
this print for content only—size & color not accurate spine = 1.3237" 704 page count

Books for professionals By professionals®

Visual Basic 2008 Recipes:
A Problem-Solution Approach
Dear Reader,

The time may come when you run into a programming problem and you need
a quick solution. Deadlines being what they are, spending hours on research
is not a luxury most of us can afford. For issues ranging from performing methods
asynchronously via multithreading to performing in-depth queries on various data
sources using Language Integrated Query (LINQ), Visual Basic 2008 Recipes has
the solutions.

Each of the chapters in this book covers specific functionality or concepts.
For example, if you need assistance performing queries against collections,
simply refer to the Language Integrated Query (LINQ) chapter, which covers
the new querying functionality known as LINQ and includes recipes on per-
forming both basic and advanced queries against collections of data.

If you find yourself stuck with security-related issues or attempting to use
unmanaged code, you will find chapters covering these subjects in depth. The
security chapter includes recipes on assigning and viewing permissions on
assemblies, impersonating Windows accounts, and encrypting or decrypting
using Microsoft’s Data Protection API (DPAPI). The interoperability chapter
includes recipes for using Windows 32 API functions, as well as using COM
components or ActiveX controls in your application.

We have all had the experience of working on an application and getting stuck
on how to perform some bit of specific functionality. We might end up researching
and experimenting for hours, if not days. Sometimes we discover the solution,
and other times we must settle for a workaround. This book saves you all that
time and effort by providing you with what you need, when you need it.

Todd Herman

Todd Herman, author of

Visual Basic 2005 Recipes

US $52.99

Shelve in
Programming/Visual Basic

User level:
Beginner–Intermediate

Herm
an, Jones,

M
acDonald, Rajan

Visual Basic 2008 Recipes

The eXperT’s Voice® in .neT

Visual Basic
2008 Recipes
A Problem-Solution Approach

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Todd Herman, Allen Jones,
Matthew MacDonald, and Rakesh Rajan

Companion
eBook Available

THE APRESS ROADMAP

Beginning
VB 2008

Accelerated
VB 2008

Pro VB 2008 and
the .NET 3.5 Platform

Visual Basic 2008
Recipes Pro WPF in VB 2008:

Windows Presentation
Foundation in .NET 3.5

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-970-9
ISBN-10: 1-59059-970-5

9 781590 599709

55299

A compendium of solid and well-thought-out
solutions to many common Visual Basic 2008
programming problems

Visual Basic 2008
Recipes
A Problem-Solution Approach

■ ■ ■

Todd Herman, Allen Jones,
Matthew MacDonald, and Rakesh Rajan

Herman_970-5FRONT.fm Page i Monday, March 24, 2008 1:09 PM

Visual Basic 2008 Recipes: A Problem-Solution Approach

Copyright © 2008 by Todd Herman, Allen Jones, Matthew MacDonald, Rakesh Rajan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-970-9

ISBN-10 (pbk): 1-59059-970-5

ISBN-13 (electronic): 978-1-4302-0604-0

ISBN-10 (electronic): 1-4302-0604-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Damien Foggon
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan

Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert Stevens
Proofreader: Liz Welch
Indexer: Broccoli Information Services
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Herman_970-5FRONT.fm Page ii Monday, March 24, 2008 1:09 PM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Once again I must praise my wife and children for their incredible patience and

support while I wrote this book. My wife and dear friend, Amy, was a rock for me

when I was struggling to keep my deadlines, while my daughter, Alaina, and son, Aidan,

kept me laughing and reminded me why I was doing this.

Thank you, guys, for your love and support. I owe you everything.

—Todd Herman

Herman_970-5FRONT.fm Page iii Monday, March 24, 2008 1:09 PM

Herman_970-5FRONT.fm Page iv Monday, March 24, 2008 1:09 PM

v

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Application Development . 1

■CHAPTER 2 Data Manipulation . 51

■CHAPTER 3 Application Domains, Reflection, and Metadata 97

■CHAPTER 4 Threads, Processes, and Synchronization . 129

■CHAPTER 5 Files, Directories, and I/O . 183

■CHAPTER 6 Language Integrated Query (LINQ) . 233

■CHAPTER 7 LINQ to XML and XML Processing . 263

■CHAPTER 8 Database Access . 299

■CHAPTER 9 Windows Forms . 343

■CHAPTER 10 Multimedia . 391

■CHAPTER 11 Networking and Remoting . 437

■CHAPTER 12 Security and Cryptography . 495

■CHAPTER 13 Code Interoperability . 539

■CHAPTER 14 Commonly Used Interfaces and Patterns . 561

■CHAPTER 15 Windows Integration . 605

■INDEX . 631

Herman_970-5FRONT.fm Page v Monday, March 24, 2008 1:09 PM

Herman_970-5FRONT.fm Page vi Monday, March 24, 2008 1:09 PM

vii

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Application Development . 1

1-1. Create a Console Application from the Command Line 2
1-2. Create a Windows-Based Application from the Command Line 5
1-3. Create and Use a Code Module from the Command Line 8
1-4. Create and Use a Code Library from the Command Line. 10
1-5. Embed a Resource File in an Assembly. 11
1-6. Build Projects from the Command Line Using MSBuild.exe 14
1-7. Access Command-Line Arguments . 17
1-8. Include Code Selectively at Build Time . 19
1-9. Manipulate the Appearance of the Console. 23
1-10. Access a Program Element That Has the Same Name As a Keyword . . . 25
1-11. Create and Manage Strong-Named Key Pairs . 26
1-12. Give an Assembly a Strong Name . 27
1-13. Verify That a Strong-Named Assembly Has Not Been Modified 30
1-14. Delay Sign an Assembly . 31
1-15. Sign an Assembly with an Authenticode Digital Signature 32
1-16. Create and Trust a Test Software Publisher Certificate 37
1-17. Manage the Global Assembly Cache . 38
1-18. Make Your Assembly More Difficult to Decompile 39
1-19. Use Implicitly Typed Variables . 40
1-20. Use Object Initializers . 41
1-21. Use Anonymous Types . 44
1-22. Create and Use Extension Methods . 45
1-23. Create and Use Lambda Expressions . 47

■CHAPTER 2 Data Manipulation . 51

2-1. Manipulate the Contents of a String Efficiently . 51
2-2. Encode a String Using Alternate Character Encoding. 54
2-3. Convert Basic Value Types to Byte Arrays . 56
2-4. Base64 Encode Binary Data . 59
2-5. Validate Input Using Regular Expressions . 62
2-6. Use Compiled Regular Expressions . 65

Herman_970-5FRONT.fm Page vii Monday, March 24, 2008 1:09 PM

viii ■CO N T E N T S

2-7. Create Dates and Times from Strings . 68
2-8. Add, Subtract, and Compare Dates and Times . 70
2-9. Convert Dates and Times Across Time Zones. 73
2-10. Sort an Array or an ArrayList . 77
2-11. Copy a Collection to an Array . 79
2-12. Manipulate or Evaluate the Contents of an Array . 80
2-13. Use a Strongly Typed Collection. 84
2-14. Create a Generic Type . 86
2-15. Store a Serializable Object to a File . 89
2-16. Read User Input from the Console . 92

■CHAPTER 3 Application Domains, Reflection, and Metadata 97

3-1. Load an Assembly into the Current Application Domain 98
3-2. Create an Application Domain . 100
3-3. Execute an Assembly in a Different Application Domain 102
3-4. Avoid Loading Unnecessary Assemblies into Application Domains 104
3-5. Create a Type That Cannot Cross Application Domain Boundaries 105
3-6. Create a Type That Can Be Passed Across Application

Domain Boundaries . 106
3-7. Instantiate a Type in a Different Application Domain 109
3-8. Pass Data Between Application Domains . 113
3-9. Unload Assemblies and Application Domains . 115
3-10. Retrieve Type Information . 116
3-11. Test an Object’s Type . 119
3-12. Instantiate an Object Using Reflection . 121
3-13. Create a Custom Attribute. 124
3-14. Inspect the Attributes of a Program Element Using Reflection 127

■CHAPTER 4 Threads, Processes, and Synchronization 129

4-1. Execute a Method Using the Thread Pool . 130
4-2. Execute a Method Asynchronously. 133
4-3. Creating an Asynchronous Method to Update the User Interface 140
4-4. Execute a Method Periodically . 145
4-5. Execute a Method at a Specific Time. 147
4-6. Execute a Method by Signaling a WaitHandle Object. 150
4-7. Execute a Method Using a New Thread. 152
4-8. Synchronize the Execution of Multiple Threads Using a Monitor 154
4-9. Synchronize the Execution of Multiple Threads Using an Event 159
4-10. Synchronize the Execution of Multiple Threads Using a Mutex 163
4-11. Synchronize the Execution of Multiple Threads Using a Semaphore . . . 165
4-12. Synchronize Access to a Shared Data Value. 167
4-13. Know When a Thread Finishes . 169
4-14. Terminate the Execution of a Thread. 171
4-15. Create a Thread-Safe Collection Instance. 173
4-16. Start a New Process . 174

Herman_970-5FRONT.fm Page viii Monday, March 24, 2008 1:09 PM

■C ON TE N TS ix

4-17. Terminate a Process . 177
4-18. Ensure That Only One Instance of an Application Can

Execute Concurrently. 179

■CHAPTER 5 Files, Directories, and I/O . 183

5-1. Retrieve Information About a File, Directory, or Drive 184
5-2. Set File and Directory Attributes. 189
5-3. Copy, Move, or Delete a File or a Directory . 190
5-4. Calculate the Size of a Directory . 194
5-5. Retrieve Version Information for a File. 196
5-6. Show a Just-in-Time Directory Tree in the TreeView Control 197
5-7. Read and Write a Text File . 200
5-8. Read and Write a Binary File. 203
5-9. Parse a Delimited Text File . 204
5-10. Read a File Asynchronously . 208
5-11. Find Files That Match a Wildcard Expression . 211
5-12. Test Two Files for Equality . 212
5-13. Manipulate Strings Representing File Names. 214
5-14. Determine Whether a Path Is a Directory or a File 215
5-15. Work with Relative Paths . 216
5-16. Create a Temporary File . 218
5-17. Get the Total Free Space on a Drive . 219
5-18. Show the Common File Dialog Boxes . 221
5-19. Use an Isolated Store. 223
5-20. Monitor the File System for Changes. 225
5-21. Access a COM Port . 228
5-22. Get a Random File Name . 229
5-23. Manipulate the Access Control Lists of a File or Directory 229

■CHAPTER 6 Language Integrated Query (LINQ) . 233

6-1. Query a Generic Collection . 234
6-2. Query a Nongeneric Collection . 236
6-3. Control Query Results . 237
6-4. Sort Data Using LINQ . 239
6-5. Filter Data Using LINQ . 240
6-6. Perform General Aggregate Operations . 242
6-7. Perform Average and Sum Calculations . 243
6-8. Perform Count Operations . 245
6-9. Perform Min and Max Calculations . 246
6-10. Group Query Results . 248
6-11. Query Data from Multiple Collections . 250
6-12. Returning Specific Elements of a Collection . 253
6-13. Display Collection Data Using Paging . 254
6-14. Compare and Combine Collections . 256
6-15. Cast a Collection to a Specific Type. 259

Herman_970-5FRONT.fm Page ix Monday, March 24, 2008 1:09 PM

x ■CO N T E N T S

■CHAPTER 7 LINQ to XML and XML Processing . 263

7-1. Create an XML Document . 264
7-2. Load an XML File into Memory . 268
7-3. Insert Elements into an XML Document. 269
7-4. Change the Value of an Element or Attribute . 271
7-5. Remove or Replace Elements or Attributes . 272
7-6. Query an XML Document Using LINQ. 274
7-7. Query for Elements in a Specific XML Namespace 276
7-8. Query an XML Document Using XPath . 278
7-9. Join and Query Multiple XML Documents . 280
7-10. Convert an XML File to a Delimited File (and Vice Versa) 281
7-11. Validate an XML Document Against a Schema. 285
7-12. Use XML Serialization with Custom Objects . 290
7-13. Create a Schema for a .NET Class . 293
7-14. Generate a Class from a Schema. 294
7-15. Perform an XSL Transform . 295

■CHAPTER 8 Database Access . 299

8-1. Connect to a Database . 301
8-2. Use Connection Pooling . 304
8-3. Create a Database Connection String Programmatically 306
8-4. Store a Database Connection String Securely . 308
8-5. Execute a SQL Command or Stored Procedure . 311
8-6. Use Parameters in a SQL Command or Stored Procedure. 316
8-7. Process the Results of a SQL Query Using a Data Reader. 320
8-8. Obtain an XML Document from a SQL Server Query 323
8-9. Perform Asynchronous Database Operations Against SQL Server 327
8-10. Write Database-Independent Code . 330
8-11. Create a Database Object Model . 334
8-12. Generate Data Object Classes from the Command Line 338
8-13. Discover All Instances of SQL Server on Your Network 340

■CHAPTER 9 Windows Forms . 343

9-1. Add a Control Programmatically . 344
9-2. Link Data to a Control . 347
9-3. Process All the Controls on a Form . 348
9-4. Track the Visible Forms in an Application . 350
9-5. Find All MDI Child Forms . 352
9-6. Save Configuration Settings for a Form . 355
9-7. Force a List Box to Scroll to the Most Recently Added Item 358
9-8. Restrict a Text Box to Accepting Only Specific Input 359
9-9. Use an Autocomplete Combo Box . 362
9-10. Sort a List View by Any Column . 364
9-11. Lay Out Controls Automatically . 368

Herman_970-5FRONT.fm Page x Monday, March 24, 2008 1:09 PM

■C ON TE N TS xi

9-12. Make a Multilingual Form . 369
9-13. Create a Form That Cannot Be Moved. 372
9-14. Make a Borderless Form Movable . 373
9-15. Create an Animated System Tray Icon . 376
9-16. Validate an Input Control . 377
9-17. Use a Drag-and-Drop Operation. 379
9-18. Use Context-Sensitive Help. 381
9-19. Display a Web Page in a Windows-Based Application. 382
9-20. Create a Windows Presentation Foundation Application 385
9-21. Run a Windows Vista Application with Elevated Rights 387

■CHAPTER 10 Multimedia . 391

10-1. Find All Installed Fonts . 392
10-2. Perform Hit Testing with Shapes . 394
10-3. Create an Irregularly Shaped Control. 397
10-4. Create a Movable Sprite . 399
10-5. Create a Scrollable Image. 403
10-6. Perform a Screen Capture. 405
10-7. Use Double Buffering to Increase Redraw Speed. 407
10-8. Show a Thumbnail for an Image . 409
10-9. Play a Simple Beep or System Sound . 410
10-10. Play a WAV File . 412
10-11. Play a Sound File . 413
10-12. Show a Video with DirectShow . 415
10-13. Retrieve Information About Installed Printers . 418
10-14. Print a Simple Document . 420
10-15. Print a Multipage Document . 423
10-16. Print Wrapped Text . 426
10-17. Show a Dynamic Print Preview . 428
10-18. Manage Print Jobs. 431

■CHAPTER 11 Networking and Remoting . 437

11-1. Obtain Information About the Local Network Interface 438
11-2. Detect Changes in Network Connectivity . 441
11-3. Download Data over HTTP or FTP . 443
11-4. Download a File and Process It Using a Stream . 446
11-5. Respond to HTTP Requests from Your Application. 448
11-6. Get an HTML Page from a Site That Requires Authentication 452
11-7. Send E-mail Using SMTP . 455
11-8. Resolve a Host Name to an IP Address . 458
11-9. Ping an IP Address . 460
11-10. Communicate Using TCP . 462
11-11. Create a Multithreaded TCP Server That Supports

Asynchronous Communications. 466
11-12. Communicate Using UDP . 474

Herman_970-5FRONT.fm Page xi Monday, March 24, 2008 1:09 PM

xii ■CO N T E N T S

11-13. Communicate Using Named Pipes. 477
11-14. Make an Object Remotable. 481
11-15. Register All the Remotable Classes in an Assembly 486
11-16. Host a Remote Object in IIS . 488
11-17. Control the Lifetime of a Remote Object . 489
11-18. Control Versioning for Remote Objects . 491
11-19. Consume an RSS Feed . 493

■CHAPTER 12 Security and Cryptography . 495

12-1. Allow Partially Trusted Code to Use Your Strong-Named Assembly. . . . 496
12-2. Disable Execution Permission Checks . 498
12-3. Ensure the Runtime Grants Specific Permissions to Your Assembly . . . 500
12-4. Limit the Permissions Granted to Your Assembly. 502
12-5. View the Permissions Required by an Assembly 503
12-6. Determine at Runtime Whether Your Code Has a

Specific Permission . 505
12-7. Restrict Who Can Extend Your Classes and Override

Class Members . 506
12-8. Inspect an Assembly’s Evidence . 508
12-9. Determine Whether the Current User Is a Member of a

Specific Windows Group . 511
12-10. Restrict Which Users Can Execute Your Code . 514
12-11. Impersonate a Windows User. 517
12-12. Create a Cryptographically Random Number . 521
12-13. Calculate the Hash Code of a Password . 522
12-14. Calculate the Hash Code of a File . 526
12-15. Verify a Hash Code . 528
12-16. Ensure Data Integrity Using a Keyed Hash Code 530
12-17. Work with Security-Sensitive Strings in Memory 533
12-18. Encrypt and Decrypt Data Using the Data Protection API 536

■CHAPTER 13 Code Interoperability . 539

13-1. Call a Function in an Unmanaged DLL. 540
13-2. Get the Handle for a Control, Window, or File . 543
13-3. Call an Unmanaged Function That Uses a Structure 545
13-4. Call an Unmanaged Function That Uses a Callback 548
13-5. Retrieve Unmanaged Error Information . 549
13-6. Use a COM Component in a .NET Client . 551
13-7. Release a COM Component Quickly. 553
13-8. Use Optional Parameters. 554
13-9. Use an ActiveX Control in a .NET Client . 556
13-10. Expose a .NET Component to COM . 558
13-11. Use a Windows Presentation Foundation Control from

a Windows Form . 559

Herman_970-5FRONT.fm Page xii Monday, March 24, 2008 1:09 PM

■C ON TE N TS xiii

■CHAPTER 14 Commonly Used Interfaces and Patterns . 561

14-1. Implement a Serializable Type . 561
14-2. Implement a Cloneable Type . 567
14-3. Implement a Comparable Type . 571
14-4. Implement an Enumerable Type Using a Custom Iterator 575
14-5. Implement a Disposable Class . 582
14-6. Implement a Type That Can Be Formatted . 586
14-7. Implement a Custom Exception Class . 589
14-8. Implement a Custom Event Argument . 593
14-9. Implement the Singleton Pattern . 595
14-10. Implement the Observer Pattern . 597

■CHAPTER 15 Windows Integration . 605

15-1. Access Runtime Environment Information . 605
15-2. Retrieve the Value of an Environment Variable . 609
15-3. Write an Event to the Windows Event Log. 610
15-4. Read and Write to the Windows Registry . 612
15-5. Search the Windows Registry. 615
15-6. Create a Windows Service . 618
15-7. Create a Windows Service Installer . 623
15-8. Create a Shortcut on the Desktop or Start Menu 626

■INDEX . 631

Herman_970-5FRONT.fm Page xiii Monday, March 24, 2008 1:09 PM

Herman_970-5FRONT.fm Page xiv Monday, March 24, 2008 1:09 PM

xv

About the Author

■TODD HERMAN works for Berico Technologies as a senior developer as part
of the intelligence community. He has been programming since he received
his first computer, a Commodore 64, on his 11th birthday. His experience
ranges from developing data-entry software in FoxPro for a water research
laboratory to writing biometric applications in Visual Basic for NEC. He
currently lives in Virginia with his wife and children, spending his free time
programming, playing computer games, and watching the Sci-Fi Channel.
 He recently set up a blog, which you can find at http://
blogs.bericotechnologies.com/todd.

Herman_970-5FRONT.fm Page xv Monday, March 24, 2008 1:09 PM

http://blogs.bericotechnologies.com/todd
http://blogs.bericotechnologies.com/todd

Herman_970-5FRONT.fm Page xvi Monday, March 24, 2008 1:09 PM

xvii

About the Technical Reviewer

■DAMIEN FOGGON is a freelance developer and technical author based in
Newcastle, England. When not wondering why the Falcons can never win
away from home, he spends his spare time writing, playing rugby, scuba
diving, or pretending that he can cook.

His next magnum opus, Beginning ASP.NET Data Access with LINQ
and ADO.NET (take your pick of C# or VB .NET), is due out from Apress in
September 2008, assuming that SQL Server 2008 actually gets released in 2008.

If he could be consistent (or interesting), his blog might not be three months
out of date. You never know—you may get lucky. See for yourself at http://
www.littlepond.co.uk.

Herman_970-5FRONT.fm Page xvii Monday, March 24, 2008 1:09 PM

http://www.littlepond.co.uk
http://www.littlepond.co.uk

Herman_970-5FRONT.fm Page xviii Monday, March 24, 2008 1:09 PM

xix

Acknowledgments

I must thank Damien Foggon for, once again, performing a superb job in providing the technical
editing for this book and keeping me on the correct path. I also extend my thanks to Apress for putting
out remarkable material and allowing me the opportunity to throw in my two cents.

Herman_970-5FRONT.fm Page xix Monday, March 24, 2008 1:09 PM

Herman_970-5FRONT.fm Page xx Monday, March 24, 2008 1:09 PM

xxi

Introduction

Attempting to learn all there is to know about developing VB .NET applications using the Microsoft
.NET Framework would be an incredibly daunting task. For most of us, the easiest and best approach
is to dive in and start writing code. We learn through testing and experimentation, and when we run
into the unknown, we search the Internet or grab a book to assist with the current subject.

Visual Basic 2008 Recipes is not a book that attempts to teach you about the inner workings of a
specific subject. It is a resource book that should sit near you as you program, so you can quickly use
it to reference what you need.

As you are settled in front of your computer working, you will inevitably run into a situation where
you need a little guidance, as all of us do from time to time. The subject matter in this book is so
comprehensive that you are bound to find at least one recipe that will fit the bill whenever you need
that nudge in the right direction.

This book will not teach you everything you need to know about developing VB .NET applica-
tions in Visual Studio 2008, but it will be invaluable as a stepping-stone. Use the recipes as you need
them to help move your development projects along or to give you a starting point for your own
experimentation.

■Note This book is based on a previously published book called Visual Basic 2005 Recipes. The contents were
updated to reflect any changes or new additions between the 2005 and 2008 versions of Visual Studio .NET. Although
some of the recipes in this book will work with .NET Framework 2.0, the main focus of this book is Visual Studio .NET and
.NET Framework 3.5.

Additionally, this book was written using the final version of Visual Studio 2008 and Windows
Vista Business. The code was also tested on a system running Windows XP, but please keep in mind
that results may vary slightly if you are using that operating system.

Herman_970-5FRONT.fm Page xxi Monday, March 24, 2008 1:09 PM

Herman_970-5FRONT.fm Page xxii Monday, March 24, 2008 1:09 PM

1

■ ■ ■

C H A P T E R 1

Application Development

This chapter covers some of the general features and functionality found in Visual Basic .NET 9.0
and Visual Studio 2008. The recipes in this chapter cover the following:

• Using the VB .NET command-line compiler to build console and Windows Forms applica-
tions (recipes 1-1 and 1-2)

• Creating and using code modules and libraries (recipes 1-3 and 1-4)

• Compiling and embedding a string resource file (recipe 1-5)

• Compiling applications using MSBuild.exe (recipe 1-6)

• Accessing command-line arguments from within your applications (recipe 1-7)

• Using compiler directives and attributes to selectively include code at build time (recipe 1-8)

• Manipulating the appearance of the console (recipe 1-9)

• Accessing program elements built in other languages whose names conflict with VB .NET
keywords (recipe 1-10)

• Giving assemblies strong names and verifying strong-named assemblies (recipes 1-11, 1-12,
1-13, and 1-14)

• Signing an assembly with a Microsoft Authenticode digital signature (recipes 1-15 and 1-16)

• Managing the shared assemblies that are stored in the global assembly cache (recipe 1-17)

• Making your assembly more difficult to decompile (recipe 1-18)

• Understanding the basic functionality required to use Language Integrated Query (LINQ)
(recipes 1-19, 1-20, 1-21, 1-22, and 1-23)

Herman_970-5C01.fm Page 1 Monday, February 18, 2008 7:26 AM

2 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

■Note All the tools discussed in this chapter ship with the Microsoft .NET Framework or the .NET Framework
software development kit (SDK). The tools that are part of the .NET Framework are in the main directory for the
version of the framework you are running. For example, they are in the directory C:\WINDOWS\Microsoft.NET\
Framework\v3.5 if you install version 3.5 of the .NET Framework to the default location. The .NET installation
process automatically adds this directory to your environment path.

The tools provided with the SDK are in the Bin subdirectory of the directory in which you install the SDK, which
is C:\Program Files\Microsoft Visual Studio 9.0\SDK\v3.5 if you chose the default path during the installation of
Microsoft Visual Studio 2008. This directory is not added to your path automatically, so you must manually edit your
path in order to have easy access to these tools. Your other option is to use the Visual Studio 2008 Command Prompt
shortcut that is located under the Microsoft Visual Studio 2008/Visual Studio Tools folder in the Windows Start
menu. This will launch vcvarsall.bat, which will set the right environment variables and open the command prompt.
Most of the tools support short and long forms of the command-line switches that control their functionality. This
chapter always shows the long form, which is more informative but requires additional typing. For the shortened
form of each switch, see the tool’s documentation in the .NET Framework SDK.

Also, as a final note, if you are using Windows Vista, you should be sure to run all command-line utilities using
Run As Administrator, or some of them might not function properly. Doing this will still result in numerous dialog
boxes requesting that you ensure you approve of the request to use administrative rights; you must respond to these
dialog boxes by clicking Yes.

1-1. Create a Console Application from the Command Line

Problem

You need to use the VB .NET command-line compiler to build an application that does not require
a Windows graphical user interface (GUI) but instead displays output to, and reads input from, the
Windows command prompt (console).

Solution

In one of your classes, ensure you implement a Shared method named Main with one of the following
signatures:

Public Shared Sub Main()
End Sub
Public Shared Sub Main(ByVal args As String())
End Sub
Public Shared Function Main() As Integer
End Sub
Public Shared Function Main(ByVal args As String()) As Integer
End Sub

Build your application using the VB .NET compiler (vbc.exe) by running the following command
(where HelloWorld.vb is the name of your source code file):

vbc /target:exe HelloWorld.vb

Herman_970-5C01.fm Page 2 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 3

■Note If you own Visual Studio, you will most often use the Console Application project template to create new
console applications. However, for small applications, it is often just as easy to use the command-line compiler. It
is also useful to know how to build console applications from the command line if you are ever working on a machine
without Visual Studio and want to create a quick utility to automate some task.

How It Works

By default, the VB .NET compiler will build a console application unless you specify otherwise. For
this reason, it’s not necessary to specify the /target:exe switch, but doing so makes your intention
clearer, which is useful if you are creating build scripts that will be used by others or will be used
repeatedly over a period of time.

To build a console application consisting of more than one source code file, you must specify all
the source files as arguments to the compiler. For example, the following command builds an appli-
cation named MyFirstApp.exe from two source files named HelloWorld.vb and ConsoleUtils.vb:

vbc /target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

The /out switch allows you to specify the name of the compiled assembly. Otherwise, the assembly
is named after the first source file listed—HelloWorld.vb in the example. If classes in both the HelloWorld
and ConsoleUtils files contain Main methods, the compiler cannot automatically determine which
method represents the correct entry point for the assembly. Therefore, you must use the compiler’s
/main switch to identify the name of the class that contains the correct entry point for your applica-
tion. When using the /main switch, you must provide the fully qualified class name (including the
namespace); otherwise, you will receive the following:

 vbc : error BC30420: 'Sub Main' was not found in 'HelloWorld'

If you have a lot of VB .NET code source files to compile, you should use a response file. This
simple text file contains the command-line arguments for vbc.exe. When you call vbc.exe, you give
the name of this response file as a single parameter prefixed by the @ character. Here is an example:

vbc @commands.rsp

To achieve the equivalent of the previous example, commands.rsp would contain this:

/target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

For readability, response files can include comments (using the # character) and can span multiple
lines. The VB .NET compiler also allows you to specify multiple response files by providing multiple
parameters that are prefixed with the @ character.

The Code

The following code lists a class named ConsoleUtils that is defined in a file named ConsoleUtils.vb:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class ConsoleUtils

Herman_970-5C01.fm Page 3 Monday, February 18, 2008 7:26 AM

mailto:@commands.rsp

4 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

 ' This method will display a prompt and read a response from the console.
 Public Shared Function ReadString(ByVal message As String) As String

 Console.Write(message)
 Return Console.ReadLine

 End Function

 ' This method will display a message on the console.
 Public Shared Sub WriteString(ByVal message As String)

 Console.WriteLine(message)

 End Sub

 ' This method is used for testing ConsoleUtility methods.
 ' While it is not good practice to have multiple Main
 ' methods in an assembly, it sometimes can't be avoided.
 ' You specify in the compiler which Main sub routine should
 ' be used as the entry point. For this example, this Main
 ' routine will never be executed.
 Public Shared Sub Main()

 ' Prompt the reader to enter a name.
 Dim name As String = ReadString("Please enter a name: ")

 ' Welcome the reader to Visual Basic 2008 Recipes.
 WriteString("Welcome to Visual Basic 2008 Recipes, " & name)

 End Sub

 End Class
End Namespace

The HelloWorld class listed next uses the ConsoleUtils class to display the message “Hello,
World” to the console (HelloWorld is contained in the HelloWorld.vb file):

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class HelloWorld

 Public Shared Sub Main()

 ConsoleUtils.WriteString("Hello, World")
 ConsoleUtils.WriteString(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C01.fm Page 4 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 5

Usage

To build HelloWorld.exe from the two source files, use the following command:

vbc /target:exe /main:Apress.VisualBasicRecipes.Chapter01.HelloWorld ➥
/out:HelloWorld.exe ConsoleUtils.vb HelloWorld.vb

1-2. Create a Windows-Based Application from
the Command Line

Problem

You need to use the VB .NET command-line compiler to build an application that provides a
Windows Forms–based GUI.

Solution

Create a class that inherits from the System.Windows.Forms.Form class. (This will be your applica-
tion’s main form.) In one of your classes, ensure you implement a Shared method named Main. In the
Main method, create an instance of your main form class and pass it to the Shared method Run of the
System.Windows.Forms.Application class. Build your application using the command-line VB .NET
compiler, and specify the /target:winexe compiler switch.

How It Works

Building an application that provides a simple Windows GUI is a world away from developing a full-
fledged Windows-based application. However, you must perform certain tasks regardless of whether
you are writing the Windows equivalent of “Hello, World” or the next version of Microsoft Word,
including the following:

• For each form you need in your application, create a class that inherits from the System.Windows.
Forms.Form class.

• In each of your form classes, declare members that represent the controls that will be on
that form, such as buttons, labels, lists, and text boxes. These members should be declared
Private or at least Protected so that other program elements cannot access them directly.
If you need to expose the methods or properties of these controls, implement the necessary
members in your form class, providing indirect and controlled access to the contained controls.

• Declare methods in your form class that will handle events raised by the controls contained
by the form, such as button clicks or key presses when a text box is the active control. These
methods should be Private or Protected and follow the standard .NET event pattern (described
in recipe 15-10). It’s in these methods (or methods called by these methods) where you will
define the bulk of your application’s functionality.

• Declare a constructor for your form class that instantiates each of the form’s controls and
configures their initial state (size, color, position, content, and so on). The constructor should
also wire up the appropriate event handler methods of your class to the events of each control.

Herman_970-5C01.fm Page 5 Monday, February 18, 2008 7:26 AM

6 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

• Declare a Shared method named Main—usually as a member of your application’s main form
class. This method is the entry point for your application, and it can have the same signatures
as those mentioned in recipe 1-1. In the Main method, call Application.EnableVisualStyles
to allow support for themes (supported by Windows XP, Windows Server 2003, and Windows
Vista), create an instance of your application’s main form, and pass it as an argument to the
Shared Application.Run method. The Run method makes your main form visible and starts a
standard Windows message loop on the current thread, which passes the user input (key presses,
mouse clicks, and so on) to your application form as events.

The Code

The Recipe01_02 class shown in the following code listing is a simple Windows Forms application
that demonstrates the techniques just listed. When run, it prompts a user to enter a name and then
displays a message box welcoming the user to “Visual Basic 2008 Recipes.”

Imports System
Imports System.Windows.Forms

Namespace Apress.VisualBasicRecipes.Chapter01

 Public Class Recipe01_02
 Inherits Form

 ' Private members to hold references to the form's controls.
 Private Label1 As Label
 Private TextBox1 As TextBox
 Private Button1 As Button

 ' Constructor used to create an instance of the form and configure
 ' the form's controls.
 Public Sub New()
 ' Instantiate the controls used on the form.
 Me.Label1 = New Label
 Me.TextBox1 = New TextBox
 Me.Button1 = New Button

 ' Suspend the layout logic of the form while we configure and
 ' position the controls.
 Me.SuspendLayout()

 ' Configure Label1, which displays the user prompt.
 Me.Label1.Location = New System.Drawing.Size(16, 36)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(155, 16)
 Me.Label1.TabIndex = 0
 Me.Label1.Text = "Please enter your name:"

 ' Configure TextBox1, which accepts the user input.
 Me.TextBox1.Location = New System.Drawing.Point(172, 32)
 Me.TextBox1.Name = "TextBox1"
 Me.TextBox1.TabIndex = 1
 Me.TextBox1.Text = ""

Herman_970-5C01.fm Page 6 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 7

 ' Configure Button1, which the user clicks to enter a name.
 Me.Button1.Location = New System.Drawing.Point(109, 80)
 Me.Button1.Name = "Button1"
 Me.Button1.TabIndex = 2
 Me.Button1.Text = "Enter"
 AddHandler Button1.Click, AddressOf Button1_Click

 ' Configure WelcomeForm, and add controls.
 Me.ClientSize = New System.Drawing.Size(292, 126)
 Me.Controls.Add(Me.Button1)
 Me.Controls.Add(Me.TextBox1)
 Me.Controls.Add(Me.Label1)
 Me.Name = "Form1"
 Me.Text = "Visual Basic 2008 Recipes"

 ' Resume the layout logic of the form now that all controls are
 ' configured.
 Me.ResumeLayout(False)

 End Sub

 Private Sub Button1_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs)

 ' Write debug message to the console.
 System.Console.WriteLine("User entered: " + TextBox1.Text)

 ' Display welcome as a message box.
 MessageBox.Show("Welcome to Visual Basic 2008 Recipes, " + ➥
TextBox1.Text, "Visual Basic 2008 Recipes")

 End Sub

 ' Application entry point, creates an instance of the form, and begins
 ' running a standard message loop on the current thread. The message
 ' loop feeds the application with input from the user as events.
 Public Shared Sub Main()
 Application.EnableVisualStyles()
 Application.Run(New Recipe01_02())
 End Sub

 End Class

End Namespace

Usage

To build the Recipe01_02 class into an application, use this command:

vbc /target:winexe Recipe01-02.vb

The /target:winexe switch tells the compiler that you are building a Windows-based applica-
tion. As a result, the compiler builds the executable in such a way that no console is created when you
run your application. If you use the /target:exe switch instead of /target:winexe to build a Windows
Forms application, your application will still work correctly, but you will have a console window

Herman_970-5C01.fm Page 7 Monday, February 18, 2008 7:26 AM

8 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

visible while the application is running. Although this is undesirable for production-quality software,
the console window is useful if you want to write debug and logging information while you’re devel-
oping and testing your Windows Forms application. You can write to this console using the Write
and WriteLine methods of the System.Console class.

Figure 1-1 shows the WelcomeForm.exe application greeting a user named John Doe. This
version of the application is built using the /target:exe compiler switch, resulting in the visible
console window in which you can see the output from the Console.WriteLine statement in the
button1_Click event handler.

Figure 1-1. A simple Windows Forms application

1-3. Create and Use a Code Module from the Command Line

Problem

You need to do one or more of the following:

• Improve your application’s performance and memory efficiency by ensuring the runtime
loads rarely used types only when they are required.

• Compile types written in VB .NET to a form you can build into assemblies being developed in
other .NET languages.

• Use types developed in another language and build them into your VB .NET assemblies.

Solution

Build your VB .NET source code into a module by using the command-line compiler and specifying
the /target:module compiler switch. To incorporate existing modules into your assembly, use the
/addmodule compiler switch.

Herman_970-5C01.fm Page 8 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 9

How It Works

Modules are the building blocks of .NET assemblies and should not be confused with the Module
object type block. Modules consist of a single file that contains the following:

• Microsoft Intermediate Language (MSIL) code created from your source code during
compilation

• Metadata describing the types contained in the module

• Resources, such as icons and string tables, used by the types in the module

Assemblies consist of one or more modules and an assembly manifest. An assembly manifest
is metadata that contains important information (such as the name, version, culture, and so on)
regarding the assembly. If the assembly contains a single module, the module and assembly mani-
fest are usually built into a single file for convenience. If more than one module exists, the assembly
represents a logical grouping of more than one file that you must deploy as a complete unit. In these
situations, the assembly manifest is either contained in a separate file or built into one of the modules.
Visual Studio includes the MSIL Disassembler tool (Ildasm.exe), which lets you view the raw MSIL
code for any assembly. You can use this tool to view an assembly manifest.

By building an assembly from multiple modules, you complicate the management and deploy-
ment of the assembly, but under some circumstances, modules offer significant benefits:

• The runtime will load a module only when the types defined in the module are required.
Therefore, where you have a set of types that your application uses rarely, you can partition
them into a separate module that the runtime will load only if necessary. This can improve
performance, especially if your application is loaded across a network, and minimize the use
of memory.

• The ability to use many different languages to write applications that run on the common
language runtime (CLR) is a great strength of the .NET Framework. However, the VB .NET
compiler can’t compile your Microsoft C# or COBOL .NET code for inclusion in your assembly.
To use code written in another language, you can compile it into a separate assembly and
reference it. But if you want it to be an integral part of your assembly, you must build it into a
module. Similarly, if you want to allow others to include your code as an integral part of their
assemblies, you must compile your code as modules. When you use modules, because the code
becomes part of the same assembly, members marked as Friend or Protected Friend are acces-
sible, whereas they would not be if the code had been accessed from an external assembly.

Usage

To compile a source file named ConsoleUtils.vb (see recipe 1-1 for the contents) into a module,
use the command vbc /target:module ConsoleUtils.vb. The result is the creation of a file named
ConsoleUtils.netmodule. The .netmodule extension is the default extension for modules, and the
file name is the same as the name of the VB .NET source file.

You can also build modules from multiple source files, which results in a single file containing
the MSIL and metadata (the assembly manifest) for all types contained in all of the source files. The
command vbc /target:module ConsoleUtils.vb WindowsUtils.vb compiles two source files named
ConsoleUtils.vb and WindowsUtils.vb to create the module named ConsoleUtils.netmodule. The
module is named after the first source file listed unless you override the name with the /out compiler
switch. For example, the command vbc /target:module /out:Utilities.netmodule ConsoleUtils.vb
WindowsUtils.vb creates a module named Utilities.netmodule.

To build an assembly consisting of multiple modules, you must use the /addmodule compiler switch.
To build an executable named MyFirstApp.exe from two modules named WindowsUtils.netmodule
and ConsoleUtils.netmodule and two source files named SourceOne.vb and SourceTwo.vb, use the

Herman_970-5C01.fm Page 9 Monday, February 18, 2008 7:26 AM

10 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

command vbc /out:MyFirstApp.exe /target:exe /addmodule:WindowsUtils.netmodule,ConsoleUtils.
netmodule SourceOne.vb SourceTwo.vb.

This command will result in an assembly that is composed of the following components:

• MyFirstApp.exe, which contains the assembly manifest as well as the MSIL for the types
declared in the SourceOne.vb and SourceTwo.vb source files

• ConsoleUtils.netmodule and WindowsUtils.netmodule, which are now integral components
of the multifile assembly but are unchanged by this compilation process

1-4. Create and Use a Code Library from the Command Line

Problem

You need to build a set of functionality into a reusable code library so that multiple applications can
reference and reuse it.

Solution

Build your library using the command-line VB .NET compiler, and specify the /target:library
compiler switch. To reference the library, use the /reference compiler switch when you build your
application, and specify the names of the required libraries.

How It Works

Recipe 1-1 showed you how to build an application named MyFirstApp.exe from the two source files
ConsoleUtils.vb and HelloWorld.vb. The ConsoleUtils.vb file contains the ConsoleUtils class, which
provides methods to simplify interaction with the Windows console. If you were to extend the func-
tionality of the ConsoleUtils class, you could add functionality useful to many applications. Instead
of including the source code for ConsoleUtils in every application, you could build it into a library
and deploy it independently, making the functionality accessible to many applications.

Usage

To build the ConsoleUtils.vb file into a library, use the command vbc /target:library ConsoleUtils.vb.
This will produce a library file named ConsoleUtils.dll. To build a library from multiple source files,
list the name of each file at the end of the command. You can also specify the name of the library
using the /out compiler switch; otherwise, the library is named after the first source file listed. For
example, to build a library named MyFirstLibrary.dll from two source files named ConsoleUtils.vb and
WindowsUtils.vb, use the command vbc /out:MyFirstLibrary.dll /target:library ConsoleUtils.vb
WindowsUtils.vb.

Before distributing your library, you might consider strong naming it so that no one can modify
your assembly and pass it off as being the original. Strong naming your library also allows people to
install it into the global assembly cache (GAC), which makes reuse much easier. (Recipe 1-12 describes
how to strong name your assembly, and recipe 1-17 describes how to install a strong-named assembly
into the GAC.) You might also consider signing your library with an Authenticode signature, which
allows users to confirm you are the publisher of the assembly. (See recipe 1-15 for details on signing
assemblies with Authenticode.)

To compile an assembly that relies on types declared within external libraries, you must tell
the compiler which libraries are referenced using the /reference compiler switch. For example,
to compile the HelloWorld.vb source file (from recipe 1-1) if the ConsoleUtils class is contained in
the ConsoleUtils.dll library, use the command vbc /reference:ConsoleUtils.dll HelloWorld.vb.
Remember these four points:

Herman_970-5C01.fm Page 10 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 11

• If you reference more than one library, separate each library name with a comma or semicolon,
but don’t include any spaces. For example, use /reference:ConsoleUtils.dll,WindowsUtils.dll.

• If the libraries aren’t in the same directory as the source code, use the /libpath switch on the
compiler to specify the additional directories where the compiler should look for libraries.
For example, use /libpath:c:\CommonLibraries,c:\Dev\ThirdPartyLibs.

• Note that additional directories can be relative to the source folder. Don’t forget that at runtime,
the generated assembly must be in the same folder as the application that needs it, except if
you deploy it into the GAC.

• If the library you need to reference is a multifile assembly, reference the file that contains the
assembly manifest. (For information about multifile assemblies, see recipe 1-3.)

1-5. Embed a Resource File in an Assembly

Problem

You need to create a string-based resource file and embed it in an assembly.

Solution

Use the Resource Generator (resgen.exe) to create a compiled resource file. You then use the
/resource switch of the compiler to embed the file in the assembly.

■Note The Assembly Linker tool (al.exe) also provides functionality for working with and embedding resource
files. Refer to the Assembly Linker information in the .NET Framework SDK documentation for details.

How It Works

If you need to store strings in an external file and have them accessible to your assembly, you can use
a resource file. Resources are some form of data (a string or an image, for example) that is used by an
application. A resource file is a repository of one or more resources that can be easily accessed.

If you need to store only strings, you can create a simple text file that contains one or more key/
value pairs in the form of key=value. You cannot create image resources starting from a text file.

Once you have your text file, you compile it using the Resource Generator (resgen.exe). Using
this utility, you can convert the text file into either of two types:

• An .resx file, which is an XML resource file. This file is fully documented and can be edited
manually. It is also capable of supporting image resources, unlike the text file. Consult the
.NET Framework SDK documentation for more details on the .resx format.

• A .resource file, which is a compiled binary file and is required if you are embedding the file
into your assembly using the command-line compiler. You embed the .resource file into your
assembly by using the /resource switch of the VB .NET compiler. The .resource file can be
compiled from a .txt or .resx file.

You access the contents of the resource file by instantiating a ResourceManager object. The
GetString method is used to retrieve the value for the specified string. If you have stored something
other than a string such as an image in your resource file, use the GetObject method and cast the
return value to the appropriate type.

Herman_970-5C01.fm Page 11 Monday, February 18, 2008 7:26 AM

12 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The Code

This example borrows the code from recipe 1-2. The dialog box titles and message prompt have been
removed from the code and are now contained within an external resource file. The new program
uses the ResourceManager object to access the resources.

Imports System
Imports System.windows.forms
Imports System.Resources

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_05
 Inherits Form

 ' Private members to hold references to the form's controls.
 Private label1 As Label
 Private textbox1 As TextBox
 Private button1 As Button
 Private resManager As New ResourceManager("MyStrings", ➥
System.Reflection.Assembly.GetExecutingAssembly())

 ' Constructor used to create an instance of the form and configure
 ' the form's controls.
 Public Sub New()
 ' Instantiate the controls used on the form.
 Me.label1 = New Label
 Me.textbox1 = New TextBox
 Me.button1 = New Button

 ' Suspend the layout logic of the form while we configure and
 ' position the controls.
 Me.SuspendLayout()

 ' Configure label1, which displays the user prompt.
 Me.label1.Location = New System.Drawing.Size(16, 36)
 Me.label1.Name = "label1"
 Me.label1.Size = New System.Drawing.Size(155, 16)
 Me.label1.TabIndex = 0
 Me.label1.Text = resManager.GetString("UserPrompt")

 ' Configure textbox1, which accepts the user input.
 Me.textbox1.Location = New System.Drawing.Point(172, 32)
 Me.textbox1.Name = "textbox1"
 Me.textbox1.TabIndex = 1
 Me.textbox1.Text = ""

 ' Configure button1, which the user clicks to enter a name.
 Me.button1.Location = New System.Drawing.Point(109, 80)
 Me.button1.Name = "button1"
 Me.button1.TabIndex = 2
 Me.button1.Text = resManager.GetString("ButtonCaption")
 AddHandler button1.Click, AddressOf button1_Click

 ' Configure WelcomeForm, and add controls.
 Me.ClientSize = New System.Drawing.Size(292, 126)

Herman_970-5C01.fm Page 12 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 13

 Me.Controls.Add(Me.button1)
 Me.Controls.Add(Me.textbox1)
 Me.Controls.Add(Me.label1)
 Me.Name = "form1"
 Me.Text = resManager.GetString("FormTitle")

 ' Resume the layout logic of the form now that all controls are
 ' configured.
 Me.ResumeLayout(False)

 End Sub

 Private Sub button1_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs)

 ' Write debug message to the console.
 System.Console.WriteLine("User entered: " + textbox1.Text)

 ' Display welcome as a message box.
 MessageBox.Show(resManager.GetString("Message") + textbox1.Text, ➥
resManager.GetString("FormTitle"))

 End Sub

 ' Application entry point, creates an instance of the form, and begins
 ' running a standard message loop on the current thread. The message
 ' loop feeds the application with input from the user as events.
 Public Shared Sub Main()
 Application.EnableVisualStyles()
 Application.Run(New Recipe01_05())
 End Sub

 End Class
End Namespace

Usage

First, you must create the MyStrings.txt file that contains your resource strings:

;String resource file for Recipe01-05
UserPrompt=Please enter your name:
FormTitle=Visual Basic 2008 Recipes
Message=Welcome to Visual Basic 2008 Recipes,
ButtonCaption=Enter

You compile this file into a resource file by using the command resgen.exe MyStrings.txt
Recipe01_05.MyStrings.resources. To build the example and embed the resource file, use the
command vbc /resource:Recipe01_05.MyStrings.resources Recipe01-05.vb.

Notes

Using resource files from Visual Studio is a little different from using resource files from the
command line. For this example, the resource file must be in the XML format (.resx) and added
directly to the project. Instead of initially creating the .resource file, you can use the command
resgen.exe MyStrings.txt MyStrings.resx to generate the .resx file required by Visual Studio.

Herman_970-5C01.fm Page 13 Monday, February 18, 2008 7:26 AM

14 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

1-6. Build Projects from the Command Line Using MSBuild.exe

Problem

You need to compile one or more VB .NET files from the command line, and you need to have more
precise control over the build process.

Solution

Create a project file, and use the MSBuild.exe utility that ships with Visual Studio 2008. The build
project should reference each VB .NET file and compile them using the VB .NET compiler (vbc.exe)
via the vbc task.

How It Works

MSBuild.exe is a utility that ships with Visual Studio. It is located in the directory specific to the
target framework, such as C:\Windows\Microsoft.NET\Framework\v3.5\. This utility uses an XML
project file to perform specified actions on specified files. If you build an application in Visual Studio, a
file with the extension .vbproj is automatically generated. This is actually an XML project file used by
MSBuild.exe to build your project.

■Note For general information on working with XML files, please refer to Chapter 7.

The first step is creating a project file. As mentioned earlier, this is an XML file that contains key
elements that MSBuild.exe interprets. The first element, which is required for any project file, is Project.
This element must include the xmlns attribute set to http://schemas.microsoft.com/developer/msbuild/
2003. The root Project element can contain any of the child elements listed in Table 1-1.

Table 1-1. Common Child Elements

Name Description

Choose Allows you to specify ItemGroup or PropertyGroup elements based on one
or more condition.

Import Imports an external project file.

ItemGroup A group of user-defined Item elements. Each Item element represents
some data to be reference elsewhere in the build project.

ProjectExtensions Information that can be included in the build project but is ignored
by MSBuild.exe.

PropertyGroup A group of user-defined Property elements. Each Property element
represents some property to be referenced elsewhere in the build
project.

Target Defines one or more Task elements. Each Task element performs some
action as part of the build process.

UsingTask Registers tasks to be made available to MSBuild.exe.

Herman_970-5C01.fm Page 14 Monday, February 18, 2008 7:26 AM

http://schemas.microsoft.com/developer/msbuild

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 15

If your build project is going to reference files, your next step is to create an ItemGroup element
with an Item element for each file. Item elements can be named anything, but it is best to use a name
that represents what the file is. For example, if you had two VB .NET files, you might use SourceFile,
which represents an Item element, as shown here:

<ItemGroup>
 <SourceFile Include="FileOne.vb" />
 <SourceFile Include="FileTwo.vb" />
</ItemGroup>

Using the same name, such as SourceFile used in the previous example, will group the files
together. You can accomplish the same thing by putting the files on a single line and separating them
with a semicolon like this:

<SourceFile Include="FileOne.vb;FileTwo.vb" />

Each Item element must contain the Include attribute, which is used to define the value of the
element. When you need to reference a defined Item element, you just surround it with parentheses
and precede it with the @ symbol, as in @(SourceFile).

Once you have defined files, you need to do something with them. You do this by creating a
Target element and defining any appropriate predefined Task elements. By default, MSBuild.exe
includes several tasks, some of which are listed in Table 1-2. These tasks are defined in Microsoft.Build.
Tasks.v3.5.dll and are referenced by the MSBuild.exe utility by way of the Microsoft.Common.Tasks
project file, which is included for any build by default.

One of the most common tasks that will be used is the Vbc task. This task actually wraps vbc.exe,
making it possible to compile any VB .NET files. All the parameters available to vbc.exe are available
as properties to the Vbc task, although some of the names have changed. Table 1-3 lists some of the
most common properties and their matching vbc.exe parameters.

Table 1-2. Common MSBuild.exe Tasks

Name Description

Copy Copies the specified files to the specified location

MakeDir Creates the specified directory

RemoveDir Removes the specified directory

SignFile Uses the specified certificate to sign the specified file

Message Writes the specified message to the build log

Exec Executes the specified application using the specified parameters

Vbc Compiles code using the VB .NET compiler (vbc.exe)

GenerateResource Creates resource files similar to the resgen.exe utility discussed in recipe 1-5

Herman_970-5C01.fm Page 15 Monday, February 18, 2008 7:26 AM

16 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Usage

If you wanted to create a project using the files from recipe 1-1, it would look something like this:

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003" >
 <ItemGroup>
 <SourceFile Include="ConsoleUtils.vb" />
 <SourceFile Include="HelloWorld.vb" />
 </ItemGroup>
 <Target Name="TestBuild" >
 <Vbc TargetType="exe"
 MainEntryPoint="Apress.VisualBasicRecipes.Chapter01.HelloWorld"
 OutputAssembly ="HelloWorld.exe"
 Sources="@(SourceFile)" />
 </Target>
</Project>

Once you have created the project file, you use MSBuild.exe to build it. MSBuild.exe includes
many parameters (such as /property, /logger, and /verbosity) that can be used to fine-tune the build
process. For example, we will use the simplest form, which requires only the name of the project file:

Msbuild.exe HelloWorld.proj

Executing this command will create the HelloWorld.exe file and produce results similar to
the following:

Table 1-3. Common Vbc Task Properties

Vbc Task Property Vbc.exe Parameter Description

KeyFile /keyfile Specifies the cryptographic key to be used
(discussed in further detail in recipe 1-9)

KeyContainer /keycontainer Specifies the name of the cryptographic container
where the cryptographic key can be found
(discussed in further detail in recipe 1-9)

References /reference References additional assemblies to be compiled
(discussed in further detail in recipe 1-4)

TargetType /target Defines the format of the output file (discussed in
further detail in recipes 1-1, 1-2, and 1-3)

Resources /resources Embeds a resource (discussed in further detail in
recipe 1-5)

OutputAssembly /out Defines the name of the output file (discussed in
further detail in recipes 1-1 and 1-3)

MainEntryPoint /main Specifies the location of the Sub Main routine
(discussed in further detail in recipe 1-1)

AddModules /addmodule Imports the specified modules (discussed in further
detail in recipe 1-3)

Herman_970-5C01.fm Page 16 Monday, February 18, 2008 7:26 AM

http://schemas.microsoft.com/developer/msbuild/2003

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 17

Microsoft (R) Build Engine Version 3.5.20706.1
[Microsoft .NET Framework, Version 2.0.50727.1378]
Copyright (C) Microsoft Corporation 2007. All rights reserved.

Build started 9/1/2007 9:01:22 PM.

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:02.42

■Note This recipe covers only the very basics of MSBuild.exe. If you view the build project file that is automati-
cally created by Visual Studio (as mentioned earlier), you will notice how in-depth it is. For a complete reference to
the MSBuild.exe utility, refer to the online documentation at http://msdn2.microsoft.com/en-us/library/
0k6kkbsd.aspx.

1-7. Access Command-Line Arguments

Problem

You need to access the arguments that were specified on the command line when your application
was executed.

Solution

Use a signature for your Main method that exposes the command-line arguments as a String array.
Alternatively, access the command-line arguments from anywhere in your code using the Shared
members of the System.Environment class.

How It Works

Declaring your application’s Main method with one of the following signatures provides access to the
command-line arguments as a String array:

Public Shared Sub Main(ByVal args As String())
End Sub
Public Shared Function Main(ByVal args As String()) As Integer
End Sub

At runtime, the args argument will contain a string for each value entered on the command line
after your application’s name. The application’s name is not included in the array of arguments.

If you need access to the command-line arguments at places in your code other than the Main
method, you can process the command-line arguments in your Main method and store them for later
access. However, this is not necessary since you can use the System.Environment class, which
provides two Shared members that return information about the command line: CommandLine and
GetCommandLineArgs. The CommandLine property returns a string containing the full command line

Herman_970-5C01.fm Page 17 Monday, February 18, 2008 7:26 AM

http://msdn2.microsoft.com/en-us/library

18 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

that launched the current process. Depending on the operating system on which the application is
running, path information might precede the application name. Windows Server 2003, Windows
Server 2008, Windows NT 4.0, Windows 2000, Windows XP, and Windows Vista don’t include path
information, whereas Windows 98 and Windows ME do. The GetCommandLineArgs method returns a
String array containing the command-line arguments. This array can be processed in the same way
as the String array passed to the Main method, as discussed at the start of this section. Unlike the
array passed to the Main method, the first element in the array returned by the GetCommandLineArgs
method is the file name of the application.

■Note As an alternative, you can use the My.Application.CommandLineArgs method (which works identi-
cally to the GetCommandLineArgs method). We discuss the My namespace more thoroughly in Chapter 5.

The Code

To demonstrate the access of command-line arguments, the Main method in the following example
steps through each of the command-line arguments passed to it and displays them to the console.
The example then accesses the command line directly through the Environment class.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_07

 Public Shared Sub Main(ByVal args As String())

 ' Step through the command-line arguments
 For Each s As String In args
 Console.WriteLine(s)
 Next

 ' Alternatively, access the command-line arguments directly.
 Console.WriteLine(Environment.CommandLine)

 For Each s As String In Environment.GetCommandLineArgs()
 Console.WriteLine(s)
 Next

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you execute the Recipe01-07 example using the following command:

Recipe01-07 "one \"two\" three" four 'five six'

Herman_970-5C01.fm Page 18 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 19

the application will generate the following output on the console:

one "two" three
four
'five
six'
recipe01-07 "one \"two\" three" four 'five six'
recipe01-07
one "two" three
four
'five
six'

Main method complete. Press Enter.

Notice that the use of double quotes (") results in more than one word being treated as a single
argument, although single quotes (') do not. Also, you can include double quotes in an argument by
escaping them with the backslash character (\). Finally, notice that all spaces are stripped from the
command line unless they are enclosed in double quotes.

1-8. Include Code Selectively at Build Time

Problem

You need to selectively include and exclude sections of source code from your compiled assembly.

Solution

Use the #If, #ElseIf, #Else, and #End If preprocessor directives to identify blocks of code that should be
conditionally included in your compiled assembly. Use the System.Diagnostics.ConditionalAttribute
attribute to define methods that should be called conditionally only. Control the inclusion of the
conditional code using the #Const directive in your code, or use the /define switch when you run the
VB .NET compiler from the command line.

How It Works

If you need your application to function differently depending on factors such as the platform or
environment on which it runs, you can build runtime checks into the logic of your code that trigger
the variations in operation. However, such an approach can bloat your code and affect performance,
especially if many variations need to be supported or many locations exist where evaluations need
to be made.

An alternative approach is to build multiple versions of your application to support the different
target platforms and environments. Although this approach overcomes the problems of code bloat
and performance degradation, it would be an untenable solution if you had to maintain different
source code for each version, so VB .NET provides features that allow you to build customized
versions of your application from a single code base.

The #If, #ElseIf, #Else, and #End If preprocessor directives allow you to identify blocks of code
that the compiler should include or exclude in your assembly at compile time. This is accomplished
by evaluating the value of specified symbols. Since this happens at compile time, it may result in multiple
executables being distributed. Symbols can be any literal value. They also support the use of all stan-
dard comparison and logical operators or other symbols. The #If..#End If construct evaluates #If

Herman_970-5C01.fm Page 19 Monday, February 18, 2008 7:26 AM

20 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

and #ElseIf clauses only until it finds one that evaluates to true, meaning that if you define multiple
symbols (winXP and win2000, for example), the order of your clauses is important. The compiler includes
only the code in the clause that evaluates to true. If no clause evaluates to true, the compiler includes
the code in the #Else clause.

You can also use logical operators to base conditional compilation on more than one symbol.
Use parentheses to group multiple expressions. Table 1-4 summarizes the supported operators.

■Caution You must be careful not to overuse conditional compilation directives and not to make your conditional
expressions too complex; otherwise, your code can quickly become confusing and unmanageable—especially as
your projects become larger.

To define a symbol, you can either include a #Const directive in your code or use the /define
compiler switch. Symbols defined using #Const are active until the end of the file in which they are
defined. Symbols defined using the /define compiler switch are active in all source files that are
being compiled. All #Const directives must appear at the top of your source file before any code,
including any Imports statements.

If you need to determine only whether a symbol has been defined, a more elegant alternative to
the #If preprocessor directive is the attribute System.Diagnostics.ConditionalAttribute. If you
apply ConditionalAttribute to a method, the compiler will ignore any calls to the method if the symbol
specified by ConditionalAttribute is not defined, or set to False, at the calling point.

Using ConditionalAttribute centralizes your conditional compilation logic on the method decla-
ration and means you can freely include calls to conditional methods without littering your code
with #If directives. However, because the compiler literally removes calls to the conditional method
from your code, your code can’t have dependencies on return values from the conditional method.
This means you can apply ConditionalAttribute only to subroutines.

Table 1-4. Logical Operators Supported by the #If . . #End If Directive

Operator Example Description

NOT #If NOT winXP Inequality. Evaluates to true if the symbol winXP is
not equal to True. Equivalent to #If NOT winXP.

AND #If winXP AND release Logical AND. Evaluates to true only if the symbols
winXP and release are equal to True.

AndAlso #If winXP AndAlso release Logical AND. Works the same as the AND operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is False.

OR #IF winXP OR release Logical OR. Evaluates to true if either of the symbols
winXP or release is equal to True.

OrElse #IF winXP OrElse release Logical OR. Works the same as the OR operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is True.

XOR #IF winXP XOR release Logical XOR. Evaluates to true if only one of the
symbols, winXP or release, is equal to True.

Herman_970-5C01.fm Page 20 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 21

The Code

In this example, the code assigns a different value to the local variable platformName based on whether
the winVista, winXP, win2000, winNT, or Win98 symbols are defined. The head of the code defines the
win2000 symbol. In addition, the ConditionalAttribute specifies that calls to the DumpState method
should be included in an assembly only if the symbol DEBUG is defined during compilation. The DEBUG
symbol is defined by default in debug builds.

#Const winXP = True

Imports System
Imports System.Diagnostics

Namespace APress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_08

 ' Declare a string to contain the platform name
 Private Shared platformName As String
 <Conditional("DEBUG")> _
 Public Shared Sub DumpState()
 Console.WriteLine("Dump some state...")
 End Sub
 Public Shared Sub Main()

#If winVista Then ' Compiling for Windows Vista
 platformName = "Microsoft Windows Vista"
#ElseIf winXP Then ' Compiling for Windows XP
 platformName = "Microsoft Windows XP"
#ElseIf win2000 Then ' Compiling for Windows 2000
 platformName = "Microsoft Windows 2000"
#ElseIf winNT Then ' Compiling for Windows NT
 platformName = "Microsoft Windows NT"
#ElseIf win98 Then ' Compiling for Windows 98
 platformName = "Microsoft Windows 98"
#Else ' Unknown platform specified
 platformName = "Unknown"
#End If

 Console.WriteLine(platformName)

 ' Call the conditional DumpState method
 DumpState()

 ' Wait to continue...
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.Read()

 End Sub

 End Class
End Namespace

Usage

To build the example and define the symbol winVista, use the command vbc /define:winVista
Recipe01-08.vb. If you compile this sample without defining the winVista symbol, the winXP symbol

Herman_970-5C01.fm Page 21 Monday, February 18, 2008 7:26 AM

22 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

will be used since it was defined directly in the code. Otherwise, both winVista and winXP will be
defined, but Microsoft Windows Vista will be the platformName value because of the order in which
the symbols are checked.

Notes

You can apply multiple ConditionalAttribute instances to a method in order to produce logical OR
behavior. Calls to the following version of the DumpState method will be compiled only if the DEBUG or
TEST symbols are defined:

<Conditional("DEBUG"), Conditional("TEST")> _
Public Shared Sub DumpState()
 ...
End Sub

Achieving logical AND behavior is not as clean and involves the use of an intermediate condi-
tional method, quickly leading to overly complex code that is hard to understand and maintain. You
should be cautious with this approach, because you might end up with code in your assembly that is
never called. The following is a quick example that requires the definition of both the DEBUG and TEST
symbols for the DumpState functionality (contained in DumpState2) to be called:

<Conditional("DEBUG")> _
Public Shared Sub DumpState()
 DumpState2()
End Sub

<Conditional("TEST")> _
Public Shared Sub DumpState2()
 ...
End Sub

It’s important to remember that you are not limited to Boolean values for your symbols. You can
define a symbol with a string value, like this:

#Const OS = "Vista"

You could also do this using the command vbc /define:OS=\"winVista\" Recipe01-08.vb. You
must escape quotation marks using the \ character.

To use this new symbol, the preprocessor #If..#End If construct must be changed accordingly:

#If OS = "winVista" Then ' Compiling for Windows Vista
 platformName = "Microsoft Windows Vista"
#ElseIf OS = "XP" Then ' Compiling for Windows XP
 platformName = "Microsoft Windows XP"
#ElseIf OS = "2000" Then ' Compiling for Windows 2000
 platformName = "Microsoft Windows 2000"
#ElseIf OS = "NT" Then ' Compiling for Windows NT
 platformName = "Microsoft Windows NT"
#ElseIf OS = "98" Then ' Compiling for Windows 98
 platformName = "Microsoft Windows 98"
#Else ' Unknown platform specified
 platformName = "Unknown"
#End If

Herman_970-5C01.fm Page 22 Monday, February 18, 2008 7:26 AM

76a2626bcfb21763948a3d635f6fe985

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 23

1-9. Manipulate the Appearance of the Console

Problem

You want to control the visual appearance of the Windows console.

Solution

Use the Shared properties and methods of the System.Console class.

How It Works

The .NET Framework includes the Console class, which gives you control over the appearance and
operation of the Windows console. Table 1-5 describes the properties and methods of this class that
you can use to control the console’s appearance.

Table 1-5. Properties and Methods to Control the Appearance of the Console

Member Description

Properties

BackgroundColor Gets and sets the background color of the console using one of the
values from the System.ConsoleColor enumeration. Only new text
written to the console will appear in this color. To make the entire
console this color, call the method Clear after you have configured
the BackgroundColor property.

BufferHeight Gets and sets the buffer height in terms of rows. Buffer refers to
the amount of actual data that can be displayed within the console
window.

BufferWidth Gets and sets the buffer width in terms of columns. Buffer refers to
the amount of actual data that can be displayed within the console
window.

CursorLeft Gets and sets the column position of the cursor within the buffer.

CursorSize Gets and sets the height of the cursor as a percentage of a character
cell.

CursorTop Gets and sets the row position of the cursor within the buffer.

CursorVisible Gets and sets whether the cursor is visible.

ForegroundColor Gets and sets the text color of the console using one of the values
from the System.ConsoleColor enumeration. Only new text written
to the console will appear in this color. To make the entire console
this color, call the method Clear after you have configured the
ForegroundColor property.

LargestWindowHeight Returns the largest possible number of rows based on the current
font and screen resolution.

LargestWindowWidth Returns the largest possible number of columns based on the current
font and screen resolution.

Title Gets and sets text shown in the title bar.

Herman_970-5C01.fm Page 23 Monday, February 18, 2008 7:26 AM

24 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The Code

The following example demonstrates how to use the properties and methods of the Console class to
dynamically change the appearance of the Windows console:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_09

 Public Shared Sub Main(ByVal args As String())

 ' Display the standard console.
 Console.Title = "Standard Console"
 Console.WriteLine("Press Enter to change the console's appearance.")
 Console.ReadLine()

 ' Change the console appearance and redisplay.
 Console.Title = "Colored Text"
 Console.ForegroundColor = ConsoleColor.Red
 Console.BackgroundColor = ConsoleColor.Green
 Console.WriteLine("Press Enter to change the console's appearance.")
 Console.ReadLine()

 ' Change the console appearance and redisplay.
 Console.Title = "Cleared / Colored Console"
 Console.ForegroundColor = ConsoleColor.Blue
 Console.BackgroundColor = ConsoleColor.Yellow
 Console.Clear()
 Console.WriteLine("Press Enter to change the console's appearance.")
 Console.ReadLine()

 ' Change the console appearance and redisplay.
 Console.Title = "Resized Console"
 Console.ResetColor()
 Console.Clear()
 Console.SetWindowSize(100, 50)

WindowHeight Gets and sets the physical height of the console window in terms of
character rows.

WindowWidth Gets and sets the physical width of the console window in terms of
character columns.

Methods

Clear Clears the console.

ResetColor Sets the foreground and background colors to their default values as
configured within Windows.

SetWindowSize Sets the width and height in terms of columns and rows.

Table 1-5. Properties and Methods to Control the Appearance of the Console (Continued)

Member Description

Herman_970-5C01.fm Page 24 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 25

 Console.BufferHeight = 500
 Console.BufferWidth = 100
 Console.CursorLeft = 20
 Console.CursorSize = 50
 Console.CursorTop = 20
 Console.CursorVisible = False
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

1-10. Access a Program Element That Has the Same Name
As a Keyword

Problem

You need to access a member of a type, but the type or member name is the same as a VB .NET
keyword.

Solution

Surround all instances of the identifier name in your code with brackets ([]).

How It Works

The .NET Framework allows you to use software components developed in other .NET languages
from within your VB .NET applications. Each language has its own set of keywords (or reserved
words) and imposes different restrictions on the names programmers can assign to program elements
such as types, members, and variables. Therefore, it is possible that a programmer developing a
component in another language will inadvertently use a VB .NET keyword as the name of a program
element. Using brackets ([]) enables you to use a VB .NET keyword as an identifier and overcome
these possible naming conflicts.

The Code

The following code fragment creates the new Operator (perhaps a telephone operator) class. A new
instance of this class is created, and its Friend property is set to True—both Operator and Friend are
VB .NET keywords:

Public Class [Operator]
 Public [Friend] As Boolean
End Class

' Instantiate an operator object
Dim operator1 As New [Operator]

' Set the operator's Friend property
operator1.[Friend] = True

Herman_970-5C01.fm Page 25 Monday, February 18, 2008 7:26 AM

26 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

1-11. Create and Manage Strong-Named Key Pairs

Problem

You need to create public and private keys (a key pair) so that you can assign strong names to your
assemblies.

Solution

Use the Strong Name tool (sn.exe) to generate a key pair and store the keys in a file or cryptographic
service provider (CSP) key container.

