THE EXPERT’S VOICE® IN .NET

Visual Basic
2008 Recipes

A Problem-Solution Approach

A compendium of solid and well-thought-out
solutions to many common Visual Basic 2008
programming problems

Todd Herman, Allen Jones,
Matthew MacDonald, and Rakesh Rajan

Apress:

Visual Basic 2008
Recipes

A Problem-Solution Approach

Todd Herman, Allen Jones,
Matthew MacDonald, and Rakesh Rajan

Apress°

Visual Basic 2008 Recipes: A Problem-Solution Approach
Copyright © 2008 by Todd Herman, Allen Jones, Matthew MacDonald, Rakesh Rajan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-970-9

ISBN-10 (pbk): 1-59059-970-5

ISBN-13 (electronic): 978-1-4302-0604-0

ISBN-10 (electronic): 1-4302-0604-7

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Damien Foggon

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan
Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto

Copy Editor: Kim Wimpsett

Associate Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert Stevens

Proofreader: Liz Welch

Indexer: Broccoli Information Services

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW . apTess . com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Once again I must praise my wife and children for their incredible patience and
support while I wrote this book. My wife and dear friend, Amy, was a rock for me
when I was struggling to keep my deadlines, while my daughter, Alaina, and son, Aidan,
kept me laughing and reminded me why I was doing this.

Thank you, guys, for your love and support. I owe you everything.

—Todd Herman

Contents at a Glance

Aboutthe AUThOr o XV
About the Technical ReVIEWET e XVii
ACKNOWIBAGMENTS oo e Xix
INtrOdUCTION ... XXi
CHAPTER 1 Application Developmentl 1
CHAPTER 2 Data Manipulation ... 51
CHAPTER 3 Application Domains, Reflection, and Metadata................ 97
CHAPTER 4 Threads, Processes, and Synchronization 129
CHAPTER 5 Files, Directories,and 1/0cccoiiiiiiiiinin... 183
CHAPTER6 Language Integrated Query (LINQ) 233
CHAPTER 7 LINQ to XML and XML Processingt 263
CHAPTER 8 Database ACCESS ..ottt e 299
CHAPTER9 WindowS FOrmMScoiiiiiiii it 343
CHAPTER10 Multimedia.......... ..o 391
CHAPTER 11 Networkingand Remotingcccoviiii... 437
CHAPTER 12 Security and Cryptography 495
CHAPTER 13 Code Interoperabilityo, 539
CHAPTER 14 Commonly Used Interfaces and Patterns 561
CHAPTER 15 Windows Integration.............. ..., 605

Contents

Aboutthe AUThOr o XV
About the Technical ReVIEWET e XVii
ACKNOWIBAGMENTS oo e Xix
INtrOdUCTION ... XXi
CHAPTER 1 Application Development 1

. Create a Console Application from the Command Line 2

. Create a Windows-Based Application from the Command Line.......... 5

. Create and Use a Code Module from the Command Line 8

. Create and Use a Code Library from the Command Line............... 10

. Embed a Resource File inan Assembly. 1

. Build Projects from the Command Line Using MSBuild.exe 14

. Access Command-Line Arguments 17

. Include Code Selectively at Build Time 19

Manipulate the Appearance of the Console.
0. Access a Program Element That Has the Same Name As a Keyword . ..
1. Create and Manage Strong-Named Key Pairs
2. Give an Assembly a StrongName
3. Verify That a Strong-Named Assembly Has Not Been Modified
4. Delay Signan Assembly
5. Sign an Assembly with an Authenticode Digital Signature
6. Create and Trust a Test Software Publisher Certificate...............
7. Manage the Global Assembly Cache
8. Make Your Assembly More Difficult to Decompile...................
9. Use Implicitly Typed Variables
0. Use Object Initializers i,
1.Use AnOnymousS TYPESot
2. Create and Use Extension Methods
3.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 Create and Use Lambda Expressions

-1
-2
-3
-4
-5
-6
-7
-8
-9
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-2
-2
-2
-2

REFREBSISIEKICRISKRISISISI
Nl 2ol i ININ 1= 1o 1IN o 1o Tl

CHAPTER 2 Data Manipulation .. 51
2-1. Manipulate the Contents of a String Efficiently....................... 51
2-2. Encode a String Using Alternate Character Encoding. 54
2-3. Convert Basic Value Typesto Byte Arrays........................... 56
2-4. Base64 Encode BinaryData.....................l 59
2-5. Validate Input Using Regular Expressions 62
2-6. Use Compiled Regular Expressionscoooiin.. 65

=

<

CONTENTS

2-7. Create Dates and Times from Strings 68
2-8. Add, Subtract, and Compare Dates and Times....................... 70
2-9. Convert Dates and Times Across Time Zones. 73
2-10. Sortan ArrayoranArrayList 77
2-11. Copy aCollectiontoan Arraycoo i, 79
2-12. Manipulate or Evaluate the Contents ofanArray.................... 80
2-13. Use a Strongly Typed Collection. 84
2-14. Create a GeneriC TYPe.t 86
2-15. Store a Serializable ObjecttoaFile............................... 89
2-16. Read User Input fromthe Console 92

CHAPTER 3 Application Domains, Reflection, and Metadata 97
3-1. Load an Assembly into the Current Application Domain 98
3-2. Create an Application Domain 100
3-3. Execute an Assembly in a Different Application Domain.............. 102
3-4. Avoid Loading Unnecessary Assemblies into Application Domains 104
3-5. Create a Type That Cannot Cross Application Domain Boundaries 105
3-6. Create a Type That Can Be Passed Across Application

Domain Boundaries................. i 106
3-7. Instantiate a Type in a Different Application Domain................. 109
3-8. Pass Data Between Application Domains 113
3-9. Unload Assemblies and Application Domains....................... 115
3-10. Retrieve Type Information. 116
3-11. Testan Object’'sType 119
3-12. Instantiate an Object Using Reflection............................ 121
3-13. Create a Custom Attribute. L. 124
3-14. Inspect the Attributes of a Program Element Using Reflection 127

CHAPTER 4 Threads, Processes, and Synchronization 129
4-1. Execute a Method Using the Thread Pool 130
4-2. Execute a Method Asynchronously. 133
4-3. Creating an Asynchronous Method to Update the User Interface 140
4-4. Execute a Method Periodically 145
4-5. Execute a Method at a Specific Time.............................. 147
4-6. Execute a Method by Signaling a WaitHandle Object................. 150
4-7. Execute a Method UsingaNew Thread. 152
4-8. Synchronize the Execution of Multiple Threads Using a Monitor 154
4-9. Synchronize the Execution of Multiple Threads Using an Event 159
4-10. Synchronize the Execution of Multiple Threads Using a Mutex 163
4-11. Synchronize the Execution of Multiple Threads Using a Semaphore ... 165
4-12. Synchronize Access to a Shared DataValue. 167
4-13. Know When a Thread Finishes.................................. 169
4-14. Terminate the ExecutionofaThread............................. 171
4-15. Create a Thread-Safe Collection Instance......................... 173

4-16. StartaNewW Process ...t 174

CHAPTER 5

CHAPTER 6

CONTENTS

4-17. Terminate @Process 177
4-18. Ensure That Only One Instance of an Application Can

Execute Concurrently. 179
Files, Directories,and 1/0 183
5-1. Retrieve Information About a File, Directory, or Drive 184
5-2. Set File and Directory Attributes. 189
5-3. Copy, Move, or Delete a File ora Directory......................... 190
5-4. Calculate the Size of a Directory 194
5-5. Retrieve Version InformationforaFile............................. 196
5-6. Show a Just-in-Time Directory Tree in the TreeView Control.......... 197
5-7.Readand Writea TextFile 200
5-8. Read and WriteaBinary File................ 203
5-9. Parse a Delimited TextFile it 204
5-10. Read a File Asynchronouslyt 208
5-11. Find Files That Match a Wildcard Expression...................... 211
5-12. Test Two FilesforEquality 212
5-13. Manipulate Strings Representing File Names...................... 214
5-14. Determine Whether a Path Is a DirectoryoraFile.................. 215
5-15. Work with Relative Paths 216
5-16. Create a Temporary File 218
5-17. Get the Total Free SpaceonaDrive 219
5-18. Show the Common File DialogBoxes 221
5-19.Useanlsolated Store. i i 223
5-20. Monitor the File System for Changes. 225
5-21.Accessa COMPort 228
5-22. GetaRandom FileNamel 229
5-23. Manipulate the Access Control Lists of a File or Directory 229
Language Integrated Query (LINQ) 233
6-1. Query a Generic Collection, 234
6-2. Query a Nongeneric Collection................................... 236
6-3. Control Query Results i 237
6-4.SortDataUsing LINQ............. ... i 239
6-5. Filter DataUsing LINQ 240
6-6. Perform General Aggregate Operations. 242
6-7. Perform Average and Sum Calculations 243
6-8. Perform Count Operations. 245
6-9. Perform Min and Max Calculations 246
6-10. Group Query Results 248
6-11. Query Data from Multiple Collections 250
6-12. Returning Specific Elements of a Collection....................... 253
6-13. Display Collection Data UsingPaging 254
6-14. Compare and Combine Collections 256

6-15. Cast a Collection to a Specific Type.............................. 259

CONTENTS

CHAPTER 7

CHAPTER 8

CHAPTER 9

LINQ to XML and XML Processing

7-1. Create an XML Document.............
7-2. Load an XML File intoMemory
7-3. Insert Elements into an XML Document.
7-4. Change the Value of an Element or Attribute
7-5. Remove or Replace Elements or Attributes.
7-6. Query an XML DocumentUsing LINQ.
7-7. Query for Elements in a Specific XML Namespace
7-8. Query an XML Document Using XPath.
7-9. Join and Query Multiple XML Documents
7-10. Convert an XML File to a Delimited File (and Vice Versa)
7-11. Validate an XML Document Againsta Schema.....................
7-12. Use XML Serialization with Custom Objects.......................
7-13. Create a Schemafora .NETClass...............................
7-14. Generate a Class fromaSchema................................
7-15. Performan XSL Transformo i,

Database ACCESSco o

8-1. ConnecttoaDatabase i,
8-2. Use Connection Pooling.o
8-3. Create a Database Connection String Programmatically..............
8-4. Store a Database Connection String Securely
8-5. Execute a SQL Command or Stored Procedure
8-6. Use Parameters in a SQL Command or Stored Procedure.............
8-7. Process the Results of a SQL Query Using a Data Reader.............
8-8. Obtain an XML Document from a SQL Server Query
8-9. Perform Asynchronous Database Operations Against SQL Server
8-10. Write Database-IndependentCode
8-11. Create a Database Object Model
8-12. Generate Data Object Classes from the Command Line
8-13. Discover All Instances of SQL Server on Your Network..............

Windows Forms

9-1. Add a Control Programmatically..................................
9-2. Link DatatoaControl i
9-3. Process All the ControlsonaForm
9-4. Track the Visible Forms in an Application..........................
9-5. Find AMDIChild Forms
9-6. Save Configuration SettingsforaForm............................
9-7. Force a List Box to Scroll to the Most Recently Added Item
9-8. Restrict a Text Box to Accepting Only Specific Input.................
9-9. Use an Autocomplete ComboBox
9-10. Sort a List View by Any Column
9-11. Lay Out Controls Automatically

N
|8
=

364

CHAPTER 10

CHAPTER 11

CONTENTS

9-12. Make a Multilingual Form 369
9-13. Create a Form That Cannot Be Moved. 372
9-14. Make a Borderless Form Movable 373
9-15. Create an Animated System Traylcon 376
9-16. Validate an Input Control L 377
9-17. Use a Drag-and-Drop Operation. 379
9-18. Use Context-Sensitive Help., 381
9-19. Display a Web Page in a Windows-Based Application............... 382
9-20. Create a Windows Presentation Foundation Application............. 385
9-21. Run a Windows Vista Application with Elevated Rights.............. 387
Multimedia 391
10-1. Find All Installed Fonts it 392
10-2. Perform Hit Testing with Shapes 394
10-3. Create an Irregularly Shaped Control. 397
10-4. Create aMovable Sprite 399
10-5. Create a Scrollable Image............., 403
10-6. Performa Screen Capture. i, 405
10-7. Use Double Buffering to Increase Redraw Speed. 407
10-8. Show a Thumbnail foranlmage 409
10-9. Play a Simple Beep or System Sound 410
10-10. Playa WAV File 412
10-11.PlayaSoundFile.......... 413
10-12. Show a Video with DirectShow 415
10-13. Retrieve Information About Installed Printers..................... 418
10-14. Printa Simple Document 420
10-15. Print a Multipage Document. 423
10-16. PrintWrapped Text 426
10-17. Show a Dynamic Print Preview 428
10-18. Manage PrintJobs. 431
Networkingand Remeoting 437
11-1. Obtain Information About the Local Network Interface 438
11-2. Detect Changes in Network Connectivity M
11-3. Download Data over HTTPor FTP, 443
11-4. Download a File and Process It Usinga Stream.................... 446
11-5. Respond to HTTP Requests from Your Application.................. 448
11-6. Get an HTML Page from a Site That Requires Authentication 452
11-7.Send E-mail Using SMTP i 455
11-8. Resolve a Host Nametoan IPAddress 458
11-9.Pingan IP Address. 460
11-10. Communicate Using TCP i ... 462
11-11. Create a Multithreaded TCP Server That Supports

Asynchronous Communications. 466

11-12. Communicate UsingUDP L. 474

>

CONTENTS

11-13. Communicate Using Named Pipes. 477
11-14. Make an Object Remotable. 481
11-15. Register All the Remotable Classes inan Assembly 486
11-16. Host a Remote Objectin IS 488
11-17. Control the Lifetime of a Remote Object......................... 489
11-18. Control Versioning for Remote Objects 491
11-19. Consume anRSSFeed L. 493
CHAPTER 12 Security and Cryptography 495

12-1. Allow Partially Trusted Code to Use Your Strong-Named Assembly. ... 496
12-2. Disable Execution Permission Checks............................ 498
12-3. Ensure the Runtime Grants Specific Permissions to Your Assembly ... 500
12-4. Limit the Permissions Granted to Your Assembly................... 502
12-5. View the Permissions Required by an Assembly 503
12-6. Determine at Runtime Whether Your Code Has a

Specific Permission 505
12-7. Restrict Who Can Extend Your Classes and QOverride

Class Memberst 506
12-8. Inspect an Assembly’s Evidence 508
12-9. Determine Whether the Current User Is a Member of a

Specific Windows Group 511
12-10. Restrict Which Users Can Execute Your Code 514
12-11. Impersonate a Windows User. 517
12-12. Create a Cryptographically Random Number..................... 521
12-13. Calculate the Hash Code of a Password 522
12-14. Calculate the Hash Code ofaFile 526
12-15. VerifyaHashCode il 528
12-16. Ensure Data Integrity Using a Keyed Hash Code 530
12-17. Work with Security-Sensitive Strings in Memory.................. 533
12-18. Encrypt and Decrypt Data Using the Data Protection API 536

CHAPTER 13 Code Interoperability .. 539

13-1. Call a Function in anUnmanaged DLL. 540
13-2. Get the Handle for a Control, Window, orFile...................... 543
13-3. Call an Unmanaged Function That Uses a Structure 545
13-4. Call an Unmanaged Function That Uses a Callback................. 548
13-5. Retrieve Unmanaged Error Information........................... 549
13-6. Use a COM Componentina .NET Client 551
13-7. Release a COM Component Quickly. 553
13-8. Use Optional Parameters............. 554
13-9. Use an ActiveX Control ina .NET Client........................... 556
13-10. Expose a .NET Componentto COM 558

13-11. Use a Windows Presentation Foundation Control from
aWindowsForm 559

CONTENTS

CHAPTER 14 Commonly Used Interfaces and Patterns 561
14-1. Implement a Serializable Type L. 561
14-2. Implement a Cloneable Typeo ... 567
14-3. Implement a Comparable Type 571
14-4. Implement an Enumerable Type Using a Custom Iterator............ 575
14-5. Implement a Disposable Class 582
14-6. Implement a Type That Can Be Formatted 586
14-7. Implement a Custom ExceptionClass............................ 589
14-8. Implement a Custom Event Argument............................ 593
14-9. Implement the Singleton Pattern 595
14-10. Implement the Observer Pattern 597
CHAPTER 15 Windows Integration .. 605
15-1. Access Runtime Environment Information 605
15-2. Retrieve the Value of an Environment Variable..................... 609
15-3. Write an Event to the Windows EventLog. 610
15-4. Read and Write to the Windows Registry 612
15-5. Search the Windows Registry. 615
15-6. Create a Windows Service, 618
15-7. Create a Windows Service Installer 623
15-8. Create a Shortcut on the Desktop or StartMenu 626
INDEX .. 631

<

About the Author

TODD HERMAN works for Berico Technologies as a senior developer as part
of the intelligence community. He has been programming since he received
his first computer, a Commodore 64, on his 11th birthday. His experience
ranges from developing data-entry software in FoxPro for a water research
laboratory to writing biometric applications in Visual Basic for NEC. He
currently lives in Virginia with his wife and children, spending his free time
programming, playing computer games, and watching the Sci-Fi Channel.

He recently set up a blog, which you can find at http://
blogs.bericotechnologies.com/todd.

Xv

http://blogs.bericotechnologies.com/todd
http://blogs.bericotechnologies.com/todd

About the Technical Reviewer

DAMIEN FOGGON is a freelance developer and technical author based in
Newcastle, England. When not wondering why the Falcons can never win
away from home, he spends his spare time writing, playing rugby, scuba
diving, or pretending that he can cook.

His next magnum opus, Beginning ASP.NET Data Access with LINQ
and ADO.NET (take your pick of C# or VB .NET), is due out from Apress in
September 2008, assuming that SQL Server 2008 actually gets released in 2008.
Ifhe could be consistent (or interesting), his blog might not be three months
out of date. You never know—you may get lucky. See for yourself at http://
www.1ittlepond.co.uk.

Xvii

http://www.littlepond.co.uk
http://www.littlepond.co.uk

Acknowledgments

I must thank Damien Foggon for, once again, performing a superb job in providing the technical
editing for this book and keeping me on the correct path. I also extend my thanks to Apress for putting
out remarkable material and allowing me the opportunity to throw in my two cents.

Xix

Introduction

Attempting to learn all there is to know about developing VB .NET applications using the Microsoft
NET Framework would be an incredibly daunting task. For most of us, the easiest and best approach
is to dive in and start writing code. We learn through testing and experimentation, and when we run
into the unknown, we search the Internet or grab a book to assist with the current subject.

Visual Basic 2008 Recipes is not a book that attempts to teach you about the inner workings of a
specific subject. It is a resource book that should sit near you as you program, so you can quickly use
it to reference what you need.

Asyou are settled in front of your computer working, you will inevitably run into a situation where
you need a little guidance, as all of us do from time to time. The subject matter in this book is so
comprehensive that you are bound to find at least one recipe that will fit the bill whenever you need
that nudge in the right direction.

This book will not teach you everything you need to know about developing VB .NET applica-
tions in Visual Studio 2008, but it will be invaluable as a stepping-stone. Use the recipes as you need
them to help move your development projects along or to give you a starting point for your own
experimentation.

Note This book is based on a previously published book called Visual Basic 2005 Recipes. The contents were
updated to reflect any changes or new additions between the 2005 and 2008 versions of Visual Studio .NET. Although
some of the recipes in this book will work with .NET Framework 2.0, the main focus of this book is Visual Studio .NET and
.NET Framework 3.5.

Additionally, this book was written using the final version of Visual Studio 2008 and Windows
Vista Business. The code was also tested on a system running Windows XP, but please keep in mind
that results may vary slightly if you are using that operating system.

XXi

CHAPTER 1

Application Development

This chapter covers some of the general features and functionality found in Visual Basic .NET 9.0
and Visual Studio 2008. The recipes in this chapter cover the following:

Using the VB .NET command-line compiler to build console and Windows Forms applica-
tions (recipes 1-1 and 1-2)

Creating and using code modules and libraries (recipes 1-3 and 1-4)

Compiling and embedding a string resource file (recipe 1-5)

Compiling applications using MSBuild.exe (recipe 1-6)

Accessing command-line arguments from within your applications (recipe 1-7)

Using compiler directives and attributes to selectively include code at build time (recipe 1-8)
Manipulating the appearance of the console (recipe 1-9)

Accessing program elements built in other languages whose names conflict with VB .NET
keywords (recipe 1-10)

Giving assemblies strong names and verifying strong-named assemblies (recipes 1-11, 1-12,
1-13, and 1-14)

Signing an assembly with a Microsoft Authenticode digital signature (recipes 1-15 and 1-16)
Managing the shared assemblies that are stored in the global assembly cache (recipe 1-17)
Making your assembly more difficult to decompile (recipe 1-18)

Understanding the basic functionality required to use Language Integrated Query (LINQ)
(recipes 1-19, 1-20, 1-21, 1-22, and 1-23)

CHAPTER 1 APPLICATION DEVELOPMENT

Note All the tools discussed in this chapter ship with the Microsoft .NET Framework or the .NET Framework
software development kit (SDK). The tools that are part of the .NET Framework are in the main directory for the
version of the framework you are running. For example, they are in the directory C:\WINDOWS\Microsoft.NET\
Framework\v3.5 if you install version 3.5 of the .NET Framework to the default location. The .NET installation
process automatically adds this directory to your environment path.

The tools provided with the SDK are in the Bin subdirectory of the directory in which you install the SDK, which
is C:\Program Files\Microsoft Visual Studio 9.0\SDK\v3.5 if you chose the default path during the installation of
Microsoft Visual Studio 2008. This directory is not added to your path automatically, so you must manually edit your
path in order to have easy access to these tools. Your other option is to use the Visual Studio 2008 Command Prompt
shortcut that is located under the Microsoft Visual Studio 2008/Visual Studio Tools folder in the Windows Start
menu. This will launch vevarsall.bat, which will set the right environment variables and open the command prompt.
Most of the tools support short and long forms of the command-line switches that control their functionality. This
chapter always shows the long form, which is more informative but requires additional typing. For the shortened
form of each switch, see the tool’s documentation in the .NET Framework SDK.

Also, as a final note, if you are using Windows Vista, you should be sure to run all command-line utilities using
Run As Administrator, or some of them might not function properly. Doing this will still result in numerous dialog
boxes requesting that you ensure you approve of the request to use administrative rights; you must respond to these
dialog boxes by clicking Yes.

1-1. Create a Console Application from the Command Line

Problem

You need to use the VB .NET command-line compiler to build an application that does not require
a Windows graphical user interface (GUI) but instead displays output to, and reads input from, the
Windows command prompt (console).

Solution

In one of your classes, ensure you implement a Shared method named Main with one of the following
signatures:

Public Shared Sub Main()

End Sub

Public Shared Sub Main(ByVal args As String())

End Sub

Public Shared Function Main() As Integer

End Sub

Public Shared Function Main(ByVal args As String()) As Integer
End Sub

Build your application using the VB .NET compiler (vbc.exe) by running the following command
(where HelloWorld.vb is the name of your source code file):

vbc /target:exe HelloWorld.vb

CHAPTER 1 APPLICATION DEVELOPMENT

Note If you own Visual Studio, you will most often use the Console Application project template to create new
console applications. However, for small applications, it is often just as easy to use the command-line compiler. It
is also useful to know how to build console applications from the command line if you are ever working on a machine
without Visual Studio and want to create a quick utility to automate some task.

How It Works

By default, the VB .NET compiler will build a console application unless you specify otherwise. For
this reason, it’s not necessary to specify the /target:exe switch, but doing so makes your intention
clearer, which is useful if you are creating build scripts that will be used by others or will be used
repeatedly over a period of time.

To build a console application consisting of more than one source code file, you must specify all
the source files as arguments to the compiler. For example, the following command builds an appli-
cation named MyFirstApp.exe from two source files named HelloWorld.vb and ConsoleUtils.vb:

vbc /target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

The /out switch allows you to specify the name of the compiled assembly. Otherwise, the assembly
is named after the first source file listed—HelloWorld.vb in the example. If classes in both the HelloWorld
and ConsoleUtils files contain Main methods, the compiler cannot automatically determine which
method represents the correct entry point for the assembly. Therefore, you must use the compiler’s
/main switch to identify the name of the class that contains the correct entry point for your applica-
tion. When using the /main switch, you must provide the fully qualified class name (including the
namespace); otherwise, you will receive the following:

vbc : error BC30420: 'Sub Main' was not found in 'HelloWorld'

If you have a lot of VB .NET code source files to compile, you should use a response file. This
simple text file contains the command-line arguments for vbc.exe. When you call vbc.exe, you give
the name of this response file as a single parameter prefixed by the @ character. Here is an example:

vbc @commands.rsp
To achieve the equivalent of the previous example, commands.rsp would contain this:
/target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

For readability, response files can include comments (using the # character) and can span multiple
lines. The VB .NET compiler also allows you to specify multiple response files by providing multiple
parameters that are prefixed with the @ character.

The Code
The following code lists a class named ConsoleUtils that is defined in a file named ConsoleUtils.vb:

Imports System

Namespace Apress.VisualBasicRecipes.Chapterol
Public Class ConsoleUtils

mailto:@commands.rsp

CHAPTER 1 APPLICATION DEVELOPMENT

This method will display a prompt and read a response from the console.
Public Shared Function ReadString(ByVal message As String) As String

Console.Write(message)
Return Console.ReadlLine

End Function

This method will display a message on the console.
Public Shared Sub WriteString(ByVal message As String)

Console.WritelLine(message)
End Sub

This method is used for testing ConsoleUtility methods.
While it is not good practice to have multiple Main
methods in an assembly, it sometimes can't be avoided.
You specify in the compiler which Main sub routine should
be used as the entry point. For this example, this Main
routine will never be executed.
Public Shared Sub Main()

' Prompt the reader to enter a name.
Dim name As String = ReadString("Please enter a name: ")
" Welcome the reader to Visual Basic 2008 Recipes.
WriteString("Welcome to Visual Basic 2008 Recipes, " & name)

End Sub

End Class
End Namespace

The HelloWorld class listed next uses the ConsoleUtils class to display the message “Hello,
World” to the console (HelloWorld is contained in the HelloWorld.vb file)

Imports System

Namespace Apress.VisualBasicRecipes.Chapterol
Public Class HelloWorld

Public Shared Sub Main()
ConsoleUtils.WriteString("Hello, World")
ConsoleUtils.WriteString(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 1 APPLICATION DEVELOPMENT

Usage
To build HelloWorld.exe from the two source files, use the following command:

vbc /target:exe /main:Apress.VisualBasicRecipes.Chapter01.HelloWorld w»
/out:HelloWorld.exe ConsoleUtils.vb HelloWorld.vb

1-2. Create a Windows-Based Application from
the Command Line

Problem

You need to use the VB .NET command-line compiler to build an application that provides a
Windows Forms-based GUI.

Solution

Create a class that inherits from the System.Windows . Forms. Form class. (This will be your applica-
tion’s main form.) In one of your classes, ensure you implement a Shared method named Main. In the
Main method, create an instance of your main form class and pass it to the Shared method Run of the
System.Windows.Forms.Application class. Build your application using the command-line VB .NET
compiler, and specify the /target :winexe compiler switch.

How It Works

Building an application that provides a simple Windows GUI is a world away from developing a full-
fledged Windows-based application. However, you must perform certain tasks regardless of whether
you are writing the Windows equivalent of “Hello, World” or the next version of Microsoft Word,
including the following:

e For each form you need in your application, create a class that inherits from the System.Windows.
Forms.Form class.

¢ In each of your form classes, declare members that represent the controls that will be on
that form, such as buttons, labels, lists, and text boxes. These members should be declared
Private or at least Protected so that other program elements cannot access them directly.
If you need to expose the methods or properties of these controls, implement the necessary
members in your form class, providing indirect and controlled access to the contained controls.

* Declare methods in your form class that will handle events raised by the controls contained
by the form, such as button clicks or key presses when a text box is the active control. These
methods should be Private or Protected and follow the standard .NET event pattern (described
in recipe 15-10). It’s in these methods (or methods called by these methods) where you will
define the bulk of your application’s functionality.

e Declare a constructor for your form class that instantiates each of the form’s controls and
configures their initial state (size, color, position, content, and so on). The constructor should
also wire up the appropriate event handler methods of your class to the events of each control.

CHAPTER 1 APPLICATION DEVELOPMENT

e Declare a Shared method named Main—usually as a member of your application’s main form
class. This method is the entry point for your application, and it can have the same signatures
as those mentioned in recipe 1-1. In the Main method, call Application.EnableVisualStyles
to allow support for themes (supported by Windows XP, Windows Server 2003, and Windows
Vista), create an instance of your application’s main form, and pass it as an argument to the
Shared Application.Run method. The Run method makes your main form visible and starts a
standard Windows message loop on the current thread, which passes the user input (key presses,
mouse clicks, and so on) to your application form as events.

The Code

The Recipe01 02 class shown in the following code listing is a simple Windows Forms application
that demonstrates the techniques just listed. When run, it prompts a user to enter a name and then
displays a message box welcoming the user to “Visual Basic 2008 Recipes.”

Imports System
Imports System.Windows.Forms

Namespace Apress.VisualBasicRecipes.Chapterol

Public Class Recipe01 02
Inherits Form

' Private members to hold references to the form's controls.
Private Labell As Label
Private TextBox1 As TextBox
Private Buttoni As Button
' Constructor used to create an instance of the form and configure
the form's controls.
Public Sub New()
' Instantiate the controls used on the form.
Me.Labell = New Label
Me.TextBox1l = New TextBox
Me.Buttonl = New Button

' Suspend the layout logic of the form while we configure and
' position the controls.
Me. SuspendLayout()

' Configure Label1, which displays the user prompt.
Me.Labell.Location = New System.Drawing.Size(16, 36)
Me.Label1l.Name = "Label1"

Me.Labell.Size = New System.Drawing.Size(155, 16)
Me.Label1l.TabIndex = 0

Me.Label1l.Text = "Please enter your name:"

' Configure TextBox1, which accepts the user input.
Me.TextBox1.Location = New System.Drawing.Point(172, 32)
Me.TextBox1.Name = "TextBox1"

Me.TextBox1.TabIndex = 1

Me.TextBox1.Text = ""

CHAPTER 1 APPLICATION DEVELOPMENT

' Configure Buttoni, which the user clicks to enter a name.
Me.Buttonl.Llocation = New System.Drawing.Point(109, 80)
Me.Buttoni.Name = "Button1"

Me.Buttoni1.TabIndex = 2

Me.Buttonl.Text = "Enter"

AddHandler Buttoni.Click, AddressOf Buttoni Click

' Configure WelcomeForm, and add controls.
Me.ClientSize = New System.Drawing.Size(292, 126)
Me.Controls.Add(Me.Button1)
Me.Controls.Add(Me.TextBox1)
Me.Controls.Add(Me.Label1)

Me.Name = "Formi1"

Me.Text = "Visual Basic 2008 Recipes"

' Resume the layout logic of the form now that all controls are
configured.

Me.Resumelayout(False)

End Sub

Private Sub Buttoni Click(ByVal sender As Object, ‘=
Byval e As System.EventArgs)

Write debug message to the console.
System.Console.Writeline("User entered: " + TextBox1.Text)
' Display welcome as a message box.

MessageBox.Show("Welcome to Visual Basic 2008 Recipes, " + =
TextBox1.Text, "Visual Basic 2008 Recipes")

End Sub

Application entry point, creates an instance of the form, and begins
" running a standard message loop on the current thread. The message
' loop feeds the application with input from the user as events.
Public Shared Sub Main()

Application.EnableVisualStyles()

Application.Run(New Recipe0o1l 02())
End Sub

End Class

End Namespace

Usage

To build the Recipe01 02 class into an application, use this command:
vbc /target:winexe Recipe01-02.vb

The /target:winexe switch tells the compiler that you are building a Windows-based applica-
tion. As aresult, the compiler builds the executable in such a way that no console is created when you
run your application. If you use the /target:exe switch instead of /target:winexe to build a Windows
Forms application, your application will still work correctly, but you will have a console window

CHAPTER 1 APPLICATION DEVELOPMENT

visible while the application is running. Although this is undesirable for production-quality software,
the console window is useful if you want to write debug and logging information while you're devel-
oping and testing your Windows Forms application. You can write to this console using the Write
and Writeline methods of the System.Console class.

Figure 1-1 shows the WelcomeForm.exe application greeting a user named John Doe. This
version of the application is built using the /target:exe compiler switch, resulting in the visible
console window in which you can see the output from the Console.Writeline statement in the
button1 Click event handler.

-

Bl file:///F/Programming/Visual Studio 2008/Visual Basic 2008 Recipe.. | = | & | X]
User entered: Todd

,. |-|_ N

Please enter your name: | Todd

Visual Basic 2008 Recipes

LS S

Figure 1-1. A simple Windows Forms application

1-3. Create and Use a Code Module from the Command Line

Problem

You need to do one or more of the following:

» Improve your application’s performance and memory efficiency by ensuring the runtime
loads rarely used types only when they are required.

* Compile types written in VB .NET to a form you can build into assemblies being developed in
other .NET languages.

* Use types developed in another language and build them into your VB .NET assemblies.

Solution

Build your VB .NET source code into a module by using the command-line compiler and specifying
the /target:module compiler switch. To incorporate existing modules into your assembly, use the
/addmodule compiler switch.

CHAPTER 1 APPLICATION DEVELOPMENT

How It Works

Modules are the building blocks of .NET assemblies and should not be confused with the Module
object type block. Modules consist of a single file that contains the following:

e Microsoft Intermediate Language (MSIL) code created from your source code during
compilation

* Metadata describing the types contained in the module

* Resources, such as icons and string tables, used by the types in the module

Assemblies consist of one or more modules and an assembly manifest. An assembly manifest
is metadata that contains important information (such as the name, version, culture, and so on)
regarding the assembly. If the assembly contains a single module, the module and assembly mani-
fest are usually built into a single file for convenience. If more than one module exists, the assembly
represents a logical grouping of more than one file that you must deploy as a complete unit. In these
situations, the assembly manifest is either contained in a separate file or built into one of the modules.
Visual Studio includes the MSIL Disassembler tool (Ildasm.exe), which lets you view the raw MSIL
code for any assembly. You can use this tool to view an assembly manifest.

By building an assembly from multiple modules, you complicate the management and deploy-
ment of the assembly, but under some circumstances, modules offer significant benefits:

e The runtime will load a module only when the types defined in the module are required.
Therefore, where you have a set of types that your application uses rarely, you can partition
them into a separate module that the runtime will load only if necessary. This can improve
performance, especially if your application is loaded across a network, and minimize the use
of memory.

e The ability to use many different languages to write applications that run on the common
language runtime (CLR) is a great strength of the .NET Framework. However, the VB .NET
compiler can’t compile your Microsoft C# or COBOL .NET code for inclusion in your assembly.
To use code written in another language, you can compile it into a separate assembly and
reference it. But if you want it to be an integral part of your assembly, you must build it into a
module. Similarly, if you want to allow others to include your code as an integral part of their
assemblies, you must compile your code as modules. When you use modules, because the code
becomes part of the same assembly, members marked as Friend or Protected Friend are acces-
sible, whereas they would not be if the code had been accessed from an external assembly.

Usage

To compile a source file named ConsoleUtils.vb (see recipe 1-1 for the contents) into a module,
use the command vbc /target:module ConsoleUtils.vb. The result is the creation of a file named
ConsoleUtils.netmodule. The .netmodule extension is the default extension for modules, and the
file name is the same as the name of the VB .NET source file.

You can also build modules from multiple source files, which results in a single file containing
the MSIL and metadata (the assembly manifest) for all types contained in all of the source files. The
command vbc /target:module ConsoleUtils.vb WindowsUtils.vb compiles two source files named
ConsoleUtils.vb and WindowsUtils.vb to create the module named ConsoleUtils.netmodule. The
module is named after the first source file listed unless you override the name with the /out compiler
switch. For example, the command vbc /target:module /out:Utilities.netmodule ConsoleUtils.vb
WindowsUtils.vb creates a module named Utilities.netmodule.

To build an assembly consisting of multiple modules, you must use the /addmodule compiler switch.
To build an executable named MyFirstApp.exe from two modules named WindowsUtils.netmodule
and ConsoleUtils.netmodule and two source files named SourceOne.vb and SourceTwo.vb, use the

10

CHAPTER 1 APPLICATION DEVELOPMENT

command vbc /out:MyFirstApp.exe /target:exe /addmodule:WindowsUtils.netmodule,ConsoleUtils.
netmodule SourceOne.vb SourceTwo.vb.
This command will result in an assembly that is composed of the following components:

e MyFirstApp.exe, which contains the assembly manifest as well as the MSIL for the types
declared in the SourceOne.vb and SourceTwo.vb source files

¢ ConsoleUtils.netmodule and WindowsUtils.netmodule, which are now integral components
of the multifile assembly but are unchanged by this compilation process

1-4. Create and Use a Code Library from the Command Line

Problem

You need to build a set of functionality into a reusable code library so that multiple applications can
reference and reuse it.

Solution

Build your library using the command-line VB .NET compiler, and specify the /target:library
compiler switch. To reference the library, use the /reference compiler switch when you build your
application, and specify the names of the required libraries.

How It Works

Recipe 1-1 showed you how to build an application named MyFirstApp.exe from the two source files
ConsoleUtils.vb and HelloWorld.vb. The ConsoleUtils.vb file contains the ConsoleUtils class, which
provides methods to simplify interaction with the Windows console. If you were to extend the func-
tionality of the ConsoleUtils class, you could add functionality useful to many applications. Instead
of including the source code for ConsoleUtils in every application, you could build it into a library
and deploy it independently, making the functionality accessible to many applications.

Usage

To build the ConsoleUtils.vb file into a library, use the command vbc /target:1library ConsoleUtils.vb.
This will produce a library file named ConsoleUtils.dll. To build a library from multiple source files,
list the name of each file at the end of the command. You can also specify the name of the library
using the /out compiler switch; otherwise, the library is named after the first source file listed. For
example, to build a library named MyFirstLibrary.dll from two source files named ConsoleUtils.vb and
WindowsUTtils.vb, use the command vbc /out:MyFirstLibrary.dll /target:library ConsoleUtils.vb
WindowsUtils.vb.

Before distributing your library, you might consider strong naming it so that no one can modify
your assembly and pass it off as being the original. Strong naming your library also allows people to
install itinto the global assembly cache (GAC), which makes reuse much easier. (Recipe 1-12 describes
how to strong name your assembly, and recipe 1-17 describes how to install a strong-named assembly
into the GAC.) You might also consider signing your library with an Authenticode signature, which
allows users to confirm you are the publisher of the assembly. (See recipe 1-15 for details on signing
assemblies with Authenticode.)

To compile an assembly that relies on types declared within external libraries, you must tell
the compiler which libraries are referenced using the /reference compiler switch. For example,
to compile the HelloWorld.vb source file (from recipe 1-1) if the ConsoleUtils class is contained in
the ConsoleUtils.dll library, use the command vbc /reference:ConsoleUtils.d1ll HelloWorld.vb.
Remember these four points:

CHAPTER 1 APPLICATION DEVELOPMENT

¢ Ifyou reference more than one library, separate each library name with a comma or semicolon,
but don’t include any spaces. For example, use /reference:ConsoleUtils.dll,WindowsUtils.d11.

e Ifthelibraries aren’t in the same directory as the source code, use the /1ibpath switch on the
compiler to specify the additional directories where the compiler should look for libraries.
For example, use /1ibpath:c:\CommonLibraries,c:\Dev\ThirdPartyLibs.

¢ Note that additional directories can be relative to the source folder. Don’t forget that at runtime,
the generated assembly must be in the same folder as the application that needs it, except if
you deploy it into the GAC.

¢ Ifthe library you need to reference is a multifile assembly, reference the file that contains the
assembly manifest. (For information about multifile assemblies, see recipe 1-3.)

1-5. Embed a Resource File in an Assembly

Problem

You need to create a string-based resource file and embed it in an assembly.

Solution

Use the Resource Generator (resgen.exe) to create a compiled resource file. You then use the
/resource switch of the compiler to embed the file in the assembly.

Note The Assembly Linker tool (al.exe) also provides functionality for working with and embedding resource
files. Refer to the Assembly Linker information in the .NET Framework SDK documentation for details.

How It Works

If you need to store strings in an external file and have them accessible to your assembly, you can use
aresource file. Resources are some form of data (a string or an image, for example) that is used by an
application. A resource file is a repository of one or more resources that can be easily accessed.
If you need to store only strings, you can create a simple text file that contains one or more key/
value pairs in the form of key=value. You cannot create image resources starting from a text file.
Once you have your text file, you compile it using the Resource Generator (resgen.exe). Using
this utility, you can convert the text file into either of two types:

e An .resx file, which is an XML resource file. This file is fully documented and can be edited
manually. It is also capable of supporting image resources, unlike the text file. Consult the
.NET Framework SDK documentation for more details on the .resx format.

e A .resource file, which is a compiled binary file and is required if you are embedding the file
into your assembly using the command-line compiler. You embed the .resource file into your
assembly by using the /resource switch of the VB .NET compiler. The .resource file can be
compiled from a .txt or .resx file.

You access the contents of the resource file by instantiating a ResourceManager object. The
GetString method is used to retrieve the value for the specified string. If you have stored something
other than a string such as an image in your resource file, use the GetObject method and cast the
return value to the appropriate type.

1

12

CHAPTER 1 APPLICATION DEVELOPMENT

The Code

This example borrows the code from recipe 1-2. The dialog box titles and message prompt have been
removed from the code and are now contained within an external resource file. The new program
uses the ResourceManager object to access the resources.

Imports System
Imports System.windows.forms
Imports System.Resources

Namespace Apress.VisualBasicRecipes.Chapterol
Public Class Recipe01 05
Inherits Form

' Private members to hold references to the form's controls.
Private labell As Label
Private textbox1 As TextBox
Private buttoni As Button
Private resManager As New ResourceManager ("MyStrings", ‘=
System.Reflection.Assembly.GetExecutingAssembly())
' Constructor used to create an instance of the form and configure
the form's controls.
Public Sub New()
' Instantiate the controls used on the form.
Me.labell = New Label
Me.textbox1 = New TextBox
Me.button1 = New Button

' Suspend the layout logic of the form while we configure and
' position the controls.

Me. SuspendLayout()

' Configure label1, which displays the user prompt.
Me.labell.Location = New System.Drawing.Size(16, 36)
Me.label1.Name = "label1"

Me.labell.Size = New System.Drawing.Size(155, 16)
Me.label1.TabIndex = 0

Me.labell.Text = resManager.GetString("UserPrompt")

' Configure textbox1, which accepts the user input.
Me.textbox1.Location = New System.Drawing.Point(172, 32)
Me.textbox1.Name = "textbox1"

Me.textbox1.TabIndex = 1

Me.textbox1.Text = ""

' Configure buttoni, which the user clicks to enter a name.
Me.buttoni.Llocation = New System.Drawing.Point(109, 80)
Me.buttoni.Name = "button1"

Me.button1.TabIndex = 2

Me.button1.Text = resManager.GetString("ButtonCaption")
AddHandler buttoni.Click, AddressOf buttoni Click

' Configure WelcomeForm, and add controls.
Me.ClientSize = New System.Drawing.Size(292, 126)

CHAPTER 1 APPLICATION DEVELOPMENT

Me.Controls.Add(Me.button1)
Me.Controls.Add(Me.textbox1)
Me.Controls.Add(Me.label1)

Me.Name = "form1"

Me.Text = resManager.GetString("FormTitle")
' Resume the layout logic of the form now that all controls are
configured.

Me.ResumelLayout(False)

End Sub

Private Sub buttoni Click(ByVal sender As Object, ‘=
Byval e As System.EventArgs)
' Write debug message to the console.
System.Console.Writeline("User entered: " + textboxi.Text)
' Display welcome as a message box.
MessageBox.Show(resManager.GetString("Message") + textboxi.Text, w»
resManager.GetString("FormTitle"))

End Sub
' Application entry point, creates an instance of the form, and begins
" running a standard message loop on the current thread. The message
' loop feeds the application with input from the user as events.
Public Shared Sub Main()

Application.EnableVisualStyles()

Application.Run(New Recipe01l 05())
End Sub

End Class
End Namespace

Usage
First, you must create the MyStrings.txt file that contains your resource strings:

;String resource file for Recipe01-05
UserPrompt=Please enter your name:
FormTitle=Visual Basic 2008 Recipes
Message=Welcome to Visual Basic 2008 Recipes,
ButtonCaption=Enter

You compile this file into a resource file by using the command resgen.exe MyStrings.txt
Recipe01 05.MyStrings.resources. To build the example and embed the resource file, use the
command vbc /resource:Recipe01 05.MyStrings.resources Recipe01-05.vb.

Notes

Using resource files from Visual Studio is a little different from using resource files from the
command line. For this example, the resource file must be in the XML format (.resx) and added
directly to the project. Instead of initially creating the .resource file, you can use the command
resgen.exe MyStrings.txt MyStrings.resx to generate the .resx file required by Visual Studio.

13

14

CHAPTER 1 APPLICATION DEVELOPMENT

1-6. Build Projects from the Command Line Using MSBuild.exe

Problem

You need to compile one or more VB .NET files from the command line, and you need to have more
precise control over the build process.

Solution

Create a project file, and use the MSBuild.exe utility that ships with Visual Studio 2008. The build
project should reference each VB .NET file and compile them using the VB .NET compiler (vbc.exe)
via the vbc task.

How It Works

MSBuild.exe is a utility that ships with Visual Studio. It is located in the directory specific to the
target framework, such as C:\Windows\Microsoft. NET\Framework\v3.5\. This utility uses an XML
project file to perform specified actions on specified files. If you build an application in Visual Studio, a
file with the extension .vbproj is automatically generated. This is actually an XML project file used by
MSBuild.exe to build your project.

Note For general information on working with XML files, please refer to Chapter 7.

The first step is creating a project file. As mentioned earlier, this is an XML file that contains key
elements that MSBuild.exe interprets. The first element, which is required for any project file, is Project.
This element must include the xmlns attribute set to http://schemas.microsoft.com/developer/msbuild/
2003. The root Project element can contain any of the child elements listed in Table 1-1.

Table 1-1. Common Child Elements

Name Description

Choose Allows you to specify ItemGroup or PropertyGroup elements based on one
or more condition.

Import Imports an external project file.

ItemGroup A group of user-defined Itemelements. Each Item element represents
some data to be reference elsewhere in the build project.

ProjectExtensions Information that can be included in the build project but is ignored
by MSBuild.exe.

PropertyGroup A group of user-defined Property elements. Each Property element
represents some property to be referenced elsewhere in the build
project.

Target Defines one or more Task elements. Each Task element performs some

action as part of the build process.

UsingTask Registers tasks to be made available to MSBuild.exe.

http://schemas.microsoft.com/developer/msbuild

CHAPTER 1 APPLICATION DEVELOPMENT

If your build project is going to reference files, your next step is to create an ItemGroup element
with an I'temelement for each file. Item elements can be named anything, but it is best to use aname
that represents what the file is. For example, if you had two VB .NET files, you might use SourceFile,
which represents an Item element, as shown here:

<ItemGroup>
<SourceFile Include="FileOne.vb" />
<SourceFile Include="FileTwo.vb" />
</ItemGroup>

Using the same name, such as SourceFile used in the previous example, will group the files
together. You can accomplish the same thing by putting the files on a single line and separating them
with a semicolon like this:

<SourceFile Include="FileOne.vb;FileTwo.vb" />

Each Item element must contain the Include attribute, which is used to define the value of the
element. When you need to reference a defined Item element, you just surround it with parentheses
and precede it with the @ symbol, as in @(SourceFile).

Once you have defined files, you need to do something with them. You do this by creating a
Target element and defining any appropriate predefined Task elements. By default, MSBuild.exe
includes several tasks, some of which are listed in Table 1-2. These tasks are defined in Microsoft.Build.
Tasks.v3.5.dll and are referenced by the MSBuild.exe utility by way of the Microsoft. Common.Tasks
project file, which is included for any build by default.

Table 1-2. Common MSBuild.exe Tasks

Name Description

Copy Copies the specified files to the specified location

MakeDir Creates the specified directory

RemoveDir Removes the specified directory

SignFile Uses the specified certificate to sign the specified file

Message Writes the specified message to the build log

Exec Executes the specified application using the specified parameters

Vbc Compiles code using the VB .NET compiler (vbc.exe)

GenerateResource Creates resource files similar to the resgen.exe utility discussed in recipe 1-5

One of the most common tasks that will be used is the Vbc task. This task actually wraps vbc.exe,
making it possible to compile any VB .NET files. All the parameters available to vbc.exe are available
as properties to the Vbc task, although some of the names have changed. Table 1-3 lists some of the
most common properties and their matching vbc.exe parameters.

15

16

CHAPTER 1 APPLICATION DEVELOPMENT

Table 1-3. Common Vbc Task Properties

Vbc Task Property Vbc.exe Parameter Description

KeyFile /keyfile Specifies the cryptographic key to be used
(discussed in further detail in recipe 1-9)

KeyContainer /keycontainer Specifies the name of the cryptographic container
where the cryptographic key can be found
(discussed in further detail in recipe 1-9)

References /reference References additional assemblies to be compiled
(discussed in further detail in recipe 1-4)

TargetType /target Defines the format of the output file (discussed in
further detail in recipes 1-1, 1-2, and 1-3)

Resources /Tesources Embeds a resource (discussed in further detail in
recipe 1-5)

OutputAssembly /out Defines the name of the output file (discussed in

further detail in recipes 1-1 and 1-3)

MainEntryPoint /main Specifies the location of the Sub Main routine
(discussed in further detail in recipe 1-1)

AddModules /addmodule Imports the specified modules (discussed in further
detail in recipe 1-3)

Usage
If you wanted to create a project using the files from recipe 1-1, it would look something like this:

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003" >
<ItemGroup>
<SourceFile Include="ConsoleUtils.vb" />
<SourceFile Include="HelloWorld.vb" />
</ItemGroup>
<Target Name="TestBuild" >
<Vbc TargetType="exe"
MainEntryPoint="Apress.VisualBasicRecipes.Chapter01.HelloWorld"
OutputAssembly ="HelloWorld.exe"
Sources="@(SourceFile)" />
</Target>
</Project>

Once you have created the project file, you use MSBuild.exe to build it. MSBuild.exe includes
many parameters (such as /property, /logger, and /verbosity) that can be used to fine-tune the build
process. For example, we will use the simplest form, which requires only the name of the project file:

Msbuild.exe HelloWorld.proj

Executing this command will create the HelloWorld.exe file and produce results similar to
the following:

http://schemas.microsoft.com/developer/msbuild/2003

CHAPTER 1 APPLICATION DEVELOPMENT

Microsoft (R) Build Engine Version 3.5.20706.1
[Microsoft .NET Framework, Version 2.0.50727.1378]
Copyright (C) Microsoft Corporation 2007. All rights reserved.

Build started 9/1/2007 9:01:22 PM.
Build succeeded.

0 Warning(s)

0 Error(s)

Time Elapsed 00:00:02.42

Note This recipe covers only the very basics of MSBuild.exe. If you view the build project file that is automati-
cally created by Visual Studio (as mentioned earlier), you will notice how in-depth it is. For a complete reference to
the MSBuild.exe utility, refer to the online documentationathttp://msdn2.microsoft.com/en-us/library/
okékkbsd.aspx.

1-7. Access Command-Line Arguments

Problem

You need to access the arguments that were specified on the command line when your application
was executed.

Solution

Use a signature for your Main method that exposes the command-line arguments as a String array.
Alternatively, access the command-line arguments from anywhere in your code using the Shared
members of the System.Environment class.

How It Works

Declaring your application’s Main method with one of the following signatures provides access to the
command-line arguments as a String array:

Public Shared Sub Main(ByVal args As String())

End Sub

Public Shared Function Main(ByVal args As String()) As Integer
End Sub

Atruntime, the args argument will contain a string for each value entered on the command line
after your application’s name. The application’s name is not included in the array of arguments.

If you need access to the command-line arguments at places in your code other than the Main
method, you can process the command-line arguments in your Main method and store them for later
access. However, this is not necessary since you can use the System.Environment class, which
provides two Shared members that return information about the command line: CommandLine and
GetCommandLineArgs. The CommandLine property returns a string containing the full command line

17

http://msdn2.microsoft.com/en-us/library

18

CHAPTER 1 APPLICATION DEVELOPMENT

that launched the current process. Depending on the operating system on which the application is
running, path information might precede the application name. Windows Server 2003, Windows
Server 2008, Windows NT 4.0, Windows 2000, Windows XP, and Windows Vista don’t include path
information, whereas Windows 98 and Windows ME do. The GetCommandLineArgs method returns a
String array containing the command-line arguments. This array can be processed in the same way
as the String array passed to the Main method, as discussed at the start of this section. Unlike the
array passed to the Main method, the first element in the array returned by the GetCommandLineArgs
method is the file name of the application.

Note As an alternative, you can use the My .Application.CommandLineArgs method (which works identi-
cally to the GetCommandLineArgs method). We discuss the My namespace more thoroughly in Chapter 5.

The Code

To demonstrate the access of command-line arguments, the Main method in the following example
steps through each of the command-line arguments passed to it and displays them to the console.
The example then accesses the command line directly through the Environment class.

Imports System

Namespace Apress.VisualBasicRecipes.Chapterol
Public Class Recipe01l 07

Public Shared Sub Main(ByVal args As String())
' Step through the command-line arguments

For Each s As String In args
Console.WritelLine(s)

Next

' Alternatively, access the command-line arguments directly.

Console.WritelLine(Environment.CommandLine)

For Each s As String In Environment.GetCommandLineArgs()
Console.WritelLine(s)
Next

Wait to continue
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage
If you execute the Recipe01-07 example using the following command:

Recipe01-07 "one \"two\" three" four 'five six

CHAPTER 1 APPLICATION DEVELOPMENT

the application will generate the following output on the console:

one "two" three

four

'five

six'

recipe01-07 "one \"two\" three" four 'five six
recipe01-07

one "two" three

four

'five

six'

Main method complete. Press Enter.

Notice that the use of double quotes (") results in more than one word being treated as a single
argument, although single quotes (') do not. Also, you can include double quotes in an argument by
escaping them with the backslash character (\). Finally, notice that all spaces are stripped from the
command line unless they are enclosed in double quotes.

1-8. Include Code Selectively at Build Time

Problem

You need to selectively include and exclude sections of source code from your compiled assembly.

Solution

Use the #If, #E1self,#Else, and #End If preprocessor directives to identify blocks of code that should be
conditionally included in your compiled assembly. Use the System.Diagnostics.ConditionalAttribute
attribute to define methods that should be called conditionally only. Control the inclusion of the
conditional code using the #Const directive in your code, or use the /define switch when yourun the
VB .NET compiler from the command line.

How It Works

If you need your application to function differently depending on factors such as the platform or
environment on which it runs, you can build runtime checks into the logic of your code that trigger
the variations in operation. However, such an approach can bloat your code and affect performance,
especially if many variations need to be supported or many locations exist where evaluations need
to be made.

An alternative approach is to build multiple versions of your application to support the different
target platforms and environments. Although this approach overcomes the problems of code bloat
and performance degradation, it would be an untenable solution if you had to maintain different
source code for each version, so VB .NET provides features that allow you to build customized
versions of your application from a single code base.

The #If, #ElseIf, #Else, and #End If preprocessor directives allow you to identify blocks of code
that the compiler should include or exclude in your assembly at compile time. This is accomplished
by evaluating the value of specified symbols. Since this happens at compile time, it may result in multiple
executables being distributed. Symbols can be anyliteral value. They also support the use of all stan-
dard comparison and logical operators or other symbols. The #If..#End If constructevaluates #If

19

20

CHAPTER 1 APPLICATION DEVELOPMENT

and #E1seIf clauses only until it finds one that evaluates to true, meaning that if you define multiple
symbols (winXP and win2000, for example), the order of your clauses is important. The compiler includes
only the code in the clause that evaluates to true. If no clause evaluates to true, the compiler includes
the code in the #E1se clause.

You can also use logical operators to base conditional compilation on more than one symbol.
Use parentheses to group multiple expressions. Table 1-4 summarizes the supported operators.

Table 1-4. Logical Operators Supported by the #If . . #End If Directive

Operator Example Description

NOT #IT NOT winXP Inequality. Evaluates to true if the symbol winXP is
not equal to True. Equivalent to #If NOT winXP.

AND #If winXP AND release Logical AND. Evaluates to true only if the symbols
winXP and release are equal to True.

AndAlso #If winXP AndAlso release Logical AND. Works the same as the AND operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is False.

OR #IF winXP OR release Logical OR. Evaluates to true if either of the symbols
winXP or release is equal to True.

OrElse #IF winXP OrElse release Logical OR. Works the same as the OR operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is True.

XOR #IF winXP XOR release Logical XOR. Evaluates to true if only one of the
symbols, winXP or release, is equal to True.

Gaution You must be careful not to overuse conditional compilation directives and not to make your conditional
expressions too complex; otherwise, your code can quickly become confusing and unmanageable—especially as
your projects become larger.

To define a symbol, you can either include a #Const directive in your code or use the /define
compiler switch. Symbols defined using #Const are active until the end of the file in which they are
defined. Symbols defined using the /define compiler switch are active in all source files that are
being compiled. All #Const directives must appear at the top of your source file before any code,
including any Imports statements.

If you need to determine only whether a symbol has been defined, a more elegant alternative to
the #If preprocessor directive is the attribute System.Diagnostics.ConditionalAttribute. If you
apply ConditionalAttribute to a method, the compiler will ignore any calls to the method if the symbol
specified by ConditionalAttribute is not defined, or set to False, at the calling point.

Using ConditionalAttribute centralizes your conditional compilation logic on the method decla-
ration and means you can freely include calls to conditional methods without littering your code
with #If directives. However, because the compiler literally removes calls to the conditional method
from your code, your code can’t have dependencies on return values from the conditional method.
This means you can apply ConditionalAttribute only to subroutines.

CHAPTER 1

The Code

APPLICATION DEVELOPMENT

In this example, the code assigns a different value to the local variable platformName based on whether
the winVista, winXP, win2000, winNT, or Win98 symbols are defined. The head of the code defines the
win2000 symbol. In addition, the ConditionalAttribute specifies that calls to the DumpState method
should be included in an assembly only if the symbol DEBUG is defined during compilation. The DEBUG

symbol is defined by default in debug builds.

#Const winXP = True

Imports System
Imports System.Diagnostics

Namespace APress.VisualBasicRecipes.Chapterol
Public Class Recipe01 08
' Declare a string to contain the platform name
Private Shared platformName As String
<Conditional("DEBUG")> _
Public Shared Sub DumpState()
Console.WriteLine("Dump some state...")
End Sub
Public Shared Sub Main()

#If winVista Then ' Compiling for Windows Vista
platformName = "Microsoft Windows Vista"
#ElseIf winXP Then ' Compiling for Windows XP
platformName = "Microsoft Windows XP"
#ElseIf win2000 Then ' Compiling for Windows 2000
platformName = "Microsoft Windows 2000"
#ElseIf winNT Then ' Compiling for Windows NT
platformName = "Microsoft Windows NT"
#ElseIf win98 Then ' Compiling for Windows 98
platformName = "Microsoft Windows 98"
#Else " Unknown platform specified
platformName = "Unknown"
#End If
Console.WritelLine(platformName)
' Call the conditional DumpState method
DumpState()
' Wait to continue...
Console.WriteLine(vbCrLf & "Main method complete.
Console.Read()
End Sub
End Class

End Namespace

Usage

Press Enter.")

To build the example and define the symbol winVista, use the command vbc /define:winVista
Recipe01-08.vb. If you compile this sample without defining the winVista symbol, the winXP symbol

21

22

CHAPTER 1 APPLICATION DEVELOPMENT

will be used since it was defined directly in the code. Otherwise, both winVista and winXP will be
defined, but Microsoft Windows Vista will be the platformName value because of the order in which
the symbols are checked.

Notes

You can apply multiple ConditionalAttribute instances to a method in order to produce logical OR
behavior. Calls to the following version of the DumpState method will be compiled only if the DEBUG or
TEST symbols are defined:

<Conditional("DEBUG"), Conditional("TEST")> _
Public Shared Sub DumpState()

End Sub

Achieving logical AND behavior is not as clean and involves the use of an intermediate condi-
tional method, quickly leading to overly complex code thatis hard to understand and maintain. You
should be cautious with this approach, because you might end up with code in your assembly thatis

never called. The following is a quick example that requires the definition of both the DEBUG and TEST
symbols for the DumpState functionality (contained in DumpState2) to be called:

<Conditional("DEBUG")> _

Public Shared Sub DumpState()
DumpState2()

End Sub

<Conditional("TEST")> _
Public Shared Sub DumpState2()

End Sub

It’simportant to remember that you are not limited to Boolean values for your symbols. You can
define a symbol with a string value, like this:
#Const 0S = "Vista"

You could also do this using the command vbc /define:05=\"winVista\" Recipe01-08.vb. You
must escape quotation marks using the \ character.
To use this new symbol, the preprocessor #If..#End If construct mustbe changed accordingly:

#If 0S = "winVista" Then ' Compiling for Windows Vista
platformName = "Microsoft Windows Vista"

#ElseIf 0S = "XP" Then ' Compiling for Windows XP
platformName = "Microsoft Windows XP"

#ElseIf 0S = "2000" Then ' Compiling for Windows 2000
platformName = "Microsoft Windows 2000"

#ElseIf 0S = "NT" Then ' Compiling for Windows NT
platformName = "Microsoft Windows NT"

#ElseIf 0S = "98" Then ' Compiling for Windows 98
platformName = "Microsoft Windows 98"

#Else " Unknown platform specified

platformName = "Unknown"
#End If

CHAPTER 1 APPLICATION DEVELOPMENT

1-9. Manipulate the Appearance of the Console

Problem

You want to control the visual appearance of the Windows console.

Solution

Use the Shared properties and methods of the System.Console class.

How It Works

The .NET Framework includes the Console class, which gives you control over the appearance and
operation of the Windows console. Table 1-5 describes the properties and methods of this class that
you can use to control the console’s appearance.

Table 1-5. Properties and Methods to Control the Appearance of the Console

Member Description

Properties

BackgroundColor Gets and sets the background color of the console using one of the
values from the System.ConsoleColor enumeration. Only new text
written to the console will appear in this color. To make the entire
console this color, call the method Clear after you have configured
the BackgroundColor property.

BufferHeight Gets and sets the buffer height in terms of rows. Buffer refers to
the amount of actual data that can be displayed within the console
window.

BufferWidth Gets and sets the buffer width in terms of columns. Buffer refers to
the amount of actual data that can be displayed within the console
window.

CursorlLeft Gets and sets the column position of the cursor within the buffer.

CursorSize Gets and sets the height of the cursor as a percentage of a character
cell.

CursorTop Gets and sets the row position of the cursor within the buffer.

CursorVisible Gets and sets whether the cursor is visible.

ForegroundColor Gets and sets the text color of the console using one of the values
from the System.ConsoleColor enumeration. Only new text written
to the console will appear in this color. To make the entire console
this color, call the method Clear after you have configured the
ForegroundColor property.

LargestWindowHeight Returns the largest possible number of rows based on the current
font and screen resolution.

LargestWindowWidth Returns the largest possible number of columns based on the current

Title

font and screen resolution.

Gets and sets text shown in the title bar.

23

24

CHAPTER 1 APPLICATION DEVELOPMENT

Table 1-5. Properties and Methods to Control the Appearance of the Console (Continued)

Member Description

WindowHeight Gets and sets the physical height of the console window in terms of
character rows.

WindowhWidth Gets and sets the physical width of the console window in terms of
character columns.

Methods

Clear Clears the console.

ResetColor Sets the foreground and background colors to their default values as
configured within Windows.

SetWindowSize Sets the width and height in terms of columns and rows.

The Code

The following example demonstrates how to use the properties and methods of the Console class to
dynamically change the appearance of the Windows console:

Imports System

Namespace Apress.VisualBasicRecipes.Chapterol
Public Class Recipe01 09

Public Shared Sub Main(ByVal args As String())

Display the standard console.
Console.Title = "Standard Console"
Console.WritelLine("Press Enter to change the console's appearance.")
Console.ReadlLine()
' Change the console appearance and redisplay.
Console.Title = "Colored Text"
Console.ForegroundColor = ConsoleColor.Red
Console.BackgroundColor = ConsoleColor.Green
Console.WritelLine("Press Enter to change the console's appearance.")
Console.ReadlLine()
' Change the console appearance and redisplay.
Console.Title = "Cleared / Colored Console"
Console.ForegroundColor = ConsoleColor.Blue
Console.BackgroundColor = ConsoleColor.Yellow
Console.Clear()
Console.WritelLine("Press Enter to change the console's appearance.")
Console.ReadlLine()
' Change the console appearance and redisplay.
Console.Title = "Resized Console"
Console.ResetColor()
Console.Clear()
Console.SetWindowSize (100, 50)

CHAPTER 1 APPLICATION DEVELOPMENT

Console.BufferHeight = 500

Console.BufferWidth = 100

Console.CursorLeft = 20

Console.CursorSize = 50

Console.CursorTop = 20

Console.CursorVisible = False

Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

1-10. Access a Program Element That Has the Same Name
As a Keyword

Problem

You need to access a member of a type, but the type or member name is the same as a VB .NET
keyword.

Solution

Surround all instances of the identifier name in your code with brackets ([]).

How It Works

The .NET Framework allows you to use software components developed in other .NET languages
from within your VB .NET applications. Each language has its own set of keywords (or reserved
words) and imposes different restrictions on the names programmers can assign to program elements
such as types, members, and variables. Therefore, it is possible that a programmer developing a
component in another language will inadvertently use a VB .NET keyword as the name of a program
element. Using brackets ([]) enables you to use a VB .NET keyword as an identifier and overcome
these possible naming conflicts.

The Code

The following code fragment creates the new Operator (perhaps a telephone operator) class. A new
instance of this class is created, and its Friend property is set to True—both Operator and Friend are
VB .NET keywords:

Public Class [Operator]
Public [Friend] As Boolean
End Class

Instantiate an operator object
Dim operatori As New [Operator]
' Set the operator's Friend property
operatori.[Friend] = True

25

26

CHAPTER 1 APPLICATION DEVELOPMENT

1-11. Create and Manage Strong-Named Key Pairs

Problem

You need to create public and private keys (a key pair) so that you can assign strong names to your
assemblies.

Solution

Use the Strong Name tool (sn.exe) to generate a key pair and store the keys in a file or cryptographic
service provider (CSP) key container.

Note ACSP is an element of the Win32 CryptoAPI that provides services such as encryption, decryption, and
digital signature generation. CSPs also provide key container facilities, which use strong encryption and operating
system security to protect any cryptographic keys stored in the container. A detailed discussion of CSPs and CryptoAPI is
beyond the scope of this book. All you need to know for this recipe is that you can store your cryptographic keys in
a CSP key container and be relatively confident that it is secure as long as no one knows your Windows password.
Refer to the CryptoAPI information in the platform SDK documentation for complete details.

How It Works

To generate a new key pair and store the keys in the file named MyKeys.snk, execute the command
sn -k MyKeys.snk. (.snk is the usual extension given to files containing strong-named keys.) The
generated file contains both your public and private keys. You can extract the public key using the
command sn -p MyKeys.snk MyPublicKeys.snk, which will create MyPublicKey.snk containing only
the public key. Once you have this file in hand, you can view the public key using the command

sn -tp MyPublicKeys.snk, which will generate output similar to the (abbreviated) listing shown here:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

Public key is
0024000004800000940000000602000000240000525341310004000001000100¢5810bb3c095d0
6de71d6cathadb2088b45951ba76407d981d20bf1be825990619b6888d56146b9532981374df9a
ta1001b1336e262a09fa8c7d989cf4a0adbbbe568419cd82cc38babd6707acat13t058e22d6796
2dc72212bt797da89c08d8e65338c2972de659385472a603e00d3cc3c9t348b51d7c47a8611479
deb3foab

Public key token is 442a698bee81cc00

The public key token shown at the end of the listing is the last 8 bytes of a cryptographic hash
code computed from the public key. Because the public key is so long, .NET uses the public key token
for display purposes and as a compact mechanism for other assemblies to reference your public key.
(Recipes 11-14 and 11-15 discuss cryptographic hash codes.)

As the name suggests, you don’t need to keep the public key (or public key token) secret. When
you strong name your assembly (discussed in recipe 1-12), the compiler uses your private key to
generate a digital signature (an encrypted hash code) of the assembly’s manifest. The compiler embeds
the digital signature and your public key in the assembly so that any consumer of the assembly can
verify the digital signature.

CHAPTER 1 APPLICATION DEVELOPMENT

Keeping your private key secret is imperative. People with access to your private key can alter
your assembly and create a new strong name—Ileaving your customers unaware they are using
modified code. No mechanism exists to repudiate compromised strong-named keys. If your private
key is compromised, you must generate new keys and distribute new versions of your assemblies
that are strong named using the new keys. You must also notify your customers about the compro-
mised keys and explain to them which versions of your public key to trust—in all, a very costly exercise
in terms of both money and credibility. You can protect your private key in many ways; the approach
you use will depend on several factors:

e The structure and size of your organization
* Your development and release process
e The software and hardware resources you have available

e The requirements of your customer base

Tip Commonly, a small group of trusted individuals (the signing authority) has responsibility for the security
of your company’s strong name signing keys and is responsible for signing all assemblies just prior to their final
release. The ability to delay sign an assembly (discussed in recipe 1-14) facilitates this model and avoids the need
to distribute private keys to all development team members.

One feature provided by the Strong Name tool to simplify the security of strong-named keys is
the use of CSP key containers. Once you have generated a key pair to a file, you can install the keys into a
key container and delete the file. For example, to store the key pair contained in the file MyKeys.snk to a
CSP container named StrongNameKeys, use the command sn -i MyKeys.snk StrongNameKeys. You
can install only one set of keys to a single container. (Recipe 1-12 explains how to use strong-named
keys stored in a CSP key container.)

An important aspect of CSP key containers is that they include user-based containers and
machine-based containers. Windows security ensures users can access only their own user-based
key containers. However, any user of a machine can access a machine-based container.

By default, the Strong Name tool uses machine-based key containers, meaning that anyone who
can log on to your machine and who knows the name of your key container can sign an assembly
with your strong-named keys. To change the Strong Name tool to use user-based containers, use the
command sn -m n, and to switch to machine-based stores, use the command sn -m y. The command
sn -mwill display whether the Strong Name tool is currently configured to use machine-based or
user-based containers.

To delete the strong-named keys from the StrongNameKeys container (as well as delete the
container), use the command sn -d StrongNameKeys.

1-12. Give an Assembly a Strong Name

Problem

You need to give an assembly a strong name for several reasons:

e Soithasaunique identity, which allows people to assign specific permissions to the assembly
when configuring code access security policy
e Soitcan’t be modified and passed off as your original assembly

* Soitcan be installed in the GAC and shared across multiple applications

27

28

CHAPTER 1 APPLICATION DEVELOPMENT

Solution

When you build your assembly using the command-line VB .NET compiler, use the /keyfile or
/keycontainer compiler switch to specify the location of your strong-named key pair. Use assembly-
level attributes to specify optional information such as the version number and culture for your
assembly. The compiler will strong name your assembly as part of the compilation process.

Note If you are using Visual Studio, you can configure your assembly to be strong named by opening the project
properties, selecting the Signing tab, and checking the Sign the Assembly box. You will need to specify the location
of the file where your strong-named keys are stored—Visual Studio does not allow you to specify the name of a key
container.

How It Works

To strong name an assembly using the VB .NET compiler, you need the following:

e A strong-named key pair contained either in a file or in a CSP key container. (Recipe 1-11
discusses how to create strong-named key pairs.)

e Compiler switches to specify the location where the compiler can obtain your strong-named
key pair:

e Ifyour key pair is in a file, use the /keyfile compiler switch, and provide the name of the
file where the keys are stored. For example, use /keyfile:MyKeyFile.snk.

* Ifyour key pair is in a CSP container, use the /keycontainer compiler switch, and
provide the name of the CSP key container where the keys are stored. For example,
use /keycontainer:MyKeyContainer.

e Optionally, specify the culture that your assembly supports by applying the attribute
System.Reflection.AssemblyCultureAttribute to the assembly. (If you attempt to use this
attribute with an executable assembly, you will receive a compile error because executable
assemblies support only the neutral culture.)

¢ Optionally, specify the version of your assembly by applying the attribute System.Reflection.
AssemblyVersionAttribute to the assembly.

The Code

The executable code that follows (from a file named Recipe01-09.vb) shows how to use the optional
attributes (shown in bold) to specify the culture and the version for the assembly:

Imports System
Imports System.Reflection

<Assembly: AssemblyCulture("")>
<Assembly: AssemblyVersion("1.1.0.5")>

Namespace Apress.VisualBasicRecipes.Chapterol
Public Class Recipe01 12

Public Shared Sub main()
Console.WritelLine("Welcome to Visual Basic 2008 Recipes")

CHAPTER 1 APPLICATION DEVELOPMENT

Wait to continue...
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.Read()

End Sub

End Class
End Namespace

Usage

To create a strong-named assembly from the example code, create the strong-named keys and store
them in a file named MyKeyFile using the command sn -k MyKeyFile.snk. Then install the keys into
the CSP container named MyKeys using the command sn -i MyKeyFile.snk MyKeys. You can now
compile the file into a strong-named assembly using the command vbc /keycontainer:MyKeys
Recipe01-12.vb. If you are not using a CSP container, you can specify the specific key file using the
command vbc /keyfile:MyKeyFile.snk Recipe01-12.vb.

Notes

If you use Visual Studio, you may not be able to include the optional AssemblyVersion attribute in
your code. This is because the attribute may already exist for the assembly. By default, Visual Studio
automatically creates a folder called MyProject. This folder stores multiple files, including
AssemblyInfo.vb, which contains standard assembly attributes for the project. These can be manu-
ally edited or edited through the Assembly Information dialog box (see Figure 1-2), accessible from
the Application tab of the project properties. Since the AssemblyInfo.vb file is an efficient way to
store information specific to your assembly, it is actually good practice to create and use a similar
file, even if you are not using Visual Studio to compile.

Assembly Information M

Title: Recipell-12|
Description:

Company:

Product: Recipe(1-12
Copyright: Copyright @ 2007
Trademark:

Assembly Version:

File Version: 1 1] 1] 1]
GUID: f4aelbf2-c29a-408d-ab24-a4cf5c5099
Meutral Language: (None) -

[C] Make assembly COM-Visible

[OK H Cancel]

" -

Figure 1-2. The Assembly Information dialog box

29

30

CHAPTER 1 APPLICATION DEVELOPMENT

1-13. Verify That a Strong-Named Assembly Has Not Been
Modified

Problem

You need to verify that a strong-named assembly has not been modified after it was built.

Solution

Use the Strong Name tool (sn.exe) to verify the assembly’s strong name.

How It Works

Whenever the .NET runtime loads a strong-named assembly, the runtime extracts the encrypted
hash code that’s embedded in the assembly and decrypts it with the public key, which is also embedded
in the assembly. The runtime then calculates the hash code of the assembly manifest and compares
it to the decrypted hash code. This verification process will identify whether the assembly has changed
after compilation.

If an executable assembly fails strong name verification, the runtime will display an error message
or an error dialog box (depending on whether the application is a console or Windows application).
If executing code tries to load an assembly that fails verification, the runtime will throw a System. I0.
FileLoadException with the message “Strong name validation failed,” which you should handle
appropriately.

As well as generating and managing strong-named keys (discussed in recipe 1-11), the Strong
Name tool allows you to verify strong-named assemblies. To verify that the strong-named assembly
Recipe01-12.exe is unchanged, use the command sn -vf Recipe01-12.exe. The -v switch requests the
Strong Name tool to verify the strong name of the specified assembly, and the - switch forces strong
name verification even if it has been previously disabled for the specified assembly. (You can disable
strong name verification for specific assemblies using the -Vr switch, asin sn -Vr Recipe01-12.exe; see
recipe 1-14 for details about why you would disable strong name verification.)

If the assembly passes strong name verification, you should see the following output:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

Assembly 'recipe01-12.exe' is valid

However, if the assembly has been modified, you will see this message:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

recipe01-12.exe does not represent a strongly named assembly

CHAPTER 1 APPLICATION DEVELOPMENT

1-14. Delay Sign an Assembly

Problem

You need to create a strong-named assembly, but you don’t want to give all members of your devel-
opment team access to the private key component of your strong-named key pair.

Solution

Extract and distribute the public key component of your strong-named key pair. Follow the instruc-
tions in recipe 1-12 that describe how to give your assembly a strong name. In addition, specify the
/delaysign switch when you compile your assembly. Disable strong name verification for the assembly
using the -Vr switch of the Strong Name tool (sn.exe).

Note If you are using Visual Studio, you can configure your strong-named assembly to be delay signed by
opening the project properties, selecting the Signing tab, and checking the Delay Sign Only box. Doing so will
prohibit your project from being run or debugged. You can get around this by skipping verification using the
-Vr switch of the Strong Name tool.

How It Works

Assemblies that reference strong-named assemblies contain the public key token of the referenced
assemblies. This means the referenced assembly must be strong named before it can be referenced.
In a development environment in which assemblies are regularly rebuilt, this would require every
developer and tester to have access to your strong-named key pair—a major security risk.

Instead of distributing the private key component of your strong-named key pair to all members
of the development team, the .NET Framework provides a mechanism named delay signing with
which you can partially strong name an assembly. The partially strong-named assembly contains the
public key and the public key token (required by referencing assemblies) but contains only a place-
holder for the signature that would normally be generated using the private key.

After development is complete, the signing authority (who has responsibility for the security
and use of your strong-named key pair) re-signs the delay-signed assembly to complete its strong
name. The signature is calculated using the private key and embedded in the assembly, making the
assembly ready for distribution.

To delay sign an assembly, you need access only to the public key component of your strong-
named key pair. No security risk is associated with distributing the public key, and the signing authority
should make the public key freely available to all developers. To extract the public key component
from a strong-named key file named MyKeyFile.snk and write it to a file named MyPublicKey.snk,
use the command sn -p MyKeyFile.snk MyPublicKey.snk. If you store your strong-named key pair
in a CSP key container named MyKeys, extract the public key to a file named MyPublicKey.snk using
the command sn -pc MyKeys MyPublicKey.snk.

Once you have a key file containing the public key, you build the delay-signed assembly using
the command-line VB .NET compiler by specifying the /delaysign compiler switch. For example,
to build a delay-signed assembly using the MyPublicKey.snk public key from a source file named
Recipe01-14.vb, use this command:

vbc /delaysign /keyfile:MyPublicKey.snk Recipe01-14.vb

When the runtime tries to load a delay-signed assembly, it will identify the assembly as strong
named and will attempt to verify the assembly, as discussed in recipe 1-13. Because it doesn’t have

31

32

CHAPTER 1 APPLICATION DEVELOPMENT

a digital signature, you must configure the runtime on the local machine to stop verifying the assembly’s
strong name using the command sn -Vr Recipe01-14.exe. Note that youneed to do so on every
machine on which you want to run your application.

Tip When using delay-signed assemblies, it’s often useful to be able to compare different builds of the same
assembly to ensure they differ only by their signatures. This is possible only if a delay-signed assembly has been
re-signed using the -R switch of the Strong Name tool. To compare the two assemblies, use the command
sn -D assemblyl assembly2.

Once development is complete, you need to re-sign the assembly to complete the assembly’s
strong name. The Strong Name tool allows you to do this without changing your source code or recom-
piling the assembly; however, you must have access to the private key component of the strong-
named key pair. To re-sign an assembly named Recipe01-14.exe with a key pair contained in the file
MyKeys.snk, use the command sn -R Recipe01-14.exe MyKeys.snk. If the keys are stored in a CSP
key container named MyKeys, use the command sn -Rc Recipe01-14.exe MyKeys.

Once you have re-signed the assembly, you should turn strong name verification for that assembly
back on using the -Vu switch of the Strong Name tool, as in sn -Vu Recipe01-14.exe. To enable veri-
fication for all assemblies for which you have disabled strong name verification, use the command
sn -Vx.You can list the assemblies for which verification is disabled using the command sn -V1.

1-15. Sign an Assembly with an Authenticode Digital Signature

Problem

You need to sign an assembly with Authenticode so that users of the assembly can be certain you are
its publisher and the assembly is unchanged after signing.

Solution

Use the Sign Tool (signtool.exe) to sign the assembly with your software publisher certificate (SPC).

How It Works

Strong names provide a unique identity for an assembly as well as proof of the assembly’s integrity,
but they provide no proof as to the publisher of the assembly. The .NET Framework allows you to use
Authenticode technology to sign your assemblies. This enables consumers of your assemblies to
confirm that you are the publisher, as well as confirm the integrity of the assembly. Authenticode
signatures also act as evidence for the signed assembly, which people can use when configuring
code access security policy.

To sign your assembly with an Authenticode signature, you need an SPC issued by a recognized
certificate authority (CA). A CA is a company entrusted to issue SPCs (along with many other types of
certificates) for use by individuals or companies. Before issuing a certificate, the CA is responsible for
confirming that the requesters are who they claim to be and also for making sure the requesters sign
contracts to ensure they don’t misuse the certificates that the CA issues them.

To obtain an SPC, you should view the Microsoft Root Certificate Program Members list at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/
rootcertprog.asp. Here you will find a list of CAs, many of whom can issue you an SPC. For testing
purposes, you can create a test SPC using the process described in recipe 1-16. However, you can’t

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html

CHAPTER 1 APPLICATION DEVELOPMENT 33

distribute your software signed with this test certificate. Because a test SPC isn’t issued by a trusted
CA, most responsible users won’t trust assemblies signed with it.

Once you have an SPC, you use the Sign Tool to Authenticode sign your assembly. The Sign Tool
creates a digital signature of the assembly using the private key component of your SPC and embeds
the signature and the public part of your SPC in your assembly (including your public key). When
verifying your assembly, the consumer decrypts the encrypted hash code using your public key,
recalculates the hash of the assembly, and compares the two hash codes to ensure they are the same.
As long as the two hash codes match, the consumer can be certain that you signed the assembly and
that it has not changed since you signed it.

Usage

The Sign Tool provides a graphical wizard that walks you through the steps to Authenticode sign
your assembly. To sign an assembly named MyAssembly.exe, run this command:

signtool signwizard MyAssembly.exe

Click Next on the introduction screen, and you will see the File Selection screen, where you
must enter the name of the assembly to Authenticode sign (see Figure 1-3). Because you specified the
assembly name on the command line, it is already filled in. If you are signing a multifile assembly,
specify the name of the file that contains the assembly manifest. If you intend to both strong name
and Authenticode sign your assembly, you must strong name the assembly first. (See recipe 1-12 for
details on strong naming assemblies.)

Digital Signature Wizard M

File Selection
Select the file to be digitally signed.

i If the file already has a digital signature, it will be overwritten by the new
signature.

File name:

MyAssembly.exe Browse... |

< Back l[Next =][Cancel

Figure 1-3. The Sign Tool’s File Selection screen

Clicking Next takes you to the Signing Options screen (see Figure 1-4). If your SPCiis in a certif-
icate store, select the Typical radio button. If your SPC is in a file, select the Custom radio button.
Then click Next.

34 CHAPTER 1 APPLICATION DEVELOPMENT

Digital Signature Wizard M

Signing Options
The type of signing you choose determines the options available to you.

0 Select the type of signing you want.

(©) Typical

Recommended for most users.

Recommended for advanced users only. All advanced options available.

Figure 1-4. The Sign Tool’s Signing Options screen

Assuming you want to use a file-based certificate (like the test certificate created in recipe 1-16),
click the Select from File button on the Signature Certificate screen (see Figure 1-5), select the file
containing your SPC certificate, and then click Next.

Digital Signature Wizard ‘S |

Signature Certificate

You can attach a certificate to the signature. The corresponding private key will be
used to sign the file.

Select a certificate from either a certificate store or from a file (.cer, .crt, or .spc).

Use this certificate:

Issued To Todd Herman Select from Store...

Issued By Root Agency

Intended Purposes <All> Select from File... U
Expiration Date 12/31/2039
View Certificate

Note: An .spc file may contain many certificates. The wizard chooses the
appropriate certificate based on the private key selected on the next page.

Figure 1-5. The Sign Tool’s Signature Certificate screen

CHAPTER 1

APPLICATION DEVELOPMENT

The Private Key screen allows you to identify the location of your private keys, which will either be
in a file or be in a CSP key container, depending on where you created and stored them (see Figure 1-6).
The example assumes they are in a file named PrivateKeys.pvk.

Digital Signature Wizard _" M

Private Key

You can sign data by using a private key in a file (.pvk) or by using a private from a
cryptographic service provider (CSP).

(@) Private key file on disk:
C5P:

Provider type:

(T Private key in a CSP
CSP:
Provider type:
Key container:

Key type:

Select the location of the private key.

F:\Programming\Visual Studio 200€ | Browse... I

’Microsoﬂ Strong Cryptographic Provider -]
[RsA FuLL -
|Micr050f‘t Strong Cryptographic Provider - |
|RsA FuLL -]

| IDENTITYCRL_CERT_CONTAINER_00000930_0 ~ |

|I{E\,r Exchange - |

| <Back | mex> | [cancel |

Figure 1-6. The Sign Tool’s Private Key screen

When you click Next, if you selected to use a file, you will be prompted (see Figure 1-7) to enter
a password to access the file (if required).

o

Enter Private Key Password - M

Key: Publisher
Password: ssssssse
o]

I Cancel

Figure 1-7. Prompt for password to private key

You can then select whether to use the shal or md5 hash algorithm (see Figure 1-8). The default
is shal, which is suitable for most purposes. On the Hash Algorithm screen, pick an algorithm, and

then click Next.

35

36 CHAPTER 1 APPLICATION DEVELOPMENT

Digital Signature Wizard e ke

Hash Algorithm

A hash algorithm is a mathematical formula used to create the file signature.

Select a hash algorithm from the following list.

Hash algorithm:
md5

Figure 1-8. The Sign Tool’s Hash Algorithm screen

Click Next to leave the default values on the Additional Certificates screen, the Data Description
screen, and the Timestamping screen. This will bring you to the final screen (see Figure 1-9), which
shows you all the previous choices you made. If everything is accurate, click Finish. If you are using
a file-based private key that is password protected, you will once again be prompted to enter the
password, after which the Sign Tool will Authenticode sign your assembly.

Digital Signature Wizard GG M

Completing the Digital Signature
Wizard

You have successfully completed the Digital Signature
wizard.

You specified the following settings:

File name MyAssembly.exe - i
Issued to Todd Herman
Issued by Root Agency - p
Expiration date 12/31/2039 B
Private key file F:\Programming\Visi
Cryptographic service provider Microsoft Strong Cry
CSP type RSA FULL
Hash algorithm shal S
4 I >
[<Back | Fmsh | | cancel

Figure 1-9. The Sign Tool’s completion screen

CHAPTER 1 APPLICATION DEVELOPMENT

Note The Sign Tool uses capicom.dll version 2.1.0.1. If an error occurs when you run signtool.exe that indicates
capicom.dll is not accessible or not registered, change to the directory where capicom.dll is located (which is
C:\Program Files\Common Files\Microsoft Shared\CAPICOM by default), and run the command regsvr32
capicom.dll.

1-16. Create and Trust a Test Software Publisher Certificate

Problem

You need to create an SPC to allow you to test the Authenticode signing of an assembly.

Solution

Use the Certificate Creation tool (makecert.exe) to create a test X.509 certificate, and use the Soft-
ware Publisher Certificate Test tool (cert2spc.exe) to generate an SPC from this X.509 certificate.
Trust the root test certificate using the Set Registry tool (setreg.exe).

How It Works

To create a test SPC for a software publisher named Todd Herman, create an X.509 certificate
using the Certificate Creation tool. The command makecert -n "CN=Todd Herman" -sk MyKeys
TestCertificate.cer creates a file named TestCertificate.cer containing an X.509 certificate and
stores the associated private key in a CSP key container named MyKeys (which is automatically
created if it does not exist). Alternatively, you can write the private key to a file by substituting the
-sk switch with -sv. For example, to write the private key to a file named PrivateKeys.pvk, use the
command makecert -n " CN=Todd Herman" -sv PrivateKey.pvk TestCertificate.cer.If you write
your private key to a file, the Certificate Creation tool will prompt you to provide a password with
which to protect the private key file (see Figure 1-10).

Create Private Key Passwaord |———

Key: Subject Key

Password: ssessnse

Confirm Password: LIITTTT L]

Figure 1-10. The Certificate Creation tool requests a password when creating file-based private keys.

The Certificate Creation tool supports many arguments, and Table 1-6 lists some of the more
useful ones. You should consult the .NET Framework SDK documentation for full coverage of the
Certificate Creation tool.

38

CHAPTER 1 APPLICATION DEVELOPMENT

Table 1-6. Commonly Used Switches of the Certificate Creation Tool

Switch Description

-e Specifies the date when the certificate becomes invalid.

-m Specifies the duration—in months—that the certificate remains valid.

-n Specifies an X.500 name to associate with the certificate. This is the name of the
software publisher that people will see when they view details of the SPC you create.

-sk Specifies the name of the CSP key store in which to store the private key.

-ss Specifies the name of the certificate store where the Certificate Creation tool should

store the generated X.509 certificate.

-sv Specifies the name of the file in which to store the private key.

Once you have created your X.509 certificate with the Certificate Creation tool, you need to
convert it to an SPC with the Software Publisher Certificate Test tool (cert2spc.exe). To convert
the certificate TestCertificate.cer to an SPC, use the command cert2spc TestCertificate.cer
TestCertificate.spc. The Software Publisher Certificate Test tool doesn’t offer any optional switches.

The final step before you can use your test SPC is to trust the root test CA, which is the default
issuer of the test certificate. The Set Registry tool (setreg.exe) makes this a simple task with the
command setreg 1 true. You can now Authenticode sign assemblies with your test SPC using the
process described in recipe 1-15. When you have finished using your test SPC, you must remove trust
of the root test CA using the command setreg 1 false.

1-17. Manage the Global Assembly Cache

Problem

You need to add or remove assemblies from the GAC.

Solution

Use the Global Assembly Cache tool (gacutil.exe) from the command line to view the contents of the
GAC as well as to add and remove assemblies.

How It Works

Before you can install an assembly in the GAC, the assembly must have a strong name. (See recipe 1-12
for details on how to strong name your assemblies.) To install an assembly named SomeAssembly.dll
into the GAC, use the command gacutil /i SomeAssembly.dll.You can install different versions of
the same assembly in the GAC to meet the versioning requirements of different applications.

To uninstall the SomeAssembly.dll assembly from the GAC, use the command gacutil /u
SomeAssembly. Notice that you don’t use the .dll extension to refer to the assembly once it’s installed in the
GAC. This will uninstall all assemblies with the specified name. To uninstall a particular version, specify
the version along with the assembly name; for example, use gacutil /u SomeAssembly,Version=1.0.0.5.

To view the assemblies installed in the GAC, use the command gacutil /1. This will produce a
long list of all the assemblies installed in the GAC, as well as a list of assemblies that have been precom-
piled to binary form and installed in the native image (ngen) cache. To avoid searching through this

CHAPTER 1 APPLICATION DEVELOPMENT

list to determine whether a particular assembly is installed in the GAC, use the command
gacutil /1 SomeAssembly.

Note The .NET Framework uses the GAC only at runtime; the VB .NET compiler won’t look in the GAC to resolve
any external references that your assembly references. During development, the VB .NET compiler must be able to
access a local copy of any referenced shared assemblies. You can either copy the shared assembly to the same
directory as your source code or use the /1ibpath switch of the VB .NET compiler to specify the directory where
the compiler can find the required assemblies.

1-18. Make Your Assembly More Difficult to Decompile

Problem

You want to make sure that people cannot decompile your .NET assemblies.

Solution

The onlyway to ensure that your assembly cannot be decompiled is by not making it directly acces-
sible. This can be accomplished using a server-based solution. If you must distribute assemblies,
you have noway to stop people from decompiling them. The best you can do is use obfuscation and
components compiled to native code to make your assemblies more difficult to decompile.

