, including Microsoft Message Queuing (MSMQ), Common Object
Model plus (COM+), ASP.NET web services, and .NET Framework Remoting. WCF also offers
improved performance and secure data transmission.

ASP.NET Web Services
ASP.NET web services are software resources and components that are able to expose their func-
tionality and/or deliver data over a network such as the Internet by using a combination of XML

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 982

982 CHAPTER 27 ASP.NET WEB SERVICES

and SOAP. You can restrict a component to be available to only certain applications or specific
users, or you can make it available to many users. The component can be limited to the local com-
puter or the local network, or made available across the Internet. Services can be delivered free of
charge or on a fee-paying basis.

Virtually any program that can be encapsulated as a component can be expressed as an ASP
.NET web service. For production purposes, you will need a web server to deliver your ASP.NET
web service. However, for development purposes, the built-in ASP.NET Development Server that
ships with Visual Studio 2008 is quite sufficient.

The process of using an ASP.NET web service or incorporating a web service into your client is
called consuming an ASP.NET web service.

The advantages of using ASP.NET web services include the following:

◆ Data and commands are communicated across the standard Internet port: port 80. This
greatly simplifies passage around the Internet and most networks.

◆ The common standards of XML and SOAP are widely supported.

◆ Early problems with web services, such as lack of a robust security model, have been
resolved.

◆ Visual Studio provides a simple and straightforward environment in which to create and
consume web services.

Further information on ASP.NET web services can be found at http://msdn2.microsoft
.com/en-us/webservices/default.aspx.

Windows Communication Foundation (WCF)
WCF is built on ASP.NET web services and extends their functionality by integrating with a
number of distributed .NET Framework technologies.

WCF offers an integrated approach to situations in which you would previously have employed
a range of different distributed .NET Framework technologies. Typically, you use WCF as a uni-
fied solution enabling you to avoid having to employ different distributed technologies for each
requirement of a distributed application. For example, you may have employed message queu-
ing for use with portable devices that are not permanently connected, ASP.NET web services for
communication across the Internet, and .NET Framework Remoting for tightly coupled commu-
nication within the local network. Employing multiple technologies in this manner results in a
complex and potentially unwieldy solution. WCF offers a method of achieving a simpler unified
approach.

However, despite its advantages in simplifying complex situations, WCF remains a complex
technology that requires a significant amount of work even to produce a simple Hello World–style
application. Because of the complexity of WCF, this chapter focuses primarily on building and
working with ASP.NET web services.

Further information on WCF can be found at http://msdn2.microsoft.com/en-us/
netframework/aa663324.aspx and www.microsoft.com/net/wcf.aspx.

Understanding Technologies Associated with Web Services
Several technologies underlie and support ASP.NET web services. They include SOAP, WSDL,
SOAP Discovery, and Universal Description, Discovery, and Integration (UDDI).

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 983

UNDERSTANDING TECHNOLOGIES ASSOCIATED WITH WEB SERVICES 983

SOAP
SOAP was originally known as the Simple Object Access Protocol. This was changed by the
World Wide Web Consortium (W3C) with version 1.2 of the standard in 2003 because the original
acronym was believed to be misleading.

SOAP is a lightweight protocol for exchanging XML messages over Hypertext Transfer Pro-
tocol/Secure Hypertext Transfer Protocol (HTTP/HTTPS). It forms the basis of the web services
stack, which is the set of protocols used to define, locate, and deliver web services.

SOAP is an open standard, enabling web services to be developed and supported across a
range of platforms and environments.

There are other services attached to SOAP, including WSDL and SOAP Discovery.
Although you are no longer required to work directly with SOAP when developing ASP.NET

web services in Visual Studio, you will still continue to encounter references to the protocol
because it underlies the whole web service creation, delivery, and consumption process.

A SOAP tutorial can be found at www.w3schools.com/soap/.

Web Services Description Language (WSDL)
WSDL is the language used to create an XML document that describes a web service. Specifically,
the document describes the location of the service and the methods exposed by the service.

You can create and edit WSDL documents directly by using a text editor, but they can usually
be generated automatically by Visual Studio when you add either a web reference or service ref-
erence to your ASP.NET web service. For further information, see the ‘‘Adding a Web Reference’’
section later in this chapter.

A WSDL tutorial can be found at www.w3schools.com/wsdl/default.asp.

SOAP Discovery
SOAP Discovery is used to locate the WSDL documents that provide the descriptions for ASP.NET
web services. You use SOAP Discovery when you want to make your web service publicly avail-
able for consumption by third-party applications. For example, you may be providing a weather
service for third-party providers to incorporate into their websites. There are two types of discov-
ery: static discovery and dynamic discovery.

In the case of static discovery, an XML document with the .DISCO file extension is used. This
file contains information about the location of the WSDL documents.

If you wish to enable dynamic discovery for your website, you add a specific reference into the
Web.config file. Dynamic discovery enables users to discover all web services and discovery files
beneath the requested URL.

Discovery files (and particularly dynamic discovery) can be a security risk on a production
server because they potentially allow users to search the entire directory tree. Static discovery files
are the safer of the two types because they allow the user to search only those resources that you
choose to nominate. In Visual Studio 2008, you can explicitly generate a static discovery file by
adding a web reference or a service reference. (See ‘‘Adding a Web Reference’’ later in this chapter
for more information on creating discovery files and enabling dynamic discovery.)

Universal Description, Discovery, and Integration (UDDI)
UDDI was originally created as part of the web service specification to act as a form of yellow
pages for web services. Several major players in developing the web services specification (includ-
ing Microsoft, IBM, SAP, and OASIS) combined to develop an XML-based registry for businesses

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 984

984 CHAPTER 27 ASP.NET WEB SERVICES

to promote themselves and their web services to both the public and the corporate world. In 2006,
Microsoft, IBM, and SAP closed their public UDDI nodes. However, you can still create UDDI
servers on your local network to provide directory services for web services available within your
network. More information on configuring Microsoft server technology for UDDI can be found
at www.microsoft.com/windowsserver2003/technologies/idm/uddi/default.mspx. More
information on UDDI can be found at http://uddi.xml.org.

Creating a Simple ASP.NET Web Service
Creating and consuming web services in Visual Studio 2008 is a relatively simple and straightfor-
ward process. In this example, you will create a simple Hello World–style ASP.NET web service
within a website entitled HelloWebServiceDemo. You will then see how to consume the web
service from within the same website.

Opening Visual Studio in Administrator Mode

Visual Studio often requires elevated privileges when creating and accessing applications and
resources. If you are logged in as a standard user, you may not have those privileges available.

To increase your privileges, from the Start menu, right-click the Visual Studio 2008 entry. From the
context menu, choose Run As Administrator. You may be required to enter credentials.

Setting Up the Web Service
This simple web service will have one service, HelloWorld, with a single method, Hello. To set
up the web service, complete the following steps:

1. Launch Visual Studio and choose File�New Web Site.

2. From the New Web Site dialog box, choose ASP.NET Web Site. In the location text box,
name the website HelloWebServiceDemo. Click OK.

3. Choose File � Add New Item and select the Web Service template. In the Name text box,
delete the default WebService.asmx and rename the web service HelloWorld.asmx. Click
the Add button. This opens the App Code/HelloWorld.vb page, where default code for a
Hello World–style web service is already set up.

4. You will make one minor change to the default code. In the <WebMethod()> section of the
code, change the function name from HelloWorld() to Hello(). This enables you to dis-
tinguish between the service name and the method. The code should now read as shown in
the following snippet:

<WebMethod()>
Public Function Hello() As String

Return ”Hello World”
End Function

5. Save your work.

Next, you will run and test the web service.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 985

CREATING A SIMPLE ASP.NET WEB SERVICE 985

Testing the Web Service
After you have created your web service, it is a good idea to test the service to ensure that it
behaves as expected. This presentation of the testing process lacks the polish that you might wish
for your web service after it is utilized or consumed by a client application, but it will demonstrate
the service’s inherent functionality. The product of the test is returned as straight XML. But don’t
worry — when you finally consume the service, the XML markup will be stripped away from the
returned data. Follow these steps:

1. In the Solution Explorer window, right-click HelloWorld.asmx and choose the Set As
Start Page option.

2. Click the green arrow in the Standard toolbar (or press F5) to start the web service in debug-
ging mode. Click OK in the Debugging Not Enabled dialog box to automatically modify the
Web.config file to enable debugging.

The ASP.NET web service should now open in your web browser as shown in Figure 27.1.

Figure 27.1

HelloWorld web service
in Internet Explorer

You can check the service description for HelloWorld by clicking the Service Description link.
This opens a WSDL description for the web service.

You will also see a warning about using the default namespace of http://tempuri.org. This
is the default Microsoft namespace, and you would usually replace it with a reference to a URL
that you control before publicly deploying the web service. You will see how to do this later in this
chapter, in the ‘‘Building MyWebService’’ section.

To call the Hello method, click the Hello link. This opens a new page, which displays informa-
tion concerning the Hello method. To run the Hello method, click the Invoke button. This opens
the full XML page returned by the method, as shown in Figure 27.2.

Figure 27.2

Invoking the Hello
method

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 986

986 CHAPTER 27 ASP.NET WEB SERVICES

Consuming the Web Service
The next step is to consume the HelloWorld web service from within a standard ASPX page.
Close any running instances of the HelloWorld web service to stop debugging and return to the
HelloWebServiceDemo website in Visual Studio. Complete the following steps:

1. In Solution Explorer, double-click Default.aspx to open the page in Design view.

2. From the Standard toolbox, drag and drop a Button control into the default Div control on
the form.

3. Click the Enter button twice to introduce two line breaks, and add a Label control from
the Standard toolbox.

4. In the Properties window for the Label control, delete the default Label text from the Text
property.

5. Double-click the Button control to open the code skeleton for the Button1 Click event
in code-behind.

6. Complete the Button1 Click event with the following code:

Protected Sub Button1 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim myHello As New HelloWorld
Label1.Text = myHello.Hello()

End Sub

In this example, we declare a local instance of the HelloWorld service and tie the Text
property of the Label control to the Hello method.

7. In Solution Explorer, right-click Default.aspx and choose the Set As Start Page option.

8. Run the application. Default.aspx should render initially as a page displaying a single
button. Clicking the button should display the Hello World text. Figure 27.3 shows the
running application.

Figure 27.3

The running HelloWeb-
ServiceDemo application

Developing a Stand-Alone Web Service
Web services are designed to run separately from their consuming applications. In this example,
you will see how to build a slightly less trivial example of an ASP.NET web service as a stand-alone
application. You will then see how to consume the web service from a separate web application.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 987

DEVELOPING A STAND-ALONE WEB SERVICE 987

The example involves building a web service that performs two functions. It returns the
current server time and also provides a tool for calculating a percentage. The web service is named
MyWebService, and the two methods are named ServerTime and CalculatePercentage.

Later in this chapter, you will see how to create a simple AJAX implementation that enables
the client to automatically and asynchronously update the displayed server time from the web
service.

Building MyWebService
You will begin by creating the web service. Unlike the previous example, in which the web service
and consuming application were built within the same project, this web service is a stand-alone
project. Follow these steps:

1. Open Visual Studio 2008 and choose File � New Web Site. From the New Web Site dialog
box, choose ASP.NET Web Service.

2. In the Location text box of the New Web Service dialog box, keep the default path but
change the name of the web service to MyWebService. Click the OK button to exit the dia-
log box.

3. The web service should now be opened to the App Code/Service.vb page in the Visual
Studio designer. Look through the default code and change the Namespace entry from
http://tempura.org/ to either a URL that you control or, for the purposes of this example,
http://mywebservice.org. This will prevent the warning message about using the default
Microsoft namespace from appearing when you run the web service. The line of code
should now read as follows:

<WebService(Namespace:=”http://mywebservice.org/”)>

4. Move down to the <WebMethod()> section of the code skeleton. Delete the following
default HelloWorld() public function:

Public Function HelloWorld() As String
Return ”Hello World”

End Function

5. Add the following code to the <WebMethod()> section. This method will return the current
server time as the time of day in hours, minutes, and seconds:

<WebMethod()>
Public Function ServerTime() As String

ServerTime = Left(Now.TimeOfDay().ToString(), 8)
End Function

6. Now you’ll create the percentage calculator method (CalculatePercentage). Underneath
the ServerTime method, add the following code:

<WebMethod()>
Public Function CalculatePercentage(ByVal myTotal
As Integer, ByVal myValue As Integer) As Integer

CalculatePercentage = CInt(myValue * 100 / myTotal)
End Function

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 988

988 CHAPTER 27 ASP.NET WEB SERVICES

This method calculates a percentage based on the myValue and myTotal parameters. The
calculated percentage is returned as an integer.

This completes the code for the MyWebService web service. Listing 27.1 gives the full code for
the web service as it should appear in App Code/Service.vb.

Listing 27.1: Full Code Listing for MyWebService

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

` To allow this Web Service to be called from script, using ASP.NET AJAX
uncomment the following line.

` <System.Web.Script.Services.ScriptService()>
<WebService(Namespace:=”http://mywebservice.org/”)>
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1 1)>
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()>
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod()>
Public Function ServerTime() As String

ServerTime = Left(Now.TimeOfDay().ToString(), 8)
End Function

<WebMethod()>
Public Function CalculatePercentage(ByVal myTotal As Integer, ByVal

myValue As Integer) As Integer
CalculatePercentage = CInt(myValue * 100 / myTotal)

End Function

End Class

To make this the default start page, right-click Service.asmx in Solution Explorer and choose
Set As Start Page from the context menu.

Test the web service by clicking the green arrow on the Standard toolbar or by pressing F5.
The web service should display links to the two web methods, as shown in Figure 27.4. Test
the two web methods by clicking the links and then clicking the Invoke button on each of the
respective service information pages. ServerTime should return the current time of day in 24-hour
format (as an XML page). The service information page for CalculatePercentage should provide
you with input boxes to enter values for MyValue and MyTotal before you invoke the service.
Entering values such as 20 for MyValue and 50 for MyTotal should return a value of 40 (within an
XML page) when you click Invoke.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 989

DEVELOPING A STAND-ALONE WEB SERVICE 989

Figure 27.4

The running
MyWebService

Deploying MyWebService
In a production environment, you typically deploy the web service to Microsoft’s Internet Infor-
mation Services (IIS) web server. In order for the web service to run on IIS, you need to have
.NET Framework 3.5 registered with IIS. You can also set up appropriate security and access priv-
ileges such as Windows authentication, secure socket encryption (HTTPS), and so forth on IIS.
For further information on setting up and working with IIS, Microsoft IIS 7 Implementation and
Administration by John Paul Mueller (Sybex, 2007) gives thorough coverage. You can also refer to
Microsoft’s community portal for IIS at www.iis.net.

Before you can deploy your web service, you must have all the relevant files and directories
assembled into a suitable directory without the various development and debugging files. The
easiest way to create a folder containing all the production files necessary for a deployment of your
web service is to use the Publish Web Site option from the Build menu. This opens the Publish Web
Site dialog box, where you can choose to publish to a specific location (including an FTP location)
or keep the default location and move the folder later.

Using ASP.NET Development Server

Visual Studio 2008 comes equipped with its own built-in web server for testing web
applications: the ASP.NET Development Server. Although the ASP.NET Development Server is ideal
for testing web applications as you develop them, it does have its limitations. One of those limitations
is that you need to have a separate instance of the web server running for each web application run-
ning concurrently on your development machine.

Thus, to consume MyWebService from another application, you need to have opened MyWebService
in Visual Studio 2008 and run the application to fire up the ASP.NET Development Server. You can
close the web browser running the web service, but you must keep Visual Studio open to MyWeb-
Service. To create a separate project to consume MyWebService, you must open another instance of
Visual Studio 2008 from the Start menu.

An advantage of using the ASP.NET Development Server is that you do not need to publish or physi-
cally deploy your application to a web server before you can test it.

Consuming MyWebService
As discussed in the previous section, unless you are using IIS to test your web applications, you
must have MyWebService open in Visual Studio 2008 and have run the web service at least once

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 990

990 CHAPTER 27 ASP.NET WEB SERVICES

to open an instance of the ASP.NET Development Server so that you can link to the web service
from another application.

Keep this instance of Visual Studio open and use the Start menu to open another instance of
Visual Studio 2008. Depending on the account restrictions on your machine, it may be necessary to
open the second instance of Visual Studio as Administrator so you can connect to the web service.

To open Visual Studio 2008 in Administrator mode, right-click the Visual Studio entry in the
Start menu and choose Run As Administrator from the context menu.

After Visual Studio 2008 opens, complete the following steps:

1. Choose File � New Web Site. In the New Web Site dialog box, choose ASP.NET Web Site.
Name the site MyConsumer in the Location text box (keeping the rest of the default path).
Click the OK button.

2. MyConsumer should open to Default.aspx in Design mode. Drag a TextBox from the
Standard toolbox into the default Div control on the form. In the Properties window, set
the ID property for the TextBox to tbMyValue.

3. From the Standard toolbox, drop a Label control on the form to the right of tbMyValue.
Set the Text property of the Label control to My Value. Click to the right of the Label and
press the Enter key to drop to the next line.

4. Drop a second TextBox control onto the form immediately under tbMyValue. Set the ID
property for the second TextBox control to tbMyTotal.

5. Place a Label control immediately to the right of tbMyTotal. Set the Text property of the
Label control to My Total. Click to the right of the Label control and press the Enter key
twice to drop down two lines.

6. From the Standard toolbox, drop a Button control onto the form two lines below tbMy-
Total. In the Properties window for the Button, set the ID property to btnCalculate. Set the
Text property to Calculate. Press the Enter key to drop down one more line.

7. Immediately beneath btnCalculate, place a Label control and set its ID property to lbl-
Percentage. Delete the default contents of the Text property for the control.

8. Place another Label control to the right of lblPercentage. Set the ID property to lbl-
PercentageLabel. Set the Text property to = Calculated Percentage and set the Visible
property to False. Click to the right of this control and use the Enter key to drop down two
more lines.

9. Place a Label control two lines beneath lblPercentage. Set the ID property to lblServerTime
and delete the default Text property entry.

10. Place a final Label control to the right of lblServerTime. Set the Text property to =
Server Time.

Figure 27.5 illustrates how the final page should look with all the controls in place.

Adding a Web Reference

We use a web reference created in the Solution Explorer to provide the connection to the web
service. For web services within the local domain, you can also use the Service Reference option
available in Solution Explorer. Using a service reference is an advantage when you want to fully
exploit the AJAX potential in connecting to a web service, because a service reference allows

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 991

DEVELOPING A STAND-ALONE WEB SERVICE 991

you to call the web service methods by using JavaScript functions from within your consuming
application. Using client script in this manner to call web service methods is entirely asynchronous
and prevents your page or portions of your page from being locked out from user interaction while
waiting for the web service to respond.

Figure 27.5

Layout for
Default.aspx

For this example, you will add a web reference to the MyWebService web service created in
the previous section. Unless you are using IIS to test your web applications, you must have an
instance of the ASP.NET Development Server running the MyWebService web service. Refer to
the beginning of this section for details.

Complete the following steps:

1. In Solution Explorer, right-click the project heading (and path) at the top of the Solution
Explorer tree. From the context menu, choose Add Web Reference to open the Add Web
Reference dialog box.

2. If you are using IIS and have appropriately placed discovery documents, you could use the
Browse To: Web Services On The Local Machine option. You will also see a link to enable
you to refer to any UDDI servers set up on your network. However, because we are using
the ASP.NET Development Server, you will need to switch to the instance of Visual Studio
running MyWebService and open the web service in Internet Explorer. Copy the URL for
the MyWebService web service from the address bar of Internet Explorer.

3. Switch back to your MyConsumer build and paste the URL of MyWebService into the URL
text box of the Add Web Reference dialog box. The URL should be something like this:
http://localhost:49733/MyWebService/Service.asmx.

4. Click the Go button. This should now establish a connection to MyWebService, as shown
in Figure 27.6. Click the Add Reference button to exit the dialog box. Solution Explorer
should now feature an App WebReferences folder with appropriate entries for MyWebSer-
vice. Included in these are a discovery (DISCO) and a WSDL file that you can copy, edit, and
employ in your deployment of MyWebService.

The DISCO document created by adding a web reference can be used to enable static discovery
of your web service by placing it in a suitable location in your folder hierarchy for the site. If you
examine the code in the automatically generated file, you can see how to add and remove XML
entries. You can then add a link to the page from some point in your site. If you do not wish to set
up static discovery files, you can enable dynamic discovery by editing the Machine.config file for
your web server. Remember that dynamic discovery potentially allows users to browse your direc-
tory tree; unless your web server is suitably protected, dynamic discovery is not recommended
for production servers.

For precise details on enabling dynamic discovery, please refer to the relevant Help section of
Visual Studio 2008. Type dynamic discovery in the Search field.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 992

992 CHAPTER 27 ASP.NET WEB SERVICES

Figure 27.6

The Add Web Reference
dialog box

Adding the Code-Behind

The next step is to add the code to make the application work. From Design mode, double-click
the btnCalculate control to enter code-behind and complete the following steps:

1. Begin by declaring a local instance of the web service. At the top of the page, directly under
the Inherits System.Web.UI.Page entry, add the following:

Dim MyWebService As New localhost.Service

2. Next is the code to call the ServerTime method. In the code skeleton for Form1 Load, add
the following line of code:

lblServerTime.Text = MyWebService.ServerTime

3. Next is the code to collect the input values from the user and call the CalculatePercent-
age method. The code also attaches a percentage sign onto the displayed percentage value
and unhides lblPercentageLabel. In the code skeleton for the btnCalculate Click event,
add the following code snippet:

Dim myValue As Integer = CInt(tbMyValue.Text)
Dim myTotal As Integer = CInt(tbMyTotal.Text)
lblPercentageLabel.Visible = True
lblPercentage.Text = MyWebService.CalculatePercentage(myTotal, myValue)
& ”%”

The final code should appear as shown in Listing 27.2.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 993

SIMPLE AJAX IMPLEMENTATION 993

Listing 27.2: Full Code Listing for Default.aspx.vb

Partial Class Default
Inherits System.Web.UI.Page
Dim MyWebService As New localhost.Service

Protected Sub form1 Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles form1.Load

lblServerTime.Text = MyWebService.ServerTime
End Sub

Protected Sub btnCalculate Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalculate.Click

Dim myValue As Integer = CInt(tbMyValue.Text)
Dim myTotal As Integer = CInt(tbMyTotal.Text)

lblPercentageLabel.Visible = True
lblPercentage.Text = MyWebService.CalculatePercentage

(myTotal, myValue) & ”%”
End Sub

End Class

Setting up this part of the project is now complete. In Solution Explorer, right-click
Default.aspx and choose Set As Start Page. Run the application and test the methods.

Figure 27.7 illustrates the running application after 28 has been entered as My Value and 56 has
been entered as My Total.

Figure 27.7

The running
MyConsumer
application

Simple AJAX Implementation
ASP.NET 3.0 and 3.5 integrate AJAX to enable developers to easily perform partial updates of web
pages accessing ASP.NET web services. These updates not only do not require a full refresh of the
page, but also can be performed asynchronously so as not to interfere with other operations on
the page.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 994

994 CHAPTER 27 ASP.NET WEB SERVICES

In this example, we will use a simple combination of the AJAX controls to enable the Server-
Time method from MyWebService to be continuously updated on a page in MyConsumer. A more
sophisticated implementation enables the developer to access the methods in the web service from
client script (JavaScript). This latter implementation is fully asynchronous, whereas our example
will have some limitations that are explained later in this section.

Open MyWebService in Visual Studio and run the application to open an instance of the
ASP.NET Development Server. Next, open a separate instance of Visual Studio 2008 from
the Start menu and open the MyConsumer website. Complete the following steps:

1. From the Website menu, click Add New Item. From the Add New Item dialog box, select
AJAX Web Form and rename it myAjax.aspx. Click the Add button.

2. myAjax.aspx should now be open in Design mode. You will see that it has a default Script-
Manager control on the page. Do not delete this control because it is necessary for the AJAX
functionality to work. From the AJAX Extensions toolbox, drop an UpdatePanel control
onto your page underneath the ScriptManager control. The UpdatePanel control acts as
an area that can be partially refreshed without involving an entire page refresh. Keep the
default ID property of UpdatePanel1.

3. From the AJAX Extensions toolbox, drop a Timer control into UpdatePanel1. In the Proper-
ties box, set the Interval property to 1000 (1 second). By placing the Timer control inside
the UpdatePanel control, UpdatePanel1 automatically responds to Tick events from the
Timer. You can also set the UpdatePanel control to respond to events from external controls
by using the UpdatePanel’s Triggers property.

4. From the Standard toolbox, drop a Label control into UpdatePanel1. Set the ID property to
lblServerTime and delete the default entry in the Text property.

5. Double-click Timer1 to enter code-behind for the application. This should open
myAjax.aspx.vb.

6. MyConsumer already has a web reference for MyWebService, so at the top of the page,
directly under the Inherits System.Web.UI.Page entry, add the following:

Dim MyWebService As New localhost.Service

7. In the code skeleton for the Timer1 Tick event, add the following line of code:

lblServerTime.Text = MyWebService.ServerTime

This part of the application is now complete. Listing 27.3 gives the full code listing for
myAjax.aspx.vb.

Listing 27.3: Full Code Listing for myAjax.aspx.vb

Partial Class myAjax
Inherits System.Web.UI.Page
Dim MyWebService As New localhost.Service

Protected Sub Timer1 Tick(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 995

THE BOTTOM LINE 995

lblServerTime.Text = MyWebService.ServerTime
End Sub

End Class

Right-click the entry for myAjax.aspx in Solution Explorer and choose Set As Start Page from
the context menu. Click the green arrow or press F5 to run the application. The running page
should display the current server time, which is automatically updated every second.

You can now add further controls and functionality to the page separate from the UpdatePanel
control. These controls will not be affected by the partial page refreshes performed by the Update-
Panel control. The main limitation of this approach is that any other control placed inside the
UpdatePanel (or any other UpdatePanel control on the page) will be locked out while waiting for
MyWebService to complete its business (every second!).

You can test this behavior by adding a second UpdatePanel control to the page and drop-
ping a TextBox control into it. Drop a second TextBox control onto the page, but not inside the
UpdatePanel. Run the application and try typing into the TextBoxes. It is difficult to type text into
the TextBox inside the UpdatePanel.

If we had used a scripted approach, we could have achieved a fully asynchronous operation.
For more information on this topic, refer to ‘‘Using the UpdatePanel Control with a Web Service’’
in the Visual Studio 2008 Help documentation.

The Bottom Line

Create a simple ASP.NET web service. Creating ASP.NET web services is straightforward
with Visual Studio. ASP.NET web services provide a great method for delivering data and
functionality within a distributed environment, including the Internet.

Master It Develop an ASP.NET web service that enables the user to add two numbers.

Consume an ASP.NET web service. Adding a web reference or service reference to a web
service is a key element to creating an application that can consume the web service.

Master It Create a new website and add a service reference to a web service on your
machine.

Work with AJAX technologies. UpdatePanel controls are used in AJAX implementations
to provide partial page refreshes. A control placed within the UpdatePanel will automati-
cally refresh the UpdatePanel with a postback. However, you can also use a control located
elsewhere on the page to trigger an UpdatePanel refresh.

Master It Add a Button control to an AJAX web page that is set to trigger an asynchronous
update for an UpdatePanel control.

Petroutsos c27.tex V2 - 01/28/2008 5:15pm Page 996

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 997

Appendix A

The Bottom Line

Each of the ‘‘Bottom Line’’ sections in the chapters suggests exercises to deepen skills and
understanding. Sometimes there is only one possible solution, but often you are encouraged to
use your skills and creativity to create something that builds on what you know and lets you
explore one of many possible solutions.

Chapter 1: Getting Started with Visual Basic 2008

Navigate the integrated development environment of Visual Studio. To simplify the
process of application development, Visual Studio provides an environment that’s common
to all languages, known as an integrated development environment (IDE). The purpose of the
IDE is to enable the developer to do as much as possible with visual tools, before writing code.
The IDE provides tools for designing, executing, and debugging your applications. It’s your
second desktop, and you’ll be spending most of your productive hours in this environment.

Master It Describe the basic components of the Visual Studio IDE.

Solution The basic components of the Visual Studio IDE are the Form Designer, where
you design the form by dropping and arranging controls on it, and the code editor,
where you write the code of the application. The controls you can place on your form to
design the application’s interface are shown in the Toolbox window, and the properties of
the selected control are shown in the Properties window.

Understand the basics of a Windows application. A Windows application consists of a
visual interface and code. The visual interface is what users see at runtime: a form with
controls with which the user can interact — by entering strings, checking or clearing check
boxes, clicking buttons, and so on. The visual interface of the application is designed with
visual tools. The visual elements incorporate a lot of functionality, but you need to write some
code to react to user actions.

Master It Describe the process of building a simple Windows application.

Solution First you must design the form of the application by dropping controls from
the Toolbox window onto the form. Size and align the controls on the form, and then set
their properties through the Properties window. The controls include quite a bit of func-
tionality right out of the box. A TextBox control with its MultiLine property set to True
and its ScrollBars property set to Vertical is a complete, self-contained text editor.

After the visual interface has been designed, you can start coding the application. Windows
applications follow an event-driven model: We code the events to which we want our appli-
cation to react. For example, the Click events of the various buttons are typical events to
which an application reacts. Then, there are events that are usually ignored by developers.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 998

998 APPENDIX A THE BOTTOM LINE

The TextBox control fires some 60 events, but most applications don’t react to a single one of
them. You select the actions to which you want your application to react and program these
events accordingly. When an event is fired, the appropriate event handler is automatically
invoked. Event handlers are subroutines that pass two arguments to the application: the
sender object (which represents the control that fired the event) and the e argument (which
carries additional information about the event). To program a specific event for a control,
double-click the control on the design surface, and the editor will come up with the default
event for the control. You can select any other event to program in the Events combo box at
the top of the editor’s window.

Chapter 2: Variables and Data Types

Declare and use variables. Programs use variables to store information during their exe-
cution, and different types of information are stored in variables of different types. Dates, for
example, are stored in variables of the Date type, while text is stored in variables of the String
type. The various data types expose a lot of functionality that’s specific to a data type; the
methods provided by each data type are listed in the IntelliSense box.

Master It How would you declare and initialize a few variables?

Solution To declare multiple variables in a single statement, append each variable’s name
and type to the Dim statement:

Dim speed As Single, distance As Integer

Variables of the same type can be separated with commas, and you need not repeat the type
of each variable:

Dim First, Last As String, BirthDate As Date

To initialize the variables, append the equals sign and the value as shown here:

Dim speed As Single = 75.5, distance As Integer = 14902

Master It Explain briefly the Explicit, Strict, and Infer options.

Solution These three options determine how Visual Basic handles variable types, and
they can be turned on or off. The Explicit option requires that you declare all variables in
your code before using them. When this option is off, you can use a variable in your code
without declaring it. The compiler will create a new variable of the Object type. The Strict
option requires that you declare variables with a specific type. If the Strict option is off, you
can declare variables without a type, with a statement like this:

Dim var1, var2

The last option, Infer, allows you to declare and initialize typed variables without specifying
their type. The compiler infers the variable’s type from the value assigned to it.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 999

CHAPTER 2: VARIABLES AND DATA TYPES 999

The following declarations will create a String and a Date variable, as long as the Infer
option is on. Otherwise, they will create two object variables:

Dim D = #3/5/1008#, S = ”my name”

Use the native data types. The CLR recognized the following data types, which you can use
in your code to declare variables: Strings, Numeric types, Date and time types, Boolean data
type.

All other variables, or variables that are declared without a type, are Object variables and can
store any data type, or any object.

Master It How will the compiler treat the following statement?

Dim amount = 32

Solution The amount variable is not declared with a specific data type. With the default
settings, the compiler will create a new object variable and store the value 32 in it. If the
Infer option is on, the compiler will create an Integer variable and store the value 32 in it. If
you want to be able to store amount with a fractional part in this variable, you must assign
a floating-point value to the variable (such as 32.00), or append the R type character to the
value (32 R).

Create custom data types. Practical applications need to store and manipulate multiple data
items, not just integers and strings. To maintain information about people, we need to store
each person’s name, date of birth, address, and so on. Products have a name, a description, a
price, and other related items. To represent such entities in our code, we use structures, which
hold many pieces of information about a specific entity together.

Master It Create a structure for storing products and populate it with data.

Solution Structures are declared with the Structure keyword, and their fields with the
Dim statement:

Structure Product
Dim ProductCode As String
Dim ProductName As String
Dim Price As Decimal
Dim Stock As Integer

End Structure

To represent a specific product, declare a variable of the Product type and set its fields,
which are exposed as properties of the variable:

Dim P1 As Product
P1.ProductCode = ”SR-0010”
P1.ProductName = ”NTR TV-42”
P1.Price = 374.99
P1.Stock = 3

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1000

1000 APPENDIX A THE BOTTOM LINE

Use arrays. Arrays are structures for storing sets of data, as opposed to single-valued
variables.

Master It How would you declare an array for storing 12 names and another one for
storing 100 names and Social Security numbers?

Solution The first array stores a set of single-valued data (names) and it has a single
dimension. Because the indexing of the array’s elements starts at 0, the last element’s index
for the first array is 11, and it must be declared as

Dim Names(11) As String

The second array stores a set of pair values (names and SSNs), and it must be declared as a
two-dimensional array:

Dim Persons(99,1) As String

Chapter 3: Programming Fundamentals

Use Visual Basic’s flow-control statements. Visual Basic provides several statements for
controlling the sequence in which statements are executed: decision statements, which change
the course of execution based on the outcome of a comparison, and loop statements, which
repeat a number of statements while a condition is true or false.

Master It Explain briefly the decision statements of Visual Basic.

Solution The basic decision statement in VB is the If. . .End If statement, which executes
the statements between the If and End If keywords if the condition specified in the If
part is True. A variation of this statement is the If. . .Then. . .Else. . .End If statements.
If the same expression must be compared to multiple values and the program should
execute different statements depending on the outcome of the comparison, use the
Select Case statement.

Write subroutines and functions. To manage large applications, we break our code into
small, manageable units. These units of code are the subroutines and functions. Subroutines
perform actions and don’t return any values. Functions, on the other hand, perform calcula-
tions and return values. Most of the language’s built-in functionality is in the form of
functions.

Master It How will you create multiple overloaded forms of the same function?

Solution Overloaded functions are variations of the same function with different argu-
ments. All overloaded forms of a function have the same name, and they’re prefixed with
the Overloads keyword. Their lists of arguments, however, are different — either in the
number of arguments or in their types.