■Note A CSP is an element of the Win32 CryptoAPI that provides services such as encryption, decryption, and
digital signature generation. CSPs also provide key container facilities, which use strong encryption and operating
system security to protect any cryptographic keys stored in the container. A detailed discussion of CSPs and CryptoAPI is
beyond the scope of this book. All you need to know for this recipe is that you can store your cryptographic keys in
a CSP key container and be relatively confident that it is secure as long as no one knows your Windows password.
Refer to the CryptoAPI information in the platform SDK documentation for complete details.

How It Works

To generate a new key pair and store the keys in the file named MyKeys.snk, execute the command
sn -k MyKeys.snk. (.snk is the usual extension given to files containing strong-named keys.) The
generated file contains both your public and private keys. You can extract the public key using the
command sn -p MyKeys.snk MyPublicKeys.snk, which will create MyPublicKey.snk containing only
the public key. Once you have this file in hand, you can view the public key using the command
sn -tp MyPublicKeys.snk, which will generate output similar to the (abbreviated) listing shown here:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

Public key is
0024000004800000940000000602000000240000525341310004000001000100c5810bb3c095d0
6de71d6cafba0b2088b45951ba76407d981d20bf1be825990619b6888d56146b9532981374df9a
fa1001b1336e262a09fa8c7d989cf4a0ad6bbe5684f9cd82cc38ba6d6707acaf13f058e22d6796
2dc72212bf797da89c08d8e65338c2972de659385472a603e00d3cc3c9f348b51d7c47a8611479
deb3f0ab

Public key token is 442a698bee81cc00

The public key token shown at the end of the listing is the last 8 bytes of a cryptographic hash
code computed from the public key. Because the public key is so long, .NET uses the public key token
for display purposes and as a compact mechanism for other assemblies to reference your public key.
(Recipes 11-14 and 11-15 discuss cryptographic hash codes.)

As the name suggests, you don’t need to keep the public key (or public key token) secret. When
you strong name your assembly (discussed in recipe 1-12), the compiler uses your private key to
generate a digital signature (an encrypted hash code) of the assembly’s manifest. The compiler embeds
the digital signature and your public key in the assembly so that any consumer of the assembly can
verify the digital signature.

Herman_970-5C01.fm Page 26 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 27

Keeping your private key secret is imperative. People with access to your private key can alter
your assembly and create a new strong name—leaving your customers unaware they are using
modified code. No mechanism exists to repudiate compromised strong-named keys. If your private
key is compromised, you must generate new keys and distribute new versions of your assemblies
that are strong named using the new keys. You must also notify your customers about the compro-
mised keys and explain to them which versions of your public key to trust—in all, a very costly exercise
in terms of both money and credibility. You can protect your private key in many ways; the approach
you use will depend on several factors:

• The structure and size of your organization

• Your development and release process

• The software and hardware resources you have available

• The requirements of your customer base

■Tip Commonly, a small group of trusted individuals (the signing authority) has responsibility for the security
of your company’s strong name signing keys and is responsible for signing all assemblies just prior to their final
release. The ability to delay sign an assembly (discussed in recipe 1-14) facilitates this model and avoids the need
to distribute private keys to all development team members.

One feature provided by the Strong Name tool to simplify the security of strong-named keys is
the use of CSP key containers. Once you have generated a key pair to a file, you can install the keys into a
key container and delete the file. For example, to store the key pair contained in the file MyKeys.snk to a
CSP container named StrongNameKeys, use the command sn -i MyKeys.snk StrongNameKeys. You
can install only one set of keys to a single container. (Recipe 1-12 explains how to use strong-named
keys stored in a CSP key container.)

An important aspect of CSP key containers is that they include user-based containers and
machine-based containers. Windows security ensures users can access only their own user-based
key containers. However, any user of a machine can access a machine-based container.

By default, the Strong Name tool uses machine-based key containers, meaning that anyone who
can log on to your machine and who knows the name of your key container can sign an assembly
with your strong-named keys. To change the Strong Name tool to use user-based containers, use the
command sn -m n, and to switch to machine-based stores, use the command sn -m y. The command
sn -m will display whether the Strong Name tool is currently configured to use machine-based or
user-based containers.

To delete the strong-named keys from the StrongNameKeys container (as well as delete the
container), use the command sn -d StrongNameKeys.

1-12. Give an Assembly a Strong Name

Problem

You need to give an assembly a strong name for several reasons:

• So it has a unique identity, which allows people to assign specific permissions to the assembly
when configuring code access security policy

• So it can’t be modified and passed off as your original assembly

• So it can be installed in the GAC and shared across multiple applications

Herman_970-5C01.fm Page 27 Monday, February 18, 2008 7:26 AM

28 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Solution

When you build your assembly using the command-line VB .NET compiler, use the /keyfile or
/keycontainer compiler switch to specify the location of your strong-named key pair. Use assembly-
level attributes to specify optional information such as the version number and culture for your
assembly. The compiler will strong name your assembly as part of the compilation process.

■Note If you are using Visual Studio, you can configure your assembly to be strong named by opening the project
properties, selecting the Signing tab, and checking the Sign the Assembly box. You will need to specify the location
of the file where your strong-named keys are stored—Visual Studio does not allow you to specify the name of a key
container.

How It Works

To strong name an assembly using the VB .NET compiler, you need the following:

• A strong-named key pair contained either in a file or in a CSP key container. (Recipe 1-11
discusses how to create strong-named key pairs.)

• Compiler switches to specify the location where the compiler can obtain your strong-named
key pair:

• If your key pair is in a file, use the /keyfile compiler switch, and provide the name of the
file where the keys are stored. For example, use /keyfile:MyKeyFile.snk.

• If your key pair is in a CSP container, use the /keycontainer compiler switch, and
provide the name of the CSP key container where the keys are stored. For example,
use /keycontainer:MyKeyContainer.

• Optionally, specify the culture that your assembly supports by applying the attribute
System.Reflection.AssemblyCultureAttribute to the assembly. (If you attempt to use this
attribute with an executable assembly, you will receive a compile error because executable
assemblies support only the neutral culture.)

• Optionally, specify the version of your assembly by applying the attribute System.Reflection.
AssemblyVersionAttribute to the assembly.

The Code

The executable code that follows (from a file named Recipe01-09.vb) shows how to use the optional
attributes (shown in bold) to specify the culture and the version for the assembly:

Imports System
Imports System.Reflection

<Assembly: AssemblyCulture("")>
<Assembly: AssemblyVersion("1.1.0.5")>

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_12

 Public Shared Sub main()
 Console.WriteLine("Welcome to Visual Basic 2008 Recipes")

Herman_970-5C01.fm Page 28 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 29

 ' Wait to continue...
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.Read()
 End Sub

 End Class
End Namespace

Usage

To create a strong-named assembly from the example code, create the strong-named keys and store
them in a file named MyKeyFile using the command sn -k MyKeyFile.snk. Then install the keys into
the CSP container named MyKeys using the command sn -i MyKeyFile.snk MyKeys. You can now
compile the file into a strong-named assembly using the command vbc /keycontainer:MyKeys
Recipe01-12.vb. If you are not using a CSP container, you can specify the specific key file using the
command vbc /keyfile:MyKeyFile.snk Recipe01-12.vb.

Notes

If you use Visual Studio, you may not be able to include the optional AssemblyVersion attribute in
your code. This is because the attribute may already exist for the assembly. By default, Visual Studio
automatically creates a folder called MyProject. This folder stores multiple files, including
AssemblyInfo.vb, which contains standard assembly attributes for the project. These can be manu-
ally edited or edited through the Assembly Information dialog box (see Figure 1-2), accessible from
the Application tab of the project properties. Since the AssemblyInfo.vb file is an efficient way to
store information specific to your assembly, it is actually good practice to create and use a similar
file, even if you are not using Visual Studio to compile.

Figure 1-2. The Assembly Information dialog box

Herman_970-5C01.fm Page 29 Monday, February 18, 2008 7:26 AM

30 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

1-13. Verify That a Strong-Named Assembly Has Not Been
Modified

Problem

You need to verify that a strong-named assembly has not been modified after it was built.

Solution

Use the Strong Name tool (sn.exe) to verify the assembly’s strong name.

How It Works

Whenever the .NET runtime loads a strong-named assembly, the runtime extracts the encrypted
hash code that’s embedded in the assembly and decrypts it with the public key, which is also embedded
in the assembly. The runtime then calculates the hash code of the assembly manifest and compares
it to the decrypted hash code. This verification process will identify whether the assembly has changed
after compilation.

If an executable assembly fails strong name verification, the runtime will display an error message
or an error dialog box (depending on whether the application is a console or Windows application).
If executing code tries to load an assembly that fails verification, the runtime will throw a System.IO.
FileLoadException with the message “Strong name validation failed,” which you should handle
appropriately.

As well as generating and managing strong-named keys (discussed in recipe 1-11), the Strong
Name tool allows you to verify strong-named assemblies. To verify that the strong-named assembly
Recipe01-12.exe is unchanged, use the command sn -vf Recipe01-12.exe. The -v switch requests the
Strong Name tool to verify the strong name of the specified assembly, and the -f switch forces strong
name verification even if it has been previously disabled for the specified assembly. (You can disable
strong name verification for specific assemblies using the -Vr switch, as in sn -Vr Recipe01-12.exe; see
recipe 1-14 for details about why you would disable strong name verification.)

If the assembly passes strong name verification, you should see the following output:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

Assembly 'recipe01-12.exe' is valid

However, if the assembly has been modified, you will see this message:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

recipe01-12.exe does not represent a strongly named assembly

Herman_970-5C01.fm Page 30 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 31

1-14. Delay Sign an Assembly

Problem

You need to create a strong-named assembly, but you don’t want to give all members of your devel-
opment team access to the private key component of your strong-named key pair.

Solution

Extract and distribute the public key component of your strong-named key pair. Follow the instruc-
tions in recipe 1-12 that describe how to give your assembly a strong name. In addition, specify the
/delaysign switch when you compile your assembly. Disable strong name verification for the assembly
using the -Vr switch of the Strong Name tool (sn.exe).

■Note If you are using Visual Studio, you can configure your strong-named assembly to be delay signed by
opening the project properties, selecting the Signing tab, and checking the Delay Sign Only box. Doing so will
prohibit your project from being run or debugged. You can get around this by skipping verification using the
-Vr switch of the Strong Name tool.

How It Works

Assemblies that reference strong-named assemblies contain the public key token of the referenced
assemblies. This means the referenced assembly must be strong named before it can be referenced.
In a development environment in which assemblies are regularly rebuilt, this would require every
developer and tester to have access to your strong-named key pair—a major security risk.

Instead of distributing the private key component of your strong-named key pair to all members
of the development team, the .NET Framework provides a mechanism named delay signing with
which you can partially strong name an assembly. The partially strong-named assembly contains the
public key and the public key token (required by referencing assemblies) but contains only a place-
holder for the signature that would normally be generated using the private key.

After development is complete, the signing authority (who has responsibility for the security
and use of your strong-named key pair) re-signs the delay-signed assembly to complete its strong
name. The signature is calculated using the private key and embedded in the assembly, making the
assembly ready for distribution.

To delay sign an assembly, you need access only to the public key component of your strong-
named key pair. No security risk is associated with distributing the public key, and the signing authority
should make the public key freely available to all developers. To extract the public key component
from a strong-named key file named MyKeyFile.snk and write it to a file named MyPublicKey.snk,
use the command sn -p MyKeyFile.snk MyPublicKey.snk. If you store your strong-named key pair
in a CSP key container named MyKeys, extract the public key to a file named MyPublicKey.snk using
the command sn -pc MyKeys MyPublicKey.snk.

Once you have a key file containing the public key, you build the delay-signed assembly using
the command-line VB .NET compiler by specifying the /delaysign compiler switch. For example,
to build a delay-signed assembly using the MyPublicKey.snk public key from a source file named
Recipe01-14.vb, use this command:

vbc /delaysign /keyfile:MyPublicKey.snk Recipe01-14.vb

When the runtime tries to load a delay-signed assembly, it will identify the assembly as strong
named and will attempt to verify the assembly, as discussed in recipe 1-13. Because it doesn’t have

Herman_970-5C01.fm Page 31 Monday, February 18, 2008 7:26 AM

32 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

a digital signature, you must configure the runtime on the local machine to stop verifying the assembly’s
strong name using the command sn -Vr Recipe01-14.exe. Note that you need to do so on every
machine on which you want to run your application.

■Tip When using delay-signed assemblies, it’s often useful to be able to compare different builds of the same
assembly to ensure they differ only by their signatures. This is possible only if a delay-signed assembly has been
re-signed using the -R switch of the Strong Name tool. To compare the two assemblies, use the command
sn -D assembly1 assembly2.

Once development is complete, you need to re-sign the assembly to complete the assembly’s
strong name. The Strong Name tool allows you to do this without changing your source code or recom-
piling the assembly; however, you must have access to the private key component of the strong-
named key pair. To re-sign an assembly named Recipe01-14.exe with a key pair contained in the file
MyKeys.snk, use the command sn -R Recipe01-14.exe MyKeys.snk. If the keys are stored in a CSP
key container named MyKeys, use the command sn -Rc Recipe01-14.exe MyKeys.

Once you have re-signed the assembly, you should turn strong name verification for that assembly
back on using the -Vu switch of the Strong Name tool, as in sn -Vu Recipe01-14.exe. To enable veri-
fication for all assemblies for which you have disabled strong name verification, use the command
sn -Vx. You can list the assemblies for which verification is disabled using the command sn -Vl.

1-15. Sign an Assembly with an Authenticode Digital Signature

Problem

You need to sign an assembly with Authenticode so that users of the assembly can be certain you are
its publisher and the assembly is unchanged after signing.

Solution

Use the Sign Tool (signtool.exe) to sign the assembly with your software publisher certificate (SPC).

How It Works

Strong names provide a unique identity for an assembly as well as proof of the assembly’s integrity,
but they provide no proof as to the publisher of the assembly. The .NET Framework allows you to use
Authenticode technology to sign your assemblies. This enables consumers of your assemblies to
confirm that you are the publisher, as well as confirm the integrity of the assembly. Authenticode
signatures also act as evidence for the signed assembly, which people can use when configuring
code access security policy.

To sign your assembly with an Authenticode signature, you need an SPC issued by a recognized
certificate authority (CA). A CA is a company entrusted to issue SPCs (along with many other types of
certificates) for use by individuals or companies. Before issuing a certificate, the CA is responsible for
confirming that the requesters are who they claim to be and also for making sure the requesters sign
contracts to ensure they don’t misuse the certificates that the CA issues them.

To obtain an SPC, you should view the Microsoft Root Certificate Program Members list at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/
rootcertprog.asp. Here you will find a list of CAs, many of whom can issue you an SPC. For testing
purposes, you can create a test SPC using the process described in recipe 1-16. However, you can’t

Herman_970-5C01.fm Page 32 Monday, February 18, 2008 7:26 AM

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 33

distribute your software signed with this test certificate. Because a test SPC isn’t issued by a trusted
CA, most responsible users won’t trust assemblies signed with it.

Once you have an SPC, you use the Sign Tool to Authenticode sign your assembly. The Sign Tool
creates a digital signature of the assembly using the private key component of your SPC and embeds
the signature and the public part of your SPC in your assembly (including your public key). When
verifying your assembly, the consumer decrypts the encrypted hash code using your public key,
recalculates the hash of the assembly, and compares the two hash codes to ensure they are the same.
As long as the two hash codes match, the consumer can be certain that you signed the assembly and
that it has not changed since you signed it.

Usage

The Sign Tool provides a graphical wizard that walks you through the steps to Authenticode sign
your assembly. To sign an assembly named MyAssembly.exe, run this command:

signtool signwizard MyAssembly.exe

Click Next on the introduction screen, and you will see the File Selection screen, where you
must enter the name of the assembly to Authenticode sign (see Figure 1-3). Because you specified the
assembly name on the command line, it is already filled in. If you are signing a multifile assembly,
specify the name of the file that contains the assembly manifest. If you intend to both strong name
and Authenticode sign your assembly, you must strong name the assembly first. (See recipe 1-12 for
details on strong naming assemblies.)

Figure 1-3. The Sign Tool’s File Selection screen

Clicking Next takes you to the Signing Options screen (see Figure 1-4). If your SPC is in a certif-
icate store, select the Typical radio button. If your SPC is in a file, select the Custom radio button.
Then click Next.

Herman_970-5C01.fm Page 33 Monday, February 18, 2008 7:26 AM

34 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Figure 1-4. The Sign Tool’s Signing Options screen

Assuming you want to use a file-based certificate (like the test certificate created in recipe 1-16),
click the Select from File button on the Signature Certificate screen (see Figure 1-5), select the file
containing your SPC certificate, and then click Next.

Figure 1-5. The Sign Tool’s Signature Certificate screen

Herman_970-5C01.fm Page 34 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 35

The Private Key screen allows you to identify the location of your private keys, which will either be
in a file or be in a CSP key container, depending on where you created and stored them (see Figure 1-6).
The example assumes they are in a file named PrivateKeys.pvk.

Figure 1-6. The Sign Tool’s Private Key screen

When you click Next, if you selected to use a file, you will be prompted (see Figure 1-7) to enter
a password to access the file (if required).

Figure 1-7. Prompt for password to private key

You can then select whether to use the sha1 or md5 hash algorithm (see Figure 1-8). The default
is sha1, which is suitable for most purposes. On the Hash Algorithm screen, pick an algorithm, and
then click Next.

Herman_970-5C01.fm Page 35 Monday, February 18, 2008 7:26 AM

36 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Figure 1-8. The Sign Tool’s Hash Algorithm screen

Click Next to leave the default values on the Additional Certificates screen, the Data Description
screen, and the Timestamping screen. This will bring you to the final screen (see Figure 1-9), which
shows you all the previous choices you made. If everything is accurate, click Finish. If you are using
a file-based private key that is password protected, you will once again be prompted to enter the
password, after which the Sign Tool will Authenticode sign your assembly.

Figure 1-9. The Sign Tool’s completion screen

Herman_970-5C01.fm Page 36 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 37

■Note The Sign Tool uses capicom.dll version 2.1.0.1. If an error occurs when you run signtool.exe that indicates
capicom.dll is not accessible or not registered, change to the directory where capicom.dll is located (which is
C:\Program Files\Common Files\Microsoft Shared\CAPICOM by default), and run the command regsvr32
capicom.dll.

1-16. Create and Trust a Test Software Publisher Certificate

Problem

You need to create an SPC to allow you to test the Authenticode signing of an assembly.

Solution

Use the Certificate Creation tool (makecert.exe) to create a test X.509 certificate, and use the Soft-
ware Publisher Certificate Test tool (cert2spc.exe) to generate an SPC from this X.509 certificate.
Trust the root test certificate using the Set Registry tool (setreg.exe).

How It Works

To create a test SPC for a software publisher named Todd Herman, create an X.509 certificate
using the Certificate Creation tool. The command makecert -n "CN=Todd Herman" -sk MyKeys
TestCertificate.cer creates a file named TestCertificate.cer containing an X.509 certificate and
stores the associated private key in a CSP key container named MyKeys (which is automatically
created if it does not exist). Alternatively, you can write the private key to a file by substituting the
-sk switch with -sv. For example, to write the private key to a file named PrivateKeys.pvk, use the
command makecert -n " CN=Todd Herman" -sv PrivateKey.pvk TestCertificate.cer. If you write
your private key to a file, the Certificate Creation tool will prompt you to provide a password with
which to protect the private key file (see Figure 1-10).

Figure 1-10. The Certificate Creation tool requests a password when creating file-based private keys.

The Certificate Creation tool supports many arguments, and Table 1-6 lists some of the more
useful ones. You should consult the .NET Framework SDK documentation for full coverage of the
Certificate Creation tool.

Herman_970-5C01.fm Page 37 Monday, February 18, 2008 7:26 AM

38 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Once you have created your X.509 certificate with the Certificate Creation tool, you need to
convert it to an SPC with the Software Publisher Certificate Test tool (cert2spc.exe). To convert
the certificate TestCertificate.cer to an SPC, use the command cert2spc TestCertificate.cer
TestCertificate.spc. The Software Publisher Certificate Test tool doesn’t offer any optional switches.

The final step before you can use your test SPC is to trust the root test CA, which is the default
issuer of the test certificate. The Set Registry tool (setreg.exe) makes this a simple task with the
command setreg 1 true. You can now Authenticode sign assemblies with your test SPC using the
process described in recipe 1-15. When you have finished using your test SPC, you must remove trust
of the root test CA using the command setreg 1 false.

1-17. Manage the Global Assembly Cache

Problem

You need to add or remove assemblies from the GAC.

Solution

Use the Global Assembly Cache tool (gacutil.exe) from the command line to view the contents of the
GAC as well as to add and remove assemblies.

How It Works

Before you can install an assembly in the GAC, the assembly must have a strong name. (See recipe 1-12
for details on how to strong name your assemblies.) To install an assembly named SomeAssembly.dll
into the GAC, use the command gacutil /i SomeAssembly.dll. You can install different versions of
the same assembly in the GAC to meet the versioning requirements of different applications.

To uninstall the SomeAssembly.dll assembly from the GAC, use the command gacutil /u
SomeAssembly. Notice that you don’t use the .dll extension to refer to the assembly once it’s installed in the
GAC. This will uninstall all assemblies with the specified name. To uninstall a particular version, specify
the version along with the assembly name; for example, use gacutil /u SomeAssembly,Version=1.0.0.5.

To view the assemblies installed in the GAC, use the command gacutil /l. This will produce a
long list of all the assemblies installed in the GAC, as well as a list of assemblies that have been precom-
piled to binary form and installed in the native image (ngen) cache. To avoid searching through this

Table 1-6. Commonly Used Switches of the Certificate Creation Tool

Switch Description

-e Specifies the date when the certificate becomes invalid.

-m Specifies the duration—in months—that the certificate remains valid.

-n Specifies an X.500 name to associate with the certificate. This is the name of the
software publisher that people will see when they view details of the SPC you create.

-sk Specifies the name of the CSP key store in which to store the private key.

-ss Specifies the name of the certificate store where the Certificate Creation tool should
store the generated X.509 certificate.

-sv Specifies the name of the file in which to store the private key.

Herman_970-5C01.fm Page 38 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 39

list to determine whether a particular assembly is installed in the GAC, use the command
gacutil /l SomeAssembly.

■Note The .NET Framework uses the GAC only at runtime; the VB .NET compiler won’t look in the GAC to resolve
any external references that your assembly references. During development, the VB .NET compiler must be able to
access a local copy of any referenced shared assemblies. You can either copy the shared assembly to the same
directory as your source code or use the /libpath switch of the VB .NET compiler to specify the directory where
the compiler can find the required assemblies.

1-18. Make Your Assembly More Difficult to Decompile

Problem

You want to make sure that people cannot decompile your .NET assemblies.

Solution

The only way to ensure that your assembly cannot be decompiled is by not making it directly acces-
sible. This can be accomplished using a server-based solution. If you must distribute assemblies,
you have no way to stop people from decompiling them. The best you can do is use obfuscation and
components compiled to native code to make your assemblies more difficult to decompile.

How It Works

Because .NET assemblies consist of a standardized, platform-independent set of instruction codes
and metadata that describes the types contained in the assembly, they are relatively easy to decom-
pile. This allows decompilers to generate source code that is close to your original code with ease,
which can be problematic if your code contains proprietary information or algorithms that you want
to keep secret.

The only way to ensure people can’t decompile your assemblies is to prevent them from getting your
assemblies in the first place. Where possible, implement server-based solutions such as Microsoft
ASP.NET applications and web services. With the security correctly configured on your server, no
one will be able to access your assemblies, and therefore they won’t be able to decompile them.

When building a server solution is not appropriate, you have the following two options:

• Use an obfuscator to make it difficult to understand your code once it is decompiled. Some
versions of Visual Studio include the Community Edition of an obfuscator named Dotfuscator.
Obfuscators use a variety of techniques to make your assembly difficult to decompile; prin-
cipal among these techniques are renaming Private methods and fields in such a way that it’s
difficult to read and understand the purpose of your code, as well as inserting control flow
statements to make the logic of your application difficult to follow.

• Build the parts of your application that you want to keep secret in native DLLs or COM objects,
and then call them from your managed application using P/Invoke or COM Interop. (See
Chapter 14 for recipes that show you how to call unmanaged code.)

Neither approach will stop a skilled and determined person from reverse engineering your
code, but both approaches will make the job significantly more difficult and deter most casual
observers.

Herman_970-5C01.fm Page 39 Monday, February 18, 2008 7:26 AM

40 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

■Note The risks of application decompilation aren’t specific to VB .NET or .NET in general. Determined people
can reverse engineer any software if they have the time and the skill.

1-19. Use Implicitly Typed Variables

Problem

You need to create a strongly typed variable without explicitly declaring its type in an effort to save
some development time or support LINQ, which is discussed in more detail in Chapter 6.

Solution

Ensure Option Infer is On, and then create a variable and assign it a value without using As and spec-
ifying a type.

How It Works

VB .NET 9.0 allows you to create strongly typed variables without explicitly setting their data types.
You could do this in previous versions of VB .NET, if Option Strict were set to Off, but the variable
was always typed as an Object. In this case, its type is automatically inferred based on its value.

To use this new functionality, Option Infer must be set to On. You can specify this setting in the
Project Settings dialog box or by adding Option Infer On to the top of your code. If you create a new
project in Visual Studio 2008, the project settings will have Option Infer set to On by default. Any
projects that you migrate from previous Visual Studio versions will have Option Infer set to Off. If
you are compiling your code using the VB compiler (vbc), you can use the /optioninfer option.

The following example demonstrates how to use type inference or implicit typing:

Dim name = "Todd"
Dim birthday = #7/12/1971#
Dim age = 36
Dim people = New Person() {New Person("Todd"), New Person("Amy"), ➥
New Person("Alaina"), New Person("Aidan")}

If you hover your cursor over any of the variables in the preceding example in the Visual Studio IDE,
you will see a tool tip that shows that they are actually being strongly typed. name is inferred as a String,
birthday is a Date, age is an Integer, and, as shown in Figure 1-11, people is an array of Person objects.

When your code is compiled to Microsoft Intermediate Language (MSIL), all variables are
strongly typed. (See recipes 1-3 and 2-6 for more information about MSIL.) If you looked at this
compiled MSIL code using the MSIL Disassembler tool (Ildasm.exe), you would see that it has explic-
itly and correctly typed each variable. The following output was taken from the Ildasm.exe results for
the sample code shown previously.

.locals init ([0] int32 age,
 [1] valuetype [mscorlib]System.DateTime birthday,
 [2] string name,
 [3] class Apress.VisualBasicRecipes.Examples.TypeInference/Person[] people,
 [4] class Apress.VisualBasicRecipes.Examples.TypeInference/Person[] VBt_arrayS0)

Herman_970-5C01.fm Page 40 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 41

Figure 1-11. A tool tip showing inferred type

Implicitly typing variables is an important part of creating and using LINQ queries, which are
discussed in further detail in Chapters 6, 7, and 8. It is also a required component of anonymous
types, which are discussed in recipe 1-21.

1-20. Use Object Initializers

Problem

You need to initialize the properties of a class when it is first instantiated, without relying on the class
constructor or default values in an effort to save some development time or support LINQ, which is
discussed in more detail in Chapter 6.

Solution

Instantiate a new class instance, and initialize any writable public fields or properties using the With
keyword.

How It Works

VB .NET 9.0 includes the ability to initialize the writable public fields or properties of a class when
it is first instantiated. When you use object initializers, the default constructor of the class is called
automatically. This means any class you want to use object initializers for must have a default
constructor. Any properties or fields that you do not initialize retain their default values.

Object initialization is made possible by using the With keyword. With is not new to VB .NET but
was not previously usable in this manner. Here is a simple example of a class:

Herman_970-5C01.fm Page 41 Monday, February 18, 2008 7:26 AM

42 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Public Class Person
 Private m_FirstName As String
 Private m_LastName As String

 Public Sub New()
 m_FirstName = String.Empty
 m_LastName = String.Empty
 End Sub

 Public Property FirstName() As String
 Get
 Return m_FirstName
 End Get
 Set(ByVal value As String)
 m_FirstName = value
 End Set
 End Property

 Public Property LastName() As String
 Get
 Return m_LastName
 End Get
 Set(ByVal value As String)
 m_LastName = value
 End Set
 End Property

End Class

In previous versions of VB .NET, you would instantiate and set property values like this:

Dim todd = New Person

With todd
 .FirstName = "Todd"
 .LastName = "Herman"
End With

The other option, if you had access to modify the class, is to use constructors to pass the prop-
erty values. However, this method can become cumbersome quickly if you have a class with many
properties. You further complicate things if you use an array, like this:

Dim people As Person() = New Person(2) {New Person, New Person, New Person}

With people(0)
 .FirstName = "Todd"
 .LastName = "Herman"
End With

With people(1)
 .FirstName = "Alaina"
 .LastName = "Herman"
End With

Herman_970-5C01.fm Page 42 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 43

With people(2)
 .FirstName = "Aidan"
 .LastName = "Herman"
End With

Object initializers simplify this by allowing you to specify values during instantiation, like this:

Dim todd = New Person With {.FirstName = "Todd", .LastName = "Herman"}

or like this:

Dim people = New Person() {
 {New Person With {.FirstName = "Todd", _
 .LastName = "Herman"}, _
 New Person With {.FirstName = "Amy", _
 .LastName = "Herman"}, _
 New Person With {.FirstName = "Alaina", _
 .LastName = "Herman"}, _
 New Person With {.FirstName = "Aidan", _
 .LastName = "Herman"}}

■Note Although it is not required, both of the preceding examples of object initialization use type inference (see
recipe 1-19), rather than relying on explicit typing.

As the examples show, you use the With keyword followed by a comma-delimited list of fields or
properties and their values. The objects being initialized and their values should be surrounded by
curly braces ({}). As shown in Figure 1-12, the VB 9.0 IDE provides IntelliSense for all objects that can
be initialized.

Figure 1-12. IntelliSense for object initializers

Herman_970-5C01.fm Page 43 Monday, February 18, 2008 7:26 AM

44 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Object initializers are using anonymous types (see recipe 1-21) and making LINQ queries
concise and efficient.

1-21. Use Anonymous Types

Problem

You need to use a simple type class that doesn’t exist without actually creating it in an effort to save
some development time or support LINQ, which is discussed in more detail in Chapter 6.

Solution

Instantiate a class as you would normally, using the New keyword, but do not specify a type. You must
also use object initialization (see recipe 1-20) to specify at least one property.

How It Works

When you use the New keyword to instantiate an object, you typically specify the name of the type
you want to create. In VB 9.0, when you omit this name, the compiler automatically generates the
class for you. This class inherits from Object and overloads the ToString, GetHashCode, and Equals
methods. The overloaded version of ToString returns a string representing all the properties concat-
enated together. The overloaded Equals method returns True if all property comparisons are True
and there are the same number of properties in the same order with the same names.

Figure 1-13 shows the MSIL Disassembler tool (Ildasm.exe) displaying the MSIL that the compiler
would automatically generate for the following example (see recipes 1-3 and 2-6 for more informa-
tion about MSIL):

Dim person = New With {.FirstName = "Todd", .LastName = "Herman"}

Figure 1-13. MSIL Disassembler tool view of an anonymous type

Herman_970-5C01.fm Page 44 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 45

Creating anonymous types relies on several other new features of VB 9.0. As the name implies,
the real name of an anonymous type is unknown. You will not be able to access it directly by its name
and must rely on the variable used to first instantiate the class. This means you can’t explicitly cast
the person variable using As; you must rely on type inference (see recipe 1-19). Furthermore, an
anonymous type must have at least one property. Properties for anonymous types are created by
using object initializers (see recipe 1-20). The new version of Visual Studio fully supports the use of
anonymous types by correctly displaying appropriate IntelliSense, as shown in Figure 1-14.

Figure 1-14. IntelliSense support for anonymous types

Anonymous types can also infer property names from object initializers, as in this example:

Dim person = New With {DateTime.Now, .FirstName = "Todd", .LastName = "Herman"}

In this case, the anonymous type created by the compiler would have the Now, FirstName, and
LastName properties.

Anonymous types are a powerful new feature available in VB 9.0 and are used extensively in
LINQ queries (see Chapters 6, 7, and 8) for returning strongly typed data.

1-22. Create and Use Extension Methods

Problem

You need to extend the functionality of a class without relying on inheritance or access to the
actual class.

Solution

Create the method (a Sub or Function) you want to add, and then apply the ExtensionAttribute
attribute to it.

Herman_970-5C01.fm Page 45 Monday, February 18, 2008 7:26 AM

46 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

How It Works

The key to using extension methods is the attribute ExtensionAttribute, which is new to VB 9.0 and
located in the System.Runtime.CompilerServices namespace. You must apply this attribute to any
method that you want to use as an extension method. Furthermore, you can apply the attribute only
to methods defined within a Module.

An extension method extends the functionality of a specific class without actually modifying it.
The class being extended is referenced by the first parameter of the extension method. Because of
this, all extension methods must have at least one parameter, and it must refer to the class being
extended.

<System.Runtime.CompilerServices.Extension()> _
Public Function Reverse(ByVal s As String) As String

 Dim reversed As New Text.StringBuilder(s.Length)
 Dim chars As Char() = s.ToCharArray

 For count As Integer = chars.Length - 1 To 0 Step -1
 reversed.Append(chars(count))
 Next

 Return reversed.ToString

End Function

The Reverse method is an extension method because it has the ExtensionAttribute attribute
applied to it. You also know that it extends the String class because the first parameter is a String.
Using an extension method is the same as calling any other method, and the Visual Studio IDE
supports this via IntelliSense, as shown in Figure 1-15.

Figure 1-15. IntelliSense support for extension methods

Herman_970-5C01.fm Page 46 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 47

In the case of the preceding example, you would create a String and then call the Reverse
method, like this:

Dim testString As String = "This is a test message!"
Console.WriteLine(testString.Reverse())

This would produce the following result:

!egassem tset a si sihT

It is perfectly legitimate to call an extension method directly. When used in this manner, the first
parameter of the method is used as an actual parameter. For example, you would get the same results
if you changed the example to this:

Console.WriteLine(Reverse(testString))

The preceding example is fairly simple but demonstrates how easy it is to extend the function-
ality of a class without directly modifying it. What makes extension methods even more powerful is
that they can also be used to extend base classes or even interfaces.

Extension methods are a key component of LINQ queries, which are covered in detail in
Chapters 6, 7, and 8.

1-23. Create and Use Lambda Expressions

Problem

You need to use an inline function, which is a single-line function that does not require a standard
function code block, in an effort to save some development time or support LINQ (discussed in more
detail in Chapter 6).

Solution

Create a lambda expression using the Function keyword, and use it directly or pass it as an argument
to a function that requires a delegate.

How It Works

To use a simple function, you typically start by creating the function. The following example takes an
Integer and multiplies it by itself:

Private Shared Function Square(ByVal num As Integer) As Integer
 Return num * num
End Function

If you need to pass a function as an argument to some method, you could use a delegate. Dele-
gates are used extensively by events and threading (discussed in Chapter 4) and by LINQ (discussed
in Chapter 6). You accomplish this by using the Delegate keyword and using AddressOf to pass a
reference to the function, as shown here:

Delegate Function CalculateDelegate(ByVal num As Integer) As Integer

Private Shared Sub Calculate(ByVal num As Integer, ➥
ByVal calculation As CalculateDelegate)
 Console.WriteLine(calculation(num).ToString)
End Sub

Herman_970-5C01.fm Page 47 Monday, February 18, 2008 7:26 AM

48 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The previous delegate and method would be used like this:

Call Calculate(5, AddressOf Square)

In the previous example, the Calculate method will call the Square function that was passed to
it, using the number 5. This will result in the number 25 being written to the console.

Everything discussed earlier is how previous versions of VB .NET handle simple functions
and delegates. VB .NET 9.0 supports the same methodology but offers a very powerful alternative
for small functions that return a value from a single expression. This alternative is known as the
lambda expression.

Lambda expressions are inline functions that are based on a form of calculus with the same
name. The basic concept is to take the entire function and compress it into a single line. To do this
with the Square function shown earlier, you would create a statement that looks similar to this:

Function(num) num * num

The statement starts with the Function keyword that includes the list of required parameters
surrounded by parentheses. This is immediately followed by the expression that must be a single line
that returns some value. The previous example can be simplified by deleting the Square function and
changing the execution statement to the following:

Call Calculate(5, Function(num) num * num)

This works because lambda expressions are, at their core, delegates. The compiler creates an
anonymous type (see recipe 1-21) that is instantiated and used by the receiving method. Figure 1-16
shows the generated anonymous delegate as shown in the MSIL Disassembler tool (Ildasm.exe).

Figure 1-16. MSIL Disassembler tool view of an anonymous delegate

Herman_970-5C01.fm Page 48 Monday, February 18, 2008 7:26 AM

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 49

Lambda expressions can also be stored in a variable so it can be reused or more easily contained and
passed to some method. Since VB 9.0 supports anonymous types and type inference (see recipe 1-19),
you can leverage these features when using lambda expressions. For example, look at the following
statement:

Dim calc = Function(num As Integer) num * num

In the previous statement, calc will be inferred as an anonymous delegate that meets the signa-
ture specified by the lambda expression. If you do not explicitly type the num parameter, then the data
type for calc cannot be accurately inferred, resulting in an anonymous delegate whose parameters
and return types are Objects.

To make storing lambda expressions even easier, .NET 3.5 includes the System.Func generic
delegate. The Func delegate has five signatures that all include the data type of the returned value but
vary depending on the number of arguments supported, which ranges from 0 to 5. With this in mind,
you can change the previous example to use the Func delegate like this:

Dim calc As Func(Of Integer, Integer) = Function(num) num * num

The previous examples are all very basic in an attempt to simply explain the concepts of lambda
expressions. The following example is a little more advanced and provides a more in-depth look at
the power of lambda expressions:

Public Shared Sub Main()

 ' An array of numbers to be squared
 Dim numList() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9}

 Console.WriteLine("Lambda Test: Square an array of numbers")
 Call Calculate(numList, Function(num) num * num)
 Console.ReadLine()

End Sub

' A method that executes the supplied function for each number
' in the supplied array.
Private Shared Sub Calculate(ByVal nums() As Integer, ➥
ByVal calculation As Func(Of Integer, Integer))

 For Each num In nums
 ' Execute the lambda expression supplied and display the
 ' results to the console.
 Console.WriteLine(calculation(num).ToString)
 Next

End Sub

In this example, an array of Integers and a lambda expression to square numbers are passed to
the Calculate method. The method loops through each Integer in the array and executes the provided
lambda expression. The results would look similar to this:

Herman_970-5C01.fm Page 49 Monday, February 18, 2008 7:26 AM

50 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Lambda Test: Square an array of numbers
1
4
9
16
25
36
49
64
81

■Note LINQ (discussed in further detail in Chapter 6) relies heavily on extension methods (see recipe 1-22) that
accept lambda expressions (in the form of a Func) as arguments.

Herman_970-5C01.fm Page 50 Monday, February 18, 2008 7:26 AM

51

■ ■ ■

C H A P T E R 2

Data Manipulation

Most applications need to manipulate some form of data. The Microsoft .NET Framework provides
many techniques that simplify or improve the efficiency of common data-manipulation tasks. The
recipes in this chapter cover the following:

• Manipulating the contents of strings efficiently to avoid the overhead of automatic string
creation due to the immutability of strings (recipe 2-1)

• Representing basic data types using different encoding schemes or as byte arrays to allow you
to share data with external systems (recipes 2-2, 2-3, and 2-4)

• Validating user input and manipulating string values using regular expressions (recipes 2-5
and 2-6)

• Creating System.DateTime or System.DateTimeOffset objects from string values, such as those
that a user might enter, and displaying them as formatted strings (recipe 2-7)

• Mathematically manipulating DateTime or DateTimeOffset objects in order to compare dates
or add/subtract periods of time from a date (recipe 2-8)

• Converting dates and times across time zones (recipe 2-9)

• Sorting the contents of an array or an ArrayList collection (recipe 2-10)

• Copying the contents of a collection to an array (recipe 2-11)

• Analyzing or manipulating the contents of an array (recipe 2-12)

• Using the standard generic collection classes to instantiate a strongly typed collection
(recipe 2-13)

• Using generics to define your own general-purpose container or collection class that will be
strongly typed when it is used (recipe 2-14)

• Serializing object state and persisting it to a file (recipe 2-15)

• Reading user input from the Windows console (recipe 2-16)

2-1. Manipulate the Contents of a String Efficiently

Problem

You need to manipulate the contents of a String object and want to avoid the overhead of automatic
String creation caused by the immutability of String objects.

Herman_970-5C02.fm Page 51 Monday, February 18, 2008 7:34 AM

52 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Solution

Use the System.Text.StringBuilder class to perform the manipulations and convert the result to a
String object using the StringBuilder.ToString method.

How It Works

String objects in .NET are immutable, meaning that once they are created, their content cannot be
changed. If you build a string by concatenating a number of characters or smaller strings, the common
language runtime (CLR) will create a completely new String object whenever you add a new element to
the end of the existing string. Here is an example:

Dim testString as String
testString="Hello"

At this point, you have a String object named testString that contains the value "Hello". Since
strings are immutable, adding the statement testString=testString & " World" will result in a new
String object being created. The testString object’s reference is changed to point to the newly
generated string, which creates a new object that contains the value "Hello World". This can result
in significant overhead if your application performs frequent string manipulation.

The StringBuilder class offers a solution by providing a character buffer and allowing you to
manipulate its contents without the runtime creating a new object as a result of every change. You
can create a new StringBuilder object that is empty or initialized with the content of an existing
String object. You can manipulate the content of the StringBuilder object using overloaded methods
that allow you to insert and append string representations of different data types. At any time, you
can obtain a String representation of the current content of the StringBuilder object by calling
StringBuilder.ToString.

Two important properties of StringBuilder control its behavior as you append new data: Capacity
and Length. Capacity represents the size of the StringBuilder buffer, and Length represents the
length of the buffer’s current content. If you append new data that results in the number of charac-
ters in the StringBuilder object (Length) exceeding the capacity of the StringBuilder object (Capacity),
the StringBuilder must allocate a new buffer to hold the data. The size of this new buffer is double
the size of the previous Capacity value. Used carelessly, this buffer reallocation can negate much of
the benefit of using StringBuilder. If you know the length of data you need to work with, or know an
upper limit, you can avoid unnecessary buffer reallocation by specifying the capacity at creation
time or setting the Capacity property manually. Note that 16 is the default Capacity property setting.
When setting the Capacity and Length properties, be aware of the following behavior:

• If you set Capacity to a value less than the value of Length, the Capacity property throws the
exception System.ArgumentOutOfRangeException. The same exception is also thrown if you try
to raise the Capacity setting to more than the value of the MaxCapacity property. This should
not be a problem except if you want to allocate more than 2 gigabytes (GB).

• If you set Length to a value less than the length of the current content, the content is truncated.

• If you set Length to a value greater than the length of the current content, the buffer is padded
with spaces to the specified length. Setting Length to a value greater than Capacity automati-
cally adjusts the Capacity value to be the same as the new Length value.

The Code

The ReverseString method shown in the following example demonstrates the use of the StringBuilder
class to reverse a string. If you did not use the StringBuilder class to perform this operation, it would
be significantly more expensive in terms of resource utilization, especially as the input string is made

Herman_970-5C02.fm Page 52 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 53

longer. The method creates a StringBuilder object of the correct capacity to ensure that no buffer
reallocation is required during the reversal operation.

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_01

 Public Shared Function ReverseString(ByVal str As String) As String

 ' Make sure we have a reversible string.
 If str Is Nothing Or str.Length <= 1 Then
 Return str
 End If

 ' Create a StringBuilder object with the required capacity.
 Dim revStr As StringBuilder = New StringBuilder(str.Length)

 ' Convert the string to a character array so we can easily loop
 ' through it.
 Dim chars As Char() = str.ToCharArray()

 ' Loop backward through the source string one character at a time and
 ' append each character to the StringBuilder.
 For count As Integer = chars.Length - 1 To 0 Step -1
 revStr.Append(chars(count))
 Next

 Return revStr.ToString()

 End Function

 Public Shared Sub Main()
 Console.WriteLine(ReverseString("Madam Im Adam"))

 Console.WriteLine(ReverseString("The quick brown fox jumped ➥
 over the lazy dog."))

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C02.fm Page 53 Monday, February 18, 2008 7:34 AM

54 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

2-2. Encode a String Using Alternate Character Encoding

Problem

You need to exchange character data with systems that use character-encoding schemes other than
UTF-16, which is the character-encoding scheme used internally by the CLR.

Solution

Use the System.Text.Encoding class and its subclasses to convert characters between different
encoding schemes.

How It Works

Unicode is not the only character-encoding scheme nor is UTF-16 the only way to represent Unicode
characters. When your application needs to exchange character data with external systems (partic-
ularly legacy systems) through an array of bytes, you may need to convert character data between
UTF-16 and the encoding scheme supported by the other system.

The MustInherit class Encoding and its concrete subclasses provide the functionality to convert
characters to and from a variety of encoding schemes. Each subclass instance supports the conver-
sion of characters between the instance’s encoding scheme and UTF-16. You obtain instances of the
encoding-specific classes using the Shared factory method Encoding.GetEncoding, which accepts
either the name or the code page number of the required encoding scheme.

Table 2-1 lists some commonly used character-encoding schemes and the code page number
you must pass to the GetEncoding method to create an instance of the appropriate encoding class.
The table also shows Shared properties of the Encoding class that provide shortcuts for obtaining the
most commonly used types of encoding objects.

Once you have an Encoding object of the appropriate type, you convert a UTF-16 encoded
Unicode string to a byte array of encoded characters using the GetBytes method. Conversely, you
pass a byte array of encoded characters (such as UTF-8) to the GetString method, which will produce
a UTF-16 encoded Unicode string.

Table 2-1. Character-Encoding Classes

Encoding Scheme Class Create Using

ASCII ASCIIEncoding GetEncoding(20127) or the ASCII property

Default (current Microsoft
Windows default)

Encoding GetEncoding(0) or the Default property

UTF-7 UTF7Encoding GetEncoding(65000) or the UTF7 property

UTF-8 UTF8Encoding GetEncoding(65001) or the UTF8 property

UTF-16 (Big Endian) UnicodeEncoding GetEncoding(1201) or the BigEndianUnicode
property

UTF-16 (Little Endian) UnicodeEncoding GetEncoding(1200) or the Unicode property

Herman_970-5C02.fm Page 54 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 55

The Code

The following example demonstrates how to use some encoding classes:

Imports System
Imports System.IO
Imports System.Text.Encoding

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_02

 Public Shared Sub Main()

 ' Create a file to hold the output.
 Using output As New StreamWriter("output.txt")
 ' Create and write a string containing the symbol for pi.
 Dim srcString As String = String.Format("Area = {0}r^2", ➥
ChrW(&H3A0))
 output.WriteLine("Source Text: " & srcString)

 ' Write the UTF-16 encoded bytes of the source string.
 Dim utf16String As Byte() = Unicode.GetBytes(srcString)
 output.WriteLine("UTF-16 Bytes: {0}", ➥
BitConverter.ToString (utf16String))

 ' Convert the UTF-16 encoded source string to UTF-8 and ASCII.
 Dim utf8String As Byte() = UTF8.GetBytes(srcString)
 Dim asciiString As Byte() = ASCII.GetBytes(srcString)

 ' Write the UTF-8 and ASCII encoded byte arrays.
 output.WriteLine("UTF-8 Bytes: {0}", ➥
BitConverter.ToString (utf8string))
 output.WriteLine("ASCII Bytes: {0}", ➥
BitConverter.ToString (asciiString))

 ' Convert UTF-8 and ASCII encoded bytes back to UTF-16 encoded
 ' string and write to the output file.
 output.WriteLine("UTF-8 Text: {0}", UTF8.GetString(utf8String))
 output.WriteLine("ASCII Text: {0}", ASCII.GetString(asciiString))
 End Using

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the code will generate a file named output.txt. If you open this file in a text editor that
supports Unicode, you will see results similar to the following:

Herman_970-5C02.fm Page 55 Monday, February 18, 2008 7:34 AM

56 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Source Text: Area = r^2
UTF-16 Bytes: 41-00-72-00-65-00-61-00-20-00-3D-00-20-00-A0-03-72-00-5E-00-32-00
UTF-8 Bytes: 41-72-65-61-20-3D-20-CE-A0-72-5E-32
ASCII Bytes: 41-72-65-61-20-3D-20-3F-72-5E-32
UTF-8 Text: Area = r^2
ASCII Text: Area = ?r^2

Notice that using UTF-16 encoding, each character occupies 2 bytes, but because most of the
characters are standard characters, the high-order byte is 0. (The use of little-endian byte ordering
means that the low-order byte appears first.) This means that most of the characters are encoded
using the same numeric values across all three encoding schemes. However, the numeric value for
the symbol pi (emphasized in bold in the preceding output) is different in each of the encodings.
Representing the value of pi requires more than 1 byte. UTF-8 encoding uses 2 bytes, but ASCII has
no direct equivalent and so replaces pi with the code 3F. As you can see in the ASCII text version of
the string, 3F is the symbol for an English question mark (?).

■Caution If you convert Unicode characters to ASCII or a specific code page-encoding scheme, you risk losing
data. Any Unicode character with a character code that cannot be represented in the scheme will be ignored or altered.

Notes

The Encoding class also provides the Shared method Convert to simplify the conversion of a byte
array from one encoding scheme to another without the need to manually perform an interim
conversion to UTF-16. For example, the following statement converts the ASCII-encoded bytes
contained in the asciiString byte array directly from ASCII encoding to UTF-8 encoding:

Dim utf8String As Byte() = Encoding.Convert(Encoding.ASCII, ➥
Encoding.UTF8, asciiString)

2-3. Convert Basic Value Types to Byte Arrays

Problem

You need to convert basic value types to byte arrays.

Solution

The Shared methods of the System.BitConverter class provide a convenient mechanism for converting
most basic value types to and from byte arrays. An exception is the Decimal type. To convert a Decimal
type to or from a byte array, you need to use a System.IO.MemoryStream object.

How It Works

The Shared method GetBytes of the BitConverter class provides overloads that take most of the standard
value types and return the value encoded as an array of bytes. Support is provided for the Boolean, Char,
Double, Short, Integer, Long, Single, UShort, UInteger, and ULong data types. BitConverter also provides
a set of Shared methods that support the conversion of byte arrays to each of the standard value
types. These are named ToBoolean, ToInt32, ToDouble, and so on. When using the BitConverter class,

Herman_970-5C02.fm Page 56 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 57

you may notice that some members include the values Int16, Int32, and Int64. These values are
simply an alternate way of saying Short, Integer, and Long, respectively.

Unfortunately, the BitConverter class does not provide support for converting the Decimal type.
Instead, write the Decimal type to a MemoryStream instance using a System.IO.BinaryWriter object,
and then call the MemoryStream.ToArray method. To create a Decimal type from a byte array, create a
MemoryStream object from the byte array and read the Decimal type from the MemoryStream object
using a System.IO.BinaryReader instance.

The Code

The following example demonstrates how to use BitConverter to convert a Boolean type and an
Integer type to and from a byte array. The second argument to each of the ToBoolean and ToInt32
methods is a zero-based offset into the byte array where the BitConverter should start taking the
bytes to create the data value. The code also shows how to convert a Decimal type to a byte array
using a MemoryStream object and a BinaryWriter object, as well as how to convert a byte array to a
Decimal type using a BinaryReader object to read from the MemoryStream object.

Imports System
Imports System.IO
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_03

 ' Create a byte array from a decimal.
 Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()

 ' Create a MemoryStream as a buffer to hold the binary data.
 Using stream As New MemoryStream
 ' Create a BinaryWriter to write binary data to the stream.
 Using writer As New BinaryWriter(stream)
 ' Write the decimal to the BinaryWriter/MemoryStream.
 writer.Write(src)

 ' Return the byte representation of the decimal.
 Return stream.ToArray
 End Using
 End Using

 End Function

 ' Create a decimal from a byte array.
 Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal

 ' Create a MemoryStream containing the byte array.
 Using stream As New MemoryStream(src)
 ' Create a BinaryReader to read the decimal from the stream.
 Using reader As New BinaryReader(stream)
 ' Read and return the decimal from the
 ' BinaryReader/MemoryStream.
 Return reader.ReadDecimal
 End Using
 End Using

 End Function

Herman_970-5C02.fm Page 57 Monday, February 18, 2008 7:34 AM

58 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 Public Shared Sub Main()

 Dim b As Byte() = Nothing

 ' Convert a boolean to a byte array and display.
 b = BitConverter.GetBytes(True)
 Console.WriteLine(BitConverter.ToString(b))

 ' Convert a byte array to a boolean and display.
 Console.WriteLine(BitConverter.ToBoolean(b, 0))

 ' Convert an integer to a byte array and display.
 b = BitConverter.GetBytes(3678)
 Console.WriteLine(BitConverter.ToString(b))

 ' Convert a byte array to integer and display.
 Console.WriteLine(BitConverter.ToInt32(b, 0))

 ' Convert a decimal to a byte array and display.
 b = DecimalToByteArray(285998345545.563846696D)
 Console.WriteLine(BitConverter.ToString(b))

 ' Convert a byte array to a decimal and display.
 Console.WriteLine(ByteArrayToDecimal(b))

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Tip The BitConverter.ToString method provides a convenient mechanism for obtaining a String repre-
sentation of a byte array. Calling ToString and passing a byte array as an argument will return a String object
containing the hexadecimal value of each byte in the array separated by a hyphen, for example, "34-A7-2C".
Unfortunately, there is no standard method for reversing this process to obtain a byte array from a string with this format.

Usage

Running the code will display the following results to the console:

01
True
5E-0E-00-00
3678
28-38-C1-50-FD-3B-06-81-0F-00-00-00-00-00-09-00
285998345545.563846696

Main method complete. Press Enter.

Herman_970-5C02.fm Page 58 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 59

2-4. Base64 Encode Binary Data

Problem

You need to convert binary data into a form that can be stored as part of an ASCII text file (such as an
XML file) or sent as part of a text e-mail message.

Solution

Use the Shared methods ToBase64CharArray and FromBase64CharArray of the System.Convert class
to convert your binary data to and from a Base64-encoded Char array. If you need to work with the
encoded data as a string value rather than as a Char array, you can use the ToBase64String and
FromBase64String methods of the Convert class instead.

How It Works

Base64 is an encoding scheme that enables you to represent binary data as a series of ASCII characters so
that it can be included in text files and e-mail messages in which raw binary data is unacceptable. Base64
encoding works by spreading the contents of 3 bytes of input data across 4 bytes and ensuring each
byte uses only the 7 low-order bits to contain data. This means that each byte of Base64-encoded
data is equivalent to an ASCII character and can be stored or transmitted anywhere ASCII characters
are permitted. This process is not very efficient and can take a while to run on large amounts of data.

The ToBase64CharArray and FromBase64CharArray methods of the Convert class make it straightfor-
ward to Base64 encode and decode data. However, before Base64 encoding, you must convert your data
to a byte array. Similarly, when decoding, you must convert the byte array back to the appropriate data
type. (See recipe 2-2 for details on converting string data to and from byte arrays and recipe 2-3 for details
on converting basic value types.) The ToBase64String and FromBase64String methods of the Convert class
deal with string representations of Base64-encoded data.

The Code

The example shown here demonstrates how to Base64 encode and decode a Byte array, a Unicode
String, an Integer type, and a Decimal type using the Convert class. The DecimalToBase64 and
Base64ToDecimal methods rely on the ByteArrayToDecimal and DecimalToByteArray methods listed
in recipe 2-3.

Imports System
Imports System.IO
Imports System.Text
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_04

 ' Create a byte array from a decimal.
 Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()

 ' Create a MemoryStream as a buffer to hold the binary data.
 Using stream As New MemoryStream
 ' Create a BinaryWriter to write binary data to the stream.
 Using writer As New BinaryWriter(stream)
 ' Write the decimal to the BinaryWriter/MemoryStream.
 writer.Write(src)

Herman_970-5C02.fm Page 59 Monday, February 18, 2008 7:34 AM

60 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Return the byte representation of the decimal.
 Return stream.ToArray
 End Using
 End Using

 End Function

 ' Create a decimal from a byte array.
 Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal

 ' Create a MemoryStream containing the byte array.
 Using stream As New MemoryStream(src)
 ' Create a BinaryReader to read the decimal from the stream.
 Using reader As New BinaryReader(stream)
 ' Read and return the decimal from
 ' the BinaryReader/MemoryStream.
 Return reader.ReadDecimal
 End Using
 End Using

 End Function

 ' Base64 encode a Unicode string
 Public Shared Function StringToBase64(ByVal src As String) As String

 ' Get a byte representation of the source string.
 Dim b As Byte() = Encoding.Unicode.GetBytes(src)

 ' Return the Base64-encoded Unicode string.
 Return Convert.ToBase64String(b)

 End Function

 ' Decode a Base64-encoded Unicode string.
 Public Shared Function Base64ToString(ByVal src As String) As String

 ' Decode the Base64-encoded string to a byte array.
 Dim b As Byte() = Convert.FromBase64String(src)

 ' Return the decoded Unicode string.
 Return Encoding.Unicode.GetString(b)

 End Function

 ' Base64 encode a decimal
 Public Shared Function DecimalToBase64(ByVal src As Decimal) As String

 ' Get a byte representation of the decimal.
 Dim b As Byte() = DecimalToByteArray(src)

 ' Return the Base64-encoded decimal.
 Return Convert.ToBase64String(b)

 End Function

Herman_970-5C02.fm Page 60 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 61

 ' Decode a Base64-encoded decimal.
 Public Shared Function Base64ToDecimal(ByVal src As String) As Decimal

 ' Decode the Base64-encoded decimal to a byte array.
 Dim b As Byte() = Convert.FromBase64String(src)

 ' Return the decoded decimal.
 Return ByteArrayToDecimal(b)

 End Function

 ' Base64 encode an integer.
 Public Shared Function IntToBase64(ByVal src As Integer) As String

 ' Get a byte representation of the integer.
 Dim b As Byte() = BitConverter.GetBytes(src)

 ' Return the Base64-encoded integer.
 Return Convert.ToBase64String(b)

 End Function

 ' Decode a Base64-encoded integer.
 Public Shared Function Base64ToInt(ByVal src As String) As Decimal

 ' Decode the Base64-encoded integer to a byte array.
 Dim b As Byte() = Convert.FromBase64String(src)

 ' Return the decoded integer.
 Return BitConverter.ToInt32(b, 0)

 End Function

 Public Shared Sub Main()

 ' Encode and decode a string
 Console.WriteLine(StringToBase64("Welcome to Visual Basic 2008 " & ➥
"Recipes from Apress"))
 Console.WriteLine(Base64ToString("VwBlAGwAYwBvAG0AZQAgAHQAbwAg" + ➥
"AFYAaQBzAHUAYQBsACAAQgBhAHMAaQBjACAAMgAwADAAOAAgAFIAZQBjAGkAcABlAHMAIABmA" + ➥
"HIAbwBtACAAQQBwAHIAZQBzAHMA))

 ' Encode and decode a decimal.
 Console.WriteLine(DecimalToBase64(285998345545.563846696D))
 Console.WriteLine(Base64ToDecimal("KDjBUP07BoEPAAAAAAAJAA=="))

 ' Encode and decode an integer.
 Console.WriteLine(IntToBase64(35789))
 Console.WriteLine(Base64ToInt("zYsAAA=="))

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

Herman_970-5C02.fm Page 61 Monday, February 18, 2008 7:34 AM

62 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 End Class
End Namespace

2-5. Validate Input Using Regular Expressions

Problem

You need to validate that user input or data read from a file has the expected structure and content.
For example, you want to ensure that a user enters a valid IP address, telephone number, or e-mail
address.

Solution

Use regular expressions to ensure that the input data follows the correct structure and contains only
valid characters for the expected type of information.

How It Works

When a user inputs data to your application or your application reads data from a file, it’s good practice
to assume that the data is bad until you have verified its accuracy. One common validation require-
ment is to ensure that data entries such as e-mail addresses, telephone numbers, and credit card
numbers follow the pattern and content constraints expected of such data. Obviously, you cannot
be sure the actual data entered is valid until you use it, and you cannot compare it against values that
are known to be correct. However, ensuring the data has the correct structure and content is a good
first step to determining whether the input is accurate. Regular expressions provide an excellent
mechanism for evaluating strings for the presence of patterns, and you can use this to your advan-
tage when validating input data.

The first thing you must do is figure out the regular expression syntax that will correctly match
the structure and content of data you are trying to validate. This is by far the most difficult aspect
of using regular expressions. Many resources exist to help you with regular expressions, such
as The Regulator (http://regex.osherove.com/) by Roy Osherove and RegExDesigner.NET by
Chris Sells (http://www.sellsbrothers.com/tools/#regexd). The RegExLib.com web site (http://
www.regxlib.com/) also provides hundreds of useful prebuilt expressions.

Regular expressions, which are case-sensitive, are constructed from two types of elements: literals
and metacharacters. Literals represent specific characters that appear in the pattern you want to
match. Metacharacters provide support for wildcard matching, ranges, grouping, repetition, condi-
tionals, and other control mechanisms. Table 2-2 describes some of the more commonly used
regular expression metacharacter elements. (Consult the .NET SDK documentation at http://
msdn2.microsoft.com/en-us/library/hs600312.aspx for a full description of regular expressions.)

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description

. Specifies any character except a newline character (\n)

\d Specifies any digit

\D Specifies any nondigit

Herman_970-5C02.fm Page 62 Monday, February 18, 2008 7:34 AM

http://regex.osherove.com
http://www.sellsbrothers.com/tools/#regexd
http://www.regxlib.com
http://www.regxlib.com
http://msdn2.microsoft.com/en-us/library/hs600312.aspx
http://msdn2.microsoft.com/en-us/library/hs600312.aspx

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 63

The more complex the data you are trying to match, the more complex the regular expression
syntax becomes. For example, ensuring that input contains only numbers or is of a minimum length
is trivial, but ensuring a string contains a valid URL is extremely complex. Table 2-3 shows some
examples of regular expressions that match against commonly required data types.

\s Specifies any whitespace character

\S Specifies any nonwhitespace character

\w Specifies any word character

\W Specifies any nonword character

^ Specifies the beginning of the string or line

\A Specifies the beginning of the string

$ Specifies the end of the string or line

\z Specifies the end of the string

| Matches one of the expressions separated by the vertical bar; for example,
AAA|ABA|ABB will match one of AAA, ABA, or ABB (the expression is evaluated
left to right)

[abc] Specifies a match with one of the specified characters; for example, [AbC] will
match A, b, or C, but no other character

[^abc] Specifies a match with any one character except those specified; for example,
[^AbC] will not match A, b, or C, but will match B, F, and so on

[a-z] Specifies a match with any one character in the specified range; for example, [A-C]
will match A, B, or C

[^a-z] Specifies a match with any one character not in the specified range; for example,
[^A-C] will not match A, B, or C but will match B and F

() Identifies a subexpression so that it’s treated as a single element by the regular
expression elements described in this table

? Specifies one or zero occurrences of the previous character or subexpression;
for example, A?B matches B and AB, but not AAB

* Specifies zero or more occurrences of the previous character or subexpression;
for example, A*B matches B, AB, AAB, AAAB, and so on

+ Specifies one or more occurrences of the previous character or subexpression;
for example, A+B matches AB, AAB, AAAB, and so on, but not B

{n} Specifies exactly n occurrences of the preceding character or subexpression;
for example, A{2} matches only AA and A{2}B matches only AAB

{n,} Specifies a minimum of n occurrences of the preceding character or subexpression;
for example, A{2,} matches AA, AAA, AAAA, and so on, but not A

{n, m} Specifies a minimum of n and a maximum of m occurrences of the preceding
character; for example, A{2,4} matches AA, AAA, and AAAA, but not A or AAAAA

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description

Herman_970-5C02.fm Page 63 Monday, February 18, 2008 7:34 AM

64 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Once you know the correct regular expression syntax, create a new System.Text.
RegularExpressions.Regex object, passing a string containing the regular expression to the Regex
constructor. Then call the IsMatch method of the Regex object and pass the string you want to vali-
date. IsMatch returns a Boolean value indicating whether the Regex object found a match in the string.
The regular expression syntax determines whether the Regex object will match against only the full
string or match against patterns contained within the string. (See the ^, \A, $, and \z entries in Table 2-2.)

The Code

The ValidateInput method shown in the following example tests any input string to see whether it
matches a specified regular expression.

Imports System
Imports System.Text.RegularExpressions
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_05

 Public Shared Function ValidateInput(ByVal expression As String, ➥
ByVal input As String) As Boolean

 ' Create a new Regex based on the specified regular expression.
 Dim r As New Regex(expression)

 ' Test if the specified input matches the regular expression.
 Return r.IsMatch(input)

 End Function

Table 2-3. Commonly Used Regular Expressions

Input Type Description Regular Expression

Numeric input The input consists of one or more decimal digits;
for example, 5 or 5683874674.

^\d+$

Personal identification
number (PIN)

The input consists of four decimal digits; for
example, 1234.

^\d{4}$

Simple password The input consists of six to eight characters; for
example, ghtd6f or b8c7hogh.

^\w{6,8}$

Credit card number The input consists of data that matches the pattern
of most major credit card numbers; for example,
4921835221552042 or 4921-8352-2155-2042.

^\d{4}-?\d{4}-
?\d{4}-?\d{4}$

E-mail address The input consists of an Internet e-mail address.
The [\w-]+ expression indicates that each address
element must consist of one or more word characters
or hyphens; for example, somebody@adatum.com.

^[\w-]+@([\w-]+\.)+
[\w-]+$

HTTP or HTTPS URL The input consists of an HTTP-based or HTTPS-
based URL; for example, http://www.apress.com.

^https?://([\w-]+\.)+
[\w-]+(/ [\w-./?%=]*)?$

Herman_970-5C02.fm Page 64 Monday, February 18, 2008 7:34 AM

mailto:somebody@adatum.com
http://www.apress.com

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 65

 Public Shared Sub Main(ByVal args As String())

 ' Test the input from the command line. The first argument is the
 ' regular expression, and the second is the input.
 Console.WriteLine("Regular Expresion: {0}", args(0))
 Console.WriteLine("Input: {0}", args(1))
 Console.WriteLine("Valied = {0}", ValidateInput(args(0), args(1)))

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

To execute the example, run Recipe02-05.exe, and pass the regular expression and data to test as
command-line arguments. For example, to test for a correctly formed e-mail address, type the
following:

Recipe02-05 ^[\w-]+@([\w-]+\.)+[\w-]+$ myname@mydomain.com

The result would be as follows:

Regular Expression: ^[\w-]+@([\w-]+\.)+[\w-]+$
Input: myname@mydomain.com
Valid = True

Notes

You can use a Regex object repeatedly to test multiple strings, but you cannot change the regular
expression tested for by a Regex object. You must create a new Regex object to test for a different
pattern. This is because the ValidateInput method creates a new Regex instance each time it’s called. A
more suitable alternative, in this case, would be to use a Shared overload of the IsMatch method, as
shown in the following variant of the ValidateInput method:

' Alternative version of the ValidateInput method that does not create
' Regex instances.
Public Shared Function ValidateInput(ByVal expression As String, ➥
ByVal input As String) As Boolean

 ' Test if the specified input matches the regular expression.
 Return Regex.IsMatch(input, expression)

End Function

2-6. Use Compiled Regular Expressions

Problem

You need to minimize the impact on application performance that arises from using complex
regular expressions frequently.

Herman_970-5C02.fm Page 65 Monday, February 18, 2008 7:34 AM

mailto:myname@mydomain.com
mailto:myname@mydomain.com

66 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Solution

When you instantiate the System.Text.RegularExpressions.Regex object that represents your regular
expression, specify the Compiled option of the System.Text.RegularExpressions.RegexOptions enumer-
ation to compile the regular expression to Microsoft Intermediate Language (MSIL).

How It Works

By default, when you create a Regex object, the regular expression pattern you specify in the constructor
is compiled to an intermediate form (not MSIL). Each time you use the Regex object, the runtime
interprets the pattern’s intermediate form and applies it to the target string. With complex regular
expressions that are used frequently, this repeated interpretation process can have a detrimental
effect on the performance of your application.

By specifying the RegexOptions.Compiled option when you create a Regex object, you force the
.NET runtime to compile the regular expression to MSIL instead of the interpreted intermediary
form. This MSIL is just-in-time (JIT) compiled by the runtime to native machine code on first execu-
tion, just like regular assembly code. Subsequent calls to the same RegEx object will use the native
version that was previously compiled. You use a compiled regular expression in the same way as you
use any Regex object; compilation simply results in faster execution.

However, a couple downsides offset the performance benefits provided by compiling regular
expressions. First, the JIT compiler needs to do more work, which will introduce delays during JIT
compilation. This is most noticeable if you create your compiled regular expressions as your appli-
cation starts up. Second, the runtime cannot unload a compiled regular expression once you have
finished with it. Unlike as with a normal regular expression, the runtime’s garbage collector will not
reclaim the memory used by the compiled regular expression. The compiled regular expression will
remain in memory until your program terminates or you unload the application domain in which
the compiled regular expression is loaded. If you plan to use a RegEx object only once, there is no
reason to compile it. Use compiling only for situations where a RegEx object is used frequently.

As well as compiling regular expressions in memory, the Shared Regex.CompileToAssembly method
allows you to create a compiled regular expression and write it to an external assembly. This means
you can create assemblies containing standard sets of regular expressions, which you can use from
multiple applications. To compile a regular expression and persist it to an assembly, take the
following steps:

1. Create a System.Text.RegularExpressions.RegexCompilationInfo array large enough to
hold one RegexCompilationInfo object for each of the compiled regular expressions you
want to create.