How It Works

Because .NET assemblies consist of a standardized, platform-independent set of instruction codes
and metadata that describes the types contained in the assembly, they are relatively easy to decom-
pile. This allows decompilers to generate source code that is close to your original code with ease,
which can be problematic if your code contains proprietary information or algorithms that you want
to keep secret.

The only way to ensure people can’t decompile your assemblies is to prevent them from getting your
assemblies in the first place. Where possible, implement server-based solutions such as Microsoft
ASP.NET applications and web services. With the security correctly configured on your server, no
one will be able to access your assemblies, and therefore they won’t be able to decompile them.

When building a server solution is not appropriate, you have the following two options:

e Use an obfuscator to make it difficult to understand your code once it is decompiled. Some
versions of Visual Studio include the Community Edition of an obfuscator named Dotfuscator.
Obfuscators use a variety of techniques to make your assembly difficult to decompile; prin-
cipal among these techniques are renaming Private methods and fields in such a way thatit’s
difficult to read and understand the purpose of your code, as well as inserting control flow
statements to make the logic of your application difficult to follow.

¢ Build the parts of your application that you want to keep secret in native DLLs or COM objects,
and then call them from your managed application using P/Invoke or COM Interop. (See
Chapter 14 for recipes that show you how to call unmanaged code.)

Neither approach will stop a skilled and determined person from reverse engineering your
code, but both approaches will make the job significantly more difficult and deter most casual
observers.

39

40

CHAPTER 1 APPLICATION DEVELOPMENT

Note The risks of application decompilation aren’t specific to VB .NET or .NET in general. Determined people
can reverse engineer any software if they have the time and the skill.

1-19. Use Implicitly Typed Variables

Problem

You need to create a strongly typed variable without explicitly declaring its type in an effort to save
some development time or support LINQ, which is discussed in more detail in Chapter 6.

Solution

Ensure Option InferisOn, and then create a variable and assign it a value without using As and spec-
ifying a type.

How It Works

VB .NET 9.0 allows you to create strongly typed variables without explicitly setting their data types.
You could do this in previous versions of VB .NET, if Option Strict were set to Off, but the variable
was always typed as an Object. In this case, its type is automatically inferred based on its value.

To use this new functionality, Option Infer mustbe set to On. You can specify this setting in the
Project Settings dialog box or by adding Option Infer On to the top of your code. If you create a new
project in Visual Studio 2008, the project settings will have Option Infer set to On by default. Any
projects that you migrate from previous Visual Studio versions will have Option Infer setto Off.If
you are compiling your code using the VB compiler (vbc), you can use the /optioninfer option.

The following example demonstrates how to use type inference or implicit typing:

Dim name = "Todd"

Dim birthday = #7/12/1971#

Dim age = 36

Dim people = New Person() {New Person("Todd"), New Person("Amy"), =
New Person("Alaina"), New Person("Aidan")}

If you hover your cursor over any of the variables in the preceding example in the Visual Studio IDE,
you will see a tool tip that shows that they are actually being strongly typed. name is inferred as a String,
birthday is a Date, age is an Integer, and, as shown in Figure 1-11, people is an array of Person objects.

When your code is compiled to Microsoft Intermediate Language (MSIL), all variables are
strongly typed. (See recipes 1-3 and 2-6 for more information about MSIL.) If you looked at this
compiled MSIL code using the MSIL Disassembler tool (Ildasm.exe), you would see that it has explic-
itly and correctly typed each variable. The following output was taken from the Ildasm.exe results for
the sample code shown previously.

.locals init ([0] int32 age,
[1] valuetype [mscorlib]System.DateTime birthday,

[2] string name,
[3] class Apress.VisualBasicRecipes.Examples.TypeInference/Person[] people,
[4] class Apress.VisualBasicRecipes.Examples.TypeInference/Person[] VB$t array$So)

CHAPTER 1 APPLICATION DEVELOPMENT

Imports System
Imports System.Ling
[E]Namespace Apress.VisualBasicRecipes.Examples

Public Class TypeInference

Public Class Person
Private m Name As String
= Public Sub New(ByVal name As String)
m Name = name

- End Sub

- End Class

= Public Shared Sub Main()
Dim name = "Todd"

Dim birthday = #7/12/1971#
Dim age = 36
Dim people = New Person() {New Person("Todd"), New Person("Zn

End Sub |pim people() As Apress.VisuaIBasicRecipes.E)(ampIes.TypeInference.Person|

- End Class

-End Namespace

Figure 1-11. A tool tip showing inferred type

Implicitly typing variables is an important part of creating and using LINQ queries, which are
discussed in further detail in Chapters 6, 7, and 8. It is also a required component of anonymous
types, which are discussed in recipe 1-21.

1-20. Use Object Initializers

Problem

You need to initialize the properties of a class when it is first instantiated, without relying on the class
constructor or default values in an effort to save some development time or support LINQ, which is
discussed in more detail in Chapter 6.

Solution

Instantiate a new class instance, and initialize any writable public fields or properties using the With
keyword.

How It Works

VB .NET 9.0 includes the ability to initialize the writable public fields or properties of a class when
it is first instantiated. When you use object initializers, the default constructor of the class is called
automatically. This means any class you want to use object initializers for must have a default
constructor. Any properties or fields that you do not initialize retain their default values.

Object initialization is made possible by using the With keyword. With is not new to VB .NET but
was not previously usable in this manner. Here is a simple example of a class:

4

42 CHAPTER 1 APPLICATION DEVELOPMENT

Public Class Person
Private m FirstName As String
Private m LastName As String

Public Sub New()
m_FirstName = String.Empty
m_LastName = String.Empty
End Sub

Public Property FirstName() As String
Get
Return m_FirstName
End Get
Set(ByVval value As String)
m_FirstName = value
End Set
End Property

Public Property LastName() As String
Get
Return m_LastName
End Get
Set(Byval value As String)
m_LastName = value
End Set
End Property

End Class
In previous versions of VB .NET, you would instantiate and set property values like this:

Dim todd = New Person

With todd
.FirstName = "Todd"
.LastName = "Herman"
End With

The other option, if you had access to modify the class, is to use constructors to pass the prop-
erty values. However, this method can become cumbersome quickly if you have a class with many
properties. You further complicate things if you use an array, like this:

Dim people As Person() = New Person(2) {New Person, New Person, New Person}

With people(0)
.FirstName = "Todd"
.LastName = "Herman"

End With

With people(1)
.FirstName = "Alaina"
.LastName = "Herman"
End With

CHAPTER 1 APPLICATION DEVELOPMENT 43

With people(2)
.FirstName = "Aidan'
.LastName = "Herman'

End With

Object initializers simplify this by allowing you to specify values during instantiation, like this:
Dim todd = New Person With {.FirstName = "Todd", .LastName = "Herman"}
or like this:

Dim people = New Person() {

{New Person With {.FirstName = "Todd", _
.LastName = "Herman"}, _

New Person With {.FirstName = "Amy", _
.LastName = "Herman"}, _

New Person With {.FirstName = "Alaina", _
.LastName = "Herman"}, _

New Person With {.FirstName = "Aidan", _
.LastName = "Herman"}}

Note Although it is not required, both of the preceding examples of object initialization use type inference (see
recipe 1-19), rather than relying on explicit typing.

As the examples show, you use the With keyword followed by a comma-delimited list of fields or
properties and their values. The objects being initialized and their values should be surrounded by
curly braces ({}). As shown in Figure 1-12, the VB 9.0 IDE provides IntelliSense for all objects that can
be initialized.

m FirstName = value

- End Set
- End Property
- Public Property LastName() As String
E Get
Return m LastName
End Get
= Set (ByVal value As String)
m LastName = value
- End Set
- End Property
- End Class
= Public Shared Sub Main()
Dim todd = New Person With {.FirstName = "Todd", .LastName =
Dim people = New Person() {New Person With {.tFirstName = "Tpo
"Hern
New Person Wit "Rmy
"Hern
New Person With {.FirstName = "Al:
.LastName = "Hern
New Person With {.FirstName = "Aic

Figure 1-12. IntelliSense for object initializers

44

CHAPTER 1 APPLICATION DEVELOPMENT

Object initializers are using anonymous types (see recipe 1-21) and making LINQ queries
concise and efficient.

1-21. Use Anonymous Types

Problem

You need to use a simple type class that doesn’t exist without actually creating it in an effort to save
some development time or support LINQ, which is discussed in more detail in Chapter 6.

Solution

Instantiate a class as you would normally, using the New keyword, but do not specify a type. You must
also use object initialization (see recipe 1-20) to specify at least one property.

How It Works

When you use the New keyword to instantiate an object, you typically specify the name of the type
you want to create. In VB 9.0, when you omit this name, the compiler automatically generates the
class for you. This class inherits from Object and overloads the ToString, GetHashCode, and Equals
methods. The overloaded version of ToString returns a string representing all the properties concat-
enated together. The overloaded Equals method returns True if all property comparisons are True
and there are the same number of properties in the same order with the same names.

Figure 1-13 shows the MSIL Disassembler tool (Ildasm.exe) displaying the MSIL that the compiler
would automatically generate for the following example (see recipes 1-3 and 2-6 for more informa-
tion about MSIL):

Dim person = New With {.FirstName = "Todd", .LastName = "Herman"}

y F\Programming\Visual Studio 2008\Visual Basic... &Iﬂlﬂ

File View Help

By F:i\Programmingvisual Studio 2008\isual Basic 2008 Recipes! TestinglAnonymousTypesibi
e b MANIFEST
Apress, YisualBasicRecipes . Examples

B .class private auto ansi
------- P .custom instance void [mscorlib]System. Runtime. CompilerServices . CompilerGene
------- P .custom instance void [mscorlib]System. Diagnostics, DebuggerDisplayattribute: ;.
------- & field $Firskname : private 10

------- 4 field $LastMame : private 11

------- B method .ctor : woid{1T0,1T1)

B method ToString : string()

B method get_Firstname : 1TO0)

------- B method get_LastMamme : 1T10)

------- B method set_Firstname @ woid{1T0)

------- B method set_LastMame @ void(1T1)

------- & prop Firstname : instance 10()

------- & prop Lasthame : instance 110)

M« 11 | »
| .assembly AnonymousTypes o
4 I

L A

Figure 1-13. MSIL Disassembler tool view of an anonymous type

CHAPTER 1 APPLICATION DEVELOPMENT

Creating anonymous types relies on several other new features of VB 9.0. As the name implies,
the real name of an anonymous type is unknown. You will not be able to access it directly by its name
and must rely on the variable used to first instantiate the class. This means you can’t explicitly cast
the person variable using As; you must rely on type inference (see recipe 1-19). Furthermore, an
anonymous type must have at least one property. Properties for anonymous types are created by
using object initializers (see recipe 1-20). The new version of Visual Studio fully supports the use of
anonymous types by correctly displaying appropriate IntelliSense, as shown in Figure 1-14.

Imports System
Imports System.Ling
[E]Namespace Apress.VisualBasicRecipes.Examples

Public Class AnonymousTypes

Public Shared Sub Main()

Dim person = New With {.Firstname = "Todd", .LastName = "Hern
Dim newPerson = person.|
End Sub It o N
“* Equals
ﬁ -
End Class . Firstname
¥ GetHashCode
“
End Namespace GetType
' LastName
‘% ReferenceEquals
¥ ToString

Common All

Figure 1-14. IntelliSense support for anonymous types

Anonymous types can also infer property names from object initializers, as in this example:
Dim person = New With {DateTime.Now, .FirstName = "Todd", .LastName = "Herman"}

In this case, the anonymous type created by the compiler would have the Now, FirstName, and
LastName properties.

Anonymous types are a powerful new feature available in VB 9.0 and are used extensively in
LINQ queries (see Chapters 6, 7, and 8) for returning strongly typed data.

1-22. Create and Use Extension Methods

Problem

You need to extend the functionality of a class without relying on inheritance or access to the
actual class.

Solution

Create the method (a Sub or Function) you want to add, and then apply the ExtensionAttribute
attribute to it.

45

46

CHAPTER 1 APPLICATION DEVELOPMENT

How It Works

The key to using extension methods is the attribute ExtensionAttribute, which is new to VB 9.0 and
located in the System.Runtime.CompilerServices namespace. You must apply this attribute to any
method that you want to use as an extension method. Furthermore, you can apply the attribute only
to methods defined within a Module.

An extension method extends the functionality of a specific class without actually modifying it.
The class being extended is referenced by the first parameter of the extension method. Because of
this, all extension methods musthave at least one parameter, and it must refer to the class being
extended.

<System.Runtime.CompilerServices.Extension()> _
Public Function Reverse(ByVal s As String) As String

Dim reversed As New Text.StringBuilder(s.Length)
Dim chars As Char() = s.ToCharArray

For count As Integer = chars.Length - 1 To 0 Step -1
reversed.Append(chars(count))
Next

Return reversed.ToString

End Function

The Reverse method is an extension method because it has the ExtensionAttribute attribute
applied to it. You also know that it extends the String class because the first parameter is a String.
Using an extension method is the same as calling any other method, and the Visual Studio IDE
supports this via IntelliSense, as shown in Figure 1-15.

For count As Integer = chars.Length - 1 To 0 S5tep -1
reversed.Append (chars (count))

Next

Return reversed.ToString

= End Function

- End Module
E Public Class TestExtensionMethod

Public Shared Sub Main()
Dim testString As String = "This is a test message!"™

testString.r

Console.f—) - - -
- End sub Bg Referencebquals Public Shared Function ReferenceEquals(objA A
% Remove Determines whether the specified System.Objec
@
- End Class N Replace
+ Reverse
“End Namespace Common
|

Figure 1-15. IntelliSense support for extension methods

CHAPTER 1 APPLICATION DEVELOPMENT

In the case of the preceding example, you would create a String and then call the Reverse
method, like this:

Dim testString As String = "This is a test message!"
Console.Writeline(testString.Reverse())

This would produce the following result:

legassem tset a si sihT

Itis perfectly legitimate to call an extension method directly. When used in this manner, the first
parameter of the method is used as an actual parameter. For example, you would get the same results
if you changed the example to this:

Console.WritelLine(Reverse(testString))

The preceding example is fairly simple but demonstrates how easy it is to extend the function-
ality of a class without directly modifying it. What makes extension methods even more powerful is
that they can also be used to extend base classes or even interfaces.

Extension methods are a key component of LINQ queries, which are covered in detail in
Chapters 6, 7, and 8.

1-23. Create and Use Lambda Expressions

Problem

You need to use an inline function, which is a single-line function that does not require a standard
function code block, in an effort to save some development time or support LINQ (discussed in more
detail in Chapter 6).

Solution

Create a lambda expression using the Function keyword, and use it directly or pass it as an argument
to a function that requires a delegate.

How It Works

To use asimple function, you typically start by creating the function. The following example takes an
Integer and multiplies it by itself:

Private Shared Function Square(ByVal num As Integer) As Integer
Return num * num
End Function

If you need to pass a function as an argument to some method, you could use a delegate. Dele-
gates are used extensively by events and threading (discussed in Chapter 4) and by LINQ (discussed
in Chapter 6). You accomplish this by using the Delegate keyword and using AddressOf to pass a
reference to the function, as shown here:

Delegate Function CalculateDelegate(ByVal num As Integer) As Integer

Private Shared Sub Calculate(ByVal num As Integer, ‘=

ByVal calculation As CalculateDelegate)
Console.WritelLine(calculation(num).ToString)

End Sub

47

CHAPTER 1 APPLICATION DEVELOPMENT

The previous delegate and method would be used like this:
Call Calculate(5, AddressOf Square)

In the previous example, the Calculate method will call the Square function that was passed to
it, using the number 5. This will result in the number 25 being written to the console.

Everything discussed earlier is how previous versions of VB .NET handle simple functions
and delegates. VB .NET 9.0 supports the same methodology but offers a very powerful alternative
for small functions that return a value from a single expression. This alternative is known as the
lambda expression.

Lambda expressions are inline functions that are based on a form of calculus with the same
name. The basic concept is to take the entire function and compress it into a single line. To do this
with the Square function shown earlier, you would create a statement that looks similar to this:

Function(num) num * num

The statement starts with the Function keyword that includes the list of required parameters
surrounded by parentheses. This isimmediately followed by the expression that must be a single line
that returns some value. The previous example can be simplified by deleting the Square function and
changing the execution statement to the following:

Call Calculate(5, Function(num) num * num)

This works because lambda expressions are, at their core, delegates. The compiler creates an
anonymous type (see recipe 1-21) that is instantiated and used by the receiving method. Figure 1-16
shows the generated anonymous delegate as shown in the MSIL Disassembler tool (Ildasm.exe).

y lambdaexpressions.exe -

File View Help

B4 lambdaexpressions.exe
MANIFEST
Apress, YisualBasicRecipes . Examples

legate Argl, TRe:
.class private auto ansi sealed
extends [mscorlib]System. MulticastDelegate

.custom instance void [mscorlib]System, Diagnostics, DebuggerDisplayattribute: ;. ctor{string) = { 0
.custom instance void [mscorlib]System, Runtime . Compiler Services, CompilerGeneratedattribute:
.ctor : woid{object, native ink)

BeginInvoke : class [mscorlib]System, IAsyncResulk(1 TArg0, class [mscorlib]System, AsyncCallback,
EndInvoke : 1TResulk{class [mscorlib]System, [asyncResult)

B Invoke : I TResult{! TArgl)

4

.assembly LambdaExpressions

4

Figure 1-16. MSIL Disassembler tool view of an anonymous delegate

CHAPTER 1 APPLICATION DEVELOPMENT 49

Lambda expressions can also be stored in a variable so it can be reused or more easily contained and
passed to some method. Since VB 9.0 supports anonymous types and type inference (see recipe 1-19),
you can leverage these features when using lambda expressions. For example, look at the following
statement:

Dim calc = Function(num As Integer) num * num

In the previous statement, calc will be inferred as an anonymous delegate that meets the signa-
ture specified by the lambda expression. If you do not explicitly type the num parameter, then the data
type for calc cannot be accurately inferred, resulting in an anonymous delegate whose parameters
and return types are Objects.

To make storing lambda expressions even easier, .NET 3.5 includes the System.Func generic
delegate. The Func delegate has five signatures that all include the data type of the returned value but
vary depending on the number of arguments supported, which ranges from 0 to 5. With this in mind,
you can change the previous example to use the Func delegate like this:

Dim calc As Func(Of Integer, Integer) = Function(num) num * num

The previous examples are all very basic in an attempt to simply explain the concepts of lambda
expressions. The following example is a little more advanced and provides a more in-depth look at
the power of lambda expressions:

Public Shared Sub Main()
' An array of numbers to be squared
Dim numList() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Console.Writeline("Lambda Test: Square an array of numbers")
Call Calculate(numList, Function(num) num * num)
Console.ReadlLine()

End Sub

" A method that executes the supplied function for each number
' in the supplied array.

Private Shared Sub Calculate(ByVal nums() As Integer, ‘=

ByVal calculation As Func(Of Integer, Integer))

For Each num In nums
' Execute the lambda expression supplied and display the
results to the console.
Console.Writeline(calculation(num).ToString)
Next

End Sub

In this example, an array of Integers and alambda expression to square numbers are passed to
the Calculate method. The method loops through each Integer in the array and executes the provided
lambda expression. The results would look similar to this:

50

CHAPTER 1 APPLICATION DEVELOPMENT

Lambda Test: Square an array of numbers
1
4
9
16
25
36
49
64
81

Note LINQ (discussed in further detail in Chapter 6) relies heavily on extension methods (see recipe 1-22) that
accept lambda expressions (in the form of a Func) as arguments.

CHAPTER 2

Data Manipulation

M ost applications need to manipulate some form of data. The Microsoft .NET Framework provides
many techniques that simplify or improve the efficiency of common data-manipulation tasks. The
recipes in this chapter cover the following:

2-1.

Manipulating the contents of strings efficiently to avoid the overhead of automatic string
creation due to the immutability of strings (recipe 2-1)

Representing basic data types using different encoding schemes or as byte arrays to allow you
to share data with external systems (recipes 2-2, 2-3, and 2-4)

Validating user input and manipulating string values using regular expressions (recipes 2-5
and 2-6)

Creating System.DateTime or System.DateTimeOffset objects from string values, such as those
that a user might enter, and displaying them as formatted strings (recipe 2-7)

Mathematically manipulating DateTime or DateTimeOffset objects in order to compare dates
or add/subtract periods of time from a date (recipe 2-8)

Converting dates and times across time zones (recipe 2-9)

Sorting the contents of an array or an ArraylList collection (recipe 2-10)
Copying the contents of a collection to an array (recipe 2-11)

Analyzing or manipulating the contents of an array (recipe 2-12)

Using the standard generic collection classes to instantiate a strongly typed collection
(recipe 2-13)

Using generics to define your own general-purpose container or collection class that will be
strongly typed when it is used (recipe 2-14)

Serializing object state and persisting it to a file (recipe 2-15)

Reading user input from the Windows console (recipe 2-16)

Manipulate the Contents of a String Efficiently

Problem

You need to manipulate the contents of a String object and want to avoid the overhead of automatic
String creation caused by the immutability of String objects.

51

52

CHAPTER 2 DATA MANIPULATION

Solution

Use the System.Text.StringBuilder class to perform the manipulations and convert the result to a
String object using the StringBuilder.ToString method.

How It Works

String objects in .NET are immutable, meaning that once they are created, their content cannot be
changed. If you build a string by concatenating a number of characters or smaller strings, the common
language runtime (CLR) will create a completely new String object whenever you add a new element to
the end of the existing string. Here is an example:

Dim testString as String
testString="Hello"

At this point, you have a String object named testString that contains the value "Hello". Since
strings are immutable, adding the statement testString=testString & " World" will resultin a new
String object being created. The testString object’s reference is changed to point to the newly
generated string, which creates a new object that contains the value "Hello World". This can result
in significant overhead if your application performs frequent string manipulation.

The StringBuilder class offers a solution by providing a character buffer and allowing you to
manipulate its contents without the runtime creating a new object as a result of every change. You
can create a new StringBuilder object that is empty or initialized with the content of an existing
String object. You can manipulate the content of the StringBuilder object using overloaded methods
that allow you to insert and append string representations of different data types. At any time, you
can obtain a String representation of the current content of the StringBuilder object by calling
StringBuilder.ToString.

Two important properties of StringBuilder control its behavior as you append new data: Capacity
and Length. Capacity represents the size of the StringBuilder buffer, and Length represents the
length of the buffer’s current content. If you append new data that results in the number of charac-
ters in the StringBuilder object (Length) exceeding the capacity of the StringBuilder object (Capacity),
the StringBuilder must allocate a new buffer to hold the data. The size of this new buffer is double
the size of the previous Capacity value. Used carelessly, this buffer reallocation can negate much of
the benefit of using StringBuilder. If you know the length of data you need to work with, or know an
upper limit, you can avoid unnecessary buffer reallocation by specifying the capacity at creation
time or setting the Capacity property manually. Note that 16 is the default Capacity property setting.
When setting the Capacity and Length properties, be aware of the following behavior:

* Ifyou set Capacity to a value less than the value of Length, the Capacity property throws the
exception System.ArgumentOutOfRangeException. The same exception is also thrown if you try
to raise the Capacity setting to more than the value of the MaxCapacity property. This should
not be a problem except if you want to allocate more than 2 gigabytes (GB).

» Ifyouset Length to a value less than the length of the current content, the content is truncated.

» Ifyouset Length to a value greater than the length of the current content, the buffer is padded
with spaces to the specified length. Setting Length to a value greater than Capacity automati-
cally adjusts the Capacity value to be the same as the new Length value.

The Code

The ReverseString method shown in the following example demonstrates the use of the StringBuilder
classtoreverse a string. If you did not use the StringBuilder class to perform this operation, it would
be significantly more expensive in terms of resource utilization, especially as the input string is made

CHAPTER 2 DATA MANIPULATION

longer. The method creates a StringBuilder object of the correct capacity to ensure that no buffer
reallocation is required during the reversal operation.

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 01

Public Shared Function ReverseString(ByVal str As String) As String
' Make sure we have a reversible string.

If str Is Nothing Or str.Length <= 1 Then
Return str

End If

' Create a StringBuilder object with the required capacity.

Dim revStr As StringBuilder = New StringBuilder(str.Length)

Convert the string to a character array so we can easily loop
through it.

Dim chars As Char() = str.ToCharArray()

' Loop backward through the source string one character at a time and

append each character to the StringBuilder.

For count As Integer = chars.length - 1 To 0 Step -1
revStr.Append(chars(count))

Next

Return revStr.ToString()
End Function

Public Shared Sub Main()
Console.WritelLine(ReverseString("Madam Im Adam"))

Console.WritelLine(ReverseString("The quick brown fox jumped ‘=
over the lazy dog."))

Wait to continue
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

53

54

CHAPTER 2 DATA MANIPULATION

2-2. Encode a String Using Alternate Character Encoding

Problem

You need to exchange character data with systems that use character-encoding schemes other than
UTF-16, which is the character-encoding scheme used internally by the CLR.

Solution

Use the System.Text.Encoding class and its subclasses to convert characters between different
encoding schemes.

How It Works

Unicode is not the only character-encoding scheme nor is UTF-16 the only way to represent Unicode
characters. When your application needs to exchange character data with external systems (partic-
ularly legacy systems) through an array of bytes, you may need to convert character data between
UTF-16 and the encoding scheme supported by the other system.

The MustInherit class Encoding and its concrete subclasses provide the functionality to convert
characters to and from a variety of encoding schemes. Each subclass instance supports the conver-
sion of characters between the instance’s encoding scheme and UTF-16. You obtain instances of the
encoding-specific classes using the Shared factory method Encoding.GetEncoding, which accepts
either the name or the code page number of the required encoding scheme.

Table 2-1 lists some commonly used character-encoding schemes and the code page number
you must pass to the GetEncoding method to create an instance of the appropriate encoding class.
The table also shows Shared properties of the Encoding class that provide shortcuts for obtaining the
most commonly used types of encoding objects.

Table 2-1. Character-Encoding Classes

Encoding Scheme Class Create Using

ASCII ASCIIEncoding GetEncoding(20127) or the ASCII property

Default (current Microsoft ~ Encoding GetEncoding(0) or the Default property

Windows default)

UTE-7 UTF7Encoding GetEncoding(65000) or the UTF7 property

UTE-8 UTF8Encoding GetEncoding(65001) or the UTF8 property

UTF-16 (Big Endian) UnicodeEncoding GetEncoding(1201) or the BigEndianUnicode
property

UTF-16 (Little Endian) UnicodeEncoding GetEncoding(1200) or the Unicode property

Once you have an Encoding object of the appropriate type, you convert a UTF-16 encoded
Unicode string to a byte array of encoded characters using the GetBytes method. Conversely, you
pass abyte array of encoded characters (such as UTF-8) to the GetString method, which will produce
a UTF-16 encoded Unicode string.

CHAPTER 2 DATA MANIPULATION

The Code
The following example demonstrates how to use some encoding classes:

Imports System
Imports System.IO
Imports System.Text.Encoding

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 02
Public Shared Sub Main()

Create a file to hold the output.
Using output As New StreamWriter("output.txt")
Create and write a string containing the symbol for pi.
Dim srcString As String = String.Format("Area = {0}r"2", =
ChrW(8H3A0))
output.Writeline("Source Text: " & srcString)
' Write the UTF-16 encoded bytes of the source string.
Dim utf16String As Byte() = Unicode.GetBytes(srcString)
output.Writeline("UTF-16 Bytes: {0}", w»
BitConverter.ToString (utf16String))

Convert the UTF-16 encoded source string to UTF-8 and ASCII.
Dim utf8String As Byte() = UTF8.GetBytes(srcString)
Dim asciiString As Byte() = ASCII.GetBytes(srcString)

" Write the UTF-8 and ASCII encoded byte arrays.

output.WriteLine("UTF-8 Bytes: {0}", =
BitConverter.ToString (utf8string))

output.WriteLine("ASCII Bytes: {0}", =
BitConverter.ToString (asciiString))

' Convert UTF-8 and ASCII encoded bytes back to UTF-16 encoded
string and write to the output file.
output.Writeline("UTF-8 Text: {0}", UTF8.GetString(utf8String))
output.Writeline("ASCII Text: {0}", ASCII.GetString(asciiString))
End Using

Wait to continue
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

Running the code will generate a file named output.txt. If you open this file in a text editor that
supports Unicode, you will see results similar to the following:

55

56

CHAPTER 2 DATA MANIPULATION

Source Text: Area = r"2

UTF-16 Bytes: 41-00-72-00-65-00-61-00-20-00-3D-00-20-00-A0-03-72-00-5E-00-32-00
UTF-8 Bytes: 41-72-65-61-20-3D-20-CE-A0-72-5E-32

ASCII Bytes: 41-72-65-61-20-3D-20-3F-72-5E-32

UTF-8 Text: Area = 12

ASCII Text: Area = 212

Notice that using UTF-16 encoding, each character occupies 2 bytes, but because most of the
characters are standard characters, the high-order byte is 0. (The use of little-endian byte ordering
means that the low-order byte appears first.) This means that most of the characters are encoded
using the same numeric values across all three encoding schemes. However, the numeric value for
the symbol pi (emphasized in bold in the preceding output) is different in each of the encodings.
Representing the value of pi requires more than 1 byte. UTF-8 encoding uses 2 bytes, but ASCII has
no direct equivalent and so replaces pi with the code 3F. As you can see in the ASCII text version of
the string, 3F is the symbol for an English question mark (?).

Gaution If you convert Unicode characters to ASCII or a specific code page-encoding scheme, you risk losing
data. Any Unicode character with a character code that cannot be represented in the scheme will be ignored or altered.

Notes

The Encoding class also provides the Shared method Convert to simplify the conversion of a byte
array from one encoding scheme to another without the need to manually perform an interim
conversion to UTF-16. For example, the following statement converts the ASCII-encoded bytes
contained in the asciiString byte array directly from ASCII encoding to UTF-8 encoding:

Dim utf8String As Byte() = Encoding.Convert(Encoding.ASCII,
Encoding.UTF8, asciiString)

2-3. Convert Basic Value Types to Byte Arrays

Problem

You need to convert basic value types to byte arrays.

Solution

The Shared methods of the System.BitConverter class provide a convenient mechanism for converting
most basic value types to and from byte arrays. An exception is the Decimal type. To convert a Decimal
type to or from a byte array, you need to use a System.I0.MemoryStream object.

How It Works

The Shared method GetBytes of the BitConverter class provides overloads that take most of the standard
value types and return the value encoded as an array of bytes. Support is provided for the Boolean, Char,
Double, Short, Integer, Long, Single, UShort, UInteger, and ULong data types. BitConverter also provides
a set of Shared methods that support the conversion of byte arrays to each of the standard value

types. These are named ToBoolean, ToInt32, ToDouble, and so on. When using the BitConverter class,

CHAPTER 2 DATA MANIPULATION

you may notice that some members include the values Int16, Int32, and Int64. These values are
simply an alternate way of saying Short, Integer, and Long, respectively.

Unfortunately, the BitConverter class does not provide support for converting the Decimal type.
Instead, write the Decimal type to aMemoryStream instance using a System.I0.BinaryWriter object,
and then call the MemoryStream. ToArray method. To create a Decimal type from a byte array, create a
MemoryStream object from the byte array and read the Decimal type from the MemoryStream object
using a System.I0.BinaryReader instance.

The Code

The following example demonstrates how to use BitConverter to convert a Boolean type and an
Integer type to and from a byte array. The second argument to each of the ToBoolean and ToInt32
methods is a zero-based offset into the byte array where the BitConverter should start taking the
bytes to create the data value. The code also shows how to convert a Decimal type to a byte array
using a MemoryStream object and a BinaryWriter object, as well as how to convert a byte array to a
Decimal type using a BinaryReader object to read from the MemoryStream object.

Imports System
Imports System.IO
Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02 03

Create a byte array from a decimal.
Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()
' Create a MemoryStream as a buffer to hold the binary data.
Using stream As New MemoryStream
' Create a BinaryWriter to write binary data to the stream.
Using writer As New BinaryWriter(stream)
" Write the decimal to the BinaryWriter/MemoryStream.
writer.Write(src)
' Return the byte representation of the decimal.
Return stream.ToArray
End Using
End Using

End Function

Create a decimal from a byte array.
Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal
' Create a MemoryStream containing the byte array.
Using stream As New MemoryStream(src)
' Create a BinaryReader to read the decimal from the stream.
Using reader As New BinaryReader(stream)
' Read and return the decimal from the
BinaryReader/MemoryStream.
Return reader.ReadDecimal
End Using
End Using

End Function

57

58 CHAPTER 2 DATA MANIPULATION

Public Shared Sub Main()
Dim b As Byte() = Nothing

Convert a boolean to a byte array and display.
b = BitConverter.GetBytes(True)
Console.WritelLine(BitConverter.ToString(b))

Convert a byte array to a boolean and display.
Console.WritelLine(BitConverter.ToBoolean(b, 0))

Convert an integer to a byte array and display.
b = BitConverter.GetBytes(3678)
Console.WritelLine(BitConverter.ToString(b))

Convert a byte array to integer and display.
Console.WritelLine(BitConverter.ToInt32(b, 0))

Convert a decimal to a byte array and display.
b = DecimalToByteArray(285998345545.563846696D)
Console.WritelLine(BitConverter.ToString(b))

Convert a byte array to a decimal and display.
Console.Writeline(ByteArrayToDecimal(b))

Wait to continue
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Tip The BitConverter.ToString method provides a convenient mechanism for obtaining a String repre-
sentation of a byte array. Calling ToString and passing a byte array as an argument will return a String object
containing the hexadecimal value of each byte in the array separated by a hyphen, for example, "34-A7-2C".
Unfortunately, there is no standard method for reversing this process to obtain a byte array from a string with this format.

Usage

Running the code will display the following results to the console:

01

True

5E-OE-00-00

3678
28-38-(1-50-FD-3B-06-81-0F-00-00-00-00-00-09-00
285998345545.563846696

Main method complete. Press Enter.

CHAPTER 2 DATA MANIPULATION

2-4. Base64 Encode Binary Data

Problem

You need to convert binary data into a form that can be stored as part of an ASCII text file (such as an
XML file) or sent as part of a text e-mail message.

Solution

Use the Shared methods ToBase64CharArray and FromBase64CharArray of the System.Convert class
to convert your binary data to and from a Base64-encoded Char array. If you need to work with the
encoded data as a string value rather than as a Char array, you can use the ToBase64String and
FromBase64String methods of the Convert class instead.

How It Works

Base64 is an encoding scheme that enables you to represent binary data as a series of ASCII characters so
that it can be included in text files and e-mail messages in which raw binary data is unacceptable. Base64
encoding works by spreading the contents of 3 bytes of input data across 4 bytes and ensuring each
byte uses only the 7 low-order bits to contain data. This means that each byte of Base64-encoded
data is equivalent to an ASCII character and can be stored or transmitted anywhere ASCII characters
are permitted. This process is not very efficient and can take a while to run on large amounts of data.

The ToBase64CharArray and FromBase64CharArray methods of the Convert class make it straightfor-
ward to Base64 encode and decode data. However, before Base64 encoding, you must convert your data
to a byte array. Similarly, when decoding, you must convert the byte array back to the appropriate data
type. (Seerecipe 2-2 for details on converting string data to and from byte arrays and recipe 2-3 for details
on converting basic value types.) The ToBase645tring and FromBase64String methods of the Convert class
deal with string representations of Base64-encoded data.

The Code

The example shown here demonstrates how to Base64 encode and decode a Byte array, a Unicode
String, an Integer type, and a Decimal type using the Convert class. The DecimalToBase64 and
Base64ToDecimal methods rely on the ByteArrayToDecimal and DecimalToByteArray methods listed
in recipe 2-3.

Imports System

Imports System.IO

Imports System.Text

Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02 04

Create a byte array from a decimal.
Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()
' Create a MemoryStream as a buffer to hold the binary data.
Using stream As New MemoryStream
' Create a BinaryWriter to write binary data to the stream.
Using writer As New BinaryWriter(stream)
" Write the decimal to the BinaryWriter/MemoryStream.
writer.Write(src)

59

60 CHAPTER 2 DATA MANIPULATION

Return the byte representation of the decimal.
Return stream.ToArray
End Using
End Using

End Function

Create a decimal from a byte array.
Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal
' Create a MemoryStream containing the byte array.
Using stream As New MemoryStream(src)
' Create a BinaryReader to read the decimal from the stream.
Using reader As New BinaryReader(stream)
' Read and return the decimal from
the BinaryReader/MemoryStream.
Return reader.ReadDecimal
End Using
End Using

End Function

' Base64 encode a Unicode string

Public Shared Function StringToBase64(ByVal src As String) As String
' Get a byte representation of the source string.

Dim b As Byte() = Encoding.Unicode.GetBytes(src)

' Return the Base64-encoded Unicode string.

Return Convert.ToBase64String(b)

End Function

' Decode a Baseb4-encoded Unicode string.

Public Shared Function Base64ToString(ByVal src As String) As String
' Decode the Base64-encoded string to a byte array.

Dim b As Byte() = Convert.FromBase64String(src)

' Return the decoded Unicode string.

Return Encoding.Unicode.GetString(b)

End Function

' Base64 encode a decimal

Public Shared Function DecimalToBase64(ByVal src As Decimal) As String
' Get a byte representation of the decimal.

Dim b As Byte() = DecimalToByteArray(src)

' Return the Base64-encoded decimal.

Return Convert.ToBase64String(b)

End Function

CHAPTER 2 DATA MANIPULATION 61

Decode a Baseb64-encoded decimal.
Public Shared Function Base64ToDecimal(ByVal src As String) As Decimal

' Decode the Base64-encoded decimal to a byte array.
Dim b As Byte() = Convert.FromBase64String(src)

' Return the decoded decimal.
Return ByteArrayToDecimal(b)

End Function

' Base64 encode an integer.

Public Shared Function IntToBase64(ByVal src As Integer) As String
' Get a byte representation of the integer.

Dim b As Byte() = BitConverter.CGetBytes(src)

' Return the Base64-encoded integer.

Return Convert.ToBase64String(b)

End Function

' Decode a Base64-encoded integer.

Public Shared Function Base64ToInt(ByVal src As String) As Decimal
' Decode the Base64-encoded integer to a byte array.

Dim b As Byte() = Convert.FromBase64String(src)

' Return the decoded integer.

Return BitConverter.ToInt32(b, 0)

End Function
Public Shared Sub Main()

Encode and decode a string
Console.Writeline(StringToBase64("Welcome to Visual Basic 2008 " & ‘=
"Recipes from Apress"))
Console.WriteLine(Base64ToString("VwB1AGWAYWBVAGOAZOAGAHOAbWAE" + =
"AFYAaQBzAHUAYQBsACAAQgBhAHMAaQBjACAAMgAWADAAOAAGAFIAZQBJAGKACABIAHMATABmA" + 'w»
"HIAbwBtACAAQQBWAHIAZQBZAHMA))

Encode and decode a decimal.
Console.WritelLine(DecimalToBase64(285998345545.563846696D))
Console.Writeline(Base64ToDecimal("KDjBUPO7BoEPAAAAAAATAA=="))

Encode and decode an integer.
Console.Writeline(IntToBase64(35789))
Console.WritelLine(Base64ToInt("zYsAAA=="))
" Wait to continue
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

62

CHAPTER 2 DATA MANIPULATION

End Class
End Namespace

2-5. Validate Input Using Regular Expressions

Problem

You need to validate that user input or data read from a file has the expected structure and content.
For example, you want to ensure that a user enters a valid IP address, telephone number, or e-mail
address.

Solution

Use regular expressions to ensure that the input data follows the correct structure and contains only
valid characters for the expected type of information.

How It Works

When a user inputs data to your application or your application reads data from a file, it’s good practice
to assume that the data is bad until you have verified its accuracy. One common validation require-
ment is to ensure that data entries such as e-mail addresses, telephone numbers, and credit card
numbers follow the pattern and content constraints expected of such data. Obviously, you cannot
be sure the actual data entered is valid until you use it, and you cannot compare it against values that
are known to be correct. However, ensuring the data has the correct structure and content is a good
first step to determining whether the input is accurate. Regular expressions provide an excellent
mechanism for evaluating strings for the presence of patterns, and you can use this to your advan-
tage when validating input data.

The first thing you must do is figure out the regular expression syntax that will correctly match
the structure and content of data you are trying to validate. This is by far the most difficult aspect
of using regular expressions. Many resources exist to help you with regular expressions, such
as The Regulator (http://regex.osherove.com/) by Roy Osherove and RegExDesigner.NET by
Chris Sells (http://www.sellsbrothers.com/tools/#regexd). The RegExLib.com web site (http://
www. regx1ib.com/) also provides hundreds of useful prebuilt expressions.

Regular expressions, which are case-sensitive, are constructed from two types of elements: literals
and metacharacters. Literals represent specific characters that appear in the pattern you want to
match. Metacharacters provide support for wildcard matching, ranges, grouping, repetition, condi-
tionals, and other control mechanisms. Table 2-2 describes some of the more commonly used
regular expression metacharacter elements. (Consult the .NET SDK documentation at http://
msdn2.microsoft.com/en-us/library/hs600312.aspx for a full description of regular expressions.)

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description

Specifies any character except a newline character (\n)
\d Specifies any digit
\D Specifies any nondigit

http://regex.osherove.com
http://www.sellsbrothers.com/tools/#regexd
http://www.regxlib.com
http://www.regxlib.com
http://msdn2.microsoft.com/en-us/library/hs600312.aspx
http://msdn2.microsoft.com/en-us/library/hs600312.aspx

CHAPTER 2 DATA MANIPULATION

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description

\s Specifies any whitespace character

\S Specifies any nonwhitespace character

\w Specifies any word character

\W Specifies any nonword character

n Specifies the beginning of the string or line
\A Specifies the beginning of the string

$ Specifies the end of the string or line

\z Specifies the end of the string

| Matches one of the expressions separated by the vertical bar; for example,
AAA|ABA|ABB will match one of AAA, ABA, or ABB (the expression is evaluated
left to right)

[abc] Specifies a match with one of the specified characters; for example, [AbC] will
match A, b, or C, but no other character

[*abc] Specifies a match with any one character except those specified; for example,
[~AbC] will not match A, b, or C, but will match B, F, and so on

[a-Z] Specifies a match with any one character in the specified range; for example, [A-C]
will match A, B, or C

[*a-z] Specifies a match with any one character not in the specified range; for example,
[~A-C] will not match A, B, or C but will match B and F

() Identifies a subexpression so that it’s treated as a single element by the regular
expression elements described in this table

? Specifies one or zero occurrences of the previous character or subexpression;
for example, A?B matches B and AB, but not AAB

* Specifies zero or more occurrences of the previous character or subexpression;
for example, A*B matches B, AB, AAB, AAAB, and so on

+ Specifies one or more occurrences of the previous character or subexpression;
for example, A+B matches AB, AAB, AAAB, and so on, but not B

{n} Specifies exactly n occurrences of the preceding character or subexpression;
for example, A{2} matches only AA and A{2}B matches only AAB

{n,} Specifies a minimum of n occurrences of the preceding character or subexpression;
for example, A{2, } matches AA, AAA, AAAA, and so on, but not A

{n, m} Specifies a minimum of n and a maximum of m occurrences of the preceding
character; for example, A{2,4} matches AA, AAA, and AAAA, but not A or AAAAA

The more complex the data you are trying to match, the more complex the regular expression
syntax becomes. For example, ensuring that input contains only numbers or is of a minimum length
is trivial, but ensuring a string contains a valid URL is extremely complex. Table 2-3 shows some
examples of regular expressions that match against commonly required data types.

63

64 CHAPTER 2 DATA MANIPULATION

Table 2-3. Commonly Used Regular Expressions

Input Type Description Regular Expression

Numeric input The input consists of one or more decimal digits; Md+$
for example, 5 or 5683874674.

Personal identification =~ The input consists of four decimal digits; for "\d{4}$

number (PIN) example, 1234.

Simple password The input consists of six to eight characters; for Mwi{6,8}$
example, ghtd6f or b8c7hogh.

Credit card number The input consists of data that matches the pattern ~ “\d{4}-?\d{4}-
of most major credit card numbers; for example, A\d{4}-21\d{4}$
4921835221552042 or 4921-8352-2155-2042.

E-mail address The input consists of an Internet e-mail address. A \w-1+@([\w-]+\.)+
The [\w-]+ expression indicates that each address [\w-]+%

element must consist of one or more word characters
or hyphens; for example, somebody@adatum.com.

HTTP or HTTPS URL The input consists of an HTTP-based or HTTPS- Ahttps?://([\w-1+\0)+
based URL; for example, http://www.apress.com. [\w-1+(/ [\w-./2%=]*)?%

Once you know the correct regular expression syntax, create a new System.Text.
RegularExpressions.Regex object, passing a string containing the regular expression to the Regex
constructor. Then call the IsMatch method of the Regex object and pass the string you want to vali-
date. IsMatchreturns a Booleanvalue indicating whether the Regex object found a match in the string.
The regular expression syntax determines whether the Regex object will match against only the full
string or match against patterns contained within the string. (See the *, \A, $, and \z entries in Table 2-2.)

The Code

The ValidateInput method shown in the following example tests any input string to see whether it
matches a specified regular expression.

Imports System
Imports System.Text.RegularExpressions
Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02 05

Public Shared Function ValidateInput(ByVal expression As String, ‘=
ByVal input As String) As Boolean

Create a new Regex based on the specified regular expression.
Dim r As New Regex(expression)

Test if the specified input matches the regular expression.
Return r.IsMatch(input)

End Function

mailto:somebody@adatum.com
http://www.apress.com

CHAPTER 2 DATA MANIPULATION

Public Shared Sub Main(ByVal args As String())
' Test the input from the command line. The first argument is the

regular expression, and the second is the input.

Console.WritelLine("Regular Expresion: {0}", args(0))

Console.WritelLine("Input: {0}", args(1))

Console.Writeline("valied = {0}", ValidateInput(args(0), args(1)))

" Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

To execute the example, run Recipe02-05.exe, and pass the regular expression and data to test as
command-line arguments. For example, to test for a correctly formed e-mail address, type the
following:

Recipe02-05 ~[\w-]+@([\w-]+\.)+[\w-]+$ myname@mydomain.com

The result would be as follows:

Regular Expression: ~[\w-]+@([\w-]+\.)+[\w-]+$
Input: myname@mydomain.com
Valid = True

Notes

You can use a Regex object repeatedly to test multiple strings, but you cannot change the regular
expression tested for by a Regex object. You must create a new Regex object to test for a different
pattern. This is because the ValidateInput method creates a new Regex instance each time it’s called. A
more suitable alternative, in this case, would be to use a Shared overload of the IsMatch method, as
shown in the following variant of the ValidateInput method:

' Alternative version of the ValidateInput method that does not create
Regex instances.

Public Shared Function ValidateInput(ByVal expression As String, ‘=

ByVal input As String) As Boolean

Test if the specified input matches the regular expression.
Return Regex.IsMatch(input, expression)

End Function
2-6. Use Compiled Regular Expressions

Problem

You need to minimize the impact on application performance that arises from using complex
regular expressions frequently.

65

mailto:myname@mydomain.com
mailto:myname@mydomain.com

66

CHAPTER 2 DATA MANIPULATION

Solution

When you instantiate the System. Text.RegularExpressions.Regex object that represents your regular
expression, specify the Compiled option of the System.Text.RegularExpressions.RegexOptions enumer-
ation to compile the regular expression to Microsoft Intermediate Language (MSIL).

How It Works

By default, when you create a Regex object, the regular expression pattern you specify in the constructor
is compiled to an intermediate form (not MSIL). Each time you use the Regex object, the runtime
interprets the pattern’s intermediate form and applies it to the target string. With complex regular
expressions that are used frequently, this repeated interpretation process can have a detrimental
effect on the performance of your application.

By specifying the RegexOptions.Compiled option when you create a Regex object, you force the
.NET runtime to compile the regular expression to MSIL instead of the interpreted intermediary
form. This MSIL is just-in-time (JIT) compiled by the runtime to native machine code on first execu-
tion, just like regular assembly code. Subsequent calls to the same RegEx object will use the native
version that was previously compiled. You use a compiled regular expression in the same way as you
use any Regex object; compilation simply results in faster execution.

However, a couple downsides offset the performance benefits provided by compiling regular
expressions. First, the JIT compiler needs to do more work, which will introduce delays during JIT
compilation. This is most noticeable if you create your compiled regular expressions as your appli-
cation starts up. Second, the runtime cannot unload a compiled regular expression once you have
finished with it. Unlike as with a normal regular expression, the runtime’s garbage collector will not
reclaim the memory used by the compiled regular expression. The compiled regular expression will
remain in memory until your program terminates or you unload the application domain in which
the compiled regular expression is loaded. If you plan to use a RegEx object only once, there is no
reason to compile it. Use compiling only for situations where a RegEx object is used frequently.

As well as compiling regular expressions in memory, the Shared Regex.CompileToAssembly method
allows you to create a compiled regular expression and write it to an external assembly. This means
you can create assemblies containing standard sets of regular expressions, which you can use from
multiple applications. To compile a regular expression and persist it to an assembly, take the
following steps:

1. Create a System.Text.RegularExpressions.RegexCompilationInfo array large enough to
hold one RegexCompilationInfo object for each of the compiled regular expressions you
want to create.

2. Create a RegexCompilationInfo object for each of the compiled regular expressions. Specify
values for its properties as arguments to the object constructor. The following are the most
commonly used properties:

* Pattern, a String value that specifies the pattern that the regular expression will match
(see recipe 2-5 for more details)

* Options, aSystem.Text.RegularExpressions.RegexOptions value that specifies options for
the regular expression

* Name, a String value that specifies the class name
* Namespace, a String value that specifies the namespace of the class

e IsPublic,aBooleanvalue that specifies whether the generated regular expression class has
Public visibility

CHAPTER 2 DATA MANIPULATION

3. Create a System.Reflection.AssemblyName object. Configure it to represent the name of the
assembly that the Regex.CompileToAssembly method will create.

4. Execute Regex.CompileToAssembly, passing the RegexCompilationInfo array and the
AssemblyName object.

This process creates an assembly that contains one class declaration for each compiled regular
expression—each class derives from Regex. To use the compiled regular expression contained in the
assembly, instantiate the regular expression you want to use, and call its method as ifyou had simply
created it with the normal Regex constructor. (Remember to add a reference to the assembly when
you compile the code that uses the compiled regular expression classes.)

The Code

This line of code shows how to create a Regex object that is compiled to MSIL instead of the usual
intermediate form:

Dim reg As New Regex("[\w-]+@([\w-]+\.)+[\w-]+", RegexOptions.Compiled)

The following example shows how to create an assembly named MyRegEx.dll, which contains
two regular expressions named PinRegex and CreditCardRegex:

Imports System
Imports System.Reflection
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 06

Public Shared Sub Main()
' Create the array to hold the Regex info objects.
Dim regexInfo(1) As RegexCompilationInfo

Create the RegexCompilationInfo for PinRegex.
regexInfo(0) = New RegexCompilationInfo("~\d{4}$", =
RegexOptions.Compiled, "PinRegex", "Apress.VisualBasicRecipes.Chapter02", True)
' Create the RegexCompilationInfo for CreditCardRegex.
regexInfo(1) = New RegexCompilationInfo(‘=
"Md{4}-2\d{4}-?\d{4}-?\d{4}$", RegexOptions.Compiled, "CreditCardRegex", =
"Apress.VisualBasicRecipes.Chaptero2", True)
' Create the AssemblyName to define the target assembly.
Dim assembly As New AssemblyName("MyRegEx")
' Create the compiled regular expression.
Regex.CompileToAssembly(regexInfo, assembly)

End Sub

End Class
End Namespace

67

68

CHAPTER 2 DATA MANIPULATION

Usage

When you want to use your new assembly, you must first add a reference to it to your project. You
can do this from within the Visual Studio interface or by using the /r:MyRegEx.d11 option of the
command-line compiler.

Once you have a reference to the assembly in your project, you can easily create a reference to
the compiled regular expressions contained inside, as shown in this example:

Dim pinRegExp As New PinRegex
2-7. Create Dates and Times from Strings

Problem

You need to create a System.DateTime or System.DateTimeOffset instance that represents the time
and date specified in a string.

Solution

Use the Parse/TryParse or ParseExact/TryParseExact methods of the DateTime or DateTimeOffset
structure.

CGaution Many subtle issues are associated with using the DateTime and DateTimeOffset structures to
represent dates and times in your applications. Although the Parse and ParseExact methods, as well as the
TryParse and TryParseExact counterparts, create DateTime or DateTimeOffset objects from strings as
described in this recipe, you must be careful how you use the resulting objects within your program. See the article titled
“Coding Best Practices Using DateTime in the .NET Framework” (http://msdn.microsoft.com/netframework/
default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp) for details about the prob-
lems you might encounter. This article does not cover the DateTimeOffset structure specifically, but most of it
still applies since the two structures are so closely related.

How It Works

Dates and times can be represented as text in many different ways. For example, January 12 1975,
1/12/1975, and Jan-12-1975 are all possible representations of the same date, and 18:19 and 6:19
p-m. can both be used to represent the same time. The Shared DateTime.Parse method provides a
flexible mechanism for creating DateTime instances from a wide variety of string representations.

The Parse method goes to great lengths to generate a DateTime object from a given string. It will
even attempt to generate aDateTime object from a string containing partial or erroneous information
and will substitute defaults for any missing values. Missing date elements default to the current date,
and missing time elements default to 12:00:00 a.m. After all efforts, if Parse cannot create aDateTime
object, it throws a System.FormatException exception.

The Parse method is both flexible and forgiving. However, for many applications, this level of
flexibility is unnecessary. Often, you will want to ensure that DateTime parses only strings that match
a specific format. In these circumstances, use the ParseExact method instead of Parse. The simplest
overload of the ParseExact method takes three arguments: the time and date string to parse, a format
string that specifies the structure that the time and date string must have, and an IFormatProvider
reference that provides culture-specific information to the ParseExact method. If the IFormatProvider
value is Nothing, the current thread’s culture information is used.

http://msdn.microsoft.com/netframework/default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp
http://msdn.microsoft.com/netframework/default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp

CHAPTER 2 DATA MANIPULATION

The time and date must meet the requirements specified in the format string, or ParseExact will
throw a System.FormatException exception. You use the same format specifiers for the format string
as you use to format a DateTime object for display as a string. This means you can use both standard
and custom format specifiers.

The DateTime structure also offers the TryParse and TryParseExact methods. These methods
behave just like Parse and ParseExact, but they do not throw an exception if the String parameter
cannot be parsed. Instead, both functions return a Boolean that determines whether the parsing was
successful. If the parsing was successful, the resulting DateTime object will be saved to the ByRef
parameter that was passed to the function.

The .NET Framework 3.5 introduces the new DateTimeOffset structure as an alternative to the
DateTime structure. Although these structures are nearly identical, DateTimeOffset allows you to
specify by how much the date and time differ from Coordinated Universal Time (UTC). The Offset
property, which is read-only, is used to retrieve this value as a TimeSpan whose Hour property can
range from -14 to 14.

The Code

The following example demonstrates the flexibility of the Parse method and how to use the ParseExact
method. Refer to the documentation for the System.Globalization.DateTimeFormatInfo class in the
NET Framework SDK document for complete details on all available format specifiers.

Imports System

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 07

Public Shared Sub Main(ByVal args As String())

' 1st January 1975 at 00:00:00
Dim dt1 As DateTime = DateTime.Parse("Jan 1975")

' 12th January 1975 at 18:19:00
Dim dt2 As DateTime = DateTime.Parse("Sunday 12 January 1975 18:19:00")

' 12th January 1975 at 00:00:00
Dim dt3 As DateTime = DateTime.Parse("1,12,1975")

' 12th January 1975 at 18:19:00
Dim dt4 As DateTime = DateTime.Parse("1/12/1975 18:19:00")

' Current Date at 18:19 showing UTC offset for local time zone
Dim dt5 As DateTimeOffset = DateTimeOffset.Parse("6:19 PM")

' Current Date at 18:19 showing an offset of -8 hours from UTC.
Dim dt6 As DateTimeOffset = DateTimeOffset.Parse("6:19 PM -8")

' Date set to minvalue to be used later by TryParse
Dim dt7 As DateTime = DateTime.MinValue

Display the converted DateTime objects.
Console.WritelLine(dt1)
Console.WritelLine(dt2)
Console.WritelLine(dt3)
Console.WritelLine(dt4)

69

70

CHAPTER 2 DATA MANIPULATION

Console.WritelLine(dt5)
Console.WritelLine(dt6)
' Try to parse a nondatetime string.
If Not DateTime.TryParse("This is an invalid date", dt7) Then
Console.WritelLine("Unable to parse.")
Else
Console.Writeline(dt7)
End If

Parse only strings containing LongTimePattern.
Dim dt8 As DateTime = DateTime.ParseExact("6:19:00 PM", w»
"h:mm:ss tt", Nothing)

Parse only strings containing RFC1123Pattern.
Dim dt9 As DateTime = DateTime.ParseExact("Sun, 12 Jan 1975" & w»
"18:19:00 GMT", "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'", Nothing)

Parse only strings containing MonthDayPattern.
Dim dt10 As DateTime = DateTime.ParseExact("January 12", "MMMM dd", w»
Nothing)

Display the converted DateTime objects.
Console.WritelLine(dt8)
Console.WritelLine(dt9)
Console.WritelLine(dt10)

" Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-8. Add, Subtract, and Compare Dates and Times

Problem

You need to perform basic arithmetic operations or comparisons using dates and times.

Solution

Use the DateTime and TimeSpan structures, which support standard arithmetic and comparison
operators.

How It Works

A DateTime instance represents a specific time (such as 4:15 a.m. on September 5, 1970), whereas a
TimeSpan instance represents a period of time (such as 2 hours, 35 minutes). You may want to add,
subtract, and compare TimeSpan and DateTime instances.

CHAPTER 2 DATA MANIPULATION

Internally, both DateTime and TimeSpan use ficks to represent time. A tick is equal to 100 nano-
seconds. TimeSpan stores its time interval as the number of ticks equal to that interval, and DateTime
stores time as the number of ticks since 12:00:00 midnight on January 1 in 0001 C.E. (C.E. stands for
Common Era and is equivalent to A.D. in the Gregorian calendar.) This approach and the use of oper-
ator overloading makes it easy for DateTime and TimeSpan to support basic arithmetic and comparison

operations. Table 2-4 summarizes the operator support provided by the DateTime and TimeSpan

structures.

Table 2-4. Operators Supported by DateTime and TimeSpan

Operator

TimeSpan

DateTime

Assignment (=)

Addition (+)

Subtraction (-)

Equality (=)

Inequality (<>)

Greater than (>)

Greater than or

equal to (>=)

Less than (<)

Less than or
equal to (<=)

Unary negation (-)

Unary plus (+)

Because TimeSpan is a structure,
assignment returns a copy and
not areference.

Adds two TimeSpan instances.

Subtracts one TimeSpan instance
from another TimeSpan instance.

Compares two TimeSpan instances
and returns true if they are equal.

Compares two TimeSpan instances
and returns true if they are not
equal.

Determines if one TimeSpan
instance is greater than another
TimeSpan instance.

Determines if one TimeSpan
instance is greater than or equal
to another TimeSpan instance.

Determines whether one TimeSpan
instance is less than another
TimeSpan instance.

Determines whether one TimeSpan
instance is less than or equal to
another TimeSpan instance.

Returns a TimeSpan instance with
a negated value of the specified
TimeSpan instance.

Returns the TimeSpan instance
specified.

Because DateTime is a structure,
assignment returns a copy and
not a reference.

Adds aTimeSpan instance to a
DateTime instance.

Subtracts a TimeSpan instance or a
DateTime instance from a DateTime
instance.

Compares two DateTime instances
and returns true if they are equal.

Compares two DateTime instances

and returns true if they are not equal.

Determines whether one DateTime
instance is greater than another
DateTime instance.

Determines whether one DateTime
instance is greater than or equal to
another DateTime instance.

Determines whether one DateTime
instance is less than another
DateTime instance.

Determines whether one DateTime
instance is less than or equal to
another DateTime instance.

Not supported.

Not supported.

The DateTime structure also implements the AddTicks, AddMilliseconds, AddSeconds, AddMinutes,

AddHours, AddDays, AddMonths, and AddYears methods. Each of these methods, which accept a Double
as opposed to a TimeSpan, allows you to add (or subtract using negative values) the appropriate element
of time to a DateTime instance. These methods and the noncomparison operators listed in Table 2-4
do not modify the original DateTime; instead, they create a new instance with the modified value.

|

72

CHAPTER 2 DATA MANIPULATION

The Code

The following example demonstrates how to use operators to manipulate the DateTime, DateTimeOffset,
and TimeSpan structures. The DateTimeOffset structure, first discussed in recipe 2-7, is a new structure
that replicates most of the functionality available in the DateTime structure while adding the functionality
to handle time zone offsets. Since these two structures are so similar, everything mentioned earlier
regarding the DateTime structure applies to the DateTimeOffset structure.

Imports System
Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 08

Public Shared Sub Main()
' Create a TimeSpan representing 2.5 days.

Dim timespanl As New TimeSpan(2, 12, 0, 0)

' Create a TimeSpan representing 4.5 days.

Dim timespan2 As New TimeSpan(4, 12, 0, 0)

' Create a TimeSpan representing 1 week.

Dim oneweek As TimeSpan = timespanl + timespan2

' Create a DateTime with the current date and time.

Dim now As DateTime = DateTime.Now

' Create a DateTime representing 1 week ago.

Dim past As DateTime = now - oneweek

' Create a DateTime representing 1 week in the future.

Dim future As DateTime = now + oneweek

' Create a DateTime representing the next day using
' the AddDays method.

Dim tomorrow As DateTime = now.AddDays(1)

Display the DateTime instances.

Console.WritelLine("Now : {0}", now)
Console.WriteLine("Past : {0}", past)
Console.WritelLine("Future : {0}", future)

Console.WriteLine("Tomorrow : {0}", tomorrow)
Console.WritelLine(Environment.NewlLine)

' Create various DateTimeOffset objects using the same
methods demonstrated above using the DateTime structure.
Dim nowOffset As DateTimeOffset = DateTimeOffset.Now

Dim pastoffset As DateTimeOffset = nowOffset - oneweek

Dim futureOffset As DateTimeOffset = nowOffset + oneweek
Dim tomorrowoffset As DateTimeOffset = nowOffset.AddDays(1)

CHAPTER 2 DATA MANIPULATION

' Change the offset used by nowOffset to -8 (which is Pacific
' Standard Time).
Dim nowPST As DateTimeOffset = nowOffset.ToOffset(New TimeSpan(-8, =

0, 0))
Display the DateTimeOffset instances.
Console.WritelLine("Now (with offset) : {0}", nowOffset)
Console.WritelLine("Past (with offset) : {0}", pastoffset)
Console.WriteLine("Future (with offset) : {0}", futureOffset)
Console.WritelLine("Tomorrow (with offset) : {0}", tomorrowoffset)
Console.WritelLine(Environment.NewlLine)
Console.WritelLine("Now (with offset of -8) : {0}", nowPST)
' Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()
End Sub
End Class

End Namespace
2-9. Convert Dates and Times Across Time Zones

Problem

You need to work with dates and times in different time zones and be able to convert between them.

Solution

Use one of the conversion methods (ConvertTime, ConvertTimeBySystemTimeZoneld,
ConvertTimeFromUtc, or ConvertTimeToUtc) of the new TimeZoneInfo class.

How It Works

Previous versions of .NET included the TimeZone class, which was used to represent a world time
zone for a given date and time. Although this was useful, the class was severely limited because it was
able to represent only the local time zone. Furthermore, conversions were limited to the local time
zone and UTC.

The .NET Framework 3.5 introduces the NotInheritable TimeZoneInfo class, which adds impor-
tant functionality that is missing from the TimeZone class. Table 2-5 shows some of the properties (all
of which are ReadOnly) and methods of the TimeZoneInfo class.

Table 2-5. Properties and Methods of the TimeZonelnfo Class

Member Description
Properties
BaseUtcOffset Returns a TimeSpan that represents the difference between

the zone’s time and Coordinated Universal Time (UTC).

DaylightName Returns the daylight saving time name for the time zone,
such as “Eastern Daylight Time” or “Pacific Daylight Time.”

73

74

CHAPTER 2

DATA MANIPULATION

Table 2-5. Properties and Methods of the TimeZonelnfo Class (Continued)

Member Description

DisplayName Returns a general name for the time zone, such as
“(GMT-05:00) Eastern Time (US & Canada)” or
“(GMT-08:00) Pacific Time (US & Canada).”

Id Returns the unique identifier for the time zone as defined
by the operating system. In most cases, this value is the
same as the StandardName.

Local Returns an instance of a TimeZoneInfo class that represents
the local time zone.

StandardName Returns the standard name for the time zone, such as

SupportsDaylightSavingTime

Utc

Methods

ConvertTime

ConvertTimeBySystemTimeZoneId

ConvertTimeFromUtc

ConvertTimeToUtc
CreateCustomTimeZone

FindSystemTimeZoneById

FromSerializedString

GetAdjustmentRules

GetSystemTimeZones

GetUtcOffset

IsDaylightSavingTime

ToSerializedString

“Eastern Standard Time” or “Pacific Standard Time.”

Returns whether any daylight saving time rules are
defined for the time zone.

Returns an instance of a TimeZoneInfo class that repre-
sents the UTC time zone.

Converts the specified time to the time zone specified by
the supplied TimeZoneInfo object.

Converts the specified time to the time zone that corre-
sponds to the supplied time zone identifier (see Id earlier
in the table).

Converts the specified time from UTC to the time zone
specified by the supplied TimeZoneInfo object.

Converts the specified time to UTC.
Allows the creation of a new time zone.

Returns a TimeZoneInfo object that was retrieved from the
system registry using the supplied time zone identifier.

Returns a TimeZoneInfo object based on a TimeZoneInfo
object that was previously serialized using the
ToSerializedString method.

Returns an array of AdjustmentRule objects for the
current TimeZoneInfo instance. An AdjustmentRule object
is typically used to specify when daylight saving time
occurs.

Returns a collection of TimeZoneInfo objects that were
retrieved from the system registry.

Returns a TimeSpan that represents the offset between the
current TimeZoneInfo instance and UTC.

Returns True or False depending on whether the current
TimeZoneInfo instance is observing daylight saving time
during the specified date and time.

Returns a serialized String representation of the current
TimeZoneInfo instance.

CHAPTER 2 DATA MANIPULATION

Similar to the older TimeZone class, TimeZoneInforepresents some time zone, but itis not limited
to UTC or the local time zone. A TimeZoneInfo instance can refer to any time zone that is defined
in the system registry. If a time zone is required that does not exist in the registry, a custom
TimeZoneInfo object can be created using the CreateCustomTimeZone function. You can save and then
reuse this custom time zone by using the ToSerializedString and FromSerializedString functions,
respectively.

The TimeZoneInfo class does not include a constructor, and it is immutable, which means it
cannot be modified once it has been instantiated. You create new instances of the TimeZoneInfo class
by using one of the four available conversion methods: ConvertTime, ConvertTimeBySystemTimeZoneld,
ConvertTimeFromUtc, or ConvertTimeToUtc.

The ConvertTime method includes three overloads. The first overload accepts a DateTime object
(which represents the date and time to be converted) and a TimeZoneInfo object (which represents
the time zone to convert the supplied data and time to). This overload returns a new DateTime object
that reflects the converted date and time.

The second overload is identical to the first one mentioned earlier, butit accepts aDateTimeOffset
object (refer to recipes 2-7 and 2-8 for more information), instead of a DateTime object. Also, the
return type is a DateTimeOffset object.

The third overload behaves like the first, accepting a DateTime object, but it provides an extra
parameter to supply a second TimeZoneInfo object. The first TimeZoneInfo parameter represents the
time zone of the supplied DateTime object, while the second represents the time zone to which the
supplied date and time should be converted.

The ConvertTimeBySystemTimeZoneId method is nearly identical to the ConvertTime method.
They both have the three overloads that perform equivalent conversions. The only difference is that
ConvertTimeBySystemTimeZoneId accepts String parameters instead of TimeZoneInfo objects. The
String objects represent an identifier that is used to retrieve specific TimeZoneInfo data from the
system registry and return an appropriate TimeZoneInfo instance.

The ConvertTimeFromUtc has only one version that accepts a DateTime object (which repre-
sents the date and time to be converted) and a TimeZoneInfo object (which represents the time
zone to convert the supplied date and time to). This method returns the converted date and time
as aDateTime object.

The last conversion method, ConvertTimeToUtc, has only two overloads. The first accepts only a
DateTime objectrepresenting the date and time to convert. In this case, the method assumes the supplied
date and time is in the local time zone. The second overload allows you to specify a TimeZoneInfo
instance that represents the time zone of the supplied DateTime object. The converted date and time
are returned as a DateTime object.

The Code

The following example demonstrates multiple ways to retrieve TimeZoneInfo objects and convert dates
and times between different time zones using the different conversion methods mentioned earlier:

Imports System

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 09

Public Shared Sub Main()

Create a TimeZoneInfo object for the local time zone.
Dim localTimeZone As TimeZoneInfo = TimeZoneInfo.local

75

CHAPTER 2 DATA MANIPULATION

Create a TimeZoneInfo object for Coordinated Universal
' Time (UTC).
Dim utcTimeZone As TimeZoneInfo = TimeZoneInfo.Utc
' Create a TimeZoneInfo object for Pacific Standard Time (PST).
Dim pstTimeZone As TimeZoneInfo = ‘w»
TimeZoneInfo.FindSystemTimeZoneById("Pacific Standard Time")
' Create a DateTimeOffset that represents the current time.
Dim currentTime As DateTimeOffset = DateTimeOffset.Now

Display the local time and the local time zone.
If localTimeZone.IsDaylightSavingTime(currentTime) Then
Console.WritelLine("Current time in the local time zone ({0}):", =
localTimeZone.DaylightName)
Else
Console.Writeline("Current time in the local time zone ({0})", =
localTimeZone. StandardName)
End If
Console.WritelLine(" {0}", currentTime.ToString())
Console.WriteLine(Environment.NewLine)

Display the results of converting the current local time
' to Coordinated Universal Time (UTC).
If utcTimeZone.IsDaylightSavingTime(currentTime) Then
Console.WriteLine("Current time in {0}:", utcTimeZone.DaylightName)
Else
Console.Writeline("Current time in {0}:", utcTimeZone.StandardName)
End If
Console.WriteLine(" {0}", TimeZoneInfo.ConvertTime(currentTime, w»
utcTimeZone))
Console.WritelLine(Environment.NewLine)
' Create a DateTimeOffset object that represents the current local time
converted to the Pacific Stanard Time time zone.
Dim pstDTO As DateTimeOffset = TimeZoneInfo.ConvertTime(currentTime,ws

pstTimeZone)

Display the results of the conversion.
If pstTimeZone.IsDaylightSavingTime(currentTime) Then
Console.WriteLine("Current time in {0}:", pstTimeZone.DaylightName)
Else
Console.Writeline("Current time in {0}:", pstTimeZone.StandardName)
End If
Console.WriteLine(" {0}", pstDTO).ToString()

Display the previous results converted to Coordinated
Universal Time (UTC).
Console.WriteLine(" {0} (Converted to UTC)", w»
TimeZoneInfo.ConvertTimeToUtc(pstDTO.DateTime, pstTimeZone))
Console.WriteLine(Environment.NewLine)

CHAPTER 2 DATA MANIPULATION

Create a DateTimeOffset that represents the current local time

converted to Mountain Standard Time using the

ConvertTimeBySystemTimeZoneId method. This conversion works

but it is best to create an actual TimeZoneInfo object so

you have access to determine if it is daylight saving time or not.
Dim mstDTO As DateTimeOffset = w»

TimeZoneInfo.ConvertTimeBySystemTimeZoneIld(currentTime, "Mountain Standard Time")

Display the results of the conversion
Console.WritelLine("Current time in Mountain Standard Time:")
Console.WritelLine(" {0}", mstDTO.ToString())
Console.WritelLine(Environment.NewlLine)

' Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-10. Sort an Array or an ArrayList

Problem

You need to sort the elements contained in an array or an ArraylList structure.

Solution

Use the ArraylList.Sort method to sort ArrayList objects and the Shared Array.Sort method to
sort arrays.

How It Works

The simplest Sort method overload sorts the objects contained in an array or ArraylList structure as
long as the objects implement the System.IComparable interface and are of the same type. All the
basic data types implement IComparable. To sort objects that do not implement IComparable, you
must pass the Array.Sort method an object that implements the System.Collections.IComparer
interface. The IComparer implementation must be capable of comparing the objects contained
within the array or ArraylList. (Recipe 15-3 describes how to implement both comparable types.)

Note Visual Studio 2008 introduces a new feature known as Language Integrate Query (LINQ). LINQ provides
the functionality for querying, sorting, and converting arrays and collections. This is covered in more detail in
Chapter 6.

77

78

CHAPTER 2 DATA MANIPULATION

The Code
The following example demonstrates how to use the Sort methods of the ArraylList and Array classes:

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 10

Public Shared Sub Main()

' Create a new array and populate it.
Dim arrayl As Integer() = {4, 2, 9, 3}
' Sort the array.
Array.Sort(arrayl)

Display the contents of the sorted array.
For Each i As Integer In arrayl
Console.Writeline(i.ToString)
Next
' Create a new Arraylist and populate it.
Dim list1 As New ArraylList(3)
list1.Add("Amy")
list1.Add("Alaina")
list1.Add("Aidan")
" Sort the Arraylist.
list1.Sort()

Display the contents of the sorted Arraylist.
For Each s As String In list1
Console.WritelLine(s)
Next
' Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 2 DATA MANIPULATION

2-11. Copy a Collection to an Array

Problem

You need to copy the contents of a collection to an array.

Solution

Use the ICollection.CopyTo method implemented by all collection classes. Alternatively, you can
use the ToArray method implemented by the ArraylList, Stack, and Queue collections, as well as their
respective generic versions List (0f T), Stack(0f T), and Queue (Of T). Refer to recipe 2-14 for more
information regarding generics.

How It Works

The ICollection.CopyTo method and the ToArray method perform roughly the same function: they
perform a copy of the elements contained in a collection to an array. Both of these methods perform
only a shallow copy, which means that the data in memory is simply copied from one location to
another rather than the target object’s Copy method being called, which is referred to as a deep copy.
The key difference is that CopyTo copies the collection’s elements to an existing array, whereas
ToArray creates a new array before copying the collection’s elements into it.

The CopyTo method takes two arguments: an array and an index. The array is the target of the
copy operation and must be of a type appropriate to handle the elements of the collection. If the
types do not match, or no implicit conversion is possible from the collection element’s type to the
array element’s type, a System.InvalidCastException exception is thrown. The index is the starting
element of the array where the collection’s elements will be copied. If the index is equal to or greater
than the length of the array, or the number of collection elements exceeds the capacity of the array,
a System.ArgumentException exception is thrown.

The Arraylist, Stack, and Queue classes and their generic versions (mentioned earlier) also
implement the ToArray method, which automatically creates an array of the correct size to accom-
modate a copy of all the elements of the collection. If you call ToArray with no arguments, it returns
an Object() array, regardless of the type of objects contained in the collection. For convenience, the
ArraylList.ToArray method has an overload to which you can pass a System. Type object that specifies
the type of array that the ToArray method should create. (You must still cast the returned strongly
typed array to the correct type.) The layout of the array’s contents depends on which collection class
you are using. For example, an array produced from a Stack object will be inverted compared to the
array generated by an ArraylList object.

The Code

This example demonstrates how to copy the contents of an ArrayList structure to an array using the
CopyTo method and then shows how to use the ToArray method on the ArraylList object:

Imports System
Imports System.Collections
Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02 11

Public Shared Sub Main()

80

CHAPTER 2 DATA MANIPULATION

Create a new Arraylist and populate it.
Dim list As New Arraylist(3)
list.Add("Amy")

list.Add("Alaina")

list.Add("Aidan")

' Create a string array and use the ICollection.CopyTo method
to copy the contents of the Arraylist.

Dim array1(list.Count - 1) As String

list.CopyTo(array1, 0)

Use Arraylist.ToArray to create an object array from the
contents of the collection.

Dim array2 As Object() = list.ToArray()

' Use Arraylist.ToArray to create a strongly typed string

array from the contents of the collection.

Dim array3 As String() = DirectCast(list.ToArray(GetType(String)), =

String())

Display the contents of the 3 arrays.
Console.WritelLine("Array 1:")
For Each s As String In arrayl
Console.Writeline(vbTab + "{0}", s)
Next

Console.WritelLine("Array 2:")

For Each s As String In array2
Console.Writeline(vbTab + "{0}", s)

Next

Console.WritelLine("Array 3:")

For Each s As String In array3
Console.Writeline(vbTab + "{0}", s)

Next

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-12. Manipulate or Evaluate the Contents of an Array

Problem

You need to perform actions on the contents of an array, such as the following:

e Determining whether an array contains any data

* Determining whether an array contains any elements that meet a specific condition

CHAPTER 2 DATA MANIPULATION

¢ Determining whether all elements of an array meet a specific condition

e Reversing the order of the contents

Solution

Use the appropriate methods (such as All, Any, and Reverse) of the System.Linqg.Enumerable class to
perform the desired action.

How It Works

The NET Framework 3.5 introduces the NotInheritable class System.Ling. Enumerable, which contains a
long list of special Shared methods, some of which are shown in Table 2-6, called extension methods
(which are discussed in recipe 1-22). The majority of these methods extend the IEnumerable(0f T)
interface, which means they can be used with any object, such as Array, List(0f T), and Stack(0f T),
that implements that interface.

The methods found in the Enumerable class provide the underlying support for Language Inte-
grated Query (LINQ). LINQ is a powerful new feature in Visual Studio 2008 that provides the ability
to query and manipulate data stored in a variety of sources (such as databases, objects, and XML
files). Although this chapter covers some of the new extension methods used by LINQ, that is not the
focus of this recipe. LINQ is covered in detail in Chapter 6, so this recipe will focus on only a few of
the available methods.

Table 2-6. Some Useful Extension Methods from the Enumerable Class

Method Description

All Returns True or False depending on whether all elements in the source data
meet the specified condition.

Any Returns True or False depending on whether any element in the source data
meets the specified condition.

Average Returns a numeric value representing the average of each element in the source
data. This is covered in more detail in recipe 6-7.

Cast Returns an IEnumerable(0f T), where T is the specified type. Each element in the
source data is converted to the specified type first. This is covered in more detail
in recipe 6-15.

Concat Returns an IEnumerable(Of T) containing all the elements, from both data sources
specified, combined.

Contains Returns True or False depending on whether the specified data source contains
the specified data.

Distinct Returns an IEnumerable(Of T) containing only the distinct, or nonrepeating,
elements from the data source. This is covered in more detail in recipe 6-1.

ElementAt Returns the element of the data source that corresponds to the specified index.
This is covered in more detail in recipe 6-12.

First Returns the first element in the data source. This is covered in more detail in
recipe 6-12.

GroupBy Returns an IEnumerable(Of IGrouping(Of TKey, TElement)) containing data

from multiple data sources grouped by the specified condition. This is covered
in more detail in recipe 6-10.

81

CHAPTER 2 DATA MANIPULATION

Table 2-6. Some Useful Extension Methods from the Enumerable Class (Continued)

Method Description

Join Returns an IEnumerable(Of T) containing data from multiple sources joined by
the specified condition. This is covered in more detail in recipe 6-11.

Last Returns the last element in the data source. This is covered in more detail in
recipe 6-12.

Max Returns the maximum numeric value in the data source. This is covered in more

detail in recipe 6-9.

Min Returns the minimum numeric value in the data source. This is covered in more
detail in recipe 6-9.

OrderBy Returns an I0rderdedEnumerable (OF T) containing all the elements from the data
source ordered by the specified key. This is covered in more detail in recipe 6-4.

Reverse Returns an IEnumerable(OF T) containing all the elements from the source
collection but in reverse order.

Select The basis for performing queries. This is covered in more detail in recipe 6-3.

Skip Returns an IEnumerable(0f T) containing all elements from the data source

except for the number of elements specified, starting from the first. This is
covered in more detail in recipe 6-13.

Sum Returns a numeric value that represents the sum of each element in the data
source. This is covered in more detail in recipe 6-7.

Take Returns an IEnumerable(Of T) containing the specified number of elements
from the data source, starting from the first. This is covered in more detail in
recipe 6-13.

Where Returns an IEnumerable (Of T) containing data from the data source that has been

filtered using the specified condition. This is covered in more detail in recipe 6-5.

The A1l method is used to determine whether all elements in the current IEnumerable(0f T)
instance meet the specified condition. The only required parameter is the condition to check for,
which is represented as a lambda expression (see recipe 1-23). The supplied lambda expression,
which takes the form of a Func(0f T, Boolean), is automatically run against each element in the
source data. If all elements meet the set condition, True is returned.

The Any method has two versions. The first version, with no parameters, simply returns True or
False depending on whether the current IEnumerable(0Of T) instance contains any data. The second
version resembles the A11 method but performs the opposite function. It takes a lambda expression,
in the form of a Func(0f T, Boolean), but True is returned if any of the elements in the source data
meet the specified condition.

The Reverse method returns an IEnumerable(Of T) in reverse order. No sorting is actually
performed; rather, the sequence is simply reversed.

The Code

This example demonstrates how to use some of the new extension methods mentioned earlier. To
make things a little easier, the sample data uses an array of anonymous types (recipe 1-21).

CHAPTER 2 DATA MANIPULATION

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 12

Public Shared Sub Main()
' For the record, references to Battlestar Galactica
are courtesy of the SciFi channel.

Create sample data. For simplicity, the data consists of an
array of anonymous types that contain three properties:
Name (a String), CallSign (a String) and Age (an Integer).
Dim galactica() = { _
New With {.Name = "William Adama", _
.Callsign = "Husker", _
.Age = 65}, _
New With {.Name = "Saul Tigh", _
.Callsign = Nothing, _
.Age = 83}, _
New With {.Name = "Lee Adama", _
.Callsign = "Apollo", _
.Age = 30}, _
New With {.Name = "Kara Thrace", _
.Callsign = "Starbuck", _
.Age = 28}, _
New With {.Name = "Gaius Baltar", _
.Callsign = Nothing, _
Age = 42}}

Variables used to store results of Any and All methods.
Dim anyResult As Boolean
Dim allResult As Boolean

Display the contents of the galactica array.
Console.Writeline("Galactica Crew:")
For Each crewMember In galactica
Console.WritelLine(" {0}", crewMember.Name)
Next
Console.WritelLine(Environment.NewlLine)
' Determine if the galactica array has any data.
anyResult = galactica.Any

Display the results of the previous test.
Console.WriteLine("Does the array contain any data: ")
If anyResult Then

Console.Write("Yes")
Else

Console.Write("No")
End If
Console.WriteLine(Environment.NewlLine)

83

84

CHAPTER 2

Is Nothing)

DATA MANIPULATION

Determine if any members have nothing set for the
CallSign property, using the Any method.
anyResult = galactica.Any(Function(crewMember) crewMember.callsign w»

Display the results of the previous test.
Console.WritelLine("Do any crew members NOT have a callsign: ")
If anyResult Then

Console.Write("Yes")
Else
Console.Write("No")
End If
Console.WriteLine(Environment.NewLine)
' Determine if all members of the array have an Age property
greater than 40, using the All method.
allResult = galactica.All(Function(crewMember) crewMember.Age > 40)

Display the results of the previous test.
Console.WritelLine("Are all of the crew members over 40: ")
If allResult Then

Console.Write("Yes")
Else

Console.Write("No")
End If
Console.WritelLine(Environment.NewLine)

Display the contents of the galactica array in reverse.
Console.Writeline("Galactica Crew (Reverse Order):")
For Each crewMember In galactica.Reverse
Console.Writeline(" {0}", crewMember.Name)
Next
' Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-13. Use a Strongly Typed Collection

Problem

You need a collection that works with elements of a specific type so that you do not need to work
with System.Object references in your code.

Solution

Use the appropriate collection class from the System.Collections.CGeneric namespace. When you
instantiate the collection, specify the type of object the collection should contain using the generics
syntax that was first introduced in .NET Framework 2.0.

CHAPTER 2 DATA MANIPULATION

How It Works

The generics functionality added to .NET Framework 2.0 and supported by specific syntax in VB
.NET 9.0 make it easy to create type-safe collections and containers (see recipe 2-14). To meet the
most common requirements for collection classes, the System.Collections.Generic namespace
contains a number of predefined generic collections, including the following:

e Dictionary

e LinkedList

e List

* Queue

e Stack

When you instantiate one of these collections, you specify the type of object that the collection
will contain by using the 0f keyword with the type name in parentheses after the collection name,
such asinDictionary(Of System.Reflection.AssemblyName). As aresult, all members that add objects
to the collection expect the objects to be of the specified type, and all members that return objects
from the collection will return object references of the specified type. Using strongly typed collec-
tions and working directly with objects of the desired type simplifies development and when working

with general Object references and casting them to the desired type. It also reduces errors since the
user of generics will reveal most casting issues at compile time rather than runtime.

The Code

The following example demonstrates the use of generic collections to create a variety of collections
specifically for managing AssemblyName objects. Notice that you never need to cast to or from the
Object type.

Imports System
Imports System.Reflection
Imports System.Collections.Generic
Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 13
Public Shared Sub Main()

Create an AssemblyName object for use during the example.
Dim assemblyl As New AssemblyName("com.microsoft.crypto, " & w
"Culture=en, PublicKeyToken=a5d015c7d5a0b012, Version=1.0.0.0")

Create and use a Dictionary of AssemblyName objects.
Dim assemblyDictionary As New Dictionary(Of String, AssemblyName)

assemblyDictionary.Add("Crypto", assembly1)
Dim ass1 As AssemblyName = assemblyDictionary("Crypto")

Console.WriteLine("Got AssemblyName from dictionary: {0}", w»
CType(ass1, AssemblyName).ToString)

85

86

CHAPTER 2 DATA MANIPULATION

Create and use a list of AssemblyName objects.
Dim assemblylList As New List(Of AssemblyName)

assemblylist.Add(assembly1)
Dim ass2 As AssemblyName = assemblylist(0)

Console.WritelLine(vbCrLf & "Got AssemblyName from list: {o}", =
CType(ass2, AssemblyName).ToString)

Create and use a stack of AssemblyName objects.
Dim assemblyStack As New Stack(Of AssemblyName)

assemblyStack.Push(assembly1)
Dim ass3 As AssemblyName = assemblyStack.Pop

Console.WritelLine(vbCrLf & "Popped AssemblyName from stack: {0}", w»
CType(ass3, AssemblyName).ToString)

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-14. Create a Generic Type

Problem

Youneed to create a new general-purpose type such as a collection or container that supports strong
typing of the elements it contains.

Solution

Define your class using the generics syntax, first introduced in .NET Framework 2.0, provided in
VB .NET 9.0.

How It Works

You can leverage the generics capabilities of VB .NET 9.0 in any class you define. This allows you to
create general-purpose classes that can be used as type-safe instances by other programmers. When
you declare your type, you identify it as a generic type by following the type name with a list of iden-
tifiers for the types used in the class, preceded by the Of keyword and enclosed in parentheses. Here
is an example:

Public Class MyGeneric(Of T1, T2, T3)
End Class

CHAPTER 2 DATA MANIPULATION 87

This declaration specifies a new class named MyGenericType, which uses three generic types in
its implementation (T1, T2, and T3). When implementing the type, you substitute the generic type
names into the code instead of using specific type names. For example, one method might take an
argument of type T1 and return a result of type T2, as shown here:

Public Function MyGenericMethod(ByVal arg As T1) As T2
End Function

When other people use your class and create an instance of it, they specify the actual types to
use as part of the instantiation. Here is an example:

Dim obj As New MyGenericType(Of String, System.IO.Stream, String)

The types specified replace T1, T2, and T3 throughout the implementation, so with this instance,
MyGenericMethod would actually be compiled as follows:

Public Function MyGenericMethod(ByVal arg As String) As Stream
End Function

You can also include constraints as part of your generic type definition. This allows you to make
specifications such as the following:

e Only value types or only reference types can be used with the generic type.

e Only types that implement a default (empty) constructor can be used with the generic type.
e Only types that implement a specific interface can be used with the generic type.

¢ Only types that inherit from a specific base class can be used with the generic type.

¢ One generic type must be the same as another generic type (for example, T1 must be the same
as T3).

For example, to specify that T1 must implement the System. IDisposable interface and provide
a default constructor, that T2 must be or derive from the System.I0.Stream class, and that T3 mustbe
the same type as T1, change the definition of MyGenericType as follows:

Public Class MyGenericType(Of T1 As {IDisposable}, T2 As {System.IO.Stream}, w»
T3 As {T1})
End Class

The Code

The following example demonstrates a simplified bagimplementation that returns those objects put
into itatrandom. A bagis a data structure that can contain zero or more items, including duplicates
of items, but does not guarantee any ordering of the items it contains.

Imports System
Imports System.Collections.Generic
Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Bag(Of T)
" A list to hold the bag's contents. The list must be
" of the same type as the bag.
Private items As New List(Of T)

' A method to add an item to the bag.

Public Sub Add(Byval item As T)
items.Add(item)

End Sub

88 CHAPTER 2 DATA MANIPULATION

A method to remove a random item from the bag.
Public Function Remove() As T
Dim item As T = Nothing

If Not items.Count = 0 Then
' Determine which item to remove from the bag.
Dim r As New Random
Dim num As Integer = r.Next(0, items.Count)
' Remove the item.
item = items(num)
items.RemoveAt(num)
End If

Return item

End Function
" A method to remove all items from the bag and return them
' as an array.

Public Function RemoveAll() As T()

Dim 1 As T() = items.ToArray()
items.Clear()
Return i

End Function

End Class
Public Class Recipe02 14

Public Shared Sub Main()
' Create a new bag of strings.
Dim bag As New Bag(Of String)

' Add strings to the bag.
bag.Add("Amy")
bag.Add("Alaina")
bag.Add("Aidan")
bag.Add("Robert")
bag.Add("Pearl")
bag.Add("Mark")
bag.Add("Karen")

' Take four strings from the bag and display.
Console.WritelLine("Item 1 = {0}", bag.Remove())
Console.WritelLine("Item 2 = {0}", bag.Remove())
Console.WritelLine("Item 3 = {0}", bag.Remove())
Console.WritelLine("Item 4 = {0}", bag.Remove())
Console.Writeline(vbCrLf)

CHAPTER 2 DATA MANIPULATION

Remove the remaining items from the bag.
Dim s As String() = bag.RemoveAll

Display the remaining items.
For i As Integer = 0 To s.lLength - 1

Console.WritelLine("Item {0} = {1}", i + 1.ToString, s(i))
Next

Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-15. Store a Serializable Object to a File

Problem

You need to store a serializable object and its state to a file, and then deserialize it later.

Solution

Use a formatterto serialize the object and write it to a System.I0.FileStream object. When you need
to retrieve the object, use the same type of formatter to read the serialized data from the file and
deserialize the object. The .NET Framework class library includes the following formatter imple-
mentations for serializing objects to binary or SOAP format:

e System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

e System.Runtime.Serialization.Formatters.Soap.SoapFormatter

How It Works

Using the BinaryFormatter and SoapFormatter classes, you can serialize an instance of any serializ-
able type. (See recipe 15-1 for details on how to make a type serializable.) The BinaryFormatter class
produces a binary data stream representing the object and its state. The SoapFormatter class produces
a SOAP document. SOAP is an XML-based protocol used to exchange messages over the network.
SOAP is used as the primary mechanism for communicating with web services. Refer to recipes 12-13,
12-14, and 12-15 for more information about web services.

Both the BinaryFormatter and SoapFormatter classes implement the interface System.Runtime.
Serialization.IFormatter, which defines two methods: Serialize and Deserialize. The Serialize
method takes a System.I0.Stream reference and a System.Object reference as arguments, serializes
the Object, and writes it to the Stream. The Deserialize method takes a Streamreference as an argu-
ment, reads the serialized object data from the Stream, and returns an Object reference to a deserialized
object. You must cast the returned Object reference to the correct type.