Pass arguments to subroutines and functions. Procedures and functions communicate with
one another via arguments, which are listed in a pair of parentheses following the procedure’s

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1001

CHAPTER 4: GUI DESIGN AND EVENT-DRIVEN PROGRAMMING 1001

name. Each argument has a name and a type. When you call the procedure, you must supply
values for each argument and the types of the values should match the types listed in the pro-
cedure’s definition.

Master It Explain the difference between passing arguments by value and passing argu-
ments by reference.

Solution The first mechanism, which was the default mechanism with earlier versions
of the language, passes a reference to the argument. Arguments passed by reference are
prefixed by the keyword ByRef in the procedure’s definition. The procedure has access
to the original values of the arguments passed by reference and can modify them.

The second mechanism passes to the procedure a copy of the original value. Arguments
passed by value are prefixed with the keyword ByVal in the procedure’s definition. The
procedure may change the values of the arguments passed by value, but the changes won’t
affect the value of the original variable.

Chapter 4: GUI Design and Event-Driven Programming

Design graphical user interfaces. A Windows application consists of a graphical user inter-
face and code. The interface of the application is designed with visual tools and consists of
controls that are common to all Windows applications. You drop controls from the Toolbox
window onto the form, size and align the controls on the form, and finally set their properties
through the Properties window. The controls include quite a bit of functionality right out of
the box, and this functionality is readily available to your application without a single line
of code.

Master It Describe the process of aligning controls on a form.

Solution To align controls on a form, you should select them in groups, according to their
alignment. Controls can be aligned to the left, right, top, and bottom. After selecting a group
of controls with a common alignment, apply the proper alignment with one of the
commands of the Format � Align menu. Before aligning multiple controls, you should
adjust their spacing. Select the controls you want to space vertically or horizontally
and adjust their spacing with one of the commands of the Format �Horizontal Spacing and
Format � Vertical Spacing methods. You can also align controls visually, by moving them
with the mouse. As you move a control around, a blue snap line appears every time the con-
trol is aligned with another one on the form.

Program events. Windows applications follow an event-driven model: We code the events
to which we want our application to respond. The Click events of the various buttons are
typical events to which an application reacts. You select the actions to which you want your
application to react and program these events accordingly.

When an event is fired, the appropriate event handler is automatically invoked. Event han-
dlers are subroutines that pass two arguments to the application: the senderobject (which is
an object that represents the control that fired the event) and the e argument (which carries
additional information about the event).

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1002

1002 APPENDIX A THE BOTTOM LINE

Master It How will you handle certain keystrokes regardless of the control that receives
them?

Solution You can intercept all keystrokes at the form’s level by setting the form’s
KeyPreview property to True. Then insert some code in the form’s KeyPress event han-
dler to examine the keystroke passed to the event handler and process it. To detect the
key presses in the KeyPress event handler, use an If statement like the following:

If e.KeyChar = ”A” Then
’ process the A key
End If

Write robust applications with error handling. Numerous conditions can cause an applica-
tion to crash, but a professional application should be able to detect abnormal conditions and
handle them gracefully. To begin with, you should always validate your data before you attempt
to use them in your code. A well-known computer term is ‘‘garbage in, garbage out’’, which
means you shouldn’t perform any calculations on invalid data.

Master It How will you execute one or more statements in the context of a structured
exception handler?

Solution A structured exception handler has the following syntax:

Try
{statements}

Catch ex As Exception
{statements to handle exception}

End Try

The statements you want to execute must be inserted in the Try block of the statement. If
executed successfully, program execution continues with the statements following the End
Try statement. If an error occurs, the Catch block is activated, where you can display the
appropriate message and take the proper actions. At the very least, you should save the
user data and then terminate the application. In many cases, it’s even possible to remedy
the situation that caused the exception in the first place.

Chapter 5: The Vista Interface

Create a simple WPF application. WPF is a new and powerful technology for creating user
interfaces. WPF is one of the core technologies in the .NET Framework 3.5 and is integrated
into Windows Vista. WPF is also supported on Windows XP. WPF takes advantage of the
graphics engines and display capabilities of the modern computer and is vector based and res-
olution independent.

Master It Develop a simple ‘‘Hello World’’ type of WPF application that displays a But-
ton control and Label control. Clicking the button should set the content property of a Label
control to Hi There!

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1003

CHAPTER 5: THE VISTA INTERFACE 1003

Solution Complete the following steps.

1. Open Visual Studio 2008 and choose File � New Project.

2. From the New Project dialog box, select WPF Application and click OK.

3. From the Toolbox, drag a Button control and Label control to Window1 on the design
surface.

4. Double-click the Button control and add the following line of code to the Button1 Click
event in code-behind:

Label1.Content = ”Hi There!”

Data-bind controls in WPF. The ability to bind controls to a data source is an essential aspect
of separating the UI from the business logic in an application.

Master It Data-bind a Label control to one field in a record returned from a database on
your computer.

Solution Complete the following steps.

1. Open Visual Studio 2008 and create a new WPF project.

2. Establish a link to an existing database on your system by opening the Server Explorer
window (click the appropriate tab at the bottom of the Toolbox area of Visual Studio)
and right-clicking Data Connections. Choose Add Connection from the context
menu and follow the prompts. Note that you use the Microsoft SQL Server Database File
option if you are planning to connect to a database created by SQL Server Express (the
default database system that ships with Visual Studio 2008).

3. Open the Data Sources window by clicking the tab at the bottom of the Server Explorer
window, and then click the Add New Data Source link. This opens the Data Source Con-
figuration Wizard. Follow the prompts to set up the dataset.

4. Switch to code-behind (Window1.xaml.vb) for Window1.xaml. Add the following code.
Note that the ContactsDataSet, ContactsDataSetTableAdapters, and CustomersTable-
Adapter names will vary according to the actual names that you have set up for
your dataset.

Class Window1
Dim mydataset As New ContactsDataSet
Dim mydataAdapter As New

ContactsDataSetTableAdapters.CustomersTableAdapter
Private Sub Window1 Loaded(ByVal sender As Object,

ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded
mydataAdapter.Fill(mydataset.Tables(0))
Me.DataContext = mydataset.Tables(0).Rows(0)

End Sub
End Class

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1004

1004 APPENDIX A THE BOTTOM LINE

5. Switch back to XAML view for Window1.xaml and add the following markup (without
line breaks). You may need to change the FirstName reference in the binding for Label1
to whichever database field that you want displayed:

<Window x:Class=”Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Window1” Height=”300” Width=”300”>
<Grid>

<Label Margin=”38,129,47,90” Name=”Label1” Content=”{Binding
Path=FirstName}” ></Label>

</Grid>
</Window>

6. Run the application. The contents of your nominated field from the first table indexed in
your database (0) should be displayed in the Label control.

Use a data template to control data presentation. WPF enables a very flexible approach to
presenting data by using data templates. The developer can create and fully customize data
templates for data formatting.

Master It Create a data template to display a Name, Surname, Gender combination in
a horizontal row in a ComboBox control. Create a simple array and class of data to feed
the application.

Solution Complete the following steps.

1. Add the following code to the XAML source for Window1.xaml (delete the line breaks):

<Window x:Class=”Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Window1” Height=”300” Width=”300”>

<Grid Name=”myGrid”>
<Grid.Resources>

<DataTemplate x:Key=”NameStyle”>
<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width=”60” />
<ColumnDefinition Width=”60” />
<ColumnDefinition Width=”*” />

</Grid.ColumnDefinitions>
<TextBlock Grid.Column=”0”

Text=”{Binding Path=FirstName}” />
<TextBlock Grid.Column=”1”

Text=”{Binding Path=Surname}” />

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1005

CHAPTER 5: THE VISTA INTERFACE 1005

<TextBlock Grid.Column=”2”
Text=”{Binding Path=Gender}” />

</Grid>
</DataTemplate>

</Grid.Resources>
<ComboBox

ItemTemplate=”{StaticResource NameStyle}”
ItemsSource=”{Binding }” IsSynchronizedWithCurrentItem=”true”
Height=”25” VerticalAlignment=”Top” Name=”ComboBox1” />

</Grid>
</Window>

2. Switch to code-behind for Window1.xaml (Window1.xaml.vb) and add the following
code:

Class Window1
Private Class myList

Dim name As String
Dim surname As String
Dim gender As String
Public Sub New(ByVal FirstName As String, ByVal

Surname As String, ByVal Gender As String)
name = FirstName
surname = Surname
gender = Gender

End Sub
Public ReadOnly Property FirstName() As String

Get
Return name

End Get
End Property
Public ReadOnly Property Surname() As String

Get
Return surname

End Get
End Property
Public ReadOnly Property Gender() As String

Get
Return gender

End Get
End Property

End Class

Private Sub Window1 Loaded(ByVal sender As Object,
ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1006

1006 APPENDIX A THE BOTTOM LINE

Dim myArray As New ArrayList
myArray.Add(New MyList(”Fred”, ”Bloggs”, ”M”))
myArray.Add(New MyList(”Mary”, ”Green”, ”F”))
myArray.Add(New MyList(”Sally”, ”Smith”, ”F”))
myArray.Add(New MyList(”John”, ”Doe”, ”M”))
myArray.Add(New MyList(”Jemma”, ”Bloggs”, ”F”))

Me.DataContext = myArray

End Sub
End Class

3. Run the application. A combo box containing a list of the contacts should be displayed
as FirstName, Surname, and Gender.

Chapter 6: Basic Windows Controls

Use the TextBox control as a data-entry and text-editing tool. The TextBox control is the
most common element of the Windows interface, short of the Button control, and it’s used
to display and edit text. You can use a TextBox control to prompt users for a single line of
text (such as a product name) or a small document (a product’s detailed description).

Master It What are the most important properties of the TextBox control? Which ones
would you set in the Properties windows at design-time?

Solution First you must decide whether you want the control to hold a single line of text
or multiple text lines, and set the MultiLine property accordingly. You must also decide
whether the control should wrap words automatically and then set the WordWrap and
ScrollBars properties accordingly. If you want the control to display some text initially,
set the control’s Text property to the desired text. At runtime you can retrieve the text
entered by the user in the control, with the same property. Another property, the Lines
array, allows you to retrieve individual paragraphs of text. Each paragraph can be broken
into multiple text lines on the control, but each is stored in a single element of the
Lines array.

Master It How will you implement a control that suggests lists of words matching the
characters entered by the user?

Solution Use the autocomplete properties AutoCompleteMode, AutoCompleteSource,
and AutoCompleteCustomSource. The AutoComplete property determines whether the
control will suggest the possible strings, automatically complete the current word as you
type, or do both. The AutoCompleteSource property specifies where the strings that
will be displayed will come from, and its value is a member of the AutoCompleteSource
enumeration. If this property is set to AutoCompleteSoure.CustomSource, you must set
up an AutoCompleteStringCollection collection with your custom strings and assign it to
the AutoCompleteCustomCource property.

Use the ListBox, CheckedListBox, and ComboBox controls to present lists of items. The
ListBox control contains a list of items from which the user can select one or more, depending
on the setting of the SelectionMode property.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1007

CHAPTER 7: WORKING WITH FORMS 1007

Master It How will you locate an item in a ListBox control?

Solution To locate a string in a ListBox control, use the FindString and FindString-
Exact methods. The FindString method locates a string that partially matches the one
you’re searching for; FindStringExact finds an exact match. Both methods perform case-
insensitive searches and return the index of the item they’ve located in the list.

We usually call the FindStringExact method and then examine its return value. If an exact
match was found, we select the item with the index returned by the FindStringExact
method. If an exact match was not found, in which case the method returns −1, we call the
FindString method to locate the nearest match.

Use the ScrollBar and TrackBar controls to enable users to specify sizes and positions with
the mouse. The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling
a selector between its minimum and maximum values. The ScrollBar control uses some visual
feedback to display the effects of scrolling on another entity, such as the current view in a
long document.

Master It Which event of the ScrollBar control would you code to provide visual feedback
to the user?

Solution The ScrollBar control fires two events: the Scroll event and the ValueChanged
event. They’re very similar, and you can program either event to react to the changes in
the ScrollBar control. The advantage of the Scroll event is that it reports the action that
caused it through the e.Type property. You can examine the value of this property in your
code and react to actions such as the end of the scroll:

Private Sub blueBar Scroll(
ByVal sender As System.Object,
ByVal e As System.Windows.Forms.ScrollEventArgs)
Handles blueBar.Scroll

If e.Type = ScrollEventType.EndScroll Then
’ perform calculations and provide feedback

End If
End Sub

Chapter 7: Working with Forms

Use forms’ properties. Forms expose a lot of trivial properties for setting their appearance.
In addition, they expose a few properties that simplify the task of designing forms that can be
resized at runtime. The Anchor property causes a control to be anchored to one or more edges
of the form to which it belongs. The Dock property allows you to place on the form controls that
are docked to one of its edges. To create forms with multiple panes that the user can resize at
runtime, use the SplitContainer control. If you just can’t fit all the controls in a reasonably sized
form, use the AutoScroll properties to create a scrollable form.

Master It You’ve been asked to design a form with three distinct sections. You should
also allow users to resize each section. How will you design this form?

Solution The type of form required is easily designed with visual tools and the help
of the SplitContainer control. Place a SplitContainer control on the form and set its Dock

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1008

1008 APPENDIX A THE BOTTOM LINE

property to Fill. You’ve just created two vertical panes on the form, and users can change
their relative sizes at any time. To create a third pane, place another SplitContainer con-
trol on one of the first control’s panes and set its Dock property to Fill, and its Orientation
property to Horizontal. At this point, the form is covered by three panes, and users can
change each pane’s size at the expense of its neighboring panes.

Design applications with multiple forms. Typical applications are made up of multiple
forms: the main form and one or more auxiliary forms. To show an auxiliary form from within
the main form’s code, call the auxiliary form’s Show method, or the ShowDialog method if you
want to display the auxiliary form modally (as a dialog box).

Master It How will you set the values of selected controls in a dialog box, display them,
and then read the values selected by the user from the dialog box?

Solution Create a Form variable that represents the dialog box and then access any con-
trol in the dialog box through its name as usual, prefixed by the form’s name:

Dim Dlg As AuxForm
Dlg.txtName = ”name”

Then call the form’s ShowDialog method to display it modally and examine the
DialogResult property returned by the method. If this value is OK, process the data in the
dialog box, or else ignore them:

If Dlg.ShowDialog = DialogResult.OK Then
UserName = Dlg.TxtName

End If

To display an auxiliary form, just call the Show method. This method doesn’t return a value,
and you can read the auxiliary form’s contents from within the main form’s code at any
time. You can also access the controls of the main form from within the auxiliary
form’s code.

Design dynamic forms. You can create dynamic forms by populating them with controls
at runtime through the form’s Controls collection. First, create instances of the appropriate
controls by declaring variables of the corresponding type. Then set the properties of the vari-
able that represents the control. Finally, place the control on the form by adding it to the form’s
Controls collection.

Master It How will you add a TextBox control to your form at runtime and assign a
handler to the control’s TextChanged event?

Solution Create an instance of the TextBox control, set its Visible property, and add it to
the form’s Controls collection:

Dim TB As New TextBox
TB.Visible = True
’ statements to set other properties,
’ including the control’s location on the form
Me.Controls.Add(TB)

Then write a subroutine that will handle the TextChanged event. This subroutine, let’s call
it TBChanged(), should have the same signature as the TextBox control’s TextChanged

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1009

CHAPTER 8: MORE WINDOWS CONTROLS 1009

event. Use the AddHandler statement to associate the TBChanged() subroutine with the new
control’s TextChanged event:

AddHandler TB.TextChanged,
New SystemEventHandler(AddressOf TBChanged)

Design menus. Both form menus and context menus are implemented through the Menu-
Strip control. The items that make up the menu are ToolStripMenuItem objects. The
ToolStripMenuItem objects give you absolute control over the structure and appearance of the
menus of your application.

Master It What are the two basic events fired by the ToolStripMenuItem object?

Solution When the user clicks a menu item, the DropDownOpened and Click events are
fired, in this order. The DropDownOpened event gives you a chance to modify the menu that’s
about to be opened. After the execution of the DropDownOpened event handler, the Click
event takes place to indicate the selection of a menu command. We rarely program the
DropDownOpened event, but every menu item’s Click event handler should contain some
code to react to the selection of the item.

Chapter 8: More Windows Controls

Use the OpenFileDialog and SaveFileDialog controls to prompt users for filenames. Win-
dows applications use certain controls to prompt users for common information, such as
filenames, colors, and fonts. Visual Studio provides a set of controls, which are grouped in
the Dialogs section of the Toolbox. All common dialog controls provide a ShowDialog method,
which displays the corresponding dialog box in a modal way. The ShowDialog method returns
a value of the DialogResult type, which indicates how the dialog box was closed, and you
should examine this value before processing the data.

Master It Your application needs to open an existing file. How will you prompt users for
the file’s name?

Solution First you must drop an instance of the OpenFileDialog control on the form. To
limit the files displayed in the Open dialog box, use the Filter property to specify the rel-
evant file type(s). To display text files only, set the Filter property to Text files|*.txt.
If you want to display multiple extensions, use a semicolon to separate extensions with the
Filter property; for example, the string Images|*.BMP;*.GIF;*.JPGwill cause the con-
trol to select all the files of these three types and no others. The first part of the expression
(Images) is the string that will appear in the drop-down list with the file types. You should
also set the CheckFileExists property to True to make sure that the file specified on the
control exists. Then display the Open dialog box by calling its ShowDialog method, as
shown here:

If FileOpenDialog1.ShowDialog =
Windows.Forms.DialogResult.OK
{process file FileOpenDialog1.FileName}

End If

To retrieve the selected file, use the control’s FileName property, which is a string with the
selected file’s path.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1010

1010 APPENDIX A THE BOTTOM LINE

Master It You’re developing an application that encrypts multiple files (or resizes many
images) in batch mode. How will you prompt the user for the files to be processed?

Solution There are two techniques to prompt users for multiple filenames. Both tech-
niques, however, are limited in the sense that all files must reside in the same folder. The
first technique is to set the MultiSelect property of the OpenFileDialog control to True.
Users will be able to select multiple files by using the Ctrl and Shift keys. The selected files
will be reported to your application through the FileNames property of the control, which is
an array of strings.

OpenFileDialog1.Multiselect = True
OpenFileDialog1.ShowDialog()
Dim filesEnum As IEnumerator
ListBox1.Items.Clear()
filesEnum =

OpenFileDialog1.FileNames.GetEnumerator()
While filesEnum.MoveNext

’ current file’s name is filesEnum.Current
End While

The other technique is to use the FolderBrowserDialog control, which prompts users to
select a folder, not individual files. Upon return, the control’s SelectedPath property con-
tains the pathname of the folder selected by the user from the dialog box, and you can use
this property to process all files of a specific type in the selected folder.

Listing 8.2 earlier in this chapter shows you how to iterate through the files of the selected
folder and all its subfolders.

Use the ColorDialog and FontDialog controls to prompt users for colors and typefaces.
The Color and Font dialog boxes allow you to prompt users for a color value and a font, respec-
tively. Before showing the corresponding dialog box, set its Color or Font property according
to the current selection, and then call the control’s ShowDialog method.

Master It How will you display color attributes in the Color dialog box when you open
it? How will you display the attributes of the selected text’s font in the Font dialog box when
you open it?

Solution To prompt users to specify a different color for the text on a TextBox control,
execute the following statements:

ColorDialog1.Color = TextBox1.ForeColor
If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.ForeColor = ColorDialog1.Color
End If

To populate the Font dialog box with the font in effect, assign the control’s Font prop-
erty to the FontDialog control’s Font property by using the following statements:

FontDialog1.Font = TextBox1.Font
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1011

CHAPTER 8: MORE WINDOWS CONTROLS 1011

Use the RichTextBox control as an advanced text editor to present richly formatted text.
The RichTextBox control is an enhanced TextBox control that can display multiple fonts and
styles, format paragraphs with different styles, and provide a few more advanced text-editing
features. Even if you don’t need the formatting features of this control, you can use it as an
alternative to the TextBox control. At the very least, the RichTextBox control provides more
editing features, a more-useful undo function, and more-flexible search features.

Master It You want to display a document with a title in large, bold type, followed by a
couple of items in regular style. How will you create a document like the following one on a
RichTextBox control?

Document’s Title
 Item 1
 Description for item 1
 Item 2
 Description for item 2

Solution To append text to a RichTextBox control, use the AppendText method. This
method accepts a string as an argument and appends it to the control’s contents. The text is
formatted according to the current selection’s font, which you must set accordingly through
the SelectionFont property. To switch to a different font set the SelectionFont again and
call the AppendText method.

Assuming that the form contains a control named RichTextBox1, the following statements
will create a document with multiple formats. In this sample I’m using three different type-
faces for the document.

Dim fntTitle As
New Font(”Verdana”, 12, FontStyle.Bold)

Dim fntItem As
New Font(”Verdana”, 10, FontStyle.Bold)

Dim fntText As
New Font(”Verdana”, 9, FontStyle.Regular)

Editor.SelectionFont = fntTitle
Editor.AppendText(”Document’s Title” & vbCrLf)
Editor.SelectionFont = fntItem
Editor.SelectionIndent = 20
Editor.AppendText(”Item 1” & vbCrLf)
Editor.SelectionFont = fntText
Editor.SelectionIndent = 40
Editor.AppendText(

”Description for item 1” & vbCrLf)
Editor.SelectionFont = fntItem
Editor.SelectionIndent = 20
Editor.AppendText(”Item 2” & vbCrLf)
Editor.SelectionFont = fntText
Editor.SelectionIndent = 40
Editor.AppendText(

”Description for item 2” & vbCrLf)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1012

1012 APPENDIX A THE BOTTOM LINE

Chapter 9: The TreeView and ListView Controls

Create and present hierarchical lists by using the TreeView control. The TreeView control
is used to display a list of hierarchically structured items. Each item in the TreeView con-
trol is represented by a TreeNode object. To access the nodes of the TreeView control, use
the TreeView.Nodes collection. The nodes under a specific node (in other words, the child
nodes) form another collection of Node objects, which you can access by using the expression
TreeView.Nodes(i).Nodes. The basic property of the Node object is the Text property, which
stores the node’s caption. The Node object exposes properties for manipulating its appearance
(its foreground/background color, its font, and so on).

Master It How will you set up a TreeView control with a book’s contents at design time?

Solution Place an instance of the TreeView control on the form and then locate its Nodes
property in the Properties Browser. Click the ellipsis button to open the TreeNode Editor
dialog box, where you can enter root nodes by clicking the Add Root button, and child
nodes under the currently selected node by clicking the Add Child button. The book’s
chapters should be the control’s root nodes, and the sections should be child nodes of those
chapter nodes. If you have nested sections, add them as child nodes of the appropriate node.
While a node is selected in the left pane of the dialog box, you can specify its appearance in
the right pane by setting the font, color, and image-related properties.

Create and present lists of structured items by using the ListView control. The ListView
control stores a collection of ListViewItem objects, the Items collection, and can display them
in several modes, as specified by the View property. Each ListViewItem object has a Text prop-
erty and the SubItems collection. The subitems are not visible at runtime unless you set the
control’s View property to Details and set up the control’s Columns collection. There must be a
column for each subitem you want to display on the control.

Master It How will you set up a ListView control with three columns to display names,
emails, and phone numbers at design time?

Solution Drop an instance of the ListView control on the form and set its View prop-
erty to Details. Then locate the control’s Columns property in the Properties Browser and
add three columns to the collection through the ColumnHeader Collection Editor dialog
box. Don’t forget to set their headers and their widths for the fields they will display.
To populate the control at design time, locate its Items property in the Properties window
and click the ellipsis button to open the ListViewItem Collection Editor dialog box (see
Figure 9.11). Add a new item by clicking the Add button. When the new item is added to
the list in the left pane of the dialog box, set its Text property to the desired caption. To add
subitems to this item, locate the SubItems property in the ListViewItem Collection Editor
dialog box and click the ellipsis button next to its value. This will open another dialog box,
the ListViewSubItems Collection, where you can add as many subitems under the current
item as you wish. You can also set the appearance of the subitems (their font and color) in
the same dialog box.

Master It How would you populate the same control with the same data at runtime?

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1013

CHAPTER 10: BUILDING CUSTOM CLASSES 1013

Solution The following code segment adds two items to the ListView1 control at
runtime:

Dim LItem As New ListViewItem()
LItem.Text = ”Alfred’s Futterkiste”
LItem.SubItems.Add(”Anders Maria”)
LItem.SubItems.Add(”030-0074321”)
LItem.SubItems.Add(”030-0076545”)
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

LItem = New ListViewItem()
LItem.Text = ”Around the Horn”
LItem.SubItems.Add(”Hardy Thomas”)
LItem.SubItems.Add(”(171) 555-7788”)
LItem.SubItems.Add(”(171) 555-6750”)
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

Chapter 10: Building Custom Classes

Build your own classes. Classes contain code that executes without interacting with the
user. The class’s code is made up of three distinct segments: the declaration of the private vari-
ables, the property procedures that set or read the values of the private variables, and the meth-
ods, which are implemented as Public subroutines or functions. Only the Public entities (prop-
erties and methods) are accessible by any code outside the class. Optionally, you can imple-
ment events that are fired from within the class’s code. Classes are referenced through vari-
ables of the appropriate type, and applications call the members of the class through these vari-
ables. Every time a method is called, or a property is set or read, the corresponding code in the
class is executed.

Master It How do you implement properties and methods in a custom class?

Solution Any variable declared with the Public access modifier is automatically a prop-
erty. As a class developer, however, you should be able to validate any values assigned
to your class’s properties. To do so, you can implement properties by using a special type
of procedure, the Property procedure, which has two distinct segments: a Set segment
that’s invoked when an application attempts to set a property, and a Get segment that’s
invoked when an application attempts to read a property’s value. The Property has the
following structure:

Private m property As type
Property Property() As type

Get
Property = m property

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1014

1014 APPENDIX A THE BOTTOM LINE

End Get
Set (ByVal value As type)
’ your validation code goes here
’ If validation succeeds, set the local var

m property = value
End Set

End Property

The local variable m property must be declared with the same type as the property. The
Get segment returns the value of the local variable that stores the property’s value. The Set
segment validates the value passed by the calling application and either rejects it or sets the
local variable to this value.

Master It How would you use a constructor to allow developers to create an instance of
your class and populate it with initial data?

Solution Each class has a constructor, which is called every time a new instance of the
class is created with the New keyword. The constructor is implemented with the New() sub-
routine. To allow users to set certain properties of the class when they instantiate it, create as
many New() subroutines as you need. Each version of the New() subroutine should accept
different arguments. The following sample lets you create objects that represent books,
passing the book’s ISBN and/or title.

Public Sub New(ByVal ISBN As String)
MyBase.New()
Me.ISBN = ISBN

End Sub

Public Sub New(ByVal ISBN As String,
ByVal Title As String)

MyBase.New()
Me.ISBN = ISBN
Me.Title = Title

End Sub

Use custom classes in your projects. To use a custom class in your project, you must add
to the project a reference to the class you want to use. If the class belongs to the same project,
you don’t have to do anything. If the class belongs to another project, you must right-click the
project’s name in the Solution Explorer and select Add Reference from the shortcut menu. In
the Add Reference dialog box that appears, switch to the Browse tab and locate the DLL file
with the class’s implementation (it will be a DLL file in the project’s Bin folder). Select the name
of this file and click OK to add the reference and close the dialog box.

Master It How will you call the two constructors of the preceding Master It sections in an
application that uses the custom class to represent books?

Solution There are three ways to create new Book objects:

1. Call the parameterless constructor to create books without ISBNs or titles:

Dim book As New Book

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1015

CHAPTER 11: WORKING WITH OBJECTS 1015

2. Call the New() constructor, passing the book’s ISBN as a parameter:

Dim book As New Book(”9780213324543”)

3. Call the New() constructor, passing the book’s ISBN and title:

Dim book As New Book(”9780213324543”,
”Mastering Visual Studio”)

Customize the usual operators for your classes. Overloading is a common theme in coding
classes (or plain procedures) with Visual Basic. In addition to overloading methods, you can
overload operators. In other words, you can define the rules for adding or subtracting two
custom objects, if this makes sense for your application.

Master It When should you overload operators in a custom class, and why?

Solution Sometimes it makes sense to apply common operations, such as the addition
and subtraction operations, to instances of a custom class. However, the addition oper-
ator doesn’t work with custom classes. To redefine the addition operator so that it will
add two instances of your custom class, you must override the addition operator with an
implementation that adds two instances of a custom class. The following is the signature
of a function that overloads the addition operator:

Public Shared Operator + (
ByVal object1 As customType,
ByVal object2 As customType)
As customType

Dim result As New customType
’ Insert the code to ”add” the two
’ arguments and store the result to
’ the result variable and return it.
Return result

End Operator

The function that overrides the addition operator accepts two arguments, which are the
two values to be added, and returns a value of the same type. The operator is usually over-
loaded, because you may wish to add an instance of the custom class to one of the built-in
data types or objects. In addition to the usual math operators, you should also consider
overloading some basic functions that act like operators, especially the CType() function.

Chapter 11: Working with Objects

Use inheritance. Inheritance, which is the true power behind OOP, allows you to create
new classes that encapsulate the functionality of existing classes without editing their code.
To inherit from an existing class, use the Inherits statement, which brings the entire class into
your class.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1016

1016 APPENDIX A THE BOTTOM LINE

Master It Explain the inheritance-related attributes of a class’s members.

Solution Any class can be inherited by default. However, you can prevent developers
from inheriting your class with the NonInheritable keyword, or create an abstract class
with the MustInherit attribute. Classes marked with this attribute can’t be used on their
own; they must be inherited by another class. The parent class’s members can be optionally
overridden if they’re marked with the Overridable keyword. To prevent derived classes
from overriding specific members, use the NotOverridable attribute. Finally, methods that
override the equivalent methods of the base class must be prefixed with the
Overrides keyword.

Use polymorphism. Polymorphism is the ability to write members that are common to a
number of classes but behave differently, depending on the specific class to which they apply.
Polymorphism is a great way of abstracting implementation details and delegating the imple-
mentation of methods with very specific functionality to the derived classes.

Master It The parent class Person represents parties, and it exposes the GetBalance
method, which returns the outstanding balance of a person. The Customer and Supplier
derived classes implement the GetBalance method differently. How will you use this
method to find out the balance of a customer and/or supplier?

Solution If you have Customer or Supplier object, you can call the GetBalance method
directly. If you have a collection of objects of both types, you must cast them to their parent
type and then call the GetBalance method.

Chapter 12: Building Custom Windows Controls

Extend the functionality of existing Windows Forms controls with inheritance. The sim-
plest type of control you can build is one that inherits an existing control. The inherited control
includes all the functionality of the original control plus some extra functionality that’s specific
to an application and that you implement with custom code.

Master It Describe the process of designing an inherited custom control.

Solution To enhance an existing Windows Forms control, insert an Inherits statement
with the name of the control you want to enhance in the project’s Designer.vb file. The
inherited control’s interface can’t be altered; it’s determined by parent control. However,
you can implement custom properties and methods, react to events received by the parent
control, or raise custom events from within your new control.

The process of implementing custom properties and methods is identical to building custom
classes. The control’s properties, however, can be prefixed by a number of useful attributes,
such as the <Category> and <Description> attributes, which determine the category
of the Properties window where the property will appear, and the control’s description
that will be shown in the Properties window when the custom property is selected.

Build compound controls that combine multiple existing controls. A compound control
provides a visible interface that combines multiple Windows controls. As a result, this type
of control doesn’t inherit the functionality of any specific control; you must expose its prop-
erties by providing your own code. The UserControl object, on which the compound control

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1017

CHAPTER 12: BUILDING CUSTOM WINDOWS CONTROLS 1017

is based, already exposes a large number of members, including some fairly advanced ones
such as the Anchoring and Docking properties, and the usual mouse and key events.

Master It How will you map certain members of a constituent control to custom members
of the compound control?

Solution If the member is a property, you simply return the constituent control’s prop-
erty value in the Get section of the Property procedure, and set the constituent control’s
property to the specified value in the Set section of the same procedure. The following
Property procedure maps the WordWrap property of the TextBox1 constituent control to
the TextWrap property of the custom compound control:

Public Property TextWrap() As Boolean
Get

Return TextBox1.WordWrap
End Get
Set(ByVal value As Boolean)

TextBox1.WordWrap = value
End Set

End Property

If the member is a method, you just call it from within one of the compound control’s meth-
ods. To map the ResetText method of the TextBox constituent control to the Reset method
of the compound control, add the following method definition:

Public Sub Reset()
TextBox1.ResetText

End Sub

Build custom controls from scratch. User-drawn controls are the most flexible custom con-
trols, because you’re in charge of the control’s functionality and appearance. Of course, you
have to implement all the functionality of the control from within your code, so it takes sub-
stantial programming effort to create user-drawn custom controls.

Master It Describe the process of developing a user-drawn custom control.

Solution Because you are responsible for updating the control’s visible area from within
your code, you must provide the code that redraws the control’s surface and insert it in the
UserControl object’s Paint event handler. In drawing the control’s surface, you must take
into consideration the settings of the control’s properties.

The e argument of the Paint event handler exposes the Graphics property, which you must
use from within your code to draw on the control’s surface. You can use any of the drawing
methods you’d use to create shapes, gradients, and text on a Form or PictureBox control.
Because custom controls aren’t redrawn by default when they’re resized, you must also
insert the following statement in the control’s Load event handler:

Me.SetStyle(ControlStyles.ResizeRedraw, True)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1018

1018 APPENDIX A THE BOTTOM LINE

If the control’s appearance should be different at design time than at runtime, use the
Me.DesignMode property to distinguish between runtime and design time.

Customize the rendering of items in a ListBox control. To create an owner-drawn list
control, you must set the DrawMode property to a member of the DrawMode enumeration and
program two events: MeasureItem and DrawItem.

Master It Outline the process of creating a ListBox control that wraps the contents of
lengthy items.

Solution By default, all items in a ListBox control have the same height, which is the
height of a single line of text in the control’s font. To display selected items in cells of
varying height, do the following:

1. Set the control’s DrawMode property to OwnerDrawnVariable

2. In the control’s MeasureItem event handler, which is invoked every time the control is
about to display an item, insert the statements that calculate the desired height of the
current item’s cell and set the e.Height property. You will most likely call the Measure-
String method of the control’s Graphics object to retrieve the height of the item from its
text.

3. In the control’s DrawItem event handler, which displays the current item, insert the
statements to print the item in a cell with the dimensions calculated in step 2 via the
DrawString method. These dimensions are given by the Bounds property of the event
handler’s e argument.