2. Create a RegexCompilationInfo object for each of the compiled regular expressions. Specify
values for its properties as arguments to the object constructor. The following are the most
commonly used properties:

• Pattern, a String value that specifies the pattern that the regular expression will match
(see recipe 2-5 for more details)

• Options, a System.Text.RegularExpressions.RegexOptions value that specifies options for
the regular expression

• Name, a String value that specifies the class name

• Namespace, a String value that specifies the namespace of the class

• IsPublic, a Boolean value that specifies whether the generated regular expression class has
Public visibility

Herman_970-5C02.fm Page 66 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 67

3. Create a System.Reflection.AssemblyName object. Configure it to represent the name of the
assembly that the Regex.CompileToAssembly method will create.

4. Execute Regex.CompileToAssembly, passing the RegexCompilationInfo array and the
AssemblyName object.

This process creates an assembly that contains one class declaration for each compiled regular
expression—each class derives from Regex. To use the compiled regular expression contained in the
assembly, instantiate the regular expression you want to use, and call its method as if you had simply
created it with the normal Regex constructor. (Remember to add a reference to the assembly when
you compile the code that uses the compiled regular expression classes.)

The Code

This line of code shows how to create a Regex object that is compiled to MSIL instead of the usual
intermediate form:

Dim reg As New Regex("[\w-]+@([\w-]+\.)+[\w-]+", RegexOptions.Compiled)

The following example shows how to create an assembly named MyRegEx.dll, which contains
two regular expressions named PinRegex and CreditCardRegex:

Imports System
Imports System.Reflection
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_06

 Public Shared Sub Main()

 ' Create the array to hold the Regex info objects.
 Dim regexInfo(1) As RegexCompilationInfo

 ' Create the RegexCompilationInfo for PinRegex.
 regexInfo(0) = New RegexCompilationInfo("^\d{4}$", ➥
RegexOptions.Compiled, "PinRegex", "Apress.VisualBasicRecipes.Chapter02", True)

 ' Create the RegexCompilationInfo for CreditCardRegex.
 regexInfo(1) = New RegexCompilationInfo(➥
"^\d{4}-?\d{4}-?\d{4}-?\d{4}$", RegexOptions.Compiled, "CreditCardRegex", ➥
"Apress.VisualBasicRecipes.Chapter02", True)

 ' Create the AssemblyName to define the target assembly.
 Dim assembly As New AssemblyName("MyRegEx")

 ' Create the compiled regular expression.
 Regex.CompileToAssembly(regexInfo, assembly)

 End Sub

 End Class
End Namespace

Herman_970-5C02.fm Page 67 Monday, February 18, 2008 7:34 AM

68 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Usage

When you want to use your new assembly, you must first add a reference to it to your project. You
can do this from within the Visual Studio interface or by using the /r:MyRegEx.dll option of the
command-line compiler.

Once you have a reference to the assembly in your project, you can easily create a reference to
the compiled regular expressions contained inside, as shown in this example:

Dim pinRegExp As New PinRegex

2-7. Create Dates and Times from Strings

Problem

You need to create a System.DateTime or System.DateTimeOffset instance that represents the time
and date specified in a string.

Solution

Use the Parse/TryParse or ParseExact/TryParseExact methods of the DateTime or DateTimeOffset
structure.

■Caution Many subtle issues are associated with using the DateTime and DateTimeOffset structures to
represent dates and times in your applications. Although the Parse and ParseExact methods, as well as the
TryParse and TryParseExact counterparts, create DateTime or DateTimeOffset objects from strings as
described in this recipe, you must be careful how you use the resulting objects within your program. See the article titled
“Coding Best Practices Using DateTime in the .NET Framework” (http://msdn.microsoft.com/netframework/
default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp) for details about the prob-
lems you might encounter. This article does not cover the DateTimeOffset structure specifically, but most of it
still applies since the two structures are so closely related.

How It Works

Dates and times can be represented as text in many different ways. For example, January 12 1975,
1/12/1975, and Jan-12-1975 are all possible representations of the same date, and 18:19 and 6:19
p.m. can both be used to represent the same time. The Shared DateTime.Parse method provides a
flexible mechanism for creating DateTime instances from a wide variety of string representations.

The Parse method goes to great lengths to generate a DateTime object from a given string. It will
even attempt to generate a DateTime object from a string containing partial or erroneous information
and will substitute defaults for any missing values. Missing date elements default to the current date,
and missing time elements default to 12:00:00 a.m. After all efforts, if Parse cannot create a DateTime
object, it throws a System.FormatException exception.

The Parse method is both flexible and forgiving. However, for many applications, this level of
flexibility is unnecessary. Often, you will want to ensure that DateTime parses only strings that match
a specific format. In these circumstances, use the ParseExact method instead of Parse. The simplest
overload of the ParseExact method takes three arguments: the time and date string to parse, a format
string that specifies the structure that the time and date string must have, and an IFormatProvider
reference that provides culture-specific information to the ParseExact method. If the IFormatProvider
value is Nothing, the current thread’s culture information is used.

Herman_970-5C02.fm Page 68 Monday, February 18, 2008 7:34 AM

http://msdn.microsoft.com/netframework/default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp
http://msdn.microsoft.com/netframework/default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 69

The time and date must meet the requirements specified in the format string, or ParseExact will
throw a System.FormatException exception. You use the same format specifiers for the format string
as you use to format a DateTime object for display as a string. This means you can use both standard
and custom format specifiers.

The DateTime structure also offers the TryParse and TryParseExact methods. These methods
behave just like Parse and ParseExact, but they do not throw an exception if the String parameter
cannot be parsed. Instead, both functions return a Boolean that determines whether the parsing was
successful. If the parsing was successful, the resulting DateTime object will be saved to the ByRef
parameter that was passed to the function.

The .NET Framework 3.5 introduces the new DateTimeOffset structure as an alternative to the
DateTime structure. Although these structures are nearly identical, DateTimeOffset allows you to
specify by how much the date and time differ from Coordinated Universal Time (UTC). The Offset
property, which is read-only, is used to retrieve this value as a TimeSpan whose Hour property can
range from –14 to 14.

The Code

The following example demonstrates the flexibility of the Parse method and how to use the ParseExact
method. Refer to the documentation for the System.Globalization.DateTimeFormatInfo class in the
.NET Framework SDK document for complete details on all available format specifiers.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter02
 Public Class Recipe02_07

 Public Shared Sub Main(ByVal args As String())

 ' 1st January 1975 at 00:00:00
 Dim dt1 As DateTime = DateTime.Parse("Jan 1975")

 ' 12th January 1975 at 18:19:00
 Dim dt2 As DateTime = DateTime.Parse("Sunday 12 January 1975 18:19:00")

 ' 12th January 1975 at 00:00:00
 Dim dt3 As DateTime = DateTime.Parse("1,12,1975")

 ' 12th January 1975 at 18:19:00
 Dim dt4 As DateTime = DateTime.Parse("1/12/1975 18:19:00")

 ' Current Date at 18:19 showing UTC offset for local time zone
 Dim dt5 As DateTimeOffset = DateTimeOffset.Parse("6:19 PM")

 ' Current Date at 18:19 showing an offset of -8 hours from UTC.
 Dim dt6 As DateTimeOffset = DateTimeOffset.Parse("6:19 PM -8")

 ' Date set to minvalue to be used later by TryParse
 Dim dt7 As DateTime = DateTime.MinValue

 ' Display the converted DateTime objects.
 Console.WriteLine(dt1)
 Console.WriteLine(dt2)
 Console.WriteLine(dt3)
 Console.WriteLine(dt4)

Herman_970-5C02.fm Page 69 Monday, February 18, 2008 7:34 AM

70 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 Console.WriteLine(dt5)
 Console.WriteLine(dt6)

 ' Try to parse a nondatetime string.
 If Not DateTime.TryParse("This is an invalid date", dt7) Then
 Console.WriteLine("Unable to parse.")
 Else
 Console.WriteLine(dt7)
 End If

 ' Parse only strings containing LongTimePattern.
 Dim dt8 As DateTime = DateTime.ParseExact("6:19:00 PM", ➥
"h:mm:ss tt", Nothing)

 ' Parse only strings containing RFC1123Pattern.
 Dim dt9 As DateTime = DateTime.ParseExact("Sun, 12 Jan 1975" & ➥
"18:19:00 GMT", "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'", Nothing)

 ' Parse only strings containing MonthDayPattern.
 Dim dt10 As DateTime = DateTime.ParseExact("January 12", "MMMM dd", ➥
Nothing)

 ' Display the converted DateTime objects.
 Console.WriteLine(dt8)
 Console.WriteLine(dt9)
 Console.WriteLine(dt10)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-8. Add, Subtract, and Compare Dates and Times

Problem

You need to perform basic arithmetic operations or comparisons using dates and times.

Solution

Use the DateTime and TimeSpan structures, which support standard arithmetic and comparison
operators.

How It Works

A DateTime instance represents a specific time (such as 4:15 a.m. on September 5, 1970), whereas a
TimeSpan instance represents a period of time (such as 2 hours, 35 minutes). You may want to add,
subtract, and compare TimeSpan and DateTime instances.

Herman_970-5C02.fm Page 70 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 71

Internally, both DateTime and TimeSpan use ticks to represent time. A tick is equal to 100 nano-
seconds. TimeSpan stores its time interval as the number of ticks equal to that interval, and DateTime
stores time as the number of ticks since 12:00:00 midnight on January 1 in 0001 C.E. (C.E. stands for
Common Era and is equivalent to A.D. in the Gregorian calendar.) This approach and the use of oper-
ator overloading makes it easy for DateTime and TimeSpan to support basic arithmetic and comparison
operations. Table 2-4 summarizes the operator support provided by the DateTime and TimeSpan
structures.

The DateTime structure also implements the AddTicks, AddMilliseconds, AddSeconds, AddMinutes,
AddHours, AddDays, AddMonths, and AddYears methods. Each of these methods, which accept a Double
as opposed to a TimeSpan, allows you to add (or subtract using negative values) the appropriate element
of time to a DateTime instance. These methods and the noncomparison operators listed in Table 2-4
do not modify the original DateTime; instead, they create a new instance with the modified value.

Table 2-4. Operators Supported by DateTime and TimeSpan

Operator TimeSpan DateTime

Assignment (=) Because TimeSpan is a structure,
assignment returns a copy and
not a reference.

Because DateTime is a structure,
assignment returns a copy and
not a reference.

Addition (+) Adds two TimeSpan instances. Adds a TimeSpan instance to a
DateTime instance.

Subtraction (-) Subtracts one TimeSpan instance
from another TimeSpan instance.

Subtracts a TimeSpan instance or a
DateTime instance from a DateTime
instance.

Equality (=) Compares two TimeSpan instances
and returns true if they are equal.

Compares two DateTime instances
and returns true if they are equal.

Inequality (<>) Compares two TimeSpan instances
and returns true if they are not
equal.

Compares two DateTime instances
and returns true if they are not equal.

Greater than (>) Determines if one TimeSpan
instance is greater than another
TimeSpan instance.

Determines whether one DateTime
instance is greater than another
DateTime instance.

Greater than or
equal to (>=)

Determines if one TimeSpan
instance is greater than or equal
to another TimeSpan instance.

Determines whether one DateTime
instance is greater than or equal to
another DateTime instance.

Less than (<) Determines whether one TimeSpan
instance is less than another
TimeSpan instance.

Determines whether one DateTime
instance is less than another
DateTime instance.

Less than or
equal to (<=)

Determines whether one TimeSpan
instance is less than or equal to
another TimeSpan instance.

Determines whether one DateTime
instance is less than or equal to
another DateTime instance.

Unary negation (-) Returns a TimeSpan instance with
a negated value of the specified
TimeSpan instance.

Not supported.

Unary plus (+) Returns the TimeSpan instance
specified.

Not supported.

Herman_970-5C02.fm Page 71 Monday, February 18, 2008 7:34 AM

72 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

The Code

The following example demonstrates how to use operators to manipulate the DateTime, DateTimeOffset,
and TimeSpan structures. The DateTimeOffset structure, first discussed in recipe 2-7, is a new structure
that replicates most of the functionality available in the DateTime structure while adding the functionality
to handle time zone offsets. Since these two structures are so similar, everything mentioned earlier
regarding the DateTime structure applies to the DateTimeOffset structure.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_08

 Public Shared Sub Main()

 ' Create a TimeSpan representing 2.5 days.
 Dim timespan1 As New TimeSpan(2, 12, 0, 0)

 ' Create a TimeSpan representing 4.5 days.
 Dim timespan2 As New TimeSpan(4, 12, 0, 0)

 ' Create a TimeSpan representing 1 week.
 Dim oneweek As TimeSpan = timespan1 + timespan2

 ' Create a DateTime with the current date and time.
 Dim now As DateTime = DateTime.Now

 ' Create a DateTime representing 1 week ago.
 Dim past As DateTime = now - oneweek

 ' Create a DateTime representing 1 week in the future.
 Dim future As DateTime = now + oneweek

 ' Create a DateTime representing the next day using
 ' the AddDays method.
 Dim tomorrow As DateTime = now.AddDays(1)

 ' Display the DateTime instances.
 Console.WriteLine("Now : {0}", now)
 Console.WriteLine("Past : {0}", past)
 Console.WriteLine("Future : {0}", future)
 Console.WriteLine("Tomorrow : {0}", tomorrow)
 Console.WriteLine(Environment.NewLine)

 ' Create various DateTimeOffset objects using the same
 ' methods demonstrated above using the DateTime structure.
 Dim nowOffset As DateTimeOffset = DateTimeOffset.Now
 Dim pastoffset As DateTimeOffset = nowOffset - oneweek
 Dim futureOffset As DateTimeOffset = nowOffset + oneweek
 Dim tomorrowoffset As DateTimeOffset = nowOffset.AddDays(1)

Herman_970-5C02.fm Page 72 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 73

 ' Change the offset used by nowOffset to -8 (which is Pacific
 ' Standard Time).
 Dim nowPST As DateTimeOffset = nowOffset.ToOffset(New TimeSpan(-8, ➥
0, 0))

 ' Display the DateTimeOffset instances.
 Console.WriteLine("Now (with offset) : {0}", nowOffset)
 Console.WriteLine("Past (with offset) : {0}", pastoffset)
 Console.WriteLine("Future (with offset) : {0}", futureOffset)
 Console.WriteLine("Tomorrow (with offset) : {0}", tomorrowoffset)
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Now (with offset of -8) : {0}", nowPST)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class

End Namespace

2-9. Convert Dates and Times Across Time Zones

Problem

You need to work with dates and times in different time zones and be able to convert between them.

Solution

Use one of the conversion methods (ConvertTime, ConvertTimeBySystemTimeZoneId,
ConvertTimeFromUtc, or ConvertTimeToUtc) of the new TimeZoneInfo class.

How It Works

Previous versions of .NET included the TimeZone class, which was used to represent a world time
zone for a given date and time. Although this was useful, the class was severely limited because it was
able to represent only the local time zone. Furthermore, conversions were limited to the local time
zone and UTC.

The .NET Framework 3.5 introduces the NotInheritable TimeZoneInfo class, which adds impor-
tant functionality that is missing from the TimeZone class. Table 2-5 shows some of the properties (all
of which are ReadOnly) and methods of the TimeZoneInfo class.

Table 2-5. Properties and Methods of the TimeZoneInfo Class

Member Description

Properties

BaseUtcOffset Returns a TimeSpan that represents the difference between
the zone’s time and Coordinated Universal Time (UTC).

DaylightName Returns the daylight saving time name for the time zone,
such as “Eastern Daylight Time” or “Pacific Daylight Time.”

Herman_970-5C02.fm Page 73 Monday, February 18, 2008 7:34 AM

74 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

DisplayName Returns a general name for the time zone, such as
“(GMT-05:00) Eastern Time (US & Canada)” or
“(GMT-08:00) Pacific Time (US & Canada).”

Id Returns the unique identifier for the time zone as defined
by the operating system. In most cases, this value is the
same as the StandardName.

Local Returns an instance of a TimeZoneInfo class that represents
the local time zone.

StandardName Returns the standard name for the time zone, such as
“Eastern Standard Time” or “Pacific Standard Time.”

SupportsDaylightSavingTime Returns whether any daylight saving time rules are
defined for the time zone.

Utc Returns an instance of a TimeZoneInfo class that repre-
sents the UTC time zone.

Methods

ConvertTime Converts the specified time to the time zone specified by
the supplied TimeZoneInfo object.

ConvertTimeBySystemTimeZoneId Converts the specified time to the time zone that corre-
sponds to the supplied time zone identifier (see Id earlier
in the table).

ConvertTimeFromUtc Converts the specified time from UTC to the time zone
specified by the supplied TimeZoneInfo object.

ConvertTimeToUtc Converts the specified time to UTC.

CreateCustomTimeZone Allows the creation of a new time zone.

FindSystemTimeZoneById Returns a TimeZoneInfo object that was retrieved from the
system registry using the supplied time zone identifier.

FromSerializedString Returns a TimeZoneInfo object based on a TimeZoneInfo
object that was previously serialized using the
ToSerializedString method.

GetAdjustmentRules Returns an array of AdjustmentRule objects for the
current TimeZoneInfo instance. An AdjustmentRule object
is typically used to specify when daylight saving time
occurs.

GetSystemTimeZones Returns a collection of TimeZoneInfo objects that were
retrieved from the system registry.

GetUtcOffset Returns a TimeSpan that represents the offset between the
current TimeZoneInfo instance and UTC.

IsDaylightSavingTime Returns True or False depending on whether the current
TimeZoneInfo instance is observing daylight saving time
during the specified date and time.

ToSerializedString Returns a serialized String representation of the current
TimeZoneInfo instance.

Table 2-5. Properties and Methods of the TimeZoneInfo Class (Continued)

Member Description

Herman_970-5C02.fm Page 74 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 75

Similar to the older TimeZone class, TimeZoneInfo represents some time zone, but it is not limited
to UTC or the local time zone. A TimeZoneInfo instance can refer to any time zone that is defined
in the system registry. If a time zone is required that does not exist in the registry, a custom
TimeZoneInfo object can be created using the CreateCustomTimeZone function. You can save and then
reuse this custom time zone by using the ToSerializedString and FromSerializedString functions,
respectively.

The TimeZoneInfo class does not include a constructor, and it is immutable, which means it
cannot be modified once it has been instantiated. You create new instances of the TimeZoneInfo class
by using one of the four available conversion methods: ConvertTime, ConvertTimeBySystemTimeZoneId,
ConvertTimeFromUtc, or ConvertTimeToUtc.

The ConvertTime method includes three overloads. The first overload accepts a DateTime object
(which represents the date and time to be converted) and a TimeZoneInfo object (which represents
the time zone to convert the supplied data and time to). This overload returns a new DateTime object
that reflects the converted date and time.

The second overload is identical to the first one mentioned earlier, but it accepts a DateTimeOffset
object (refer to recipes 2-7 and 2-8 for more information), instead of a DateTime object. Also, the
return type is a DateTimeOffset object.

The third overload behaves like the first, accepting a DateTime object, but it provides an extra
parameter to supply a second TimeZoneInfo object. The first TimeZoneInfo parameter represents the
time zone of the supplied DateTime object, while the second represents the time zone to which the
supplied date and time should be converted.

The ConvertTimeBySystemTimeZoneId method is nearly identical to the ConvertTime method.
They both have the three overloads that perform equivalent conversions. The only difference is that
ConvertTimeBySystemTimeZoneId accepts String parameters instead of TimeZoneInfo objects. The
String objects represent an identifier that is used to retrieve specific TimeZoneInfo data from the
system registry and return an appropriate TimeZoneInfo instance.

The ConvertTimeFromUtc has only one version that accepts a DateTime object (which repre-
sents the date and time to be converted) and a TimeZoneInfo object (which represents the time
zone to convert the supplied date and time to). This method returns the converted date and time
as a DateTime object.

The last conversion method, ConvertTimeToUtc, has only two overloads. The first accepts only a
DateTime object representing the date and time to convert. In this case, the method assumes the supplied
date and time is in the local time zone. The second overload allows you to specify a TimeZoneInfo
instance that represents the time zone of the supplied DateTime object. The converted date and time
are returned as a DateTime object.

The Code

The following example demonstrates multiple ways to retrieve TimeZoneInfo objects and convert dates
and times between different time zones using the different conversion methods mentioned earlier:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter02
 Public Class Recipe02_09

 Public Shared Sub Main()

 ' Create a TimeZoneInfo object for the local time zone.
 Dim localTimeZone As TimeZoneInfo = TimeZoneInfo.Local

Herman_970-5C02.fm Page 75 Monday, February 18, 2008 7:34 AM

76 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Create a TimeZoneInfo object for Coordinated Universal
 ' Time (UTC).
 Dim utcTimeZone As TimeZoneInfo = TimeZoneInfo.Utc

 ' Create a TimeZoneInfo object for Pacific Standard Time (PST).
 Dim pstTimeZone As TimeZoneInfo = ➥
TimeZoneInfo.FindSystemTimeZoneById("Pacific Standard Time")

 ' Create a DateTimeOffset that represents the current time.
 Dim currentTime As DateTimeOffset = DateTimeOffset.Now

 ' Display the local time and the local time zone.
 If localTimeZone.IsDaylightSavingTime(currentTime) Then
 Console.WriteLine("Current time in the local time zone ({0}):", ➥
localTimeZone.DaylightName)
 Else
 Console.WriteLine("Current time in the local time zone ({0})", ➥
localTimeZone.StandardName)
 End If
 Console.WriteLine(" {0}", currentTime.ToString())
 Console.WriteLine(Environment.NewLine)

 ' Display the results of converting the current local time
 ' to Coordinated Universal Time (UTC).
 If utcTimeZone.IsDaylightSavingTime(currentTime) Then
 Console.WriteLine("Current time in {0}:", utcTimeZone.DaylightName)
 Else
 Console.WriteLine("Current time in {0}:", utcTimeZone.StandardName)
 End If
 Console.WriteLine(" {0}", TimeZoneInfo.ConvertTime(currentTime, ➥
utcTimeZone))
 Console.WriteLine(Environment.NewLine)

 ' Create a DateTimeOffset object that represents the current local time
 ' converted to the Pacific Stanard Time time zone.
 Dim pstDTO As DateTimeOffset = TimeZoneInfo.ConvertTime(currentTime,➥
pstTimeZone)

 ' Display the results of the conversion.
 If pstTimeZone.IsDaylightSavingTime(currentTime) Then
 Console.WriteLine("Current time in {0}:", pstTimeZone.DaylightName)
 Else
 Console.WriteLine("Current time in {0}:", pstTimeZone.StandardName)
 End If
 Console.WriteLine(" {0}", pstDTO).ToString()

 ' Display the previous results converted to Coordinated
 ' Universal Time (UTC).
 Console.WriteLine(" {0} (Converted to UTC)", ➥
TimeZoneInfo.ConvertTimeToUtc(pstDTO.DateTime, pstTimeZone))
 Console.WriteLine(Environment.NewLine)

Herman_970-5C02.fm Page 76 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 77

 ' Create a DateTimeOffset that represents the current local time
 ' converted to Mountain Standard Time using the
 ' ConvertTimeBySystemTimeZoneId method. This conversion works
 ' but it is best to create an actual TimeZoneInfo object so
 ' you have access to determine if it is daylight saving time or not.
 Dim mstDTO As DateTimeOffset = ➥
TimeZoneInfo.ConvertTimeBySystemTimeZoneId(currentTime, "Mountain Standard Time")

 ' Display the results of the conversion
 Console.WriteLine("Current time in Mountain Standard Time:")
 Console.WriteLine(" {0}", mstDTO.ToString())
 Console.WriteLine(Environment.NewLine)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-10. Sort an Array or an ArrayList

Problem

You need to sort the elements contained in an array or an ArrayList structure.

Solution

Use the ArrayList.Sort method to sort ArrayList objects and the Shared Array.Sort method to
sort arrays.

How It Works

The simplest Sort method overload sorts the objects contained in an array or ArrayList structure as
long as the objects implement the System.IComparable interface and are of the same type. All the
basic data types implement IComparable. To sort objects that do not implement IComparable, you
must pass the Array.Sort method an object that implements the System.Collections.IComparer
interface. The IComparer implementation must be capable of comparing the objects contained
within the array or ArrayList. (Recipe 15-3 describes how to implement both comparable types.)

■Note Visual Studio 2008 introduces a new feature known as Language Integrate Query (LINQ). LINQ provides
the functionality for querying, sorting, and converting arrays and collections. This is covered in more detail in
Chapter 6.

Herman_970-5C02.fm Page 77 Monday, February 18, 2008 7:34 AM

78 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

The Code

The following example demonstrates how to use the Sort methods of the ArrayList and Array classes:

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_10

 Public Shared Sub Main()

 ' Create a new array and populate it.
 Dim array1 As Integer() = {4, 2, 9, 3}

 ' Sort the array.
 Array.Sort(array1)

 ' Display the contents of the sorted array.
 For Each i As Integer In array1
 Console.WriteLine(i.ToString)
 Next

 ' Create a new ArrayList and populate it.
 Dim list1 As New ArrayList(3)
 list1.Add("Amy")
 list1.Add("Alaina")
 list1.Add("Aidan")

 ' Sort the ArrayList.
 list1.Sort()

 ' Display the contents of the sorted ArrayList.
 For Each s As String In list1
 Console.WriteLine(s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C02.fm Page 78 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 79

2-11. Copy a Collection to an Array

Problem

You need to copy the contents of a collection to an array.

Solution

Use the ICollection.CopyTo method implemented by all collection classes. Alternatively, you can
use the ToArray method implemented by the ArrayList, Stack, and Queue collections, as well as their
respective generic versions List(Of T), Stack(Of T), and Queue(Of T). Refer to recipe 2-14 for more
information regarding generics.

How It Works

The ICollection.CopyTo method and the ToArray method perform roughly the same function: they
perform a copy of the elements contained in a collection to an array. Both of these methods perform
only a shallow copy, which means that the data in memory is simply copied from one location to
another rather than the target object’s Copy method being called, which is referred to as a deep copy.
The key difference is that CopyTo copies the collection’s elements to an existing array, whereas
ToArray creates a new array before copying the collection’s elements into it.

The CopyTo method takes two arguments: an array and an index. The array is the target of the
copy operation and must be of a type appropriate to handle the elements of the collection. If the
types do not match, or no implicit conversion is possible from the collection element’s type to the
array element’s type, a System.InvalidCastException exception is thrown. The index is the starting
element of the array where the collection’s elements will be copied. If the index is equal to or greater
than the length of the array, or the number of collection elements exceeds the capacity of the array,
a System.ArgumentException exception is thrown.

The ArrayList, Stack, and Queue classes and their generic versions (mentioned earlier) also
implement the ToArray method, which automatically creates an array of the correct size to accom-
modate a copy of all the elements of the collection. If you call ToArray with no arguments, it returns
an Object() array, regardless of the type of objects contained in the collection. For convenience, the
ArrayList.ToArray method has an overload to which you can pass a System.Type object that specifies
the type of array that the ToArray method should create. (You must still cast the returned strongly
typed array to the correct type.) The layout of the array’s contents depends on which collection class
you are using. For example, an array produced from a Stack object will be inverted compared to the
array generated by an ArrayList object.

The Code

This example demonstrates how to copy the contents of an ArrayList structure to an array using the
CopyTo method and then shows how to use the ToArray method on the ArrayList object:

Imports System
Imports System.Collections
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_11

 Public Shared Sub Main()

Herman_970-5C02.fm Page 79 Monday, February 18, 2008 7:34 AM

80 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Create a new ArrayList and populate it.
 Dim list As New ArrayList(3)
 list.Add("Amy")
 list.Add("Alaina")
 list.Add("Aidan")

 ' Create a string array and use the ICollection.CopyTo method
 ' to copy the contents of the ArrayList.
 Dim array1(list.Count - 1) As String
 list.CopyTo(array1, 0)

 ' Use ArrayList.ToArray to create an object array from the
 ' contents of the collection.
 Dim array2 As Object() = list.ToArray()

 ' Use ArrayList.ToArray to create a strongly typed string
 ' array from the contents of the collection.
 Dim array3 As String() = DirectCast(list.ToArray(GetType(String)), ➥
String())

 ' Display the contents of the 3 arrays.
 Console.WriteLine("Array 1:")
 For Each s As String In array1
 Console.WriteLine(vbTab + "{0}", s)
 Next

 Console.WriteLine("Array 2:")
 For Each s As String In array2
 Console.WriteLine(vbTab + "{0}", s)
 Next

 Console.WriteLine("Array 3:")
 For Each s As String In array3
 Console.WriteLine(vbTab + "{0}", s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-12. Manipulate or Evaluate the Contents of an Array

Problem

You need to perform actions on the contents of an array, such as the following:

• Determining whether an array contains any data

• Determining whether an array contains any elements that meet a specific condition

Herman_970-5C02.fm Page 80 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 81

• Determining whether all elements of an array meet a specific condition

• Reversing the order of the contents

Solution

Use the appropriate methods (such as All, Any, and Reverse) of the System.Linq.Enumerable class to
perform the desired action.

How It Works

The .NET Framework 3.5 introduces the NotInheritable class System.Linq.Enumerable, which contains a
long list of special Shared methods, some of which are shown in Table 2-6, called extension methods
(which are discussed in recipe 1-22). The majority of these methods extend the IEnumerable(Of T)
interface, which means they can be used with any object, such as Array, List(Of T), and Stack(Of T),
that implements that interface.

The methods found in the Enumerable class provide the underlying support for Language Inte-
grated Query (LINQ). LINQ is a powerful new feature in Visual Studio 2008 that provides the ability
to query and manipulate data stored in a variety of sources (such as databases, objects, and XML
files). Although this chapter covers some of the new extension methods used by LINQ, that is not the
focus of this recipe. LINQ is covered in detail in Chapter 6, so this recipe will focus on only a few of
the available methods.

Table 2-6. Some Useful Extension Methods from the Enumerable Class

Method Description

All Returns True or False depending on whether all elements in the source data
meet the specified condition.

Any Returns True or False depending on whether any element in the source data
meets the specified condition.

Average Returns a numeric value representing the average of each element in the source
data. This is covered in more detail in recipe 6-7.

Cast Returns an IEnumerable(Of T), where T is the specified type. Each element in the
source data is converted to the specified type first. This is covered in more detail
in recipe 6-15.

Concat Returns an IEnumerable(Of T) containing all the elements, from both data sources
specified, combined.

Contains Returns True or False depending on whether the specified data source contains
the specified data.

Distinct Returns an IEnumerable(Of T) containing only the distinct, or nonrepeating,
elements from the data source. This is covered in more detail in recipe 6-1.

ElementAt Returns the element of the data source that corresponds to the specified index.
This is covered in more detail in recipe 6-12.

First Returns the first element in the data source. This is covered in more detail in
recipe 6-12.

GroupBy Returns an IEnumerable(Of IGrouping(Of TKey, TElement)) containing data
from multiple data sources grouped by the specified condition. This is covered
in more detail in recipe 6-10.

Herman_970-5C02.fm Page 81 Monday, February 18, 2008 7:34 AM

82 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

The All method is used to determine whether all elements in the current IEnumerable(Of T)
instance meet the specified condition. The only required parameter is the condition to check for,
which is represented as a lambda expression (see recipe 1-23). The supplied lambda expression,
which takes the form of a Func(Of T, Boolean), is automatically run against each element in the
source data. If all elements meet the set condition, True is returned.

The Any method has two versions. The first version, with no parameters, simply returns True or
False depending on whether the current IEnumerable(Of T) instance contains any data. The second
version resembles the All method but performs the opposite function. It takes a lambda expression,
in the form of a Func(Of T, Boolean), but True is returned if any of the elements in the source data
meet the specified condition.

The Reverse method returns an IEnumerable(Of T) in reverse order. No sorting is actually
performed; rather, the sequence is simply reversed.

The Code

This example demonstrates how to use some of the new extension methods mentioned earlier. To
make things a little easier, the sample data uses an array of anonymous types (recipe 1-21).

Join Returns an IEnumerable(Of T) containing data from multiple sources joined by
the specified condition. This is covered in more detail in recipe 6-11.

Last Returns the last element in the data source. This is covered in more detail in
recipe 6-12.

Max Returns the maximum numeric value in the data source. This is covered in more
detail in recipe 6-9.

Min Returns the minimum numeric value in the data source. This is covered in more
detail in recipe 6-9.

OrderBy Returns an IOrderdedEnumerable(OF T) containing all the elements from the data
source ordered by the specified key. This is covered in more detail in recipe 6-4.

Reverse Returns an IEnumerable(OF T) containing all the elements from the source
collection but in reverse order.

Select The basis for performing queries. This is covered in more detail in recipe 6-3.

Skip Returns an IEnumerable(Of T) containing all elements from the data source
except for the number of elements specified, starting from the first. This is
covered in more detail in recipe 6-13.

Sum Returns a numeric value that represents the sum of each element in the data
source. This is covered in more detail in recipe 6-7.

Take Returns an IEnumerable(Of T) containing the specified number of elements
from the data source, starting from the first. This is covered in more detail in
recipe 6-13.

Where Returns an IEnumerable(Of T) containing data from the data source that has been
filtered using the specified condition. This is covered in more detail in recipe 6-5.

Table 2-6. Some Useful Extension Methods from the Enumerable Class (Continued)

Method Description

Herman_970-5C02.fm Page 82 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 83

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter02
 Public Class Recipe02_12

 Public Shared Sub Main()

 ' For the record, references to Battlestar Galactica
 ' are courtesy of the SciFi channel.

 ' Create sample data. For simplicity, the data consists of an
 ' array of anonymous types that contain three properties:
 ' Name (a String), CallSign (a String) and Age (an Integer).
 Dim galactica() = { _
 New With {.Name = "William Adama", _
 .CallSign = "Husker", _
 .Age = 65}, _
 New With {.Name = "Saul Tigh", _
 .CallSign = Nothing, _
 .Age = 83}, _
 New With {.Name = "Lee Adama", _
 .CallSign = "Apollo", _
 .Age = 30}, _
 New With {.Name = "Kara Thrace", _
 .CallSign = "Starbuck", _
 .Age = 28}, _
 New With {.Name = "Gaius Baltar", _
 .CallSign = Nothing, _
 .Age = 42}}

 ' Variables used to store results of Any and All methods.
 Dim anyResult As Boolean
 Dim allResult As Boolean

 ' Display the contents of the galactica array.
 Console.WriteLine("Galactica Crew:")
 For Each crewMember In galactica
 Console.WriteLine(" {0}", crewMember.Name)
 Next
 Console.WriteLine(Environment.NewLine)

 ' Determine if the galactica array has any data.
 anyResult = galactica.Any

 ' Display the results of the previous test.
 Console.WriteLine("Does the array contain any data: ")
 If anyResult Then
 Console.Write("Yes")
 Else
 Console.Write("No")
 End If
 Console.WriteLine(Environment.NewLine)

Herman_970-5C02.fm Page 83 Monday, February 18, 2008 7:34 AM

84 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Determine if any members have nothing set for the
 ' CallSign property, using the Any method.
 anyResult = galactica.Any(Function(crewMember) crewMember.callsign ➥
Is Nothing)

 ' Display the results of the previous test.
 Console.WriteLine("Do any crew members NOT have a callsign: ")
 If anyResult Then
 Console.Write("Yes")
 Else
 Console.Write("No")
 End If
 Console.WriteLine(Environment.NewLine)

 ' Determine if all members of the array have an Age property
 ' greater than 40, using the All method.
 allResult = galactica.All(Function(crewMember) crewMember.Age > 40)

 ' Display the results of the previous test.
 Console.WriteLine("Are all of the crew members over 40: ")
 If allResult Then
 Console.Write("Yes")
 Else
 Console.Write("No")
 End If
 Console.WriteLine(Environment.NewLine)

 ' Display the contents of the galactica array in reverse.
 Console.WriteLine("Galactica Crew (Reverse Order):")
 For Each crewMember In galactica.Reverse
 Console.WriteLine(" {0}", crewMember.Name)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-13. Use a Strongly Typed Collection

Problem

You need a collection that works with elements of a specific type so that you do not need to work
with System.Object references in your code.

Solution

Use the appropriate collection class from the System.Collections.Generic namespace. When you
instantiate the collection, specify the type of object the collection should contain using the generics
syntax that was first introduced in .NET Framework 2.0.

Herman_970-5C02.fm Page 84 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 85

How It Works

The generics functionality added to .NET Framework 2.0 and supported by specific syntax in VB
.NET 9.0 make it easy to create type-safe collections and containers (see recipe 2-14). To meet the
most common requirements for collection classes, the System.Collections.Generic namespace
contains a number of predefined generic collections, including the following:

• Dictionary

• LinkedList

• List

• Queue

• Stack

When you instantiate one of these collections, you specify the type of object that the collection
will contain by using the Of keyword with the type name in parentheses after the collection name,
such as in Dictionary(Of System.Reflection.AssemblyName). As a result, all members that add objects
to the collection expect the objects to be of the specified type, and all members that return objects
from the collection will return object references of the specified type. Using strongly typed collec-
tions and working directly with objects of the desired type simplifies development and when working
with general Object references and casting them to the desired type. It also reduces errors since the
user of generics will reveal most casting issues at compile time rather than runtime.

The Code

The following example demonstrates the use of generic collections to create a variety of collections
specifically for managing AssemblyName objects. Notice that you never need to cast to or from the
Object type.

Imports System
Imports System.Reflection
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_13

 Public Shared Sub Main()

 ' Create an AssemblyName object for use during the example.
 Dim assembly1 As New AssemblyName("com.microsoft.crypto, " & ➥
"Culture=en, PublicKeyToken=a5d015c7d5a0b012, Version=1.0.0.0")

 ' Create and use a Dictionary of AssemblyName objects.
 Dim assemblyDictionary As New Dictionary(Of String, AssemblyName)

 assemblyDictionary.Add("Crypto", assembly1)

 Dim ass1 As AssemblyName = assemblyDictionary("Crypto")

 Console.WriteLine("Got AssemblyName from dictionary: {0}", ➥
CType(ass1, AssemblyName).ToString)

Herman_970-5C02.fm Page 85 Monday, February 18, 2008 7:34 AM

86 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Create and use a list of AssemblyName objects.
 Dim assemblyList As New List(Of AssemblyName)

 assemblyList.Add(assembly1)

 Dim ass2 As AssemblyName = assemblyList(0)

 Console.WriteLine(vbCrLf & "Got AssemblyName from list: {0}", ➥
CType(ass2, AssemblyName).ToString)

 ' Create and use a stack of AssemblyName objects.
 Dim assemblyStack As New Stack(Of AssemblyName)

 assemblyStack.Push(assembly1)

 Dim ass3 As AssemblyName = assemblyStack.Pop

 Console.WriteLine(vbCrLf & "Popped AssemblyName from stack: {0}", ➥
CType(ass3, AssemblyName).ToString)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-14. Create a Generic Type

Problem

You need to create a new general-purpose type such as a collection or container that supports strong
typing of the elements it contains.

Solution

Define your class using the generics syntax, first introduced in .NET Framework 2.0, provided in
VB .NET 9.0.

How It Works

You can leverage the generics capabilities of VB .NET 9.0 in any class you define. This allows you to
create general-purpose classes that can be used as type-safe instances by other programmers. When
you declare your type, you identify it as a generic type by following the type name with a list of iden-
tifiers for the types used in the class, preceded by the Of keyword and enclosed in parentheses. Here
is an example:

Public Class MyGeneric(Of T1, T2, T3)
End Class

Herman_970-5C02.fm Page 86 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 87

This declaration specifies a new class named MyGenericType, which uses three generic types in
its implementation (T1, T2, and T3). When implementing the type, you substitute the generic type
names into the code instead of using specific type names. For example, one method might take an
argument of type T1 and return a result of type T2, as shown here:

Public Function MyGenericMethod(ByVal arg As T1) As T2
End Function

When other people use your class and create an instance of it, they specify the actual types to
use as part of the instantiation. Here is an example:

Dim obj As New MyGenericType(Of String, System.IO.Stream, String)

The types specified replace T1, T2, and T3 throughout the implementation, so with this instance,
MyGenericMethod would actually be compiled as follows:

Public Function MyGenericMethod(ByVal arg As String) As Stream
End Function

You can also include constraints as part of your generic type definition. This allows you to make
specifications such as the following:

• Only value types or only reference types can be used with the generic type.

• Only types that implement a default (empty) constructor can be used with the generic type.

• Only types that implement a specific interface can be used with the generic type.

• Only types that inherit from a specific base class can be used with the generic type.

• One generic type must be the same as another generic type (for example, T1 must be the same
as T3).

For example, to specify that T1 must implement the System.IDisposable interface and provide
a default constructor, that T2 must be or derive from the System.IO.Stream class, and that T3 must be
the same type as T1, change the definition of MyGenericType as follows:

Public Class MyGenericType(Of T1 As {IDisposable}, T2 As {System.IO.Stream}, ➥
T3 As {T1})
End Class

The Code

The following example demonstrates a simplified bag implementation that returns those objects put
into it at random. A bag is a data structure that can contain zero or more items, including duplicates
of items, but does not guarantee any ordering of the items it contains.

Imports System
Imports System.Collections.Generic
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Bag(Of T)
 ' A list to hold the bag's contents. The list must be
 ' of the same type as the bag.
 Private items As New List(Of T)

 ' A method to add an item to the bag.
 Public Sub Add(ByVal item As T)
 items.Add(item)
 End Sub

Herman_970-5C02.fm Page 87 Monday, February 18, 2008 7:34 AM

88 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' A method to remove a random item from the bag.
 Public Function Remove() As T
 Dim item As T = Nothing

 If Not items.Count = 0 Then
 ' Determine which item to remove from the bag.
 Dim r As New Random
 Dim num As Integer = r.Next(0, items.Count)

 ' Remove the item.
 item = items(num)
 items.RemoveAt(num)
 End If

 Return item

 End Function

 ' A method to remove all items from the bag and return them
 ' as an array.
 Public Function RemoveAll() As T()

 Dim i As T() = items.ToArray()
 items.Clear()
 Return i

 End Function

 End Class

 Public Class Recipe02_14

 Public Shared Sub Main()

 ' Create a new bag of strings.
 Dim bag As New Bag(Of String)

 ' Add strings to the bag.
 bag.Add("Amy")
 bag.Add("Alaina")
 bag.Add("Aidan")
 bag.Add("Robert")
 bag.Add("Pearl")
 bag.Add("Mark")
 bag.Add("Karen")

 ' Take four strings from the bag and display.
 Console.WriteLine("Item 1 = {0}", bag.Remove())
 Console.WriteLine("Item 2 = {0}", bag.Remove())
 Console.WriteLine("Item 3 = {0}", bag.Remove())
 Console.WriteLine("Item 4 = {0}", bag.Remove())
 Console.WriteLine(vbCrLf)

Herman_970-5C02.fm Page 88 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 89

 ' Remove the remaining items from the bag.
 Dim s As String() = bag.RemoveAll

 ' Display the remaining items.
 For i As Integer = 0 To s.Length - 1
 Console.WriteLine("Item {0} = {1}", i + 1.ToString, s(i))
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-15. Store a Serializable Object to a File

Problem

You need to store a serializable object and its state to a file, and then deserialize it later.

Solution

Use a formatter to serialize the object and write it to a System.IO.FileStream object. When you need
to retrieve the object, use the same type of formatter to read the serialized data from the file and
deserialize the object. The .NET Framework class library includes the following formatter imple-
mentations for serializing objects to binary or SOAP format:

• System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

• System.Runtime.Serialization.Formatters.Soap.SoapFormatter

How It Works

Using the BinaryFormatter and SoapFormatter classes, you can serialize an instance of any serializ-
able type. (See recipe 15-1 for details on how to make a type serializable.) The BinaryFormatter class
produces a binary data stream representing the object and its state. The SoapFormatter class produces
a SOAP document. SOAP is an XML-based protocol used to exchange messages over the network.
SOAP is used as the primary mechanism for communicating with web services. Refer to recipes 12-13,
12-14, and 12-15 for more information about web services.

Both the BinaryFormatter and SoapFormatter classes implement the interface System.Runtime.
Serialization.IFormatter, which defines two methods: Serialize and Deserialize. The Serialize
method takes a System.IO.Stream reference and a System.Object reference as arguments, serializes
the Object, and writes it to the Stream. The Deserialize method takes a Stream reference as an argu-
ment, reads the serialized object data from the Stream, and returns an Object reference to a deserialized
object. You must cast the returned Object reference to the correct type.

Herman_970-5C02.fm Page 89 Monday, February 18, 2008 7:34 AM

90 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

■Caution To call the Serialize and Deserialize methods of the BinaryFormatter class, your code must
be granted the SecurityPermissionFlag.SerializationFormatter permission. To call the Serialize
and Deserialize methods of the SoapFormatter class, your code must be granted full trust, because the
System.Runtime.Serialization.Formatters.Soap.dll assembly in which the SoapFormatter class is
declared does not allow partially trusted callers. Refer to recipe 13-1 for more information about assemblies and
partially trusted callers.

The Code

The example shown here demonstrates how to use both BinaryFormatter and SoapFormatter to
serialize a System.Collections.ArrayList object containing a list of people to a file. The ArrayList
object is then deserialized from the files and the contents displayed to the console. A reference to the
System.Runtime.Serialization.Formatters.Soap assembly may need to be added to your project
before it can be used.

Imports System
Imports System.IO
Imports System.Collections
Imports System.Runtime.Serialization.Formatters.Soap
Imports System.Runtime.Serialization.Formatters.Binary

Namespace Apress.VisualBasicRecipes.Chapter02
 Public Class Recipe02_15

 ' Serialize an ArrayList object to a binary file.
 Private Shared Sub BinarySerialize(ByVal list As ArrayList)

 Using str As FileStream = File.Create("people.bin")
 Dim bf As New BinaryFormatter()
 bf.Serialize(str, list)
 End Using

 End Sub

 ' Deserialize an Arraylist object from a binary file.
 Private Shared Function BinaryDeserialize() As ArrayList
 Dim people As ArrayList = Nothing

 Using str As FileStream = File.OpenRead("people.bin")
 Dim bf As New BinaryFormatter()
 people = DirectCast(bf.Deserialize(str), ArrayList)
 End Using
 Return people

 End Function

 ' Serialize an ArrayList object to a SOAP file.
 Private Shared Sub SoapSerialize(ByVal list As ArrayList)

Herman_970-5C02.fm Page 90 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 91

 Using str As FileStream = File.Create("people.soap")
 Dim sf As New SoapFormatter()
 sf.Serialize(str, list)
 End Using

 End Sub

 ' Deserialize an Arraylist object from a SOAP file.
 Private Shared Function SoapDeserialize() As ArrayList
 Dim people As ArrayList = Nothing

 Using str As FileStream = File.OpenRead("people.soap")
 Dim sf As New SoapFormatter()
 people = DirectCast(sf.Deserialize(str), ArrayList)
 End Using
 Return people

 End Function

 Public Shared Sub Main()

 ' Create and configure the ArrayList to serialize.
 Dim people As New ArrayList
 people.Add("Alex")
 people.Add("Dave")
 people.Add("Matthew")
 people.Add("Robb")

 ' Serialize the list to a file in both binary and SOAP format.
 BinarySerialize(people)
 SoapSerialize(people)

 ' Rebuild the lists of people form the binary and SOAP
 ' serializations and display them to the console.
 Dim binaryPeople As ArrayList = BinaryDeserialize()
 Dim soapPeople As ArrayList = SoapDeserialize()

 Console.WriteLine("Binary People:")
 For Each s As String In binaryPeople
 Console.WriteLine(vbTab & s)
 Next

 Console.WriteLine(vbCrLf & "SOAP People:")
 For Each s As String In soapPeople
 Console.WriteLine(vbTab & s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C02.fm Page 91 Monday, February 18, 2008 7:34 AM

92 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Usage

To illustrate the different results achieved using the BinaryFormatter and SoapFormatter classes,
Figure 2-1 shows the contents of the people.bin file generated using the BinaryFormatter class,
and Figure 2-2 shows the contents of the people.soap file generated using the SoapFormatter class.

Figure 2-1. Contents of the people.bin file

Figure 2-2. Contents of the people.soap file

2-16. Read User Input from the Console

Problem

You want to read user input from the Windows console, either a line or character at a time.

Solution

Use the Read or ReadLine method of the System.Console class to read input when the user presses
Enter. To read input without requiring the user to press Enter, use the Console.ReadKey method.

How It Works

The simplest way to read input from the console is to use the Shared Read or ReadLine methods of the
Console class. These methods will cause your application to block, waiting for the user to enter input
and press Enter. In both instances, the user will see the input characters in the console. Once the
user presses Enter, the Read method will return an Integer value representing the next character of
input data or –1 if no more data is available. Since Read reads only one character, it must be called

Herman_970-5C02.fm Page 92 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 93

repeatedly to continue capturing user input. The ReadLine method will return a string containing all
the data entered or an empty string if no data was entered.

The ReadKey method provides a way to read input from the console without waiting for the user
to press Enter. It waits for the user to press a key and returns a System.ConsoleKeyInfo object to the
caller. By passing True as an argument to an overload of the ReadKey method, you can also prevent
the key pressed by the user from being echoed to the console.

The returned ConsoleKeyInfo object contains details about the key pressed. The details are
accessible through the properties of the ConsoleKeyInfo class summarized in Table 2-7.

The KeyAvailable method of the Console class returns a Boolean value indicating whether input
is available in the input buffer without blocking your code.

The Code

The following example reads input from the console one character at a time using the ReadKey method.
If the user presses F1, the program toggles in and out of “secret” mode, where input is masked by
asterisks. When the user presses Escape, the console is cleared and the input the user has entered is
displayed. If the user presses Alt-X or Alt-x, the example terminates.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_16
 Public Shared Sub Main()

 ' Local variable to hold the key entered by the user.
 Dim key As ConsoleKeyInfo

 ' Control whether character or asterisk is displayed.
 Dim secret As Boolean = False

Table 2-7. Properties of the ConsoleKeyInfo Class

Property Description

Key Gets a value of the System.ConsoleKey enumeration representing the key pressed.
The ConsoleKey enumeration contains values that represent all the keys usually
found on a keyboard. These include all the character and function keys; navigation
and editing keys such as Home, Insert, and Delete; and more modern specialized
keys such as the Windows key, media player control keys, browser activation keys,
and browser navigation keys.

KeyChar Gets a Char value containing the Unicode character representation of the key
pressed. Special keys such as Insert, Delete, and F1 through F12 do not have a
Unicode representation and will return Nothing.

Modifiers Gets a bitwise combination of values from the System.ConsoleModifiers enumer-
ation that identifies one or more modifier keys pressed simultaneously with the
console key. The members of the ConsoleModifiers enumeration are Alt, Control,
and Shift.

Herman_970-5C02.fm Page 93 Monday, February 18, 2008 7:34 AM

94 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Character list for the user data entered.
 Dim input As New List(Of Char)
 Dim msg As String = "Enter characters and press Escape to see input." ➥
& vbCrLf & "Press F1 to enter/exit Secret mode and Alt-X to exit."

 Console.WriteLine(msg)

 ' Process input until the users presses Alt-X or Alt-x.
 Do
 ' Read a key from the console. Intercept the key so that it is not
 ' displayed to the console. What is displayed is determined later
 ' depending on whether the program is in secret mode.
 key = Console.ReadKey(True)

 ' Switch secret mode on and off.
 If key.Key = ConsoleKey.F1 Then
 If secret Then
 ' Switch secret mode off.
 secret = False
 Else
 ' Switch secret mode on.
 secret = True
 End If
 End If

 If key.Key = ConsoleKey.Backspace Then
 ' Handle Backspace.
 If input.Count > 0 Then
 ' Backspace pressed remove the last character.
 input.RemoveAt(input.Count - 1)

 Console.Write(key.KeyChar)
 Console.Write(" ")
 Console.Write(key.KeyChar)
 End If

 ' Handle Escape.
 ElseIf key.Key = ConsoleKey.Escape Then
 Console.Clear()
 Console.WriteLine("Input: {0}{1}{1}", New ➥
String(input.ToArray), vbCrLf)
 Console.WriteLine(msg)
 input.Clear()

 ' Handle character input.
 ElseIf key.Key >= ConsoleKey.A And key.Key <= ConsoleKey.Z Then
 input.Add(key.KeyChar)

Herman_970-5C02.fm Page 94 Monday, February 18, 2008 7:34 AM

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 95

 If secret Then
 Console.Write("*")
 Else
 Console.Write(key.KeyChar)
 End If

 End If

 Loop While Not key.Key = ConsoleKey.X Or Not key.Modifiers = ➥
 ConsoleModifiers.Alt

 ' Wait to continue.
 Console.WriteLine("{0}{0}Main method complete. Press Enter", vbCrLf)
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C02.fm Page 95 Monday, February 18, 2008 7:34 AM

Herman_970-5C02.fm Page 96 Monday, February 18, 2008 7:34 AM

97

■ ■ ■

C H A P T E R 3

Application Domains, Reflection,
and Metadata

When an application is run on an operating system, it is given its own private space, typically
referred to as a process. This process ensures that different applications don’t interfere with each
other. The common language runtime (CLR) does the same thing within a .NET application but
using application domains, which can be thought of as subprocesses. Although each application
(including .NET applications) running in the operating system executes in a single process, .NET
applications themselves can have one or more application domains.

A side effect, however, is that information cannot be easily shared between application domains
or processes. .NET offers the perfect solution for this in the form of reflection, which provides a means to
dynamically load information from assemblies running in different application domains. The infor-
mation that can be loaded by reflection can be any available metadata (such as attributes, types,
available methods, and so on) that is contained in the target assembly.

The recipes in this chapter cover the following:

• Controlling the loading of assemblies and the instantiation of types in local and remote appli-
cation domains (recipes 3-1, 3-3, 3-4, and 3-7)

• Creating application domains into which you can load assemblies that are isolated from the
rest of your application (recipe 3-2)

• Creating types that are guaranteed to be unable to cross application domain boundaries
(recipe 3-5) and types that have the capability to cross application domain boundaries
(recipe 3-6)

• Passing simple configuration data between application domains (recipe 3-8)

• Unloading application domains, which provides the only means through which you can
unload assemblies at runtime (recipe 3-9)

• Inspecting and testing the type of an object using a variety of mechanisms built into the VB
.NET language and capabilities provided by the objects themselves (recipes 3-10 and 3-11)

• Dynamically instantiating an object and executing its methods at runtime using reflection
(recipe 3-12)

• Creating custom attributes (recipe 3-13), which allows you to associate metadata with your
program elements, and inspecting the value of those custom attributes at runtime (recipe 3-14)

Herman_970-5C03.fm Page 97 Monday, February 18, 2008 7:37 AM

98 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

■Note An excellent reference for detailed information on all aspects of application domains and loading
assemblies is Customizing the Microsoft .NET Framework Common Language Runtime by Steven Pratschner
(Microsoft Press, 2005).

3-1. Load an Assembly into the Current Application Domain

Problem

You need to load an assembly into the current application domain at runtime.

Solution

Use the Shared Load method or the LoadFrom method of the System.Reflection.Assembly class.

■Note The Assembly.LoadWithPartialName method has been deprecated in .NET Framework 2.0. Instead,
you should use the Assembly.Load method described in this recipe.

How It Works

Unlike with Win32, where the referenced DLLs are loaded when the process starts, the common
language runtime (CLR) will automatically load the assemblies referenced by your assembly only
when the metadata for their contained types is required. However, you can also explicitly instruct
the runtime to load assemblies. The Load and LoadFrom methods both result in the runtime loading
an assembly into the current application domain, and both return an Assembly instance that repre-
sents the newly loaded assembly. The differences between each method are the arguments you must
provide to identify the assembly to load and the process that the runtime undertakes to locate the
specified assembly.

The Load method provides overloads that allow you to specify the assembly to load using one of
the following:

• A String containing the fully or partially qualified display name of the assembly

• A System.Reflection.AssemblyName containing details of the assembly

• A Byte array containing the raw bytes that constitute the assembly

A fully qualified display name contains the assembly’s name (minus the extension), version,
culture, and public key token, separated by commas (for example, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089). When using a fully qualified name, all four
fields are mandatory. If you need to specify an assembly that doesn’t have a strong name, use
PublicKeyToken=null. You can also specify a partial name, but as a minimum, you must specify the
assembly name (without the file extension).

In response to the Load call, the runtime undertakes an extensive process to locate and load the
specified assembly. The following is a summary of this process (consult the section “How the Runtime
Locates Assemblies” in the .NET Framework SDK documentation for more details):

Herman_970-5C03.fm Page 98 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 99

1. If you specify a strong-named assembly, the Load method will apply the version policy and
publisher policy to enable requests for one version of an assembly to be satisfied by another
version. You specify the version policy in your machine or application configuration file using
<bindingRedirect> elements. You specify the publisher policy in special resource assemblies
installed in the global assembly cache (GAC).

2. Once the runtime has established the correct version of an assembly to use, it attempts to
load strong-named assemblies from the GAC.

3. If the assembly is not strong named or is not found in the GAC, the runtime looks for applicable
<codeBase> elements in your machine and application configuration files. A <codeBase> element
maps an assembly name to a specific file or a uniform resource locator (URL). If the assembly is
strong named, <codeBase> can refer to any location including Internet-based URLs; otherwise,
<codeBase> must refer to a directory relative to the application directory. If the assembly doesn’t
exist at the specified location, Load throws a System.IO.FileNotFoundException.

If no <codeBase> elements are relevant to the requested assembly, the runtime will locate the
assembly using probing. Probing looks for the first file with the assembly’s name (with either
a .dll or an .exe extension) in the following locations:

• The application root directory

• Directories under the application root that match the assembly’s name and culture

• Directories under the application root that are specified in the private binpath using the
privatePath attribute of the <Probing> element

The Load method is the easiest way to locate and load assemblies but can also be expensive in
terms of processing if the runtime needs to start probing many directories for a weak-named assembly.
The LoadFrom method allows you to load an assembly file specified by the supplied uniform resource
identifier (URI). If the file isn’t found, the runtime will throw a FileNotFoundException. The runtime
won’t attempt to locate the assembly in the same way as the Load method—LoadFrom provides no
support for the GAC, policies, <codeBase> elements, or probing.

The Code

The following code demonstrates various forms of the Load and LoadFrom methods. Notice that unlike
the Load method, LoadFrom requires you to specify the extension of the assembly file.

Imports System
Imports System.Reflection
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_01

 Public Shared Sub ListAssemblies()

 ' Get an array of the assemblies loaded into the current
 ' application domain.
 Dim assemblies As Assembly() = AppDomain.CurrentDomain.GetAssemblies()

 For Each a As Assembly In assemblies
 Console.WriteLine(a.GetName)
 Next

 End Sub

Herman_970-5C03.fm Page 99 Monday, February 18, 2008 7:37 AM

100 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 Public Shared Sub Main()

 ' List the assemblies in the current application domain.
 Console.WriteLine("**** BEFORE ****")
 ListAssemblies()

 ' Load the System.Data assembly using a fully qualified display name.
 Dim name1 As String = "System.Data,Version=2.0.0.0," + ➥
"Culture=neutral,PublicKeyToken=b77a5c561934e089"
 Dim a1 As Assembly = Assembly.Load(name1)

 ' Load the System.Xml assembly using an AssemblyName.
 Dim name2 As New AssemblyName()
 name2.Name = "System.Xml"
 name2.Version = New Version(2, 0, 0, 0)
 name2.CultureInfo = New CultureInfo("") ' Neutral culture.
 name2.SetPublicKeyToken(New Byte() {&HB7, &H7A, &H5C, &H56, ➥
&H19, &H34, &HE0, &H89})
 Dim a2 As Assembly = Assembly.Load(name2)

 ' Load the SomeAssembly assembly using a partial display name.
 Dim a3 As Assembly = Assembly.Load("SomeAssembly")

 ' Load the assembly named C:\shared\MySharedAssembly.dll.
 Dim a4 As Assembly = Assembly.LoadFrom("C:\shared\MySharedAssembly.dll")

 ' List the assemblies in the current application domain.
 Console.WriteLine("{0}{0}**** AFTER ****", vbCrLf)
 ListAssemblies()

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

3-2. Create an Application Domain

Problem

You need to create a new application domain.

Solution

Use the Shared method CreateDomain of the System.AppDomain class.

Herman_970-5C03.fm Page 100 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 101

How It Works

The simplest overload of the CreateDomain method takes a single String argument specifying a human-
readable name (friendly name) for the new application domain. Other overloads allow you to specify
evidence and configuration settings for the new application domain. Evidence refers to information,
such as a strong name or application path, that is used by the CLR when making security decisions.
You specify evidence using a System.Security.Policy.Evidence object, and you specify configura-
tion settings using a System.AppDomainSetup object.

The AppDomainSetup class is a container of configuration information for an application domain.
Table 3-1 lists some of the properties of the AppDomainSetup class that you will use most often when
creating application domains. These properties are accessible after creation through members of the
AppDomain object. Some have different names, and some are modifiable at runtime; refer to the .NET
Framework’s software development kit (SDK) documentation on the AppDomain class for a compre-
hensive discussion.

The Code

The following code demonstrates the creation and initial configuration of an application domain:

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_02

 Public Shared Sub Main()

Table 3-1. Commonly Used AppDomainSetup Properties

Property Description

ApplicationBase The directory where the CLR will look during probing to resolve
private assemblies. Recipe 3-1 discusses probing. Effectively,
ApplicationBase is the root directory for the executing application.
By default, this is the directory containing the assembly. This
is readable after creation using the AppDomain.BaseDirectory
property.

ConfigurationFile The name of the configuration file used by code loaded into
the application domain. This is readable after creation using
the AppDomain.GetData method with the key APP_CONFIG_FILE.
By default, the configuration file is stored in the same folder as
the application.exe file, but if you set ApplicationBase, it will be
in that folder.

DisallowPublisherPolicy Controls whether the publisher policy section of the application
configuration file is taken into consideration when determining
which version of a strong-named assembly to bind to. Recipe 3-1
discusses publisher policy.

PrivateBinPath A semicolon-separated list of directories that the runtime uses
when probing for private assemblies. These directories are relative
to the directory specified in ApplicationBase. This is readable
after application domain creation using the AppDomain.
RelativeSearchPath property.

Herman_970-5C03.fm Page 101 Monday, February 18, 2008 7:37 AM

102 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Instantiate an AppDomainSetup object.
 Dim setupInfo As New AppDomainSetup

 ' Configure the application domain setup information.
 setupInfo.ApplicationBase = "C:\MyRootDirectory"
 setupInfo.ConfigurationFile = "MyApp.config"
 setupInfo.PrivateBinPath = "bin;plugins;external"

 ' Create a new application domain passing Nothing as the evidence
 ' argument. Remember to save a reference to the new AppDomain as
 ' this cannot be retrieved any other way.
 Dim newDomain As AppDomain = AppDomain.CreateDomain("My New " & ➥

"AppDomain, Nothing, setupInfo)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note You must maintain a reference to the AppDomain object when you create it because no mechanism exists
to enumerate existing application domains from within managed code.

3-3. Execute an Assembly in a Different Application Domain

Problem

You need to execute an assembly in an application domain other than the current one.

Solution

Call the ExecuteAssembly or ExecuteAssemblyByName method of the AppDomain object that represents
the application domain, and specify the file name of an executable assembly.

How It Works

If you have an executable assembly that you want to load and run in an application domain, the
ExecuteAssembly or ExecuteAssemblyByName method provides the easiest solution. The ExecuteAssembly
method provides four overloads. The simplest overload takes only a String containing the name of
the executable assembly to run; you can specify a local file or a URL. Other ExecuteAssembly overloads
allow you to specify evidence for the assembly (which affects code access security) and arguments to
pass to the assembly’s entry point (equivalent to command-line arguments).

The ExecuteAssembly method loads the specified assembly and executes the method defined in
metadata as the assembly’s entry point (usually the Main method). If the specified assembly isn’t
executable, ExecuteAssembly throws a System.MissingMethodException. The CLR doesn’t start execu-
tion of the assembly in a new thread, so control won’t return from the ExecuteAssembly method until
the newly executed assembly exits. Because the ExecuteAssembly method loads an assembly using

Herman_970-5C03.fm Page 102 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 103

partial information (only the file name), the CLR won’t use the GAC or probing to resolve the assembly.
(See recipe 3-1 for more information.)

The ExecuteAssemblyByName method provides a similar set of overloads and takes the same argu-
ment types as ExecuteAssembly, but instead of just the file name of the executable assembly, it takes
the display name of the assembly. (See recipe 3-1 for more information about the structure of assembly
display names.) This overcomes the limitations inherent in ExecuteAssembly as a result of supplying
only partial names. Here is an example of using this method:

Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain")
domain.ExecuteAssemblyByName("Recipe03-03, Version=1.0.0.0, Culture=neutral, ➥
PublicKeyToken=null", Nothing, args)

The Code

The following code demonstrates how to use the ExecuteAssembly method to load and run an
assembly. The Recipe03_03 class creates an AppDomain and executes itself in that AppDomain using
the ExecuteAssembly method. This results in two copies of the Recipe03-03 assembly loaded into
two different application domains.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_03

 Public Shared Sub Main(ByVal args As String())

 ' For the purpose of this example, if this assembly is executing
 ' in an AppDomain with the friendly name NewAppDomain, do not
 ' create a new AppDomain. This avoids an infinite loop of
 ' AppDomain creation.
 If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
 ' Create a new application domain.
 Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain")

 ' Execute this assembly in the new application domain and
 ' pass the array of command-line arguments.
 domain.ExecuteAssembly("Recipe03-03.exe", Nothing, args)

 End If

 ' Display the command-line arguments to the screen prefixed with
 ' the friendly name of the AppDomain.
 For Each s As String In args
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName + " : " + s)
 Next

 ' Wait to continue.
 If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()
 End If

 End Sub

 End Class
End Namespace

Herman_970-5C03.fm Page 103 Monday, February 18, 2008 7:37 AM

104 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

Usage

If you run Recipe03-03 using the following command:

Recipe03-03 Testing AppDomains

you will see that the command-line arguments are listed from both the existing and new application
domains:

NewAppDomain : Testing
NewAppDomain : AppDomains
Recipe03-03.exe : Testing
Recipe03-03.exe : AppDomains

3-4. Avoid Loading Unnecessary Assemblies into
Application Domains

Problem

You need to pass an object reference across multiple application domain boundaries; however, to
conserve memory and avoid impacting performance, you want to ensure the CLR loads only the
object’s type metadata into the application domains where it is required (that is, where you will
actually use the object).

Solution

Wrap the object reference in a System.Runtime.Remoting.ObjectHandle, and unwrap the object
reference only when you need to access the object.

How It Works

When you pass a marshal-by-value (MBV) object across application domain boundaries, the runtime
creates a new instance of that object in the destination application domain. This means the runtime
must load the assembly containing that type metadata into the application domain. Passing MBV
references across intermediate application domains can result in the runtime loading unnecessary
assemblies into application domains. Once loaded, these superfluous assemblies cannot be unloaded
without unloading the containing application domain. (See recipe 3-9 for more information.)

The ObjectHandle class allows you to wrap an object reference so that you can pass it between
application domains without the runtime loading additional assemblies. When the object reaches
the destination application domain, you can unwrap the object reference, causing the runtime to
load the required assembly and allowing you to access the object.

The Code

The following code contains some simple methods that demonstrate how to wrap and unwrap a
System.Data.DataSet using an ObjectHandle:

Imports System
Imports System.Data
Imports System.Runtime.Remoting

Herman_970-5C03.fm Page 104 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 105

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_04

 ' A method to wrap a DataSet.
 Public Function WrapDataset(ByVal ds As DataSet) As ObjectHandle

 ' Wrap the DataSet.
 Dim objHandle As New ObjectHandle(ds)

 ' Return the wrapped DataSet.
 Return objHandle

 End Function

 ' A method to unwrap a DataSet.
 Public Function UnwrapDataset(ByVal handle As ObjectHandle) As DataSet

 ' Unwrap the DataSet.
 Dim ds As DataSet = CType(handle.Unwrap, DataSet)

 ' Return the DataSet.
 Return ds

 End Function

 End Class
End Namespace

3-5. Create a Type That Cannot Cross Application
Domain Boundaries

Problem

You need to create a type so that instances of the type are inaccessible to code in other application
domains.

Solution

Ensure the type is nonremotable by making sure it is not serializable (no Serializable attribute) and
it does not derive from the MarshalByRefObject class.

How It Works

On occasion, you will want to ensure that instances of a type cannot transcend application domain
boundaries. To create a nonremotable type, ensure that it isn’t serializable and that it doesn’t derive
(directly or indirectly) from the MarshalByRefObject class. If you take these steps, you ensure that an
object’s state can never be accessed from outside the application domain in which the object was
instantiated—such objects cannot be used as arguments or return values in cross-application
domain method calls.

Herman_970-5C03.fm Page 105 Monday, February 18, 2008 7:37 AM

106 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

Ensuring that a type isn’t serializable is easy because a class doesn’t inherit the ability to be
serialized from its parent class. To ensure that a type isn’t serializable, make sure it does not have
System.SerializableAttribute applied to the type declaration.

Ensuring that a class cannot be passed by reference requires a little more attention. Many classes in
the .NET class library derive directly or indirectly from MarshalByRefObject; you must be careful you
don’t inadvertently derive your class from one of these. Commonly used base classes that derive from
MarshalByRefObject include System.ComponentModel.Component, System.IO.Stream, System.IO.
TextReader, System.IO.TextWriter, System.NET.WebRequest, and System.Net.WebResponse. (Check the
.NET Framework SDK documentation on MarshalByRefObject. The inheritance hierarchy for the class
provides a complete list of classes that derive from it.)

3-6. Create a Type That Can Be Passed Across Application
Domain Boundaries

Problem

You need to pass objects across application domain boundaries as arguments or return values.

Solution

Use marshal-by-value (MBV) or marshal-by-reference (MBR) objects.

How It Works

The .NET Remoting system (discussed in Chapter 10) makes passing objects across application
domain boundaries straightforward. However, to those unfamiliar with .NET Remoting, the results
can be very different from those expected. In fact, the most confusing aspect of using multiple applica-
tion domains stems from the interaction with .NET Remoting and the way objects traverse application
domain boundaries.