89

90

CHAPTER 2 DATA MANIPULATION

Caution Tocall the Serialize and Deserialize methods of the BinaryFormatter class, your code must
be granted the SecurityPermissionFlag.SerializationFormatter permission. To call the Serialize
and Deserialize methods of the SoapFormatter class, your code must be granted full trust, because the
System.Runtime.Serialization.Formatters.Soap.dl1l assembly in which the SoapFormatter class is
declared does not allow partially trusted callers. Refer to recipe 13-1 for more information about assemblies and
partially trusted callers.

The Code

The example shown here demonstrates how to use both BinaryFormatter and SoapFormatter to
serialize a System.Collections.ArraylList object containing alist of people to a file. The ArraylList
object is then deserialized from the files and the contents displayed to the console. A reference to the
System.Runtime.Serialization.Formatters.Soap assembly may need to be added to your project
before it can be used.

Imports System

Imports System.IO

Imports System.Collections

Imports System.Runtime.Serialization.Formatters.Soap
Imports System.Runtime.Serialization.Formatters.Binary

Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02_ 15
' Serialize an Arraylist object to a binary file.
Private Shared Sub BinarySerialize(ByVal list As Arraylist)

Using str As FileStream = File.Create("people.bin")
Dim bf As New BinaryFormatter()
bf.Serialize(str, list)

End Using

End Sub

Deserialize an Arraylist object from a binary file.
Private Shared Function BinaryDeserialize() As Arraylist
Dim people As ArraylList = Nothing

Using str As FileStream = File.OpenRead("people.bin")
Dim bf As New BinaryFormatter()
people = DirectCast(bf.Deserialize(str), Arraylist)
End Using
Return people

End Function

Serialize an Arraylist object to a SOAP file.
Private Shared Sub SoapSerialize(ByVal list As Arraylist)

CHAPTER 2 DATA MANIPULATION

Using str As FileStream = File.Create("people.soap")
Dim sf As New SoapFormatter()
sf.Serialize(str, list)

End Using

End Sub

Deserialize an Arraylist object from a SOAP file.
Private Shared Function SoapDeserialize() As Arraylist
Dim people As ArraylList = Nothing

Using str As FileStream = File.OpenRead("people.soap")
Dim sf As New SoapFormatter()
people = DirectCast(sf.Deserialize(str), ArraylList)
End Using
Return people

End Function
Public Shared Sub Main()

Create and configure the Arraylist to serialize.
Dim people As New Arraylist
people.Add("Alex")
people.Add("Dave")
people.Add("Matthew")
people.Add("Robb")

' Serialize the list to a file in both binary and SOAP format.
BinarySerialize(people)
SoapSerialize(people)

Rebuild the lists of people form the binary and SOAP
serializations and display them to the console.

Dim binaryPeople As ArraylList = BinaryDeserialize()

Dim soapPeople As Arraylist = SoapDeserialize()

Console.WriteLine("Binary People:")
For Each s As String In binaryPeople
Console.WritelLine(vbTab & s)

Next

Console.WriteLine(vbCrLf & "SOAP People:")

For Each s As String In soapPeople
Console.WritelLine(vbTab & s)

Next

" Wait to continue.

Console.WriteLine(vbCrLf & "Main method complete. Press Enter")

Console.ReadlLine()

End Sub

End Class
End Namespace

91

92

CHAPTER 2 DATA MANIPULATION

Usage

To illustrate the different results achieved using the BinaryFormatter and SoapFormatter classes,
Figure 2-1 shows the contents of the people.bin file generated using the BinaryFormatter class,
and Figure 2-2 shows the contents of the people.soap file generated using the SoapFormatter class.

gooooooo 00 01 00 00 00 FF FF FFOFF O1 00 00 00 00 00 00 ..o

gooooolo 00 04 01 00 OO0 0O 1C 53 79 73 74 65 6D 2ZE 43 6F System.Co
oooooozo eC BC 65 B3 74 B9 BF BE 73 ZE 41 Y2 72 61 79 4C llections.hArravLl
oooooo3o 69 Y3 74 03 00 00 00 06 5SF 69 74 65 6D 73 05 5F ist..... _items._

oooooo40 73 B9 FA BS 08 SF 76 BS 72 V3 69 BF BE 05 00 00 size._version...
ooooooso 08 08 09 02 00 00 00 04 00 OO0 00 04 00 00 00 10 ..o

ooooooe0 02 00 OO0 0O O4 00 OO0 OO 06 O3 0O OO0 0O 04 41 BC ... Al
oooooo7o0 65 Y68 06 04 00 00 00 04 44 61 76 65 06 05 00 00 ex...... Dave....
ooooooso 00 07 4D el 74 Y4 68 65 77 06 Ob OO0 00 00 04 52 .. .Matthew...... R
0oooooso eF B2 62 OB obhb.

Figure 2-1. Contents of the people.bin file

[C]<SORP-ENV:Envelope xmlns:xsi="http://www.w3.orqg/2001/XMLSchema-insf
E(SOAP—ENV: Body>
—J<al:ArraylList id="ref-1" xmlns:al="http://schemas.microsoft.com/cl:
< _items href="#ref-2"/>
< size>d4</ size>
< version>4</ version>
F</al:ArrayList>
[C]<SORP-ENC:Array id="ref-2" SOAP-ENC:arrayType="xsd:anyType[4]">
<item id="ref-3" xsi:type="SORP-ENC:string">Alex</item>
<item id="ref-4" xsi:type="SORP-ENC:string">Dave</item>
<item id="ref-5" xsi:type="SORP-ENC:string">Matthew</item>
<item id="ref-6" xsi:type="SORP-ENC:string">Robb</item>
</SORP-ENC:Array>
</SORP-ENV:Body>
L </SOAP-ENV:Envelope>

Figure 2-2. Contents of the people.soap file
2-16. Read User Input from the Console

Problem

You want to read user input from the Windows console, either a line or character at a time.

Solution

Use the Read or ReadLine method of the System.Console class to read input when the user presses
Enter. To read input without requiring the user to press Enter, use the Console.ReadKey method.

How It Works

The simplest way to read input from the console is to use the Shared Read or ReadLine methods of the
Console class. These methods will cause your application to block, waiting for the user to enter input
and press Enter. In both instances, the user will see the input characters in the console. Once the
user presses Enter, the Read method will return an Integer value representing the next character of
input data or -1 if no more data is available. Since Read reads only one character, it must be called

CHAPTER 2 DATA MANIPULATION 93

repeatedly to continue capturing user input. The ReadLine method will return a string containing all
the data entered or an empty string if no data was entered.

The ReadKey method provides a way to read input from the console without waiting for the user
to press Enter. It waits for the user to press a key and returns a System.ConsoleKeyInfo object to the
caller. By passing True as an argument to an overload of the ReadKey method, you can also prevent
the key pressed by the user from being echoed to the console.

The returned ConsoleKeyInfo object contains details about the key pressed. The details are
accessible through the properties of the ConsoleKeyInfo class summarized in Table 2-7.

Table 2-7. Properties of the ConsoleKeyInfo Class

Property Description

Key Gets a value of the System.ConsoleKey enumeration representing the key pressed.
The ConsoleKey enumeration contains values that represent all the keys usually
found on a keyboard. These include all the character and function keys; navigation
and editing keys such as Home, Insert, and Delete; and more modern specialized
keys such as the Windows key, media player control keys, browser activation keys,
and browser navigation keys.

KeyChar Gets a Char value containing the Unicode character representation of the key
pressed. Special keys such as Insert, Delete, and F1 through F12 do not have a
Unicode representation and will return Nothing.

Modifiers Gets a bitwise combination of values from the System.ConsoleModifiers enumer-
ation that identifies one or more modifier keys pressed simultaneously with the
console key. The members of the ConsoleModifiers enumeration are Alt, Control,
and Shift.

The KeyAvailable method of the Console class returns a Boolean value indicating whether input
is available in the input buffer without blocking your code.

The Code

The following example reads input from the console one character at a time using the ReadKey method.
If the user presses F1, the program toggles in and out of “secret” mode, where input is masked by
asterisks. When the user presses Escape, the console is cleared and the input the user has entered is
displayed. If the user presses Alt-X or Alt-x, the example terminates.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02 16
Public Shared Sub Main()
" Local variable to hold the key entered by the user.
Dim key As ConsoleKeyInfo
' Control whether character or asterisk is displayed.
Dim secret As Boolean = False

94 CHAPTER 2 DATA MANIPULATION

Character list for the user data entered.
Dim input As New List(Of Char)
Dim msg As String = "Enter characters and press Escape to see input." w
& vbCrLf & "Press F1 to enter/exit Secret mode and Alt-X to exit."

Console.WritelLine(msg)

' Process input until the users presses Alt-X or Alt-x.
Do
Read a key from the console. Intercept the key so that it is not
' displayed to the console. What is displayed is determined later
depending on whether the program is in secret mode.
key = Console.ReadKey(True)
' Switch secret mode on and off.
If key.Key = ConsoleKey.F1 Then
If secret Then
' Switch secret mode off.
secret = False
Else
' Switch secret mode on.
secret = True
End If
End If

If key.Key = ConsoleKey.Backspace Then
Handle Backspace.
If input.Count > 0 Then
' Backspace pressed remove the last character.
input.RemoveAt (input.Count - 1)

Console.Write(key.KeyChar)
Console.Write(" ")
Console.Write(key.KeyChar)
End If
' Handle Escape.
ElseIf key.Key = ConsoleKey.Escape Then
Console.Clear()
Console.WriteLine("Input: {0}{1}{1}", New w»
String(input.ToArray), vbCrLf)
Console.Writeline(msg)
input.Clear()
' Handle character input.
ElseIf key.Key >= ConsoleKey.A And key.Key <= ConsoleKey.Z Then
input.Add(key.KeyChar)

CHAPTER 2 DATA MANIPULATION 95

If secret Then
Console.Write("*")

Else
Console.Write(key.KeyChar)

End If

End If

Loop While Not key.Key = ConsoleKey.X Or Not key.Modifiers = w»
ConsoleModifiers.Alt

Wait to continue.
Console.WriteLine("{0}{0}Main method complete. Press Enter", vbCrLf)
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 3

Application Domains, Reflection,
and Metadata

When an application is run on an operating system, it is given its own private space, typically
referred to as a process. This process ensures that different applications don’t interfere with each
other. The common language runtime (CLR) does the same thing within a .NET application but
using application domains, which can be thought of as subprocesses. Although each application
(including .NET applications) running in the operating system executes in a single process, .NET
applications themselves can have one or more application domains.

Aside effect, however, is that information cannot be easily shared between application domains
or processes. .NET offers the perfect solution for this in the form of reflection, which provides a means to
dynamically load information from assemblies running in different application domains. The infor-
mation that can be loaded by reflection can be any available metadata (such as attributes, types,
available methods, and so on) that is contained in the target assembly.

The recipes in this chapter cover the following:

Controlling theloading of assemblies and the instantiation of types in local and remote appli-
cation domains (recipes 3-1, 3-3, 3-4, and 3-7)

Creating application domains into which you can load assemblies that are isolated from the
rest of your application (recipe 3-2)

Creating types that are guaranteed to be unable to cross application domain boundaries
(recipe 3-5) and types that have the capability to cross application domain boundaries
(recipe 3-6)

Passing simple configuration data between application domains (recipe 3-8)

Unloading application domains, which provides the only means through which you can
unload assemblies at runtime (recipe 3-9)

Inspecting and testing the type of an object using a variety of mechanisms built into the VB
.NET language and capabilities provided by the objects themselves (recipes 3-10 and 3-11)

Dynamically instantiating an object and executing its methods at runtime using reflection
(recipe 3-12)

Creating custom attributes (recipe 3-13), which allows you to associate metadata with your
program elements, and inspecting the value of those custom attributes at runtime (recipe 3-14)

97

98

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Note An excellent reference for detailed information on all aspects of application domains and loading
assemblies is Customizing the Microsoft .NET Framework Common Language Runtime by Steven Pratschner
(Microsoft Press, 2005).

3-1. Load an Assembly into the Current Application Domain

Problem

You need to load an assembly into the current application domain at runtime.

Solution
Use the Shared Load method or the LoadFrom method of the System.Reflection.Assembly class.

Note The Assembly.LoadWithPartialName method has been deprecated in .NET Framework 2.0. Instead,
you should use the Assembly . Load method described in this recipe.

How It Works

Unlike with Win32, where the referenced DLLs are loaded when the process starts, the common
language runtime (CLR) will automatically load the assemblies referenced by your assembly only
when the metadata for their contained types is required. However, you can also explicitly instruct
the runtime to load assemblies. The Load and LoadFrom methods both result in the runtime loading
an assembly into the current application domain, and both return an Assembly instance that repre-
sents the newly loaded assembly. The differences between each method are the arguments you must
provide to identify the assembly to load and the process that the runtime undertakes to locate the
specified assembly.

The Load method provides overloads that allow you to specify the assembly to load using one of
the following:

* A String containing the fully or partially qualified display name of the assembly
e ASystem.Reflection.AssemblyName containing details of the assembly

e AByte array containing the raw bytes that constitute the assembly

A fully qualified display name contains the assembly’s name (minus the extension), version,
culture, and public key token, separated by commas (for example, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089). When using a fully qualified name, all four
fields are mandatory. If you need to specify an assembly that doesn’t have a strong name, use
PublicKeyToken=null. You can also specify a partial name, but as a minimum, you must specify the
assembly name (without the file extension).

Inresponse to the Load call, the runtime undertakes an extensive process to locate and load the
specified assembly. The following is a summary of this process (consult the section “How the Runtime
Locates Assemblies” in the .NET Framework SDK documentation for more details):

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 99

1. Ifyou specify a strong-named assembly, the Load method will apply the version policy and
publisher policy to enable requests for one version of an assembly to be satisfied by another
version. You specify the version policy in your machine or application configuration file using
<bindingRedirect> elements. You specify the publisher policy in special resource assemblies
installed in the global assembly cache (GAC).

2. Once the runtime has established the correct version of an assembly to use, it attempts to
load strong-named assemblies from the GAC.

3. Ifthe assembly is not strong named or is not found in the GAC, the runtime looks for applicable
<codeBase> elements in your machine and application configuration files. A <codeBase> element
maps an assembly name to a specific file or a uniform resource locator (URL). If the assembly is
strong named, <codeBase> can refer to any location including Internet-based URLs; otherwise,
<codeBase> must refer to a directory relative to the application directory. If the assembly doesn't
exist at the specified location, Load throws a System.I0.FileNotFoundException.

If no <codeBase> elements are relevant to the requested assembly, the runtime will locate the
assembly using probing. Probinglooks for the first file with the assembly’s name (with either
a.dll or an .exe extension) in the following locations:

* The application root directory
* Directories under the application root that match the assembly’s name and culture

 Directories under the application root that are specified in the private binpath using the
privatePath attribute of the <Probing> element

The Load method is the easiest way to locate and load assemblies but can also be expensive in
terms of processing if the runtime needs to start probing many directories for a weak-named assembly.
The LoadFrom method allows you to load an assembly file specified by the supplied uniform resource
identifier (URI). If the file isn’t found, the runtime will throw a FileNotFoundException. The runtime
won’t attempt to locate the assembly in the same way as the Load method—LoadFrom provides no
support for the GAC, policies, <codeBase> elements, or probing.

The Code

The following code demonstrates various forms of the Load and LoadFrom methods. Notice that unlike
the Load method, LoadFrom requires you to specify the extension of the assembly file.

Imports System
Imports System.Reflection
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chapter03
Public Class Recipe03 01
Public Shared Sub ListAssemblies()

Get an array of the assemblies loaded into the current
application domain.
Dim assemblies As Assembly() = AppDomain.CurrentDomain.GetAssemblies()

For Each a As Assembly In assemblies
Console.Writeline(a.GetName)

Next

End Sub

100 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Public Shared Sub Main()
' List the assemblies in the current application domain.
Console.WritelLine("**** BEFQRE ****")
ListAssemblies()
' Load the System.Data assembly using a fully qualified display name.
Dim namel As String = "System.Data,Version=2.0.0.0," + =
"Culture=neutral,PublicKeyToken=b77a5c561934e089"
Dim a1 As Assembly = Assembly.load(namel)

Load the System.Xml assembly using an AssemblyName.

Dim name2 As New AssemblyName()

name2.Name = "System.Xml"

name2.Version = New Version(2, 0, 0, 0)

name2.CultureInfo = New CultureInfo("") ' Neutral culture.

name2.SetPublicKeyToken(New Byte() {8HB7, &H7A, 8H5C, 8H56, =
&H19, &H34, &HEO, &H89})

Dim a2 As Assembly = Assembly.load(name2)

' Load the SomeAssembly assembly using a partial display name.
Dim a3 As Assembly = Assembly.load("SomeAssembly")

' Load the assembly named C:\shared\MySharedAssembly.dll.
Dim a4 As Assembly = Assembly.loadFrom("C:\shared\MySharedAssembly.d11")

List the assemblies in the current application domain.
Console.WritelLine("{0}{o}**** AFTER ****" = ybCrlLf)
ListAssemblies()

Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

3-2. Create an Application Domain

Problem

You need to create a new application domain.

Solution

Use the Shared method CreateDomain of the System.AppDomain class.

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

How It Works

The simplest overload of the CreateDomain method takes a single String argument specifying a human-
readable name (friendly name) for the new application domain. Other overloads allow you to specify
evidence and configuration settings for the new application domain. Evidence refers to information,
such as a strong name or application path, that is used by the CLR when making security decisions.
You specify evidence using a System.Security.Policy.Evidence object, and you specify configura-
tion settings using a System.AppDomainSetup object.

The AppDomainSetup classis a container of configuration information for an application domain.
Table 3-1 lists some of the properties of the AppDomainSetup class that you will use most often when
creating application domains. These properties are accessible after creation through members of the
AppDomain object. Some have different names, and some are modifiable at runtime; refer to the .NET
Framework’s software development kit (SDK) documentation on the AppDomain class for a compre-
hensive discussion.

Table 3-1. Commonly Used AppDomainSetup Properties

Property Description

ApplicationBase The directory where the CLR will look during probing to resolve
private assemblies. Recipe 3-1 discusses probing. Effectively,
ApplicationBase is the root directory for the executing application.
By default, this is the directory containing the assembly. This
is readable after creation using the AppDomain.BaseDirectory

property.

ConfigurationFile The name of the configuration file used by code loaded into
the application domain. This is readable after creation using
the AppDomain.GetData method with the key APP_ CONFIG_FILE.
By default, the configuration file is stored in the same folder as
the application.exe file, but if you set ApplicationBase, it will be
in that folder.

DisallowPublisherPolicy Controls whether the publisher policy section of the application
configuration file is taken into consideration when determining
which version of a strong-named assembly to bind to. Recipe 3-1
discusses publisher policy.

PrivateBinPath A semicolon-separated list of directories that the runtime uses
when probing for private assemblies. These directories are relative
to the directory specified in ApplicationBase. This is readable
after application domain creation using the AppDomain.
RelativeSearchPath property.

The Code
The following code demonstrates the creation and initial configuration of an application domain:

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

Public Class Recipe03 02

Public Shared Sub Main()

101

102

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Instantiate an AppDomainSetup object.
Dim setupInfo As New AppDomainSetup
' Configure the application domain setup information.
setupInfo.ApplicationBase = "C:\MyRootDirectory"
setupInfo.ConfigurationFile = "MyApp.config"
setupInfo.PrivateBinPath = "bin;plugins;external”
' Create a new application domain passing Nothing as the evidence
argument. Remember to save a reference to the new AppDomain as
this cannot be retrieved any other way.
Dim newDomain As AppDomain = AppDomain.CreateDomain("My New " & w»

"AppDomain, Nothing, setupInfo)

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note You must maintain a reference to the AppDomain object when you create it because no mechanism exists
to enumerate existing application domains from within managed code.

3-3. Execute an Assembly in a Different Application Domain

Problem

You need to execute an assembly in an application domain other than the current one.

Solution

Call the ExecuteAssembly or ExecuteAssemblyByName method of the AppDomain object that represents
the application domain, and specify the file name of an executable assembly.

How It Works

If you have an executable assembly that you want to load and run in an application domain, the
ExecuteAssembly or ExecuteAssemblyByName method provides the easiest solution. The ExecuteAssembly
method provides four overloads. The simplest overload takes only a String containing the name of
the executable assembly to run; you can specify a local file or a URL. Other ExecuteAssembly overloads
allow you to specify evidence for the assembly (which affects code access security) and arguments to
pass to the assembly’s entry point (equivalent to command-line arguments).

The ExecuteAssembly method loads the specified assembly and executes the method defined in
metadata as the assembly’s entry point (usually the Main method). If the specified assembly isn’t
executable, ExecuteAssembly throws a System.MissingMethodException. The CLR doesn’t start execu-
tion of the assembly in a new thread, so control won’t return from the ExecuteAssembly method until
the newly executed assembly exits. Because the ExecuteAssembly method loads an assembly using

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 103

partial information (only the file name), the CLR won’t use the GAC or probing to resolve the assembly.
(See recipe 3-1 for more information.)

The ExecuteAssemblyByName method provides a similar set of overloads and takes the same argu-
ment types as ExecuteAssembly, but instead of just the file name of the executable assembly, it takes
the display name of the assembly. (See recipe 3-1 for more information about the structure of assembly
display names.) This overcomes the limitations inherent in ExecuteAssembly as a result of supplying
only partial names. Here is an example of using this method:

Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain™)
domain.ExecuteAssemblyByName("Recipe03-03, Version=1.0.0.0, Culture=neutral, =
PublicKeyToken=null", Nothing, args)

The Code

The following code demonstrates how to use the ExecuteAssembly method to load and run an
assembly. The Recipe03_03 class creates an AppDomain and executes itself in that AppDomain using
the ExecuteAssembly method. This results in two copies of the Recipe03-03 assembly loaded into
two different application domains.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

Public Class Recipe03 03

Public Shared Sub Main(ByVal args As String())
' For the purpose of this example, if this assembly is executing
in an AppDomain with the friendly name NewAppDomain, do not
create a new AppDomain. This avoids an infinite loop of
AppDomain creation.
If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
' Create a new application domain.
Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain")

Execute this assembly in the new application domain and
pass the array of command-line arguments.
domain.ExecuteAssembly("Recipe03-03.exe", Nothing, args)

End If

Display the command-line arguments to the screen prefixed with

the friendly name of the AppDomain.

For Each s As String In args
Console.WritelLine(AppDomain.CurrentDomain.FriendlyName +

Next

+'s)

Wait to continue.

If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End If

End Sub

End Class
End Namespace

104

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Usage
If you run Recipe03-03 using the following command:
Recipe03-03 Testing AppDomains

you will see that the command-line arguments are listed from both the existing and new application
domains:

NewAppDomain : Testing
NewAppDomain : AppDomains
Recipe03-03.exe : Testing
Recipe03-03.exe : AppDomains

3-4. Avoid Loading Unnecessary Assemblies into
Application Domains

Problem

You need to pass an object reference across multiple application domain boundaries; however, to
conserve memory and avoid impacting performance, you want to ensure the CLR loads only the
object’s type metadata into the application domains where it is required (that is, where you will
actually use the object).

Solution

Wrap the object reference in a System.Runtime.Remoting.ObjectHandle, and unwrap the object
reference only when you need to access the object.

How It Works

When you pass a marshal-by-value (MBV) object across application domain boundaries, the runtime
creates a new instance of that object in the destination application domain. This means the runtime
must load the assembly containing that type metadata into the application domain. Passing MBV
references across intermediate application domains can result in the runtime loading unnecessary
assemblies into application domains. Once loaded, these superfluous assemblies cannot be unloaded
without unloading the containing application domain. (See recipe 3-9 for more information.)

The ObjectHandle class allows you to wrap an object reference so that you can pass it between
application domains without the runtime loading additional assemblies. When the object reaches
the destination application domain, you can unwrap the object reference, causing the runtime to
load the required assembly and allowing you to access the object.

The Code

The following code contains some simple methods that demonstrate how to wrap and unwrap a
System.Data.DataSet using an ObjectHandle:

Imports System
Imports System.Data
Imports System.Runtime.Remoting

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Namespace Apress.VisualBasicRecipes.Chaptero03

Public Class Recipe03 04

A method to wrap a DataSet.
Public Function WrapDataset(ByVal ds As DataSet) As ObjectHandle

' Wrap the DataSet.
Dim objHandle As New ObjectHandle(ds)

Return the wrapped DataSet.
Return objHandle

End Function

A method to unwrap a DataSet.
Public Function UnwrapDataset(ByVal handle As ObjectHandle) As DataSet

Unwrap the DataSet.
Dim ds As DataSet = CType(handle.Unwrap, DataSet)

' Return the DataSet.
Return ds

End Function

End Class
End Namespace

3-5. Create a Type That Cannot Cross Application
Domain Boundaries

Problem

You need to create a type so that instances of the type are inaccessible to code in other application
domains.

Solution

Ensure the type is nonremotable by making sure it is not serializable (no Serializable attribute) and
it does not derive from the MarshalByRefObject class.

How It Works

On occasion, you will want to ensure that instances of a type cannot transcend application domain
boundaries. To create a nonremotable type, ensure that it isn’t serializable and that it doesn’t derive
(directly or indirectly) from the MarshalByRefObject class. If you take these steps, you ensure that an
object’s state can never be accessed from outside the application domain in which the object was
instantiated—such objects cannot be used as arguments or return values in cross-application
domain method calls.

105

106

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Ensuring that a type isn’t serializable is easy because a class doesn’t inherit the ability to be
serialized from its parent class. To ensure that a type isn’t serializable, make sure it does not have
System.SerializableAttribute applied to the type declaration.

Ensuring that a class cannot be passed by reference requires a little more attention. Many classes in
the .NET class library derive directly or indirectly from MarshalByRefObject; you must be careful you
don’t inadvertently derive your class from one of these. Commonly used base classes that derive from
MarshalByRefObject include System.ComponentModel.Component, System.IO.Stream, System.IO.
TextReader, System.I0.TextWriter, System.NET.WebRequest, and System.Net.WebResponse. (Check the
.NET Framework SDK documentation on MarshalByRefObject. The inheritance hierarchy for the class
provides a complete list of classes that derive from it.)

3-6. Create a Type That Can Be Passed Across Application
Domain Boundaries

Problem

You need to pass objects across application domain boundaries as arguments or return values.

Solution
Use marshal-by-value (MBV) or marshal-by-reference (MBR) objects.

How It Works

The .NET Remoting system (discussed in Chapter 10) makes passing objects across application
domain boundaries straightforward. However, to those unfamiliar with .NET Remoting, the results
can be very different from those expected. In fact, the most confusing aspect of using multiple applica-
tion domains stems from the interaction with .NET Remoting and the way objects traverse application
domain boundaries.

All types fall into one of three categories: nonremotable, MBV, or MBR. Nonremotable types
cannot cross application domain boundaries and cannot be used as arguments or return values in
cross-application domain calls. (Recipe 3-5 discusses nonremotable types.)

MBYV types are serializable types. When you pass an MBV object across an application domain
boundary as an argument or a return value, the .NET Remoting system serializes the object’s current
state, passes it to the destination application domain, and creates a new copy of the object with the
same state as the original. This results in a copy of the MBV object existing in both application domains.
The contents of the two instances are initially identical, but they are independent; changes made to
one instance are not reflected in the other instance. This often causes confusion as you try to update
the remote object but are actually updating the local copy. If you want to be able to call and change
an object from a remote application domain, the object needs to be an MBR type.

MBR types are those classes that derive from System.MarshalByRefObject. When you pass an
MBR object across an application domain boundary as an argument or a return value, in the desti-
nation application domain the .NET Remoting system creates a proxy that represents the remote
MBR object. To any class in the destination application domain, the proxy looks and behaves like the
remote MBR object that it represents. In reality, when a call is made against the proxy, the .NET
Remoting system transparently passes the call and its arguments to the remote application domain
and issues the call against the original object. Any results are passed back to the caller via the proxy.
Figure 3-1 illustrates the relationship between an MBR object and the objects that access it across
application domains via a proxy.

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Application Domain 2

Object

S

MBR Object

Application Domain 1

Figure 3-1. An MBR object is accessed across application domains via a proxy.

The Code

The following example highlights (in bold) the fundamental difference between creating classes that
are passed by value (Recipe03 06MBV) and those passed by reference (Recipe03_06MBR). The code
creates a new application domain and instantiates two remotable objects in it (discussed further in
recipe 3-7). However, because the Recipe03_06MBV object is an MBV object, when it is created in the
new application domain, it is serialized, passed across the application domain boundary, and dese-
rialized as a new independent object in the caller’s application domain. Therefore, when the code
retrieves the name of the application domain hosting each object, Recipe03_06MBV returns the name
of the main application domain, and Recipe03_06MBR returns the name of the new application domain in
which it was created.

Note This sample uses the CreateInstanceFromAndUnwrap method of the AppDomain class to create the
instances of Recipe03_06MBV and Recipe03_06MBR in the new application domain. This method is covered in
more detail in recipe 3-7.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter03
' Declare a class that is passed by value.

<Serializable()> _

Public Class Recipe03 06MBV

107

108 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Public ReadOnly Property HomeAppDomain() As String
Get
Return AppDomain.CurrentDomain.FriendlyName
End Get
End Property

End Class

' Declare a class that is passed by reference.
Public Class Recipe03 06MBR
Inherits MarshalByRefObject

Public ReadOnly Property HomeAppDomain() As String
Get
Return AppDomain.CurrentDomain.FriendlyName
End Get
End Property

End Class

Public Class Recipe03 06
Public Shared Sub Main(ByVal args As String())

' Create a new application domain.
Dim newDomain As AppDomain = AppDomain.CreateDomain("My ‘w»

New AppDomain")

Instantiate an MBV object in the new application domain.
Dim mbvObject As Recipe03_O6MBV = ‘w»
CType(newDomain.CreateInstanceFromAndUnwrap("Recipe03-06.exe", =
"Apress.VisualBasicRecipes.Chapter03.Recipe03 _06MBV"), Recipe03_06MBV)

Instantiate an MBR object in the new application domain.
Dim mbrObject As Recipe03_O6MBR = ‘w»
CType(newDomain.CreateInstanceFromAndUnwrap("Recipe03-06.exe", =
"Apress.VisualBasicRecipes.Chapter03.Recipe03 _06MBR"), Recipe03 O6MBR)

Display the name of the application domain in which each of
' the objects is located.
Console.WritelLine("Main AppDomain = {0}", w»
AppDomain.CurrentDomain.FriendlyName)

Console.WriteLine("AppDomain of MBV object = {0}", =
mbvObject.HomeAppDomain)
Console.WriteLine("AppDomain of MBR object = {0}", =

mbrObject.HomeAppDomain)

Wait to continue.

Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")

Console.ReadlLine()
End Sub

End Class
End Namespace

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

3-7. Instantiate a Type in a Different Application Domain

Problem

You need to instantiate a type in an application domain other than the current one.

Solution

Call the CreateInstance method or the CreateInstanceFrom method of the AppDomain object that
represents the target application domain.

How It Works

The ExecuteAssembly method discussed in recipe 3-3 is straightforward to use, but when you are
developing sophisticated applications that use application domains, you are likely to want more
control over loading assemblies, instantiating types, and invoking object members within the appli-
cation domain.

The CreateInstance and CreateInstanceFrom methods provide a variety of overloads that offer
fine-grained control over the process of object instantiation. The simplest overloads assume the use
of a type’s default constructor, but both methods implement overloads that allow you to provide
arguments to use any constructor.

The CreateInstance methodloads a named assembly into the application domain using the process
described for the Assembly. Load method in recipe 3-1. CreateInstance then instantiates a named type
and returns a reference to the new object wrapped in an ObjectHandle (described in recipe 3-4). The
CreateInstanceFrommethod also instantiates anamed type and returns an ObjectHandle-wrapped
object reference; however, CreateInstanceFromloads the specified assembly file into the application
domain using the process described in recipe 3-1 for the Assembly.LoadFrom method.

AppDomain also provides two convenience methods named CreateInstanceAndUnwrap and
CreateInstanceFromAndUnwrap that automatically extract the reference of the instantiated object
from the returned ObjectHandle object; you must cast the returned Object to the correct type.

Gaution Be aware that if you use CreateInstance or CreateInstanceFrom to instantiate MBV types in
another application domain, the object will be created, but the returned Object reference won't refer to that object.
Because of the way MBV objects cross application domain boundaries, the reference will refer to a copy of the object
created automatically in the local application domain. Only if you create an MBR type will the returned reference
refer to the object in the other application domain. (See recipe 3-6 for more details about MBV and MBR types.)

A common technique to simplify the management of application domains is to use a controller
class. A controller class is a custom MBR type. You create an application domain and then instantiate
your controller class in the application domain using CreateInstance. The controller class imple-
ments the functionality required by your application to manipulate the application domain and its
contents. This could include loading assemblies, creating further application domains, cleaning up
prior to deleting the application domain, or enumerating program elements (something you cannot
normally do from outside an application domain). It is best to create your controller class in an assembly
of its own to avoid loading unnecessary classes into each application domain. You should also be
careful about which types you pass as return values from your controller to your main application
domain to avoid loading additional assemblies.

109

110

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

The Code

The following code demonstrates how to use a simplified controller class named PluginManager.
When instantiated in an application domain, PluginManager allows you to instantiate classes that
implement the IPlugin interface, start and stop those plug-ins, and return alist of currently loaded
plug-ins.

Imports System

Imports System.Reflection

Imports System.Collections

Imports System.Collections.Generic
Imports System.Collections.Specialized

Namespace Apress.VisualBasicRecipes.Chaptero3

A common interface that all plug-ins must implement.
Public Interface IPlugin

Sub Start()
Sub [Stop]()

End Interface
" A simple IPlugin implementation to demonstrate the PluginManager
controller class.
Public Class SimplePlugin

Implements IPlugin

Public Sub Start() Implements IPlugin.Start
Console.WritelLine(AppDomain.CurrentDomain.FriendlyName & w»
: SimplePlugin starting...")
End Sub

Public Sub [Stop]() Implements IPlugin.Stop
Console.WritelLine(AppDomain.CurrentDomain.FriendlyName & w»
: SimplePlugin stopping...")
End Sub

End Class
' The controller class, which manages the loading and manipulation
of plug-ins in its application domain.
Public Class PluginManager

Inherits MarshalByRefObject

A Dictionary to hold keyed references to IPlugin instances.
Private plugins As New Dictionary(Of String, IPlugin)

Default constructor.
Public Sub New()

End Sub

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Constructor that loads a set of specified plug-ins on creation.
Public Sub New(ByVal pluginList As NameValueCollection)

' Load each of the specified plug-ins.

For Each plugin As String In pluginlist.Keys
Me.LoadPlugin(pluginList(plugin), plugin)

Next

End Sub

' Load the specified assembly and instantiate the specified

" IPlugin implementation from that assembly.

Public Function LoadPlugin(ByVal assemblyName As String, ‘=
Byval pluginName As String)

Try
' Load the named private assembly.
Dim assembly As Assembly = Reflection.Assembly.Load(assemblyName)

' Create the IPlugin instance, ignore case.
Dim plugin As IPlugin = DirectCast(assembly.CreateInstance ‘=

(pluginName, True), IPlugin)

If Not plugin Is Nothing Then
' Add new IPlugin to ListDictionary
plugins(pluginName) = plugin

Return True
Else
Return False
End If
Catch
' Return false on all exceptions for the purpose of
" this example. Do not suppress exceptions like this
' in production code.
Return False
End Try

End Function
Public Sub StartPlugin(ByVal plugin As String)

Try
Extract the IPlugin from the Dictionary and call Start.

plugins(plugin).Start()
Catch
' Log or handle exceptions appropriately.

End Try
End Sub

Public Sub StopPlugin(ByVal plugin As String)

m

112 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Try
Extract the IPlugin from the Dictionary and call Stop.
plugins(plugin).Stop()
Catch

Log or handle exceptions appropriately.
End Try

End Sub

Public Function GetPluginlList() As Arraylist

Return an enumerable list of plug-in names. Take the keys

and place them in an ArraylList, which supports marshal-by-value.
Return New ArraylList(plugins.Keys)

End Function
End Class

Public Class Recipe03 07

Public Shared Sub Main(ByVal args As String())

' Create a new application domain.
Dim domaini As AppDomain = AppDomain.CreateDomain("NewAppDomaini")

Create a PluginManager in the new application domain using
the default constructor.

Dim managerl As PluginManager = CType(domaini.CreateInstanceAndUnwrap
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager"), PluginManager)

Load a new plug-in into NewAppDomaini

managerl.lLoadPlugin("Recipe03-07", "Apress.VisualBasicRecipes." & ‘=
"Chapter03.SimplePlugin")

' Start and stop the plug-in NewAppDomaini.
manager1.StartPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin™)
manager1.StopPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin")

Create a new application domain.
Dim domain2 As AppDomain = AppDomain.CreateDomain("NewAppDomain2")

Create a ListDictionary containing a list of plug-ins to create.
Dim pluginList As New NameValueCollection()

pluginList("Apress.VisualBasicRecipes.Chapter03.SimplePlugin") = =
"Recipe03-07"

' Create a PluginManager in the new application domain and
specify the default list of plug-ins to create.

Dim manager2 As PluginManager = CType(domaini.CreateInstanceAndUnwrap
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager", True, 0, ‘=
Nothing, New Object() {pluginlList}, Nothing, Nothing, Nothing), PluginManager)

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Display the list of plug-ins loaded into NewAppDomain2.
Console.WritelLine("{0}Plugins in NewAppDomain2:", vbCrLf)

For Each s As String In manager2.GetPluginList()
Console.WriteLine(" - " & s)
Next

Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

If you run Recipe03-07, you should see the following:

NewAppDomaini: SimplePlugin starting...
NewAppDomaini: SimplePlugin stopping...

Plugins in NewAppDomain2:
- Apress.VisualBasicRecipes.Chapter03.SimplePlugin

3-8. Pass Data Between Application Domains

Problem

You need a simple mechanism to pass general configuration or state data between application domains.

Solution
Use the SetData and CetData methods of the AppDomain class.

How It Works

You can pass data between application domains as arguments and return values when you invoke
the methods and properties of objects that exist in other application domains. However, at times it
is useful to pass data between application domains in such a way that the data is easily accessible by
all code within the application domain.

Every application domain maintains a data cache that contains a set of name-value pairs. Most
of the cache contentreflects configuration settings of the application domain, such as the values from the
AppDomainSetup object provided during application domain creation. (See recipe 3-2 for more informa-
tion.) You can also use this data cache as a mechanism to exchange data between application domains
or as a simple state storage mechanism for code running within the application domain.

The SetData method allows you to associate a string key with an object and store it in the appli-
cation domain’s data cache. The GetData method allows you to retrieve an object from the data cache
using the key. If code in one application domain calls the SetData method or the GetData method to
access the data cache of another application domain, the data object must support MBV or MBR

113

114

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

semantics, or a System.Runtime.Serialization.SerializationException is thrown. (See recipe 3-6
for details on the characteristics required to allow objects to transcend application domain boundaries.)
When using the SetData or GetData methods to exchange data between application domains,
you should avoid using the following keys, which are already used by the .NET Framework (refer to
http://msdn2.microsoft.com/en-us/library/system.appdomain.getdata.aspx for more information):

¢ APP_CONFIG_FILE

* APP_NAME

* APPBASE

* APP_ILAUNCH_URL

* LOADER_OPTIMIZATION
* BINPATH_PROBE_ONLY
* CACHE_BASE

* DEV_PATH

* DYNAMIC_BASE

* FORCE_CACHE_INSTALL
* LICENSE_FILE

e PRIVATE_BINPATH

* SHADOW_COPY_DIRS

The Code

The following example demonstrates how to use the SetData and GetData methods by passing a
System.Collections.ArraylList between two application domains. After passing a list of pets to a
second application domain for modification, the application displays the list. You will notice that the
code running in the second application domain does not modify the original list because ArraylList is an
MBV type, meaning that the second application domain has only a copy of the original list. (See
recipe 3-6 for more details.)

Imports System
Imports System.Reflection
Imports System.collections
Namespace Apress.VisualBasicRecipes.Chaptero3
Public Class ListModifier
Public Sub New()

' Get the list from the data cache.

Dim list As Arraylist = CType(AppDomain.CurrentDomain.GetData("Pets"), w
Arraylist)

' Modify the list.
list.Add("Turtle")

End Sub

End Class

http://msdn2.microsoft.com/en-us/library/system.appdomain.getdata.aspx

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Public Class Recipe03 08

Public Shared Sub Main()
' Create a new application domain.

Dim domain As AppDomain = AppDomain.CreateDomain("Test")
' Create an Arraylist and populate with information.
Dim list As New Arraylist

list.Add("Dog")

list.Add("Cat")

list.Add("Fish")

' Place the list in the data cache of the new application domain.
domain.SetData("Pets", list)

Instantiate a ListModifier in the new application domain.
domain.CreateInstance("Recipe03-08", "Apress.VisualBasicRecipes." & w»
"Chapter03.ListModifier")

Get the list and display its contents.

Console.WriteLine("The list in the 'Test' application domain:")

For Each s As String In CType(domain.GetData("Pets"), ArraylList)
Console.Writeline(s)

Next

Console.WritelLine(Environment.NewlLine)

Display the original list to show that it has not changed.
Console.WriteLine("The list in the standard application domain:")
For Each s As String In list

Console.Writeline(s)
Next
' Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

3-9. Unload Assemblies and Application Domains

Problem

You need to unload assemblies or application domains at runtime.

Solution

You have no way to unload individual assemblies from a System.AppDomain. You can unload an
entire application domain using the Shared AppDomain.Unload method, which has the effect of
unloading all assemblies loaded into the application domain.

115

116

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

How It Works

The only way to unload an assembly is to unload the application domain in which the assembly is
loaded. Unfortunately, unloading an application domain will unload all the assemblies that have
been loaded into it. This might seem like a heavy-handed and inflexible approach, but with appropriate
planning of your application domain, the assembly-loading structure, and the runtime dependency of
your code on that application domain, it is not overly restrictive.

Youunload an application domain using the Shared AppDomain.Unload method and passing it an
AppDomain reference to the application domain you want to unload. You cannot unload the default
application domain created by the CLR at startup.

The Unload method stops any new threads from entering the specified application domain and
calls the Thread.Abort method on all threads currently active in the application domain. If the thread
calling the Unload method is currently running in the specified application domain (making it the
target of a Thread.Abort call), a new thread starts in order to carry out the unload operation. If a
problem is encountered unloading an application domain, the thread performing the unload oper-
ation throws a System.CannotUnloadAppDomainException. Attempting to access the application domain
after it has been unloaded will throw a System. AppDomainUnloadedException.

While an application domain is unloading, the CLR calls the finalization method of all objects
in the application domain. Depending on the number of objects and nature of their finalization
methods, this can take an arbitrary amount of time. The AppDomain.IsFinalizingForUnload method
returns True if the application domain is unloading and the CLR has started to finalize contained
objects; otherwise, it returns False.

The Code
This code fragment demonstrates the syntax of the Unload method:

Create a new application domain.
Dim newDomain As AppDomain = AppDomain.CreateDomain("New Domain")

Load assemblies into the application domain.

Unload the new application domains.
AppDomain.Unload(newDomain)

3-10. Retrieve Type Information

Problem

You need to obtain a System. Type object that represents a specific type.

Solution

Use one of the following:

e The GetType operator

e The Shared GetType method of the System.Type class

* The Object.GetType method of an existing instance of the type

e The GetNestedType or GetNestedTypes method of the Type class

e The GetType or GetTypes method of the Assembly class

e The GetType, GetTypes, or FindTypes method of the System.Reflection.Module class

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 117

How It Works

The Type class provides a starting point for working with types using reflection. A Type object allows
you to inspect the metadata of the type, obtain details of the type’s members, and create instances
of the type. Because of the type’s importance, the .NET Framework provides a variety of mechanisms for
obtaining references to Type objects.

One method of obtaining a Type object for a specific type is to use the GetType operator shown here:

Dim T1 As System.Type = GetType(System.Text.StringBuilder)

The type name is not enclosed in quotes and must be resolvable by the compiler (meaning
you must reference the assembly). Because the reference is resolved at compile time, the assembly
containing the type becomes a static dependency of your assembly and will be listed as such in
your assembly’s manifest.

Another method that returns a Type object is Object.GetType. This method returns the type of
the object that calls it. The following is an example of its usage:

Dim myStringBuilder As New System.Text.StringBuilder
Dim myType As System.Type = myStringBuilder.GetType()

You can also use the Shared method Type. GetType, which takes a string containing the type name.
Because you use a string to specify the type, you can vary it at runtime, which opens the door to a world
of dynamic programming opportunities using reflection (see recipe 3-12). If you specify just the type
name, the runtime must be able to locate the type in an already loaded assembly. Alternatively, you can
specify an assembly-qualified type name. Refer to the .NET Framework SDK documentation for the
Type.GetType method for a complete description of how to structure assembly-qualified type names.
Table 3-2 summarizes some other methods that provide access to Type objects.

Table 3-2. Methods That Return Type Objects

Method Description

Type.GetNestedType Gets a specified type declared as a nested type (a type that is a
member of another type) within the existing Type object.

Type.GetNestedTypes Gets an array of Type objects representing the nested types declared
within the existing Type object.

Assembly.GetType Gets a Type object for the specified type declared within the assembly.

Assembly.GetTypes Gets an array of Type objects representing the types declared within

the assembly.

Module.GetType Gets a Type object for the specified type declared within the module.
(See recipe 1-3 for a discussion of modules.)

Module.GetTypes Gets an array of Type objects representing the types declared within
the module. (See recipe 1-3 for a discussion of modules.)

Module.FindTypes Gets a filtered array of Type objects representing the types declared
within the module. The types are filtered using a delegate that
determines whether each Type should appear in the final array.
(See recipe 1-3 for a discussion of modules.)

The Code

The following example demonstrates how to use the GetType operator and the Type.GetType method
to return a Type object for a named type and from existing objects:

118 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chaptero3
Public Class Recipe03_10
Public Shared Sub Main()

Obtain type information using the GetType operator.
Dim t1 As Type = GetType(StringBuilder)

Obtain type information using the Type.GetType method.
Case-sensitive, return Nothing if not found.
Dim t2 As Type = Type.CGetType("System.String")

Case-sensitive, throw TypeloadException if not found.
Dim t3 As Type = Type.CGetType("System.String", True)

Case-insensitive, throw TypeloadException if not found.
Dim t4 As Type = Type.GetType("system.string", True, True)

Assembly-qualified type name.
Dim t5 As Type = Type.GetType("System.Data.DataSet,System.Data," & w»
"Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089")

Obtain type information using the Object.GetType method.
Dim sb As New StringBuilder
Dim t6 As Type = sb.GetType()

Display the types.
Console.WritelLine("Type of T1: {0}", t1.ToString)
Console.WritelLine("Type of T2: {0}", t2.ToString)
Console.WritelLine("Type of T3: {0}", t3.ToString)
Console.WritelLine("Type of T4: {0}", t4.ToString)
Console.WritelLine("Type of T5: {0}", t5.ToString)
Console.WritelLine("Type of T6: {0}", t6.ToString)

' Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

3-11. Test an Object’s Type

Problem

You need to test the type of an object.

Solution

Use the inherited Object.GetType method to obtain a Type for the object. You can also use the TypeOf
and Is operators to test an object’s type.

How It Works

All types inherit the GetType method from the Object base class. As discussed in recipe 3-10, this
method returns a Type reference representing the type of the object. The runtime maintains a single
instance of Type for each type loaded, and all references for this type refer to this same object. This
means you can compare two type references efficiently. For convenience, VB .NET provides the Is
operator as a quick way to check whether an object is a specified type. In addition, Is will return True
if the tested object is derived from the specified class. .NET Framework 2.0 includes the new IsNot
operator for VB .NET. This operator is used to determine whether an object is not a specified type.
Furthermore, the Type.IsSubclassOf method can be used to determine whether an object derives
from the specified type.

When using the TypeOf, Is, and IsNot operators and the IsSubClassOf method, the specified
type must be known and resolvable at compile time. A more flexible (but slower) alternative is to use
the Type.GetType method to return a Type reference for a named type. The Type reference is not
resolved until runtime, which causes a performance hit but allows you to change the type compar-
ison at runtime based on the value of a string.

Finally, you can use the TryCast keyword to perform a safe cast of any object to a specified type.
Unlike a standard cast that triggers a System. InvalidCastException if the object cannotbe cast to the
specified type, TryCast returns Nothing. This allows you to perform safe casts that are easy to verify,
but the compared type must be resolvable at runtime.

Tip The Shared method GetUnderlyingType of the System. Enum class allows you to retrieve the under-
lying type of an enumeration.

The Code

The following example demonstrates the various type-testing alternatives described in this recipe:
Imports System

Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter03

Public Class Recipe03 11
' A method to test whether an object is an instance of a type.
Public Shared Function IsType(ByVal obj As Object, ByVal myType w»
As String) As Boolean

119

120

CHAPTER 3

APPLICATION DOMAINS, REFLECTION, AND METADATA

' Get the named type, use case-insensitive search, throw
an exception if the type is not found.
Dim t As Type = Type.GetType(myType, True, True)

If t Is obj.GetType() Then
Return True

ElseIf obj.GetType.IsSubclassOf(t) Then
Return True

Else
Return False

End If

End Function

Public Shared Sub Main()

' Create a new StringReader for testing.
Dim someObject As Object = New StringReader("This is a StringReader")

' Test whether someObject is a StringReader by obtaining and
comparing a Type reference using the TypeOf operator.

If someObject.CetType Is GetType(StringReader) Then
Console.WritelLine("GetType Is: someObject is a StringReader")

End If

' Test whether someObject is, or is derived from, a TextReader
using the Is operator.
If TypeOf someObject Is TextReader Then
Console.WriteLine("TypeOf Is: someObject is a TextReader or " & w»

"a derived class")

End If

' Test whether someObject is, or is derived from, a TextReader using

" the Type.GetType and Type.IsSubClassOf methods.

If IsType(someObject, "System.IO.TextReader") Then
Console.WritelLine("GetType: someObject is, or is derived " & w»

"from, a TextReader")

End If

' Use the TryCast keyword to perform a safe cast.
Dim reader As StringReader = TryCast(someObject, StringReader)

If Not reader Is Nothing Then
Console.WritelLine("TryCast: someObject is a StringReader")
End If

" Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")

Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

3-12. Instantiate an Object Using Reflection

Problem

You need to instantiate an object at runtime using reflection.

Solution

Obtain a Type object representing the type of object you want to instantiate, call its GetConstructor
method to obtain a System.Reflection.ConstructorInfo object representing the constructor you
want to use, and execute the ConstructorInfo.Invoke method.

How It Works

The first step in creating an object using reflection is to obtain a Type object that represents the
type you want to instantiate. (See recipe 3-10 for details.) Once you have a Type instance, call its
GetConstructor method to obtain a ConstructorInfo representing one of the type’s constructors.
The most commonly used overload of the GetConstructor method takes a Type array argument and
returns a ConstructorInfo representing the constructor that takes the number, order, and type of
arguments specified in the Type array. To obtain a ConstructorInfo representing a parameterless
(default) constructor, pass an empty Type array (use the Shared field Type. EmptyTypes or New Type(0));
don’t use Nothing, or GetConstructor will throw a System.ArgumentNullException. If GetConstructor
cannot find a constructor with a signature that matches the specified arguments, it will return Nothing.

Once you have the desired ConstructorInfo, callits Invoke method. Youmust provide anObject
array containing the arguments you want to pass to the constructor. If there are no arguments, pass
Nothing. Invoke instantiates the new object and returns an Object reference to it, which you must
cast to the appropriate type.

Reflection functionality is commonly used to implement factories in which you use reflection to
instantiate concrete classes that either extend a common base class or implement a common inter-
face. Often both an interface and a common base class are used. The abstract base class implements
the interface and any common functionality, and then each concrete implementation extends the
base class.

No mechanism exists to formally declare that each concrete class must implement constructors
with specific signatures. If you intend third parties to implement concrete classes, your documenta-
tion must specify the constructor signature called by your factory. Acommon approach to avoid this
problem is to use a default (empty) constructor and configure the object after instantiation using
properties and methods.

The Code The following code fragment demonstrates how to instantiate a System. Text.StringBuilder
object using reflection and how to specify the initial content for the StringBuilder (a String) and its
capacity (an Integer):

Imports System

Imports System.Text

Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chaptero03

Public Class Recipe03 12

Public Shared Function CreateStringBuilder() As StringBuilder

121

122 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Obtain the Type for the StringBuilder class.
Dim type As Type = GetType(StringBuilder)
' Create a Type() containing Type instances for each
of the constructor arguments - a String and an Integer.

Dim argTypes As Type() = New Type() {GetType(System.String), =
GetType(System.Int32)}

Obtain the ConstructorInfo object.

Dim cInfo As ConstructorInfo = type.GetConstructor(argTypes)
' Create an Object() containing the constructor arguments.
Dim argVals As Object() = New Object() {"Some string", 30}

Create the object and cast it to a StringBuilder.
Dim sb As StringBuilder = CType(cInfo.Invoke(argVals), StringBuilder)

Return sb
End Function

End Class
End Namespace

The following code demonstrates a factory to instantiate objects that implement the IPlugin
interface (used in recipe 3-7):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chaptero3

A common interface that all plug-ins must implement.
Public Interface IPlugin

Property Description() As String
Sub Start()
Sub [Stop]()

End Interface
' An abstract base class from which all plug-ins must derive.
Public MustInherit Class AbstractPlugIn

Implements IPlugin

' Hold a description for the plug-in instance.
Private m description As String = ""
' Property to get the plug-in description.
Public Property Description() As String Implements IPlugin.Description

Get

Return m_description
End Get

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Set(Byval value As String)
m_description = value
End Set
End Property
' Declare the members of the IPlugin interface as abstract.
Public MustOverride Sub Start() Implements IPlugin.Start
Public MustOverride Sub [Stop]() Implements IPlugin.Stop

End Class
" A simple IPlugin implementation to demonstrate the PluginFactory class.
Public Class SimplePlugin

Inherits AbstractPlugIn

Implement Start method.
Public Overrides Sub Start()
Console.Writeline(Description & ": Starting...")
End Sub
' Implement Stop method.
Public Overrides Sub [Stop]()
Console.WritelLine(Description & ": Stopping...")
End Sub

End Class
" A factory to instantiate instances of IPlugin.
NotInheritable Class PluginFactory

Public Shared Function CreatePlugin(ByVal assembly As String, ‘=
ByVal pluginName As String, ByVal description As String) As IPlugin
Console.Writeline("Attempting to load plug-in")
' Obtain the Type for the specified plug-in.
Dim pluginType As Type = Type.GetType(pluginName & ", " & assembly)
' Obtain the ConstructorInfo object.
Dim cInfo As ConstructorInfo = pluginType.GetConstructor =

(Type.EmptyTypes)

Create the object and cast it to IPlugin.
Dim plugin As IPlugin = TryCast(cInfo.Invoke(Nothing), IPlugin)

Configure the new IPlugin.
plugin.Description = description

Console.WritelLine("Plugin '{0}" [{1}] succesfully loaded.", ‘=
assembly, plugin.Description)
Console.WritelLine(Environment.NewlLine)

Return plugin

End Function

123

124 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Public Shared Sub Main(ByVal args As String())

Instantiate a new IPlugin using the PluginFactory.
Dim plugin As IPlugin = PluginFactory.CreatePlugin("Recipe03-12", ‘=
"Apress.VisualBasicRecipes.Chapter03.SimplePlugin”, "A Simple Plugin")

plugin.Start()
plugin.Stop()

Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

3-13. Create a Custom Attribute

Problem

You need to create a custom attribute.

Solution

Create a class that derives from the abstract (MustInherit) base class System.Attribute. Implement
constructors, fields, and properties to allow users to configure the attribute. Apply the System.
AttributeUsageAttribute attribute to your class to define the following:

e Which program elements are valid targets of the attribute
e Whether you can apply more than one instance of the attribute to a program element

e Whether the attribute is inherited by derived types

How It Works

Attributes provide a mechanism for associating declarative information (metadata) with program
elements. This metadata is contained in the compiled assembly, allowing programs to retrieve it
through reflection at runtime without creating an instance of the type. (See recipe 3-14 for more
details.) Other programs, particularly the CLR, use this information to determine how to interact
with and manage program elements.

To create a custom attribute, derive a class from the abstract (MustInherit) base class
System.Attribute. Custom attribute classes by convention should have a name ending in Attribute
(but this is not essential).

A custom attribute must have at least one Public constructor; the automatically generated
default constructor is sufficient. The constructor parameters become the attribute’s mandatory (or
positional) parameters. When you use the attribute, you must provide values for these parameters in
the order they appear in the constructor. As with any other class, you can declare more than one
constructor, giving users of the attribute the option of using different sets of positional parameters
when applying the attribute. Any Public nonconstant writable fields and properties declared by an
attribute are automatically exposed as named parameters. Named parameters are optional and

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

are specified in the format of name-value pairs where the name is the property or field name. The
following example will clarify how to specify positional and named parameters.

To control how and where a user can apply your attribute, apply the attribute
AttributeUsageAttribute to your custom attribute class. AttributeUsageAttribute supports the one
positional and two named parameters described in Table 3-3. The default values specify the value
that is applied to your custom attribute if you do not apply AttributeUsageAttribute or do not
specify a value for that particular parameter.

Table 3-3. Members of the AttributeUsage Type

Parameter Type Description Default
ValidOn Positional A member of the None; you should set it
(required) System.AttributeTargets to AttributeTargets.All

enumeration that identifies
the program elements on
which the attribute is valid

AllowMultiple Named Whether the attribute can be False
(optional) specified more than once for
a single element
Inherited Named Whether the attribute is True
(optional) inherited by derived classes

or overridden members

The Code

The following example shows a custom attribute named AuthorAttribute, which you can use to
identify the name and company of the person who created an assembly or a class. AuthorAttribute
declares a single Public constructor that takes a String containing the author’s name. This means
users of AuthorAttribute must always provide a positional String parameter containing the author’s
name. The Company property is Public, making it an optional named parameter, but the Name prop-
erty is read-only—no Set accessor is declared—meaning that it isn’t exposed as a named parameter.

Imports System
Namespace Apress.VisualBasicRecipes.Chaptero03

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Assembly, ‘=
AllowMultiple:=True, Inherited:=True)> _
Public Class AuthorAttribute
Inherits System.Attribute

Private m_Company As String ' Author's company
Private m_Name As String ' Author's name
' Declare a public constructor.
Public Sub New(ByVal name As String)
m_Name = name
m_Company = ""
End Sub

125

126 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Declare a property to get/set the company field.
Public Property Company() As String
Get
Return m_Company
End Get

Set(ByVval value As String)
m_Company = value
End Set
End Property

Declare a property to get the internal field.
Public ReadOnly Property Name() As String
Get
Return m_Name
End Get
End Property

End Class
End Namespace

Usage
The following example demonstrates how to decorate types with AuthorAttribute:

Imports system

' Declare Todd as the assembly author. Assembly attributes

' must be declared after using statements but before any other.

' Author name is a positional parameter.

Company name is a named parameter.

<Assembly: Apress.VisualBasicRecipes.Chapter03.Author("Todd", Company:="The" & w»
"Code Architects")>

Namespace Apress.VisualBasicRecipes.Chaptero3

Declare a class authored by Todd.
<Author("Todd", Company:="The Code Architects")> _
Public Class SomeClass

' Class implementation.
End Class

" Declare a class authored by Aidan. Since the Company
property is optional, we will leave it out for this test.
<Author("Aidan")> _
Public Class SomeOtherClass
' Class implementation.
End Class
End Namespace

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

3-14. Inspect the Attributes of a Program Element
Using Reflection

Problem

You need to use reflection to inspect the custom attributes applied to a program element.

Solution

All program elements, such as classes and subroutines, implement the System.Reflection.
ICustomAttributeProvider interface. Call the IsDefined method of the ICustomAttributeProvider
interface to determine whether an attribute is applied to a program element, or call the
GetCustomAttributes method of the ICustomAttributeProvider interface to obtain objects repre-
senting the attributes applied to the program element.

How It Works

All the classes that represent program elements implement the ICustomAttributeProvider interface.
This includes Assembly, Module, Type, EventInfo, FieldInfo, PropertyInfo, and MethodBase. MethodBase
has two further subclasses: ConstructorInfo and MethodInfo. If you obtain instances of any of these
classes, you can call the method GetCustomAttributes, which will return an Object array containing
the custom attributes applied to the program element. The Object array contains only custom
attributes, not those contained in the .NET Framework base class library.

The GetCustomAttributes method provides two overloads. The first takes a Boolean that controls
whether GetCustomAttributes should return attributes inherited from parent classes. The second
GetCustomAttributes overload takes an additional Type argument that acts as a filter, resulting in
GetCustomAttributes returning only attributes of the specified type or those that derive from it.

Alternatively, you can call the IsDefined method. IsDefined provides a method that takes two
arguments. The first argument is a Type object representing the type of attribute you are interested
in, and the second is a Boolean that indicates whether IsDefined should look for inherited attributes
of the specified type. IsDefined returns a Boolean indicating whether the specified attribute is applied to
the program element and is less expensive than calling the GetCustomAttributes method, which
actually instantiates the attribute objects.

The Code

The following example uses the custom AuthorAttribute declared in recipe 3-13 and applies it to the
Recipe03_14 class. The Main method calls the GetCustomAttributes method, filtering the attributes so
that the method returns only AuthorAttribute instances. You can safely cast this set of attributes to
AuthorAttribute references and access their members without needing to use reflection.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

<Author("Aidan"), Author("Todd", Company:="The Code Architects")> _
Public Class Recipe03 14

Public Shared Sub Main()

Get a Type object for this class.
Dim myType As Type = GetType(Recipe03_14)

127

128 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

' Get the attributes for the type. Apply a filter so that only

' instances of AuthorAttributes are returned.

Dim attrs As Object() = myType.GetCustomAttributes ‘=
(GetType(AuthorAttribute), True)

Enumerate the attributes and display their details.
For Each a As AuthorAttribute In attrs
Console.Writeline(a.Name & ", " & a.Company)
Next
" Wait to continue.
Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 4

Threads, Processes,
and Synchronization

One of the strengths of the Microsoft Windows operating system is that it allows many programs
(processes) to run concurrently and allows each process to perform many tasks concurrently (using
multiple threads). When you run an executable application, a new process is created. The process
isolates your application from other programs running on the computer. The process provides the
application with its own virtual memory and its own copies of any libraries it needs to run, allowing
your application to execute as if it were the only application running on the machine.

Along with the process, an initial thread is created that runs your Main method. In single-threaded
applications, this one thread steps through your code and sequentially performs each instruction.
If an operation takes time to complete, such as reading a file from the Internet or doing a complex
calculation, the application will be unresponsive (will block) until the operation is finished, at which
point the thread will continue with the next operation in your program.

To avoid blocking, the main thread can create additional threads and specify which code each
should start running. As a result, many threads may be running in your application’s process, each
running (potentially) different code and performing different operations seemingly simultaneously.
In reality, unless you have multiple processors (or a single multicore processor) in your computer,
the threads are not really running simultaneously. Instead, the operating system coordinates and
schedules the execution of all threads across all processes; each thread is given a tiny portion (or time
slice) of the processor’s time, which gives the impression they are executing at the same time.

The difficulty of having multiple threads executing within your application arises when those
threads need to access shared data and resources. If multiple threads are changing an object’s state
or writing to a file at the same time, your data will quickly become corrupted. To avoid problems, you
must synchronize the threads to make sure they each get a chance to access the resource, but only
one at a time. Synchronization is also important when waiting for a number of threads to reach a
certain point of execution before proceeding with a different task and for controlling the number of
threads that are at any given time actively performing a task—perhaps processing requests from
client applications.

Note Although it will not affect your multithreaded programming in VB .NET, it is worth noting that an operating
system thread has no fixed relationship to a managed thread. The runtime host—the managed code that loads and
runs the common language runtime (CLR)—controls the relationship between managed and unmanaged threads. A
sophisticated runtime host, such as Microsoft SQL Server 2005, can schedule many managed threads against the

same operating system thread or can perform the actions of a managed thread using different operating system threads.

129

130

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

This chapter describes how to control processes and threads in your own applications using the
features provided by VB .NET and the Microsoft .NET Framework class library. The recipes in this
chapter cover the following:

* Executing code in independent threads using features including the thread pool, asynchro-
nous method invocation, and timers (recipes 4-1 through 4-7)

e Synchronizing the execution of multiple threads using a host of synchronization techniques,
including monitors, events, mutexes, and semaphores (recipes 4-8 through 4-12)

e Terminating threads and knowing when threads have terminated (recipes 4-13 and 4-14)
¢ C(Creating thread-safe instances of the .NET collection classes (recipe 4-15)
¢ Starting and stopping running in new processes (recipes 4-16 and 4-17)

e Ensuring that only one instance of an application is able to run at any given time (recipe 4-18)

Asyouwill see in this chapter, delegates are used extensively in multithreaded programs to wrap
the method that a thread should execute or that should act as a callback when an asynchronous
operationis complete. As in earlier versions of VB .NET, the AddressOf operator is used to instruct the
compiler to generate the necessary delegate instance. As shown in recipe 1-23, alambda expression
may be used in place of a delegate.

4-1. Execute a Method Using the Thread Pool

Problem

You need to execute a task using a thread from the runtime’s thread pool.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitCallback delegate; that is, it must be a subroutine (not
a function) and take a single Object argument. Call the Shared method QueueUserWorkItem of the
System.Threading.ThreadPool class, passing it your method name. The runtime will queue your
method and execute it when a thread-pool thread becomes available.

How It Works

Applications that use many short-lived threads or maintain large numbers of concurrent threads
can suffer performance degradation because of the overhead associated with the creation, opera-
tion, and destruction of threads. In addition, it is common in multithreaded systems for threads
to sit idle a large portion of the time while they wait for the appropriate conditions to trigger their
execution. Using a thread pool provides a common solution to improve the scalability, efficiency,
and performance of multithreaded systems.

The .NET Framework provides a simple thread-pool implementation accessible through the
Shared members of the ThreadPool class. The QueueUserWorkItem method allows you to execute a
method using a thread-pool thread by placing a work item into the queue. As a thread from the
thread pool becomes available, it takes the next work item from the queue and executes it. The
thread performs the work assigned to it, and when it is finished, instead of terminating, the thread
returns to the thread pool and takes the next work item from the work queue.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 131

The Code

The following example demonstrates how to use the ThreadPool class to execute a method named
DisplayMessage. The example passes DisplayMessage to the thread pool twice: first with no arguments
and then with a MessageInfo object, which allows you to control which message the new thread will
display.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 01

' A private class used to pass data to the DisplayMessage
method when it is executed using the thread pool.
Private Class MessageInfo

Private m_Iterations As Integer

Private m_Message As String

A constructor that takes configuration settings for the thread.
Public Sub New(ByVal iterations As Integer, ByVal message As String)

m_Iterations = iterations
m_Message = message

End Sub

Properties to retrieve configuration settings.
Public ReadOnly Property Iterations() As Integer
Get
Return m_Iterations
End Get
End Property

Public ReadOnly Property Message() As String
Get
Return m_Message
End Get
End Property

End Class

' A method that conforms to the System.Threading.WaitCallback
delegate signature. Displays a message to the console.
Public Shared Sub DisplayMessage(ByVal state As Object)
' Safely case the state argument to a MessageInfo object.
Dim config As MessageInfo = TryCast(state, MessageInfo)

If the config argument is Nothing, no arguments were passed to
the ThreadPool.QueueUserWorkItem method; use default values.
If config Is Nothing Then

Display a fixed message to the console three times.
For count As Integer = 1 To 3

Console.WritelLine("A thread pool example.")

132 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

' Sleep for the purpose of demonstration. Avoid sleeping
' on thread-pool threads in real applications.
Thread.Sleep(1000)
Next
Else
Display the specified message the specified number of times.
For count As Integer = 1 To config.Iterations
Console.Writeline(config.Message)

' Sleep for the purpose of demonstration. Avoid sleeping
' on thread-pool threads in real applications.
Thread.Sleep(1000)
Next
End If
End Sub

Public Shared Sub Main()

Execute DisplayMessage using the thread pool and no arguments.
ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage)

' Create a MessageInfo object to pass to the DisplayMessage method.
Dim info As New MessageInfo(5, "A thread pool example with arguments.")

' Execute a DisplayMessage using the thread pool and providing an
argument.
ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage, info)

Wait to continue.
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class
End Namespace

Notes

Using the runtime’s thread pool simplifies multithreaded programming dramatically; however, be
aware that the implementation is a simple, general-purpose thread pool. Before deciding to use the
thread pool, consider the following points:

e Each process has one thread pool, which supports by default a maximum of 25 concurrent
threads per processor. You can change the maximum number of threads using the Shared
ThreadPool.SetMaxThreads method, but some runtime hosts (IIS and SQL Server, for example)
will limit the maximum number of threads and may not allow the default value to be changed
atall.

* Where possible, avoid using the thread pool to execute long-running processes. The limited
number of threads in the thread pool means that a handful of threads tied up with long-running
processes can significantly affect the overall performance of the thread pool. Specifically, you
should avoid putting thread-pool threads to sleep for any length of time.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

e Thread-pool threads are background threads. You can configure threads as either foreground
threads or background threads. Foreground and background threads are identical, except
that a background thread will not keep an application process alive. Therefore, your application
will terminate automatically when the last foreground thread of your application terminates.

¢ You have no control over the scheduling of thread-pool threads, and you cannot prioritize
work items. The thread pool handles each work item in the sequence in which you add it to
the work queue.

* Once a work item is queued, it cannot be canceled or stopped.

* Do not try to use thread-pool threads to directly update or manipulate Windows Forms controls,
because they can be updated only by the thread that created them. For example, suppose that
you have a form with a progress bar and a button that starts some action. When you click the
button, a thread-pool thread is created to perform the action. Since the progress bar is part of
the main application form, it exists on the main application’s thread. Attempting to manipulate it
from the thread-pool thread can cause unforeseen issues. The proper approach is to call dele-
gate methods from the thread-pool threads and have them manipulate the interface for you.
An alternative is to use the BackgroundWorker class, which encapsulates the approach of using
delegates to directly access the interface.

4-2. Execute a Method Asynchronously

Problem

You need to start execution of a method and continue with other tasks while the method runs on a
separate thread. After the method completes, you need to retrieve the method’s return value.

Solution

Declare a delegate with the same signature as the method you want to execute. Create an instance
of the delegate that references the method. Call the BeginInvoke method of the delegate instance to
start executing your method. Use the EndInvoke method to determine the method’s status as well as
obtain the method’s return value if complete.

How It Works

Typically, when you invoke a method, you do so synchronously, meaning that the calling code blocks
until the method is complete. Most of the time, this is the expected, desired behavior because your
code requires the operation to complete before it can continue. However, sometimes it is useful to
execute a method asynchronously, meaning that you start the method in a separate thread and then
continue with other operations.

The .NET Framework implements an asynchronous execution pattern that allows you to call
any method asynchronously using a delegate. When you declare and compile a delegate, the compiler
automatically generates two methods that support asynchronous execution: BeginInvoke and EndInvoke.
When you call BeginInvoke on a delegate instance, the method referenced by the delegate is queued
for asynchronous execution. BeginInvoke does not cause the code execution to wait, but rather returns
immediately with an TAsyncResult instance. IAsyncResult is used when calling EndInvoke. The method
referenced by BeginInvoke executes in the context of the first available thread-pool thread.

The signature of the BeginInvoke method includes the same arguments as those specified by the
delegate signature, followed by two additional arguments to support asynchronous completion.
These additional arguments are as follows:

133

134

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

e ASystem.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous method completes. The method will be executed by a thread-pool
thread. Passing Nothing means no method is called, and you must use another mechanism
(discussed later in this recipe) to determine when the asynchronous method is complete.

e Areference to an object that the runtime associates with the asynchronous operation for you.
The asynchronous method does not use or have access to this object, butit is available to your
code when the method completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a common
callback method to perform completion.

The EndInvoke method allows you to retrieve the return value of a method that was executed
asynchronously, but you must first determine when it has finished. If your asynchronous method
threw an exception, it will be rethrown so that you can handle it when you call EndInvoke. Here are
the four techniques for determining whether an asynchronous method has finished:

e Blockingstops the execution of the current thread until the asynchronous method completes
execution by calling EndInvoke. In effect, this is much the same as synchronous execution.
However, you have the flexibility to decide exactly when your code enters the blocked state,
giving you the opportunity to perform some additional processing before blocking.

e Polling involves repeatedly testing the state of an asynchronous method to determine
whether it is complete by checking the IsCompleted property of the IAsyncResult returned
from BeginInvoke. This is a simple technique and is not particularly efficient from a processing
perspective. You should avoid tight loops that consume processor time; it is best to put the
polling thread to sleep for a period using Thread.Sleep between completion tests. Because
polling involves maintaining aloop, the actions of the waiting thread are limited, but you can
easily update some kind of progress indicator.

* Waiting depends on the AsyncWaitHandle property of the IAsyncResult returned by BeginInvoke.
This object derives from the System.Threading.WaitHandle class and is signaled when the
asynchronous method completes. Waiting is a more efficient version of polling and also allows
you to wait for multiple asynchronous methods to complete. You can specify time-out values
to allow your waiting thread to notify a failure if the asynchronous method takes too long or if
you want to periodically update a status indicator.

Gaution Even if you do not want to handle the return value of your asynchronous method, you should call
EndInvoke; otherwise, you risk leaking memory each time you initiate an asynchronous call using BeginInvoke.

The Code

The following code demonstrates how to use the asynchronous execution pattern. It uses a delegate
named AsyncExampleDelegate to execute a method named LongRunningMethod asynchronously.
LongRunningMethod simulates a long-running method using a configurable delay (produced using
Thread.Sleep). The example contains the following five methods that demonstrate the various
approaches to handling asynchronous method completion:

* The BlockingExample method executes LongRunningMethod asynchronously and continues
with a limited set of processing. Once this processing is complete, BlockingExample blocks
until LongRunningMethod completes. To block, BlockingExample calls the EndInvoke method of the
AsyncExampleDelegate delegate instance. If LongRunningMethod has already finished, EndInvoke
returns immediately; otherwise, BlockingExample blocks until LongRunningMethod completes.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

* The PollingExample method executes LongRunningMethod asynchronously and then enters a
polling loop until LongRunningMethod completes. PollingExample tests the IsCompleted property
of the IAsyncResult instance returned by BeginInvoke to determine whether LongRunningMethod
is complete; otherwise, PollingExample calls Thread. Sleep.

e The WaitingExample method executes LongRunningMethod asynchronously and then waits
until LongRunningMethod completes. WaitingExample uses the AsyncWaitHandle property of the
IAsyncResult instance returned by BeginInvoke to obtain a WaitHandle and then calls its
WaitOne method. Using a time-out allows WaitingExample to break out of waiting in order to
perform other processing or to fail completely if the asynchronous method is taking too long.

e TheWaitAllExample method executes LongRunningMethod asynchronously multiple times and
then uses an array of WaitHandle objects to wait efficiently until all the methods are complete.

e The CallbackExample method executes LongRunningMethod asynchronously and passes

an AsyncCallback delegate instance (that references the CallbackHandler method) to the
BeginInvoke method. The referenced CallbackHandler method is called automatically when
the asynchronous LongRunningMethod completes, leaving the CallbackExample method free to
continue processing. It’s important to note that a reference to the AsyncExampleDelegate is
passed to the BeginInvoke method via the DelegateAsyncState parameter. If you did not pass
this reference, the callback method would not have access to the delegate instance and would
be unable to call EndInvoke.

In VB .NET, it is not necessary to implicitly create a delegate instance, such as Dim longMethod
As AsyncExampleDelegate = New AsyncExampleDelegate(AddressOf LongRunningMethod). Since
the AddressOf operator does this automatically, the more efficient statement Dim longMethod As
AsyncExampleDelegate = AddressOf LongRunningMethod is used instead.

Import System
Imports System.Threading
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 02
" A utility method for displaying useful trace information to the
console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal currentTime As DateTime, w»
ByVal msg As String)

Console.WriteLine("[{0,3}/{1}] - {2} : {3}", =
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread,
"pool", "fore"), currentTime.ToString("HH:mm:ss.ffff"), msg)

End Sub
' A delegate that allows you to perform asynchronous execution of
LongRunningMethod.

Public Delegate Function AsyncExampleDelegate(ByVal delay As Integer,
ByVal name As String) As DateTime

A simulated long-running method.
Public Shared Function LongRunningMethod(ByVal delay As Integer, ‘=
ByVal name As String) As DateTime

135

136 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

TraceMsg(DateTime.Now, name & " example - thread starting.")

Simulate time-consuming process.
Thread.Sleep(delay)

TraceMsg(DateTime.Now, name & " example - thread stopping.")
" Return the method's completion time.
Return DateTime.Now

End Function
' This method executes LongRunningMethod asynchronously and continues
with other processing. Once the processing is complete, the method
blocks until LongRunningMethod completes.

Public Shared Sub BlockingExample()

Console.WritelLine(Environment.NewLine & "*** Running Blocking " & ‘=
"Example *¥*")

Invoke LongRunningMethod asynchronously. Pass Nothing for both the
callback delegate and the asynchronous state object.
Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ‘=
"Blocking", Nothing, Nothing)

Perform other processing until ready to block.
For count As Integer = 1 To 3
TraceMsg(DateTime.Now, "Continue processing until ready to block..")

Thread. Sleep(300)
Next
" Block until the asynchronous method completes.
TraceMsg(DateTime.Now, "Blocking until method is complete...")
' Obtain the completion data for the asynchronous method.
Dim completion As DateTime = DateTime.MinValue

Try

completion = longMethod.EndInvoke(asyncResult)
Catch ex As Exception

' Catch and handle those exceptions you would if calling
LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Blocking example complete.")

End Sub
' This method executes LongRunningMethod asynchronously and then
enters a polling loop until LongRunningMethod completes.
Public Shared Sub PollingExample()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Console.WritelLine(Environment.NewLine & "*** Running Polling " & w»
"Example ***")

Invoke LongRunningMethod asynchronously. Pass Nothing for both the
callback delegate and the asynchronous state object.
Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
Dim asyncResult As IAsyncResult = longMethod.BeginInvoke (2000, ‘=
"Polling", Nothing, Nothing)

Poll the asynchronous method to test for completion. If not
complete, sleep for 300ms before polling again.
TraceMsg(DateTime.Now, "Poll repeatedly until method is complete.")

While Not asyncResult.IsCompleted
TraceMsg(DateTime.Now, "Polling...")
Thread. Sleep(300)

End While

' Obtain the completion data for the asynchronous method.

Dim completion As DateTime = DateTime.MinValue

Try

completion = longMethod.EndInvoke(asyncResult)
Catch ex As Exception

' Catch and handle those exceptions you would if calling
LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Polling example complete.")

End Sub

This method executes LongRunningMethod asynchronously and then
uses a WaitHandle to wait efficiently until LongRunningMethod
completes. Use of a time-out allows the method to break out of
waiting in order to update the user interface or fail if the
asynchronous method is taking too long.

Public Shared Sub WaitingExample()

Console.WritelLine(Environment.NewLine & "*** Running Waiting " & w»
"Example ***")

Invoke LongRunningMethod asynchronously. Pass Nothing for both the
callback delegate and the asynchronous state object.
Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
Dim asyncResult As IAsyncResult = longMethod.BeginInvoke (2000, ‘=
"Waiting", Nothing, Nothing)

Wait for the asynchronous method to complete. Time-out after
300ms and display status to the console before continuing to
wait.

TraceMsg(DateTime.Now, "Waiting until method is complete.")

137

138

CHAPTER 4

THREADS, PROCESSES, AND SYNCHRONIZATION

While Not asyncResult.AsyncWaitHandle.WaitOne (300, False)
TraceMsg(DateTime.Now, "Wait timeout...")

End While

' Obtain the completion data for the asynchronous method.

Dim completion As DateTime = DateTime.MinValue

Try

completion = longMethod.EndInvoke(asyncResult)
Catch ex As Exception

' Catch and handle those exceptions you would if calling
LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Waiting example complete.")

End Sub

This method executes LongRunningMethod asynchronously multiple
times and then uses an array of WaitHandle objects to wait
efficiently until all of the methods are complete. Use of a
time-out allows the method to break out of waiting in order to
update the user interface or fail if the asynchronous method
is taking too long.

Public Shared Sub WaitAllExample()

Console.WritelLine(Environment.NewLine & "*** Running WaitAll " &

"Example *¥*")

Nothing))
Nothing))

Nothing))

An Arraylist to hold the IAsyncResult instances for each of the
asynchronous methods started.
Dim asyncResults As New ArraylList(3)

Invoke three LongRunningMethod asynchronously. Pass Nothing for
both the callback delegate and the asynchronous state object. Add
the IAsyncResult instance for each method to the Arraylist.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

asyncResults.Add(longMethod.BeginInvoke(3000, "WaitAll 1", Nothing, ‘=
asyncResults.Add(longMethod.BeginInvoke(2500, "WaitAll 2", Nothing, ‘=

asyncResults.Add(longMethod.BeginInvoke(1500, "WaitAll 3", Nothing, =

Create an array of WaitHandle objects that will be used to wait
for the completion of all the asynchronous methods.
Dim waitHandles As WaitHandle() = New WaitHandle(2) {}

For count As Integer

=0 To 2
waitHandles(count) = D

irectCast(asyncResults(count), w»

IAsyncResult).AsyncWaitHandle

Next

End

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

" Wait for all three asynchronous methods to complete. Time-out

' after 300ms and display status to the console before continuing

' to wait.

TraceMsg(DateTime.Now, "Waiting until all 3 methods are complete...")

While Not WaitHandle.WaitAll(waitHandles, 300, False)
TraceMsg(DateTime.Now, "WaitAll timeout...")
End While

Inspect the completion data for each method, and determine the
time at which the final method completed.
Dim completion As DateTime = DateTime.MinValue

For Each result As IAsyncResult In asyncResults
Try
Dim completedTime As DateTime = longMethod.EndInvoke(result)
If completedTime > completion Then completion = completedTime
Catch ex As Exception
' Catch and handle those exceptions you would if calling
" LongRunningMethod directly.
End Try
Next

Display completion information.
TraceMsg(completion, "WaitAll example complete.")

Sub

This method executes LongRunningMethod asynchronously and passes
an AsyncCallback delegate instance. The referenced CallbackHandler
method is called automatically when the asynchronous method
completes, leaving this method free to continue processing.

Public Shared Sub CallbackExample()

Console.WritelLine(Environment.NewLine & "*** Running Callback" & w»

"Example *¥*")

"Callback",

" Invoke LongRunningMethod asynchronously. Pass an AsyncCallback

' delegate instance referencing the CallbackHandler method that

" will be called automatically when the asynchronous method

' completes. Pass a reference to the AsyncExampleDelegate delegate

' instance as asynchronous state; otherwise, the callback method

" has no access to the delegate instance in order to call EndInvoke.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

Dim asyncResult As IAsyncResult = longMethod.BeginInvoke (2000, ‘=

AddressOf CallbackHandler, longMethod)

' Continue with other processing.

For count As Integer = 0 To 15
TraceMsg(DateTime.Now, "Continue processing...")
Thread. Sleep(300)

Next

End Sub

139

140 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

" A method to handle asynchronous completion using callbacks.
Public Shared Sub CallbackHandler(ByVal result As IAsyncResult)
Extract the reference to the AsyncExampleDelegate instance
' from the IAsyncResult instance. This allows you to obtain the
completion data.
Dim longMethod As AsyncExampleDelegate = DirectCast(result.AsyncState, w»
AsyncExampleDelegate)

' Obtain the completion data for the asynchronous method.
Dim completion As DateTime = DateTime.MinValue

Try
completion = longMethod.EndInvoke(result)

Catch ex As Exception
' Catch and handle those exceptions you would if calling
" LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Callback example complete.")

End Sub

<MTAThread()> _
Public Shared Sub Main()

Demonstrate the various approaches to asynchronous method completion.
BlockingExample()
PollingExample()
WaitingExample()
WaitAllExample()
CallbackExample()

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class
End Namespace

4-3. Creating an Asynchronous Method to Update
the User Interface

Problem

You need to execute, in a Windows Forms application, some method asynchronously that needs to
be able to safely manipulate the user interface.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 14

Solution

Create an instance of the System.ComponentModel.BackgroundWorker class. Perform the asynchronous
action within the DoWork event handler, which is raised when you call the BackgroundWorker.
RunWorkerAsync method. To allow the asynchronous method to safely interact with the user inter-
face, include a call to the ReportProgress method (within the DoWork event handler), and handle the
ProgressChanged event that it raises.

How It Works

The standard process for executing methods asynchronously is to use delegates to interact with the
user interface. This process works well but requires several steps and some careful planning. The
BackgroundWorker class, first introduced in .NET 2.0, encapsulates the methodology for using dele-
gates (which is covered in detail in recipe 4-2) making it easy to use when attempting to perform
asynchronous updates to an interface. Table 4-1 shows the main methods, properties, and events
that make up this class.

Table 4-1. Properties, Methods, and Events of the BackgroundWorker Class

Member Description

Properties

CancellationPending A Boolean value that indicates whether CancelAsync was called.
IsBusy A Boolean value that indicates whether the asynchronous

operation has started.

WorkerRerportsProgress A Boolean value that indicates whether the BackgroundWorker is
capable of reporting progress via the ReportProgress method.

WorkerSupportsCancellation A Boolean value that indicates whether the BackgroundWorker is
capable of supporting cancellation via the CancelAsync method.

Methods

CancelAsync Sets the CancellationPending property to True.

ReportProgress Causes the ProgressChange event to be fired. Pass an Integer
value, ranging from 0 to 100, to indicate the progress percentage
to report.

RunWorkerAsync Causes the DoWork event to be fired, which starts the
asynchronous operation.

Events

DoWork Responsible for performing the asynchronous operation and
is raised when the RunWorkerAsync is called.

ProgressChanged Responsible for interacting with the user interface and is raised
when the ReportProgress method is called.

RunWorkerCompleted Responsible for performing any finalization and is raised after

the DoWork event finishes.

142

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

The first step is to handle the DoWork event. This event runs asynchronously and is where your
long-running method should be executed. DoWork is raised when the RunWorkerAsync method is
called. This method includes an overload that takes an Object, which is used to pass some data to the
asynchronous method. Code within the DoWork event handler should not interact directly with the
user interface because this code is executing on a background thread.

When the DoWork event completes, the RunWorkerCompleted event is raised. If you need to return
any data from the asynchronous method back to the calling routine, it should be saved to the Result
property of the DoWorkEventArgs class within the DoWork event handler. This data is then passed to
the Result property of the RunWorkerCompletedEventArgs class and is available for use within the
RunWorkerCompleted event handler. Code within the RunWorkerCompleted event handler can safely
interact with the user interface directly.

If the asynchronous method needs to be canceled, you need to call the CancelAsync method
of the BackgroundWorker class. This method sets the CancellationPending property of the
BackgroundWorker class to True. It is your responsibility, within the DoWork event handler, to periodi-
cally check whether CancellationPending has been set to True. If it has, you would then cancel
the event by setting the Cancel property of the DoWorkEventArgs class to True. In this situation, the
RunhWorkerCompleted event will still be raised, but the Cancelled property of the RunWorkerCompleted-
EventArgs will be set to True so you can quickly determine whether the asynchronous operation was
canceled by the user. If CancelArgs is called while the BackgroundWorker . WorkerSupportsCancellation
property is False, then an InvalidException is thrown.

If your asynchronous operation needs to update a control on the user interface, such as a
progress bar, you would use the ReportProgress method of the BackgroundWorker class. The handler
for the ProgressChanged event, which is raised by the ReportProgress method, is able to safely
interact with the user interface, so any code to do so should be placed there. Both overloads of the
ReportProgress method accept an Integer that are saved to the ProgressPercentage property of the
ProgressChangedEventArgs class and can be quickly used to update a progress bar. One of the over-
loads also lets you specify the data that was initially passed to the RunWorkerAsync method. This data
is saved to the UserState property of the ProgressChangedEventArgs class. If ReportProgress is called
while the BackgroundWorker.WorkerReportsProgress property is False, then an InvalidExceptionis
thrown.

To have access to your BackgroundWorker instance throughout your form, you should be sure to
declare it as a global variable (and using WithEvents). It may also be possible to have more than one
BackgroundWorker at the same time. In this situation, you will want to cast the sender parameter of
the BackgroundhWorker events to a BackgroundWorker class in order to have a reference to the appro-
priate instance.

Note The BackgroundWorker class can be manually instantiated and manipulated through code, or if you are
using Visual Studio, you can drag a BackgroundWorker component from the Components tab in the Toolbox
directly to your form.

The Code

The example is a simple Windows Forms application that uses the BackgroundWorker class to run a simu-
lated long-running method asynchronously in the background without causing the user interface to

freeze. The asynchronous method is started when the Start button is clicked, and it’s canceled when the
Cancel button is clicked. The progress bar on the form is updated via the ProgressChange event handler.

Imports System

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Imports System.Windows.Forms
Imports System.ComponentModel

All designed code is stored in the autogenerated partial

class called Recipe04-03.Designer.vb. You can see this

file by selecting "Show

All Files" in solution explorer.

Partial Public Class Recipe04 03

Instantiate the BackgroundWorker object
Dim WithEvents worker As New BackgroundWorker

Private Sub Recipe04 03_Load(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles MyBase.load

worker.WorkerReportsProgress = True
worker.WorkerSupportsCancellation = True

End Sub

' Button.Click event handler for the Start button, which

starts the asynchronous operation.

Private Sub btnStart Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnStart.Click

btnStart.Enabled =
progress.Visible
progress.Maximum =
progress.Value = 0

Configure the form controls.
btnCancel.Enabled =

True
False
True
100

Begin the background operation.
worker.RunWorkerAsync()

End Sub

' Button.Click event handler for the Cancel button, which
instructs the BackgroundWorker to terminate.
Private Sub btnCancel Click(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles btnCancel.Click

Instruct the BackgroundWorker to terminate
worker.CancelAsync()

End Sub

BackgroundWorker.DoWork event handler. This is where the long running method

that needs to run asynchronously should be executed.

Private Sub worker DoWork(ByVal sender As Object, ‘=
Byval e As System.ComponentModel.DoWorkEventArgs) Handles worker.DoWork

143

144 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Get the instance of the BackgroundWorker that raised the event.
This is useful to do in case you have multiple BackgroundWorkers
being handled by this event.

Dim worker As BackgroundWorker = DirectCast(sender, BackgroundWorker)

Perform a loop and pause the thread for 1 second
to simulate a long running operation.
For i As Integer = 1 To 10

Check if the user requested the operation to
be canceled.
If worker.CancellationPending Then
' (Cancel the event.
e.Cancel = True
Exit For
Else

Pause the thread to simulate some action occurring.
System.Threading.Thread.Sleep(1000)
' Update the progress on the user interface.
worker.ReportProgress(i * 10)
End If
Next

Simulate returning some result back to the main thread.
If Not e.Cancel Then e.Result = "Successful”

End Sub

BackgroundWorker.ProgressChanged event handler. This event is used to update
the user interface, such as updating a progress bar.
Private Sub worker ProgressChanged(ByVal sender As Object,
Byval e As System.ComponentModel.ProgressChangedEventArgs)
Handles worker.ProgressChanged

Update the Progress bar on the form.
progress.Value = e.ProgressPercentage

End Sub

BackgroundWorker.RunWorkerCompleted event handler. This event is raised once
BackgroundWorker.DoWork completes and should be used for finalization.
Private Sub worker RunWorkerCompleted(ByVal sender As Object, ‘=
Byval e As System.ComponentModel.RunWorkerCompletedEventArgs) ‘=
Handles worker.RunWorkerCompleted
" Check if an unhandled exception occurred in the DoWork event.
If e.Error Is Nothing Then
' Check if DoWork was cancelled by the user.
If Not e.Cancelled Then
MessageBox.Show("Results: " & e.Result.ToString)
Else
MessageBox.Show("Operation canceled by user")
End If

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Else
Display the exception.

MessageBox.Show(e.Error.ToString)
End If
' Reset form
progress.Visible = False
progress.Value = 0
btnCancel.Enabled = False
btnStart.Enabled = True

End Sub

End Class

Usage

Figure 4-1 shows an example of what the recipe might look like when it is launched. When the DoWork
event completes, a message box appears showing that the method finished successfully. If you click
the Cancel button while the method is still executing, then it will be canceled, and the message box
will appearing showing it was canceled.