Chapter 13: Handling Strings, Characters, and Dates
Use the Char data type to handle characters. The Char data type, which is implemented
with the Char class, exposes methods for handling individual characters (IsLetter, IsDigit,
IsSymbol, and so on). We use the methods of the Char class to manipulate users’ keystrokes as
they happen in certain controls (mostly the TextBox control) and to provide immediate
feedback.

Master It You want to develop an interface that contains several TextBox controls that
accept numeric data. How will you intercept the user’s keystrokes and reject any characters
that are not numeric?

Solution You must program the control’s KeyPress event handler, which reports the
character that was pressed. The following event handler rejects any non-numeric characters
entered in the TextBox1 control:

Private Sub TextBox1 KeyPress(
ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyPressEventArgs)
Handles TextBox1.KeyPress

Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) or

Char.IsControl(c)) Then
e.Handled = True

End If
End Sub

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1019

CHAPTER 13: HANDLING STRINGS, CHARACTERS, AND DATES 1019

Actually, you learned in the previous chapter how to implement custom TextBox controls
that inherit existing Windows controls. You can build a custom TextBox control that accepts
numeric data along the lines of the design of the FocusedTextBox custom control, discussed
in the preceding chapter.

Use the String data type to handle strings. The String data type represents strings and
exposes members for manipulating them. Most of the String class’s methods are equivalent to
the string-manipulation methods of Visual Basic. The members of the String class are shared:
they do not modify the string to which they’re applied. Instead, they return a new string.

Master It How would you extract the individual words from a large text document?

Solution Start by setting up an array with all possible delimiters. The delimiters array
should contain all symbols that separate words, including parentheses, brackets, and so
on. Here’s the definition of such an array that works even with program listings:

Dim delimiters() As Char =
{” ”c, ”.”c, ”,”c, ”!”c, ”;”c, ”:”c,
”(”c, ”)”c, ”*”c, ””””c, ”;”c, ”{”c,
”}”c, Convert.ToChar(vbTab),
Convert.ToChar(vbCr),

Convert.ToChar(vbLf)}
Notice that vbTab, vbCr, and vbLf constants are strings, and they must be converted implic-
itly into characters.
Then pass this array as an argument to the Split method and retrieve the method’s results
in an array of strings. These are the words extracted from the text by the Split method:

Dim words() As String
words = text.Split(delimiters)
Dim word As String
For Each word In words

If word.Length > 0 Then
’ process current word
End If

Next

Use the StringBuilder class to manipulate large or dynamic strings. The StringBuilder
class is very efficient at manipulating long strings, but it doesn’t provide as many methods
for handling strings. The StringBuilder class provides a few methods to insert, delete, and
replace characters within a string. Unlike the equivalent methods of the String class, these
methods act directly on the string stored in the current instance of the StringBuilder class.

Master It Assuming that you have populated a ListView control with thousands of lines
of data from a database, how will you implement a function that copies all the data to
the Clipboard?

Solution To copy the ListView control’s data, you must create a long string that contains
tab-delimited strings and then copy it to the Clipboard. Each cell’s value must be converted
to a string and then appended to a StringBuilder variable. Consecutive rows will be sepa-
rated by a carriage return/line feed character. Start by declaring a StringBuilder variable:

Dim SB As New System.Text.StringBuilder

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1020

1020 APPENDIX A THE BOTTOM LINE

Then write a loop that iterates through the items of the ListView control:

Dim LI As ListViewItem
For Each LI In ListView1.Items

’ append current row’s cell values to SB
SB.Append(vbcrlf)

Next

In the loop’s body, insert another loop to iterate through the subitems of the LI item:

Dim LI As ListViewItem
For Each LI In ListView1.Items

Dim SLI As ListViewItem.ListViewSubItem
For Each SLI In LI.SubItems

SB.Append(SLI.Text & vbTab)
Next
SB.Remove(SB.Length - 1, 1) ’ remove last tab
SB.Append(vbCrLf)

Next

And finally, put the string to the Clipboard by using the following statement:

Clipboard.SetText(SB.ToString)

One of this chapter’s projects is the SBDemo project, which populates a ListView control
with data (it’s the same few rows repeated over and over). Click the Populate List button
several times to create a long list of items and then one of the other two buttons on the form
that copy the data to the Clipboard either through a String or through a StringBuilder vari-
able. As you will see, the StringBuilder class runs circles around the String data type when it
comes to manipulating dynamic strings.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1021

CHAPTER 14: STORING DATA IN COLLECTIONS 1021

Use the DateTime and TimeSpan classes to handle dates and times. The Date class
represents dates and time, and it exposes many useful shared methods (such as the IsLeap
method, which returns True if the year passed to the method as an argument is leap; the
DaysInMonth method; and so on). It also exposes many instance methods (such as AddYears,
AddDays, AddHours, and so on) for adding time intervals to the current instance of the Date
class, as well as many options for formatting date and time values.

The TimeSpan class represents time intervals — from milliseconds to days — with the From-
Days, FromHours, and even FromMilliseconds methods. The difference between two date
variables is a TimeSpan value, and you can convert this value to various time units by using
methods such as TotalDays, TotalHours, TotalMilliseconds, and so on. You can also add a
TimeSpan object to a date variable to obtain another date variable.

Master It How will you use the TimeSpan class to accurately time an operation?

Solution To time an operation, you must create a DateTime variable and set it to the cur-
rent date and time right before the statements you want to execute:

Dim T1 As DateTime = Now

Right after the statements you want to execute, create a new TimeSpan object that represents
the time it took the statements to complete. This duration is the difference between the cur-
rent time and the time value stored in the variable T1:

Dim duration As New TimeSpan
duration = Now.Subtract(T1)

The duration variable is a time interval, and you can use the methods of the TimeSpan class
to express this interval in various units: duration.MilliSeconds, Duration.Seconds, and
so on.

Chapter 14: Storing Data in Collections

Make the most of arrays. The simplest method of storing sets of data is to use arrays. They’re
very efficient and they provide methods to perform advanced operations such as sorting and
searching their elements. Use the Sort method of the Array class to sort an array’s elements. To
search for an element in an array, use the IndexOf and LastIndexOf methods, or the Binary-
Search method if the array is sorted. The BinarySearch method always returns an element’s
index, which is a positive value for exact matches and a negative value for near matches.

Master It Explain how you can search an array and find exact and near matches.

Solution The most efficient method of searching arrays is the BinarySearch method,
which requires that the array is sorted. The simplest form of the BinarySearch method is
the following:

Dim idx As Integer
idx = System.Array.BinarySearch(arrayName, object)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1022

1022 APPENDIX A THE BOTTOM LINE

The BinarySearch method returns an integer value, which is the index of the object you’re
searching for in the array. If the object argument is not found, the method returns a nega-
tive value, which is the negative of the index of the next larger item minus one. The
following statements return an exact or near match for the word srchWord in the words
array:

Dim wordIndex As Integer =
Array.BinarySearch(words, srchWord)

If wordIndex >= 0 Then ’ exact match!
MsgBox(”An exact match was found for ” &

” at index ” & wordIndex.ToString)
Else ’ Near match

MsgBox(”The nearest match is the word ” &
words(-wordIndex - 1) &
” at ” & (-wordIndex - 1).ToString)

End If

Store data in specialized collections such as ArrayLists and HashTables. In addition to
arrays, the Framework provides collections, which are dynamic data structures. The most
commonly used collections are the ArrayList and the HashTable. ArrayLists are similar to
arrays, but they’re dynamic structures. ArrayLists store lists of items, whereas HashTables
store key-value pairs and allow you to access their elements via a key. You can add elements
by using the Add method and remove existing elements by using the Remove and RemoveAt
methods.

HashTables provide the ContainsKey and ContainsValue methods to find out whether the
collection already contains a specific key or value, and the GetKeys and GetValues methods to
retrieve all the keys and values from the collection, respectively.

Master It How will you populate a HashTable with a few pairs of keys/values and then
iterate though the collection’s items?

Solution To populate the HashTable, call its Add method, passing as an argument the
item’s key and value:

Dim HTable As New HashTable
HTable.Add(”key1”, item1)
HTable.Add(”key2”, item2)

To iterate through the items of a HashTable collection, you must first extract all the keys
and then use them to access the collection’s elements. The following code segment prints the
keys and values in the HTable variable:

Dim element, key As Object
For Each key In HTable.keys

element = HTable.Item(key)
Debug.WriteLine(”Item type = ” element.GetType.ToString
Debug.WriteLine(”Key= ” & Key.ToString)
Denug.WritrLine(”Value= ” & element.ToString)

Next

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1023

CHAPTER 14: STORING DATA IN COLLECTIONS 1023

Sort and search collections. Collections provide the Sort method for sorting their
items and several methods to locate items: IndexOf, LastIndexOf, and BinarySearch. Both
sort and search operations are based on comparisons, and the Framework knows how to com-
pare values types only (Integers, Strings, and the other primitive data types). If a collection con-
tains objects, you must provide a custom function that knows how to compare two objects of
the same type.

Master It How do you specify a custom comparer function for a collection that contains
Rectangle objects?

Solution First you must decide how to compare two Rectangle objects. Let’s consider two
rectangles equal if their perimeters are equal. To implement a custom comparer, you must
write a class that implements the IComparer interface:

Class RectangleComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim R1, R2 As Rectangle
Try

R1 = CType(o1, Rectangle)
R2 = CType(o2, Rectangle)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
Dim perim1 As Integer =

2 * (R1.Width+R1.Height)
Dim perim2 As Integer =

2 * (R2.Width+R2.Height)
If perim1 < perim2 Then

Return -1
Else

If perim1 > perim2 Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

The following statement sorts the items of the Rects ArrayList collection, assuming that it
contains only Rectangles:

Rects.Sort(New RectangleComparer)

To call the BinarySearch method for the same ArrayList, use the following statement:

Rects.BinarySearch(
New Rectangle(0, 0, 33, 33), comparer)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1024

1024 APPENDIX A THE BOTTOM LINE

Chapter 15: Accessing Folders and Files

Handle Files with the My object. The simplest method of saving data to a file is to call one of
the WriteAllBytes or WriteAllText methods of the My.Computer.FileSystem object. You can
also use the IO namespace to set up a Writer object to send data to a file, and a Reader object to
read data from the file.

Master It Show the statements that save a TextBox control’s contents to a file and the
statements that reload the same control from the data file. Use the My.Computer.FileSystem
component.

Solution The following statement saves the control’s Text property to a file whose path is
stored in the filename variable. Prompt users with the Open dialog box control for the path
of the file and use it in your code.

My.Computer.FileSystem.WriteAllText(
fileName, TextBox1.Text, True)

To read the data back and place it in the TextBox1 control again, use the following
statement:

TextBox1.Text = My.Computer.FileSystem.ReadAllText(fileName)

Write data to a file with the IO namespace To send data to a file you must set up a File-
Stream object, which is a channel between the application and the file. To send data to a file,
create a StreamWriter or BinaryWriter object on the appropriate FileStream object. Likewise, to
read from a file, create a StreamReader or BinaryReader on the appropriate FileStream object.
To send data to a file, use the Write and WriteString methods of the appropriate Stream-
Writer object. To read data from the file, use the Read, ReadBlock, ReadLine, and ReadToEnd
methods of the StreamReader object.

Master It Write the contents of a TextBox control to a file using the methods of the IO
namespace.

Solution Begin by setting up a FileStream object to connect your application to a data file.
Then create a StreamWriter object on top of the FileStream object and use the Write method
to send data to the file:

Dim FS As FileStream
FS = New FileStream(fileName, FileMode.Create)
Dim SW As StreamWriter(FS)
SW.Write(TextBox1.Text)
SW.Close
FS.Close

To read the data back and reload the TextBox control, set up an identical FileStream object,
then create a StreamReader object on top of it, and finally call the ReadToEnd method:

Dim FS As New FileStream(fileName,
System.IO.FileMode.OpenOrCreate,
System.IO.FileAccess.Write)

Dim SR As New StreamReader(FS)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1025

CHAPTER 15: ACCESSING FOLDERS AND FILES 1025

TextBox1.Text = SR.ReadToEnd()
FS.Close
SR.Close

Manipulate folders and files. The IO namespace provides the Directory and File classes,
which represent the corresponding entities. Both classes expose a large number of methods
for manipulating folders (CreateDirectory, Delete, GetFiles, and so on) and files (Create,
Delete, Copy, OpenRead, and so on).

Master It How will you retrieve the attributes of a drive, folder, and file using the IO
namespace’s classes?

Solution Start by creating DriveInfo, DirectoryInfo, and FileInfo files. Specify the path of
the corresponding entity in the class’s constructor:

Dim DrvInfo As New DriveInfo(”C:\”)
Dim DirInfo As New DirectoryInfo(

”C:\Program Files”)
Dim FInfo As New FileInfo(

”C:\Program Files\My Apps\Readme.txt”)
Then enter the name of one of these objects, followed by a period, and select the appropriate
property from the IntelliSense list.
The available space on drive C: is given by the property DrvInfo.AvailableFreeSpace,
and its type is given by the property DrvInfo.DriveType.ToString. The attributes of
the folder Program Files are given by the property DirInfo.Attributes. The size of the
Readme.txt file in the same folder is given by the property FInfo.Length.

The DrvInfo, DirInfo, and FInfo objects also expose methods for manipulating the cor-
responding entities. The method GetDrives of the DriveInfo class returns the names of
all drives on the target computer. To manipulate a folder, use one of the Delete, Create,
MoveTo, or other methods of the DirInfo class. Finally, to manipulate a file, use one of the
Delete, Encrypt, Decrypt, Open, or other methods of the FInfo class.

Monitor changes in the file system and react to them. The FileSystemWatcher is a special
component that allows your application to monitor changes in the file system. You can spec-
ify the types of changes you want to monitor by using the NotifyFilter property, the types
of files you want to monitor by using the Filter property, and the path you want to monitor
by using the Path property. The FileSystemWatcher component fires the Changed, Created,
Deleted, and Renamed events, depending on the type of change(s) you specified. Once acti-
vated, the FileSystemWatcher component fires an event every time one of the specified items
changes.

Master It Assume that an application running on a remote computer creates a file in
the E:\Downloaded\Orders folder for each new order. How will you set up a FileSystem-
Watcher component to monitor this folder and notify your application about the arrival of
each new order?

Solution First, drop an instance of the FileSystemWatcher component on your form and
insert the following statements in the form’s Load event handler to set up and activate the
FileSystemWatcher component:

FileSystemWatcher1.Path = ”E:\Downloaded\Orders”
FileSystemWatcher1.IncludeSubdirectories = False

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1026

1026 APPENDIX A THE BOTTOM LINE

FileSystemWatcher1.Filter = ”*.txt”
FileSystemWatcher1.NotifyFilter =

IO.NotifyFilters.CreationTime
FileSystemWatcher1.EnableRaisingEvents = True

Then enter some code in the FileSystemWatcher component’s Created event handler:

Private Sub WatcherHandler(
ByVal sender As Object,
ByVal e As System.IO.FileSystemEventArgs)
Handles FileSystemWatcher1.Created,

MsgBox(”File ” & e.FullPath & ” arrived!”
End Sub

You can use any of the methods of the My.Computer.FileSystem or the IO namespace to
handle the new file, which is given by the property FullPath of the handler’s File-
SystemEventArgs argument.

Chapter 16: Serialization and XML

Serialize objects and collections into byte streams. Serialization is the process of converting
an object into a stream of bytes. This process (affectionately known as dehydration) generates
a stream of bytes or characters, which can be stored or transported. To serialize an object, you
can use the BinaryFormatter or SoapFormatter class. You can also use the XmlSerializer class
to convert objects into XML documents. All three classes expose a Serialize class that accepts as
arguments the object to be serialized and a stream object, and writes the serialized version of
the object to the specified stream.

Master It Describe the process of serializing an object with a binary or SOAP formatter.

Solution To serialize an object, you must first create a Stream object that will accept
the result of the serialization. This Stream object is usually associated with a file. You also
need an instance of the BinaryFormatter or the SoapFormatter class. Both classes expose the
Serialize method, which accepts as arguments the Stream object you created already and
the object to be serialized.

Deserialize streams to reconstruct the original objects. The opposite of serialization is
called deserialization. To reconstruct the original object, you use the Deserialize method of
the same class you used to serialize the object.

Master It Describe the process of serializing an object with a binary or SOAP formatter.

Solution For the reverse process, you create another Stream object that represents the
source of the serialized data, create an instance of the appropriate serialization class
(depending on the type of serialization), and call the Deserialize method. The Deserial-
ize method accepts a single argument, which is the Stream object from which the method
will read the serialized data. The result of the Deserialize method is an object, which you
must cast to the appropriate type.

Create XML files in your code. XML is a standard for storing data. In addition to the data,
an XML document also describes the structure of its contents by using elements and attributes.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1027

CHAPTER 17: QUERYING COLLECTIONS AND XML WITH LINQ 1027

Elements represent entities and their properties. Attributes represent the properties of the
elements to which they’re applied.

Master It How would you create an XML document to describe structured data?

Solution The simplest method to create an XML document is to design a class that rep-
resents the entities you want to store in the document. Then populate a few instances of
the class and serialize them with the XmlSerializer class. The output of the serialization is a
valid XML document, which you can open in Visual Studio. You can also create a schema
for this document, so that you can edit it and be sure that it complies with its schema.

Chapter 17: Querying Collections and XML with LINQ

Perform simple LINQ queries. A LINQ query starts with the structure From variable In
collection, where variable is a variable name and collection is any collection that imple-
ments the IEnumerable interface (such as an array, a typed collection, or any method that
returns a collection of items). The second mandatory part of the query is the Select part, which
determines the properties of the variable we want in the output. Quite often we select the same
variable that we specify in the From keyword. In most cases, we apply a filtering expression
with the Where keyword. Here’s a typical LINQ query that selects filenames from a specific
folder:

Dim files =
From file In

IO.Directory.GetFiles(”C:\Documents”)
Where file.EndsWith(”doc”)

Select file

Master It Write a LINQ query that calculates the sum of the squares of the values in an
array.

Solution To calculate a custom aggregate in a LINQ query, you must create a lambda
expression that performs the aggregation and pass it as an argument to the Aggregate
method. The lambda expression accepts two arguments — the running value of the aggre-
gate and the current element — and returns the new aggregate. Such a function would have
the following signature and implementation:

Function(aggregate, value)
Return(aggregate + value ˆ2)

End Function

To specify this function as a lambda expression in a LINQ query, call the collection’s Aggre-
gate method as follows:

Dim sumSquares = data.Aggregate(
Function(sumSquare As Long, n As Integer)

sumSquare + n ˆ 2

Create and process XML files with LINQ to XML. LINQ to SQL allows you to create XML
documents with the XElement and XAttribute classes. You simply create a new XElement

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1028

1028 APPENDIX A THE BOTTOM LINE

object for each element in your document, and a new XAttribute object for each attribute in
the current element. Alternatively, you can simply insert XML code in your VB code. To create
an XML document dynamically, you can insert embedded expressions that will be evalu-
ated by the compiler and replaced with their results.

Master It How would you create an HTML document with the filenames in a specific
folder?

Solution To generate a directory listing, we must first implement the LINQ query that
retrieves the desired information. The query selects the files returned by the GetFiles
method of the IO.Directory class:

Dim files = From file In
IO.Directory.GetFiles(path)
Select New IO.FileInfo(file).Name,
New IO.FileInfo(file).Length

Now we must embed this query into an XML document by using expression holes. The
XML document is actually an HTML page that displays a table with two columns, the file’s
name and size, as shown next:

Dim smallFilesHTML = <html>
<table><tr>

<td>FileName</td>
<td>FileSize</td></tr>
<%= From file In

IO.Directory.GetFiles(”C:\”)
Select <tr><td><%= file %></td> ,
<td>
<%= New IO.FileInfo(file).Length %>
</td></tr>

%>
</table></html>

Process relational data with LINQ to SQL. LINQ to SQL allows you to query relational data
from a database. To access the database, you must first create a DataContext object. Then you
can call this object’s GetTable method to retrieve a table’s rows, or the ExecuteQuery method
to retrieve selected rows from one or more tables with an SQL query. The result is stored in
a class designed specifically for the data you’re retrieving via the DataContext object.

Master It Explain the attributes you must use in designing a class for storing a table.

Solution The class must be decorated with the <Table> attribute, which specifies the
name of the table that will populate the class:

<Table(Name:=”Customers”>Public Class Customers
...
End Class

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1029

CHAPTER 18: DRAWING AND PAINTING WITH VISUAL BASIC 2008 1029

Each property of this table must be decorated with the <Column> attribute, which specifies
the name of the column from which the property will get its value:

<Column(Name:=”CompanyName”)>
Public Property Company

...
End Property

When you call the GetTable method of the DataContext object, pass the name of the class
as an argument, and the DataContext object will create a new instance of the class and
populate it.

Chapter 18: Drawing and Painting with Visual Basic 2008

Display and size images. The most appropriate control for displaying images is the Picture-
Box control. You can assign an image to the control through its Image property, either at design
time or at runtime. To display a user-supplied image at runtime, call the DrawImage method of
the control’s Graphics object.

Master It How would you implement a form that displays a large image and allows users
to scroll the image to bring any segment of it into view?

Solution

1. Add a new form to your project.

2. Place a Panel control on the form and set its AutoSize and AutoScroll properties
to True.

3. Place a PictureBox control on the Panel control and set its SizeMode property to
AutoSize.

4. Finally, assign a large image to the PictureBox control. As soon as you assign the image
to the control, the necessary scroll bars will be displayed and you can scroll any part
of the image into view, even at design time.

Generate graphics by using the drawing methods. Every object you draw on, such as forms
and PictureBox controls, exposes the CreateGraphics method, which returns a Graphics
object. The Paint event’s e argument also exposes the Graphics object of the control or form.
To draw something on a control, retrieve its Graphics object and then call the Graphics object’s
drawing methods.

Master It Show how to draw a circle on a form from within the form’s Paint event
handler.

Solution The following statements will draw a circle at the center of the Form1 form:

Private Sub Form1 Paint(
ByVal sender As Object,
ByVal e As System.Windows.Forms.PaintEventArgs)
Handles Me.Paint

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1030

1030 APPENDIX A THE BOTTOM LINE

Dim diameter = Math.Min(Me.Width, Me.Height) / 2
e.Graphics.DrawEllipse(Pens.Blue,
New RectangleF((Me.Width - diameter) / 2,

(Me.Height - diameter) / 2,
diameter, diameter))

End Sub

The circle is being redrawn as you resize the form. To force a redraw when the form is
redrawn, insert the following statement in the form’s Load event handler:

Me.SetStyle(ControlStyles.ResizeRedraw,True)

Display text in various ways, including gradient fills. The Graphics object provides the
DrawString method, which prints a user-supplied string on a control. You can also specify the
coordinates of the string’s upper-left corner and its font. To position the string, you need to
know its dimensions. You can use the MeasureString method to retrieve the dimensions of
the image when rendered on the Graphics object in a specific font. Text is drawn with a Brush
object, and you can use a SolidBrush object to draw the string in a solid color, the Linear-
GradientBrush object to fill the text with a linear gradient, the PathGradientBrush object to fill
the text with an arbitrary gradient defined by a path, or the TextureBush object to fill the text
with a texture.

Master It How will you print a string centered on a PictureBox control?

Solution To determine the coordinates of the string on the PictureBox control, you must
first find out the dimensions of the string by using the MeasureString graphics method:

Dim str As String = ”Print this!”
Dim fnt As New Font(”Verdana”, 48, FontStyle.Bold)
Dim strSize As SizeF =

e.Graphics.MeasureString(str, fnt)

To actually draw the string, call the DrawString method as follows from within the con-
trol’s Print event handler:

Dim strPoint As New PointF(
(PictureBox1.Width - strSize.Width) / 2,
(PictureBox1.Height - strSize.Height) / 2)
e.Graphics.DrawString(str, fnt,
Brushes.DarkGreen, strPoint)

The first statement calculates the coordinates of the string’s upper-left corner by splitting the
difference between the control’s width/height and the string’s width/height on either size
of the string.
If you anchor the PictureBox control on all four edges of the form, the text isn’t being
redrawn. There’s no SetStyle method for the PictureBox control, but you can call the Set-
Style method as shown in the preceding section and then call the PictureBox control’s
Refresh method from within the form’s Paint event handler:

Private Sub Form1 Load(...) Handles MyBase.Load
Me.SetStyle(ControlStyles.ResizeRedraw, True)

End Sub

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1031

CHAPTER 19: MANIPULATING IMAGES AND BITMAPS 1031

Private Sub Form1 Paint(...) Handles Me.Paint
PictureBox1.Refresh()

End Sub

Chapter 19: Manipulating Images and Bitmaps

Specify colors. Color values are based on the RGB cube. Each color is a point in the RGB
code and is expressed as a triplet of integer values that represent the intensity of the red, green,
and blue components of the color. You can also use the named colors of the Color class.

Master It How do you draw with semitransparent colors?

Solution You can call the FromARGB method with four arguments, which are a trans-
parency value (alpha channel) and the usual red, green, and blue components of a color. If
the transparency value is 255, the color specified with the other three components is opaque.
If the transparency value is 0, the color is totally transparent. By specifying any other value
between the two extremes, you can superimpose graphics that allow the underlying visual
elements to show through. Use this technique to draw 3D-looking text, place watermarks
on images, or wash out the colors of a background image. You can also animate an image’s
colors by varying the alpha channel from totally transparent to totally opaque from within
a loop.

Manipulate images and bitmaps. The Framework provides two classes for representing
images: the Image and Bitmap classes. The Image class represents images. You use Image
objects to read images from files or streams and to store them in memory. You can’t use the
Image object to create a new image. The Bitmap class also represents images, but you can use
the Bitmap object to create new images from within your code.

Master It When will you use an Image object versus a Bitmap object in a graphics
application?

Solution Images are stored in Image objects, which are static. You can’t edit the contents
of an Image object; you can only display it on a Form or PictureBox control and find out the
image’s attributes (its resolution, size, and so on). The Bitmap object allows you to read and
set the image’s pixel values, or create new images from within your code, with the GetPixel
and SetPixel methods. Use an Image object to store an image. Use a Bitmap object to store
and edit an image, or to create a new image entirely from within your application’s code.

Process images. Images are two-dimensional arrays of color values, one value per pixel,
arranged in rows and columns. To process an image’s pixels, start by reading the image into a
Bitmap object. Then set up two nested loops that iterate through each row and each column of
pixels. Use the GetPixel method to read pixel values, and the SetPixel method to change a
pixel’s value.

Master It Outline the code that processes the pixels of an image.

Solution First you must create a Bitmap object by loading the pixel values of the
image:

Dim Bmp As Bitmap
Bmp = Image.FromFile(FileName)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1032

1032 APPENDIX A THE BOTTOM LINE

Then create a new Bitmap object with the same dimensions as the original image, where
you’ll store the processed pixels. If you overwrite the pixel values of the original Bitmap
object, you won’t be able to read the original values anymore.

Dim newBmp As New Bitmap(
Bmp.Width, Bmp.Height, Bmp.PixelFormat)

Now you’re ready to set up two nested loops to iterate through the image’s pixels and pro-
cess them. In the following sample, the code flips the image vertically and horizontally:

Dim row, col As Integer
Dim clr As Color
Dim newBmp As New Bitmap(

Bmp.Width, Bmp.Height, Bmp.PixelFormat)
For row = 0 To Bmp.Width - 1

For col = 0 To Bmp.Height - 1
clr = Bmp.GetPixel(row, col)
newBmp.SetPixel(Bmp.Width - row - 1,
Bmp.Height - col - 1, clr)

Next
Next

To view the processed image, assign the newBmp variable to the Image property of a Picture-
Box control.

Chapter 20: Printing with Visual Basic 2008

Use the printing controls and dialog boxes. To print with the .NET Framework, you must
add an instance of the PrintDocument control to your form and call its Print method. To
preview the same document, you simply assign the PrintDocument object to the Document
property of the PrintPreviewDialog control and then call the ShowDialog method of the Print-
PreviewDialog control to display the preview window. You can also display the Print dialog
box, where users can select the printer to which the output will be sent, and the Page Setup dia-
log box, where users can specify the page’s orientation and margins. The two dialog boxes are
implemented with the PrintDialog and PageSetupDialog controls.

Master It Explain the process of generating a simple printout. How will you handle multi-
ple report pages?

Solution Both the PrintDocument.Print and the PrintPreviewDialog.ShowDialog
methods fire the PrintPage event of the PrintDocument object. The code that generates the
actual printout must be placed in the PrintPage event’s handler, and the same code will
generate the preview or the actual printout.

It’s your responsibility to terminate each page and start a new one every time you complete
the current page — you simply exit the PrintPage event handler. If there are more pages to
print, set the HasMorePages property to True. Any static variables you use to maintain state

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1033

CHAPTER 20: PRINTING WITH VISUAL BASIC 2008 1033

between successive invocations of the PrintPage event handler, such as the page number,
must be reset every time you start a new printout. A good place to initialize the printout’s
variables is with the BeginPrint event handler.

Master It Assuming that you have displayed the Page Setup dialog box control to the
user, how will you draw a rectangle that delimits the printing area on the page, taking into
consideration the user-specified margins?

Solution First, set up a few variables to store the page’s margins:

Dim Lmargin, Rmargin, Tmargin, Bmargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

Lmargin = .Left: Rmargin = .Right
Tmargin = .Top: Bmargin = .Bottom

End With

Then calculate the dimensions of the rectangle, where the printing will be confined:

Dim PrintWidth, PrintHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - Lmargin - Rmargin
PrintHeight = .Height - Tmargin - Bmargin

End With

The rectangle we want to draw should start at the point (Lmargin, Tmargin) and extend
PrintWidth units to the right and PrintHeight units down.
Finally, insert the following statements in the PrintPage event handler to draw the
rectangle:

Dim R As Rectangle
R = New Rectangle(Lmargin, Tmargin, PrintWidth, PrintHeight)
e.Graphics.DrawRectangle(Pens.Black, R)

Print plain text and images. Typical business applications generate printouts with text and
a few borders or grids. The DrawString method of the Graphics object can print a string at
a specific location on the page. To print images, call the DrawImage method of the Graphics
object, passing as an argument the image you want to print and the rectangle on the page
where you want the image to appear.

Master It Outline the process of printing the contents of a TextBox control.

Solution An overloaded form of the DrawString method allows you to specify the rect-
angle in which the string will be printed and let the method break the text into multiple
lines that fit in that rectangle. You can also specify how the string will be broken into multi-
ple lines to fit in the given rectangle. Before calling the DrawString method, however, you
must call the MeasureString method to find out the number of characters that will fit in
this rectangle and pass a segment of the string to the DrawString method. Then you can
call the DrawString method with the appropriate chunk of the text for the current page.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1034

1034 APPENDIX A THE BOTTOM LINE

Print tabular data. Business applications make heavy use of reports, and you should provide
a mechanism to print these out. Printing tabular data isn’t a simple task, but after you break the
page into rows and columns, you can draw the appropriate string into its corresponding cell.

Master It Describe the process of building a tabular report.

Solution You must first come up with the widths of the columns and then decide whether
the rows will have a fixed or variable height. For fixed-height rows, you should call the
DrawString method to print the appropriate string (or part of it) into its cell. You also know
the number of rows that will fit on the page, and this will simplify the logic that detects the
end of the page. For variable-height cells, you must call the MeasureString method to find
out the height of each cell (how many lines it takes to print the appropriate string into a cell
of a given width). You must keep track of the tallest cell and then use this value to advance
to the following row.

Chapter 21: Basic Concepts of Relational Databases

Use relational databases. Relational databases store their data in tables and are based on
relationships between these tables. The data is stored in tables, and tables contain related data,
or entities, such as persons, products, orders, and so on. Relationships are implemented by
inserting columns with matching values in the two related tables.

Master It How will you relate two tables with a many-to-many relationship?

Solution A many-to-many relationship can’t be implemented with primary/foreign
keys between two tables. To create a many-to-many relationship, you must create a table
between the other two tables and implement two one-to-many relationships. Consider the
Titles and Authors tables, which have a many-to-many relationship, because a title can have
many authors and the same author may have written multiple titles. To implement this rela-
tionship, you must create an intermediate table, the TitleAuthors table, which is related to
both the Titles and Authors tables with a one-to-many relationship. The TitleAuthors table
should store title and author IDs. The TitleAuthor.TitleID field is the foreign key to the
relationship between the Titles and TitleAuthor tables. Likewise, the Title-
Author.AuthorID field is the foreign key to the relationship between the TitleAuthor and
Authors tables.

Utilize the data tools of Visual Studio. Visual Studio 2008 provides visual tools for work-
ing with databases. The Server Explorer is a visual representation of the databases you can
access from your computer and their data. You can create new databases, edit existing ones,
and manipulate their data. You can also create queries and test them right in the IDE.

Master It Describe the process of establishing a new relationship between two tables.

Solution To create a relationship, double-click a table’s name in Server Explorer to open
it in design mode and then choose Table Designer � Relationships, which will display the
Foreign Key Relationships dialog box shown in Figure 21.9. To create a new relationship
between the selected table and another one, click the Add button. A new relationship will
be added with a default name, which you can change. Expand the Tables And Columns
Specification entry and click the ellipses in this field to see a dialog box, where you can
select the name of the table with the primary key in the relationship in the Primary Key
Table column.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1035

CHAPTER 22: PROGRAMMING WITH ADO.NET 1035

Use the Structured Query Language for accessing tables. Structured Query Language (SQL)
is a universal language for manipulating tables. SQL is a nonprocedural language, which
specifies the operation you want to perform against a database at a high level, unlike
traditional languages such as Visual Basic, which specifies how to perform the operation. The
details of the implementation are left to the DBMS. SQL consists of a small number of key-
words and is optimized for selecting, inserting, updating, and deleting data.

Master It How would you write a SELECT statement to retrieve data from multiple tables?

Solution The FROM statement should include the names of two or more tables, which
must be somehow related. To relate the tables, use the JOIN clause and specify the pri-
mary/foreign keys of the join:

SELECT column1, column2, ...
FROM table1 T1 INNER JOIN table2
ON T1.primaryKey = T2.foreignKey
INNER JOIN table3 T3

ON T2.primaryKey = T3.foreignKey

Pay attention to the type of join you specify. An inner join requires that the two columns
match and excludes Null values. A left join takes into consideration all the qualifying rows
of the left table, including the ones that have Nulls in their foreign key column. A right join
takes into consideration all the qualifying rows of the right table, including the ones that
have Nulls in their foreign key column. A full outer join is a combination of the right and
left joins — it takes into consideration Null values from both tables involved in the query.