All types fall into one of three categories: nonremotable, MBV, or MBR. Nonremotable types
cannot cross application domain boundaries and cannot be used as arguments or return values in
cross-application domain calls. (Recipe 3-5 discusses nonremotable types.)

MBV types are serializable types. When you pass an MBV object across an application domain
boundary as an argument or a return value, the .NET Remoting system serializes the object’s current
state, passes it to the destination application domain, and creates a new copy of the object with the
same state as the original. This results in a copy of the MBV object existing in both application domains.
The contents of the two instances are initially identical, but they are independent; changes made to
one instance are not reflected in the other instance. This often causes confusion as you try to update
the remote object but are actually updating the local copy. If you want to be able to call and change
an object from a remote application domain, the object needs to be an MBR type.

MBR types are those classes that derive from System.MarshalByRefObject. When you pass an
MBR object across an application domain boundary as an argument or a return value, in the desti-
nation application domain the .NET Remoting system creates a proxy that represents the remote
MBR object. To any class in the destination application domain, the proxy looks and behaves like the
remote MBR object that it represents. In reality, when a call is made against the proxy, the .NET
Remoting system transparently passes the call and its arguments to the remote application domain
and issues the call against the original object. Any results are passed back to the caller via the proxy.
Figure 3-1 illustrates the relationship between an MBR object and the objects that access it across
application domains via a proxy.

Herman_970-5C03.fm Page 106 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 107

Figure 3-1. An MBR object is accessed across application domains via a proxy.

The Code

The following example highlights (in bold) the fundamental difference between creating classes that
are passed by value (Recipe03_06MBV) and those passed by reference (Recipe03_06MBR). The code
creates a new application domain and instantiates two remotable objects in it (discussed further in
recipe 3-7). However, because the Recipe03_06MBV object is an MBV object, when it is created in the
new application domain, it is serialized, passed across the application domain boundary, and dese-
rialized as a new independent object in the caller’s application domain. Therefore, when the code
retrieves the name of the application domain hosting each object, Recipe03_06MBV returns the name
of the main application domain, and Recipe03_06MBR returns the name of the new application domain in
which it was created.

■Note This sample uses the CreateInstanceFromAndUnwrap method of the AppDomain class to create the
instances of Recipe03_06MBV and Recipe03_06MBR in the new application domain. This method is covered in
more detail in recipe 3-7.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 ' Declare a class that is passed by value.
 <Serializable()> _
 Public Class Recipe03_06MBV

Herman_970-5C03.fm Page 107 Monday, February 18, 2008 7:37 AM

108 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 Public ReadOnly Property HomeAppDomain() As String
 Get
 Return AppDomain.CurrentDomain.FriendlyName
 End Get
 End Property

 End Class

 ' Declare a class that is passed by reference.
 Public Class Recipe03_06MBR
 Inherits MarshalByRefObject

 Public ReadOnly Property HomeAppDomain() As String
 Get
 Return AppDomain.CurrentDomain.FriendlyName
 End Get
 End Property

 End Class

 Public Class Recipe03_06
 Public Shared Sub Main(ByVal args As String())

 ' Create a new application domain.
 Dim newDomain As AppDomain = AppDomain.CreateDomain("My ➥
New AppDomain")

 ' Instantiate an MBV object in the new application domain.
 Dim mbvObject As Recipe03_06MBV = ➥
CType(newDomain.CreateInstanceFromAndUnwrap("Recipe03-06.exe", ➥
"Apress.VisualBasicRecipes.Chapter03.Recipe03_06MBV"), Recipe03_06MBV)

 ' Instantiate an MBR object in the new application domain.
 Dim mbrObject As Recipe03_06MBR = ➥
CType(newDomain.CreateInstanceFromAndUnwrap("Recipe03-06.exe", ➥
"Apress.VisualBasicRecipes.Chapter03.Recipe03_06MBR"), Recipe03_06MBR)

 ' Display the name of the application domain in which each of
 ' the objects is located.
 Console.WriteLine("Main AppDomain = {0}", ➥
AppDomain.CurrentDomain.FriendlyName)
 Console.WriteLine("AppDomain of MBV object = {0}", ➥
mbvObject.HomeAppDomain)
 Console.WriteLine("AppDomain of MBR object = {0}", ➥
mbrObject.HomeAppDomain)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C03.fm Page 108 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 109

3-7. Instantiate a Type in a Different Application Domain

Problem

You need to instantiate a type in an application domain other than the current one.

Solution

Call the CreateInstance method or the CreateInstanceFrom method of the AppDomain object that
represents the target application domain.

How It Works

The ExecuteAssembly method discussed in recipe 3-3 is straightforward to use, but when you are
developing sophisticated applications that use application domains, you are likely to want more
control over loading assemblies, instantiating types, and invoking object members within the appli-
cation domain.

The CreateInstance and CreateInstanceFrom methods provide a variety of overloads that offer
fine-grained control over the process of object instantiation. The simplest overloads assume the use
of a type’s default constructor, but both methods implement overloads that allow you to provide
arguments to use any constructor.

The CreateInstance method loads a named assembly into the application domain using the process
described for the Assembly.Load method in recipe 3-1. CreateInstance then instantiates a named type
and returns a reference to the new object wrapped in an ObjectHandle (described in recipe 3-4). The
CreateInstanceFrom method also instantiates a named type and returns an ObjectHandle-wrapped
object reference; however, CreateInstanceFrom loads the specified assembly file into the application
domain using the process described in recipe 3-1 for the Assembly.LoadFrom method.

AppDomain also provides two convenience methods named CreateInstanceAndUnwrap and
CreateInstanceFromAndUnwrap that automatically extract the reference of the instantiated object
from the returned ObjectHandle object; you must cast the returned Object to the correct type.

■Caution Be aware that if you use CreateInstance or CreateInstanceFrom to instantiate MBV types in
another application domain, the object will be created, but the returned Object reference won’t refer to that object.
Because of the way MBV objects cross application domain boundaries, the reference will refer to a copy of the object
created automatically in the local application domain. Only if you create an MBR type will the returned reference
refer to the object in the other application domain. (See recipe 3-6 for more details about MBV and MBR types.)

A common technique to simplify the management of application domains is to use a controller
class. A controller class is a custom MBR type. You create an application domain and then instantiate
your controller class in the application domain using CreateInstance. The controller class imple-
ments the functionality required by your application to manipulate the application domain and its
contents. This could include loading assemblies, creating further application domains, cleaning up
prior to deleting the application domain, or enumerating program elements (something you cannot
normally do from outside an application domain). It is best to create your controller class in an assembly
of its own to avoid loading unnecessary classes into each application domain. You should also be
careful about which types you pass as return values from your controller to your main application
domain to avoid loading additional assemblies.

Herman_970-5C03.fm Page 109 Monday, February 18, 2008 7:37 AM

110 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

The Code

The following code demonstrates how to use a simplified controller class named PluginManager.
When instantiated in an application domain, PluginManager allows you to instantiate classes that
implement the IPlugin interface, start and stop those plug-ins, and return a list of currently loaded
plug-ins.

Imports System
Imports System.Reflection
Imports System.Collections
Imports System.Collections.Generic
Imports System.Collections.Specialized

Namespace Apress.VisualBasicRecipes.Chapter03

 ' A common interface that all plug-ins must implement.
 Public Interface IPlugin

 Sub Start()
 Sub [Stop]()

 End Interface

 ' A simple IPlugin implementation to demonstrate the PluginManager
 ' controller class.
 Public Class SimplePlugin
 Implements IPlugin

 Public Sub Start() Implements IPlugin.Start
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName & ➥
": SimplePlugin starting...")
 End Sub

 Public Sub [Stop]() Implements IPlugin.Stop
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName & ➥
": SimplePlugin stopping...")
 End Sub

 End Class

 ' The controller class, which manages the loading and manipulation
 ' of plug-ins in its application domain.
 Public Class PluginManager
 Inherits MarshalByRefObject

 ' A Dictionary to hold keyed references to IPlugin instances.
 Private plugins As New Dictionary(Of String, IPlugin)

 ' Default constructor.
 Public Sub New()

 End Sub

Herman_970-5C03.fm Page 110 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 111

 ' Constructor that loads a set of specified plug-ins on creation.
 Public Sub New(ByVal pluginList As NameValueCollection)

 ' Load each of the specified plug-ins.
 For Each plugin As String In pluginList.Keys
 Me.LoadPlugin(pluginList(plugin), plugin)
 Next

 End Sub

 ' Load the specified assembly and instantiate the specified
 ' IPlugin implementation from that assembly.
 Public Function LoadPlugin(ByVal assemblyName As String, ➥
ByVal pluginName As String)

 Try
 ' Load the named private assembly.
 Dim assembly As Assembly = Reflection.Assembly.Load(assemblyName)

 ' Create the IPlugin instance, ignore case.
 Dim plugin As IPlugin = DirectCast(assembly.CreateInstance ➥
(pluginName, True), IPlugin)

 If Not plugin Is Nothing Then
 ' Add new IPlugin to ListDictionary
 plugins(pluginName) = plugin

 Return True
 Else
 Return False
 End If
 Catch
 ' Return false on all exceptions for the purpose of
 ' this example. Do not suppress exceptions like this
 ' in production code.
 Return False
 End Try

 End Function

 Public Sub StartPlugin(ByVal plugin As String)

 Try
 ' Extract the IPlugin from the Dictionary and call Start.
 plugins(plugin).Start()
 Catch
 ' Log or handle exceptions appropriately.
 End Try

 End Sub

 Public Sub StopPlugin(ByVal plugin As String)

Herman_970-5C03.fm Page 111 Monday, February 18, 2008 7:37 AM

112 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 Try
 ' Extract the IPlugin from the Dictionary and call Stop.
 plugins(plugin).Stop()
 Catch
 ' Log or handle exceptions appropriately.
 End Try

 End Sub

 Public Function GetPluginList() As ArrayList

 ' Return an enumerable list of plug-in names. Take the keys
 ' and place them in an ArrayList, which supports marshal-by-value.
 Return New ArrayList(plugins.Keys)

 End Function

 End Class

 Public Class Recipe03_07

 Public Shared Sub Main(ByVal args As String())

 ' Create a new application domain.
 Dim domain1 As AppDomain = AppDomain.CreateDomain("NewAppDomain1")

 ' Create a PluginManager in the new application domain using
 ' the default constructor.
 Dim manager1 As PluginManager = CType(domain1.CreateInstanceAndUnwrap ➥
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager"), PluginManager)

 ' Load a new plug-in into NewAppDomain1
 manager1.LoadPlugin("Recipe03-07", "Apress.VisualBasicRecipes." & ➥
 "Chapter03.SimplePlugin")

 ' Start and stop the plug-in NewAppDomain1.
 manager1.StartPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin")
 manager1.StopPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin")

 ' Create a new application domain.
 Dim domain2 As AppDomain = AppDomain.CreateDomain("NewAppDomain2")

 ' Create a ListDictionary containing a list of plug-ins to create.
 Dim pluginList As New NameValueCollection()
 pluginList("Apress.VisualBasicRecipes.Chapter03.SimplePlugin") = ➥
"Recipe03-07"

 ' Create a PluginManager in the new application domain and
 ' specify the default list of plug-ins to create.
 Dim manager2 As PluginManager = CType(domain1.CreateInstanceAndUnwrap ➥
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager", True, 0, ➥
Nothing, New Object() {pluginList}, Nothing, Nothing, Nothing), PluginManager)

Herman_970-5C03.fm Page 112 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 113

 ' Display the list of plug-ins loaded into NewAppDomain2.
 Console.WriteLine("{0}Plugins in NewAppDomain2:", vbCrLf)

 For Each s As String In manager2.GetPluginList()
 Console.WriteLine(" - " & s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you run Recipe03-07, you should see the following:

NewAppDomain1: SimplePlugin starting...
NewAppDomain1: SimplePlugin stopping...

Plugins in NewAppDomain2:
 - Apress.VisualBasicRecipes.Chapter03.SimplePlugin

3-8. Pass Data Between Application Domains

Problem

You need a simple mechanism to pass general configuration or state data between application domains.

Solution

Use the SetData and GetData methods of the AppDomain class.

How It Works

You can pass data between application domains as arguments and return values when you invoke
the methods and properties of objects that exist in other application domains. However, at times it
is useful to pass data between application domains in such a way that the data is easily accessible by
all code within the application domain.

Every application domain maintains a data cache that contains a set of name-value pairs. Most
of the cache content reflects configuration settings of the application domain, such as the values from the
AppDomainSetup object provided during application domain creation. (See recipe 3-2 for more informa-
tion.) You can also use this data cache as a mechanism to exchange data between application domains
or as a simple state storage mechanism for code running within the application domain.

The SetData method allows you to associate a string key with an object and store it in the appli-
cation domain’s data cache. The GetData method allows you to retrieve an object from the data cache
using the key. If code in one application domain calls the SetData method or the GetData method to
access the data cache of another application domain, the data object must support MBV or MBR

Herman_970-5C03.fm Page 113 Monday, February 18, 2008 7:37 AM

114 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

semantics, or a System.Runtime.Serialization.SerializationException is thrown. (See recipe 3-6
for details on the characteristics required to allow objects to transcend application domain boundaries.)

When using the SetData or GetData methods to exchange data between application domains,
you should avoid using the following keys, which are already used by the .NET Framework (refer to
http://msdn2.microsoft.com/en-us/library/system.appdomain.getdata.aspx for more information):

• APP_CONFIG_FILE

• APP_NAME

• APPBASE

• APP_LAUNCH_URL

• LOADER_OPTIMIZATION

• BINPATH_PROBE_ONLY

• CACHE_BASE

• DEV_PATH

• DYNAMIC_BASE

• FORCE_CACHE_INSTALL

• LICENSE_FILE

• PRIVATE_BINPATH

• SHADOW_COPY_DIRS

The Code

The following example demonstrates how to use the SetData and GetData methods by passing a
System.Collections.ArrayList between two application domains. After passing a list of pets to a
second application domain for modification, the application displays the list. You will notice that the
code running in the second application domain does not modify the original list because ArrayList is an
MBV type, meaning that the second application domain has only a copy of the original list. (See
recipe 3-6 for more details.)

Imports System
Imports System.Reflection
Imports System.collections

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class ListModifier

 Public Sub New()

 ' Get the list from the data cache.
 Dim list As ArrayList = CType(AppDomain.CurrentDomain.GetData("Pets"), ➥
ArrayList)

 ' Modify the list.
 list.Add("Turtle")

 End Sub

 End Class

Herman_970-5C03.fm Page 114 Monday, February 18, 2008 7:37 AM

http://msdn2.microsoft.com/en-us/library/system.appdomain.getdata.aspx

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 115

 Public Class Recipe03_08

 Public Shared Sub Main()

 ' Create a new application domain.
 Dim domain As AppDomain = AppDomain.CreateDomain("Test")

 ' Create an ArrayList and populate with information.
 Dim list As New ArrayList
 list.Add("Dog")
 list.Add("Cat")
 list.Add("Fish")

 ' Place the list in the data cache of the new application domain.
 domain.SetData("Pets", list)

 ' Instantiate a ListModifier in the new application domain.
 domain.CreateInstance("Recipe03-08", "Apress.VisualBasicRecipes." & ➥
"Chapter03.ListModifier")

 ' Get the list and display its contents.
 Console.WriteLine("The list in the 'Test' application domain:")
 For Each s As String In CType(domain.GetData("Pets"), ArrayList)
 Console.WriteLine(s)
 Next
 Console.WriteLine(Environment.NewLine)

 ' Display the original list to show that it has not changed.
 Console.WriteLine("The list in the standard application domain:")
 For Each s As String In list
 Console.WriteLine(s)
 Next
 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

3-9. Unload Assemblies and Application Domains

Problem

You need to unload assemblies or application domains at runtime.

Solution

You have no way to unload individual assemblies from a System.AppDomain. You can unload an
entire application domain using the Shared AppDomain.Unload method, which has the effect of
unloading all assemblies loaded into the application domain.

Herman_970-5C03.fm Page 115 Monday, February 18, 2008 7:37 AM

116 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

How It Works

The only way to unload an assembly is to unload the application domain in which the assembly is
loaded. Unfortunately, unloading an application domain will unload all the assemblies that have
been loaded into it. This might seem like a heavy-handed and inflexible approach, but with appropriate
planning of your application domain, the assembly-loading structure, and the runtime dependency of
your code on that application domain, it is not overly restrictive.

You unload an application domain using the Shared AppDomain.Unload method and passing it an
AppDomain reference to the application domain you want to unload. You cannot unload the default
application domain created by the CLR at startup.

The Unload method stops any new threads from entering the specified application domain and
calls the Thread.Abort method on all threads currently active in the application domain. If the thread
calling the Unload method is currently running in the specified application domain (making it the
target of a Thread.Abort call), a new thread starts in order to carry out the unload operation. If a
problem is encountered unloading an application domain, the thread performing the unload oper-
ation throws a System.CannotUnloadAppDomainException. Attempting to access the application domain
after it has been unloaded will throw a System.AppDomainUnloadedException.

While an application domain is unloading, the CLR calls the finalization method of all objects
in the application domain. Depending on the number of objects and nature of their finalization
methods, this can take an arbitrary amount of time. The AppDomain.IsFinalizingForUnload method
returns True if the application domain is unloading and the CLR has started to finalize contained
objects; otherwise, it returns False.

The Code

This code fragment demonstrates the syntax of the Unload method:

' Create a new application domain.
Dim newDomain As AppDomain = AppDomain.CreateDomain("New Domain")

' Load assemblies into the application domain.
...

' Unload the new application domains.
AppDomain.Unload(newDomain)

3-10. Retrieve Type Information

Problem

You need to obtain a System.Type object that represents a specific type.

Solution

Use one of the following:

• The GetType operator

• The Shared GetType method of the System.Type class

• The Object.GetType method of an existing instance of the type

• The GetNestedType or GetNestedTypes method of the Type class

• The GetType or GetTypes method of the Assembly class

• The GetType, GetTypes, or FindTypes method of the System.Reflection.Module class

Herman_970-5C03.fm Page 116 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 117

How It Works

The Type class provides a starting point for working with types using reflection. A Type object allows
you to inspect the metadata of the type, obtain details of the type’s members, and create instances
of the type. Because of the type’s importance, the .NET Framework provides a variety of mechanisms for
obtaining references to Type objects.

One method of obtaining a Type object for a specific type is to use the GetType operator shown here:

Dim T1 As System.Type = GetType(System.Text.StringBuilder)

The type name is not enclosed in quotes and must be resolvable by the compiler (meaning
you must reference the assembly). Because the reference is resolved at compile time, the assembly
containing the type becomes a static dependency of your assembly and will be listed as such in
your assembly’s manifest.

Another method that returns a Type object is Object.GetType. This method returns the type of
the object that calls it. The following is an example of its usage:

Dim myStringBuilder As New System.Text.StringBuilder
Dim myType As System.Type = myStringBuilder.GetType()

You can also use the Shared method Type.GetType, which takes a string containing the type name.
Because you use a string to specify the type, you can vary it at runtime, which opens the door to a world
of dynamic programming opportunities using reflection (see recipe 3-12). If you specify just the type
name, the runtime must be able to locate the type in an already loaded assembly. Alternatively, you can
specify an assembly-qualified type name. Refer to the .NET Framework SDK documentation for the
Type.GetType method for a complete description of how to structure assembly-qualified type names.
Table 3-2 summarizes some other methods that provide access to Type objects.

The Code

The following example demonstrates how to use the GetType operator and the Type.GetType method
to return a Type object for a named type and from existing objects:

Table 3-2. Methods That Return Type Objects

Method Description

Type.GetNestedType Gets a specified type declared as a nested type (a type that is a
member of another type) within the existing Type object.

Type.GetNestedTypes Gets an array of Type objects representing the nested types declared
within the existing Type object.

Assembly.GetType Gets a Type object for the specified type declared within the assembly.

Assembly.GetTypes Gets an array of Type objects representing the types declared within
the assembly.

Module.GetType Gets a Type object for the specified type declared within the module.
(See recipe 1-3 for a discussion of modules.)

Module.GetTypes Gets an array of Type objects representing the types declared within
the module. (See recipe 1-3 for a discussion of modules.)

Module.FindTypes Gets a filtered array of Type objects representing the types declared
within the module. The types are filtered using a delegate that
determines whether each Type should appear in the final array.
(See recipe 1-3 for a discussion of modules.)

Herman_970-5C03.fm Page 117 Monday, February 18, 2008 7:37 AM

118 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_10

 Public Shared Sub Main()

 ' Obtain type information using the GetType operator.
 Dim t1 As Type = GetType(StringBuilder)

 ' Obtain type information using the Type.GetType method.
 ' Case-sensitive, return Nothing if not found.
 Dim t2 As Type = Type.GetType("System.String")

 ' Case-sensitive, throw TypeLoadException if not found.
 Dim t3 As Type = Type.GetType("System.String", True)

 ' Case-insensitive, throw TypeLoadException if not found.
 Dim t4 As Type = Type.GetType("system.string", True, True)

 ' Assembly-qualified type name.
 Dim t5 As Type = Type.GetType("System.Data.DataSet,System.Data," & ➥
"Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089")

 ' Obtain type information using the Object.GetType method.
 Dim sb As New StringBuilder
 Dim t6 As Type = sb.GetType()

 ' Display the types.
 Console.WriteLine("Type of T1: {0}", t1.ToString)
 Console.WriteLine("Type of T2: {0}", t2.ToString)
 Console.WriteLine("Type of T3: {0}", t3.ToString)
 Console.WriteLine("Type of T4: {0}", t4.ToString)
 Console.WriteLine("Type of T5: {0}", t5.ToString)
 Console.WriteLine("Type of T6: {0}", t6.ToString)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C03.fm Page 118 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 119

3-11. Test an Object’s Type

Problem

You need to test the type of an object.

Solution

Use the inherited Object.GetType method to obtain a Type for the object. You can also use the TypeOf
and Is operators to test an object’s type.

How It Works

All types inherit the GetType method from the Object base class. As discussed in recipe 3-10, this
method returns a Type reference representing the type of the object. The runtime maintains a single
instance of Type for each type loaded, and all references for this type refer to this same object. This
means you can compare two type references efficiently. For convenience, VB .NET provides the Is
operator as a quick way to check whether an object is a specified type. In addition, Is will return True
if the tested object is derived from the specified class. .NET Framework 2.0 includes the new IsNot
operator for VB .NET. This operator is used to determine whether an object is not a specified type.
Furthermore, the Type.IsSubclassOf method can be used to determine whether an object derives
from the specified type.

When using the TypeOf, Is, and IsNot operators and the IsSubClassOf method, the specified
type must be known and resolvable at compile time. A more flexible (but slower) alternative is to use
the Type.GetType method to return a Type reference for a named type. The Type reference is not
resolved until runtime, which causes a performance hit but allows you to change the type compar-
ison at runtime based on the value of a string.

Finally, you can use the TryCast keyword to perform a safe cast of any object to a specified type.
Unlike a standard cast that triggers a System.InvalidCastException if the object cannot be cast to the
specified type, TryCast returns Nothing. This allows you to perform safe casts that are easy to verify,
but the compared type must be resolvable at runtime.

■Tip The Shared method GetUnderlyingType of the System.Enum class allows you to retrieve the under-
lying type of an enumeration.

The Code

The following example demonstrates the various type-testing alternatives described in this recipe:

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_11

 ' A method to test whether an object is an instance of a type.
 Public Shared Function IsType(ByVal obj As Object, ByVal myType ➥
As String) As Boolean

Herman_970-5C03.fm Page 119 Monday, February 18, 2008 7:37 AM

120 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Get the named type, use case-insensitive search, throw
 ' an exception if the type is not found.
 Dim t As Type = Type.GetType(myType, True, True)

 If t Is obj.GetType() Then
 Return True
 ElseIf obj.GetType.IsSubclassOf(t) Then
 Return True
 Else
 Return False
 End If

 End Function

 Public Shared Sub Main()

 ' Create a new StringReader for testing.
 Dim someObject As Object = New StringReader("This is a StringReader")

 ' Test whether someObject is a StringReader by obtaining and
 ' comparing a Type reference using the TypeOf operator.
 If someObject.GetType Is GetType(StringReader) Then
 Console.WriteLine("GetType Is: someObject is a StringReader")
 End If

 ' Test whether someObject is, or is derived from, a TextReader
 ' using the Is operator.
 If TypeOf someObject Is TextReader Then
 Console.WriteLine("TypeOf Is: someObject is a TextReader or " & ➥
"a derived class")
 End If

 ' Test whether someObject is, or is derived from, a TextReader using
 ' the Type.GetType and Type.IsSubClassOf methods.
 If IsType(someObject, "System.IO.TextReader") Then
 Console.WriteLine("GetType: someObject is, or is derived " & ➥
"from, a TextReader")
 End If

 ' Use the TryCast keyword to perform a safe cast.
 Dim reader As StringReader = TryCast(someObject, StringReader)

 If Not reader Is Nothing Then
 Console.WriteLine("TryCast: someObject is a StringReader")
 End If

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C03.fm Page 120 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 121

3-12. Instantiate an Object Using Reflection

Problem

You need to instantiate an object at runtime using reflection.

Solution

Obtain a Type object representing the type of object you want to instantiate, call its GetConstructor
method to obtain a System.Reflection.ConstructorInfo object representing the constructor you
want to use, and execute the ConstructorInfo.Invoke method.

How It Works

The first step in creating an object using reflection is to obtain a Type object that represents the
type you want to instantiate. (See recipe 3-10 for details.) Once you have a Type instance, call its
GetConstructor method to obtain a ConstructorInfo representing one of the type’s constructors.
The most commonly used overload of the GetConstructor method takes a Type array argument and
returns a ConstructorInfo representing the constructor that takes the number, order, and type of
arguments specified in the Type array. To obtain a ConstructorInfo representing a parameterless
(default) constructor, pass an empty Type array (use the Shared field Type.EmptyTypes or New Type(0));
don’t use Nothing, or GetConstructor will throw a System.ArgumentNullException. If GetConstructor
cannot find a constructor with a signature that matches the specified arguments, it will return Nothing.

Once you have the desired ConstructorInfo, call its Invoke method. You must provide an Object
array containing the arguments you want to pass to the constructor. If there are no arguments, pass
Nothing. Invoke instantiates the new object and returns an Object reference to it, which you must
cast to the appropriate type.

Reflection functionality is commonly used to implement factories in which you use reflection to
instantiate concrete classes that either extend a common base class or implement a common inter-
face. Often both an interface and a common base class are used. The abstract base class implements
the interface and any common functionality, and then each concrete implementation extends the
base class.

No mechanism exists to formally declare that each concrete class must implement constructors
with specific signatures. If you intend third parties to implement concrete classes, your documenta-
tion must specify the constructor signature called by your factory. A common approach to avoid this
problem is to use a default (empty) constructor and configure the object after instantiation using
properties and methods.

The Code The following code fragment demonstrates how to instantiate a System.Text.StringBuilder
object using reflection and how to specify the initial content for the StringBuilder (a String) and its
capacity (an Integer):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_12

 Public Shared Function CreateStringBuilder() As StringBuilder

Herman_970-5C03.fm Page 121 Monday, February 18, 2008 7:37 AM

122 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Obtain the Type for the StringBuilder class.
 Dim type As Type = GetType(StringBuilder)

 ' Create a Type() containing Type instances for each
 ' of the constructor arguments – a String and an Integer.
 Dim argTypes As Type() = New Type() {GetType(System.String), ➥
GetType(System.Int32)}

 ' Obtain the ConstructorInfo object.
 Dim cInfo As ConstructorInfo = type.GetConstructor(argTypes)

 ' Create an Object() containing the constructor arguments.
 Dim argVals As Object() = New Object() {"Some string", 30}

 ' Create the object and cast it to a StringBuilder.
 Dim sb As StringBuilder = CType(cInfo.Invoke(argVals), StringBuilder)

 Return sb

 End Function

 End Class
End Namespace

The following code demonstrates a factory to instantiate objects that implement the IPlugin
interface (used in recipe 3-7):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chapter03

 ' A common interface that all plug-ins must implement.
 Public Interface IPlugin

 Property Description() As String
 Sub Start()
 Sub [Stop]()

 End Interface

 ' An abstract base class from which all plug-ins must derive.
 Public MustInherit Class AbstractPlugIn
 Implements IPlugin

 ' Hold a description for the plug-in instance.
 Private m_description As String = ""

 ' Property to get the plug-in description.
 Public Property Description() As String Implements IPlugin.Description
 Get
 Return m_description
 End Get

Herman_970-5C03.fm Page 122 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 123

 Set(ByVal value As String)
 m_description = value
 End Set
 End Property

 ' Declare the members of the IPlugin interface as abstract.
 Public MustOverride Sub Start() Implements IPlugin.Start
 Public MustOverride Sub [Stop]() Implements IPlugin.Stop

 End Class

 ' A simple IPlugin implementation to demonstrate the PluginFactory class.
 Public Class SimplePlugin
 Inherits AbstractPlugIn

 ' Implement Start method.
 Public Overrides Sub Start()
 Console.WriteLine(Description & ": Starting...")
 End Sub
 ' Implement Stop method.
 Public Overrides Sub [Stop]()
 Console.WriteLine(Description & ": Stopping...")
 End Sub

 End Class

 ' A factory to instantiate instances of IPlugin.
 NotInheritable Class PluginFactory

 Public Shared Function CreatePlugin(ByVal assembly As String, ➥
ByVal pluginName As String, ByVal description As String) As IPlugin
 Console.WriteLine("Attempting to load plug-in")

 ' Obtain the Type for the specified plug-in.
 Dim pluginType As Type = Type.GetType(pluginName & ", " & assembly)

 ' Obtain the ConstructorInfo object.
 Dim cInfo As ConstructorInfo = pluginType.GetConstructor ➥
(Type.EmptyTypes)

 ' Create the object and cast it to IPlugin.
 Dim plugin As IPlugin = TryCast(cInfo.Invoke(Nothing), IPlugin)

 ' Configure the new IPlugin.
 plugin.Description = description

 Console.WriteLine("Plugin '{0}' [{1}] succesfully loaded.", ➥
assembly, plugin.Description)
 Console.WriteLine(Environment.NewLine)

 Return plugin

 End Function

Herman_970-5C03.fm Page 123 Monday, February 18, 2008 7:37 AM

124 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 Public Shared Sub Main(ByVal args As String())

 ' Instantiate a new IPlugin using the PluginFactory.
 Dim plugin As IPlugin = PluginFactory.CreatePlugin("Recipe03-12", ➥
"Apress.VisualBasicRecipes.Chapter03.SimplePlugin", "A Simple Plugin")

 plugin.Start()
 plugin.Stop()

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

3-13. Create a Custom Attribute

Problem

You need to create a custom attribute.

Solution

Create a class that derives from the abstract (MustInherit) base class System.Attribute. Implement
constructors, fields, and properties to allow users to configure the attribute. Apply the System.
AttributeUsageAttribute attribute to your class to define the following:

• Which program elements are valid targets of the attribute

• Whether you can apply more than one instance of the attribute to a program element

• Whether the attribute is inherited by derived types

How It Works

Attributes provide a mechanism for associating declarative information (metadata) with program
elements. This metadata is contained in the compiled assembly, allowing programs to retrieve it
through reflection at runtime without creating an instance of the type. (See recipe 3-14 for more
details.) Other programs, particularly the CLR, use this information to determine how to interact
with and manage program elements.

To create a custom attribute, derive a class from the abstract (MustInherit) base class
System.Attribute. Custom attribute classes by convention should have a name ending in Attribute
(but this is not essential).

A custom attribute must have at least one Public constructor; the automatically generated
default constructor is sufficient. The constructor parameters become the attribute’s mandatory (or
positional) parameters. When you use the attribute, you must provide values for these parameters in
the order they appear in the constructor. As with any other class, you can declare more than one
constructor, giving users of the attribute the option of using different sets of positional parameters
when applying the attribute. Any Public nonconstant writable fields and properties declared by an
attribute are automatically exposed as named parameters. Named parameters are optional and

Herman_970-5C03.fm Page 124 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 125

are specified in the format of name-value pairs where the name is the property or field name. The
following example will clarify how to specify positional and named parameters.

To control how and where a user can apply your attribute, apply the attribute
AttributeUsageAttribute to your custom attribute class. AttributeUsageAttribute supports the one
positional and two named parameters described in Table 3-3. The default values specify the value
that is applied to your custom attribute if you do not apply AttributeUsageAttribute or do not
specify a value for that particular parameter.

The Code

The following example shows a custom attribute named AuthorAttribute, which you can use to
identify the name and company of the person who created an assembly or a class. AuthorAttribute
declares a single Public constructor that takes a String containing the author’s name. This means
users of AuthorAttribute must always provide a positional String parameter containing the author’s
name. The Company property is Public, making it an optional named parameter, but the Name prop-
erty is read-only—no Set accessor is declared—meaning that it isn’t exposed as a named parameter.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 <AttributeUsage(AttributeTargets.Class Or AttributeTargets.Assembly, ➥
AllowMultiple:=True, Inherited:=True)> _
 Public Class AuthorAttribute
 Inherits System.Attribute

 Private m_Company As String ' Author's company
 Private m_Name As String ' Author's name

 ' Declare a public constructor.
 Public Sub New(ByVal name As String)
 m_Name = name
 m_Company = ""
 End Sub

Table 3-3. Members of the AttributeUsage Type

Parameter Type Description Default

ValidOn Positional
(required)

A member of the
System.AttributeTargets
enumeration that identifies
the program elements on
which the attribute is valid

None; you should set it
to AttributeTargets.All

AllowMultiple Named
(optional)

Whether the attribute can be
specified more than once for
a single element

False

Inherited Named
(optional)

Whether the attribute is
inherited by derived classes
or overridden members

True

Herman_970-5C03.fm Page 125 Monday, February 18, 2008 7:37 AM

126 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Declare a property to get/set the company field.
 Public Property Company() As String
 Get
 Return m_Company
 End Get

 Set(ByVal value As String)
 m_Company = value
 End Set
 End Property

 ' Declare a property to get the internal field.
 Public ReadOnly Property Name() As String
 Get
 Return m_Name
 End Get
 End Property

 End Class
End Namespace

Usage

The following example demonstrates how to decorate types with AuthorAttribute:

Imports system

' Declare Todd as the assembly author. Assembly attributes
' must be declared after using statements but before any other.
' Author name is a positional parameter.
' Company name is a named parameter.
<Assembly: Apress.VisualBasicRecipes.Chapter03.Author("Todd", Company:="The" & ➥
"Code Architects")>
Namespace Apress.VisualBasicRecipes.Chapter03

 ' Declare a class authored by Todd.
 <Author("Todd", Company:="The Code Architects")> _
 Public Class SomeClass
 ' Class implementation.
 End Class

 ' Declare a class authored by Aidan. Since the Company
 ' property is optional, we will leave it out for this test.
 <Author("Aidan")> _
 Public Class SomeOtherClass
 ' Class implementation.
 End Class
End Namespace

Herman_970-5C03.fm Page 126 Monday, February 18, 2008 7:37 AM

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 127

3-14. Inspect the Attributes of a Program Element
Using Reflection

Problem

You need to use reflection to inspect the custom attributes applied to a program element.

Solution

All program elements, such as classes and subroutines, implement the System.Reflection.
ICustomAttributeProvider interface. Call the IsDefined method of the ICustomAttributeProvider
interface to determine whether an attribute is applied to a program element, or call the
GetCustomAttributes method of the ICustomAttributeProvider interface to obtain objects repre-
senting the attributes applied to the program element.

How It Works

All the classes that represent program elements implement the ICustomAttributeProvider interface.
This includes Assembly, Module, Type, EventInfo, FieldInfo, PropertyInfo, and MethodBase. MethodBase
has two further subclasses: ConstructorInfo and MethodInfo. If you obtain instances of any of these
classes, you can call the method GetCustomAttributes, which will return an Object array containing
the custom attributes applied to the program element. The Object array contains only custom
attributes, not those contained in the .NET Framework base class library.

The GetCustomAttributes method provides two overloads. The first takes a Boolean that controls
whether GetCustomAttributes should return attributes inherited from parent classes. The second
GetCustomAttributes overload takes an additional Type argument that acts as a filter, resulting in
GetCustomAttributes returning only attributes of the specified type or those that derive from it.

Alternatively, you can call the IsDefined method. IsDefined provides a method that takes two
arguments. The first argument is a Type object representing the type of attribute you are interested
in, and the second is a Boolean that indicates whether IsDefined should look for inherited attributes
of the specified type. IsDefined returns a Boolean indicating whether the specified attribute is applied to
the program element and is less expensive than calling the GetCustomAttributes method, which
actually instantiates the attribute objects.

The Code

The following example uses the custom AuthorAttribute declared in recipe 3-13 and applies it to the
Recipe03_14 class. The Main method calls the GetCustomAttributes method, filtering the attributes so
that the method returns only AuthorAttribute instances. You can safely cast this set of attributes to
AuthorAttribute references and access their members without needing to use reflection.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 <Author("Aidan"), Author("Todd", Company:="The Code Architects")> _
 Public Class Recipe03_14

 Public Shared Sub Main()

 ' Get a Type object for this class.
 Dim myType As Type = GetType(Recipe03_14)

Herman_970-5C03.fm Page 127 Monday, February 18, 2008 7:37 AM

128 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Get the attributes for the type. Apply a filter so that only
 ' instances of AuthorAttributes are returned.
 Dim attrs As Object() = myType.GetCustomAttributes ➥
(GetType(AuthorAttribute), True)

 ' Enumerate the attributes and display their details.
 For Each a As AuthorAttribute In attrs
 Console.WriteLine(a.Name & ", " & a.Company)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C03.fm Page 128 Monday, February 18, 2008 7:37 AM

129

■ ■ ■

C H A P T E R 4

Threads, Processes,
and Synchronization

One of the strengths of the Microsoft Windows operating system is that it allows many programs
(processes) to run concurrently and allows each process to perform many tasks concurrently (using
multiple threads). When you run an executable application, a new process is created. The process
isolates your application from other programs running on the computer. The process provides the
application with its own virtual memory and its own copies of any libraries it needs to run, allowing
your application to execute as if it were the only application running on the machine.

Along with the process, an initial thread is created that runs your Main method. In single-threaded
applications, this one thread steps through your code and sequentially performs each instruction.
If an operation takes time to complete, such as reading a file from the Internet or doing a complex
calculation, the application will be unresponsive (will block) until the operation is finished, at which
point the thread will continue with the next operation in your program.

To avoid blocking, the main thread can create additional threads and specify which code each
should start running. As a result, many threads may be running in your application’s process, each
running (potentially) different code and performing different operations seemingly simultaneously.
In reality, unless you have multiple processors (or a single multicore processor) in your computer,
the threads are not really running simultaneously. Instead, the operating system coordinates and
schedules the execution of all threads across all processes; each thread is given a tiny portion (or time
slice) of the processor’s time, which gives the impression they are executing at the same time.

The difficulty of having multiple threads executing within your application arises when those
threads need to access shared data and resources. If multiple threads are changing an object’s state
or writing to a file at the same time, your data will quickly become corrupted. To avoid problems, you
must synchronize the threads to make sure they each get a chance to access the resource, but only
one at a time. Synchronization is also important when waiting for a number of threads to reach a
certain point of execution before proceeding with a different task and for controlling the number of
threads that are at any given time actively performing a task—perhaps processing requests from
client applications.

■Note Although it will not affect your multithreaded programming in VB .NET, it is worth noting that an operating
system thread has no fixed relationship to a managed thread. The runtime host—the managed code that loads and
runs the common language runtime (CLR)—controls the relationship between managed and unmanaged threads. A
sophisticated runtime host, such as Microsoft SQL Server 2005, can schedule many managed threads against the
same operating system thread or can perform the actions of a managed thread using different operating system threads.

Herman_970-5C04.fm Page 129 Wednesday, February 27, 2008 8:17 AM

130 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

This chapter describes how to control processes and threads in your own applications using the
features provided by VB .NET and the Microsoft .NET Framework class library. The recipes in this
chapter cover the following:

• Executing code in independent threads using features including the thread pool, asynchro-
nous method invocation, and timers (recipes 4-1 through 4-7)

• Synchronizing the execution of multiple threads using a host of synchronization techniques,
including monitors, events, mutexes, and semaphores (recipes 4-8 through 4-12)

• Terminating threads and knowing when threads have terminated (recipes 4-13 and 4-14)

• Creating thread-safe instances of the .NET collection classes (recipe 4-15)

• Starting and stopping running in new processes (recipes 4-16 and 4-17)

• Ensuring that only one instance of an application is able to run at any given time (recipe 4-18)

As you will see in this chapter, delegates are used extensively in multithreaded programs to wrap
the method that a thread should execute or that should act as a callback when an asynchronous
operation is complete. As in earlier versions of VB .NET, the AddressOf operator is used to instruct the
compiler to generate the necessary delegate instance. As shown in recipe 1-23, a lambda expression
may be used in place of a delegate.

4-1. Execute a Method Using the Thread Pool

Problem

You need to execute a task using a thread from the runtime’s thread pool.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitCallback delegate; that is, it must be a subroutine (not
a function) and take a single Object argument. Call the Shared method QueueUserWorkItem of the
System.Threading.ThreadPool class, passing it your method name. The runtime will queue your
method and execute it when a thread-pool thread becomes available.

How It Works

Applications that use many short-lived threads or maintain large numbers of concurrent threads
can suffer performance degradation because of the overhead associated with the creation, opera-
tion, and destruction of threads. In addition, it is common in multithreaded systems for threads
to sit idle a large portion of the time while they wait for the appropriate conditions to trigger their
execution. Using a thread pool provides a common solution to improve the scalability, efficiency,
and performance of multithreaded systems.

The .NET Framework provides a simple thread-pool implementation accessible through the
Shared members of the ThreadPool class. The QueueUserWorkItem method allows you to execute a
method using a thread-pool thread by placing a work item into the queue. As a thread from the
thread pool becomes available, it takes the next work item from the queue and executes it. The
thread performs the work assigned to it, and when it is finished, instead of terminating, the thread
returns to the thread pool and takes the next work item from the work queue.

Herman_970-5C04.fm Page 130 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 131

The Code

The following example demonstrates how to use the ThreadPool class to execute a method named
DisplayMessage. The example passes DisplayMessage to the thread pool twice: first with no arguments
and then with a MessageInfo object, which allows you to control which message the new thread will
display.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_01
 ' A private class used to pass data to the DisplayMessage
 ' method when it is executed using the thread pool.
 Private Class MessageInfo
 Private m_Iterations As Integer
 Private m_Message As String

 ' A constructor that takes configuration settings for the thread.
 Public Sub New(ByVal iterations As Integer, ByVal message As String)

 m_Iterations = iterations
 m_Message = message

 End Sub

 ' Properties to retrieve configuration settings.
 Public ReadOnly Property Iterations() As Integer
 Get
 Return m_Iterations
 End Get
 End Property

 Public ReadOnly Property Message() As String
 Get
 Return m_Message
 End Get
 End Property

 End Class

 ' A method that conforms to the System.Threading.WaitCallback
 ' delegate signature. Displays a message to the console.
 Public Shared Sub DisplayMessage(ByVal state As Object)
 ' Safely case the state argument to a MessageInfo object.
 Dim config As MessageInfo = TryCast(state, MessageInfo)

 ' If the config argument is Nothing, no arguments were passed to
 ' the ThreadPool.QueueUserWorkItem method; use default values.
 If config Is Nothing Then
 ' Display a fixed message to the console three times.
 For count As Integer = 1 To 3
 Console.WriteLine("A thread pool example.")

Herman_970-5C04.fm Page 131 Wednesday, February 27, 2008 8:17 AM

132 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' Sleep for the purpose of demonstration. Avoid sleeping
 ' on thread-pool threads in real applications.
 Thread.Sleep(1000)
 Next
 Else
 ' Display the specified message the specified number of times.
 For count As Integer = 1 To config.Iterations
 Console.WriteLine(config.Message)

 ' Sleep for the purpose of demonstration. Avoid sleeping
 ' on thread-pool threads in real applications.
 Thread.Sleep(1000)
 Next
 End If
 End Sub

 Public Shared Sub Main()

 ' Execute DisplayMessage using the thread pool and no arguments.
 ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage)

 ' Create a MessageInfo object to pass to the DisplayMessage method.
 Dim info As New MessageInfo(5, "A thread pool example with arguments.")

 ' Execute a DisplayMessage using the thread pool and providing an
 ' argument.
 ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage, info)

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class
End Namespace

Notes

Using the runtime’s thread pool simplifies multithreaded programming dramatically; however, be
aware that the implementation is a simple, general-purpose thread pool. Before deciding to use the
thread pool, consider the following points:

• Each process has one thread pool, which supports by default a maximum of 25 concurrent
threads per processor. You can change the maximum number of threads using the Shared
ThreadPool.SetMaxThreads method, but some runtime hosts (IIS and SQL Server, for example)
will limit the maximum number of threads and may not allow the default value to be changed
at all.

• Where possible, avoid using the thread pool to execute long-running processes. The limited
number of threads in the thread pool means that a handful of threads tied up with long-running
processes can significantly affect the overall performance of the thread pool. Specifically, you
should avoid putting thread-pool threads to sleep for any length of time.

Herman_970-5C04.fm Page 132 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 133

• Thread-pool threads are background threads. You can configure threads as either foreground
threads or background threads. Foreground and background threads are identical, except
that a background thread will not keep an application process alive. Therefore, your application
will terminate automatically when the last foreground thread of your application terminates.

• You have no control over the scheduling of thread-pool threads, and you cannot prioritize
work items. The thread pool handles each work item in the sequence in which you add it to
the work queue.

• Once a work item is queued, it cannot be canceled or stopped.

• Do not try to use thread-pool threads to directly update or manipulate Windows Forms controls,
because they can be updated only by the thread that created them. For example, suppose that
you have a form with a progress bar and a button that starts some action. When you click the
button, a thread-pool thread is created to perform the action. Since the progress bar is part of
the main application form, it exists on the main application’s thread. Attempting to manipulate it
from the thread-pool thread can cause unforeseen issues. The proper approach is to call dele-
gate methods from the thread-pool threads and have them manipulate the interface for you.
An alternative is to use the BackgroundWorker class, which encapsulates the approach of using
delegates to directly access the interface.

4-2. Execute a Method Asynchronously

Problem

You need to start execution of a method and continue with other tasks while the method runs on a
separate thread. After the method completes, you need to retrieve the method’s return value.

Solution

Declare a delegate with the same signature as the method you want to execute. Create an instance
of the delegate that references the method. Call the BeginInvoke method of the delegate instance to
start executing your method. Use the EndInvoke method to determine the method’s status as well as
obtain the method’s return value if complete.

How It Works

Typically, when you invoke a method, you do so synchronously, meaning that the calling code blocks
until the method is complete. Most of the time, this is the expected, desired behavior because your
code requires the operation to complete before it can continue. However, sometimes it is useful to
execute a method asynchronously, meaning that you start the method in a separate thread and then
continue with other operations.

The .NET Framework implements an asynchronous execution pattern that allows you to call
any method asynchronously using a delegate. When you declare and compile a delegate, the compiler
automatically generates two methods that support asynchronous execution: BeginInvoke and EndInvoke.
When you call BeginInvoke on a delegate instance, the method referenced by the delegate is queued
for asynchronous execution. BeginInvoke does not cause the code execution to wait, but rather returns
immediately with an IAsyncResult instance. IAsyncResult is used when calling EndInvoke. The method
referenced by BeginInvoke executes in the context of the first available thread-pool thread.

The signature of the BeginInvoke method includes the same arguments as those specified by the
delegate signature, followed by two additional arguments to support asynchronous completion.
These additional arguments are as follows:

Herman_970-5C04.fm Page 133 Wednesday, February 27, 2008 8:17 AM

134 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

• A System.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous method completes. The method will be executed by a thread-pool
thread. Passing Nothing means no method is called, and you must use another mechanism
(discussed later in this recipe) to determine when the asynchronous method is complete.

• A reference to an object that the runtime associates with the asynchronous operation for you.
The asynchronous method does not use or have access to this object, but it is available to your
code when the method completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a common
callback method to perform completion.

The EndInvoke method allows you to retrieve the return value of a method that was executed
asynchronously, but you must first determine when it has finished. If your asynchronous method
threw an exception, it will be rethrown so that you can handle it when you call EndInvoke. Here are
the four techniques for determining whether an asynchronous method has finished:

• Blocking stops the execution of the current thread until the asynchronous method completes
execution by calling EndInvoke. In effect, this is much the same as synchronous execution.
However, you have the flexibility to decide exactly when your code enters the blocked state,
giving you the opportunity to perform some additional processing before blocking.

• Polling involves repeatedly testing the state of an asynchronous method to determine
whether it is complete by checking the IsCompleted property of the IAsyncResult returned
from BeginInvoke. This is a simple technique and is not particularly efficient from a processing
perspective. You should avoid tight loops that consume processor time; it is best to put the
polling thread to sleep for a period using Thread.Sleep between completion tests. Because
polling involves maintaining a loop, the actions of the waiting thread are limited, but you can
easily update some kind of progress indicator.

• Waiting depends on the AsyncWaitHandle property of the IAsyncResult returned by BeginInvoke.
This object derives from the System.Threading.WaitHandle class and is signaled when the
asynchronous method completes. Waiting is a more efficient version of polling and also allows
you to wait for multiple asynchronous methods to complete. You can specify time-out values
to allow your waiting thread to notify a failure if the asynchronous method takes too long or if
you want to periodically update a status indicator.

■Caution Even if you do not want to handle the return value of your asynchronous method, you should call
EndInvoke; otherwise, you risk leaking memory each time you initiate an asynchronous call using BeginInvoke.

The Code

The following code demonstrates how to use the asynchronous execution pattern. It uses a delegate
named AsyncExampleDelegate to execute a method named LongRunningMethod asynchronously.
LongRunningMethod simulates a long-running method using a configurable delay (produced using
Thread.Sleep). The example contains the following five methods that demonstrate the various
approaches to handling asynchronous method completion:

• The BlockingExample method executes LongRunningMethod asynchronously and continues
with a limited set of processing. Once this processing is complete, BlockingExample blocks
until LongRunningMethod completes. To block, BlockingExample calls the EndInvoke method of the
AsyncExampleDelegate delegate instance. If LongRunningMethod has already finished, EndInvoke
returns immediately; otherwise, BlockingExample blocks until LongRunningMethod completes.

Herman_970-5C04.fm Page 134 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 135

• The PollingExample method executes LongRunningMethod asynchronously and then enters a
polling loop until LongRunningMethod completes. PollingExample tests the IsCompleted property
of the IAsyncResult instance returned by BeginInvoke to determine whether LongRunningMethod
is complete; otherwise, PollingExample calls Thread.Sleep.

• The WaitingExample method executes LongRunningMethod asynchronously and then waits
until LongRunningMethod completes. WaitingExample uses the AsyncWaitHandle property of the
IAsyncResult instance returned by BeginInvoke to obtain a WaitHandle and then calls its
WaitOne method. Using a time-out allows WaitingExample to break out of waiting in order to
perform other processing or to fail completely if the asynchronous method is taking too long.

• The WaitAllExample method executes LongRunningMethod asynchronously multiple times and
then uses an array of WaitHandle objects to wait efficiently until all the methods are complete.

• The CallbackExample method executes LongRunningMethod asynchronously and passes
an AsyncCallback delegate instance (that references the CallbackHandler method) to the
BeginInvoke method. The referenced CallbackHandler method is called automatically when
the asynchronous LongRunningMethod completes, leaving the CallbackExample method free to
continue processing. It’s important to note that a reference to the AsyncExampleDelegate is
passed to the BeginInvoke method via the DelegateAsyncState parameter. If you did not pass
this reference, the callback method would not have access to the delegate instance and would
be unable to call EndInvoke.

In VB .NET, it is not necessary to implicitly create a delegate instance, such as Dim longMethod
As AsyncExampleDelegate = New AsyncExampleDelegate(AddressOf LongRunningMethod). Since
the AddressOf operator does this automatically, the more efficient statement Dim longMethod As
AsyncExampleDelegate = AddressOf LongRunningMethod is used instead.

Import System
Imports System.Threading
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_02

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal currentTime As DateTime, ➥
ByVal msg As String)

 Console.WriteLine("[{0,3}/{1}] - {2} : {3}", ➥
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, ➥
"pool", "fore"), currentTime.ToString("HH:mm:ss.ffff"), msg)

 End Sub

 ' A delegate that allows you to perform asynchronous execution of
 ' LongRunningMethod.
 Public Delegate Function AsyncExampleDelegate(ByVal delay As Integer, ➥
ByVal name As String) As DateTime

 ' A simulated long-running method.
 Public Shared Function LongRunningMethod(ByVal delay As Integer, ➥
ByVal name As String) As DateTime

Herman_970-5C04.fm Page 135 Wednesday, February 27, 2008 8:17 AM

136 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 TraceMsg(DateTime.Now, name & " example - thread starting.")

 ' Simulate time-consuming process.
 Thread.Sleep(delay)

 TraceMsg(DateTime.Now, name & " example - thread stopping.")

 ' Return the method's completion time.
 Return DateTime.Now

 End Function

 ' This method executes LongRunningMethod asynchronously and continues
 ' with other processing. Once the processing is complete, the method
 ' blocks until LongRunningMethod completes.
 Public Shared Sub BlockingExample()

 Console.WriteLine(Environment.NewLine & "*** Running Blocking " & ➥
 "Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass Nothing for both the
 ' callback delegate and the asynchronous state object.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Blocking", Nothing, Nothing)

 ' Perform other processing until ready to block.
 For count As Integer = 1 To 3
 TraceMsg(DateTime.Now, "Continue processing until ready to block..")

 Thread.Sleep(300)
 Next

 ' Block until the asynchronous method completes.
 TraceMsg(DateTime.Now, "Blocking until method is complete...")

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(asyncResult)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Blocking example complete.")

 End Sub

 ' This method executes LongRunningMethod asynchronously and then
 ' enters a polling loop until LongRunningMethod completes.
 Public Shared Sub PollingExample()

Herman_970-5C04.fm Page 136 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 137

 Console.WriteLine(Environment.NewLine & "*** Running Polling " & ➥
 "Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass Nothing for both the
 ' callback delegate and the asynchronous state object.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Polling", Nothing, Nothing)

 ' Poll the asynchronous method to test for completion. If not
 ' complete, sleep for 300ms before polling again.
 TraceMsg(DateTime.Now, "Poll repeatedly until method is complete.")

 While Not asyncResult.IsCompleted
 TraceMsg(DateTime.Now, "Polling...")
 Thread.Sleep(300)
 End While

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(asyncResult)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Polling example complete.")

 End Sub

 ' This method executes LongRunningMethod asynchronously and then
 ' uses a WaitHandle to wait efficiently until LongRunningMethod
 ' completes. Use of a time-out allows the method to break out of
 ' waiting in order to update the user interface or fail if the
 ' asynchronous method is taking too long.
 Public Shared Sub WaitingExample()

 Console.WriteLine(Environment.NewLine & "*** Running Waiting " & ➥
 "Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass Nothing for both the
 ' callback delegate and the asynchronous state object.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Waiting", Nothing, Nothing)

 ' Wait for the asynchronous method to complete. Time-out after
 ' 300ms and display status to the console before continuing to
 ' wait.
 TraceMsg(DateTime.Now, "Waiting until method is complete.")

Herman_970-5C04.fm Page 137 Wednesday, February 27, 2008 8:17 AM

138 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 While Not asyncResult.AsyncWaitHandle.WaitOne(300, False)
 TraceMsg(DateTime.Now, "Wait timeout...")
 End While

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(asyncResult)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Waiting example complete.")

 End Sub

 ' This method executes LongRunningMethod asynchronously multiple
 ' times and then uses an array of WaitHandle objects to wait
 ' efficiently until all of the methods are complete. Use of a
 ' time-out allows the method to break out of waiting in order to
 ' update the user interface or fail if the asynchronous method
 ' is taking too long.
 Public Shared Sub WaitAllExample()

 Console.WriteLine(Environment.NewLine & "*** Running WaitAll " & ➥
"Example ***")

 ' An ArrayList to hold the IAsyncResult instances for each of the
 ' asynchronous methods started.
 Dim asyncResults As New ArrayList(3)

 ' Invoke three LongRunningMethod asynchronously. Pass Nothing for
 ' both the callback delegate and the asynchronous state object. Add
 ' the IAsyncResult instance for each method to the ArrayList.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

 asyncResults.Add(longMethod.BeginInvoke(3000, "WaitAll 1", Nothing, ➥
Nothing))
 asyncResults.Add(longMethod.BeginInvoke(2500, "WaitAll 2", Nothing, ➥
Nothing))
 asyncResults.Add(longMethod.BeginInvoke(1500, "WaitAll 3", Nothing, ➥
Nothing))

 ' Create an array of WaitHandle objects that will be used to wait
 ' for the completion of all the asynchronous methods.
 Dim waitHandles As WaitHandle() = New WaitHandle(2) {}

 For count As Integer = 0 To 2
 waitHandles(count) = DirectCast(asyncResults(count), ➥
IAsyncResult).AsyncWaitHandle
 Next

Herman_970-5C04.fm Page 138 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 139

 ' Wait for all three asynchronous methods to complete. Time-out
 ' after 300ms and display status to the console before continuing
 ' to wait.
 TraceMsg(DateTime.Now, "Waiting until all 3 methods are complete...")

 While Not WaitHandle.WaitAll(waitHandles, 300, False)
 TraceMsg(DateTime.Now, "WaitAll timeout...")
 End While

 ' Inspect the completion data for each method, and determine the
 ' time at which the final method completed.
 Dim completion As DateTime = DateTime.MinValue

 For Each result As IAsyncResult In asyncResults
 Try
 Dim completedTime As DateTime = longMethod.EndInvoke(result)
 If completedTime > completion Then completion = completedTime
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try
 Next

 ' Display completion information.
 TraceMsg(completion, "WaitAll example complete.")

 End Sub

 ' This method executes LongRunningMethod asynchronously and passes
 ' an AsyncCallback delegate instance. The referenced CallbackHandler
 ' method is called automatically when the asynchronous method
 ' completes, leaving this method free to continue processing.
 Public Shared Sub CallbackExample()

 Console.WriteLine(Environment.NewLine & "*** Running Callback" & ➥
"Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass an AsyncCallback
 ' delegate instance referencing the CallbackHandler method that
 ' will be called automatically when the asynchronous method
 ' completes. Pass a reference to the AsyncExampleDelegate delegate
 ' instance as asynchronous state; otherwise, the callback method
 ' has no access to the delegate instance in order to call EndInvoke.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Callback", AddressOf CallbackHandler, longMethod)

 ' Continue with other processing.
 For count As Integer = 0 To 15
 TraceMsg(DateTime.Now, "Continue processing...")
 Thread.Sleep(300)
 Next

 End Sub

Herman_970-5C04.fm Page 139 Wednesday, February 27, 2008 8:17 AM

140 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' A method to handle asynchronous completion using callbacks.
 Public Shared Sub CallbackHandler(ByVal result As IAsyncResult)
 ' Extract the reference to the AsyncExampleDelegate instance
 ' from the IAsyncResult instance. This allows you to obtain the
 ' completion data.
 Dim longMethod As AsyncExampleDelegate = DirectCast(result.AsyncState, ➥
AsyncExampleDelegate)

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(result)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Callback example complete.")

 End Sub

 <MTAThread()> _
 Public Shared Sub Main()

 ' Demonstrate the various approaches to asynchronous method completion.
 BlockingExample()
 PollingExample()
 WaitingExample()
 WaitAllExample()
 CallbackExample()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class
End Namespace

4-3. Creating an Asynchronous Method to Update
the User Interface

Problem

You need to execute, in a Windows Forms application, some method asynchronously that needs to
be able to safely manipulate the user interface.

Herman_970-5C04.fm Page 140 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 141

Solution

Create an instance of the System.ComponentModel.BackgroundWorker class. Perform the asynchronous
action within the DoWork event handler, which is raised when you call the BackgroundWorker.
RunWorkerAsync method. To allow the asynchronous method to safely interact with the user inter-
face, include a call to the ReportProgress method (within the DoWork event handler), and handle the
ProgressChanged event that it raises.

How It Works

The standard process for executing methods asynchronously is to use delegates to interact with the
user interface. This process works well but requires several steps and some careful planning. The
BackgroundWorker class, first introduced in .NET 2.0, encapsulates the methodology for using dele-
gates (which is covered in detail in recipe 4-2) making it easy to use when attempting to perform
asynchronous updates to an interface. Table 4-1 shows the main methods, properties, and events
that make up this class.

Table 4-1. Properties, Methods, and Events of the BackgroundWorker Class

Member Description

Properties

CancellationPending A Boolean value that indicates whether CancelAsync was called.

IsBusy A Boolean value that indicates whether the asynchronous
operation has started.

WorkerRerportsProgress A Boolean value that indicates whether the BackgroundWorker is
capable of reporting progress via the ReportProgress method.

WorkerSupportsCancellation A Boolean value that indicates whether the BackgroundWorker is
capable of supporting cancellation via the CancelAsync method.

Methods

CancelAsync Sets the CancellationPending property to True.

ReportProgress Causes the ProgressChange event to be fired. Pass an Integer
value, ranging from 0 to 100, to indicate the progress percentage
to report.

RunWorkerAsync Causes the DoWork event to be fired, which starts the
asynchronous operation.

Events

DoWork Responsible for performing the asynchronous operation and
is raised when the RunWorkerAsync is called.

ProgressChanged Responsible for interacting with the user interface and is raised
when the ReportProgress method is called.

RunWorkerCompleted Responsible for performing any finalization and is raised after
the DoWork event finishes.

Herman_970-5C04.fm Page 141 Wednesday, February 27, 2008 8:17 AM

142 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

The first step is to handle the DoWork event. This event runs asynchronously and is where your
long-running method should be executed. DoWork is raised when the RunWorkerAsync method is
called. This method includes an overload that takes an Object, which is used to pass some data to the
asynchronous method. Code within the DoWork event handler should not interact directly with the
user interface because this code is executing on a background thread.

When the DoWork event completes, the RunWorkerCompleted event is raised. If you need to return
any data from the asynchronous method back to the calling routine, it should be saved to the Result
property of the DoWorkEventArgs class within the DoWork event handler. This data is then passed to
the Result property of the RunWorkerCompletedEventArgs class and is available for use within the
RunWorkerCompleted event handler. Code within the RunWorkerCompleted event handler can safely
interact with the user interface directly.

If the asynchronous method needs to be canceled, you need to call the CancelAsync method
of the BackgroundWorker class. This method sets the CancellationPending property of the
BackgroundWorker class to True. It is your responsibility, within the DoWork event handler, to periodi-
cally check whether CancellationPending has been set to True. If it has, you would then cancel
the event by setting the Cancel property of the DoWorkEventArgs class to True. In this situation, the
RunWorkerCompleted event will still be raised, but the Cancelled property of the RunWorkerCompleted-
EventArgs will be set to True so you can quickly determine whether the asynchronous operation was
canceled by the user. If CancelArgs is called while the BackgroundWorker.WorkerSupportsCancellation
property is False, then an InvalidException is thrown.

If your asynchronous operation needs to update a control on the user interface, such as a
progress bar, you would use the ReportProgress method of the BackgroundWorker class. The handler
for the ProgressChanged event, which is raised by the ReportProgress method, is able to safely
interact with the user interface, so any code to do so should be placed there. Both overloads of the
ReportProgress method accept an Integer that are saved to the ProgressPercentage property of the
ProgressChangedEventArgs class and can be quickly used to update a progress bar. One of the over-
loads also lets you specify the data that was initially passed to the RunWorkerAsync method. This data
is saved to the UserState property of the ProgressChangedEventArgs class. If ReportProgress is called
while the BackgroundWorker.WorkerReportsProgress property is False, then an InvalidException is
thrown.

To have access to your BackgroundWorker instance throughout your form, you should be sure to
declare it as a global variable (and using WithEvents). It may also be possible to have more than one
BackgroundWorker at the same time. In this situation, you will want to cast the sender parameter of
the BackgroundWorker events to a BackgroundWorker class in order to have a reference to the appro-
priate instance.

■Note The BackgroundWorker class can be manually instantiated and manipulated through code, or if you are
using Visual Studio, you can drag a BackgroundWorker component from the Components tab in the Toolbox
directly to your form.

The Code

The example is a simple Windows Forms application that uses the BackgroundWorker class to run a simu-
lated long-running method asynchronously in the background without causing the user interface to
freeze. The asynchronous method is started when the Start button is clicked, and it’s canceled when the
Cancel button is clicked. The progress bar on the form is updated via the ProgressChange event handler.

Herman_970-5C04.fm Page 142 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 143

Imports System
Imports System.Windows.Forms
Imports System.ComponentModel

' All designed code is stored in the autogenerated partial
' class called Recipe04-03.Designer.vb. You can see this
' file by selecting "Show All Files" in solution explorer.
Partial Public Class Recipe04_03

 ' Instantiate the BackgroundWorker object
 Dim WithEvents worker As New BackgroundWorker

 Private Sub Recipe04_03_Load(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles MyBase.Load

 worker.WorkerReportsProgress = True
 worker.WorkerSupportsCancellation = True

 End Sub

 ' Button.Click event handler for the Start button, which
 ' starts the asynchronous operation.
 Private Sub btnStart_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnStart.Click

 ' Configure the form controls.
 btnCancel.Enabled = True
 btnStart.Enabled = False
 progress.Visible = True
 progress.Maximum = 100
 progress.Value = 0

 ' Begin the background operation.
 worker.RunWorkerAsync()

 End Sub

 ' Button.Click event handler for the Cancel button, which
 ' instructs the BackgroundWorker to terminate.
 Private Sub btnCancel_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnCancel.Click

 ' Instruct the BackgroundWorker to terminate
 worker.CancelAsync()

 End Sub

 ' BackgroundWorker.DoWork event handler. This is where the long running method
 ' that needs to run asynchronously should be executed.
 Private Sub worker_DoWork(ByVal sender As Object, ➥
ByVal e As System.ComponentModel.DoWorkEventArgs) Handles worker.DoWork

Herman_970-5C04.fm Page 143 Wednesday, February 27, 2008 8:17 AM

144 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' Get the instance of the BackgroundWorker that raised the event.
 ' This is useful to do in case you have multiple BackgroundWorkers
 ' being handled by this event.
 Dim worker As BackgroundWorker = DirectCast(sender, BackgroundWorker)

 ' Perform a loop and pause the thread for 1 second
 ' to simulate a long running operation.
 For i As Integer = 1 To 10

 ' Check if the user requested the operation to
 ' be canceled.
 If worker.CancellationPending Then
 ' Cancel the event.
 e.Cancel = True
 Exit For
 Else
 ' Pause the thread to simulate some action occurring.
 System.Threading.Thread.Sleep(1000)

 ' Update the progress on the user interface.
 worker.ReportProgress(i * 10)
 End If
 Next

 ' Simulate returning some result back to the main thread.
 If Not e.Cancel Then e.Result = "Successful"

 End Sub

 ' BackgroundWorker.ProgressChanged event handler. This event is used to update
 ' the user interface, such as updating a progress bar.
 Private Sub worker_ProgressChanged(ByVal sender As Object, ➥
ByVal e As System.ComponentModel.ProgressChangedEventArgs) ➥
Handles worker.ProgressChanged

 ' Update the Progress bar on the form.
 progress.Value = e.ProgressPercentage

 End Sub

 ' BackgroundWorker.RunWorkerCompleted event handler. This event is raised once
 ' BackgroundWorker.DoWork completes and should be used for finalization.
 Private Sub worker_RunWorkerCompleted(ByVal sender As Object, ➥
ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) ➥
Handles worker.RunWorkerCompleted

 ' Check if an unhandled exception occurred in the DoWork event.
 If e.Error Is Nothing Then
 ' Check if DoWork was cancelled by the user.
 If Not e.Cancelled Then
 MessageBox.Show("Results: " & e.Result.ToString)
 Else
 MessageBox.Show("Operation canceled by user")
 End If

Herman_970-5C04.fm Page 144 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 145

 Else
 ' Display the exception.
 MessageBox.Show(e.Error.ToString)
 End If

 ' Reset form
 progress.Visible = False
 progress.Value = 0
 btnCancel.Enabled = False
 btnStart.Enabled = True

 End Sub

End Class

Usage

Figure 4-1 shows an example of what the recipe might look like when it is launched. When the DoWork
event completes, a message box appears showing that the method finished successfully. If you click
the Cancel button while the method is still executing, then it will be canceled, and the message box
will appearing showing it was canceled.

Figure 4-1. A simple Windows Forms application

4-4. Execute a Method Periodically

Problem

You need to execute a method in a separate thread periodically.

Solution

Declare a method containing the code you want to execute periodically. The method’s signature
must match that defined by the System.Threading.TimerCallback delegate; in other words, it must
be a subroutine (not a function) and take a single Object argument. Create a System.Threading.Timer
object and pass it the method you want to execute, along with a state Object that the timer will pass
to your method when the timer fires. The runtime will wait until the timer expires, and then call your
method using a thread from the thread pool.

■Tip If you are implementing a timer in a Windows Forms application, you should consider using the System.
Windows.Forms.Timer, which also provides additional support in Visual Studio that allows you to drag the timer
from your Toolbox onto your application. For server-based applications where you want to signal multiple listeners
each time the timer fires, consider using the System.Timers.Timer class, which notifies listeners using events.

Herman_970-5C04.fm Page 145 Wednesday, February 27, 2008 8:17 AM

146 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

How It Works

It is often useful to execute a method at regular intervals. For example, you might need to clean a
data cache every 20 minutes. The System.Threading.Timer class makes the periodic execution of
methods straightforward, allowing you to execute a method referenced by a TimerCallback delegate
at specified intervals. The referenced method executes in the context of a thread from the thread
pool. (See recipe 4-1 for notes on the appropriate use of thread-pool threads.)