! Recipe04_03 [E=NEER™

|_Jne | |

Figure 4-1. A simple Windows Forms application
4-4. Execute a Method Periodically

Problem

You need to execute a method in a separate thread periodically.

Solution

Declare a method containing the code you want to execute periodically. The method’s signature
must match that defined by the System.Threading.TimerCallback delegate; in other words, it must
be a subroutine (not a function) and take a single Object argument. Create a System.Threading.Timer
object and pass it the method you want to execute, along with a state Object that the timer will pass
to your method when the timer fires. The runtime will wait until the timer expires, and then call your
method using a thread from the thread pool.

Tip If you are implementing a timer in a Windows Forms application, you should consider using the System.
Windows.Forms. Timer, which also provides additional support in Visual Studio that allows you to drag the timer
from your Toolbox onto your application. For server-based applications where you want to signal multiple listeners

each time the timer fires, consider using the System.Timers.Timer class, which notifies listeners using events.

145

146

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

How It Works

It is often useful to execute a method at regular intervals. For example, you might need to clean a
data cache every 20 minutes. The System.Threading.Timer class makes the periodic execution of
methods straightforward, allowing you to execute a method referenced by a TimerCallback delegate
at specified intervals. The referenced method executes in the context of a thread from the thread
pool. (See recipe 4-1 for notes on the appropriate use of thread-pool threads.)

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. Specify 0 to execute the method immediately,
and specify System.Threading.Timeout.Infinite (which is -1) to create the Timer in an unstarted
state. The second value specifies the interval in milliseconds; then the Timer will repeatedly call your
method following the initial execution. If you specify a value of 0 or Timeout. Infinite, the Timer will
execute the method only once (as long as the initial delay is not Timeout.Infinite). You can specify
the time intervals as Integer, Long, UInteger, or System. TimeSpan values.

Once you have created a Timer object, you can modify the intervals used by the timer using the
Change method, but you cannot change the method that is called. When you have finished with a
Timer object, you should call its Dispose method to free system resources held by the timer. Disposing of
the Timer object cancels any method that is scheduled for execution.

The Code

The TimerExample class shown next demonstrates how to use a Timer object to call a method named
TimerHandler. Initially, the Timer object is configured to call TimerHandler after 2 seconds and then
at 1-second intervals. The example allows you to enter a new millisecond interval in the console,
which is applied using the Timer.Change method.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 04
Public Shared Sub Main()

Create the state object that is passed to the TimerHandler
method when it is triggered. In this case, a message to display.
Dim state As String = "Timer fired."

Console.WritelLine("{0} : Creating Timer.", w»
DateTime.Now.ToString("HH:mm:ss.ffff"))

' Create a Timer that fires first after 2 seconds and then every
second. The threadTimer object is automatically disposed at the
' end of the Using block.
Using threadTimer As New Timer (AddressOf TimerTriggered, state, 2000, w»

1000)
Dim period As Integer
' Read the new timer interval from the console until the
user enters 0 (zero). Invalid values use a default value
of 0, which will stop the example.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Do
Try
period = Int32.Parse(Console.ReadLine())
Catch ex As FormatException
period = 0
End Try
' Change the timer to fire using the new interval starting
immediately.
If period > 0 Then
Console.WritelLine("{0} : Changing Timer Interval.", ‘=
DateTime.Now.ToString("HH:mm:ss.ffff"))
threadTimer.Change(0, period)
End If

Loop While period > 0
End Using

Wait to continue.
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

Private Shared Sub TimerTriggered(ByVal state As Object)
Console.WritelLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), =
state)
End Sub

End Class
End Namespace

4-5. Execute a Method at a Specific Time

Problem

You need to execute a method in a separate thread at a specific time.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.TimerCallback delegate; that is, it must be a subroutine (not a
function) and take a single Object argument. Create a System. Threading.Timer object, and passit the
method you want to execute along with a state Object that the timer will pass to your method when
the timer expires. Calculate the time difference between the current time and the desired execution
time, and configure the Timer object to fire once after this period of time.

How It Works

Executing a method ata particular time is often useful. For example, you might need to back up data
at 1 a.m. daily. Although primarily used for calling methods at regular intervals, the Timer object also
provides the flexibility to call a method at a specific time.

147

148

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. To execute the method at a specific time,
you should set this value to the difference between the current time (System.DateTime.Now) and the
desired execution time. The second value specifies the interval after which the Timer will repeatedly call
your method following the initial execution. If you specify a value of 0, System. Threading. Timeout.
Infinite, or TimeSpan(-1), the Timer object will execute the method only once. If you need the method to
execute at a specific time every day, you can easily set this value using TimeSpan. FromDays (1), which
represents the number of milliseconds in 24 hours.

The Code

The following code demonstrates how to use a Timer object to execute a method at a specified time.
The RunAt method calculates the TimeSpan between the current time and a time specified on the
command line (in RFC1123 format) and configures a Timer object to fire once after that period of time.

Imports System
Imports System.Threading
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 05
Public Shared Sub RunAt(ByVal execTime As DateTime)
' Calculate the difference between the specified execution
time and the current time.
Dim waitTime As TimeSpan = execTime - DateTime.Now

Check if a time in the past was specified. If it was, set
the waitTime to TimeSpan(0) which will cause the timer
to execute immediately.
If waitTime < New TimeSpan(0) Then
Console.Writeline("A 'Past' time was specified.")
Console.Writeline("Timer will fire immediately.")
waitTime = New TimeSpan(0)
End If

Create a Timer that fires once at the specified time. Specify
an interval of -1 to stop the timer executing the method
repeatedly.

Dim threadTimer As New Timer(AddressOf TimerTriggered, ‘=
"Timer Triggered", waitTime, New TimeSpan(-1))

End Sub

Private Shared Sub TimerTriggered(ByVal state As Object)
Console.WritelLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss . ffff"), =
state)
Console.WritelLine("Main method complete. Press Enter.")
End Sub

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Public Shared Sub Main(ByVal args As String())

Dim execTime As DateTime
' Ensure there is an execution time specified on the command line.
If args.Length > 0 Then

Convert the string to a datetime. Support only the RFC1123

DateTime pattern.

Try
execTime = DateTime.ParseExact(args(0), "r", Nothing)
Console.WritelLine("Current time g -

DateTime.Now.ToString("r"))
Console.WriteLine("Execution time : " & w»
execTime.ToString("r"))

RunAt (execTime)
Catch ex As FormatException
Console.WritelLine("Execution time must be of the " & w»
"format:{0}{1}{2}", ControlChars.NewLine, ControlChars.Tab, w
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
End Try

' Wait to continue.
Console.Writeline("Waiting for Timer...")
Console.ReadlLine()
Else
Console.WriteLine("Specify the time you want the method to " & w»
"execute using the format :{0}{1} {2}", ControlChars.NewLine, ControlChars.Tab, ‘=
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
End If
End Sub
End Class

End Namespace

Usage
If you run Recipe04-05 using the following command:
Recipe04-05 "Sat, 22 Sep 2007 17:25:00 GMT"

you will see output similar to the following:

Current time : Sat, 22 Sep 2007 17:23:56 GMT
Execution time : Sat, 22 Sep 2007 17:25:00 CMT
Waiting for Timer...

17:25:00.0110 : Timer Triggered

Main method complete. Press Enter.

149

150

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

4-6. Execute a Method by Signaling a WaitHandle Object

Problem

You need to execute one or more methods automatically when an object derived from System.
Threading.WaitHandle is signaled.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitOrTimerCallback delegate. Using the Shared ThreadPool.
RegisterWaitForSingleObject method, register the method to execute and the WaitHandle object
that will trigger execution when signaled.

How It Works

You can use classes derived from the WaitHandle class to trigger the execution of a method. Using the
RegisterWaitForSingleObject method of the ThreadPool class, you can register aWaitOrTimerCallback
delegate instance for execution by a thread-pool thread when a specified WaitHandle-derived object
enters a signaled state. You can configure the thread pool to execute the method only once or to
automatically reregister the method for execution each time the WaitHandle is signaled. If the WaitHandle
is already signaled when you call RegisterWaitForSingleObject, the method will execute immedi-
ately. RegisterWaitForSingleObject returns a reference to a RegistereredWaitHandle object. The
Unregister method of this class can be used to cancel a registered wait operation.

The class most commonly used as a trigger is AutoResetEvent, which automatically returns to an
unsignaled state after it is signaled. However, you can also use the ManualResetEvent, Mutex, and
Semaphore classes, which require you to change the signaled state manually. AutoResetEvent and
ManualResetEvent derive from the EventWaitHandle class, which in turn derives from WaitHandle,
while Mutex and Semaphore derive directly from WaitHandle.

The Code

The following example demonstrates how to use an AutoResetEvent to trigger the execution of a
method named ResetEventHandler. (The AutoResetEvent class is discussed further in recipe 4-9.)

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 06
" A method that is executed when the AutoResetEvent is signaled
or the wait operation times out.
Private Shared Sub ResetEventHandler(ByVal state As Object, ByVal =
timedOut As Boolean)

Display an appropriate message to the console based on whether
the wait timed out or the AutoResetEvent was signaled.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

If timedOut Then
Console.WriteLine("{0} : Wait timed out.", =
DateTime.Now.ToString("HH:mm:ss.ffff"))
Else
Console.WriteLine("{0} : {1}", =
DateTime.Now.ToString("HH:mm:ss.ffff"), state)
End If

End Sub
Public Shared Sub Main()

' Create the new AutoResetEvent in an unsignaled state.
Dim autoEvent As New AutoResetEvent(False)

' Create the state object that is passed to the event handler
' method when it is triggered. In this case, a message to display.
Dim state As String = "AutoResetEvent signaled."”

' Register the ResetEventHandler method to wait for the AutoResetEvent

' to be signaled. Set a time-out of 3 seconds and configure the wait

' event to reset after activation (last argument).

Dim handle As RegisteredWaitHandle = w»
ThreadPool.RegisterWaitForSingleObject(autoEvent, AddressOf ResetEventHandler, w»
state, 3000, False)

Console.Writeline("Press ENTER to signal the AutoResetEvent or enter" & w»
"""CANCEL"" to unregister the wait operation.")

While Not Console.ReadlLine.ToUpper = "CANCEL"
" If "CANCEL" has not been entered into the console, signal
" the AutoResetEvent, which will cause the EventHandler
' method to execute. The AutoResetEvent will automatically
revert to an unsignaled state.
autoEvent. Set()
End While

Unregister the wait operation.
Console.Writeline("Unregistering wait operation.™)
handle.Unregister(Nothing)

Wait to continue.
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

151

152

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

4-7. Execute a Method Using a New Thread

Problem

You need to execute code in its own thread, and you want complete control over the thread’s state
and operation.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.ThreadStart or System.Threading.ParameterizedThreadStart
delegates. Create a new System.Threading.Thread object, and pass the method delegate as an argu-
ment to its constructor. Call the Thread. Start method to start the execution of your method.

How It Works

For maximum control and flexibility when creating multithreaded applications, you need to take a
direct role in creating and managing threads. This is the most complex approach to multithreaded
programming, but it is the only way to overcome the restrictions and limitations inherent in the
approaches using thread-pool threads, as discussed in the preceding recipes. The Thread class
provides the mechanism through which you create and control threads. To create and start a new
thread, follow this process:

1. Define a method that matches the ThreadStart or ParameterizedThreadStart delegate. The
ThreadStart delegate takes no arguments and must be a subroutine (not a function). This
means you cannot easily pass data to your new thread. The ParameterizedThreadStart del-
egate must also be a subroutine but takes a single Object as an argument, allowing you to
pass data to the method you want to run. The method you want to execute can be Shared or
an instance method.

2. Create anew Thread object, and pass a delegate to your method as an argument to the Thread
constructor. The new thread has an initial state of Unstarted (a member of the System.
Threading.ThreadState enumeration) and is a foreground thread by default. If you want to
configure it to be a background thread, you need to set its IsBackground property to True.

3. Call Start on the Thread object, which changes its state to ThreadState.Running and begins
execution of your method. If you need to pass data to your method, include it as an argument to
the Start call, or use the ParameterizedThreadStart delegate mentioned earlier. If you call
Start more than once, it will throw a System.Threading.ThreadStateException.

The Code

The following code demonstrates how to execute a method in a new thread and how to pass data to
the new thread.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 07

A utility method for displaying useful trace information to the
console along with details of the current thread.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Private Shared Sub TraceMsg(ByVal msg As String)

Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)

End

Console.WritelLine("[{0,3}] - {1} : {2}", =

Sub

A private class used to pass initialization data to a new thread.

Private Class ThreadStartData

ByVal delay

End

Pri

Member variables hold initialization data for a new thread.
Private ReadOnly m_Iterations As Integer

Private ReadOnly m_Message As String

Private ReadOnly m_Delay As Integer

Public Sub New(ByVal iterations As Integer, ByVal message As String, ‘=

As Integer)
m_Iterations = iterations
m_Message = message
m Delay = delay

End Sub

Properties provide read-only access to initialization data.
Public ReadOnly Property Iterations()
Get
Return m_Iterations
End Get
End Property

Public ReadOnly Property Message()
Get
Return m_Message
End Get
End Property

Public ReadOnly Property Delay()
Get
Return m Delay
End Get
End Property

Class

Declare the method that will be executed in its own thread. The
method displays a message to the console a specified number of

times, sleeping between each message for a specified duration.

vate Shared Sub DisplayMessage(ByVal config As Object)

Dim data As ThreadStartData = TryCast(config, ThreadStartData)

If Not data Is Nothing Then
For count As Integer = 0 To data.Iterations - 1
TraceMsg(data.Message)
' Sleep for the specified period.
Thread.Sleep(data.Delay)
Next

153

154 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Else
TraceMsg("Invalid thread configuration.")
End If

End Sub
Public Shared Sub Main()

' Create a new Thread object specifying DisplayMessage
' as the method it will execute.
Dim newThread As New Thread(AddressOf DisplayMessage)

' Create a new ThreadStartData object to configure the thread.
Dim config As New ThreadStartData(5, "A thread example.", 500)

TraceMsg("Starting new thread.")

' Start the new thread and pass the ThreadStartData object
containing the initialization data.
newThread.Start(config)

Continue with other processing.

For count As Integer = 0 To 12
TraceMsg("Main thread continuing processing...")
Thread. Sleep(200)

Next

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-8. Synchronize the Execution of Multiple Threads Using
a Monitor

Problem

You need to coordinate the activities of multiple threads to ensure the efficient use of shared resources
or to ensure several threads are not updating the same shared resource at the same time.

Solution

Identify an appropriate object to use as a mechanism to control access to the shared resource/data.
Use the Shared method Monitor.Enter to acquire a lock on the object, and use the Shared method
Monitor.Exit to release the lock so another thread may acquire it.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

How It Works

The greatest challenge in writing a multithreaded application is ensuring that the threads work in
concert. This is commonly referred to as thread synchronization and includes the following:

* Ensuring threads access shared objects and data correctly so that they do not cause corruption

* Ensuring threads execute only when they are meant to and cause minimum overhead when
they are idle

The most commonly used synchronization mechanism is the System.Threading.Monitor class.
The Monitor class allows a single thread to obtain an exclusive lock on an object by calling the Shared
method Monitor.Enter. By acquiring an exclusive lock prior to accessing a shared resource or data,
you ensure that only one thread can access the resource concurrently. Once the thread has finished
with the resource, release the lock to allow another thread to access it. A block of code that enforces
this behavior is often referred to as a critical section.

Note Monitors are managed-code synchronization mechanisms that do not rely on any specific operating
system primitives. This ensures your code is portable should you want to run it on a non-Windows platform. This is
in contrast to the synchronization mechanisms discussed in recipes 4-9, 4-10, and 4-11, which rely on Win32 oper-
ating system—based synchronization objects.

You can use any object to act as the lock; it is common to use the keyword Me to obtain a lock on
the current object, but it is better to use a separate object dedicated to the purpose of synchroniza-
tion. The key pointis that all threads attempting to access a shared resource must try to acquire the
samelock. Other threads that attempt to acquire a lock using Monitor.Enter on the same object will
block (enter aWaitSleepJoinstate) and are added to the lock’s ready queueuntil the thread that owns
the lock releases it by calling the Shared method Monitor.Exit. When the owning thread calls Exit,
one of the threads from the ready queue acquires the lock. We say “one of the threads” because
threads are not necessarily executed in any specific order. If the owner of a lock does not release it by
calling Exit, all other threads will block indefinitely. Therefore, it is important to place the Exit call
within a Finally block to ensure that it is called even if an exception occurs. To ensure threads do not
wait indefinitely, you can specify a time-out value when you call Monitor.Enter.

Tip Because Monitor is used so frequently in multithreaded applications, VB .NET provides language-level
support through the Synclock statement, which the compiler translates to the use of the Monitor class. A block
of code encapsulated in a Synclock statement is equivalent to calling Monitor.Enter when entering the block
and Monitor.Exit when exiting the block. In addition, the compiler automatically places the Monitor.Exit call
ina Finally block to ensure that the lock is released if an exception is thrown.

Using Monitor.Enter and Monitor.Exitis often all you will need to correctly synchronize access
to ashared resource in a multithreaded application. However, when you are trying to coordinate the
activation of a pool of threads to handle work items from a shared queue, Monitor. Enter and Monitor.
Exit will not be sufficient. In this situation, you want a potentially large number of threads to wait
efficiently until a work item becomes available without putting unnecessary load on the central
processing unit (CPU). This is where you need the fine-grained synchronization control provided by
the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll methods.

The thread that currently owns the lock can call Monitor.Wait, which will release the lock and
place that thread on the lock’s wait queue. Threads in a wait queue also have a state of WaitSleepJoin

155

156

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

and will continue to block until a thread that owns the lock calls either the Monitor.Pulse method or
the Monitor.PulseAll method. Monitor.Pulse moves one of the waiting threads from the wait queue
to the ready queue, and Monitor.PulseAll moves all threads. Once a thread has moved from the wait
queue to the ready queue, it can acquire the lock the next time the lock is released. It isimportant to
understand that threads on a lock’s wait queue will not acquire a released lock; they will wait indef-
initely until you call Monitor.Pulse or Monitor.PulseAll to move them to the ready queue.

So, in practice, when your pool threads are inactive, they sit in the wait queue. As a new work
item arrives, a dispatcher obtains the lock and calls Monitor.Pulse, moving one worker thread to the
ready queue, where it will obtain the lock as soon as the dispatcher releases it. The worker thread
takes the work item, releases the lock, and processes the work item. Once the worker thread has
finished with the work item, it again obtains the lock in order to take the next work item, but if there
is no work item to process, the thread calls Monitor.Wait and goes back to the wait queue.

The Code

The following example demonstrates how to synchronize access to a shared resource (the console)
and the activation of waiting threads using the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll
methods. The example starts three worker threads that take work items from a queue and processes
them. These threads initially have no work items and are put into a wait state using Monitor.Wait.
When the user presses Enter the first two times, work items (strings in the example) are added to the
work queue, and Monitor.Pulse is called to release one waiting thread for each work item. The third
time the user presses Enter, Monitor.PulseAll is called, releasing all waiting threads and allowing
them to terminate.

Imports System
Imports System.Threading
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 08
' Declare an object for synchronization of access to the console.

A shared object is used because you are using it in shared methods.

Private Shared consoleGate As New Object

Declare a Queue to represent the work queue.
Private Shared workQueue As New Queue(Of String)
' Declare a flag to indicate to activated threads that they should
terminate and not process more work items.

Private Shared workItemsProcessed As Boolean = False

" A utility method for displaying useful trace information to the
console along with details of the current thread.

Private Shared Sub TraceMsg(ByVal msg As String)

Synclock consoleGate
Console.Writeline("[{0,3}/{1}] - {2} : {3}", =
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, w»
"pool"”, "fore"), DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Synclock

End Sub

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Declare the method that will be executed by each thread to process
items from the work queue.
Private Shared Sub ProcessWorkItems()

A local variable to hold the work item taken from the work queue.
Dim workItem As String = Nothing

TraceMsg("Thread started, processing items from the queue...")
' Process items from the work queue until termination is signaled.
While Not workItemsProcessed

' Obtain the lock on the work queue.

Monitor.Enter (workQueue)

Try

' Pop the next work item and process it, or wait if none
are available.
If workQueue.Count = 0 Then

TraceMsg("No work items, waiting...")

Wait until Pulse is called on the workQueue object.
Monitor.Wait(workQueue)
Else
' Obtain the next work item.
workItem = workQueue.Dequeue
End If
Catch
Finally
Always release the lock.
Monitor.Exit(workQueue)
End Try
' Process the work item if one was obtained.
If Not workItem Is Nothing Then
' Obtain a lock on the console and display a series
of messages.
Synclock consoleGate
For i As Integer = 0 To 4
TraceMsg("Processing " & workItem)
Thread. Sleep(200)
Next
End Synclock

Reset the status of the local variable.
workItem = Nothing
End If
End While
" This will be reached only if workItemsProcessed is true.
TraceMsg("Terminating.")
End Sub

157

158 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Public Shared Sub Main()

TraceMsg("Starting worker threads.")
' Add an initial work item to the work queue.
SynclLock workQueue

workQueue.Enqueue("Work Item 1")
End Synclock

Create and start three new worker threads running the
ProcessWorkItems method.
For count As Integer = 1 To 3
Dim newThread As New Thread(AddressOf ProcessWorkItems)
newThread. Start()
Next

Thread. Sleep(1500)
' The first time the user presses Enter, add a work item and
activate a single thread to process it.
TraceMsg("Press Enter to pulse one waiting thread.")
Console.ReadlLine()
' Acquire a lock on the workQueue object.
SynclLock workQueue
' Add a work item.
workQueue.Enqueue("Work Item 2.")
' Pulse 1 waiting thread.
Monitor.Pulse(workQueue)
End Synclock

Thread. Sleep(2000)
' The second time the user presses Enter, add three work items and
activate three threads to process them.
TraceMsg("Press Enter to pulse three waiting threads.")
Console.ReadlLine()
' Acquire a lock on the workQueue object.
SynclLock workQueue
' Add work items to the work queue, and activate worker threads.
workQueue.Enqueue("Work Item 3.")
Monitor.Pulse(workQueue)
workQueue.Enqueue("Work Item 4.")
Monitor.Pulse(workQueue)
workQueue.Enqueue("Work Item 5.")
Monitor.Pulse(workQueue)
End Synclock

Thread. Sleep(3500)

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

' The third time the user presses Enter, signal the worker threads
' to terminate and activate them all.

TraceMsg("Press Enter to pulse all waiting threads.")
Console.ReadlLine()

Acquire a lock on the workQueue object.
SyncLock workQueue

' Signal that threads should terminate.
workItemsProcessed = True

Pulse all waiting threads.
Monitor.PulseAll(workQueue)
End Synclock

Thread. Sleep(1000)

Wait to continue.
TraceMsg("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-9. Synchronize the Execution of Multiple Threads Using
an Event

Problem

You need a mechanism to synchronize the execution of multiple threads in order to coordinate their
activities or access to shared resources.

Solution

Use the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes from the System.Threading
namespace.

How It Works

The EventWaitHandle, AutoResetEvent, and ManualResetEvent classes provide similar functionality.
The EventWaitHandle class is the base class from which the AutoResetEvent and ManualResetEvent
classesare derived. EventWaitHandle inherits directly from System.Threading.WaitHandle and allows
you to create named events. All three event classes allow you to synchronize multiple threads by
manipulating the state of the event between two possible values: signaled and unsignaled.

Threads requiring synchronization call Shared or inherited methods of the WaitHandle abstract
base class (summarized in Table 4-2) to test the state of one or more event objects. If the events are
signaled when tested, the thread continues to operate unhindered. If the events are unsignaled, the

159

160

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

thread enters a WaitSleepJoin state, blocking until one or more of the events become signaled or
when a given time-out expires.

Table 4-2. WaitHandle Methods for Synchronizing Thread Execution

Method Description

WaitOne Causes the calling thread to enter a WaitSleepJoin state and wait for a specific
WaitHandle derived object to be signaled. You can also specify a time-out
value. The WaitingExample method in recipe 4-2 demonstrates how to use the
WaitOne method.

WaitAny A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for any one of the objects in a WaitHandle array to be signaled. You
can also specify a time-out value.

WaitAll A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for all the WaitHandle objects in a WaitHandle array to be signaled.
You can also specify a time-out value. The WaitAllExample method in recipe
4-2 demonstrates how to use the WaitAll method.

SignalAndWait A Shared method that causes the calling thread to signal a specified event
object and then wait on a specified event object. The signal and wait operations
are carried out as an atomic operation. You can also specify a time-out value.

The key differences between the three event classes are how they transition from a signaled to
an unsignaled state and their visibility. Both the AutoResetEvent and ManualResetEvent classes are
local to the process in which they are declared. To signal an AutoResetEvent class, callits Set method,
which will release only one thread that is waiting on the event. The AutoResetEvent class will then
automatically return to an unsignaled state. The code in recipe 4-6 demonstrates how to use an
AutoResetEvent class.

The ManualResetEvent class must be manually switched back and forth between signaled and
unsignaled states using its Set and Reset methods. Calling Set on aManualResetEvent class will set it
to a signaled state, releasing all threads that are waiting on the event. Only by calling Reset does the
ManualResetEvent class become unsignaled.

You can configure the EventWaitHandle class to operate in a manual or automatic reset mode,
making it possible to act like either the AutoResetEvent class or the ManualResetEvent class. When
you create the EventWaitHandle, you pass a value of the System.Threading.EventResetMode enumer-
ation to configure the mode in which the EventWaitHandle will function; the two possible values are
AutoReset and ManualReset. The unique benefit of the EventWaitHandle class is that it is not constrained
to the local process. When you create an EventiWaitHandle class, you can associate a name with it
that makes it accessible to other processes, including nonmanaged Win32 code. This allows you to
synchronize the activities of threads across process and application domain boundaries and synchronize
access to resources that are shared by multiple processes. To obtain a reference to an existing named
EventWaitHandle, call one of the available constructors of the Shared method EventWaitHandle.
OpenExisting, and specify the name of the event.

The Code

The following example demonstrates how to use a named EventWaitHandle in manual mode that is
initially signaled. A thread is spawned that waits on the event and then displays a message to the
console—repeating the process every 2 seconds. When you press Enter, you toggle the event between a

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

signaled and an unsignaled state. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-13.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 09

Boolean to signal that the second thread should terminate.
Public Shared terminate As Boolean = False
" A utility method for displaying useful trace information to the
console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal msg As String)
Console.WritelLine("[{0,3}] - {1} : {2}", =
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub

' Declare the method that will be executed on the separate thread.
The method waits on the EventWaitHandle before displaying a message
to the console and then waits two seconds and loops.

Private Shared Sub DisplayMessage()

Obtain a handle to the EventWaitHandle with the name "EventExample".
Dim eventHandle As EventWaitHandle = w»
EventWaitHandle.OpenExisting("EventExample")

TraceMsg("DisplayMessage Started.")

While Not terminate
' Wait on the EventWaitHandle, time-out after two seconds. WaitOne
returns true if the event is signaled; otherwise, false. The
first time through, the message will be displayed immediately
because the EventWaitHandle was created in a signaled state.
If eventHandle.WaitOne (2000, True) Then
TraceMsg("EventWaitHandle In Signaled State.")
Else
TraceMsg("WaitOne Time Out -- EventWaitHandle In" & w»
"Unsignaled State.")
End If
Thread. Sleep(2000)
End While

TraceMsg("Thread Terminating.")
End Sub

Public Shared Sub Main()
' Create a new EventWaitHandle with an initial signaled state, in

manual mode, with the name "EventExample".

Using eventHandle As New EventWaitHandle(True,

161

162 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

EventResetMode.ManualReset, "EventExample")

End

Con
Con
Con

End Sub

End Class
End Namespace

Create and start a new thread running the DisplayMessage
" method.
TraceMsg("Starting DisplayMessageThread.")
Dim newThread As New Thread(AddressOf DisplayMessage)
newThread. Start()
" Allow the EventWaitHandle to be toggled between a signaled and
unsignaled state up to three times before ending.
For count As Integer = 1 To 3

' Wait for Enter to be pressed.

Console.ReadlLine()

You need to toggle the event. The only way to know the
current state is to wait on it with a 0 (zero) time-out
' and test the result.

If eventHandle.WaitOne(0, True) Then

TraceMsg("Switching Event To UnSignaled State.")

Event is signaled, so unsignal it.
eventHandle.Reset()

Else
TraceMsg("Switching Event To Signaled State.")
' Event is unsignaled, so signal it.

eventHandle. Set ()

End If

Next

Terminate the DisplayMessage thread, and wait for it to
complete before disposing of the EventWaitHandle.
terminate = True

eventHandle.Set()

newThread.Join(5000)

Using

Wait to continue.
sole.WritelLine(Environment.NewLine)
sole.WritelLine("Main method complete. Press Enter.")
sole.ReadlLine()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

4-10. Synchronize the Execution of Multiple Threads Using
a Mutex

Problem

You need to coordinate the activities of multiple threads (possibly across process boundaries) to
ensure the efficient use of shared resources or to ensure several threads are not updating the same
shared resource at the same time.

Solution
Use the System.Threading.Mutex class.

How It Works

The Mutex has a similar purpose to the Monitor discussed in recipe 4-8—it provides a means to ensure
only a single thread has access to a shared resource or section of code at any given time. However,
unlike the Monitor, which is implemented fully within managed code, the Mutex is a wrapper around
an operating system synchronization object. This means you can use a Mutex to synchronize the
activities of threads across process boundaries, even with threads running in nonmanaged Win32
code. If you need to open an existing mutex, you can use the OpenExisting or one of the constructor
overloads that lets you specify a name.

Like the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes discussed in recipe 4-9, the
Mutex is derived from System.Threading.WaitHandle and enables thread synchronization in a similar
fashion. A Mutex is in either a signaled state or an unsignaled state. A thread acquires ownership of
the Mutex at construction or by using one of the methods listed earlier in Table 4-2. If a thread has
ownership of the Mutex, the Mutex is unsignaled, meaning other threads will block if they try to acquire
ownership. Ownership of the Mutex is released by the owning thread calling the Mutex.ReleaseMutex
method, which signals the Mutex and allows another thread to acquire ownership. A thread may
acquire ownership of a Mutex any number of times without problems, but it must release the Mutex
an equal number of times to free it and make it available for another thread to acquire. If the thread
with ownership of a Mutex terminates normally, the Mutex automatically becomes signaled, allowing
another thread to acquire ownership.

The Code

The following example demonstrates how to use a named Mutex to limit access to a shared resource
(the console) to a single thread at any given time. This example uses the Join keyword to cause the
application’s execution to wait until the thread terminates. Join is covered in more detail in recipe
4-13.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 10

Boolean to signal that the second thread should terminate.
Public Shared terminate As Boolean = False

163

164 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

A utility method for displaying useful trace information to the
console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal msg As String)
Console.WriteLine("[{0,3}] - {1} : {2}", =
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub
' Declare the method that will be executed on the separate thread.
In a loop the method waits to obtain a Mutex before displaying a
a message to the console and then waits one second before releasing
' the Mutex.
Private Shared Sub DisplayMessage()

Obtain a handle to the Mutex with the name MutexExample.

Do not attempt to take ownership immediately.

Using newMutex As New Mutex(False, "MutexExample")
TraceMsg("Thread Started.")

While Not terminate
" Wait on the Mutex.
newMutex.WaitOne()

TraceMsg("Thread owns the Mutex.")
Thread.Sleep(1000)
TraceMsg("Thread releasing the Mutex.")
' Release the Mutex.
newMutex.ReleaseMutex()
' Sleep a little to give another thread a good chance of
acquiring the Mutex.
Thread.Sleep(100)

End While

TraceMsg("Thread terminating.")
End Using

End Sub
Public Shared Sub Main()

TraceMsg("Starting threads -- press Enter to terminate.")
Create and start three new threads running the
DisplayMessage method.
Dim thread1 As New Thread(AddressOf DisplayMessage)

Dim thread2 As New Thread(AddressOf DisplayMessage)
Dim thread3 As New Thread(AddressOf DisplayMessage)

thread1.Start()
thread2.Start()
thread3.Start()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Wait for Enter to be pressed.
Console.ReadlLine()

Terminate the DisplayMessage threads, and wait for them to
complete before disposing of the Mutex.

terminate = True

thread1.Join(5000)

thread2.Join(5000)

thread3.Join(5000)

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-11. Synchronize the Execution of Multiple Threads Using
a Semaphore

Problem

You need to control the number of threads that can access a shared resource or section of code
concurrently.

Solution

Use the System.Threading.Semaphore class.

How It Works

The Semaphore is another synchronization class derived from the System.Threading.WaitHandle
class. The purpose of the Semaphore is to allow a specified maximum number of threads to access a
shared resource or section of code concurrently.

As with the other synchronization classes derived from WaitHandle (discussed in recipes 4-9 and
4-10), a Semaphore is either in a signaled state or in an unsignaled state. Threads wait for the Semaphore
to become signaled using the methods described earlier in Table 4-2. The Semaphore maintains a
count of the active threads it has allowed through and automatically switches to an unsignaled state
once the maximum number of threads is reached. The Release method of the Semaphore object is
used to signal the Semaphore, allowing other waiting threads the opportunity to act. A thread may
acquire ownership of the Semaphore more than once, reducing the maximum number of threads that
can be active concurrently, and must call Release the same number of times to fully release it. To
make things a little easier, the Release method includes an overload that allows you to specify the
number of threads that should be released

The Code

The following example demonstrates how to use a named Semaphore to limit access to a shared resource
(the console) to two threads at any given time. The code is similar to that used in recipe 4-10 but

165

166 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

substitutes a Semaphore for the Mutex. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-13.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 11

Boolean to signal that the second thread should terminate.
Public Shared terminate As Boolean = False

A utility method for displaying useful trace information to the
console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal msg As String)
Console.WriteLine("[{0,3}] - {1} : {2}", =
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub

' Declare the method that will be executed on the separate thread.
In a loop the method waits to obtain a Semaphore before displaying a

a message to the console and then waits one second before releasing
the Semaphore.

Private Shared Sub DisplayMessage()

Obtain a handle to the Semaphore, created in main, with the name
SemaphoreExample. Do not attempt to take ownership immediately.

Using sem As Semaphore = Semaphore.OpenExisting("SemaphoreExample")
TraceMsg("Thread Started.")

While Not terminate
' Wait on the Semaphore.
sem.WaitOne()

TraceMsg("Thread owns the Semaphore.")
Thread.Sleep(1000)

TraceMsg("Thread releasing the Semaphore.")
' Release the Semaphore.
sem.Release()

Sleep a little to give another thread a good chance of
acquiring the Semaphore.
Thread.Sleep(100)
End While
TraceMsg("Thread terminating.")
End Using

End Sub

Public Shared Sub Main()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Create a new Semaphore with the name SemaphoreExample.
Using sem As New Semaphore(2, 2, "SemaphoreExample")
TraceMsg("Starting threads -- press Enter to terminate.")

Create and start three new threads running the
DisplayMessage method.

Dim thread1 As New Thread(AddressOf DisplayMessage)
Dim thread2 As New Thread(AddressOf DisplayMessage)
Dim thread3 As New Thread(AddressOf DisplayMessage)

thread1.Start()
thread2.Start()
threads.Start()
' Wait for Enter to be pressed.
Console.ReadlLine()

Terminate the DisplayMessage threads, and wait for them to
complete before disposing of the Semaphore.

terminate = True

thread1.Join(5000)

thread2.Join(5000)

thread3.Join(5000)

End Using

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-12. Synchronize Access to a Shared Data Value

Problem

You need to ensure operations on a numeric data value are executed atomically so that multiple
threads accessing the value do not cause errors or corruption.

Solution

Use the Shared members of the System. Threading. Interlocked class.

How It Works

The Interlocked class contains several Shared methods that perform some simple arithmetic and
comparison operations on a variety of data types and ensure the operations are carried out atomi-
cally. Table 4-3 summarizes the methods and the data types on which they can be used. Note that
the methods use the ByRef keyword on their arguments to allow the method to update the value of

167

168

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

the actual value type variable passed in. If an operation (such as subtraction) you want to perform is
notsupported by the Interlocked class, youwillneed to implement your own synchronization using
the other approaches described in this chapter.

Table 4-3. Interlocked Methods for Synchronizing Data Access

Method Description

Add Adds two Integer or Long values and sets the value of the first argument to
the sum of the two values.

CompareExchange Compares two values; if they are the same, sets the first argument to a
specified value. This method has overloads to support the comparison
and exchange of Integer, Long, Single, Double, Object, and System.IntPtr.

Decrement Decrements an Integer or Long value.

Exchange Sets the value of a variable to a specified value. This method has overloads
to support the exchange of Integer, Long, Single, Double, Object, and
System.IntPtr.

Increment Increments an Integer or Long value.

The Code

The following simple example demonstrates how to use the methods of the Interlocked class. The
example does not demonstrate Interlocked in the context of a multithreaded program and is provided
only to clarify the syntax and effect of the various methods.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 12
Public Shared Sub Main()

Dim firstInt As Integer = 2500
Dim secondInt As Integer = 8000

Console.Writeline("firstInt initial value = {0}", firstInt)
Console.WritelLine("secondInt initial value = {0}", secondInt)

Decrement firstInt in a thread-safe manner. This is
' the thread-safe equivalent of firstInt = firstInt - 1.
Interlocked.Decrement (firstInt)

Console.WriteLine(Environment.NewlLine)
Console.WritelLine("firstInt after decrement = {0}", firstInt)

Increment secondInt in a thread-safe manner. This is
the thread-safe equivalent of secondInt = secondInt + 1.
Interlocked.Increment(secondInt)

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 169

Console.WritelLine("secondInt after increment = {0}", secondInt)
' Add the firstInt and secondInt values, and store the result
in firstInt. This is the thread-safe equivalent of firstInt
= firstInt + secondInt.

Interlocked.Add(firstInt, secondInt)

Console.WritelLine(Environment.NewlLine)
Console.WritelLine("firstInt after Add = {0}", firstInt)
Console.WriteLine("secondInt after Add = {0}", secondInt)

Exchange the value of firstInt with secondInt. This is the
thread-safe equivalent of secondInt = firstInt.
Interlocked.Exchange(secondInt, firstInt)

Console.WritelLine(Environment.NewlLine)
Console.Writeline("firstInt after Exchange = {0}", firstInt)
Console.Writeline("secondInt after Exchange = {0}", secondInt)

Compare firstInt with secondInt, and if they are equal, set
' firstInt to 5000. This is the thread-safe equivalent of
' if firstInt = secondInt then firstInt = 5000.
Interlocked.CompareExchange(firstInt, 5000, secondInt)

Console.WritelLine(Environment.NewlLine)
Console.Writeline("firstInt after CompareExchange = {0}", firstInt)
Console.Writeline("secondInt after CompareExchange = {0}", secondInt)

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-13. Know When a Thread Finishes

Problem

You need to know when a thread has finished.

Solution
Use the IsAlive property or the Join method of the Thread class.

How It Works

The easiest way to test whether a thread has finished executing is to test the Thread.IsAlive property.
The IsAlive property returns True if the thread has been started but has not terminated or been
aborted. The IsAlive property provides a simple test to see whether a thread has finished executing,

170

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

but commonly you will need one thread to wait for another thread to complete its processing. Instead of
testing IsAlive in aloop, which is inefficient, you can use the Thread.Join method.

Join causes the calling thread to block until thereferenced thread terminates, at which point the
calling thread will continue. You can optionally specify an Integer or a TimeSpan value that specifies
the time, after which the Join operation will time out and execution of the calling thread will resume.
If you specify a time-out value, Join returns True if the thread terminated and returns False if Join
timed out.

The Code

The following example executes a second thread and then calls Join (with a time-out of 2 seconds)
to wait for the second thread to terminate. Because the second thread takes about 5 seconds to
execute, the Join method will always time out, and the example will display a message to the console.
The example then calls Join again without a time-out and blocks until the second thread terminates.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 13
Private Shared Sub DisplayMessage()

Display a message to the console 5 times.
For count As Integer = 1 To 5
Console.WritelLine("{0} : DisplayMessage thread", =
DateTime.Now.ToString("HH:mm:ss.ffff"))
' Sleep for 1 second.
Thread. Sleep(1000)
Next
End Sub

Public Shared Sub Main()
' Create a new Thread to run the DisplayMessage method.
Dim newThread As New Thread(AddressOf DisplayMessage)

Console.WritelLine("{0} : Starting DisplayMessage thread.", =
DateTime.Now.ToString("HH:mm:ss.ffff"))

' Start the DisplayMessage thread.
newThread. Start()

Block until the DisplayMessage thread finishes, or time-out after

' 2 seconds.
If Not newThread.Join(2000) Then
Console.Writeline("{0} : Join timed out !!", w»

DateTime.Now.ToString("HH:mm:ss.ffff"))
End If

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Block again until the DisplayMessage thread finishes with
no time-out.
newThread.Join()

Wait to continue.
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-14. Terminate the Execution of a Thread

Problem

You need to terminate an executing thread without waiting for it to finish on its own accord.

Solution

Call the Abort method of the Thread object you want to terminate.

How It Works

It is better to write your code so that you can signal to a thread that it should shut down and allow it
to terminate naturally. Recipes 4-8, 4-9, and 4-10 demonstrate this technique (using a Boolean flag).
However, sometimes you will want a more direct method of terminating an active thread.

Calling Abort on an active Thread object terminates the thread by throwing a System.Threading.
ThreadAbortException in the code that the thread is running. You can pass an object as an argument
to the Abort method, which is accessible to the aborted thread through the ExceptionState property
of the ThreadAbortException. When called, Abort returns immediately, but the runtime determines
exactly when the exception is thrown, so you cannot assume the thread has terminated when Abort
returns. You should use the techniques described in recipe 4-13 if you need to determine when the
aborted thread is actually finished.

The aborted thread’s code can catch the ThreadAbortException to perform cleanup, but the
runtime will automatically throw the exception again when exiting the Catch block to ensure that the
thread terminates. So, you should not write code after the Catch block because it will never execute.
However, calling the Shared Thread.ResetAbort in the Catch block will cancel the abort request and
exit the Catch block, allowing the thread to continue executing. Once you abort a thread, you cannot
restart it by calling Thread. Start.

Tip Analternative to using the Abort method is to use a member variable. The thread should check the variable
when appropriate. When you need to, set this variable to instruct the thread to end gracefully. This method offers a
little more control than Abort.

The Code

The following example creates a new thread that continues to display messages to the console until
you press Enter, at which point the thread is terminated by a call to Thread.Abort.

m

172 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 14
Private Shared Sub Displaymessage()

Try
While True
Display a message to the console.

Console.Writeline("{0} : DisplayMessage thread active", =
DateTime.Now.ToString("HH:mm:ss.ffff"))

' Sleep for 1 second.
Thread.Sleep(1000)
End While
Catch ex As ThreadAbortException
Display a message to the console.
Console.WritelLine("{0} : DisplayMessage thread terminating - {1}", =
DateTime.Now.ToString("HH:mm:ss.ffff"), DirectCast(ex.ExceptionState, String))

Call Thread.ResetAbort here to cancel the abort request.
End Try

This code is never executed unless Thread.ResetAbort is
called in the previous catch block.

Console.WritelLine("{0} : nothing is called after the catch block", =
DateTime.Now.ToString("HH:mm:ss.ffff"))

End Sub

Public Shared Sub Main()

Create a new Thread to run the DisplayMessage method.
Dim newThread As New Thread(AddressOf Displaymessage)

Console.WritelLine("{0} : Starting DisplayMessage thread - press " & w»
"Enter to terminate.", DateTime.Now.ToString("HH:mm:ss.ffff"))

' Start the DisplayMessage thread.
newThread. Start()

Wait until Enter is pressed and terminate the thread.
System.Console.ReadlLine()

newThread.Abort("User pressed Enter")

Block again until the DisplayMessage thread finishes.
newThread.Join()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Wait to continue.
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-15. Create a Thread-Safe Collection Instance

Problem

You need multiple threads to be able to safely access the contents of a collection concurrently.

Solution

Use SynclLock statements in your code to synchronize thread access to the collection, or to access the
collection through a thread-safe wrapper.

How It Works

By default, the standard collection classes from the System.Collections, System.Collections.
Specialized, and System.Collections.Generic namespaces will support multiple threads reading
the collection’s content concurrently. However, if more than one of these threads tries to modify the
collection, you will almost certainly encounter problems. This is because the operating system can
interrupt the actions of the thread while modifications to the collection have been only partially
applied. This leaves the collection in an indeterminate state, which could cause another thread
accessing the collection to fail, return incorrect data, or corrupt the collection.

Note Using thread synchronization introduces a performance overhead. Making collections non-thread-safe by
default provides better performance for the vast majority of situations where multiple threads are not used.

The most commonly used collections from the System.Collections namespace implement a
Shared method named Synchronized; this includes only the ArraylList,Hashtable, Queue, SortedlList,
and Stack classes. The Synchronized method takes a collection object of the appropriate type as an
argument and returns an object that provides a synchronized wrapper around the specified collec-
tion object. The wrapper object is returned as the same type as the original collection, but all the
methods and properties that read and write the collection ensure that only a single thread has access
to the initial collection content concurrently. You can test whether a collection is thread-safe using
the IsSynchronized property. Once you get the wrapper, you should neither access the initial collec-
tion nor create a new wrapper; both result in a loss of thread safety.

The collection classes such as HybridDictionary, ListDictionary, and StringCollection from
the System.Collections.Specialized namespace do not implement a Synchronized method. To
provide thread-safe access to instances of these classes, you must implement manual synchroniza-
tion using the Object returned by their SyncRoot property. This property and IsSynchronized are
both defined by the ICollection interface that isimplemented by all collection classes from System.
Collections and System.Collections.Specialized (except BitVector32). You can therefore synchro-
nize all your collections in a fine-grained way.

173

174

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

However, the classes in the System.Collections.Generic namespace provide no built-in
synchronization mechanisms, leaving it to you to implement thread synchronization manually
using the techniques discussed in this chapter.

Gaution oOften you will have multiple collections and data elements that are related and need to be updated
atomically. In these instances, you should not use the synchronization mechanisms provided by the individual
collection classes. This approach will introduce synchronization problems, such as deadlocks and race conditions.
You must decide which collections and other data elements need to be managed atomically and use the techniques
described in this chapter to synchronize access to these elements as a unit.

The Code
The following code snippet shows how to create a thread-safe Hashtable instance:

' Create a standard Hashtable.
Dim hUnsync As New Hashtable

Create a synchronized wrapper.
Dim hSync = Hashtable.Synchronized(hUnsync)

The following code snippet shows how to create a thread-safe NameValueCollection. Notice that
the NameValueCollection class derives from the NameObjectCollectionBase class, which uses an explicit
interface implementation to implement the ICollection.SyncRoot property. As shown, you must
cast the NameValueCollection to an ICollection instance before you can access the SyncRoot prop-
erty. Casting is not necessary with other specialized collection classes such as HybridDictionary,
ListDictionary, and StringCollection, which do not use explicit interface implementation to
implement SyncRoot.

Create a NameValueCollection.
Dim nvCollection As New NameValueCollection

Obtain a lock on the NameValue collection before modification.
SyncLock DirectCast(nvCollection, ICollection).SyncRoot

End é)./r.wcLock
4-16. Start a New Process

Problem

You need to execute an application in a new process.

Solution

Call one of the Shared Start method overloads of the System.Diagnostics.Process class. Specify the
configuration details of the process you want to start as individual arguments to the Start method
orin a System.Diagnostics.ProcessStartInfo object that you pass to the Start method.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

How It Works

The Process class provides a managed representation of an operating system process and offers a
simple mechanism through which you can execute both managed and unmanaged applications.
The Process class implements five Shared overloads of the Start method, which you use to start a
new process. All these methods return a Process object that represents the newly started process.
Two of these overloads are methods that allow you to specify only the path and arguments to pass to
the new process. For example, the following statements both execute Notepad in a new process:

Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe")

' Execute notepad.exe passing the name of the file to open as a
command-line argument.

Process.Start("notepad.exe"”, "SomeFile.txt")

Two other overloads allow you to specify the name of a Windows user who the process should
run as. You must specify the username, password, and Windows domain. The password is specified
asaSystem.Security.SecureString foradded security. (See recipe 13-18 for more information about
the SecureString class.) Here is an example:

Dim mySecureString As New System.Security.SecureString

Obtain a password and place it in SecureString (see recipe 13-18).
' Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe", "Todd", mySecureString, "MyDomain")
' Execute notepad.exe passing the name of the file to open as a
command-line argument.
Process.Start("notepad.exe", "SomeFile.txt", "Todd", mySecureString, "MyDomain")

The remaining Shared overload requires you to create a ProcessStartInfo object configured
with the details of the process you want to run. Using the ProcessStartInfo object provides greater
control over the behavior and configuration of the new process. Table 4-4 summarizes some of the
commonly used properties of the ProcessStartInfo class.

Table 4-4. Properties of the ProcessStartInfo Class

Property Description

Arguments The command-line arguments to pass to the new process.

Domain A String containing the Windows domain name to which the user belongs.
ErrorDialog If Process.Start cannot start the specified process, it will throw a

System.ComponentModel.Win32Exception. If ExrrorDialog is True, Start
displays an error dialog box to the user before throwing the exception.

FileName The path, or just the name if it is in the same directory as the executable,
of the application to start. You can also specify any type of file for which
you have configured an application association. For example, you could
specify a file with a .doc or an .xls extension, which would cause Microsoft
Word or Microsoft Excel to run.

LoadUserProfile A Boolean indicating whether the user’s profile should be loaded from
the registry when the new process is started. This is used if you need to
access information from the HKEY_CURRENT_USER registry key.

175

176

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Table 4-4. Properties of the ProcessStartinfo Class (Continued)

Property Description

Password A SecureString containing the password of the user.

UserName A String containing the name of the user to use when starting the process.
WindowStyle A member of the System.Diagnostics.ProcessWindowStyle enumeration,

which controls how the window is displayed. Valid values include
Hidden, Maximized, Minimized, and Normal.

WorkingDirectory The fully qualified name of the initial directory for the new process.

It is also possible to create and view information on processes running on a remote computer.
This is accomplished by creating an instance of a Process class and specifying the target computer
name. You can also use the Shared methods GetProcessById, GetProcessByName and GetProcesses.
Each method returns a Process object (or an array of Process objects) and has an overload that takes
the name of the target computer.

When finished with a Process object, you should dispose of it in order to release system resources—
call Close, call Dispose, or create the Process object within the scope of a Using statement.

Note Disposing of a Process object does not affect the underlying system process, which will continue to run.

The Code

The following example uses Process to execute Notepad in a maximized window and open a file
named C:\Temp\file.txt. After creation, the example calls the Process.WaitForExit method, which
blocks the calling thread until a process terminates or a specified time-out expires. This method
returns True if the process ends before the time-out and returns False otherwise.

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 16

Public Shared Sub Main()
' Create a ProcessStartInfo object and configure it with the

information required to run the new process.

Dim startInfo As New ProcessStartInfo

startInfo.FileName = "notepad.exe"
startInfo.Arguments = "file.txt"
startInfo.WorkingDirectory = "C:\Temp"
startInfo.WindowStyle = ProcessWindowStyle.Maximized
startInfo.ErrorDialog = True

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Declare a new process object.
Dim newProcess As Process

Try
' Start the new process.
newProcess = Process.Start(startInfo)

Wait for the new process to terminate before exiting.
Console.Writeline("Waiting 30 seconds for process to finish.")

If newProcess.WaitForExit(30000) Then
Console.WritelLine("Process terminated.")
Else
Console.WritelLine("Timed out waiting for process to end.")
End If
Catch ex As Exception
Console.WritelLine("Could not start process.")
Console.WritelLine(ex)
End Try

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-17. Terminate a Process

Problem

You need to terminate a process such as an application or a service.

Solution

Obtain a Process object representing the operating system process you want to terminate. For
Windows-based applications, call Process.CloseMainWindow to send a close message to the applica-
tion’s main window. For Windows-based applications that ignore CloseMainWindow, or for non-
Windows-based applications, call the Process.Kill method.

How It Works

If you start a new process from managed code using the Process class (discussed in recipe 4-16), you
can terminate the process using the Process object that represents the new process. You can also
obtain Process objects that refer to other currently running processes using the Shared methods of
the Process class summarized in Table 4-5.

As mentioned in recipe 4-16, you can obtain a Process object that refers to a process running on
aremote computer. However, you can only view information regarding remote processes. The Kill
and CloseMainWindow methods work only on local processes.

177

178

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Table 4-5. Methods for Obtaining Process References

Method Description

GetCurrentProcess Returns a Process object representing the currently active process.

GetProcessById Returns a Process object representing the process with the specified
ID. This is the process ID (PID) you can get using Windows Task
Manager.

GetProcesses Returns an array of Process objects representing all currently active
processes.

GetProcessesByName Returns an array of Process objects representing all currently active

processes with a specified friendly name. The friendly name is the
name of the executable excluding file extension or path; for example,
a friendly name could be notepad or calc.

Onceyouhave a Process objectrepresenting the process you want to terminate, you need to call
either the CloseMainWindow method or the Kill method. The CloseMainWindow method posts a WM CLOSE
message to a Windows-based application’s main window. This method has the same effect as if the
user had closed the main window using the system menu, and it gives the application the opportu-
nity to perform its normal shutdown routine. CloseMainWindow will not terminate applications that do
not have a main window or applications with a disabled main window—possibly because a modal
dialog box is currently displayed. Under such circumstances, CloseMainWindow will return False.

CloseMainWindow returns True if the close message was successfully sent, but this does not guar-
antee that the process is actually terminated. For example, applications used to edit data typically
give the user the opportunity to save unsaved data if a close message is received. The user usually has
the chance to cancel the close operation under such circumstances. This means CloseMainWindow
will return True, but the application will still be running once the user cancels. You can use the
Process.WaitForExit method to signal process termination and the Process.HasExited property to
test whether a process has terminated. Alternatively, you can use the Kill method.

The Kill method simply terminates a process immediately; the user has no chance to stop the
termination, and all unsaved data is lost. Kill is the only option for terminating Windows-based applica-
tions that do not respond to CloseMainWindow and for terminating non-Windows-based applications.

The Code

The following example starts a new instance of Notepad, waits 5 seconds, and then terminates the
Notepad process. The example first tries to terminate the process using CloseMainWindow. If
CloseMainWindow returns False, or the Notepad process is still running after CloseMainWindow is
called, the example calls Kill and forces the Notepad process to terminate. You can force
CloseMainWindow to return False by leaving the File Open dialog box open.

Imports System

Imports System.Threading

Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 17

Public Shared Sub Main()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Create a new Process and run notepad.exe.
Using newProcess As Process = Process.Start("notepad.exe", =
"C:\SomeFile.txt")
' Wait for 5 seconds and terminate the notepad process.
Console.Writeline("Waiting 5 seconds before terminating " & w»
"notepad.exe.")

Thread. Sleep(5000)

Terminate notepad process.
Console.Writeline("Terminating Notepad with CloseMainWindow.")

Try to send a close message to the main window.
If Not newProcess.CloseMainWindow Then
' Close message did not get sent - Kill Notepad.
Console.WritelLine("CloseMainWindow returned false - " & 'w»
"terminating Notepad with Kill.")
newProcess.Kill()
Else
' Close message sent successfully. Wait for 2 seconds
for termination confirmation before resorting to kill.
If Not newProcess.WaitForExit(2000) Then
Console.WritelLine("CloseMaineWindow failed to " & w»
"terminate - terminating Notepad with Kill.")
newProcess.Kill()
End If
End If
End Using

Wait to continue.
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-18. Ensure That Only One Instance of an Application Can
Execute Concurrently

Problem

You need to ensure that a user can have only one instance of an application running concurrently.

Solution

Create a named System. Threading.Mutex object, and have your application try to acquire ownership
of it at startup.

179

180

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

How It Works

The Mutex provides a mechanism for synchronizing the execution of threads across process bound-
aries and also provides a convenient mechanism through which to ensure that only a single instance
of an application is running concurrently. By trying to acquire ownership of a named Mutex at startup
and exiting if the Mutex cannot be acquired, you can ensure that only one instance of your applica-
tion is running. Refer to recipe 4-10 for further information on the Mutex class.

The Code

This example uses a Mutex named MutexExample to ensure that only a single instance of the example
can execute.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 18
Public Shared Sub Main()

" A Boolean that indicates whether this application has
initial ownership of the Mutex.
Dim ownsMutex As Boolean

Attempts to create and take ownership of a Mutex named
MutexExample.
Using newMutex As New Mutex(True, "MutexExample", ownsMutex)
' If the application owns the Mutex it can continue to execute;
' otherwise, the application should exit.
If ownsMutex Then
Console.WriteLine("This application currently owns the " & w»
"mutex named MutexExample. Additional instances of this application will not " & =
"run until you release the mutex by pressing Enter.")

Console.ReadLine()
' Release the mutex.
newMutex.ReleaseMutex()
Else
Console.WriteLine("Another instance of this application " & w»
"already owns the mutex named MutexExample. This instance of the application " & =
"will terminate.")
End If
End Using

Wait to continue.
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class

End Namespace

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Note If you do not construct the Mutex in a Using statement and encapsulate the body of your application in
the body of the Using block as shown in this example, in long-running applications, the garbage collector may
dispose of the Mutex if it is not referenced after initial creation. This will result in releasing the Mutex and allowing
additional instances of the application to execute concurrently. In these circumstances, you should include the
statement System.GC.KeepAlive(mutex) to ensure the reference to the Mutex class is not garbage collected.
Thanks to Michael A. Covington for highlighting this possibility.

181

CHAPTER 5

Files, Directories, and I/0

The Microsoft .NET Framework I/0O classes fall into two basic categories. First are the classes that
retrieve information from the file system and allow you to perform file system operations such as
copying files and moving directories. Two examples are the FileInfo and the DirectoryInfo classes.
The second, and possibly more important, category includes a broad range of classes that allow you
to read and write data from all types of streams. Streams can correspond to binary or text files, a file
in an isolated store, a network connection, or even a memory buffer. In all cases, the way you interact
with a stream is the same.

The primary namespace for NET Framework I/O operations is System. I0; however, .NET offers
VB .NET programmers another option in the form of the My object. My, located in the Microsoft.
VisualBasic assembly, is a highly versatile object that encapsulates common functionality, including
1/0 operations, into several root classes. These classes provide quick and easy access to common
functionality. Table 5-1 lists the main root classes of My.

Table 5-1. Main Root Objects of My

Object Description

Application Provides access to information and methods related to the current application.

Computer Provides access to information and methods for various computer-related
objects. This object contains the following child objects: Audio, Clipboard,
Clock, FileSystem, Info, Keyboard, Mouse, Network, Ports, and Registry.

Forms Provides access to information and methods related to the forms contained in
your project.

Resources Provides access to information and methods related to any resources
contained in your project.

Settings Provides access to information and methods related to your application settings.

User Provides access to information and methods related to the current user.

WebServices Provides access to information and methods related to any web services

contained in your application.

183

184

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

The classes available to the My object are determined by the current project. For example, if you
are creating a web control or web site, the My. Forms class will not be accessible. Refer to the .NET
Framework software development kit (SDK) documentation for more details on the availability of My
classes and for instructions on how this availability can be customized by using special compiler
constants.

This chapter describes how to use the various file system and stream-based classes provided by
the System.I0 namespace and the My.Microsoft.VisualBasic.FileSystem class.

The recipes in this chapter cover the following:

¢ Retrieving or modifying information about a file, directory, or drive (recipes 5-1, 5-2, 5-4, 5-5,
and 5-17)
¢ Copying, moving, and deleting files and directories (recipe 5-3)

¢ Showing a directory tree in a Microsoft Windows-based application and use the common file
dialog boxes (recipes 5-6 and 5-18)

¢ Reading and writing text and binary files (recipes 5-7 and 5-8)

» Parsing formatted text files (recipe 5-9)

¢ Reading files asynchronously (recipe 5-10)

¢ Searching for specific files and test files for equality (recipes 5-11 and 5-12)

e Working with strings that contain path information (recipes 5-13, 5-14, and 5-15)

¢ Creating temporary files and files in a user-specific isolated store (recipes 5-16 and 5-19)
e Monitoring the file system for changes (recipe 5-20)

e Writing to COM ports (recipe 5-21)

¢ Generating random filenames (recipe 5-22)

¢ Retrieving or modifying the access control lists (ACLs) of a file or directory (recipe 5-23)
5-1. Retrieve Information About a File, Directory, or Drive

Problem

You need to retrieve information about a file, directory, or drive.

Solution

Create anew System.I0.FileInfo, System.I0.DirectoryInfo, or System.I0.DriveInfo object, depending
on the type of resource about which you need to retrieve information. Supply the path of the resource to
the constructor, and then you will be able to retrieve information through the properties of the class.

How It Works

To create a FileInfo, DirectoryInfo, or DriveInfo object, you supply a relative or fully qualified path
to the constructor. You can also use the GetFileInfo, GetDirectoryInfo, and GetDriveInfo Shared
methods of the My.Computer.FileSystem. These methods return an instance of a FileInfo,
DirectoryInfo, and DriveInfo object, respectively. You can retrieve information through the corre-
sponding object properties. Table 5-2 lists some of the key members and methods of these objects.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-2. Key Members for Files, Directories, and Drives

Member Applies To Description

Exists FileInfo and Returns True or False, depending on whether a
DirectoryInfo file or a directory exists at the specified location.

Attributes FileInfo and Returns one or more flag values from the
DirectoryInfo System.IO0.FileAttributes enumeration, which

represents the attributes of the file or the directory.

CreationTime, FileInfo and Return System.DateTime instances that describe

LastAccessTime, and DirectoryInfo when a file or a directory was created, last accessed,

LastWriteTime and last updated, respectively.

FullName and Name

Extension
IsReadOnly
Length

DirectoryName and
Directory

Parent and Root

CreateSubdirectory

GetDirectories

GetFiles

DriveType

AvailableFreeSpace

GetDrives

FileInfo and
DirectoryInfo

FileInfo

FileInfo

FileInfo
FileInfo

DirectoryInfo

DirectoryInfo

DirectoryInfo

DirectoryInfo

DriveInfo

DriveInfo

DriveInfo

Returns a string that represents the full path of
the directory or file or just the file name (with
extension), respectively.

Returns a string representing the extension for
the file.

Returns True or False, depending on whether a
file is read-only.

Returns the file size as a number of bytes.

DirectoryName returns the name of the parent
directory as a string. Directory returns a full
DirectoryInfo object that represents the parent
directory and allows you to retrieve more infor-
mation about it.

Return a DirectoryInfo object that represents
the parent or root directory.

Creates a directory with the specified name in
the directory represented by the DirectoryInfo
object. It also returns a new DirectoryInfo object
that represents the subdirectory.

Returns an array of DirectoryInfo objects, with
one element for each subdirectory contained in
this directory.

Returns an array of FileInfo objects, with one
element for each file contained in this directory.

Returns a DriveType enumeration value that
represents the type of the specified drive; for
example, Fixed or CDRom.

Returns a Long that represents the free space
available in the drive.

Returns an array of DriveInfo objects that
represents the logical drives in the computer.

185

186

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

The following are a few points to note while working with these objects:

e FileInfoand DirectoryInfo classes derive from the abstract FileSystemInfo class, which

defines common methods such as CreationTime, Exists, and so on. The DriveInfo class does
not inherit from this base class, so it does not provide some of the common members avail-
able in the other two classes.

The full set of properties FileInfo and DirectoryInfo objects expose is read the first time you
interrogate any property. If the file or directory changes after this point, you must call the
Refresh method to update the properties. However, this is not the case for DriveInfo; each
property access asks the file system for an up-to-date value.

Specifying an invalid path, directory, or drive when using the corresponding My . Computer.
FileSystem methods will throw the appropriate exception. When using the FileInfo,
DirectoryInfo, orDriveInfo classes directly, you will not encounter an error if you specify an
invalid path. Instead, you will receive an object that represents an entity that does not exist—
its Exists (or IsReady property for DriveInfo) property will be False. You can use this object
to manipulate the entity. However, if you attempt to read most other properties, exceptions
such as FileNotFoundException, DirectoryNotFoundException, and so on, will be thrown.

The Code

The following console application takes a file path from a command-line argument, and then
displays information about the file, the containing directory, and the drive.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 01

Public Shared Sub Main(ByVal args As String)

If args.Length > 0 Then
' Display file information.
Dim file As FileInfo = New FileInfo(args(0))

Console.WritelLine("Checking file: " & file.Name)
Console.WritelLine("File exists: " & file.Exists.ToString)

If file.Exists Then
Console.Write("File created: ")
Console.Writeline(file.CreationTime.ToString)
Console.Write("File last updated: ")
Console.Writeline(file.LlastWriteTime.ToString)
Console.Write("File last accessed: ")
Console.Writeline(file.LastAccessTime.ToString)
Console.Write("File size: ")
Console.Writeline(file.Length.ToString)
Console.Write("File attribute list: ")
Console.Writeline(file.Attributes.ToString)

End If

Console.Writeline()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0 187

Display directory information.
Dim dir As DirectoryInfo = file.Directory

Console.Writeline("Checking directory: " & dir.Name)
Console.WriteLine("In directory: " & dir.Parent.Name)
Console.Write("Directory exists: ")
Console.Writeline(dir.Exists.ToString)

If dir.Exists Then
Console.Write("Directory created: ")
Console.Writeline(dir.CreationTime.ToString)
Console.Write("Directory last updated: ")
Console.Writeline(dir.LastWriteTime.ToString)
Console.Write("Directory last accessed: ")
Console.Writeline(dir.LastAccessTime.ToString)
Console.Write("Directory attribute list: ")
Console.Writeline(file.Attributes.ToString)
Console.Write("Directory contains: ")
Console.Writeline(dir.GetFiles().Length.ToString & " files")

End If

Console.WritelLine()

' Display drive information.

Dim drv As DriveInfo = New DriveInfo(file.FullName)

Console.Write("Drive: ")
Console.WritelLine(drv.Name)

If drv.IsReady Then
Console.Write("Drive type: ")
Console.WritelLine(drv.DriveType.ToString)
Console.Write("Drive format: ")
Console.Writeline(drv.DriveFormat.ToString)
Console.Write("Drive free space: ")
Console.Writeline(drv.AvailableFreeSpace.ToString)

End If

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

Else
Console.WritelLine("Please supply a filename.")
End If

End Sub
End Class

End Namespace

Instead of explicitly creating the FileInfo, DirectoryInfo, and DriveInfo class instances, you
can also use the appropriate Shared methods of the My.Computer.FileSystem class, as shown in the
following examples.

188

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Display file information.
Dim file As FileInfo = My.Computer.FileSystem.GetFileInfo(args(0))
' Display directory information.
Dim dir As DirectoryInfo = w»
My.Computer.FileSystem.GetDirectoryInfo(file.Directory.ToString)
' Display drive information.
Dim drv As DriveInfo = My.Computer.FileSystem.GetDriveInfo(file.FullName)

Usage

If you execute the command Recipe05-01.exe c:\windows\win.ini, you might expect the following
output:

Checking file: win.ini

File exists: True

File created: 11/2/2006 6:23:31 AM

File last updated: 7/29/2007 5:10:17 PM
File last accessed: 11/2/2006 6:23:31 AM
File size (bytes): 219

File attribute list: Archive

Checking directory: windows

In directory: c:\

Directory exists: True

Directory created: 11/2/2006 7:18:34 AM
Directory last updated: 9/24/2007 6:06:52 PM
Directory last accessed: 9/24/2007 6:06:52 PM
Directory attribute list: Archive

Directory contains: 46 files

Drive: c:\

Drive type: Fixed

Drive format: NTFS

Drive free space: 45285109760

Main method complete. Press Enter.

Note Instead of using the instance methods of the FileInfo and DirectoryInfo classes, you can use the
Shared File and Directory classes (note that a class corresponding to the DriveInfo class does not exist).
The methods of the File and Directory classes, found in the System.I0 namespace, expose most of the same
functionality, but they require you to submit the file name or path with every method invocation. In cases where you
need to perform multiple operations with the same file or directory, using the FileInfo and DirectoryInfo
classes will be faster, because they will perform security checks only once. Also note that you could obtain the list
of all logical drives in the computer by using the Shared DriveInfo.GetDrives method.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-2. Set File and Directory Attributes

Problem

You need to test or modify file or directory attributes.

Solution

Create a System.I0.FileInfo objectfora file ora System.I0.DirectoryInfo object for a directoryand
use the bitwise And, Or, and Xor operators to modify the value of the Attributes property.

How It Works

The FileInfo.Attributes and DirectoryInfo.Attributes properties represent file attributes such as
archive, system, hidden, read-only, compressed, and encrypted. (Refer to the MSDN reference for
the full list.) Because a file can possess any combination of attributes, the Attributes property accepts a
combination of enumerated values. To individually test for a single attribute or change a single
attribute, you need to use bitwise arithmetic.

Note The Attributes setting is made up (in binary) of a series of ones and zeros, such as 00010011. Each
1 represents an attribute that is present, while each 0 represents an attribute that is not. When you use a bitwise
And operation, it compares each individual digit against each digit in the enumerated value. For example, if you
bitwise And a value of 00100001 (representing an individual file’s archive and read-only attributes) with the enumerated
value 00000001 (which represents the read-only flag), the resulting value will be 00000001—it will have a 1 only
where it can be matched in both values.

The Code

The following example takes a read-only test file and checks for the read-only attribute.
Imports System

Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 02
Public Shared Sub Main()
' This file has the archive and read-only attributes.
Dim file As New FileInfo("data.txt")

This displays the string "ReadOnly, Archive".
Console.Writeline(file.Attributes.ToString)
Console.WritelLine(Environment.NewlLine)

189

190 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

This test fails, because other attributes are set.
If file.Attributes = FileAttributes.ReadOnly Then
Console.Writeline("File is read-only (faulty test).")
End If
' This test succeeds, because it filters out just the
read-only attributes.
If file.Attributes And FileAttributes.ReadOnly = ‘w»
FileAttributes.ReadOnly Then
Console.Writeline("File is read-only (correct test).")
End If
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

When setting an attribute, you must use bitwise arithmetic, as demonstrated in the following
example. In this case, it's needed to ensure that you don’t inadvertently clear the other attributes.

This adds just the read-only attribute.
file.Attributes = file.Attributes Or FileAttributes.ReadOnly

This removes just the read-only attibute.
file.Attributes = file.Attributes Xor FileAttributes.ReadOnly

5-3. Copy, Move, or Delete a File or a Directory

Problem

You need to copy, move, or delete a file or directory.

Solution

You have two main options for manipulating files and directories. One option is to create a System.
I0.FileInfo object for a file or a System.I0.DirectoryInfo object for a directory, supplying the path
in the constructor. You can then use the object’s methods to copy, move, and delete the file or direc-
tory. Alternatively, you can use the My.Computer.FileSystem class and its Shared methods.

How It Works

The FileInfo,DirectoryInfo, and My.Computer.FileSystem classes include a host of valuable methods
for manipulating files and directories. Table 5-3 shows methods for the FileInfo class, Table 5-4
shows methods for the DirectoryInfo class, and Table 5-5 shows methods for the My.Computer.
FileSystem class.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-3. Key Instance Methods for Manipulating a FileInfo Object

Method Description

CopyTo Copies a file to the new path and file name specified as a parameter. It also
returns a new FileInfo object that represents the new (copied) file. You can
supply an optional additional parameter of True to allow overwriting.

Create and Create creates the specified file and returns a FileStream object that you can use to

CreateText write to it. CreateText performs the same task, but returns a StreamWriter object

Open, OpenRead,
OpenText, and
OpenWrite

Delete

Encrypt and
Decrypt

MoveTo

Replace

that wraps the stream. For more information about writing files, see recipes 5-7
and 5-8.

Open opens a file and allows you to specify the mode (Open, Append, and so
on), access type (Read, Write, and so on), and sharing options. OpenRead and
OpenText open a file in read-only mode, returning a FileStream or StreamReader
object. Openhrite opens a file in write-only mode, returning a FileStream object.
For more information about reading files, see recipes 5-7 and 5-8.

Removes the file, if it exists.

Encrypt/decrypt a file using the current account. This applies to NTFES file
systems only.

Moves the file to the new path and file name specified as a parameter. MoveTo
can also be used to rename a file without changing its location.

Replaces contents of a file by the current FileInfo object. This method could
also take a backup copy of the replaced file.

Table 5-4. Key Instance Methods for Manipulating a DirectorylInfo Object

Method

Description

Create

CreateSubdirectory

Delete

MoveTo

Creates the specified directory. If the path specifies multiple directo-
ries that do not exist, they will all be created at once.

Creates a directory with the specified path in the directory represented
by the DirectoryInfo object. If the path specifies multiple directories
that do not exist, they will all be created at once. It also returns a new
DirectoryInfo object that represents the last directory in the specified
path.

Removes the directory, if it exists. If you want to delete a directory that
contains files or other directories, you must use the overloaded Delete
method that accepts a parameter named Recursive and set it to True.

Moves the directory (contents and all) to a new path. MoveTo can also be
used to rename a directory without changing its location.

191

192

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-5. Key Shared Methods for Manipulating Files and Directories with the
My.Computer.FileSystem Object

Method

Description

CopyDirectory and CopyFile

CreateDirectory

DeleteDirectory and
DeleteFile

MoveDirectory and
MoveFile

OpenTextFieldParser

OpenTextFileReader and
OpenTextFileWriter

Copies a directory (and all its contents) or a file to the new
path specified.

Creates a new directory with the specified name and path. If the
path specifies multiple directories that do not exist, they will all be
created at once.

Deletes the specified directory (and all its contents) or file. Both
methods offer the Recycle parameter, which determines if files are
deleted permanently or sent to the Recycle Bin. DeleteDirectory
has a parameter named OnDirectoryNotEmpty to determine whether
all contents should be deleted.

Moves a directory (and all its contents) or a file to the new
path specified.

Opens a file and returns a TextFieldParser object. The
TextFieldParser class is contained in the Microsoft.
VisualBasic.FileIO namespace and is used to parse the contents
of a text file. For more information about parsing, see recipe 5-9.

Opens the specified file and returns either a StreamReader or
StreamWriter as appropriate. For more information about
reading and writing files, see recipes 5-7 and 5-8.

The Code

One useful feature that is missing from the DirectoryInfo class is a copy method. The following
example contains a helper function that can copy any directory and its contents.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 03

Public Shared Sub Main(ByVal args As String())

If args.Length = 2 Then
Dim sourceDir As New DirectoryInfo(args(0))
Dim destinationDir As New DirectoryInfo(args(1))

CopyDirectory(sourceDir, destinationDir)

Wait to continue.

Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Else
Console.WriteLine("USAGE: " & " Recipe05 03 [sourcePath] " & w»
"[destinationPath]")
End If

End Sub

Public Shared Sub CopyDirectory(ByVal source As DirectoryInfo, w»
ByVal destination As DirectoryInfo)

If Not destination.Exists Then
Console.Writeline("Creating the destination folder {0}", =
destination.FullName)
destination.Create()
End If
' Copy all files.
Dim files As FileInfo() = source.GetFiles

For Each file As FileInfo In files
Console.Writeline("Copying the {0} file...", file.Name)
file.CopyTo(Path.Combine(destination.FullName, file.Name))
Next
' Process subdirectories.
Dim dirs As DirectoryInfo() = source.GetDirectories

For Each dir As DirectoryInfo In dirs
' Get destination directory.
Dim destinationDir As String = Path.Combine(destination.FullName, ‘=

dir.Name)
' Call CopyDirectory recursively.
CopyDirectory(dir, New DirectoryInfo(destinationDir))
Next
End Sub
End Class

End Namespace

While the recipe contains examples of useful methods in the FileInfo and DirectoryInfo
classes, your time would be best spent using the Shared My.Computer.FileSystem.CopyDirectory
method. This would replace the entire preceding example with the following line of code.

My.Computer.FileSystem.CopyDirectory("SomeSourceDirectory"”, "SomeTargetDirectory")

Usage

If you executed the command Recipe05-03.exe c:\nvidia c:\temp, you would see results similar to
the following (assuming the source directory exists and contains data):

193

194

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Creating the destination folder c:\temp

Creating the destination folder c:\temp\WinVista

Creating the destination folder c:\temp\WinVista\163.69
Creating the destination folder c:\temp\WinVista\163.69\English
Copying the datail.cab file...

Copying the datai.hdr file...

Copying the data2.cab file...

Copying the DPInst.ex_ file...

Copying the setup.ini file...
Copying the setup.inx file...
Copying the setup.iss file...
Copying the setup.skin file...

Main method complete. Press Enter.

5-4. Calculate the Size of a Directory

Problem

You need to calculate the size of all files contained in a directory (and, optionally, its subdirectories).

Solution

Examine all the files in a directory and add together their FileInfo.Length properties. Use recursive
logic to include the size of files in contained subdirectories.

How It Works

The DirectoryInfo class does not provide any property that returns size information. However, you
can easily calculate the size of all files contained in a directory by adding together each file’s size,
which is contained in the FileInfo.Length property.

The Code

The following example calculates the size of a directory and optionally examines subdirectories
recursively.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 04
Public Shared Sub Main(ByVal args As String())

If args.Length > 0 Then
Dim dir As New DirectoryInfo(args(0))

Console.Writeline("Total size: " & w»

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

CalculateDirectorySize(dir, True).ToString & " bytes.")

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

Else
Console.WritelLine("Please supply a directory path.")
End If

End Sub

Public Shared Function CalculateDirectorySize(Byval dir As DirectoryInfo, w»
ByVal includeSubDirs As Boolean) As Long

Dim totalSize As Long = 0

Examine all contained files.
Dim files As FileInfo() = dir.GetFiles

For Each currentFile As FileInfo In files
totalSize += currentFile.length
Next

Examine all contained directories.
If includeSubDirs Then
Dim dirs As DirectoryInfo() = dir.GetDirectories

For Each currentDir As DirectoryInfo In dirs
totalSize += CalculateDirectorySize(currentDir, True)
Next
End If

Return totalSize
End Function

End Class
End Namespace

Usage

To use the application, you execute it and pass in a path to the directory for which you want to see
the total size. For example, to see the size of the help directory located under the Windows directory,

you would use Recipe05-04.exe c:\windows\help, which would produce results similar to the following:

Total size: 106006151 bytes.

Main method complete. Press Enter.

195

196 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-5. Retrieve Version Information for a File

Problem

You want to retrieve file version information, such as the publisher of a file, its revision number,
associated comments, and so on.

Solution

Use the Shared GetVersionInfo method of the System.Diagnostics.FileVersionInfo class.

How It Works

The .NET Framework allows you to retrieve file information without resorting to the Windows API.
Instead, you simply need to use the FileVersionInfo class and call the GetVersionInfo method with
the file name as a parameter. You can then retrieve extensive information through the FileVersionInfo
properties.

The Code

The FileVersionInfo properties are too numerous to list here, but the following code snippet shows
an example of what you might retrieve.

Imports System
Imports system.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 05
Public Shared Sub Main(ByVal args As String())

If args.Length > 0 Then
Dim info As FileVersionInfo = ‘w»
FileVersionInfo.GetVersionInfo(args(0))

Display version information.
Console.WriteLine("Checking File: " & info.FileName)
Console.WritelLine("Product Name: " & info.ProductName)
Console.WritelLine("Product Version: " & info.ProductVersion)
Console.WritelLine("Company Name: " & info.CompanyName)
Console.Writeline("File Version: " & info.FileVersion)
Console.Writeline("File Description: " & info.FileDescription)
Console.WritelLine("Original Filename: " & info.OriginalFilename)
Console.Writeline("Legal Copyright: " & info.LegalCopyright)
Console.WriteLine("InternalName: " & info.InternalName)
Console.WriteLine("IsDebug: " & info.IsDebug)
Console.WritelLine("IsPatched: " & info.IsPatched)
Console.WritelLine("IsPreRelease: " & info.IsPreRelease)
Console.Writeline("IsPrivateBuild: " & info.IsPrivateBuild)
Console.Writeline("IsSpecialBuild: " & info.IsSpecialBuild)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

Else
Console.WritelLine("Please supply a filename.")
End If

End Sub

End Class
End Namespace

Usage

If you run the command Recipe05-05 c:\windows\explorer.exe, the example produces results
similar to the following:

Checking File: c:\windows\explorer.exe

Product Name: Microsoftr Windowsr Operating System
Product Version: 6.0.6000.16386

Company Name: Microsoft Corporation

File Version: 6.0.6000.16386 (vista rtm.061101-2205)
File Description: Windows Explorer

Original Filename: EXPLORER.EXE.MUI

Legal Copyright: c Microsoft Corporation. All rights reserved.
InternalName: explorer

IsDebug: False

IsPatched: False

IsPreRelease: False

IsPrivateBuild: False

IsSpecialBuild: False

Main method complete. Press Enter.

5-6. Show a Just-in-Time Directory Tree in the TreeView Control

Problem

You need to display a directory tree in a TreeView control. However, filling the directory tree struc-
ture at startup is too time-consuming.

Solution

Fill the first level of directories in the TreeView control and add a hidden dummy node to each
directory branch. React to the TreeView.BeforeExpand event to fill in subdirectories in a branch
just before it’s displayed.

197

198

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

How It Works

You can use recursion to build an entire directory tree. However, scanning the file system in this way
can be slow, particularly for large drives. For this reason, professional file management software
programs (including Windows Explorer) use a different technique. They query the necessary directory
information when the user requests it.

The TreeView control is particularly well suited to this approach because it provides a BeforeExpand
event that fires before a newlevel of nodes is displayed. You can use a placeholder (such as an asterisk or
empty TreeNode) in all the directory branches that are not filled in. This allows you to fill in parts of
the directory tree as they are displayed.

To use this type of solution, you need the following three ingredients:

¢ AFill method that adds a single level of directory nodes based on a single directory. You will
use this method to fill directory levels as they are expanded.

e Abasic Form.Load event handler that uses the Fill method to add the first level of directories
for the drive.

* ATreeView.BeforeExpand event handler that reacts when the user expands a node and calls
the Fill method if this directory information has not yet been added.

The Code

The following shows the code for this solution. The automatically generated code for the form
designer is not included here, but it is included with this book’s downloadable code.

Imports System
Imports System.IO
" All design code is stored in the autogenerated partial
class called DirectoryTree.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class DirectoryTree

Private Sub DirectoryTree Load(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles MyBase.load

" Set the first node.
Dim rootNode As New TreeNode("C:\")
treeDirectory.Nodes.Add(rootNode)

' Fill the first level and expand it.
Fill(rootNode)
treeDirectory.Nodes(0).Expand()

End Sub
Private Sub treeDirectory BeforeExpand(ByVal sender As Object,

Byval e As System.Windows.Forms.TreeViewCancelEventArgs) Handles ‘=
treeDirectory.BeforeExpand

CHAPTER 5 FILES, DIRECTORIES, AND 1/0 199

If a dummy node is found, remove it and read the
real directory list.
If e.Node.Nodes(0).Text = "*" Then
e.Node.Nodes.Clear()
Fill(e.Node)
End If

End Sub
Private Sub Fill(ByVal dirNode As TreeNode)
Dim dir As New DirectoryInfo(dirNode.FullPath)

An exception could be thrown in this code if you don't
have sufficient security permissions for a file or directory.
You can catch and then ignore this exception.

For Each dirItem As DirectoryInfo In dir.GetDirectories
' Add a node for the directory.
Dim newNode As New TreeNode(dirItem.Name)
dirNode.Nodes.Add(newNode)
newNode .Nodes.Add("*")

Next

End Sub
End Class

Figure 5-1 shows the directory tree in action.

8! DirectoryTree & Q@M
B..

- $Recycle.Bin

- Boot
- Documents and Settings
- epson
- MSOCache
- NVIDIA

- perflogs
]
]
[
[

- Program Files
-ProgramData
- System Volume Information
temp
Users

H- Windows

Figure 5-1. A directory tree with the TreeView

200

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

If you prefer to use the My object, you can replace the use of the DirectoryInfo class with the
My .Computer.FileSystem class. The following replacement Fill method is an example of how to do this.

Private Sub Fill(ByVal dirNode As TreeNode)

An exception could be thrown in this code if you don't
have sufficient security permissions for a file or directory.
You can catch and then ignore this exception.
For Each dir As String In w»
My.Computer.FileSystem.CetDirectories(dirNode.FullPath)
' Add a node for the directory.
Dim newNode As New TreeNode(Path.GetFileName(dir))
dirNode.Nodes .Add(newNode)
newNode.Nodes . Add ("*")
Next

End Sub
5-7. Read and Write a Text File

Problem
You need to write data to a sequential text file using ASCII, Unicode (UTF-16), or UTF-8 encoding.

Solution

Create a new System.I0.FileStream object that references the file. To write the file, wrap the FileStream
inaSystem.I0.Streamriter and use the overloaded Write method. To read the file, wrap the FileStream
inaSystem.I0.StreamReader and use the Read or ReadLine method. The File class also provides the
Shared CreateText and OpenText methods for writing and reading UTF-8 files. Another alternative
is to use the OpenTextFileReader and OpenTextFileWriter methods of the My.Computer.FileSystem
class. These methods open a file and return a StreamReader or StreamWriter, respectively.

How It Works

The .NET Framework allows you to write or read text with any stream by using the StreamWriter and
StreamReader classes. When writing data with the StreamWriter, you use the StreamWriter.Write
method. This method is overloaded to support all the common VB .NET data types, including strings,
chars, integers, floating-point numbers, decimals, and so on. However, the Write and WritelLine
methods always convert the supplied data to text. Unlike Write, the WritelLine method places each
value on a separate line, so you should use it if you want to be able to easily convert the text back to
its original data type.

The waya string is represented depends on the encoding you use. The most common encodings
are listed in Table 5-6.

The .NET Framework provides a class for each type of encoding in the System. Text namespace.
When using StreamReader and StreamWriter, you can specify the encoding or simply use the default
UTF-8 encoding.

Note The Encoding class also offers the Default property, which represents the encoding for your operating
system’s base character encoding table.

Table 5-6. Common Encodings

FILES, DIRECTORIES, AND 1/0

Encoding Description

Represented By

ASCII Encodes each character in a string using
7 bits. ASCII-encoded data cannot
contain extended Unicode characters.
When using ASCII encoding in .NET,
the bits will be padded and the resulting
byte array will have 1 byte for each

character.

UTF-7 Unicode Uses 7 bits for ordinary ASCII characters
and multiple 7-bit pairs for extended
characters. This encoding is primarily
for use with 7-bit protocols such as
mail, and it is not regularly used.

UTF-8 Unicode Uses 8 bits for ordinary ASCII characters
and multiple 8-bit pairs for extended
characters. The resulting byte array will
have 1 byte for each character (provided
there are no extended characters).

Full Unicode (or Represents each character in a string
UTEF-16) using 16 bits. The resulting byte array
will have 2 bytes for each character.

UTF-32 Unicode Represents each character in a string
using 32 bits. The resulting byte array
will have 4 bytes for each character.

ASCII property of the System.
Text.Encoding class

UTF7 property of the System.
Text.Encoding class

UTF8 property of the System.
Text.Encoding class

Unicode property of the System.
Text.Encoding class

UTF32 property of the System.
Text.Encoding class

When reading information, you use the Read or ReadLine method of StreamReader. The Read
method reads a single character, or the number of characters you specify, and returns the data as an
Integer that represents the character read or the number of characters read, respectively. The ReadLine
method returns a string with the content of an entire line. The ReadToEnd method will return a string
with the content starting from the current position to the end of the stream. An alternative to the
ReadToEnd method is the Shared ReadAllText method of the My.Computer.FileSystem and System.

10.File classes.

The Code

The following console application writes and then reads a text file.

Imports System
Imports System.IO
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 07

Public Shared Sub Main()

Create a new file.

Using fs As New FileStream("test.txt", FileMode.Create)

Create a writer and specify the encoding. The
default (UTF-8) supports special Unicode characters,

201

202 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

' but encodes all standard characters in the same way as
' ASCII encoding.
Using w As New StreamWriter(fs, Encoding.UTF8)

" Write a decimal, string, special Unicode character
' and char.
w.WritelLine(CDec(124.23))
w.WriteLine("Test string")
w.WriteLine("8") 'Produced by pressing ALT+235
w.WriteLine("!"c)
End Using
End Using

Console.WriteLine("Press Enter to read the information.")
Console.ReadlLine()

Open the file in read-only mode.
Using fs As New FileStream("test.txt", FileMode.Open)
Using r As New StreamReader(fs, Encoding.UTF8)
' Read the data and convert it to the appropriate data type.
Console.Writeline(Decimal.Parse(r.ReadlLine))
Console.Writeline(r.ReadLine)
Console.Writeline(Char.Parse(r.ReadlLine))
Console.Writeline(Char.Parse(r.ReadlLine))
End Using
End Using
' Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note In the previous example, if you change the encoding from UTF8 to ASCII when creating the text file, the
extended character will be displayed as a question mark. This is because ASCII does not include that extended char-
acter as part of its character set.

If you prefer to use the My object, you can use the OpenTextFileReader and OpenTextFileWriter
methods of the My.Computer.FileSystem class. These methods do not require a FileStream object,
which makes the code a little simpler, as shown in the following example.

Open and write to a file.
Using w As StreamWriter = My.Computer.FileSystem.OpenTextFileWriter("test.txt", =
False, Encoding.UTF8)
' MWrite a decimal, string, special Unicode character
and char.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

w.WritelLine(CDec(124.23))

w.WriteLine("Test string")

w.WriteLine("") 'Produced by pressing ALT+235 w.WriteLine("!"c)
End Using
' Open and read from the file.
Using r As StreamReader = My.Computer.FileSystem.OpenTextFileReader("test.txt", =
Encoding.UTF8)

' Read the data and convert it to the appropriate data type.

Console.Writeline(Decimal.Parse(r.ReadlLine))

Console.WritelLine(r.ReadlLine)

Console.WriteLine(Char.Parse(r.ReadlLine))

Console.WriteLine(Char.Parse(r.ReadlLine))
End Using

5-8. Read and Write a Binary File

Problem

You need to write data to a binary file, with strong data typing.

Solution

Create a new System.I0.FileStream object that references the file. To write the file, wrap the FileStream
inaSystem.I0.BinaryWriter and use the overloaded Write method. To read the file, wrap the FileStream
in a System.I0.BinaryReader and use the Read method that corresponds to the expected data type.

How It Works

The .NET Framework allows you to write or read binary data with any stream by using the BinaryWriter
and BinaryReader classes. When writing data with the BinaryWriter, you use the Write method. This
method is overloaded to support all the common VB .NET data types, including strings, chars, inte-
gers, floating-point numbers, decimals, and so on. The information will then be encoded as a series
of bytes and written to the file. You can configure the encoding used for strings, which defaults to
UTF-8, by using an overloaded constructor that accepts a System. Text . Encoding object, as described
in recipe 5-7.

You must be particularly fastidious with data types when using binary files. This is because
when you retrieve the information, you must use one of the strongly typed Read methods from the
BinaryReader, unless you intend to read the file character by character. For example, to retrieve
decimal data, you use ReadDecimal. To read a string, you use ReadString. (The BinaryWriter always
records the length of a string when it writes it to a binary file to prevent any possibility of error.)

The Code
The following console application writes and then reads a binary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 08
Public Shared Sub Main()

203

204 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Create a new file and writer.
Using fs As New FileStream("test.bin", FileMode.Create)
Using w As New BinaryWriter(fs)
' Write a decimal, 2 strings, a special Unicode character
' and a char.
w.Write(CDec(124.23))
w.Write("Test string")
w.Write("Test string 2")
w.Write("8"c) 'Produced by pressing ALT+235
w.Write("!"c)
End Using
End Using
Console.WriteLine("Press Enter to read the information.")
Console.ReadlLine()

Open the file in read-only mode.
Using fs As New FileStream("test.bin", FileMode.Open)
Display the raw information in the file.