Chapter 22: Programming with ADO.NET

Create and populate DataSets. DataSets are data containers that reside at the client and
are populated with database data. The DataSet is made up of DataTables, which correspond
to database tables, and you can establish relationships between DataTables, just like relating
tables in the database. DataTables, in turn, are made up of DataRow objects.

Master It How do we populate DataSets and then submit the changes made at the client
back to the database?

Solution To populate a DataSet, you must create a DataAdapter object for each Data-
Table in the DataSet. The DataAdapter class provides the SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand properties, which are initialized to the SQL statements
that retrieve/insert/update/delete rows from the corresponding database tables. You can
use the CommandBuilder object to build the UPDATE/INSERT/DELETE commands from the
SELECT command. After these properties are in place, you can populate the correspond-
ing DataTable in the DataSet by calling the FILL method of its DataAdapter object. If the
DataSet contains relationships, you must fill the parent tables before the child tables.

Establish relations between tables in the DataSet. The DataSet can be thought of as a small
database that resides at the client, because it’s made up of tables and relationships between
them. The relations in a DataSet are DataRelation objects, which are stored in the Relations
property of the DataSet. Each relation is identified by a name, the two tables it relates, and the
fields of the tables on which the relation is based.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1036

1036 APPENDIX A THE BOTTOM LINE

Master It How do we navigate through the related rows of two tables?

Solution To navigate through related tables, the DataRow object provides the
GetChildRows method, which returns the current row’s child rows as an array of DataRow
objects, and the GetParentRow/GetParentRows methods, which return the current row’s
parent row(s). GetParentRow returns a single DataRow object, and GetParentRows returns
an array of DataRow objects. Because a DataTable may be related to multiple DataTables,
you must also specify the name of the relation. The following statements retrieve the child
rows of a specific category and a specific supplier, respectively:

DS.Categories(iRow).GetChildRows(”CategoriesProducts”)
DS.Categories(iRow).GetChildRows(”SuppliersProducts”)

Submit changes in the DataSet back to the database. The DataSet maintains not only data
at the client, but their states and versions too. It knows which rows were added, deleted, or
modified (the DataRowState property) and it also knows the version of each row read from the
database and the current version (the DataRowVersion property).

Master It How will you submit the changes made to a disconnected DataSet to the
database?

Solution To submit the changes made to an untyped DataSet, you must call the Update
method of each DataAdapter object. You must call the Update method of the DataAdapter
objects that correspond to the parent tables first and then the Update method of the
DataAdapters that correspond to the child tables. You can also submit individual rows to
the database, as well as arrays of DataRow objects through the overloaded forms of the
Update method.

Chapter 23: Building Data-Bound Applications

Design and use typed DataSets. Typed DataSets are created with visual tools at design time
and allow you to write type-safe code. A typed DataSet is a class created by the wizard on the
fly and it becomes part of the project. The advantage of typed DataSets is that they expose func-
tionality specific to the selected tables and can be easily bound to Windows forms. The code
that implements a typed DataSet adds methods and properties to a generic DataSet, so all the
functionality of the DataSet object is included in the autogenerated class.

Master It Describe the basic components generated by the wizard when you create a
typed DataSet with the visual tools of Visual Studio.

Solution The basic components of the class that implements a typed DataSet are as fol-
lows: the DataSet, which describes the entire DataSet; the BindingNavigator, which links
the data-bound controls on the form to the DataSet; and the TableAdapter, which links the
DataSet to the database. The DataSet component is based on the DataSet class and enhances
the functionality of an untyped DataSet by adding members that are specific to the data con-
tained in the DataSet. If the DataSet contains the Products table, the typed DataSet exposes
the ProductsRow class, which represents a row of the Products table. The ProductsRow
class, in turn, exposes the columns of the table as properties.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1037

CHAPTER 24: ADVANCED DATASET OPERATIONS 1037

The BindingSource class allows you to retrieve the current row with its Current property,
move to a specific row by setting the Position property, even suspend temporarily and
restore data binding with SuspendBinding and ResumeBinding.

The TableAdapter class, which is based on the DataAdapter class, provides methods for
loading a DataTable (the Fill method) and submitting the changes made to the DataSet to
the database (the Update method). The TableAdapterManager class, which encapsulates the
functionality of all TableAdapters on the form, provides the UpdateAll method, which sub-
mits the changes in all DataTables to the database.

Bind Windows forms to typed DataSets. The simplest method of designing a data-bound
form is to drop a DataTable, or individual columns, on the form. DataTables are bound to
DataGridView controls, which display the entire DataTable. Individual columns are bound
to simple controls such as TextBox, CheckBox, and DateTimePicker controls, depending on the
column’s type. In addition to the data-bound controls, the editor generates a toolbar control
with some basic navigational tools and the Add/Delete/Save buttons.

Master It Outline the process of binding DataTables to a DataGridView control.

Solution To bind a DataTable to a DataGridView control, locate the desired table in the
Data Sources window, set its binding option to DataGridView, and drop the DataTable on
the form. The editor will create a DataGridView control on the form and map the control’s
columns according to the columns of the DataTable. It will also add a toolbar with the basic
navigational and editing controls on the form.

To bind two related DataTables on the same form, drop the parent DataTable on the form,
and then select the child DataTable under this parent and drop it on the form. To mod-
ify the appearance of the DataGridView controls, open their Tasks menu and choose Edit
Columns to see the Edit Columns dialog box, where you can set the appearance of the con-
trol’s columns.

Chapter 24: Advanced DataSet Operations

Use SQL to query DataSets. Although DataSets resemble small databases that reside in the
client computer’s memory, you can’t manipulate them with SQL statements. However, it’s
possible to query their tables by using the Select method and SQL-like criteria. The Select
method filters the rows of the table to which it’s applied and returns an array of DataRow
objects, which you can use as a data source for data-bound controls.

Master It How would you select the rows of interest from a DataTable?

Solution To filter the rows of a DataTable, use the Select method. The simplest form of
this method accepts an SQL expression as an argument and uses it to filter the rows of the
DataTable to which it’s applied. To select the customers from Germany, apply the following
Select method to the Customers DataTable:

DS.Customers.Select(”Country = ’Germany’)

The second, optional, argument of the Select method is equivalent to the Order By clause
of SQL and determines the order in which the selected rows will appear. In addition to the
SQL expression, you can limit the scope of the selection by specifying the state of the rows

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1038

1038 APPENDIX A THE BOTTOM LINE

you want to select in the DataSet. This form of the Select method accepts a third argument,
which is of the RowState type (Added, Deleted, Modified).

Add calculated columns to DataTables. Sometimes you’ll need to update a column’s value
based on the values of other columns. For example, you may wish to maintain a column in the
Orders DataTable with the order’s total. For this column to be meaningful, its value should
be updated every time a related row in the Order Details DataTable is modified. In the actual
database, you’d do this with a trigger, but we want to avoid adding too many triggers to our
tables because they slow all data-access operations, not to mention that you’ll be duplicat-
ing information. To maintain totals in a DataSet, you can add calculated columns to its Data-
Tables. You specify a formula for the calculated column, and every time one of the columns
involved in the formula changes, the calculated column’s value changes accordingly.

Master It Add a calculated column to the Customers DataTable that combines the first
and last columns.

Solution To add a new DataColumn object to a DataTable, use the Add method of the
table’s Columns collection. One of the overloaded forms of this method allows you to spec-
ify not only the column’s name and data type, but also its contents. The following statement
adds the Name column to the Customers table and sets its type to String and its value to the
specified expression shown in this statement:

DS.Orders.Columns.Add(”Name”,
System.Type.GetType(”System.String”),

”First & ’ ’ & Last”)

The expression that specifies the new column’s value isn’t calculated when the DataSet is
loaded; it’s calculated on-the-fly, every time the column is requested.

Compute aggregates over sets of rows. To calculate aggregates over sets of rows in a Data-
Table, use the Compute method, which accepts two arguments: an SQL-like aggregate function
and a filtering expression, which is similar to an SQL WHERE clause. The aggregate function
isn’t limited to columns of the table to which it’s applied; you can use the Child()function to
access the current row’s child row in a given relation, and the Parent() function to access the
current row’s parent row(s) in a given relation, which is passed to the method as an argument.

Master It Show the statement for adding a new column to the Orders table with each
order’s total.

Solution Each order’s total is the sum of the products of the quantities times the prices
for all lines in the order. (You must also take into consideration the discount.) The impli-
cation is that the column belongs to the Orders table, but it must be calculated over the
current order’s child rows in the Order Details table. To access the detail lines of an order,
use the Child function, passing as an argument the name of the relation, as shown here:

DS.Orders.Columns.Add(”OrderTotal”,
System.Type.GetType(”System.Decimal”),
SUM(child(Orders Order Details).UnitPrice *
child(Orders Order Details).Quantity *
(1 - child(Orders Order Details).Discount)”)

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1039

CHAPTER 25: BUILDING WEB APPLICATIONS 1039

Orders Order Details is the name of the relation between the Orders and Order Details
tables.

Chapter 25: Building Web Applications

Create a basic XHTML/HTML page. Building a basic HTML page is a straightforward pro-
cess using a simple text editor such as Notepad. Knowledge of XHTML/HTML is still a major
asset when developing web applications with Visual Studio 2008.

Master It Develop a web page using HTML that features a heading, some text, an image,
and a link to another page. Convert the page to XHTML and verify it by using the W3 C
verification tool at http://validator.w3.org. You might find that you will need to run the
validation a couple of times to get everything right. If you attach and use the style sheet in
the following Master It challenge, you will find that the validation will be less problematic.

Solution Note that this solution includes the style sheet created in the next Master It
challenge. Some long lines are wrapped here in print, but you can leave them all on one line
in your code.

<?xml version=”1.0” encoding=”iso-8859-1”?>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0
Strict//EN” ”http://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>

<head>
<link rel=”stylesheet” type=”text/css” href=”stylesheet.css” />
<title>Basic Page</title>

</head>
<body>

<div class=”title”>
<h1>Heading</h1>

</div>
<div class=”content”>

<p>Text</p>
<img src=”myimage.jpg” height=”100”

width=”100” alt=”myimage” />

</div>
<div class=”menu”>

Microsoft
</div>

</body>
</html>

Format a page with CSS. Cascading Style Sheets (CSS) are a powerful tool for controlling the
styles and format of a website. You can manually create style sheets by using a text editor. An
understanding of their operation and syntax is a useful skill when manipulating CSS in Visual
Studio. 2008.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1040

1040 APPENDIX A THE BOTTOM LINE

Master It Create a CSS style sheet that defines the layout of the web page that you
developed in the previous task, including a header section, a left-hand navigation section,
and a main content section. Include a rollover for the link and apply formatting to the tags
that you have used for your heading and text tags. Attach the style sheet to your web page.

Solution The following code represents the CSS style sheet:

.title{
height:80px;
background:lightblue;
margin:5px 10px 10px 10px;
text-align: center;
}

.menu{
position: absolute;
top: 110px;
left: 20px;
width: 130px;
background: silver;
padding: 10px;
bottom: 20px;
}

.content{
background: lightblue;
padding: 30px;
position: absolute;
top: 110px;
bottom: 20px;
left: 180px;
right: 20px
}

a {
text-decoration:none;
color:blue;
}

a:visited {
text-decoration:none;
color:blue;
}

a:hover {
text-decoration:none;
font-weight: bold;
color:darkblue;
}

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1041

CHAPTER 25: BUILDING WEB APPLICATIONS 1041

a:active {
text-decoration:none;
color:blue;
}

Set up a master page for your website. Using master pages is a reliable method of con-
trolling the overall layout, and look and feel of your websites and applications. Master pages
enable you to achieve a high level of consistency in your design and are particularly useful if
the site has multiple developers working on it.

Master It Create a website with a master page and attached content page. Use appropriate
controls to give the master page a page heading, My Page, which will appear on all attached
content pages. Use a combination of Button and Label controls on the content page to create
a simple Hello World application.

Solution Start a new website and delete the default.aspx page. Create a new master
page and add a Label control to it above the default ContentPlaceHolder control.
Format the Label control appropriately as a heading and add a page heading: My Page.
Add a content page to your project. Name the page default.aspx. In the content page,
add a Button control and a Label control to the ContentPlaceHolder. (You may need to
right-click the ContentPlaceHolder control and choose the Create Custom Content option.)
Double-click the button and write the following code to set the text property of the label
control to Hello World:

Protected Sub Button1 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = ”Hello World”
End Sub

Use some of the ASP.NET intrinsic objects. ASP.NET objects such as the Response, Request,
Session, and Server objects offer a range of important utilities in developing, running, and
maintaining your websites and applications. In addition, they also give you access to vital
information about the client, the server, and any current sessions at runtime.

Master It Create a simple website with a master page and two attached content pages.
Use the Server.Execute method attached to a LinkButton control to navigate between the
two content pages.

Solution Create a new website and delete the default.aspx page. Create a new master
page and attach two content pages. Name one of the pages default.aspx and right-click it
in Solution Explorer to set the page as the startup page from the drop-down context menu.
Name the second page Page2.aspx. Place some distinguishing features on the two pages,
such as Label controls with appropriate text content.

Add a LinkButton control to the ContentPlaceHolder in default.aspx. Double-click the
LinkButton control and use Server.Execute in the sub for the Click method to create a
link to page 2.

Protected Sub LinkButton1 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles LinkButton1.Click

Server.Execute(”Page2.aspx”)
End Sub

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1042

1042 APPENDIX A THE BOTTOM LINE

Chapter 26: ASP.NET 3.5

Create cascading style sheets. Even though you may have created a main content area for
your page, you will still need to lay out the various text items and images that compose the
area. You can employ CSS to create content containers that can be used for layout and styles
within the main style sheet areas defined for a page.

Master It Develop a text container using CSS that will occupy the full width of the con-
taining area and expand vertically to accommodate the content. Include style attributes for
the <p> tag that set the font to Verdana, the text color to dark blue, and the font size to 8
point. Set vertical alignment to top, and horizontal alignment to left.

Solution

.contenttextbox
{

background: lightblue;
clear:both;
padding: 5px;
text-align:left;
vertical-align:top;
border:0;

}
.contenttextbox p
{

font:verdana;
color:Navy;
font-size:8pt;

}

Use web form controls. Images are an important part of any web page. The Image control
from the Standard toolbox gives you a control that combines the ability to display an image
with server-side functionality.

Master It Place an Image control onto an ASPX page and use it to display an image.

Solution Prepare a suitable image in GIF, JPG, or PNG format. Open the root directory of
your website and create a new subdirectory named images. Place the image that you have
created inside the images directory.

From the Standard toolbox, drag an instance of the Image control onto the design surface
of the ASPX page. Set the ImageUrl property to that of your image. Set the AlternateText
property to a suitable short description of your image.

Create a web user control. Web user controls enable you to create reusable combinations of
controls and functionality.

Master It Create a web user control with two TextBox controls and a Label control that
calculates a percentage based on amounts entered into the TextBox controls.

Solution Use the Add New Item dialog box to create a new WebUserControl.ascx tem-
plate. In Design view, drop a Table control from the HTML toolbox onto the page. Keep the
three default rows and columns.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1043

CHAPTER 27 ASP.NET WEB SERVICES 1043

In the first cell of the top row, type Enter amount. In the second cell, type Enter total. In the
third cell, type Calculated Percentage.

From the Standard toolbox, drag a TextBox control into each of the first two table cells in the
second row. Drop a Label control into the third cell. Place a Button control in the first cell of
the third row.

Delete the default text property value of the Label control. Set the Text property of the
Button control to Calculate. Double-click the Button control to open the code skeleton for
the Click event for the Button in code-behind. Enter the following code snippet:

Label1.Text = CInt(CInt(TextBox1.Text) * 100 / CInt(TextBox2.Text))&”%”

This particular example will not do any validation of user input but will perform a basic cal-
culation. Save your work and test it in an ASPX page.

Chapter 27 ASP.Net Web Services

Create a simple ASP.NET web service. Creating ASP.NET web services is straightforward
with Visual Studio. ASP.NET web services provide a great method for delivering data and
functionality within a distributed environment, including the Internet.

Master It Develop an ASP.NET web service that enables the user to add two numbers.

Solution

1. Open Visual Studio 2008 and choose File � New Web Site.

2. From the New Web Site dialog box, select ASP.NET Web Service and click OK.

3. In App Code/Service.vb, change the default reference of http://tempuri.org to
something more relevant to your situation.

4. Delete the default HelloWorld <WebMethod()> and add the following code snippet:

<WebMethod()>
Public Function AddNumber(ByVal value1 As Integer, ByVal

value2 As Integer) As String
AddNumber = CInt(value1 + value2)

End Function

Consume an ASP.NET web service. Adding a web reference or service reference to a web
service is a key element to creating an application that can consume the web service.

Master It Create a new website and add a service reference to a web service on your
machine.

Solution

1. Open Visual Studio to an existing web service project such as MyWebService. Run
the application to create a running instance of ASP.NET Development Server.

2. From the Start menu, open a new instance of Visual Studio 2008. Choose File � New
Web Site.

Petroutsos bapp01.tex V3 - 01/28/2008 5:29pm Page 1044

1044 APPENDIX A THE BOTTOM LINE

3. From the New Web Site dialog box, select ASP.NET Web Site and click OK.

4. In Solution Explorer, right-click the name and path of the website at the top of the Solu-
tion Explorer tree, and from the context menu choose Add Service Reference.

5. In the Add Service Reference dialog box, type (or paste) the URL for the web service.
Click the Go button.

6. After the service has been discovered, click the OK button. The service should now be
registered in Solution Explorer.

Work with AJAX technologies. UpdatePanel controls are used in AJAX implementations
to provide partial page refreshes. A control placed within the UpdatePanel will automatically
refresh the UpdatePanel with a postback. However, you can also use a control located else-
where on the page to trigger an UpdatePanel refresh.

Master It Add a Button control to an AJAX web page that is set to trigger an asynchronous
update for an UpdatePanel control.

Solution

1. Open Visual Studio 2008 and create a new website. Once in the website, use the Add
New Item dialog box to add an AJAX web form to the solution.

2. Drop an UpdatePanel control onto the form from the AJAX Extensions toolbox.

3. Drop a Button control onto the form, below the UpdatePanel control. Keep the default
Button1 ID property.

4. Select the UpdatePanel and from the Properties window, click the ellipsis in the Trig-
gers property to open the UpdatePanelTrigger Collection Editor dialog box.

5. Click the Add button and choose AsyncPostBack. In the AsyncPostBack Properties
window, set the ControlID to Button1. Set the EventName to Click. Click the OK button
to exit the dialog box.

The UpdatePanel will now respond to the Click event of Button1.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1045

Appendix B

Error Handling and Debugging

Your basic task as a developer is to write functional, robust applications. To write functional
applications, you must keep the interface as simple as possible, use your common sense, and listen
to the users. If you take the users’ comments into consideration while designing your application’s
interface, you will produce a functional application. Avoid designing complicated forms and don’t
try to squeeze too much information onto a single form. If you’ve been around in this field for a
while, you already know that this is an acquired skill and that there’s no substitute for experience.

Writing robust applications, however, is not as hard. Although writing functional applications
is an art, writing robust applications is a technique that can be taught. It takes a lot of code, but
it is well within the average developer’s skills. A robust application is one that will continue
its operation under adverse conditions. The most typical abnormal condition for an application
occurs when users supply the wrong data. Users will enter data that defy any logic, and your code
should be able to handle them. At the very least, your application shouldn’t terminate without
giving users a chance to save their data. It’s okay to abort an operation and display a warning, but
an application shouldn’t crash.

Another related issue is that of debugging applications. No amount of error-handling code will
do you any good if your application is producing wrong results. Errors, or bugs, in our code are
not always obvious, and any nontrivial application contains quite a few of them — just check out
the number of fixes and patches for a major commercial application. Debugging is an important
aspect of coding an application, and all modern development tools provide valuable assistance
in locating problems in your code and fixing them. The bulk of this appendix is devoted to the
debugging tools of Visual Studio.

Understanding the Types of Errors
The errors caused by a computer program (regardless of the language in which the program is
written) can be categorized into three major groups:

Design-time errors The design-time error, which is the easiest to find and fix, occurs when
you write a piece of code that does not conform to the rules of the language in which you’re
writing. These errors are easy to find because Visual Studio tells you not only where they are
but also what part of the line it doesn’t understand.

Runtime errors Runtime errors are harder to locate because Visual Studio doesn’t give you
any help in finding the error until it occurs in your program. These errors occur when your
program attempts something illegal, such as accessing data that doesn’t exist or a resource to
which it doesn’t have the proper permissions. These types of errors can cause your program
to crash, or hang, unless they are handled properly.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1046

1046 APPENDIX B ERROR HANDLING AND DEBUGGING

Logic errors The third type of error, the logic error, is often the most insidious type to locate
because it might not manifest itself as a problem in the program at all. A program with a logic
error simply means that the output or operation of your program is not exactly as you intended
it. It could be as simple as an incorrect calculation or having a menu option enabled when you
wanted it disabled. Quite often, logical errors are discovered by the users after the application
has been deployed.

Design-Time Errors
Also called syntax errors, design-time errors occur when the Visual Basic compiler cannot
recognize one or more statements that you have written. Some design-time errors are simply
typographical errors — you have mistyped a keyword. Others are the result of missing items:
undeclared or untyped variables, classes not yet imported, incorrect parameter lists in a function
or method call, or referencing members on a class that do not exist. By now, you should be familiar
with all these types of errors.

A program with as few as one design-time error cannot be compiled and run — you must
locate and correct the error before continuing. Fortunately, design-time errors are the easiest to
detect and correct because Visual Studio shows you the exact location of these errors and gives
you good information about what part of the code it can’t understand. What follows is a brief
example showing several design-time errors in just a few lines of code.

The event code shown in Figure B.1 was typed into the Click event of a button named Button1.
Note the three squiggly lines under various parts of this brief code (under the two instances of the
variable i and under the term lbNumbers). Each of those squiggly lines represents a design-time
error. To determine what the errors are, locate the Error List windowin the IDE and bring it
forward. The Task List displays the errors seen in Figure B.2 for the code from Figure B.1. If the
Infer option is off, the editor will not underline the i variable; it will automatically create an inte-
ger variable and use it. To make the most of the compiler’s syntax error capabilities, turn on the
Strict and Explicit options, and turn off the Infer option.

Figure B.1

VB.NET identifies the
locations of design-time
errors.

Figure B.2

Corresponding errors in
the Task List

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1047

UNDERSTANDING THE TYPES OF ERRORS 1047

You can determine which squiggly line corresponds to which design-time error in the Task List
by double-clicking the error in the Task List. The corresponding error will become selected in the
code window.

Note that two of the errors are the same: They state, Name ‘i’ is not declared. In this case, these
errors are telling you that you’ve referenced a variable named i, but you have not declared it. To
fix these two errors, you need to declare the variable i as Integer. As a reminder, you can declare
the counter of a For. . .Next loop right in the For statement:

For i As Integer = 0 To 100

The only error remaining now is Name ‘lnumbers’ is not declared. As the programmer of the
application, you would probably have some type of idea what lnumbers is. In this case, I was
attempting to add 100 items to a ListBox, and lnumbers is supposed to be the name of the List-
Box on the form. This error tells me that I do not have a ListBox on the form named lnumbers.
I’ve either forgotten to put a ListBox on the form entirely, or I did add one but did not name it
lnumbers. To correct the problem, I can either make sure that a ListBox is on my form with the
correct name, or change this code so that the name matches whatever I’ve named the ListBox.

I added a ListBox named lnumbers to my form. After doing so, however, I’m still left with a
syntax error on the line, this time a different one. The description of the new error is ‘‘The name
‘add’ is not a member of ‘System.Windows.Forms.ListBox’.’’ This is telling you that it now recognizes
that lnumbers is a ListBox object, but there is no member (property, event, or method) named Add
on a ListBox. So what’s the correct method to add an item to a ListBox? Some brief research in the
help should yield the correct line of code — the one shown in Figure B.3. The statement:

lnumbers.Add (”Item ” & i.ToString)

was changed to

lnumbers.Items.Add(”Item ” & i.ToString)

Figure B.3

This syntax is correct.

Notice that all the squiggly lines are now gone, and the Task List should be empty of errors as
well. This means that our program is free of syntax errors and is ready to be compiled and run.

Even if you believe there’s nothing wrong with your code, a design-time syntax error is really
simple to fix. Do not make any assumptions, read the error message carefully, and consult the

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1048

1048 APPENDIX B ERROR HANDLING AND DEBUGGING

documentation. More often than not, it’s something almost obvious that you fail to see
immediately.

Runtime Errors
Runtime errors are much more insidious to find and fix than design-time errors. Runtime errors
are problems encountered by your program while it’s running, and they usually happen at the
client’s site. Runtime errors can take on dozens of different shapes and forms. Here are some
examples:

◆ Attempting to open a file that doesn’t exist

◆ Trying to log in to a server with an incorrect username or password

◆ Trying to access a folder for which you have insufficient rights

◆ Accessing an Internet URL that no longer exists

◆ Dividing a number by zero

◆ Users entering character data where a number is expected

As you might imagine, runtime errors can be many degrees harder to diagnose and fix in
comparison to design-time errors. After all, any error you make in design time is right there on
your own development PC. Not only that, but the Visual Studio compiler also goes ahead and tells
you right where a design-time error is and why it’s an error. The runtime error, by comparison,
might manifest itself only in strange computing conditions on a PC halfway across the world.
We’ll see in later sections how runtime errors can be detected and managed. Basically, we’ll insert
some special sections in our code to handle possible errors in a code segment with a structured
exception handler. Structured exception handlers are discussed in detail later in this appendix.

Logic Errors
Logic errors also occur at runtime, so they are often difficult to track down. A logic error occurs
when a program does not do what the developer intended it to do. For example, you might pro-
vide the code to add a customer to a customer list, but when the end user runs the program and
adds a new customer, the customer is not there. The error might lie in the code that adds the
customer to the database; or perhaps the customer is indeed being added, but the grid that lists
all the customers is not being refreshed after the add-customer code, so it merely appears that the
customer wasn’t added.

Here are some actual Visual Basic .NET code snippets that produce logic errors. Consider the
following code snippet:

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer
i = 1
Do While i > 0

i += 1
Loop

End Sub

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1049

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1049

Here we have an integer variable set to 1 and incremented by 1 in a loop. Each time the loop
iterates, the number gets bigger. The loop will continue to iterate as long as the variable is greater
than 0. See any problem with this? The problem is that the value of the variable will always be
greater than 0, so the loop will never terminate. This is called an infinite loop, and it’s a very com-
mon error. Of course, this loop isn’t exactly infinite; after 2 billion iterations, an overflow condition
will cause the application to crash with an overflow exception, which is a good indication about
what happened.

Here’s another simple example of a logic error:

Private Sub ColorTheLabel(ByVal lbl As Label)
If CInt(lbl.Text) < 0 Then

lbl.ForeColor = Color.Green
Else

lbl.ForeColor = Color.Red
End If

End Sub

This routine was intended to color the text of a label red if the label text contained a negative
number, and green if it contained a positive number (or 0). However, I got the logic backward —
the label text is green for numbers less than 0, and red otherwise. This code won’t produce any
design-time errors or runtime crashes. It simply does the opposite of what I intended it to do.

Note finally that logic errors might or might not manifest themselves as program crashes. In
the preceding logic error examples, the programs wouldn’t have crashed or produced any type of
error message — they simply did not perform as intended. It goes without saying that you should
test your application thoroughly and discover such errors on your own.

Some logic errors might indeed produce a program crash, at which point the line between a
logic error and a runtime error becomes blurry. The fact that a new customer doesn’t appear in a
grid might cause a crash if your program tries to highlight that new customer in the grid but the
customer row isn’t there. In this case, we made a logic error (not adding the customer to the grid)
that’s caused a runtime error (the program crashes when it tries to highlight a row in a grid that
doesn’t exist). Fixing the logic error would automatically fix the runtime error.

Logic errors are often discovered by the users of the application, although rigorous testing will
reveal most of them. When such an error is reported, you must debug the application: Discover
the statements that produce the error and fix them. Discovering the statements responsible for a
logical error is usually much more difficult than fixing them. We’ll discuss the tools for debugging
applications in the last section of this appendix.

Working with Exceptions and Structured
Exception Handling
A good deal of the code we write handles errors. It shouldn’t come as a surprise, but more than
half of a professional application’s code validates data and handles possible errors. Most of the
error-handling code we write will never be executed. Users aren’t supposed to enter a discount
percentage that exceeds 100 percent or a future birth date. This isn’t supposed to happen and
might never happen. However, you must validate the discount’s value from within your code
and not proceed with your calculations until the user supplies a valid value. We should make an

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1050

1050 APPENDIX B ERROR HANDLING AND DEBUGGING

important distinction here: A valid value is not necessarily the correct value, but there’s nothing
you can do about that.

Consider an application that performs static calculations. The individual parameters supplied
by the user might be correct, but when they’re combined, the calculations might fail (that is, the
calculations might produce results that don’t make sense). No parameter is in error, but they’re
incompatible with one another. For example, they might result in a division by zero, the calcula-
tion of the square root of a negative value, and so on. Our task is to detect this condition in our
code and allow users to revise their data, rather than allow the application to crash.

The situation we just described can’t be handled with data validation. We’ll discover a problem
with our data only after we attempt to use them in some calculations. Another type of error you
can’t prevent with data validation is an error caused by the hardware itself. The disk might be full
when you attempt to save a large file, or the drive you’re accessing might be disconnected. When
your application runs into a situation like this, it should be able to detect the error and handle it
from within your code. Many of these errors will never happen during the testing phase, unless
you’re really thorough in your test and take it as far as disconnecting drives and unplugging cables
while you’re testing your application.

To handle errors that surface at runtime, we use structured exception handlers. Exceptions that
are handled from within the application’s code are called handled exceptions, and they result in
robust applications. Exceptions that are not handled from within your code are called unhandled
exceptions, and they lead to program crashes. (In effect, it’s the Common Language Runtime, or
CLR, that handles these errors in a rather crude manner.)

Figure B.4 shows an example of an exception message. This is the dialog box that appears when
you are running your program in the IDE. The statement in error is highlighted, and a box with
the error’s description appears. The troubleshooting tips that appear in this dialog box provide
hints as to what might have caused the exception and, in many cases, suggestions about how to
correct the error. If the same error were to be encountered by a user running your program, the
dialog box would look slightly different, as seen in Figure B.5. Usually the Details section of
the dialog box isn’t shown, but I clicked the Details button before capturing the figure. If you
scroll the details text to the right, you’ll see the number of the line in the source code that caused
the runtime exception.

Figure B.4

Design-time error
message

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1051

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1051

Figure B.5

Runtime error message

You could have avoided this type of error by making sure the file exists before attempting to
use it. Yet, a missing file is not the only reason for the Open method to fail. The user may not have
permission to open the specified file. The truth is that you can avoid most runtime exceptions
with the appropriate validation code, but validation can’t prevent all possible errors. Besides, to
write the appropriate validation code, you must foresee all possible errors, and in most cases this
is simply not feasible.

Note that this dialog box gives the user the opportunity to continue the program. In some
rare cases, this might be desirable, but in most cases you probably would not want your users
attempting to continue after a program exception has occurred. Think about it — your program
has just encountered some form of data that it cannot handle correctly, and now it is asking the
user whether it should attempt to ignore that bad data and continue. It is difficult to predict what
type of further problems might result as the program continues on and attempts to handle the bad
data. Most likely, further exceptions will be generated as the subsequent lines of code attempt to
deal with the same unexpected data.

Ideally, users should never see a dialog box like the one shown in Figure B.5; we’ll simply have
to handle it ourselves with a structured exception handler. An error handler is a section of VB
code that allows you to detect exceptions and take the necessary steps to recover from them. What
follows are some exception-handling code examples.

Studying an Exception
The exception dialog boxes shown in Figures B.4 and B.5 were generated by a statement attempt-
ing to open a file that doesn’t exist:

strm = File.Open(”C:\TestFiles\Data001.dat”, FileMode.Open)

This error is rather trivial to fix. Sometimes the description of the error isn’t as obvious. Let’s
consider the statements of Listing B.1, which will also result in a runtime exception.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1052

1052 APPENDIX B ERROR HANDLING AND DEBUGGING

Listing B.1: An Unhandled Exception

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Dim s As String
s = ”answer”
Label1.Text = s.Substring(10, 1)

End Sub

This code is attempting to display the 11th character in the string answer. Seeing as the word
answer contains only six characters, you can imagine how an exception might be generated. Let’s
examine the exact phrasing of the exception to learn as much as possible about this particular
error:

startIndex cannot be larger than length of string. Parameter name: startIndex

The first thing to notice is that the message box’s title is ArgumentOutOfRangeException, and
it’s referred to as an unhandled exception. This means that the line of code that generated this error
is not contained within an exception-handling block.

The second interesting piece of information is that this exception is of type System.Argument-
OutOfRangeException, whatever that means. What’s important to note is that the different types
of errors can be classified in groups. The previous error message is telling us that the exception
object instance generated is of class (type) System.ArgumentOutOfRangeException, which is a
descendent of class Exception.

The ‘‘additional information’’ block gives us some specific notes on the nature of the error. It
tells us that the index and length parameters of the Substring method must both lie within the
boundaries of the string. In our case, we attempted to retrieve the 11th character of a six-character
string, clearly outside the boundary.

Getting a Handle on This Exception
Listing B.2 is the same defective code statement as Listing B.1, but with a simple exception handler
wrapped around it.

Listing B.2: Handling an Exception, Version 1

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Dim s As String
s = ”answer”
Try

Label1.Text = s.Substring(10, 1)
Catch

Label1.Text = ”error”
End Try

End Sub

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1053

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1053

This code attempts to do the same thing as the preceding code, but this time the faulty
Substring statement is wrapped around a Try. . .Catch. . .End Try block. This block is a basic
exception handler. If any of the code after the Try statement (and before the Catch statement) gen-
erates an exception, program control automatically jumps to the code after the Catch statement.
If no exceptions are generated in the code under the Try statement, the Catch block is skipped.
When this code is run, the System.ArgumentOutOfRangeException is generated, but now the
code does not terminate with a message box. Instead, the text property of Label1 is set to
the word error, and the program continues along.

Listing B.3 handles the same error in a slightly different way.

Listing B.3: Handling an Exception, Version 2

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Dim s As String
s = ”answer”
Try
Label1.Text = s.Substring(10, 1)

Catch ex As Exception
Call MsgBox(ex.Message)

End Try
End Sub

In this example, the exception generates an instance of the Exception class and places that
instance in a variable named ex. Having the exception instance variable is useful because it can
give you the text of the exception, which we display in a message box here. Of course, displaying
the exception message in a message box is pretty much the same thing that your program does
when an unhandled exception is generated, so it’s doubtful that you would do this in your own
program. However, you could log the exception text to the event log or a custom error file.