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. Specify 0 to execute the method immediately,
and specify System.Threading.Timeout.Infinite (which is –1) to create the Timer in an unstarted
state. The second value specifies the interval in milliseconds; then the Timer will repeatedly call your
method following the initial execution. If you specify a value of 0 or Timeout.Infinite, the Timer will
execute the method only once (as long as the initial delay is not Timeout.Infinite). You can specify
the time intervals as Integer, Long, UInteger, or System.TimeSpan values.

Once you have created a Timer object, you can modify the intervals used by the timer using the
Change method, but you cannot change the method that is called. When you have finished with a
Timer object, you should call its Dispose method to free system resources held by the timer. Disposing of
the Timer object cancels any method that is scheduled for execution.

The Code

The TimerExample class shown next demonstrates how to use a Timer object to call a method named
TimerHandler. Initially, the Timer object is configured to call TimerHandler after 2 seconds and then
at 1-second intervals. The example allows you to enter a new millisecond interval in the console,
which is applied using the Timer.Change method.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_04

 Public Shared Sub Main()

 ' Create the state object that is passed to the TimerHandler
 ' method when it is triggered. In this case, a message to display.
 Dim state As String = "Timer fired."

 Console.WriteLine("{0} : Creating Timer.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Create a Timer that fires first after 2 seconds and then every
 ' second. The threadTimer object is automatically disposed at the
 ' end of the Using block.
 Using threadTimer As New Timer(AddressOf TimerTriggered, state, 2000, ➥
1000)
 Dim period As Integer

 ' Read the new timer interval from the console until the
 ' user enters 0 (zero). Invalid values use a default value
 ' of 0, which will stop the example.

Herman_970-5C04.fm Page 146 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 147

 Do
 Try
 period = Int32.Parse(Console.ReadLine())
 Catch ex As FormatException
 period = 0
 End Try

 ' Change the timer to fire using the new interval starting
 ' immediately.
 If period > 0 Then
 Console.WriteLine("{0} : Changing Timer Interval.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 threadTimer.Change(0, period)
 End If

 Loop While period > 0
 End Using

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub TimerTriggered(ByVal state As Object)
 Console.WriteLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), ➥
state)
 End Sub

 End Class
End Namespace

4-5. Execute a Method at a Specific Time

Problem

You need to execute a method in a separate thread at a specific time.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.TimerCallback delegate; that is, it must be a subroutine (not a
function) and take a single Object argument. Create a System.Threading.Timer object, and pass it the
method you want to execute along with a state Object that the timer will pass to your method when
the timer expires. Calculate the time difference between the current time and the desired execution
time, and configure the Timer object to fire once after this period of time.

How It Works

Executing a method at a particular time is often useful. For example, you might need to back up data
at 1 a.m. daily. Although primarily used for calling methods at regular intervals, the Timer object also
provides the flexibility to call a method at a specific time.

Herman_970-5C04.fm Page 147 Wednesday, February 27, 2008 8:17 AM

148 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. To execute the method at a specific time,
you should set this value to the difference between the current time (System.DateTime.Now) and the
desired execution time. The second value specifies the interval after which the Timer will repeatedly call
your method following the initial execution. If you specify a value of 0, System.Threading.Timeout.
Infinite, or TimeSpan(-1), the Timer object will execute the method only once. If you need the method to
execute at a specific time every day, you can easily set this value using TimeSpan.FromDays(1), which
represents the number of milliseconds in 24 hours.

The Code

The following code demonstrates how to use a Timer object to execute a method at a specified time.
The RunAt method calculates the TimeSpan between the current time and a time specified on the
command line (in RFC1123 format) and configures a Timer object to fire once after that period of time.

Imports System
Imports System.Threading
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_05
 Public Shared Sub RunAt(ByVal execTime As DateTime)

 ' Calculate the difference between the specified execution
 ' time and the current time.
 Dim waitTime As TimeSpan = execTime - DateTime.Now

 ' Check if a time in the past was specified. If it was, set
 ' the waitTime to TimeSpan(0) which will cause the timer
 ' to execute immediately.
 If waitTime < New TimeSpan(0) Then
 Console.WriteLine("A 'Past' time was specified.")
 Console.WriteLine("Timer will fire immediately.")
 waitTime = New TimeSpan(0)
 End If

 ' Create a Timer that fires once at the specified time. Specify
 ' an interval of -1 to stop the timer executing the method
 ' repeatedly.
 Dim threadTimer As New Timer(AddressOf TimerTriggered, ➥
"Timer Triggered", waitTime, New TimeSpan(-1))

 End Sub

 Private Shared Sub TimerTriggered(ByVal state As Object)
 Console.WriteLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), ➥
 state)
 Console.WriteLine("Main method complete. Press Enter.")
 End Sub

Herman_970-5C04.fm Page 148 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 149

 Public Shared Sub Main(ByVal args As String())

 Dim execTime As DateTime

 ' Ensure there is an execution time specified on the command line.
 If args.Length > 0 Then
 ' Convert the string to a datetime. Support only the RFC1123
 ' DateTime pattern.
 Try
 execTime = DateTime.ParseExact(args(0), "r", Nothing)
 Console.WriteLine("Current time : " & ➥

DateTime.Now.ToString("r"))
 Console.WriteLine("Execution time : " & ➥
execTime.ToString("r"))

 RunAt(execTime)
 Catch ex As FormatException
 Console.WriteLine("Execution time must be of the " & ➥
"format:{0}{1}{2}", ControlChars.NewLine, ControlChars.Tab, ➥
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
 End Try

 ' Wait to continue.
 Console.WriteLine("Waiting for Timer...")
 Console.ReadLine()
 Else
 Console.WriteLine("Specify the time you want the method to " & ➥
"execute using the format :{0}{1} {2}", ControlChars.NewLine, ControlChars.Tab, ➥
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
 End If
 End Sub
 End Class

End Namespace

Usage

If you run Recipe04-05 using the following command:

Recipe04-05 "Sat, 22 Sep 2007 17:25:00 GMT"

you will see output similar to the following:

Current time : Sat, 22 Sep 2007 17:23:56 GMT
Execution time : Sat, 22 Sep 2007 17:25:00 GMT
Waiting for Timer...
17:25:00.0110 : Timer Triggered

Main method complete. Press Enter.

Herman_970-5C04.fm Page 149 Wednesday, February 27, 2008 8:17 AM

150 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

4-6. Execute a Method by Signaling a WaitHandle Object

Problem

You need to execute one or more methods automatically when an object derived from System.
Threading.WaitHandle is signaled.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitOrTimerCallback delegate. Using the Shared ThreadPool.
RegisterWaitForSingleObject method, register the method to execute and the WaitHandle object
that will trigger execution when signaled.

How It Works

You can use classes derived from the WaitHandle class to trigger the execution of a method. Using the
RegisterWaitForSingleObject method of the ThreadPool class, you can register a WaitOrTimerCallback
delegate instance for execution by a thread-pool thread when a specified WaitHandle-derived object
enters a signaled state. You can configure the thread pool to execute the method only once or to
automatically reregister the method for execution each time the WaitHandle is signaled. If the WaitHandle
is already signaled when you call RegisterWaitForSingleObject, the method will execute immedi-
ately. RegisterWaitForSingleObject returns a reference to a RegistereredWaitHandle object. The
Unregister method of this class can be used to cancel a registered wait operation.

The class most commonly used as a trigger is AutoResetEvent, which automatically returns to an
unsignaled state after it is signaled. However, you can also use the ManualResetEvent, Mutex, and
Semaphore classes, which require you to change the signaled state manually. AutoResetEvent and
ManualResetEvent derive from the EventWaitHandle class, which in turn derives from WaitHandle,
while Mutex and Semaphore derive directly from WaitHandle.

The Code

The following example demonstrates how to use an AutoResetEvent to trigger the execution of a
method named ResetEventHandler. (The AutoResetEvent class is discussed further in recipe 4-9.)

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_06

 ' A method that is executed when the AutoResetEvent is signaled
 ' or the wait operation times out.
 Private Shared Sub ResetEventHandler(ByVal state As Object, ByVal ➥
timedOut As Boolean)

 ' Display an appropriate message to the console based on whether
 ' the wait timed out or the AutoResetEvent was signaled.

Herman_970-5C04.fm Page 150 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 151

 If timedOut Then
 Console.WriteLine("{0} : Wait timed out.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 Else
 Console.WriteLine("{0} : {1}", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"), state)
 End If

 End Sub

 Public Shared Sub Main()

 ' Create the new AutoResetEvent in an unsignaled state.
 Dim autoEvent As New AutoResetEvent(False)

 ' Create the state object that is passed to the event handler
 ' method when it is triggered. In this case, a message to display.
 Dim state As String = "AutoResetEvent signaled."

 ' Register the ResetEventHandler method to wait for the AutoResetEvent
 ' to be signaled. Set a time-out of 3 seconds and configure the wait
 ' event to reset after activation (last argument).
 Dim handle As RegisteredWaitHandle = ➥
ThreadPool.RegisterWaitForSingleObject(autoEvent, AddressOf ResetEventHandler, ➥
state, 3000, False)

 Console.WriteLine("Press ENTER to signal the AutoResetEvent or enter" & ➥
"""CANCEL"" to unregister the wait operation.")

 While Not Console.ReadLine.ToUpper = "CANCEL"
 ' If "CANCEL" has not been entered into the console, signal
 ' the AutoResetEvent, which will cause the EventHandler
 ' method to execute. The AutoResetEvent will automatically
 ' revert to an unsignaled state.
 autoEvent.Set()
 End While

 ' Unregister the wait operation.
 Console.WriteLine("Unregistering wait operation.")
 handle.Unregister(Nothing)

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C04.fm Page 151 Wednesday, February 27, 2008 8:17 AM

152 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

4-7. Execute a Method Using a New Thread

Problem

You need to execute code in its own thread, and you want complete control over the thread’s state
and operation.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.ThreadStart or System.Threading.ParameterizedThreadStart
delegates. Create a new System.Threading.Thread object, and pass the method delegate as an argu-
ment to its constructor. Call the Thread.Start method to start the execution of your method.

How It Works

For maximum control and flexibility when creating multithreaded applications, you need to take a
direct role in creating and managing threads. This is the most complex approach to multithreaded
programming, but it is the only way to overcome the restrictions and limitations inherent in the
approaches using thread-pool threads, as discussed in the preceding recipes. The Thread class
provides the mechanism through which you create and control threads. To create and start a new
thread, follow this process:

1. Define a method that matches the ThreadStart or ParameterizedThreadStart delegate. The
ThreadStart delegate takes no arguments and must be a subroutine (not a function). This
means you cannot easily pass data to your new thread. The ParameterizedThreadStart del-
egate must also be a subroutine but takes a single Object as an argument, allowing you to
pass data to the method you want to run. The method you want to execute can be Shared or
an instance method.

2. Create a new Thread object, and pass a delegate to your method as an argument to the Thread
constructor. The new thread has an initial state of Unstarted (a member of the System.
Threading.ThreadState enumeration) and is a foreground thread by default. If you want to
configure it to be a background thread, you need to set its IsBackground property to True.

3. Call Start on the Thread object, which changes its state to ThreadState.Running and begins
execution of your method. If you need to pass data to your method, include it as an argument to
the Start call, or use the ParameterizedThreadStart delegate mentioned earlier. If you call
Start more than once, it will throw a System.Threading.ThreadStateException.

The Code

The following code demonstrates how to execute a method in a new thread and how to pass data to
the new thread.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_07

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.

Herman_970-5C04.fm Page 152 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 153

 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' A private class used to pass initialization data to a new thread.
 Private Class ThreadStartData

 ' Member variables hold initialization data for a new thread.
 Private ReadOnly m_Iterations As Integer
 Private ReadOnly m_Message As String
 Private ReadOnly m_Delay As Integer

 Public Sub New(ByVal iterations As Integer, ByVal message As String, ➥
ByVal delay As Integer)
 m_Iterations = iterations
 m_Message = message
 m_Delay = delay
 End Sub

 ' Properties provide read-only access to initialization data.
 Public ReadOnly Property Iterations()
 Get
 Return m_Iterations
 End Get
 End Property

 Public ReadOnly Property Message()
 Get
 Return m_Message
 End Get
 End Property

 Public ReadOnly Property Delay()
 Get
 Return m_Delay
 End Get
 End Property

 End Class

 ' Declare the method that will be executed in its own thread. The
 ' method displays a message to the console a specified number of
 ' times, sleeping between each message for a specified duration.
 Private Shared Sub DisplayMessage(ByVal config As Object)
 Dim data As ThreadStartData = TryCast(config, ThreadStartData)

 If Not data Is Nothing Then
 For count As Integer = 0 To data.Iterations - 1
 TraceMsg(data.Message)

 ' Sleep for the specified period.
 Thread.Sleep(data.Delay)
 Next

Herman_970-5C04.fm Page 153 Wednesday, February 27, 2008 8:17 AM

154 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 Else
 TraceMsg("Invalid thread configuration.")
 End If

 End Sub

 Public Shared Sub Main()

 ' Create a new Thread object specifying DisplayMessage
 ' as the method it will execute.
 Dim newThread As New Thread(AddressOf DisplayMessage)

 ' Create a new ThreadStartData object to configure the thread.
 Dim config As New ThreadStartData(5, "A thread example.", 500)

 TraceMsg("Starting new thread.")

 ' Start the new thread and pass the ThreadStartData object
 ' containing the initialization data.
 newThread.Start(config)

 ' Continue with other processing.
 For count As Integer = 0 To 12
 TraceMsg("Main thread continuing processing...")
 Thread.Sleep(200)
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-8. Synchronize the Execution of Multiple Threads Using
a Monitor

Problem

You need to coordinate the activities of multiple threads to ensure the efficient use of shared resources
or to ensure several threads are not updating the same shared resource at the same time.

Solution

Identify an appropriate object to use as a mechanism to control access to the shared resource/data.
Use the Shared method Monitor.Enter to acquire a lock on the object, and use the Shared method
Monitor.Exit to release the lock so another thread may acquire it.

Herman_970-5C04.fm Page 154 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 155

How It Works

The greatest challenge in writing a multithreaded application is ensuring that the threads work in
concert. This is commonly referred to as thread synchronization and includes the following:

• Ensuring threads access shared objects and data correctly so that they do not cause corruption

• Ensuring threads execute only when they are meant to and cause minimum overhead when
they are idle

The most commonly used synchronization mechanism is the System.Threading.Monitor class.
The Monitor class allows a single thread to obtain an exclusive lock on an object by calling the Shared
method Monitor.Enter. By acquiring an exclusive lock prior to accessing a shared resource or data,
you ensure that only one thread can access the resource concurrently. Once the thread has finished
with the resource, release the lock to allow another thread to access it. A block of code that enforces
this behavior is often referred to as a critical section.

■Note Monitors are managed-code synchronization mechanisms that do not rely on any specific operating
system primitives. This ensures your code is portable should you want to run it on a non-Windows platform. This is
in contrast to the synchronization mechanisms discussed in recipes 4-9, 4-10, and 4-11, which rely on Win32 oper-
ating system–based synchronization objects.

You can use any object to act as the lock; it is common to use the keyword Me to obtain a lock on
the current object, but it is better to use a separate object dedicated to the purpose of synchroniza-
tion. The key point is that all threads attempting to access a shared resource must try to acquire the
same lock. Other threads that attempt to acquire a lock using Monitor.Enter on the same object will
block (enter a WaitSleepJoin state) and are added to the lock’s ready queue until the thread that owns
the lock releases it by calling the Shared method Monitor.Exit. When the owning thread calls Exit,
one of the threads from the ready queue acquires the lock. We say “one of the threads” because
threads are not necessarily executed in any specific order. If the owner of a lock does not release it by
calling Exit, all other threads will block indefinitely. Therefore, it is important to place the Exit call
within a Finally block to ensure that it is called even if an exception occurs. To ensure threads do not
wait indefinitely, you can specify a time-out value when you call Monitor.Enter.

■Tip Because Monitor is used so frequently in multithreaded applications, VB .NET provides language-level
support through the Synclock statement, which the compiler translates to the use of the Monitor class. A block
of code encapsulated in a Synclock statement is equivalent to calling Monitor.Enter when entering the block
and Monitor.Exit when exiting the block. In addition, the compiler automatically places the Monitor.Exit call
in a Finally block to ensure that the lock is released if an exception is thrown.

Using Monitor.Enter and Monitor.Exit is often all you will need to correctly synchronize access
to a shared resource in a multithreaded application. However, when you are trying to coordinate the
activation of a pool of threads to handle work items from a shared queue, Monitor.Enter and Monitor.
Exit will not be sufficient. In this situation, you want a potentially large number of threads to wait
efficiently until a work item becomes available without putting unnecessary load on the central
processing unit (CPU). This is where you need the fine-grained synchronization control provided by
the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll methods.

The thread that currently owns the lock can call Monitor.Wait, which will release the lock and
place that thread on the lock’s wait queue. Threads in a wait queue also have a state of WaitSleepJoin

Herman_970-5C04.fm Page 155 Wednesday, February 27, 2008 8:17 AM

156 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

and will continue to block until a thread that owns the lock calls either the Monitor.Pulse method or
the Monitor.PulseAll method. Monitor.Pulse moves one of the waiting threads from the wait queue
to the ready queue, and Monitor.PulseAll moves all threads. Once a thread has moved from the wait
queue to the ready queue, it can acquire the lock the next time the lock is released. It is important to
understand that threads on a lock’s wait queue will not acquire a released lock; they will wait indef-
initely until you call Monitor.Pulse or Monitor.PulseAll to move them to the ready queue.

So, in practice, when your pool threads are inactive, they sit in the wait queue. As a new work
item arrives, a dispatcher obtains the lock and calls Monitor.Pulse, moving one worker thread to the
ready queue, where it will obtain the lock as soon as the dispatcher releases it. The worker thread
takes the work item, releases the lock, and processes the work item. Once the worker thread has
finished with the work item, it again obtains the lock in order to take the next work item, but if there
is no work item to process, the thread calls Monitor.Wait and goes back to the wait queue.

The Code

The following example demonstrates how to synchronize access to a shared resource (the console)
and the activation of waiting threads using the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll
methods. The example starts three worker threads that take work items from a queue and processes
them. These threads initially have no work items and are put into a wait state using Monitor.Wait.
When the user presses Enter the first two times, work items (strings in the example) are added to the
work queue, and Monitor.Pulse is called to release one waiting thread for each work item. The third
time the user presses Enter, Monitor.PulseAll is called, releasing all waiting threads and allowing
them to terminate.

Imports System
Imports System.Threading
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_08

 ' Declare an object for synchronization of access to the console.
 ' A shared object is used because you are using it in shared methods.
 Private Shared consoleGate As New Object

 ' Declare a Queue to represent the work queue.
 Private Shared workQueue As New Queue(Of String)

 ' Declare a flag to indicate to activated threads that they should
 ' terminate and not process more work items.
 Private Shared workItemsProcessed As Boolean = False

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)

 SyncLock consoleGate
 Console.WriteLine("[{0,3}/{1}] - {2} : {3}", ➥
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, ➥
"pool", "fore"), DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End SyncLock

 End Sub

Herman_970-5C04.fm Page 156 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 157

 ' Declare the method that will be executed by each thread to process
 ' items from the work queue.
 Private Shared Sub ProcessWorkItems()

 ' A local variable to hold the work item taken from the work queue.
 Dim workItem As String = Nothing

 TraceMsg("Thread started, processing items from the queue...")

 ' Process items from the work queue until termination is signaled.
 While Not workItemsProcessed
 ' Obtain the lock on the work queue.
 Monitor.Enter(workQueue)

 Try
 ' Pop the next work item and process it, or wait if none
 ' are available.
 If workQueue.Count = 0 Then
 TraceMsg("No work items, waiting...")

 ' Wait until Pulse is called on the workQueue object.
 Monitor.Wait(workQueue)
 Else
 ' Obtain the next work item.
 workItem = workQueue.Dequeue
 End If
 Catch
 Finally
 ' Always release the lock.
 Monitor.Exit(workQueue)
 End Try

 ' Process the work item if one was obtained.
 If Not workItem Is Nothing Then
 ' Obtain a lock on the console and display a series
 ' of messages.
 SyncLock consoleGate
 For i As Integer = 0 To 4
 TraceMsg("Processing " & workItem)
 Thread.Sleep(200)
 Next
 End SyncLock

 ' Reset the status of the local variable.
 workItem = Nothing
 End If
 End While

 ' This will be reached only if workItemsProcessed is true.
 TraceMsg("Terminating.")
 End Sub

Herman_970-5C04.fm Page 157 Wednesday, February 27, 2008 8:17 AM

158 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 Public Shared Sub Main()

 TraceMsg("Starting worker threads.")

 ' Add an initial work item to the work queue.
 SyncLock workQueue
 workQueue.Enqueue("Work Item 1")
 End SyncLock

 ' Create and start three new worker threads running the
 ' ProcessWorkItems method.
 For count As Integer = 1 To 3
 Dim newThread As New Thread(AddressOf ProcessWorkItems)
 newThread.Start()
 Next

 Thread.Sleep(1500)

 ' The first time the user presses Enter, add a work item and
 ' activate a single thread to process it.
 TraceMsg("Press Enter to pulse one waiting thread.")
 Console.ReadLine()

 ' Acquire a lock on the workQueue object.
 SyncLock workQueue
 ' Add a work item.
 workQueue.Enqueue("Work Item 2.")

 ' Pulse 1 waiting thread.
 Monitor.Pulse(workQueue)
 End SyncLock

 Thread.Sleep(2000)

 ' The second time the user presses Enter, add three work items and
 ' activate three threads to process them.
 TraceMsg("Press Enter to pulse three waiting threads.")
 Console.ReadLine()

 ' Acquire a lock on the workQueue object.
 SyncLock workQueue
 ' Add work items to the work queue, and activate worker threads.
 workQueue.Enqueue("Work Item 3.")
 Monitor.Pulse(workQueue)
 workQueue.Enqueue("Work Item 4.")
 Monitor.Pulse(workQueue)
 workQueue.Enqueue("Work Item 5.")
 Monitor.Pulse(workQueue)
 End SyncLock

 Thread.Sleep(3500)

Herman_970-5C04.fm Page 158 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 159

 ' The third time the user presses Enter, signal the worker threads
 ' to terminate and activate them all.
 TraceMsg("Press Enter to pulse all waiting threads.")
 Console.ReadLine()

 ' Acquire a lock on the workQueue object.
 SyncLock workQueue
 ' Signal that threads should terminate.
 workItemsProcessed = True

 ' Pulse all waiting threads.
 Monitor.PulseAll(workQueue)
 End SyncLock

 Thread.Sleep(1000)

 ' Wait to continue.
 TraceMsg("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-9. Synchronize the Execution of Multiple Threads Using
an Event

Problem

You need a mechanism to synchronize the execution of multiple threads in order to coordinate their
activities or access to shared resources.

Solution

Use the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes from the System.Threading
namespace.

How It Works

The EventWaitHandle, AutoResetEvent, and ManualResetEvent classes provide similar functionality.
The EventWaitHandle class is the base class from which the AutoResetEvent and ManualResetEvent
classes are derived. EventWaitHandle inherits directly from System.Threading.WaitHandle and allows
you to create named events. All three event classes allow you to synchronize multiple threads by
manipulating the state of the event between two possible values: signaled and unsignaled.

Threads requiring synchronization call Shared or inherited methods of the WaitHandle abstract
base class (summarized in Table 4-2) to test the state of one or more event objects. If the events are
signaled when tested, the thread continues to operate unhindered. If the events are unsignaled, the

Herman_970-5C04.fm Page 159 Wednesday, February 27, 2008 8:17 AM

160 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

thread enters a WaitSleepJoin state, blocking until one or more of the events become signaled or
when a given time-out expires.

The key differences between the three event classes are how they transition from a signaled to
an unsignaled state and their visibility. Both the AutoResetEvent and ManualResetEvent classes are
local to the process in which they are declared. To signal an AutoResetEvent class, call its Set method,
which will release only one thread that is waiting on the event. The AutoResetEvent class will then
automatically return to an unsignaled state. The code in recipe 4-6 demonstrates how to use an
AutoResetEvent class.

The ManualResetEvent class must be manually switched back and forth between signaled and
unsignaled states using its Set and Reset methods. Calling Set on a ManualResetEvent class will set it
to a signaled state, releasing all threads that are waiting on the event. Only by calling Reset does the
ManualResetEvent class become unsignaled.

You can configure the EventWaitHandle class to operate in a manual or automatic reset mode,
making it possible to act like either the AutoResetEvent class or the ManualResetEvent class. When
you create the EventWaitHandle, you pass a value of the System.Threading.EventResetMode enumer-
ation to configure the mode in which the EventWaitHandle will function; the two possible values are
AutoReset and ManualReset. The unique benefit of the EventWaitHandle class is that it is not constrained
to the local process. When you create an EventWaitHandle class, you can associate a name with it
that makes it accessible to other processes, including nonmanaged Win32 code. This allows you to
synchronize the activities of threads across process and application domain boundaries and synchronize
access to resources that are shared by multiple processes. To obtain a reference to an existing named
EventWaitHandle, call one of the available constructors of the Shared method EventWaitHandle.
OpenExisting, and specify the name of the event.

The Code

The following example demonstrates how to use a named EventWaitHandle in manual mode that is
initially signaled. A thread is spawned that waits on the event and then displays a message to the
console—repeating the process every 2 seconds. When you press Enter, you toggle the event between a

Table 4-2. WaitHandle Methods for Synchronizing Thread Execution

Method Description

WaitOne Causes the calling thread to enter a WaitSleepJoin state and wait for a specific
WaitHandle derived object to be signaled. You can also specify a time-out
value. The WaitingExample method in recipe 4-2 demonstrates how to use the
WaitOne method.

WaitAny A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for any one of the objects in a WaitHandle array to be signaled. You
can also specify a time-out value.

WaitAll A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for all the WaitHandle objects in a WaitHandle array to be signaled.
You can also specify a time-out value. The WaitAllExample method in recipe
4-2 demonstrates how to use the WaitAll method.

SignalAndWait A Shared method that causes the calling thread to signal a specified event
object and then wait on a specified event object. The signal and wait operations
are carried out as an atomic operation. You can also specify a time-out value.

Herman_970-5C04.fm Page 160 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 161

signaled and an unsignaled state. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-13.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_09

 ' Boolean to signal that the second thread should terminate.
 Public Shared terminate As Boolean = False

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' Declare the method that will be executed on the separate thread.
 ' The method waits on the EventWaitHandle before displaying a message
 ' to the console and then waits two seconds and loops.
 Private Shared Sub DisplayMessage()

 ' Obtain a handle to the EventWaitHandle with the name "EventExample".
 Dim eventHandle As EventWaitHandle = ➥
EventWaitHandle.OpenExisting("EventExample")

 TraceMsg("DisplayMessage Started.")

 While Not terminate
 ' Wait on the EventWaitHandle, time-out after two seconds. WaitOne
 ' returns true if the event is signaled; otherwise, false. The
 ' first time through, the message will be displayed immediately
 ' because the EventWaitHandle was created in a signaled state.
 If eventHandle.WaitOne(2000, True) Then
 TraceMsg("EventWaitHandle In Signaled State.")
 Else
 TraceMsg("WaitOne Time Out -- EventWaitHandle In" & ➥
"Unsignaled State.")
 End If
 Thread.Sleep(2000)
 End While

 TraceMsg("Thread Terminating.")
 End Sub

 Public Shared Sub Main()

 ' Create a new EventWaitHandle with an initial signaled state, in
 ' manual mode, with the name "EventExample".
 Using eventHandle As New EventWaitHandle(True, ➥

Herman_970-5C04.fm Page 161 Wednesday, February 27, 2008 8:17 AM

162 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

EventResetMode.ManualReset, "EventExample")
 ' Create and start a new thread running the DisplayMessage
 ' method.
 TraceMsg("Starting DisplayMessageThread.")
 Dim newThread As New Thread(AddressOf DisplayMessage)
 newThread.Start()

 ' Allow the EventWaitHandle to be toggled between a signaled and
 ' unsignaled state up to three times before ending.
 For count As Integer = 1 To 3
 ' Wait for Enter to be pressed.
 Console.ReadLine()

 ' You need to toggle the event. The only way to know the
 ' current state is to wait on it with a 0 (zero) time-out
 ' and test the result.
 If eventHandle.WaitOne(0, True) Then
 TraceMsg("Switching Event To UnSignaled State.")

 ' Event is signaled, so unsignal it.
 eventHandle.Reset()
 Else
 TraceMsg("Switching Event To Signaled State.")

 ' Event is unsignaled, so signal it.
 eventHandle.Set()
 End If
 Next

 ' Terminate the DisplayMessage thread, and wait for it to
 ' complete before disposing of the EventWaitHandle.
 terminate = True
 eventHandle.Set()
 newThread.Join(5000)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C04.fm Page 162 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 163

4-10. Synchronize the Execution of Multiple Threads Using
a Mutex

Problem

You need to coordinate the activities of multiple threads (possibly across process boundaries) to
ensure the efficient use of shared resources or to ensure several threads are not updating the same
shared resource at the same time.

Solution

Use the System.Threading.Mutex class.

How It Works

The Mutex has a similar purpose to the Monitor discussed in recipe 4-8—it provides a means to ensure
only a single thread has access to a shared resource or section of code at any given time. However,
unlike the Monitor, which is implemented fully within managed code, the Mutex is a wrapper around
an operating system synchronization object. This means you can use a Mutex to synchronize the
activities of threads across process boundaries, even with threads running in nonmanaged Win32
code. If you need to open an existing mutex, you can use the OpenExisting or one of the constructor
overloads that lets you specify a name.

Like the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes discussed in recipe 4-9, the
Mutex is derived from System.Threading.WaitHandle and enables thread synchronization in a similar
fashion. A Mutex is in either a signaled state or an unsignaled state. A thread acquires ownership of
the Mutex at construction or by using one of the methods listed earlier in Table 4-2. If a thread has
ownership of the Mutex, the Mutex is unsignaled, meaning other threads will block if they try to acquire
ownership. Ownership of the Mutex is released by the owning thread calling the Mutex.ReleaseMutex
method, which signals the Mutex and allows another thread to acquire ownership. A thread may
acquire ownership of a Mutex any number of times without problems, but it must release the Mutex
an equal number of times to free it and make it available for another thread to acquire. If the thread
with ownership of a Mutex terminates normally, the Mutex automatically becomes signaled, allowing
another thread to acquire ownership.

The Code

The following example demonstrates how to use a named Mutex to limit access to a shared resource
(the console) to a single thread at any given time. This example uses the Join keyword to cause the
application’s execution to wait until the thread terminates. Join is covered in more detail in recipe
4-13.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_10

 ' Boolean to signal that the second thread should terminate.
 Public Shared terminate As Boolean = False

Herman_970-5C04.fm Page 163 Wednesday, February 27, 2008 8:17 AM

164 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' Declare the method that will be executed on the separate thread.
 ' In a loop the method waits to obtain a Mutex before displaying a
 ' a message to the console and then waits one second before releasing
 ' the Mutex.
 Private Shared Sub DisplayMessage()

 ' Obtain a handle to the Mutex with the name MutexExample.
 ' Do not attempt to take ownership immediately.
 Using newMutex As New Mutex(False, "MutexExample")
 TraceMsg("Thread Started.")

 While Not terminate
 ' Wait on the Mutex.
 newMutex.WaitOne()

 TraceMsg("Thread owns the Mutex.")
 Thread.Sleep(1000)
 TraceMsg("Thread releasing the Mutex.")

 ' Release the Mutex.
 newMutex.ReleaseMutex()

 ' Sleep a little to give another thread a good chance of
 ' acquiring the Mutex.
 Thread.Sleep(100)
 End While
 TraceMsg("Thread terminating.")
 End Using

 End Sub

 Public Shared Sub Main()

 TraceMsg("Starting threads -- press Enter to terminate.")

 ' Create and start three new threads running the
 ' DisplayMessage method.
 Dim thread1 As New Thread(AddressOf DisplayMessage)
 Dim thread2 As New Thread(AddressOf DisplayMessage)
 Dim thread3 As New Thread(AddressOf DisplayMessage)

 thread1.Start()
 thread2.Start()
 thread3.Start()

Herman_970-5C04.fm Page 164 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 165

 ' Wait for Enter to be pressed.
 Console.ReadLine()

 ' Terminate the DisplayMessage threads, and wait for them to
 ' complete before disposing of the Mutex.
 terminate = True
 thread1.Join(5000)
 thread2.Join(5000)
 thread3.Join(5000)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-11. Synchronize the Execution of Multiple Threads Using
a Semaphore

Problem

You need to control the number of threads that can access a shared resource or section of code
concurrently.

Solution

Use the System.Threading.Semaphore class.

How It Works

The Semaphore is another synchronization class derived from the System.Threading.WaitHandle
class. The purpose of the Semaphore is to allow a specified maximum number of threads to access a
shared resource or section of code concurrently.

As with the other synchronization classes derived from WaitHandle (discussed in recipes 4-9 and
4-10), a Semaphore is either in a signaled state or in an unsignaled state. Threads wait for the Semaphore
to become signaled using the methods described earlier in Table 4-2. The Semaphore maintains a
count of the active threads it has allowed through and automatically switches to an unsignaled state
once the maximum number of threads is reached. The Release method of the Semaphore object is
used to signal the Semaphore, allowing other waiting threads the opportunity to act. A thread may
acquire ownership of the Semaphore more than once, reducing the maximum number of threads that
can be active concurrently, and must call Release the same number of times to fully release it. To
make things a little easier, the Release method includes an overload that allows you to specify the
number of threads that should be released.

The Code

The following example demonstrates how to use a named Semaphore to limit access to a shared resource
(the console) to two threads at any given time. The code is similar to that used in recipe 4-10 but

Herman_970-5C04.fm Page 165 Wednesday, February 27, 2008 8:17 AM

166 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

substitutes a Semaphore for the Mutex. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-13.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_11

 ' Boolean to signal that the second thread should terminate.
 Public Shared terminate As Boolean = False

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' Declare the method that will be executed on the separate thread.
 ' In a loop the method waits to obtain a Semaphore before displaying a
 ' a message to the console and then waits one second before releasing
 ' the Semaphore.
 Private Shared Sub DisplayMessage()

 ' Obtain a handle to the Semaphore, created in main, with the name
 ' SemaphoreExample. Do not attempt to take ownership immediately.
 Using sem As Semaphore = Semaphore.OpenExisting("SemaphoreExample")
 TraceMsg("Thread Started.")

 While Not terminate
 ' Wait on the Semaphore.
 sem.WaitOne()

 TraceMsg("Thread owns the Semaphore.")
 Thread.Sleep(1000)
 TraceMsg("Thread releasing the Semaphore.")

 ' Release the Semaphore.
 sem.Release()

 ' Sleep a little to give another thread a good chance of
 ' acquiring the Semaphore.
 Thread.Sleep(100)
 End While
 TraceMsg("Thread terminating.")
 End Using

 End Sub

 Public Shared Sub Main()

Herman_970-5C04.fm Page 166 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 167

 ' Create a new Semaphore with the name SemaphoreExample.
 Using sem As New Semaphore(2, 2, "SemaphoreExample")
 TraceMsg("Starting threads -- press Enter to terminate.")

 ' Create and start three new threads running the
 ' DisplayMessage method.
 Dim thread1 As New Thread(AddressOf DisplayMessage)
 Dim thread2 As New Thread(AddressOf DisplayMessage)
 Dim thread3 As New Thread(AddressOf DisplayMessage)

 thread1.Start()
 thread2.Start()
 thread3.Start()

 ' Wait for Enter to be pressed.
 Console.ReadLine()

 ' Terminate the DisplayMessage threads, and wait for them to
 ' complete before disposing of the Semaphore.
 terminate = True
 thread1.Join(5000)
 thread2.Join(5000)
 thread3.Join(5000)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-12. Synchronize Access to a Shared Data Value

Problem

You need to ensure operations on a numeric data value are executed atomically so that multiple
threads accessing the value do not cause errors or corruption.

Solution

Use the Shared members of the System.Threading.Interlocked class.

How It Works

The Interlocked class contains several Shared methods that perform some simple arithmetic and
comparison operations on a variety of data types and ensure the operations are carried out atomi-
cally. Table 4-3 summarizes the methods and the data types on which they can be used. Note that
the methods use the ByRef keyword on their arguments to allow the method to update the value of

Herman_970-5C04.fm Page 167 Wednesday, February 27, 2008 8:17 AM

168 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

the actual value type variable passed in. If an operation (such as subtraction) you want to perform is
not supported by the Interlocked class, you will need to implement your own synchronization using
the other approaches described in this chapter.

The Code

The following simple example demonstrates how to use the methods of the Interlocked class. The
example does not demonstrate Interlocked in the context of a multithreaded program and is provided
only to clarify the syntax and effect of the various methods.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_12

 Public Shared Sub Main()

 Dim firstInt As Integer = 2500
 Dim secondInt As Integer = 8000

 Console.WriteLine("firstInt initial value = {0}", firstInt)
 Console.WriteLine("secondInt initial value = {0}", secondInt)

 ' Decrement firstInt in a thread-safe manner. This is
 ' the thread-safe equivalent of firstInt = firstInt - 1.
 Interlocked.Decrement(firstInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after decrement = {0}", firstInt)

 ' Increment secondInt in a thread-safe manner. This is
 ' the thread-safe equivalent of secondInt = secondInt + 1.
 Interlocked.Increment(secondInt)

Table 4-3. Interlocked Methods for Synchronizing Data Access

Method Description

Add Adds two Integer or Long values and sets the value of the first argument to
the sum of the two values.

CompareExchange Compares two values; if they are the same, sets the first argument to a
specified value. This method has overloads to support the comparison
and exchange of Integer, Long, Single, Double, Object, and System.IntPtr.

Decrement Decrements an Integer or Long value.

Exchange Sets the value of a variable to a specified value. This method has overloads
to support the exchange of Integer, Long, Single, Double, Object, and
System.IntPtr.

Increment Increments an Integer or Long value.

Herman_970-5C04.fm Page 168 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 169

 Console.WriteLine("secondInt after increment = {0}", secondInt)

 ' Add the firstInt and secondInt values, and store the result
 ' in firstInt. This is the thread-safe equivalent of firstInt
 ' = firstInt + secondInt.
 Interlocked.Add(firstInt, secondInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after Add = {0}", firstInt)
 Console.WriteLine("secondInt after Add = {0}", secondInt)

 ' Exchange the value of firstInt with secondInt. This is the
 ' thread-safe equivalent of secondInt = firstInt.
 Interlocked.Exchange(secondInt, firstInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after Exchange = {0}", firstInt)
 Console.WriteLine("secondInt after Exchange = {0}", secondInt)

 ' Compare firstInt with secondInt, and if they are equal, set
 ' firstInt to 5000. This is the thread-safe equivalent of
 ' if firstInt = secondInt then firstInt = 5000.
 Interlocked.CompareExchange(firstInt, 5000, secondInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after CompareExchange = {0}", firstInt)
 Console.WriteLine("secondInt after CompareExchange = {0}", secondInt)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-13. Know When a Thread Finishes

Problem

You need to know when a thread has finished.

Solution

Use the IsAlive property or the Join method of the Thread class.

How It Works

The easiest way to test whether a thread has finished executing is to test the Thread.IsAlive property.
The IsAlive property returns True if the thread has been started but has not terminated or been
aborted. The IsAlive property provides a simple test to see whether a thread has finished executing,

Herman_970-5C04.fm Page 169 Wednesday, February 27, 2008 8:17 AM

170 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

but commonly you will need one thread to wait for another thread to complete its processing. Instead of
testing IsAlive in a loop, which is inefficient, you can use the Thread.Join method.

Join causes the calling thread to block until the referenced thread terminates, at which point the
calling thread will continue. You can optionally specify an Integer or a TimeSpan value that specifies
the time, after which the Join operation will time out and execution of the calling thread will resume.
If you specify a time-out value, Join returns True if the thread terminated and returns False if Join
timed out.

The Code

The following example executes a second thread and then calls Join (with a time-out of 2 seconds)
to wait for the second thread to terminate. Because the second thread takes about 5 seconds to
execute, the Join method will always time out, and the example will display a message to the console.
The example then calls Join again without a time-out and blocks until the second thread terminates.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_13

 Private Shared Sub DisplayMessage()

 ' Display a message to the console 5 times.
 For count As Integer = 1 To 5
 Console.WriteLine("{0} : DisplayMessage thread", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Sleep for 1 second.
 Thread.Sleep(1000)
 Next
 End Sub

 Public Shared Sub Main()

 ' Create a new Thread to run the DisplayMessage method.
 Dim newThread As New Thread(AddressOf DisplayMessage)

 Console.WriteLine("{0} : Starting DisplayMessage thread.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Start the DisplayMessage thread.
 newThread.Start()

 ' Block until the DisplayMessage thread finishes, or time-out after
 ' 2 seconds.
 If Not newThread.Join(2000) Then
 Console.WriteLine("{0} : Join timed out !!", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 End If

Herman_970-5C04.fm Page 170 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 171

 ' Block again until the DisplayMessage thread finishes with
 ' no time-out.
 newThread.Join()

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-14. Terminate the Execution of a Thread

Problem

You need to terminate an executing thread without waiting for it to finish on its own accord.

Solution

Call the Abort method of the Thread object you want to terminate.

How It Works

It is better to write your code so that you can signal to a thread that it should shut down and allow it
to terminate naturally. Recipes 4-8, 4-9, and 4-10 demonstrate this technique (using a Boolean flag).
However, sometimes you will want a more direct method of terminating an active thread.

Calling Abort on an active Thread object terminates the thread by throwing a System.Threading.
ThreadAbortException in the code that the thread is running. You can pass an object as an argument
to the Abort method, which is accessible to the aborted thread through the ExceptionState property
of the ThreadAbortException. When called, Abort returns immediately, but the runtime determines
exactly when the exception is thrown, so you cannot assume the thread has terminated when Abort
returns. You should use the techniques described in recipe 4-13 if you need to determine when the
aborted thread is actually finished.

The aborted thread’s code can catch the ThreadAbortException to perform cleanup, but the
runtime will automatically throw the exception again when exiting the Catch block to ensure that the
thread terminates. So, you should not write code after the Catch block because it will never execute.
However, calling the Shared Thread.ResetAbort in the Catch block will cancel the abort request and
exit the Catch block, allowing the thread to continue executing. Once you abort a thread, you cannot
restart it by calling Thread.Start.

■Tip An alternative to using the Abort method is to use a member variable. The thread should check the variable
when appropriate. When you need to, set this variable to instruct the thread to end gracefully. This method offers a
little more control than Abort.

The Code

The following example creates a new thread that continues to display messages to the console until
you press Enter, at which point the thread is terminated by a call to Thread.Abort.

Herman_970-5C04.fm Page 171 Wednesday, February 27, 2008 8:17 AM

172 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_14

 Private Shared Sub Displaymessage()

 Try
 While True
 ' Display a message to the console.
 Console.WriteLine("{0} : DisplayMessage thread active", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Sleep for 1 second.
 Thread.Sleep(1000)
 End While
 Catch ex As ThreadAbortException
 ' Display a message to the console.
 Console.WriteLine("{0} : DisplayMessage thread terminating - {1}", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"), DirectCast(ex.ExceptionState, String))

 ' Call Thread.ResetAbort here to cancel the abort request.
 End Try

 ' This code is never executed unless Thread.ResetAbort is
 ' called in the previous catch block.
 Console.WriteLine("{0} : nothing is called after the catch block", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 End Sub

 Public Shared Sub Main()

 ' Create a new Thread to run the DisplayMessage method.
 Dim newThread As New Thread(AddressOf Displaymessage)

 Console.WriteLine("{0} : Starting DisplayMessage thread - press " & ➥
"Enter to terminate.", DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Start the DisplayMessage thread.
 newThread.Start()

 ' Wait until Enter is pressed and terminate the thread.
 System.Console.ReadLine()

 newThread.Abort("User pressed Enter")

 ' Block again until the DisplayMessage thread finishes.
 newThread.Join()

Herman_970-5C04.fm Page 172 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 173

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-15. Create a Thread-Safe Collection Instance

Problem

You need multiple threads to be able to safely access the contents of a collection concurrently.

Solution

Use SyncLock statements in your code to synchronize thread access to the collection, or to access the
collection through a thread-safe wrapper.

How It Works

By default, the standard collection classes from the System.Collections, System.Collections.
Specialized, and System.Collections.Generic namespaces will support multiple threads reading
the collection’s content concurrently. However, if more than one of these threads tries to modify the
collection, you will almost certainly encounter problems. This is because the operating system can
interrupt the actions of the thread while modifications to the collection have been only partially
applied. This leaves the collection in an indeterminate state, which could cause another thread
accessing the collection to fail, return incorrect data, or corrupt the collection.

■Note Using thread synchronization introduces a performance overhead. Making collections non-thread-safe by
default provides better performance for the vast majority of situations where multiple threads are not used.

The most commonly used collections from the System.Collections namespace implement a
Shared method named Synchronized; this includes only the ArrayList, Hashtable, Queue, SortedList,
and Stack classes. The Synchronized method takes a collection object of the appropriate type as an
argument and returns an object that provides a synchronized wrapper around the specified collec-
tion object. The wrapper object is returned as the same type as the original collection, but all the
methods and properties that read and write the collection ensure that only a single thread has access
to the initial collection content concurrently. You can test whether a collection is thread-safe using
the IsSynchronized property. Once you get the wrapper, you should neither access the initial collec-
tion nor create a new wrapper; both result in a loss of thread safety.

The collection classes such as HybridDictionary, ListDictionary, and StringCollection from
the System.Collections.Specialized namespace do not implement a Synchronized method. To
provide thread-safe access to instances of these classes, you must implement manual synchroniza-
tion using the Object returned by their SyncRoot property. This property and IsSynchronized are
both defined by the ICollection interface that is implemented by all collection classes from System.
Collections and System.Collections.Specialized (except BitVector32). You can therefore synchro-
nize all your collections in a fine-grained way.

Herman_970-5C04.fm Page 173 Wednesday, February 27, 2008 8:17 AM

174 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

However, the classes in the System.Collections.Generic namespace provide no built-in
synchronization mechanisms, leaving it to you to implement thread synchronization manually
using the techniques discussed in this chapter.

■Caution Often you will have multiple collections and data elements that are related and need to be updated
atomically. In these instances, you should not use the synchronization mechanisms provided by the individual
collection classes. This approach will introduce synchronization problems, such as deadlocks and race conditions.
You must decide which collections and other data elements need to be managed atomically and use the techniques
described in this chapter to synchronize access to these elements as a unit.

The Code

The following code snippet shows how to create a thread-safe Hashtable instance:

' Create a standard Hashtable.
Dim hUnsync As New Hashtable

' Create a synchronized wrapper.
Dim hSync = Hashtable.Synchronized(hUnsync)

The following code snippet shows how to create a thread-safe NameValueCollection. Notice that
the NameValueCollection class derives from the NameObjectCollectionBase class, which uses an explicit
interface implementation to implement the ICollection.SyncRoot property. As shown, you must
cast the NameValueCollection to an ICollection instance before you can access the SyncRoot prop-
erty. Casting is not necessary with other specialized collection classes such as HybridDictionary,
ListDictionary, and StringCollection, which do not use explicit interface implementation to
implement SyncRoot.

' Create a NameValueCollection.
Dim nvCollection As New NameValueCollection

' Obtain a lock on the NameValue collection before modification.
SyncLock DirectCast(nvCollection, ICollection).SyncRoot
 ...
End SyncLock

4-16. Start a New Process

Problem

You need to execute an application in a new process.

Solution

Call one of the Shared Start method overloads of the System.Diagnostics.Process class. Specify the
configuration details of the process you want to start as individual arguments to the Start method
or in a System.Diagnostics.ProcessStartInfo object that you pass to the Start method.

Herman_970-5C04.fm Page 174 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 175

How It Works

The Process class provides a managed representation of an operating system process and offers a
simple mechanism through which you can execute both managed and unmanaged applications.
The Process class implements five Shared overloads of the Start method, which you use to start a
new process. All these methods return a Process object that represents the newly started process.
Two of these overloads are methods that allow you to specify only the path and arguments to pass to
the new process. For example, the following statements both execute Notepad in a new process:

' Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe")

' Execute notepad.exe passing the name of the file to open as a
' command-line argument.
Process.Start("notepad.exe", "SomeFile.txt")

Two other overloads allow you to specify the name of a Windows user who the process should
run as. You must specify the username, password, and Windows domain. The password is specified
as a System.Security.SecureString for added security. (See recipe 13-18 for more information about
the SecureString class.) Here is an example:

Dim mySecureString As New System.Security.SecureString

' Obtain a password and place it in SecureString (see recipe 13-18).

' Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe", "Todd", mySecureString, "MyDomain")

' Execute notepad.exe passing the name of the file to open as a
' command-line argument.
Process.Start("notepad.exe", "SomeFile.txt", "Todd", mySecureString, "MyDomain")

The remaining Shared overload requires you to create a ProcessStartInfo object configured
with the details of the process you want to run. Using the ProcessStartInfo object provides greater
control over the behavior and configuration of the new process. Table 4-4 summarizes some of the
commonly used properties of the ProcessStartInfo class.

Table 4-4. Properties of the ProcessStartInfo Class

Property Description

Arguments The command-line arguments to pass to the new process.

Domain A String containing the Windows domain name to which the user belongs.

ErrorDialog If Process.Start cannot start the specified process, it will throw a
System.ComponentModel.Win32Exception. If ErrorDialog is True, Start
displays an error dialog box to the user before throwing the exception.

FileName The path, or just the name if it is in the same directory as the executable,
of the application to start. You can also specify any type of file for which
you have configured an application association. For example, you could
specify a file with a .doc or an .xls extension, which would cause Microsoft
Word or Microsoft Excel to run.

LoadUserProfile A Boolean indicating whether the user’s profile should be loaded from
the registry when the new process is started. This is used if you need to
access information from the HKEY_CURRENT_USER registry key.

Herman_970-5C04.fm Page 175 Wednesday, February 27, 2008 8:17 AM

176 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

It is also possible to create and view information on processes running on a remote computer.
This is accomplished by creating an instance of a Process class and specifying the target computer
name. You can also use the Shared methods GetProcessById, GetProcessByName and GetProcesses.
Each method returns a Process object (or an array of Process objects) and has an overload that takes
the name of the target computer.

When finished with a Process object, you should dispose of it in order to release system resources—
call Close, call Dispose, or create the Process object within the scope of a Using statement.

■Note Disposing of a Process object does not affect the underlying system process, which will continue to run.

The Code

The following example uses Process to execute Notepad in a maximized window and open a file
named C:\Temp\file.txt. After creation, the example calls the Process.WaitForExit method, which
blocks the calling thread until a process terminates or a specified time-out expires. This method
returns True if the process ends before the time-out and returns False otherwise.

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_16

 Public Shared Sub Main()

 ' Create a ProcessStartInfo object and configure it with the
 ' information required to run the new process.
 Dim startInfo As New ProcessStartInfo

 startInfo.FileName = "notepad.exe"
 startInfo.Arguments = "file.txt"
 startInfo.WorkingDirectory = "C:\Temp"
 startInfo.WindowStyle = ProcessWindowStyle.Maximized
 startInfo.ErrorDialog = True

Password A SecureString containing the password of the user.

UserName A String containing the name of the user to use when starting the process.

WindowStyle A member of the System.Diagnostics.ProcessWindowStyle enumeration,
which controls how the window is displayed. Valid values include
Hidden, Maximized, Minimized, and Normal.

WorkingDirectory The fully qualified name of the initial directory for the new process.

Table 4-4. Properties of the ProcessStartInfo Class (Continued)

Property Description

Herman_970-5C04.fm Page 176 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 177

 ' Declare a new process object.
 Dim newProcess As Process

 Try
 ' Start the new process.
 newProcess = Process.Start(startInfo)

 ' Wait for the new process to terminate before exiting.
 Console.WriteLine("Waiting 30 seconds for process to finish.")

 If newProcess.WaitForExit(30000) Then
 Console.WriteLine("Process terminated.")
 Else
 Console.WriteLine("Timed out waiting for process to end.")
 End If
 Catch ex As Exception
 Console.WriteLine("Could not start process.")
 Console.WriteLine(ex)
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-17. Terminate a Process

Problem

You need to terminate a process such as an application or a service.

Solution

Obtain a Process object representing the operating system process you want to terminate. For
Windows-based applications, call Process.CloseMainWindow to send a close message to the applica-
tion’s main window. For Windows-based applications that ignore CloseMainWindow, or for non-
Windows-based applications, call the Process.Kill method.

How It Works

If you start a new process from managed code using the Process class (discussed in recipe 4-16), you
can terminate the process using the Process object that represents the new process. You can also
obtain Process objects that refer to other currently running processes using the Shared methods of
the Process class summarized in Table 4-5.

As mentioned in recipe 4-16, you can obtain a Process object that refers to a process running on
a remote computer. However, you can only view information regarding remote processes. The Kill
and CloseMainWindow methods work only on local processes.

Herman_970-5C04.fm Page 177 Wednesday, February 27, 2008 8:17 AM

178 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

Once you have a Process object representing the process you want to terminate, you need to call
either the CloseMainWindow method or the Kill method. The CloseMainWindow method posts a WM_CLOSE
message to a Windows-based application’s main window. This method has the same effect as if the
user had closed the main window using the system menu, and it gives the application the opportu-
nity to perform its normal shutdown routine. CloseMainWindow will not terminate applications that do
not have a main window or applications with a disabled main window—possibly because a modal
dialog box is currently displayed. Under such circumstances, CloseMainWindow will return False.

CloseMainWindow returns True if the close message was successfully sent, but this does not guar-
antee that the process is actually terminated. For example, applications used to edit data typically
give the user the opportunity to save unsaved data if a close message is received. The user usually has
the chance to cancel the close operation under such circumstances. This means CloseMainWindow
will return True, but the application will still be running once the user cancels. You can use the
Process.WaitForExit method to signal process termination and the Process.HasExited property to
test whether a process has terminated. Alternatively, you can use the Kill method.

The Kill method simply terminates a process immediately; the user has no chance to stop the
termination, and all unsaved data is lost. Kill is the only option for terminating Windows-based applica-
tions that do not respond to CloseMainWindow and for terminating non-Windows-based applications.

The Code

The following example starts a new instance of Notepad, waits 5 seconds, and then terminates the
Notepad process. The example first tries to terminate the process using CloseMainWindow. If
CloseMainWindow returns False, or the Notepad process is still running after CloseMainWindow is
called, the example calls Kill and forces the Notepad process to terminate. You can force
CloseMainWindow to return False by leaving the File Open dialog box open.

Imports System
Imports System.Threading
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_17

 Public Shared Sub Main()

Table 4-5. Methods for Obtaining Process References

Method Description

GetCurrentProcess Returns a Process object representing the currently active process.

GetProcessById Returns a Process object representing the process with the specified
ID. This is the process ID (PID) you can get using Windows Task
Manager.

GetProcesses Returns an array of Process objects representing all currently active
processes.

GetProcessesByName Returns an array of Process objects representing all currently active
processes with a specified friendly name. The friendly name is the
name of the executable excluding file extension or path; for example,
a friendly name could be notepad or calc.

Herman_970-5C04.fm Page 178 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 179

 ' Create a new Process and run notepad.exe.
 Using newProcess As Process = Process.Start("notepad.exe", ➥
 "C:\SomeFile.txt")
 ' Wait for 5 seconds and terminate the notepad process.
 Console.WriteLine("Waiting 5 seconds before terminating " & ➥
"notepad.exe.")
 Thread.Sleep(5000)

 ' Terminate notepad process.
 Console.WriteLine("Terminating Notepad with CloseMainWindow.")

 ' Try to send a close message to the main window.
 If Not newProcess.CloseMainWindow Then
 ' Close message did not get sent - Kill Notepad.
 Console.WriteLine("CloseMainWindow returned false - " & ➥
"terminating Notepad with Kill.")
 newProcess.Kill()
 Else
 ' Close message sent successfully. Wait for 2 seconds
 ' for termination confirmation before resorting to kill.
 If Not newProcess.WaitForExit(2000) Then
 Console.WriteLine("CloseMaineWindow failed to " & ➥
"terminate - terminating Notepad with Kill.")
 newProcess.Kill()
 End If
 End If
 End Using

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-18. Ensure That Only One Instance of an Application Can
Execute Concurrently

Problem

You need to ensure that a user can have only one instance of an application running concurrently.

Solution

Create a named System.Threading.Mutex object, and have your application try to acquire ownership
of it at startup.

Herman_970-5C04.fm Page 179 Wednesday, February 27, 2008 8:17 AM

180 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

How It Works

The Mutex provides a mechanism for synchronizing the execution of threads across process bound-
aries and also provides a convenient mechanism through which to ensure that only a single instance
of an application is running concurrently. By trying to acquire ownership of a named Mutex at startup
and exiting if the Mutex cannot be acquired, you can ensure that only one instance of your applica-
tion is running. Refer to recipe 4-10 for further information on the Mutex class.

The Code

This example uses a Mutex named MutexExample to ensure that only a single instance of the example
can execute.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_18

 Public Shared Sub Main()

 ' A Boolean that indicates whether this application has
 ' initial ownership of the Mutex.
 Dim ownsMutex As Boolean

 ' Attempts to create and take ownership of a Mutex named
 ' MutexExample.
 Using newMutex As New Mutex(True, "MutexExample", ownsMutex)
 ' If the application owns the Mutex it can continue to execute;
 ' otherwise, the application should exit.
 If ownsMutex Then
 Console.WriteLine("This application currently owns the " & ➥
"mutex named MutexExample. Additional instances of this application will not " & ➥
"run until you release the mutex by pressing Enter.")

 Console.ReadLine()

 ' Release the mutex.
 newMutex.ReleaseMutex()
 Else
 Console.WriteLine("Another instance of this application " & ➥
"already owns the mutex named MutexExample. This instance of the application " & ➥
"will terminate.")
 End If
 End Using

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class

End Namespace

Herman_970-5C04.fm Page 180 Wednesday, February 27, 2008 8:17 AM

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 181

■Note If you do not construct the Mutex in a Using statement and encapsulate the body of your application in
the body of the Using block as shown in this example, in long-running applications, the garbage collector may
dispose of the Mutex if it is not referenced after initial creation. This will result in releasing the Mutex and allowing
additional instances of the application to execute concurrently. In these circumstances, you should include the
statement System.GC.KeepAlive(mutex) to ensure the reference to the Mutex class is not garbage collected.
Thanks to Michael A. Covington for highlighting this possibility.

Herman_970-5C04.fm Page 181 Wednesday, February 27, 2008 8:17 AM

Herman_970-5C04.fm Page 182 Wednesday, February 27, 2008 8:17 AM

183

■ ■ ■

C H A P T E R 5

Files, Directories, and I/O

The Microsoft .NET Framework I/O classes fall into two basic categories. First are the classes that
retrieve information from the file system and allow you to perform file system operations such as
copying files and moving directories. Two examples are the FileInfo and the DirectoryInfo classes.
The second, and possibly more important, category includes a broad range of classes that allow you
to read and write data from all types of streams. Streams can correspond to binary or text files, a file
in an isolated store, a network connection, or even a memory buffer. In all cases, the way you interact
with a stream is the same.

The primary namespace for .NET Framework I/O operations is System.IO; however, .NET offers
VB .NET programmers another option in the form of the My object. My, located in the Microsoft.
VisualBasic assembly, is a highly versatile object that encapsulates common functionality, including
I/O operations, into several root classes. These classes provide quick and easy access to common
functionality. Table 5-1 lists the main root classes of My.

Table 5-1. Main Root Objects of My

Object Description

Application Provides access to information and methods related to the current application.

Computer Provides access to information and methods for various computer-related
objects. This object contains the following child objects: Audio, Clipboard,
Clock, FileSystem, Info, Keyboard, Mouse, Network, Ports, and Registry.

Forms Provides access to information and methods related to the forms contained in
your project.

Resources Provides access to information and methods related to any resources
contained in your project.

Settings Provides access to information and methods related to your application settings.

User Provides access to information and methods related to the current user.

WebServices Provides access to information and methods related to any web services
contained in your application.

Herman_970-5C05.fm Page 183 Thursday, February 28, 2008 8:28 AM

184 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

The classes available to the My object are determined by the current project. For example, if you
are creating a web control or web site, the My.Forms class will not be accessible. Refer to the .NET
Framework software development kit (SDK) documentation for more details on the availability of My
classes and for instructions on how this availability can be customized by using special compiler
constants.

This chapter describes how to use the various file system and stream-based classes provided by
the System.IO namespace and the My.Microsoft.VisualBasic.FileSystem class.

The recipes in this chapter cover the following:

• Retrieving or modifying information about a file, directory, or drive (recipes 5-1, 5-2, 5-4, 5-5,
and 5-17)

• Copying, moving, and deleting files and directories (recipe 5-3)

• Showing a directory tree in a Microsoft Windows-based application and use the common file
dialog boxes (recipes 5-6 and 5-18)

• Reading and writing text and binary files (recipes 5-7 and 5-8)

• Parsing formatted text files (recipe 5-9)

• Reading files asynchronously (recipe 5-10)

• Searching for specific files and test files for equality (recipes 5-11 and 5-12)

• Working with strings that contain path information (recipes 5-13, 5-14, and 5-15)

• Creating temporary files and files in a user-specific isolated store (recipes 5-16 and 5-19)

• Monitoring the file system for changes (recipe 5-20)

• Writing to COM ports (recipe 5-21)

• Generating random filenames (recipe 5-22)

• Retrieving or modifying the access control lists (ACLs) of a file or directory (recipe 5-23)

5-1. Retrieve Information About a File, Directory, or Drive

Problem

You need to retrieve information about a file, directory, or drive.

Solution

Create a new System.IO.FileInfo, System.IO.DirectoryInfo, or System.IO.DriveInfo object, depending
on the type of resource about which you need to retrieve information. Supply the path of the resource to
the constructor, and then you will be able to retrieve information through the properties of the class.

How It Works

To create a FileInfo, DirectoryInfo, or DriveInfo object, you supply a relative or fully qualified path
to the constructor. You can also use the GetFileInfo, GetDirectoryInfo, and GetDriveInfo Shared
methods of the My.Computer.FileSystem. These methods return an instance of a FileInfo,
DirectoryInfo, and DriveInfo object, respectively. You can retrieve information through the corre-
sponding object properties. Table 5-2 lists some of the key members and methods of these objects.

Herman_970-5C05.fm Page 184 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 185

Table 5-2. Key Members for Files, Directories, and Drives

Member Applies To Description

Exists FileInfo and
DirectoryInfo

Returns True or False, depending on whether a
file or a directory exists at the specified location.

Attributes FileInfo and
DirectoryInfo

Returns one or more flag values from the
System.IO.FileAttributes enumeration, which
represents the attributes of the file or the directory.

CreationTime,
LastAccessTime, and
LastWriteTime

FileInfo and
DirectoryInfo

Return System.DateTime instances that describe
when a file or a directory was created, last accessed,
and last updated, respectively.

FullName and Name FileInfo and
DirectoryInfo

Returns a string that represents the full path of
the directory or file or just the file name (with
extension), respectively.

Extension FileInfo Returns a string representing the extension for
the file.

IsReadOnly FileInfo Returns True or False, depending on whether a
file is read-only.

Length FileInfo Returns the file size as a number of bytes.

DirectoryName and
Directory

FileInfo DirectoryName returns the name of the parent
directory as a string. Directory returns a full
DirectoryInfo object that represents the parent
directory and allows you to retrieve more infor-
mation about it.

Parent and Root DirectoryInfo Return a DirectoryInfo object that represents
the parent or root directory.

CreateSubdirectory DirectoryInfo Creates a directory with the specified name in
the directory represented by the DirectoryInfo
object. It also returns a new DirectoryInfo object
that represents the subdirectory.

GetDirectories DirectoryInfo Returns an array of DirectoryInfo objects, with
one element for each subdirectory contained in
this directory.

GetFiles DirectoryInfo Returns an array of FileInfo objects, with one
element for each file contained in this directory.

DriveType DriveInfo Returns a DriveType enumeration value that
represents the type of the specified drive; for
example, Fixed or CDRom.

AvailableFreeSpace DriveInfo Returns a Long that represents the free space
available in the drive.

GetDrives DriveInfo Returns an array of DriveInfo objects that
represents the logical drives in the computer.

Herman_970-5C05.fm Page 185 Thursday, February 28, 2008 8:28 AM

186 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

The following are a few points to note while working with these objects:

• FileInfo and DirectoryInfo classes derive from the abstract FileSystemInfo class, which
defines common methods such as CreationTime, Exists, and so on. The DriveInfo class does
not inherit from this base class, so it does not provide some of the common members avail-
able in the other two classes.

• The full set of properties FileInfo and DirectoryInfo objects expose is read the first time you
interrogate any property. If the file or directory changes after this point, you must call the
Refresh method to update the properties. However, this is not the case for DriveInfo; each
property access asks the file system for an up-to-date value.

• Specifying an invalid path, directory, or drive when using the corresponding My.Computer.
FileSystem methods will throw the appropriate exception. When using the FileInfo,
DirectoryInfo, or DriveInfo classes directly, you will not encounter an error if you specify an
invalid path. Instead, you will receive an object that represents an entity that does not exist—
its Exists (or IsReady property for DriveInfo) property will be False. You can use this object
to manipulate the entity. However, if you attempt to read most other properties, exceptions
such as FileNotFoundException, DirectoryNotFoundException, and so on, will be thrown.

The Code

The following console application takes a file path from a command-line argument, and then
displays information about the file, the containing directory, and the drive.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_01
 Public Shared Sub Main(ByVal args As String)

 If args.Length > 0 Then
 ' Display file information.
 Dim file As FileInfo = New FileInfo(args(0))

 Console.WriteLine("Checking file: " & file.Name)
 Console.WriteLine("File exists: " & file.Exists.ToString)

 If file.Exists Then
 Console.Write("File created: ")
 Console.WriteLine(file.CreationTime.ToString)
 Console.Write("File last updated: ")
 Console.WriteLine(file.LastWriteTime.ToString)
 Console.Write("File last accessed: ")
 Console.WriteLine(file.LastAccessTime.ToString)
 Console.Write("File size: ")
 Console.WriteLine(file.Length.ToString)
 Console.Write("File attribute list: ")
 Console.WriteLine(file.Attributes.ToString)
 End If
 Console.WriteLine()

Herman_970-5C05.fm Page 186 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 187

 ' Display directory information.
 Dim dir As DirectoryInfo = file.Directory

 Console.WriteLine("Checking directory: " & dir.Name)
 Console.WriteLine("In directory: " & dir.Parent.Name)
 Console.Write("Directory exists: ")
 Console.WriteLine(dir.Exists.ToString)

 If dir.Exists Then
 Console.Write("Directory created: ")
 Console.WriteLine(dir.CreationTime.ToString)
 Console.Write("Directory last updated: ")
 Console.WriteLine(dir.LastWriteTime.ToString)
 Console.Write("Directory last accessed: ")
 Console.WriteLine(dir.LastAccessTime.ToString)
 Console.Write("Directory attribute list: ")
 Console.WriteLine(file.Attributes.ToString)
 Console.Write("Directory contains: ")
 Console.WriteLine(dir.GetFiles().Length.ToString & " files")
 End If
 Console.WriteLine()

 ' Display drive information.
 Dim drv As DriveInfo = New DriveInfo(file.FullName)

 Console.Write("Drive: ")
 Console.WriteLine(drv.Name)

 If drv.IsReady Then
 Console.Write("Drive type: ")
 Console.WriteLine(drv.DriveType.ToString)
 Console.Write("Drive format: ")
 Console.WriteLine(drv.DriveFormat.ToString)
 Console.Write("Drive free space: ")
 Console.WriteLine(drv.AvailableFreeSpace.ToString)
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("Please supply a filename.")
 End If

 End Sub

 End Class
End Namespace

Instead of explicitly creating the FileInfo, DirectoryInfo, and DriveInfo class instances, you
can also use the appropriate Shared methods of the My.Computer.FileSystem class, as shown in the
following examples.

Herman_970-5C05.fm Page 187 Thursday, February 28, 2008 8:28 AM

188 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

' Display file information.
Dim file As FileInfo = My.Computer.FileSystem.GetFileInfo(args(0))

' Display directory information.
Dim dir As DirectoryInfo = ➥
My.Computer.FileSystem.GetDirectoryInfo(file.Directory.ToString)

' Display drive information.
Dim drv As DriveInfo = My.Computer.FileSystem.GetDriveInfo(file.FullName)

Usage

If you execute the command Recipe05-01.exe c:\windows\win.ini, you might expect the following
output:

Checking file: win.ini
File exists: True
File created: 11/2/2006 6:23:31 AM
File last updated: 7/29/2007 5:10:17 PM
File last accessed: 11/2/2006 6:23:31 AM
File size (bytes): 219
File attribute list: Archive

Checking directory: windows
In directory: c:\
Directory exists: True
Directory created: 11/2/2006 7:18:34 AM
Directory last updated: 9/24/2007 6:06:52 PM
Directory last accessed: 9/24/2007 6:06:52 PM
Directory attribute list: Archive
Directory contains: 46 files

Drive: c:\
Drive type: Fixed
Drive format: NTFS
Drive free space: 45285109760

Main method complete. Press Enter.

■Note Instead of using the instance methods of the FileInfo and DirectoryInfo classes, you can use the
Shared File and Directory classes (note that a class corresponding to the DriveInfo class does not exist).
The methods of the File and Directory classes, found in the System.IO namespace, expose most of the same
functionality, but they require you to submit the file name or path with every method invocation. In cases where you
need to perform multiple operations with the same file or directory, using the FileInfo and DirectoryInfo
classes will be faster, because they will perform security checks only once. Also note that you could obtain the list
of all logical drives in the computer by using the Shared DriveInfo.GetDrives method.

Herman_970-5C05.fm Page 188 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 189

5-2. Set File and Directory Attributes

Problem

You need to test or modify file or directory attributes.