Using sr As New StreamReader(fs)
Console.Writeline(sr.ReadToEnd)
Console.Writeline()

End Using

' Reposition the FileStream so we can reuse it.
fs.Position = 0

' Read the data and convert it to the appropriate data type.
Using br As New BinaryReader(fs)
Console.Writeline(br.ReadDecimal)
Console.Writeline(br.ReadString)
Console.Writeline(br.ReadString)
Console.Writeline(br.ReadChar)
Console.Writeline(br.ReadChar)
End Using
End Using
' Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

5-9. Parse a Delimited Text File

Problem

You need to parse the contents of a delimited text file.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Solution

Create and configure a new Microsoft.VisualBasic.FileIO.TextFieldParser object that references
the file you need to parse. Loop through the file until the EndOfData property is True. Use the ReadFields
method to return an array of strings representing one row of parsed data from the file.

How It Works

The TextFieldParser class can be found in the Microsoft.VisualBasic.FileI0 namespace. You can
either use one of its constructors to create an instance directly or use the Shared My.Computer.
FileSystem.OpenTextFieldParser method to return an instance. Some of the more important properties
and methods of this class are listed in Table 5-7.

Table 5-7. Key Properties and Methods of the TextFieldParser Class

Property or Method Description

CommentTokens An array of strings that indicates which lines in the file are
comments. Commented lines are skipped.

Delimiters An array of strings that defines the delimiters used in the text
file. TextFieldType must be set to FieldType.Delimited to use
this property.

EndOfData Returns True if there is no more data to be parsed.

ErrorLine Returns the actual line in the file that threw the last

MalformedLineException.

ErrorLineNumber Returns the line number that threw the last
MalformedLineException.

FieldWidths An array of integers that defines the widths of each field.
TextFieldType must be setto FieldType.FixedWidth to use
this property.

HasFieldsEnclosedInQuotes Indicates whether some fields are enclosed in quotation marks.
This is True by default.

TextFieldType Indicates the type of file from the FieldType enumeration
(Delimited or FixedWidth) thatis being parsed. This is set to
Delimited by default.

ReadFields Reads and parses all fields for the current row and returns the data
as an array of strings. The pointer is then moved to the nextrow. Ifa
field cannot be parsed, a MalformedLineException is thrown.

SetDelimiters Sets the Delimiters property to the value or values specified. The
single parameter for this method is a parameter array, so you can
supply a comma-separated list of values rather than an actual
array.

SetFieldwWidths Sets the FieldWidths property to the value or values specified. The
single parameter for this method is a parameter array, so you can
supply a comma-separated list of values rather than an actual array.

Once you have an instance, you need to configure it according to the file you need to parse. If
your file is delimited, set the TextFieldType property to Delimited and set the Delimiters property to

205

206

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

the appropriate delimiters. If the file is fixed width, set the TextFieldType property to FixedWidth and
set the FieldWidths property to the appropriate widths. Use the CommentTokens property to instruct
the parser to skip rows that are comments and do not contain any data to be parsed.

Use the ReadFields method to parse the current row, return an array of strings containing
each field parsed, and move the file pointer to the next row. If a field cannot be parsed, a
MalformedLineException is thrown. You can then use the ErrorLine and ExrrorLineNumber properties
of the TextFieldParser class to obtain information about which line and field caused the exception.

The Code

The following example creates a sample comma-delimited log file. The file is then read and parsed,
using the TextFieldParser class. The fields contained in the file are written to the console.

Imports System
Imports System.IO
Imports Microsoft.VisualBasic.FileIO

Namespace Apress.VisualBasicRecipes.Chapteros
Public Class Recipe05 09

Public Shared Sub Main()
' Create the sample log file.
Using w As StreamWriter = w»

My.Computer.FileSystem.OpenTextFileWriter("SampleLog.txt", =
False, System.Text.Encoding.UTF8)

' MWrite sample log records to the file. The parser
will skip blank lines. Also, the TextFieldParser
can be configured to ignore lines that are comments.

w.WriteLine("# In this sample log file, comments " & w»
"start with a # character. The")

w.WriteLine("# parser, when configured correctly, " & w»
"will ignore these lines.")

w.WriteLine("")

w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ‘=
"Some informational text.")

w.WriteLine("{0},WARN,""{1}""", DateTime.Now, ‘=
"Some warning message.")

w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ‘=
"[ERROR] Some exception has occurred.")

w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ‘=
"More informational text.")

w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ‘=
"[ERROR] Some exception has occurred.")

End Using

Console.Writeline("Press Enter to read and parse the information.")
Console.ReadlLine()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Open the file in and parse the data into a
TextFieldParser object.

Using logFile As TextFieldParser = w»
My.Computer.FileSystem.OpenTextFieldParser("SampleLog.txt")

Console.Writeline("Parsing text file.")
Console.WritelLine(Environment.NewlLine)

Write header information to the console.
Console.WritelLine("{0,-29} {1} {2}", "Date/Time in RFC1123", =

"Type", "Message")

' Configure the parser. For this recipe, make sure
' HasFieldsEnclosedInQuotes is True.
logFile.TextFieldType = FieldType.Delimited
logFile.CommentTokens = New String() {"#"}
logFile.Delimiters = New String() {","
logFile.HasFieldsEnclosedInQuotes = True

Dim currentRecord As String()

' Loop through the file until we reach the end.
Do While Not logFile.EndOfData
Try
Parse all the fields into the currentRow
array. This method automatically moves
the file pointer to the next row.
currentRecord = logFile.ReadFields

' Write the parsed record to the console.
Console.WriteLine("{o:r} {1} {2}", =

DateTime.Parse(currentRecord(0)), currentRecord(1), currentRecord(2))

"to parse this row:

Catch ex As MalformedlLineException

' The MalformedLineException is thrown by the

' TextFieldParser anytime a line cannot be

' parsed.

Console.WritelLine("An exception occurred attempting " & =
, ex.Message)

End Try

Loop

End Using

Wait to continue.

Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

207

208

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-10. Read a File Asynchronously

Problem

You need to read data from a file without blocking the execution of your code. This technique is
commonly used if the file is stored on a slow backing store (such as a networked drive in a wide
area network).

Solution

Create a separate class that will read the file asynchronously. Start reading a block of data using
the FileStream.BeginRead method and supply a callback method. When the callback is triggered,
retrieve the data by calling FileStream.EndRead, process it, and read the next block asynchronously
with BeginRead.

How It Works

The FileStream includes basic support for asynchronous use through the BeginRead and EndRead
methods. Using these methods, you can read a block of data on one of the threads provided by the
.NET Framework thread pool, without needing to directly use the threading classes in the System.
Threading namespace.

When reading a file asynchronously, you choose the amount of data that you want to read at a
time. Depending on the situation, you might want to read a very small amount of data at a time (for
example, if you are copying it block by block to another file) or a relatively large amount of data (for
example, if you need a certain amount of information before your processing logic can start). You
specify the block size when calling BeginRead, and you pass a buffer where the data will be placed.
Because the BeginRead and EndRead methods need to be able to access many of the same pieces of
information, such as the FileStream, the buffer, the block size, and so on, it’s usually easiest to
encapsulate your asynchronous file reading code in a single class.

The Code

The following example demonstrates reading a file asynchronously. The AsyncProcessor class
provides a public StartProcess method, which starts an asynchronous read. Every time the read
operation finishes, the OnCompletedRead callback is triggered and the block of data is processed. If
there is more data in the file, a new asynchronous read operation is started. AsyncProcessor reads
2 kilobytes (2,048 bytes) at a time.

Imports System

Imports System.IO

Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapteros
Public Class AsyncProcessor

Private inputStream As Stream

' The buffer that will hold the retrieved data.
Private buffer As Byte()

' The amount that will be read in one block (2KB).
Private m BufferSize As Integer = 2048

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Public ReadOnly Property BufferSize() As Integer
Get
Return m BufferSize
End Get
End Property

Public Sub New(ByVal fileName As String, ByVal size As Integer)

m_BufferSize = size
buffer = New Byte(m BufferSize) {}

Open the file, specifying true for asynchronous support.
inputStream = New FileStream(fileName, FileMode.Open, FileAccess.Read, ‘=

FileShare.Read, m BufferSize, True)
End Sub

Public Sub StartProcess()

' Start the asynchronous read, which will fill the buffer.
inputStream.BeginRead(buffer, 0, buffer.lLength, w»
AddressOf OnCompletedRead, Nothing)

End Sub
Private Sub OnCompletedRead(ByVal asyncResult As IAsyncResult)

' One block has been read asynchronously. Retrieve

' the data.
Dim bytesRead As Integer = inputStream.EndRead(asyncResult)

' If no bytes are read, the stream is at the end of the file.
If bytesRead > 0 Then
' Pause to simulate processing this block of data.
Console.WritelLine("{0}[ASYNC READER]: Read one block.", ‘w»
ControlChars.Tab)
Thread. Sleep(20)

' Begin to read the next block asynchronously.
inputStream.BeginRead(buffer, 0, buffer.Length, w»
AddressOf OnCompletedRead, Nothing)
Else
' End the operation.
Console.WriteLine("{0}[ASYNC READER]: Complete.", ControlChars.Tab)

inputStream.Close()
End If

End Sub

End Class
End Namespace

209

210

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Usage
The following example shows a console application that uses AsyncProcessor to read a 2-megabyte file.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapteros
Public Class Recipe05 10

Public Shared Sub Main(ByVal args As String())

' Create a 2 MB test file.

Using fs As New FileStream("test.txt", FileMode.Create)

fs.SetLength(2097152)

End Using

' Start the asynchronous file processor on another thread.
Dim asyncIO As New AsyncProcessor("test.txt", 2048)
asyncIO.StartProcess()
' At the same time, do some other work.
In this example, we simply loop for 10 seconds.
Dim startTime As DateTime = DateTime.Now

While DateTime.Now.Subtract(startTime).TotalSeconds < 10
Console.WriteLine("[MAIN THREAD]: Doing some work.")
' Pause to simulate a time-consuming operation.
Thread.Sleep(100)

End While

Console.WritelLine("[MAIN THREAD]: Complete.")
Console.ReadlLine()

' Remove the test file.
File.Delete("test.txt")

End Sub

End Class
End Namespace

The following is an example of the output you will see when you run this test.

[MAIN THREAD]: Doing some work.
[ASYNC READER]: Read one block.
[ASYNC READER]: Read one block.
[MAIN THREAD]: Doing some work.
[ASYNC READER]: Read one block.
[ASYNC READER]: Read one block.
[ASYNC READER]: Read one block.
[ASYNC READER]: Read one block.
[MAIN THREAD]: Doing some work.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

[ASYNC READER]: Read one block.
[ASYNC READER]: Read one block.
[ASYNC READER]: Read one block.

5-11. Find Files That Match a Wildcard Expression

Problem

You need to process multiple files based on a filter expression (such as *.d11 or mysheet20??.x1s).

Solution

Use the overloaded version of the System.I0.DirectoryInfo.GetFiles method that accepts a filter
expression and returns an array of FileInfo objects. For searching recursively across all subdirecto-
ries, use the overloaded version that accepts the SearchOption enumeration.

How It Works

The DirectoryInfo and Directory objects both provide a way to search the directories for files that
match a specific filter expression. These search expressions can use the standard ? and * wildcards.
You can use a similar technique to retrieve directories that match a specified search pattern by using
the overloaded DirectoryInfo.GetDirectories method. The GetFiles method, used in several other
recipes in this chapter to retrieve a list of files, includes an overload that lets you specify that you
want to search recursively using the SearchOption.AllDirectories enumeration constant.

As an alternative, you can also use the Shared GetFiles method of the My.Computer.FileSystem
class. This method returns only strings representing the full path of the file, rather than FileInfo
objects. As with the System.I0.DirectoryInfo.GetFiles method, you can use an overload to search
recursively using the SearchOptions.SearchAllSubDirectories enumeration constant. This method
also allows you to search for multiple file extensions at once.

The Code

The following example retrieves the names of all the files in a specified directory that match a spec-
ified filter string. The directory and filter expression are submitted as command-line arguments. The
code then iterates through the retrieved FileInfo collection of matching files and displays the name
and size of each one.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 11
Public Shared Sub Main(ByVal args As String())

If args.Length = 2 Then
Dim dir As New DirectoryInfo(args(0))
Dim files As FileInfo() = dir.GetFiles(args(1))

211

212 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Display the name of all the files.

For Each file As FileInfo In files
Console.Write("Name: " & file.Name + " ")
Console.Writeline("Size: " & file.lLength.ToString)

Next

' Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

Else
Console.Writeline("USAGE: Recipe05-11 [directory]" & w»

[filterExpression]™)
End If

End Sub

End Class
End Namespace

Usage

If you run the command Recipe05-11 c:\ *.sys, the example produces the following output:

Name: config.sys Size: 10
Name: hiberfil.sys Size: 2147016704
Name: pagefile.sys Size: 2460942336

Main method complete. Press Enter.

5-12. Test Two Files for Equality

Problem

You need to quickly compare the content of two files and determine whether it matches exactly.

Solution

Calculate the hash code of each file using the System.Security.Cryptography.HashAlgorithm class,
and then compare the hash codes.

How It Works

You might compare file content in a number of ways. For example, you could examine a portion of
the file for similar data, or you could read through each file byte by byte, comparing each byte as you
go. Both of these approaches are valid, but in some cases, it's more convenient to use a hash code
algorithm.

A hash code algorithm generates a small (typically about 20 bytes) binary fingerprint for a file.
While it’s possible for different files to generate the same hash codes, that is statistically unlikely
to occur. In fact, even a minor change (for example, modifying a single bit in the source file) has

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

an approximately 50-percent chance of independently changing each bit in the hash code. For this
reason, hash codes are often used in security code to detect data tampering. (Hash codes are discussed
in more detail in recipes 13-14, 13-15, and 13-16.)

To create a hash code, you must first create a HashAlgorithm object, typically by calling the
Shared HashAlgorithm.Create method. This defaults to using the shal algorithm but provides an
overload allowing other algorithms to be provided. You then call the HashAlgorithm.ComputeHash,
method, passing in a byte array or string representing the data to be hashed. The hashed data is
returned in a byte array.

The Code

The following example demonstrates a simple console application that reads two file names that are
supplied as arguments and uses hash codes to test the files for equality. The hashes are compared by
converting them into strings. Alternatively, you could compare them by iterating over the byte array
and comparing each value. That approach would be slightly faster, but because the overhead of
converting 20 bytes into a string is minimal, it’s not required.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 12
Public Shared Sub Main(ByVal args As String())

If args.Length = 2 Then
Console.WritelLine("comparing {0} and {1}", args(0), args(1))
' Create the hashing object.
Using hashAlg As HashAlgorithm = HashAlgorithm.Create
Using fsA As New FileStream(args(0), FileMode.Open), ‘w»
fsB As New FileStream(args(1), FileMode.Open)
' Calculate the hash for the files.
Dim hashBytesA As Byte() = hashAlg.ComputeHash(fsA)
Dim hashBytesB As Byte() = hashAlg.ComputeHash(fsB)

Compare the hashes.
If BitConverter.ToString(hashBytesA) = =
BitConverter.ToString(hashBytesB) Then
Console.Writeline("Files match.")
Else
Console.WriteLine("No match.")
End If

End Using
" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Using

213

214 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Else
Console.Writeline("USAGE: Recipe05-12 [fileName] [fileName]")
End If

End Sub

End Class
End Namespace

Usage

You use this recipe by executing it and passing in a parameter for each file to compare: Recipe05-12
c:\SomeFile.txt c:\SomeOtherFile.txt.Ifthe files are equal, “Files Match” will be displayed on the
console. Otherwise, “No Match” will be displayed.

5-13. Manipulate Strings Representing File Names

Problem

You want to retrieve a portion of a path or verify that a file path is in a normal (standardized) form.

Solution

Process the path using the System.I0.Path class. You can use Path.GetFileName to retrieve a file
name from a path, Path.ChangeExtension to modify the extension portion of a path string, and
Path.Combine to create a fully qualified path without worrying about whether your directory includes
a trailing directory separation (\) character.

How It Works

File paths are often difficult to work with in code because of the many different ways to represent
the same directory. For example, you might use an absolute path (C:\Temp), a UNC path
(\\MyServer\\MyShare\temp), or one of many possible relative paths (C:\Temp\MyFiles\..\ or
C:\Temp\MyFiles\..\..\temp).

The easiest way to handle file system paths is to use the Shared methods of the Path class to make
sure you have the information you expect. For example, here is how to take a file name that might
include a qualified path and extract just the file name:

Dim filename As String = "..\System\MyFile.txt"
filename = Path.GetFileName(filename)

Now filename = "MyFile.txt"

And here is how you might append the file name to a directory path using the Path.Combine
method:

Dim filename As String = "..\..\myfile.txt"
Dim fullPath As String = "c:\Temp"

filename = Path.GetFileName(filename)
fullPath = Path.Combine(fullPath, filename)

' fullPath is now "c:\Temp\myfile.txt"

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

The advantage of this approach is that a trailing backslash (\) is automatically added to the path
name if required. The Path class also provides the following useful Shared methods for manipulating
path information:

GetExtension returns just the extension of the file in the string. If there is no extension, an
empty string is returned.

ChangeExtension modifies the current extension of the file in a string. If no extension is specified,
the current extension will be removed.

GetDirectoryName returns all the directory information, which is the text between the first and
last directory separators (\).

GetFileNameWithoutExtension is similar to GetFileName, but it omits the extension.

GetFullPath has no effect on an absolute path, and it changes a relative path into an absolute
path using the current directory. For example, if C:\Temp\ is the current directory, calling
GetFullPath on a file name such as test.txt returns C:\Temp\test.txt.

GetPathRoot retrieves a string with the root (for example, “C:\”), provided that information is
in the string. For a relative path, it returns Nothing.

HasExtension returns True if the path ends with an extension.

IsPathRooted returns True if the path is an absolute path and False if it’s a relative path.

The My . Computer.FileSystem offers two Shared methods that also work with paths. The CombinePath
method is the equivalent of Path. Combine. The GetParentPath method, similar to the GetDirectoryName
method, returns the path of the parent folder for the path specified.

Note In most cases, an exception will be thrown if you try to supply an invalid path to one of these methods
(for example, paths that include illegal characters). However, path names that are invalid because they contain
a wildcard character (* or ?) will not cause the methods to throw an exception. You could use the Path.
GetInvalidPathCharsorPath.GetInvalidFileNameChars method to obtain an array of characters that are
illegal in path or file names, respectively.

5-14. Determine Whether a Path Is a Directory or a File

Problem

You have a path (in the form of a string), and you want to determine whether it corresponds to a
directory or a file.

Solution

Test the path with the Directory.Exists and File.Exists methods.

How It Works

The System.I0.Directory and System.I0.File classes both provide a Shared Exists method. The
Directory.Exists method returns True if a supplied relative or absolute path corresponds to an
existing directory, even a shared folder with an UNC name. File.Exists returns True if the path
corresponds to an existing file.

215

216 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

As an alternative, you can use the Shared FileExists and DirectoryExists methods of the
My.Computer.FileSystem class. These methods work in the same way as the Exists method of the
System.IO.Directory and System.IO.File classes.

The Code

The following example demonstrates how you can quickly determine whether a path corresponds to
a file or directory.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 14
Public Shared Sub Main(ByVal args As String())

For Each arg As String In args
Console.Write(arg)

If Directory.Exists(arg) Then
Console.WritelLine(" is a directory.")

ElseIf File.Exists(arg) Then
Console.Writeline(" is a file.")

Else
Console.WritelLine(" does not exist.")

End If

Next

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

You use this recipe by executing it and passing in a parameter representing a path to a file or a directory:
Recipe05-14 c:\SomeFile or Recipe05-14 c:\SomeDirectory. A message notifying you whether the
path refers to a directory or a file will be displayed.

5-15. Work with Relative Paths

Problem

You want to set the current working directory so that you can use relative paths in your code.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Solution

Use the Shared GetCurrentDirectory and SetCurrentDirectory methods of the System.I0.Directory
class.

How It Works

Relative paths are automatically interpreted in relation to the current working directory, which is the
path of the current application by default. You can retrieve the current working directory by calling
Directory.GetCurrentDirectory or change it using Directory.SetCurrentDirectory. In addition,
you can use the Shared GetFullPath method of the System.I0.Path class to convert a relative path
into an absolute path using the current working directory.

The Code

The following is a simple example that demonstrates working with relative paths.
Imports System

Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 15
Public Shared Sub Main()

Console.Writeline("Using: " & Directory.GetCurrentDirectory())
Console.WriteLine("The relative path for 'file.txt' will " & w»

"automatically become: '" & Path.GetFullPath("file.txt") & "'")
Console.WritelLine()

Console.Writeline("Changing current directory to c:\")
Directory.SetCurrentDirectory("C:\")

Console.WriteLine("Now the relative path for 'file.txt' will " & w»
"automatically become: '" & Path.GetFullPath("file.txt") & "'")

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()
End Sub
End Class
End Namespace
Usage
The output for this example might be the following (if you run the application in the directory C:\temp).

217

218

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Using: c:\temp
The relative path 'file.txt' will automatically become 'c:\temp\file.txt'

Changing current directory to c:\
The relative path 'file.txt' will automatically become 'c:\file.txt'

Gaution If you use relative paths, it's recommended that you set the working path at the start of each file inter-
action. Otherwise, you could introduce unnoticed security vulnerabilities that could allow a malicious user to force
your application into accessing or overwriting system files by tricking it into using a different working directory.

5-16. Create a Temporary File

Problem

You need to create a file that will be placed in the user-specific temporary directory and will have a
unique name, so that it will not conflict with temporary files generated by other programs.

Solution

Use the Shared GetTempFileName method of the System.I0.Path class, which returns a path made up
of the user’s temporary directory and a randomly generated file name.

How It Works

You can use a number of approaches to generate temporary files. In simple cases, you might just
create a file in the application directory, possibly using a GUID or a timestamp in conjunction with
arandom value as the file name. However, the Path class provides a helper method that can save you
some work. It creates a file with a unique file name in the current user’s temporary directory. On
Windows Vista, this is a folder similar to C:\Users\[username]\AppData\Local\Temp, while on
Windows XP it is similar to C:\Documents and Settings\[username]\Local Settings\temp by default.

The Code
The following example demonstrates creating a temporary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros
Public Class Recipe05 16
Public Shared Sub Main()
Dim tempFile As String = Path.GetTempFileName

Console.WritelLine("Using " & tempFile)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Using fs As New FileStream(tempFile, FileMode.Open)
" Write some data
End Using

" Now delete the file.
File.Delete(tempFile)

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

5-17. Get the Total Free Space on a Drive

Problem

You need to examine a drive and determine how many bytes of free space are available.

Solution
Use the DriveInfo.AvailableFreeSpace property.

How It Works

The DriveInfo class provides members that let you find out the drive type, free space, and many
other details of a drive. In order to create a new DriveInfo object, you need to pass the drive letter or
the drive root string to the constructor, such as 'C' or "C:\" for creating a DriveInfo instance repre-
senting the C drive of the computer. You could also retrieve the list of logical drives available by using the
SharedDirectory.CetlLogicalDrives method, which returns an array of strings, each containing the root
of the drive, such as "C:\". For more details on each drive, you create a DriveInfo instance, passing
either the root or the letter corresponding to the logical drive. If you need a detailed description of
each logical drive, call the DriveInfo.GetDrives method, which returns an array of DriveInfo objects,
instead of using Directory.CGetLogicalDrives.

Note A System.I0.IOException exception is thrown if you try to access an unavailable network drive.

The Code

The following console application shows the available free space using the DriveInfo class for the
given drive or for all logical drives if no argument is passed to the application.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

219

220 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Public Class Recipe05 17
Public Shared Sub Main(ByVal args As String())

If args.Length = 1 Then
Dim drive As New DriveInfo(args(0))

Console.Write("Free space in {0}-drive (in kilobytes): ", args(0))
Console.Writeline(drive.AvailableFreeSpace / 1024)

Else
For Each drive As DriveInfo In DriveInfo.GetDrives

Try
Console.WritelLine("Free space in {0}-drive " & w»
"(in kilobytes): {1}", drive.RootDirectory, drive.AvailableFreeSpace / w»
1024.ToString)
Catch ex As IOException
Console.WritelLine(drive)
End Try

Next
End If
' Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note In addition to the AvailableFreeSpace property, DriveInfo also defines a TotalFreeSpace prop-
erty. The difference between these two properties is that AvailableFreeSpace takes into account disk quotas.

Usage

You use this tool by executing it and passing in one or more drive letters for which you want to return
the size, such as Recipe05-17 C:.Ifyou run it without passing any parameters, it will attempt to
return the size information for all drives on the system and generate results similar to the following:

A:\

Free space in C:\-drive (in kilobytes): 44094956
Free space in D:\-drive (in kilobytes): o0

E:\

Free space in F:\-drive (in kilobytes): 144671240

Main method complete. Press Enter.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-18. Show the Common File Dialog Boxes

Problem

You need to show the standard Windows dialog boxes for opening and saving files and for selecting
a folder.

Solution

Use the OpenFileDialog, SaveFileDialog, and FolderBrowserDialog classes in the System.Windows.
Forms namespace. Call the ShowDialog method to display the dialog box, examine the return value to
determine whether the user clicked Open or Cancel, and retrieve the selection from the FileName or
SelectedPath property.

How It Works

The .NET Framework provides objects that wrap many of the standard Windows dialog boxes, including
those used for saving and selecting files and directories. Each dialog box is appropriately formatted
for the current operating system. The dialog box classes all inherit from System.Windows.Forms.
CommonDialog and include the following:

* OpenFileDialog, which allows the user to select a file, as shown in Figure 5-2. The file name
and path are provided to your code through the FileName property (or the FileNames collec-
tion, if you have enabled multiple file select by setting Multiselect to True). Additionally, you
can use the Filter property to set the file format choices and set CheckFileExists. Filter lets
you limit the file types that are displayed, and CheckFileExists ensures that only an existing
file can be specified.

T ¢)
T)

Type = Total Size Free Space
Hard Disk Drives (2)
Local Disk {(C)

“
R 100 GB free of 745 GB

Shire (F)

I Favaorite Links

E Documents
B Desktop

% RecentPlaces
& Computer .

B Pictures 7 137GB free of 23268

& husic Devices with Removable Storage (3)
}; Recently Changed
B searches E&;é Floppy Disk Drive (A2

). Public
&a :
‘$ DVD Drive (D:)

L]
' CD-RW Drive (E:
~ P_H‘S) rive (E:)

File name:

Rich Text Files (*.rf)
All Files (**)

Figure 5-2. OpenFileDialog shows the Open dialog box.

221

222

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

» SaveFileDialog, which allows the user to specify a new file. This dialog box looks nearly iden-
tical to the OpenFileDialog shown in Figure 5-2 earlier but with appropriate captions. The file
name and path are provided to your code through the FileName property. You can also use the
Filter property to set the file format choices, and set the CreatePrompt and OverwritePrompt
Boolean properties to instruct .NET to display a confirmation if the user selects a new file or
an existing file, respectively.

* FolderBrowserDialog, which allows the user to select (and optionally create) a directory, as
shown in Figure 5-3. The selected path is provided through the SelectedPath property, and
you can specify whether a Make New Folder button should appear using the
ShowNewFolderButton property.

Browse For Folder M

Ml Desktop

» T} Gandalf

> . Public

» & Computer

» & Network

I &4 Control Panel
‘{ Recycle Bin

Make New Folder] [0K] I Cancel]

L A

Figure 5-3. FolderBrowserDialog shows the Browse for Folder dialog box.

When using OpenFileDialog or SaveFileDialog, you need to set the filter string, which specifies
the allowed file extensions. If you do not set the filter string, the Type drop-down list will be empty,
and all files will be shown in the dialog box.

The filter string is separated with the pipe character (|) in this format:

[Text label] | [Extension list separated by semicolons] | [Text label]
| [Extension list separated by semicolons] | .

You can also set the Title (form caption) and the InitialDirectory.

The Code

The following code shows a Windows-based application that allows the user to load documents into
a RichTextBox, edit the content, and then save the modified document. When opening and saving a
document, the OpenFileDialog and SaveFileDialog classes are used.

" All designed code is stored in the autogenerated partial
class called MainForm.Designer.vb. You can see this

' file by selecting Show All Files in Solution Explorer.

Partial Public Class MainForm

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Private Sub mnuOpen_Click(ByVal sender As Object, ByVal e As System.EventArgs) ‘=
Handles mnuOpen.Click

Dim dlg As New OpenFileDialog

dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|ALl Files (*.*)[*.*"
dlg.CheckFileExists = True
dlg.InitialDirectory = Application.StartupPath

If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
rtDoc.LoadFile(dlg.FileName)
rtDoc.Enabled = True

End If

End Sub

Private Sub mnuSave Click(ByVal sender As Object, ByVal e As System.EventArgs) ‘=
Handles mnuSave.Click

Dim dlg As New SaveFileDialog

dlg.Filter = "Rich Text Files (*.rtf)|*.RTF" & w»
"All Files (*.%)|* *"
dlg.InitialDirectory = Application.StartupPath

If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
rtDoc.SaveFile(dlg.FileName)
End If

End Sub

Private Sub mnuExit Click(ByVal sender As Object, ByVal e As System.EventArgs) ‘=
Handles mnuExit.Click

Me.Close()

End Sub
End Class

5-19. Use an Isolated Store

Problem

You need to store data in a file, but your application does not have the required FileIOPermission for
the local hard drive.

Solution

Use the IsolatedStorageFile and IsolatedStorageFileStream classes from the System.IO.
IsolatedStorage namespace. These classes allow your application to write data to a file in a
user-specific directory without needing permission to access the local hard drive directly.

223

224

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

How It Works

The .NET Framework includes support for isolated storage, which allows you to read and write to
a user-specific or machine-specific virtual file system that the common language runtime (CLR)
manages. When you create isolated storage files, the data is automatically serialized to a unique location
in the user profile path. In Windows Vista, the profile path is typically something like C:\Users\
[username]\AppData\Local\IsolatedStorage\, while in Windows XP, it is similar to C:\Documents
and Settings\[username]\Local Settings\Application Data\isolated storage\).

One reason you might use isolated storage is to give a partially trusted application limited ability to
store data. For example, the default CLR security policy gives local code unrestricted FileIOPermission,
which allows it to open or write to any file. Code that you run from a remote server on the local
intranet is automatically assigned fewer permissions. It lacks the FileIOPermission, but it has the
IsolatedStoragePermission, giving it the ability to use isolated stores. (The security policy also limits
the maximum amount of space that can be used in an isolated store.) Another reason you might use
an isolated store is to better secure data. For example, data in one user’s isolated store will be restricted
from another non-administrative user.

By default, each isolated store is segregated by user and assembly. That means that when the
same user runs the same application, the application will access the data in the same isolated store.
However, you can choose to segregate it further by application domain, so that multiple AppDomain
instances running in the same application receive different isolated stores.

The files are stored as part of a user’s profile, so users can access their isolated storage files on
any workstation they log on to if roaming profiles are configured on your local area network. (In this case,
the store must be specifically designated as a roaming store by applying the IsolatedStorageFile.
Roaming flag when it’s created.) By letting the .NET Framework and the CLR provide these levels of
isolation, you can relinquish some responsibility for maintaining the separation between files, and
you do not need to worry as much that programming oversights or misunderstandings will cause
loss of critical data.

The Code
The following example shows how you can access isolated storage.

Imports System
Imports System.IO
Imports System.IO.IsolatedStorage

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 19
Public Shared Sub Main(ByVal args As String())
' Create the store for the current user.
Using store As IsolatedStorageFile = w»
IsolatedStorageFile.GetUserStoreForAssembly
' Create a folder in the root of the isolated store.
store.CreateDirectory("MyFolder")

Create a file in the isolated store.
Using fs As New IsolatedStorageFileStream("MyFile.txt", w»
FileMode.Create, store)
Dim w As New StreamWriter(fs)

You can now write to the file as normal.
w.WriteLine("Test")
w.Flush()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

End Using

Console.Writeline("Current size: " & store.CurrentSize.ToString)
Console.Writeline("Scope: " & store.Scope.ToString)
Console.WritelLine("Contained files include:")

Dim files As String() = store.GetFileNames("*.*")

For Each file As String In files
Console.WriteLine(file)

Next

End Using
' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

The following demonstrates using multiple AppDomain instances running in the same applica-
tion to receive different isolated stores.

Access isolated storage for the current user and assembly

(which is equivalent to the first example).

store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ‘=
IsolatedStorageScope.Assembly, Nothing, Nothing)

Access isolated storage for the current user, assembly,

and application domain. In other words, this data is

accessible only by the current AppDomain instance.

store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ‘=
IsolatedStorageScope.Assembly Or IsolatedStorageScope.Domain, Nothing, Nothing)

The preceding use of GetStore is equivalent to calling the GetUserStoreForDomain method of the
IsolatedStorageFile class.

5-20. Monitor the File System for Changes

Problem

You need to react when a file system change is detected in a specific path (such as a file modification
or creation).

Solution

Use the System.I0.FileSystemWatcher component, specify the path or file you want to monitor, and
handle the Error, Created, Deleted, Renamed, and Changed events as needed.

225

226

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

How It Works

When linking together multiple applications and business processes, it’s often necessary to create
a program that waits idly and becomes active only when a new file is received or changed. You can
create this type of program by scanning a directory periodically, but you face a key trade-off. The
more often you scan, the more system resources you waste. The less often you scan, the longer it will
take to detect a change. The solution is to use the FileSystemWatcher class to react directly to
Windows file events.

To use FileSystemWatcher, you must create an instance and set the following properties:

* Pathindicates the directory you want to monitor.
e Filter indicates the types of files you are monitoring.

e NotifyFilter indicates the type of changes you are monitoring.

FileSystemhWatcher raises four key events: Created, Deleted, Renamed, and Changed. All of these
events provide information through their FileSystemEventArgs parameter, including the name of
the file (Name), the full path (FullPath), and the type of change (ChangeType). The Renamed event provides a
RenamedEventArgs instance, which derives from FileSystemEventArgs, and adds information about
the original file name (01dName and 01dFullPath).

By default, the FileSystemWatcher is disabled. To start it, you must set the FileSystemhWatcher.
EnableRaisingEvents property to True. If you ever need to disable it, just set the property to False.

The Created, Deleted, and Renamed events require no configuration. However, if you want to use
the Changed event, you need to use the NotifyFilter property to indicate the types of changes you
want to watch. Otherwise, your program might be swamped by an unceasing series of events as files
are modified.

The NotifyFilter property, which defaults to LastWrite, FileName, and DirectoryName, can be
set using any combination of the following values from the System.I0.NotifyFilters enumeration:

e Attributes

e CreationTime

e DirectoryName

e FileName

* LastAccess

e LlastWrite

e Security

e Size

The FileSystemWatcher is capable of detecting many file- or folder-related actions at once. It
does this by creating and using threads from the ThreadPool to handle the appropriate events. As
events occur, they are queued in an internal buffer. If this buffer overflows, some of the events may

be lost. This overflow fires the Error event. You should handle this event to log or resolve this issue if
it arises.

The Code

The following example shows a console application that handles Created and Deleted events, and
tests these events by creating a test file.

Imports System
Imports System.IO
Imports System.Windows.Forms

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 20
Public Shared Sub Main()

Using watch As New FileSystemWatcher

watch.Path = Application.StartupPath
watch.Filter = "*. *"
watch.IncludeSubdirectories = True

' Attach the event handlers.

AddHandler watch.Created, AddressOf OnCreatedOrDeleted
AddHandler watch.Deleted, AddressOf OnCreatedOrDeleted
watch.EnableRaisingEvents = True

Console.WriteLine("Press Enter to create a file.")
Console.ReadlLine()

If File.Exists("test.bin") Then
File.Delete("test.bin")
End If

Create test.bin file.
Using fs As New FileStream("test.bin", FileMode.Create)
' Do something here...
End Using

Console.WritelLine("Press Enter to terminate the application.™)
Console.ReadlLine()

End Using

Wait to continue.

Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

Fires when a new file is created or deleted in the directory
that is being monitored.

Private Shared Sub OnCreatedOrDeleted(ByVal sender As Object, ‘=
ByVal e As FileSystemEventArgs)

Display the notification information.

Console.WriteLine("{O}NOTIFICATION: {1} was {2}", ControlChars.Tab, w
e.FullPath, e.ChangeType.ToString)
Console.WritelLine()

End Sub

End Class
End Namespace

227

228

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-21. Access a COM Port

Problem

You need to send data directly to a serial port.

Solution

Use the System.I0.Ports.SerialPort class. This class represents a serial port resource and defines
methods that enable communication through it.

How It Works

The .NET Framework defines a System.I0.Ports namespace that contains several classes. The central
classis SerialPort. A SerialPort instance represents a serial port resource and provides methods
that let you communicate through it. The SerialPort class also exposes properties that let you
specify the port, baud rate, parity, and other information. If you need a list of the available COM
ports, the SerialPort class provides the GetPortNames method, which returns a string array containing
the names of each port.

As an alternative, the My object contains the My. Computer.Ports class, which can be used to work
with ports. This class contains the Shared SerialPortNames property and the Shared OpenSerialPort
method. SerialPortNames is equivalent to the GetPortNames method, but it returns a
ReadOnlyCollection(Of String), which isaread-only collection of strings. OpenSerialPort returns a
SerialPort instance. This method has several overloads that let you correctly configure the returned
instance.

The Code

The following example demonstrates a simple console application that lists all available COM ports
and then writes a string to the first available one.

Imports System
Imports System.IO.Ports

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 21
Public Shared Sub Main()

Enumerate each of the available COM ports

on the computer.

Console.WritelLine("Available Ports on this computer:")

For Each portName As String In SerialPort.GetPortNames
Console.WritelLine("PORT: " & portName)

Next

Console.WritelLine()

For this example, lets just grab the first item from
the array returned by the GetPortNames method.

Dim testPort As String = SerialPort.GetPortNames(0)
Using port As New SerialPort(testPort)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Set the properties.
port.BaudRate = 9600
port.Parity = Parity.None
port.ReadTimeout = 10
port.StopBits = StopBits.One

Write a message into the port.
port.Open()

port.Write("Hello world!")
port.Close()

Console.WritelLine("Wrote to the {0} port.", testPort)

End Using

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

5-22. Get a Random File Name

Problem

You need to get a random name for creating a folder or a file.

Solution

Use the Path.GetRandomFileName method, which returns a random name.

How It Works

The System.I0.Path class includes a GetRandomFileName method that generates a random string
that can be used for creating a new file or folder. The difference between GetRandomFileName and
GetTempFileName (discussed in recipe 5-16) of the Path class is that GetRandomFileName just returns a
random string and does not create a file, whereas GetTempFileName creates a new 0-byte temporary
file and returns the path to the file.

5-23. Manipulate the Access Control Lists of a File or Directory

Problem

You want to modify the access control list (ACL) of a file or directory in the computer.

229

230

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Solution

Use the GetAccessControl and SetAccessControl methods of the File or Directory class.

How It Works

The .NET Framework includes support for ACLs for resources such as I/0, registry, and threading
classes. You can retrieve and apply the ACL for a resource by using the GetAccessControl and
SetAccessControl methods defined in the corresponding resource classes. For example, the File
and Directory classes define both these methods, which let you manipulate the ACLs for a file or
directory.

To add or remove an ACL-associated right of a file or directory, you need to first retrieve the
FileSecurity or DirectorySecurity object currently applied to the resource using the GetAccessControl
method. Once you retrieve this object, you need to perform the required modification of the rights,
and then apply the ACL back to the resource using the SetAccessControl method. Table 5-8 shows a
list of the common methods used for adding and removing ACL permissions.

Table 5-8. Key Methods for Adding and Removing ACLs

Method Description

AddAccessRule Adds the permissions specified.

ResetAccessRule Adds the permissions specified. If the specified permission
already exists, it will be replaced.

RemoveAccessRule Removes all of the permissions that match the specified rule.

RemoveAccessRuleAll Removes all permissions for the user referenced in the
specified rule.

RemoveAccessRuleSpecific Removes the permissions specified.

The Code

The following example demonstrates the effect of denying Everyone Read access to a temporary file,
using a console application. An attempt to read the file after a change in the ACL triggers a security
exception.

Imports System
Imports System.IO
Imports System.Security.AccessControl

Namespace Apress.VisualBasicRecipes.Chapteros
Public Class Recipe05 23

Public Shared Sub Main()
Dim fileName As String
' Create a new file and assign full control to 'Everyone'.
Console.WritelLine("Press any key to write a new file...")
Console.ReadKey(True)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

fileName = Path.CGetRandomFileName
Using testStream As New FileStream(fileName, FileMode.Create)
' Do something...
End Using
Console.WritelLine("Created a new file {0}.", fileName)
Console.WritelLine()
' Deny 'Everyone' access to the file.
Console.WriteLine("Press any key to deny 'Everyone' access " & w»
"to the file.")
Console.ReadKey(True)

SetRule(fileName, "Everyone", FileSystemRights.Read, w»
AccessControlType.Deny)

Console.WritelLine("Removed access rights of 'Everyone'.")
Console.WritelLine()

' Attempt to access the file.

Console.WriteLine("Press any key to attempt to access the file...")
Console.ReadKey(True)

Dim stream As FileStream
Try
stream = New FileStream(fileName, FileMode.Create)
Catch ex As Exception
Console.WritelLine("Exception thrown : ")
Console.Writeline(ex.ToString)
Finally
If stream IsNot Nothing Then
stream.Close()
stream.Dispose()
End If
End Try

" Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
Private Shared Sub SetRule(ByVal filePath As String, ByVal account As

String, ByVal rights As FileSystemRights, ByVal controlType As AccessControlType)
' Get a FileSecurity object that represents the

current security settings.
Dim fSecurity As FileSecurity = File.GetAccessControl(filePath)
' Update the FileSystemAccessRule with the new
security settings.

fSecurity.ResetAccessRule(New FileSystemAccessRule(account, rights, =
controlType))

231

232 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Set the new access settings.
File.SetAccessControl(filePath, fSecurity)

End Sub

End Class
End Namespace

CHAPTER 6

Language Integrated Query (LINQ)

A key element of almost any application is data. Inevitably, data needs to be listed, sorted, analyzed, or
displayed in some fashion. It is the nature of what we, as programmers, do. We accomplish this by
manually performing the appropriate operations and relying on the current functionality provided
by the existing .NET Framework. We also rely heavily on the use of external data sources, such as SQL
Server or XML files.

Before LINQ, writing code to query a data source required the query to be sent to the data source
as a string where it would be executed. This resulted in a separation of functionality and control
between the application and the data. The .NET Framework has always provided functionality (such
as ADO.NET) that made things fairly painless, but it required that developers have intimate knowledge
of the data source and its respective query language to be able to accomplish their goals.

Most developers have become used to working with data in this manner and have adapted
appropriately. Language Integrated Query (LINQ, pronounced “link”) has positioned itself to resolve
this situation and is one of the major new additions to the NET Framework 3.5.

LINQ, at its core, is a set of features that, when used together, provide the ability to query any
data source. Data can be easily queried and joined from multiple and varying data sources, such as
joining data gathered from a SQL Server database and an XML file. The initial release of VB 9.0 includes
several APIs that extend LINQ and provide support for the most common data sources, as listed in
Table 6-1. LINQ was designed to be easily extended, which you can take advantage of to create full
query support for any other data sources not covered by the included APIs.

Table 6-1. APIs That Extend LINQ

Name Namespace Supported Data Source

LINQ to Objects System.Ling Objects that inherit from IEnumerable or
IEnumerable(Of T) (covered in this chapter)

LINQ to XML System.Xml.Ling XML documents (covered in Chapter 7)

LINQ to SQL System.Data.ling SQL Server databases (covered in Chapter 8)

LINQ to DataSet System.Data ADO.NET datasets (covered in Chapter 8)

LINQ to Entities System.Data.Objects E}?tig] Dlzi;[a Model (EDM) objects? (not covered in
this boo

& EDM will be released as an addition to Visual Studio 2008 sometime in 2008.

233

234 CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

The primary intent of this chapter is to cover the basic functionality and techniques that make
up LINQ, focusing on LINQ to Objects. The recipes in this chapter cover the following:

* Querying data in a collection and controlling what data is returned (recipes 6-1, 6-2, and 6-3)

e Sorting and filtering data in collections (recipes 6-4 and 6-5)

e Performing aggregate operations (such as Min and Max) on collections (recipe 6-6 through
recipe 6-9)

* Grouping and joining data in one or more collections (recipes 6-10 and 6-11)
¢ Retrieving a subset of data from a collection (recipes 6-12)

e Using paging to display the contents of a collection (recipe 6-13)

e Comparing and combining two collections (recipe 6-14)

* (Casting a collection to a specific type (recipe 6-15)

Note LINQ relies heavily on the following functionality introduced in version 3.5 of the .NET Framework: implicit
typing, object initializers, anonymous types, extension methods, and lambda expressions. To better understand this
chapter, you should first review the recipes in Chapter 1 that cover these new concepts.

6-1. Query a Generic Collection

Problem

You need to query data that is stored in a collection that implements IEnumerable(0f T).

Solution

Create a general LINQ query, using the From clause, to iterate through the data stored in the target
collection.

How It Works

LINQ to Objects, represented by the System. Ling namespace, extends the core LINQ framework and
provides the mechanisms necessary to query data stored in objects that inherit IEnumerable(0f T).
Querying IEnumerable objects is also supported but requires an extra step, which is covered in recipe
6-2.

A standard query consists of one or more query operators that query the given data source and
return the specified results. If you have any familiarity with Structured Query Language (SQL), which
LINQ closely resembles, you will quickly recognize these standard operators. Here is an example
query, assuming names is an IEnumerable(0f String):

Dim query = From name In names

This query uses the From clause, which designates the source of the data. This clause is struc-
tured like a For. . .Next loop where you specify a variable to be used as the iterator (in the case, name)
and the source (in this case, names). As you can see by the example, you do not need to specify the
data type for the iterator because it is inferred based on the data type of the source. It is possible to
reference more than one data source in a single From clause, which would then allow you to query on
each source or a combination of both (see recipe 6-11 for more details).

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

It is important to note that the previous example does not actually do anything. After that line
of code executes, query isan IEnumerable(Of T) thatcontains only information and instructions that
define the query. The query will not be executed until you actually iterate through the results. Most
queries work in this manner, but it is possible to force the query to execute immediately.

Like name, the data type for the results (query) is also being inferred. The data type depends on
what is being returned by the actual query. In this case, that would be an IEnumerable(0f String)
since name is a String. When creating queries, you are not required to use type inference. You could
have used the following:

Dim query As IEnumerable(Of String) = From name As String In names Select name

Although that would work, type inference makes the query appear much cleaner and easier to
follow. Since the example returns a sequence of values, you execute the query by iterating through it
using a For...Next loop, as shown here:

For Each name in query

Next

Ifyouneed to ensure that duplicate data in the source is not part of the results, then you can add
the Distinct clause to the end of your query. Any duplicate items in the source collection will be
skipped when the query is executed. If you did this to the previous example, it would look like this:

Dim query = From name In names Distinct

Both of the previous example queries use what is known as query syntax, which is distinguished
by the use of query clauses (such as From or Distinct). Query syntax is used primarily for appearance
and ease of use. When the code is compiled, however, this syntax is translated to and compiled as
method syntax.

Behind all query operators (clauses) is an actual method. The exception to this rule is the From
clause, which simply translates to the For. . .Next loop shown previously. These methods are actually
extension methods that extend IEnumberable(0f T) and are found in the System.Linqg.Enumerable
class. The previous example would be compiled as this:

Dim query = names.Distinct

Query syntax is much easier to understand and appears cleaner in code, especially with longer
or more advanced queries. However, with some query operators, method syntax can give you more
fine-tuned control over the operation itself or the results.

The Code

The following example queries the array of Process objects returned from the Process.GetProcess
function and displays them to the console:

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 01

Public Shared Sub Main()

235

236

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Build the query to return information for all
processes running on the current machine. The
data will be returned as instances of the Process
class.

Dim procsQuery = From proc In Process.GetProcesses

Run the query generated earlier and iterate

through the results.

For Each proc In procsQuery
Console.Writeline(proc.ProcessName)

Next

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

6-2. Query a Nongeneric Collection

Problem

You need to query data that is stored in a collection that implements IEnumerable, such as an Arraylist,
rather than IEnumerable(0f T).

Solution

Create a standard LINQ query, such as the one described in recipe 6-1, but strongly type the iterator
variable used in the From clause.

How It Works

LINQ queries support collections that implement IEnumerable(0f T) by default. Nongeneric collections,
such as an ArraylList, are not supported by default because the extension methods that make up the
standard query clauses do not extend IEnumerable. A typical query, assuming names implements
IEnumerable(Of T), looks something like this:

Dim query = From name In names

If names were an Arraylist, the query would not function properly because name is not strongly
typed, which would result in query being an IEnumerable (0f Object) rather than the appropriate
IEnumerable(OF String). This is because of the inability to infer the type of a collection that imple-
ments IEnumerable. However, you can make the query work by ensuring that the iterator is strongly
typed, as shown here:

Dim query = From name As String In names

In the previous case, however, specifying the wrong type will cause an InvalidCast exception to
be thrown. An alternate solution is to simply convert the IEnumerable object to an object that inherits
IEnumerable(Of T), which is demonstrated in recipe 6-15.

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

6-3. Control Query Results

Problem
You need to control (or transform) the results of a query in order to do either of the following:

¢ Limit the amount of information returned.

e Change the names of the properties returned.

Solution

Create a standard LINQ query, such as the one described in recipe 6-1, and use the Select clause to
specify the exact value or values you need to return.

How It Works

Recipe 6-1 covered how to create a basic query using the From clause, such as the following:
Dim query = From book In books

This is the most basic form a query can take, and it simply returns all the results. In this case,
assuming books is a collection of Book objects, the results of the query would be an IEnumerable(0f
Book) collection containing all the Book objects stored in books. Returning all the resulting data in this
manner might be fine for most queries, but there are many situations where you may need to alter,
or even limit, the data that is returned. You can accomplish this by using the Select clause.

Note As mentioned in recipe 6-1, LINQ closely resembles SQL. One of the main differences between LINQ and
SQL, however, is that with LINQ the From clause precedes the Select clause. This format forces the data source
to be specified first, which allows IntelliSense and type inference to work appropriately.

The Select clause is responsible for specifying what data is returned by the query. You are not
forced to return just the iterator or a single field of the iterator, if it were a class. You can return calcu-
lated data or even an anonymous type that contains properties based on data from the iterator. If
multiple items are used in the Select clause, then a new anonymous type is created and returned,
with each item being a property of the new class. If the Select clause is omitted from a query, the
query defaults to returning all iterators that were part of the From clause. Here are a few examples:

e Dim query = From book In books Select book: This would return a collection of all the book
objects currently stored in the books collection, which would be the same results if the Select
clause had been completely omitted.

e Dim query = From book In books Select book.Title: This would return only the Title prop-
erty for each book object result in query that is an IEnumerable (0f String), assuming Titleis
aString.

e Dim query = From book In books Select BookName=book.Title,PublishDate=book.date: This
would return a collection of anonymous types that have BookName and PublishDate properties.

As mentioned in recipe 6-1, the use of a query clause is referred to as query syntax. Although it
does notlook as clean, itis possible to directly use the Select extension method, which is what the
Select clause is translated to when it is compiled. This example is the method syntax for the last
query syntax example shown earlier:

237

238

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Dim query = books.Select(Function(book) New With {.Name = book.Title, w»
PublishDate=book.Date})

Asyou see, the Select method accepts a lambda expression that specifies what results should
be returned. The .NET Framework will apply the specified expression to each object in the books
collection, returning the proper information each time. The Select method includes an overload
that passes the index of the current item to the lambda expression.

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Select clause transforms the data into an anonymous type that consists of three properties: Id,
ProcessName, and MemUsed.

Imports System
Imports System.Ling
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 03

Public Shared Sub Main()
' Build the query to return information for all
processes running on the current machine. The
data will be returned in the form of anonymous
types with Id, Name, and MemUsed properties.
Dim procInfoQuery = From proc In Process.CetProcesses
Select proc.Id, Name = proc.ProcessName, ‘w»

MemUsed = proc.WorkingSet64
' Run the query generated earlier and iterate
through the results.
For Each proc In procInfoQuery
Console.Writeline("[{0,5}] {1,-20} - {2}", proc.Id, =
proc.Name, proc.MemUsed)
Next
" Wait to continue.
Console.WritelLine()
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

6-4. Sort Data Using LINQ

Problem

You need to ensure that the results of a query are sorted appropriately, or you just need to sort the
elements in a collection or array.

Solution

Create a standard LINQ query, such as the one described in recipe 6-1, and use the Order By clause
to ensure that the data is ordered correctly.

How It Works

If you are familiar with query languages, you should recognize the Order By clause. It is used to specify
how the data returned from a query is sorted. The Order By clause also supports the optional Ascending
and Descending keywords, which specify in which direction the data is sorted. If omitted, Ascending
is used by default. An Order By clause might look something like this:

Order By book.Title Ascending

The Order By clause always comes after the From clause, but it can come before or after the Select
clause. Placing the Order By clause before or after the Select clause will allow you to sort on the iter-
ator used by the From clause. However, if you want to sort on the data returned by the Select clause,
then Order By must come after Select.

You can sort on multiple fields by separating them with commas, like this:

Order By bool.Title, book.Price Descending

As mentioned in recipe 6-1, the use of query clauses is referred to as query syntax. Here is a
complete example of query syntax that uses the Order By clause:

Dim query = From book In books _
Select Name = book.Title, book.Author _
Order By Author, Name

When this statement is compiled, it is first translated to method syntax. The Order By clause is
translated to a call to the OrderBy or ThenBy (or corresponding OrderByDescending or ThenByDescending)
extension method. Ifyou are sorting by only one field, you would use only OrderBy or OrderByDescending.
The ThenBy methods are identical to the OrderBy methods and are used to chain multiple sort state-
ments. The previous example, when translated to method syntax, looks like this:

Dim query2 = books.Select(Function(book) New With w»

{.Name = book.Title, book.Author}) _
.OrderBy(Function(book) book.Author) _
.ThenBy (Function(book) book.Name)

The OrderBy and ThenBy methods both accept alambda expression that is used to specify what
field to sort by. The OrderBy and ThenBy methods both include overloads that allow you to specify a
specific IComparer(0f T) (see recipe 14-3) to be used, if the default comparer is not sufficient.

239

240

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Select clause transforms the data into an anonymous type that consists of a Name property and
an Id property. The Order By clause is then used to sort the results by Name and then by Id.

Imports System
Imports System.Ling
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 04

Public Shared Sub Main()

Build the query to return information for all

processes running on the current machine. The

data will be returned in the form of anonymous

types with Id and Name properties ordered by Name

' and by Id.

Dim procInfoQuery = From proc In Process.CetProcesses
Select proc.Id, Name = proc.ProcessName _
Order By Name, Id

" Run the query generated earlier and iterate

through the results.

For Each proc In procInfoQuery

Console.Writeline("{0,-20} [{1,5}]", proc.Name, proc.Id)

Next

' Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")

Console.ReadlLine()

End Sub

End Class
End Namespace

6-5. Filter Data Using LINQ

Problem

You need to query data that is stored in a collection, but you need to apply some constraint, or filter,
to the data in order to limit the scope of the query.

Solution

Create a standard LINQ query, such as the ones described in the previous recipes, and use the Where
clause to specify how the data should be filtered.

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ) 24

How It Works

While the Select clause (see recipe 6-3) is responsible for transforming or returning data from a
LINQ query, the Where clause is responsible for filtering what data is available to be returned. If you
are familiar with SQL, the LINQ Where clause is virtually indistinguishable from the like-named clause in
SQL. A Boolean expression, which is used to perform the data filtering, precedes the Where clause. As
with the Order By clause (see recipe 6-4), the Where clause can also come before or after the Select
clause depending on whether you need to filter against a property returned by Select.

The following example will return all book elements, stored in the books collection, that have a
Price value greater than or equal to 49.99. Any standard Boolean expression can be used with the
Where clause to further refine the data that is actually queried.

Dim query = From book In books _
Where book.Price >= 49.99

As mentioned in each of the previous recipes, the previous example uses what is called query
syntax because it is actually using query clauses rather than the underlying methods. All queries are
translated to method syntax as they are being compiled. For instance, this query:

Dim query = From book In books _
Select Name = book.Title, book.Author, Cost = book.Price _
Where Cost >= 49.99

would be translated to the following:

Dim query = books.Select(Function(book) New With {.Name = book.Title, w»
book.Author, .Cost = book.Price}) _
.Where(Function(book) book.Cost >= 49.99)

As you may have come to expect, the Where method accepts alambda expression that provides
the Boolean expression that will be applied to each element of the data source. The Where method
includes an overload that passes the index of the current item to the lambda expression.

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Where clause is used to limit the results to only those processes that have more than five mega-
bytes of memory allocated.

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 05

Public Shared Sub Main()

Build the query to return information for all
processes running on the current machine that

have more than 5MB of physical memory allocated.
The data will be returned in the form of anonymous
types with Id, Name, and MemUsed properties.

242

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Dim procInfoQuery = From proc In Process.CetProcesses
Where proc.WorkingSet64 > (1024 * 1024) * 5 _
Select proc.Id, Name = proc.ProcessName, ‘=
MemUsed = proc.WorkingSet64

Run the query generated earlier and iterate
through the results.
For Each proc In procInfoQuery
Console.Writeline("{0,-20} [{1,5}] - {2}", proc.ProcessName, ‘=
proc.Id, proc.WorkingSet64)
Next

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

6-6. Perform General Aggregate Operations

Problem

You need to perform some calculation, such as computing the minimum or sum, on a series of data
stored in a collection or array.

Solution

Create a LINQ query, similar to those described in the previous recipes, and use an Aggregate clause
to perform any necessary calculations.

How It Works

The Aggregate clause is used to perform some calculation over a series of data. It is the only clause
that can be used in place of the From clause (recipe 6-1), and it is used in a similar manner. Using the
Aggregate clause forces the immediate execution of the query and returns a single object, rather
than a collection that needs to be enumerated through.

The first part of the Aggregate clause is identical to the format of the From clause. You define the
name for the iterator and the source of the data, like this:

Aggregate book In books

The Aggregate clause requires using the Into clause, which contains one or more expressions
that specify the aggregate operation that should be performed. To complete the partial example, you
would add the Into clause, like this:

Aggregate book In books
Into <some expression>

<some expression> represents a calculation that you would need to perform over the entire data
source. To help perform the most common aggregate functions, the .NET Framework 3.5 includes

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

the following methods: Count, Min, Max, Average, and Sum. These methods are used within the Into
clause and are covered in more detail in recipes 6-7 through 6-9.

A situation may arise where you need to perform an aggregate operation (such as calculating
standard deviation) that does not currently have a method directly associated with it. In this situa-
tion, you have the option of using the Aggregate method directly (using method syntax) rather than
the clause (which would be query syntax). When a query is compiled, it is first translated from query
to method syntax. As an example, the following statement would re-create the functionality accom-
plished by the Count method, if it did not already exist:

Dim result = books.Aggregate(0, Function(currentCount, book) currentCount + 1)

This statement would return the total count of all elements in the books collection. The first
parameter (0) represents the initial value, or seed. If this value is not supplied, then the method
defaults to using the first element of the data source as the initial value. The second parameter (or
first if you did not supply a seed value) is alambda expression that performs the specified calculation.

The first parameter passed to the lambda expression represents the current aggregate value,
which is the current count of elements in the previous example. The second represents the current
element within the data source. The value returned by the expression will become the new value
passed into the lambda expression during the next iteration.

Please keep in mind that the previous example is just a simple demonstration of method syntax
for the Aggregate operation. To accomplish the same functionality, you could just use the Count method
of the collection (as in books.Count).

6-7. Perform Average and Sum Calculations

Problem

You need to calculate the average or sum of a series of values stored in a collection or array.

Solution

Create an Aggregate query, covered in recipe 6-6, and use the Average or Sum function, within the
Into clause, to perform the required calculation.

How It Works

Recipe 6-6 details how to use the Aggregate. .. Into clause. This clause is used to perform some calcula-
tion over a series of data. The Into clause is used to specify the calculation that is to be performed.
To calculate the average of a series of values, you would use the Average function, like this:

Dim avg = Aggregate book In books _
Into Average(book.Price)

This will return a single value that represents the average Price value of all the book objects in
the collection. If the data source implements the ICollection(0f T) interface, which is the base class
for all generic collections, then you must specify a parameter that represents the property value that
should be aggregated (as in the earlier example). If, however, the data source does not implement the
ICollection(0f T) interface, such as a String array, then the Average clause does not require any
parameters.

As stated in previous recipes, the query is translated to method syntax when it is compiled. The
Average method, used in query or method syntax, supports all major numeric data types (Decimal,
Int32, Int64, Single,and Double). Ifa parameter is passed, such as book. Price in the previous example,
itis defined by a lambda expression. Here is the method syntax equivalent for the example:

243

244

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Dim avg = books.Average(Function(book) book.Price)
To calculate the sum of a series of values, you would use the Sum function, like this:

Dim total = Aggregate book In books _
Into Sum(book.Price)

This will return a single value that represents the sum of all Price values in the collection. As
with the Average function mentioned earlier, you do not need to specify any parameters if the data
source does not implement ICollection(0f T).

The Sum method, used in query or method syntax, supports all major numeric data types (Decimal,
Int32, Int64, Single, and Double). If a parameter is passed, such as book. Price in the previous example, it
is compiled as a lambda expression. Here is the method syntax equivalent for the example:

Dim total = books.Sum(Function(book) book.Price)

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Aggregate...Into clause is used to calculate the average and sum of the allocated physical
memory for each process. The data is returned as an anonymous type that contains the
AverageMemory and TotalMemory properties.

Imports System
Imports System.Ling
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 07

Public Shared Sub Main()
' Build the query to return the average and total
physical memory used by all of the processes
running on the current machine. The data is returned
as an anonymous type that contains the aggregate data.
Dim aggregateData = Aggregate proc In Process.GetProcesses _
Into AverageMemory = Average(proc.WorkingSet64),
TotalMemory = Sum(proc.WorkingSet64)

Display the formatted results on the console.
Console.WritelLine("Average Allocated Physical Memory: {0,6} MB", =
(aggregateData.AverageMemory / (1024 * 1024)).ToString("#.00"))
Console.WritelLine("Total Allocated Physical Memory : {0,6} MB", w»
(aggregateData.TotalMemory / (1024 * 1024)).ToString("#.00"))
" Wait to continue.
Console.WritelLine()
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

6-8. Perform Count Operations

Problem

You need to count the number of elements within a collection or array.

Solution

Create an Aggregate query, covered in recipe 6-6, and use the Count or LongCount function, within the
Into clause.

How It Works

Recipe 6-6 details the use of the Aggregate. .. Into clause. This clause is used to perform some calcu-
lation over a series of data. The Into clause is used to specify the calculation that is to be performed.

If you need to count all the elements in a series, you use either the Count or LongCount function,
such as this:

Dim cnt = Aggregate book In books _
Into Count(book.Price = 49.99)

This will return an Integer value that represents the count of all elements whose Price value is
equal to 49.99. The LongCount function works identically but returns the resulting value as a Long. If
the data source implements the ICollection(0f T) interface, which is the base class for all generic
collections, then you must specify a parameter that represents the property value that should be
aggregated (as in the previous example). If, however, the data source does not implement the
ICollection(0f T) interface, such as a String array, then the Count clause does not require any
parameters.

As stated in previous recipes, the query is translated to method syntax when it is compiled. If an
expression is supplied, such as book.Price = 49.99 in the earlier example, it is defined by an under-
lying lambda expression. Here is the method syntax equivalent for the example:

Dim cnt = books.Count(Function(book) book.Price = 49.99)

The Code

The following example queries the array of processes returned from the Process.GetProcess function
and orders them by the ProcessName property. The Aggregate. .. Into clause is used to count the
number of thread objects contained in the Process.Threads collection for each process. The Select
clause transforms the data into a series of anonymous types that have the ProcessName and
ThreadCount properties.

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 08

Public Shared Sub Main()

245

246

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Build the query to return information for all
processes running on the current machine. The
Process.Threads collection, for each process, will
be counted using the Count method. The data will
be returned as anonymous types containing the name
of the process and the number of threads.
Dim query = From proc In Process.GetProcesses _
Order By proc.ProcessName
Aggregate thread As ProcessThread In proc.Threads _
Into ThreadCount = Count(thread.Id) _
Select proc.ProcessName, ThreadCount
" Run the query generated earlier and iterate through
the results.
For Each proc In query
Console.Writeline("The {0} process has {1} threads.", =
proc.ProcessName, proc.ThreadCount.ToString)
Next

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

6-9. Perform Min and Max Calculations

Problem

You need to calculate the minimum or maximum value contained in a series of values stored in a
collection or array.

Solution

Create an Aggregate query, covered in recipe 6-6, and use the Min or Max function, within the Into
clause, to perform the required calculation.

How It Works

Recipe 6-6 details the use of the Aggregate. . . Into clause. This clause is used to perform some calcu-
lation over a series of numeric data. The Into clause is used to specify the calculation that is to be
performed.

To calculate the minimum value in a series of values, you would use the Min function, like this:

Dim minPrice = Aggregate book In books _
Into Min(book.Price)

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

This will return a single value that represents the minimum Price value for all the book objects
in the collection. As mentioned in the previous aggregate method recipes, if the data source imple-
ments the ICollection(0f T) interface, which is the base class for all generic collections, then you
must specify a parameter that represents the property value that should be aggregated (as in the
earlier example). If, however, the data source does not implement the ICollection(0f T) interface,
such as a String array, then the Count clause does not require any parameters.

As stated in previous recipes, the query is translated to method syntax when it is compiled. The
Min method, used in query or method syntax, supports all major numeric data types (Decimal, Int32,
Int64, Single, and Double). If a parameter is passed, such as book. Price in the previous example, it is
defined by a lambda expression. Here is the method syntax equivalent for the example:

Dim minPrice = books.Min(Function(book) book.Price)

To calculate the maximum value of a series of values, you would use the Max function, like this:

Dim maxPrice = Aggregate book In books _
Into Max(book.Price)

This will return a single value that represents the maximum Price value in the collection. As
with the Min function mentioned earlier, you do not need to specify any parameters if the data source
is a series of simple data types.

The Max method, used in query or method syntax, supports all major numeric data types (Decimal,
Int32, Int64, Single, and Double). If a parameter is passed, such as book.Price in the earlier example,
itis compiled as a lambda expression. Here is the method syntax equivalent for the example:

Dim maxPrice = books.Max(Function(book) book.Price)

The Code

The following example queries the array of processes returned from the Process.CGetProcess
function. The Aggregate. .. Into clause is used to calculate the minimum and maximum physical
memory allocated for each process. The data is returned as an anonymous type that contains the
MinMemory and MaxMemory properties.

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 09

Public Shared Sub Main()
' Build the query to return the minimum and maximum

physical memory allocated by all of the processes

running on the current machine. The data is returned

as an anonymous types that contain the aggregate data.

Dim aggregateData = Aggregate proc In Process.GetProcesses _

Into MinMemory = Min(proc.WorkingSet64), _
MaxMemory = Max(proc.WorkingSet64)

247

248 CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Display the formatted results on the console.
Console.WriteLine("Minimum Allocated Physical Memory: {0,6} MB", w»

(aggregateData.MinMemory / (1024 * 1024)).ToString("#.00"))
Console.WritelLine("Maximum Allocated Physical Memory: {0,6} MB", w»

(aggregateData.MaxMemory / (1024 * 1024)).ToString("#.00"))

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

6-10. Group Query Results

Problem

You need to query data that is stored in a collection or array, but you need group the data in some
hierarchical format.

Solution

Create a standard LINQ query, such as the ones described in the previous recipes, and use the Group
By clause to specify how the data should be organized.

How It Works

The Group By clause is used to organize the data returned from a query in a hierarchical format, meaning
that data is returned as groups of elements or even groups of grouped elements. The format for the
first portion of the clause is Group fields By key fields, where fields is a list of fields that will be included
with the grouped data and key fields represents how the data is actually grouped. If no fields are
supplied, then all available properties are included with the grouped data.

The second portion of the clause is similar to the Aggregate clause (recipe 6-6) in that it uses the
Into clause and expects one or more aggregate expressions. Any included aggregate expression will
be applied to the grouped data. If you need to return that actual grouped data, rather than just aggre-
gate values, you can use the Group keyword with the Into clause. If needed, you can specify an alias
for the grouped data.

Here is an example query:

Dim query = From book In books _
Group book.Price By book.Author
Into Count = Count(), AveragePrice = Average(Price)

When this query is executed, it returns a collection of anonymous types that includes the Count
and AveragePrice properties. The Count property represents the count of all book elements in each
Author group, and the AveragePrice property represents the average price of all the books in each
group. Since only aggregate data was returned, there is no hierarchical data thatneeds to be iterated
through.

The previous example shows a basic demonstration of the Group By clause that returns grouped
elements. The following is a more advanced example that returns groups of grouped elements:

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ) 249

Dim query = From book In books _
Order By book.Author
Group book.Title, book.Price By book.Author _
Into Booklist = Group

This query returns the Title and Price properties for each book belonging to the specified
Author. The datareturned is a collection of anonymous types that includes an Author property, which
is the key that was used to group the data, and a BookList property, which is a collection of anony-
mous types that represents the data in the group. To correctly iterate through this hierarchical data,
you would look through both collections, like this:

For Each currentAuthor In query
For Each book In currentAuthor.BookList

Next
Next

As mentioned in earlier recipes in this chapter, query syntaxrefers to the use of clauses to build
a query. It provides a very clean and user-friendly format, as demonstrated by the previous examples.
However, when a query is compiled, it is translated to the appropriate underlying methods, which
are referred to as method syntax. Here is what the translated version of the first example would look
like:

Dim query = books.GroupBy(Function(book) book.Author,
Function(book) book.Price, _
Function(author, pricelist) _
New With {.Key = author, _
.Count = pricelList.Count, _
.AveragePrice = pricelist.Average})

The GroupBy method has overloads that let you specify a specific IComparer (0f T) (recipe 14-3)
to use. There are also overloads that let you specify a lambda expression that is used to identify the
elements to be grouped or a lambda expression that is used to transform the resulting data.

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Where clause is used to return data only if a group has more than one process.

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 10

Public Shared Sub Main()

Build the query to return information for all processes
running on the current machine and group them based

on the mathematical floor of the allocated physical
memory. The count, maximum, and minimum values for each
group are calculated and returned as properties of the
anonymous type. Data is returned only for groups that
have more than one process.

250

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Dim query = From proc In Process.GetProcesses _

Order By proc.ProcessName

Group By MemGroup = Math.Floor((proc.WorkingSet64 / ‘=
(1024 * 1024))) _

Into Count = Count(), Max = Max(proc.WorkingSet64), w»
Min = Min(proc.WorkingSet64)

Where Count > 1 _

Order By MemGroup

' Run the query generated earlier and iterate through the
' results.
For Each result In query
Console.Writeline("Physical Allocated Memory Group: {0} MB", w»
result.MemGroup)
Console.Writeline("# of processes that have this amount of " & w»
"memory allocated: {0}", result.Count)
Console.WritelLine("Minimum amount of physical memory" & ‘w»
" allocated: {0} ({1})", result.Min, (result.Min / w=»
(1024 * 1024)).ToString("#.00"))
Console.WritelLine("Maximum amount of physical memory" & ‘w»
" allocated: {0} ({1})", result.Max, (result.Max / =
(1024 * 1024)).ToString("#.00"))
Console.WritelLine()
Next

Wait to continue.

Console.WritelLine()

Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

6-11. Query Data from Multiple Collections

Problem

You need to execute a query based on the combined data from multiple collections.

Solution

Create a standard LINQ query, such as the ones described by the previous recipes in this chapter,
and use the Join clause to join the data from multiple sources.

How It Works

If you have any experience with SQL, or other query languages, you will most likely recognize the need
to join data from multiple sources. One of the most popular join functions available to Microsoft
T-SQL is INNER JOIN, which returns only the elements from the first source that match elements in
the second.

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ) 251

The .NET Framework 3.5 supplies the Join clause, which provides functionality equivalent to an
inner join. Here is an example:

Dim query = From book In books _
Join stockInfo In stock _
On book.ISBN Equals stockInfo.ISBN _
Order By book.ISBN

The first portion of the Join clause is similar to the From clause (recipe 6-1) in that you supply a
variable and a data source. In this case, the variable supplied is used later in the clause as a reference
to the source. The second portion uses the On and Equals clauses to specify the two keys that need to
be compared from the two data sources. For the record, the first data source is specified in the From
clause, while the second is specified in the Join clause.

The results of this query would be a collection of anonymous types, ordered by the ISBN property.
The anonymous type contains a book property and a stockInfo property, which represent the book
and stock classes that were joined based on their ISBN properties.

Note Itis possible to perform a basic join operation without actually using the Join clause. You can accomplish
this by specifying multiple data sources within the From clause and by using the Where clause to specify the appro-
priate keys. Although this works, it is suggested you use the Join clause to perform this operation appropriately.

Here is another example query that uses the Join clause:

Dim query2 = From book In books _
Join stockInfo In stock _
On book.ISBN Equals stockInfo.ISBN _
Order By book.ISBN _
Select ID = book.ISBN, BookName = book.Title, stockInfo.Quantity

This example is similar to the previous example, but it demonstrates how you can still use the
Select clause to transform the results of the query into a specific format. In this case, the resulting
anonymous types would have ID, BookName, and Quantity properties.

As mentioned in previous recipes in this chapter, the clauses used in the previous query would
be converted to their underlying method calls during compilation. The method syntax equivalent of
the example is as follows:

Dim query = books.Join(stock,

Function(book) book.ISBN,

Function(stockinfo) stockinfo.ISBN, _

Function(book, stockInfo) New With _

{.ID = book.ISBN, _
.BookName = book.Title, _
stockInfo.Quantity})
.OrderBy(Function(item) item.ID)

The first parameter of the Join method represents the inner data source to which the outer
source will be joined. The next parameter is a lambda expression that specifies the key in the outer
data source, while the parameter following it specifies the matching key in the inner data source. The
last parameter is also a lambda expression that receives instances of both sources and allows you to
transform the results, similar to the Select method (recipe 6-3). The Join method also offers an over-
load that lets you specify your own IEqualityComparer (Of T).

252 CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Note Although it is not covered in this recipe, the .NET Framework 3.5 also provides the Group Join clause,
which performs similar functionality to the Join clause but groups the data (like the Group By clause) as well.
Consult the documentation for more details on Group Join.

The Code

The following example creates an array of String objects that contains the names of processes that
should be monitored on the local computer. This array is joined to the array of processes returned
from the Process.GetProcess function using the ProcessName property.

Imports System
Imports System.Ling
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 11

Public Shared Sub Main()
' Store a list of processes that will be monitored or

that information should be gathered for.

Dim processesToMonitor = New String() {"explorer", _
"iexplore", _
"lsass",
"rundl132",
"services", _
"winlogon", _
"svchost"}

Build the query to return information for all of the
processes that should be monitored by joining them to
the list of all processes running on the current
computer. The count, maximum, and minimum values for each
group are calculated and returned as properties of the
anonymous type. Data is returned only for groups that
have more than one process.
Dim query = From proc In Process.GetProcesses _
Order By proc.ProcessName
Join myProc In processesToMonitor _
On proc.ProcessName Equals myProc _
Select Name = proc.ProcessName, proc.Id, ‘=
PhysicalMemory = proc.WorkingSet64
' Run the query generated earlier and iterate through the
results.
For Each proc In query
Console.Writeline("{0,-10} ({1,5}) - Allocated Physical " & =
"Memory: {2,5} MB", proc.Name, proc.Id, (proc.PhysicalMemory / ‘=
(1024 * 1024)).ToString("#.00"))
Next

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Wait to continue.

Console.WritelLine()

Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

6-12. Returning Specific Elements of a Collection

Problem

You need to retrieve a specific element or groups of elements from a collection.

Solution

Call any of the partitioning methods listed in Table 6-2, such as First or Single, to return the desired
element from the collection.

How It Works

Not all of the extension methods found in the System.Ling.Enumerable namespace relate directly to
a query clause, such as those covered in the previous recipes of this chapter. The methods listed in
Table 6-2 fall in this category and provide functionality to extract a single element from a collection.
If you use any of these methods as part of a query, the query will execute immediately.

Table 6-2. Common Partitioning Methods

Method Description

ElementAt Returns the item at the specified index in the collection. Since the collection is
zero-based, the first element is at index 0.

Single Returns the only item in the collection.

First Returns the first item in the collection.

Last Returns the last item in the collection.

Dim myBook = books.ElementAt(3)

The previous example demonstrates a use of the ElementAt method, which allows you to
specify, in the form of an Integer, the zero-based index of the element you want to retrieve. An
ArgumentOutOfRangeException is thrown if you specify an index that does not exist.

Dim myBook = books.Single

The previous code demonstrates how to use the Single method, which returns the onlyelement
that is in the collection. An InvalidOperationException is thrown if the collection contains more
than one element. This method includes an overload, which lets you specify a condition in the form
of a lambda expression, such as the following:

253

254

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Dim myBook = books.Single(Function(book) book.Price = 59.99)

Used in this manner, the Single method will return the onlyelement that meets the given condi-
tion. Again, an InvalidOperationException is thrown if more than one element meets the provided
condition.

Dim theFirstBook = books.First

The previous code demonstrates the First method, which returns the first element in the collection.
An InvalidOperationException would be thrown if the collection contained no elements. As with the
Single method, you can also specify alambda expression to be used as a condition. The first element
that meets the condition will be returned.

Dim thelastBook = books.last

The previous code demonstrates the Last method, which returns the last element in the collection.
An InvalidOperationException would be thrown if the collection contained no elements. As with the
Single and First methods, you can also specify a lambda expression to be used as a condition. The
last element that meets the condition will be returned.

Each of the methods described earlier has a matching method that ends with OrDefault, such as
SingeOrDefault and LastOrDefault. In cases where the collection is empty, these methods would
return a default value (which is Nothing for reference types) instead of throwing an exception.

6-13. Display Collection Data Using Paging

Problem

You need to segment data from a collection into pages.

Solution

Create a standard query that uses both the Skip and Take clauses to segment the data into appropri-
ately sized pages, and then execute the query in a loop, changing the parameters used with Skip and
Take to retrieve and display each page.

How It Works

It is common to divide large amounts of data into manageable chunks, or pages. This is accomplished
with LINQ by using a combination of the Skip and Take clauses.

The Skip clause forces the query to skip the specified number of elements, starting from the
beginning of the data source. The following example would skip the first three elements of the books
collection and then return the rest:

Dim query = From book In books Skip 3

The Take clause is the exact opposite. It returns the specified number of elements, starting from
the beginning of the data source, and then skips the rest. The following is an example that returns
only the first three elements of the books collections:

Dim query = From book In books Take 3

Together, both of these clauses are used to simulate paging. This is accomplished by skipping
and taking data, using the Skip and Take clauses, in specific sizes within a loop.

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

The Code

The following example uses LINQ to query the processes that are using more than 5 MB of memory.
A page, which consists of ten items, is retrieved by using Skip and Take as described in this recipe.
The example loops through each page, displaying the data until there is no more.

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 13
' This field holds the size of our pages.
Private Shared pageSize As Integer = 10
Private Const FIVE MB = 3 * (1024 * 1024)
Public Shared Sub Main()

' Use LINQ to retrieve a List(Of Process) List of
' processes that are using more then 5MB of memory. The
Tolist method is used to force the query to execute immediately
and save the results in the procs variable so they can be reused.
Dim procs = (From proc In Process.GetProcesses.Tolist _

Where proc.WorkingSet64 > FIVE_MB _

Order By proc.ProcessName

Select proc).Tolist

Dim totalPages As Integer
' Determine the exact number of pages of information
available for display.

totalPages = Math.Floor(procs.Count / pageSize)

If procs.Count Mod pageSize > 0 Then totalPages += 1

Console.WritelLine("LIST OF PROCESSES WITH MEMORY USAGE OVER 5 MB:")
Console.WriteLine("")

Loop and display each page of data.
For i = 0 To totalPages - 1
Console.Writeline("PAGE {0} OF {1}", i + 1.ToString(), =
totalPages.ToString())

Query the procs collection and return a single page
of processes using the Skip and Take clauses.
Dim currentPage = From proc In procs _
Skip i * pageSize Take pageSize
" Loop through all the process records for the current page.
For Each proc In currentPage
Console.WritelLine("{0,-20} - {1,5} MB", proc.ProcessName, w
(proc.WorkingSet64 / (1024 * 1024)).ToString("#.00"))
Next

255

256 CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Check whether there are any more pages.

If Not i = totalPages - 1 Then
Console.Writeline("Press Enter for the next page.")
Console.ReadlLine()

End If

Next

Console.WriteLine("No more data available. Press Enter to end.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

Although they weren’t needed for this recipe, both the Skip and Take clauses can use the While
clause (Skip While and Take While). The While clause allows you to specify a condition rather than
simply supplying an Integer value. This means elements will be taken or skipped depending on
whether the condition has been met. It is important to note that the operation will end the first time
the condition is False. Here is an example:

Dim query = From book In books
Order By book.Price Descending _
Take While book.Price >= 49.99

As mentioned in the other recipes in this chapter, the previous query is written in query syntax
because it uses the more stylized query clauses similar to those found in T-SQL. However, when the
query is compiled, it is first translated to the underlying methods. The following is the equivalent
method syntax for the example query:

Dim query = books.OrderByDescending(Function(book) book.Price) _
.TakeWhile(Function(book) book.Price >= 49.99)

The Take and Skip methods take an Integer that represents the number of elements in the
collection to take or skip, respectively. TakeWhile and SkipWhile, however, take alambda expression
that supplies the condition that must be met for elements to be taken or skipped. Both of these methods
include overloads that pass the corresponding elements’ index to the lambda expression.

6-14. Compare and Combine Collections

Problem

You need to quickly compare or combine the contents of two collections.

Solution

Call the Except, Intersect, or Union method to perform the appropriate action. If you need to combine
the data, use the Concat method.

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

How It Works

Most of the functionality supported by LINQ is directly related to building queries. The System.
Ling.Enumerable class, which is where the extension methods used by LINQ are located, contains
additional supporting methods. Although these methods don’t have query clauses directly associated
with them, they can still be used with queries since they return objects that inherit IEnumerable(0f T).

Four examples of these methods are Except, Intersect, Union, and Concat. Except, Intersect,
and Union provide the functionality to allow two collections to be compared in a specific manner
resulting in a new collection, while Concat simply combines them. Using any of these methods as
part of a query will force the query to execute immediately.

The Except method, shown next, compares two collections and returns all elements from the
prime source that were not found in the supplied collection:

Dim missingBooks = myBooks.Except(yourBooks)

The Intersect method, shown next, compares two collections and returns all elements that
match in both:

Dim sameBooks = myBooks.Intersect(yourBooks)

The Union method, shown next, compares two collections and returns the combination of all
elements from both sources. This method will notreturn duplicate elements.

Dim combinedBooks = myBooks.Union(yourBooks)

The Concat method, shown next, performs the same overall functionality as Union, but all the
elements (including duplicates) are returned:

Dim allBooks = myBooks.Concat(yourBooks)

Note Each of the four methods mentioned include an overload that allows you to specify your own
IEqualityComparer (Of T) to use. If oneis not supplied, the default equality comparer for each particular object
is used.

The Code
The following example demonstrates how to use the four LINQ-related extension methods discussed:

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 14

Public Shared Sub Main()

Array to hold a set of strings.

Dim myWishList = New String() {"XBox 360", _
"Rolex", _
"Serenity", _
"iPod iTouch", _
"Season 3 of BSG", _
"Dell XPS", _
"Halo 3"}

257

258 CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

An array holding a second set of strings.
Dim myShoppingCart = New String() {"Shrek", _
"Swatch (Green)", _
"Sony Walkman",
"XBox 360",
"Season 3 of The Colden Girls", _
"Serenity"}

Returns elements from myWishList that are NOT in
myShoppingCart.
Dim resultl = myWishList.Except(myShoppingCart)

Console.WritelLine("Items in the wish list that were not in the " & w»
"shopping cart:")
For Each item In result1
Console.WriteLine(item)
Next
Console.WritelLine()

Returns elements that are common in both myWishlList
and myShoppingCart.
Dim result2 = myWishList.Intersect(myShoppingCart)

Console.WritelLine("Matching items from both lists:")
For Each item In result2
Console.WriteLine(item)
Next
Console.WritelLine()

Returns all elements from myWishList and myShoppingCart
without duplicates.
Dim result3 = myWishList.Union(myShoppingCart)

Console.WritelLine("All items from both lists (no duplicates):")
For Each item In result3
Console.WriteLine(item)
Next
Console.WritelLine()

Returns all elements from myWishList and myShoppingCart
including duplicates
Dim result4 = myWishList.Concat(myShoppingCart)

Console.WritelLine("All items from both lists (with duplicates):")
For Each item In result4
Console.WriteLine(item)
Next
' Wait to continue.
Console.WritelLine()
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

End Sub

End Class
End Namespace

6-15. Cast a Collection to a Specific Type

Problem

You need to convert a nongeneric collection, such as an ArraylList, into a generic collection so it will
be capable of fully supporting LINQ.

Solution

Use the Cast or OfType extension method to cast the target collection to the specified type.

How It Works

As noted in several other recipes in this chapter, the System. Linqg. Enumerable class contains all the
extension methods that make up LINQ to Objects. Although the vast majority of these methods
extend IEnumerable(0f T), a few of them actually extend IEnumerable. Two of the most important
methods that are designed this way are Cast and OfType. Since these methods extend IEnumerable, it
provides a mechanism to easily convert a collection (such as an ArraylList) to an IEnumerable (Of T)
type so it can fully support LINQ.

Recipe 6-2 covered the basics of using an ArrayList, or any other IEnumerable type, with LINQ
by strongly typing the iterator used in the From clause. What it didn’t cover is that when this type of
query is compiled, it actually makes a call to the Cast method to return an IEnumerable(0f T) object.
This method goes through the source collection attempting to cast each object to the specified data
type. The end result is an appropriately typed generic collection that now fully supports LINQ. If an
element of the collection cannot be cast to the specified type, an InvalidCastException will be thrown.

The other method that provides casting functionality is 0fType. This method works similarly to
the Cast method, butitsimply skips elements that cannot be cast rather than throwing an exception.

The Code

The following example demonstrates how to convert a nongeneric collection, which is one that doesn’t
inherit from IEnumerable(Of T), into one that does so it can fully support LINQ:

Imports System
Imports System.lLing
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero6
Public Class Recipe06 15
Public Class Tool
Public Name As String
End Class
Public Class Clothes

Public Name As String
End Class

259

260 CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ)

Public Shared Sub Main()
' From Example - NonGeneric Collection
Dim employeelist As New Arraylist

employeelist.Add("Todd")
employeelist.Add("Alex")
employeelist.Add("Joe")
employeelist.Add("Todd")
employeelist.Add("Ed")
employeelist.Add("David")
employeelist.Add("Mark™)
" You can't normally use standard query operators on
an Arraylist (IEnumerable) unless you strongly type
the From clause. Strongly typing the From clause
creates a call to the Cast function, shown below.
Dim queryablelist = employeelist.Cast(Of String)()

Dim query = From name In queryablelist

For Each name In query
Console.WriteLine(name)

Next

Console.WritelLine()

Dim shoppingCart As New Arraylist

shoppingCart.Add(New Clothes With {.Name = "Shirt"})
shoppingCart.Add(New Clothes With {.Name = "Socks"})
shoppingCart.Add(New Tool With {.Name = "Hammer"})
shoppingCart.Add(New Clothes With {.Name = "Hat"})
shoppingCart.Add(New Tool With {.Name = "Screw Driver"})
shoppingCart.Add(New Clothes With {.Name = "Pants"})
shoppingCart.Add(New Tool With {.Name = "Drill"})

Attempting to iterate through the results would generate
an InvalidCastException because some items cannot be
cast to the appropriate type. However, some items

may be cast prior to hitting the exception.

Dim queryablelList2 = shoppingCart.Cast(Of Clothes)()

Console.WritelLine("Cast (using Cast) all items to 'Clothes':")
Try
For Each item In queryablelist2
Console.WritelLine(item.Name)
Next
Catch ex As Exception
Console.WritelLine(ex.Message)
End Try
Console.WritelLine()

CHAPTER 6 LANGUAGE INTEGRATED QUERY (LINQ) 261

' OfType is similar to cast but wouldn't cause the

' exception as shown in the previous example. Only

' the items that can be successfully cast will be returned.
Dim queryablelist3 = shoppingCart.0fType(Of Clothes)()

Console.Writeline("Cast (using OfType) all items to 'Clothes':")
For Each item In queryablelist3
Console.WritelLine(item.Name)
Next
Console.WritelLine()

Console.WritelLine()
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 7

LINQ to XML and XML Processing

Extensible Markup Language (XML) has become an integral part of operating systems and applica-
tion development. Many components or features in Visual Studio such as serialization, web services,
and configuration files all use XML behind the scenes. When you need to manipulate XML directly,
you will need to work with the System.Xml namespace.

Common XML tasks include parsing an XML file, validating it against a schema, applying an XSL
transform to create a new document or Hypertext Markup Language (HTML) page, and searching
intelligently with XPath.

.NET Framework 3.5 introduces LINQ to XML, which contains an updated version of the XML
Document Object Model (DOM) used in earlier versions of .NET. As the name implies, LINQ to XML
also provides LINQ support for XML. Language Integrated Query (LINQ) is a powerful new querying
functionality that is covered in depth in Chapter 6.

The recipes in this chapter mainly focus on the changes and new additions that surround LINQ
to XML rather than how things were handled previously using the standard DOM classes (such as
XmlDocument). If you find yourself in the position where you are maintaining code that uses these
older classes, you can use the included recipes to upgrade, or you can refer to other resources, such
as Visual Basic Recipes 2005 from Apress (the previous version of this book) or Beginning XML,
Fourth Edition (Programmer to Programmer) from Wrox.

The recipes in this chapter cover the following:

* Creating and loading XML files (recipes 7-1 and 7-2)

e Manipulating the contents of XML files (recipes 7-3, 7-4, and 7-5)

* Querying an XML document by using LINQ (recipe 7-6), by using namespaces (recipe 7-7), or
by using XPath (recipe 7-8)

* Joining multiple XML files (recipe 7-9)
e Converting an XML file to a delimited file, and vice versa (recipe 7-10)
e Validating an XML document against an XML schema (recipe 7-11)

 Serializing an object to XML (recipe 7-12), creating an XML schema for a class (recipe 7-13),
and generating the source code for a class based on an XML schema (recipe 7-14)

e Transforming an XML document to another document using an XSL Transformations (XSLT)
style sheet (recipe 7-15)

Note The recipes in this chapter rely heavily on LINQ, which is fully covered in Chapter 6. For that reason, it is
suggested that you read through all those recipes prior to working with this chapter.

263

264

CHAPTER 7 LINQ TO XML AND XML PROCESSING

7-1. Create an XML Document

Problem

You need to create some XML data and save it to a file.

Solution

Use XML literals to create a System.Xml.Ling.XElement object, and then use the Save method to save
the XML tree to a file.

How It Works

The .NET Framework provides several different ways to process XML documents. The one you use
depends on the programming task you are attempting to accomplish. The .NET Framework 3.5 includes
classes that provide the functionality to manipulate and query XML files. Although all previous versions
of NET supported similar functionality, the new LINQ to XML classes, the most common of which
can be found in Table 7-1, have greatly enhanced its support of the W3C Document Object Model
(DOM). The DOM dictates how XML documents are structured and manipulated; you can find
detailed specifications at http://www.w3c.org/DOM.

Table 7-1. Common LINQ to XML Classes

Class Description

XAttribute Represents an attribute.

XDocument Represents a complete XML tree. This class derives from XContainer, which is
the base class for all XML elements that can have child elements.

XElement Represents an XML element and is the basic construct used for representing
XML trees. This class also derives from XContainer.

XName Represents attribute and element names.

XNode Represents the base class for XML nodes (such as comments or elements).