Note that the preceding exception handlers do not differentiate between types of errors. If
any exception is generated within the Try block, the Catch block is executed. You can also write
exception handlers that handle different classes of errors, as seen in Listing B.4.

Listing B.4: Handling an Exception, Version 3

Private Sub Button3 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

Try
Label1.Text = lbStates.SelectedItem.ToString

Catch exNull As System.NullReferenceException
Call MsgBox(”Please select an item first”)

Catch ex As Exception
Call MsgBox(”Some other error: ” & ex.Message)

End Try
End Sub

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1054

1054 APPENDIX B ERROR HANDLING AND DEBUGGING

This code attempts to read the selected item in a ListBox named lbStates and display it as the
caption of a Label control. If no item is selected in the ListBox, a System.NullReferenceException
will be generated, and we use that information to tell the user to select an item in the ListBox. If
any other type of exception is generated, this code displays the text of that error message.

In the list of exceptions shown in Listing B.4, the more specific exception handler comes first,
and the more general exception handler comes last. This is how you’ll want to code all your mul-
tiple Catch exception handlers so that they are handled in the correct order. If you put your more
general Catch handlers first, they will execute first and override the more specific handlers.

Note that because the Exception instance is declared in each Catch block, its scope is limited
within that block. The code in Listing B.5 is illegal for scoping reasons.

Listing B.5: Handling an Exception, Version 4 (Illegal)

Private Sub Button3 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

Try
Button3.Text = lbStates.SelectedItem.ToString

Catch ex As System.NullReferenceException
MsgBox(”please select an item first”)

Catch ex As Exception
MsgBox(”some other error”)

End Try
MsgBox(ex.message)

End Sub

The final MsgBox() function call is not valid because the ex variable that it attempts to display
is not in scope at this point of the procedure. The scope of the two ex variables is restricted in their
Catch blocks.

By the way, you can avoid the NullReferenceException altogether by making sure that the
user has selected an item in the ListBox control with a few statements like the following:

If lbStates.SelectedItems.Count = 0 Then
MsgBox(”Please select a state on the States list!”)
Exit Sub

End If

The preceding If statement doesn’t attempt to process the state unless the user has already
selected a state in the lbStates control. If not, the event handler is terminated without taking any
action.

Wrapping Up with the Finally Clause
When an exception is generated and handled by a Catch statement, the code execution is immedi-
ately transferred to the first relevant Catch exception handler block and then continues on out of
the Try. . .Catch. . .End Try block. Sometimes it might be necessary to perform some cleanup before
moving out of the exception-handling block. Consider the procedure demonstrated in Listing B.6.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1055

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1055

Listing B.6: A Possible Exception

Protected Sub ReadFromATextFile(cFilename as string)
Dim s As StreamReader
Dim cLine As String
Dim bDone As Boolean = False
lbresults.Items.Clear()
s = New Streamreader(cFilename)
Try

While Not bDone
cLine = s.ReadLine()
If cLine Is Nothing Then

bDone = True
Else

Call lbresults.Items.Add(cLine)
End If

End While
s.Close()

Catch ex as Exception
Call MsgBox(”some error occurred”)

End Try
End Sub

This method attempts to read the contents of a text file and put the results into a ListBox, line
by line. Most of the reading code is wrapped within a generic exception handler. If an exception
is encountered in the main loop, the s.Close() line will not be executed. This means that our file
stream will never be properly closed, possibly leading to a resource leak.

Fortunately, there is an additional type of block available in exception handlers that
specifically allow us to avoid this type of problem. This new block is called the Finally block.
The code within a Finally block always executes, whether an exception is generated or not. The
code in Listing B.7 is the same as the method in Listing B.6, but is now modified to wrap the
s.Close() method inside a Finally block.

Listing B.7: Handling an Exception with a Finally Block

Protected Sub ReadFromATextFile(cFilename as string)
Dim s As StreamReader
Dim cLine As String
Dim bDone As Boolean = False
lbresults.Items.Clear()
s = New Streamreader(cFilename)
Try

While Not bDone
cLine = s.ReadLine()
If cLine Is Nothing Then

bDone = True

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1056

1056 APPENDIX B ERROR HANDLING AND DEBUGGING

Else
Call lbresults.Items.Add(cLine)

End If
End While

Catch oEX as Exception
Call MsgBox(”some error occurred”)

Finally
s.Close()

End Try
End Sub

The Finally clause of a structured exception handler allows you to guarantee that certain
resources or handles are properly disposed of when they are no longer needed.

VB 2008 at Work: The ReadWriteFile Project
In this section, we’ll implement two structured error handlers to deal with runtime errors that
might occur while opening, reading from, and writing to files. First, we must determine the oper-
ations that might throw exceptions at runtime. We’ll use the Open method of the File class to open
a file for reading. The file’s name will be supplied by the user through the Open common dialog
box. If you look up the Open method in the documentation, you’ll find a list of all the exceptions
that this method might raise; they’re listed in Table B.1.

Table B.1: Exceptions for the Open Method

Exception Condition

ArgumentException The path argument is a zero-length string, contains only white
space, or contains one or more invalid characters as defined by
InvalidPathChars.

ArgumentNullException The path argument is a null reference (Nothing in Visual Basic).

ArgumentOutOfRangeException The value of the mode argument is invalid.

PathTooLongException The specified path, filename, or both exceed the system-defined
maximum length. For example, in Windows-based platforms,
paths must have fewer than 248 characters, and filenames must
have fewer than 260 characters.

IOException An I/O error occurred while opening the file.

DirectoryNotFoundException The specified path is invalid, such as being on an unmapped drive.

UnauthorizedAccessException The path specified is a directory, or the calling application does not
have the required permission to write to or read from the file.

FileNotFoundException The file specified in the path was not found.

NotSupportedException The path is in an invalid format.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1057

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1057

Some of these errors can be easily prevented; we can easily make sure that the path is not an
empty string and the file is opened in a valid mode. Because we’re using the Open built-in dialog
box, these errors will never occur. However, another application might read the file’s name from
another source and it might run into a bad filename or pathname.

The statements in the Try clause of Listing B.8 attempt to open a file for reading. If any of the
Open method’s possible exceptions occurs, the program displays a warning and exits the proce-
dure without opening the file.

Listing B.8: Handling Exceptions with the Basic File I/O Operations (1)

Private Sub bttnFileIOExceptions Click(
ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles bttnFileIOExceptions.Click

Dim FName As String
Dim txt As String

OpenFileDialog1.CheckFileExists = True
OpenFileDialog1.CheckPathExists = True
OpenFileDialog1.Filter = ”Text Files|*.txt”
Dim stream As FileStream
If OpenFileDialog1.ShowDialog = DialogResult.OK Then

Try
’ Dim excptnDirectory As System.IO.DirectoryNotFoundException
’ Throw excptnDirectpry

FName = OpenFileDialog1.FileName
stream = File.Open(FName, FileMode.Open)

Catch authorizationException As UnauthorizedAccessException
MsgBox(”The file is read-only”)
Exit Sub

Catch excptnDirectory As System.IO.DirectoryNotFoundException
MsgBox(”Specified directory not found”)
Exit Sub

Catch excptnFile As System.IO.FileNotFoundException
MsgBox(”Specified file not found”)
Exit Sub

Catch IOExcptn As System.IO.IOException
MsgBox(”Couldn’t open the file”)
Exit Sub

Catch excptn As Exception
MsgBox(”Failed to open file.” & vbCrLf & excptn.Message)
Exit Sub

End Try
Dim b As Byte
Dim buffer(stream.Length - 1) As Byte
Try

stream.Read(buffer, 0, stream.Length)
Catch excptnIO As System.IO.IOException

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1058

1058 APPENDIX B ERROR HANDLING AND DEBUGGING

MsgBox(”Error in reading file”)
Exit Sub

Catch excptnNotSupported As System.NotSupportedException
MsgBox(”Can’t read from file”)
Exit Sub

Catch excptn As Exception
MsgBox(”The following error occurred while reading” &

vbCrLf & Excptn.Message)
Finally

stream.Close()
End Try
txt = UTF7.GetString(buffer)
Console.WriteLine(txt)

End If
End Sub

If the file is opened successfully, the program attempts to read its contents into an array of bytes
by using the FileStream object’s Read method. This method might also throw several exceptions,
which are listed in the Read method’s entry in the documentation. The two most likely ones are
the IOException and the NotSupportedException. The IOException exception occurs when the
operating system can’t read from the file (either because it’s locked by another user or because
the media is bad); the NotSupportedException occurs when we attempt to perform an illegal
operation on the file (such as moving to the beginning of a forward-only stream). The structured
error handler handles these two exceptions separately and then handles all other exceptions. In
the Finally clause, we close the stream.

The first two statements in the Try clause are commented out. You can insert statements to
throw exceptions in your code to test your error handler. Declare variables to represent an excep-
tion type and use them to throw any exception with the Throw method.

The code for writing to a file is a little more challenging. The user might select a read-only
file, and this is an exception we can handle from within our handler. If you attempt to open a
read-only file for writing with the Open method, the UnauthorizedAccessException exception
is thrown. In this exception’s handler, you can verify that the file is read-only and prompt the
user to reset the file’s read-only attribute. If the user agrees to change the read-only attribute,
the code executes the Open method again. Notice the nested exception handler embedded in the
UnauthorizedAccessException Catch clause. This handler takes care of any exceptions thrown
by the statements that call the SetAttributes and Open methods.

Listing B.9 shows the complete code for a simple operation. As you can see, the core of the
code consists of a few statements (the statements that open the file and write a string to it).
The remaining statements handle possible errors and make the program easier to use.

Listing B.9: Handling Exceptions with the Basic File I/O Operations (2)

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles Button2.Click

Dim path As String

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1059

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1059

Dim FS As FileStream
Dim cException As ArgumentNullException
Dim RepeatOperation As Boolean = True
While RepeatOperation

RepeatOperation = False
If SaveFileDialog1.ShowDialog <> DialogResult.OK Then

Exit Sub
End If
Me.Refresh()
path = SaveFileDialog1.FileName
Try

FS = File.Open(path, FileMode.OpenOrCreate)
Catch exPath As PathTooLongException

MsgBox(”Invalid path name”)
RepeatOperation = True

Catch exPath As DirectoryNotFoundException
MsgBox(”The folder you specified does not exist”)
RepeatOperation = True

Catch exFile As FileNotFoundException
MsgBox(”The file you specified does not exist”)
RepeatOperation = True

Catch exArgumentNull As ArgumentNullException
MsgBox(”You have not specified the file to open”)
RepeatOperation = True

Catch AccessException As UnauthorizedAccessException
Dim reply As DialogResult
If File.GetAttributes(path) And

FileAttributes.ReadOnly = FileAttributes.ReadOnly Then
reply = MsgBox(”File is read-only. Reset it?”,

MsgBoxStyle.YesNo)
If reply = DialogResult.Yes Then

Try
File.SetAttributes(path,

File.GetAttributes(path) And
(Not FileAttributes.ReadOnly))

FS = File.Open(path, FileMode.OpenOrCreate)
Catch ex As Exception

MsgBox(”Could not reset read-only attribute!”)
Exit Sub

End Try
End If

Else
MsgBox(”Can’t access file!”)
Exit Sub

End If
Catch GeneralException As Exception

MsgBox(GeneralException.Message)

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1060

1060 APPENDIX B ERROR HANDLING AND DEBUGGING

Exit Sub
End Try

End While

Dim b(1024) As Byte
Dim temp As UTF8Encoding = New UTF8Encoding(True)
Dim buffer() As Byte
Try

buffer = System.Text.Encoding.UTF8.GetBytes(
”Write this string to the file”)

FS.Write(buffer, 0, buffer.GetLength(0))
Catch exUnsupported As NotSupportedException

MsgBox(”The stream doesn’t supported the requested operation”)
Exit Sub

Catch IOExc As IOException
MsgBox(”Error writing to file.” & vbCrLf &

”Please make sure the file isn’t ” &
”read-only and the disk isn’t full”)

Catch GeneralExc As Exception
MsgBox(”Error in application”)
Exit Sub

Finally
FS.Close()

End Try
MsgBox(”Data saved successfully”)

End Sub

Our error-handling code doesn’t do a lot, except for displaying specific error messages that will
help the user understand the condition that prevented the successful completion of the operation.
However, the Catch clauses can be as complicated as you can make them.

To read the attributes of a file, use the GetAttributes method of the File class; to set an
attribute, use the SetAttributes method of the File class. Both methods might throw exceptions,
which you should handle with a nested error handler. In the UnauthorizedAccessException
handler’s code, we attempt to reset a read-only file. If the operation succeeds, we repeat the state-
ments that write a string to the file. If the file’s read-only attribute can’t be reset (as is the case for
a file on a website), the subroutine is terminated.

One excellent method of testing software is to ask users who have no preconceived notions
about its functionality to test it for you. For example, if you’re writing software for the accounting
department to use, ask members of the marketing department to test it for you. These users will
have much less familiarity with the goals of the software, as well as the expected inputs and
outputs. This increases the chance of entering unexpected data, which can lead to unhandled
exceptions in your code.

Customizing Exception Handling
There are hundreds of exception classes built into the Framework, and you might not want to
handle all of them the same way. You can customize the way certain exceptions are handled by
bringing up the Exceptions dialog box (see Figure B.6). The Debug � Exceptions menu opens this

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1061

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1061

dialog box, which allows you to specify how the CLR will handle each exception. This dialog box
contains a list of all exceptions, organized in five categories: C++ Exceptions (you can safely ignore
this section for your VB or C# applications), Common Language Runtime Exceptions (this is the
section of interest to VB developers), Managed Debugging Assistants, Native Runtime Checks,
and Win32 Exceptions (for handling exceptions in Win32 functions). For each exception, you can
specify whether the IDE will interrupt the execution of the application if an exception occurs. If
you want to break the execution of the application every time an exception is thrown, regardless
of whether your code handles it, select the Thrown check box. When we debug an application, we
frequently want to stop and examine the conditions that caused the exception, rather than let a
generic exception handler take over. If you want to break the execution of the application only on
unhandled exceptions, select the User-Unhandled check box.

Figure B.6

The Debug � Exceptions
dialog box

The exception shown in the figure is one we saw in the earlier examples: System.IO
.FileNotFoundException. When this exception is first encountered, the system is currently set
to do whatever the parent setting specifies. Tracing up the tree in this dialog box, we eventually
find that all .NET Framework exceptions are set to continue when they are first encountered, but
to break into the debugger if they are not handled in a Try. . .Catch. . .Finally. . .End Try block.
This is consistent with what we saw in the earliest exception examples — a dialog box is displayed
when an exception was encountered, but it disappears when the proper exception-handling code
is in place.

Throwing Custom Exceptions
Although it’s relatively easy to handle errors in an application’s code (after all, your code can
interact with the user), things are very different when you write your own components. When
you write a class, for example, you might run into a situation that can’t be handled from within
the class’s code. In this case, you must throw an exception from within your class’s code and
let the calling application handle it. If the arguments passed to a function that performs a series
of calculations, for example, are invalid, there isn’t much we can do in our code. We can’t interact
with the user because the component might be running on a remote machine or a web server.
What good are error messages displayed on the application server’s monitor? They will remain
there indefinitely because no user will see them. In an application that runs on a web server, you
should log the errors with the My.Application.Log.WriteEntry method, which will append a
string describing the error to the system’s event log.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1062

1062 APPENDIX B ERROR HANDLING AND DEBUGGING

The solution is to throw an exception from within our code. The arguments themselves need not
be invalid; only their combination results in an impossible situation. Consider a class that exposes
a number of properties that must be set before calling a method that acts on these properties. If
the calling application attempts to call the method without setting the properties first, the method
must pass some information back to the calling application. The most robust technique of passing
error information back to the calling application is to throw an exception. As you will see, you can
throw a generic exception or a custom exception. A custom exception is an object that inherits from
the ApplicationException class and can convey additional information to the calling application,
besides an error message.

To raise an exception in a class, use the Throw method followed by an Exception object. The
simplest method of passing an Exception object to the application that uses your custom class is
to create an Exception object by calling its constructor. The Exception object’s constructor accepts
as an argument a string, which is a description of the error. The following statement will cause an
exception when executed:

Throw New Exception(”Age can’t be negative”)

The description of the error should be as specific as possible, and different conditions should
produce different errors.

Consider the BDate property, which stores a person’s birth date. Obviously, the birth date can’t
be a future date, so we insert some validation code in the Property procedure’s code:

Public Property BDate() As Date
Get

Return BDate
End Get
Set(ByVal Value As Date)

If DateDiff(DateInterval.Year, Now, value) > 0 And
DateDiff(DateInterval.Year, Now, PersonBDate) < 100 Then
BDate = Value

Else
Throw New Exception(”Invalid date of birth”)

End If
End Set

End Property

You can also define your own exceptions with a class that inherits from the ApplicationExcep-
tion class. Your class should contain three constructors: one without arguments, another with a
description, and a third with a message and another exception object. Let’s implement a custom
exception for the BDate property: the AgeException class. Listing B.10 shows the implementation
of the AgeException class.

Listing B.10: Defining a Custom Exception

Public Class AgeException
Inherits ApplicationException

Public Sub New()
End Sub

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1063

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1063

Public Sub New(ByVal message As String)
MyBase.New(message)

End Sub

Public Sub New(ByVal message As String, ByVal inner As Exception)
MyBase.New(message, inner)

End Sub
End Class

Now we can revise our BDate property’s code and raise an exception of the AgeException type,
when an attempt is made to set this property to a future date (see Listing B.11).

Listing B.11: Throwing a Custom Exception

Public Property BDate() As Date
Get

Return BDate
End Get

Set(ByVal Value As Date)
If DateDiff(DateInterval.Year, Now, value) > 0 And

DateDiff(DateInterval.Year, Now, PersonBDate) < 100 Then
BDate = Value

Else
Throw New AgeException(”Invalid date of birth”)

End If
End Set

The last constructor of the custom Exception class allows you to pass the exception raised in
the class to the calling application. The following structured exception handler might appear in
a class’s code and catches any error that occurs in the Try block. Instead of handling the error in
your class’s code, you can pass the exception to the calling application by passing it as an argument
to the CustomException class’s constructor:

Try
’ statements

Catch Exc As Exception
Throw New customException(”Error in XXX class”, Exc)

End Try

You can also throw any of the existing exceptions from within your code. Imagine writing the
code for an integer property that can accept a value in a given range. If a fellow developer is using
your class and attempts to set the property to a value beyond this range, you would probably
want to inform the developer that he is entering an invalid value by throwing an exception. That
way, the developer using your class can choose to handle this error in his own way by writing

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1064

1064 APPENDIX B ERROR HANDLING AND DEBUGGING

an exception handler in his code. Listing B.12 is an example of ‘‘throwing’’ an exception of the
OverflowException type.

Listing B.12: Throwing a Built-in Exception

Private FValue As Integer = 0
Property Value() As Integer

Get
Return FValue

End Get
Set(ByVal iValue As Integer)

If iValue <= FMax Then
FValue = iValue

Else
FValue = FMax
Throw New OverflowException(

”Cannot set ProgressBar value to greater than maximum.”)
End If
Invalidate()

End Set

An Ounce of Prevention

Preventing errors is even better than catching them. Sometimes we can eliminate all sources of error
by validating the data we’ll use in our calculations. Let’s say you’re calculating loan payments, which
depend on the loan amount, interest rate, and loan duration. Instead of embedding all the calcula-
tions in a structured exception handler, you can examine the values of the parameter’s loan before
you perform the calculations. If you make sure that the interest rate is a value between 1 and 20 (or
0.01 and 0.2, depending on how the interest rate should be expressed) and that the loan’s amount and
duration are positive values of a reasonable size, you can perform the calculations and be reasonably
certain that they will not fail. Data validation is extremely important, and you should always vali-
date the data you’re going to process. Sometimes, invalid data might not cause runtime exceptions,
but they will certainly produce incorrect results. Your loan payment calculation routine might very
well accept a negative interest rate, but what does this really mean? No bank will ever pay you to get
a loan. If you validate your data, you can display descriptive error messages to users and help them
correct their mistakes as early as possible. A structured exception handler might display a generic
message, but your code that validates individual values will provide specific descriptions for all pos-
sible errors.

The best approach is a hybrid one. Start with a generic error handler and perform thorough tests, or
let inexperienced users test your application. Note the exceptions that are thrown and see how many
of the exceptions you can handle with proper validation techniques. These errors need not be caught
by an exception handler; you can handle them from within your code before it enters the exception
handler. An advantage of this approach is that you can display descriptive error messages and
(if possible) use default values in your calculations.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1065

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1065

The code in Listing B.12 is taken from a ProgressBar control. It is the code that implements
the Value property of the ProgressBar control. A check is done to make sure that the value
that the property is set to is less than or equal to the value of the Max property, because you
can’t set the current value to be bigger than the maximum-defined value. If the calling application
is trying to set the property to a value larger than the Max, an exception is generated via the Throw
statement. This statement instantiates an exception of class OverflowException and produces a
custom error that the fellow developer can see in her own exception handler.

The Exception Class

The Exception object represents an exception, and there are different exception classes for different
exceptions — all deriving from the Exception class. Each exception object provides information
about a specific exception. The Message property is a string with the exception’s description. The
InnerException property is an Exception object that represents an exception thrown while an
error handler was in effect. If an exception occurs in an exception handler’s code, the Message
property describes the current error, whereas the InnerException property represents the error
that activated the error handler. The Source property is another string with the name of the
object that caused the exception or the name of the assembly where the exception occurred. Finally,
the StackTrace property holds a stack trace, which is a list of all the called methods preceding the
exception and the line numbers in the source file(s). The TargetSite property returns the name of
the method that threw the current exception.

Even if the exception isn’t handled in the subroutine where it occurred, you can still recover
the line that caused the exception through the StackTrace property, which is a long string that
contains the chain of procedure calls from the start of the application to the procedure that threw
the exception. A typical value of the StackTrace property is the following:

at Exceptions.Form1.Proc2() in
C:\Toolkit\Exceptions\Form1.vb:line 168

at Exceptions.Form1.Proc1() in
C:\Toolkit\Exceptions\Form1.vb:line 147

at Exceptions.Form1.Button1 Click(Object sender, EventArgs e) in
C:\Toolkit\Exceptions\Form1.vb:line 139

This information isn’t of much use to your code; you can view the chain of procedure calls to
the offending procedure in the Call Stack window, which is discussed shortly. However, it can be
a great help when troubleshooting applications that have already been deployed. You can dump
this information to a file before you quit the application and use this file’s contents as your starting
point when you’re called to service your application at the customer’s site.

The following are some of the most common exceptions, which are represented by individual
objects that derive from the Exception class. I first list a general class and its descriptions, followed
by more-specific classes that represent specific exceptions of the same type. An ArgumentException
exception, for example, is thrown every time you call a method with an argument that doesn’t
match the argument list of the method. An exception of this type might be caused because one of the
arguments is Nothing, because you specified more arguments than the method accepts, or because
you specified an enumeration member that doesn’t exist. These three exceptions are represented by
the classes listed in the Derived classes section under the ArgumentException entry.

System.ArgumentException Represents the exceptions that occur when one or more of the
arguments passed to a method are not valid.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1066

1066 APPENDIX B ERROR HANDLING AND DEBUGGING

Derived classes: ArgumentNullException, ArgumentOutOfRangeException,
ComponentModel.InvalidEnumArgumentException

System.ArithmeticException Represents errors resulting from invalid arithmetic, casting, or
conversion operations.

Derived classes: DivideByZeroException, NotFiniteNumberException, OverflowException

System.ArrayTypeMismatchException Represents the exception thrown when you attempt
to store a value of the wrong type to an array element.

Data.DataException Represents exceptions generated by the ADO.NET components, such as
the ReadOnlyException exception, which derives from the DataException class and represents
the exception that’s thrown when a statement attempts to set the value of a read-only field.

Derived classes: Data.ConstraintException, Data.DeletedRowInaccessibleException,
Data.DuplicateNameException, Data.InRowChangingEventException,
Data.InvalidConstraintException, Data.InvalidExpressionException, Data
.MissingPrimaryKeyException, Data.NoNullAllowedException, Data.ReadOnlyException,
Data.RowNotInTableException, Data.StringTypingException, Data.TypedDataSet-
GeneratorException, Data.VersionNotFoundException

Data.DBConcurrencyException Represents exceptions that occur during update operations
because of concurrency violations.

Data.SqlClient.SqlException Represents the exceptions returned by SQL Server during the
execution of a query or stored procedure. You should catch the SqlException exception when
you call one of the Command class’s Execute methods.

Data.SqlTypes.SqlTypeException Represents exceptions that occur when you attempt to
assign a value of the wrong type to a field or parameter.

Drawing.Printing.InvalidPrinterException Represents exceptions that occur when you
attempt to access a printer using invalid settings.

InvalidCastException Represents exceptions that occur during invalid casting or conversion
operations.

IO.InternalBufferOverflowException Represents the exception that occurs when a file buffer
overflows.

IO.IOException Represents an I/O exception (there are several specific I/O errors).

Derived classes: IO.DirectoryNotFoundException, DriveNotFoundException,IO
.EndOfStreamException, IO.FileLoadException, IO.FileNotFoundException,
IO.PathTooLongException

MemberAccessException Represents an exception that occurs when you attempt to access a
class member that doesn’t exist.

Derived classes: FieldAccessException, MethodAccessException, MissingField-
Exception, MissingMemberException, MissingMethodException

RankException Represents the exception that occurs when you pass an array with the wrong
number of dimensions to a method.

Runtime.Serialization.SerializationException Represents exceptions that occur during the
serialization or deserialization process.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1067

WORKING WITH EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING 1067

Security.Crytography.CryptographicException Represents exceptions that occur during
cryptographic operations.

Security.XmlSyntaxException Represents an exception that’s thrown when parsing an XML
document that contains syntax errors.

System.StackOverflowException Represents the exception that’s thrown when the
execution stack overflows because of too many nested method calls (usually in recursive
procedures).

A Generic Exception Handler

An application should also include a handler for all exceptions that aren’t handled in their respec-
tive procedures. Because unhandled exceptions propagate upward in the call stack, you can catch
them all at the beginning statements of the application. To include an exception handler for all
unhandled exceptions, start the application with the Run method, as shown in the following code
segment:

Sub Main()
Try

System.Windows.Forms.Application.Run(New Form1())
Catch ex As SqlClient.SqlException

MsgBox(”SQL server responded with the following message:” &
ControlChars.CrLf & ex.Message & ControlChars.CrLf &
”Application will terminate!”,
MsgBoxStyle.Exclamation, ”Error!”)

Catch ex As Exception
MsgBox(”APPLICATION ERROR ! ” & vbCrLf &

ex.Message & vbCrLf & ex.StackTrace())
End Try

End Sub

The code shown here handles two types of exceptions: the ones thrown by SQL Server (the
SqlClient class) and general exceptions. When exceptions are caught in this level, it’s too late to
do anything about them, so you should include error handlers in your procedures as close to the
source of the error as possible.

The generic exception handler shown here can be used as a logging tool. For example, you can
dump the call stack to a file and then examine this file to find out where the exception occurred
and the exception’s type. At the very least, you can give users a chance to save their data before
quitting the application.

You can also implement the MyApplication UnhandledException event handler, which is
fired when an unhandled exception occurs in the application. Here’s an outline of the event’s
definition:

Private Sub MyApplication UnhandledException(ByVal sender As Object,
ByVal e As Microsoft.VisualBasic.ApplicationServices.
UnhandledExceptionEventArgs) Handles Me.UnhandledException

End Sub

To access the original exception that caused this event handler to be invoked, use the expression
e.Exception. The UnhandledException event’s handler isn’t the place to handle any exceptions;

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1068

1068 APPENDIX B ERROR HANDLING AND DEBUGGING

it’s too late to remedy the situation that led to the exception and continue the execution of the
application. Use this event handler to catch the (rare) exceptions for which you haven’t provided
proper exception handlers in your code.

Debugging
Encountering errors is nearly a certainty when developing a piece of software. Although syntax
errors are easy to fix, logic errors are not so easy. The first implication is that the logic error’s source
isn’t the statement that fails to execute. The logic error has occurred already, and the statement
that fails to execute is the manifestation of the error. Many logic errors may not even cause an
exception; they will simply produce incorrect results. Your task is to discover such errors in your
code (quite often we rely on users to discover such subtle errors) and track them to their source.
Fortunately, Visual Studio provides you with a fine selection of tools to detect and remove the
errors in your program. The act of hunting for and eliminating errors is called debugging because
your goal is to remove the bugs (or debug) the program.

Setting Breakpoints
The breakpoint is your first and most important weapon in the war against bugs. When you set a
breakpoint in your program, you’re telling Visual Studio to stop executing the program when it
reaches a certain line in the code. After the program is stopped, you can examine its state, includ-
ing the values of the variables, the procedure stack, and the contents of the memory.

Before we can look at debugging essentials, we need some buggy code. Let’s write a program
to count all the vowels in a string. To set up this program, start a new Windows project; then add
a button named bttnCount and a TextBox named txtPhrase to the form. Add the code from
Listing B.13 to the project.

Listing B.13: Bug-Filled Code

Private Sub bttnCount Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnCount.Click

bttnCount.Text = CountTheVowels(bttnCount.Text).ToString
End Sub

Private Function CountTheVowels(ByVal cSomeString As String) As Integer
Dim x As Integer = 1
Dim iTot As Integer = 0
Dim iPos As Integer
Do While x <= cSomeString.Length

iPos = InStr(”aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If

Loop
Return iTot

End Function

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1069

DEBUGGING 1069

The button’s Click event handler passes the contents of the text box into the function Count-
TheVowels(), which is where all the dirty work will be performed. When the count is obtained,
the caption of the button should be replaced with the vowel count. After you type in the code for
the program exactly as seen previously, try running the program, entering some text into the text
box, and clicking the button. Nothing will happen for a while, and you’ll have to stop the applica-
tion by pressing Ctrl+ Break (or choosing Debug � Stop Debugging). If you wait long enough, an
overflow exception will occur because the value of the variable iTot has exceeded the maximum
value you can represent with an Integer.

Obviously, this little function shouldn’t take long to run, so something screwy must be going
on, like an infinite loop. Let’s set a breakpoint in the function and see if we can spot it.

To set a breakpoint, place the cursor on a line of code in the function where you want the
program to stop, and press F9. The line of code should become highlighted, as seen in Figure B.7.

Figure B.7

Setting a breakpoint

After a breakpoint is set, you can begin the program, type some text into the text box, and click
the button. The debugger will stop when it reaches that same line of code, this time highlighted
in yellow (this means that the program has stopped execution on that exact line of code). Now we
can start looking around. First, take the cursor and hover it over some of the areas of code. You
should be able to see a ToolTip displaying the value of the various variables you rest the mouse
over, such as the one shown in Figure B.8.

The figure displays the first of the errors I made coding this program. The value of the variable
cSomeString is ‘‘Count the Vowels,’’ but this is not the string I typed into my text box. Why is
this string being passed into the function? A quick examination of the function call reveals this
problem:

bttnCount.Text = CountTheVowels(bttnCount.Text).ToString

I inadvertently passed the Text property of the button bttnCount, when my intention was to
pass in the value of tbPhrase.Text. This is a perfect example of a logic error. The code works
fine (well, it will work fine after we find the rest of these bugs), but it won’t count the vowels in
the string that we intended to count. The fix for this first bug is easy. First, stop the program from
running by choosing Debug � Stop Debugging (or by pressing Shift + F5). After the program is

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1070

1070 APPENDIX B ERROR HANDLING AND DEBUGGING

stopped, change the CountTheVowels() function call as follows. Now we’re passing in the string
we intended:

bttnCount.Text = CountTheVowels(txtPhrase.Text)

Figure B.8

ToolTips display the
value of variables.

Stepping Through
As it often happens, we started looking for an infinite loop but found another unrelated bug first.
Now that we squashed that bug, we can go back to running the program and looking for the
original problem. Start the program again, type some text into the text box, and click the button.
Once again, the program should stop at the breakpoint.

Let’s watch a few of the program lines run in sequence and see whether they tell us anything.
To make the program step through the current line of code, press F10. Each time you press F10,
one line of code will execute, and the yellow highlight will move to the next line of code that is
about to be executed.

Single Stepping-Through Procedures

The F11 key also steps through the code, but it will step into any procedures that are called. The F10
key steps over the procedure calls, running them all at once and returning back to the original spot.
This allows you to skip over the line-by-line tracing of procedures that you are not currently
debugging.

You can continue to trace through the loop line by line and examine variable values with the
ToolTips. Can you figure out the cause of the infinite loop? Perhaps it’s time to bring in some more
debugging tools.

While at a breakpoint, you can even edit the code and then press F5 to continue. This feature is
known as edit and continue, and it’s been the most popular feature of Visual Basic for a decade now.
You can edit the next statement to be executed and then execute it by pressing F10. You can also set
the value of a local variable by typing an assignment statement in the Command window. After
you’re finished editing your code, you can execute the highlighted statement by pressing F10. You
can also execute any other statement in the current procedure, not necessarily the highlighted one.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1071

DEBUGGING 1071

Just grab the yellow mark in the left margin of the highlighted statement and drop it in front of
the statement you want to execute next. Then press F10 to execute the selected statement.

Using the Local and Watch Windows
While still stopped in debug mode, choose Debug � Windows � Locals from the menu. The
Locals window should be displayed in the lower section of the IDE (see Figure B.9). This window
shows you the current value of all of the locally declared variables. Now we can see the value of
the variables changing as we step through the program.

Figure B.9

The Locals window

Try stepping through the loop a few more times. What you might notice is that the values of the
variables aren’t changing. To get even more information, highlight the entire phrase cSomeString
.Substring(x, 1).ToLower, right-click the name of the x variable in the statement, and choose
Add Watch from the context menu. This brings up the Watch 1window, as seen in Figure B.10.

Figure B.10

Watch window

The Watch 1 window is similar to the Locals window, but it allows you to look at the value
of complex expressions such as the one we just placed in it. Once again, try stepping through the
loop a few times. You might expect that the Substring method would be incrementing the letter
in the string as the loop iterates, but that isn’t happening. The only logical reason for this is that
the value of counter variable x isn’t changing. Let’s look at the loop again:

Do While x <= cSomeString.Length
iPos = InStr(”aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If

Loop

I made one of the classic looping blunders here: I set up a counter variable x to loop through
the string character by character, but I never added any code to increment the counter! That’s as

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1072

1072 APPENDIX B ERROR HANDLING AND DEBUGGING

sure a recipe for an infinite loop as anything. Fixing that problem is an easy remedy (see the
highlighted code):

Do While x <= cSomeString.Length
iPos = InStr(”aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If
x += 1

Loop

Okay, that bug is squashed, so it’s time to remove the breakpoint and rerun the program to see
whether it works. This time, however, the program crashes and burns with the following error:

An unhandled exception of type
’System.ArgumentOutOfRangeException’ occurred in
mscorlib.dll. Additional information: Index and
length must refer to a location within the string.