Solution

Create a System.IO.FileInfo object for a file or a System.IO.DirectoryInfo object for a directory and
use the bitwise And, Or, and Xor operators to modify the value of the Attributes property.

How It Works

The FileInfo.Attributes and DirectoryInfo.Attributes properties represent file attributes such as
archive, system, hidden, read-only, compressed, and encrypted. (Refer to the MSDN reference for
the full list.) Because a file can possess any combination of attributes, the Attributes property accepts a
combination of enumerated values. To individually test for a single attribute or change a single
attribute, you need to use bitwise arithmetic.

■Note The Attributes setting is made up (in binary) of a series of ones and zeros, such as 00010011. Each
1 represents an attribute that is present, while each 0 represents an attribute that is not. When you use a bitwise
And operation, it compares each individual digit against each digit in the enumerated value. For example, if you
bitwise And a value of 00100001 (representing an individual file’s archive and read-only attributes) with the enumerated
value 00000001 (which represents the read-only flag), the resulting value will be 00000001—it will have a 1 only
where it can be matched in both values.

The Code

The following example takes a read-only test file and checks for the read-only attribute.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_02
 Public Shared Sub Main()

 ' This file has the archive and read-only attributes.
 Dim file As New FileInfo("data.txt")

 ' This displays the string "ReadOnly, Archive".
 Console.WriteLine(file.Attributes.ToString)
 Console.WriteLine(Environment.NewLine)

Herman_970-5C05.fm Page 189 Thursday, February 28, 2008 8:28 AM

190 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' This test fails, because other attributes are set.
 If file.Attributes = FileAttributes.ReadOnly Then
 Console.WriteLine("File is read-only (faulty test).")
 End If

 ' This test succeeds, because it filters out just the
 ' read-only attributes.
 If file.Attributes And FileAttributes.ReadOnly = ➥
FileAttributes.ReadOnly Then
 Console.WriteLine("File is read-only (correct test).")
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

When setting an attribute, you must use bitwise arithmetic, as demonstrated in the following
example. In this case, it’s needed to ensure that you don’t inadvertently clear the other attributes.

' This adds just the read-only attribute.
file.Attributes = file.Attributes Or FileAttributes.ReadOnly

' This removes just the read-only attibute.
file.Attributes = file.Attributes Xor FileAttributes.ReadOnly

5-3. Copy, Move, or Delete a File or a Directory

Problem

You need to copy, move, or delete a file or directory.

Solution

You have two main options for manipulating files and directories. One option is to create a System.
IO.FileInfo object for a file or a System.IO.DirectoryInfo object for a directory, supplying the path
in the constructor. You can then use the object’s methods to copy, move, and delete the file or direc-
tory. Alternatively, you can use the My.Computer.FileSystem class and its Shared methods.

How It Works

The FileInfo, DirectoryInfo, and My.Computer.FileSystem classes include a host of valuable methods
for manipulating files and directories. Table 5-3 shows methods for the FileInfo class, Table 5-4
shows methods for the DirectoryInfo class, and Table 5-5 shows methods for the My.Computer.
FileSystem class.

Herman_970-5C05.fm Page 190 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 191

Table 5-3. Key Instance Methods for Manipulating a FileInfo Object

Method Description

CopyTo Copies a file to the new path and file name specified as a parameter. It also
returns a new FileInfo object that represents the new (copied) file. You can
supply an optional additional parameter of True to allow overwriting.

Create and
CreateText

Create creates the specified file and returns a FileStream object that you can use to
write to it. CreateText performs the same task, but returns a StreamWriter object
that wraps the stream. For more information about writing files, see recipes 5-7
and 5-8.

Open, OpenRead,
OpenText, and
OpenWrite

Open opens a file and allows you to specify the mode (Open, Append, and so
on), access type (Read, Write, and so on), and sharing options. OpenRead and
OpenText open a file in read-only mode, returning a FileStream or StreamReader
object. OpenWrite opens a file in write-only mode, returning a FileStream object.
For more information about reading files, see recipes 5-7 and 5-8.

Delete Removes the file, if it exists.

Encrypt and
Decrypt

Encrypt/decrypt a file using the current account. This applies to NTFS file
systems only.

MoveTo Moves the file to the new path and file name specified as a parameter. MoveTo
can also be used to rename a file without changing its location.

Replace Replaces contents of a file by the current FileInfo object. This method could
also take a backup copy of the replaced file.

Table 5-4. Key Instance Methods for Manipulating a DirectoryInfo Object

Method Description

Create Creates the specified directory. If the path specifies multiple directo-
ries that do not exist, they will all be created at once.

CreateSubdirectory Creates a directory with the specified path in the directory represented
by the DirectoryInfo object. If the path specifies multiple directories
that do not exist, they will all be created at once. It also returns a new
DirectoryInfo object that represents the last directory in the specified
path.

Delete Removes the directory, if it exists. If you want to delete a directory that
contains files or other directories, you must use the overloaded Delete
method that accepts a parameter named Recursive and set it to True.

MoveTo Moves the directory (contents and all) to a new path. MoveTo can also be
used to rename a directory without changing its location.

Herman_970-5C05.fm Page 191 Thursday, February 28, 2008 8:28 AM

192 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

The Code

One useful feature that is missing from the DirectoryInfo class is a copy method. The following
example contains a helper function that can copy any directory and its contents.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_03

 Public Shared Sub Main(ByVal args As String())

 If args.Length = 2 Then
 Dim sourceDir As New DirectoryInfo(args(0))
 Dim destinationDir As New DirectoryInfo(args(1))

 CopyDirectory(sourceDir, destinationDir)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

Table 5-5. Key Shared Methods for Manipulating Files and Directories with the
My.Computer.FileSystem Object

Method Description

CopyDirectory and CopyFile Copies a directory (and all its contents) or a file to the new
path specified.

CreateDirectory Creates a new directory with the specified name and path. If the
path specifies multiple directories that do not exist, they will all be
created at once.

DeleteDirectory and
DeleteFile

Deletes the specified directory (and all its contents) or file. Both
methods offer the Recycle parameter, which determines if files are
deleted permanently or sent to the Recycle Bin. DeleteDirectory
has a parameter named OnDirectoryNotEmpty to determine whether
all contents should be deleted.

MoveDirectory and
MoveFile

Moves a directory (and all its contents) or a file to the new
path specified.

OpenTextFieldParser Opens a file and returns a TextFieldParser object. The
TextFieldParser class is contained in the Microsoft.
VisualBasic.FileIO namespace and is used to parse the contents
of a text file. For more information about parsing, see recipe 5-9.

OpenTextFileReader and
OpenTextFileWriter

Opens the specified file and returns either a StreamReader or
StreamWriter as appropriate. For more information about
reading and writing files, see recipes 5-7 and 5-8.

Herman_970-5C05.fm Page 192 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 193

 Else
 Console.WriteLine("USAGE: " & " Recipe05_03 [sourcePath] " & ➥
"[destinationPath]")
 End If

 End Sub

 Public Shared Sub CopyDirectory(ByVal source As DirectoryInfo, ➥
ByVal destination As DirectoryInfo)

 If Not destination.Exists Then
 Console.WriteLine("Creating the destination folder {0}", ➥
destination.FullName)
 destination.Create()
 End If

 ' Copy all files.
 Dim files As FileInfo() = source.GetFiles

 For Each file As FileInfo In files
 Console.WriteLine("Copying the {0} file...", file.Name)
 file.CopyTo(Path.Combine(destination.FullName, file.Name))
 Next

 ' Process subdirectories.
 Dim dirs As DirectoryInfo() = source.GetDirectories

 For Each dir As DirectoryInfo In dirs
 ' Get destination directory.
 Dim destinationDir As String = Path.Combine(destination.FullName, ➥
dir.Name)

 ' Call CopyDirectory recursively.
 CopyDirectory(dir, New DirectoryInfo(destinationDir))
 Next

 End Sub

 End Class
End Namespace

While the recipe contains examples of useful methods in the FileInfo and DirectoryInfo
classes, your time would be best spent using the Shared My.Computer.FileSystem.CopyDirectory
method. This would replace the entire preceding example with the following line of code.

My.Computer.FileSystem.CopyDirectory("SomeSourceDirectory", "SomeTargetDirectory")

Usage

If you executed the command Recipe05-03.exe c:\nvidia c:\temp, you would see results similar to
the following (assuming the source directory exists and contains data):

Herman_970-5C05.fm Page 193 Thursday, February 28, 2008 8:28 AM

194 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Creating the destination folder c:\temp
Creating the destination folder c:\temp\WinVista
Creating the destination folder c:\temp\WinVista\163.69
Creating the destination folder c:\temp\WinVista\163.69\English
Copying the data1.cab file...
Copying the data1.hdr file...
Copying the data2.cab file...
Copying the DPInst.ex_ file...
...
Copying the setup.ini file...
Copying the setup.inx file...
Copying the setup.iss file...
Copying the setup.skin file...

Main method complete. Press Enter.

5-4. Calculate the Size of a Directory

Problem

You need to calculate the size of all files contained in a directory (and, optionally, its subdirectories).

Solution

Examine all the files in a directory and add together their FileInfo.Length properties. Use recursive
logic to include the size of files in contained subdirectories.

How It Works

The DirectoryInfo class does not provide any property that returns size information. However, you
can easily calculate the size of all files contained in a directory by adding together each file’s size,
which is contained in the FileInfo.Length property.

The Code

The following example calculates the size of a directory and optionally examines subdirectories
recursively.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_04
 Public Shared Sub Main(ByVal args As String())

 If args.Length > 0 Then
 Dim dir As New DirectoryInfo(args(0))

 Console.WriteLine("Total size: " & ➥

Herman_970-5C05.fm Page 194 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 195

CalculateDirectorySize(dir, True).ToString & " bytes.")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("Please supply a directory path.")
 End If

 End Sub

 Public Shared Function CalculateDirectorySize(ByVal dir As DirectoryInfo, ➥
ByVal includeSubDirs As Boolean) As Long

 Dim totalSize As Long = 0

 ' Examine all contained files.
 Dim files As FileInfo() = dir.GetFiles

 For Each currentFile As FileInfo In files
 totalSize += currentFile.Length
 Next

 ' Examine all contained directories.
 If includeSubDirs Then
 Dim dirs As DirectoryInfo() = dir.GetDirectories

 For Each currentDir As DirectoryInfo In dirs
 totalSize += CalculateDirectorySize(currentDir, True)
 Next
 End If

 Return totalSize

 End Function

 End Class
End Namespace

Usage

To use the application, you execute it and pass in a path to the directory for which you want to see
the total size. For example, to see the size of the help directory located under the Windows directory,
you would use Recipe05-04.exe c:\windows\help, which would produce results similar to the following:

Total size: 106006151 bytes.

Main method complete. Press Enter.

Herman_970-5C05.fm Page 195 Thursday, February 28, 2008 8:28 AM

196 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

5-5. Retrieve Version Information for a File

Problem

You want to retrieve file version information, such as the publisher of a file, its revision number,
associated comments, and so on.

Solution

Use the Shared GetVersionInfo method of the System.Diagnostics.FileVersionInfo class.

How It Works

The .NET Framework allows you to retrieve file information without resorting to the Windows API.
Instead, you simply need to use the FileVersionInfo class and call the GetVersionInfo method with
the file name as a parameter. You can then retrieve extensive information through the FileVersionInfo
properties.

The Code

The FileVersionInfo properties are too numerous to list here, but the following code snippet shows
an example of what you might retrieve.

Imports System
Imports system.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_05
 Public Shared Sub Main(ByVal args As String())

 If args.Length > 0 Then
 Dim info As FileVersionInfo = ➥
FileVersionInfo.GetVersionInfo(args(0))

 ' Display version information.
 Console.WriteLine("Checking File: " & info.FileName)
 Console.WriteLine("Product Name: " & info.ProductName)
 Console.WriteLine("Product Version: " & info.ProductVersion)
 Console.WriteLine("Company Name: " & info.CompanyName)
 Console.WriteLine("File Version: " & info.FileVersion)
 Console.WriteLine("File Description: " & info.FileDescription)
 Console.WriteLine("Original Filename: " & info.OriginalFilename)
 Console.WriteLine("Legal Copyright: " & info.LegalCopyright)
 Console.WriteLine("InternalName: " & info.InternalName)
 Console.WriteLine("IsDebug: " & info.IsDebug)
 Console.WriteLine("IsPatched: " & info.IsPatched)
 Console.WriteLine("IsPreRelease: " & info.IsPreRelease)
 Console.WriteLine("IsPrivateBuild: " & info.IsPrivateBuild)
 Console.WriteLine("IsSpecialBuild: " & info.IsSpecialBuild)

Herman_970-5C05.fm Page 196 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 197

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("Please supply a filename.")
 End If

 End Sub

 End Class
End Namespace

Usage

If you run the command Recipe05-05 c:\windows\explorer.exe, the example produces results
similar to the following:

Checking File: c:\windows\explorer.exe
Product Name: Microsoftr Windowsr Operating System
Product Version: 6.0.6000.16386
Company Name: Microsoft Corporation
File Version: 6.0.6000.16386 (vista_rtm.061101-2205)
File Description: Windows Explorer
Original Filename: EXPLORER.EXE.MUI
Legal Copyright: c Microsoft Corporation. All rights reserved.
InternalName: explorer
IsDebug: False
IsPatched: False
IsPreRelease: False
IsPrivateBuild: False
IsSpecialBuild: False

Main method complete. Press Enter.

5-6. Show a Just-in-Time Directory Tree in the TreeView Control

Problem

You need to display a directory tree in a TreeView control. However, filling the directory tree struc-
ture at startup is too time-consuming.

Solution

Fill the first level of directories in the TreeView control and add a hidden dummy node to each
directory branch. React to the TreeView.BeforeExpand event to fill in subdirectories in a branch
just before it’s displayed.

Herman_970-5C05.fm Page 197 Thursday, February 28, 2008 8:28 AM

198 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

How It Works

You can use recursion to build an entire directory tree. However, scanning the file system in this way
can be slow, particularly for large drives. For this reason, professional file management software
programs (including Windows Explorer) use a different technique. They query the necessary directory
information when the user requests it.

The TreeView control is particularly well suited to this approach because it provides a BeforeExpand
event that fires before a new level of nodes is displayed. You can use a placeholder (such as an asterisk or
empty TreeNode) in all the directory branches that are not filled in. This allows you to fill in parts of
the directory tree as they are displayed.

To use this type of solution, you need the following three ingredients:

• A Fill method that adds a single level of directory nodes based on a single directory. You will
use this method to fill directory levels as they are expanded.

• A basic Form.Load event handler that uses the Fill method to add the first level of directories
for the drive.

• A TreeView.BeforeExpand event handler that reacts when the user expands a node and calls
the Fill method if this directory information has not yet been added.

The Code

The following shows the code for this solution. The automatically generated code for the form
designer is not included here, but it is included with this book’s downloadable code.

Imports System
Imports System.IO

' All design code is stored in the autogenerated partial
' class called DirectoryTree.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class DirectoryTree

 Private Sub DirectoryTree_Load(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles MyBase.Load

 ' Set the first node.
 Dim rootNode As New TreeNode("C:\")
 treeDirectory.Nodes.Add(rootNode)

 ' Fill the first level and expand it.
 Fill(rootNode)
 treeDirectory.Nodes(0).Expand()

 End Sub

 Private Sub treeDirectory_BeforeExpand(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.TreeViewCancelEventArgs) Handles ➥
treeDirectory.BeforeExpand

Herman_970-5C05.fm Page 198 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 199

 ' If a dummy node is found, remove it and read the
 ' real directory list.
 If e.Node.Nodes(0).Text = "*" Then
 e.Node.Nodes.Clear()
 Fill(e.Node)
 End If

 End Sub

 Private Sub Fill(ByVal dirNode As TreeNode)

 Dim dir As New DirectoryInfo(dirNode.FullPath)

 ' An exception could be thrown in this code if you don't
 ' have sufficient security permissions for a file or directory.
 ' You can catch and then ignore this exception.

 For Each dirItem As DirectoryInfo In dir.GetDirectories
 ' Add a node for the directory.
 Dim newNode As New TreeNode(dirItem.Name)
 dirNode.Nodes.Add(newNode)
 newNode.Nodes.Add("*")
 Next

 End Sub
End Class

Figure 5-1 shows the directory tree in action.

Figure 5-1. A directory tree with the TreeView

Herman_970-5C05.fm Page 199 Thursday, February 28, 2008 8:28 AM

200 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

If you prefer to use the My object, you can replace the use of the DirectoryInfo class with the
My.Computer.FileSystem class. The following replacement Fill method is an example of how to do this.

Private Sub Fill(ByVal dirNode As TreeNode)

 ' An exception could be thrown in this code if you don't
 ' have sufficient security permissions for a file or directory.
 ' You can catch and then ignore this exception.
 For Each dir As String In ➥
My.Computer.FileSystem.GetDirectories(dirNode.FullPath)
 ' Add a node for the directory.
 Dim newNode As New TreeNode(Path.GetFileName(dir))
 dirNode.Nodes.Add(newNode)
 newNode.Nodes.Add("*")
 Next

End Sub

5-7. Read and Write a Text File

Problem

You need to write data to a sequential text file using ASCII, Unicode (UTF-16), or UTF-8 encoding.

Solution

Create a new System.IO.FileStream object that references the file. To write the file, wrap the FileStream
in a System.IO.StreamWriter and use the overloaded Write method. To read the file, wrap the FileStream
in a System.IO.StreamReader and use the Read or ReadLine method. The File class also provides the
Shared CreateText and OpenText methods for writing and reading UTF-8 files. Another alternative
is to use the OpenTextFileReader and OpenTextFileWriter methods of the My.Computer.FileSystem
class. These methods open a file and return a StreamReader or StreamWriter, respectively.

How It Works

The .NET Framework allows you to write or read text with any stream by using the StreamWriter and
StreamReader classes. When writing data with the StreamWriter, you use the StreamWriter.Write
method. This method is overloaded to support all the common VB .NET data types, including strings,
chars, integers, floating-point numbers, decimals, and so on. However, the Write and WriteLine
methods always convert the supplied data to text. Unlike Write, the WriteLine method places each
value on a separate line, so you should use it if you want to be able to easily convert the text back to
its original data type.

The way a string is represented depends on the encoding you use. The most common encodings
are listed in Table 5-6.

The .NET Framework provides a class for each type of encoding in the System.Text namespace.
When using StreamReader and StreamWriter, you can specify the encoding or simply use the default
UTF-8 encoding.

■Note The Encoding class also offers the Default property, which represents the encoding for your operating
system’s base character encoding table.

Herman_970-5C05.fm Page 200 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 201

When reading information, you use the Read or ReadLine method of StreamReader. The Read
method reads a single character, or the number of characters you specify, and returns the data as an
Integer that represents the character read or the number of characters read, respectively. The ReadLine
method returns a string with the content of an entire line. The ReadToEnd method will return a string
with the content starting from the current position to the end of the stream. An alternative to the
ReadToEnd method is the Shared ReadAllText method of the My.Computer.FileSystem and System.
IO.File classes.

The Code

The following console application writes and then reads a text file.

Imports System
Imports System.IO
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_07
 Public Shared Sub Main()

 ' Create a new file.
 Using fs As New FileStream("test.txt", FileMode.Create)
 ' Create a writer and specify the encoding. The
 ' default (UTF-8) supports special Unicode characters,

Table 5-6. Common Encodings

Encoding Description Represented By

ASCII Encodes each character in a string using
7 bits. ASCII-encoded data cannot
contain extended Unicode characters.
When using ASCII encoding in .NET,
the bits will be padded and the resulting
byte array will have 1 byte for each
character.

ASCII property of the System.
Text.Encoding class

UTF-7 Unicode Uses 7 bits for ordinary ASCII characters
and multiple 7-bit pairs for extended
characters. This encoding is primarily
for use with 7-bit protocols such as
mail, and it is not regularly used.

UTF7 property of the System.
Text.Encoding class

UTF-8 Unicode Uses 8 bits for ordinary ASCII characters
and multiple 8-bit pairs for extended
characters. The resulting byte array will
have 1 byte for each character (provided
there are no extended characters).

UTF8 property of the System.
Text.Encoding class

Full Unicode (or
UTF-16)

Represents each character in a string
using 16 bits. The resulting byte array
will have 2 bytes for each character.

Unicode property of the System.
Text.Encoding class

UTF-32 Unicode Represents each character in a string
using 32 bits. The resulting byte array
will have 4 bytes for each character.

UTF32 property of the System.
Text.Encoding class

Herman_970-5C05.fm Page 201 Thursday, February 28, 2008 8:28 AM

202 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' but encodes all standard characters in the same way as
 ' ASCII encoding.
 Using w As New StreamWriter(fs, Encoding.UTF8)

 ' Write a decimal, string, special Unicode character
 ' and char.
 w.WriteLine(CDec(124.23))
 w.WriteLine("Test string")
 w.WriteLine("δ") 'Produced by pressing ALT+235
 w.WriteLine("!"c)

 End Using
 End Using

 Console.WriteLine("Press Enter to read the information.")
 Console.ReadLine()

 ' Open the file in read-only mode.
 Using fs As New FileStream("test.txt", FileMode.Open)
 Using r As New StreamReader(fs, Encoding.UTF8)
 ' Read the data and convert it to the appropriate data type.
 Console.WriteLine(Decimal.Parse(r.ReadLine))
 Console.WriteLine(r.ReadLine)
 Console.WriteLine(Char.Parse(r.ReadLine))
 Console.WriteLine(Char.Parse(r.ReadLine))
 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note In the previous example, if you change the encoding from UTF8 to ASCII when creating the text file, the
extended character will be displayed as a question mark. This is because ASCII does not include that extended char-
acter as part of its character set.

If you prefer to use the My object, you can use the OpenTextFileReader and OpenTextFileWriter
methods of the My.Computer.FileSystem class. These methods do not require a FileStream object,
which makes the code a little simpler, as shown in the following example.

' Open and write to a file.
Using w As StreamWriter = My.Computer.FileSystem.OpenTextFileWriter("test.txt", ➥
False, Encoding.UTF8)
 ' Write a decimal, string, special Unicode character
 ' and char.

Herman_970-5C05.fm Page 202 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 203

 w.WriteLine(CDec(124.23))
 w.WriteLine("Test string")
 w.WriteLine("") 'Produced by pressing ALT+235 w.WriteLine("!"c)
End Using

' Open and read from the file.
Using r As StreamReader = My.Computer.FileSystem.OpenTextFileReader("test.txt", ➥
Encoding.UTF8)
 ' Read the data and convert it to the appropriate data type.
 Console.WriteLine(Decimal.Parse(r.ReadLine))
 Console.WriteLine(r.ReadLine)
 Console.WriteLine(Char.Parse(r.ReadLine))
 Console.WriteLine(Char.Parse(r.ReadLine))
End Using

5-8. Read and Write a Binary File

Problem

You need to write data to a binary file, with strong data typing.

Solution

Create a new System.IO.FileStream object that references the file. To write the file, wrap the FileStream
in a System.IO.BinaryWriter and use the overloaded Write method. To read the file, wrap the FileStream
in a System.IO.BinaryReader and use the Read method that corresponds to the expected data type.

How It Works

The .NET Framework allows you to write or read binary data with any stream by using the BinaryWriter
and BinaryReader classes. When writing data with the BinaryWriter, you use the Write method. This
method is overloaded to support all the common VB .NET data types, including strings, chars, inte-
gers, floating-point numbers, decimals, and so on. The information will then be encoded as a series
of bytes and written to the file. You can configure the encoding used for strings, which defaults to
UTF-8, by using an overloaded constructor that accepts a System.Text.Encoding object, as described
in recipe 5-7.

You must be particularly fastidious with data types when using binary files. This is because
when you retrieve the information, you must use one of the strongly typed Read methods from the
BinaryReader, unless you intend to read the file character by character. For example, to retrieve
decimal data, you use ReadDecimal. To read a string, you use ReadString. (The BinaryWriter always
records the length of a string when it writes it to a binary file to prevent any possibility of error.)

The Code

The following console application writes and then reads a binary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_08
 Public Shared Sub Main()

Herman_970-5C05.fm Page 203 Thursday, February 28, 2008 8:28 AM

204 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' Create a new file and writer.
 Using fs As New FileStream("test.bin", FileMode.Create)
 Using w As New BinaryWriter(fs)
 ' Write a decimal, 2 strings, a special Unicode character
 ' and a char.
 w.Write(CDec(124.23))
 w.Write("Test string")
 w.Write("Test string 2")
 w.Write("δ"c) 'Produced by pressing ALT+235
 w.Write("!"c)
 End Using
 End Using
 Console.WriteLine("Press Enter to read the information.")
 Console.ReadLine()

 ' Open the file in read-only mode.
 Using fs As New FileStream("test.bin", FileMode.Open)
 ' Display the raw information in the file.
 Using sr As New StreamReader(fs)
 Console.WriteLine(sr.ReadToEnd)
 Console.WriteLine()
 End Using

 ' Reposition the FileStream so we can reuse it.
 fs.Position = 0

 ' Read the data and convert it to the appropriate data type.
 Using br As New BinaryReader(fs)
 Console.WriteLine(br.ReadDecimal)
 Console.WriteLine(br.ReadString)
 Console.WriteLine(br.ReadString)
 Console.WriteLine(br.ReadChar)
 Console.WriteLine(br.ReadChar)
 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

5-9. Parse a Delimited Text File

Problem

You need to parse the contents of a delimited text file.

Herman_970-5C05.fm Page 204 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 205

Solution

Create and configure a new Microsoft.VisualBasic.FileIO.TextFieldParser object that references
the file you need to parse. Loop through the file until the EndOfData property is True. Use the ReadFields
method to return an array of strings representing one row of parsed data from the file.

How It Works

The TextFieldParser class can be found in the Microsoft.VisualBasic.FileIO namespace. You can
either use one of its constructors to create an instance directly or use the Shared My.Computer.
FileSystem.OpenTextFieldParser method to return an instance. Some of the more important properties
and methods of this class are listed in Table 5-7.

Once you have an instance, you need to configure it according to the file you need to parse. If
your file is delimited, set the TextFieldType property to Delimited and set the Delimiters property to

Table 5-7. Key Properties and Methods of the TextFieldParser Class

Property or Method Description

CommentTokens An array of strings that indicates which lines in the file are
comments. Commented lines are skipped.

Delimiters An array of strings that defines the delimiters used in the text
file. TextFieldType must be set to FieldType.Delimited to use
this property.

EndOfData Returns True if there is no more data to be parsed.

ErrorLine Returns the actual line in the file that threw the last
MalformedLineException.

ErrorLineNumber Returns the line number that threw the last
MalformedLineException.

FieldWidths An array of integers that defines the widths of each field.
TextFieldType must be set to FieldType.FixedWidth to use
this property.

HasFieldsEnclosedInQuotes Indicates whether some fields are enclosed in quotation marks.
This is True by default.

TextFieldType Indicates the type of file from the FieldType enumeration
(Delimited or FixedWidth) that is being parsed. This is set to
Delimited by default.

ReadFields Reads and parses all fields for the current row and returns the data
as an array of strings. The pointer is then moved to the next row. If a
field cannot be parsed, a MalformedLineException is thrown.

SetDelimiters Sets the Delimiters property to the value or values specified. The
single parameter for this method is a parameter array, so you can
supply a comma-separated list of values rather than an actual
array.

SetFieldWidths Sets the FieldWidths property to the value or values specified. The
single parameter for this method is a parameter array, so you can
supply a comma-separated list of values rather than an actual array.

Herman_970-5C05.fm Page 205 Thursday, February 28, 2008 8:28 AM

206 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

the appropriate delimiters. If the file is fixed width, set the TextFieldType property to FixedWidth and
set the FieldWidths property to the appropriate widths. Use the CommentTokens property to instruct
the parser to skip rows that are comments and do not contain any data to be parsed.

Use the ReadFields method to parse the current row, return an array of strings containing
each field parsed, and move the file pointer to the next row. If a field cannot be parsed, a
MalformedLineException is thrown. You can then use the ErrorLine and ErrorLineNumber properties
of the TextFieldParser class to obtain information about which line and field caused the exception.

The Code

The following example creates a sample comma-delimited log file. The file is then read and parsed,
using the TextFieldParser class. The fields contained in the file are written to the console.

Imports System
Imports System.IO
Imports Microsoft.VisualBasic.FileIO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_09

 Public Shared Sub Main()

 ' Create the sample log file.
 Using w As StreamWriter = ➥
My.Computer.FileSystem.OpenTextFileWriter("SampleLog.txt", ➥
 False, System.Text.Encoding.UTF8)

 ' Write sample log records to the file. The parser
 ' will skip blank lines. Also, the TextFieldParser
 ' can be configured to ignore lines that are comments.
 w.WriteLine("# In this sample log file, comments " & ➥
"start with a # character. The")
 w.WriteLine("# parser, when configured correctly, " & ➥
"will ignore these lines.")
 w.WriteLine("")
 w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ➥
"Some informational text.")
 w.WriteLine("{0},WARN,""{1}""", DateTime.Now, ➥
"Some warning message.")
 w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ➥
"[ERROR] Some exception has occurred.")
 w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ➥
"More informational text.")
 w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ➥
"[ERROR] Some exception has occurred.")

 End Using

 Console.WriteLine("Press Enter to read and parse the information.")
 Console.ReadLine()

Herman_970-5C05.fm Page 206 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 207

 ' Open the file in and parse the data into a
 ' TextFieldParser object.
 Using logFile As TextFieldParser = ➥
My.Computer.FileSystem.OpenTextFieldParser("SampleLog.txt")

 Console.WriteLine("Parsing text file.")
 Console.WriteLine(Environment.NewLine)

 ' Write header information to the console.
 Console.WriteLine("{0,-29} {1} {2}", "Date/Time in RFC1123", ➥
"Type", "Message")

 ' Configure the parser. For this recipe, make sure
 ' HasFieldsEnclosedInQuotes is True.
 logFile.TextFieldType = FieldType.Delimited
 logFile.CommentTokens = New String() {"#"}
 logFile.Delimiters = New String() {","}
 logFile.HasFieldsEnclosedInQuotes = True

 Dim currentRecord As String()

 ' Loop through the file until we reach the end.
 Do While Not logFile.EndOfData
 Try
 ' Parse all the fields into the currentRow
 ' array. This method automatically moves
 ' the file pointer to the next row.
 currentRecord = logFile.ReadFields

 ' Write the parsed record to the console.
 Console.WriteLine("{0:r} {1} {2}", ➥
DateTime.Parse(currentRecord(0)), currentRecord(1), currentRecord(2))
 Catch ex As MalformedLineException
 ' The MalformedLineException is thrown by the
 ' TextFieldParser anytime a line cannot be
 ' parsed.
 Console.WriteLine("An exception occurred attempting " & ➥
"to parse this row: ", ex.Message)
 End Try
 Loop
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C05.fm Page 207 Thursday, February 28, 2008 8:28 AM

208 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

5-10. Read a File Asynchronously

Problem

You need to read data from a file without blocking the execution of your code. This technique is
commonly used if the file is stored on a slow backing store (such as a networked drive in a wide
area network).

Solution

Create a separate class that will read the file asynchronously. Start reading a block of data using
the FileStream.BeginRead method and supply a callback method. When the callback is triggered,
retrieve the data by calling FileStream.EndRead, process it, and read the next block asynchronously
with BeginRead.

How It Works

The FileStream includes basic support for asynchronous use through the BeginRead and EndRead
methods. Using these methods, you can read a block of data on one of the threads provided by the
.NET Framework thread pool, without needing to directly use the threading classes in the System.
Threading namespace.

When reading a file asynchronously, you choose the amount of data that you want to read at a
time. Depending on the situation, you might want to read a very small amount of data at a time (for
example, if you are copying it block by block to another file) or a relatively large amount of data (for
example, if you need a certain amount of information before your processing logic can start). You
specify the block size when calling BeginRead, and you pass a buffer where the data will be placed.
Because the BeginRead and EndRead methods need to be able to access many of the same pieces of
information, such as the FileStream, the buffer, the block size, and so on, it’s usually easiest to
encapsulate your asynchronous file reading code in a single class.

The Code

The following example demonstrates reading a file asynchronously. The AsyncProcessor class
provides a public StartProcess method, which starts an asynchronous read. Every time the read
operation finishes, the OnCompletedRead callback is triggered and the block of data is processed. If
there is more data in the file, a new asynchronous read operation is started. AsyncProcessor reads
2 kilobytes (2,048 bytes) at a time.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class AsyncProcessor

 Private inputStream As Stream

 ' The buffer that will hold the retrieved data.
 Private buffer As Byte()

 ' The amount that will be read in one block (2KB).
 Private m_BufferSize As Integer = 2048

Herman_970-5C05.fm Page 208 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 209

 Public ReadOnly Property BufferSize() As Integer
 Get
 Return m_BufferSize
 End Get
 End Property

 Public Sub New(ByVal fileName As String, ByVal size As Integer)

 m_BufferSize = size
 buffer = New Byte(m_BufferSize) {}

 ' Open the file, specifying true for asynchronous support.
 inputStream = New FileStream(fileName, FileMode.Open, FileAccess.Read, ➥
FileShare.Read, m_BufferSize, True)

 End Sub

 Public Sub StartProcess()

 ' Start the asynchronous read, which will fill the buffer.
 inputStream.BeginRead(buffer, 0, buffer.Length, ➥
AddressOf OnCompletedRead, Nothing)

 End Sub

 Private Sub OnCompletedRead(ByVal asyncResult As IAsyncResult)

 ' One block has been read asynchronously. Retrieve
 ' the data.
 Dim bytesRead As Integer = inputStream.EndRead(asyncResult)

 ' If no bytes are read, the stream is at the end of the file.
 If bytesRead > 0 Then
 ' Pause to simulate processing this block of data.
 Console.WriteLine("{0}[ASYNC READER]: Read one block.", ➥
ControlChars.Tab)
 Thread.Sleep(20)

 ' Begin to read the next block asynchronously.
 inputStream.BeginRead(buffer, 0, buffer.Length, ➥
AddressOf OnCompletedRead, Nothing)
 Else
 ' End the operation.
 Console.WriteLine("{0}[ASYNC READER]: Complete.", ControlChars.Tab)
 inputStream.Close()
 End If

 End Sub

 End Class
End Namespace

Herman_970-5C05.fm Page 209 Thursday, February 28, 2008 8:28 AM

210 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Usage

The following example shows a console application that uses AsyncProcessor to read a 2-megabyte file.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_10

 Public Shared Sub Main(ByVal args As String())
 ' Create a 2 MB test file.
 Using fs As New FileStream("test.txt", FileMode.Create)
 fs.SetLength(2097152)
 End Using

 ' Start the asynchronous file processor on another thread.
 Dim asyncIO As New AsyncProcessor("test.txt", 2048)
 asyncIO.StartProcess()

 ' At the same time, do some other work.
 ' In this example, we simply loop for 10 seconds.
 Dim startTime As DateTime = DateTime.Now

 While DateTime.Now.Subtract(startTime).TotalSeconds < 10
 Console.WriteLine("[MAIN THREAD]: Doing some work.")

 ' Pause to simulate a time-consuming operation.
 Thread.Sleep(100)
 End While

 Console.WriteLine("[MAIN THREAD]: Complete.")
 Console.ReadLine()

 ' Remove the test file.
 File.Delete("test.txt")
 End Sub

 End Class
End Namespace

The following is an example of the output you will see when you run this test.

[MAIN THREAD]: Doing some work.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
[MAIN THREAD]: Doing some work.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
[MAIN THREAD]: Doing some work.

Herman_970-5C05.fm Page 210 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 211

 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 . . .

5-11. Find Files That Match a Wildcard Expression

Problem

You need to process multiple files based on a filter expression (such as *.dll or mysheet20??.xls).

Solution

Use the overloaded version of the System.IO.DirectoryInfo.GetFiles method that accepts a filter
expression and returns an array of FileInfo objects. For searching recursively across all subdirecto-
ries, use the overloaded version that accepts the SearchOption enumeration.

How It Works

The DirectoryInfo and Directory objects both provide a way to search the directories for files that
match a specific filter expression. These search expressions can use the standard ? and * wildcards.
You can use a similar technique to retrieve directories that match a specified search pattern by using
the overloaded DirectoryInfo.GetDirectories method. The GetFiles method, used in several other
recipes in this chapter to retrieve a list of files, includes an overload that lets you specify that you
want to search recursively using the SearchOption.AllDirectories enumeration constant.

As an alternative, you can also use the Shared GetFiles method of the My.Computer.FileSystem
class. This method returns only strings representing the full path of the file, rather than FileInfo
objects. As with the System.IO.DirectoryInfo.GetFiles method, you can use an overload to search
recursively using the SearchOptions.SearchAllSubDirectories enumeration constant. This method
also allows you to search for multiple file extensions at once.

The Code

The following example retrieves the names of all the files in a specified directory that match a spec-
ified filter string. The directory and filter expression are submitted as command-line arguments. The
code then iterates through the retrieved FileInfo collection of matching files and displays the name
and size of each one.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_11
 Public Shared Sub Main(ByVal args As String())

 If args.Length = 2 Then
 Dim dir As New DirectoryInfo(args(0))
 Dim files As FileInfo() = dir.GetFiles(args(1))

Herman_970-5C05.fm Page 211 Thursday, February 28, 2008 8:28 AM

212 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' Display the name of all the files.
 For Each file As FileInfo In files
 Console.Write("Name: " & file.Name + " ")
 Console.WriteLine("Size: " & file.Length.ToString)
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("USAGE: Recipe05-11 [directory]" & ➥
"[filterExpression]")
 End If

 End Sub

 End Class
End Namespace

Usage

If you run the command Recipe05-11 c:\ *.sys, the example produces the following output:

Name: config.sys Size: 10
Name: hiberfil.sys Size: 2147016704
Name: pagefile.sys Size: 2460942336

Main method complete. Press Enter.

5-12. Test Two Files for Equality

Problem

You need to quickly compare the content of two files and determine whether it matches exactly.

Solution

Calculate the hash code of each file using the System.Security.Cryptography.HashAlgorithm class,
and then compare the hash codes.

How It Works

You might compare file content in a number of ways. For example, you could examine a portion of
the file for similar data, or you could read through each file byte by byte, comparing each byte as you
go. Both of these approaches are valid, but in some cases, it’s more convenient to use a hash code
algorithm.

A hash code algorithm generates a small (typically about 20 bytes) binary fingerprint for a file.
While it’s possible for different files to generate the same hash codes, that is statistically unlikely
to occur. In fact, even a minor change (for example, modifying a single bit in the source file) has

Herman_970-5C05.fm Page 212 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 213

an approximately 50-percent chance of independently changing each bit in the hash code. For this
reason, hash codes are often used in security code to detect data tampering. (Hash codes are discussed
in more detail in recipes 13-14, 13-15, and 13-16.)

To create a hash code, you must first create a HashAlgorithm object, typically by calling the
Shared HashAlgorithm.Create method. This defaults to using the sha1 algorithm but provides an
overload allowing other algorithms to be provided. You then call the HashAlgorithm.ComputeHash,
method, passing in a byte array or string representing the data to be hashed. The hashed data is
returned in a byte array.

The Code

The following example demonstrates a simple console application that reads two file names that are
supplied as arguments and uses hash codes to test the files for equality. The hashes are compared by
converting them into strings. Alternatively, you could compare them by iterating over the byte array
and comparing each value. That approach would be slightly faster, but because the overhead of
converting 20 bytes into a string is minimal, it’s not required.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_12
 Public Shared Sub Main(ByVal args As String())

 If args.Length = 2 Then
 Console.WriteLine("comparing {0} and {1}", args(0), args(1))

 ' Create the hashing object.
 Using hashAlg As HashAlgorithm = HashAlgorithm.Create
 Using fsA As New FileStream(args(0), FileMode.Open), ➥
fsB As New FileStream(args(1), FileMode.Open)
 ' Calculate the hash for the files.
 Dim hashBytesA As Byte() = hashAlg.ComputeHash(fsA)
 Dim hashBytesB As Byte() = hashAlg.ComputeHash(fsB)

 ' Compare the hashes.
 If BitConverter.ToString(hashBytesA) = ➥
BitConverter.ToString(hashBytesB) Then
 Console.WriteLine("Files match.")
 Else
 Console.WriteLine("No match.")
 End If

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using

Herman_970-5C05.fm Page 213 Thursday, February 28, 2008 8:28 AM

214 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 Else
 Console.WriteLine("USAGE: Recipe05-12 [fileName] [fileName]")
 End If

 End Sub

 End Class
End Namespace

Usage

You use this recipe by executing it and passing in a parameter for each file to compare: Recipe05-12
c:\SomeFile.txt c:\SomeOtherFile.txt. If the files are equal, “Files Match” will be displayed on the
console. Otherwise, “No Match” will be displayed.

5-13. Manipulate Strings Representing File Names

Problem

You want to retrieve a portion of a path or verify that a file path is in a normal (standardized) form.

Solution

Process the path using the System.IO.Path class. You can use Path.GetFileName to retrieve a file
name from a path, Path.ChangeExtension to modify the extension portion of a path string, and
Path.Combine to create a fully qualified path without worrying about whether your directory includes
a trailing directory separation (\) character.

How It Works

File paths are often difficult to work with in code because of the many different ways to represent
the same directory. For example, you might use an absolute path (C:\Temp), a UNC path
(\\MyServer\\MyShare\temp), or one of many possible relative paths (C:\Temp\MyFiles\..\ or
C:\Temp\MyFiles\..\..\temp).

The easiest way to handle file system paths is to use the Shared methods of the Path class to make
sure you have the information you expect. For example, here is how to take a file name that might
include a qualified path and extract just the file name:

Dim filename As String = "..\System\MyFile.txt"
filename = Path.GetFileName(filename)

' Now filename = "MyFile.txt"

And here is how you might append the file name to a directory path using the Path.Combine
method:

Dim filename As String = "..\..\myfile.txt"
Dim fullPath As String = "c:\Temp"

filename = Path.GetFileName(filename)
fullPath = Path.Combine(fullPath, filename)

' fullPath is now "c:\Temp\myfile.txt"

Herman_970-5C05.fm Page 214 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 215

The advantage of this approach is that a trailing backslash (\) is automatically added to the path
name if required. The Path class also provides the following useful Shared methods for manipulating
path information:

• GetExtension returns just the extension of the file in the string. If there is no extension, an
empty string is returned.

• ChangeExtension modifies the current extension of the file in a string. If no extension is specified,
the current extension will be removed.

• GetDirectoryName returns all the directory information, which is the text between the first and
last directory separators (\).

• GetFileNameWithoutExtension is similar to GetFileName, but it omits the extension.

• GetFullPath has no effect on an absolute path, and it changes a relative path into an absolute
path using the current directory. For example, if C:\Temp\ is the current directory, calling
GetFullPath on a file name such as test.txt returns C:\Temp\test.txt.

• GetPathRoot retrieves a string with the root (for example, “C:\”), provided that information is
in the string. For a relative path, it returns Nothing.

• HasExtension returns True if the path ends with an extension.

• IsPathRooted returns True if the path is an absolute path and False if it’s a relative path.

The My.Computer.FileSystem offers two Shared methods that also work with paths. The CombinePath
method is the equivalent of Path.Combine. The GetParentPath method, similar to the GetDirectoryName
method, returns the path of the parent folder for the path specified.

■Note In most cases, an exception will be thrown if you try to supply an invalid path to one of these methods
(for example, paths that include illegal characters). However, path names that are invalid because they contain
a wildcard character (* or ?) will not cause the methods to throw an exception. You could use the Path.
GetInvalidPathChars or Path.GetInvalidFileNameChars method to obtain an array of characters that are
illegal in path or file names, respectively.

5-14. Determine Whether a Path Is a Directory or a File

Problem

You have a path (in the form of a string), and you want to determine whether it corresponds to a
directory or a file.

Solution

Test the path with the Directory.Exists and File.Exists methods.

How It Works

The System.IO.Directory and System.IO.File classes both provide a Shared Exists method. The
Directory.Exists method returns True if a supplied relative or absolute path corresponds to an
existing directory, even a shared folder with an UNC name. File.Exists returns True if the path
corresponds to an existing file.

Herman_970-5C05.fm Page 215 Thursday, February 28, 2008 8:28 AM

216 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

As an alternative, you can use the Shared FileExists and DirectoryExists methods of the
My.Computer.FileSystem class. These methods work in the same way as the Exists method of the
System.IO.Directory and System.IO.File classes.

The Code

The following example demonstrates how you can quickly determine whether a path corresponds to
a file or directory.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_14
 Public Shared Sub Main(ByVal args As String())

 For Each arg As String In args
 Console.Write(arg)

 If Directory.Exists(arg) Then
 Console.WriteLine(" is a directory.")
 ElseIf File.Exists(arg) Then
 Console.WriteLine(" is a file.")
 Else
 Console.WriteLine(" does not exist.")
 End If
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

You use this recipe by executing it and passing in a parameter representing a path to a file or a directory:
Recipe05-14 c:\SomeFile or Recipe05-14 c:\SomeDirectory. A message notifying you whether the
path refers to a directory or a file will be displayed.

5-15. Work with Relative Paths

Problem

You want to set the current working directory so that you can use relative paths in your code.

Herman_970-5C05.fm Page 216 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 217

Solution

Use the Shared GetCurrentDirectory and SetCurrentDirectory methods of the System.IO.Directory
class.

How It Works

Relative paths are automatically interpreted in relation to the current working directory, which is the
path of the current application by default. You can retrieve the current working directory by calling
Directory.GetCurrentDirectory or change it using Directory.SetCurrentDirectory. In addition,
you can use the Shared GetFullPath method of the System.IO.Path class to convert a relative path
into an absolute path using the current working directory.

The Code

The following is a simple example that demonstrates working with relative paths.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_15
 Public Shared Sub Main()

 Console.WriteLine("Using: " & Directory.GetCurrentDirectory())
 Console.WriteLine("The relative path for 'file.txt' will " & ➥
"automatically become: '" & Path.GetFullPath("file.txt") & "'")
 Console.WriteLine()

 Console.WriteLine("Changing current directory to c:\")
 Directory.SetCurrentDirectory("C:\")

 Console.WriteLine("Now the relative path for 'file.txt' will " & ➥
"automatically become: '" & Path.GetFullPath("file.txt") & "'")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class

End Namespace

Usage

The output for this example might be the following (if you run the application in the directory C:\temp).

Herman_970-5C05.fm Page 217 Thursday, February 28, 2008 8:28 AM

218 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Using: c:\temp
The relative path 'file.txt' will automatically become 'c:\temp\file.txt'

Changing current directory to c:\
The relative path 'file.txt' will automatically become 'c:\file.txt'

■Caution If you use relative paths, it’s recommended that you set the working path at the start of each file inter-
action. Otherwise, you could introduce unnoticed security vulnerabilities that could allow a malicious user to force
your application into accessing or overwriting system files by tricking it into using a different working directory.

5-16. Create a Temporary File

Problem

You need to create a file that will be placed in the user-specific temporary directory and will have a
unique name, so that it will not conflict with temporary files generated by other programs.

Solution

Use the Shared GetTempFileName method of the System.IO.Path class, which returns a path made up
of the user’s temporary directory and a randomly generated file name.

How It Works

You can use a number of approaches to generate temporary files. In simple cases, you might just
create a file in the application directory, possibly using a GUID or a timestamp in conjunction with
a random value as the file name. However, the Path class provides a helper method that can save you
some work. It creates a file with a unique file name in the current user’s temporary directory. On
Windows Vista, this is a folder similar to C:\Users\[username]\AppData\Local\Temp, while on
Windows XP it is similar to C:\Documents and Settings\[username]\Local Settings\temp by default.

The Code

The following example demonstrates creating a temporary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_16
 Public Shared Sub Main()

 Dim tempFile As String = Path.GetTempFileName

 Console.WriteLine("Using " & tempFile)

Herman_970-5C05.fm Page 218 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 219

 Using fs As New FileStream(tempFile, FileMode.Open)
 ' Write some data
 End Using

 ' Now delete the file.
 File.Delete(tempFile)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

5-17. Get the Total Free Space on a Drive

Problem

You need to examine a drive and determine how many bytes of free space are available.

Solution

Use the DriveInfo.AvailableFreeSpace property.

How It Works

The DriveInfo class provides members that let you find out the drive type, free space, and many
other details of a drive. In order to create a new DriveInfo object, you need to pass the drive letter or
the drive root string to the constructor, such as 'C' or "C:\" for creating a DriveInfo instance repre-
senting the C drive of the computer. You could also retrieve the list of logical drives available by using the
Shared Directory.GetLogicalDrives method, which returns an array of strings, each containing the root
of the drive, such as "C:\". For more details on each drive, you create a DriveInfo instance, passing
either the root or the letter corresponding to the logical drive. If you need a detailed description of
each logical drive, call the DriveInfo.GetDrives method, which returns an array of DriveInfo objects,
instead of using Directory.GetLogicalDrives.

■Note A System.IO.IOException exception is thrown if you try to access an unavailable network drive.

The Code

The following console application shows the available free space using the DriveInfo class for the
given drive or for all logical drives if no argument is passed to the application.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

Herman_970-5C05.fm Page 219 Thursday, February 28, 2008 8:28 AM

220 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 Public Class Recipe05_17

 Public Shared Sub Main(ByVal args As String())

 If args.Length = 1 Then
 Dim drive As New DriveInfo(args(0))

 Console.Write("Free space in {0}-drive (in kilobytes): ", args(0))
 Console.WriteLine(drive.AvailableFreeSpace / 1024)
 Else
 For Each drive As DriveInfo In DriveInfo.GetDrives

 Try
 Console.WriteLine("Free space in {0}-drive " & ➥
"(in kilobytes): {1}", drive.RootDirectory, drive.AvailableFreeSpace / ➥
1024.ToString)
 Catch ex As IOException
 Console.WriteLine(drive)
 End Try

 Next
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note In addition to the AvailableFreeSpace property, DriveInfo also defines a TotalFreeSpace prop-
erty. The difference between these two properties is that AvailableFreeSpace takes into account disk quotas.

Usage

You use this tool by executing it and passing in one or more drive letters for which you want to return
the size, such as Recipe05-17 C:. If you run it without passing any parameters, it will attempt to
return the size information for all drives on the system and generate results similar to the following:

A:\
Free space in C:\-drive (in kilobytes): 44094956
Free space in D:\-drive (in kilobytes): 0
E:\
Free space in F:\-drive (in kilobytes): 144671240

Main method complete. Press Enter.

Herman_970-5C05.fm Page 220 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 221

5-18. Show the Common File Dialog Boxes

Problem

You need to show the standard Windows dialog boxes for opening and saving files and for selecting
a folder.

Solution

Use the OpenFileDialog, SaveFileDialog, and FolderBrowserDialog classes in the System.Windows.
Forms namespace. Call the ShowDialog method to display the dialog box, examine the return value to
determine whether the user clicked Open or Cancel, and retrieve the selection from the FileName or
SelectedPath property.

How It Works

The .NET Framework provides objects that wrap many of the standard Windows dialog boxes, including
those used for saving and selecting files and directories. Each dialog box is appropriately formatted
for the current operating system. The dialog box classes all inherit from System.Windows.Forms.
CommonDialog and include the following:

• OpenFileDialog, which allows the user to select a file, as shown in Figure 5-2. The file name
and path are provided to your code through the FileName property (or the FileNames collec-
tion, if you have enabled multiple file select by setting Multiselect to True). Additionally, you
can use the Filter property to set the file format choices and set CheckFileExists. Filter lets
you limit the file types that are displayed, and CheckFileExists ensures that only an existing
file can be specified.

Figure 5-2. OpenFileDialog shows the Open dialog box.

Herman_970-5C05.fm Page 221 Thursday, February 28, 2008 8:28 AM

222 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

• SaveFileDialog, which allows the user to specify a new file. This dialog box looks nearly iden-
tical to the OpenFileDialog shown in Figure 5-2 earlier but with appropriate captions. The file
name and path are provided to your code through the FileName property. You can also use the
Filter property to set the file format choices, and set the CreatePrompt and OverwritePrompt
Boolean properties to instruct .NET to display a confirmation if the user selects a new file or
an existing file, respectively.

• FolderBrowserDialog, which allows the user to select (and optionally create) a directory, as
shown in Figure 5-3. The selected path is provided through the SelectedPath property, and
you can specify whether a Make New Folder button should appear using the
ShowNewFolderButton property.

Figure 5-3. FolderBrowserDialog shows the Browse for Folder dialog box.

When using OpenFileDialog or SaveFileDialog, you need to set the filter string, which specifies
the allowed file extensions. If you do not set the filter string, the Type drop-down list will be empty,
and all files will be shown in the dialog box.

The filter string is separated with the pipe character (|) in this format:

[Text label] | [Extension list separated by semicolons] | [Text label]
| [Extension list separated by semicolons] | . . .

You can also set the Title (form caption) and the InitialDirectory.

The Code

The following code shows a Windows-based application that allows the user to load documents into
a RichTextBox, edit the content, and then save the modified document. When opening and saving a
document, the OpenFileDialog and SaveFileDialog classes are used.

' All designed code is stored in the autogenerated partial
' class called MainForm.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class MainForm

Herman_970-5C05.fm Page 222 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 223

 Private Sub mnuOpen_Click(ByVal sender As Object, ByVal e As System.EventArgs) ➥
Handles mnuOpen.Click

 Dim dlg As New OpenFileDialog

 dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|All Files (*.*)|*.*"
 dlg.CheckFileExists = True
 dlg.InitialDirectory = Application.StartupPath

 If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
 rtDoc.LoadFile(dlg.FileName)
 rtDoc.Enabled = True
 End If

 End Sub

 Private Sub mnuSave_Click(ByVal sender As Object, ByVal e As System.EventArgs) ➥
Handles mnuSave.Click

 Dim dlg As New SaveFileDialog

 dlg.Filter = "Rich Text Files (*.rtf)|*.RTF" & ➥
"All Files (*.*)|*.*"
 dlg.InitialDirectory = Application.StartupPath

 If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
 rtDoc.SaveFile(dlg.FileName)
 End If

 End Sub

 Private Sub mnuExit_Click(ByVal sender As Object, ByVal e As System.EventArgs) ➥
Handles mnuExit.Click

 Me.Close()

 End Sub
End Class

5-19. Use an Isolated Store

Problem

You need to store data in a file, but your application does not have the required FileIOPermission for
the local hard drive.

Solution

Use the IsolatedStorageFile and IsolatedStorageFileStream classes from the System.IO.
IsolatedStorage namespace. These classes allow your application to write data to a file in a
user-specific directory without needing permission to access the local hard drive directly.

Herman_970-5C05.fm Page 223 Thursday, February 28, 2008 8:28 AM

224 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

How It Works

The .NET Framework includes support for isolated storage, which allows you to read and write to
a user-specific or machine-specific virtual file system that the common language runtime (CLR)
manages. When you create isolated storage files, the data is automatically serialized to a unique location
in the user profile path. In Windows Vista, the profile path is typically something like C:\Users\
[username]\AppData\Local\IsolatedStorage\, while in Windows XP, it is similar to C:\Documents
and Settings\[username]\Local Settings\Application Data\isolated storage\).

One reason you might use isolated storage is to give a partially trusted application limited ability to
store data. For example, the default CLR security policy gives local code unrestricted FileIOPermission,
which allows it to open or write to any file. Code that you run from a remote server on the local
intranet is automatically assigned fewer permissions. It lacks the FileIOPermission, but it has the
IsolatedStoragePermission, giving it the ability to use isolated stores. (The security policy also limits
the maximum amount of space that can be used in an isolated store.) Another reason you might use
an isolated store is to better secure data. For example, data in one user’s isolated store will be restricted
from another non-administrative user.

By default, each isolated store is segregated by user and assembly. That means that when the
same user runs the same application, the application will access the data in the same isolated store.
However, you can choose to segregate it further by application domain, so that multiple AppDomain
instances running in the same application receive different isolated stores.

The files are stored as part of a user’s profile, so users can access their isolated storage files on
any workstation they log on to if roaming profiles are configured on your local area network. (In this case,
the store must be specifically designated as a roaming store by applying the IsolatedStorageFile.
Roaming flag when it’s created.) By letting the .NET Framework and the CLR provide these levels of
isolation, you can relinquish some responsibility for maintaining the separation between files, and
you do not need to worry as much that programming oversights or misunderstandings will cause
loss of critical data.

The Code

The following example shows how you can access isolated storage.

Imports System
Imports System.IO
Imports System.IO.IsolatedStorage

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_19
 Public Shared Sub Main(ByVal args As String())

 ' Create the store for the current user.
 Using store As IsolatedStorageFile = ➥
IsolatedStorageFile.GetUserStoreForAssembly
 ' Create a folder in the root of the isolated store.
 store.CreateDirectory("MyFolder")

 ' Create a file in the isolated store.
 Using fs As New IsolatedStorageFileStream("MyFile.txt", ➥
FileMode.Create, store)
 Dim w As New StreamWriter(fs)

 ' You can now write to the file as normal.
 w.WriteLine("Test")
 w.Flush()

Herman_970-5C05.fm Page 224 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 225

 End Using

 Console.WriteLine("Current size: " & store.CurrentSize.ToString)
 Console.WriteLine("Scope: " & store.Scope.ToString)
 Console.WriteLine("Contained files include:")

 Dim files As String() = store.GetFileNames("*.*")
 For Each file As String In files
 Console.WriteLine(file)
 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The following demonstrates using multiple AppDomain instances running in the same applica-
tion to receive different isolated stores.

' Access isolated storage for the current user and assembly
' (which is equivalent to the first example).
store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ➥
IsolatedStorageScope.Assembly, Nothing, Nothing)

' Access isolated storage for the current user, assembly,
' and application domain. In other words, this data is
' accessible only by the current AppDomain instance.
store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ➥
IsolatedStorageScope.Assembly Or IsolatedStorageScope.Domain, Nothing, Nothing)

The preceding use of GetStore is equivalent to calling the GetUserStoreForDomain method of the
IsolatedStorageFile class.

5-20. Monitor the File System for Changes

Problem

You need to react when a file system change is detected in a specific path (such as a file modification
or creation).

Solution

Use the System.IO.FileSystemWatcher component, specify the path or file you want to monitor, and
handle the Error, Created, Deleted, Renamed, and Changed events as needed.

Herman_970-5C05.fm Page 225 Thursday, February 28, 2008 8:28 AM

226 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

How It Works

When linking together multiple applications and business processes, it’s often necessary to create
a program that waits idly and becomes active only when a new file is received or changed. You can
create this type of program by scanning a directory periodically, but you face a key trade-off. The
more often you scan, the more system resources you waste. The less often you scan, the longer it will
take to detect a change. The solution is to use the FileSystemWatcher class to react directly to
Windows file events.

To use FileSystemWatcher, you must create an instance and set the following properties:

• Path indicates the directory you want to monitor.

• Filter indicates the types of files you are monitoring.

• NotifyFilter indicates the type of changes you are monitoring.

FileSystemWatcher raises four key events: Created, Deleted, Renamed, and Changed. All of these
events provide information through their FileSystemEventArgs parameter, including the name of
the file (Name), the full path (FullPath), and the type of change (ChangeType). The Renamed event provides a
RenamedEventArgs instance, which derives from FileSystemEventArgs, and adds information about
the original file name (OldName and OldFullPath).

By default, the FileSystemWatcher is disabled. To start it, you must set the FileSystemWatcher.
EnableRaisingEvents property to True. If you ever need to disable it, just set the property to False.

The Created, Deleted, and Renamed events require no configuration. However, if you want to use
the Changed event, you need to use the NotifyFilter property to indicate the types of changes you
want to watch. Otherwise, your program might be swamped by an unceasing series of events as files
are modified.

The NotifyFilter property, which defaults to LastWrite, FileName, and DirectoryName, can be
set using any combination of the following values from the System.IO.NotifyFilters enumeration:

• Attributes

• CreationTime

• DirectoryName

• FileName

• LastAccess

• LastWrite

• Security

• Size

The FileSystemWatcher is capable of detecting many file- or folder-related actions at once. It
does this by creating and using threads from the ThreadPool to handle the appropriate events. As
events occur, they are queued in an internal buffer. If this buffer overflows, some of the events may
be lost. This overflow fires the Error event. You should handle this event to log or resolve this issue if
it arises.

The Code

The following example shows a console application that handles Created and Deleted events, and
tests these events by creating a test file.

Imports System
Imports System.IO
Imports System.Windows.Forms

Herman_970-5C05.fm Page 226 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 227

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_20
 Public Shared Sub Main()

 Using watch As New FileSystemWatcher

 watch.Path = Application.StartupPath
 watch.Filter = "*.*"
 watch.IncludeSubdirectories = True

 ' Attach the event handlers.
 AddHandler watch.Created, AddressOf OnCreatedOrDeleted
 AddHandler watch.Deleted, AddressOf OnCreatedOrDeleted
 watch.EnableRaisingEvents = True

 Console.WriteLine("Press Enter to create a file.")
 Console.ReadLine()

 If File.Exists("test.bin") Then
 File.Delete("test.bin")
 End If

 ' Create test.bin file.
 Using fs As New FileStream("test.bin", FileMode.Create)
 ' Do something here...
 End Using

 Console.WriteLine("Press Enter to terminate the application.")
 Console.ReadLine()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' Fires when a new file is created or deleted in the directory
 ' that is being monitored.
 Private Shared Sub OnCreatedOrDeleted(ByVal sender As Object, ➥
ByVal e As FileSystemEventArgs)

 ' Display the notification information.
 Console.WriteLine("{0}NOTIFICATION: {1} was {2}", ControlChars.Tab, ➥
e.FullPath, e.ChangeType.ToString)
 Console.WriteLine()

 End Sub

 End Class
End Namespace

Herman_970-5C05.fm Page 227 Thursday, February 28, 2008 8:28 AM

228 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

5-21. Access a COM Port

Problem

You need to send data directly to a serial port.

Solution

Use the System.IO.Ports.SerialPort class. This class represents a serial port resource and defines
methods that enable communication through it.

How It Works

The .NET Framework defines a System.IO.Ports namespace that contains several classes. The central
class is SerialPort. A SerialPort instance represents a serial port resource and provides methods
that let you communicate through it. The SerialPort class also exposes properties that let you
specify the port, baud rate, parity, and other information. If you need a list of the available COM
ports, the SerialPort class provides the GetPortNames method, which returns a string array containing
the names of each port.

As an alternative, the My object contains the My.Computer.Ports class, which can be used to work
with ports. This class contains the Shared SerialPortNames property and the Shared OpenSerialPort
method. SerialPortNames is equivalent to the GetPortNames method, but it returns a
ReadOnlyCollection(Of String), which is a read-only collection of strings. OpenSerialPort returns a
SerialPort instance. This method has several overloads that let you correctly configure the returned
instance.

The Code

The following example demonstrates a simple console application that lists all available COM ports
and then writes a string to the first available one.

Imports System
Imports System.IO.Ports

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_21
 Public Shared Sub Main()

 ' Enumerate each of the available COM ports
 ' on the computer.
 Console.WriteLine("Available Ports on this computer:")
 For Each portName As String In SerialPort.GetPortNames
 Console.WriteLine("PORT: " & portName)
 Next
 Console.WriteLine()

 ' For this example, lets just grab the first item from
 ' the array returned by the GetPortNames method.
 Dim testPort As String = SerialPort.GetPortNames(0)
 Using port As New SerialPort(testPort)

Herman_970-5C05.fm Page 228 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 229

 ' Set the properties.
 port.BaudRate = 9600
 port.Parity = Parity.None
 port.ReadTimeout = 10
 port.StopBits = StopBits.One

 ' Write a message into the port.
 port.Open()
 port.Write("Hello world!")
 port.Close()

 Console.WriteLine("Wrote to the {0} port.", testPort)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

5-22. Get a Random File Name

Problem

You need to get a random name for creating a folder or a file.

Solution

Use the Path.GetRandomFileName method, which returns a random name.

How It Works

The System.IO.Path class includes a GetRandomFileName method that generates a random string
that can be used for creating a new file or folder. The difference between GetRandomFileName and
GetTempFileName (discussed in recipe 5-16) of the Path class is that GetRandomFileName just returns a
random string and does not create a file, whereas GetTempFileName creates a new 0-byte temporary
file and returns the path to the file.

5-23. Manipulate the Access Control Lists of a File or Directory

Problem

You want to modify the access control list (ACL) of a file or directory in the computer.

Herman_970-5C05.fm Page 229 Thursday, February 28, 2008 8:28 AM

230 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Solution

Use the GetAccessControl and SetAccessControl methods of the File or Directory class.

How It Works

The .NET Framework includes support for ACLs for resources such as I/O, registry, and threading
classes. You can retrieve and apply the ACL for a resource by using the GetAccessControl and
SetAccessControl methods defined in the corresponding resource classes. For example, the File
and Directory classes define both these methods, which let you manipulate the ACLs for a file or
directory.

To add or remove an ACL-associated right of a file or directory, you need to first retrieve the
FileSecurity or DirectorySecurity object currently applied to the resource using the GetAccessControl
method. Once you retrieve this object, you need to perform the required modification of the rights,
and then apply the ACL back to the resource using the SetAccessControl method. Table 5-8 shows a
list of the common methods used for adding and removing ACL permissions.

The Code

The following example demonstrates the effect of denying Everyone Read access to a temporary file,
using a console application. An attempt to read the file after a change in the ACL triggers a security
exception.

Imports System
Imports System.IO
Imports System.Security.AccessControl

Namespace Apress.VisualBasicRecipes.Chapter05
 Public Class Recipe05_23

 Public Shared Sub Main()
 Dim fileName As String

 ' Create a new file and assign full control to 'Everyone'.
 Console.WriteLine("Press any key to write a new file...")
 Console.ReadKey(True)

Table 5-8. Key Methods for Adding and Removing ACLs

Method Description

AddAccessRule Adds the permissions specified.

ResetAccessRule Adds the permissions specified. If the specified permission
already exists, it will be replaced.

RemoveAccessRule Removes all of the permissions that match the specified rule.

RemoveAccessRuleAll Removes all permissions for the user referenced in the
specified rule.

RemoveAccessRuleSpecific Removes the permissions specified.

Herman_970-5C05.fm Page 230 Thursday, February 28, 2008 8:28 AM

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 231

 fileName = Path.GetRandomFileName
 Using testStream As New FileStream(fileName, FileMode.Create)
 ' Do something...
 End Using
 Console.WriteLine("Created a new file {0}.", fileName)
 Console.WriteLine()

 ' Deny 'Everyone' access to the file.
 Console.WriteLine("Press any key to deny 'Everyone' access " & ➥
"to the file.")
 Console.ReadKey(True)

 SetRule(fileName, "Everyone", FileSystemRights.Read, ➥
AccessControlType.Deny)

 Console.WriteLine("Removed access rights of 'Everyone'.")
 Console.WriteLine()

 ' Attempt to access the file.
 Console.WriteLine("Press any key to attempt to access the file...")
 Console.ReadKey(True)

 Dim stream As FileStream
 Try
 stream = New FileStream(fileName, FileMode.Create)
 Catch ex As Exception
 Console.WriteLine("Exception thrown : ")
 Console.WriteLine(ex.ToString)
 Finally
 If stream IsNot Nothing Then
 stream.Close()
 stream.Dispose()
 End If
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub SetRule(ByVal filePath As String, ByVal account As ➥

String, ByVal rights As FileSystemRights, ByVal controlType As AccessControlType)

 ' Get a FileSecurity object that represents the
 ' current security settings.
 Dim fSecurity As FileSecurity = File.GetAccessControl(filePath)

 ' Update the FileSystemAccessRule with the new
 ' security settings.
 fSecurity.ResetAccessRule(New FileSystemAccessRule(account, rights, ➥
 controlType))

Herman_970-5C05.fm Page 231 Thursday, February 28, 2008 8:28 AM

232 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' Set the new access settings.
 File.SetAccessControl(filePath, fSecurity)

 End Sub

 End Class
End Namespace

Herman_970-5C05.fm Page 232 Thursday, February 28, 2008 8:28 AM

233

■ ■ ■

C H A P T E R 6

Language Integrated Query (LINQ)

A key element of almost any application is data. Inevitably, data needs to be listed, sorted, analyzed, or
displayed in some fashion. It is the nature of what we, as programmers, do. We accomplish this by
manually performing the appropriate operations and relying on the current functionality provided
by the existing .NET Framework. We also rely heavily on the use of external data sources, such as SQL
Server or XML files.

Before LINQ, writing code to query a data source required the query to be sent to the data source
as a string where it would be executed. This resulted in a separation of functionality and control
between the application and the data. The .NET Framework has always provided functionality (such
as ADO.NET) that made things fairly painless, but it required that developers have intimate knowledge
of the data source and its respective query language to be able to accomplish their goals.

Most developers have become used to working with data in this manner and have adapted
appropriately. Language Integrated Query (LINQ, pronounced “link”) has positioned itself to resolve
this situation and is one of the major new additions to the .NET Framework 3.5.

LINQ, at its core, is a set of features that, when used together, provide the ability to query any
data source. Data can be easily queried and joined from multiple and varying data sources, such as
joining data gathered from a SQL Server database and an XML file. The initial release of VB 9.0 includes
several APIs that extend LINQ and provide support for the most common data sources, as listed in
Table 6-1. LINQ was designed to be easily extended, which you can take advantage of to create full
query support for any other data sources not covered by the included APIs.

a EDM will be released as an addition to Visual Studio 2008 sometime in 2008.