The primary class used for creating and representing XML trees is the XElement class. This class
provides all the functionally necessary to add, remove, or change elements and attributes. Performing
these actions in earlier versions of .NET was tedious because you were forced to create the XML tree
element by element, like this:

Using fs As New FileStream("sample.xml", FileMode.Create)

Using w As XmlWriter = XmlWriter.Create(fs)

w.WriteStartDocument ()

.WriteStartElement("Products")
WriteStartElement("Product")
MWriteAttributeString("id", "1001")
WriteElementString("ProductName", "Visual Basic 2008 Recipes")
.WriteElementString("ProductPrice", "49.99")

W
W
W
W
W
w.WriteEndElement ()

http://www.w3c.org/DOM

CHAPTER 7 LINQ TO XML AND XML PROCESSING

w.Flush()
End Using
End Using

This example will produce the sample.xml file, which looks similar to the following:

<?xml version="1.0" encoding="utf-8"?>
<Products>
<Product id="1001">
<ProductName>Visual Basic 2008 Recipes</ProductName>
<ProductPrice>49.99</ProductPrice>
</Product>
</Products>

The .NET Framework 3.5 still supports these same methods, but with the introduction of LINQ
to XML, there is really no reason to use them because the new functionality is much more efficient
and looks cleaner. The constructor for XElement can accept XElement or XAttribute objects as param-
eters. This allows you to create an entire XML tree in one statement by nesting the creation of each
as the appropriate XElement or XAttribute parameter, as shown here:

Dim xmlTree As XElement = _
New XElement("Products", _
New XElement("Product", _
New XAttribute("id", "1001"), _
New XElement("ProductName", "Visual Basic 2008 Recipes"), _
New XElement("ProductPrice", "49.99")))

xmlTree.Save("products.xml")

This code, referred to as functional construction, produces an XML file identical to the one
produced using the older methods. Functional construction is a much more refined approach to
creating XML trees. You simply create new instances of XElement and XAttribute objects as required
to build the complete tree. Since an XElement object can refer to one or more elements, xnlTree
contains the full XML tree and can be easily saved using the Save method or written directly to the
screen using ToString.

Visual Studio 2008 provides Visual Basic developers with an even easier way to create and work
with XML using XML literals and embedded expressions. XML literals literally refers to writing XML
directly in your code, such as the following:

Dim xmlTree = <Products>
<Product id="1001">
<ProductName>Visual Basic 2008 Recipes</ProductName>
<ProductPrice>49.99</ProductPrice>
</Product>
</Products>

This example is identical to the previous one, but we're sure you see the benefits. Actually, when
compiled, this code is actually first translated to functional construction. Furthermore, using XML
literals allows you to use embedded expressions as well. If you are familiar with ASP.NET, you may
already be familiar with embedded expressions, which allow you to embed code within a markup
language. For example, if you had the product ID stored in a variable named productID, you could
rewrite the previous code like this:

265

266

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Dim xmlTree = <Products>
<Product id=<%= productID %>>
<ProductName>Visual Basic 2008 Recipes</ProductName>
<ProductPrice»49.99</ProductPrice>
</Product>
</Products>

This example reveals the true power of what LINQ to XML now offers. With the use of XML literals
and embedded expressions and LINQ, you can easily create sophisticated XML files.

As mentioned earlier, the most commonly used class for working with XML is XElement. However,
you can also use the XDocument class (which is covered in more detail in recipe 7-2). Both classes are
similar, but XDocument supports the extra information (such as comments and processing instructions)
that XElement doesn’t.

The Code

The following code creates an XML tree using literals and embedded expressions. The root of the
tree, <Employees>, is created using an XML literal. An embedded expression, in the form of a LINQ
query, is used to create each child <Employee> node. The LINQ query retrieves all the Employee
objects from employeelist and transforms them, using more literals and embedded expressions,
into the <Employee> nodes.

Imports System
Imports System.Xml.Ling

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 01

Public Class Employee
Public EmployeeID As Integer
Public FirstName As String
Public LastName As String
Public Title As String
Public HireDate As DateTime
Public HourlyWage As Double

End Class

Public Shared Sub Main()
' Create a List to hold employees
Dim employeelist = New Employee() _
{New Employee With {.EmployeeID = 1, _

.FirstName = "Joed", _
.LastName = "McCormick", _
.Title = "Airline Pilot", _
.HireDate = DateTime.Now.AddDays(-25), _
.HourlyWage = 100.0}, _

New Employee With {.

CHAPTER 7 LINQ TO XML AND XML PROCESSING

EmployeelID = 2,

.FirstName = "Kia", _

.LastName = "Nakamura", _

.Title = "Super Genius", _

.HireDate = DateTime.Now.AddYears(-10), _
.HourlyWage = 999.99}, _

New Employee With {.EmployeeID = 3,
"Romi",

.FirstName =

.LastName = "Brady", _

.Title = "Quantum Physicist",

.HireDate = DateTime.Now.AddMonths(-15), _

.HourlyWage =
New Employee With {.EmployeeID = 4,

120.0}, _

.FirstName = "Leah", _

.LastName = "Clooney", _

.Title = "Molecular Biologist", _
.HireDate = DateTime.Now.AddMonths(-10), _

.HourlyWage =

100.75}}

' Use XML literals to create the XML tree.

each employee node.
Dim employees = _

<Employees>
<%= From emp In employeelist _
Select _

Embedded expressions are used, with LINQ, to
query the employeelist collection and build

<Employee id=<%= emp.EmployeeID 7%>>
<Name><%= emp.FirstName & " " & emp.LastName %></Name>
<Title><%= emp.Title %></Title>
<HireDate><%= emp.HireDate.ToString("MM/dd/yyyy") =

%></HireDate>

<HourlyRate><%= emp.HourlyWage %></HourlyRate>

</Employee> _
%>
</Employees>

" Save the XML tree to a file and then display it on

the screen.
employees.Save("Employees.xml")
Console.WritelLine(employees.ToString())
' Wait to continue.
Console.WritelLine()

Console.WriteLine("Main method complete.

Console.ReadlLine()

End Sub
End Class

End Namespace

Press Enter.")

267

268

CHAPTER 7 LINQ TO XML AND XML PROCESSING

7-2. Load an XML File into Memory

Problem

You need to load the contents of an XML file into memory.

Solution

Use the Load method of the XElement or XDocument class.

How It Works

Recipe 7-1 covered XElement, the primary LINQ to XML class for working with XML trees. Although
this class is extremely powerful, it does not provide properties or methods for working with all aspects of
a full XML document, such as comments or processing instructions. To work with this extended
information, you must rely on the XDocument class.

Although the XElement class can contain any number of child elements, the XDocument class, which
represents the very top level of an XML document itself, can have only one child element. This one
element, accessed by the Root property, is an XElement that contains the rest of the XML tree.

The XElement and XDocument classes both include the Parse and Load methods. The Parse method
isused to parse the contents of a String to an XElement or XDocument object. Both classes support an
overload of the method that allows you to specify how white spaces should be handled. The Load
method allows you to load the complete contents of an XML file into an XDocument object or just the
XML tree into an XElement object. Overloads of this method let you specify the target file as a String
representing the path to the file, a TextReader instance, or an XmlReader instance.

The Code

The following code loads the contents of the Employees.xml file and displays the document declaration
and root element on the screen:

Imports System
Imports System.Xml.Ling

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 02

Public Shared Sub Main()
" Load the Employees.xml and store the contents into an

XDocument object.

Dim xmlDoc As XDocument = XDocument.load("Employees.xml")

Display the XML files declaration information.
Console.WritelLine("The document declaration is '{o}'", w»
xmlDoc.Declaration.ToString)

Display the name of the root element in the loaded
' XML tree. The Root property returns the top-level
XElement, the Name property returns the XName class
associated with Root and LocalName returns the name
of the element as a string).

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Console.WritelLine("The root element is '{0}'", =
xmlDoc.Root.Name. LocalName)

Wait to continue.

Console.WritelLine()

Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

7-3. Insert Elements into an XML Document

Problem

You need to modify an XML document by inserting new data.

Solution

Use one of the available add methods (Add, AddAfterSelf, AddBeforeSelf, or AddFirst) of the XElement
class, passing in an instance of the XElement or XAttribute object to create.

How It Works

The XElement class provides the following methods for inserting new elements and attributes into an
existing XML tree:

e Add adds the specified element(s) or attribute(s) to the current XElement. The element(s) or
attribute(s) are added at the end of any existing ones.

e AddAfterSelf and AddBeforeSelf add the specified element(s) or attribute(s) before or after
the current XElement.

e AddFirst adds the specified element(s) at the top of the elements in the current element.

Each method accepts either a single XElement or XAttribute object or a collection of them,
represented as an IEnumerable (Of XElement) or IEnumerable(Of XAttribute), respectively. You can
specify what data to add using any of the methods discussed in the previous recipes, such as functional
construction and XML literals. Also, you must keep mindful of what you are attempting to add and
where you are trying to add it when using AddAfterSelf, AddBeforeSelf, and AddFirst. Youwill receive an
exception if you attempt to use these methods to add XAttribute objects to XElement objects that refer
to nodes or content. They should be used only for adding XAttribute objects to XAttribute objects
and XElement objects to XElement objects.

The Code

The following example loads the contents of an XML file and then uses the XElement.Add method to
add new elements and an attribute before displaying the contents.

269

270

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Note This recipe uses shortcuts known as axis properties. Refer to recipe 7-6 for more information about axis
properties and how they are used.

Imports System
Imports System.Xml.Ling

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 03
Public Shared Sub Main()

Load the Employees.xml and store the contents into an
XElement object.
Dim employees As XElement = XElement.load("Employees.xml")

Get the maximum value for the ID attribute. The element
axis property (<>) and the attribute axis property (@) are
used to access the id attribute.

Dim maxId As Integer = Aggregate ele In employees.<Employee> _
Into Max(CInt(ele.@id))

Create the new Employee node using functional construction.
Dim newEmployee = <Employee id=<%= maxId + 1 %>>
<Name>Robb Matthews</Name>
<Title>Super Hero</Title>
<HireDate>07/15/2006</HireDate>
<HourlyRate>59.95¢</HourlyRate>
</Employee>

' Add the new node to the bottom of the XML tree.
employees.Add(newEmployee)
' Loop through all the Employee nodes and insert
' the new 'TerminationDate' node and the 'Status' attribute.
For Each ele In employees.<Employee>
ele.Add(<TerminationDate></TerminationDate>)
ele.Add(New XAttribute("Status", ""))
Next

Display the XML on the console.
Console.WritelLine(employees.ToString())
' Wait to continue.

Console.WritelLine()
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

mailto:ele.@id

CHAPTER 7 LINQ TO XML AND XML PROCESSING

7-4. Change the Value of an Element or Attribute

Problem

You need to modify an XML document by changing the value of an element or attribute.

Solution

Use one of the available set methods (SetValue, SetAttributeValue, or SetElementValue) of the
XElement class.

How It Works

The XElement class provides the following methods for changing the value of elements and attributes
in an existing XML tree:

* SetValue converts the specified value to a String and then assigns it to the Value property of
the current XElement instance. This method is also available to the XAttribute class.

* SetAttributeValue converts the specified value to a String and then assigns it to the Value
property of the attribute specified by the provided XName parameter.

* SetElementValue converts the specified value to a String and then assigns it to the Value
property of the element specified by the provided XName parameter.

SetAttributeValue and SetElementValue both take an XName parameter to specify which element
or attribute should be set. The XName class, which represents an element or attributes name and/or
namespace, has no constructor butimplicitly converts strings to XName objects. This means you need
to pass only a string containing the name of the target, and it will automatically generate an appro-
priate XName instance.

Both of these methods also have added functionality built into them. If you specify the value as
Nothing, then the specified element or attribute will be deleted from the XML tree. If you specify a
target that does not exist, the element or attribute will be created and assigned the provided value.

All of the methods mentioned set the Value property of the target element or attribute. It is also
possible to assign a value directly to this property without using any of the other supplied methods.

The Code

This code loads the contents of an XML file and then uses the XElement.SetValue method to change
the contents:

Imports System
Imports System.Xml.Ling
Namespace Apress.VisualBasicRecipes.Chaptero7

Public Class Recipe07 04

Public Shared Sub Main()

" Load the Employees.xml and store the contents into an
XElement object.

Dim employees As XElement = XElement.lLoad("Employees.xml")

2n

272 CHAPTER 7 LINQ TO XML AND XML PROCESSING

Query the XML Tree and get the Name and Hourly Rate elements.
Dim beforeQuery = From ele In employees.<Employee>
Select Name = ele.<Name>.Value, Wage = =
(Dbl(ele.<HourlyRate>.Value)

Display the employee names and their hourly rate.
Console.WritelLine("Original hourly wages:")
For Each ele In beforeQuery
Console.WriteLine("{0} gets paid ${1} an hour.", ele.Name, ‘=
ele.Wage.ToString())
Next
Console.WritelLine()

" Loop through all the HourlyRate elements, setting them to

' the new payrate, which is the old rate * 5%.

Dim currentPayRate As Double = 0

For Each ele In employees.<Employee>.<HourlyRate>
currentPayRate = (ele.Value) + ((ele.Value) * 0.05)
ele.SetValue(currentPayRate)

Next

Query the XML Tree and get the Name and Hourly Rate elements.
Dim afterQuery = From ele In employees.<Employee> _
Select Name = ele.<Name>.Value, Wage = =
(Dbl(ele.<HourlyRate>.Value)

Display the employee names and their new hourly rate.
Console.WritelLine("Hourly Wages after 5% increase:")
For Each ele In afterQuery
Console.WriteLine("{0} gets paid ${1} an hour.", ele.Name, ‘=
ele.Wage.ToString("##.##"))
Next

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

7-5. Remove or Replace Elements or Attributes

Problem

You need to modify an XML document by completely removing or replacing certain attributes
or elements.

Solution

Use one of the available replace or remove methods of the XElement class.

CHAPTER 7 LINQ TO XML AND XML PROCESSING

How It Works

The XElement class provides the following methods for replacing or removing elements or attributes
in an existing XML tree:

e RemoveAll removes all elements (nodes and attributes) from the element represented by the
current XElement instance.

e RemoveAttributes removes all the attributes from the element represented by the current
XElement instance.

e ReplaceAll removes all the elements (nodes and attributes) from the element represented by
the current XElement instance and replaces them with the element (or collection of elements)
provided.

e ReplaceAttributes removes all the attributes from the element represented by the current

XElement instance and replaces them with the attribute (or collection of attributes) provided.

* ReplaceNodes removes all nodes (elements, comments, processing instructions, and so on)
from the element represented by the current XElement instance and replaces them with the
nodes provided.

* ReplaceWithremoves the node represented by the XElement instance and replaces it with the
provided node or nodes.

All of the methods listed here are in the XElement class. If you are working with an XAttribute
instance, you can use the Remove method to delete the current attribute. You also have the option to
use the SetAttributeValue or SetElementValue method (covered in recipe 7-4) to remove the specified
attribute or element by passing a value of Nothing.

Gaution You must be very careful when removing or replacing elements within a loop. Many of the available
methods that return a collection of objects (such as Elements or Descendants) actually perform LINQ queries and
use deferred execution (discussed in detail in Chapter 6). This means that data could be in the process of being
queried as it is being deleting, which can cause unexpected results. In these situations, you should use the ToList
extension method, available to all ITEnumberable(0f T) objects, to force the query that runs in the background
to execute immediately rather than be deferred.

The Code

This code loads the contents of an XML file and then uses the XElement.SetElementValue method to
remove all the HireDate elements. The example also demonstrates the use of the Remove method by
removing the fourth Employee node.

Imports System
Imports System.Xml.Ling
Namespace Apress.VisualBasicRecipes.Chaptero7

Public Class Recipe07 05

Public Shared Sub Main()

" Load the Employees.xml and store the contents into an
XElement object.

Dim employees As XElement = XElement.load("Employees.xml")

273

274

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Remove the 4th Employee element.

employees.<Employee>.ElementAt(3).Remove()

" Loop through all the Employee elements and remove

the HireDate element.

For Each ele In employees.<Employee>.TolList
ele.SetElementValue("HireDate", Nothing)

Next

Console.WritelLine(employees.ToString)

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

7-6. Query an XML Document Using LINQ

Problem

You need to filter the contents of or find specific elements in an XML document.

Solution

Use any of the query clauses available in System.Xml.Ling.

How It Works

LINQ allows you to execute sophisticated queries on collections that derive from IEnumerable(Of T).
The main class used to manipulate XML, XElement, includes several methods (such as Elements,
Descendants, and Attributes) that return IEnumerable collections of the appropriate type.

To make things easier and cleaner, LINQ to XML supports the use of shortcuts known as axis
properties, which are new to VB .NET 9. The XElement class has three main axis properties available
that correlate to either the Elements, Attributes, or Descendants method.

The Elements method returns an IEnumerable (0f XElement). For example, currentElement.
Elements("MyElement") would return all the MyElement child elements of the currentElement element.
The axis property shortcut is simply using the name of the element surrounded by <>. The previous
example updated to use the shortcut would be currentElement.<MyElement>.

The Attributes method returns an IEnumerable (Of XAttribute). Forexample, currentElement.
Attributes("MyAttribute") would return all the MyAttribute attributes for the currentElement element.
The axis property shortcut is the symbol @ followed by the attribute name. The previous example
updated to use the shortcut would be currentElement.@id. If the attribute name includes any spaces
or other VB .NET illegal characters (such as a hyphen), it must be surrounded by <>. For example,
since hyphens are illegal characters, an attribute named first-name would have to be referenced like
this: currentElement.@<first-name>

The Descendants method returns an IEnumerable (Of XElement). For example, currentElement.
Descendants ("Name") would return all the Name child elements for the currentElement element, no

mailto:currentElement.@id

CHAPTER 7 LINQ TO XML AND XML PROCESSING

matter how deep in the tree they are. The axis property shortcut is the ellipsis (.) followed by the
element name surrounded by <>. The previous example updated to use the shortcut would be
currentElement..<Name>

The Code

This code loads the contents of an XML file and then uses LINQ to perform several queries on
the contents:

Imports System
Imports System.Xml.Ling

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 06
Public Shared Sub Main()

" Load the Employees.xml file and store the contents into
' an XElement object.
Dim employees As XElement = XElement.load("Employees.xml")

' Get the count of all employees hired this year.

Dim cnt = Aggregate ele In employees.<Employee> _
Where CDate(ele.<HireDate>.Value).Year = Now.Year _
Into Count()

Console.WriteLine("{0} employees were hired this year.", cnt)
Console.WritelLine()

' Query for all of the employees that make (HourlyRate) more than
' $100 an hour. An anonymous type is returned containing the
' id, Name, and Pay properties that correspond to the id attribute
' and the Name and HourlyRate elements, respectively.
Dim query = From ele In employees.<Employee> _
Where (Dbl(ele.<HourlyRate>.Value) >= 100 _
Select ele.@id, ele.<Name>.Value, Pay = w
(Dbl(ele.<HourlyRate>.Value) _
Order By Name

Console.WriteLine("Employees who make more than $100 an hour:")
For Each emp In query
Console.WriteLine("[{0,-2}] {1,-25} ${2,-6}", emp.id, emp.Name, ‘=
emp.Pay.ToString("##.00"))
Next
' Wait to continue.
Console.WritelLine()
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

275

mailto:ele.@id

276

CHAPTER 7 LINQ TO XML AND XML PROCESSING

7-7. Query for Elements in a Specific XML Namespace

Problem

You need to filter the contents of or find specific elements in an XML document that belong to a
specific XML namespace.

Solution

Define any appropriate namespaces, and then perform your query using any of the clauses available
in System.Xml.Ling, ensuring that you specify the appropriate namespace to use.

How It Works

As with the .NET Framework itself, XML namespaces are used to separate elements into groups. Every
XElement object in an XML tree contains an XName object, which in turn contains an XNamespace object. If
you have XML that contains information from multiple sources or related to multiple entities, using
namespaces provides an appropriate mechanism for dividing the information logically rather than
physically separating it.

XML namespaces begin with the xmlns key and a value. All children elements of the element that
you specified a namespace for default to belonging to that namespace. You also have the option of
specifying an alias that represents the full namespace. Here is an example of the www.MyCompany.com
namespace that uses an alias of mc:

Dim xmlTree = <Root xmlns:mc="www.MyCompany.com"/>

All elements in a tree belong to the namespace specified by its parent or to the default namespace.
A default namespace is specified in the normal manner described earlier but without the use of an
alias. If a parent node specifies more than one namespace, then you should use the namespace alias
to specify to which namespace each element belongs. If you do not do this, the default namespace,
or the first default namespace in the case that more than one has been specified, will be used. Here
is another example:

Dim xmlTree = <Root xmlns="www.MyCompany.com" xmlns:yc="www.YourCompany.com">
<Child1>Child 1</Child1>
<yc:Child2>Child 2</yc:Child2>
</Root>

In this example, the Child1 node belongs to the default (www.MyCompany.com) namespace, while
the Child2 node belongs to the yc (or www. YourCompany.com) namespace.

If you are manipulating or creating XML trees that include namespaces, you can make your
work easier by using the Imports statement to include these namespaces. This statement is the same
statement you use to import .NET namespaces into your code. This will allow you to specify one or
more namespaces that your XML data will use. If you had first imported the namespaces from the
previous example, you could have left it out of your actual XML. The updated example would look
similar to this:

Imports <xmlns="www.MyCompany.com">
Imports <xmlns:yc="www.YourCompany.com">

Dim xmlTree = <Root>
<Child1>Child 1</Child1>
<yc:Child2>Child 2</yc:Child2>
</Root>

http://www.MyCompany.com
http://www.MyCompany.com
http://www.MyCompany.com
http://www.YourCompany.com
http://www.MyCompany.com
http://www.YourCompany.com
http://www.MyCompany.com
http://www.YourCompany.com

CHAPTER 7 LINQ TO XML AND XML PROCESSING 277

Since each XElement object includes the namespace as an XNamespace instance, the saved data
will include the appropriate namespace declarations. However, you must be careful when using
namespaces with the imports statement. If a default namespace, one without an alias defined, were
not declared, then only the namespace that was directly used (yc) would end up being declared in
the resulting XML document. To ensure this doesn’t happen, you should always define your default
namespace (or at least the alias) within the root node.

If you need to retrieve the name of an element, you should use the Name property, which returns
an instance of the XName class. By default, this will return the combination of the element’s local
name and its namespace. To just get the element name, you should use the LocalName property. To
get the namespace, you use the Namespace property, which returns an instance of an XNamespace class.
You can also use the GetXmINamespace method, which will return an XNamespace instance based on the
provided alias.

The Code

This code loads the contents of an XML file and then queries for any elements that belong to the
defined namespaces:

Imports System

Imports System.Xml.Ling

Imports <xmlns:gfth="www.GenuisesForHire.com">
Imports <xmlns:tfh="www.TempsForHire.com">

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 07
Public Shared Sub Main()

Load the Employees.xml file and store the contents into
an XElement object.
Dim employees As XElement = XElement.lLoad("EmployeesWithNS.xml")

Build the query to get all nodes that are in the
www.GenuisesForHire.com namespace.
Dim gfhEmployees = From ele In employees.Descendants _
Order By ele.<Name>.Value() _
Where (ele.Name.Namespace = GetXmlNamespace(gfh)) _
Select ele.<Name>.Value()
' Execute the query and display the results.
Console.WriteLine("All 'Geniuses For Hire' employees:")
For Each emp In gfhEmployees
Console.WriteLine(emp)
Next
Console.WritelLine()
' Build the query to get all nodes that are in the
www.TempsForHire.com namespace.
Dim tfhEmployees = From ele In employees.Descendants _
Order By ele.<Name>.Value() _
Where (ele.Name.Namespace = GetXmlNamespace(tfh))
Select ele.<Name>.Value()

http://www.GenuisesForHire.com
http://www.TempsForHire.com
http://www.GenuisesForHire.com
http://www.TempsForHire.com

278

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Execute the query and display the results.
Console.WritelLine("All 'Temps For Hire' employees:")
For Each emp In tfthEmployees

Console.Writeline(emp)
Next
" Wait to continue.
Console.WritelLine()
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

7-8. Query an XML Document Using XPath

Problem

You need to search an XML document for nodes using advanced search criteria.

Solution

Execute an XPath expression using the XPathSelectElement or XPathSelectElements extension
method of the System.Xml.XPath.Extensions class.

How It Works

The Extensions class defines two extension methods that allow you to perform XPath searches on an
XNode: XPathSelectElement and XPathSelectElements. These methods operate on all contained child
nodes. You can easily search on the entire XML tree by calling either of the methods from XDocument.
Root or an instance of XElement that reflects the top level of the tree. You can also search on only a
portion of the XML tree depending on the contents of your source XElement instance.

The Code

As an example, consider the following employees.xml document, which represents a list of employees
and tasks assigned to them (only one employee is shown). This document includes text and numeric
data, nested elements, and attributes, so it provides a good way to test simple XPath expressions.

<?xml version="1.0" encoding="utf-8"?>
<Employees>
<Employee id="1">
<Name>Todd Herman</Name>
<Title>Software Engineer</Title>
<HireDate>10/19/2007</HireDate>
<HourlyRate>19.95</HourlyRate>
<Tasks>

CHAPTER 7 LINQ TO XML AND XML PROCESSING 279

<Task id="1">
<Name>Task 1</Name>
<Description>Description of Sample Task 1</Description>
<Status>Open</Status>
</Task>
</Tasks>
</Employee>
</Employees>

Basic XPath syntax uses a pathlike notation. For example, if you are searching from the Employees
rootnode, the path /Employee/Tasks/Task indicates a <Task> element thatis nested inside a <Tasks>
element, which, in turn, is nested in a parent <Employee> element. This is an absolute path. This
recipe uses an XPath absolute path to find the name of every task assigned to an employee. It then
performs the same query using LINQ to highlight some of the differences between XPath and LINQ.

Imports System
Imports System.Xml.Ling
Imports System.Xml.XPath

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 08
Public Shared Sub Main()

Load the Employees.xml and store the contents into an
XElement object.
Dim employees As XElement = XElement.load("EmployeesAndTasks.xml")

Use XPath to get the tasks for each employee.
Dim xpathQuery = employees.XPathSelectElements("/Employee/Tasks/Task")
" Loop through the query results and display the information
to the screen.

For Each task In xpathQuery

Console.WriteLine("{0,-15} - {1} ({2})", =

task.Parent.Parent.<Name>.Value, task.<Name>.Value, task.<Description>.Value)

Next

Console.WritelLine()

Use LINQ to get the tasks for each employee and order them

by the employee's name.

Dim linqQuery = From task In employees.<Employee>...<Task> _

Select EmployeeName = task.Parent.Parent.<Name>.Value, _
TaskName = task.<Name>.Value, _
task.<Description>.Value _

Order By EmployeeName

Execute the query and loop through the results, displaying the
Information to the screen.
For Each task In lingQuery
Console.WritelLine("{0,-15} - {1} ({2})", task.EmployeeName, ‘w»
task.TaskName, task.Description)
Next

280

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

XPath provides a rich and powerful search syntax, details of which can be found at http://www.w3.0rg/
TR/xpath. However, XPath is yet another query language that needs to be learned. If you are familiar
and comfortable with XPath, then you should feel free to use it because LINQ to XML fully supports
it. If you are not, your best bet is to stick with using LINQ.

LINQ, which is covered in great detail in Chapter 6, provides the same functionality provided by
XPath but in a more embedded and concise manner. XPath expressions are not compiled (they are
just strings), so finding errors can be difficult while LINQ is compiled and can alert you to potential
problems. Furthermore, LINQ provides more sophisticated query functionality and is strongly typed
while XPath is not.

7-9. Join and Query Multiple XML Documents

Problem

You need to perform queries based on the combination of two XML documents that have acommon key.

Solution

Use either the Join or Group Join query clause available in System.Xml.Ling.

How It Works

LINQ allows you to perform SQL-like queries on various data sources, such as XML. These queries
support the ability to join multiple data sources based on a common key using the Join or Group
Join clause.

Recipe 7-6 mentions how you can perform in-depth queries on XML data using the LINQ to
XML API, and recipe 6-11 covers the Join and Group Join LINQ clauses in detail.

The Code

The following code loads the contents of two XML files (employees.xml and tasks.xml) and uses the
Group Join LINQ clause to query and join them based on each employee’s ID:

Imports System
Imports System.Xml.Ling

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 09

Public Shared Sub Main()

http://www.w3.org

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Load the Employees.xml and Tasks.xml files

and store the contents into XElement objects.

Dim employees As XElement = XElement.load("Employees.xml")
Dim tasks As XElement = XElement.Load("Tasks.xml")

Build a query to join the two XML trees on the employee's
" Id. TaskList will represent the collection of task
elements.
Dim query = From emp In employees.<Employee> _
Group Join task In tasks.<Task> _
On emp.@id Equals task.@empId _
Into TasklList = Group _
Select EmployeeName = emp.<Name>.Value, _
TaskList
' Execute the query and loop through the results, displaying
them on the console.
For Each emp In query
' Display the employee's name.
Console.WritelLine("Tasks for {0}:", emp.EmployeeName)

" Now loop through the task list
For Each task In emp.TaskList
Console.WriteLine("{0} - {1}", task.<Name>.Value, ‘w»
task.<Status>.Value)
Next
Console.WritelLine()
Next
Console.WritelLine()

Wait to continue.

Console.WritelLine()

Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

7-10. Convert an XML File to a Delimited File (and Vice Versa)

Problem

You need to convert the contents of an XML file to a text file with delimited fields or convert a text file
with delimited fields to an XML file.

Solution

To transform XML data to a delimited text file, use a LINQ query to retrieve and data and project it
into an appropriate format. To transform the delimited text file to an XML tree, read and parse the
data while creating the necessary XML nodes using XML literals and embedded expressions.

281

mailto:emp.@id
mailto:task.@empId

282 CHAPTER 7 LINQ TO XML AND XML PROCESSING

How It Works

LINQ to XML gives you the power to quickly and easily transform XML data to and from different
formats by altering or transforming XML nodes within a LINQ query. If you need to transform the
data in an existing XML tree into another format, you simply use LINQ (which is covered in great
detail in Chapter 6) to query the information and use the Select clause to project the data into the
desired format.

It is just as easy to transform data from other sources into XML by either looping through that
data or performing a LINQ query, where applicable. While looping through the data, via either
method, use XML literals along with embedded expressions (covered in recipe 7-1) to construct the
new XML tree.

The Code

This recipe first loads the Employees.xml file into memory and performs a query on the data using
LINQ, returning the data as fields surrounded by quotes and delimited by commas. This information
is then saved and displayed to the screen.

Next, the recipe takes the newly created delimited file and opens it into a TextFieldParser object
(which is covered in recipe 5-9) where it is read and parsed and finally built into an XML tree using
XML literals and embedded expressions.

Imports System

Imports System.IO

Imports System.Text

Imports System.Xml.Ling

Imports Microsoft.VisualBasic.FileIO

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 10

Public Shared Sub Main(ByVal args As String())
' (Call the subroutine to convert an XML tree to

' a delimited text file.

Call XMLToFile(args(0))

' (Call the subroutine to convert a delimited text

' file to an XML tree.

Call FileToXML()

Wait to continue.

Console.WritelLine()

Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

Private Shared Sub XMLToFile(ByVal xmlFile As String)
' Load the Employees.xml file and store the contents into

an XElement object.

Dim employees As XElement = XElement.load(xmlFile)

CHAPTER 7 LINQ TO XML AND XML PROCESSING 283

' Create a StringBuilder that will be used to hold
' the delimited text.
Dim delimitedData As New StringBuilder

Create a query to convert the XML data into fields delimited
by quotes and commas.
Dim xmlData = _
From emp In employees.<Employee>
Select _
String.Format("""{o}"",""{1}"",""{2}"",""{3}"",""{4}""", _
emp.@id, emp.<Name>.Value, _
emp.<Title>.Value, emp.<HireDate>.Value, _
emp.<HourlyRate>.Value)

' Execute the query and store the contents into the

' StringBuilder.

For Each row In xmlData
delimitedData.AppendLine(row)

Next

Display the contents to the screen and save it to the data.txt
' file.
Console.Writeline(delimitedData.ToString)
File.WriteAllText("data.txt", delimitedData.ToString)

End Sub
Private Shared Sub FileToXML()

' Create the XElement object that will be used to build

' the XML data.
Dim xmlTree As XElement

Open the data.text file and parse it into a TextFieldParser

object.

Using parser As TextFieldParser = _
My.Computer.FileSystem.OpenTextFieldParser("data.txt")

' Configure the TextFieldParser to ensure it understands
' that the fields are enclosed in quotes and delimited

" with commas.

parser.TextFieldType = FieldType.Delimited

parser.Delimiters = New String() {",
parser.HasFieldsEnclosedInQuotes = True

' Create the root of our XML tree.
xmlTree = <Employees></Employees>

Dim currentRow As String()

" Loop through the file until the end is reached.
Do While Not parser.EndOfData

mailto:emp.@id

284 CHAPTER 7 LINQ TO XML AND XML PROCESSING

Parse the fields out for the current row.

currentRow = parser.ReadFields

' Create each employee node and add it to the tree.

Each node is created using embedded expressions

that contain the appropriate field data that was

previously parsed.

xmlTree.Add(<Employee id=<%= currentRow(0) %>>
<Name><%= currentRow(1) %></Name>
<Title><%= currentRow(2) %></Title>
<HireDate><%= currentRow(3) %></HireDate>
<HourlyRate><%= currentRow(4) %></HourlyRate>

</Employee>)

Loop
End Using

Display the new XML tree to the screen.
Console.WritelLine(xmlTree)

End Sub
End Class
End Namespace

Usage

If you execute the command Recipe07-10.exe Employees.xml, the sample XML file will first be converted
to a delimited file that will look like this:

"1","Joed McCormick","Airline Pilot","09/29/2007","100"
"2","Kai Nakamura","Super Genius","10/24/1997","999.99"

"3" "Romi Doshi","Actress","07/24/2006","120"

"4","Leah Clooney","Molecular Biologist","12/24/2006","100.75"

The conversion from the previous delimited data back to an XML file results in the following:

<Employees>

<Employee id="2">
<Name>Joed McCormick</Name>
<Title>Airline Pilot</Title>
<HireDate>09/29/2007</HireDate>
<HourlyRate>100</HourlyRate>

</Employee>

<Employee id="2">
<Name>Kai Nakamura</Name>
<Title>Super Genius</Title>
<HireDate>10/24/1997</HireDate>
<HourlyRate>999.99</HourlyRate>

</Employee>

<Employee id="3">
<Name>Romi Doshi</Name>

CHAPTER 7 LINQ TO XML AND XML PROCESSING

<Title>Actress</Title>
<HireDate>07/24/2006</HireDate>
<HourlyRate>120</HourlyRate>

</Employee>

<Employee id="4">
<Name>Leah Clooney</Name>
<Title>Molecular Biologist</Title>
<HireDate>12/24/2006</HireDate>
<HourlyRate>100.75</HourlyRate>

</Employee>

</Employees>

7-11. Validate an XML Document Against a Schema

Problem

You need to validate the content of an XML document by ensuring that it conforms to an XML schema.

Solution

Since LINQ to XML has not added any new or direct support for working with XML schemas, you
need to rely on the more general functionality found in the System.Xml namespace. To use XML
schemas, you should call XmlReader.Create and supply an XmlReaderSettings object that indicates
you want to perform validation. Then move through the document one node at a time by calling
XmlReader.Read, catching any validation exceptions. To find all the errors in a document without
catching exceptions, handle the ValidationEventHandler event on the XmlReaderSettings object
given as a parameter to XmlReader.

Although LINQ to XML has not added any functionality related to this subject, it is important to
note that you can use the XNode.CreateReader method to create an XmlReader based on XElement or
XDocument instances.

How It Works

An XML schema defines the rules that a given type of XML document must follow. The schema
includes rules that define the following:

* The elements and attributes that can appear in a document

e The data types for elements and attributes

e The structure of a document, including which elements are children of other elements

e The order and number of child elements that appear in a document

e Whether elements are empty, can include text, or require fixed values

XML Schema Definition (XSD) documents are actually just XML documents that use a special
namespace (namespaces are covered more in recipe 7-7), which is defined as xmlns:xsd="http://
www.w3.0rg/2001/XMLSchema”. At its most basic level, XSD defines the elements that can occur in an
XML document. You use a separate predefined element (named <element>) in the XSD document to
indicate each element that is required in the target document. The type attribute indicates the data

type. This recipe uses the employee list first presented in recipe 7-1.
Here is an example for an employee name:

<xsd:element name="Name" type="xsd:string" />

285

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

286 CHAPTER 7 LINQ TO XML AND XML PROCESSING

And here is an example for the employee hourly rate element:
<xsd:element name="HourlyRate" type="xsd:decimal" />

The basic schema data types are defined at http://www.w3.0rg/TR/xmlschema-2. They map
closely to .NET data types and include String, Integer, Long, Decimal, Single, DateTime, Boolean, and
Base64Binary—to name a few of the most frequently used types.

Both the EmployeeName and HourlyRate are simple types because they contain only character
data. Elements that contain nested elements are called complex types. You can nest them together
using a <sequence> tag, if order is important, or an <all> tag, if it is not. Here is how you might model
the <employee> element in the employee list. Notice that attributes are always declared after elements,
and they are not grouped with a <sequence> or <all> tag because the order is not important:

<xsd:complexType name="Employee">
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Title" type="xsd:string" />
<xsd:element name="HireDate" type="xsd:date" />
<xsd:element name="HourlyRate" type="xsd:decimal" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" />
</xsd:complexType>

By default, a listed element can occur exactly one time in a document. You can configure this
behavior by specifying the maxOccurs and minOccurs attributes. Here is an example that allows an
unlimited number of products in the catalog

<xsd:element name="Employee" type="Employee" maxOccurs="unbounded" />

Here is the complete schema for the product catalog XML:

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Define the Employee Complex type-->
<xsd:complexType name="Employee">
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Title" type="xsd:string" />
<xsd:element name="HireDate" type="xsd:date" />
<xsd:element name="HourlyRate" type="xsd:decimal" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" />
</xsd:complexType>

<!-- This is the structure that the document must match -->
<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee" type="Employee" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

The XmlReader class can enforce these schema rules, provided you explicitly request a validating
reader when you use the XmlReader.Create method. (Even if you do not use a validating reader, an

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/2001/XMLSchema

CHAPTER 7 LINQ TO XML AND XML PROCESSING

exception will be thrown if the reader discovers XML that is not well formed, such as an illegal char-
acter, improperly nested tags, and so on.)

Once you have created your validating reader, the validation occurs automatically as you read
through the document. As soon as an error is found, the XmlReader raises a ValidationEventHandler
event with information about the error on the XmlReaderSettings object given at creation time. If you
want, you can handle this event and continue processing the document to find more errors. If you
do not handle this event, an XmlException will be raised when the first error is encountered, and
processing will be aborted.

The Code

The following example shows a utility class that displays all errors in an XML document when the
ValidateXml method is called. Errors are displayed in a console window, and a final Boolean variable
isreturned to indicate the success or failure of the entire validation operation.

Imports System
Imports System.Xml
Imports System.Xml.Schema

Namespace Apress.VisualBasicRecipes.Chaptero7

Public Class ConsoleValidator
' Set to true if at least one error exists.
Private failed As Boolean

Public Function ValidateXML(ByVal xmlFileName As String, ‘=
ByVal schemaFileName As String)
' Set the type of validation.
Dim settings As New XmlReaderSettings
settings.ValidationType = ValidationType.Schema
" Load the schema file.
Dim schemas As New XmlSchemaSet
settings.Schemas = schemas
' When loading the schema, specify the namespace it validates
' and the location of the file. Use Nothing to use the
target Namespace specified in the schema.
schemas.Add(Nothing, schemaFileName)

Specify an event handler for validation errors.
AddHandler settings.ValidationEventHandler, w»
AddressOf HandleValidationEvents
' Create the validating reader.
Dim validator As XmlReader = XmlReader.Create(xmlFileName, settings)

failed = False

Try
' Read all XML data.
While validator.Read()
End While

287

288 CHAPTER 7 LINQ TO XML AND XML PROCESSING

Catch ex As Exception
This happens if the XML document includes illegal characters
or tags that aren't properly nested or closed.
Console.Writeline("A critical XML error has occurred.")
Console.WritelLine(ex.Message)
failed = True
Finally
validator.Close()
End Try

Return Not failed
End Function

Private Sub HandleValidationEvents(ByVal sender As Object,
ByvVal args As ValidationEventArgs)

failed = True

Display the validation error.
Console.Writeline("Validation error: " & args.Message)
Console.WritelLine()

End Sub
End Class
End Namespace
Here is how you would use the class to validate the product catalog:

Public Class Recipe07 11
Public Shared Sub Main(ByVal args As String())

Dim xmlValidator As New ConsoleValidator
Console.WritelLine("Validating Employees.xml")

Dim success As Boolean = w»
xmlValidator.ValidateXML(args(0), args(1))

If Not success Then
Console.WriteLine("Validation failed.")
Else
Console.Writeline("Validation succeeded.")
End If
Console.ReadlLine()

End Sub

End Class

CHAPTER 7 LINQ TO XML AND XML PROCESSING 289

Usage

If the document is valid, no messages will appear, and the success variable will be set to true. But
consider what happens if you use a document that breaks schema rules, such as the following
InvalidEmployees.xml file:

<?xml version="1.0" encoding="utf-8"?>
<Employees>
<Employee id="1">
<Name>Joed McCormick</Name>
<HireDate>2007-09-29</HireDate>
<HourlyRate>100</HourlyRate>
</Employee>
<Employee id="1" badAttribute="bad" >
<Name>Kai Nakamura</Name>
<Title>Super Genius</Title>
<HireDate>10/24/1997</HireDate>
<HourlyRate>999.99</HourlyRate>
</Employee>
<Employee id="3">
<Name>Romi Doshi</Name>
<Title>Actress</Title>
<HireDate>2006-07-24</HireDate>
<HourlyRate>120</HourlyRate>
</Employee>
<Employee id="4">
<Name>Leah Clooney</Name>
<Title>Molecular Biologist</Title>
<HireDate>2006-12-24</HireDate>
<HourlyRate>100.75</HourlyRate>
</Employee>
<Unknown />
</Employees>

If you run the example using Recipe07-11.exe InvalidEmployees.xml Employees.xsd, the sample
file will not validate, and the output will indicate each error, as shown here:

Validating Employees.xml
Validation error: The element 'Employee' has invalid child element 'HireDate'. L
ist of possible elements expected: 'Title'.

Validation error: The 'badAttribute' attribute is not declared.

Validation error: The 'HireDate' element is invalid - The value '10/24/1997' is
invalid according to its datatype 'http://www.w3.0rg/2001/XMLSchema:date’ - The
string '10/24/1997' is not a valid XsdDateTime value.

Validation error: The element 'Employees' has invalid child element 'Unknown'. L
ist of possible elements expected: 'Employee’.

Validation failed.

http://www.w3.org/2001/XMLSchema:date

290

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Note For more in-depth information regarding XML schemas, refer to http://www.w3.org/xml/schema.html.

7-12. Use XML Serialization with Custom Objects

Problem

You need to use XML as a serialization format. However, you don’t want to process the XML directly
in your code. Instead, you want to interact with the data using custom objects.

Solution

Use the System.Xml.Serialization.XmlSerializer class to transfer data from your object to XML, and
vice versa. You can also mark up your class code with attributes to customize its XML representation.

How It Works

The XmlSerializer class allows you to convert objects to XML data, and vice versa. This process is
used natively by web services and provides a customizable serialization mechanism that does not
require a single line of custom code. The XmlSerializer class is even intelligent enough to correctly
create arrays when it finds nested elements.

The only requirements for using XmlSerializer are as follows:

e The XmlSerializer serializes only properties and Public variables.

e The classes you want to serialize must include a default zero-argument constructor. The
XmlSerializer uses this constructor when creating the new object during deserialization.

» All class properties must be readable and writable. This is because XmlSerializer uses the
property Cet accessor to retrieve information and the property Set accessor to restore the
data after deserialization.

To use XML serialization, you must first mark up your data objects with attributes that indicate
the desired XML mapping. You can find these attributes in the System.Xml.Serialization namespace.
The attributes are as follows:

e XmlRoot specifies the name of the root element of the XML file. By default, Xm1Serializer will
use the name of the class. You can apply this attribute to the class declaration.

e XmlElement indicates the element name to use for a property or Public variable. By default,
XmlSerializer will serialize properties and Public variables using their names.

e XmlArray indicates that a property or Public variable is an array of elements. XnlArrayItem is
used to specify the name used for each item in the array.

e XmlAttribute indicates thata property or Public variable should be serialized as an attribute,
not an element, and specifies the attribute name.

e XmlEnum configures the text that should be used when serializing enumerated values. If you
don’t use XmlEnum, the name of the enumerated constant will be used.

e XmlIgnore indicates that a property or Public variable should not be serialized.

http://www.w3.org/xml/schema.html

CHAPTER 7 LINQ TO XML AND XML PROCESSING 291

The Code

As an example, consider an updated version of the employee list first shown in recipe 7-1. You can
represent this XML document using EmployeeRoster and Employee objects. Here’s the class code that
you might use:

Imports System

Imports System.IO

Imports System.Xml

Imports System.Xml.Serialization

Namespace Apress.VisualBasicRecipes.Chaptero7

<XmlRoot("EmployeeRoster")>
Public Class EmployeeRoster

' Use the date data type (and ignore the time portion
' in the serialized XML).
<XmlElement (ElementName:="LastUpdated", datatype:="date")>
Public LastUpdated As DateTime
' Configure the name of the tag that holds all employees
and the name of the employee tag itself.
<XmlArray("Employees"), XmlArrayItem("Employee")>
Public Employees As Employee()

Public Sub New()
End Sub

Public Sub New(ByVal update As DateTime)
Me.LastUpdated = update
End Sub
End Class
Public Class Employee

<XmlElement("Name")> _
Public Name As String = String.Empty

<XmlElement("Title")> _
Public Title As String = String.Empty

<XmlElement(ElementName:="HireDate", datatype:="date")> _
Public HireDate As DateTime = Date.MinValue

<XmlElement("HourlyRate")>
Public HourlyRate As Decimal = 0

<XmlAttribute(AttributeName:="id", DataType:="integer")> _
Public Id As String = String.Empty

292

CHAPTER 7 LINQ TO XML AND XML PROCESSING

Public Sub New()
End Sub

Public Sub New(ByVal employeName As String, ‘=
ByVal employeeTitle As String, ByVal employeeHireDate As DateTime,w»
ByVal employeeHourlyRate As Decimal)

Me.Name = employeName

Me.Title = employeeTitle
Me.HireDate = employeeHireDate
Me.HourlyRate = employeeHourlyRate

End Sub
End Class

End Namespace

Notice that these classes use the XML serialization attributes to rename element names,
indicate data types that are not obvious, and specify how <Employee> elements will be nested in
the <EmployeeRoster>

Using these custom classes and the XmlSerializer object, you can translate XML into objects,
and vice versa. The following is the code you would need to create a new Employee object, serialize
the results to an XML document, deserialize the document back to an object, and then display the
XML document:

Imports System

Imports System.IO

Imports System.Xml

Imports System.Xml.Serialization

Namespace Apress.VisualBasicRecipes.Chaptero7
Public Class Recipe07 12

Public Shared Sub Main()
' Create the employee roster.
Dim roster = New EmployeeRoster(DateTime.Now)
Dim employees = New Employee() _
{New Employee With {.Id = 1, .Name = "Joed McCormick", _
.Title = "Airline Pilot", _
.HireDate = DateTime.Now.AddDays(-25), _
.HourlyRate = 100.0}, _
New Employee With {.Id = 2, .Name = "Kai Nakamura", _
.Title = "Super Genius", _
.HireDate = DateTime.Now.AddYears(-10), _
.HourlyRate = 999.99},
New Employee With {.Id = 3, .Name = "Romi Doshi", _
.Title = "Actress", _
.HireDate = DateTime.Now.AddMonths(-15), _
.HourlyRate = 120.0}, _

CHAPTER 7 LINQ TO XML AND XML PROCESSING

New Employee With {.Id = 4, .Name = "Leah Clooney", _
.Title = "Molecular Biologist", _
.HireDate = DateTime.Now.AddMonths(-10), _
.HourlyRate = 100.75}}

roster.Employees = employees

Serialize the order to a file.
Dim serializer As New XmlSerializer(GetType(EmployeeRoster))
Dim fs As New FileStream("EmployeeRoster.xml", FileMode.Create)

serializer.Serialize(fs, roster)
fs.Close()

roster = Nothing

Deserialize the order from the file.
fs = New FileStream("EmployeeRoster.xml", FileMode.Open)
roster = DirectCast(serializer.Deserialize(fs), EmployeeRoster)

Serialize the order to the console window.
serializer.Serialize(Console.Out, roster)
Console.ReadlLine()

End Sub

End Class
End Namespace

7-13. Create a Schema for a .NET Class

Problem

You need to create an XML schema based on one or more VB .NET classes. This will allow you to
validate XML documents before deserializing them with the XmlSerializer.

Solution

Use the XML Schema Definition Tool (xsd.exe) command-line utility included with the .NET Frame-
work. Specify the name of your assembly as a command-line argument, and add the /t:[TypeName]
parameter to indicate the types for which you want to generate a schema.

How It Works

Recipe 7-12 demonstrated how to use the XmlSerializer to serialize .NET objects to XML and dese-
rialize XML into .NET objects. But if you want to use XML as a way to interact with other applications,
business processes, or non-.NET Framework applications, you'll need an easy way to validate the
XML before you attempt to deserialize it. You will also need to define an XML schema document that
defines the structure and data types used in your XML format so that other applications can work
with it. One quick solution is to generate an XML schema using the xsd.exe command-line utility.

293

294

CHAPTER 7 LINQ TO XML AND XML PROCESSING

The xsd.exe utility is included with the .NET Framework. If you have installed the SDX for
Microsoft Visual Studio 2008, you will find it in a directory such as C:\Program Files\Microsoft Visual
Studio 9.0\SDK\v3.5\Bin. The xsd.exe utility can generate schema documents from compiled
assemblies. You simply need to supply the filename and indicate the class that represents the XML
document with the / t:[TypeName] parameter.

Usage

As an example, consider the EmployeeRoster and Employee classes shown in recipe 7-12. You could
create the XML schema for a product catalog with the following command line:

xsd Recipe7-12.exe /t:EmployeeRoster

You need to specify only the EmployeeRoster class on the command line because the Employee
class is referenced by the EmployeeRoster and will be included automatically. The generated schema
in this example will represent a complete employee list, with contained employees. It will be given
the default filename schema0.xsd. You can now use the validation technique shown in recipe 7-11 to
test whether the XML document can be successfully validated with the schema.

7-14. Generate a Class from a Schema

Problem

You need to create one or more VB .NET classes based on an XML schema. You can then create an
XML document in the appropriate format using these objects and the XmlSerializer.

Solution

Use the xsd.exe command-line utility included with the .NET Framework. Specify the name of your
schema file as a command-line argument, and add the /c parameter to indicate you want to generate
class code.

How It Works

Recipe 7-13 introduced the xsd.exe command-line utility, which you can use to generate schemas
based on class definitions. The reverse operation—generating VB .NET source code based on an
XML schema document—is also possible. This is primarily useful if you want to write a certain
format of XML document but you do not want to manually create the document by writing indi-
vidual nodes with the XmlDocument class or the XmlWriter class. Instead, by using xsd.exe, you can
generate a set of full .NET objects. You can then serialize these objects to the required XML represen-
tation using the XmlSerializer, as described in recipe 7-12.

To generate source code from a schema, you simply need to supply the filename of the schema
document and add the /c parameter to indicate you want to generate the required classes.

Usage

As an example, consider the schema you generated in recipe 7-13. You can generate VB .NET code
for this schema with the following command line:

xsd EmployeeRoster.xsd /c /language:vb

CHAPTER 7 LINQ TO XML AND XML PROCESSING

This will generate one VB .NET file (EmployeeRoster.vb) with two classes: Employee and
EmployeeRoster. These classes are similar to the ones created in recipe 7-12, except that the class
member names match the XML document exactly. Optionally, you can add the /f parameter. If you
do, the generated classes will be composed of Public fields. If you do not, the generated classes will
use Public properties instead (which simply wrap Private fields).

7-15. Perform an XSL Transform

Problem

You need to transform an XML document into another document using an XSLT style sheet.

Solution

Use the System.Xml.Xsl.XslCompiledTransform class. Load the XSLT style sheet using the
XslCompiledTransform.Load method, and generate the output document by using the Transform
method and supplying a source XML document.

How It Works

XSLT (or XSL transforms) is an XML-based language designed to transform one XML document into
another document. You can use XSLT to create a new XML document with the same data but arranged
in a different structure or to select a subset of the data in a document. You can also use it to create a
different type of structured document. XSLT is commonly used in this manner to format an XML
document into an HTML page.

The Code

This recipe transforms the EmployeeRoster.xml document shown in recipe 7-12 into an HTML
document with a table and then displays the results.

Essentially, every XSLT style sheet consists of a set of templates. Each template matches some
set of elements in the source document and then describes the contribution that the matched element
will make to the resulting document. To match the template, the XSLT document uses XPath expres-
sions, as described in recipe 7-8.

The employee style sheet contains two template elements (as children of the root stylesheet
element). The first template matches the root EmployeeRoster element. When the XSLT processor
finds an EmployeeRoster element, it outputs the HTML elements necessary to start the HTML docu-
ment and the text result of an XPath expression. It then starts a table with appropriate column headings
and inserts some data about the client using the value-of command, which inserts the value of the
specified element as text.

Next, the apply-templates command branches off and performs the processing of any contained
Employee elements. This is required because there might be multiple Employee elements. Each
Employee element is matched using the XPath expression Employees/Employee. The root
EmployeeRoster node is not specified because it is the current node. Finally, the initial template
writes the HTML elements necessary to end the HTML document.

295

296 CHAPTER 7 LINQ TO XML AND XML PROCESSING

The following is what the finished XLST looks like:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:template match="EmployeeRoster">
<html>
<body>
<p>
Employee Roster(Last update on
<xsl:value-of select="LastUpdated"/>
)
</p>
<table border="1">
<td>ID</td>
<td>Name</td>
<td>Hourly Rate</td>
<xsl:apply-templates select="Employees/Employee"/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="Employees/Employee">
<tr>
<td>
<xsl:value-of select="@id"/>
</td>
<td>
<xsl:value-of select="Name"/>
</td>
<td>
<xsl:value-of select="HourlyRate"/>
</td>
</tr>
</xsl:template>
</xsl:stylesheet>

If you execute this transform on the sample EmployeeRoster.xml file shown in recipe 7-12, you
will end up with an HTML document similar to the following:

<html>
<body>
<p> Employee Roster(Last update on 2007-10-26)</p>
<table border="1">
<td>ID</td>
<td>Name</td>
<td>Hourly Rate</td>
<tr>
<td>a</td>
<td>Joed McCormick</td>
<td>100</td>
</tr>

http://www.w3.org/1999/XSL/Transform

CHAPTER 7

<tr>
<td>2</td>
<td>Kai Nakamura</td>
<td>»999.99</td>
</tr>
<tr>
<td>3</td>
<td>Romi Doshi</td>
<td»120</td>
</tr>
<tr>
<td>4</td>
<td>Leah Clooney</td>
<td>100.75¢</td>
</tr>
</table>
</body>

</html>

LINQ TO XML AND XML PROCESSING

To apply an XSLT style sheet in .NET, you use the Xs1CompiledTransform class. (Do not confuse this

class with the similar Xs1Transform class—it still works, but it was deprecated in .NET Framework 2.0.)

The following code shows a Windows-based application that programmatically applies the

Imports System
Imports System.Windows.Forms
Imports System.Xml.Xsl

transformation and then displays the transformed file in a window using the WebBrowser control:

All designed code is stored in the autogenerated partial
class called TransformXML.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.

Partial Public Class TransformXml

Private Sub TransformXml_ Load(ByVal sender As Object, ‘=

Byval e As System.EventArgs) Handles Me.load

Dim transform As New XslCompiledTransform

" Load the XSLT style sheet.
transform.Load("Xml2Html.xs1t")

the previously generated style sheet.

Transform EmployeeRoster.xml into Employees.html using

transform.Transform("EmployeeRoster.xml", "EmployeeRoster.html")

Browser.Navigate(Application.StartupPath & "\EmployeeRoster.html")

End Sub

End Class

Figure 7-1 shows the application results.

297

298 CHAPTER 7 LINQ TO XML AND XML PROCESSING

-

o5l TransformXml i g E@M

-

Employee Roster(Last update on 2007-10-27)

|E|Name |H0u:rly Rate
|T|Joed McCormick |100

2 [Kai Nakamura [999.99

3 [RomiDoshi [120

4 [Leah Clooney [100.75

Figure 7-1. The style sheet output for EmployeeRoster.xml

Note For more in-depth information regarding XSLT, refer to http://www.w3.org/tr/xslt.

Notes

Although XSLT style sheets allow you to transform XML files to another format, you are still required
to know and understand how to write and format the file. Recipe 7-10 demonstrates how LINQ can

also be used to transform an XML file. LINQ could also have been used with this recipe to generate
an equivalent HTML file.

http://www.w3.org/tr/xslt

CHAPTER 8

Database Access

In the Microsoft .NET Framework, access to a wide variety of data sources is enabled through a
group of classes collectively named Microsoft ADO.NET. Each type of data source is supported
through the provision of a data provider. Each data provider contains a set of classes that not only
implement a standard set of interfaces (defined in the System.Data namespace) but also provide
functionality unique to the data source they support. These classes include representations of
connections, commands, properties, data adapters, and data readers through which you interact
with a data source.

Note ADO.NET is an extensive subsection of the .NET Framework class library and includes a great deal of
advanced functionality. For comprehensive coverage of ADO.NET, read David Sceppa’s excellent book Programming
Microsoft ADO.NET 2.0 Core Reference (Microsoft Press, 2006) or Pro ADO.NET 2.0 (Apress, 2005). Although these
books target .NET 2.0, they are still excellent resources.

Table 8-1 lists the data providers included as standard with the .NET Framework.

Table 8-1. .NET Framework Data Provider Implementations

Data Provider Description
.NET Framework Data Provides connectivity (via COM Interop) to any data source that
Provider for ODBC implements an ODBC interface. This includes Microsoft SQL

Server, Oracle, and Microsoft Access databases. Data provider
classes are contained in the System.Data.0dbc namespace and

have the prefix Odbc.
.NET Framework Data Provides connectivity (via COM Interop) to any data source that
Provider for OLE DB implements an OLE DB interface. This includes Microsoft SQL

Server, MSDE, Oracle, and Jet databases. Data provider classes are
contained in the System.Data.0leDb namespace and have the

prefix OleDb.
.NET Framework Data Provides optimized connectivity to Oracle databases via Oracle
Provider for Oracle client software version 8.1.7 or later. Data provider classes are
contained in the System.Data.OracleClient namespace and have
the prefix Oracle.

299

300

CHAPTER 8 DATABASE ACCESS

Table 8-1. .NET Framework Data Provider Implementations (Continued)

Data Provider Description
.NET Framework Data Provides optimized connectivity to Microsoft SQL Server version 7
Provider for SQL Server and later (including MSDE) by communicating directly with the

SQL Server data source, without the need to use ODBC or OLE DB.
Data provider classes are contained in the System.Data.SqlClient
namespace and have the prefix Sql.

.NET Compact Framework Provides connectivity to Microsoft SQL Server 2005 Compact
Data Provider for SQL Server Edition. Data provider classes are contained in the System.Data.
Compact Edition SglServerCe namespace and have the prefix SqlCe.

Language Integrated Query (LINQ), which is new to .NET 3.5, provides the functionality neces-
sary to perform queries on any supported data source. For databases, this functionality is provided
by the LINQ to ADO.NET API, which is located in the System.Data.Linq namespace.

LINQ to ADO.NET consists of LINQ to Datasets and LINQ to SQL. LINQ to Datasets provides
several extension methods that make it easier to convert the contents of a DataTable to an
IEnumerable(Of DataRow) collection. LINQ to SQL provides the necessary tools (such as the Object
Relational Designer) to create object classes that represent and map directly to database tables.

This chapter describes some of the most commonly used aspects of ADO.NET. The recipes in
this chapter cover the following:

e C(Creating, configuring, opening, and closing database connections (recipe 8-1)

¢ Employing connection pooling to improve the performance and scalability of applications
that use database connections (recipe 8-2)

* Creating and securely storing database connection strings (recipes 8-3 and 8-4)

* Executing SQL commands and stored procedures and using parameters to improve their
flexibility (recipes 8-5 and 8-6)

* Processing the results returned by database queries either as a set of rows or as XML
(recipes 8-7 and 8-8)

* Executing database operations asynchronously, which allows your main code to continue
with other tasks while the database operation executes in the background (recipe 8-9)

e Writing generic ADO.NET code that can be configured to work against any relational data-
base for which a data provider is available (recipe 8-10)

* Accessing a database using mapped object classes (recipe 8-11 and recipe08-12)

* Discovering all instances of SQL Server (2000, 2005 and 2008) available on a network
(recipe 8-13)

Note Unless otherwise stated, the recipes in this chapter have been written to use SQL Server 2005 Express
Edition running on the local machine and use the AdventureWorks sample database provided by Microsoft. To run
the examples against your own database, ensure the AdventureWorks sample is installed and that the recipe’s
connection string reflects the name of your server instead of .\sglexpress. You can find AdventureWorksDB.msi, the
installation file for the AdventureWorks sample database, at http://www.codeplex.com/MSFTDBProdSamples/
Release/ProjectReleases.aspx?ReleaseId=4004. You'll find a link called Release Notes, which contains
instructions on installing and configuring the samples, in the same location.

http://www.codeplex.com/MSFTDBProdSamples

CHAPTER 8 DATABASE ACCESS

8-1. Connect to a Database

Problem

You need to open a connection to a database.

Solution

Create a connection object appropriate to the type of database to which you need to connect. Configure
the connection object by setting its ConnectionString property. Open the connection by calling the
connection object’s Open method.

How It Works

The first step in database access is to open a connection to the database. All connection objects
inherit from the MustInherit System.Data.Common.DbConnection class. This class implements the
System.Data.IDbConnection interface. The DbConnection class represents a database connection,
and each data provider includes a unique implementation. Here is the list of the implementations
for the five standard data providers:

e System.Data.Odbc.0OdbcConnection

e System.Data.0leDb.0leDbConnection

e System.Data.OracleClient.OracleConnection
e System.Data.SqlClient.SqlConnection

e System.Data.SqlServerCe.SqlCeConnection

You configure a connection object using a connection string. A connection string is a set of
semicolon-separated name-value pairs. You can supply a connection string either as a constructor
argument or by setting a connection object’s ConnectionString property before opening the connec-
tion. Each connection class implementation requires that you provide different information in the
connection string. Refer to the ConnectionString property documentation for each implementation
to see the values you can specify. Possible settings include the following:

e The name of the target database server

e The name of the database to open initially

* Connection time-out values

* Connection-pooling behavior (see recipe 8-2)

* Authentication mechanisms to use when connecting to secured databases, including the
provision of a username and password if needed

Once configured, call the connection object’s Open method to open the connection to the data-
base. You can then use the connection object to execute commands against the data source (discussed
in recipe 8-3). The properties of a connection object also allow you to retrieve information about the
state of a connection and the settings used to open the connection. When you're finished with a
connection, you should always call its Close method to free the underlying database connection and
system resources. IDbConnection extends System.IDisposable, meaning that each connection class
implements the Dispose method. Dispose automatically calls Close, making the Using statement a
very clean and efficient way of using connection objects in your code.

You achieve optimum scalability by opening your database connection as late as possible and
closing it as soon as you have finished. This ensures that you do not tie up database connections for

301

302 CHAPTER 8 DATABASE ACCESS

long periods, so you give all the code the maximum opportunity to obtain a connection. This is especially
important if you are using connection pooling.

The Code

The following example demonstrates how to use both the SqlConnection and 0leDbConnection classes to
open a connection to a Microsoft SQL Server database running on the local machine that uses inte-
grated Windows security.

Imports System

Imports System.Data

Imports System.Data.SqlClient
Imports System.Data.OleDb

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 01

Public Shared Sub SqlConnectionExample()
' Configure an empty SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

Open the database connection.
con.Open()

Display the information about the connection.
If con.State = ConnectionState.Open Then
Console.WritelLine("SglConnection Information:")

Console.WritelLine(" Connection State = " & con.State)
Console.WritelLine(" Connection String = " & =
con.ConnectionString)

Console.Writeline(" Database Source = " & con.DataSource)
Console.Writeline(" Database = " & con.Database)
Console.WritelLine(" Server Version = " & con.ServerVersion)
Console.Writeline(" Workstation Id = " & con.WorkstationId)
Console.WritelLine(" Timeout = " & con.ConnectionTimeout)
Console.Writeline(" Packet Size = " & con.PacketSize)

Else
Console.WriteLine("SglConnection failed to open.")
Console.WritelLine(" Connection State = " & con.State)

End If

Close the database connection.
con.Close()

End Using

End Sub

CHAPTER 8 DATABASE ACCESS

Public Shared Sub 0leDbConnectionExample()
' Configure an empty SqlConnection object.
Using con As New OleDbConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Provider=SQLOLEDB;Data Source=" & w»
".\sqglexpress;Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

Open the database connection.
con.Open()

Display the information about the connection.
If con.State = ConnectionState.Open Then
Console.WritelLine("0leDbConnection Information:")

Console.WriteLine(" Connection State = " & con.State)
Console.WritelLine(" Connection String = " & =
con.ConnectionString)
Console.WriteLine(" Database Source = " & con.DataSource)
Console.WritelLine(" Database = " & con.Database)
Console.WritelLine(" Server Version = " & con.ServerVersion)
Console.WriteLine(" Timeout = " & con.ConnectionTimeout)
Else
Console.WritelLine("0leDbConnection failed to open.")
Console.WriteLine(" Connection State = " & con.State)
End If

Close the database connection.
con.Close()

End Using
End Sub
Public Shared Sub Main()

Open connection using SglConnection.
SqlConnectionExample()
Console.WritelLine(Environment.NewlLine)

Open connection using OleDbConnection.
0leDbConnectionExample()
Console.WritelLine(Environment.NewlLine)

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class

End Namespace

303

304

CHAPTER 8 DATABASE ACCESS

8-2. Use Connection Pooling

Problem

You need to use a pool of database connections to improve application performance and scalability.

Solution

Configure the connection pool using settings in the connection string of a connection object.

How It Works

Connection pooling significantly reduces the overhead associated with creating and destroying
database connections. Connection pooling also improves the scalability of solutions by reducing the
number of concurrent connections a database must maintain. Many of these connections sit idle for
a significant portion of their lifetimes.

With connection pooling, the first time you create a connection, the NET Framework checks the
pool to see whether a connection is available. If the pool hasn’t yet reached its limit, a new connection
will be created and added to it. The next time you attempt to use a connection with the identical
connection string, instead of a new connection being created and opened, the existing connection
in the pool is used. When you close the connection, it is returned to the pool until it is needed again.
Once created, a pool exists until your process terminates.

The SQL Server and Oracle data providers encapsulate connection-pooling functionality that
they enable by default. One connection pool exists for each unique connection string you specify
when you open a new connection. Each time you open a new connection with a connection string
that you used previously, the connection is taken from the existing pool. Only if you specify a different
connection string will the data provider create a new connection pool. You can control some character-
istics of your pool using the connection string settings described in Table 8-2.

Table 8-2. Connection String Settings That Control Connection Pooling

Setting Description

Connection Lifetime Specifies the maximum time in seconds that a connection is allowed to
live in the pool before it’s closed. The age of a connection is tested only
when the connection is returned to the pool. This setting is useful for
minimizing pool size if the pool is not heavily used and also ensures
optimal load balancing is achieved in clustered database environments.
The default value is 0, which means connections exist for the life of the
current process.

Connection Reset Supported only by the SQL Server data provider. Specifies whether
connections are reset as they are taken from the pool. A value of True
(the default) ensures a connection’s state is reset but requires an addi-
tional communication with the database.

Max Pool Size Specifies the maximum number of connections that should be in the
pool. Connections are created and added to the pool as required until
this value is reached. If a request for a connection is made but there are
no free connections, the calling code will block until a connection
becomes available or times out. The default value is 100.

CHAPTER 8 DATABASE ACCESS 305

Table 8-2. Connection String Settings That Control Connection Pooling

Setting Description

Min Pool Size Specifies the minimum number of connections that should be in the pool.
On pool creation, this number of connections is created and added to the
pool. During periodic maintenance or when a connection is requested,
connections are added to the pool to ensure the minimum number of
connections is available. The default value is 0.

Pooling Set to False to obtain a nonpooled connection. The default value is True.

The Code

The following example demonstrates the configuration of a connection pool that contains a minimum
of 5 and a maximum of 15 connections. Connections expire after 10 minutes (600 seconds) and are
reset each time a connection is obtained from the pool. The example also demonstrates how to use
the Pooling setting to obtain a connection object that is not from a pool. This is useful if your appli-
cation uses a single long-lived connection to a database.

Imports System
Imports System.Data.SglClient

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 02
Public Shared Sub Main()

Obtain a pooled connection.
Using con As New SglConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;" & 'w»
"Connection Reset=True;Connection Lifetime=600;"

Open the database connection.
con.Open()

Access the database...
' Close the database connection.

This returns the connection to the pool for reuse.
con.Close()

At the end of the using block, the Dispose calls Close
which returns the connection to the pool for reuse.
End Using

Obtain a nonpooled connection.
Using con As New SglConnection

306

CHAPTER 8 DATABASE ACCESS

Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Pooling=False;"

Open the database connection.
con.Open()

Access the database...

Close the database connection.
con.Close()

End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

The ODBC and OLE DB data providers also support connection pooling, but they do not implement
connection pooling within managed .NET classes, and you do not configure the pool in the same
way as you do for the SQL Server and Oracle data providers. ODBC connection pooling is managed
by the ODBC Driver Manager and configured using the ODBC Data Source Administrator tool in the
Control Panel. OLE DB connection pooling is managed by the native OLE DB implementation. The
most you can do is disable pooling by including the setting OLE DB Services=-4; in your connection
string.

The SQL Server CE data provider does not support connection pooling, because SQL Server CE
supports only a single concurrent connection.

8-3. Create a Database Connection String Programmatically

Problem

You need to programmatically create or modify a syntactically correct connection string by working
with its component parts or by parsing a given connection string.

Solution

Use the System.Data.Common.DbConnectionStringBuilder class or one of its strongly typed
subclasses that form part of an ADO.NET data provider.

How It Works

Connection strings are String objects that contain a set of configuration parameters in the form of
name-value pairs separated by semicolons. These configuration parameters instruct the ADO.NET

CHAPTER 8 DATABASE ACCESS

infrastructure how to open a connection to the data source you want to access and how to handle
the life cycle of connections to that data source. As a developer, you will often simply define your
connection string by hand and store it in a configuration file (see recipe 8-4). However, at times, you
may want to build a connection string from component elements entered by a user, or you may want
to parse an existing connection string into its component parts to allow you to manipulate it
programmatically. The DbConnectionStringBuilder class and the classes derived from it provide
both these capabilities.

DbConnectionStringBuilder is a class used to create connection strings from name-value pairs
or to parse connection strings, but it does not enforce any logic on which configuration parameters
are valid. Instead, each data provider (except the SQL Server CE data provider) includes a unique
implementation derived from DbConnectionStringBuilder that accurately enforces the configura-
tion rules for a connection string of that type. Here is the list of available DbConnectionStringBuilder
implementations for standard data providers:

e System.Data.Odbc.OdbcConnectionStringBuilder
e System.Data.0leDb.0leDbConnectionStringBuilder
e System.Data.OracleClient.OracleConnectionStringBuilder

e System.Data.SqlClient.SqlConnectionStringBuilder

Each of these classes exposes properties for getting and setting the possible parameters for a
connection string of that type. To parse an existing connection string, pass it as an argument when
creating the DbConnectionStringBuilder-derived class, or set the ConnectionString property. If this
string contains a keyword not supported by the type of connection, an ArgumentException exception
is thrown.

The Code

The following example demonstrates the use of the SqlConnectionStringBuilder class to parse and
construct SQL Server connection strings:

Imports System
Imports System.Data.SglClient

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 03

Public Shared Sub Main()
' Configure the SqlConnection object's connection string.
Dim conString As String = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15; " & w»
"Connection Lifetime=600;"

Parse the SQL Server connection string and display the component
configuration parameters.
Dim sb1 As New SqlConnectionStringBuilder(conString)

Console.Writeline("Parsed SOL Connection String Parameters:")

Console.WritelLine(" Database Source = " & sbi.DataSource)
Console.Writeline(" Database = " & sbi.InitialCatalog)
Console.Writeline(" Use Integrated Security = " & w»

sb1.IntegratedSecurity)

307

308

CHAPTER 8 DATABASE ACCESS

Console.WriteLine(" Min Pool Size = " & sb1.MinPoolSize)
Console.WriteLine(" Max Pool Size = " & sbi.MaxPoolSize)
Console.WritelLine(" Lifetime = " & sbi.LoadBalanceTimeout)

Build a connection string from component parameters and display it.
Dim sb2 As New SqlConnectionStringBuilder(conString)

sb2.DataSource = ".\sqglexpress"
sb2.InitialCatalog = "AdventureWorks"
sb2.IntegratedSecurity = True
sb2.MinPoolSize = 5

sb2.MaxPoolSize = 15
sb2.LoadBalanceTimeout = 600

Console.WritelLine(Environment.NewLine)
Console.WritelLine("Constructed connection string:")
Console.WriteLine(" " & sb2.ConnectionString)

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

8-4. Store a Database Connection String Securely

Problem

You need to store a database connection string securely.

Solution

Store the connection string in an encrypted section of the application’s configuration file.

Note Protected configuration—the .NET Framework feature that lets you encrypt configuration information—
relies on the key storage facilities of the Data Protection API (DPAPI) to store the secret key used to encrypt the
configuration file. This solves the very difficult problem of code-based secret key management. Refer to recipe 12-18
for more information about the DPAPI.

How It Works

Database connection strings often contain secret information, or at the very least information that
would be valuable to someone trying to attack your system. As such, you should not store connection
strings in plain text; it is also not sufficient to hard-code them into the application code. Strings

CHAPTER 8 DATABASE ACCESS

embedded in an assembly can easily be retrieved using a disassembler. The NET Framework, since 2.0,
contains a number of classes and capabilities that make storing and retrieving encrypted connection
strings in your application’s configuration trivial.

Unencrypted connection strings are stored in the machine or application configuration file in
the <connectionStrings> section in the format shown here:

<configuration>

<connectionStrings>

<add name="ConnectionString1" connectionString="Data Source='w»
.\sqlexpress;Database=AdventureWorks;Integrated Security=SSPI;Min Pool Size=5; w»
Max Pool Size=15;Connection Reset=True;Connection Lifetime=600;"
providerName="System.Data.SqlClient" />

</connectionStrings>

</configuration>

The easiest way to read this connection string s to use the indexed ConnectionStrings property
of the System.Configuration.ConfigurationManager class. Specifying the name of the connection
string you want as the property index will return a System. Configuration.ConnectionStringSettings
object. The ConnectionString property gets the connection string, and the ProviderName property
gets the provider name that you can use to create a data provider factory (see recipe 8-10). You can
also assign an arbitrary name to the ConnectionStringSettings instance using the Name property.
This process will work regardless of whether the connection string has been encrypted or written in
plain text.

To write a connection string to the application’s configuration file, you must first obtain a
System.Configuration.Configuration object, which represents the application’s configuration
file. The easiest way to do this is by calling the System.Configuration.ConfigurationManager.
OpenExeConfiguration method. You should then create and configure a new System.Configuration.
ConnectionStringSettings object to represent the stored connection string. You should provide a
name, connection string, and data provider name for storage. Add the ConnectionStringSettings
object to the Configuration’s ConnectionStringsSection collection, available through the
Configuration.ConnectionStrings property. Finally, save the updated file by calling the
Configuration.Save method.

To encrypt the connection strings section of the configuration file, before saving the file,
you must configure the ConnectionStringsSection collection. To do this, call the
ConnectionStringsSection.SectionInformation.ProtectSection method and pass it a string
containing the name of the protected configuration provider to use: either
RsaProtectedConfigurationProvider or DPAPIProtectedConfigurationProvider. To disable encryp-
tion, call the SectionInformation.Unprotect method.

Note To use the classes from the System.Configuration namespace discussed in this recipe, you mustadd
a reference to the System.Configuration.dll assembly when you build your application.

The Code

The following example demonstrates the writing of an encrypted connection string to the applica-
tion’s configuration file and the subsequent reading and use of that connection string:

Imports System
Imports System.Configuration
Imports System.Data.SglClient

309

310

CHAPTER 8

DATABASE ACCESS

Namespace Apress.VisualBasicRecipes.Chaptero8

Public Class Recipe08 04

Private Shared Sub WriteEncryptedConnectionStringSection(ByVal name As ‘=
String, ByVal constring As String, ByVal provider As String)

' Get the configuration file for the current application. Specify
the ConfigurationUserlLevel.None argument so that we get the

' configuration settings that apply to all users.

Dim config As Configuration = w»

ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

' Get the connectionStrings section from the configuration file.
Dim section As ConnectionStringsSection = config.ConnectionStrings

' If the connectionString section does not exist, create it.
If section Is Nothing Then
section = New ConnectionStringsSection
config.Sections.Add("connectionSettings", section)
End If

' If it is not already encrypted, configure the connectionStrings

' section to be encrypted using the standard RSA Protected

' Configuration Provider.

If Not section.SectionInformation.IsProtected Then
' Remove this statement to write the connection string in clear
' text for the purpose of testing.
section.SectionInformation.ProtectSection w»

("RsaProtectedConfigurationProvider")

End If

' Create a new connection string element and add it to the
connection string configuration section.

Dim cs As New ConnectionStringSettings(name, constring, provider)

section.ConnectionStrings.Add(cs)

Force the connection string section to be saved whether
' it was modified or not.
section.SectionInformation.ForceSave = True

' Save the updated configuration file.
config.Save(ConfigurationSaveMode.Full)

End Sub

Public Shared Sub main()

' The connection string information to be written to the

' configuration file.

Dim conName As String = "ConnectionString1"

Dim conString As String = "Data Source=.\sqlexpress;Database=" & w»

"Adventurelorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=5;" & w»
"Connection Reset=True;Connection Lifetime=600;"

CHAPTER 8 DATABASE ACCESS

Dim providerName As String = "System.Data.SqlClient"
' Write the new connection string to the application's

configuration file.

WriteEncryptedConnectionStringSection(conName, conString, providerName)

Read the encrypted connection string settings from the
application's configuration file.

Dim cs2 As ConnectionStringSettings = w»
ConfigurationManager.ConnectionStrings("ConnectionString1")

Use the connections string to create a new SQL Server connection.
Using con As New SqlConnection(cs2.ConnectionString)

' Issue database commands/queries...
End Using

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

The example in this recipe uses the OpenExeConfiguration method to open the configuration file for
the application. It accepts a ConfigurationUserLevel enumerator value, which is set to None to get
the configuration settings for all users. If you need to access user-specific settings, you should use
the PerUserRoaming or PerUserRoamingAndLocal value. PerUserRoaming refers to the current user’s
roaming configuration settings. PerUserRoamingAndLocal refers to the user’s local settings.

8-5. Execute a SQL Command or Stored Procedure

Problem

You need to execute a SQL command or stored procedure on a database.

Solution

Create a command object appropriate to the type of database you intend to use. Configure the

command object by setting its CommandType and CommandText properties. Execute the command
using the ExecuteNonQuery, ExecuteReader, or ExecuteScalar method, depending on the type of
command and its expected results.

How It Works

All command objects inherit the MustInherit System.Data.Common.DbCommand class, which imple-
ments the System.Data.IDbCommand interface. The DbCommand class represents a database command,

31

312

CHAPTER 8 DATABASE ACCESS

and each data provider includes a unique implementation. Here is the list of the implementations
for the five standard data providers:

e System.Data.Odbc.0dbcCommand
e System.Data.0leDb.0leDbCommand

e System.Data.OracleClient.OracleCommand

e System.Data.SqlClient.SqlCommand

e System.Data.SqlServerCe.SqlCeCommand

To execute a command against a database, you must have an open connection (discussed in
recipe 8-1) and a properly configured command object appropriate to the type of database you are
accessing. You can create command objects directly using a constructor, but a simpler approach is
to use the CreateCommand factory method of a connection object. The CreateCommand method returns
a command object of the correct type for the data provider and configures it with the appropriate
information (such as CommandTimeout and Connection) obtained from the connection you used to
create the command. Before executing the command, you must configure the properties described
in Table 8-3, which are common to all command implementations.

Table 8-3. Common Command Object Properties

Property

Description

CommandText

CommandTimeout

CommandType

Connection

Parameters

Transaction

A String containing the text of the SQL command to execute or the name
of a stored procedure. The content of the CommandText property must be
compatible with the value you specify in the CommandType property.

An Integer that specifies the number of seconds to wait for the command to
return before timing out and raising an exception. Defaults to 30 seconds.

Avalue of the System.Data.CommandType enumeration that specifies the type
of command represented by the command object. For most data providers,
valid values are StoredProcedure, when you want to execute a stored proce-
dure, and Text, when you want to execute a SQL text command. If you are
using the OLE DB data provider, you can specify TableDirect when you
want to return the entire contents of one or more tables. Refer to the .NET
Framework SDK documentation for more details. Defaults to Text.

ADbConnection instance that provides the connection to the database on
which you will execute the command. If you create the command using the
IDbConnection.CreateCommand method, this property will be automatically
set to the DbConnection instance from which you created the command.

A System.Data.DbParameterCollection instance containing the set of
parameters to substitute into the command. This property is optional.
(See recipe 8-6 for details on how to use parameters.)

A System.Data.DbTransaction instance representing the transaction into
which to enlist the command. If the connection object used to create this
method specified a transaction, this property will be automatically set to that
instance. This property is optional. (See the .NET Framework SDK documen-
tation for details about transactions.)

CHAPTER 8 DATABASE ACCESS 313

Once you have configured your command object, you can execute it in a number of ways,
depending on the nature of the command, the type of data returned by the command, and the
format in which you want to process the data:

* To execute a command that does not return database data (such as UPDATE, INSERT, DELETE, or
CREATE TABLE), call ExecuteNonQuery. For the UPDATE, INSERT, and DELETE commands, the
ExecuteNonQuery method returns an Integer that specifies the number of rows affected by the
command. For commands that don’t return rows, such as CREATE TABLE, ExecuteNonQuery
returns the value -1.

* Toexecutea command thatreturns aresult set, such as a SELECT statement or stored procedure,
use the ExecuteReader method. ExecuteReader returns a DbDataReader instance (discussed in
recipe 8-7) through which you have access to the result data. When the ExecuteReader command
returns, the connection cannot be used for any other commands while the IDataReader is
open. Most data providers also allow you to execute multiple SQL commands in a single call
to the ExecuteReader method, as demonstrated in the example in this recipe, which also shows
how to access each result set.

¢ Ifyouwant to execute a query but need only the value from the first column of the first row of
result data, use the ExecuteScalar method. The value is returned as an Object reference that
you must cast to the correct type.

Note The IDbCommand implementations included in the Oracle and SQL data providers implement additional
command execution methods. Recipe 8-8 describes how to use the ExecuteXmlReader method provided by the
SqlCommand class. Refer to the .NET Framework’s SDK documentation, at http://msdn2.microsoft.com/
en-us/library/system.data.oracleclient.oraclecommand(vs.90).aspx, for details on the additional
ExecuteOracleNonQuery and ExecuteOracleScalar methods provided by the OracleCommand class.

The Code

The following example demonstrates the use of command objects to update a database record,
return records from a query, and obtain a scalar value. Recipe 8-6 covers the use of stored procedures.

Imports System
Imports System.Data
Imports System.Data.SglClient

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 05
Public Shared Sub ExecuteNonQueryExample(ByVal con As IDbConnection)

Create and configure a new command.
Dim com As IDbCommand = con.CreateCommand
com.CommandType = CommandType.Text
com.CommandText = "UPDATE HumanResources.Employee SET Title = " & w»
Production Supervisor' WHERE EmployeeID = 24;"

Execute the command and process the result.
Dim result As Integer = com.ExecuteNonQuery

http://msdn2.microsoft.com

314 CHAPTER 8 DATABASE ACCESS

If result = 1 Then
Console.Writeline("Employee title updated.")
ElseIf result > 1 Then
Console.Writeline("{0} employee titles updated."”, result)
Else
Console.Writeline("Employee title not updated.")
End If

End Sub
Public Shared Sub ExecuteReaderExample(ByVal con As IDbConnection)

Create and configure a new command.

Dim com As IDbCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "SET ROWCOUNT 10;SELECT " &
"Production.Product.Name, Production.Product.lListPrice FROM " &
"Production.Product ORDER BY Production.Product.ListPrice DESC;SET ROWCOUNT 0;"

' Execute the command and process the results.
Using reader As IDataReader = com.ExecuteReader

While reader.Read
Display the product details.
Console.Writeline(" {0} = {1}", reader("Name"), w
reader("ListPrice"))
End While

End Using
End Sub
Public Shared Sub ExecuteScalarExample(ByVal con As IDbConnection)

Create and configure a new command.
Dim com As IDbCommand = con.CreateCommand
com.CommandType = CommandType.Text
com.CommandText = "SELECT COUNT(*) FROM HumanResources.Employee;"
' Execute the command and cast the result.
Dim result As Integer = CInt(com.ExecuteScalar)

Console.WritelLine("Employee count = " & result)
End Sub

Public Shared Sub Main()
' Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

CHAPTER 8 DATABASE ACCESS

Open the database connection and execute the example
commands through the connection.
con.Open()

ExecuteNonQueryExample(con)
Console.WritelLine(Environment.NewlLine)

ExecuteReaderExample(con)
Console.WritelLine(Environment.NewlLine)

ExecuteScalarExample(con)
Console.WritelLine(Environment.NewlLine)
' Close the database connection.
con.Close()

End Using

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")

Console.ReadlLine()
End Sub

End Class
End Namespace

Notes

The example in this recipe demonstrates how to use a command object to execute a few different
SQL statements against a database. Since the statements are sent to the server as strings, they are not
compiled or interpreted as anything by the .NET compiler. This means syntax checking or errors in
the statement are not performed, which makes diagnosing problems more difficult. Furthermore,
you are forced to know how to use Structured Query Language (SQL).

As mentioned in the introduction to this chapter, .NET 3.5 introduces Language Integrated
Query (LINQ), which provides a structured and interpreted language for querying various data
sources. LINQ to ADO.NET encompasses LINQ to Datasets and LINQ to SQL, which allow LINQ to
be used with databases. Using LINQ limits the need-to-know SQL, and since it is compiled as part of
the language, it supports IntelliSense as well as syntax and error checking. LINQ is covered in greater
detail in Chapter 6.

To use LINQ to Datasets, you would first need to fill a DataTable or DataSet (an object that can
contain multiple tables and represents a disconnected database) with data from the database. One
the data has been loaded, the AsEnumerable extension method (see recipe 1-22 for extension methods) is
used to return the table as an IEnumerable(Of DataRow) collection. The LINQ to Objects API (also
covered in Chapter 6) provides querying functionality for any object that inherits from
IEnumerable(0f T).

LINQ to SQL provides the means to create .NET class objects that represent, and directly map
to, specific tables in a database. Any changes or queries made against the class objects are converted
to the appropriate query language (such as SQL) and sent to the server where they are executed.
Recipe 8-12 and recipe 8-13 cover the two main ways to create these objects.

315

316

CHAPTER 8 DATABASE ACCESS

8-6. Use Parameters in a SQL Command or Stored Procedure

Problem

You need to set the arguments of a stored procedure or use parameters in a SQL query to improve
flexibility.

Solution

Create parameter objects appropriate to the type of command object you intend to execute. Configure
the parameter objects’ data types, values, and directions and add them to the command object’s
parameter collection using the DbCommand.Parameters.Add method.

How It Works

All command objects support the use of parameters, so you can do the following:

¢ Set the arguments of stored procedures.
* Receive stored procedure return values.

* Substitute values into SQL queries at runtime.

All parameter objects inherit the MustInherit System.Data.Common.DbParameter class, which
implements the System.Data.IDataParameter interface. The DbParameter class represents a param-
eter, and each data provider includes a unique implementation. Here is the list of the
implementations for the five standard data providers:

e System.Data.Odbc.OdbcParameter

e System.Data.OleDb.OleDbParameter

e System.Data.OracleClient.OracleParameter
e System.Data.SqlClient.SqlParameter

e System.Data.SqlServerCe.SqlCeParameter

To use parameters with a text command, you must identify where to substitute the parameter’s
value within the command. The ODBC, OLE DB, and SQL Server CE data providers support positional
parameters; the location of each argument is identified by a question mark (?). For example, the
following command identifies two locations to be substituted with parameter values:

UPDATE HumanResources.Employee SET Title = ? WHERE Employeeld = ?

The SQL Server and Oracle data providers support named parameters, which allow you to iden-
tify each parameter location using a name preceded by the at symbol (@). Named parameters are very
useful when you need to use the same parameter in multiple locations because you need to create
only one parameter object for it. Here is the equivalent command using named parameters:

UPDATE HumanResources.Employee SET Title = @title WHERE Employeeld = @id

To specify the parameter values to substitute into a command, you must create parameter
objects of the correct type and add them to the command object’s parameter collection accessible
through the Parameters property. You can add named parameters in any order, but you must add
positional parameters in the same order they appear in the text command. When you execute your
command, the value of each parameter is substituted into the command before it is executed against
the data source. You can create parameter objects in the following ways:

CHAPTER 8 DATABASE ACCESS

e Use the CreateParameter method of the command object.
e Use the Parameters.Add method of the command object.
e Use System.Data.Common.DbProviderFactory.

¢ Directly create parameter objects using constructors and configure them using constructor
arguments or through setting their properties. (This approach ties you to a specific database
provider.)

A parameter object’s properties describe everything about a parameter that the command object
needs to use the parameter object when executing a command against a data source. Table 8-4
describes the properties that you will use most frequently when configuring parameters.

When using parameters to execute stored procedures, you must provide parameter objects to
satisfy each argument required by the stored procedure, including both input and output arguments.
If a stored procedure has a return value, the parameter to hold the return value (with aDirection
property equal to ReturnValue) must be the first parameter added to the parameter collection.

Table 8-4. Commonly Used Parameter Properties

Property Description

DbType A value of the System.Data.DbType enumeration that specifies the type of data
contained in the parameter. Commonly used values include String, Int32,
DateTime, and Currency. Since this property is flagged as MustOverride, the
specific providers will override it to return more appropriate information, such
as the Sq1DbType enumeration that is returned from the SqlParameter class.
The specific provider class will typically also supply an appropriately named
DbType property that returns the type specific to the provider, such as the
SqlDbType property of the SqlParameter class.

Direction A value from the System.Data.ParameterDirection enumeration that indi-
cates the direction in which the parameter is used to pass data. Valid values
are Input, InputOutput, Output, and ReturnValue. The default is Input.

IsNullable A Boolean that indicates whether the parameter accepts Nothing values.
The default is False.

ParameterName A String containing the name of the parameter.

Value An Object containing the value of the parameter.

The Code

The following example demonstrates the use of parameters in SQL queries. The
ParameterizedCommandExample method demonstrates the use of parameters in a SQL Server UPDATE
statement. The ParameterizedCommandExample method’s arguments include an open SqlConnection,
an Integer, and a String. The values of the two strings are substituted into the UPDATE command
using parameters. The StoredProcedureExample method demonstrates the use of parameters to call
a stored procedure.

Since not all providers support named parameters, this example specifically uses SQL objects.
Instead of using DbConnection, DbCommand, and DataParameter, it uses the specific classes
SqlConnection, SqlCommand, and SqlParameter, respectively.

The appropriate data type, for the parameter, is assigned using the SqlParameter.SqlDbType
property. As Table 8-4 mentions, you could also have used the DbType property, which is overridden
by the SqlParameter class, to return the same information as the Sq1DbType property.