We’ve seen that error before — it means that we tried to look at a character beyond the length
of the string. By checking the Locals window, you should be able to eventually track down this
problem. The problem here is that the loop counter x starts at character 1 and ends at value
cSomeString.Length. Although that range is correct for VB version 6 and earlier, .NET strings are
indexed starting at 0. Oops. We need to modify our procedure as shown by the two highlighted
items here:

Private Function CountTheVowels(ByVal cSomeString As String) As Integer
Dim x As Integer = 0
Dim iTot As Integer = 0
Dim iPos As Integer
Do While x < cSomeString.Length

iPos = InStr(”aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If
x += 1

Loop
Return iTot

End Function

This modified loop starts at 0 and ends at cSomeString.Length − 1, which is the correct way to
iterate through a string. Once again, you can try to remove all breakpoints and rerun the applica-
tion. This time, our code will produce a value. If you examine the string and the number of vowels
reported by the application, you’ll realize that it’s not the correct answer! A manual count gives
11 vowels in the test string The quick brown fox jumps over the lazy dog, but the program reports
10 vowels.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1073

DEBUGGING 1073

It looks like there’s another logic error, so let’s use the debugging tools to squash it. Look at the
actual comparison of the character to the vowel list:

iPos = InStr(”aeio”, cSomeString.Substring(x, 1).ToLower)

Where’s the u? It looks as if I simply forgot to include it in the vowel list. After adding the u
back in, the final working code looks like Listing B.14.

Listing B.14: Bug-Free Code

Private Sub bttnCount Click(...) Handles bttnCount.Click
bttnCount.Text = CountTheVowels(txtPhrase.Text)

End Sub

Private Function CountTheVowels(ByVal cSomeString As String) As Integer
Dim x As Integer = 0
Dim iTot As Integer = 0
Dim iPos As Integer
Do While x < cSomeString.Length

iPos = InStr(”aeiou”, cSomeString.Substring(x, 1).ToLower) If iPos > 0 Then
iTot += 1 End If x += 1 Loop Return iTot End Function

This is the type of error you can catch with exhaustive tests — and often it’s the users of the
application who catch such errors, despite our tests. You can actually test the program with a
string that doesn’t contain the character u, see that the code works nicely, and distribute it. Soon
you will receive messages indicating that your application doesn’t work. Yet this application has
been tested and seems to work fine. The tests, however, were not exhaustive.

You should also try to test your applications with extreme situations (a blank string, for
example, or a very large one, an invalid numeric value, and so on). The final test, of course, is
to pass the application to users and ask for their comments. Unfortunately, we don’t write soft-
ware for each other. We write software for people intelligent enough to crash an application in
minutes, but not intelligent enough to keep it running.

Petroutsos bapp02.tex V2 - 01/28/2008 5:40pm Page 1074

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of
a topic. Italicized page numbers indicate illustrations.

Symbols
' (escape character), 954
(pound sign)

in Visual Basic, 53
as visual placeholder, 64

$ (dollar sign) for string variables, 54
() parentheses in arrays, 75–76
.. (two periods), as XML shorthand, 634
@ (at symbol), as XML shorthand, 634
{ } curly brackets in arrays, 77
< > (angle brackets), as XML shorthand, 634
<!-- . . . --> tag, comments and, 906
= (equals) operator, 365
3D effects (images), 697, 697

A
<a> . . . tag, links and, 906
absolute/relative positioning (controls), 965
AcceptButton property, Form object, 219
AcceptsReturn property, TextBox control,

175–176
AcceptsTab property, TextBox control, 175–176
Access keys menu, 259–260
access modifiers, 37
access rules (ASP.NET pjct), 958–959
AccessMode enumeration, 559
action queries, 791–794
Activated events, 234
Activation property, ListView control, 330–331
ActiveControl property, Form object, 404
Add Buttons (TreeView demo), 317–318

Add Categories button (TreeView demo),
316–317

Add Colors button (TreeView demo), 317–318
Add Connection dialog box, 757, 763
Add Item buttons (ListBox Demo), 201
Add method

Controls collection, 247
DateTime class, 486
Items collection, 198, 336
ListView Items collection, 336
TimeSpan class, 496

Add New Item Dialog Box (Visual Studio), 938
Add New Table command, 769–770
Add Shapes button (TreeView demo), 318
AddExtension property

(OpenDialog/SaveDialog controls), 275–276
Add(Intervals) methods, DateTime class, 486
addition operator (+), 388
AddRange method, arrayList, 512
Add(time) methods, 60, 486
ADO.NET, programming with, 805–843

data-access classes. See data-access classes
SimpleDataSet project, 837–843
storing data in DataSets. See DataSets,

storing data in
stream-based vs. set-based data access,

805–806
update operations, 834–837

aggregate functions, 898–900
Aggregate method (LINQ), 630

1076 AGGREGATES • ARRAYS

aggregates
calculated columns with, 888–890
calculating, 783–785
querying with LINQ, 630–631

AJAX (Asynchronous JavaScript and XML)
basics, 918
extensions controls, 926–927
simple implementation, 993–995

AlarmControl project, 452
alignment of controls on forms, 223
Alignment property, StringFormat Object, 678
All method, Controls collection, 247
AllowColumnReorder property, ListView

control, 330, 337
AllowFullOpen property, ColorDialog control,

270
AllowScriptChange property, FontDialog

control, 273
AllowVerticalFonts property, FontDialog

control, 273
alpha blending (transparency), 696–698
Anchor property (splitting forms), 230–231
anchoring/docking forms, 229–232, 231–232
Animated Gradient, 685
ANSI (American National Standards Institute)

codes, 52
AnyColor property, ColorDialog control, 270
API (application programming interface). See

Windows Presentation Foundation (WPF)
Append method, StringBuilder class, 474, 479
AppendFormat method, StringBuilder class,

475
AppendText method, 178, 554
Application component, My object, 31
application examples. See individual project

names
application programming interface (API). See

Windows Presentation Foundation (WPF)
applications. See also web applications

designing application generators, 254

forms and, 429–430
interfaces and, 429
Windows, designing, 123–124

arguments, 103–121
argument-passing mechanisms, 104–107
basics, 103–121
built-in functions, 107–109
custom functions, 109–110
function return values, 113–117
named, 112–113
overloading functions, 117–121
overview, 103–104
passing, and returning values, 111–113

Arrange property, ListView control, 330–331
ArrayList class

of Book objects, 613
inheriting existing classes and, 406–410

ArrayList collection, 509–516
adding/removing items, 510–513
creating, 509–510
iterating, 515–516
searching, 515
serializing, 613–615
sorting, 513–514

arrays, 75–82, 499–509
Array class, 352
ArraySearch Application, 504–505
basics of, 75
binary search algorithm, 506
Copy methods, 507
declaring, 75–77
dynamic, 81–82
Filter() function, 507
FindAll method, 508
functions, returning, 115–116
initializing, 77
limitations of, 77–78, 509
multidimensional, 78–81, 79, 80
Reverse method, 506
searching, 502–506

ARRAYS • ASYNCHRONOUS JAVASCRIPT AND XML (AJAX) 1077

sorting, 499–502
sourceArray/destinationArray, 506, 507,

508
of structures, 69
TrueForAll method, 508–509

AS keyword, aliasing column names with, 780
ASP.NET

master pages, 930–931
objects, 931–934
web applications, 919–921

ASP.NET 3.5 project, 937–980
access rules, adding, 958–959
buttons for navigation, adding, 963–964
Computers.aspx page, building, 974–978
content master page, applying layouts to,

947–948
content master page, creating, 944–945, 945
content pages, adding, 960–963
ContentStyleSheet.css, creating, 945–947
demo site, planning, 937–938
DetailsView control in Computers.aspx,

976–978, 977–978
DropDownList control in Computers.aspx,

975–976
Footer.ascx web user control, creating,

953–955, 954
forms-based authentication, 957–958, 958
GridView control, adding, 970–971, 971
GridView control, configuring, 971–974,

972–973
Login control, adding, 957, 957
LoginName control, adding to

ContentMasterPage, 960
LoginName control, adding to master page,

959–960
Menu control, configuring for master page,

955–956
MicrosoftReportViewer control, adding, 978
Navbar, creating in ContentsMasterPage,

956

NewUser.aspx page, building, 967, 968
overview, 937
password page, building, 965–967, 966
report, creating, 978–980
Report.aspx page, building, 978–980,

979–980
running application, 961–962, 962
SiteMap, adding items to, 963
SiteMap, creating, 955, 956
SiteMap, updating, 961
SiteMapDataSource control, updating, 961
SQL database, creating, 973–974, 974
style sheet for master page, attaching,

942–944
style sheet for master page, building,

939–942
web user control, adding to master page,

952, 952
web user control, creating, 949–952, 950, 951
XML database, creating, 968–969

ASP.NET web service, 981–995
advantages of, 982
AJAX implementation, 993–995
ASP.NET Development Server, 989–991
consuming, 986, 986
creating simple, 984–986
developing stand-alone. See stand-alone

web service
introduced, 981
overview, 981
technologies of, 982–983
testing, 985–986, 985
vs. WCF, 981
web reference, adding, 990–992, 991–992

Assemblies folder, 767
Asynchronous JavaScript and XML (AJAX). See

AJAX (Asynchronous JavaScript and XML)
of files, 556–557
<form> . . . </form> tags, 910
of properties, 437–438

1078 AUTHORS TABLE, PUBS DATABASE • CALCULATOR APPLICATION

Authors table, Pubs database, 760
auto-complete properties, TextBox control,

190–193
AutoCompleteSource members, 191
AutoFlush property, StreamWriter object, 574
AutoScaleMode property, Form object, 219
AutoScroll properties (Form object), 219–220
AutoWordSelection property (RichTextBox

control), 290

B
BackColor/ForeColor properties

(ListViewItem), 335
BAML (Binary Application Markup Language),

152
BETWEEN keyword, 791
Bezier curves, 673–675, 674
binary and SOAP serialization, 592–598

deserializing collections, 596–598
deserializing individual objects, 594–595
serializing collections, 595–596
serializing individual objects, 592–594

Binary Application Markup Language (BAML),
152

binary search algorithm, 506
BinaryFormatter class

methods, 593–594
serialization and, 591, 592

BinaryReader class, 579–580
BinarySearch method, 503–506, 515
BinaryWriter class, 578–579
binding. See also data-binding

BindingNavigator, 864–866
data-binding with WPF (examples), 159–163
to database (example), 164–166, 166
early vs. late, 403–404
hierarchical tables, 867–869

BindingSource class, 857–863
adjusting DataSet properties, 859–863,

859–862

Filter property, 857–858
Find method, 857–858
identity columns, 858–859
using as data source, 869–870

bitmaps
object fundamentals, 706–708, 708
printing, 748–751, 749, 751
processing, 708–709
refreshing, 709

block-level scope (variables), 72
Book class project, 411–413
Boolean operators, 49
Boolean variables, 50–51
browser application, WPF, 166–168, 168
brushes (painting)
Brush class, 660–662

transparent brushes, 698
Build menu (IDE), 22
BulletIndent property (RichTextBox control),

288
Button controls

Click event of, 12–13
for navigation (ASP.NET pjct), 963–964

buttons
on forms, 910
print button, 736
radio buttons, 911
Search Array button, 505

byte variables, 49
ByVal keyword, 104–105

C
calculated columns, 887–890, 892–893
calculated fields, 783
CalculateStatistics() function, 105–106, 115
calculations

with global variables, 73
with local static variables, 74

calculator application
debugging tools, 145–147

CALCULATOR APPLICATION • CLASSES 1079

exception handling, 147–149
math operations, coding, 142–145
programming, 139–145
user interface, designing, 137–139, 137

CancelButton property, Form object, 219
CanRead property, FileStream object, 571
CanSeek property, FileStream object, 571
CanUndo/CanRedo properties, RichTextBox

control, 290
CanWrite property, FileStream object, 571
Capacity property, ArrayList, 510
Cascading Style Sheets (CSS)

basics, 911–912
.css extension, 911
defined, 901
formatting styles with, 912–913
page formatting with, 913–916

case-sensitivity
array searches and, 503
case-sensitive searches, 467, 469
date and time named formats, 487
JavaScript, 902
Replace method, 187
SQL and, 774
XHTML and, 902

CaseEnum Enumeration, 386–387
casting

objects to parent type, 421
variable types, 402–403

Categories table, Northwind database, 758
CChar() function, 51
cells, formatting for printing, 740–742
CellStyle Builder dialog box, 873
Centimeters property, LengthUnits class, 390
changed events, 449–450
ChangeExtension method, Path class, 564
Char class, 462–464
Char keyword, 51
char vs. varchar data type, 768
characters

Character variables, 51–53
CharacterCasing property, 176
data type definition characters, 55
handling. See strings
handling special (ADO.NET), 817–818
type (numeric variables), 45

Chars property, String class, 466
check boxes, creating on forms, 911
Checked property, 258
Checked property (ListViewItem), 335
CheckedList Box control, 195–196, 195
CheckFileExists property

(OpenDialog/SaveDialog controls), 276
CheckPathExists property

(OpenDialog/SaveDialog controls), 276
Child() function, 888–889
CInt() function, 51
Circle/Square/Triangle classes example,

418–420
cities, listing (TreeView control), 326–327
Class Diagram Designer

basics, 427
viewing class hierarchy with, 412

classes
basics, 395
Class Diagram Designer, 412, 427
combining code with data, 351–352, 401
Contacts application. See Contacts project
data-access. See data-access classes
defined, 350–351
Derived class, 425
derived class keywords, 422–424
developing flexible. See polymorphism
drawing and painting. See drawing and

painting
extending. See inheritance
firing events, 378–380, 379
handling errors in, 359–360
inheriting custom, 410–415
inheriting existing, 406–410

1080 CLASSES • CODE LISTINGS

instances and shared methods, 380–383
LengthUnits project, 389–394
Minimal class, building (example). See

Minimal class, building (example)
vs. objects, 395–396
objects and, 349–350
operator overloading, 388–389
parent class keywords, 421–423
Shape class example, 417–421
shared vs. instance members, 401–402
SimpleClass project, 352, 377–379, 378
square/triangle/circle example, 418–420

Clear method
Controls collection, 248
Items collection, 199
nodes and, 315

clearDisplay variable (MathCalculator),
141–143

Click event handler
FileSystemWatcher component, 588
MathCalculator, 139–140, 143
Play button, 456

Clipboard, exchanging images through,
705–706

clipping regions (masks), 685–687, 685
Close method

Binary Writer class, 578
BinaryReader class, 579
StreamReader class, 575
StreamWriter object, 574

CMYK color model, 694
code

code-behind, MyWebService, 992–993
coding math operations, 142–145
combining with data, 351–352
reusing, 404–405
snippets (VB 2008), 29–30, 29

code listings
Align and Effect3D Enumerations, 444–445
Alignment and Effect Properties, 445

Array, Iterating with For. . .Next Loop, 94
ArrayList, Adding Structure to, 511
ArrayList Class, EliminateDuplicates

Method for, 407–408
ArrayList Class, Min/NumMin Methods of,

409–410
ArrayList, Iterating with Enumerator, 529
Arrays, Iterating through

Two-Dimensional, 99
ASPX Code for ContentPageMaster.master,

948
ASPX Code for MasterPage.master, 943–944
AutoCompleteSource Property, Populating

Custom, 193
Best-Selling Products/Best Customers,

Retrieving, 898–899
Bezier Curves and Control Points, 674–675
BinarySearch, Locating Matches with, 505
Bitmaps, Scaling and Printing, 750
Book Class Example, 610–611
Boxed Text/Clipped Text Buttons, 686–687
Calculations with Global Variables, 73–74
Caption Property Procedure, 446
CaseEnum Enumeration & UseCase

Property, 386–387
Characters, Processing Individual, 52–53
Class for Representing Books, 412–413
Class for Representing Supplies, 413
Class with Shared and Instance Method,

381–382
Class with Two Custom Comparers,

534–535
Classes for Representing Books/Supplies,

412–413
Classes for Storing Customers/Orders,

644–646
Clear Button, Programming

(MathCalculator), 141
Click Event Handler, 17
Clipped Image Button, 687

CODE LISTINGS • CODE LISTINGS 1081

Collection of Book/Supply Products,
Iterating through, 414–415

Color, Specifying by Name, 441–442
Columns and Printing Table, Setting Up,

742–743
ComboBox Control, 209
Comparer, Custom, 533
Console Application, 28
Contact Class, 369–371
Contact Object, Displaying Fields of

Selected, 372
Continent/Country Names, Retrieving

(Globe Pjct), 327–328
Controls Collection, Iterating, 248–249
Controls on Forms, Reading, 252–253
CountFiles() Function, Overloaded

Implementations of, 119–120
CountFiles() Function, Testing Overloaded

Forms of, 120
CountWords Project Code, 480–481
CreateList() Subroutine, 603–604
Curves with Fixed Points and Different

Tensions, 673
Custom Comparers, Testing, 535–536
Customer Averages, Calculating, 897
CustomExplorer’s Form Load Event

Handler, 567
Cut/Copy/Paste Commands, 183–184
Data-Entry Errors, Catching in Code,

878–879
DataAdapters for Categories and Products

Tables, 840–841
DataGridView Control, Coloring Rows on,

882
DataSet, Populating/Displaying, 841–842
DataSet, Saving/Loading, 839
DataSets, Refreshing, 866
default.aspx.vb, 993
Derived Class, 425
Deserializing Collections, 597

Detail Lines, Displaying Items of, 896
Dialog Box, Displaying/Reading Values of,

245–246
DialogResult Property, Setting, 246
DigitClick Event, 140
Directories, Deleting, 548–549
Directory Listing, Displaying Formatted,

293
DiscardChanges() function, 296–297
Drawing Ellipses and Enclosing Rectangles,

670
Drawing Items in Owner-Drawn ListBox

Control, 458–459
Drawing Pie Chart with FillPie Method,

670–671
Drawing Simple Shapes, 664–665
Drives on Computer, Retrieving Names of,

553
Dynamic Menu Items, Programming, 263
DynamicForm Project, 250–251
EliminateDuplicates Method, Testing,

407–408
ElseIf Statements, Multiple, 88
Enter and Leave Events, 435–436
Enumeration Exposed by Class, 367
Equals Button, 143–144, 148
Equals Method, Custom, 364–365
Event Handlers Added at Runtime, 254
Event Handlers of FileSystemWatcher

Component, 588–589
Event, Raising Custom, 452
Event Type, Declaring Custom, 451
ExtractFileName & ExtractPathName

Methods, 384
Extracting Path’s Components, 471
File System Items of Folder, Retrieving, 552
Files of a Folder, Retrieving Selected, 551
Files, Processing Multiple Selected, 279
File¿Save NodesMenu Item’s Event

Handler, 603

1082 CODE LISTINGS • CODE LISTINGS

FileSystemInfo Object, Processing Folder
Items with, 562

FileSystemWatcher Component,
Programming, 588

Find Button, 185–186
Find Commands (RTFPad), 301–302
FocusedTextBox control, Property

Procedures of, 435
Folder Browsing Demo, 281–283
Folder Files, Displaying, 568
Font Command (RTFPad), 299–300
Footer.ascx Web User Control, 954
FormatNum() function, 386
Forms, Cancelling Closing of, 235
GDIPlusTransformations Project Buttons,

687
GetString Method, 409
Global Variables, Calculations with, 73
GlobeNodes ArrayList, Loading, 604
Graphics Object, Retrieving from Bitmaps,

666
HashTable, Iterating, 518
HashTables from Text Files, Loading, 600
HashTables, Iterating with Enumerators,

531
HashTables, Iterating with Keys, 530
HashTables, Persisting to Binary Files,

598–599
HashTables, Persisting to Text Files, 600
HTML Page, 904
ID/Password, Prompting Users for,

242–243
InheritanceKeywords Class, 424–425
ISBNCheckDigit() Custom Function, 109
JavaScript Function, 917–918
Keystrokes, Handling at Form Level,

144–145
Keystrokes, Handling for TELEX message,

188–189

Keystrokes, Handling in Form’s KeyDown
Event Handler, 229

Keystrokes, Rejecting Non-numeric, 463
KeyUp Event Examples, 190
Label3D Control, 444–446
Linear Gradient, 682–683
Linked DataTables, Iterating through, 853
ListBox Control, Owner-Drawn, 458–459
ListBox, Deleting Object from, 372–373
ListBox Demo, 201–202
ListView Control ColumnClick Event

Handler, 341
ListView Control, Displaying Product

Information on, 821
ListView Control, Iterating Selected Items

on, 342
ListView Control, Populating, 338
ListView Demo Custom Comparers,

340–341
ListView Items/Subitems, Enumerating,

339
MathCalculator Buttons, 141
MathCalculator Plus Button, 143
Menu Items, Adding/Removing at

Runtime, 262
MenuSizeMenu Item’s Click Event, 261
MetricUnits Class, 389–390
MetricUnits Class, Overloading Operators

for, 391
Minimal Class example, 355
Monthly Payment Button Code, 130
myAjax.aspx.vb Code, 994–995
MyWebService Code, 988
NamedColor Property Procedure, 441
NaN and Infinity Values, 48
Navigation Buttons, Click Events for, 964
Nested If Statements, 99
Nodes, Adding at Runtime (Globe Pjct),

325–326
Nodes of Africa, Adding (Globe Pjct), 322

CODE LISTINGS • CODE LISTINGS 1083

Nodes, Processing Selected (Globe Pjct),
323–324

Nonrectangular Control, Creating, 453–454
Number Lines Command, 184–185
Numbers, Converting to Strings, 385
Numeric Variables, Ranges of, 40
Open Command (RTFPad), 296
Orders, Retrieving by Date, 894
Page Load Routine to Hide/Show Welcome

Label, 960
Password, Validating, 466
Password.aspx Code, 966–967
Passwords, Validating, 466
Paste Command (RTFPad), 298
Path Components, Extracting, 471
Path Gradient, Filling Rectangle with, 684
Persisted Nodes, Reading, 604
Pmt() Built-in Function, 107–108
Print Button (PageSettings Project), 736
Printing Captions in Right Margin, 734
Printing Plain Text, 745–747
Printing Rectangle and Margin Captions,

735–736
Printing String Centered on Form, 676–677
Printing Text in Rectangle, 678
Printout, Generating, 731–732
PrintPage Event Handler, 719
PrintPage Event Handler of PrintTable

Project, 741–742
Property Procedures, Implementing

Properties with, 357
Property Procedures of FocusedTextBox,

435
Property Procedures, Throwing Exceptions

Within, 358–359
Property Value, Calculated, 362
Raising Custom Events, 452
Raising Events, 244
Read-Only Property, Implementing,

360–361

Records, Committing New or Edited, 373
Records from Binary Files, Reading, 584
Records, Saving to Binary Files, 582–583
Rectangle, Setting Up in Owner-Drawn

ListBox Control, 458
Remove Buttons (ListBox Demo), 202
Replace/Replace All Operations, 186–187
RoundButton Control, 454–456
Rows, Retrieving/Displaying Deleted,

879–880
Rows, Viewing Edited, 842–843
RTF Code, 284
SalesByCategory Stored Procedure, 801
Save Commands (RTFPad), 297–298
SaveContact() Subroutine, 373–374
SaveNodes() Subroutine, 605
SaveRecord() Subroutine, 583
ScrollBar Control Scroll Event,

Programming, 212
Search Options, Setting (RTFPad), 301
Searching the List (ListBoxFind

application), 205
Select Case Statement, 91
SelectedColor Property Procedure, 440–441
Selection Items, Moving Between Lists, 203
SelectionIndent Properties, Setting, 294–295
Serializing Collections, 596
Shape Class, 417
Shape Class, Testing, 420–421
Shared Property, Implementing, 382–383
Show Payment Button, Revised, 133–134
ShowFiles() Subroutine, 568–569
ShowNodes() Subroutine, 605
SiteMap Code, Updated (ASPX 3.5 pjct), 963
Slider Controls, Setting (RTFPad), 295
SortedList, Populating, 524–525
Sorting Array According to Length of

Elements, 501–502
Sorting, Foolproof, 514
Sorting Words According to Frequency, 522

1084 CODE LISTINGS • COLORS

Square/Triangle/Circle Classes, 418–420
Start Monitoring Button Code, 588
Stored Procedure, CustomerTotals, 813–814
Stored Procedure with Output Parameters,

815–816
String in TextBox, Locating Instances of, 178
String Variables, Reversing, 477–478
StringBuilder Variables, Reversing, 477–478
StringTools Class, Testing, 387–388
Style Sheet, Sample, 912
Style Sheet to Control Page Layout, 913–914
Style Sheet, Using to Set Web Page Layout,

914–915
Subfolders of a Folder, Retrieving Selected,

550–551
Subfolders of Selected Folder, Displaying,

567
Summing Even Numbers, 71–72
Text Files, Splitting into Words, 520–521
Text Files, Writing Data to, 576–577
TextBox Controls, Storing Contents to Text

Files, 578
Thumbnails, Displaying, 704
Transparent Brushes, Text Effects with, 698
Tree, Moving (TreeView demo), 319
Trees, Scanning Recursively, 329–330
TreeView Control Folder’s Files,

Displaying, 345–346
TreeView demo Project, 317–318
Typed DataSet, Populating with

TableAdapters, 852
Typed DataTables, 853–855
Undo/Redo Command of Edit Menu

(TextPad), 187
Undo/Redo Commands Captions

(RTFPad), 298–299
Update Errors, Retrieving/Displaying,

835–836
User-Supplied String, Processing, 14

UserControl Object OnPaint Method,
446–447

UserControl Object’s OnPaint Method,
446–447

Values, Reading Unknown Number of, 97
Variable Scoped in Own Block, 72
Web User Control, MainHeader.ascx,

951–952
Web.sitemap, 961
Words in Text, Displaying Count of, 521
WpfBinding1 Pjct, XAML Source Code for,

162–163
WpfBrowserApplication1 Code, 167–168
WpfDraw Code, 158
WpfDraw, XAML Markup for, 157
XAML for WpfBrowserApplication1,

166–167
XML Database (ASP.NET pjct), 968–969
XML Document, Adding Dynamic Content,

635–637
XML Serialization of Array of Objects, 612

collections, 509–539
ArrayList collection. See ArrayList collection
deserializing, 596–598
generic, 537–539
HashTable. See HashTable collection
IEnumerator and IComparer interfaces. See

IEnumerator/IComparer interfaces
of objects, querying with LINQ, 625–630,

626
serializing, 595–596
SortedList, 523–527
Stack, 527–528
System.Collections class, 527

ColorEdit control
building, 439–442
on test form, 439–442

colors
alpha blending (transparency), 696–698
color class, 695

COLORS • CONTACTS PROJECT 1085

Color class (drawing), 658
ColorClick event, 451
ColorDialog control, 270–272, 270
Colors project, 211–213
defining, 695–698
ForeColor property, 268, 314
options, 26
properties, setting, 8
property (ColorDialog control), 271
property (FontDialog control), 273
RGB color cube, 694–695, 694, 709
RGB model basics, 693–694

columns
adding/removing at runtime (ListView

control), 333
aliasing column names with AS, 780
calculated, 799–800, 887–890, 892–893
Columns collection (ListView control),

332–334, 333
displaying lookup, 874–876
resolving names of, 779
selecting from multiple tables, 778–779
setting width for printing, 742–744

Combine method, Path class, 565
ComboBox control

adding items at runtime, 208–209
basics, 195, 205–206, 206–207
ComboBox Styles project, 206–207
properties and methods, 208
styles, 206–207
use of, 15–18, 15

Command class, ADO.NET
basics, 809–810
empty strings vs. null values, 818–819
selection queries, 811–812
special character handling, 817–818
stored procedures, 810–811
stored procedures, retrieving values from,

813–817
using commands with parameters, 812–813

Command window (IDE), 24–25
CommandBuilder class, 826–828
commands

control menu, 218
copy, 183–184
cut, 183–184
Frequency Table Menu, 599
menu, adding/removing, 262–263
menu, programming, 258–259
using with parameters, 812–813

commenting code, 19
comments, HTML, 906
Common Language Runtime (CLR), 353–354,

395
compare argument (arrays), 506
Compare methods

Compare shared method, 485
CompareOrdinal method, 468
of DateTime class, 485
of String class, 466–467

Complete Word feature (IDE), 21
compound controls, building, 438–442
Compute method, DataTable object, 889–890
Computer component (My object), 31
Concat method, String class, 468
Connection class, ADO.NET, 807–809
Console application, building, 27–29, 27
constants, 74–75
constraints, Server Explorer, 772–773
constructors

object, 375–376
parameterized, 375–376, 396

consuming
defined, 982
web service example, 986

Contacts class, 159–160
Contacts project

adding/editing/deleting contacts, 372–374
contact class, creating, 368–372, 369
forms and, 226–229, 226

1086 CONTACTS PROJECT • COPY COMMAND

ListBox control and, 374–375
object constructors, 375–376

Contacts.mdf data-binding example, 164–166
Contains method

arrayList, 511
Items collection, 200

ContainsImage method, 291
ContainsKey method

HashTable collection, 517
SortedList collection, 524

ContainsText method, 291
content master page (ASP.NET pjct)

applying layouts, 947–948
creating, 944–945, 945

content pages, adding (ASP.NET project),
960–963

context menus, creating, 263–264
context object, ASP.NET, 931
continents, listing (TreeView control), 326–327
control menu commands, 218
control structures, nested, 98–100
ControlBox property (Form object), 221
controls. See also custom controls; specific control

names
accessing on forms, 248
aligning, 129
anchoring, 230–231, 231–232
CheckBox default behavior, 13
Controls collection (Form object), 247–253
DataGridView control, 627
default behavior of, 13
defined, 123
designing, 429–430, 432, 433
dialog. See dialog controls
enhancing. See FocusedTextBox control
form controls, 910–911
GUIs and, 124
Label control, 11–12
ListView control. See ListView control
placing on forms, 223–224, 224

relative/absolute positioning of, 965
RichTextBox control. See RichTextBox

control
TextBox controls, loan calculator program,

127
TreeView control. See TreeView control

controls, custom
basics, 430
changed events, 449–450
ColorEdit control example, 439–442
compound, building, 438–442
design of, 429–430, 432
enhancing. See FocusedTextBox control
enhancing functionality of existing, 430–431
FocusedTextBox control example. See

FocusedTextBox control
irregularly shaped, 453–456
list controls, 456–459, 457
nonrectangular, creating, 453–454
owner-drawn, 457–459, 457
raising custom events, 450–452
RoundButton, 454–456
testing, 448–449
user-drawn, 442–448
using in multiple projects, 452

controls for web applications
AJAX extensions controls, 926–927
data controls, 924
HTML controls, 928–929
login controls, 925–926
navigation controls, 925
reporting controls, 928
standard controls, 922–923
validation controls, 924–925
WebParts controls, 926–927

conversion of variable types, 61–64
Convert class (data-type conversions),

61–64
cookies, 930
copy command, 183–184

COPY METHOD • DATA-BINDING 1087

Copy method
File class, 554
RichTextBox control, 291
String class, 468

CopyTo method
FileInfo class, 563
HashTable collection, 517
Items collection, 199

Count method (LINQ-capable class), 630
Count property, 199

Controls collection, 247
Nodes collection, 315

counters, For...Next loop, 94
countries, listing (TreeView control), 326–327
CountWords project, 479–481, 480
Create method, File class, 554–555
CreateDirectory method, System.IO.Directory

class, 547–548
CreateGraphics method (Graphics object), 654
CreateList() subroutine, 603, 607
CreateSubdirectory method, DirectoryInfo

class, 561
CreateText method, File class, 555
CreationTime property, FileInfo class, 563
Criteria pane, Query Builder, 795–796
CSS. See Cascading Style Sheets (CSS)
CType() function, 393–394, 402–403
cube, RGB color, 694–695, 709
CultureInfo class, DateTime class, 483
cultures, date formats and, 482–483
Current property, IEnumerator class, 529
cursors, locating position in control, 180
curves, drawing, 672–673, 673, 674
Cust variable, 396–397
custom controls. See controls, custom
CustomColors property (ColorDialog control),

271
Customers class, building, 401
Customers table

Contacts.mdf project, 165

in design view, 769
Northwind database, 758–759

CustomExplorer project, 343–346, 344,
566–569

cut command, 183–184
Cut method, RichTextBox control, 291
cutting/pasting, RichTextBox control, 291

D
data

combining code with, 351–352
Data Connections, Server Explorer,

763–765, 764
data controls, ASP.NET, 924
data-driven applications, 881
data-entry form sample, 226–229
Data menu (IDE), 22
data source, BindingSource as, 869–870
Data Source Configuration Wizard,

846–850, 850, 955, 970
data-validation code, 134–135
persisting, defined, 591
saving to files. See My.Computer.FileSystem

Component; serialization
sending to files with streams, 576–578
validating in loan calculator application,

133–137
data-access classes, 806–822

Command class. See Command class,
ADO.NET

Connection class, ADO.NET, 807–809
DataReader class, ADO.NET, 819–822
overview, 806–807

data-binding, 855–863
BindingSource class, 857–863
controls, WPF, 159–166
”Data Binding Overview”, 159
defined, 845
fundamentals, 855–857, 855, 856
with WPF (examples), 159–163

1088 DATA-BOUND APPLICATIONS • DATATABLE OBJECT

data-bound applications
data binding. See data-binding
designing data-driven interfaces. See

interfaces, designing data-driven
typed DataSets. See typed DataSets

data-entry applications, real-world, 194–195
data, storing in collections

array limitations, 509
array Reverse method, 506
arrays, searching, 502–506
arrays, sorting, 499–502
Copy methods and arrays, 507
Filter() function and arrays, 507
FindAll method and arrays, 508
sourceArray and destinationArray, 506–508
TrueForAll method and arrays, 508–509

data types. See also variables
data-type conversion methods (Convert

class), 61
Decimal, 36, 44–45
definition characters, 55
identifiers, 54–55
integer, 40
numeric, 41
String, 464
user-defined, 66–69
Variant, 402

DataAdapter class, 824, 835–836
databases. See also relational databases

binding WPF pages to, 164–166, 166
Database Designer, 763
Database Diagrams (Server Explorer),

765–766, 765
fundamentals, 753–754
management systems (DBMSs), 753
updating with DataAdapter, 835–836