Table 6-1. APIs That Extend LINQ

Name Namespace Supported Data Source

LINQ to Objects System.Linq Objects that inherit from IEnumerable or
IEnumerable(Of T) (covered in this chapter)

LINQ to XML System.Xml.Linq XML documents (covered in Chapter 7)

LINQ to SQL System.Data.Linq SQL Server databases (covered in Chapter 8)

LINQ to DataSet System.Data ADO.NET datasets (covered in Chapter 8)

LINQ to Entities System.Data.Objects Entity Data Model (EDM) objectsa (not covered in
this book)

Herman_970-5C06.fm Page 233 Wednesday, February 27, 2008 8:21 AM

234 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

The primary intent of this chapter is to cover the basic functionality and techniques that make
up LINQ, focusing on LINQ to Objects. The recipes in this chapter cover the following:

• Querying data in a collection and controlling what data is returned (recipes 6-1, 6-2, and 6-3)

• Sorting and filtering data in collections (recipes 6-4 and 6-5)

• Performing aggregate operations (such as Min and Max) on collections (recipe 6-6 through
recipe 6-9)

• Grouping and joining data in one or more collections (recipes 6-10 and 6-11)

• Retrieving a subset of data from a collection (recipes 6-12)

• Using paging to display the contents of a collection (recipe 6-13)

• Comparing and combining two collections (recipe 6-14)

• Casting a collection to a specific type (recipe 6-15)

■Note LINQ relies heavily on the following functionality introduced in version 3.5 of the .NET Framework: implicit
typing, object initializers, anonymous types, extension methods, and lambda expressions. To better understand this
chapter, you should first review the recipes in Chapter 1 that cover these new concepts.

6-1. Query a Generic Collection

Problem

You need to query data that is stored in a collection that implements IEnumerable(Of T).

Solution

Create a general LINQ query, using the From clause, to iterate through the data stored in the target
collection.

How It Works

LINQ to Objects, represented by the System.Linq namespace, extends the core LINQ framework and
provides the mechanisms necessary to query data stored in objects that inherit IEnumerable(Of T).
Querying IEnumerable objects is also supported but requires an extra step, which is covered in recipe
6-2.

A standard query consists of one or more query operators that query the given data source and
return the specified results. If you have any familiarity with Structured Query Language (SQL), which
LINQ closely resembles, you will quickly recognize these standard operators. Here is an example
query, assuming names is an IEnumerable(Of String):

Dim query = From name In names

This query uses the From clause, which designates the source of the data. This clause is struc-
tured like a For...Next loop where you specify a variable to be used as the iterator (in the case, name)
and the source (in this case, names). As you can see by the example, you do not need to specify the
data type for the iterator because it is inferred based on the data type of the source. It is possible to
reference more than one data source in a single From clause, which would then allow you to query on
each source or a combination of both (see recipe 6-11 for more details).

Herman_970-5C06.fm Page 234 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 235

It is important to note that the previous example does not actually do anything. After that line
of code executes, query is an IEnumerable(Of T) that contains only information and instructions that
define the query. The query will not be executed until you actually iterate through the results. Most
queries work in this manner, but it is possible to force the query to execute immediately.

Like name, the data type for the results (query) is also being inferred. The data type depends on
what is being returned by the actual query. In this case, that would be an IEnumerable(Of String)
since name is a String. When creating queries, you are not required to use type inference. You could
have used the following:

Dim query As IEnumerable(Of String) = From name As String In names Select name

Although that would work, type inference makes the query appear much cleaner and easier to
follow. Since the example returns a sequence of values, you execute the query by iterating through it
using a For...Next loop, as shown here:

For Each name in query
 ...
Next

If you need to ensure that duplicate data in the source is not part of the results, then you can add
the Distinct clause to the end of your query. Any duplicate items in the source collection will be
skipped when the query is executed. If you did this to the previous example, it would look like this:

Dim query = From name In names Distinct

Both of the previous example queries use what is known as query syntax, which is distinguished
by the use of query clauses (such as From or Distinct). Query syntax is used primarily for appearance
and ease of use. When the code is compiled, however, this syntax is translated to and compiled as
method syntax.

Behind all query operators (clauses) is an actual method. The exception to this rule is the From
clause, which simply translates to the For...Next loop shown previously. These methods are actually
extension methods that extend IEnumberable(Of T) and are found in the System.Linq.Enumerable
class. The previous example would be compiled as this:

Dim query = names.Distinct

Query syntax is much easier to understand and appears cleaner in code, especially with longer
or more advanced queries. However, with some query operators, method syntax can give you more
fine-tuned control over the operation itself or the results.

The Code

The following example queries the array of Process objects returned from the Process.GetProcess
function and displays them to the console:

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_01

 Public Shared Sub Main()

Herman_970-5C06.fm Page 235 Wednesday, February 27, 2008 8:21 AM

236 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 ' Build the query to return information for all
 ' processes running on the current machine. The
 ' data will be returned as instances of the Process
 ' class.
 Dim procsQuery = From proc In Process.GetProcesses

 ' Run the query generated earlier and iterate
 ' through the results.
 For Each proc In procsQuery
 Console.WriteLine(proc.ProcessName)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-2. Query a Nongeneric Collection

Problem

You need to query data that is stored in a collection that implements IEnumerable, such as an ArrayList,
rather than IEnumerable(Of T).

Solution

Create a standard LINQ query, such as the one described in recipe 6-1, but strongly type the iterator
variable used in the From clause.

How It Works

LINQ queries support collections that implement IEnumerable(Of T) by default. Nongeneric collections,
such as an ArrayList, are not supported by default because the extension methods that make up the
standard query clauses do not extend IEnumerable. A typical query, assuming names implements
IEnumerable(Of T), looks something like this:

Dim query = From name In names

If names were an ArrayList, the query would not function properly because name is not strongly
typed, which would result in query being an IEnumerable(Of Object) rather than the appropriate
IEnumerable(OF String). This is because of the inability to infer the type of a collection that imple-
ments IEnumerable. However, you can make the query work by ensuring that the iterator is strongly
typed, as shown here:

Dim query = From name As String In names

In the previous case, however, specifying the wrong type will cause an InvalidCast exception to
be thrown. An alternate solution is to simply convert the IEnumerable object to an object that inherits
IEnumerable(Of T), which is demonstrated in recipe 6-15.

Herman_970-5C06.fm Page 236 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 237

6-3. Control Query Results

Problem

You need to control (or transform) the results of a query in order to do either of the following:

• Limit the amount of information returned.

• Change the names of the properties returned.

Solution

Create a standard LINQ query, such as the one described in recipe 6-1, and use the Select clause to
specify the exact value or values you need to return.

How It Works

Recipe 6-1 covered how to create a basic query using the From clause, such as the following:

Dim query = From book In books

This is the most basic form a query can take, and it simply returns all the results. In this case,
assuming books is a collection of Book objects, the results of the query would be an IEnumerable(Of
Book) collection containing all the Book objects stored in books. Returning all the resulting data in this
manner might be fine for most queries, but there are many situations where you may need to alter,
or even limit, the data that is returned. You can accomplish this by using the Select clause.

■Note As mentioned in recipe 6-1, LINQ closely resembles SQL. One of the main differences between LINQ and
SQL, however, is that with LINQ the From clause precedes the Select clause. This format forces the data source
to be specified first, which allows IntelliSense and type inference to work appropriately.

The Select clause is responsible for specifying what data is returned by the query. You are not
forced to return just the iterator or a single field of the iterator, if it were a class. You can return calcu-
lated data or even an anonymous type that contains properties based on data from the iterator. If
multiple items are used in the Select clause, then a new anonymous type is created and returned,
with each item being a property of the new class. If the Select clause is omitted from a query, the
query defaults to returning all iterators that were part of the From clause. Here are a few examples:

• Dim query = From book In books Select book: This would return a collection of all the book
objects currently stored in the books collection, which would be the same results if the Select
clause had been completely omitted.

• Dim query = From book In books Select book.Title: This would return only the Title prop-
erty for each book object result in query that is an IEnumerable(Of String), assuming Title is
a String.

• Dim query = From book In books Select BookName=book.Title,PublishDate=book.date: This
would return a collection of anonymous types that have BookName and PublishDate properties.

As mentioned in recipe 6-1, the use of a query clause is referred to as query syntax. Although it
does not look as clean, it is possible to directly use the Select extension method, which is what the
Select clause is translated to when it is compiled. This example is the method syntax for the last
query syntax example shown earlier:

Herman_970-5C06.fm Page 237 Wednesday, February 27, 2008 8:21 AM

238 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

Dim query = books.Select(Function(book) New With {.Name = book.Title, ➥
PublishDate=book.Date})

As you see, the Select method accepts a lambda expression that specifies what results should
be returned. The .NET Framework will apply the specified expression to each object in the books
collection, returning the proper information each time. The Select method includes an overload
that passes the index of the current item to the lambda expression.

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Select clause transforms the data into an anonymous type that consists of three properties: Id,
ProcessName, and MemUsed.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_03

 Public Shared Sub Main()

 ' Build the query to return information for all
 ' processes running on the current machine. The
 ' data will be returned in the form of anonymous
 ' types with Id, Name, and MemUsed properties.
 Dim procInfoQuery = From proc In Process.GetProcesses _
 Select proc.Id, Name = proc.ProcessName, ➥
MemUsed = proc.WorkingSet64

 ' Run the query generated earlier and iterate
 ' through the results.
 For Each proc In procInfoQuery
 Console.WriteLine("[{0,5}] {1,-20} - {2}", proc.Id, ➥
proc.Name, proc.MemUsed)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C06.fm Page 238 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 239

6-4. Sort Data Using LINQ

Problem

You need to ensure that the results of a query are sorted appropriately, or you just need to sort the
elements in a collection or array.

Solution

Create a standard LINQ query, such as the one described in recipe 6-1, and use the Order By clause
to ensure that the data is ordered correctly.

How It Works

If you are familiar with query languages, you should recognize the Order By clause. It is used to specify
how the data returned from a query is sorted. The Order By clause also supports the optional Ascending
and Descending keywords, which specify in which direction the data is sorted. If omitted, Ascending
is used by default. An Order By clause might look something like this:

Order By book.Title Ascending

The Order By clause always comes after the From clause, but it can come before or after the Select
clause. Placing the Order By clause before or after the Select clause will allow you to sort on the iter-
ator used by the From clause. However, if you want to sort on the data returned by the Select clause,
then Order By must come after Select.

You can sort on multiple fields by separating them with commas, like this:

Order By bool.Title, book.Price Descending

As mentioned in recipe 6-1, the use of query clauses is referred to as query syntax. Here is a
complete example of query syntax that uses the Order By clause:

Dim query = From book In books _
 Select Name = book.Title, book.Author _
 Order By Author, Name

When this statement is compiled, it is first translated to method syntax. The Order By clause is
translated to a call to the OrderBy or ThenBy (or corresponding OrderByDescending or ThenByDescending)
extension method. If you are sorting by only one field, you would use only OrderBy or OrderByDescending.
The ThenBy methods are identical to the OrderBy methods and are used to chain multiple sort state-
ments. The previous example, when translated to method syntax, looks like this:

Dim query2 = books.Select(Function(book) New With ➥
{.Name = book.Title, book.Author}) _
 .OrderBy(Function(book) book.Author) _
 .ThenBy(Function(book) book.Name)

The OrderBy and ThenBy methods both accept a lambda expression that is used to specify what
field to sort by. The OrderBy and ThenBy methods both include overloads that allow you to specify a
specific IComparer(Of T) (see recipe 14-3) to be used, if the default comparer is not sufficient.

Herman_970-5C06.fm Page 239 Wednesday, February 27, 2008 8:21 AM

240 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Select clause transforms the data into an anonymous type that consists of a Name property and
an Id property. The Order By clause is then used to sort the results by Name and then by Id.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_04

 Public Shared Sub Main()

 ' Build the query to return information for all
 ' processes running on the current machine. The
 ' data will be returned in the form of anonymous
 ' types with Id and Name properties ordered by Name
 ' and by Id.
 Dim procInfoQuery = From proc In Process.GetProcesses _
 Select proc.Id, Name = proc.ProcessName _
 Order By Name, Id

 ' Run the query generated earlier and iterate
 ' through the results.
 For Each proc In procInfoQuery
 Console.WriteLine("{0,-20} [{1,5}]", proc.Name, proc.Id)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-5. Filter Data Using LINQ

Problem

You need to query data that is stored in a collection, but you need to apply some constraint, or filter,
to the data in order to limit the scope of the query.

Solution

Create a standard LINQ query, such as the ones described in the previous recipes, and use the Where
clause to specify how the data should be filtered.

Herman_970-5C06.fm Page 240 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 241

How It Works

While the Select clause (see recipe 6-3) is responsible for transforming or returning data from a
LINQ query, the Where clause is responsible for filtering what data is available to be returned. If you
are familiar with SQL, the LINQ Where clause is virtually indistinguishable from the like-named clause in
SQL. A Boolean expression, which is used to perform the data filtering, precedes the Where clause. As
with the Order By clause (see recipe 6-4), the Where clause can also come before or after the Select
clause depending on whether you need to filter against a property returned by Select.

The following example will return all book elements, stored in the books collection, that have a
Price value greater than or equal to 49.99. Any standard Boolean expression can be used with the
Where clause to further refine the data that is actually queried.

Dim query = From book In books _
 Where book.Price >= 49.99

As mentioned in each of the previous recipes, the previous example uses what is called query
syntax because it is actually using query clauses rather than the underlying methods. All queries are
translated to method syntax as they are being compiled. For instance, this query:

Dim query = From book In books _
 Select Name = book.Title, book.Author, Cost = book.Price _
 Where Cost >= 49.99

would be translated to the following:

Dim query = books.Select(Function(book) New With {.Name = book.Title, ➥
book.Author, .Cost = book.Price}) _
 .Where(Function(book) book.Cost >= 49.99)

As you may have come to expect, the Where method accepts a lambda expression that provides
the Boolean expression that will be applied to each element of the data source. The Where method
includes an overload that passes the index of the current item to the lambda expression.

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Where clause is used to limit the results to only those processes that have more than five mega-
bytes of memory allocated.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_05

 Public Shared Sub Main()

 ' Build the query to return information for all
 ' processes running on the current machine that
 ' have more than 5MB of physical memory allocated.
 ' The data will be returned in the form of anonymous
 ' types with Id, Name, and MemUsed properties.

Herman_970-5C06.fm Page 241 Wednesday, February 27, 2008 8:21 AM

242 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 Dim procInfoQuery = From proc In Process.GetProcesses _
 Where proc.WorkingSet64 > (1024 * 1024) * 5 _
 Select proc.Id, Name = proc.ProcessName, ➥
MemUsed = proc.WorkingSet64

 ' Run the query generated earlier and iterate
 ' through the results.
 For Each proc In procInfoQuery
 Console.WriteLine("{0,-20} [{1,5}] - {2}", proc.ProcessName, ➥
proc.Id, proc.WorkingSet64)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-6. Perform General Aggregate Operations

Problem

You need to perform some calculation, such as computing the minimum or sum, on a series of data
stored in a collection or array.

Solution

Create a LINQ query, similar to those described in the previous recipes, and use an Aggregate clause
to perform any necessary calculations.

How It Works

The Aggregate clause is used to perform some calculation over a series of data. It is the only clause
that can be used in place of the From clause (recipe 6-1), and it is used in a similar manner. Using the
Aggregate clause forces the immediate execution of the query and returns a single object, rather
than a collection that needs to be enumerated through.

The first part of the Aggregate clause is identical to the format of the From clause. You define the
name for the iterator and the source of the data, like this:

Aggregate book In books

The Aggregate clause requires using the Into clause, which contains one or more expressions
that specify the aggregate operation that should be performed. To complete the partial example, you
would add the Into clause, like this:

Aggregate book In books
Into <some expression>

<some expression> represents a calculation that you would need to perform over the entire data
source. To help perform the most common aggregate functions, the .NET Framework 3.5 includes

Herman_970-5C06.fm Page 242 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 243

the following methods: Count, Min, Max, Average, and Sum. These methods are used within the Into
clause and are covered in more detail in recipes 6-7 through 6-9.

A situation may arise where you need to perform an aggregate operation (such as calculating
standard deviation) that does not currently have a method directly associated with it. In this situa-
tion, you have the option of using the Aggregate method directly (using method syntax) rather than
the clause (which would be query syntax). When a query is compiled, it is first translated from query
to method syntax. As an example, the following statement would re-create the functionality accom-
plished by the Count method, if it did not already exist:

Dim result = books.Aggregate(0, Function(currentCount, book) currentCount + 1)

This statement would return the total count of all elements in the books collection. The first
parameter (0) represents the initial value, or seed. If this value is not supplied, then the method
defaults to using the first element of the data source as the initial value. The second parameter (or
first if you did not supply a seed value) is a lambda expression that performs the specified calculation.

The first parameter passed to the lambda expression represents the current aggregate value,
which is the current count of elements in the previous example. The second represents the current
element within the data source. The value returned by the expression will become the new value
passed into the lambda expression during the next iteration.

Please keep in mind that the previous example is just a simple demonstration of method syntax
for the Aggregate operation. To accomplish the same functionality, you could just use the Count method
of the collection (as in books.Count).

6-7. Perform Average and Sum Calculations

Problem

You need to calculate the average or sum of a series of values stored in a collection or array.

Solution

Create an Aggregate query, covered in recipe 6-6, and use the Average or Sum function, within the
Into clause, to perform the required calculation.

How It Works

Recipe 6-6 details how to use the Aggregate...Into clause. This clause is used to perform some calcula-
tion over a series of data. The Into clause is used to specify the calculation that is to be performed.

To calculate the average of a series of values, you would use the Average function, like this:

Dim avg = Aggregate book In books _
 Into Average(book.Price)

This will return a single value that represents the average Price value of all the book objects in
the collection. If the data source implements the ICollection(Of T) interface, which is the base class
for all generic collections, then you must specify a parameter that represents the property value that
should be aggregated (as in the earlier example). If, however, the data source does not implement the
ICollection(Of T) interface, such as a String array, then the Average clause does not require any
parameters.

As stated in previous recipes, the query is translated to method syntax when it is compiled. The
Average method, used in query or method syntax, supports all major numeric data types (Decimal,
Int32, Int64, Single, and Double). If a parameter is passed, such as book.Price in the previous example,
it is defined by a lambda expression. Here is the method syntax equivalent for the example:

Herman_970-5C06.fm Page 243 Wednesday, February 27, 2008 8:21 AM

244 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

Dim avg = books.Average(Function(book) book.Price)

To calculate the sum of a series of values, you would use the Sum function, like this:

Dim total = Aggregate book In books _
 Into Sum(book.Price)

This will return a single value that represents the sum of all Price values in the collection. As
with the Average function mentioned earlier, you do not need to specify any parameters if the data
source does not implement ICollection(Of T).

The Sum method, used in query or method syntax, supports all major numeric data types (Decimal,
Int32, Int64, Single, and Double). If a parameter is passed, such as book.Price in the previous example, it
is compiled as a lambda expression. Here is the method syntax equivalent for the example:

Dim total = books.Sum(Function(book) book.Price)

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Aggregate...Into clause is used to calculate the average and sum of the allocated physical
memory for each process. The data is returned as an anonymous type that contains the
AverageMemory and TotalMemory properties.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_07

 Public Shared Sub Main()

 ' Build the query to return the average and total
 ' physical memory used by all of the processes
 ' running on the current machine. The data is returned
 ' as an anonymous type that contains the aggregate data.
 Dim aggregateData = Aggregate proc In Process.GetProcesses _
 Into AverageMemory = Average(proc.WorkingSet64), _
 TotalMemory = Sum(proc.WorkingSet64)

 ' Display the formatted results on the console.
 Console.WriteLine("Average Allocated Physical Memory: {0,6} MB", ➥
(aggregateData.AverageMemory / (1024 * 1024)).ToString("#.00"))
 Console.WriteLine("Total Allocated Physical Memory : {0,6} MB", ➥
(aggregateData.TotalMemory / (1024 * 1024)).ToString("#.00"))

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C06.fm Page 244 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 245

6-8. Perform Count Operations

Problem

You need to count the number of elements within a collection or array.

Solution

Create an Aggregate query, covered in recipe 6-6, and use the Count or LongCount function, within the
Into clause.

How It Works

Recipe 6-6 details the use of the Aggregate...Into clause. This clause is used to perform some calcu-
lation over a series of data. The Into clause is used to specify the calculation that is to be performed.

If you need to count all the elements in a series, you use either the Count or LongCount function,
such as this:

Dim cnt = Aggregate book In books _
 Into Count(book.Price = 49.99)

This will return an Integer value that represents the count of all elements whose Price value is
equal to 49.99. The LongCount function works identically but returns the resulting value as a Long. If
the data source implements the ICollection(Of T) interface, which is the base class for all generic
collections, then you must specify a parameter that represents the property value that should be
aggregated (as in the previous example). If, however, the data source does not implement the
ICollection(Of T) interface, such as a String array, then the Count clause does not require any
parameters.

As stated in previous recipes, the query is translated to method syntax when it is compiled. If an
expression is supplied, such as book.Price = 49.99 in the earlier example, it is defined by an under-
lying lambda expression. Here is the method syntax equivalent for the example:

Dim cnt = books.Count(Function(book) book.Price = 49.99)

The Code

The following example queries the array of processes returned from the Process.GetProcess function
and orders them by the ProcessName property. The Aggregate...Into clause is used to count the
number of thread objects contained in the Process.Threads collection for each process. The Select
clause transforms the data into a series of anonymous types that have the ProcessName and
ThreadCount properties.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_08

 Public Shared Sub Main()

Herman_970-5C06.fm Page 245 Wednesday, February 27, 2008 8:21 AM

246 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 ' Build the query to return information for all
 ' processes running on the current machine. The
 ' Process.Threads collection, for each process, will
 ' be counted using the Count method. The data will
 ' be returned as anonymous types containing the name
 ' of the process and the number of threads.
 Dim query = From proc In Process.GetProcesses _
 Order By proc.ProcessName _
 Aggregate thread As ProcessThread In proc.Threads _
 Into ThreadCount = Count(thread.Id) _
 Select proc.ProcessName, ThreadCount

 ' Run the query generated earlier and iterate through
 ' the results.
 For Each proc In query
 Console.WriteLine("The {0} process has {1} threads.", ➥
proc.ProcessName, proc.ThreadCount.ToString)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-9. Perform Min and Max Calculations

Problem

You need to calculate the minimum or maximum value contained in a series of values stored in a
collection or array.

Solution

Create an Aggregate query, covered in recipe 6-6, and use the Min or Max function, within the Into
clause, to perform the required calculation.

How It Works

Recipe 6-6 details the use of the Aggregate...Into clause. This clause is used to perform some calcu-
lation over a series of numeric data. The Into clause is used to specify the calculation that is to be
performed.

To calculate the minimum value in a series of values, you would use the Min function, like this:

Dim minPrice = Aggregate book In books _
 Into Min(book.Price)

Herman_970-5C06.fm Page 246 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 247

This will return a single value that represents the minimum Price value for all the book objects
in the collection. As mentioned in the previous aggregate method recipes, if the data source imple-
ments the ICollection(Of T) interface, which is the base class for all generic collections, then you
must specify a parameter that represents the property value that should be aggregated (as in the
earlier example). If, however, the data source does not implement the ICollection(Of T) interface,
such as a String array, then the Count clause does not require any parameters.

As stated in previous recipes, the query is translated to method syntax when it is compiled. The
Min method, used in query or method syntax, supports all major numeric data types (Decimal, Int32,
Int64, Single, and Double). If a parameter is passed, such as book.Price in the previous example, it is
defined by a lambda expression. Here is the method syntax equivalent for the example:

Dim minPrice = books.Min(Function(book) book.Price)

To calculate the maximum value of a series of values, you would use the Max function, like this:

Dim maxPrice = Aggregate book In books _
 Into Max(book.Price)

This will return a single value that represents the maximum Price value in the collection. As
with the Min function mentioned earlier, you do not need to specify any parameters if the data source
is a series of simple data types.

The Max method, used in query or method syntax, supports all major numeric data types (Decimal,
Int32, Int64, Single, and Double). If a parameter is passed, such as book.Price in the earlier example,
it is compiled as a lambda expression. Here is the method syntax equivalent for the example:

Dim maxPrice = books.Max(Function(book) book.Price)

The Code

The following example queries the array of processes returned from the Process.GetProcess
function. The Aggregate...Into clause is used to calculate the minimum and maximum physical
memory allocated for each process. The data is returned as an anonymous type that contains the
MinMemory and MaxMemory properties.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_09

 Public Shared Sub Main()

 ' Build the query to return the minimum and maximum
 ' physical memory allocated by all of the processes
 ' running on the current machine. The data is returned
 ' as an anonymous types that contain the aggregate data.
 Dim aggregateData = Aggregate proc In Process.GetProcesses _
 Into MinMemory = Min(proc.WorkingSet64), _
 MaxMemory = Max(proc.WorkingSet64)

Herman_970-5C06.fm Page 247 Wednesday, February 27, 2008 8:21 AM

248 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 ' Display the formatted results on the console.
 Console.WriteLine("Minimum Allocated Physical Memory: {0,6} MB", ➥
(aggregateData.MinMemory / (1024 * 1024)).ToString("#.00"))
 Console.WriteLine("Maximum Allocated Physical Memory: {0,6} MB", ➥
(aggregateData.MaxMemory / (1024 * 1024)).ToString("#.00"))

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-10. Group Query Results

Problem

You need to query data that is stored in a collection or array, but you need group the data in some
hierarchical format.

Solution

Create a standard LINQ query, such as the ones described in the previous recipes, and use the Group
By clause to specify how the data should be organized.

How It Works

The Group By clause is used to organize the data returned from a query in a hierarchical format, meaning
that data is returned as groups of elements or even groups of grouped elements. The format for the
first portion of the clause is Group fields By key fields, where fields is a list of fields that will be included
with the grouped data and key fields represents how the data is actually grouped. If no fields are
supplied, then all available properties are included with the grouped data.

The second portion of the clause is similar to the Aggregate clause (recipe 6-6) in that it uses the
Into clause and expects one or more aggregate expressions. Any included aggregate expression will
be applied to the grouped data. If you need to return that actual grouped data, rather than just aggre-
gate values, you can use the Group keyword with the Into clause. If needed, you can specify an alias
for the grouped data.

Here is an example query:

Dim query = From book In books _
 Group book.Price By book.Author _
 Into Count = Count(), AveragePrice = Average(Price)

When this query is executed, it returns a collection of anonymous types that includes the Count
and AveragePrice properties. The Count property represents the count of all book elements in each
Author group, and the AveragePrice property represents the average price of all the books in each
group. Since only aggregate data was returned, there is no hierarchical data that needs to be iterated
through.

The previous example shows a basic demonstration of the Group By clause that returns grouped
elements. The following is a more advanced example that returns groups of grouped elements:

Herman_970-5C06.fm Page 248 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 249

Dim query = From book In books _
 Order By book.Author _
 Group book.Title, book.Price By book.Author _
 Into Booklist = Group

This query returns the Title and Price properties for each book belonging to the specified
Author. The data returned is a collection of anonymous types that includes an Author property, which
is the key that was used to group the data, and a BookList property, which is a collection of anony-
mous types that represents the data in the group. To correctly iterate through this hierarchical data,
you would look through both collections, like this:

For Each currentAuthor In query
 For Each book In currentAuthor.BookList
 ...
 Next
Next

As mentioned in earlier recipes in this chapter, query syntax refers to the use of clauses to build
a query. It provides a very clean and user-friendly format, as demonstrated by the previous examples.
However, when a query is compiled, it is translated to the appropriate underlying methods, which
are referred to as method syntax. Here is what the translated version of the first example would look
like:

Dim query = books.GroupBy(Function(book) book.Author, _
 Function(book) book.Price, _
 Function(author, priceList) _
 New With {.Key = author, _
 .Count = priceList.Count, _
 .AveragePrice = priceList.Average})

The GroupBy method has overloads that let you specify a specific IComparer(Of T) (recipe 14-3)
to use. There are also overloads that let you specify a lambda expression that is used to identify the
elements to be grouped or a lambda expression that is used to transform the resulting data.

The Code

The following example queries the array of processes returned from the Process.GetProcess function.
The Where clause is used to return data only if a group has more than one process.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_10

 Public Shared Sub Main()

 ' Build the query to return information for all processes
 ' running on the current machine and group them based
 ' on the mathematical floor of the allocated physical
 ' memory. The count, maximum, and minimum values for each
 ' group are calculated and returned as properties of the
 ' anonymous type. Data is returned only for groups that
 ' have more than one process.

Herman_970-5C06.fm Page 249 Wednesday, February 27, 2008 8:21 AM

250 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 Dim query = From proc In Process.GetProcesses _
 Order By proc.ProcessName _
 Group By MemGroup = Math.Floor((proc.WorkingSet64 / ➥
(1024 * 1024))) _
 Into Count = Count(), Max = Max(proc.WorkingSet64), ➥
 Min = Min(proc.WorkingSet64) _
 Where Count > 1 _
 Order By MemGroup

 ' Run the query generated earlier and iterate through the
 ' results.
 For Each result In query
 Console.WriteLine("Physical Allocated Memory Group: {0} MB", ➥
result.MemGroup)
 Console.WriteLine("# of processes that have this amount of " & ➥
"memory allocated: {0}", result.Count)
 Console.WriteLine("Minimum amount of physical memory" & ➥
" allocated: {0} ({1})", result.Min, (result.Min / ➥
(1024 * 1024)).ToString("#.00"))
 Console.WriteLine("Maximum amount of physical memory" & ➥
" allocated: {0} ({1})", result.Max, (result.Max / ➥
(1024 * 1024)).ToString("#.00"))
 Console.WriteLine()
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-11. Query Data from Multiple Collections

Problem

You need to execute a query based on the combined data from multiple collections.

Solution

Create a standard LINQ query, such as the ones described by the previous recipes in this chapter,
and use the Join clause to join the data from multiple sources.

How It Works

If you have any experience with SQL, or other query languages, you will most likely recognize the need
to join data from multiple sources. One of the most popular join functions available to Microsoft
T-SQL is INNER JOIN, which returns only the elements from the first source that match elements in
the second.

Herman_970-5C06.fm Page 250 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 251

The .NET Framework 3.5 supplies the Join clause, which provides functionality equivalent to an
inner join. Here is an example:

Dim query = From book In books _
 Join stockInfo In stock _
 On book.ISBN Equals stockInfo.ISBN _
 Order By book.ISBN

The first portion of the Join clause is similar to the From clause (recipe 6-1) in that you supply a
variable and a data source. In this case, the variable supplied is used later in the clause as a reference
to the source. The second portion uses the On and Equals clauses to specify the two keys that need to
be compared from the two data sources. For the record, the first data source is specified in the From
clause, while the second is specified in the Join clause.

The results of this query would be a collection of anonymous types, ordered by the ISBN property.
The anonymous type contains a book property and a stockInfo property, which represent the book
and stock classes that were joined based on their ISBN properties.

■Note It is possible to perform a basic join operation without actually using the Join clause. You can accomplish
this by specifying multiple data sources within the From clause and by using the Where clause to specify the appro-
priate keys. Although this works, it is suggested you use the Join clause to perform this operation appropriately.

Here is another example query that uses the Join clause:

Dim query2 = From book In books _
 Join stockInfo In stock _
 On book.ISBN Equals stockInfo.ISBN _
 Order By book.ISBN _
 Select ID = book.ISBN, BookName = book.Title, stockInfo.Quantity

This example is similar to the previous example, but it demonstrates how you can still use the
Select clause to transform the results of the query into a specific format. In this case, the resulting
anonymous types would have ID, BookName, and Quantity properties.

As mentioned in previous recipes in this chapter, the clauses used in the previous query would
be converted to their underlying method calls during compilation. The method syntax equivalent of
the example is as follows:

Dim query = books.Join(stock, _
 Function(book) book.ISBN, _
 Function(stockinfo) stockinfo.ISBN, _
 Function(book, stockInfo) New With _
 {.ID = book.ISBN, _
 .BookName = book.Title, _
 stockInfo.Quantity}) _
 .OrderBy(Function(item) item.ID)

The first parameter of the Join method represents the inner data source to which the outer
source will be joined. The next parameter is a lambda expression that specifies the key in the outer
data source, while the parameter following it specifies the matching key in the inner data source. The
last parameter is also a lambda expression that receives instances of both sources and allows you to
transform the results, similar to the Select method (recipe 6-3). The Join method also offers an over-
load that lets you specify your own IEqualityComparer(Of T).

Herman_970-5C06.fm Page 251 Wednesday, February 27, 2008 8:21 AM

252 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

■Note Although it is not covered in this recipe, the .NET Framework 3.5 also provides the Group Join clause,
which performs similar functionality to the Join clause but groups the data (like the Group By clause) as well.
Consult the documentation for more details on Group Join.

The Code

The following example creates an array of String objects that contains the names of processes that
should be monitored on the local computer. This array is joined to the array of processes returned
from the Process.GetProcess function using the ProcessName property.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_11

 Public Shared Sub Main()

 ' Store a list of processes that will be monitored or
 ' that information should be gathered for.
 Dim processesToMonitor = New String() {"explorer", _
 "iexplore", _
 "lsass", _
 "rundll32", _
 "services", _
 "winlogon", _
 "svchost"}

 ' Build the query to return information for all of the
 ' processes that should be monitored by joining them to
 ' the list of all processes running on the current
 ' computer. The count, maximum, and minimum values for each
 ' group are calculated and returned as properties of the
 ' anonymous type. Data is returned only for groups that
 ' have more than one process.
 Dim query = From proc In Process.GetProcesses _
 Order By proc.ProcessName _
 Join myProc In processesToMonitor _
 On proc.ProcessName Equals myProc _
 Select Name = proc.ProcessName, proc.Id, ➥
PhysicalMemory = proc.WorkingSet64

 ' Run the query generated earlier and iterate through the
 ' results.
 For Each proc In query
 Console.WriteLine("{0,-10} ({1,5}) - Allocated Physical " & ➥
"Memory: {2,5} MB", proc.Name, proc.Id, (proc.PhysicalMemory / ➥
(1024 * 1024)).ToString("#.00"))
 Next

Herman_970-5C06.fm Page 252 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 253

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

6-12. Returning Specific Elements of a Collection

Problem

You need to retrieve a specific element or groups of elements from a collection.

Solution

Call any of the partitioning methods listed in Table 6-2, such as First or Single, to return the desired
element from the collection.

How It Works

Not all of the extension methods found in the System.Linq.Enumerable namespace relate directly to
a query clause, such as those covered in the previous recipes of this chapter. The methods listed in
Table 6-2 fall in this category and provide functionality to extract a single element from a collection.
If you use any of these methods as part of a query, the query will execute immediately.

 Dim myBook = books.ElementAt(3)

The previous example demonstrates a use of the ElementAt method, which allows you to
specify, in the form of an Integer, the zero-based index of the element you want to retrieve. An
ArgumentOutOfRangeException is thrown if you specify an index that does not exist.

Dim myBook = books.Single

The previous code demonstrates how to use the Single method, which returns the only element
that is in the collection. An InvalidOperationException is thrown if the collection contains more
than one element. This method includes an overload, which lets you specify a condition in the form
of a lambda expression, such as the following:

Table 6-2. Common Partitioning Methods

Method Description

ElementAt Returns the item at the specified index in the collection. Since the collection is
zero-based, the first element is at index 0.

Single Returns the only item in the collection.

First Returns the first item in the collection.

Last Returns the last item in the collection.

Herman_970-5C06.fm Page 253 Wednesday, February 27, 2008 8:21 AM

254 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

Dim myBook = books.Single(Function(book) book.Price = 59.99)

Used in this manner, the Single method will return the only element that meets the given condi-
tion. Again, an InvalidOperationException is thrown if more than one element meets the provided
condition.

Dim theFirstBook = books.First

The previous code demonstrates the First method, which returns the first element in the collection.
An InvalidOperationException would be thrown if the collection contained no elements. As with the
Single method, you can also specify a lambda expression to be used as a condition. The first element
that meets the condition will be returned.

Dim theLastBook = books.Last

The previous code demonstrates the Last method, which returns the last element in the collection.
An InvalidOperationException would be thrown if the collection contained no elements. As with the
Single and First methods, you can also specify a lambda expression to be used as a condition. The
last element that meets the condition will be returned.

Each of the methods described earlier has a matching method that ends with OrDefault, such as
SingeOrDefault and LastOrDefault. In cases where the collection is empty, these methods would
return a default value (which is Nothing for reference types) instead of throwing an exception.

6-13. Display Collection Data Using Paging

Problem

You need to segment data from a collection into pages.

Solution

Create a standard query that uses both the Skip and Take clauses to segment the data into appropri-
ately sized pages, and then execute the query in a loop, changing the parameters used with Skip and
Take to retrieve and display each page.

How It Works

It is common to divide large amounts of data into manageable chunks, or pages. This is accomplished
with LINQ by using a combination of the Skip and Take clauses.

The Skip clause forces the query to skip the specified number of elements, starting from the
beginning of the data source. The following example would skip the first three elements of the books
collection and then return the rest:

Dim query = From book In books Skip 3

The Take clause is the exact opposite. It returns the specified number of elements, starting from
the beginning of the data source, and then skips the rest. The following is an example that returns
only the first three elements of the books collections:

Dim query = From book In books Take 3

Together, both of these clauses are used to simulate paging. This is accomplished by skipping
and taking data, using the Skip and Take clauses, in specific sizes within a loop.

Herman_970-5C06.fm Page 254 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 255

The Code

The following example uses LINQ to query the processes that are using more than 5 MB of memory.
A page, which consists of ten items, is retrieved by using Skip and Take as described in this recipe.
The example loops through each page, displaying the data until there is no more.

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_13

 ' This field holds the size of our pages.
 Private Shared pageSize As Integer = 10
 Private Const FIVE_MB = 3 * (1024 * 1024)
 Public Shared Sub Main()

 ' Use LINQ to retrieve a List(Of Process) List of
 ' processes that are using more then 5MB of memory. The
 ' ToList method is used to force the query to execute immediately
 ' and save the results in the procs variable so they can be reused.
 Dim procs = (From proc In Process.GetProcesses.ToList _
 Where proc.WorkingSet64 > FIVE_MB _
 Order By proc.ProcessName _
 Select proc).ToList

 Dim totalPages As Integer

 ' Determine the exact number of pages of information
 ' available for display.
 totalPages = Math.Floor(procs.Count / pageSize)
 If procs.Count Mod pageSize > 0 Then totalPages += 1

 Console.WriteLine("LIST OF PROCESSES WITH MEMORY USAGE OVER 5 MB:")
 Console.WriteLine("")

 ' Loop and display each page of data.
 For i = 0 To totalPages - 1
 Console.WriteLine("PAGE {0} OF {1}", i + 1.ToString(), ➥
totalPages.ToString())

 ' Query the procs collection and return a single page
 ' of processes using the Skip and Take clauses.
 Dim currentPage = From proc In procs _
 Skip i * pageSize Take pageSize

 ' Loop through all the process records for the current page.
 For Each proc In currentPage
 Console.WriteLine("{0,-20} - {1,5} MB", proc.ProcessName, ➥
(proc.WorkingSet64 / (1024 * 1024)).ToString("#.00"))
 Next

Herman_970-5C06.fm Page 255 Wednesday, February 27, 2008 8:21 AM

256 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 ' Check whether there are any more pages.
 If Not i = totalPages - 1 Then
 Console.WriteLine("Press Enter for the next page.")
 Console.ReadLine()
 End If
 Next

 Console.WriteLine("No more data available. Press Enter to end.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

Although they weren’t needed for this recipe, both the Skip and Take clauses can use the While
clause (Skip While and Take While). The While clause allows you to specify a condition rather than
simply supplying an Integer value. This means elements will be taken or skipped depending on
whether the condition has been met. It is important to note that the operation will end the first time
the condition is False. Here is an example:

Dim query = From book In books _
 Order By book.Price Descending _
 Take While book.Price >= 49.99

As mentioned in the other recipes in this chapter, the previous query is written in query syntax
because it uses the more stylized query clauses similar to those found in T-SQL. However, when the
query is compiled, it is first translated to the underlying methods. The following is the equivalent
method syntax for the example query:

Dim query = books.OrderByDescending(Function(book) book.Price) _
 .TakeWhile(Function(book) book.Price >= 49.99)

The Take and Skip methods take an Integer that represents the number of elements in the
collection to take or skip, respectively. TakeWhile and SkipWhile, however, take a lambda expression
that supplies the condition that must be met for elements to be taken or skipped. Both of these methods
include overloads that pass the corresponding elements’ index to the lambda expression.

6-14. Compare and Combine Collections

Problem

You need to quickly compare or combine the contents of two collections.

Solution

Call the Except, Intersect, or Union method to perform the appropriate action. If you need to combine
the data, use the Concat method.

Herman_970-5C06.fm Page 256 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 257

How It Works

Most of the functionality supported by LINQ is directly related to building queries. The System.
Linq.Enumerable class, which is where the extension methods used by LINQ are located, contains
additional supporting methods. Although these methods don’t have query clauses directly associated
with them, they can still be used with queries since they return objects that inherit IEnumerable(Of T).

Four examples of these methods are Except, Intersect, Union, and Concat. Except, Intersect,
and Union provide the functionality to allow two collections to be compared in a specific manner
resulting in a new collection, while Concat simply combines them. Using any of these methods as
part of a query will force the query to execute immediately.

The Except method, shown next, compares two collections and returns all elements from the
prime source that were not found in the supplied collection:

Dim missingBooks = myBooks.Except(yourBooks)

The Intersect method, shown next, compares two collections and returns all elements that
match in both:

Dim sameBooks = myBooks.Intersect(yourBooks)

The Union method, shown next, compares two collections and returns the combination of all
elements from both sources. This method will not return duplicate elements.

Dim combinedBooks = myBooks.Union(yourBooks)

The Concat method, shown next, performs the same overall functionality as Union, but all the
elements (including duplicates) are returned:

Dim allBooks = myBooks.Concat(yourBooks)

■Note Each of the four methods mentioned include an overload that allows you to specify your own
IEqualityComparer(Of T) to use. If one is not supplied, the default equality comparer for each particular object
is used.

The Code

The following example demonstrates how to use the four LINQ-related extension methods discussed:

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06
 Public Class Recipe06_14

 Public Shared Sub Main()

 ' Array to hold a set of strings.
 Dim myWishList = New String() {"XBox 360", _
 "Rolex", _
 "Serenity", _
 "iPod iTouch", _
 "Season 3 of BSG", _
 "Dell XPS", _
 "Halo 3"}

Herman_970-5C06.fm Page 257 Wednesday, February 27, 2008 8:21 AM

258 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 ' An array holding a second set of strings.
 Dim myShoppingCart = New String() {"Shrek", _
 "Swatch (Green)", _
 "Sony Walkman", _
 "XBox 360", _
 "Season 3 of The Golden Girls", _
 "Serenity"}

 ' Returns elements from myWishList that are NOT in
 ' myShoppingCart.
 Dim result1 = myWishList.Except(myShoppingCart)

 Console.WriteLine("Items in the wish list that were not in the " & ➥
"shopping cart:")
 For Each item In result1
 Console.WriteLine(item)
 Next
 Console.WriteLine()

 ' Returns elements that are common in both myWishList
 ' and myShoppingCart.
 Dim result2 = myWishList.Intersect(myShoppingCart)

 Console.WriteLine("Matching items from both lists:")
 For Each item In result2
 Console.WriteLine(item)
 Next
 Console.WriteLine()

 ' Returns all elements from myWishList and myShoppingCart
 ' without duplicates.
 Dim result3 = myWishList.Union(myShoppingCart)

 Console.WriteLine("All items from both lists (no duplicates):")
 For Each item In result3
 Console.WriteLine(item)
 Next
 Console.WriteLine()

 ' Returns all elements from myWishList and myShoppingCart
 ' including duplicates
 Dim result4 = myWishList.Concat(myShoppingCart)

 Console.WriteLine("All items from both lists (with duplicates):")
 For Each item In result4
 Console.WriteLine(item)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

Herman_970-5C06.fm Page 258 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 259

 End Sub

 End Class
End Namespace

6-15. Cast a Collection to a Specific Type

Problem

You need to convert a nongeneric collection, such as an ArrayList, into a generic collection so it will
be capable of fully supporting LINQ.

Solution

Use the Cast or OfType extension method to cast the target collection to the specified type.

How It Works

As noted in several other recipes in this chapter, the System.Linq.Enumerable class contains all the
extension methods that make up LINQ to Objects. Although the vast majority of these methods
extend IEnumerable(Of T), a few of them actually extend IEnumerable. Two of the most important
methods that are designed this way are Cast and OfType. Since these methods extend IEnumerable, it
provides a mechanism to easily convert a collection (such as an ArrayList) to an IEnumerable(Of T)
type so it can fully support LINQ.

Recipe 6-2 covered the basics of using an ArrayList, or any other IEnumerable type, with LINQ
by strongly typing the iterator used in the From clause. What it didn’t cover is that when this type of
query is compiled, it actually makes a call to the Cast method to return an IEnumerable(Of T) object.
This method goes through the source collection attempting to cast each object to the specified data
type. The end result is an appropriately typed generic collection that now fully supports LINQ. If an
element of the collection cannot be cast to the specified type, an InvalidCastException will be thrown.

The other method that provides casting functionality is OfType. This method works similarly to
the Cast method, but it simply skips elements that cannot be cast rather than throwing an exception.

The Code

The following example demonstrates how to convert a nongeneric collection, which is one that doesn’t
inherit from IEnumerable(Of T), into one that does so it can fully support LINQ:

Imports System
Imports System.Linq
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class Recipe06_15

 Public Class Tool
 Public Name As String
 End Class

 Public Class Clothes
 Public Name As String
 End Class

Herman_970-5C06.fm Page 259 Wednesday, February 27, 2008 8:21 AM

260 CH AP T E R 6 ■ L AN G U AG E IN TE G R A TE D QU E R Y (L IN Q)

 Public Shared Sub Main()

 ' From Example - NonGeneric Collection
 Dim employeeList As New ArrayList

 employeeList.Add("Todd")
 employeeList.Add("Alex")
 employeeList.Add("Joe")
 employeeList.Add("Todd")
 employeeList.Add("Ed")
 employeeList.Add("David")
 employeeList.Add("Mark")

 ' You can't normally use standard query operators on
 ' an ArrayList (IEnumerable) unless you strongly type
 ' the From clause. Strongly typing the From clause
 ' creates a call to the Cast function, shown below.
 Dim queryableList = employeeList.Cast(Of String)()
 Dim query = From name In queryableList

 For Each name In query
 Console.WriteLine(name)
 Next
 Console.WriteLine()

 Dim shoppingCart As New ArrayList

 shoppingCart.Add(New Clothes With {.Name = "Shirt"})
 shoppingCart.Add(New Clothes With {.Name = "Socks"})
 shoppingCart.Add(New Tool With {.Name = "Hammer"})
 shoppingCart.Add(New Clothes With {.Name = "Hat"})
 shoppingCart.Add(New Tool With {.Name = "Screw Driver"})
 shoppingCart.Add(New Clothes With {.Name = "Pants"})
 shoppingCart.Add(New Tool With {.Name = "Drill"})

 ' Attempting to iterate through the results would generate
 ' an InvalidCastException because some items cannot be
 ' cast to the appropriate type. However, some items
 ' may be cast prior to hitting the exception.
 Dim queryableList2 = shoppingCart.Cast(Of Clothes)()

 Console.WriteLine("Cast (using Cast) all items to 'Clothes':")
 Try
 For Each item In queryableList2
 Console.WriteLine(item.Name)
 Next
 Catch ex As Exception
 Console.WriteLine(ex.Message)
 End Try
 Console.WriteLine()

Herman_970-5C06.fm Page 260 Wednesday, February 27, 2008 8:21 AM

C H AP TE R 6 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 261

 ' OfType is similar to cast but wouldn't cause the
 ' exception as shown in the previous example. Only
 ' the items that can be successfully cast will be returned.
 Dim queryableList3 = shoppingCart.OfType(Of Clothes)()

 Console.WriteLine("Cast (using OfType) all items to 'Clothes':")
 For Each item In queryableList3
 Console.WriteLine(item.Name)
 Next
 Console.WriteLine()

 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C06.fm Page 261 Wednesday, February 27, 2008 8:21 AM

Herman_970-5C06.fm Page 262 Wednesday, February 27, 2008 8:21 AM

263

■ ■ ■

C H A P T E R 7

LINQ to XML and XML Processing

Extensible Markup Language (XML) has become an integral part of operating systems and applica-
tion development. Many components or features in Visual Studio such as serialization, web services,
and configuration files all use XML behind the scenes. When you need to manipulate XML directly,
you will need to work with the System.Xml namespace.

Common XML tasks include parsing an XML file, validating it against a schema, applying an XSL
transform to create a new document or Hypertext Markup Language (HTML) page, and searching
intelligently with XPath.

.NET Framework 3.5 introduces LINQ to XML, which contains an updated version of the XML
Document Object Model (DOM) used in earlier versions of .NET. As the name implies, LINQ to XML
also provides LINQ support for XML. Language Integrated Query (LINQ) is a powerful new querying
functionality that is covered in depth in Chapter 6.

The recipes in this chapter mainly focus on the changes and new additions that surround LINQ
to XML rather than how things were handled previously using the standard DOM classes (such as
XmlDocument). If you find yourself in the position where you are maintaining code that uses these
older classes, you can use the included recipes to upgrade, or you can refer to other resources, such
as Visual Basic Recipes 2005 from Apress (the previous version of this book) or Beginning XML,
Fourth Edition (Programmer to Programmer) from Wrox.

The recipes in this chapter cover the following:

• Creating and loading XML files (recipes 7-1 and 7-2)

• Manipulating the contents of XML files (recipes 7-3, 7-4, and 7-5)

• Querying an XML document by using LINQ (recipe 7-6), by using namespaces (recipe 7-7), or
by using XPath (recipe 7-8)

• Joining multiple XML files (recipe 7-9)

• Converting an XML file to a delimited file, and vice versa (recipe 7-10)

• Validating an XML document against an XML schema (recipe 7-11)

• Serializing an object to XML (recipe 7-12), creating an XML schema for a class (recipe 7-13),
and generating the source code for a class based on an XML schema (recipe 7-14)

• Transforming an XML document to another document using an XSL Transformations (XSLT)
style sheet (recipe 7-15)

■Note The recipes in this chapter rely heavily on LINQ, which is fully covered in Chapter 6. For that reason, it is
suggested that you read through all those recipes prior to working with this chapter.

Herman_970-5C07.fm Page 263 Monday, March 3, 2008 10:00 AM

264 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

7-1. Create an XML Document

Problem

You need to create some XML data and save it to a file.

Solution

Use XML literals to create a System.Xml.Linq.XElement object, and then use the Save method to save
the XML tree to a file.

How It Works

The .NET Framework provides several different ways to process XML documents. The one you use
depends on the programming task you are attempting to accomplish. The .NET Framework 3.5 includes
classes that provide the functionality to manipulate and query XML files. Although all previous versions
of .NET supported similar functionality, the new LINQ to XML classes, the most common of which
can be found in Table 7-1, have greatly enhanced its support of the W3C Document Object Model
(DOM). The DOM dictates how XML documents are structured and manipulated; you can find
detailed specifications at http://www.w3c.org/DOM.

The primary class used for creating and representing XML trees is the XElement class. This class
provides all the functionally necessary to add, remove, or change elements and attributes. Performing
these actions in earlier versions of .NET was tedious because you were forced to create the XML tree
element by element, like this:

Using fs As New FileStream("sample.xml", FileMode.Create)
 Using w As XmlWriter = XmlWriter.Create(fs)
 w.WriteStartDocument()
 w.WriteStartElement("Products")
 w.WriteStartElement("Product")
 w.WriteAttributeString("id", "1001")
 w.WriteElementString("ProductName", "Visual Basic 2008 Recipes")
 w.WriteElementString("ProductPrice", "49.99")
 w.WriteEndElement()

Table 7-1. Common LINQ to XML Classes

Class Description

XAttribute Represents an attribute.

XDocument Represents a complete XML tree. This class derives from XContainer, which is
the base class for all XML elements that can have child elements.

XElement Represents an XML element and is the basic construct used for representing
XML trees. This class also derives from XContainer.

XName Represents attribute and element names.

XNode Represents the base class for XML nodes (such as comments or elements).

Herman_970-5C07.fm Page 264 Monday, March 3, 2008 10:00 AM

http://www.w3c.org/DOM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 265

 w.Flush()
 End Using
End Using

This example will produce the sample.xml file, which looks similar to the following:

<?xml version="1.0" encoding="utf-8"?>
<Products>
 <Product id="1001">
 <ProductName>Visual Basic 2008 Recipes</ProductName>
 <ProductPrice>49.99</ProductPrice>
 </Product>
</Products>

The .NET Framework 3.5 still supports these same methods, but with the introduction of LINQ
to XML, there is really no reason to use them because the new functionality is much more efficient
and looks cleaner. The constructor for XElement can accept XElement or XAttribute objects as param-
eters. This allows you to create an entire XML tree in one statement by nesting the creation of each
as the appropriate XElement or XAttribute parameter, as shown here:

Dim xmlTree As XElement = _
 New XElement("Products", _
 New XElement("Product", _
 New XAttribute("id", "1001"), _
 New XElement("ProductName", "Visual Basic 2008 Recipes"), _
 New XElement("ProductPrice", "49.99")))

xmlTree.Save("products.xml")

This code, referred to as functional construction, produces an XML file identical to the one
produced using the older methods. Functional construction is a much more refined approach to
creating XML trees. You simply create new instances of XElement and XAttribute objects as required
to build the complete tree. Since an XElement object can refer to one or more elements, xmlTree
contains the full XML tree and can be easily saved using the Save method or written directly to the
screen using ToString.

Visual Studio 2008 provides Visual Basic developers with an even easier way to create and work
with XML using XML literals and embedded expressions. XML literals literally refers to writing XML
directly in your code, such as the following:

Dim xmlTree = <Products>
 <Product id="1001">
 <ProductName>Visual Basic 2008 Recipes</ProductName>
 <ProductPrice>49.99</ProductPrice>
 </Product>
 </Products>

This example is identical to the previous one, but we’re sure you see the benefits. Actually, when
compiled, this code is actually first translated to functional construction. Furthermore, using XML
literals allows you to use embedded expressions as well. If you are familiar with ASP.NET, you may
already be familiar with embedded expressions, which allow you to embed code within a markup
language. For example, if you had the product ID stored in a variable named productID, you could
rewrite the previous code like this:

Herman_970-5C07.fm Page 265 Monday, March 3, 2008 10:00 AM

266 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

Dim xmlTree = <Products>
 <Product id=<%= productID %>>
 <ProductName>Visual Basic 2008 Recipes</ProductName>
 <ProductPrice>49.99</ProductPrice>
 </Product>
 </Products>

This example reveals the true power of what LINQ to XML now offers. With the use of XML literals
and embedded expressions and LINQ, you can easily create sophisticated XML files.

As mentioned earlier, the most commonly used class for working with XML is XElement. However,
you can also use the XDocument class (which is covered in more detail in recipe 7-2). Both classes are
similar, but XDocument supports the extra information (such as comments and processing instructions)
that XElement doesn’t.

The Code

The following code creates an XML tree using literals and embedded expressions. The root of the
tree, <Employees>, is created using an XML literal. An embedded expression, in the form of a LINQ
query, is used to create each child <Employee> node. The LINQ query retrieves all the Employee
objects from employeeList and transforms them, using more literals and embedded expressions,
into the <Employee> nodes.

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_01

 Public Class Employee
 Public EmployeeID As Integer
 Public FirstName As String
 Public LastName As String
 Public Title As String
 Public HireDate As DateTime
 Public HourlyWage As Double
 End Class

 Public Shared Sub Main()

 ' Create a List to hold employees
 Dim employeeList = New Employee() _
 {New Employee With {.EmployeeID = 1, _
 .FirstName = "Joed", _
 .LastName = "McCormick", _
 .Title = "Airline Pilot", _
 .HireDate = DateTime.Now.AddDays(-25), _
 .HourlyWage = 100.0}, _

Herman_970-5C07.fm Page 266 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 267

 New Employee With {.EmployeeID = 2, _
 .FirstName = "Kia", _
 .LastName = "Nakamura", _
 .Title = "Super Genius", _
 .HireDate = DateTime.Now.AddYears(-10), _
 .HourlyWage = 999.99}, _
 New Employee With {.EmployeeID = 3, _
 .FirstName = "Romi", _
 .LastName = "Brady", _
 .Title = "Quantum Physicist", _
 .HireDate = DateTime.Now.AddMonths(-15), _
 .HourlyWage = 120.0}, _
 New Employee With {.EmployeeID = 4, _
 .FirstName = "Leah", _
 .LastName = "Clooney", _
 .Title = "Molecular Biologist", _
 .HireDate = DateTime.Now.AddMonths(-10), _
 .HourlyWage = 100.75}}

 ' Use XML literals to create the XML tree.
 ' Embedded expressions are used, with LINQ, to
 ' query the employeeList collection and build
 ' each employee node.
 Dim employees = _
 <Employees>
 <%= From emp In employeeList _
 Select _
 <Employee id=<%= emp.EmployeeID %>>
 <Name><%= emp.FirstName & " " & emp.LastName %></Name>
 <Title><%= emp.Title %></Title>
 <HireDate><%= emp.HireDate.ToString("MM/dd/yyyy") ➥
%></HireDate>
 <HourlyRate><%= emp.HourlyWage %></HourlyRate>
 </Employee> _
 %>
 </Employees>

 ' Save the XML tree to a file and then display it on
 ' the screen.
 employees.Save("Employees.xml")
 Console.WriteLine(employees.ToString())

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class

End Namespace

Herman_970-5C07.fm Page 267 Monday, March 3, 2008 10:00 AM

268 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

7-2. Load an XML File into Memory

Problem

You need to load the contents of an XML file into memory.

Solution

Use the Load method of the XElement or XDocument class.

How It Works

Recipe 7-1 covered XElement, the primary LINQ to XML class for working with XML trees. Although
this class is extremely powerful, it does not provide properties or methods for working with all aspects of
a full XML document, such as comments or processing instructions. To work with this extended
information, you must rely on the XDocument class.

Although the XElement class can contain any number of child elements, the XDocument class, which
represents the very top level of an XML document itself, can have only one child element. This one
element, accessed by the Root property, is an XElement that contains the rest of the XML tree.

The XElement and XDocument classes both include the Parse and Load methods. The Parse method
is used to parse the contents of a String to an XElement or XDocument object. Both classes support an
overload of the method that allows you to specify how white spaces should be handled. The Load
method allows you to load the complete contents of an XML file into an XDocument object or just the
XML tree into an XElement object. Overloads of this method let you specify the target file as a String
representing the path to the file, a TextReader instance, or an XmlReader instance.

The Code

The following code loads the contents of the Employees.xml file and displays the document declaration
and root element on the screen:

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_02

 Public Shared Sub Main()

 ' Load the Employees.xml and store the contents into an
 ' XDocument object.
 Dim xmlDoc As XDocument = XDocument.Load("Employees.xml")

 ' Display the XML files declaration information.
 Console.WriteLine("The document declaration is '{0}'", ➥
xmlDoc.Declaration.ToString)

 ' Display the name of the root element in the loaded
 ' XML tree. The Root property returns the top-level
 ' XElement, the Name property returns the XName class
 ' associated with Root and LocalName returns the name
 ' of the element as a string).

Herman_970-5C07.fm Page 268 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 269

 Console.WriteLine("The root element is '{0}'", ➥
xmlDoc.Root.Name.LocalName)

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

7-3. Insert Elements into an XML Document

Problem

You need to modify an XML document by inserting new data.

Solution

Use one of the available add methods (Add, AddAfterSelf, AddBeforeSelf, or AddFirst) of the XElement
class, passing in an instance of the XElement or XAttribute object to create.

How It Works

The XElement class provides the following methods for inserting new elements and attributes into an
existing XML tree:

• Add adds the specified element(s) or attribute(s) to the current XElement. The element(s) or
attribute(s) are added at the end of any existing ones.

• AddAfterSelf and AddBeforeSelf add the specified element(s) or attribute(s) before or after
the current XElement.

• AddFirst adds the specified element(s) at the top of the elements in the current element.

Each method accepts either a single XElement or XAttribute object or a collection of them,
represented as an IEnumerable(Of XElement) or IEnumerable(Of XAttribute), respectively. You can
specify what data to add using any of the methods discussed in the previous recipes, such as functional
construction and XML literals. Also, you must keep mindful of what you are attempting to add and
where you are trying to add it when using AddAfterSelf, AddBeforeSelf, and AddFirst. You will receive an
exception if you attempt to use these methods to add XAttribute objects to XElement objects that refer
to nodes or content. They should be used only for adding XAttribute objects to XAttribute objects
and XElement objects to XElement objects.

The Code

The following example loads the contents of an XML file and then uses the XElement.Add method to
add new elements and an attribute before displaying the contents.

Herman_970-5C07.fm Page 269 Monday, March 3, 2008 10:00 AM

270 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

■Note This recipe uses shortcuts known as axis properties. Refer to recipe 7-6 for more information about axis
properties and how they are used.

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_03

 Public Shared Sub Main()

 ' Load the Employees.xml and store the contents into an
 ' XElement object.
 Dim employees As XElement = XElement.Load("Employees.xml")

 ' Get the maximum value for the ID attribute. The element
 ' axis property (<>) and the attribute axis property (@) are
 ' used to access the id attribute.
 Dim maxId As Integer = Aggregate ele In employees.<Employee> _
 Into Max(CInt(ele.@id))

 ' Create the new Employee node using functional construction.
 Dim newEmployee = <Employee id=<%= maxId + 1 %>>
 <Name>Robb Matthews</Name>
 <Title>Super Hero</Title>
 <HireDate>07/15/2006</HireDate>
 <HourlyRate>59.95</HourlyRate>
 </Employee>

 ' Add the new node to the bottom of the XML tree.
 employees.Add(newEmployee)

 ' Loop through all the Employee nodes and insert
 ' the new 'TerminationDate' node and the 'Status' attribute.
 For Each ele In employees.<Employee>
 ele.Add(<TerminationDate></TerminationDate>)
 ele.Add(New XAttribute("Status", ""))
 Next

 ' Display the XML on the console.
 Console.WriteLine(employees.ToString())

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C07.fm Page 270 Monday, March 3, 2008 10:00 AM

mailto:ele.@id

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 271

7-4. Change the Value of an Element or Attribute

Problem

You need to modify an XML document by changing the value of an element or attribute.

Solution

Use one of the available set methods (SetValue, SetAttributeValue, or SetElementValue) of the
XElement class.

How It Works

The XElement class provides the following methods for changing the value of elements and attributes
in an existing XML tree:

• SetValue converts the specified value to a String and then assigns it to the Value property of
the current XElement instance. This method is also available to the XAttribute class.

• SetAttributeValue converts the specified value to a String and then assigns it to the Value
property of the attribute specified by the provided XName parameter.

• SetElementValue converts the specified value to a String and then assigns it to the Value
property of the element specified by the provided XName parameter.

SetAttributeValue and SetElementValue both take an XName parameter to specify which element
or attribute should be set. The XName class, which represents an element or attributes name and/or
namespace, has no constructor but implicitly converts strings to XName objects. This means you need
to pass only a string containing the name of the target, and it will automatically generate an appro-
priate XName instance.

Both of these methods also have added functionality built into them. If you specify the value as
Nothing, then the specified element or attribute will be deleted from the XML tree. If you specify a
target that does not exist, the element or attribute will be created and assigned the provided value.

All of the methods mentioned set the Value property of the target element or attribute. It is also
possible to assign a value directly to this property without using any of the other supplied methods.

The Code

This code loads the contents of an XML file and then uses the XElement.SetValue method to change
the contents:

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_04

 Public Shared Sub Main()

 ' Load the Employees.xml and store the contents into an
 ' XElement object.
 Dim employees As XElement = XElement.Load("Employees.xml")

Herman_970-5C07.fm Page 271 Monday, March 3, 2008 10:00 AM

272 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 ' Query the XML Tree and get the Name and Hourly Rate elements.
 Dim beforeQuery = From ele In employees.<Employee> _
 Select Name = ele.<Name>.Value, Wage = ➥
CDbl(ele.<HourlyRate>.Value)

 ' Display the employee names and their hourly rate.
 Console.WriteLine("Original hourly wages:")
 For Each ele In beforeQuery
 Console.WriteLine("{0} gets paid ${1} an hour.", ele.Name, ➥
ele.Wage.ToString())
 Next
 Console.WriteLine()

 ' Loop through all the HourlyRate elements, setting them to
 ' the new payrate, which is the old rate * 5%.
 Dim currentPayRate As Double = 0
 For Each ele In employees.<Employee>.<HourlyRate>
 currentPayRate = (ele.Value) + ((ele.Value) * 0.05)
 ele.SetValue(currentPayRate)
 Next

 ' Query the XML Tree and get the Name and Hourly Rate elements.
 Dim afterQuery = From ele In employees.<Employee> _
 Select Name = ele.<Name>.Value, Wage = ➥
CDbl(ele.<HourlyRate>.Value)

 ' Display the employee names and their new hourly rate.
 Console.WriteLine("Hourly Wages after 5% increase:")
 For Each ele In afterQuery
 Console.WriteLine("{0} gets paid ${1} an hour.", ele.Name, ➥
ele.Wage.ToString("##.##"))
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

7-5. Remove or Replace Elements or Attributes

Problem

You need to modify an XML document by completely removing or replacing certain attributes
or elements.

Solution

Use one of the available replace or remove methods of the XElement class.

Herman_970-5C07.fm Page 272 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 273

How It Works

The XElement class provides the following methods for replacing or removing elements or attributes
in an existing XML tree:

• RemoveAll removes all elements (nodes and attributes) from the element represented by the
current XElement instance.

• RemoveAttributes removes all the attributes from the element represented by the current
XElement instance.

• ReplaceAll removes all the elements (nodes and attributes) from the element represented by
the current XElement instance and replaces them with the element (or collection of elements)
provided.

• ReplaceAttributes removes all the attributes from the element represented by the current
XElement instance and replaces them with the attribute (or collection of attributes) provided.

• ReplaceNodes removes all nodes (elements, comments, processing instructions, and so on)
from the element represented by the current XElement instance and replaces them with the
nodes provided.

• ReplaceWith removes the node represented by the XElement instance and replaces it with the
provided node or nodes.

All of the methods listed here are in the XElement class. If you are working with an XAttribute
instance, you can use the Remove method to delete the current attribute. You also have the option to
use the SetAttributeValue or SetElementValue method (covered in recipe 7-4) to remove the specified
attribute or element by passing a value of Nothing.

■Caution You must be very careful when removing or replacing elements within a loop. Many of the available
methods that return a collection of objects (such as Elements or Descendants) actually perform LINQ queries and
use deferred execution (discussed in detail in Chapter 6). This means that data could be in the process of being
queried as it is being deleting, which can cause unexpected results. In these situations, you should use the ToList
extension method, available to all IEnumberable(Of T) objects, to force the query that runs in the background
to execute immediately rather than be deferred.

The Code

This code loads the contents of an XML file and then uses the XElement.SetElementValue method to
remove all the HireDate elements. The example also demonstrates the use of the Remove method by
removing the fourth Employee node.

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_05

 Public Shared Sub Main()

 ' Load the Employees.xml and store the contents into an
 ' XElement object.
 Dim employees As XElement = XElement.Load("Employees.xml")

Herman_970-5C07.fm Page 273 Monday, March 3, 2008 10:00 AM

274 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 ' Remove the 4th Employee element.
 employees.<Employee>.ElementAt(3).Remove()

 ' Loop through all the Employee elements and remove
 ' the HireDate element.
 For Each ele In employees.<Employee>.ToList
 ele.SetElementValue("HireDate", Nothing)
 Next

 Console.WriteLine(employees.ToString)

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

7-6. Query an XML Document Using LINQ

Problem

You need to filter the contents of or find specific elements in an XML document.

Solution

Use any of the query clauses available in System.Xml.Linq.

How It Works

LINQ allows you to execute sophisticated queries on collections that derive from IEnumerable(Of T).
The main class used to manipulate XML, XElement, includes several methods (such as Elements,
Descendants, and Attributes) that return IEnumerable collections of the appropriate type.

To make things easier and cleaner, LINQ to XML supports the use of shortcuts known as axis
properties, which are new to VB .NET 9. The XElement class has three main axis properties available
that correlate to either the Elements, Attributes, or Descendants method.

The Elements method returns an IEnumerable(Of XElement). For example, currentElement.
Elements("MyElement") would return all the MyElement child elements of the currentElement element.
The axis property shortcut is simply using the name of the element surrounded by <>. The previous
example updated to use the shortcut would be currentElement.<MyElement>.

The Attributes method returns an IEnumerable(Of XAttribute). For example, currentElement.
Attributes("MyAttribute") would return all the MyAttribute attributes for the currentElement element.
The axis property shortcut is the symbol @ followed by the attribute name. The previous example
updated to use the shortcut would be currentElement.@id. If the attribute name includes any spaces
or other VB .NET illegal characters (such as a hyphen), it must be surrounded by <>. For example,
since hyphens are illegal characters, an attribute named first-name would have to be referenced like
this: currentElement.@<first-name>.

The Descendants method returns an IEnumerable(Of XElement). For example, currentElement.
Descendants("Name") would return all the Name child elements for the currentElement element, no

Herman_970-5C07.fm Page 274 Monday, March 3, 2008 10:00 AM

mailto:currentElement.@id

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 275

matter how deep in the tree they are. The axis property shortcut is the ellipsis (…) followed by the
element name surrounded by <>. The previous example updated to use the shortcut would be
currentElement…<Name>.