317

318 CHAPTER 8 DATABASE ACCESS

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 06

Public Shared Sub ParameterizedCommandExample(ByVal con As w»
SqlConnection, ByVal employeeID As Integer, ByVal title As String)

Create and configure a new command containing 2 named parameters.
Using com As SglCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "UPDATE HumanResources.Employee SET Title " & 'w»
"= @title WHERE EmployeeID = @id;"

' Create a SqlParameter object for the title parameter.
Dim p1 As SqlParameter = com.CreateParameter
pl.ParameterName = "@title"
p1.5qlDbType = SqlDbType.VarChar
pl.Value = title
com.Parameters.Add(p1)
' Use a shorthand syntax to add the id parameter.
com.Parameters.Add("@id", SqlDbType.Int).Value = employeeID
' Execute the command and process the result.
Dim result As Integer = com.ExecuteNonQuery

If result = 1 Then
Console.WriteLine("Employee {0} title updated to {1}", =
employeeID, title)
ElseIf result > 1 Then
' Indicates multiple records were affected.
Console.WriteLine("{0} records for employee {1} had " & =
"the title updated to {2}", result, employeeID, title)
Else
Console.WriteLine("Employee {0} title not updated.", employeelD)
End If

End Using
End Sub

Public Shared Sub StoredProcedureExample(ByVal con As SqlConnection, w»
ByVal managerID As Integer)

Create and configure a new command containing 2 named parameters.
Using com As SglCommand = con.CreateCommand

com.CommandType = CommandType.StoredProcedure
com.CommandText = "uspGetManagerEmployees"

CHAPTER 8 DATABASE ACCESS 319

' Create the required SqlParameter object.
com.Parameters.Add("@ManagerID", SqlDbType.Int).Value = managerID

' Execute the command and process the result.
Dim result As Integer = com.ExecuteNonQuery

Using reader As SqlDataReader = com.ExecuteReader
Console.WritelLine("Employees managed by manager #{0}.", ‘=
managerID.ToString)

While reader.Read
Display the product details.
Console.WriteLine(" {0}, {1} ({2})", =
reader("LastName"), reader("FirstName"), reader("employeeID"))
End While

End Using
End Using
End Sub

Public Shared Sub Main()

Create a new SqlConnection object.
Using con As New SglConnection

' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"AdventureWorks;Integrated Security=SSPI;"

Open the database connection and execute the example
commands through the connection.
con.Open()

ParameterizedCommandExample(con, 16, "Production Technician")
Console.WritelLine(Environment.NewlLine)

StoredProcedureExample(con, 185)
Console.WritelLine(Environment.NewlLine)

' Close the database connection.
con.Close()

End Using

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

320 CHAPTER 8 DATABASE ACCESS

8-7. Process the Results of a SQL Query Using a Data Reader

Problem

You need to process the data contained in the System.Data.DbDataReader class instance returned
when you execute the DbCommand. ExecuteReader method (see recipe 8-5).

Solution

Use the members of the DbDataReader class to move through the rows in the result set sequentially
and access the individual data items contained in each row.

How It Works

The DbDataReader class represents a data reader, which is a forward-only, read-only mechanism for
accessing the results of a SQL query. This is a MustInherit class that implements both the System.
Data.IDataReader and System.Data.IDataRecord interfaces. Each data provider includes a unique
DbDataReader implementation. Here is the list of the implementations for the five standard data
providers:

e System.Data.Odbc.0dbcDataReader

e System.Data.OleDb.0OleDbDataReader

e System.Data.OracleClient.OracleDataReader
e System.Data.SqlClient.SqlDataReader

e System.Data.SqlServerCe.SqlCeDataReader

Together, the IDataReader and IDataRecord interfaces supply the functionality that provides
access to both the data and the structure of the data contained in the result set. Table 8-5 describes
some of the commonly used members of the IDataReader and IDataRecord interfaces.

Table 8-5. Commonly Used Members of Data Reader Classes

Member Description

Property

FieldCount Gets the number of columns in the current row.

HasRows Returns True if the DbDataReader has any rows and False if it doesn’t.
IsClosed Returns True if the DbDataReader is closed and False if it’s currently open.
Item Returns an Object representing the value of the specified column in the

current row. Columns can be specified using a zero-based integer index
or a string containing the column name. You must cast the returned value
to the appropriate type. This is the indexer for the IDataRecord interface.

Method

GetDataTypeName Gets the name of the data source data type as a String for a
specified column.

GetFieldType Gets a System. Type instance representing the data type of the value

contained in the column specified using a zero-based integer index.

CHAPTER 8 DATABASE ACCESS

Table 8-5. Commonly Used Members of Data Reader Classes

Member Description

GetName Gets the name of the column specified by using a zero-based integer index.
GetOrdinal Gets the zero-based column ordinal for the column with the specified name.
GetSchemaTable Returns a System.Data.DataTable instance that contains metadata

describing the columns contained in the DbDataReader.

IsDBNull Returns True if the value in the specified column contains a data source
null value; otherwise, it returns False.

NextResult If the DbDataReader includes multiple result sets because multiple state-
ments were executed, NextResult moves to the next set of results. This
method returns True or False, indicating whether or not there are more
results. By default, the DbDataReader is positioned on the first result set.

Read Advances the reader to the next record. This method returns True or False,
indicating whether or not there are more records. The reader always starts
prior to the first record.

In addition to those members listed in Table 8-5, the data reader provides a set of methods for
retrieving typed data from the current row. Each of the following methods takes an integer argument
that identifies the zero-based index of the column from which the data should be returned: GetBoolean,
GetByte, GetBytes, GetChar, GetChars, GetDateTime, GetDecimal, GetDouble, GetFloat, GetCuid, GetInt16,
GetInt32, GetInt64, GetString.

The SQL Server and Oracle data readers also include methods for retrieving data as data
source-specific data types. For example, the SqlDataReader includes methods such as GetSqlByte,
GetSqlDecimal, and GetSqlMoney, and the OracleDataReader includes methods such as GetOraclelob,
GetOracleNumber, and GetOracleMonthSpan. Refer to the NET Framework SDK documentation for
more details.

When you have finished with a data reader, you should always call its Close method so that you
can use the database connection again. DbDataReader extends System.IDisposable, meaning that
each data reader class implements the Dispose method. Dispose automatically calls Close, making
the Using statement a very clean and efficient way of using data readers.

The Code

The following example demonstrates the use of a data reader to process the contents of two result
sets returned by executing a batch query containing two SELECT queries. The first result set is
enumerated and displayed to the console. The second result set is inspected for metadata informa-
tion, which is then displayed.

Imports System

Imports System.Data

Imports System.Data.SglClient

Namespace Apress.VisualBasicRecipes.Chaptero8

Public Class Recipe08 07

Public Shared Sub Main()

321

322 CHAPTER 8 DATABASE ACCESS

Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.

con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI"

Create and configure a new command.
Using com As SqlDbCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "SELECT e.BirthDate,c.FirstName," & w»
"c.LastName FROM HumanResources.Employee e INNER JOIN Person.Contact c ON " & w»
"e.EmployeeID"=c.ContactID ORDER BY e.BirthDate;SELECT * FROM " & w»
"humanResources.Employee"

Open the database connection and execute the example
commands through the connection.
con.Open()
' Execute the command and obtain a DataReader.
Using reader As SqlDataReader = com.ExecuteReader
' Process the first set of results and display the
content of the result set.

Console.WritelLine("Employee Birthdays (By Age).")

While reader.Read
Console.WriteLine(" {0,18:D} - {1} {2}", =
reader.GetDateTime(0), reader("FirstName"), reader(2))
End While
Console.WritelLine(Environment.NewlLine)
' Process the second set of results and display details
about the columns and data types in the result set.
If (reader.NextResult()) Then
reader.NextResult()
Console.WriteLine("Employee Table Metadata.")
For field As Integer = 0 To reader.FieldCount - 1
Console.WriteLine(" Column Name:{0} Type:{1}", =
reader.GetName(field), reader.GetDataTypeName(field))
Next
End If

End Using

Close the database connection.
con.Close()

End Using
End Using

Wait to continue.

CHAPTER 8 DATABASE ACCESS

Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

8-8. Obtain an XML Document from a SQL Server Query

Problem

You need to execute a query against a SQL Server 2000 (or later) database and retrieve the results as
XML.

Solution

Specify the FOR XML clause in your SQL query to return the results as XML. Execute the command
using the ExecuteXmlReader method of the System.Data.SqlClient.SqlCommand class, which returns
a System.Xml.XmlReader object through which you can access the returned XML data.

How It Works

SQL Server 2000 (and later versions) provides direct support for XML. You simply need to add the
clause FOR XML AUTO to the end of a SQL query to indicate that the results should be returned as XML.
By default, the XML representation is not a full XML document. Instead, it simply returns the result
of each record in a separate element, with all the fields as attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO

returns XML with the following structure:

<HumanResources.Department DepartmentID="12" Name="Document Control" />
<HumanResources.Department DepartmentID="1" Name="Engineering" />
<HumanResources.Department DepartmentID="16" Name="Executive" />

Alternatively, you can add the ELEMENTS keyword to the end of a query to structure the results
using nested elements rather than attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO, ELEMENTS

returns XML with the following structure:

<HumanResources.Department>
<DepartmentID>12</DepartmentID>
<Name>Document Control</Name>
</HumanResources.Department>
<HumanResources.Department>
<DepartmentID>1</DepartmentID>
<Name>Engineering</Name>
</HumanResources.Department>
<HumanResources.Department>
<DepartmentID>16</DepartmentID>
<Name>Executive</Name>
</HumanResources.Department>

323

324

CHAPTER 8 DATABASE ACCESS

Tip You can also fine-tune the format using the FOR XML EXPLICIT syntax. For example, this allows you to
convert some fields to attributes and others to elements. Refer to SQL Server Books Online, http://msdn2.
microsoft.com/en-us/library/ms189068.aspx, for more information.

When the ExecuteXmlReader command returns, the connection cannot be used for any other
commands while the XmlReader is open. You should process the results as quickly as possible, and
you must always close the XmlReader. Instead of using the XmLReader to access the data sequentially,
you can read the XML data into an XElement or XDocument class (both of which are located in the
System.Xml.Linq namespace). This way, all the data is retrieved into memory, and the database
connection can be closed. You can then continue to interact with the XML document. (Chapter 7, which
covers LINQ to XML, contains numerous examples on using the XDocument and XElement classes.)

The Code

The following example demonstrates how to retrieve results as XML using the FOR XML clause and the
ExecuteXmlReader method:

Imports System

Imports System.Xml

Imports System.Data

Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 08

Public Shared Sub ConnectedExample()
' Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

Create and configure a new command that includes the
" FOR XML AUTO clause.
Using com As SqlCommand = con.CreateCommand

com.CommandType = CommandType.Text
com.CommandText = "SELECT DepartmentID, [Name], " & w»
"GroupName FROM HumanResources.Department FOR XML AUTO"

Open the database connection.
con.Open()
' Execute the command and retrieve and XmlReader to access
the results.
Using reader As XmlReader = com.ExecuteXmlReader

Loop through the reader.
While reader.Read

http://msdn2

CHAPTER 8 DATABASE ACCESS

' Make sure we are dealing with an actual element of
some type.
If reader.NodeType = XmlNodeType.Element Then

' Create an XElement object based on the current
contents of the reader.
Dim currentEle As XElement = 'w»
XElement.ReadFrom(reader)

Display the name of the current element and list
any attributes that it may have.
Console.WritelLine("Element: {0}", currentEle.Name)
If currentEle.HasAttributes Then
For i As Integer = 0 To =
currentEle.Attributes.Count - 1
Console.Write(" {o}: {1}", =
currentEle.Attributes()(i).Name, currentEle.Attributes()(i).Value)

Next
End If
End If
End While
End Using

' (Close the database connection.
con.Close()

End Using
End Using

End Sub
Public Shared Sub DisconnectedExample()

' This will be used to create the new XML document.
Dim doc As New XDocument

' Create a new SqlConnection object.
Using con As New SglConnection

' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"AdventureWorks;Integrated Security=SSPI;"

Create and configure a new command that includes the
" FOR XML AUTO clause.
Using com As SqlCommand = con.CreateCommand

com.CommandType = CommandType.Text
com.CommandText = "SELECT DepartmentID, [Name], " & ‘w»
"GroupName FROM HumanResources.Department FOR XML AUTO;"

Open the database connection.
con.0Open()

325

326

CHAPTER 8 DATABASE ACCESS
' Execute the command and retrieve and XmlReader to access
' the results.
Using reader As XmlReader = com.ExecuteXmlReader
' Create the parent element for the results.
Dim root As XElement = <Results></Results>
' Loop through the reader and add each node as a
' child to the root.
While reader.Read
We need to make sure we are only dealing with
some form of an Element.
If reader.NodeType = XmlNodeType.Element Then
Dim newChild As XNode = XElement.ReadFrom(reader)
root.Add(newChild)
End If
End While
Finally, add the root element (and all of its children)
' to the new XML document.
doc.Add(root)
End Using
' Close the database connection.
con.Close()
End Using
End Using
' Process the disconnected XmlDocument.
Console.Writeline(doc.ToString)
End Sub

Public Shared Sub Main()

ConnectedExample()
Console.WriteLine(Environment.NewlLine)

DisconnectedExample()
Console.WritelLine(Environment.NewLine)
' Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 8 DATABASE ACCESS

8-9. Perform Asynchronous Database Operations Against
SQL Server

Problem

You need to execute a query or command against a SQL Server database as a background task while
your application continues with other processing.

Solution

Use the BeginExecuteNonQuery, BeginExecuteReader, or BeginExecuteXmlReader method of the System.
Data.SqlClient.SqlCommand class to start the database operation as a background task. These methods
all return a System.IAsyncResult object that you can use to determine the operation’s status or use
thread synchronization to wait for completion. Use the IAsyncResult object and the corresponding
EndExecuteNonQuery, EndExecuteReader, or EndExecuteXmlReader method to obtain the result of the
operation.

Note Only the SqlCommand class supports the asynchronous operations described in this recipe. The equivalent
command classes for the Oracle, SQL Server CE, ODBC, and OLE DB data providers do not provide this functionality.

How It Works

You will usually execute operations against databases synchronously, meaning that the calling code
blocks until the operation is complete. Synchronous calls are most common because your code will
usually require the result of the operation before it can continue. However, sometimes it’s useful to
execute a database operation asynchronously, meaning that you start the method in a separate
thread and then continue with other operations.

The SqlCommand class implements the asynchronous execution pattern similar to that discussed
in recipe 4-2. As with the general asynchronous execution pattern described in recipe 4-2, the
arguments of the asynchronous execution methods (BeginExecuteNonQuery, BeginExecuteReader,
and BeginExecuteXmlReader) are the same as those of the synchronous variants (ExecuteNonQuery,
ExecuteReader, and ExecuteXmlReader), but they take the following two additional arguments to
support asynchronous completion:

e ASystem.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous operation completes. The method is executed in the context of a
thread-pool thread. Passing Nothing means that no method is called and you must use another
completion mechanism (discussed later in this recipe) to determine when the asynchronous
operation is complete.

* AnObject reference that the runtime associates with the asynchronous operation. The asyn-
chronous operation does not use or have access to this object, but it’s available to your code
when the operation completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a
common callback method to perform completion.

The EndExecuteNonQuery, EndExecuteReader, and EndExecuteXmlReader methods allow you to
retrieve the return value of an operation that was executed asynchronously, but you must first determine

327

328

CHAPTER 8 DATABASE ACCESS

when it has finished. Here are the four techniques for determining whether an asynchronous
method has finished:

e Blocking This method stops the execution of the current thread until the asynchronous oper-
ation completes execution. In effect, this is much the same as synchronous execution. However,
you do have the flexibility to decide exactly when your code enters the blocked state, giving

you the opportunity to carry out some additional processing before blocking.

e Polling: This method involves repeatedly testing the state of an asynchronous operation to
determine whether it’s complete. This is a simple technique and is not particularly efficient
from a processing perspective. You should avoid tightloops that consume processor time. It’s
best to put the polling thread to sleep for a period using Thread. Sleep between completion
tests. Because polling involves maintaining a loop, the actions of the waiting thread are limited,

but you can easily update some kind of progress indicator.

* Waiting: This method uses an object derived from the System.Threading.WaitHandle class to

signal when the asynchronous method completes. Waiting is a more efficient version of

polling and in addition allows you to wait for multiple asynchronous operations to complete.
You can also specify time-out values to allow your waiting thread to fail if the asynchronous

operation takes too long or if you want to periodically update a status indicator.

e Callback: This is a method that the runtime calls when an asynchronous operation completes.
The calling code does not need to take any steps to determine when the asynchronous oper-
ation is complete and is free to continue with other processing. Callbacks provide the greatest
flexibility but also introduce the greatest complexity, especially if you have many concur-
rently active asynchronous operations that all use the same callback. In such cases, you must

use appropriate state objects to match completed methods against those you initiated.

The Code

Recipe 4-2 provides examples of all the completion techniques summarized in the preceding list.
The following example demonstrates the use of an asynchronous call to execute a stored procedure

on a SQL Server database. The code uses a callback to process the returned result set.

Imports System

Imports System.Data

Imports System.Threading
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chaptero8

Public Class Recipe08 09
" A method to handle asynchronous completion using callbacks.
Public Shared Sub CallBackHandler(ByVal result As IAsyncResult)
' Obtain a reference to the SqlCommand used to initiate the
asynchronous operation.
Using cmd As SqlCommand = TryCast(result.AsyncState, SqlCommand)
' Obtain the result of the stored procedure.
Using reader As SglDataReader = cmd.EndExecuteReader(result)

CHAPTER 8 DATABASE ACCESS

' Display the results of the stored procedure to the console.
' To ensure the program is thread safe, Synclock is used
' to stop more than one thread from accessing the console
' at the same time.
SynclLock Console.Out
Console.WritelLine("Bill of Materials:")
Console.WritelLine("ID Description Quantity" & w»

" ListPrice")

While reader.Read
Display the record details.
Console.Writeline("{0o} {1} {2} {3}", =
reader ("ComponentID"), reader("ComponentDesc"), reader("TotalQuantity"), w

reader ("ListPrice"))
End While

End Synclock

End Using
End Using

End Sub
Public Shared Sub Main()

' Create a new SqlConnection object.
Using con As New SglConnection

' Configure the SqlConnection object's connection string.

" You must specify Asynchronous Processing=True to support

' asynchronous operations over the connection.

con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Asynchronous Processing=true;"

Create and configure a new command to run a stored procedure.
Using cmd As SqlCommand = con.CreateCommand

cmd. CommandType = CommandType.StoredProcedure
cmd. CommandText = "uspGetBillOfMaterials"

' Create the required SqlParameter objects.
cmd. Parameters.Add("@StartProductID", SqlDbType.Int).Value = 771
cmd. Parameters.Add("@CheckDate", w»

Sq1DbType.DateTime).Value = DateTime.Parse("07/10/2000")

Open the database connection and execute the command
' asynchronously. Pass the reference to the SqlCommand
' used to initiate the asynchronous operation.
con.0Open()
cmd.BeginExecuteReader (AddressOf CallBackHandler, cmd)

End Using

329

330 CHAPTER 8 DATABASE ACCESS

Continue with other processing.
For count As Integer = 1 To 10
SyncLock Console.Out
Console.WritelLine("{0} : Continue processing...", ‘=
DateTime.Now.ToString("HH:mm:ss.ffff"))
End Synclock
Thread.Sleep(500)
Next
' Close the database connection.
con.Close()

Wait to continue.
Console.WritelLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Using
End Sub

End Class
End Namespace

8-10. Write Database-Independent Code

Problem

You need to write code that can be configured to work against any relational database supported by
an ADO.NET data provider.

Solution

Program to the ADO.NET data provider base classes that inherit the main interfaces, such as
IDbConnection, in the System.Data namespace. Unlike the concrete implementations, such as
SglConnection, the base classes do not rely on features and data types that are unique to specific
database implementations. Use factory classes and methods to instantiate the data provider objects
you need to use.

How It Works

Using a specific data provider implementation (the SQL Server data provider, for example) simpli-
fies your code and may be appropriate if you need to support only a single type of database or require
access to specific features provided by that data provider, such as the asynchronous execution for
SQL Server detailed in recipe 8-9. However, if you program your application against a specific data
provider implementation, you will need to rewrite and test those sections of your code if you want to
use a different data provider at some point in the future.

Table 8-6 contains a summary of the main interfaces you must program against when writing
generic ADO.NET code that will work with any relational database’s data provider. The table also
explains how to create objects of the appropriate type that implement the interface. Many of the
recipes in this chapter demonstrate the use of ADO.NET data provider interfaces over specific imple-
mentation, as highlighted in the table.

CHAPTER 8

Table 8-6. Data Provider Interfaces

DATABASE ACCESS

Interface

Description

Demonstrated In

IDbConnection

IDbCommand

IDataParameter

IDataReader

IDataAdapter

Represents a connection to a relational database.
You must program the logic to create a connection
object of the appropriate type based on your
application’s configuration information or use the
CreateConnection factory method of the MustInherit
DbProviderFactory class (discussed in this recipe).

Represents a SQL command that is issued to a
relational database. You can create IDbCommand
objects of the appropriate type using the
IDbConnection.CreateCommand or CreateCommand
factory method of the MustInherit DbProviderFactory
class.

Represents a parameter to an IDbCommand object.
You can create IDataParameter objects of the correct
type using the DbType property and the IDbCommand.
CreateParameter, IDbCommand.Parameters.Add, or
CreateParameter factory method of the MustInherit
DbProviderFactory class.

Represents the result set of a database query and
provides access to the contained rows and columns.
An object of the correct type will be returned when
you call the IDbCommand. ExecuteReader method.

Represents the set of commands used to fill a System.
Data.DataSet from arelational database and to update
the database based on changes to the DataSet. You must
program the logic to create a data adapter object of the
appropriate type based on your application’s configura-
tion information or use the CreateAdapter factory method
of the MustInherit DbProviderFactory class.

Recipes 8-1 and 8-5

Recipes 8-5 and 8-6

Recipe 8-6

Recipes 8-5 and 8-7

(Not covered)

The System.Data.Common.DbProviderFactory class was first introduced in NET Framework 2.0
and provides a set of factory methods for creating all types of data provider objects, making it useful
for implementing generic database code. Most important, DbProviderFactory provides a mechanism for
obtaining an initial IDbConnection instance, which is the critical starting point to writing generic
ADO.NET code. Each of the standard data provider implementations (except the SQL Server CE data
provider) includes a unique factory class derived from DbProviderFactory. Here is the list of
DbProviderFactory subclasses:

e System.Data.Odbc.0OdbcFactory
e System.Data.OleDb.OleDbFactory

e System.Data.OracleClient.OracleClientFactory
e System.Data.SqlClient.SqlClientFactory

Note It’s important to understand that there is no common data type for parameters. You are forced to use
DbType, and you are responsible for understanding the mapping between your generic provider and your data

source.

331

332

CHAPTER 8 DATABASE ACCESS

You can obtain an instance of the appropriate DbProviderFactory subclass using the
DbProviderFactories class, which is effectively a factory of factories. Each data provider factory is
described by configuration information in the machine.config file similar to that shown here for the
SQL Server data adapter. This can be changed or overridden by application-specific configuration
information if required.

<configuration>
<system.data>
<DbProviderFactories>
<add name="SqlClient Data Provider" invariant="System.Data.SqlClient" w»
description=".Net Framework Data Provider for SglServer" type= ‘w»
"System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.0.0, ‘=
Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="0dbc Data Provider" ... />
<add name="0leDb Data Provider" ... />
<add name="OracleClient Data Provider" ... />

<add name="SQL Server CE Data ... />
</DbProviderFactories>
</system.data>
</configuration>

You can enumerate the available data provider factories by calling DbProviderFactories.
GetFactoryClasses, which returns a System.Data.DataTable containing the following columns:

¢ Name, which contains a human-readable name for the provider factory. This is taken from the
name attribute in the configuration information.

e Description, which contains a human-readable description for the provider factory. This is
taken from the description attribute of the configuration information.

e InvariantName, which contains the unique name used to refer to the data provider factory
programmatically. This is taken from the invariant attribute of the configuration informa-
tion.

e AssemblyQualifiedName, which contains the fully qualified name of the DbProviderFactory
class for the data provider. This is taken from the type attribute of the configuration informa-
tion.

Normally, you would allow the provider to be selected at install time, or the first time the appli-
cation was run, and then store the settings as user or application configuration data. The most
important piece of information is the InvariantName, which you pass to the DbProviderFactories.
GetFactory method to obtain the DbProviderFactory implementation you will use to create your
IDbConnection instances.

Note Prior to .NET Framework 2.0, it was difficult to write generic ADO.NET code because each data provider
implemented its own exception class that did not extend a common base class. Since .NET Framework 2.0, the
System.Data.Common.DbException class has been added as the base class of all data provider-specific exceptions,
making the generic handling of database exceptions a reality.

The Code

The following example demonstrates the enumeration of all data providers configured for the
local machine and application. It then uses the DbProviderFactories class to instantiate a
DbProviderFactory object (actually a SqlClientFactory) from which it creates the appropriate

CHAPTER 8 DATABASE ACCESS

IDbConnection. It then uses the factory methods of the data provider interfaces to create other
required objects, resulting in code that is completely generic.

Imports System
Imports System.Data
Imports System.Data.Common

Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 10
Public Shared Sub Main()

Obtain the list of ADO.NET data providers registered in the
machine and application configuration file.
Using providers As DataTable = DbProviderFactories.GetFactoryClasses

Enumerate the set of data providers and display details.
Console.WritelLine("Available ADO.NET Data Providers:")

For Each prov As DataRow In providers.Rows
Console.WritelLine(" Name:{0}", prov("Name"))
Console.WritelLine(" Description:{o0}", w»
prov("Description"))
Console.WriteLine(" Invariant Name:{0}", =
prov("InvariantName"))
Next

End Using
' Obtain the DbProviderFactory for SOL Server. The provider to use
could be selected by the user or read from a configration file.
In this case, we simply pass the invariant name.

Dim factory As DbProviderFactory = w»
DbProviderFactories.GetFactory("System.Data.SqlClient")

Use the DbProviderFactory to create the initial IDbConnection, and
then the data provider inteface factory methods for other objects.
Using con As IDbConnection = factory.CreateConnection

Normally, read the connection string from secure storage.

See recipe 8-2. In this case, use a default value.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»

"AdventureWorks;Integrated Security=SSPI;"

Create and configure a new command.
Using com As IDbCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "SET ROWCOUNT 10;SELECT prod.Name, " & w»
"inv.Quantity FROM Production.Product prod INNER JOIN " & 'w»
"Production.ProductInventory inv ON prod.ProductID = inv.ProductID " & =
"ORDER BY inv.Quantity DESC;"

333

334 CHAPTER 8 DATABASE ACCESS

Open the connection.
con.Open()

Execute the command and process the results.
Using reader As IDataReader = com.ExecuteReader

Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Quantity of the Ten Most Stocked " & w»
"Products:")

While reader.Read
Display the product details.
Console.WriteLine(" {0} = {1}", reader("Name"), w»
reader ("Quantity"))
End While

End Using

Close the database connection.
con.Close()

End Using
End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

8-11. Create a Database Object Model

Problem

You need to create objects that map directly to tables in a relational database.

Solution

Use the Object Relational Designer (O/R Designer) to automatically generate .NET classes that map
directly to tables within the target database.

How It Works

LINQ to SQL, the Language Integrated Query (see Chapter 6) API, provides integrated query support
for databases. It accomplishes this by using object classes, created in any .NET language, that tightly
map to tables in a database. Instead of creating string-based commands to collect or change data in
a database, as shown in the earlier recipes in this chapter, you simply change property values or
create new instances of the mapped object classes.

CHAPTER 8 DATABASE ACCESS

Although the object classes can be created manually by using the various attributes located in
the System.Data.Ling.Mapping namespace, this could be very error-prone and time-consuming. To
assist in this process, Visual Studio 2008 includes the Object Relational Designer, which is capable of
automatically generated the object classes for you.

The first step in using the O/R Designer to create your object classes is to add it to your project.
You do this by selecting Project » Add New Item, which will open the Add New Item dialog box (see
Figure 8-1). From the template list, select LINQ to SQL Classes, and change the default name to
something that makes sense for your project. Once you are finished, click the Add button.

Add New Item - Recipe08-12 L2 e

Categories: Templates: =
Common Items o 3 = EIEE] [==] -
Code COM Class Custom DataSet Dialog
Data Control i
i General 2 _ a
Web S o'e S 3
Windows Forms Explorer Interface JScript File LINQ to SQL
WPF Form Classes Er
Local Local Login Form MDI Parent
Database Databa... Form

LING to SQL classes mapped to relational objects.

Name: DataClassesl.dbmi

[Add] Cancel

- A

Figure 8-1. The Add New Item dialog box

A few things happen when you first add the O/R Designer component to your project. To see
everything, you should make sure your project is selected and click the Show All Files icon in the
Solution Explorer. This will reveal any hidden files within the currently selected project.

You will immediately notice that the newly added .dbml item is really a group that contains
a.dbmllayout file and a .designer.vb file. The .dbml file is an XML file that contains all metadata- and
database-specific information, while the .dbml.layout, which is also XML, is just placement and
configuration data used by the designer. The .designer.vb file is the code file that contains all the
automatically generated class objects. At this point, the object contains only the data context class
that inherits from System.Data.Linqg.DataContext. This class represents the primary bridge between
the class objects and the database.

Double-clicking the .dbml item will open the O/R Designer, allowing you to begin adding
objects to it. Now you are ready to add tables to the designer. To do this, open the Server Explorer
window, and select the connection folder that contains the tables you want to add. Once your connec-
tion has been successfully established, display the list of available tables, and drag the desired ones
to the designer (see Figure 8-2).

335

336

CHAPTER 8 DATABASE ACCESS

@ Chapter08 - Microsoft Visual Studio . S S— v @Eﬂ
— e — F— . ——
| File Edit View Project Build Debug Tools Test Window Help I
geEE- B dRDAREZ(D-0-S-0B b 0 @=F2QFEREE-
Server Explorer ~ I X| ~DataClassesl.dbml* - X |G
GIERY. AIE
- [# Data Connections - E
o — @
= Jb |sengard\sqIexPress.AdventureWcrI . ® @
- [Database Diagrams e
& [Tables L = Properties a
E AWBUildVersion B 12 ContactlD g
2 NameStyle — E
g Databaselog = Title Fmployas 3 -
ErrorLog = FirstName B
= Department (HumanResource = MiddleName = Properties =
A Employee (HumanResources) 7 LastName P % EmployeelD =] L
[EmployeeAddress (HumanRe j Suffix &' NationallDNumber &
" = Emailaddress # Contactd @
i EmployeeDepartmentHistory B EmailPromotion O] > “ LoginlD
1 EmployeePayHistory (Human = Phone # ManagerlD 2
 JobCandidate (HumanResour i; PasswordHash = Title 2
- 2 passwordsalt B BirthDate
& shift (HumanResources) = AdditionalContactinfo = MaritalStatus
M Address (Person) B rowguid 2 Gender
H AddressType (Person) 2 ModifiedDate = HireDate
I Contact (Person) ' SalariedFlag
[ContactType (Person) = VacationHours
F SickLeaveHours
& CountryRegion (Person) 2 Currentflag
[StateProvince (Person) = rowguid
[BillOfMaterials (Production) T ModifiedDate
I Culture (Production)
[Document (Production)
. H iy TRV T Y
< | 1 » -
j&;\Toolbox‘:"g,Server Explorer ‘ 4 1 3
Ready Ln 24 Coll Chl INS

Figure 8-2. The O/R Designer

Note Currently, the O/R Designer supports only SQL Server.

The designer will display a class diagram for each table added. The first time you add a table
to the designer, a new project setting containing the connection information will automatically be
added to the app.config file for your project. The automatically generated data context class will also
be updated to include a constructor that will use this new setting to connect to the database. Also, a
new class for each table added will be generated.

Each class object, or entity, maps directly to a table in the database, while each property maps
to columns in the table. Any stored procedures or user-defined functions will be functions in the
entity class. Special attributes from the System.Data.Ling.Mapping namespace are used to tag each
element and instruct how they map back to the database. Even relationships that exist in the data-
base are reflected in the new object model as associations.

Once the objects have been created, using them is very straightforward. You just need to under-
stand that instances of each object represent a row in the table. To create a new row, create a new
instance of that object. To change the value of a column in a table, change the property. The
SubmitChanges method of the DataContext class is used to persist any changes to the database. All
you need to get started is a new instance of the generated data context class that will make the
connection to the database for you and be used as a bridge.

CHAPTER 8 DATABASE ACCESS

Note You can also use SQLMetal.exe, a command-line utility to generate the object classes. This is covered in

recipe 8-12.

The Code

The following ex

ample demonstrates how to retrieve data from the database and perform a basic

query on it, all using the classes automatically generated by the O/R Designer:

Imports System
Imports System.

Namespace Apres
Public Clas

Shared

Dim

Dim

emp.Contact.Fir

For

emp.HireDate.To
Nex

Con
Con
Con

End Sub

End Class
End Namespace

Data.ling
s.VisualBasicRecipes.Chaptero8
s Recipe08 11

Sub Main()

Create an instance of the DataContext that was
created by the 0/R Designer.
dbContext = New AdventureWorksDataContext()

Create a query to return the name and HireDate for
each employee that was hired prior to the year 2000.
Note that you can easily access a related table (Contact)
without having to perform any joins.
Query = From emp In dbContext.Employees

Where emp.HireDate.Year < 2000 _

Select Name = emp.Contact.LastName & ", " & =
stName, _

emp.HireDate _
Order By Name

Execute the query and display the results.

Each emp In Query

Console.WriteLine("{0} was hired on {1}", emp.Name, w»
String("MM/dd/yyy"))
t

Wait to continue.

sole.WriteLine(Environment.NewLine)
sole.WriteLine("Main method complete. Press Enter.")
sole.ReadlLine()

337

338 CHAPTER 8 DATABASE ACCESS

8-12. Generate Data Object Classes from the Command Line

Problem

You need to create objects that map directly to tables in a relational database, but you do not have
access to Visual Studio 2008 or can’t use the O/R Designer for some reason.

Solution

Use SqlMetal.exe to automatically generate .NET classes that map directly to tables within the target
database.

How It Works

Recipe 8-11 covers the basics on using the new Object Relational Designer (O/R Designer) to create
a set of object classes that model a relational database. Since a situation may arise where you need
to perform this same functionality from the command line, Visual Studio 2008 also includes the
SqlMetal.exe utility.

SqlMetal.exe is distributed with Visual Studio 2008 and is located in a directory similar to
C:\Windows\Microsoft. NET\Framework\v3.5. To use it, just execute it and pass in any appropriate
parameters (see Table 8-7 for a list of the main ones).

Table 8-7. Main SqlMetal.exe Parameters

Parameter Description

/server: Used to specify the SQL server to connect to.

/database: Used to specify the actual database to connect to.

/user Used to specify a name to use to log on to the database. SqlMetal.exe defaults to
using Windows authentication if no user or password is provided.

/password Used to specify a password to use to log on to the database. SqlMetal.exe
defaults to using Windows authentication if no user or password is provided.

/views Instructs the utility to extract all views.

/functions Instructs the utility to extract all functions.

/sprocs Instructs the utility to extract all stored procedures.

/dbml: Instructs the utility to generate a .dbml file that can be opened with the
O/R Designer.

/code: Instructs the utility to generate source code.

/map: Instructs the utility to generate an XML mapping file.

/language: Used to specify what language should be used for generated code.

CHAPTER 8 DATABASE ACCESS 339

Usage
In its simplest form, you need to supply only the server and a database to target:
Sqlmetal /server:.\sqlexpress /database:AdventureWorks

However, since no target was specified, the results will be displayed as XML on the screen. In
most situations, this is not desired, so you should specify a target, like this:

Sqlmetal /server:.\sqlexpress /database:AdventureWorks /dbml:AdventureWorks.dbml

This command will create a .dbml file that can be easily opened and edited within Visual Studio
2008 using the O/R Designer (see Figure 8-3) that was covered in recipe 8-11.

W AdventureWorks.dbml?* - Micros;;t Visual Studio Elﬁu
File Edit View Project Debug Tools Test Window Help
HeFE-HA dRBARZEE(I-C-O-B]) 0 @°

Jnl
i
[T}

/ AdventureWorks.dbml*] v X
= Toi -

111

Ready

Figure 8-3. SqiMetal.exe-generated DBML viewed in the O/R Designer

340

CHAPTER 8 DATABASE ACCESS

8-13. Discover All Instances of SQL Server on Your Network

Problem

You need to obtain a list of all instances of SQL Server 2000 or SQL Server 2005 that are accessible on
the network.

Solution

Use the GetDataSources method of the System.Data.Sql.SqlDataSourceEnumerator class.

Note Your code needs to be granted FullTrust to be able to execute the GetDataSources method.

How It Works

The SqlDataSourceEnumerator class makes it easy to enumerate the SQL Server instances accessible
on the network. Since this class does not have an accessible constructor, you must use the Shared
property SqlDataSourceEnumerator. Instance to return an instance of the class. You then use the
GetDataSources method to return a System.Data.DataTable that contains a set of System.Data.DataRow
objects. Each DataRow represents a single SQL Server instance and contains the following columns:
¢ ServerName, which contains the name of the server where the SQL Server instance is hosted.

e InstanceName, which contains the name of the SQL Server instance or the empty string if the
SQL Server is the default instance.

e IsClustered, which indicates whether the SQL Server instance is part of a cluster.

¢ Version, which contains the version of the SQL Server instance (8.00.x for SQL Server 2000, 9.00.x
for SQL Server 2005, or 10.00.x for SQL Server 2008).

The Code

The following example demonstrates the use of the SqlDataSourceEnumerator class to discover and
display details of all SQL Server instances accessible (and visible) on the network:

Imports System
Imports System.Data
Imports System.Data.Sql
Namespace Apress.VisualBasicRecipes.Chaptero8
Public Class Recipe08 13
Public Shared Sub Main()
' Obtain the DataTable of SQL Server instances.
Using sqlSources As DataTable = w»

SqlDataSourceEnumerator.Instance.GetDataSources()

Enumerate the set of SOL Servers and display details.
Console.Writeline("Discover SQL Server Instances:")

CHAPTER 8 DATABASE ACCESS 3

For Each source As DataRow In sqlSources.Rows
Console.WritelLine(" Server Name:{0}", source("ServerName"))
Console.WriteLine(" Instance Name:{0}", source("InstanceName"))
Console.WritelLine(" Is Clustered:{0}", source("IsClustered"))
Console.WritelLine(" Version:{0}", source("Version"))
Console.WriteLine(Environment.NewlLine)

Next

End Using

' Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")

Console.ReadlLine()
End Sub

End Class
End Namespace

CHAPTER 9

Windows Forms

The Microsoft .NET Framework includes a rich set of classes for creating traditional Windows-based
applications in the System.Windows . Forms namespace. These range from basic controls such as the
TextBox, Button, and MainMenu classes to specialized controls such as TreeView, LinkLabel, and
NotifyIcon.In addition, you will find all the tools you need to manage Multiple Document Interface
(MDI) applications, integrate context-sensitive help, and even create multilingual user interfaces—
all without needing to resort to the complexities of the Win32 API.

The traditional model for developing these Windows-based applications has not fundamentally
changed since .NET was first released. The .NET Framework 3.0, initially released with Windows
Vista, has made a formidable attempt to change the model with the introduction of Windows Presen-
tation Foundation (WPF).

WPF allows the development of highly sophisticated user interfaces using an enhanced design
model that allows a much deeper control of all elements and their appearance. Furthermore, an
attempt has been made to separate the user interface design from the code. Similar to how ASP .NET
applications are designed, the front end (or user interface) for WPF applications is created using
Extensible Application Markup Language (XAML, pronounced “zammel”). The back end is all handled
by managed code.

Visual Studio 2008 includes a detailed WPF designer that is similar to the Windows Forms designer.
Other designers (Microsoft Expression Designer, Microsoft XAML Pad, and so on) that let you visually
create XAML-based WPF applications are also available. Itis important to note that WPF applications can
be completely written in managed code rather than using XAML. This, however, goes against the
underlying concept of WPF and would force you to create user interfaces without a designer (since
they currently output only XAML).

Since the topic of this book is Visual Basic (and not XAML), the in-depth subject of WPF and
XAML is best handled by other sources such as the Pro WPF with VB 2008: Windows Presentation
Foundation .NET 3.5 by Matthew MacDonald (Apress, 2008), Foundations of WPF: An Introduction
to Windows Presentation Foundation by Laurence Moroney (Apress, 2006), or Applications = Code +
Markup (Microsoft Press) by Charles Petzold. Therefore, this chapter will concentrate on tips and
timesaving techniques to assist with building the more traditional Windows-based applications.

Note Most of the recipes in this chapter use control classes, which are defined in the System.Windows.
Forms namespace. When introducing these classes, the full namespace name is not indicated. In other words,
System.Windows.Forms is assumed.

343

344

CHAPTER 9 WINDOWS FORMS

The recipes in this chapter cover the following:

Adding controls to a form programmatically at runtime so that you can build forms dynami-
cally instead of building static forms only in the Visual Studio forms designer (recipe 9-1)

Linking arbitrary data objects to controls to provide an easy way to associate data with a
control without needing to maintain additional data structures (recipe 9-2)

Processing all the controls on a form in a generic way (recipe 9-3)
Tracking all the forms and MDI forms in an application (recipes 9-4 and 9-5)

Saving user-based and computer-based configuration information for Windows Forms appli-
cations using the mechanisms built into the .NET Framework and Windows (recipe 9-6)

Forcing a list box to always display the most recently added item so that users do not need to
scroll up and down to find it (recipe 9-7)

Assisting input validation by restricting what data a user can enter into a textbox and imple-
menting a component-based mechanism for validating user input and reporting errors
(recipes 9-8 and 9-16)

Implementing a custom autocomplete combo box so that you can make suggestions for
completing words as users type data (recipe 9-9)

Allowing users to sort a list view based on the values in any column (recipe 9-10)
Quickly laying out all the controls on a form (recipe 9-11)
Providing multilingual support in your Windows Forms application (recipe 9-12)

Creating forms that cannot be moved and create borderless forms that can be moved (recipes
9-13 and 9-14)

Creating an animated system tray icon for your application (recipe 9-15)
Supporting drag-and-drop functionality in your Windows Forms application (recipe 9-17)
Providing context-sensitive help to the users of your Windows Forms application (recipe 9-18)

Displaying web-based information within your Windows application and allowing users to
browse the Web from within your application (recipe 9-19)

Creating a basic WPF application using VB .NET (recipe 9-20)

Forcing a Windows Vista application to request administrative privileges using UAC (recipe 9-21)

Note visual Studio, with its advanced design and editing capabilities, provides the easiest and most productive
way to develop Windows Forms applications. Therefore, the recipes in this chapter—unlike those in most other
chapters—rely heavily on the use of Visual Studio. Instead of focusing on the library classes that provide the required func-
tionality or looking at the code generated by Visual Studio, these recipes focus on how to achieve the recipe’s goal using
the Visual Studio user interface and the code that you must write manually to complete the required functionality.

9-1.

Add a Control Programmatically

Problem

You need to add a control to a form at runtime, not design time.

CHAPTER 9 WINDOWS FORMS

Solution

Create an instance of the appropriate control class. Then add the control object to a form or a container
control by calling Controls.Add on the container. (The container’s Controls property returns a
ControlCollection instance.)

How It Works

In a .NET form-based application, there is really no difference between creating a control at design
time and creating it at runtime. When you create controls at design time (using a tool such as
Microsoft Visual Studio), the necessary code is added to your form class. Visual Studio places this
code in a separate source file using the partial type functionality. You can use the same code in your
application to create controls on the fly. Just follow these steps:

1. Create an instance of the appropriate control class.
2. Configure the control properties accordingly (particularly the size and position coordinates).

3. Add the control to the form or another container. Every control implements a read-only
Controls property that returns a ControlCollection containing references to all of its child
controls. To add a child control, invoke the Controls.Add method.

4. Ifyou need to handle the events for the new control, you can wire them up to existing methods.

Ifyouneed to add multiple controls to a form or container, you should call SuspendLayout on the
parent control before adding the dynamic controls, and then call ResumeLayout once you have finished.
This temporarily disables the layoutlogic used to position controls and will allow you to avoid signif-
icant performance overheads and weird flickering if many controls are being added.

The Code

The following example demonstrates the dynamic creation of a list of checkboxes. One checkbox is
added for each item in a String array. All the checkboxes are added to a panel that has its AutoScroll
property set to True, which gives basic scrolling support to the checkbox list.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-01.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 01

Private Sub Recipe09 01 Load(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.load
' Create an array of strings to use as the labels for
the dynamic checkboxes.
Dim colors As String() = {"Red", "Green", "Black", "Blue", "Purple", ‘=
"Pink", "Orange", "Cyan"}

Suspend the panel's layout logic while multiple controls
are added.
panel1.SuspendlLayout()

345

346 CHAPTER 9 WINDOWS FORMS

Specify the Y coordinate of the topmost checkbox in the list.
Dim topPosition As Integer = 10
' Create one new checkbox for each name in the list of colors
For Each color As String In colors
' Create a new checkbox.
Dim newCheckBox As New CheckBox
' Configure the new checkbox.
newCheckBox.Top = topPosition
newCheckBox.Left = 10
newCheckBox.Text = color

Set the Y coordinate of the next checkbox.
topPosition += 30

' Add the checkbox to the panel contained by the form.
panell.Controls.Add(newCheckBox)
Next
' Resume the form's layout logic now that all controls
have been added.
Me.ResumelLayout()

End Sub

End Class

Usage

Figure 9-1 shows how the example will look when run.

8- Recipe09-01

[7] Red
[7] Green
[] Black
[] Blue
[Purple
[Pink
[] orange
[[] Cyan

Figure 9-1. A dynamically generated checkbox list

CHAPTER 9 WINDOWS FORMS

9-2. Link Data to a Control

Problem

You need to link an object to a specific control (perhaps to store some arbitrary information that
relates to a given display item).

Solution

Store a reference to the object in the Tag property of the control.

How It Works

Every class that derives from Control inherits a Tag property. The Tag property is not used by the
control or the .NET Framework. Instead, it’s reserved as a convenient storage place for application-
specific information. In addition, some other classes not derived from Control also provide a Tag
property. Useful examples include the ListViewItem, TreeNode, and MenuItem classes.

Because the Tag property is defined as an Object type, you can use it to store any value type or
reference type, from a simple number or string to a custom object you have defined. When retrieving
data from the Tag property, you must cast the Object to the correct type before use.

The Code

The following example adds a list of file names (as ListViewItem objects) to a ListView control. The
corresponding System.I0.FileInfo object for each file is stored in the Tag property of its respective
ListViewItem. When a user double-clicks one of the file names, the code retrieves the FileInfo object

from the Tag property and displays the file name and size using the MessageBox Shared method Show.

Imports System

Imports System.IO

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-02.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 02

Private Sub Recipe09 02 Load(ByVal sender As Object, =
Byval e As System.EventArgs) Handles Me.load
' Get all the files in the root directory
Dim rootDirectory As New DirectoryInfo("C:\")
Dim files As FileInfo() = rootDirectory.GetFiles

Display the name of each file in the ListView.

For Each file As FileInfo In files
Dim item As ListViewItem = listViewl.Items.Add(file.Name)
item.ImageIndex = 0

Associate each FileInfo object with its ListViewItem.
item.Tag = file
Next

End Sub

347

348

CHAPTER 9 WINDOWS FORMS

Private Sub listViewl ItemActivate(ByVal sender As Object,
Byval e As System.EventArgs) Handles listViewl.ItemActivate
' Get information from the linked FileInfo object and display
it using a MessageBox.
Dim item As ListViewItem = DirectCast(sender, ListView).SelectedItems(0)
Dim file As FileInfo = DirectCast(item.Tag, FileInfo)
Dim info As String = String.Format("{o} is {1} bytes.", file.FullName,
file.Length)

MessageBox.Show(info, "File Information")
End Sub

End Class

Usage

Figure 9-2 shows how the example will look when run.

@ ® @ @

autoexec.. bootmgr BOOTSE.. config.sys

® ®

hiberfilsys _pagefile. .
File Information M

Chautoexec.bat is 24 bytes.

Figure 9-2. Storing data in the Tag property
9-3. Process All the Controls on a Form

Problem

You need to perform a generic task with all the controls on the form. For example, you may need to
retrieve or clear their Text property, change their color, or resize them.

Solution

Iterate recursively through the collection of controls. Interact with each control using the properties
and methods of the base Control class.

CHAPTER 9 WINDOWS FORMS

How It Works

You can iterate through the controls on a form using the ControlCollection object obtained from
the Controls property. The ControlCollection includes all the controls that are placed directly on
the form surface. However, if any of these controls are container controls (such as GroupBox, Panel,
or TabPage), they might contain more controls. Thus, it's necessary to use recursive logic that searches
the Controls collection of every control on the form.

The Code

The following example demonstrates the use of recursive logic to find every TextBox on a form and
clears the text they contain. When a button is clicked, the code tests each control on the form to
determine whether it is a TextBox by using the TypeOf keyword in conjunction with the Is operator.

Imports System

Imports System.IO

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe09-03.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 03

Private Sub cmdProcessAll Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdProcessAll.Click

ProcessControls(Me)
End Sub

Private Sub ProcessControls(Byval ctrl As Control)
' Ignore the control unless it's a text box.

If TypeOf (ctrl) Is TextBox Then
ctrl.Text = ""

End If

' Process controls recursively. This is required

if controls contain other controls (for

example, if you use panels, group boxes, or other

container controls).

For Each ctrlChild As Control In ctrl.Controls
ProcessControls(ctrlChild)

Next

End Sub

End Class

349

350

CHAPTER 9 WINDOWS FORMS

9-4. Track the Visible Forms in an Application

Problem

You need access to all the open forms that are currently owned by an application.

Solution

Iterate through the FormCollection object that you get from the Shared property OpenForms of the
Application object.

How It Works

Since .NET Framework 2.0, Windows Forms applications automatically keep track of the open forms
that they own. This information is accessed through the Application.OpenForms property, which
returns a FormCollection object containing a Form object for each form the application owns. You
can iterate through the FormCollection to access all Form objects or obtain a single Form object using
its name (Form.Name) or its position in the FormCollection as an index.

The My object (see Chapter 5 for more information) provides an identical OpenForms property
in the My.Application class. It also provides quick-and-easy design-time access to each form in the
current project via the My.Forms class.

The Code

The following example demonstrates the use of the Application.OpenForms property and the
FormCollection it returns to manage the active forms in an application. The example allows you to
create new forms with specified names. A list of active forms is displayed when you click the Refresh
List button. When you click the name of a form in the list, it is made the active form.

Because of the way the FormCollection works, more than one form may have the same name. If
duplicate forms have the same name, the first one found will be activated. If you try to retrieve a Form
using a name that does not exist, Nothing is returned. The following is the code for the application’s
main form:

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-04.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Public Class Recipe09 04

Private Sub Recipe09 04 Load(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles MyBase.Load

Refresh the list to display the initial set of forms.
RefreshForms()

End Sub

CHAPTER 9 WINDOWS FORMS

" A button click event handler to create a new child form.
Private Sub btnNewForm Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnNewForm.Click

' Create a new child form and set its name as specified.
" If no name is specified, use a default name.
Dim child As New Recipe09 04Child

If Me.txtFormName.Text Is String.Empty Then
child.Name = "Child Form"

Else
child.Name = txtFormName.Text

End If

' Show the new child form.
child.Show()

End Sub

' List selection event handler to activate the selected form based on
its name.
Private Sub listForms_SelectedIndexChanged(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles listForms.SelectedIndexChanged

Activate the selected form using its name as the index into the
collection of active forms. If there are duplicate forms with the
same name, the first one found will be activated.

Dim selectedForm As Form = Application.OpenForms(listForms.Text)

' If the form has been closed, using its name as an index into the
' FormCollection will return Nothing. 1In this instance, update the
" list of forms.
If selectedForm IsNot Nothing Then

' Activate the selected form.

selectedForm.Activate()

Else
Display a message and refresh the form list.
MessageBox.Show("Form closed; refreshing list...", "Form Closed")
RefreshForms ()
End If
End Sub

" A button click event handler to initiate a refresh of the list of
active forms.
Private Sub btnRefresh Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnRefresh.Click

RefreshForms ()

End Sub

351

352 CHAPTER 9 WINDOWS FORMS

A method to perform a refresh of the list of active forms.
Private Sub RefreshForms()

Clear the list and repopulate from the Application.OpenForms
property.
listForms.Items.Clear()

For Each f As Form In Application.OpenForms
listForms.Items.Add(f.Name)
Next

End Sub

End Class
The following is the code for the child forms that is created when the New Form button is clicked:
Imports System

Imports System.Windows.Forms

class called Recipe09-04Child.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 04Child

" A button click event handler to close the child form.
Private Sub btnClose Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnClose.Click
Close()
End Sub
Display the name of the form when it is painted.
Private Sub Recipe09 04Child Paint(ByVal sender As Object,
Byval e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Display the name of the form.
1blFormName.Text = Name

End Sub

End Class

9-5. Find All MDI Child Forms

Problem

You need to find all the forms that are currently being displayed in an MDI application.

Solution
Iterate through the forms returned by the MdiChildren collection property of the MDI parent.

CHAPTER 9 WINDOWS FORMS 353

How It Works

The .NET Framework includes two convenient shortcuts for managing the forms open in MDI appli-
cations: the MdiParent and MdiChildren properties of the Form class. The MdiParent property of any
MDI child returns a Form representing the containing parent window. The MdiChildren property
returns an array containing all of the MDI child forms.

The Code

The following example presents an MDI parent window that allows you to create new MDI children
by clicking the New item on the File menu. Each child window contains a label, which displays the
date and time when the MDI child was created, and a button. When the button is clicked, the event
handler walks through all the MDI child windows and displays the label text that each one contains.
Notice that when the example enumerates the collection of MDI child forms, it converts the generic
Form reference to the derived Recipe09 05Child form class so that it can use the LabelText property.
The following is the Recipe09 05Parent class:

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe09-05Parent.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 O5Parent

When the New menu item is clicked, create a new MDI child.
Private Sub mnuNew Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles mnuNew.Click

Dim frm As New Recipe09 05Child

frm.MdiParent = Me
frm.Show()

End Sub

End Class
The following is the Recipe09 05Child class:

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-05Child.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 05Child

A property to provide easy access to the label data.
Public ReadOnly Property LabelText() As String
Get
Return label.Text
End Get
End Property

354

CHAPTER 9 WINDOWS FORMS

' When a button on any of the MDI child forms is clicked, display the
contents of each form by enumerating the MdiChildren collection.
Private Sub cmdShowAllWindows Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles cmdShowAllWindows.Click

For Each frm As Form In Me.MdiParent.MdiChildren
' Cast the generic Form to the Recipe07_05Child derived class

" type.
Dim child As Recipe09 05Child = DirectCast(frm, Recipe09 05Child)
MessageBox.Show(child.LabelText, frm.Text)
Next
End Sub
' Set the MDI child form's label to the current date/time.
Private Sub Recipe09 05Child Load(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles Me.Load
label.Text = DateTime.Now.ToString
End Sub
End Class
Usage

Figure 9-3 shows how the example will look when run.

akl Recipe09-05Parent M =@ (L8)
|| File

8Ll Recipe09-05Child [— | = | 53 |
8Ll Recipe09-05Child [— || = | 53 |
85 Recipe09-05Child [o [= | 1]

11/12/2007 4:29:12 PM

Show Values From All
Windows

Recipe09-05Child

11/12/2007 4:29:12 PM

Figure 9-3. Getting information from multiple MDI child windows

CHAPTER 9 WINDOWS FORMS

9-6. Save Configuration Settings for a Form

Problem

You need to store configuration settings for a form so that they are remembered the next time that
the form is shown.

Solution

Use the Application Settings functionality, which is configurable at design time in Visual Studio.

How It Works

The Application Settings functionality, first introduced in .NET Framework 2.0, provides an easy-to-
use mechanism through which you can save application and user settings used to customize the
appearance and operation of a Windows Forms application. You configure Application Settings
through the Properties panel of each Windows control (including the main Windows Form) in your
application. By expanding the ApplicationSettings property and clicking the ellipsis (the three dots)
to the right of (PropertyBinding), you can review and configure Application Settings for each property of
the active control. See Figure 9-4 for an example.

w X |Solution Explorer - Solution 'Cha.. v & X
rAppIication Settings for "textBox1' |M1 E | \SJ _ | = éi s
[Solution 'Chapter09' (6 projects)
‘ ; - i {3 Recipe09-01
Bind properties to application settings: & Recipe09-02
AutoCompleteMode (none) & = Recipe09-03
AutoCompleteSource (none) &= Recipe09-04
AutoScrollOffset (none) @ 0 (3 Recipe09-05
BackColor (none) =- & Recipe09-06
BackgroundImagelayout (none) =4 My Project
BorderStyle (none) b Recipe09-06.vb
r Ne; Application Setting -; M &3lSolution E... |L§_|Data Sour... |@Class View
Properties >~ 0 x
Create a new application setting by completing the fields textBox1 System.Windows.Forms.TextBo: -
below.
DefaultValue D Window B (ApplicationSettings)]
L bl Color (PropertyBinding) @
e [Scope User -
(DataBindings)
(Name) textBox1l
AcceptsReturn False
AcceptsTab False
AccessibleDescription
| AccessibleName A
OK l l Cancel (PropertyBinding)
Choose which properties to bind to confi...

Figure 9-4. Configuring Application Settings in Visual Studio

355

356 CHAPTER 9 WINDOWS FORMS

When you configure a new application setting for a control’s property, you must assign it a name,
a default value, and a scope:

¢ The name allows you to both access the setting programmatically and reuse the application
setting across multiple controls.

e The default value is used if the application cannot obtain a value from a configuration file
at runtime.

* The scope is either User or Application.

Settings with an Application scope are stored in the application’s configuration file (usually
located in the same folder as the application assembly) and are read-only. The benefit of an Applica-
tion scope is that you can change configuration settings by editing the configuration file without
needing to recompile the application. Settings with a User scope are read-write by default and are
stored in a file located in an isolated store (see recipe 5-19 for information about isolated stores).

When you configure your application to use Application Settings, Visual Studio actually autoge-
nerates a wrapper class that provides access to the configuration file information, regardless of
whether it is scoped as Application or User. This class, named MySettings, is in the Settings.Designer.
vb file, which can be found in your project’s My Project folder. This folder also contains the Settings.
settings file. When you open this file in Visual Studio, it will display a dialog box that allows you to
easily edit your application’s settings. You will see these files only if you have turned on the Show All
Files option in the Solution Explorer.

The My. Settings class contains properties with names matching each of the Application Setting
names you configured for your controls’ properties. The controls will automatically read their configura-
tion at startup, but you should store configuration changes prior to terminating your application by
calling the My .Settings.Save method. You can also configure this to occur automatically by checking
the Save My.Settings on Shutdown option in the Application section of your project’s properties, as
shown in Figure 9-5.

CHAPTER 9 WINDOWS FORMS 357

Application
Assembly name: Root namespace: il
Compile = - - -
Recipe09-06) Apress.VisualBasicRecipes.Chapter09
Debug
Reforene Application type: Icon:
lWindows Forms Application -] l(DefauIt Icon)
Resources
Services Startup form:
Settings lRecipeOQ_OS =]
Signing [
l Assembly Information... l l View UAC Settings l
My Extensions
Security Enable application framework
Publish
Windows application framework properties
Enable XP visual styles

[] Make single instance application

%Save My.Settings on Shutdown

Authentication mode:

lWindows -

« | I 3

Figure 9-5. Automatically saving settings on shutdown

The Code

The following example shows how to update and save application settings, which are Size and Color
in this case, at runtime:

Imports System
Imports System.ComponentModel
Imports System.Windows.Forms

" All designed code is stored in the autogenerated partial

class called Recipe09-06.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 06

Private Sub Recipe09 06 Load(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.load

Me.Size = My.Settings.Size

End Sub

358

CHAPTER 9 WINDOWS FORMS

Private Sub Button_Click(ByVal sender As System.Object,
Byval e As System.EventArgs) Handles redButton.Click, blueButton.Click, ‘=
greenButton.Click

' Change the color of the textbox depending on which button
" was clicked.
Dim btn As Button = TryCast(sender, Button)

If btn IsNot Nothing Then
' Set the background color of the textbox to the ForeColor
" of the button.
textBox1.BackColor = btn.ForeColor

Update the application settings with the new value.
My.Settings.Color = textBox1.BackColor

End If
End Sub

Private Sub Recipe09 06 FormClosing(ByVal sender As Object, w»
Byval e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

Update the application settings for Form.
My.Settings.Size = Me.Size

Store all application settings.
My.Settings.Save()

End Sub

End Class

9-7. Force a List Box to Scroll to the Most Recently Added Item

Problem

You need to scroll a list box programmatically so that the most recently added items are visible.

Solution
Set the ListBox.TopIndex property, which sets the first visible list item.

How It Works

In some cases, you might have a list box that stores a significant amount of information or one that
you add information to periodically. Often, the most recent information, which is added at the end
of the list, is more important than the information at the top of the list. One solution is to scroll the
list box so that recently added items are visible. The ListBox.TopIndex property enables you to do
this by allowing you to specify which item is visible at the top of the list.

CHAPTER 9 WINDOWS FORMS 359

The Code

The following sample form includes a list box and a button. Each time the button is clicked, 20 items
are added to the list box. Each time new items are added, the code sets the ListBox.TopIndex prop-
erty and forces the list box to display the most recently added items. To provide better feedback, the
same line is also selected.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-07.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 07

Private counter As Integer = 0

' Button click event handler adds 20 new items to the ListBox.
Private Sub cmdTest Click(ByVal sender As Object, ‘=

Byval e As System.EventArgs) Handles cmdTest.Click

' Add 20 items.
For i As Integer = 1 To 20

counter += 1

listBox1.Items.Add("Item " & counter.ToString())
Next
' Set the TopIndex property of the ListBox to ensure the
most recently added items are visible. SelectedIndex
is then used to select the new item.
listBox1.TopIndex = listBox1.Items.Count - 1
listBox1.SelectedIndex = listBox1.Items.Count - 1

End Sub

End Class
9-8. Restrict a Text Box to Accepting Only Specific Input

Problem

You need to create a text box that will accept only the specified characters or keystrokes.

Solution

Use the MaskedTextBox control, and set the Mask property to configure the input that is acceptable.

How It Works

One way to ensure user input is valid is to prevent invalid data from being entered in the first place.
The MaskedTextBox control facilitates this approach. The MaskedTextBox.Mask property takes a string
that specifies the input mask for the control. This mask determines what type of input a user can

enter at each point in the control’s text area. If the user enters an incorrect character, the control will

360

CHAPTER 9 WINDOWS FORMS

beep if the BeepOnError property is True, and the MaskInputRejected event is raised so that you can
customize the handling of incorrect input.

Note The MaskedTextBox control will not solve all your user-input validation problems. Although it does make
some types of validation easy to implement, without customization, it will not ensure some common validation
requirements are met. For example, you can specify that only numeric digits can be input, but you cannot specify
that they must be less than a specific value, and you cannot control the overall characteristics of the input value.

The Code

The following example demonstrates the use of the MaskedTextBox control. A series of buttons allows
you to change the active mask on the MaskedTextBox control and experiment with the various masks.
Notice that the control automatically tries to accommodate existing content with the new mask
when the mask is changed. If the content is not allowed with the new mask, the control is cleared.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-08.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 08

Private Sub btnTime Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnTime.Click

" Set the input mask to that of a short time.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "00:00"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus()

End Sub

Private Sub btnDecimal Click(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles btnDecimal.Click

' Set the input mask to that of a decimal.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "999,999.00"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus()

End Sub

CHAPTER 9 WINDOWS FORMS 361

Private Sub btnDate_Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnDate.Click

' Set the input mask to that of a short date.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "00/00/0000"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

Private Sub btnUSZip Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnUSZip.Click

' Set the input mask to that of a US ZIP code.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "00000-9999"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

Private Sub btnUKPost Click(ByVal sender As System.Object,
Byval e As System.EventArgs) Handles btnUKPost.Click

' Set the input mask to that of a UK postcode.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = ">LCCC 9LL"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

Private Sub btnPinNumber Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles btnPinNumber.Click

' Set the input mask to that of a secret pin.
Me.mskTextBox.UseSystemPasswordChar = True
Me.mskTextBox.Mask = "0000"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

End Class

362

CHAPTER 9 WINDOWS FORMS

9-9. Use an Autocomplete Combo Box

Problem

You want to create a combo box that automatically completes what the user is typing based on the
item list.

Solution

You can implement a basic autocomplete combo box by creating a custom control that overrides the
OnKeyPress and OnTextChanged methods of the ComboBox object.

How It Works

An autocomplete control has many different variations. For example, the control may fill in values
based on a list of recent selections (as Microsoft Excel does when you are entering cell values), or the
control might display a drop-down list of near matches (as Microsoft Internet Explorer does when
you are typing a URL). You can create a basic autocomplete combo box by handling the KeyPress
and TextChanged events or by creating a custom class that derives from ComboBox and overrides the
OnKeyPress and OnTextChanged methods.

Although the approach in this recipe gives you complete control over how the autocomplete
functionality is implemented, the ComboBox control includes some built-in autocomplete function-
ality. Using this built-in functionality is easy and based on using the AutoCompleteSource and
AutoCompleteMode properties.

The Code

The following example contains an AutoCompleteComboBox control that derives from ComboBox. The
AutoCompleteComboBox control supports autocompletion by overriding the OnKeyPress and
OnTextChanged methods. In the OnKeyPress method, the combo box determines whether an auto-
complete replacement should be made. If the user pressed a character key (such as a letter), the
replacement can be made, but if the user pressed a control key (such as the backspace key, the cursor
keys, and so on), no action should be taken. The OnTextChanged method performs the actual replace-
ment after the key processing is complete. This method looks up the first match for the current text
in the list of items and then adds the rest of the matching text. After the text is added, the combo box
selects the characters between the current insertion point and the end of the text. This allows the
user to continue typing and replace the autocomplete text if it is not what the user wants.

Imports System
Imports System.Windows.Forms

Public Class AutoCompleteCombobox
Inherits ComboBox
" A private member to track if a special key is pressed, in
which case, any text replacement operation will be skipped.
Private controlKey As Boolean = False

Determine whether a special key was pressed.
Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)

CHAPTER 9 WINDOWS FORMS

First call the overridden base class method.
MyBase.OnKeyPress(e)
' Clear the text if the Escape key is pressed.
If e.KeyChar = ChrW(Keys.Escape) Then
" Clear the text.
Me.SelectedIndex = -1
Me.Text = ""
controlKey = True
ElseIf Char.IsControl(e.KeyChar) Then
' Don't try to autocomplete when control key is pressed.
controlKey = True
Else
" Noncontrol keys should trigger autocomplete.
controlKey = False
End If

End Sub
' Perform the text substitution.
Protected Overrides Sub OnTextChanged(ByVal e As System.EventArgs)

First call the overridden base class method.
MyBase.OnTextChanged(e)

If Not Me.Text = "" And Not controlKey Then
' Search the current contents of the combo box for a
matching entry.
Dim matchText As String = Me.Text
Dim match As Integer = Me.FindString(matchText)
' If a matching entry is found, insert it now.
If Not match = -1 Then
Me.SelectedIndex = match
' Select the added text so it can be replaced
if the user keeps trying.
Me.SelectionStart = matchText.Length
Me.Selectionlength = Me.Text.Length - Me.SelectionStart
End If
End If

End Sub

End Class

Usage

The following code demonstrates the use of the AutoCompleteComboBox by adding it to a form and
filling it with a list of words. In this example, the control is added to the form manually, and the list
of words is retrieved from a text file named words.txt. As an alternative, you could compile the
AutoCompleteComboBox class to a separate class library assembly and then add it to the Visual Studio
Toolbox so you could add it to forms at design time.

363

364 CHAPTER 9 WINDOWS FORMS

Imports System

Imports System.IO

Imports System.Drawing
Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-09.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 09

Private Sub Recipe09 09 Load(ByVal sender As Object, w»
Byval e As System.EventArgs) Handles Me.Load
' Add the AutoCompleteComboBox to the form.
Dim combo As New AutoCompleteCombobox

combo.Location = New Point(10, 10)
Me.Controls.Add(combo)

' Read the list of words from the file words.txt and add them
' to the AutoCompleteComboBox.
Using fs As New FileStream("..\..\Names.txt", FileMode.Open)
Using r As New StreamReader(fs)
While r.Peek > -1
Dim name As String = r.Readline
combo. Items.Add(name)
End While
End Using
End Using

End Sub

End Class

Figure 9-6 shows how the AutoCompleteComboBox will look when the example is run.

8- Recipe09-09 C=0pc

AR vi

- ¥

Figure 9-6. An autocomplete combo box
9-10. Sort a List View by Any Column

Problem

You need to sort a list view, but the built-in ListView.Sort method sorts based on only the first column.

CHAPTER 9 WINDOWS FORMS

Solution

Create a type that implements the System.Collections.IComparer interface and can sort ListViewItem
objects. The IComparer type can sort based on any ListViewItem criteria you specify. Set the ListView.
ListViewItemSorter property with an instance of the IComparer type before calling the ListView.
Sort method.

How It Works

The ListView control provides a Sort method that orders items alphabetically based on the text in
the first column. If you want to sort based on other column values or order items numerically, you
need to create a custom implementation of the IComparer interface that can perform the work. The
IComparer interface defines a single method named Compare, which takes two Object arguments and
determines which one should be ordered first. Full details of how to implement the IComparer inter-
face are available in recipe 14-3.

The Code

The following example demonstrates how to create an IComparer implementation named
ListViewItemComparer. This class relies on the Compare method of String and Decimal to perform
appropriate comparisons. The ListViewItemComparer class also implements two additional proper-
ties: Column and Numeric. The Column property identifies the column that should be used for sorting.
The Numeric property is a Boolean flag that can be set to True if you want to perform number-based
comparisons instead of alphabetic comparisons. The numeric sorting is applied when the users
clicks the first column.

When the user clicks a column heading, the example creates a ListViewItemComparer instance,
configures the column to use for sorting, and assigns the ListViewItemComparer instance to the
ListView.ListViewItemSorter property before calling the ListView.Sort method.

Imports System

Imports System.Collections
Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-10.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 10

Private Sub listViewl ColumnClick(ByVal sender As Object, ‘=
Byval e As System.Windows.Forms.ColumnClickEventArgs) Handles listViewl.ColumnClick

Create and/or configure the ListViewItemComparer to sort based on
the column that was clicked.

Dim sorter As ListViewItemComparer = =
TryCast(listViewl.ListViewItemSorter, ListViewItemComparer)

If sorter Is Nothing Then
' Create a new ListViewItemComparer.
sorter = New ListViewItemComparer(e.Column)
' Use Decimal comparison for the first column.
If e.Column = 0 Then
sorter.Numeric = True

365

366 CHAPTER 9 WINDOWS FORMS

Else
sorter.Numeric = False
End If

listViewl.ListViewItemSorter = sorter
Else
' Use Decimal comparison for the first column.
If e.Column = 0 Then
sorter.Numeric = True
Else
sorter.Numeric = False
End If
' Configure the existing ListViewItemComparer.
If sorter.Column = e.Column Then
sorter.Descending = Not sorter.Descending
Else
sorter.Column = e.Column
sorter.Descending = False
End If
End If

" Sort the ListView.
listView1.Sort()

End Sub
End Class

Public Class ListViewItemComparer
Implements IComparer
' Private members to configure comparer logic.
Private m Column As Integer
Private m Numeric As Boolean = False
Private m Descending As Boolean = False
' Property to get/set the column to use for comparison.
Public Property Column() As Integer
Get
Return m_Column
End Get
Set(ByVval value As Integer)
m_Column = Value
End Set
End Property
' Property to get/set whether numeric comparison is required
as opposed to the standard alphabetic comparison.
Public Property Numeric() As Boolean
Get
Return m Numeric
End Get

CHAPTER 9 WINDOWS FORMS

Set(ByVal value As Boolean)
m_Numeric = Value
End Set
End Property
' Property to get/set whether we are sorting in descending
order or not.
Public Property Descending() As Boolean
Get
Return m_Descending
End Get
Set(ByVal Value As Boolean)
m_Descending = Value
End Set
End Property

Public Sub New(ByVal columnIndex As Integer)
m_Column = columnIndex
End Sub

Public Function Compare(ByVal x As Object, ByVal y As Object) ‘=
As Integer Implements System.Collections.IComparer.Compare

Convert the arguments to ListViewItem objects.
Dim itemX As ListViewItem = TryCast(x, ListViewItem)
Dim itemY As ListViewItem = TryCast(y, ListViewItem)
' Handle the logic for a Nothing reference as dictated by the
IComparer interface. Nothing is considered less than
any other value.

If itemX Is Nothing And itemY Is Nothing Then
Return 0

ElseIf itemX Is Nothing Then
Return -1

ElseIf itemY Is Nothing Then
Return 1

End If

Short-circuit condition where the items are references
to the same object.
If itemX Is itemY Then Return 0

Determine if numeric comparison is required.

If Numeric Then

Convert column text to numbers before comparing.
If the conversion fails, just use the value 0.
Dim itemXVal, itemYVal As Decimal

If Not Decimal.TryParse(itemX.SubItems(Column).Text, itemXVal) Then
itemXval = 0
End If

367

368

CHAPTER 9 WINDOWS FORMS

If Not Decimal.TryParse(itemY.SubItems(Column).Text, itemYVal) Then
itemyval = 0
End If

If Descending Then
Return Decimal.Compare(itemYVal, itemXval)
Else
Return Decimal.Compare(itemXval, itemYval)
End If
Else
' Keep the column text in its native string format
and perform an alphabetic comparison.
Dim itemXText As String = itemX.SubItems(Column).Text
Dim itemYText As String = itemY.SubItems(Column).Text

If Descending Then
Return String.Compare(itemYText, itemXText)
Else
Return String.Compare(itemXText, itemYText)
End If
End If

End Function

End Class
9-11. Lay Out Controls Automatically

Problem

You have a large set of controls on a form and you want them arranged automatically.

Solution

Use the FlowLayoutPanel container to dynamically arrange the controls using a horizontal or vertical
flow, or use the TableLayoutPanel container to dynamically arrange the controls in a grid.

How It Works

The FlowLayoutPanel and TablelLayoutPanel containers simplify the design-time and runtime layout
of the controls they contain. At both design time and runtime, as you add controls to one of these
panels, the panel’s logic determines where the control should be positioned, so you do not need to
determine the exact location.

With the FlowLayoutPanel container, the FlowDirection and WrapContents properties determine
where controls are positioned. FlowDirection controls the order and location of controls, and it can
be set to LeftToRight (the default), TopDown, RightToLeft, or BottomUp. The WrapContents property
controls whether controls run off the edge of the panel or wrap around to form a new line of controls.
The default is to wrap controls.

CHAPTER 9 WINDOWS FORMS

With the TableLayoutPanel container, the RowCount and ColumnCount properties control how
many rows and columns are currently in the panel’s grid. The default for both of these properties is
0, which means there are no rows or columns. The GrowStyle property determines how the grid grows to
accommodate more controls once it is full, and it can be set to AddRows (the default), AddColumns, or
FixedSize (which means the grid cannot grow).

Figure 9-7 shows the design-time appearance of both a TableLayoutPanel container and a
FlowLayoutPanel container. The TableLayoutPanel panel is configured with three rows and three
columns. The FlowLayoutPanel panel is configured to wrap contents and use left-to-right flow
direction.

5! Recipe09-11 [E=1EEE T
Table Layout Panel Flow Layout Panel
©) radioButton10 () radioButton11 () radioBution12
© radioButton1 | () radioButton2 |) radioButton3 | {(©) radioButton13 () radioButton14 () radioButton15
':' radioButton16 '-:-‘ radioButton17 '-:-' radioButton18
'-:-' radioButton4 '-:-' radioButtond ‘-:-' radioButton6
(@) radioButton7 | (") radioButton8 | (C) RadioButton9

Figure 9-7. Using a FlowLayoutPanel panel and a TableLayoutPanel panel
9-12. Make a Multilingual Form

Problem

You need to create a localizable form that can be deployed in more than one language.

Solution

Store all locale-specific information in resource files, which are compiled into satellite assemblies.

How It Works

The .NET Framework includes built-in support for localization through its use of resource files. The
basic idea is to store information that is locale-specific (for example, button text) in a resource file.
You can create resource files for each culture you need to support and compile them into satellite
assemblies. When you run the application, .NET will automatically use the correct satellite assembly
based on the locale settings of the current user/computer.

369

370 CHAPTER 9 WINDOWS FORMS

You can read to and write from resource files manually; they are XML files (see recipe 1-17 for
more information about resource files). However, Visual Studio also includes extensive design-time
support for localized forms. It works like this:

1. Set the Localizable property of a Form to True using the Properties window.

2. Set the Language property of the form to the locale for which you want to enter information,
as shown in Figure 9-8. Then configure the localizable properties of all the controls on the
form. Instead of storing your changes in the designer-generated code for the form, Visual
Studio will actually create a new resource file to hold your data.

Properties m > 0 x
Recipe09_12 System.Windows.Forms.Form x
ImeMode MoControl .
IsMdiContainer False
KeyPreview False
English (United States) [~
LociEnglish (Jamaica) i

LociEnglish (Malaysia)
Loc|English (Mew Zealand) —
Mai|English (Republic of the Philippines) @
Mas English (Singapore)
Mas English (South Africa)
Min English (Trinidad and Tobago)
Min English (United Kingdom)
B English (United States) - |7

Langi}y,

Indicates the current localizable language.

111

Figure 9-8. Selecting a language for localizing a form

3. Repeat step 2 for each language you want to support. Each time you enter a new locale for
the form’s Language property, a new resource file will be generated. If you select Project »
Show All Files from the Visual Studio menu, you will find these resource files under your
form’s folder, as shown in Figure 9-9. If you change the Language property to alocale you have
already configured, your previous settings will reappear, and you will be able to modify
them.

You can now compile and test your application on differently localized systems. Visual Studio
will create a separate directory and satellite assembly for each resource file in the project. You can
select Project » Show All Files from the Visual Studio menu to see how these files are arranged, as
shown in Figure 9-9.

CHAPTER 9 WINDOWS FORMS

ution Explorer - i -12 ~ 0 x
@ [[2]F] &
- (3 Recipe09-10 -

- 3 Recipe09-11

Pl Recipe09-12
- = My Project
- [l References

111

= =] Recipe09-12.vb

----- # Recipe09-12.Designer.vb
----- " Recipe(9-12.en-US.resx
-----) Recipe09-12.fr-FR.resx
----- # Recipe09-12.resx g

&y Solution Explorer |E_| Data Sources |@ Class View |

Figure 9-9. Satellite assembly and resource files structure

The Code

Although you do not need to manually code any of the localization functionality, as a testing shortcut,
you can force your application to adopt a specific culture by modifying the Thread.CurrentUICulture

property of the application thread. However, you must modify this property before the form has loaded.

Imports System

Imports System.Threading
Imports System.Globalization
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
class called Recipe09-12.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 12
Public Shared Sub Main()

Thread.CurrentThread.CurrentUICulture = New CultureInfo("fr-FR")
Application.Run(New Recipe09 12)

End Sub

End Class

3n

372

CHAPTER 9 WINDOWS FORMS

Usage

Figure 9-10 shows both the English and French versions of the example. As you can see, both the
language and the layout of the form are different depending on the current locale.

-~

8kl Recipe09-12 [E=NIER™ ul Recipe09-12 ls|@ R]

This is in English

Je suis en Francais

Figure 9-10. English and French localizations
9-13. Create a Form That Cannot Be Moved

Problem

You want to create a form that occupies a fixed location on the screen and cannot be moved.

Solution

Make a borderless form by setting the FormBorderStyle property of the Form class to the value
FormBorderStyle.None.

How It Works

You can create a borderless form by setting the FormBorderStyle property of a Form to None. Border-
less forms cannot be moved. However, as their name implies, they also lack any kind of border. If
you want a border, you will need to add it yourself, either by writing manual drawing code or by
using a background image.

One other approach to creating an immovable form does provide a basic control-style border. First,
set the ControlBox, MinimizeBox, and MaximizeBox properties of the form to False. Then set the Text
property to an empty string. The form will have a raised gray border or black line (depending on the
FormBorderStyle option you use), similar to a button. Figure 9-11 shows both types of immovable forms.

CHAPTER 9 WINDOWS FORMS

This form has no border at all.

[E This form has no border at all.

Figure 9-11. Two types of forms that cannot be moved
9-14. Make a Borderless Form Movable

Problem

You need to create a borderless form that can be moved. This might be the case if you are creating a
custom window that has a unique look (for example, for a visually rich application such as a game or
a media player).

Solution

Create another control that responds to the MouseDown, MouseUp, and MouseMove events and program-
matically moves the form.

How It Works

Borderless forms omit a title bar, which makes it impossible for a user to move them. You can compen-
sate for this shortcoming by adding a control to the form that serves the same purpose. For example,
Figure 9-12 shows a form that includes a label to support dragging. The user can click this label and
then drag the form to a new location on the screen while holding down the mouse button. As the
user moves the mouse, the form moves correspondingly, as though it were “attached” to the mouse
pointer.

373

374 CHAPTER 9 WINDOWS FORMS

This form has a control-style
border, but no maximize bax,
minimize box, control bax, or text
caption.

Click here to
move the *

Figure 9-12. A movable borderless form

To implement this solution, take the following steps:

1. Create a form-level Boolean variable that tracks whether the form is currently being dragged.

2. When the label is clicked, the code sets the flag to indicate that the form is in drag mode. At
the same time, the current mouse position is recorded. You add this logic to the event
handler for the Label.MouseDown event.

3. When the user moves the mouse over the label, the form is moved correspondingly, so that
the position of the mouse over the label is unchanged. You add this logic to the event handler
for the Label.MouseMove event.

4. When the user releases the mouse button, the dragging mode is switched off. You add this
logic to the event handler for the Label.MouseUp event.

The Code

The following example creates a borderless form that a user can move by clicking a form control and
dragging the form:

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-14.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 14

Boolean member tracks whether the form is in drag mode.

If it is, mouse movements over the label will be translated
into form movements.

Private dragging As Boolean

' Stores the offset where the label is clicked.
Private pointClicked As Point

CHAPTER 9 WINDOWS FORMS

MouseDown event handler for the label initiates the dragging process.
Private Sub 1blDrag MouseDown(ByVal sender As Object,'w
ByVal e As MouseEventArgs) Handles 1blDrag.MouseDown

If e.Button = Windows.Forms.MouseButtons.Left Then
Turn the drag mode on and store the point clicked.
dragging = True
pointClicked = New Point(e.X, e.Y)
Else
dragging = False
End If

End Sub
' MouseMove event handler for the label processes dragging movements if
the form is in drag mode.

Private Sub 1blDrag MouseMove(ByVal sender As Object, ‘=
Byval e As MouseEventArgs) Handles 1lblDrag.MouseMove

If dragging Then

Dim pointMoveTo As Point
' Find the current mouse position in screen coordinates.
pointMoveTo = Me.PointToScreen(New Point(e.X, e.Y))

Compensate for the position of the control clicked.
pointMoveTo.0ffset(-pointClicked.X, -pointClicked.Y)
' Move the form.
Me.Location = pointMoveTo

End If
End Sub

MouseUp event handler for the label switches off drag mode.
Private Sub 1blDrag MouseUp(ByVal sender As Object,
Byval e As System.Windows.Forms.MouseEventArgs) Handles 1blDrag.MouseUp
dragging = False
End Sub

Private Sub cmdClose Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdClose.Click
Me.Close()
End Sub

End Class

375

376

CHAPTER 9 WINDOWS FORMS

9-15. Create an Animated System Tray Icon

Problem

You need to create an animated system tray icon (perhaps to indicate the status of a long-running task).

Solution

Create and show a NotifyIcon control. Use a timer that fires periodically (every second or so) and
updates the NotifyIcon.Icon property.

How It Works

The .NET Framework makes it easy to show a system tray icon with the NotifyIcon component. You
simply need to add this component to a form and supply an icon by setting the Icon property. Optionally,
you can add a linked context menu through the ContextMenu property. The NotifyIcon component

automatically displays its context menu when it’s right-clicked. You can animate a system tray icon
by swapping the icon periodically.

The Code

The following example uses eight icons, each of which shows a moon graphic in a different stage of
fullness. By moving from one image to another, the illusion of animation is created.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-15.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 15

An array to hold the set of Icons used to create the
animation effect.
Private images As Icon() = New Icon(8) {}

An integer to identify the current icon to display.
Dim offset As Integer = 0

Private Sub Recipe09 15 Load(ByVal sender As Object,
Byval e As System.EventArgs) Handles Me.Load

' Load the basic set of eight icons.
images(0) = New Icon("moon01.ico"
images(1) = New Icon("moon02.ico"
images(2) = New Icon("moon03.ico"
images(3) = New Icon("moon04.ico"
images(4) = New Icon("moon05.ico"
images(5) = New Icon("moon06.ico"
images(6) = New Icon("moon07.ico"
images(7) = New Icon("moon08.ico"

End Sub

CHAPTER 9 WINDOWS FORMS

Private Sub timer Elapsed(ByVal sender As Object, ‘=
ByVal e As System.Timers.ElapsedEventArgs) Handles timer.Elapsed

Change the icon. This event handler fires once every
second (500ms).

notifyIcon.Icon = images(offset)

offset += 1

If offset > 7 Then offset = 0

End Sub

End Class
9-16. Validate an Input Control

Problem

You need to alert the user of invalid input in a control, such as a TextBox.

Solution

Use the ErrorProvider component to display an error icon next to the offending control. Check for
errors before allowing the user to continue.

How It Works

You can perform validation in a Windows-based application in a number of ways. One approach is
to refuse any invalid character as the user presses a key by using a MaskedTextBox control, as shown
in recipe 9-8. Another approach is to respond to control validation events and prevent users from
changing focus from one control to another if an error exists. A less invasive approach is to simply
flag the offending control in some way so that the user can review all the errors at once. You can use
this approach by adding the ErrorProvider component to your form.

The ErrorProvider is a special property extender component that displays error icons next to
invalid controls. You show the error icon next to a control by using the ErrorProvider.SetError
method and specifying the appropriate control and a string error message. The ErrorProvider will
then show a warning icon to the right of the control. When the user hovers the mouse above the
warning icon, the detailed message appears. To clear an error, just pass an empty string to the
SetError method.

You need to add only one ExrrorProvider component to your form, and you can use it to display
an error icon next to any control. To add the ErrorProvider, drag it on the form or into the component
tray, or create it manually in code.

The Code

The following example checks the value that a user has entered into a text box whenever the text box
loses focus. The code validates this text box using a regular expression that checks to see whether the
value corresponds to the format of a valid e-mail address (see recipe 2-5 for more details on regular
expressions). If validation fails, the ExrorProvider is used to display an error message. If the text is

valid, any existing error message is cleared from the ErrorProvider. Finally, the Click event handler
for the OK button steps through all the controls on the form and verifies that none of them has errors
before allowing the example to continue. In this example, an empty text box is allowed, although it

377

378 CHAPTER 9 WINDOWS FORMS

would be a simple matter to perform additional checks when the OK button is clicked for situations
where empty text boxes are not acceptable.

Imports System

Imports System.Windows.Forms

Imports System.Text.RegularExpressions
' All designed code is stored in the autogenerated partial
class called Recipe09-16.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 16

Button click event handler ensures the ErrorProvider is not
reporting any error for each control before proceeding.

Private Sub Buttoni Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles Buttoni.Click

Dim errorText As String = String.Empty
Dim invalidInput As Boolean = False

For Each ctrl As Control In Me.Controls
If Not errProvider.GetError(ctrl) = String.Empty Then
errorText += " * " & errProvider.GetError(ctrl) & w»
ControlChars.NewlLine
invalidInput = True
End If
Next

If invalidInput Then
MessageBox.Show(String.Format("This form contains the " & w»
"following unresolved errors:{0}{0}{1}", ControlChars.NewlLine, errorText, w»
"Invalid Input", MessageBoxButtons.OK, MessageBoxIcon.Warning))
Else
Me.Close()
End If

End Sub
" When the TextBox loses focus, check that the contents are a valid
e-mail address.
Private Sub txtEmail Leave(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles txtEmail.Leave
' Create a regular expression to check for valid e-mail addresses.
Dim emailRegEx As Regex

emailRegEx = New Regex("~[\w-]+@([\w]+\.)+[\w]+$")

Validate the text from the control that raised the event.
Dim ctrl As Control = DirectCast(sender, Control)

If emailRegEx.IsMatch(ctrl.Text) Or ctrl.Text = String.Empty Then
errProvider.SetError(ctrl, String.Empty)

CHAPTER 9 WINDOWS FORMS

Else
errProvider.SetError(ctrl, "This is not a valid email address.")
End If

End Sub

End Class

Usage

Figure 9-13 shows how the ErrorProvider control indicates an input error for the TextBox control
when the example is run.

! Recipe09-16 [F=NEER™

Emai InvalidEmailAddress

ﬁ%This is not a valid email address.]

Figure 9-13. A validated form with the ErrorProvider
9-17. Use a Drag-and-Drop Operation

Problem

You need to use the drag-and-drop feature to exchange information between two controls (possibly
in separate windows or in separate applications).

Solution

Start a drag-and-drop operation using the DoDragDrop method of the Control class, and then respond
to the DragEnter and DragDrop events.

How It Works

A drag-and-drop operation allows the user to transfer information from one place to another by clicking
an item and dragging it to another location. A drag-and-drop operation consists of the following three
basic steps:

1. The user clicks a control, holds down the mouse button, and begins dragging. If the control
supports the drag-and-drop feature, it sets aside some information.

2. The user drags the mouse over another control. If this control accepts the dragged type of
content, the mouse cursor changes to the special drag-and-drop icon (arrow and page). Oth-
erwise, the mouse cursor becomes a circle with a line drawn through it.

3. When the user releases the mouse button, the data is sent to the control, which can then
process it appropriately.

379

380

CHAPTER 9 WINDOWS FORMS

To support drag-and-drop functionality, you must handle the DragEnter, DragDrop, and (typi-
cally) MouseDown events. To start a drag-and-drop operation, you call the source control’s DoDragDrop
method. At this point, you submit the data and specify the type of operations that will be supported
(copying, moving, and so on). Controls that can receive dragged data must have the AllowDrop property
set to True. These controls will receive a DragEnter event when the mouse drags the data over them.
At this point, you can examine the data that is being dragged, decide whether the control can accept
the drop, and set the DragEventArgs.Effect property accordingly. The final step is to respond to the
DragDrop event in the destination control, which occurs when the user releases the mouse button.

The DragEventArgs.Data property, which is an IDataObject, represents the data that is being
dragged or dropped. IDataObject is an interface for transferring general data objects. You get the
data by using the GetData method. The GetDataPresent method, which accepts a String or Type, is
used to determine the type of data represented by the IDataObject.

The Code

The following example allows you to drag content between two text boxes, as well as to and from
other applications that support drag-and-drop operations:

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-17.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 17

Private Sub TextBox DragDrop(ByVal sender As Object, w»
Byval e As DragEventArgs) Handles TextBox1.DragDrop, TextBox2.DragDrop

Dim txt As TextBox = DirectCast(sender, TextBox)
txt.Text = DirectCast(e.Data.GetData(DataFormats.Text), String)

End Sub

Private Sub TextBox DragEnter(ByVal sender As Object, ‘=
ByVal e As DragEventArgs) Handles TextBox1.DragEnter, TextBox2.DragEnter

If e.Data.GetDataPresent(DataFormats.Text) Then
e.Effect = DragDropEffects.Copy

Else
e.Effect = DragDropEffects.None

End If

End Sub

Private Sub TextBox_MouseDown(ByVal sender As Object, ‘=
ByVal e As MouseEventArgs) Handles TextBox1.MouseDown, TextBox2.MouseDown

Dim txt As TextBox = DirectCast(sender, TextBox)

txt.SelectAll()

txt.DoDragDrop (txt.Text, DragDropEffects.Copy)
End Sub

End Class

CHAPTER 9 WINDOWS FORMS 381

9-18. Use Context-Sensitive Help

Problem

You want to display a specific help file topic depending on the currently selected control.

Solution

Use the HelpProvider component, and set the HelpKeyword and HelpNavigator extended properties
for each control.