DataColumn objects, adding to DataTables,
887–888

DataContext class (LINQ to SQL application),
642

DataGridView column types, 871–873
DataGridView control

adjusting appearance of, 870–874, 871–874
binding DataTable to, 855–857
coloring rows on, 882
defined, 627
displaying lookup columns in, 874–876
viewing update errors on, 865

DataReader class, ADO.NET, 819–822
DataRelation objects, 831–833
DataSet operations, advanced

calculated columns, 887–890
overview, 885
SQL expressions, 885–887
SQL expressions and. See also SQL

Expressions project
DataSetOperations project

basic operations on typed Dataset, 851–852,
851

iterating through linked DataTables, 853
populating typed DataSet with

TableAdapters, 852–853
submitting typed DataTable rows to

database, 854–855
updating rows of typed DataTable, 854–855

DataSets
properties, adjusting, 859–863
typed. See typed DataSets
updating hierarchical, 876

DataSets, storing data in, 822–834
accessing DataSet tables, 828
filling DataSets, 823–828
navigating through DataSets, 831–834
null values, 829–830
overview, 822–823
rows, adding/deleting, 830–831
rows, working with, 828–829

DataTable object
Compute method, 889–890
Select method, 886–887

DATEDIFF() FUNCTION • DEREFERENCELINKS PROPERTY (OPENDIALOG/SAVEDIALOG CONTROLS) 1089

DateDiff() function, 361
dates and times. See also DateTime class;

TimeSpan class
cultural formats, 482–483
date formats, 54
date type identifiers, 54
Date variables, 53–54

DateTime class, 481–492
AddDays method, 381
Add(time) methods, 486
basics, 481–482
Compare shared method, 485
date conversion methods, 490–491
date format specifier, 488
date manipulation methods, 485–490
date/time named formats, 487, 489–490
dates as numeric values, 491–492
Day/Week/Month/Year properties, 484
DaysInMonth methods, 381, 485
DaysInMonth shared method, 485
FromFileTime method, 490
FromOADate shared method, 485
fundamentals, 481–483
Hour/Minute/Second properties, 484
intervals, adding to dates, 486
IsLeapYear shared method, 485
Parse/ParseExact methods, 482
properties, 483–485
shared methods and, 381
Subtract method, 486
Ticks property, 484–485
TimeOfDay property, 484
ToFileTime method, 490
ToLongDateString/ToShortDateString

methods, 490
ToLongTimeString/ToShortTimeString

methods, 491
ToOADate method, 491
ToString method, 486–487

ToUniversalTime/ToLocalTime methods,
491

dblProperty, 355–356
Deactivate events, 234
DeBolt, Virginia, 903, 916
Debug menu (IDE), 22
debugging

enabling, 962
tools, 145–147

Decimal data type, 36, 44–45
decision statements

If...Then, 86–88
If...Then...Else, 88–90
IIf() function, 90
multiple If. . .Then structures vs. ElseIf, 89
Select Case structure, 90–92
short-circuiting expression evaluation,

92–93
declaring

arrays, 75–77
variables, 36–39, 71

Default.aspx
code, 993
layout, 991

DefaultExt property (OpenDialog/SaveDialog
controls), 276

DefaultPageSettings property, 721–722, 733
DefaultValue attribute (FocusedTextBox

control), 437
deleting

ArrayList items, 510–513
contacts, 372–373
Delete method, 548–549, 555
objects from ListBox, 372
rows, 830–831
SQL DELETE statement, 792–793

delimited data, 288
delimiters array, 468, 471
DereferenceLinks property

(OpenDialog/SaveDialog controls), 276

1090 DERIVED CLASS KEYWORDS • DRAWING AND PAINTING

Derived class keywords, 422–423
Derived class member keyword, 423–424
Deserialize method, 594, 596–597
deserializing. See serialization
destinationArray, 506
DetailsView control (ASP.NET pjct), 976–978,

977–978
Diagram pane, Query Builder, 795
dialog boxes

find and replace, 185
vs. forms, 240–246, 240–241

dialog controls
ColorDialog control, 270–272, 270
FolderBrowserDialog control, 279–283, 281
FontDialog control, 272–274, 272
OpenDialog control, 274–279
overview, 267–269, 268
SaveDialog control, 274–279

DialogResult property (Form object), 241–242
Dictionary collections, 538
diffusing images, 710, 714–715, 714
DigitClick()

event handler, 140
subroutine, 141

Dim statements, 35, 37, 58
DirectCast() function, 62, 402–403
directories

Directory class. See System.IO.Directory
class

Directory method, FileInfo class, 563
DirectoryCopy method, 544, 544
DirectoryInfo class, 561
DirectoryName method, FileInfo class, 563
DirectorySeparatorChar property, Path

class, 564
displaying formatted listing of, 293–294

DiscardChanges() function, 296
disconnected applications, 822
DISTINCT keyword, 780
Distinct method, 631

<div> tag, HTML, 909
Dock property, 231–232
docking & anchoring (forms), 229–232, 231–232
Do...Loop, 95–96
double-precision numbers, 42–44
DpiX/DpiY properties, Graphics object, 655
DrawImage method, Graphics object, 749
drawing and painting

Brush class, 660–662
clipping regions (masks), 685–687
Color class, 658
DrawBezier method, 673–675, 674
DrawCurve method, 672–673
DrawEllipse method, 669–670, 669
DrawImage method, 679–680
drawing ListBox controls, 457–459
drawing program example, 156–159
DrawItem event, 456
DrawLine method, 667
DrawMode property, 457
DrawPath method, 673–675
DrawPie method, 670–672, 671
DrawPolygon method, 672
DrawRectangle method, 668–669
DrawString event, 457
DrawString method, 675–679, 676, 730, 734
Font class, 658–659
with GDI+, 652–654
gradients, 681–685, 682
Graphics object. See Graphics object
ImageCube project, 690–691, 690
images, displaying/sizing, 649–652, 650
MeasureString method, 675–679, 676
methods overview, 667–668
Path class, 662–663
Pen class, 659–660
persistent drawing, 664–665
plotting functions, 691, 691
Point class, 656–657
Rectangle class, 657–658, 658

DRAWING AND PAINTING • EVENTS 1091

rotation transformation, 688–690
scaling transformation, 687–690
shapes, 663–667, 664
Size class, 658
StringFormat object, 678–679
translation transformation, 687–690

Drive property, IO namespace, 560–564
DriveInfo class, 560–561
drives, system, 561
DropDown ComboBox, 207
DropDownList control (ASP.NET pjct),

975–976
DueDate type, 130
Duration property, TimeSpan class, 494–495
dynamic arrays, 81–82
dynamic content, adding to XML documents,

634–637
dynamic forms, building at runtime, 246–254

Controls collection, 247–253
DynamicForm project, 250–253, 250
event handlers, 253–254
ShowControls project, 248–250, 248

E
early vs. late binding, 403–404
Edit menu

designing, 256
IDE, 18–21
RTFPad project, 298–299

editing
commands (TextPad application), 183–184
contacts, 372–373
text, 175
undoing edits, 181

EliminateDuplicates() method (ArrayList
class), 407–408

ellipse-shaped control, 453–454
ellipses, drawing, 669–670, 669
ElseIf statements, 89
<embed> tag, HTML, 906

embossing images, 710, 713–714, 714
Employees table, Northwind database, 759–760
Enabled property, ToolStripMenuItem class,

258
EnableRaisingEvents property, 587
encapsulation, defined, 388–389
End Enum keyword, 366
EndsWith method, String class, 468–469
EndsWith/StartsWith methods, String class,

468–469
EnsureVisible method (nodes), 316
enter and leave events, 435–436
Enumerate List button (ListView items), 339
enumerations

AccessMode argument, 559
custom, 366–368, 368
enumerating collections, 528–531
enumerators, defined, 525
FileMode enumeration, 558
NotifyFilters enumeration, 585
ShareMode argument, 559

Equals button, MathCalculator, 142
Equals method, 354, 363–365
equals (=) operator, 365
error handling

classes, 359–360
Error List window (IDE), 25
error messages, 135–136
errors vs. exceptions, 147

event-driven programming, 124. See also GUI
design

event handlers
creating at runtime, 253–254
FileSystemWatcher component, 588–589

events
changed, 449–450
customizing list controls and, 456–457
DrawItem, 456
enter and leave, 435–436
error event, 589

1092 EVENTS • FILES

event-driven programming. See GUI design
external, 378
FileSystemWatcher, 586–587
firing, 378–380, 379
form events, 234–236
MeasureItem, 456
raising custom, 450–452
ScrollBar control, 212–213
time, 378
for use in HTML, 916–917

exceptions
of Create method (File class), 555
vs. errors, 147
exception handling, 147–149
InvalidCastException, 403
throwing, 358–359

ExecuteQuery method (LINQ), 646–647
Exists method

File class, 556
System.IO.Directory class, 549

Exit statements, 100
Explicit option (variables), 54–58
Expression Blend, 168–171
Expression Encoder, 168
Expression Studio, 9, 168–169
expressions

computing, 889–890
evaluation of, 92–93

Extensible Application Markup Language
(XAML)

in binding project, 160–163
vs. Extensible HTML, 902–903
fundamentals, 151–153

Extensible HTML (XHTML)
basics, 902
vs. HTML, 902–903
upgrading from HTML, 903

Extensible Markup Language (XML). See XML
(Extensible Markup Language); XML
serialization

Extension property, FileInfo class, 563
external events, 378
ExtractFileName method, 384
ExtractPathName method, 384

F
field properties, TimeSpan class, 493
fields

calculated fields, SQL, 783
database fields for Contacts.mdf, 164
fieldsTimeSpan object, 493
hidden, on web pages, 911, 930
vs. properties, 357–358, 400–401

File class (System.IO namespace), 554–560
AppendText method, 554
Copy method, 554
Create method, 554–555
CreateText method, 555
Delete method, 555
Exists method, 556
GetAttributes method, 556–557
GetCreationTime/SetCreationTime

methods, 557
GetLastAccessTime/SetLastAccessTime,

557
GetLastWriteTime/SetLastWriteTime

methods, 557
Move method, 557
Open method, 558–559
OpenRead method, 559
OpenText method, 559–560
OpenWrite method, 560

File menu
designing, 256
IDE, 18
RTFPad project, 296–298

files
File property, IO namespace, 560–564
FileInfo class, 562
FileMode enumeration, 558

FILES • FOREIGN KEY CONSTRAINTS 1093

FileName property, 269, 276–278
FileSystem object, 32, 584
methods for parsing names, 384–385
multiple file selection, 278–279
saving data to. See

My.Computer.FileSystem Component;
serialization

sending data to, 576–578
files and folders, accessing, 541–590

basics, 569–570
FileStream class, 570–574
FileSystem component, 541–546
FileSystem object, 584
FileSystemWatcher component, 585–589
FileSystemWatcher project, 587–589
IO namespace and FileSystem component,

542–543
manipulating with IO namespace. See IO

namespace, manipulating files/folders
with

My.Computer.FileSystem component,
542–546

RecordSave project, 580–585
streams. See streams

FileSystemWatcher component, 585–589
FileSystemWatcher project, 587–589
filling DataSets, 823–828
FillPie method, 670–671, 671
Filter properties

BindingSource class, 857–858
FileSystemWatcher component, 587
OpenDialog/SaveDialog controls, 274–277

Find commands, 185
Find method

BindingSource class, 857–858
RichTextBox control, 291–292

FindAll method (arrays), 508
FindString methods, 203–204
firing events, 378–380, 379

FixedPitchOnly property (FontDialog control),
273

FlexCombo project, 208, 209
flipping images, 700
float layout property, 940
floating point numbers, 39–40
flow-control statements, 85–100

decision statements. See decision statements
Exit statement, 100
importance of, 85
loop statements. See loop statements
nested control structures, 98–100
relationship to programming, 85

flow format, web pages, 909
Flush method

Binary Writer class, 578
StreamWriter object, 574

FocusedTextBox control
adding functionality to, 433–436
building, 431–436, 436
classifying properties of, 437–438
Property procedures of, 435
testing, 436–437

folders. See also files and folders, accessing
Folder property, IO namespace, 560–564
FolderBrowserDialog control, 279–283, 281

fonts
as design elements, 9
Font class (drawing), 658–659
Font properties (FontDialog control),

272–273
Font property (ListViewItem), 335
FontDialog control, 272–274, 272
loan calculator program and, 127
options, 26

Footer.ascx web user control (ASP.NET pjct),
953–955, 954

ForeColor property, 268, 314
foreign key constraints, 869

1094 FOREIGN KEY RELATIONSHIPS DIALOG BOX • GETCURRENTDIRECTORY METHOD, SYSTEM.IO.DIRECTORY CLASS

Foreign Key Relationships dialog box, 770–771,
770

form controls, 910
<form>. . .</form> tags, HTML, 910
formatting

date formats, 482–483, 487–490
format menu commands, 184
Format menu (IDE), 22
Format menu, RTFPad application, 299–300
Format menu, TextPad application, 184–185
format strings, numeric, 65–66
FormatException error message, 133
FormatFlags property, StringFormat Object,

678
FormatNum() function, 385–386
formatString argument, 64
numbers, 64–66
time formats, 487–490

forms, 217–265
anchoring and docking, 229–232
basics, 217–219, 218
binding to DataTable, 864
building dynamic at runtime, 246–254
Contacts project, 226–229, 226
controlling forms with forms, 238–239
controls on, 223–224, 224
vs. custom controls, 429–430
defined, 217
vs. dialog boxes, 240–246, 240–241
dynamic, building at runtime. See dynamic

forms, building at runtime
events, 234–236
Form menu, TextPad application, 182
Form object properties, 219–223
FormBorderStyle property, 220–221
FormClosing/FormClosed Events, 234
forms-based authentication (ASP.NET pjct),

957–958, 958
Forms component (My object), 32
HTML, 909–911

loading and showing, 236–237
and menu design. See menus, designing
MultipleForms project, 243–246, 243
splitting into multiple panes, 232–234, 233
startup, 237–238, 237
TabOrder property, 224–226

For...Next loops, 93–95
frames for web page formatting, 909
Frequency Table Menu, commands, 599
Friend keyword, 73
FromFileTime method, DateTime class, 490
FromOADate methods, DateTime class, 485
full joins, 786–787
FullName property, FileInfo class, 563
FullRowSelect property

ListView control, 332
TreeView control, 311

FunctionPlotting project, 691, 691
functions

aggregate, calculating, 783–785
aggregate, return values, 898–900
basics, 101–103
built-in, 107–109
custom, 109–110, 638
overloading, 117–121
returning arrays, 115–116
SQL Server, 766

G
GDI+ (Graphics Design Interface), 652–654
generic collections

fundamentals, 537–539
serializing, 614–615

Get section (property implementation), 357
GetAttributes method, File class, 556–557
GetCreationTime method

File class, 557
System.IO.Directory class, 552

GetCurrentDirectory method,
System.IO.Directory class, 549–550

GETCUSTOMERBYID METHOD • GUI DESIGN 1095

GetCustomerByID method, 401–402
GetDataObject method (Clipboard object), 705
GetDirectories method, System.IO.Directory

class, 550–551
GetDirectoryName method, Path class, 565
GetEnumerator method, 325, 528
GetFileName methods, Path class, 565
GetFiles method, 33, 551, 627
GetFileSystemEntries method, 551–552
GetFileSystemInfos method, 561–562
GetFullPath method, Path class, 565
GetImage/SetImage methods (Clipboard

object), 705
GetLastAccessTime method,

System.IO.Directory class, 553
GetLastWriteTimemethod,

System.IO.Directory class, 553
GetLength method (arrays), 81
GetNumericValue method, Char class, 463
GetParent method, System.IO.Directory class,

553
GetPixel method, Bitmap object, 707
GetRange method, ArrayList, 513
GetString() method, 408–409
GetTempFile method, Path class, 565–566
GetTempPath method, Path class, 565–566
GetText/GetImage methods, 291
GetThumbnailImage method, Image class,

701–702
GetType

function, 404
Get<Type> vs. GetSql<Type> methods,

820
method (variables), 69–70
operator, 70

GetUnicodeCategory method, Char class, 463
global variables, calculations with, 73
Globe project (TreeView control)

listing continents/countries/cities, 326–327

multiple selected nodes, processing,
324–325

nodes, adding, 321–322, 321
nodes, adding at runtime, 325–326
nodes, retrieving selected, 322–323
overview, 320–321, 321

Goodman, Danny, 918
gradient brushes, 662
gradients

Animated Gradient, 685
drawing, 681–685, 682
Rectangle Gradient button, 684

granularity, defined, 213
graphical user interfaces (GUI), 124–125. See

also GUI design
Graphics object

basics, 654
DpiX/DpiY properties, 655
GraphicsUnit enumeration, 655–656
initializing, 654–655
PageUnit property, 655
SmoothingMode property, 655–656
TextRenderingHint property, 655, 656

GridLines property (ListView control), 332
GridView control (ASP.NET pjct)

adding, 970–971, 971
configuring, 971–974, 972–973

GROUP BY clause, 788–790
groups

Group property (ListView control),
332

limiting with HAVING, 790
selecting with IN/NOT IN, 791

GUI design, 123–149
calculator, building. See calculator

application
loan calculator, building. See loan calculator

application
Windows applications, designing,

123–124

1096 HANDLES KEYWORD • IMAGES

H
Handles keyword, 13
hanging indent property (RichTextBox control),

287–288
HasExtension method, Path class, 566
HashTable collection

basics, 516–518
large sets of data, handling, 522–523
serializing, 613–615
WordFrequencies project, 518–523, 519

HashTables, persisting, 598–601
HatchBrush object, 661–662, 661
HAVING clause, limiting groups with, 791
hCard, microformats and, 918
HeaderStyle property (ListView control),

330–331
Height property, Image class, 699
Hello method, 985
HelloWorld

web service, 984–986, 985
WPF application, 154–155

Help menu (IDE), 23
HideSelection property

TextBox control, 180
TreeView control, 311

hierarchical DataSets, updating, 876
hierarchical tables, binding, 867–869, 867
horizontal rules, HTML, 905
HorizontalResolution/VerticalResolution

properties, 699
HotTracking property, TreeView control, 311
Hour/Minute/Second/Millisecond properties,

484
<hr> tag, HTML, 905
HyperText Markup Language (HTML),

902–911
and ASPX source code, 962
comments, 906
controls for web applications, 928–929
forms and form elements, 909–911

horizontal rules, 905
images, 905–906
links, 906
lists, 907
media, embedding, 906
page construction, 904–905, 904
page formatting, 909
vs. RTF, 285
scripts, 907
tables, 907–909
text management, 905

I
IComparer interfaces. See

IEnumerator/IComparer interfaces
IDE, Visual Studio

2008 Start page, 2
default settings, changing, 25–27
menus, 18–23
overview, 1–2
windows, rearranging, 6–7

Identity columns, handling, 836–837, 858–859
IEnumerator/IComparer interfaces, 528–537

basics, 528
custom sorting, 531–537
enumerating collections, 528–531

If. . .Then. . .Else statements, 88–90
If. . .Then statements, 86–89
iFrames, formatting web pages with, 909
IIf() function, 90
IIS (Internet Information Services)

basics, 918
MyWebService, deploying, 989

images
diffusing, 710, 714–715, 714
displaying/sizing, 649–652, 650
drawing, 679–680
embossing, 710, 713–714, 714
exchanging through Clipboard, 705–706
HTML, 905–906

IMAGES • INTERFACES 1097

Image class methods, 699–702
Image class properties, 699
Image object, creating, 699–702
ImageAttributes class, 680
ImageCube project, 690–691, 690
ImageFormat enumeration, 702
ImageFormat Enumeration, 702
ImageKey property (nodes), 312
ImageList control, 309–310, 310
ImageProcessing project, 710–715, 710
Images collection, 310
Images property, 309
 tag, HTML, 905–906
sharpening, 710, 713
smoothing, 710, 712–713, 712
Thumbnails project, 702–705
watermarking, 697, 697

Immediate window (IDE), 24–25
implementation inheritance, 410
IN keyword, selecting with, 791
Inches project, 213–214
IncludeSubdirectories property,

FileSystemWatcher component, 586
Indent property

RichTextBox control, 287
TreeView control, 311

Indexes/Keys tab, Properties pages, 773
indexing

defined, 772
IndexOf methods, ArrayList class, 503–504,

515
IndexOf methods, String class, 469–470
IndexOfKey method, SortedList collection,

526
IndexOfValue property, SortedList

collection, 525–526
Server Explorer indices, 772, 773

Infer option (variables), 54–58
inference, type (variables), 38–39
Infinity strings, 46–49

inheritance
basics and application of, 405–406
Class Diagram Designer, 427
defined, 406
derived class keywords, 422–424
InheritanceKeywords project, 424–425
inheriting custom classes, 410–415,

411
inheriting existing classes, 406–410
Inherits keyword, 422
MyBase/MyClass keywords, 425–427
overriding, 421–422
overview, 404–406
parent class keywords, 422–423

InitialDirectory property
(OpenDialog/SaveDialog controls), 277

initialization
of arrays, 77
of graphics objects, 654–655
of variables, 38

injection, SQL, 816–817
inner joins, 787
Insert method

arrayList, 511
Items collection, 199
String class, 470
StringBuilder class, 475–476

INSERT statements, SQL, 793–794
instances, shared methods and, 380–383
integer variables, 40–42
IntegralHeight property, 196
IntelliSense submenu (IDE), 19–21
InterestRate argument, 125
interfaces

applications and, 429
of custom controls, 430
IEnumerator/IComparer. See

IEnumerator/IComparer interfaces
Query Builder, 795–796

1098 INTERFACES • KEYS

user interfaces (UIs). See user interfaces
(UIs)

WordFrequencies project, 519
interfaces, designing data-driven, 863–883

binding hierarchical tables, 867–869, 867
BindingSource as data source, 869–870
DataGridView control, adjusting, 870–874,

871–874
DataGridView control, displaying lookup

columns in, 874–876
navigational tools, enhancing, 866–867
overview, 863
Products table editing interface, 877–883,

877
ProductsBindingNavigator, 864–866
ProductsTableAdapter, 863
TableAdapterManager, 863–864, 864, 865

Internet Information Services (IIS). See IIS
(Internet Information Services)

intervals
adding to dates, 486
methods of TimeSpan object, 496
properties, TimeSpan class, 493–496
of TimeSpan values, 493–494

InvalidCastException exception, 403
InvalidPathChars property, Path class, 564
IO namespace, manipulating files/folders with,

546–569
CustomExplorer project, 566–569
Drive/Folder/File properties, 560–564
File class. See File class (System.IO

namespace)
FileSystem component and, 542–543
Path class, 564–566
System.IO.Directory class. See

System.IO.Directory class
IReverseString method, 381–382
Is/IsNot keywords, 404
Is operator, 365–366
IsArray() function, 71

ISBNCheck-Digit() function, 110
IsDate() function, 70–71
IsLeapYear methods, DateTime class, 485–486
IsLetter/IsDigit methods, Char class, 53, 463
IsLower/IsUpper methods, Char class, 464
ISNULL function, SQL, 781–782
IsNumber method, Char class, 464
IsNumeric() function, 70
IsOnDropDown property, 258
IsPunctuation/IsSymbol/IsControl methods,

Char class, 464
IsSeparator method, Char class, 464
IsVisible property (nodes), 316
IsWhiteSpace method, Char class, 464
items

Item property (nodes), 316
Items collection Editor window, 257
Items collection (ListView control), 336
Items property (ListBox control), 196
processing selected (ListView control),

342–343
and subitems (ListView control), 334–336,

334

J
JavaScript

JavaScript Bible, Sixth Edition (Wiley), 918
using with HTML, 916–918

joins
Join method, String class, 470–471
SQL, 785–788

JPG format, 708

K
keys

to access menus, 259–260
capturing function keys, 189–190
in HashTables, 516–517
key fields, databases, 754–755
KeyDown/KeyUp events, 190

KEYS • LINQ TO XML COMPONENT 1099

KeyPress events, 463
KeyPreview property, 222
Keys property, 517
keystrokes and, 188–190
processing from within code, 228
Server Explorer, 772
SortedList collection, 525–527

keystrokes
capturing/cancelling, TextBox control,

188–190
capturing with KeyPreview, 222
Contacts project, 227–229
rejecting non-numeric, 463

keywords
derived class, 422–424
InheritanceKeywords project, 424–425
MyBase/MyClass keywords, 425–427
parent class, 422–423

L
Label3D custom control

Label3D Control project, 443–448
overview, 443–444
using in other projects, 452

labels
LabelEdit property, ListView control, 332
printing, 734–737

LargeChange property
ScrollBar control, 211
TrackBar control, 213

LastAccessTime property, FileInfo class, 563
LastIndexOf method

ArrayList, 502, 515
String class, 469

LastWriteTime property, FileInfo class, 563
late-bound expression, defined, 198
late vs. early binding, 403–404
left joins, 786
legacy data, reading with FileSystem object, 584
Length property

arrays and, 81
FileInfo class, 563
FileStream object, 571
String class, 465–466

LengthUnits project, 389–394
. . . list tags, HTML, 907
LIKE operator, SQL, 781
linear gradients

drawing, 681–683, 682
LinearGradientMode enumeration, 681

lines
drawing, 667
Lines property, 178–179

links
HTML and, 906
LinkButton control, 951

LINQ (Language Integrated Query), 621–647
to DataSet component, 624
to Entities component, 624
fundamentals, 621
to Objects component. See LINQ to Objects

component
to SQL component. See LINQ to SQL

component
to XML component. See LINQ to XML

component
LINQ to Objects component

defined, 624
querying collections of objects, 625–630, 626
querying for aggregates, 630–631

LINQ to SQL component
defined, 624
ExecuteQuery method and, 646–647
processing relational data with, 642–646

LINQ to XML component
custom functions with, 638
defined, 623–624
interface for viewing data, 638–642
XML documents, adding dynamic content

to, 634–637

1100 LINQ TO XML COMPONENT • MEASURESTRING EVENT (OWNER-DRAWN CONTROL)

XML documents, creating/manipulating,
631–633

XML documents, transforming, 637
XML documents, traversing, 633–634

ListBox control, 195–205
basics, 195–197, 195
in Contacts application, 374–375
designing, 457–459
items collection, manipulating, 197–200
items, selecting, 200
ListBox Demo application, 200–203, 201
searching, 203–204

listings, code. See code listings
lists

creating on forms, 911
HTML, 907
list controls, customizing, 456–459, 457

ListView control
Columns collection, 332–334, 333
combining with TreeView control, 343–346
CustomExplorer project, 343–346, 344
fitting data into, 342–343
fundamentals, 305–309, 306, 307, 308
items and subitems, 334–336, 334
Items collection, 336
ListViewDemo project, 337–339, 338
ListViewItem properties, 335
ListViewItemSorter property, 340–341
properties, 330–332
selected items, processing, 342–343
sorting, 340–341
subitems collection, 336–337

Load Binary command, 599–600
LoadFile method (RichTextBox control), 289
loading/showing forms, 236–237
LoadNodes() subroutine, 604, 607
loan calculator application, 124–137, 125

aligning controls, 129
designing user interface, 126–129, 128
monthly payments, calculating, 132

planning, 125–126
programming, 129–132, 131
validating data, 133–137, 133

local scope (variables), 71
Location property, Form object, 222–223
Lock method, FileStream object, 571
Locked property, TextBox control, 176
Log() function, 46
login controls

ASP.NET pjct, 957, 957, 959–960
for web applications, 925–926

LongMenu command, 261
lookup columns, displaying in DataGridView

control, 874–876
loop statements

Do...Loop, 95–96
For...Next loop, 93–95
While...End While loop, 97–98

M
maintaining state, 929–930
MakeTransparent method, Bitmap object, 707
many-to-many relationships, 760
MapMenu project, 264–265
masks (drawing), 685–687
master pages, ASP.NET project, 930–931
Mastering Integrated HTML and CSS (Sybex),

903, 916
match argument (arrays), 506
math operations, coding, 142–145
MathCalculator. See calculator application
MaximizeBox property, Form object, 221
Maximum property, ScrollBar control, 211
MaximumSize property, Form object, 221–222
MaxLength property, TextBox control, 174
MaxSize/MinSize properties, FontDialog

control, 273
MeasureItem event (owner-drawn control), 456
MeasureString event (owner-drawn control),

457

MEASURESTRING METHOD • MULTISELECT PROPERTY, LISTVIEW CONTROL 1101

MeasureString method, 740
media objects, embedding with HTML, 906
Menu control, configuring (ASP.NET pjct),

955–956
menus

Textpad form, 182
TextPad process and format, 184–185

menus, designing, 255–265, 256, 257
iterating menu items, 263–265
manipulating at runtime, 260–263
menu editor, 255–257
short and long, 261, 261
ToolStripMenuItem properties, 257–260

Method4 member, 425–426
methods. See also specific methods

BinaryReader class, 581
Char class, 462–464
ComboBox control, 208
data-type conversion (Convert class), 61
DataReader object, 819–820
date conversion, 490–491
date manipulation, 485–490
drawing methods overview, 667–668
File class, 554
Image class, 699–702
for maintaining state, 929–930
My.Computer.FileSystem Component,

542–546
read, BinaryReader class, 580
Response object, 933
RichTextBox control, 289, 291
Server object, 933
Session object, 934
shared, 380–383
shared vs. instance, 401–402
String class, 466–473
StringBuilder class, 474–476
System.IO.Directory class, 547
TextBox control, 180–181
TimeSpan class, 495–497

Trace object, 934
MetricUnits Class, 389–394, 392
microformats (web applications), 918
Microsoft Windows. See Windows, Microsoft
Min() function, 104, 117–118
Minimal class, building (example)

adding code to, 355–356
creating, 352–354, 353, 356
custom enumerations, 366–368, 368
Equals method, customizing, 363–365
Is operator, 365–366
Property procedures. See Property

procedures
ToString method, customizing, 362–363

MinimizeBox property, Form object, 221
Minimum property, ScrollBar control, 211
MinimumSize property, Form object, 221–222
mList ArrayList, 408
module-level scope (variables), 72
monthly payments

code for calculating, 132
loan calculator application, 125–126

MonthName() function, 484
Morrison, Michael, 918
MouseEnter/MouseLeave events, 454
Move method

BindingSource class, 857
File class, 557
System.IO.Directory class, 549

MoveNext method, IEnumerator, 528–529
MoveTo method, FileInfo class, 563
moving items between lists, 202–203
Mueller, John Paul, 989
MultiColumn property, ListBox control, 196
multidimensional arrays, 78–81
MultiLine property, TextBox control, 9–10, 174
MultipleFiles project, 278–279
MultipleForms project, 243–246, 243
MultiSelect property, ListView control, 332

1102 MULTISELECT PROPERTY (OPENDIALOG/SAVEDIALOG CONTROLS) • NUMERIC VALUES, DATES AS

MultiSelect property (OpenDialog/SaveDialog
controls), 278

MustInherit keyword, 421–422, 425
MustOverride keyword (inheritance), 423
My object

accessing Clipboard with, 706
fundamentals, 30–33

MyBase keyword (ParentClass), 422–423,
425–427

MyClass keywords (ParentClass), 425–427
My.Computer.FileSystem Component, 542–546
MyConsumer application, 990, 993, 994
MyStringsLen array, 500–502
MyWebService

building, 987–989, 989
consuming, 989–993
deploying, 989

MyWpfApplication1, 155

N
Name property, FileInfo class, 563
naming variables, 37–38
NaN (not a number), 46–49
narrowing conversions (data types), 63
Navbar, creating (ASP.NET pjct), 956
navigation

buttons (ASP.NET pjct), 963–964
controls for web applications, 925
through DataSets, 831–834
tools, enhancing (BindingNavigator),

866–867
Negate method, TimeSpan class, 497
NegateNumber method, Minimal class, 355
nested control statements, 98–100
.NET Framework 3.5. See Windows

Presentation Foundation (WPF)
New keyword, 356, 375, 397
New() procedure, 395–396
New Project dialog box (VS 2008), 3–5, 4
NewLine property, StreamWriter object, 573

NewUser.aspx page, building (ASP.NET pjct),
967, 968

nodes (TreeView)
adding, 321–322
adding at design time, 312–313
adding at runtime, 313–316, 325–326
of Africa, adding (Globe Pjct), 322
basics of, 307
collection, enumerating, 320
collection, recursive scanning of,

328–329, 329
inserting root, 319
persisting TreeView, 601–607, 602
processing multiple selected, 324–325
properties, 316
retrieving selected, 322–323
structure of, TreeView control, 602
TreeNode Editor, 312–313, 312
TreeNode objects, 313–314

nonrectangular control, creating, 453–454
Northwind sample database, 755–760
NOT IN keyword, selecting with, 791
Nothing value (object variables), 69
NotifyFilter property, FileSystemWatcher

component, 585–586
NotInheritable keyword/modifier, 422
NotOverridable keyword, 423
Now() function, 53
null values

vs. empty strings, 818–819
handling, 829–830
SQL, 781–782

NullReferenceException, 396
Num2String method, 384–386
numbers

converting to strings, 385–388
formatting, 64–66

numeric format strings, 65–66
numeric values, dates as, 491–492

NUMERIC VARIABLES • OWNER-DRAWN CONTROLS 1103

numeric variables
data types, 41
Decimal data type, 44–45
double-precision numbers, 42–44
integer variables, 40–42
overview, 39–40
single-precision numbers, 42–44

O
object constructors, 375–376
object-oriented programming (OOP)

classes vs. objects, 395
type casting, 402–403

objects, 395–428. See also ASP.NET, objects
binding, early vs. late, 403–404
casting to parent type, 421
casting variable types, 402–403
Class Diagram Designer, 427
vs. classes, 351, 395–396
DataRelation, 831–833
deserializing, 594–595
image, 699–702
inheritance. See inheritance
LINQ to objects component, 624
vs. object variables, 396–400, 402–403
object variables (variants), 58–59
OOP and. See object-oriented programming

(OOP)
passing as arguments, 106–107
polymorphism. See polymorphism
properties vs. fields, 400–401
serializing custom, 609–613
serializing/deserializing individual,

592–595, 608–609
shared vs. instance members, 401–402
Timespan, 493, 496
variable type, discovering, 404
variables as, 60–61

occasionally connected applications, 822
. . . list tags, HTML, 907

one-dimensional arrays, 78–79
one-to-many relationships, 760
one’s complement, 503
OnPaint method (UserControl Object),

446–447, 455
OOP (object-oriented programming). See

object-oriented programming (OOP)
Open method, File class, 558–559
Open Table Definition, 768–769
OpenDialog control, 274–279
OpenFile method, 278
OpenRead method, File class, 559
OpenText method, File class, 559–560
OpenTextFieldParser method, 584
OpenWrite method, File class, 560
Operator procedures, 389
operators

addition (+), 388
Boolean, 49
CType(), 393–394
equals (=) operator, 365
Is, 365–366
operator overloading, 388–389
OR, 292
unary, 392–393