How It Works

The .NET Framework provides support for context-sensitive help through the HelpProvider class.
The HelpProvider class is a special extender control. You add it to the component tray of a form, and
it extends all the controls on the form with a few additional properties, including HelpNavigator and
HelpKeyword. For example, Figure 9-14 shows a form that has two controls and a HelpProvider named
helpProvideri. The ListBox control, which is currently selected, has several help-specific properties
that are provided through the HelpProvider.

Properties >~ 1 x
Recipe09_18 System.Windows.Forms.Form i
EEEAE
CausesValidation True o
ContextMenuStrip (none)
ControlBox True
Cursor Default
DoubleBuffered False
Enabled True
Font Microsoft Sans Serif, 7.8p
ForeColor . ControlText
FormBorderStyle Sizable 3
HelpButton False T

HelpKeyword on helpProvider|

HelpMavigator on helpProvide Topic
HelpString on helpProviderl

Icon (Icon)
ImeMode MoControl
IsMdiContainer False
KeyPreview False
Language (Default)
Localizable False -

Figure 9-14. The HelpProvider extender properties

382

CHAPTER 9 WINDOWS FORMS

To use context-sensitive help with HelpProvider, follow these three steps:

1. Set the HelpProvider.HelpNamespace property with the name of the help file (for example,
myhelp.chm).

2. For every control that requires context-sensitive help, set the HelpNavigator extender property to
HelpNavigator.Topic.

3. For every control that requires context-sensitive help, set the HelpKeyword extender property
with the name of the topic that should be linked to this control. (The topic names are spe-
cific to the help file and can be configured in your help-authoring tools.)

If the user presses the F1 key while a control has focus, the help file will be launched automati-
cally, and the linked topic will be displayed in the help window. If the user presses F1 while positioned on
a control that does not have a linked help topic, the help settings for the containing control will be
used (for example, a group box or a panel). If there are no containing controls or the containing control
does not have any help settings, the form’s help settings will be used. You can also use the HelpProvider
methods to set or modify context-sensitive help mapping at runtime.

9-19. Display a Web Page in a Windows-Based Application

Problem

You want to display a web page and provide web-navigation capabilities within your Windows
Forms application.

Solution

Use the WebBrowser control to display the web page and other standard controls like buttons and text
boxes to allow the user to control the operation of the WebBrowser.

CGaution The WebBrowser control is a managed wrapper around the WebBrowser ActiveX control, which is
the same component used by Internet Explorer. This means that if you use a Main method, it must be annotated
with the STAThread attribute. Furthermore, the component is very resource-intensive and should be disposed of
correctly.

How It Works

The WebBrowser control, first introduced in .NET Framework 2.0, makes it a trivial task to embed
highly functional web browser capabilities into your Windows applications. The WebBrowser control
is responsible for displaying web pages and maintaining page history, but it does not provide any
controls for user interaction. Instead, the WebBrowser control exposes properties and events that you
can manipulate programmatically to control the operation of the WebBrowser. This approach makes
the WebBrowser control highly flexible and adaptable to almost any situation. Table 9-1 summarizes
some of the commonly used WebBrowser members related to web navigation.

You can also use the WebBrowser.DocumentText property to set (or get) the currently displayed
HTML contents of the WebBrowser. To manipulate the contents using the Document Object Model
(DOM), get an HtmlDocument instance via the Document property.

CHAPTER 9 WINDOWS FORMS

Table 9-1. Commonly Used Members of the WebBrowser Control

Member Description

Property

AllowNavigation Controls whether the WebBrowser can navigate to another page after its
initial page has been loaded

CanGoBack Indicates whether the WebBrowser currently holds back page history,
which would allow the GoBack method to succeed

CanGoForward Indicates whether the WebBrowser currently holds forward page history,
which would allow the GoForward method to succeed

IsBusy Indicates whether the WebBrowser is currently busy downloading a page

url Holds the URL of the currently displayed/downloading page

Method

GoBack Displays the previous page in the page history, if there is one

GoForward Displays the next page in the page history, if there is one

GoHome Displays the home page of the current user as configured in
Internet Explorer

Navigate Displays the web page at the specified URL

Stop Stops the current WebBrowser activity

Event

DocumentCompleted Signals that the active download has completed and the document is

displayed in the WebBrowser

The Code

The following example uses the WebBrowser control to allow users to navigate to a web page whose
address is entered into a TextBox. Buttons also allow users to move forward and backward through
page history and navigate directly to their personal home page.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe09-19.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09 19

Private Sub goButton Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles goButton.Click

Navigate to the URL specified in the textbox.
webBrowser1.Navigate(textURL.Text)

End Sub

383

384 CHAPTER 9 WINDOWS FORMS

Private Sub backButton Click(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles backButton.Click

Go to the previous page in the WebBrowser history.
webBrowser1.GoBack ()

End Sub

Private Sub homeButton Click(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles homeButton.Click

Navigate to the current user's home page.
webBrowser1.GoHome ()

End Sub

Private Sub forwardButton Click(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles forwardButton.Click
' Go to the next page in the WebBrowser history.
webBrowser1.GoForward()

End Sub

Private Sub Recipe09 19 Load(ByVal sender As Object,
Byval e As System.EventArgs) Handles Me.Load

Navigate to the Apress home page when the application first
loads.

webBrowser1.Navigate("http://www.apress.com")

End Sub

Event handler to perform general interface maintenance once a
document has been loaded into the WebBrowser.

Private Sub webBrowserl DocumentCompleted(ByVal sender As Object, ‘=
Byval e As WebBrowserDocumentCompletedEventArgs)
Handles webBrowser1.DocumentCompleted

Update the content of the TextBox to reflect the current URL.
textURL.Text = webBrowser1.Url.ToString
' Enable or disable the Back button depending on whether the
WebBrowser has back history
If webBrowserl.CanGoBack Then
backButton.Enabled = True
Else
backButton.Enabled = False
End If

http://www.apress.com

CHAPTER 9 WINDOWS FORMS

Enable or disable the Forward button depending on whether the
WebBrowser has forward history.
If webBrowser1.CanGoForward Then
forwardButton.Enabled = True
Else
forwardButton.Enabled = False
End If

End Sub

End Class
9-20. Create a Windows Presentation Foundation Application

Problem

You need to create a Windows Presentation Foundation (WPF) application using only managed
code (no XAML).

Solution

Create an instance of the System.Windows class, and use an instance of the System.Windows.Application
to display it.

How It Works

As mentioned in the introduction to this chapter, WPF is a new format for creating Windows-based
applications that uses an approach similar to ASP.NET. The front end is written using XAML, and
many tools are available for visually designing it and outputting XAML. The back end is handled by
managed code.

Although what we’ve just described is how WPF is meant to be used, it is still possible to create
a WPF application completely using managed code. This would allow you to benefit from the new
and powerful functionality available to WPF applications without having to learn a new language.
However, the downside is that you will be unable to visually design your applications because none
of the designers currently provides managed code output.

Two primary objects are required for any WPF application: System.Windows.Window and System.
Windows.Application. The Window object, similar to the Form object in Windows Forms applications,
is the visible representation of your application. There can be more than one Window, but your appli-
cation will end when the last one is closed. The Application object is invisible but is the underlying
object to any WPF application. Every WPF application must have one, and only one, Application
object.

To create a WPF application using managed code, you must first ensure that you have a refer-
ence to the following primary APIs: PresentationCore, PresentationFramework, and WindowsBase. The
most basic application requires only that you create a Window and Applicationinstance. You then call
the Run method of the Application class, which starts the application.

385

386 CHAPTER 9 WINDOWS FORMS

The Code

The following example creates a simple WPF application with a button. The form is centered on the
screen and closed when the button is clicked.

Imports System
Imports System.Windows
Imports System.Windows.Controls

Namespace Apress.VisualBasicRecipes.Chapter09

Class Recipe09 20
Inherits System.Windows.Window

Public Shared Sub Main()

Dim app As New Application
app.Run(New Recipe09 20)

End Sub
Public Sub New()
Dim btn As New Button
Title = "Recipe09-20"
Width = 300
Height = 300
Left = SystemParameters.PrimaryScreenWidth / 2 - Width / 2
Top = SystemParameters.PrimaryScreenHeight / 2 - Height / 2
AddHandler btn.Click, AddressOf ButtonClick
btn.Content = "Click To Close"
btn.Width = 150
btn.Height = 50
btn.ToolTip = "Close this WPF form"
Content = btn
End Sub
Private Sub ButtonClick(ByVal sender As Object, ByVal e As RoutedEventArgs)
Close()
End Sub

End Class
End Namespace

CHAPTER 9 WINDOWS FORMS

Usage

Figure 9-15 shows what the Windows Presentation Foundation application looks like when it
is executed.

[7 Recipe09-20 E=NER™

‘ Click To Close ‘
I

Close this WPF form

" A

Figure 9-15. A sample WPF application
9-21. Run a Windows Vista Application with Elevated Rights

Problem

Your Vista application requires administrator rights to execute.

Solution

Create an application manifest with the requestedExecutionLevel element set to requireAdministrator,
and then embed the manifest into your application.

Note Using the manifest solution is supported only in Windows Vista because it pertains to its User Account
Control (UAC) feature. If you are not using Vista, the manifest will be ignored, and you will want to use impersonation
to force your application to run under a different user’s account.

How It Works

Windows Vista institutes a new security model, in which everything is executed under the rights of a
normal user, even if launched by an administrator. To work around this, a feature known as User
Account Control (UAC) was added. If you have used Windows Vista and encountered a dialog box
requesting elevated permissions, then you have most likely encountered the UAC.

To support the UAC, your application must include a special manifest file that defines the UAC
options. Figure 9-16 shows a typical properties screen for a Visual Studio 2008 project, which now
includes the View UAC Settings button. Clicking this button will display the manifest that will be
embedded in your application.

387

388 CHAPTER 9 WINDOWS FORMS

»

Assembly name: Root namespace: b
Recipe9-21

Application type: Icon:

lConsoIe Application -] I(Default Icon) =

Startup object:

lApress.VisuaIBasicRecipes.ChapterOQ.RecipeOQ_ v]

l Assembly Information... l View UAC Settings l b

Enable application framework

Windows application framework properties

< | 11 r

Figure 9-16. View UAC Settings

The manifest is an XML file that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<asmvi:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1" w»
xmlns:asmvi="urn:schemas-microsoft-com:asm.v1" w»
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" w
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
<security>
<requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
<!-- UAC Manifest Options
If you want to change the Windows User Account Control level replace the
requestedExecutionlLevel node with one of the following.

<requestedExecutionLevel level="asInvoker" />
<requestedExecutionLevel level="requireAdministrator" />
<requestedExecutionlLevel level="highestAvailable" />

If you want to utilize File and Registry Virtualization for backward
compatibility then delete the requestedExecutionlevel node.
-->
<requestedExecutionLevel level="asInvoker" />
</requestedPrivileges>
</security>
</trustInfo>
</asmvi:assembly>

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 9 WINDOWS FORMS

To make your application require administrator access, ensure that the level attribute of the
requestedExecutionlevel property is set to requireAdministrator. Once you compile your applica-
tion, the manifest will be embedded into it. This will be shown by the small shield image that will

automatically become part of your application’s icon.

When you attempt to run the application within Visual Studio 2008, the dialog box shown in
Figure 9-17 will be displayed. This dialog box informs you that your application requires adminis-
trator rights. If you agree, Visual Studio 2008 will be restarted with administrator rights (as shown in
the title bar). If Visual Studio 2008 was already running under elevated administrator rights, you will

not see the dialog box.

Microsoft Visual Studio u

'ﬂ This task requires Visual Studio to have elevated permissions.

Why is using the Administrator or other account necessary?

¥ Restart under different credentials
Saves the current changes and then restarts Microsoft Visual Studio. You will be
prompted to change your user account.

% Cancel the task and return to Microsoft Visual Studio

|| Hide error information Cancel

Error while trying to run project: Unable to start program 'F\Programming\Visual Studio 2008\Visual
Basic 2008 Recipes\Chapter09\Recipe09-21\bin\Debug\Recipe(9-21.exe’".

This program requires additional permissions to start. To debug this program, restart Visual Studio as
an administrator.

Figure 9-17. View UAC Settings

When you attempt to run the application from within Windows, the standard UAC dialog box
will be displayed, requesting approval for elevated access. The application will not execute unless

you allow the elevation of rights.

L &

389

CHAPTER 10

Multimedia

Multimedia is an expansive subject that covers sound, video, graphics, and printing. The aim of
this chapter is to briefly touch on each main topic. If you want more detailed information, refer to books
devoted to the subject, such as Pro .NET 2.0 Graphics Programming by Eric White (Apress, 2005) or
Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005 by Matthew MacDonald (Apress, 2006).

The .NET Framework provides direct support for most multimedia functionality. The System.
Drawing namespace provides support for manipulating two-dimensional drawings. Most of the classes in
this namespace, such as Drawing2D and Graphics, wrap GDI32.dll and USER32.dll. These libraries
provide the native Graphics Device Interface (GDI) functionality in the Windows application program-
ming interface (API). They also make it easier to draw complex shapes, work with coordinates and
transforms, and process images. The Printing namespace, which contains classes related to printing, is
also part of the System.Drawing namespace. This namespace uses GDI support for drawing text or
images to aDocument object. Although this class does provide support for enumerating and collecting
information for installed printers, it is limited to local printers, and it does not support all informa-
tion, such as print jobs.

The System.Media namespace provides support for playing basic sounds, such as WAV files. If
you want to show a video file or play more sophisticated audio files, such as MP3s, you will need to
look beyond the .NET Framework.

For even more enhanced functionality, the NET Framework 3.0 introduced Windows Presenta-
tion Foundation (WPF). This version of the framework, which was initially released with the release
of Windows Vista, is responsible for much of the graphical effects used by it. WPF, as mentioned in
the previous chapter, is a new model for creating Windows applications. The interfaces are created
using Extensible Application Markup Language (XAML) while events are handled by managed code
(such as VB .NET). This is similar to how ASP.NET applications work where HTML is used for the
interface.

WPF also provides more enhanced support for graphics, including 3D support, and playing
video and audio files. For more detailed information, you should refer to any available books on the
subject, such as Applications = Code + Markup by Charles Petzoid (Microsoft Press, 2006) or Pro WPF:
Windows Presentation Foundation in .NET 3.0 by Matthew MacDonald (Apress, 2007).

This chapter presents recipes that show you how to use built-in .NET features and, where necessary,
native Win32 libraries via P/Invoke or COM Interop. The recipes in this chapter cover the following:

* Finding the fonts installed in your system (recipe 10-1)
¢ Performing hit testing with shapes (recipe 10-2)
* Creating an irregularly shaped form or control (recipe 10-3)

* Creating a sprite that can be moved around (recipe 10-4)

391

392

CHAPTER 10 MULTIMEDIA

* Displaying an image that can be made to scroll (recipe 10-5)

e Capturing an image of the desktop (recipe 10-6)

¢ Enabling double buffering to increase performance while redrawing (recipe 10-7)
e Creating a thumbnail for an existing image (recipe 10-8)

e Playing a beep or a system-defined sound (recipe 10-9), playing a WAV file (recipe 10-10),
playing a non-WAV file such as an MP3 file (recipe 10-11), and playing a video with DirectShow
(recipe 10-12)

e Retrieving information about the printers installed in the machine (recipe 10-13), printing a
simple document (recipe 10-14), printing a document that has multiple pages (recipe 10-15),
printing wrapped text (recipe 10-16), showing a print preview (recipe 10-17), and managing
print jobs (recipe 10-18)

Note Although itis possible to create Windows Presentation Foundation (WPF) applications using VB .NET, it is
more appropriate to use XAML, as intended. For this reason, this chapter does not contain any WPF recipes.

10-1. Find All Installed Fonts

Problem

You need to retrieve a list of all the fonts installed on the current computer.

Solution

Create a new instance of the System.Drawing.Text.InstalledFontCollection class, which contains a
collection of FontFamily objects representing all the installed fonts.

How It Works

The InstalledFontCollection class allows you to retrieve information about currently installed fonts,
via the Families property. The Families property is provided by the MustInherit FontCollection class
which InstalledFontCollection derives from.

The Code

The following code shows a form that iterates through the font collection when it is first created.
Every time it finds a font, it creates a new Label control that will display the font name in the given
font face (at a size of 14 points). The Label is added to a Panel control named pnlFonts with AutoScroll
set to True, allowing the user to scroll through the list of available fonts.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.text
' All designed code is stored in the autogenerated partial
class called Recipe10-01.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.

CHAPTER 10 MULTIMEDIA

Partial Public Class Recipe10 01

Private Sub Recipe10 01 _Load(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.load

Create the font collection.

Using fontFamilies As New InstalledFontCollection

Iterate through all font families

Dim offset As Integer = 10

For Each family As FontFamily In fontFamilies.Families

Try

Create a label that will display text in this font.
Dim fontlabel As New Label

fontlLabel.Text = family.Name
fontLabel.Font = New Font(family, 14)
fontlLabel.Left = 10

fontlLabel.Width = pnlFonts.Width
fontLabel.Top = offset

' Add the label to a scrollable Panel.
pnlFonts.Controls.Add(fontLabel)
offset += 30

Catch ex As ArgumentException

An ArgumentException will be thrown if the selected
font does not support regular style (the default used
when creating a font object). For this example, we
will display an appropriate message in the list.

Dim fontlabel As New Label

fontlLabel.Text = ex.Message

fontLabel.Font = New Font("Arial", 10, FontStyle.Italic)
fontlLabel.ForeColor = Color.Red

fontlLabel.Left = 10

fontLabel.Width = 500

fontlLabel.Top = offset

' Add the label to a scrollable Panel.
pnlFonts.Controls.Add(fontlLabel)
offset += 30

End Try

Next
End Using

End Sub
End Class

393

394 CHAPTER 10 MULTIMEDIA

Usage

Figure 10-1 shows results similar to what you will see when you run the recipe.

ol List of Installed Fonts EI&I“

ALGERIAN
Andalus

Angsana New
AngsanaUPC

Arabic Typesetting

Arial

Arial Black

Arial Narrow

Arial Rounded MT Bold

< | 111 P

"

Figure 10-1. A list of installed fonts
10-2. Perform Hit Testing with Shapes

Problem

You need to detect whether a user clicks inside a shape.

Solution

Test the point where the user clicked with methods such as Rectangle.Contains and Region.IsVisible
(in the System.Drawing namespace) or GraphicsPath.IsVisible (in the System.Drawing.Drawing2D
namespace), depending on the type of shape.

How It Works

Often, if you use GDI+ to draw shapes on a form, you need to be able to determine when a user clicks
in a given shape. You can determine this using a Rectangle and a Point. A Rectangle is defined by its
height, width, and upper-left coordinates, which are reflected by the Height, Width, X, and Y proper-
ties. A Point, which is an X and Y coordinate, represents a specific location on the screen. The .NET
Framework provides three methods to help with this task:

* The Rectangle.Contains method, which takes a point and returns true if the point is inside a
given rectangle. In many cases, you can retrieve a rectangle for another type of object. For
example, you can use Image.GetBounds to retrieve the invisible rectangle that represents the
image boundaries. The Rectangle structure is a member of the System.Drawing namespace.

e The GraphicsPath.IsVisible method, which takes a point and returns true if the point is
inside the area defined by a closed GraphicsPath. Because a GraphicsPath can contain multiple
lines, shapes, and figures, this approach is useful if you want to test whether a point is contained
inside a nonrectangular region. The GraphicsPath class is a member of the System.Drawing.
Drawing2D namespace.

CHAPTER 10 MULTIMEDIA

* The Region.IsVisible method, which takes a point and returns true if the point is inside the
area defined by a Region. A Region, like the GraphicsPath, can represent a complex nonrect-
angular shape. Region is a member of the System.Drawing namespace.

The Code

The following example shows a form that creates a Rectangle and a GraphicsPath. By default, these
two shapes are given light blue backgrounds. However, an event handler responds to the Form.
MouseMove event, checks to see whether the mouse pointer is in one of these shapes, and updates the
shape’s background to bright pink if the pointer is there.

Note that the highlighting operation takes place directly inside the MouseMove and Paint event
handlers. The painting is performed only if the current selection has changed. For simpler code, you
could invalidate the entire form every time the mouse pointer moves in or out of aregion and handle
all the drawing in the Form.Paint event handler, but this would lead to more drawing and generate
additional flicker as the entire form is repainted.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Drawing2D
' All designed code is stored in the autogenerated partial
class called Recipe10-02.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 02

Define the shapes used on this form.
Private path As GraphicsPath

Private rect As Rectangle

' Define the flags that track where the mouse pointer is.
Private inPath As Boolean = False

Private inRectangle As Boolean = False

' Define the brushes used for painting the shapes.
Private highlightBrush As Brush = Brushes.HotPink
Private defaultBrush As Brush = Brushes.LightBlue

Private Sub Recipe10 02 Load(ByVal sender As Object, ‘=

Byval e As System.EventArgs) Handles Me.load

' Create the shapes that will be displayed.

path = New GraphicsPath

path.AddE1llipse(10, 10, 100, 60)

path.AddCurve(New Point() {New Point(50, 50), New Point(10, 33), =
New Point(80, 43)})

path.AddLine(50, 120, 250, 80)

path.AddLine(120, 40, 110, 50)

path.CloseFigure()

rect = New Rectangle(100, 170, 220, 170)

End Sub

395

396 CHAPTER 10 MULTIMEDIA

Private Sub Recipe10 02 MouseMove(ByVal sender As Object, ‘=
Byval e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

Using g As Graphics = Me.CreateGraphics
' Perform hit testing with rectangle.
If rect.Contains(e.X, e.Y) Then
If Not inRectangle Then
inRectangle = True

Highlight the rectangle.
g.FillRectangle(highlightBrush, rect)
g.DrawRectangle(Pens.Black, rect)

End If
ElseIf inRectangle Then
inRectangle = False

' Restore the unhighlighted rectangle.
g.FillRectangle(defaultBrush, rect)
g.DrawRectangle(Pens.Black, rect)

End If

Perform hit testing with path.

If path.IsVisible(e.X, e.Y) Then
If Not inPath Then
inPath = True

Highlight the path.
g.Fillpath(highlightBrush, path)
g.DrawPath(Pens.Black, path)

End If
ElseIf inPath Then
inPath = False

' Restore the unhighlighted path.
g.FillPath(defaultBrush, path)
g.DrawPath(Pens.Black, path)

End If

End Using
End Sub

Private Sub Recipe10 02 Paint(ByVal sender As Object, ‘=
Byval e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Dim g As Graphics = e.Graphics

' Paint the shapes according to the current selection.
If inPath Then
g.FillPath(highlightBrush, path)
g.FillRectangle(defaultBrush, rect)
ElseIf inRectangle Then
g.FillRectangle(highlightBrush, rect)
g.FillPath(defaultBrush, path)

CHAPTER 10 MULTIMEDIA 397

Else
g.FillPath(defaultBrush, path)
g.FillRectangle(defaultBrush, rect)
End If

g.DrawPath(Pens.Black, path)
g.DrawRectangle(Pens.Black, rect)

End Sub

End Class

Usage

Figure 10-2 shows the application in action.

8! Hit Testing @&u

Figure 10-2. Hit testing with a Rectangle object and a GraphicsPath object
10-3. Create an Irregularly Shaped Control

Problem

You need to create a nonrectangular form or control.

Solution

Create a new System.Drawing.Region object that has the shape you want for the form, and assign it
to the Form.Region or Control.Region property.

398

CHAPTER 10 MULTIMEDIA

How It Works

To create a nonrectangular form or control, you first need to define the shape you want. The easiest
approach is to use the System.Drawing.Drawing2D.GraphicsPath object, which can accommodate
any combination of ellipses, rectangles, closed curves, and even strings. You can add shapes to a
GraphicsPathinstance using methods such as AddE11ipse, AddRectangle, AddClosedCurve, and AddString
Once you are finished defining the shape you want, you can create a Region object from this
GraphicsPath—just pass the GraphicsPath to the Region class constructor. Finally, you can assign the
Region to the Form.Region property or the Control.Region property.

The Code

The following example creates an irregularly shaped form (shown in Figure 10-3) using two curves
made of multiple points, which are converted into a closed figure using the GraphicsPath.
CloseAllFigures method.

Imports System

Imports System.Drawing

Imports System.Windows.Forms

Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
class called Recipe10-03.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 03

Private Sub Recipe1l0 03_Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load

Dim path As New GraphicsPath

Dim pointsA As Point() = New Point() {New Point(0, 0), =
New Point(40, 60), New Point(Me.Width - 100, 10)}

Dim pointsB As Point() = New Point() {New Point(Me.Width - 40, w»
Me.Height - 60), New Point(Me.Width, Me.Height), New Point(10, Me.Height)}

path.AddCurve(pointsA)
path.AddCurve(pointsB)

path.CloseAllFigures()
Me.Region = New Region(path)
End Sub

Private Sub cmdClose Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdClose.Click

Me.Close()
End Sub

End Class

CHAPTER 10 MULTIMEDIA

Usage

When you run the application, you will see results similar to Figure 10-3.

Note Another method for creating nonrectangular forms (not controls) is using the BackgroundImage and
TransparencyKey properties available in the Form class. However, this method could cause display problems
when monitors are set to a color depth greater than 24-bit. For more information about this topic, refer to the
Microsoft Knowledge Base article at http://support.microsoft.com/kb/822495.

Figure 10-3. A nonrectangular form

For an example that demonstrates a nonrectangular control, refer to recipe 10-4.
10-4. Create a Movable Sprite

Problem

You need to create a shape the user can manipulate on a form, perhaps by dragging it, resizing it, or
otherwise interacting with it.

Solution

Create a custom control, and override the painting logic to draw a shape. Assign your shape to the
Control.Region property. You can then use this Region to perform hit testing, which is demonstrated
in recipe 10-2.

How It Works

If you need to create a complex user interface that incorporates many custom-drawn elements,
you need a way to track these elements and allow the user to interact with them. The easiest approach in
.NET is to create a dedicated control by deriving a class from System.Windows . Forms.Control. You can

399

http://support.microsoft.com/kb/822495

400

CHAPTER 10 MULTIMEDIA

then customize the way this control appears and operates by adding the appropriate functionality
to the appropriate events. For example, if the control needs to respond in a certain way when it is
selected, you may want to add the needed functionality to the MouseEnter, MouselLeave, MouseUp, or
MouseDown event.

The Code

The following example shows a control that represents a simple ellipse shape on a form. All controls
are associated with a rectangular region on a form, so the E11ipseShape control generates an ellipse
that fills these boundaries (provided through the Control.ClientRectangle property). Once the
shape hasbeen generated, the Control.Region property is set according to the bounds on the ellipse.
This ensures events such as MouseMove, MouseDown, Click, and so on, will occur only if the mouse is
over the ellipse, not the entire client rectangle.

Here is the full E11ipseShape code:

Imports System
Imports System.Drawing
Imports System.Drawing.Drawing2D
" All designed code is stored in the autogenerated partial
class called EllipseShape.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Public Class EllipseShape

Inherits System.Windows.Forms.Control

Dim path As GraphicsPath = Nothing

Private Sub RefreshPath()
' Create the GraphicsPath for the shape (in this case

an ellipse that fits inside the full control area)

and apply it to the control by setting the Region

property.

path = New GraphicsPath

path.AddEllipse(Me.ClientRectangle)

Me.Region = New Region(path)

End Sub
Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)
MyBase.OnPaint(e)
If path IsNot Nothing Then
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
e.Graphics.FillPath(New SolidBrush(Me.BackColor), path)
e.Graphics.DrawPath(New Pen(Me.ForeColor, 4), path)
End If

End Sub

CHAPTER 10 MULTIMEDIA

Private Sub EllipseShape Resize(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.Resize

RefreshPath()
Me.Invalidate()

End Sub

End Class

You could define the E11ipseShape control in a separate class library assembly so you could add
itto the Visual Studio .NET Toolbox and use it at design time. However, even without taking this step,
it is easy to create a simple test application. The following Windows Forms application creates two
ellipses and allows the user to drag both of them around the form, simply by holding the mouse
down and moving the pointer:

Imports System

Imports System.Drawing
Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe10-04.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 04

Tracks when drag mode is on.
Private isDraggingA As Boolean = False
Private isDraggingB As Boolean = False
' The ellipse shape controls.

Private ellipseA, ellipseB As EllipseShape

Private Sub Recipe1l0 04 Load(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.load

Create and configure both ellipses.
ellipseA = New EllipseShape
ellipseA.Width = 100
ellipseA.Height = 100
ellipseA.Top = 30
ellipseA.Left = 30
ellipseA.BackColor = Color.Red
Me.Controls.Add(ellipseA)

ellipseB = New EllipseShape
ellipseB.Width = 100

ellipseB.Height = 100

ellipseB.Top = 130

ellipseB.Left = 130

ellipseB.BackColor = Color.lLightSteelBlue
Me.Controls.Add(ellipseB)

401

402 CHAPTER 10 MULTIMEDIA

Attach both ellipses to the same set of event handlers.
AddHandler ellipseA.MouseDown, AddressOf Ellipse MouseDown
AddHandler ellipseA.MouseUp, AddressOf Ellipse MouseUp

AddHandler ellipseA.MouseMove, AddressOf Ellipse MouseMove

AddHandler ellipseB.MouseDown, AddressOf Ellipse MouseDown
AddHandler ellipseB.MouseUp, AddressOf Ellipse MouseUp
AddHandler ellipseB.MouseMove, AddressOf Ellipse MouseMove

End Sub
Private Sub Ellipse MouseDown(ByVal sender As Object, ByVal e As MouseEventArgs)

If e.Button = Windows.Forms.MouseButtons.Left Then
' Get the ellipse that triggered this event.
Dim ctrl As Control = DirectCast(sender, Control)
ctrl.Tag = New Point(e.X, e.Y)

If ctrl Is ellipseA Then
isDraggingA = True
Else
isDraggingB = True
End If
End If

End Sub
Private Sub Ellipse MouseUp(ByVal sender As Object, ByVal e As MouseEventArgs)

isDraggingA = False
isDraggingB = False

End Sub

Private Sub Ellipse MouseMove(ByVal sender As Object, ByVal e As MouseEventArgs)

Get the ellipse that triggered this event.
Dim ctrl As Control = DirectCast(sender, Control)

If (isDraggingA And (ctrl Is ellipseA)) Or (isDraggingB And
(ctrl Is ellipseB)) Then

' Get the offset.
Dim pnt As Point = DirectCast(ctrl.Tag, Point)

Move the control.
ctrl.left = e.X + ctrl.Left - pnt.X
ctrl.Top = e.Y + ctrl.Top - pnt.Y
End If
End Sub

End Class

CHAPTER 10 MULTIMEDIA 403

Usage

Figure 10-4 shows the user about to drag an ellipse.

ol Sprite Test E@“

Figure 10-4. Dragging custom shape controls on a form
10-5. Create a Scrollable Image

Problem

You need to create a scrollable picture.

Solution

Leverage the automatic scroll capabilities of the System.Windows.Forms.Panel control by setting
Panel.AutoScroll to True and placing a System.Windows.Forms.PictureBox control with the image
content inside the Panel.

How It Works

The Panel control has built-in scrolling support, as shown in recipe 10-1. If you place any controls in
it that extend beyond its bounds and you set Panel.AutoScroll to True, the panel will show scroll
bars that allow the user to move through the content. This works particularly well with large images.
You can load or create the image in memory, assign it to a picture box (which has no intrinsic support for
scrolling), and then show the picture box inside the panel. The only consideration you need to
remember is to make sure you set the picture box dimensions equal to the full size of the image you
want to show.

The Code

The following example creates an image that represents a document. The image is generated as an
in-memory bitmap, and several lines of text are added using the Graphics.DrawString method. The
image is then bound to a picture box, which is shown in a scrollable panel.

404 CHAPTER 10 MULTIMEDIA

Imports System

Imports System.Drawing
Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe10-05.Designer.vb. You can see this

file by selecting Show All Files in Solution Explorer.
Public Class Recipel0 05

Private Sub Recipe1l0 05 Load(ByVal sender As Object, w»
Byval e As System.EventArgs) Handles Me.Load

Dim text As String = "The quick brown fox jumps over the lazy dog."

Using fnt As New Font("Tahoma", 14)

Create an in-memory bitmap.
Dim bmp As New Bitmap(600, 600)

Using g As Graphics = Graphics.FromImage(bmp)

g.FillRectangle(Brushes.White, New Rectangle(0, 0, bmp.Width, =
bmp.Height))

Draw several lines of text on the bitmap.
For i As Integer = 1 To 10
g.DrawString(text, fnt, Brushes.Black, 50, 50 + i * 60)
Next

End Using

Display the bitmap in the picture box.
pictureBox1.BackgroundImage = bmp
pictureBox1.Size = bmp.Size

End Using
End Sub

End Class

Usage

When you run the application, you will get results similar to those shown in Figure 10-5.

CHAPTER 10 MULTIMEDIA

8-l Scrollable Image Elﬂu

m

The quick brown fox jumps
The quick brown fox jumps | |

The quick brown fox jumps _

< | 11 | r

"

Figure 10-5. Adding scrolling support to custom content

10-6. Perform a Screen Capture

Problem

You need to take a snapshot of the current desktop.

Solution

Use the CopyFromScreen method of the Graphics class to copy screen contents.

How It Works

The Graphics class now includes CopyFromScreen methods that copy color data from the screen onto
the drawing surface represented by a Graphics object. This method requires you to pass the source
and destination points and the size of the image to be copied.

The Code

The following example captures the screen and displays it in a picture box. It first creates a new
Bitmap object and then invokes CopyFromScreen to draw onto the Bitmap. After drawing, the image is
assigned to the picture box.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

405

406 CHAPTER 10 MULTIMEDIA

' All designed code is stored in the autogenerated partial

class called Recipe10-06.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 06

Private Sub cmdCapture Click(ByVal sender As System.Object, w»
Byval e As System.EventArgs) Handles cmdCapture.Click

Dim screenCapture As New Bitmap(Screen.PrimaryScreen.Bounds.Width, w
Screen.PrimaryScreen.Bounds.Height)

Using g As Graphics = Graphics.FromImage(screenCapture)
g.CopyFromScreen(0, 0, 0, 0, screenCapture.Size)
End Using
pictureBox1.Image = screenCapture
End Sub
End Class
Usage

When you run the application and click the Capture button, you will get results similar to those
shown in Figure 10-6.

8-l Screen Capture [- Elﬂu

[oas o .

—'u. p—
";/| Home | Insert Page Layout Referenc

@ ﬁ Times New Roman -12 - |[sARa
_'=-1 - =
R |n|1|g_vab= x. X Aa-||¥ -
Clipboard ™ Font
H |
| 10-6. Perform a Scr: |

Figure 10-6. Capturing the screen contents

CHAPTER 10 MULTIMEDIA

10-7. Use Double Buffering to Increase Redraw Speed

Problem

You need to optimize drawing for a form or an authored control thatis frequently refreshed, and you
want to reduce flicker.

Solution
Set the DoubleBuffered property of the form to True.

How It Works

In some applications, you need to repaint a form or control frequently. This is commonly the case
when creating animations. For example, you might use a timer to invalidate your form every second.
Your painting code could then redraw an image at a new location, creating the illusion of motion.
The problem with this approach is that every time you invalidate the form, Windows repaints the
window background (clearing the form) and then runs your painting code, which draws the graphic
element by element. This can cause substantial onscreen flicker.

Double bufferingis a technique you can implement to reduce this flicker. With double buffering,
your drawing logic writes to an in-memory bitmap, which is copied to the form at the end of the
drawing operation in a single, seamless repaint operation. Flickering is reduced dramatically.

NET Framework 2.0 introduced a default double buffering mechanism for forms and controls.
You can enable this by setting the DoubleBuffered property of your form or control to True or by using
the SetStyle method.

The Code

The following example sets the DoubleBuffered property of the form to True and shows an animation
of an image alternately growing and shrinking on the page. The drawing logic takes place in the
Form.Paint event handler, and a timer invalidates the form in a preset interval so that the image can
be redrawn. The user can choose whether to enable double buffering through a checkbox on the
form. Without double buffering, the form flickers noticeably. When double buffering is enabled,
however, the image grows and shrinks with smooth, flicker-free animation.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Drawing2D
' All designed code is stored in the autogenerated partial
class called Recipe10-07.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 07

Track the image size and the type of animation
(expanding or shrinking).

Private isShrinking As Boolean =
Private imageSize As Integer = 0

False

Store the logo that will be painted on the form.
Private img As Image

407

408 CHAPTER 10 MULTIMEDIA

Private Sub Recipe1l0 07_Load(ByVal sender As Object,
Byval e As System.EventArgs) Handles Me.Load
' Load the logo image from the file.
img = Image.FromFile("test.jpg")

' Start the time that invalidates the form.
tmrRefresh.Start()

End Sub

Private Sub tmrRefresh Tick(ByVal sender As Object,

ByVal e As System.EventArgs) Handles tmrRefresh.Tick
' Change the desired image size according to the animation mode.

If isShrinking Then

imageSize -= 1
Else

imageSize += 1
End If
' Change the sizing direction if it nears the form border.
If imageSize > (Me.Width - 150) Then

isShrinking = True
ElseIf imageSize < 1 Then

isShrinking = False
End If

Me.Invalidate()
End Sub

Private Sub Recipe10 07 Paint(ByVal sender As Object, ‘=
Byval e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Dim g As Graphics

g = e.Graphics
g.SmoothingMode = SmoothingMode.HighQuality
' Draw the background.

g.FillRectangle(Brushes.Yellow, New Rectangle(New Point(0, 0), ‘=
Me.ClientSize))

Draw the logo image.
g.DrawImage(img, 50, 50, 50 + imageSize, 50 + imageSize)

End Sub

Private Sub chkUseDoubleBuffering CheckedChanged(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles chkUseDoubleBuffering.CheckedChanged

CHAPTER 10 MULTIMEDIA

Me.DoubleBuffered = chkUseDoubleBuffering.Checked
End Sub

End Class
10-8. Show a Thumbnail for an Image

Problem

You need to show thumbnails (small representations of pictures) for the images in a directory.

Solution

Read the image from the file using the Shared FromFile method of the System.Drawing. Image class.
You can then retrieve a thumbnail using the Image.GetThumbnailImage method.

How It Works

The Image class provides the functionality for generating thumbnails through the GetThumbnailImage
method. You simply need to pass the width and height of the thumbnail you want (in pixels), and the
Image class will create a new Image object that fits these criteria. Antialiasing is used when reducing
the image to ensure the best possible image quality, although some blurriness and loss of detail is
inevitable. (Antialiasingis the process of removing jagged edges, often in resized graphics, by adding
shading with an intermediate color.) In addition, you can supply a notification callback, allowing
you to create thumbnails asynchronously.

When generating a thumbnail, it is important to ensure that the aspect ratio remains constant.
For example, if you reduce a 200x 100 picture to a 50x50 thumbnail, the width will be compressed to
one quarter and the height will be compressed to one half, distorting the image. To ensure that the
aspectratio remains constant, you can change either the width or the height to a fixed size and then
adjust the other dimension proportionately.

Note If you attempt to load a file that is not a supported image type, you will receive an OutOfMemoryException.
This is important to know because it is not the error you might expect to receive in this situation.

The Code

The following example reads a bitmap file and generates a thumbnail that is not greater than
200x200 pixels while preserving the original aspect ratio:

Imports System

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe10-08.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 08

409

410 CHAPTER 10 MULTIMEDIA

Private thumbNail As Image
Private Sub Recipe1l0 08 Load(ByVal sender As Object, w»
Byval e As System.EventArgs) Handles Me.Load

Using img As Image = Image.FromFile("test.jpg")

Dim thumbnailWidth As Integer = 0
Dim thumbnailHeight As Integer = 0
' Adjust the largest dimension to 200 pixels.
This ensures that a thumbnail will not be larger than
200x200 pixel square for each one.
If img.Width > img.Height Then

thumbnailWidth = 200

thumbnailHeight = Convert.ToInt32((CSng(200) / img.Width) * w»

img.Height)
Else
thumbnailHeight = 200
thumbnailWidth = Convert.ToInt32((CSng(200) / img.Height) * w»
img.Height)
End If

thumbNail = img.GetThumbnailImage(thumbnailWidth, thumbnailHeight, '
Nothing, IntPtr.Zero)

End Using
End Sub

Private Sub Recipe10 08 Paint(ByVal sender As Object, ‘=
Byval e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

e.Graphics.DrawImage(thumbNail, 10, 10)
End Sub

End Class
10-9. Play a Simple Beep or System Sound

Problem

You need to play a simple system-defined beep or sound.

Solution

Use the managed Beep method of the Console class or the P1lay method of the SystemSound class.

CHAPTER 10 MULTIMEDIA 411

How It Works

Overloads of the Console.Beep method, introduced in .NET Framework 2.0, let you play a beep with
the default frequency and duration or with a frequency and duration you specify. Frequency is
represented in hertz (and must range from 37 to 32,767), and the duration is represented in milli-
seconds. Internally, these methods invoke the Beep Win32 function and use the computer’s internal
speaker. Thus, if the computer does not have an internal speaker, no sound will be produced.

The System.Media namespace contains the following classes for playing sound files:

* The SystemSound class represents a Windows sound event, such as an asterisk, beep, question,
and so on. It also defines a P1lay method, which lets you play the sound associated with it.

e The SystemSounds class defines properties that let you obtain the SystemSound instance of a
specific Windows sound event. For example, it defines an Asterisk property that returns a
SystemSound instance associated with the asterisk Windows sound event.

e The SoundPlayer class lets you play WAV files. For more information about how to play a WAV
file using this class, refer to recipe 10-10.

As an alternative for playing system sounds, you can also use the My namespace (refer to Chapter 5
for further details). My includes the My . Computer.Audio class, which contains the Shared P1laySystemSound
method for playing system sounds. It takes a SystemSound object as its parameter.

The Code

The following example plays two different beeps and the asterisk sound in succession, using the
Console and SystemSound classes:

Imports System

Imports System.Windows.Forms
Imports System.Media

" All designed code is stored in the autogenerated partial
class called Recipe10-09.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 09

Private Sub Recipe1l0 09 Load(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.load

Play a beep with default frequency and
duration (800 and 200, respectively)
Console.Beep()

Play a beep with frequency as 200 and duration as 300.
Console.Beep (200, 300)

Play the sound associated with the Asterisk event.
SystemSounds.Asterisk.Play()

End Sub

End Class

The following shows how to use the My namespace to play the system sound:

My .Computer.Audio.PlaySystemSound(SystemSounds.Asterisk)

412

CHAPTER 10 MULTIMEDIA

10-10. Play a WAV File

Problem
You need to play a WAV file.

Solution

Create anew instance of the System.Media. SoundPlayer class, pass the location or stream of the WAV
file, and invoke the Play method.

How It Works

The System.Media namespace, firstintroduced in .NET Framework 2.0, contains a SoundPlayer class.
SoundPlayer contains constructors that let you specify the location of a WAV file or its stream. Once
you have created an instance, you just need to invoke the Play method to play the file. The Play
method creates a new thread to play the sound and is thus asynchronous (unless a stream is used).
For playing the sound synchronously, use the PlaySync method. Note that SoundPlayer supports
only the WAV format.

Before a file is played, it is loaded into memory. You can load a file in advance by invoking the
Load or LoadSync method, depending on whether you want the operation to be asynchronous or
synchronous.

The My . Computer.Audio class provides an alternative for playing WAV files. This class consists of
the Shared methods Play, PlaySystemSound (refer to recipe 10-9), and Stop. The Play method, the equiva-
lent of the SoundPlayer.Play method, uses the PlayMode parameter to configure how the sound is played.
PlayMode is an AudioPlayMode enumerated type that can be set to Background (plays the sound asyn-
chronously), BackgroundLoop (plays the sound asynchronously and loops until the Stop method is
called), and WaitToComplete (plays the sound synchronously).

The Code
The following example shows a simple form that allows users to open any WAV file and play it:

Imports System

Imports System.Windows.Forms
Imports System.Media

' All designed code is stored in the autogenerated partial
class called Recipe10-10.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 10

Private Sub cmdOpen Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdOpen.Click

Allow the user to choose a file.
Dim openDialog As New OpenFileDialog

openDialog.Filter = "WAV Files|*.wav|All Files|*.*"

If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
Dim player As New SoundPlayer(openDialog.FileName)

CHAPTER 10 MULTIMEDIA

Try
player.Play()
Catch ex As Exception
MessageBox.Show("An error occurred while playing media.")
Finally
player.Dispose()
End Try
End If

End Sub

End Class

To use the My namespace, remove references to the Player object and replace Player.Play()
with this:

My .Computer.Audio.Play(openDialog.FileName)

10-11. Play a Sound File

Problem

You need to play a non-WAV format audio file such as an MP3 file.

Solution

Use the ActiveMovie COM component included with Windows Media Player, which supports WAV
and MP3 audio.

How It Works

The ActiveMovie Quartz library provides a COM component that can play various types of audio
files, including the WAV and MP3 formats. The Quartz type library is provided through quartz.dll
and is included as a part of Microsoft DirectX with Media Player and the Windows operating system.

The first step for using the library is to generate an interop class that can manage the interaction
between your .NET application and the unmanaged Quartz library. You can generate a C# class with
this interop code using the Type Library Importer utility (Tlbimp.exe) and the following command
line, where [WindowsDir] is the path for your installation of Windows:

tlbimp [WindowsDir]\system32\quartz.dll /out:QuartzTypelib.dll

Alternatively, you can generate the interop class using Visual Studio by adding a reference. To
do this, right-click your project in Solution Explorer, choose Add Reference from the context menu,
select the COM tab, and scroll down to select ActiveMovie Control Type Library. If you cannot find
the component in the list, you can browse to the file quartz.dll (shown in the previous path) and add
the reference that way or just use the previous method to create the library yourself.

Once the interop class has been generated and referenced by your project, you can work with
the IMediaControl interface. You can specify the file you want to play using RenderFile, and you can
control playback using methods such as Run, Stop, and Pause. The actual playback takes place on a
separate thread, so it will not block your code.

Although the NET Framework will eventually release any references to a COM object and collect the
memory it uses, it is best practice to do this yourself as soon as it is no longer needed. Managed code
does not access COM objects directly but instead uses a runtime callable wrapper (RCW). The RCW acts

413

414 CHAPTER 10 MULTIMEDIA

as a proxy between managed code and a referenced COM object. The Shared method ReleaseComObject,

from the System.Runtime.InteropServices.Marshal class, properly destroys the RCW and the COM
object it used.

The Code

The following example shows a simple form that allows you to open any audio file and play it. The
COM object is destroyed using ReleaseComObject.

You can also use the Quartz library to show movie files, as demonstrated in recipe 10-12.

Imports System

Imports System.Windows.Forms
Imports QuartzTypelib

" All designed code is stored in the autogenerated partial
class called Recipe10-11.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 11

Dim graphManager As QuartzTypelib.FilgraphManager

Private Sub cmdOpen Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdOpen.Click

Allow the user to choose a file.
Dim openDialog As New OpenFileDialog

openDialog.Filter = "Media FIles|*.wav;*.mp3;*.mp2;*.wma|All Files|*.*"

If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
' Access the IMediaControl interface.
graphManager = New QuartzTypelib.FilgraphManager

Dim mc As QuartzTypelLib.IMediaControl = DirectCast(graphManager, ‘=
QuartzTypelib.IMediaControl)

Specify the file.
mc.RenderFile(openDialog.FileName)

Try
mc.Run()
Catch ex As Exception
MessageBox.Show("An error occurred while playing media.")

End Try
End If

End Sub

Private Sub Recipe10 11 FormClosing(ByVal sender As Object, w»
ByvVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

CHAPTER 10 MULTIMEDIA

If graphManager IsNot Nothing Then
Destroy the COM object (QuartzTypelLib) that we are using.
System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
End If

End Sub

End Class
10-12. Show a Video with DirectShow

Problem
You need to play a video file (such as an MPEG, an AVI, or a WMV file) in a Windows Forms application.

Solution

Use the ActiveMovie COM component included with Windows Media Player. Bind the video output
to a picture box on your form by setting the IVideoWindow.Owner property to the PictureBox.Handle

property.

How It Works

Although the .NET Framework does not include any managed classes for interacting with video files,
you can leverage the functionality of DirectShow using the COM-based Quartz library included with
Windows Media Player and the Windows operating system. For information about creating an
interop assembly for the Quartz type library, refer to recipe 10-11.

Once you have created the interop assembly, you can use the IMediaControl interface to load
and play a movie. This is essentially the same technique demonstrated in recipe 10-11 with audio
files. However, if you want to show the video window inside your application interface (rather than in a
separate stand-alone window), you must also use the IVideoWindow interface. The core FilgraphManager
object can be cast to both the IMediaControl interface and the IVideoWindow interface (several other
interfaces are also supported, such as IBasicAudio, which allows you to configure balance and
volume settings). With the IVideoWindowinterface, you can bind the video output to a control on your
form, such as a Panel or a PictureBox. To do so, set the IVideoWindow.Owner property to the handle
for the control, which you can retrieve using the Control.Handle property. Then call IVideoWindow.
SetWindowPosition to set the window size and location. You can call this method to change the video
size during playback (for example, if the form is resized).

The Code

The following example shows a simple form that allows users to open any video file and play it back
in the provided picture box. The picture box is anchored to all sides of the form, so it changes size as
the form resizes. The code responds to the PictureBox.SizeChanged event to change the size of the corre-
sponding video window. Also, the reference to the QuartzTypelLib is destroyed using ReleaseComObject
(discussed in recipe 10-11) when the form is closed.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
Imports QuartzTypelib

415

416 CHAPTER 10 MULTIMEDIA

All designed code is stored in the autogenerated partial
class called Recipe10-12.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 12

Define the constants used for specifying the window style.
Private Const WS_CHILD As Integer = &H40000000

Private Const WS_CLIPCHILDREN As Integer = &H2000000

' Hold a form-level reference to the QuartzTypelib.FilgraphManager
object.

Private graphManager As FilgraphManager

Hold a form-level reference to the media control interface,
so the code can control playback of the currently loaded
movie.

Private mc As IMediaControl = Nothing

Hold a form-level reference to the video window in case it
needs to be resized.
Private videoWindow As IVideoWindow = Nothing

Private Sub cmdOpen Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdOpen.Click
" Allow the user to choose a file.
Dim openDialog As New OpenFileDialog

openDialog.Filter = "Media Files|*.mpg;*.avi;*.wma;*.mov;" & =
"¥.wav;*.mp2;*.mp3|All Files|*.*"

If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then

Stop the playback for the current movie, if it exists.
If mc IsNot Nothing Then mc.Stop()
' Load the movie file.
graphmanager = New FilgraphManager
graphmanager.RenderFile(openDialog.FileName)
' Attach the view to a picture box on the form.
Try
videoWindow = DirectCast(graphmanager, IVideoWindow)
videoWindow.Owner = pictureBox1.Handle.ToInt32
videoWindow.WindowStyle = WS CHILD Or WS_CLIPCHILDREN
videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, w»
pictureBox1.ClientRectangle.Top, pictureBoxi.ClientRectangle.Width, w»
pictureBox1.ClientRectangle.Height)

CHAPTER 10 MULTIMEDIA

Catch ex As Exception

" An error can occur if the file does not have a video
source (for example, an MP3 file).
You can ignore this error and still allow playback to
continue (without any visualization).
End Try

Start the playback (asynchronously).
mc = DirectCast(graphmanager, IMediaControl)
mc.Run()

End If
End Sub

Private Sub pictureBox1_ SizeChanged(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles pictureBox1.SizeChanged

If videoWindow IsNot Nothing Then

Try
videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, =
pictureBox1.ClientRectangle.Top, pictureBoxi.ClientRectangle.Width, w»
pictureBox1.ClientRectangle.Height)
Catch ex As Exception
' Ignore the exception thrown when resizing the form
when the file does not have a video source.
End Try

End If
End Sub

Private Sub Recipe10 12 FormClosed(ByVal sender As Object,
Byval e As System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

Destroy the COM object (QuartzTypelLib) that we are using.
If graphManager IsNot Nothing Then
System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
End If
End Sub
End Class
Usage

Figure 10-7 shows an example of the output you will see.

47

418

CHAPTER 10 MULTIMEDIA

85! Show Movie - @Eﬂ

[Open]

Figure 10-7. Playing a video file
10-13. Retrieve Information About Installed Printers

Problem

You need to retrieve a list of available printers.

Solution

Read the names in the InstalledPrinters collection of the System.Drawing.Printing.PrinterSettings
class.

How It Works

The PrinterSettings class encapsulates the settings for a printer and information about the printer.
For example, you can use the PrinterSettings class to determine supported paper sizes, paper sources,
and resolutions and check for the ability to print color or double-sided (duplexed) pages. In addition,
you can retrieve default page settings for margins, page orientation, and so on.

The PrinterSettings class provides a Shared InstalledPrinters string collection, which includes
the name of every printer installed on the computer. If you want to find out more information about the
settings for a specific printer, create a PrinterSettings instance, and set the PrinterName property
accordingly.

The Code

The following code shows a console application that finds all the printers installed on a computer
and displays information about the paper sizes and the resolutions supported by each one.

You do not need to take this approach when creating an application that provides printing
features. As you will see in recipe 10-14, you can use the PrintDialog class to prompt the user to
choose a printer and its settings. The PrintDialog class can automatically apply its settings to the
appropriate PrintDocument without any additional code.

CHAPTER 10 MULTIMEDIA

Imports System
Imports System.Drawing.Printing

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 13

Public Shared Sub Main()

For Each printerName As String In PrinterSettings.InstalledPrinters

Display the printer name.
Console.WritelLine("Printer: {0}", printerName)
' Retrieve the printer settings.
Dim printer As New PrinterSettings
printer.PrinterName = printerName
' Check that this is a valid printer.

(This step might be required if you read the printer name
from a user-supplied value or a registry or configuration
file setting.)
If printer.IsValid Then
Display the list of valid resolutions.
Console.WritelLine("Supported Resolutions:")

For Each resolution As PrinterResolution In w»
printer.PrinterResolutions
Console.WriteLine(" {0}", resolution)
Next
Console.WritelLine()

Display the list of valid paper sizes.
Console.WritelLine("Supported Paper Sizes:")

For Each size As PaperSize In printer.PaperSizes
If System.Enum.IsDefined(size.Kind.GetType, size.Kind) Then
Console.WritelLine(" {0}", size)
End If
Next
Console.WritelLine()
End If
Next
Console.ReadlLine()
End Sub
End Class

End Namespace

419

420

CHAPTER 10 MULTIMEDIA

Usage

When you run this recipe, you will results similar to the following:

Printer: EPSON al-cx11 advanced

Supported Resolutions:
[PrinterResolution High]
[PrinterResolution Medium]
[PrinterResolution Low]
[PrinterResolution Draft]
[PrinterResolution X=300 Y=300]
[PrinterResolution X=600 Y=600]

Supported Paper Sizes:
[PaperSize A4 210 x 297 mm Kind=A4 Height=1169 Width=827]
[PaperSize B4 257 x 364 mm Kind=B4 Height=1433 Width=1012]
[PaperSize B5 182 x 257 mm Kind=B5 Height=1012 Width=717]

Note You can print a document in almost any type of application. However, your application must include a
reference to the System.Drawing.d11 assembly. If you are using a project type in Visual Studio that would not
normally have this reference (such as a console application), you must add it.

10-14. Print a Simple Document

Problem

You need to print text or images.

Solution

Create a PrintDocument, and write a handler for the PrintDocument.PrintPage event that uses the
DrawString and DrawImage methods of the Graphics class to print data to the page.

How It Works

The .NET Framework uses an asynchronous event-based printing model. To print a document, you
createa System.Drawing.Printing.PrintDocument instance, configure its properties, and then call its
Print method, which schedules the print job. The common language runtime (CLR) will then fire the
BeginPrint, PrintPage, and EndPrint events of the PrintDocument class on a new thread. You handle
these events and use the provided System.Drawing.Graphics object to output data to the page. Graphics
and text are written to a page in the same way as you draw to a window using GDI+. However, you
might need to track your position on a page, because every Graphics class method requires explicit
coordinates that indicate where to draw.

You configure printer settings through the PrintDocument.PrinterSettings and PrintDocument.
DefaultPageSettings properties. The PrinterSettings property returns a full PrinterSettings object
(as described in recipe 10-13), which identifies the printer that will be used. The DefaultPageSettings
property provides a full PageSettings object that specifies printer resolution, margins, orientation,
and so on. You can configure these properties in code, or you can use the System.Windows . Forms.
PrintDialog class to let the user make the changes using the standard Windows Print dialog box,

CHAPTER 10 MULTIMEDIA 421

shown in Figure 10-8. In the Print dialog box, the user can select a printer and choose the number of
copies. The user can also click the Properties button to configure advanced settings such as page
layout and printer resolution. Finally, the user can either accept or cancel the print operation by
clicking OK or Cancel.

Print u1

Printer

Name: EPSON al-cx11 advanced v] I Properties...]

Status: Ready

Type: EPSON AL-CX11 Advanced
Where: 192.168.1.106
Comment [Printto file
H Printrange Copies
I @ Al Number of copies: 1 =
Pages from: ta:

Selection _1)ﬂ _2)2 _3@ Collate

r S—r—

Figure 10-8. Using the PrintDialog class

Before using the PrintDialog class, you must explicitly attach it to a PrintDocument object by
setting the PrintDialog.Document property. Then any changes the user makes in the Print dialog box
will be automatically applied to the PrintDocument object.

The Code

The following example provides a form with a single button. When the user clicks the button, the
application creates a new PrintDocument, allows the user to configure print settings, and then starts
an asynchronous print operation (provided the user clicks OK). An event handler responds to the
PrintPage event and writes several lines of text and an image.

This example has one limitation: it can print only a single page. To print more complex docu-
ments and span multiple pages, you will probably want to create a specialized class that encapsulates
the document information, the current page, and so on, as described in recipe 10-15.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
Imports System.IO

' All designed code is stored in the autogenerated partial
class called Recipe10-14.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_ 14

422

CHAPTER 10 MULTIMEDIA

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdPrint.Click

' Create the document and attach an event handler.
Dim doc As New PrintDocument

AddHandler doc.PrintPage, AddressOf Doc_PrintPage

' Allow the user to choose a printer and specify other settings.
Dim dlgSettings As New PrintDialog
dlgSettings.Document = doc

' If the user clicked OK, print the document.

If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then
' This method returns immediately, before the print job starts.
' The PrintPage event will fire asynchronously.
doc.Print()

End If

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

' Determine the font.
Using fnt As New Font("Arial", 30)

' Determine the position on the page. In this case,

' we read the margin settings (although there is
nothing that prevents your code from going outside
the margin bounds).

Dim x As Single = e.MarginBounds.Left
Dim y As Single = e.MarginBounds.Top

' Determine the height of a line (based on the font used).
Dim lineHeight As Single = Font.GetHeight(e.Graphics)

' Print five lines of text.

For i As Integer =1 To 5
' Draw the text with a black brush, using the
' font and coordinates we have determined.
e.Graphics.DrawString("This is line " & i.ToString, Font, =

Brushes.Black, x, y)

' Move down the equivalent spacing of one line.
y += lineheight

Next

y += lineHeight

Draw an image.
e.Graphics.DrawImage(Image.FromFile(Path.Combine (‘=
Application.StartupPath,"test.jpg")), x, y)

End Using
End Sub

End Class

CHAPTER 10 MULTIMEDIA

10-15. Print a Multipage Document

Problem

You need to print complex documents with multiple pages and possibly print several different docu-
ments at once.

Solution

Place the information you want to print into a custom class that derives from PrintDocument, and in
the PrintPage event handler, set the PrintPageEventArgs.HasMorePages property to True as long as
pages are remaining.

How It Works

The PrintDocument.PrintPage event is triggered to let you to print only a single page. If you need to
print more pages, you need to set the PrintPageEventArgs.HasMorePages property to True in the
PrintPage eventhandler. Aslong as HasMorePages is set to True, the PrintDocument class will continue
firing PrintPage events. However, it is up to you to track which page you are on, what data should be
placed on each page, and what is the last page for which HasMorePage is not set to True. To facilitate
this tracking, it is a good idea to create a custom class.

The Code

The following example shows a class called TextDocument. This class inherits from PrintDocument
and adds three properties. Text stores an array of text lines, PageNumber reflects the last printed page,
and Offset indicates the last line that was printed from the Text array.

Public Class TextDocument
Inherits PrintDocument

Private m Text As String()
Private m_PageNumber As Integer
Private m Offset As Integer

Public Sub New(ByVal txt As String())
Me.Text = txt
End Sub

Public Property Text() As String()
Get
Return m_Text
End Get
Set(Byval value As String())
m_Text = value
End Set
End Property

423

424 CHAPTER 10 MULTIMEDIA

Public Property PageNumber() As Integer
Get
Return m_PageNumber
End Get
Set(ByVval value As Integer)
m_PageNumber = value
End Set
End Property

Public Property Offset() As Integer
Get
Return m Offset
End Get
Set(Byval value As Integer)
m Offset = value
End Set
End Property

End Class

Depending on the type of material you are printing, you might want to modify this class. For
example, you could store an array of image data, some content that should be used as a header or
footer on each page, font information, or even the name of a file from which you want to read the
information. Encapsulating the information in a single class makes it easier to print more than one
document at the same time. This is especially important because the printing process runs in a new
dedicated thread. As a consequence, the user is able to keep working in the application and therefore
update your data while the pages are printing. So, this dedicated class should contain a copy of the
data to print to avoid any concurrency problems.

The code that initiates printing is the same as in recipe 10-14, but now it creates a TextDocument
instance instead of a PrintDocument instance. The PrintPage event handler keeps track of the current
line and checks whether the page has space before attempting to print the next line. If a new page is
needed, the HasMorePages property is set to True and the PrintPage event fires again for the next page.
If not, the print operation is deemed complete. This simple code sample also takes into account
whether a line fits on the page, according to the height (see recipe 10-16).

The full form code is as follows:

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
' All designed code is stored in the autogenerated partial
class called Recipe10-15.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 15

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdPrint.Click

Create a document with 100 lines.
Dim printText As String() = New String(100) {}

CHAPTER 10 MULTIMEDIA

For i As Integer = 1 To 100
printText(i) = i.ToString

printText(i) += ": The quick brown fox jumps over the lazy dog."
Next

Dim doc As New TextDocument(printText)
AddHandler doc.PrintPage, AddressOf Doc_PrintPage

Dim dlgSettings As New PrintDialog
dlgSettings.Document = doc

' If the user clicked OK, print the document.

If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then
' This method returns immediately, before the print job starts.
' The PrintPage event will fire asynchronously.
doc.Print()

End If

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)
' Retrieve the document that sent this event.
Dim doc As TextDocument = DirectCast(sender, TextDocument)
' Determine the font and determine the line height.
Using fnt As New Font("Arial", 10)
Dim lineHeight As Single = Font.GetHeight(e.Graphics)
' Create variables to hold position on the page.
Dim x As Single = e.MarginBounds.Left
Dim y As Single = e.MarginBounds.Top

Increment the page counter (to reflect the page that
is about to be printed).
doc.PageNumber += 1

" Print all the information that can fit on the page.
' This loop ends when the next line would go over the
bottom margin or there are no more lines to print.
While ((y + lineHeight) < e.MarginBounds.Bottom And ‘=
doc.0ffset <= doc.Text.GetUpperBound(0))
e.Graphics.DrawString(doc.Text(doc.0ffset), Font, w»
Brushes.Black, x, y)

Move to the next line of data.
doc.Offset += 1
' Move the equivalent of one line down the page.
y += lineHeight
End While

425

426 CHAPTER 10 MULTIMEDIA

If doc.Offset < doc.Text.GetUpperBound(0) Then

' There is still at least one more page. Signal
this event to fire again.

e.HasMorePages = True
End If

End Using
End Sub

End Class
10-16. Print Wrapped Text

Problem

You need to parse a large block of text into distinct lines that fit on one page.

Solution

Use the Graphics.DrawString method overload that accepts a bounding rectangle.

How It Works

Often, you will need to break a large block of text into separate lines that can be printed individually
on a page. The .NET Framework can perform this task automatically, provided you use a version of
the Graphics.DrawString method that accepts a bounding rectangle. You specify a rectangle that
represents where you want the text to be displayed. The text is then wrapped automatically to fit
within those confines.

The Code

The following code demonstrates this approach, using the bounding rectangle that represents the
printable portion of the page. It prints a large block of text from a text box on the form.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
' All designed code is stored in the autogenerated partial
class called Recipe10-16.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 16

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=

ByVal e As System.EventArgs) Handles cmdPrint.Click
' Create the document and attach an event handler.

Dim text As String = "Windows Server 2003 builds on the core strengths " & _
"of the Windows family of operating systems--security, manageability, " & _
"reliability, availability, and scalability. Windows Server 2003 " & _
"provides an application environment to build, deploy, manage, and " & _
"run XML web services. Additionally, advances in Windows Server 2003 " & _

CHAPTER 10 MULTIMEDIA 427

"provide many benefits for developing applications.”

Dim doc As New ParagraphDocument (text)

AddHandler doc.PrintPage, AddressOf Doc_PrintPage

" Allow the user to choose a printer and specify other settings.

Dim dlgsettings As New PrintDialog

dlgsettings.Document = doc

' If the user clicked OK, print the document.

If dlgsettings.ShowDialog = Windows.Forms.DialogResult.OK Then
doc.Print()

End If

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)
' Retrieve the document that sent this event.
Dim doc As ParagraphDocument = DirectCast(sender, ParagraphDocument)

' Define the font and text.
Using fnt As New Font("Arial", 35)
e.Graphics.DrawString(doc.Text, Font, Brushes.Black,
e.MarginBounds, StringFormat.GenericDefault)
End Using

End Sub
End Class

Public Class ParagraphDocument
Inherits PrintDocument

Private m_Text As String

Public Sub New(ByVal txt As String)
Me.Text = txt
End Sub

Public Property Text() As String
Get
Return m_Text
End Get
Set(Byval value As String)
m_Text = value
End Set
End Property

End Class

428

CHAPTER 10 MULTIMEDIA

10-17. Show a Dynamic Print Preview

Problem

You need to use an onscreen preview that shows how a printed document will look.

Solution

Use PrintPreviewDialog or PrintPreviewControl (both of which are found in the System.Windows.
Forms namespace).

How It Works

The .NET Framework provides two elements of user interface that can take a PrintDocument instance, run
your printing code (such as the code demonstrated in recipe 10-15), and use it to generate a graphical
onscreen preview:

e The PrintPreviewDialog, which shows a preview in a stand-alone form

e The PrintPreviewControl, which shows a preview in a control that can be embedded in one
of your own custom forms

To use a stand-alone print preview form, create a PrintPreviewDialog object, assign its Document
property, and call the Show method:

Dim dlgPreview As New PrintPreviewDialog
dlgPreview.Document = doc
dlgPreview.Show()

The Print Preview window (shown in Figure 10-9) provides all the controls the user needs to
move from page to page, zoom in, and so on. The window even provides a print button that allows
the user to send the document directly to the printer. You can tailor the window to some extent by
modifying the PrintPreviewDialog properties.

ol Print preview E@g
SO-BmBB || Cose Page| 1

1: The quick brown fox jumps over the lazy dog.
2: The quick brown fox jumps over the lazy dog.
3: The quick brown fox jumps over the lazy dog.
4: The quick brown fox jumps over the lazy dog.
5: The quick brown fox jumps over the lazy dog.
6: The quick brown fox jumps over the lazy dog.
7: The quick brown fox jumps over the lazy dog.
&: The quick brown fox jumps over the lazy dog.
9: The quick brown fox jumps over the lazy dog.
10: The quick brown fox jumps over the lazy dog.
11: The quick brown fox jumps over the lazy dog.
12: The auick brown fox iumps over the lazv doa.
< I = »

" A

Figure 10-9. Using the PrintPreviewDialog control

CHAPTER 10 MULTIMEDIA 429

You can also add a PrintPreviewControl control to any of your forms to show a preview alongside
other information. In this case, you do not need to call the Show method. As soon as you set the
PrintPreviewControl.Document property, the previewis generated. To clear the preview, set the Document
property to Nothing. To refresh the preview, reassign the Document property.PrintPreviewControl shows
only the preview pages, not any additional controls. However, you can add your own controls for
zooming, tiling multiple pages, and so on. You simply need to adjust the PrintPreviewControl properties
accordingly.

The Code

As an example, consider the form shown in Figure 10-10. It incorporates a PrintPreviewControl and
allows the user to select a zoom setting.

s)
ol Print Preview -

l
0
&

»
=
=

1: The quick brown fox jumps over the lazy dog.
2: The quick brown fox jumps over the lazy dog.
3: The quick brown fox jumps over the lazy dog.
4: The quick brown fox jumps over the lazy dog.
5: The quick brown fox jumps over the lazy dog.
6: The quick brown fox jumps over the lazy dog.
7: The quick brown fox jumps over the lazy dog.
&: The quick brown fox jumps over the lazy dog.
9: The quick brown fox jumps over the lazy dog.
10: The quick brown fox jumps over the lazy dog.
11: The quick brown fox jumps over the lazy dog.
12: The quick brown fox jumps over the lazy dog. _
13: The auick brown fox iumps over the lazv doa.
4 {11 F

i%%é%%‘é‘é%

)

Figure 10-10. Using the PrintPreviewControl in a custom window

Here is the complete form code:

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
" All designed code is stored in the autogenerated partial
class called Recipe10-17.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 17

Private doc As PrintDocument
Private Sub Recipe10 17 Load(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles Me.load
' Set the allowed zoom settings.
For i As Integer = 1 To 10
1stZoom.Items.Add((i * 10).ToString)
Next

430 CHAPTER 10 MULTIMEDIA

Create a document with 100 lines.
Dim printText As String() = New String(100) {}

For i As Integer = 1 To 100
printText(i) = i.ToString

printText(i) += ": The quick brown fox jumps over the lazy dog."
Next

Dim doc As New TextDocument(printText)
AddHandler doc.PrintPage, AddressOf Doc_PrintPage

' Set the Zoom list to "100"
1stZoom.Text = "100"

' Configure the PrintPreviewControl to show the page at 100%
(Zoom = 1), and two pages vertically (Rows = 2). Finally,
we assign the doc variable to the Document property.
PrintPreviewControl.Zoom = 1

printPreviewControl.Rows = 2

printPreviewControl.Document = doc

End Sub

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdPrint.Click
' Set the zoom.
PrintPreviewControl.Zoom = Single.Parse(lstZoom.Text) / 100
' Rebind the PrintDocument to refresh the preview.
PrintPreviewControl.Document = doc

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)
' Retrieve the document that sent this event.
Dim doc As TextDocument = DirectCast(sender, TextDocument)
' Determine the font and determine the line height.
Using fnt As New Font("Arial", 10)
Dim lineHeight As Single = Font.GetHeight(e.Graphics)
' Create variables to hold position on page.
Dim x As Single = e.MarginBounds.Left
Dim y As Single = e.MarginBounds.Top

Increment the page counter (to reflect the page that
is about to be printed).
doc.PageNumber += 1

CHAPTER 10 MULTIMEDIA

Print all the information that can fit on the page.
This loop ends when the next line would go over the
margin bounds, or there are no more lines to print.
While ((y + lineHeight) < e.MarginBounds.Bottom And doc.Offset <= =
doc.Text.GetUpperBound(0))
e.Graphics.DrawString(doc.Text(doc.0ffset), Font, w»
Brushes.Black, x, y)

Move to the next line of data.

doc.Offset += 1

' Move the equivalent of one line down the page.
y += lineHeight

End While

If doc.Offset < doc.Text.GetUpperBound(0) Then

" There is still at least one more page. Signal
this event to fire again.

e.HasMorePages = True
End If

End Using
End Sub

End Class

(TextDocument class code omitted. See recipe 10-15.)
10-18. Manage Print Jobs

Problem

You need to pause or resume a print job or a print queue.

Solution

Use Windows Management Instrumentation (WMI). You can retrieve information from the print
queue using a query with the Win32 PrintJob class, and you can use the Pause and Resume methods
of the WMI Win32_PrintJob and Win32_Printer classes to manage the queue.

How It Works

WMI allows you to retrieve a vast amount of system information using a query-like syntax. One of

the tasks you can perform with WMI is to retrieve a list of outstanding print jobs, along with informa-
tion about each one. You can also perform operations such as printing and resuming a job or all the
jobs for a printer. To use WMI, you need to add a reference to the System.Management.dll assembly.

The Code

The following code shows a Windows application that interacts with the print queue. It performs a
WMI query to get alist of all the outstanding print jobs on the computer and displays the job Name for
each one in a list box. When the user selects the item, a more complete WMI query is performed, and

431

432 CHAPTER 10 MULTIMEDIA

additional details about the print job are displayed in a text box. Finally, the user can click the Pause/
Resume button after selecting a job to change its status.

Remember that Windows permissions might prevent you from pausing or resuming print jobs
created by another user. In fact, permissions might even prevent you from retrieving status informa-
tion and could cause a security exception to be thrown.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
Imports System.Management
Imports System.Collections
Imports System.text

' All designed code is stored in the autogenerated partial
class called Recipe10-18.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10 18

Private Sub cmdRefresh Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles cmdRefresh.Click

Call GetJobs()
End Sub

Private Sub Recipe1l0 18 Load(ByVal sender As Object, w»
Byval e As System.EventArgs) Handles Me.Load

Call GetJobs()
End Sub

This helper method attempts to bind directly to the
specified WMI job. If successful, the found job is
returned.
Private Function GetSelectedJob(ByVal jobName As String) As ManagementObject

Try
' Select the matching print job.
Dim job As New ManagementObject("Win32_PrintJob=""" & jobName & """")

job.Get()

Return job

Catch ex As Exception
' The job could not be found. It has most likely already completed.
Return Nothing

End Try

End Function
' This helper method performs a WMI query and returns all
' of the current WMI jobs.

Private Sub GetJobs()

CHAPTER 10 MULTIMEDIA 433

Select all the outstanding print jobs.
Dim query As String = "SELECT * FROM Win32_PrintJob"

Using jobQuery As New ManagementObjectSearcher(query)
Using jobs As ManagementObjectCollection = jobQuery.Get()
' Add the jobs in the queue to the list box.
1stJobs.Items.Clear()
txtJobInfo.Text = ""

For Each job As ManagementObject In jobs
1stJobs.Items.Add(job("Name"))
Next
End Using
End Using

End Sub

Private Sub lstJobs_SelectedIndexChanged(ByVal sender As Object, ‘=
Byval e As System.EventArgs) Handles lstJobs.SelectedIndexChanged

Dim job As ManagementObject = CetSelectedJob(lstJobs.Text)

If job Is Nothing Then
txtJobInfo.Text = ""
Exit Sub

End If

Display job information.
Dim jobInfo As New StringBuilder

jobInfo.AppendFormat("Document: {0}", job("Document").ToString)
jobInfo.Append(Environment.NewlLine)
jobInfo.AppendFormat("DriverName: {0}", job("DriverName").ToString)
jobInfo.Append(Environment.NewlLine)

jobInfo.AppendFormat("Status: {0}", job("Status").ToString)
jobInfo.Append(Environment.NewlLine)

jobInfo.AppendFormat("Owner: {0}", job("Owner").ToString)
jobInfo.Append(Environment.NewlLine)
jobInfo.AppendFormat("PagesPrinted: {0}", job("PagesPrinted").ToString)
jobInfo.Append(Environment.NewlLine)
jobInfo.AppendFormat("TotalPages: {0}", job("TotalPages").ToString)

If job("JobStatus") IsNot Nothing Then

txtJobInfo.Text += Environment.NewlLine

txtJobInfo.Text += "JobStatus: " & job("JobStatus").ToString
End If

If job("StartTime") IsNot Nothing Then
jobInfo.Append(Environment.NewLine)
jobInfo.AppendFormat("StartTime: {0}", job("StartTime").ToString)

End If

txtJobInfo.Text = jobInfo.ToString

End Sub

434 CHAPTER 10 MULTIMEDIA

Private Sub cmdPause Click(ByVal sender As System.Object, ‘=
Byval e As System.EventArgs) Handles cmdPause.Click

If 1stJobs.SelectedIndex = -1 Then Exit Sub
Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

If job Is Nothing Then Exit Sub
' Ensure that the job is not already paused (1).
If Not (CInt(job("StatusMask") And 1)) = 1 Then
' Attempt to pause the job.
Dim returnValue As Integer = CType(job.InvokeMethod("Pause", ‘=
Nothing), Integer)

Display information about the return value.
If returnvalue = 0 Then
MessageBox.Show("Successfully paused job.")
ElseIf returnValue = 5 Then
MessageBox.Show("Access denied.")
Else
MessageBox.Show("Unrecognized return value when pausing job.")
End If
End If

End Sub

Private Sub cmdResume Click(ByVal sender As System.Object,
Byval e As System.EventArgs) Handles cmdResume.Click

If 1stJobs.SelectedIndex = -1 Then Exit Sub
Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

If job Is Nothing Then Exit Sub
' Check to ensure that the job is actually paused (1).
If (CInt(job("StatusMask") And 1)) = 1 Then
' Attempt to resume the job.
Dim returnvalue As Integer = CType(job.InvokeMethod("Resume", ‘=
Nothing), Integer)

Display information about the return value.
If returnvalue = 0 Then
MessageBox.Show("Successfully resumed job.")
ElseIf returnValue = 5 Then
MessageBox.Show("Access denied.")
Else
MessageBox.Show("Unrecognized return value when resuming job.")
End If

End If

End Sub
End Class

CHAPTER 10 MULTIMEDIA 435

Usage

Figure 10-11 shows an example of running this application.

—
a-' Print Job Manager # E.L

Job Information:

Document Microsoft Word - 9705ch10ar2.doc -
DriverName: Adobe PDF Converter
Status: OK o |u

Adobe PDF. 14 L

Figure 10-11. Retrieving information from the print queue

Note Other WMI methods you might use in a printing scenario include AddPrinterConnection,
SetDefaultPrinter, CancelAllJobs, and PrintTestPage, all of which work with the Win32_Printer
class. For more information about WMI, refer to http://www.microsoft.com/whdc/system/pnppwr/wmi/
default.mspx.

http://www.microsoft.com/whdc/system/pnppwr/wmi

CHAPTER 11

Networking and Remoting

The Microsoft .NET Framework includes a full set of classes for network programming. These classes
support everything from socket-based programming with Transmission Control Protocol/Internet
Protocol (TCP/IP) to downloading files and HTML pages from the Web over Hypertext Transfer Protocol
(HTTP). Not only do these networking classes provide you with a rich set of tried-and-tested tools to
use in your own distributed applications, they are also the foundation on which two high-level distrib-
uted programming models integral to the .NET Framework are built: remoting and web services.

Although remoting and web services share many similarities (for example, they both abstract
cross-process and cross-machine calls as method invocations on remote objects), they also have
fundamental differences. Web services are built using cross-platform standards and are based on the
concept of XML messaging. Web services are executed by the ASP.NET runtime, which means they
gain ASP.NET features such as output caching. This also means that web services are fundamentally
stateless. Overall, web services are best suited when you need to cross platform boundaries (for
example, with aJava client calling an ASP.NET web service) or trust boundaries (for example, in business-
to-business transactions). Although web services are extremely useful and powerful, since they are
built on ASP .NET, which is not covered in this book, they will not be covered in this chapter.

Remoting is a .NET-specific technology for distributed objects and is the successor to Distrib-
uted Component Object Model (DCOM). It’s ideal for in-house systems in which all applications are
built on the .NET platform, such as the backbone of an internal order-processing system. Remoting
allows for different types of communication, including leaner binary messages and more efficient
TCP/IP connections, which aren’t supported by web services. In addition, remoting is the only tech-
nology that supports stateful objects and bidirectional communication through callbacks. It’s also
the only technology that allows you to send custom .NET objects over the wire.

Although not covered in detail in this chapter, it is extremely important to mention Windows
Communication Foundation (WCF). WCF was first introduced in the .NET Framework 3.0 and repre-
sents a central framework that encompasses most communication functionality (such as the ones
mentioned earlier) that previously were handled by various, unrelated namespaces. For more in-
depth coverage of WCF, you can refer to other specific resources such as Windows Communication
Foundation Unleashed by Craig McMurty, et al. (SAMS, 2007) or Pro WCF: Practical Microsoft SOA
Implementation (Pro) by Chris Peiris and Dennis Mulder (Apress, 2007).

The recipes in this chapter cover the following:

* Obtaining configuration and network statistic information about the network interfaces on
a computer, as well as detecting when network configuration changes occur (recipes 11-1
and 11-2)

e Downloading files from File Transfer Protocol (FTP) and HTTP servers (recipes 11-3, 11-4,
and 11-6)

* Responding to HTTP requests from within your application (recipe 11-5)

437

438

CHAPTER 11 NETWORKING AND REMOTING

¢ Sending e-mail messages with attachments using Simple Mail Transfer Protocol (SMTP)
(recipe 11-7)

¢ Using the Domain Name System (DNS) to resolve a host name into an Internet Protocol (IP)
address (recipe 11-8)

* Pinging an IP address to determine whether it is accessible and calculating round-trip
communication speeds by sending it an Internet Control Message Protocol (ICMP) Echo
request (recipe 11-9)

¢ Communicating between programs through the direct use of TCP in both synchronous and
asynchronous communication models (recipes 11-10 and 11-11)

¢ Communicating between processes using named pipes (recipe 11-13)

* Creating remotable objects and registering them with the .NET Framework’s remoting infra-
structure (recipes 11-14 and 11-15)

e Hosting a remote object in Internet Information Services (IIS) (recipe 11-16)

e Controlling the lifetime and versioning of remotable objects (recipes 11-17 and 11-18)

¢ Consuming a Real Simple Syndication (RSS) feed (recipe 11-17)
11-1. Obtain Information About the Local Network Interface

Problem

You need to obtain information about the network adapters and network configuration of the
local machine.

Solution

Call the Shared method GetAllNetworkInterfaces of the System.Net.NetworkInformation.
NetworkInterface class to get an array of objects derived from the abstract class NetworkInterface.
Each object represents a network interface available on the local machine. Use the members of each
NetworkInterface object to retrieve configuration information and network statistics for that interface.

How It Works

The System.Net.NetworkInformation namespace, which was first introduced in .NET Framework 2.0,
provides easy access to information about network configuration and statistics that was not readily
available to .NET applications previously.

The primary means of retrieving network information are the properties and methods of the
NetworkInterface class. You do not instantiate NetworkInterface objects directly. Instead, you
call the Shared method NetworkInterface.GetAllNetworkInterfaces, which returns an array of
NetworkInterface objects. Each object represents a single network interface on the local machine. You
can then obtain network information and statistics about the interface using the NetworkInterface
members described in Table 11-1.

CHAPTER 11 NETWORKING AND REMOTING

Tip The System.Net.NetworkInformation.IPGlobalProperties class (firstintroduced in .NET Frame-
work 2.0) also provides access to useful information about the network configuration of the local computer.

Table 11-1. Members of the NetworkInterface Class

Member Description

Properties

Description Gets a String that provides a general description of the interface.

Id Gets a String that contains the unique identifier of the interface.

IsReceiveOnly Gets a Boolean indicating whether the interface can only receive or
can both send and receive data.

Name Gets a String containing the name of the interface.

NetworkInterfaceType Gets a value from the System.Net.NetworkInformation.
NetworkInterfaceType enumeration that identifies the type of interface.
Common values include Ethernet, FastEthernetT, and Loopback.

OperationalStatus Gets a value from the System.Net.NetworkInformation.
OperationalStatus enumeration that identifies the status of the inter-
face. Common values include Down and Up.

Speed Gets a Long that identifies the speed (in bits per second) of the inter-
face as reported by the adapter, not based on dynamic calculation.

SupportsMulticast Gets a Boolean indicating whether the interface is enabled to receive
multicast packets.

Methods

GetIPProperties Returns a System.Net.NetworkInformation.IPInterfaceProperties
object that provides access to the TCP/IP configuration information
for the interface. Properties of the IPInterfaceProperties object
provide access to WINS, DNS, gateway, and IP address configuration.

GetIPv4Statistics Returns a System.Net.NetworkInformation.IPv4InterfaceStatistics
object that provides access to the TCP/IP v4 statistics for the interface.
The properties of the IPv4InterfaceStatistics object provide access
to information about bytes sent and received, packets sent and received,
discarded packets, and packets with errors.

GetPhysicalAddress Returns a System.Net.NetworkInformation.PhysicalAddress object
that provides access to the physical address of the interface. You
can obtain the physical address as a Byte array using the method
PhysicalAddress.GetAddressBytes or as a String using PhysicalAddress.
ToString.

Supports Returns a Boolean indicating whether the interface supports a speci-

fied protocol. You specify the protocol using a value from the System.
Net.NetworkInformation.NetworkInterfaceComponent enumeration.
Possible values include IPv4 and IPv6.

439

440 CHAPTER 11 NETWORKING AND REMOTING

The NetworkInterface class also provides two other Shared members that you will find useful:

* The Shared property LoopbackInterfaceIndex returns an Integer identifying the index of the
loopback interface within the NetworkInterface array returned by GetAlINetworkInterfaces.

¢ The Shared method GetIsNetworkAvailable returns a Boolean indicating whether any
network connection is available; that is, has an OperationalStatus value of Up.

The Code

The following example uses the members of the NetworkInterface class to display information
about all the network interfaces on the local machine:

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipell 01

Public Shared Sub Main()
' Only proceed if there is a network available.
If NetworkInterface.GetIsNetworkAvailable Then
' Get the set of all NetworkInterface objects for the local
' machine.
Dim interfaces As NetworkInterface() = =
NetworkInterface.GetAllNetworkInterfaces
' TIterate through the interfaces and display information.
For Each ni As NetworkInterface In interfaces
Report basic interface information.
Console.Writeline("Interface Name: {0}", ni.Name)
Console.WritelLine(" Description: {0}", ni.Description)
Console.WritelLine(" ID: {o}", ni.Id)
Console.WriteLine(" Type: {0}", ni.NetworkInterfaceType)
Console.WritelLine(" Speed: {0}", ni.Speed)
Console.WritelLine(" Status: {0}", ni.OperationalStatus)

Report physical address.
Console.WritelLine(" Physical Address: {0}", w=
ni.GetPhysicalAddress().ToString)

Report network statistics for the interface.

Console.WritelLine(" Bytes Sent: {0}", =
ni.GetIPv4Statistics().BytesSent)
Console.WritelLine(" Bytes Received: {0}", w»

ni.GetIPv4Statistics.BytesReceived)
' Report IP configuration.
Console.WriteLine(" IP Addresses:")
For Each addr As UnicastIPAddressInformation In ‘w»
ni.GetIPProperties.UnicastAddresses
Console.WriteLine(" - {0} (lease expires {1})", =
addr.Address, DateTime.Now.AddSeconds(addr.Dhcpleaselifetime))

CHAPTER 11 NETWORKING AND REMOTING

Next
Console.WritelLine(Environment.NewLine)

Next
Else

Console.WritelLine("No network available.")
End If

Wait to continue.
Console.WritelLine(Environment.NewlLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

11-2. Detect Changes in Network Connectivity

Problem

You need a mechanism to check whether changes to the network occur during the life of your
application.

Solution

Add handlers to the Shared NetworkAddressChanged and NetworkAvailabilityChanged events imple-
mented by the System.Net.NetworkInformation.NetworkChange class. The My object also offers a
shared NetworkAvailabilityChanged event. This event is implemented by the My .Computer.Network
class, which is part of the Microsoft.VisualBasic.Devices namespace. (See Chapter 5 for more
information about the My object.)

How It Works

The NetworkChange class provides an easy-to-use mechanism that allows applications to be aware of
changes to network addresses and general network availability. This allows your applications to
adapt dynamically to the availability and configuration of the network.

The NetworkAvailabilityChanged event fires when a change occurs to general network availability.
The NetworkAvailabilityChangedEventHandler delegate is used to handle this event and is passed
aNetworkAvailabilityEventArgs object when the event fires. The NetworkAvailabilityEventArgs.
IsAvailable property returns a Boolean value indicating whether the network is available or unavail-
able following the change.

The NetworkAvailabilityChanged event, of the My object, works in the same way as the matching
event in the NetworkChange class. This version of the event uses the NetworkAvailableEventHandler
delegate to handle this event, but its event arguments parameter is a NetworkAvailableEventArgs
object. Also, the property for retrieving network availability is named IsNetworkAvailable.

The NetworkAddressChanged event fires when the IP address of a network interface changes.
An instance of the NetworkAddressChangedEventHandler delegate is required to handle these events.
No event-specific arguments are passed to the event handler, which must call

a4

442 CHAPTER 11 NETWORKING AND REMOTING

NetworkInterface.GetAllNetworkInterfaces (discussed in recipe 11-1) to determine what has
changed and to take appropriate action. The My object does not offer an equivalent for this event.

The Code

The following example demonstrates how to use handlers that catch NetworkAddressChanged and
NetworkAvailabilityChanged events and then displays status information to the console:

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipell 02

' Declare a method to handle NetworkAvailabilityChanged events.
Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object,
Byval e As NetworkAvailabilityEventArgs)

Report whether the network is now available or unavailable.
If e.IsAvailable Then

Console.WriteLine("Network Available")
Else

Console.WriteLine("Network Unavailable")
End If

End Sub
' Declare a method to handle NetworkAddressChanged events.

Private Shared Sub NetworkAddressChanged(ByVal sender As Object, ‘=
Byval e As EventArgs)

Console.WritelLine("Current IP Addresses:")
' Iterate through the interfaces and display information.
For Each ni As NetworkInterface In w»
NetworkInterface.GetAllNetworkInterfaces
For Each addr As UnicastIPAddressInformation In ‘s
ni.GetIPProperties.UnicastAddresses

Console.WritelLine(" - {0} (lease expires {1})", =
addr.Address, DateTime.Now.AddSeconds(addr.Dhcpleaselifetime))
Next
Next
End Sub

Public Shared Sub Main()

' Add the handlers to the NetworkChange events.

AddHandler NetworkChange.NetworkAvailabilityChanged, w»
AddressOf NetworkAvailabilityChanged

AddHandler NetworkChange.NetworkAddressChanged, w»
AddressOf NetworkAddressChanged

CHAPTER 11 NETWORKING AND REMOTING

Wait to continue.

Console.WritelLine(Environment.NewlLine)

Console.WritelLine("Press Enter to stop waiting for network events.")
Console.ReadlLine()

End Sub
End Class

End Namespace

To use the My object equivalent of the NetworkAvailabilityChanged event, replace the
NetworkAvailabilityChanged handler with the following:

' Declare a method to handle NetworkAvailabilityChanged events.
Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object,
ByVal e As Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs)

Report whether the network is now available or unavailable.
If e.IsNetworkAvailable Then

Console.WritelLine("Network Available")
Else

Console.WriteLine("Network Unavailable")
End If

End Sub

You also need to replace the current call to AddHandler with this:

AddHandler My.Computer.Network.NetworkAvailabilityChanged, AddressOf w»
NetworkAvailabilityChanged

11-3. Download Data over HTTP or FTP

Problem

You need a quick, simple way to download data from the Internet using HTTP or FTP.

Solution

Use the methods of the System.Net.WebClient class or the DownloadFile method of the My.Computer.
Network class. (Refer to Chapter 5 for more information about the My object.)

How It Works

The .NET Framework provides several mechanisms for transferring data over the Internet. One of
the easiest approaches is to use the System.Net.WebClient class. WebClient provides many high-level
methods that simplify the transfer of data by specifying the source as a uniform resource identifier
(URD); Table 11-2 summarizes them. The URI can specify that a file (file:/ /), FTP (ftp://), HTTP
((http://), or HTTPS (https://) protocol be used to download the resource.

443

444

CHAPTER 11 NETWORKING AND REMOTING

Table 11-2. Data Download Methods of the WebClient Class

Method Description

OpenRead Returns a System.I0.Stream that provides access to the data from a
specified URI.

OpenReadAsync Same as OpenRead, but performs the data transfer using a thread-pool

thread so that the calling thread does not block. Add an event handler
to the OpenReadCompleted event to receive notification that the operation
has completed.

DownloadData Returns a Byte array that contains the data from a specified URI.

DownloadDataAsync Same as DownloadData, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadDataCompleted event to receive notification
that the operation has completed.

DownloadFile Downloads data from a specified URI and saves it to a specified local file.

DownloadFileAsync Same as DownloadFile, but performs the data transfer using a thread-
pool thread so that the calling thre