Optimistic Concurrency, 860–861
Option Explicit statement, 55–57
Option Strict statement, 57–58
OR operator, 292
ORDER BY clause, 782
Order Details table, Northwind, 759
Orders table, Northwind, 758–759
Outlining submenu (IDE), 21
Output window (IDE), 24
OverloadedFunctions project, 121
overloading, operator, 388–389
Overridable keyword, 417, 421, 423
Overrides keyword, 363, 423–424
owner-drawn controls, 457–459, 457

1104 PADLEFT/PADRIGHT METHODS, STRING CLASS • PRESERVE KEYWORD

P
PadLeft/PadRight methods, String class, 473
pages

formatting in HTML, 909
formatting with CSS, 913–916
HTML construction, 904–905
master pages, ASP.NET, 930–931
page and printer properties, 725–729
PageSettings object (printing), 726
PageSettings property, 721–722, 733
PageSetupDialog control, 721–723, 722
PageUnit property, graphics object, 655

PageSettings project, 732–737
page setup, 732, 733–734
printing labels, 734–737

Paint event, 236, 454–455, 664–665
painting. See drawing and painting
panes, multiple for forms, 232–234
parameters

parameterized constructors, 375–376, 396
parameterized queries, 798–799
passing parameters through DataAdapter,

824–825
using commands with (ADO.NET), 812–813

parent class keywords, 422–423
Parent() function, 888–889
parent type, casting objects to, 421
parsing

filename methods, 384–385
Parse methods, DateTime class, 482
Parse(string) method, TimeSpan class,

495–496
Password page, building (ASP.NET pjct),

965–967, 966
PassWordChar property, 176
paste command, 183–184
Paste method (RichTextBox control), 291
Path class

drawing, 662–663
IO namespace, 564–566

path gradients
drawing, 683–685, 683
PathGradientBrush, 683–684, 683

paths
drawing, 673–675
Path property, FileSystemWatcher

component, 587
PathSeparator property, 311, 564

payments
code for calculating, 132
loan calculator program and, 125–126

Peek method, StreamReader class, 575
PeekChar method, BinaryReader class, 580
Pen class (drawing), 659–660
persistent drawing, 664–665
persisting

defined, 591
HashTables to disk, 598–601
TreeView nodes, 601–607, 602

phone book order sorting, 197
picture numeric format strings, 66
PictureBox control, 650–651
pie shapes, drawing, 670–672, 671
PixelFormatproperty (Image class), 699
Play method (My object), 30–31
plotting functions (drawing), 691, 691
Pmt () function, 126, 131
Point class (drawing), 656–657
polygons, drawing, 672
polymorphism

casting objects to parent type, 421
fundamentals of, 415–417
Shape class, building, 417–420
Shape class, testing, 420–421

Populate List button, 205
Position property, FileStream object, 571
positioning, Relative and Absolute (controls),

965
postback, ASP.NET, 935
Preserve keyword, 82

PRIMARY KEY (PK) • PROPERTIES 1105

primary key (PK)
basics, 761–762
defined, 754–755
indices and, 772

PrintBitmap application, 749–751
PrintDialog control, 720–721, 720
PrintDocument control, 717–720, 718
printer and page properties, 725–729

PrinterSettings object, 726–728
PrinterSettings object introduced, 726
PrintPreviewDialog control and, 725
retrieving names of, 726–728

printing
bitmaps, 748–751, 749, 751
components. See printing components
page geometry, 728–729
PageSettings project, 732–737
plain text, 744–748
PrintPage event handler, 731–732, 737,

741–742, 748
PrintTable application, 737, 738–740, 738,

739
PrintText application, 744–748, 745
PrintText project, 744–748
retrieving printer names, 726–728
SimplePrintout project, 729–732
tabular data. See tabular data, printing
text in rectangle, 677–678, 677

printing components
PageSetupDialog control, 721–723, 722
PrintDialog control, 720–721, 720
PrintDocument control, 717–720, 718
PrintPage event, 718–720
PrintPreviewDialog control, 723–725, 724

Private keyword, 37, 423
procedures, writing and using, 100–103
Process menu, TextPad, 184–185
Products sample project, 411
Products table, Northwind, 757–758, 877–878
ProductsBindingNavigator, 864–866

ProductsTableAdapter, 863
programming

with ADO.NET. See ADO.NET,
programming with

arguments. See arguments
event-driven. See GUI design
flow-control statements. See flow-control

statements
fundamentals of, 85
MathCalculator. See calculator application
procedures, 100–103

progress events, 378
Project menu (IDE), 22
Projects And Solutions options, 26–27
properties. See also specific properties

Brush class, 660–662
calculating values on the fly, 361–362
Char class, 462
ColorDialog control, 270–272, 270
ComboBox control, 208
of custom controls, 438–439
custom TextBox control, 434–436
DataAdapter class, 824
DataReader object, 819–820
DateTime class, 483–485
of DriveInfo class, 560–561
field properties, DateTime class, 493
vs. fields, 357–358, 400–401
FileSystemWatcher component, 585, 588
FocusedTextBox control, 436–438
FolderBrowserDialog control, 280
FontDialog control, 272–274, 272
Form object, 219–223
Image class, 699
implementing with Property procedures,

356–358
interval, DateTime class, 493–494
Label3D control, 443–446
ListView control, 330–332
ListViewItem, 335

1106 PROPERTIES • REFERENTIAL INTEGRITY (DATABASES)

OpenDialog/SaveDialog controls, 274–278
PageSettings object, 726
Pen class, 660
Properties window, 23–24, 237
Property Pages dialog box, 377
read-only, 360–362
Request object, 932
Response object, 933
RichTextBox control, 286–288, 290
Server object, 933
Session object, 934
shared vs. instance, 401–402
String class, 465–466
StringBuilder class, 474
StringFormat Object, 678–679
text manipulation, 176–179
text selection, 176–179
TextBox control, 8–9, 8
TimeSpan class, 493–495
ToolStripMenuItem properties, 257–260
Trace object, 934
TreeView control, 310–312, 311
write-only, 362

Property procedures
fields vs. properties, 357–358
of FocusedTextBox control, 435
implementing properties with, 356–358
NamedColor, 441
read-only properties, 360–362
SelectedColor, 440–441
throwing exceptions from within, 358–359

Protected Friend keyword, 423
Protected keyword, 423
Public keyword, 37, 73, 423
Publishers table, Pubs database, 761
Pubs sample database, 755–756, 760–761

Q
Query Builder, 794–800

calculated columns, 799–800

defined, 763
fundamentals, 794–796
interface, 795–796
parameterized queries, 798–799, 798, 799
rows, counting, 797–798
sums, calculating, 796–797

querying
aggregates with LINQ, 630–631
collections with LINQ, 625–630, 626

Queue collection, 527

R
radio buttons, creating on forms, 911
raising custom events, 450–452
ranges, selecting with BETWEEN keyword, 791
Read method, StreamReader class, 575
read-only properties, 360–362
ReadBlock method, StreamReader class, 576
Reader/Writer classes, 569–580
ReadLine method, StreamReader class, 576
ReadOnly property, 176
ReadOnlyChecked property, 278
ReadToEnd method, StreamReader class, 576
real-world data-entry applications, 194–195
RecordSave project, 580–585, 582
rectangles

drawing, 668–669
filling with linear gradient, 682
filling with path gradient, 684
printing text in, 678
Rectangle class, 657–658, 658
Rectangle Gradient button, 684

ReDim statements, 82
redo commands, TextPad, 187–188
Redo method, RichTextBox control, 291
RedoActionName property (RichTextBox

control), 290
reference types, 397–400
ReferenceEquals method, 354
referential integrity (databases), 762

REFRESH METHOD (IMAGES) • ROWS 1107

Refresh method (images), 709
refreshes, forcing (drawing), 665
Regional Settings (Control Panel), 54
relational data, processing with LINQ, 642–646
relational databases. See also Query Builder

fundamentals, 754–755
Northwind basics, 756–760, 758, 759
Northwind/Pubs databases, 755–756
Pubs basics, 760–761, 761
relations in, 761–763
Server Explorer. See Server Explorer
stored procedures, 800–802

Relationships, creating, 770–771, 770
relative/absolute positioning (controls), 965
Remove method

arrayList, 512
Controls collection, 247
HashTable collection, 517
Items collection, 199
nodes, 316
String class, 472
StringBuilder class, 476

Remove Selected Item button, 202
RemoveAt method, Items collection, 199
RemoveRange method, ArrayList, 512
removing vs. deleting rows, 831
Repeat method, ArrayList, 513
Replace commands, 185
Replace method

String class, 465, 472
StringBuilder class, 476
TextPad application, 187

Report.aspx page, building (ASP.NET pjct),
978–980, 978–980

reporting controls, web applications, 928
reports, creating (ASP.NET pjct), 978–980
Request object, ASP.NET, 931–932
Reset method, IEnumerator, 528
Resize events, 235
Response object, ASP.NET, 932–933

RestoreDirectory property, 277
result variable, MathCalculator, 145–146
Results pane, Query Builder, 796
Reverse method

arrays, 506, 513
String class, 477
StringReversal project, 476–479, 477

ReverseString method, 355
RGB color model, 693–695
RichTextBox control

advanced editing features, 290–291
cutting and pasting, 291
formatted directory listing, 293–294
LoadFile method, 289
overview, 283–284, 283, 285
RichTextBoxFinds enumeration, 292
RTF language, 284–286
RTFPad application. See RTFPad

application example
SaveFile method, 289
searching in, 291–292
Select methods, 289
text manipulation/formatting properties,

286–288
vs. TextBox control, 288
URL formatting in documents, 292–293

right joins, 786
root node, inserting (TreeView), 319
RootFolder property, FolderBrowserDialog

control, 280
RotateFlip method, Image class, 700–701
rotation transformation (drawing), 688–690
RoundButton control, 454–456
rows

adding/deleting, 830–831
counting, Query Builder, 797–798
grouping, 788–790
limiting number with TOP, 783–784
selecting, 885–887
sorting with ORDER BY, 782

1108 ROWS • SELECTING

states and versions of (DataSets), 833–834
viewing deleted, 879–883
working with, 828–829

RTF (Rich Text Format)
language, 284–286
property (RichTextBox control), 283–285,

283, 285
RTFPad application example, 294–302

Edit menu, 298–299
File menu, 296–298
Format menu, 299–300
overview, 294
Search/Replace dialog box, 300–302, 301
SelectionHangingIndent property, 295
SelectionIndent property, 294
slider controls, 295–296

rules, access (ASP.NET pjct), 958–959

S
SalesByCategory stored procedure, 801–802
Save method (Image class), 701–702
SaveContact() function, 374
SaveDialog control, 274–279
SaveFile method

OpenDialog/SaveDialog controls, 278
RichTextBox control, 289

SaveNodes() subroutine, 604–605
SaveRecord() subroutine, 583
scaling transformation (drawing), 687–690
scanning

ScanFolders() subroutine, 567
TreeView control, 328–329, 329

schemas, XML, 619–620
scopes, variable, 71–73
scripts

HTML, 907
<script>. . .</script> tag, HTML, 907

ScrollBar control
basics, 210–211, 211
Colors sample project, 211–213

events, 212–213
ScrollBars property, 175

scrolling
Scroll event, 235–236
Scroll method, 220
Scrollable property (ListView control), 332
ScrollControlIntoView, 220
scrolling PictureBox, 650–651, 651
ScrollToCaret method, 302

search and replace
dialog box (RTFPad), 300–302
operations (TextPad), 185–187

searching
ArrayList collection and, 515
arrays and, 502–506
ArraySearch application, 504–505
ListBox control, 203–204
in RichTextBox control, 291–292
Search Array button, 505
searchMode argument, 292

Seek method
Binary Writer class, 579
FileStream object, 572

SeekOrigin enumeration, 572
Select Case

statement, 368
structure, 90–92

Select methods
DataTable object, 886–887
RichTextBox control, 289
SelectAll method, 180–181
TextBox control, 180–181

selecting
rows, 885–887
Select button (GridView control), 972–973
SELECT statement, SQL, 776–778, 777
<select> tag for lists, HTML, 911
SelectedFolder property, 280
SelectedIndex property (ComboBox

control), 17

SELECTING • SHARED METHODS/PROPERTIES 1109

SelectedIndices collection, 202
SelectedItem property, 200
SelectedListItemCollection property, 342
SelectedText property, 179, 286–287
Selection properties (RichTextBox control),

287–288
SelectionHangingIndent property

(RTFPad), 295
SelectionIndent property (RTFPad), 294
SelectionLength property, 179–180
SelectionMode property, 196, 200
SelectionStart property, 179–180

selection queries
aliasing column names with AS, 780
aliasing table names, 780
basics, 776–777
executing, 811–812
LIKE operator, 781
null values and ISNULL function, 781–782
rows, limiting number of with TOP, 783–784
rows, sorting with ORDER BY, 782
selecting columns from multiple tables,

778–779
skipping duplicates with DISTINCT, 780
WHERE clauses and, 777–778, 777

sender argument, 13
serialization, 591–620

binary and SOAP. See binary and SOAP
serialization

fundamentals, 591–592
persisting HashTables to disk, 598–601
persisting TreeView nodes, 601–607, 602
<Serializable()> keyword, 371
SimpleSerialization project, 598, 598
types of, 591–592
XML serialization. See XML serialization

Serialize method
BinaryFormatter class, 593–595
XmlSerializer class, 612

Server Explorer

basics of, 763
connections, 763–765, 764
constraints, 772–773
diagrams, 765–767, 765
indices/keys, 772, 773
relationships, 770–771, 770
SQL basics. See SQL (Structured Query

Language)
tables, 767–770, 769

servers
server object, ASP.NET, 932–933
server-side technologies, 918–919
Server-Time method, 994

session object, ASP.NET, 934
set-based vs. stream-based data access, 805–806
set method, 401
Set section (property implementation), 357
SetClip method, Graphics object, 685
SetCreationTime method

File class, 557
System.IO.Directory class, 552

SetCurrentDirecory method, 549–550
SetGamma method, ImageAttributes class, 680
SetLastAccessTime method, 553, 557
SetLastWriteTime method

File class, 557
System.IO.Directory class, 553

SetLength method, FileStream object, 572
SetPixel method, Bitmap object, 707
SetRange method, ArrayList, 512
SetSearchMode() function, 300
Settings component (My object), 32
SetWrapMode method, ImageAttributes class,

680
shape class

building, 417–421
problem with, 421–422
testing, 420–421

shapes, drawing, 663–667, 664
shared methods/properties, 401–402

1110 SHARED VS. INSTANCE MEMBERS • SORTING

shared vs. instance members, 401–402
ShareMode numeration, 559
sharpening images, 710, 713
Shippers table, Northwind, 760
shortcut keys

to access menus, 259–260
Contacts project, 227

Show Table Data command, Server Explorer,
767–768

ShowApply property (FontDialog control), 274
ShowCheckBoxes property (TreeView control),

311
ShowColor property (FontDialog control), 273
ShowControls project, 248–250, 248
ShowDialog method, 268–269
ShowEffects property (FontDialog control), 274
ShowFiles() subroutine, 568–569
ShowLines property (TreeView control), 311
ShowNewFolderButton property, 280
ShowNodes() subroutine, 605
ShowPlusMinus property (TreeView control),

311–312
ShowReadOnly property

(OpenDialog/SaveDialog controls), 278
ShowRootLines property (TreeView control),

312
Silverlight, Microsoft, 151, 166
SimpleClass project, 352, 377–379
SimpleDataSet project, 837–843, 838, 840
SimplePrintout project, 729–732
SimpleSerialization project, 598
single-precision numbers, 42–44
SiteMap (ASP.NET pjct)

adding items to, 963
creating, 955, 956
SiteMapDataSource control, 961
updating, 961

sizing
images, 649–652, 650, 652
Size class, 658

Size property, 223
SizeF object, 458
SizeGripStyle property, 222
SizeMode property, 649–652, 650,

652
Skip/SkipWhile methods, 631
slider controls (RTFPad), 295–296
SmallChange property, 211, 213
smoothing images, 710, 712–713, 712
SmoothingMode property, Graphics object,

655–656
snap lines, 12
SOAP (Simple Object Access Protocol)

basics of overriding, 983
serialization. See binary and SOAP

serialization
SOAP Discovery, 983
SoapFormatter class, 592–593

SolidBrush object, 660–661
SolidColorOnly property, 271–272
Solution Explorer

ASP.NET web service and, 990–991
window (IDE), 23

Sort method
ArrayLists, 513–514
arrays, 499–500, 502
ListView control, 337
sorting collections, 531

Sorted property
ListBox control, 196–197
TreeView control, 312, 320

sorting
ArrayList collection and, 513–514
arrays and, 499–502
custom, 531–537
with IEnumerator/IComparer interfaces,

531–537
ListView control, 340
property, 332
SortArrayByLength application, 500–502

SORTING • STRING CLASS 1111

SortedList collection, 523–527
SortedList project, 524–527

space characters, 19
Split method, String class, 323, 384, 471–472
SplitContainer control, 232–234
SQL (Structured Query Language), 773–794.

See also Query Builder
action queries, 791–794
basics, 773–775
calculated fields, 783
calculating aggregates, 783–785
database, creating (ASP.NET pjct), 973–974,

974
groups, limiting with HAVING, 790
groups, selecting with IN/NOT IN, 791
LINQ to SQL component, 642–647
ranges, selecting with BETWEEN, 791
rows, grouping, 788–790
selection queries. See selection queries
SQL expressions, 885–887
SQL injection, 816–817
SQL joins, 785–788
SQL pane, Query Builder, 796
SQL Server 2008, 754
SQL Server Management Studio (SSMS),

775–776, 775
SQL statements, 775–776
stored procedures, 800–802
wildcards, 781
SQL Expressions project, 890–900

aggregate functions return values,
898–900

calculated columns, 892–893
customer averages, calculating, 897
orders, retrieving by date, 894
orders, selecting/viewing details,

895–900
TabControl to review data, 890–892,

890–892

Square/Triangle/Circle classes example,
418–420

SReverseString method, 381–382
Stack collection, 527–528
stand-alone web service, 986–993

building, 986–989, 989
consuming, 989–993
deploying, 989

Standard controls (web form controls), 922–923
StartPosition property, Form object, 222–223
StartsWith method, String class, 468–469
startup forms, 237–238, 237
state, maintaining, 929–930
Static keyword, 37, 73–74
static layout property, 940
static variables, calculations with, 74
Statistics project, 116–117
stored procedures

basics, 766
databases and, 800–802
executing, 810–811
retrieving multiple values from

(ADO.NET), 813–817
storing data in DataSets. See DataSets, storing

data in
streams

BinaryReader class, 579–580
BinaryWriter class, 578–579
FileStream class, 570–574
sending data to files, 576–578
stream-based vs. set-based data access,

805–806
StreamReader class, 574–576
StreamWriter class, 572–574

StretchImage setting, 650
Strict option (variables), 54–58
String class, 466–473

basics, 461, 464–466
Chars property, 466
Compare method, 466–467

1112 STRING CLASS • SYSTEM.IO.DIRECTORY CLASS

CompareOrdinal method, 468
Concat method, 468
Copy method, 468
EndsWith/StartsWith methods, 468–469
IndexOf/LastIndexOf methods, 469
IndexOfAny method, 469–470
Insert method, 470
Join method, 470–471
Length property, 465
PadLeft/PadRight methods, 473
properties, 465–466
Remove method, 472
Replace method, 472
Split method, 471–472
vs. StringBuilder class, 461–462

StringBuilder class, 473–481
Append method, 474
AppendFormat method, 475
basics, 461, 473–474
CountWords project, 479–481, 480
Insert method, 475–476
properties, 474
Remove method, 476
Replace method, 476
vs. String class, 461–462
StringReversal project, 476–479
ToString method, 476

strings
Char class, 462–464
converting numbers to, 385–388
CountWords project, 479–481, 480
drawing, 675–679
empty strings vs. null values, 818–819
measuring, 675–679
rendering with linear gradient, 682–683
rotating, 736–737, 737
splitting with multiple separators, 471
String class. See String class
StringBuilder class. See StringBuilder class
StringFormat object (drawing), 678–679

StringReversal project, 476–479
StringTools class, 384–388
strProperty, 234, 355–356
StrReverse() function, 477
variables, 51, 54

Structured Query Language (SQL). See SQL
(Structured Query Language)

structures
arrays of, 67, 69
functions returning, 113–114

style sheets (ASP.NET pjct)
attaching to master page, 942–944
building for master page, 939–942, 939
ContentStyleSheet.css, 945–947

styles
brush, 660–662
ComboBox control, 206–207
formatting with CSS, 912–913
<style>. . .</style> tags, CSS, 912

SubItems collection, 335–337
subroutines, defined, 100–101
Subtract method

DateTime class, 486
TimeSpan class, 497

sums
calculating, Query Builder, 796–797
Sum method (LINQ-capable class), 630

Suppliers table, Northwind, 757–758
Supply class (Products sample project), 411–413
SuspendBinding method, 881
synonyms, SQL Server objects and, 766
system drives, 561
System.Collections class, 527
System.Diagnostics.Process class, 293
SystemInformation class, 222
System.IO.Directory class, 547–553

CreateDirectory method, 547–548
Delete method, 548–549
Directory object methods, 547
Exists method, 549

SYSTEM.IO.DIRECTORY CLASS • TEXTBOX CONTROL 1113

GetCreationTime/SetCreationTime
methods, 552

GetCurrentDirecory method, 549–550
GetDirectories method, 550–551
GetFiles method, 551
GetFileSystemEntries method, 551–552
GetLastAccessTime/SetLastAccessTime

methods, 553
GetLastWriteTime/SetLastWriteTime

methods, 553
GetParent method, 553
Move method, 549
SetCurrentDirecory method, 549–550
System.IO.Directory.Delete, 547–553

T
<table>. . .<> tag, HTML, 907
tables

accessing DataSet, 828
aliasing table names, 780
binding hierarchical, 867–869, 867, 868
for formatting web pages, 909
HTML, 907–909
moving large tables to client, 895
selecting columns from multiple, 778–779
Server Explorer, 767–770, 769
TableAdapter Configuration Wizard,

860–862
TableAdapterManager, 863–864
Tables Designer, 763

TabOrder property, 224–226, 225
tabular data, printing, 738–744

formatting cells, 740–742
PrintTable application, 738–740, 738, 739
setting column widths, 742–744
static variables, 744

tags. See also HyperText Markup Language
(HTML)

Tag property, nodes, 601
text management, 905

XHTML, 902
Take/TakeWhile methods, 631
<td>. . .</td> tags, HTML, 907
testing

ASP.NET web service, 985–986, 985
ColorEdit control, 442
custom comparers, 535–536
custom controls, 433, 436–437, 448–449
custom windows controls, 448
EliminateDuplicates method, 407–408
FocusedTextBox control, 436–437
for Infinity and NaN, 48–49
loan application program, 129
Shape class, 420–421
StringTools class, 387–388
user-drawn controls, 448–449
web service example, 985

text. See also TextBox control
displaying multiple lines, 10
editing, 175
effects with transparent brushes, 698
formatting properties, 286–288
HTML text management, 905
manipulation properties, 176–179. See also

String class; StringBuilder class
printing in rectangle, 677–678, 677
printing plain, 744–748
selection properties, 179–180
Text property, ComboBox control, 17–18
Text property, ListBox control, 197
Text property, ListViewItem, 335
Text property, nodes, 313
Text property, TextBox control, 177–178
TextAlign property, 174
TextChanged event, 188
TextRenderingHint property, Graphics

object, 655, 656
TextBox control, 173–195

auto-complete properties, 190–193
basics, 173–176, 174

1114 TEXTBOX CONTROL • TRANSLATION TRANSFORMATION (DRAWING)

capturing/cancelling keystrokes, 188–190
as control example, 431
FocusedTextBox control, 405–406
nodes and, 320, 325
real-world data-entry applications, 194–195
vs. RichTextBox control, 288
text-manipulating properties of, 176–179
text-selection methods, 180–181
text-selection properties, 179–180
TextPad application. See TextPad

application
undoing edits, 181
XAML and, 152

TextPad application, 181–188, 181, 183, 192–193
editing commands, 183–184
form menu, 182
Process and Format menus, 184–185
search and replace operations, 185–187
undo/redo commands, 187–188

TextureBrush object, 662
<th>. . .</th> tags, HTML, 907
throwing exceptions, 358–359
Thumbnails project, 702–705
TickFrequency property, 213–214
Ticks property, DateTime class, 484–485
TIFF format, 708
time. See also dates and times

events, 378
formats, 487–490
TimeOfDay property, 484
TimeSpan object, 54
TimeSpan value, intervals of, 494

TimeSpan class, 492–497
Add method, 496
basics, 492–493
Duration property, 494–495
field properties, 493
interval methods, 495, 496
interval properties, 493–494
Negate method, 497

operator overloading and, 388
Parse(string) method, 495–496
Subtract method, 497

titles
Title property, 269
<title> tag, HTML, 905
Titles and Authors tables, Pubs, 760–761

Today() function, 53
ToFileTime method, 490
ToLongDateString/ToShortDateString

methods, 483, 490
ToLongTimeString/ToShortTimeString

methods, 491
ToLower/ToUpper methods, Char class, 464
ToOADate method, 491
Toolbox window (IDE), 23
tools

data-entry. See TextBox control
debugging, 145–147
Tools menu (IDE), 22
visual database, 763
Web Site Administration, 925–926, 926

ToolStripMenuItem properties, 257–260
TOP keyword, 783–784
TopMost property, Form object, 223
ToString method

Char class, 464
customizing, 362–363
DateTime class, 486–487
formatting numbers and, 64–65
StringBuilder class, 476, 479

ToUniversalTime/ToLocalTime methods, 491
<tr>. . .</tr> tag, HTML, 907
trace object, ASP.NET, 935
TrackBar control

basics, 210, 213, 213
Inches project, 213–214
RichTextBox, 294

transformations, graphics, 687–691, 689
translation transformation (drawing), 687–690

TRANSPARENT BRUSHES (DRAWING) • USERS, DESIGNING FOR 1115

transparent brushes (drawing), 698
TransparentColor property, 309–310
TreeNode

Editor, 312–313, 312
objects, 313–314

TreeView control
combining with ListView control, 343–346
CustomExplorer project, 343–346, 344
demo project, 316–320
fundamentals, 305–309, 306, 307, 308
Globe project. See Globe project (TreeView

control)
nodes, adding at design time, 312–313
nodes, adding at runtime, 313–316
properties, 310–312, 311
scanning, 328–329, 329
TreeViewScan project, 328–329, 329

TreeView demo project, 316–320
TreeView nodes, persisting, 601–607, 602
TreeViewScan project, 328–330
Triangle/Circle/Square classes example,

418–420
Trimming property, StringFormat Object, 678
TrueForAll method (arrays), 508–509
TryCast() function, 403–404
two-dimensional arrays, 78–79
type casting, 402–403
type characters (numeric variables), 45
type inference (variables), 38–39
typed DataSets, 845–855

DataSetOperations project, 850–855
fundamentals, 845–846
generating, 846–850, 847, 848, 849

types
database, 766–767
objects, casting to parent type, 421
reference types, 397–400
Types project, 114–115
value types, 397–398
variable types, 404

U
UCT (universal coordinated time), 491
UDDI (Universal Description, Discovery, and

Integration), 983–984
. . . list tags, HTML, 907
unary operator, 392–393
undo commands (TextPad application),

187–188
Undo method (RichTextBox control), 291
UndoActionName property (RichTextBox

control), 290
UnicodeCategory enumeration, 463
universal coordinated time (UCT), 491
Universal Description, Discovery, and

Integration (UDDI), 983–984
Unsigned Short integers (UInt16), 51
untyped variables, 402–403
UPDATE statement, SQL, 794
updating

databases with DataAdapter, 834–837
hierarchical DataSets, 876

URLs, formatting in documents, 292–293
UseCase Property, 386–387
User component (My object), 32
user controls, creating (ASP.NET 3.5 project),

948–954
user-defined data types, 66–69
user-drawn controls, 442–452

basics, 442
changed events and, 449–450
Label3D control example, 443–450, 452, 452
overview, 442–443
raising custom events, 450–452
testing, 448–449

user interfaces (UIs)
basics, 151
calculator, designing, 137–139
loan calculator, designing, 126–129

UserControl object, 430, 443–447, 449–450
users, designing for, 225–226

1116 VALIDATION • VISUAL STUDIO

V
validation

controls for web applications, 924–925
data-validation code, 134–135

values
AccessMode argument, 559
FileMode enumeration, 558
function return values, 113–117
keys and, HashTable collection, 516–517
large, and error messages, 135–136
NotifyFilters enumeration, 585
passing arguments by value, 104–105
printing, and locales, 723
retrieving from stored procedures, 813–817
returning, 111–113
returning multiple, 105–106
ShareMode argument, 559
SortedList collection, 525–527
storing in DateTime class, 481–482
value types, 397–398
value variables, 397–398
Values property, HashTable collection, 517

varchar data type, 768
variables

arrays and. See arrays
Boolean variables, 50–51
byte variables, 49
casting types, 402–403
Character variables, 51–53
constants, 74–75
converting variable types, 61–64
custom type, 68
data type identifiers, 54–55
Date variables, 53–54
declaring, 36–39, 71
Explicit option, 54–58
formatting numbers, 64–66
fundamentals, 35–36
GetType method, 69–70
Infer option, 54–58

initialization of, 38
IsArray() function, 71
IsDate() function, 70–71
IsNumeric() function, 70
lifetime of, 73–74
naming conventions, 37–38
numeric variables. See numeric variables
Object variables, 58–59, 396–400, 402–403
as objects, 60–61
reversing StringBuilder, 477–478
scope (visibility) of, 71–73
session variables, 930
sharing between forms, 238–239
static for printing, 719, 744
Strict option, 54–58
String variables, 51, 478
type, discovering, 404
type inference, 38–39
types of, 39–45
untyped, 402–403
value, 397–398

Variant data type, 402
variants (object variables), 58–59
vector graphics, 693
views

Server Explorer and, 766
View menu (IDE), 21–22
View property (ListView control), 330–331

Visible property, 258
Vista interface, 151–171

Expression Blend overview, 168–171
WPF and, 151
WPF browser application, 166–168, 168
WPF controls. See Windows Presentation

Foundation (WPF)
XAML and, 151–153

visual database tools, 763
Visual Studio

2008 Start page, 2–3
opening in administrator mode, 984

VISUAL STUDIO • WINDOWS, MICROSOFT 1117

Query Designer, 776–777
XML Editor, 616, 619

VolumeSeparatorChar property, Path class, 564

W
watermarking images, 697, 697
WCF (Windows Communication Foundation),

981–982
web applications, 901–936

Ajax, 918
ASP.NET objects, 931–935
controls. See controls for web applications
creating, 919–922, 920, 921
CSS, 911–916
HTML. See HyperText Markup Language

(HTML)
JavaScript, 916–918
maintaining state, 929–930
master pages, 930–931
microformats, 918
postback, 935
server-side technologies, 918–919
web development history, 901–902
XHTML vs. HTML, 902–903

web services. See also ASP.NET web service;
stand-alone web service

Web Services Description Language
(WSDL), 983

WebServices component (My object), 32
Web Site Administration tool, 925–926
web sites, for downloading

ASP.NET AJAX Control Toolkit, 926
Expression Blend, 169
Expression Studio, 9
XML Notepad 2007, 151

web sites, for further information
AJAX tutorial, 918
animated color cube, 695
ASP.NET web services, 982
Cascading Style Sheets, 916, 942

common escape codes, 954
EditPad Pro, 903
HTML, 903
JavaScript tutorials, 918
microformats, 918
Northwind/Pubs sample databases, 755
Notepad2, 903
RTF, 285–286
Silverlight, 151, 166
WCF, 982

web user control (ASP.NET pjct), 949–952,
950–952

<WebMethod> attribute, 371
WebParts controls, 926–927
WeekDayName() function, 484
WHERE clauses, 629, 788
WHERE keyword, 623
WHERE selection query, 777–778
While...End While loop, 97–98
white space, viewing, 19
widening conversions (data types), 63
Width property (Image class), 699
wildcards, SQL, 781
Wilson’s Computer Parts Online. See ASP.NET

3.5 project
windows, defined, 217. See also forms
Windows, Microsoft

applications, designing, 123–124
Expression Blend, 168–171
ISS, 918
Microsoft IIS 7 Implementation and

Administration (Sybex), 989
MicrosoftReportViewer control (ASP.NET

pjct), 978
Silverlight, 151
Window menu (IDE), 22–23
Windows Communication Foundation

(WCF), 981–982
Windows controls. See controls; custom

controls

1118 WINDOWS, MICROSOFT • XML SERIALIZATION,

Windows Form Designer, 5–11, 6
Windows forms. See forms
XML Notepad 2007, 151

Windows Presentation Foundation (WPF)
binding page to database, 164–166, 166
browser application, creating, 166–168,

168
controls, 153–154
data-binding controls, 159–164
drawing program, 156–159
”Hello World” WPF application, 154–155
new projects, creating, 153
overview, 151

WindowsApplication VB examples, 11–14,
15–18

With keyword, 376
With statement, 31
word wrap

function, 19
WordWrap feature, 12
WordWrap property, 175, 438–439

WordFrequencies project, 518–523, 519, 599
WPF (Windows Presentation Foundation).

See Windows Presentation Foundation
(WPF)

Write/WriteString methods, Binary Writer
class, 579

WriteAllText method (My object), 30–31
Write(data) method, StreamWriter object, 574
WriteLine(data), StreamWriter object, 574
WriteOnly keyword, 362

Writer/Reader classes, 569–580
WSDL (Web Services Description Language),

98

X
XAML (Extensible Application Markup

Language). See Extensible Application
Markup Language (XAML)

XHTML. See Extensible HTML (XHTML)
XML (Extensible Markup Language)

database, creating (ASP.NET pjct), 968–969
editing files, 617–620
file structure, 615–617, 616
files, working with, 638–642, 639
helper objects, 632
XML Editor, 616–620, 619
XML web services. See ASP.NET web

service
XML documents

adding dynamic content with LINQ,
634–637

creating/manipulating with LINQ, 631–633
transforming with LINQ, 637
traversing, with LINQ, 633–634

XML serialization, 607–615
namespace, 607
serializing ArrayLists/HashTables, 613–615
serializing custom objects, 609–613
serializing/deserializing individual objects,

608–609
XmlSerializer class, 592, 607, 609, 613