The Code

This code loads the contents of an XML file and then uses LINQ to perform several queries on
the contents:

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_06

 Public Shared Sub Main()

 ' Load the Employees.xml file and store the contents into
 ' an XElement object.
 Dim employees As XElement = XElement.Load("Employees.xml")

 ' Get the count of all employees hired this year.
 Dim cnt = Aggregate ele In employees.<Employee> _
 Where CDate(ele.<HireDate>.Value).Year = Now.Year _
 Into Count()

 Console.WriteLine("{0} employees were hired this year.", cnt)
 Console.WriteLine()

 ' Query for all of the employees that make (HourlyRate) more than
 ' $100 an hour. An anonymous type is returned containing the
 ' id, Name, and Pay properties that correspond to the id attribute
 ' and the Name and HourlyRate elements, respectively.
 Dim query = From ele In employees.<Employee> _
 Where CDbl(ele.<HourlyRate>.Value) >= 100 _
 Select ele.@id, ele.<Name>.Value, Pay = ➥
CDbl(ele.<HourlyRate>.Value) _
 Order By Name

 Console.WriteLine("Employees who make more than $100 an hour:")
 For Each emp In query
 Console.WriteLine("[{0,-2}] {1,-25} ${2,-6}", emp.id, emp.Name, ➥
emp.Pay.ToString("##.00"))
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C07.fm Page 275 Monday, March 3, 2008 10:00 AM

mailto:ele.@id

276 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

7-7. Query for Elements in a Specific XML Namespace

Problem

You need to filter the contents of or find specific elements in an XML document that belong to a
specific XML namespace.

Solution

Define any appropriate namespaces, and then perform your query using any of the clauses available
in System.Xml.Linq, ensuring that you specify the appropriate namespace to use.

How It Works

As with the .NET Framework itself, XML namespaces are used to separate elements into groups. Every
XElement object in an XML tree contains an XName object, which in turn contains an XNamespace object. If
you have XML that contains information from multiple sources or related to multiple entities, using
namespaces provides an appropriate mechanism for dividing the information logically rather than
physically separating it.

XML namespaces begin with the xmlns key and a value. All children elements of the element that
you specified a namespace for default to belonging to that namespace. You also have the option of
specifying an alias that represents the full namespace. Here is an example of the www.MyCompany.com
namespace that uses an alias of mc:

Dim xmlTree = <Root xmlns:mc="www.MyCompany.com"/>

All elements in a tree belong to the namespace specified by its parent or to the default namespace.
A default namespace is specified in the normal manner described earlier but without the use of an
alias. If a parent node specifies more than one namespace, then you should use the namespace alias
to specify to which namespace each element belongs. If you do not do this, the default namespace,
or the first default namespace in the case that more than one has been specified, will be used. Here
is another example:

Dim xmlTree = <Root xmlns="www.MyCompany.com" xmlns:yc="www.YourCompany.com">
 <Child1>Child 1</Child1>
 <yc:Child2>Child 2</yc:Child2>
 </Root>

In this example, the Child1 node belongs to the default (www.MyCompany.com) namespace, while
the Child2 node belongs to the yc (or www.YourCompany.com) namespace.

If you are manipulating or creating XML trees that include namespaces, you can make your
work easier by using the Imports statement to include these namespaces. This statement is the same
statement you use to import .NET namespaces into your code. This will allow you to specify one or
more namespaces that your XML data will use. If you had first imported the namespaces from the
previous example, you could have left it out of your actual XML. The updated example would look
similar to this:

Imports <xmlns="www.MyCompany.com">
Imports <xmlns:yc="www.YourCompany.com">

Dim xmlTree = <Root>
 <Child1>Child 1</Child1>
 <yc:Child2>Child 2</yc:Child2>
 </Root>

Herman_970-5C07.fm Page 276 Monday, March 3, 2008 10:00 AM

http://www.MyCompany.com
http://www.MyCompany.com
http://www.MyCompany.com
http://www.YourCompany.com
http://www.MyCompany.com
http://www.YourCompany.com
http://www.MyCompany.com
http://www.YourCompany.com

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 277

Since each XElement object includes the namespace as an XNamespace instance, the saved data
will include the appropriate namespace declarations. However, you must be careful when using
namespaces with the imports statement. If a default namespace, one without an alias defined, were
not declared, then only the namespace that was directly used (yc) would end up being declared in
the resulting XML document. To ensure this doesn’t happen, you should always define your default
namespace (or at least the alias) within the root node.

If you need to retrieve the name of an element, you should use the Name property, which returns
an instance of the XName class. By default, this will return the combination of the element’s local
name and its namespace. To just get the element name, you should use the LocalName property. To
get the namespace, you use the Namespace property, which returns an instance of an XNamespace class.
You can also use the GetXmlNamespace method, which will return an XNamespace instance based on the
provided alias.

The Code

This code loads the contents of an XML file and then queries for any elements that belong to the
defined namespaces:

Imports System
Imports System.Xml.Linq
Imports <xmlns:gfh="www.GenuisesForHire.com">
Imports <xmlns:tfh="www.TempsForHire.com">

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_07

 Public Shared Sub Main()

 ' Load the Employees.xml file and store the contents into
 ' an XElement object.
 Dim employees As XElement = XElement.Load("EmployeesWithNS.xml")

 ' Build the query to get all nodes that are in the
 ' www.GenuisesForHire.com namespace.
 Dim gfhEmployees = From ele In employees.Descendants _
 Order By ele.<Name>.Value() _
 Where (ele.Name.Namespace = GetXmlNamespace(gfh)) _
 Select ele.<Name>.Value()

 ' Execute the query and display the results.
 Console.WriteLine("All 'Geniuses For Hire' employees:")
 For Each emp In gfhEmployees
 Console.WriteLine(emp)
 Next
 Console.WriteLine()

 ' Build the query to get all nodes that are in the
 ' www.TempsForHire.com namespace.
 Dim tfhEmployees = From ele In employees.Descendants _
 Order By ele.<Name>.Value() _
 Where (ele.Name.Namespace = GetXmlNamespace(tfh)) _
 Select ele.<Name>.Value()

Herman_970-5C07.fm Page 277 Monday, March 3, 2008 10:00 AM

http://www.GenuisesForHire.com
http://www.TempsForHire.com
http://www.GenuisesForHire.com
http://www.TempsForHire.com

278 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 ' Execute the query and display the results.
 Console.WriteLine("All 'Temps For Hire' employees:")
 For Each emp In tfhEmployees
 Console.WriteLine(emp)
 Next

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

7-8. Query an XML Document Using XPath

Problem

You need to search an XML document for nodes using advanced search criteria.

Solution

Execute an XPath expression using the XPathSelectElement or XPathSelectElements extension
method of the System.Xml.XPath.Extensions class.

How It Works

The Extensions class defines two extension methods that allow you to perform XPath searches on an
XNode: XPathSelectElement and XPathSelectElements. These methods operate on all contained child
nodes. You can easily search on the entire XML tree by calling either of the methods from XDocument.
Root or an instance of XElement that reflects the top level of the tree. You can also search on only a
portion of the XML tree depending on the contents of your source XElement instance.

The Code

As an example, consider the following employees.xml document, which represents a list of employees
and tasks assigned to them (only one employee is shown). This document includes text and numeric
data, nested elements, and attributes, so it provides a good way to test simple XPath expressions.

<?xml version="1.0" encoding="utf-8"?>
<Employees>
 <Employee id="1">
 <Name>Todd Herman</Name>
 <Title>Software Engineer</Title>
 <HireDate>10/19/2007</HireDate>
 <HourlyRate>19.95</HourlyRate>
 <Tasks>

Herman_970-5C07.fm Page 278 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 279

 <Task id="1">
 <Name>Task 1</Name>
 <Description>Description of Sample Task 1</Description>
 <Status>Open</Status>
 </Task>
 </Tasks>
 </Employee>
</Employees>

Basic XPath syntax uses a pathlike notation. For example, if you are searching from the Employees
root node, the path /Employee/Tasks/Task indicates a <Task> element that is nested inside a <Tasks>
element, which, in turn, is nested in a parent <Employee> element. This is an absolute path. This
recipe uses an XPath absolute path to find the name of every task assigned to an employee. It then
performs the same query using LINQ to highlight some of the differences between XPath and LINQ.

Imports System
Imports System.Xml.Linq
Imports System.Xml.XPath

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_08

 Public Shared Sub Main()

 ' Load the Employees.xml and store the contents into an
 ' XElement object.
 Dim employees As XElement = XElement.Load("EmployeesAndTasks.xml")

 ' Use XPath to get the tasks for each employee.
 Dim xpathQuery = employees.XPathSelectElements("/Employee/Tasks/Task")

 ' Loop through the query results and display the information
 ' to the screen.
 For Each task In xpathQuery
 Console.WriteLine("{0,-15} - {1} ({2})", ➥
task.Parent.Parent.<Name>.Value, task.<Name>.Value, task.<Description>.Value)
 Next
 Console.WriteLine()

 ' Use LINQ to get the tasks for each employee and order them
 ' by the employee's name.
 Dim linqQuery = From task In employees.<Employee>...<Task> _
 Select EmployeeName = task.Parent.Parent.<Name>.Value, _
 TaskName = task.<Name>.Value, _
 task.<Description>.Value _
 Order By EmployeeName

 ' Execute the query and loop through the results, displaying the
 ' Information to the screen.
 For Each task In linqQuery
 Console.WriteLine("{0,-15} - {1} ({2})", task.EmployeeName, ➥
task.TaskName, task.Description)
 Next

Herman_970-5C07.fm Page 279 Monday, March 3, 2008 10:00 AM

280 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

XPath provides a rich and powerful search syntax, details of which can be found at http://www.w3.org/
TR/xpath. However, XPath is yet another query language that needs to be learned. If you are familiar
and comfortable with XPath, then you should feel free to use it because LINQ to XML fully supports
it. If you are not, your best bet is to stick with using LINQ.

LINQ, which is covered in great detail in Chapter 6, provides the same functionality provided by
XPath but in a more embedded and concise manner. XPath expressions are not compiled (they are
just strings), so finding errors can be difficult while LINQ is compiled and can alert you to potential
problems. Furthermore, LINQ provides more sophisticated query functionality and is strongly typed
while XPath is not.

7-9. Join and Query Multiple XML Documents

Problem

You need to perform queries based on the combination of two XML documents that have a common key.

Solution

Use either the Join or Group Join query clause available in System.Xml.Linq.

How It Works

LINQ allows you to perform SQL-like queries on various data sources, such as XML. These queries
support the ability to join multiple data sources based on a common key using the Join or Group
Join clause.

Recipe 7-6 mentions how you can perform in-depth queries on XML data using the LINQ to
XML API, and recipe 6-11 covers the Join and Group Join LINQ clauses in detail.

The Code

The following code loads the contents of two XML files (employees.xml and tasks.xml) and uses the
Group Join LINQ clause to query and join them based on each employee’s ID:

Imports System
Imports System.Xml.Linq

Namespace Apress.VisualBasicRecipes.Chapter07
 Public Class Recipe07_09

 Public Shared Sub Main()

Herman_970-5C07.fm Page 280 Monday, March 3, 2008 10:00 AM

http://www.w3.org

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 281

 ' Load the Employees.xml and Tasks.xml files
 ' and store the contents into XElement objects.
 Dim employees As XElement = XElement.Load("Employees.xml")
 Dim tasks As XElement = XElement.Load("Tasks.xml")

 ' Build a query to join the two XML trees on the employee's
 ' Id. TaskList will represent the collection of task
 ' elements.
 Dim query = From emp In employees.<Employee> _
 Group Join task In tasks.<Task> _
 On emp.@id Equals task.@empId _
 Into TaskList = Group _
 Select EmployeeName = emp.<Name>.Value, _
 TaskList

 ' Execute the query and loop through the results, displaying
 ' them on the console.
 For Each emp In query
 ' Display the employee's name.
 Console.WriteLine("Tasks for {0}:", emp.EmployeeName)

 ' Now loop through the task list
 For Each task In emp.TaskList
 Console.WriteLine("{0} - {1}", task.<Name>.Value, ➥
task.<Status>.Value)
 Next
 Console.WriteLine()
 Next
 Console.WriteLine()

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

7-10. Convert an XML File to a Delimited File (and Vice Versa)

Problem

You need to convert the contents of an XML file to a text file with delimited fields or convert a text file
with delimited fields to an XML file.

Solution

To transform XML data to a delimited text file, use a LINQ query to retrieve and data and project it
into an appropriate format. To transform the delimited text file to an XML tree, read and parse the
data while creating the necessary XML nodes using XML literals and embedded expressions.

Herman_970-5C07.fm Page 281 Monday, March 3, 2008 10:00 AM

mailto:emp.@id
mailto:task.@empId

282 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

How It Works

LINQ to XML gives you the power to quickly and easily transform XML data to and from different
formats by altering or transforming XML nodes within a LINQ query. If you need to transform the
data in an existing XML tree into another format, you simply use LINQ (which is covered in great
detail in Chapter 6) to query the information and use the Select clause to project the data into the
desired format.

It is just as easy to transform data from other sources into XML by either looping through that
data or performing a LINQ query, where applicable. While looping through the data, via either
method, use XML literals along with embedded expressions (covered in recipe 7-1) to construct the
new XML tree.

The Code

This recipe first loads the Employees.xml file into memory and performs a query on the data using
LINQ, returning the data as fields surrounded by quotes and delimited by commas. This information
is then saved and displayed to the screen.

Next, the recipe takes the newly created delimited file and opens it into a TextFieldParser object
(which is covered in recipe 5-9) where it is read and parsed and finally built into an XML tree using
XML literals and embedded expressions.

Imports System
Imports System.IO
Imports System.Text
Imports System.Xml.Linq
Imports Microsoft.VisualBasic.FileIO

Namespace Apress.VisualBasicRecipes.Chapter07
 Public Class Recipe07_10

 Public Shared Sub Main(ByVal args As String())

 ' Call the subroutine to convert an XML tree to
 ' a delimited text file.
 Call XMLToFile(args(0))

 ' Call the subroutine to convert a delimited text
 ' file to an XML tree.
 Call FileToXML()

 ' Wait to continue.
 Console.WriteLine()
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub XMLToFile(ByVal xmlFile As String)

 ' Load the Employees.xml file and store the contents into
 ' an XElement object.
 Dim employees As XElement = XElement.Load(xmlFile)

Herman_970-5C07.fm Page 282 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 283

 ' Create a StringBuilder that will be used to hold
 ' the delimited text.
 Dim delimitedData As New StringBuilder

 ' Create a query to convert the XML data into fields delimited
 ' by quotes and commas.
 Dim xmlData = _
 From emp In employees.<Employee> _
 Select _
 String.Format("""{0}"",""{1}"",""{2}"",""{3}"",""{4}""", _
 emp.@id, emp.<Name>.Value, _
 emp.<Title>.Value, emp.<HireDate>.Value, _
 emp.<HourlyRate>.Value)

 ' Execute the query and store the contents into the
 ' StringBuilder.
 For Each row In xmlData
 delimitedData.AppendLine(row)
 Next

 ' Display the contents to the screen and save it to the data.txt
 ' file.
 Console.WriteLine(delimitedData.ToString)
 File.WriteAllText("data.txt", delimitedData.ToString)

 End Sub

 Private Shared Sub FileToXML()

 ' Create the XElement object that will be used to build
 ' the XML data.
 Dim xmlTree As XElement

 ' Open the data.text file and parse it into a TextFieldParser
 ' object.
 Using parser As TextFieldParser = _
 My.Computer.FileSystem.OpenTextFieldParser("data.txt")

 ' Configure the TextFieldParser to ensure it understands
 ' that the fields are enclosed in quotes and delimited
 ' with commas.
 parser.TextFieldType = FieldType.Delimited
 parser.Delimiters = New String() {","}
 parser.HasFieldsEnclosedInQuotes = True

 ' Create the root of our XML tree.
 xmlTree = <Employees></Employees>

 Dim currentRow As String()

 ' Loop through the file until the end is reached.
 Do While Not parser.EndOfData

Herman_970-5C07.fm Page 283 Monday, March 3, 2008 10:00 AM

mailto:emp.@id

284 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 ' Parse the fields out for the current row.
 currentRow = parser.ReadFields

 ' Create each employee node and add it to the tree.
 ' Each node is created using embedded expressions
 ' that contain the appropriate field data that was
 ' previously parsed.
 xmlTree.Add(<Employee id=<%= currentRow(0) %>>
 <Name><%= currentRow(1) %></Name>
 <Title><%= currentRow(2) %></Title>
 <HireDate><%= currentRow(3) %></HireDate>
 <HourlyRate><%= currentRow(4) %></HourlyRate>
 </Employee>)
 Loop

 End Using

 ' Display the new XML tree to the screen.
 Console.WriteLine(xmlTree)

 End Sub

 End Class

End Namespace

Usage

If you execute the command Recipe07-10.exe Employees.xml, the sample XML file will first be converted
to a delimited file that will look like this:

"1","Joed McCormick","Airline Pilot","09/29/2007","100"
"2","Kai Nakamura","Super Genius","10/24/1997","999.99"
"3","Romi Doshi","Actress","07/24/2006","120"
"4","Leah Clooney","Molecular Biologist","12/24/2006","100.75"

The conversion from the previous delimited data back to an XML file results in the following:

<Employees>
 <Employee id="2">
 <Name>Joed McCormick</Name>
 <Title>Airline Pilot</Title>
 <HireDate>09/29/2007</HireDate>
 <HourlyRate>100</HourlyRate>
 </Employee>
 <Employee id="2">
 <Name>Kai Nakamura</Name>
 <Title>Super Genius</Title>
 <HireDate>10/24/1997</HireDate>
 <HourlyRate>999.99</HourlyRate>
 </Employee>
 <Employee id="3">
 <Name>Romi Doshi</Name>

Herman_970-5C07.fm Page 284 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 285

 <Title>Actress</Title>
 <HireDate>07/24/2006</HireDate>
 <HourlyRate>120</HourlyRate>
 </Employee>
 <Employee id="4">
 <Name>Leah Clooney</Name>
 <Title>Molecular Biologist</Title>
 <HireDate>12/24/2006</HireDate>
 <HourlyRate>100.75</HourlyRate>
 </Employee>
</Employees>

7-11. Validate an XML Document Against a Schema

Problem

You need to validate the content of an XML document by ensuring that it conforms to an XML schema.

Solution

Since LINQ to XML has not added any new or direct support for working with XML schemas, you
need to rely on the more general functionality found in the System.Xml namespace. To use XML
schemas, you should call XmlReader.Create and supply an XmlReaderSettings object that indicates
you want to perform validation. Then move through the document one node at a time by calling
XmlReader.Read, catching any validation exceptions. To find all the errors in a document without
catching exceptions, handle the ValidationEventHandler event on the XmlReaderSettings object
given as a parameter to XmlReader.

Although LINQ to XML has not added any functionality related to this subject, it is important to
note that you can use the XNode.CreateReader method to create an XmlReader based on XElement or
XDocument instances.

How It Works

An XML schema defines the rules that a given type of XML document must follow. The schema
includes rules that define the following:

• The elements and attributes that can appear in a document

• The data types for elements and attributes

• The structure of a document, including which elements are children of other elements

• The order and number of child elements that appear in a document

• Whether elements are empty, can include text, or require fixed values

XML Schema Definition (XSD) documents are actually just XML documents that use a special
namespace (namespaces are covered more in recipe 7-7), which is defined as xmlns:xsd="http://
www.w3.org/2001/XMLSchema". At its most basic level, XSD defines the elements that can occur in an
XML document. You use a separate predefined element (named <element>) in the XSD document to
indicate each element that is required in the target document. The type attribute indicates the data
type. This recipe uses the employee list first presented in recipe 7-1.

Here is an example for an employee name:

<xsd:element name="Name" type="xsd:string" />

Herman_970-5C07.fm Page 285 Monday, March 3, 2008 10:00 AM

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

286 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

And here is an example for the employee hourly rate element:

<xsd:element name="HourlyRate" type="xsd:decimal" />

The basic schema data types are defined at http://www.w3.org/TR/xmlschema-2. They map
closely to .NET data types and include String, Integer, Long, Decimal, Single, DateTime, Boolean, and
Base64Binary—to name a few of the most frequently used types.

Both the EmployeeName and HourlyRate are simple types because they contain only character
data. Elements that contain nested elements are called complex types. You can nest them together
using a <sequence> tag, if order is important, or an <all> tag, if it is not. Here is how you might model
the <employee> element in the employee list. Notice that attributes are always declared after elements,
and they are not grouped with a <sequence> or <all> tag because the order is not important:

<xsd:complexType name="Employee">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="Title" type="xsd:string" />
 <xsd:element name="HireDate" type="xsd:date" />
 <xsd:element name="HourlyRate" type="xsd:decimal" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer" />
</xsd:complexType>

By default, a listed element can occur exactly one time in a document. You can configure this
behavior by specifying the maxOccurs and minOccurs attributes. Here is an example that allows an
unlimited number of products in the catalog:

<xsd:element name="Employee" type="Employee" maxOccurs="unbounded" />

Here is the complete schema for the product catalog XML:

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- Define the Employee Complex type-->
 <xsd:complexType name="Employee">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="Title" type="xsd:string" />
 <xsd:element name="HireDate" type="xsd:date" />
 <xsd:element name="HourlyRate" type="xsd:decimal" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer" />
 </xsd:complexType>

 <!-- This is the structure that the document must match -->
 <xsd:element name="Employees">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Employee" type="Employee" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The XmlReader class can enforce these schema rules, provided you explicitly request a validating
reader when you use the XmlReader.Create method. (Even if you do not use a validating reader, an

Herman_970-5C07.fm Page 286 Monday, March 3, 2008 10:00 AM

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/2001/XMLSchema

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 287

exception will be thrown if the reader discovers XML that is not well formed, such as an illegal char-
acter, improperly nested tags, and so on.)

Once you have created your validating reader, the validation occurs automatically as you read
through the document. As soon as an error is found, the XmlReader raises a ValidationEventHandler
event with information about the error on the XmlReaderSettings object given at creation time. If you
want, you can handle this event and continue processing the document to find more errors. If you
do not handle this event, an XmlException will be raised when the first error is encountered, and
processing will be aborted.

The Code

The following example shows a utility class that displays all errors in an XML document when the
ValidateXml method is called. Errors are displayed in a console window, and a final Boolean variable
is returned to indicate the success or failure of the entire validation operation.

Imports System
Imports System.Xml
Imports System.Xml.Schema

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class ConsoleValidator

 ' Set to true if at least one error exists.
 Private failed As Boolean

 Public Function ValidateXML(ByVal xmlFileName As String, ➥
ByVal schemaFileName As String)

 ' Set the type of validation.
 Dim settings As New XmlReaderSettings
 settings.ValidationType = ValidationType.Schema

 ' Load the schema file.
 Dim schemas As New XmlSchemaSet
 settings.Schemas = schemas

 ' When loading the schema, specify the namespace it validates
 ' and the location of the file. Use Nothing to use the
 ' target Namespace specified in the schema.
 schemas.Add(Nothing, schemaFileName)

 ' Specify an event handler for validation errors.
 AddHandler settings.ValidationEventHandler, ➥
AddressOf HandleValidationEvents

 ' Create the validating reader.
 Dim validator As XmlReader = XmlReader.Create(xmlFileName, settings)

 failed = False
 Try
 ' Read all XML data.
 While validator.Read()
 End While

Herman_970-5C07.fm Page 287 Monday, March 3, 2008 10:00 AM

288 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 Catch ex As Exception
 ' This happens if the XML document includes illegal characters
 ' or tags that aren't properly nested or closed.
 Console.WriteLine("A critical XML error has occurred.")
 Console.WriteLine(ex.Message)
 failed = True
 Finally
 validator.Close()
 End Try

 Return Not failed

 End Function

 Private Sub HandleValidationEvents(ByVal sender As Object, ➥
ByVal args As ValidationEventArgs)

 failed = True

 ' Display the validation error.
 Console.WriteLine("Validation error: " & args.Message)
 Console.WriteLine()

 End Sub

 End Class
End Namespace

Here is how you would use the class to validate the product catalog:

 Public Class Recipe07_11

 Public Shared Sub Main(ByVal args As String())

 Dim xmlValidator As New ConsoleValidator
 Console.WriteLine("Validating Employees.xml")

 Dim success As Boolean = ➥
xmlValidator.ValidateXML(args(0), args(1))

 If Not success Then
 Console.WriteLine("Validation failed.")
 Else
 Console.WriteLine("Validation succeeded.")
 End If
 Console.ReadLine()

 End Sub

 End Class

Herman_970-5C07.fm Page 288 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 289

Usage

If the document is valid, no messages will appear, and the success variable will be set to true. But
consider what happens if you use a document that breaks schema rules, such as the following
InvalidEmployees.xml file:

<?xml version="1.0" encoding="utf-8"?>
<Employees>
 <Employee id="1">
 <Name>Joed McCormick</Name>
 <HireDate>2007-09-29</HireDate>
 <HourlyRate>100</HourlyRate>
 </Employee>
 <Employee id="1" badAttribute="bad" >
 <Name>Kai Nakamura</Name>
 <Title>Super Genius</Title>
 <HireDate>10/24/1997</HireDate>
 <HourlyRate>999.99</HourlyRate>
 </Employee>
 <Employee id="3">
 <Name>Romi Doshi</Name>
 <Title>Actress</Title>
 <HireDate>2006-07-24</HireDate>
 <HourlyRate>120</HourlyRate>
 </Employee>
 <Employee id="4">
 <Name>Leah Clooney</Name>
 <Title>Molecular Biologist</Title>
 <HireDate>2006-12-24</HireDate>
 <HourlyRate>100.75</HourlyRate>
 </Employee>
 <Unknown />
</Employees>

If you run the example using Recipe07-11.exe InvalidEmployees.xml Employees.xsd, the sample
file will not validate, and the output will indicate each error, as shown here:

Validating Employees.xml
Validation error: The element 'Employee' has invalid child element 'HireDate'. L
ist of possible elements expected: 'Title'.

Validation error: The 'badAttribute' attribute is not declared.

Validation error: The 'HireDate' element is invalid - The value '10/24/1997' is
invalid according to its datatype 'http://www.w3.org/2001/XMLSchema:date' - The
string '10/24/1997' is not a valid XsdDateTime value.

Validation error: The element 'Employees' has invalid child element 'Unknown'. L
ist of possible elements expected: 'Employee'.

Validation failed.

Herman_970-5C07.fm Page 289 Monday, March 3, 2008 10:00 AM

http://www.w3.org/2001/XMLSchema:date

290 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

■Note For more in-depth information regarding XML schemas, refer to http://www.w3.org/xml/schema.html.

7-12. Use XML Serialization with Custom Objects

Problem

You need to use XML as a serialization format. However, you don’t want to process the XML directly
in your code. Instead, you want to interact with the data using custom objects.

Solution

Use the System.Xml.Serialization.XmlSerializer class to transfer data from your object to XML, and
vice versa. You can also mark up your class code with attributes to customize its XML representation.

How It Works

The XmlSerializer class allows you to convert objects to XML data, and vice versa. This process is
used natively by web services and provides a customizable serialization mechanism that does not
require a single line of custom code. The XmlSerializer class is even intelligent enough to correctly
create arrays when it finds nested elements.

The only requirements for using XmlSerializer are as follows:

• The XmlSerializer serializes only properties and Public variables.

• The classes you want to serialize must include a default zero-argument constructor. The
XmlSerializer uses this constructor when creating the new object during deserialization.

• All class properties must be readable and writable. This is because XmlSerializer uses the
property Get accessor to retrieve information and the property Set accessor to restore the
data after deserialization.

To use XML serialization, you must first mark up your data objects with attributes that indicate
the desired XML mapping. You can find these attributes in the System.Xml.Serialization namespace.
The attributes are as follows:

• XmlRoot specifies the name of the root element of the XML file. By default, XmlSerializer will
use the name of the class. You can apply this attribute to the class declaration.

• XmlElement indicates the element name to use for a property or Public variable. By default,
XmlSerializer will serialize properties and Public variables using their names.

• XmlArray indicates that a property or Public variable is an array of elements. XmlArrayItem is
used to specify the name used for each item in the array.

• XmlAttribute indicates that a property or Public variable should be serialized as an attribute,
not an element, and specifies the attribute name.

• XmlEnum configures the text that should be used when serializing enumerated values. If you
don’t use XmlEnum, the name of the enumerated constant will be used.

• XmlIgnore indicates that a property or Public variable should not be serialized.

Herman_970-5C07.fm Page 290 Monday, March 3, 2008 10:00 AM

http://www.w3.org/xml/schema.html

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 291

The Code

As an example, consider an updated version of the employee list first shown in recipe 7-1. You can
represent this XML document using EmployeeRoster and Employee objects. Here’s the class code that
you might use:

Imports System
Imports System.IO
Imports System.Xml
Imports System.Xml.Serialization

Namespace Apress.VisualBasicRecipes.Chapter07

 <XmlRoot("EmployeeRoster")> _
 Public Class EmployeeRoster

 ' Use the date data type (and ignore the time portion
 ' in the serialized XML).
 <XmlElement(ElementName:="LastUpdated", datatype:="date")> _
 Public LastUpdated As DateTime

 ' Configure the name of the tag that holds all employees
 ' and the name of the employee tag itself.
 <XmlArray("Employees"), XmlArrayItem("Employee")> _
 Public Employees As Employee()

 Public Sub New()
 End Sub

 Public Sub New(ByVal update As DateTime)

 Me.LastUpdated = update

 End Sub

 End Class

 Public Class Employee

 <XmlElement("Name")> _
 Public Name As String = String.Empty

 <XmlElement("Title")> _
 Public Title As String = String.Empty

 <XmlElement(ElementName:="HireDate", datatype:="date")> _
 Public HireDate As DateTime = Date.MinValue

 <XmlElement("HourlyRate")> _
 Public HourlyRate As Decimal = 0

 <XmlAttribute(AttributeName:="id", DataType:="integer")> _
 Public Id As String = String.Empty

Herman_970-5C07.fm Page 291 Monday, March 3, 2008 10:00 AM

292 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

 Public Sub New()
 End Sub

 Public Sub New(ByVal employeName As String, ➥
ByVal employeeTitle As String, ByVal employeeHireDate As DateTime,➥
ByVal employeeHourlyRate As Decimal)

 Me.Name = employeName
 Me.Title = employeeTitle
 Me.HireDate = employeeHireDate
 Me.HourlyRate = employeeHourlyRate

 End Sub

 End Class

End Namespace

Notice that these classes use the XML serialization attributes to rename element names,
indicate data types that are not obvious, and specify how <Employee> elements will be nested in
the <EmployeeRoster>.

Using these custom classes and the XmlSerializer object, you can translate XML into objects,
and vice versa. The following is the code you would need to create a new Employee object, serialize
the results to an XML document, deserialize the document back to an object, and then display the
XML document:

Imports System
Imports System.IO
Imports System.Xml
Imports System.Xml.Serialization

Namespace Apress.VisualBasicRecipes.Chapter07

 Public Class Recipe07_12

 Public Shared Sub Main()

 ' Create the employee roster.
 Dim roster = New EmployeeRoster(DateTime.Now)
 Dim employees = New Employee() _
 {New Employee With {.Id = 1, .Name = "Joed McCormick", _
 .Title = "Airline Pilot", _
 .HireDate = DateTime.Now.AddDays(-25), _
 .HourlyRate = 100.0}, _
 New Employee With {.Id = 2, .Name = "Kai Nakamura", _
 .Title = "Super Genius", _
 .HireDate = DateTime.Now.AddYears(-10), _
 .HourlyRate = 999.99}, _
 New Employee With {.Id = 3, .Name = "Romi Doshi", _
 .Title = "Actress", _
 .HireDate = DateTime.Now.AddMonths(-15), _
 .HourlyRate = 120.0}, _

Herman_970-5C07.fm Page 292 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 293

 New Employee With {.Id = 4, .Name = "Leah Clooney", _
 .Title = "Molecular Biologist", _
 .HireDate = DateTime.Now.AddMonths(-10), _
 .HourlyRate = 100.75}}

 roster.Employees = employees

 ' Serialize the order to a file.
 Dim serializer As New XmlSerializer(GetType(EmployeeRoster))
 Dim fs As New FileStream("EmployeeRoster.xml", FileMode.Create)

 serializer.Serialize(fs, roster)
 fs.Close()

 roster = Nothing

 ' Deserialize the order from the file.
 fs = New FileStream("EmployeeRoster.xml", FileMode.Open)
 roster = DirectCast(serializer.Deserialize(fs), EmployeeRoster)

 ' Serialize the order to the console window.
 serializer.Serialize(Console.Out, roster)
 Console.ReadLine()

 End Sub

 End Class
End Namespace

7-13. Create a Schema for a .NET Class

Problem

You need to create an XML schema based on one or more VB .NET classes. This will allow you to
validate XML documents before deserializing them with the XmlSerializer.

Solution

Use the XML Schema Definition Tool (xsd.exe) command-line utility included with the .NET Frame-
work. Specify the name of your assembly as a command-line argument, and add the /t:[TypeName]
parameter to indicate the types for which you want to generate a schema.

How It Works

Recipe 7-12 demonstrated how to use the XmlSerializer to serialize .NET objects to XML and dese-
rialize XML into .NET objects. But if you want to use XML as a way to interact with other applications,
business processes, or non–.NET Framework applications, you’ll need an easy way to validate the
XML before you attempt to deserialize it. You will also need to define an XML schema document that
defines the structure and data types used in your XML format so that other applications can work
with it. One quick solution is to generate an XML schema using the xsd.exe command-line utility.

Herman_970-5C07.fm Page 293 Monday, March 3, 2008 10:00 AM

294 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

The xsd.exe utility is included with the .NET Framework. If you have installed the SDK for
Microsoft Visual Studio 2008, you will find it in a directory such as C:\Program Files\Microsoft Visual
Studio 9.0\SDK\v3.5\Bin. The xsd.exe utility can generate schema documents from compiled
assemblies. You simply need to supply the filename and indicate the class that represents the XML
document with the / t:[TypeName] parameter.

Usage

As an example, consider the EmployeeRoster and Employee classes shown in recipe 7-12. You could
create the XML schema for a product catalog with the following command line:

xsd Recipe7-12.exe /t:EmployeeRoster

You need to specify only the EmployeeRoster class on the command line because the Employee
class is referenced by the EmployeeRoster and will be included automatically. The generated schema
in this example will represent a complete employee list, with contained employees. It will be given
the default filename schema0.xsd. You can now use the validation technique shown in recipe 7-11 to
test whether the XML document can be successfully validated with the schema.

7-14. Generate a Class from a Schema

Problem

You need to create one or more VB .NET classes based on an XML schema. You can then create an
XML document in the appropriate format using these objects and the XmlSerializer.

Solution

Use the xsd.exe command-line utility included with the .NET Framework. Specify the name of your
schema file as a command-line argument, and add the /c parameter to indicate you want to generate
class code.

How It Works

Recipe 7-13 introduced the xsd.exe command-line utility, which you can use to generate schemas
based on class definitions. The reverse operation—generating VB .NET source code based on an
XML schema document—is also possible. This is primarily useful if you want to write a certain
format of XML document but you do not want to manually create the document by writing indi-
vidual nodes with the XmlDocument class or the XmlWriter class. Instead, by using xsd.exe, you can
generate a set of full .NET objects. You can then serialize these objects to the required XML represen-
tation using the XmlSerializer, as described in recipe 7-12.

To generate source code from a schema, you simply need to supply the filename of the schema
document and add the /c parameter to indicate you want to generate the required classes.

Usage

As an example, consider the schema you generated in recipe 7-13. You can generate VB .NET code
for this schema with the following command line:

xsd EmployeeRoster.xsd /c /language:vb

Herman_970-5C07.fm Page 294 Monday, March 3, 2008 10:00 AM

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 295

This will generate one VB .NET file (EmployeeRoster.vb) with two classes: Employee and
EmployeeRoster. These classes are similar to the ones created in recipe 7-12, except that the class
member names match the XML document exactly. Optionally, you can add the /f parameter. If you
do, the generated classes will be composed of Public fields. If you do not, the generated classes will
use Public properties instead (which simply wrap Private fields).

7-15. Perform an XSL Transform

Problem

You need to transform an XML document into another document using an XSLT style sheet.

Solution

Use the System.Xml.Xsl.XslCompiledTransform class. Load the XSLT style sheet using the
XslCompiledTransform.Load method, and generate the output document by using the Transform
method and supplying a source XML document.

How It Works

XSLT (or XSL transforms) is an XML-based language designed to transform one XML document into
another document. You can use XSLT to create a new XML document with the same data but arranged
in a different structure or to select a subset of the data in a document. You can also use it to create a
different type of structured document. XSLT is commonly used in this manner to format an XML
document into an HTML page.

The Code

This recipe transforms the EmployeeRoster.xml document shown in recipe 7-12 into an HTML
document with a table and then displays the results.

Essentially, every XSLT style sheet consists of a set of templates. Each template matches some
set of elements in the source document and then describes the contribution that the matched element
will make to the resulting document. To match the template, the XSLT document uses XPath expres-
sions, as described in recipe 7-8.

The employee style sheet contains two template elements (as children of the root stylesheet
element). The first template matches the root EmployeeRoster element. When the XSLT processor
finds an EmployeeRoster element, it outputs the HTML elements necessary to start the HTML docu-
ment and the text result of an XPath expression. It then starts a table with appropriate column headings
and inserts some data about the client using the value-of command, which inserts the value of the
specified element as text.

Next, the apply-templates command branches off and performs the processing of any contained
Employee elements. This is required because there might be multiple Employee elements. Each
Employee element is matched using the XPath expression Employees/Employee. The root
EmployeeRoster node is not specified because it is the current node. Finally, the initial template
writes the HTML elements necessary to end the HTML document.

Herman_970-5C07.fm Page 295 Monday, March 3, 2008 10:00 AM

296 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

The following is what the finished XLST looks like:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="EmployeeRoster">
 <html>
 <body>
 <p>
 Employee Roster(Last update on
 <xsl:value-of select="LastUpdated"/>
)
 </p>
 <table border="1">
 <td>ID</td>
 <td>Name</td>
 <td>Hourly Rate</td>
 <xsl:apply-templates select="Employees/Employee"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="Employees/Employee">
 <tr>
 <td>
 <xsl:value-of select="@id"/>
 </td>
 <td>
 <xsl:value-of select="Name"/>
 </td>
 <td>
 <xsl:value-of select="HourlyRate"/>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

If you execute this transform on the sample EmployeeRoster.xml file shown in recipe 7-12, you
will end up with an HTML document similar to the following:

<html>
 <body>
 <p> Employee Roster(Last update on 2007-10-26)</p>
 <table border="1">
 <td>ID</td>
 <td>Name</td>
 <td>Hourly Rate</td>
 <tr>
 <td>1</td>
 <td>Joed McCormick</td>
 <td>100</td>
 </tr>

Herman_970-5C07.fm Page 296 Monday, March 3, 2008 10:00 AM

http://www.w3.org/1999/XSL/Transform

C HA P TE R 7 ■ L IN Q T O XM L AN D X M L PR O C E SS IN G 297

 <tr>
 <td>2</td>
 <td>Kai Nakamura</td>
 <td>999.99</td>
 </tr>
 <tr>
 <td>3</td>
 <td>Romi Doshi</td>
 <td>120</td>
 </tr>
 <tr>
 <td>4</td>
 <td>Leah Clooney</td>
 <td>100.75</td>
 </tr>
 </table>
 </body>
</html>

To apply an XSLT style sheet in .NET, you use the XslCompiledTransform class. (Do not confuse this
class with the similar XslTransform class—it still works, but it was deprecated in .NET Framework 2.0.)

The following code shows a Windows-based application that programmatically applies the
transformation and then displays the transformed file in a window using the WebBrowser control:

Imports System
Imports System.Windows.Forms
Imports System.Xml.Xsl

' All designed code is stored in the autogenerated partial
' class called TransformXML.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class TransformXml

 Private Sub TransformXml_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim transform As New XslCompiledTransform

 ' Load the XSLT style sheet.
 transform.Load("Xml2Html.xslt")

 ' Transform EmployeeRoster.xml into Employees.html using
 ' the previously generated style sheet.
 transform.Transform("EmployeeRoster.xml", "EmployeeRoster.html")

 Browser.Navigate(Application.StartupPath & "\EmployeeRoster.html")

 End Sub

End Class

Figure 7-1 shows the application results.

Herman_970-5C07.fm Page 297 Monday, March 3, 2008 10:00 AM

298 CH AP T E R 7 ■ L IN Q TO X M L A N D X M L P R O CE S S I N G

Figure 7-1. The style sheet output for EmployeeRoster.xml

■Note For more in-depth information regarding XSLT, refer to http://www.w3.org/tr/xslt.

Notes

Although XSLT style sheets allow you to transform XML files to another format, you are still required
to know and understand how to write and format the file. Recipe 7-10 demonstrates how LINQ can
also be used to transform an XML file. LINQ could also have been used with this recipe to generate
an equivalent HTML file.

Herman_970-5C07.fm Page 298 Monday, March 3, 2008 10:00 AM

http://www.w3.org/tr/xslt

299

■ ■ ■

C H A P T E R 8

Database Access

In the Microsoft .NET Framework, access to a wide variety of data sources is enabled through a
group of classes collectively named Microsoft ADO.NET. Each type of data source is supported
through the provision of a data provider. Each data provider contains a set of classes that not only
implement a standard set of interfaces (defined in the System.Data namespace) but also provide
functionality unique to the data source they support. These classes include representations of
connections, commands, properties, data adapters, and data readers through which you interact
with a data source.

■Note ADO.NET is an extensive subsection of the .NET Framework class library and includes a great deal of
advanced functionality. For comprehensive coverage of ADO.NET, read David Sceppa’s excellent book Programming
Microsoft ADO.NET 2.0 Core Reference (Microsoft Press, 2006) or Pro ADO.NET 2.0 (Apress, 2005). Although these
books target .NET 2.0, they are still excellent resources.

Table 8-1 lists the data providers included as standard with the .NET Framework.

Table 8-1. .NET Framework Data Provider Implementations

Data Provider Description

.NET Framework Data
Provider for ODBC

Provides connectivity (via COM Interop) to any data source that
implements an ODBC interface. This includes Microsoft SQL
Server, Oracle, and Microsoft Access databases. Data provider
classes are contained in the System.Data.Odbc namespace and
have the prefix Odbc.

.NET Framework Data
Provider for OLE DB

Provides connectivity (via COM Interop) to any data source that
implements an OLE DB interface. This includes Microsoft SQL
Server, MSDE, Oracle, and Jet databases. Data provider classes are
contained in the System.Data.OleDb namespace and have the
prefix OleDb.

.NET Framework Data
Provider for Oracle

Provides optimized connectivity to Oracle databases via Oracle
client software version 8.1.7 or later. Data provider classes are
contained in the System.Data.OracleClient namespace and have
the prefix Oracle.

Herman_970-5C08.fm Page 299 Monday, March 3, 2008 10:04 AM

300 CH AP T E R 8 ■ D AT AB A SE ACC E S S

Language Integrated Query (LINQ), which is new to .NET 3.5, provides the functionality neces-
sary to perform queries on any supported data source. For databases, this functionality is provided
by the LINQ to ADO.NET API, which is located in the System.Data.Linq namespace.

LINQ to ADO.NET consists of LINQ to Datasets and LINQ to SQL. LINQ to Datasets provides
several extension methods that make it easier to convert the contents of a DataTable to an
IEnumerable(Of DataRow) collection. LINQ to SQL provides the necessary tools (such as the Object
Relational Designer) to create object classes that represent and map directly to database tables.

This chapter describes some of the most commonly used aspects of ADO.NET. The recipes in
this chapter cover the following:

• Creating, configuring, opening, and closing database connections (recipe 8-1)

• Employing connection pooling to improve the performance and scalability of applications
that use database connections (recipe 8-2)

• Creating and securely storing database connection strings (recipes 8-3 and 8-4)

• Executing SQL commands and stored procedures and using parameters to improve their
flexibility (recipes 8-5 and 8-6)

• Processing the results returned by database queries either as a set of rows or as XML
(recipes 8-7 and 8-8)

• Executing database operations asynchronously, which allows your main code to continue
with other tasks while the database operation executes in the background (recipe 8-9)

• Writing generic ADO.NET code that can be configured to work against any relational data-
base for which a data provider is available (recipe 8-10)

• Accessing a database using mapped object classes (recipe 8-11 and recipe08-12)

• Discovering all instances of SQL Server (2000, 2005 and 2008) available on a network
(recipe 8-13)

■Note Unless otherwise stated, the recipes in this chapter have been written to use SQL Server 2005 Express
Edition running on the local machine and use the AdventureWorks sample database provided by Microsoft. To run
the examples against your own database, ensure the AdventureWorks sample is installed and that the recipe’s
connection string reflects the name of your server instead of .\sqlexpress. You can find AdventureWorksDB.msi, the
installation file for the AdventureWorks sample database, at http://www.codeplex.com/MSFTDBProdSamples/
Release/ProjectReleases.aspx?ReleaseId=4004. You’ll find a link called Release Notes, which contains
instructions on installing and configuring the samples, in the same location.

.NET Framework Data
Provider for SQL Server

Provides optimized connectivity to Microsoft SQL Server version 7
and later (including MSDE) by communicating directly with the
SQL Server data source, without the need to use ODBC or OLE DB.
Data provider classes are contained in the System.Data.SqlClient
namespace and have the prefix Sql.

.NET Compact Framework
Data Provider for SQL Server
Compact Edition

Provides connectivity to Microsoft SQL Server 2005 Compact
Edition. Data provider classes are contained in the System.Data.
SqlServerCe namespace and have the prefix SqlCe.

Table 8-1. .NET Framework Data Provider Implementations (Continued)

Data Provider Description

Herman_970-5C08.fm Page 300 Monday, March 3, 2008 10:04 AM

http://www.codeplex.com/MSFTDBProdSamples

C H AP TE R 8 ■ DA TA B AS E A CC E SS 301

8-1. Connect to a Database

Problem

You need to open a connection to a database.

Solution

Create a connection object appropriate to the type of database to which you need to connect. Configure
the connection object by setting its ConnectionString property. Open the connection by calling the
connection object’s Open method.

How It Works

The first step in database access is to open a connection to the database. All connection objects
inherit from the MustInherit System.Data.Common.DbConnection class. This class implements the
System.Data.IDbConnection interface. The DbConnection class represents a database connection,
and each data provider includes a unique implementation. Here is the list of the implementations
for the five standard data providers:

• System.Data.Odbc.OdbcConnection

• System.Data.OleDb.OleDbConnection

• System.Data.OracleClient.OracleConnection

• System.Data.SqlClient.SqlConnection

• System.Data.SqlServerCe.SqlCeConnection

You configure a connection object using a connection string. A connection string is a set of
semicolon-separated name-value pairs. You can supply a connection string either as a constructor
argument or by setting a connection object’s ConnectionString property before opening the connec-
tion. Each connection class implementation requires that you provide different information in the
connection string. Refer to the ConnectionString property documentation for each implementation
to see the values you can specify. Possible settings include the following:

• The name of the target database server

• The name of the database to open initially

• Connection time-out values

• Connection-pooling behavior (see recipe 8-2)

• Authentication mechanisms to use when connecting to secured databases, including the
provision of a username and password if needed

Once configured, call the connection object’s Open method to open the connection to the data-
base. You can then use the connection object to execute commands against the data source (discussed
in recipe 8-3). The properties of a connection object also allow you to retrieve information about the
state of a connection and the settings used to open the connection. When you’re finished with a
connection, you should always call its Close method to free the underlying database connection and
system resources. IDbConnection extends System.IDisposable, meaning that each connection class
implements the Dispose method. Dispose automatically calls Close, making the Using statement a
very clean and efficient way of using connection objects in your code.

You achieve optimum scalability by opening your database connection as late as possible and
closing it as soon as you have finished. This ensures that you do not tie up database connections for

Herman_970-5C08.fm Page 301 Monday, March 3, 2008 10:04 AM

302 CH AP T E R 8 ■ D AT AB A SE ACC E S S

long periods, so you give all the code the maximum opportunity to obtain a connection. This is especially
important if you are using connection pooling.

The Code

The following example demonstrates how to use both the SqlConnection and OleDbConnection classes to
open a connection to a Microsoft SQL Server database running on the local machine that uses inte-
grated Windows security.

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.OleDb

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_01

 Public Shared Sub SqlConnectionExample()

 ' Configure an empty SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Open the database connection.
 con.Open()

 ' Display the information about the connection.
 If con.State = ConnectionState.Open Then
 Console.WriteLine("SqlConnection Information:")
 Console.WriteLine(" Connection State = " & con.State)
 Console.WriteLine(" Connection String = " & ➥
con.ConnectionString)
 Console.WriteLine(" Database Source = " & con.DataSource)
 Console.WriteLine(" Database = " & con.Database)
 Console.WriteLine(" Server Version = " & con.ServerVersion)
 Console.WriteLine(" Workstation Id = " & con.WorkstationId)
 Console.WriteLine(" Timeout = " & con.ConnectionTimeout)
 Console.WriteLine(" Packet Size = " & con.PacketSize)
 Else
 Console.WriteLine("SqlConnection failed to open.")
 Console.WriteLine(" Connection State = " & con.State)
 End If

 ' Close the database connection.
 con.Close()

 End Using

 End Sub

Herman_970-5C08.fm Page 302 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 303

 Public Shared Sub OleDbConnectionExample()

 ' Configure an empty SqlConnection object.
 Using con As New OleDbConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Provider=SQLOLEDB;Data Source=" & ➥
".\sqlexpress;Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

 ' Open the database connection.
 con.Open()

 ' Display the information about the connection.
 If con.State = ConnectionState.Open Then
 Console.WriteLine("OleDbConnection Information:")
 Console.WriteLine(" Connection State = " & con.State)
 Console.WriteLine(" Connection String = " & ➥
con.ConnectionString)
 Console.WriteLine(" Database Source = " & con.DataSource)
 Console.WriteLine(" Database = " & con.Database)
 Console.WriteLine(" Server Version = " & con.ServerVersion)
 Console.WriteLine(" Timeout = " & con.ConnectionTimeout)
 Else
 Console.WriteLine("OleDbConnection failed to open.")
 Console.WriteLine(" Connection State = " & con.State)
 End If

 ' Close the database connection.
 con.Close()

 End Using

 End Sub

 Public Shared Sub Main()

 ' Open connection using SqlConnection.
 SqlConnectionExample()
 Console.WriteLine(Environment.NewLine)

 ' Open connection using OleDbConnection.
 OleDbConnectionExample()
 Console.WriteLine(Environment.NewLine)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class

End Namespace

Herman_970-5C08.fm Page 303 Monday, March 3, 2008 10:04 AM

304 CH AP T E R 8 ■ D AT AB A SE ACC E S S

8-2. Use Connection Pooling

Problem

You need to use a pool of database connections to improve application performance and scalability.

Solution

Configure the connection pool using settings in the connection string of a connection object.

How It Works

Connection pooling significantly reduces the overhead associated with creating and destroying
database connections. Connection pooling also improves the scalability of solutions by reducing the
number of concurrent connections a database must maintain. Many of these connections sit idle for
a significant portion of their lifetimes.

With connection pooling, the first time you create a connection, the .NET Framework checks the
pool to see whether a connection is available. If the pool hasn’t yet reached its limit, a new connection
will be created and added to it. The next time you attempt to use a connection with the identical
connection string, instead of a new connection being created and opened, the existing connection
in the pool is used. When you close the connection, it is returned to the pool until it is needed again.
Once created, a pool exists until your process terminates.

The SQL Server and Oracle data providers encapsulate connection-pooling functionality that
they enable by default. One connection pool exists for each unique connection string you specify
when you open a new connection. Each time you open a new connection with a connection string
that you used previously, the connection is taken from the existing pool. Only if you specify a different
connection string will the data provider create a new connection pool. You can control some character-
istics of your pool using the connection string settings described in Table 8-2.

Table 8-2. Connection String Settings That Control Connection Pooling

Setting Description

Connection Lifetime Specifies the maximum time in seconds that a connection is allowed to
live in the pool before it’s closed. The age of a connection is tested only
when the connection is returned to the pool. This setting is useful for
minimizing pool size if the pool is not heavily used and also ensures
optimal load balancing is achieved in clustered database environments.
The default value is 0, which means connections exist for the life of the
current process.

Connection Reset Supported only by the SQL Server data provider. Specifies whether
connections are reset as they are taken from the pool. A value of True
(the default) ensures a connection’s state is reset but requires an addi-
tional communication with the database.

Max Pool Size Specifies the maximum number of connections that should be in the
pool. Connections are created and added to the pool as required until
this value is reached. If a request for a connection is made but there are
no free connections, the calling code will block until a connection
becomes available or times out. The default value is 100.

Herman_970-5C08.fm Page 304 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 305

The Code

The following example demonstrates the configuration of a connection pool that contains a minimum
of 5 and a maximum of 15 connections. Connections expire after 10 minutes (600 seconds) and are
reset each time a connection is obtained from the pool. The example also demonstrates how to use
the Pooling setting to obtain a connection object that is not from a pool. This is useful if your appli-
cation uses a single long-lived connection to a database.

Imports System
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_02

 Public Shared Sub Main()

 ' Obtain a pooled connection.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;" & ➥
"Connection Reset=True;Connection Lifetime=600;"

 ' Open the database connection.
 con.Open()

 ' Access the database...

 ' Close the database connection.
 ' This returns the connection to the pool for reuse.
 con.Close()

 ' At the end of the using block, the Dispose calls Close
 ' which returns the connection to the pool for reuse.
 End Using

 ' Obtain a nonpooled connection.
 Using con As New SqlConnection

Min Pool Size Specifies the minimum number of connections that should be in the pool.
On pool creation, this number of connections is created and added to the
pool. During periodic maintenance or when a connection is requested,
connections are added to the pool to ensure the minimum number of
connections is available. The default value is 0.

Pooling Set to False to obtain a nonpooled connection. The default value is True.

Table 8-2. Connection String Settings That Control Connection Pooling

Setting Description

Herman_970-5C08.fm Page 305 Monday, March 3, 2008 10:04 AM

306 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Pooling=False;"

 ' Open the database connection.
 con.Open()

 ' Access the database...

 ' Close the database connection.
 con.Close()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

The ODBC and OLE DB data providers also support connection pooling, but they do not implement
connection pooling within managed .NET classes, and you do not configure the pool in the same
way as you do for the SQL Server and Oracle data providers. ODBC connection pooling is managed
by the ODBC Driver Manager and configured using the ODBC Data Source Administrator tool in the
Control Panel. OLE DB connection pooling is managed by the native OLE DB implementation. The
most you can do is disable pooling by including the setting OLE DB Services=-4; in your connection
string.

The SQL Server CE data provider does not support connection pooling, because SQL Server CE
supports only a single concurrent connection.

8-3. Create a Database Connection String Programmatically

Problem

You need to programmatically create or modify a syntactically correct connection string by working
with its component parts or by parsing a given connection string.

Solution

Use the System.Data.Common.DbConnectionStringBuilder class or one of its strongly typed
subclasses that form part of an ADO.NET data provider.

How It Works

Connection strings are String objects that contain a set of configuration parameters in the form of
name-value pairs separated by semicolons. These configuration parameters instruct the ADO.NET

Herman_970-5C08.fm Page 306 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 307

infrastructure how to open a connection to the data source you want to access and how to handle
the life cycle of connections to that data source. As a developer, you will often simply define your
connection string by hand and store it in a configuration file (see recipe 8-4). However, at times, you
may want to build a connection string from component elements entered by a user, or you may want
to parse an existing connection string into its component parts to allow you to manipulate it
programmatically. The DbConnectionStringBuilder class and the classes derived from it provide
both these capabilities.

DbConnectionStringBuilder is a class used to create connection strings from name-value pairs
or to parse connection strings, but it does not enforce any logic on which configuration parameters
are valid. Instead, each data provider (except the SQL Server CE data provider) includes a unique
implementation derived from DbConnectionStringBuilder that accurately enforces the configura-
tion rules for a connection string of that type. Here is the list of available DbConnectionStringBuilder
implementations for standard data providers:

• System.Data.Odbc.OdbcConnectionStringBuilder

• System.Data.OleDb.OleDbConnectionStringBuilder

• System.Data.OracleClient.OracleConnectionStringBuilder

• System.Data.SqlClient.SqlConnectionStringBuilder

Each of these classes exposes properties for getting and setting the possible parameters for a
connection string of that type. To parse an existing connection string, pass it as an argument when
creating the DbConnectionStringBuilder-derived class, or set the ConnectionString property. If this
string contains a keyword not supported by the type of connection, an ArgumentException exception
is thrown.

The Code

The following example demonstrates the use of the SqlConnectionStringBuilder class to parse and
construct SQL Server connection strings:

Imports System
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_03

 Public Shared Sub Main()

 ' Configure the SqlConnection object's connection string.
 Dim conString As String = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15; " & ➥
"Connection Lifetime=600;"

 ' Parse the SQL Server connection string and display the component
 ' configuration parameters.
 Dim sb1 As New SqlConnectionStringBuilder(conString)

 Console.WriteLine("Parsed SQL Connection String Parameters:")
 Console.WriteLine(" Database Source = " & sb1.DataSource)
 Console.WriteLine(" Database = " & sb1.InitialCatalog)
 Console.WriteLine(" Use Integrated Security = " & ➥
sb1.IntegratedSecurity)

Herman_970-5C08.fm Page 307 Monday, March 3, 2008 10:04 AM

308 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 Console.WriteLine(" Min Pool Size = " & sb1.MinPoolSize)
 Console.WriteLine(" Max Pool Size = " & sb1.MaxPoolSize)
 Console.WriteLine(" Lifetime = " & sb1.LoadBalanceTimeout)

 ' Build a connection string from component parameters and display it.
 Dim sb2 As New SqlConnectionStringBuilder(conString)

 sb2.DataSource = ".\sqlexpress"
 sb2.InitialCatalog = "AdventureWorks"
 sb2.IntegratedSecurity = True
 sb2.MinPoolSize = 5
 sb2.MaxPoolSize = 15
 sb2.LoadBalanceTimeout = 600

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Constructed connection string:")
 Console.WriteLine(" " & sb2.ConnectionString)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

8-4. Store a Database Connection String Securely

Problem

You need to store a database connection string securely.

Solution

Store the connection string in an encrypted section of the application’s configuration file.

■Note Protected configuration—the .NET Framework feature that lets you encrypt configuration information—
relies on the key storage facilities of the Data Protection API (DPAPI) to store the secret key used to encrypt the
configuration file. This solves the very difficult problem of code-based secret key management. Refer to recipe 12-18
for more information about the DPAPI.

How It Works

Database connection strings often contain secret information, or at the very least information that
would be valuable to someone trying to attack your system. As such, you should not store connection
strings in plain text; it is also not sufficient to hard-code them into the application code. Strings

Herman_970-5C08.fm Page 308 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 309

embedded in an assembly can easily be retrieved using a disassembler. The .NET Framework, since 2.0,
contains a number of classes and capabilities that make storing and retrieving encrypted connection
strings in your application’s configuration trivial.

Unencrypted connection strings are stored in the machine or application configuration file in
the <connectionStrings> section in the format shown here:

<configuration>
 <connectionStrings>
 <add name="ConnectionString1" connectionString="Data Source=➥
.\sqlexpress;Database=AdventureWorks;Integrated Security=SSPI;Min Pool Size=5; ➥
Max Pool Size=15;Connection Reset=True;Connection Lifetime=600;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

The easiest way to read this connection string is to use the indexed ConnectionStrings property
of the System.Configuration.ConfigurationManager class. Specifying the name of the connection
string you want as the property index will return a System.Configuration.ConnectionStringSettings
object. The ConnectionString property gets the connection string, and the ProviderName property
gets the provider name that you can use to create a data provider factory (see recipe 8-10). You can
also assign an arbitrary name to the ConnectionStringSettings instance using the Name property.
This process will work regardless of whether the connection string has been encrypted or written in
plain text.

To write a connection string to the application’s configuration file, you must first obtain a
System.Configuration.Configuration object, which represents the application’s configuration
file. The easiest way to do this is by calling the System.Configuration.ConfigurationManager.
OpenExeConfiguration method. You should then create and configure a new System.Configuration.
ConnectionStringSettings object to represent the stored connection string. You should provide a
name, connection string, and data provider name for storage. Add the ConnectionStringSettings
object to the Configuration’s ConnectionStringsSection collection, available through the
Configuration.ConnectionStrings property. Finally, save the updated file by calling the
Configuration.Save method.

To encrypt the connection strings section of the configuration file, before saving the file,
you must configure the ConnectionStringsSection collection. To do this, call the
ConnectionStringsSection.SectionInformation.ProtectSection method and pass it a string
containing the name of the protected configuration provider to use: either
RsaProtectedConfigurationProvider or DPAPIProtectedConfigurationProvider. To disable encryp-
tion, call the SectionInformation.Unprotect method.

■Note To use the classes from the System.Configuration namespace discussed in this recipe, you must add
a reference to the System.Configuration.dll assembly when you build your application.

The Code

The following example demonstrates the writing of an encrypted connection string to the applica-
tion’s configuration file and the subsequent reading and use of that connection string:

Imports System
Imports System.Configuration
Imports System.Data.SqlClient

Herman_970-5C08.fm Page 309 Monday, March 3, 2008 10:04 AM

310 CH AP T E R 8 ■ D AT AB A SE ACC E S S

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_04

 Private Shared Sub WriteEncryptedConnectionStringSection(ByVal name As ➥
String, ByVal constring As String, ByVal provider As String)

 ' Get the configuration file for the current application. Specify
 ' the ConfigurationUserLevel.None argument so that we get the
 ' configuration settings that apply to all users.
 Dim config As Configuration = ➥
ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

 ' Get the connectionStrings section from the configuration file.
 Dim section As ConnectionStringsSection = config.ConnectionStrings

 ' If the connectionString section does not exist, create it.
 If section Is Nothing Then
 section = New ConnectionStringsSection
 config.Sections.Add("connectionSettings", section)
 End If

 ' If it is not already encrypted, configure the connectionStrings
 ' section to be encrypted using the standard RSA Protected
 ' Configuration Provider.
 If Not section.SectionInformation.IsProtected Then
 ' Remove this statement to write the connection string in clear
 ' text for the purpose of testing.
 section.SectionInformation.ProtectSection ➥
("RsaProtectedConfigurationProvider")
 End If

 ' Create a new connection string element and add it to the
 ' connection string configuration section.
 Dim cs As New ConnectionStringSettings(name, constring, provider)
 section.ConnectionStrings.Add(cs)

 ' Force the connection string section to be saved whether
 ' it was modified or not.
 section.SectionInformation.ForceSave = True

 ' Save the updated configuration file.
 config.Save(ConfigurationSaveMode.Full)

 End Sub

 Public Shared Sub main()

 ' The connection string information to be written to the
 ' configuration file.
 Dim conName As String = "ConnectionString1"
 Dim conString As String = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=5;" & ➥
"Connection Reset=True;Connection Lifetime=600;"

Herman_970-5C08.fm Page 310 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 311

 Dim providerName As String = "System.Data.SqlClient"

 ' Write the new connection string to the application's
 ' configuration file.
 WriteEncryptedConnectionStringSection(conName, conString, providerName)

 ' Read the encrypted connection string settings from the
 ' application's configuration file.
 Dim cs2 As ConnectionStringSettings = ➥
ConfigurationManager.ConnectionStrings("ConnectionString1")

 ' Use the connections string to create a new SQL Server connection.
 Using con As New SqlConnection(cs2.ConnectionString)
 ' Issue database commands/queries...
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

The example in this recipe uses the OpenExeConfiguration method to open the configuration file for
the application. It accepts a ConfigurationUserLevel enumerator value, which is set to None to get
the configuration settings for all users. If you need to access user-specific settings, you should use
the PerUserRoaming or PerUserRoamingAndLocal value. PerUserRoaming refers to the current user’s
roaming configuration settings. PerUserRoamingAndLocal refers to the user’s local settings.

8-5. Execute a SQL Command or Stored Procedure

Problem

You need to execute a SQL command or stored procedure on a database.

Solution

Create a command object appropriate to the type of database you intend to use. Configure the
command object by setting its CommandType and CommandText properties. Execute the command
using the ExecuteNonQuery, ExecuteReader, or ExecuteScalar method, depending on the type of
command and its expected results.

How It Works

All command objects inherit the MustInherit System.Data.Common.DbCommand class, which imple-
ments the System.Data.IDbCommand interface. The DbCommand class represents a database command,

Herman_970-5C08.fm Page 311 Monday, March 3, 2008 10:04 AM

312 CH AP T E R 8 ■ D AT AB A SE ACC E S S

and each data provider includes a unique implementation. Here is the list of the implementations
for the five standard data providers:

• System.Data.Odbc.OdbcCommand

• System.Data.OleDb.OleDbCommand

• System.Data.OracleClient.OracleCommand

• System.Data.SqlClient.SqlCommand

• System.Data.SqlServerCe.SqlCeCommand

To execute a command against a database, you must have an open connection (discussed in
recipe 8-1) and a properly configured command object appropriate to the type of database you are
accessing. You can create command objects directly using a constructor, but a simpler approach is
to use the CreateCommand factory method of a connection object. The CreateCommand method returns
a command object of the correct type for the data provider and configures it with the appropriate
information (such as CommandTimeout and Connection) obtained from the connection you used to
create the command. Before executing the command, you must configure the properties described
in Table 8-3, which are common to all command implementations.

Table 8-3. Common Command Object Properties

Property Description

CommandText A String containing the text of the SQL command to execute or the name
of a stored procedure. The content of the CommandText property must be
compatible with the value you specify in the CommandType property.

CommandTimeout An Integer that specifies the number of seconds to wait for the command to
return before timing out and raising an exception. Defaults to 30 seconds.

CommandType A value of the System.Data.CommandType enumeration that specifies the type
of command represented by the command object. For most data providers,
valid values are StoredProcedure, when you want to execute a stored proce-
dure, and Text, when you want to execute a SQL text command. If you are
using the OLE DB data provider, you can specify TableDirect when you
want to return the entire contents of one or more tables. Refer to the .NET
Framework SDK documentation for more details. Defaults to Text.

Connection A DbConnection instance that provides the connection to the database on
which you will execute the command. If you create the command using the
IDbConnection.CreateCommand method, this property will be automatically
set to the DbConnection instance from which you created the command.

Parameters A System.Data.DbParameterCollection instance containing the set of
parameters to substitute into the command. This property is optional.
(See recipe 8-6 for details on how to use parameters.)

Transaction A System.Data.DbTransaction instance representing the transaction into
which to enlist the command. If the connection object used to create this
method specified a transaction, this property will be automatically set to that
instance. This property is optional. (See the .NET Framework SDK documen-
tation for details about transactions.)

Herman_970-5C08.fm Page 312 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 313

Once you have configured your command object, you can execute it in a number of ways,
depending on the nature of the command, the type of data returned by the command, and the
format in which you want to process the data:

• To execute a command that does not return database data (such as UPDATE, INSERT, DELETE, or
CREATE TABLE), call ExecuteNonQuery. For the UPDATE, INSERT, and DELETE commands, the
ExecuteNonQuery method returns an Integer that specifies the number of rows affected by the
command. For commands that don’t return rows, such as CREATE TABLE, ExecuteNonQuery
returns the value –1.

• To execute a command that returns a result set, such as a SELECT statement or stored procedure,
use the ExecuteReader method. ExecuteReader returns a DbDataReader instance (discussed in
recipe 8-7) through which you have access to the result data. When the ExecuteReader command
returns, the connection cannot be used for any other commands while the IDataReader is
open. Most data providers also allow you to execute multiple SQL commands in a single call
to the ExecuteReader method, as demonstrated in the example in this recipe, which also shows
how to access each result set.

• If you want to execute a query but need only the value from the first column of the first row of
result data, use the ExecuteScalar method. The value is returned as an Object reference that
you must cast to the correct type.

■Note The IDbCommand implementations included in the Oracle and SQL data providers implement additional
command execution methods. Recipe 8-8 describes how to use the ExecuteXmlReader method provided by the
SqlCommand class. Refer to the .NET Framework’s SDK documentation, at http://msdn2.microsoft.com/
en-us/library/system.data.oracleclient.oraclecommand(vs.90).aspx, for details on the additional
ExecuteOracleNonQuery and ExecuteOracleScalar methods provided by the OracleCommand class.

The Code

The following example demonstrates the use of command objects to update a database record,
return records from a query, and obtain a scalar value. Recipe 8-6 covers the use of stored procedures.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_05

 Public Shared Sub ExecuteNonQueryExample(ByVal con As IDbConnection)

 ' Create and configure a new command.
 Dim com As IDbCommand = con.CreateCommand
 com.CommandType = CommandType.Text
 com.CommandText = "UPDATE HumanResources.Employee SET Title = " & ➥
"'Production Supervisor' WHERE EmployeeID = 24;"

 ' Execute the command and process the result.
 Dim result As Integer = com.ExecuteNonQuery

Herman_970-5C08.fm Page 313 Monday, March 3, 2008 10:04 AM

http://msdn2.microsoft.com

314 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 If result = 1 Then
 Console.WriteLine("Employee title updated.")
 ElseIf result > 1 Then
 Console.WriteLine("{0} employee titles updated.", result)
 Else
 Console.WriteLine("Employee title not updated.")
 End If

 End Sub

 Public Shared Sub ExecuteReaderExample(ByVal con As IDbConnection)

 ' Create and configure a new command.
 Dim com As IDbCommand = con.CreateCommand
 com.CommandType = CommandType.Text
 com.CommandText = "SET ROWCOUNT 10;SELECT " &
"Production.Product.Name, Production.Product.ListPrice FROM " &
"Production.Product ORDER BY Production.Product.ListPrice DESC;SET ROWCOUNT 0;"

 ' Execute the command and process the results.
 Using reader As IDataReader = com.ExecuteReader

 While reader.Read
 ' Display the product details.
 Console.WriteLine(" {0} = {1}", reader("Name"), ➥
reader("ListPrice"))
 End While

 End Using

 End Sub

 Public Shared Sub ExecuteScalarExample(ByVal con As IDbConnection)

 ' Create and configure a new command.
 Dim com As IDbCommand = con.CreateCommand
 com.CommandType = CommandType.Text
 com.CommandText = "SELECT COUNT(*) FROM HumanResources.Employee;"

 ' Execute the command and cast the result.
 Dim result As Integer = CInt(com.ExecuteScalar)

 Console.WriteLine("Employee count = " & result)

 End Sub

 Public Shared Sub Main()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

Herman_970-5C08.fm Page 314 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 315

 ' Open the database connection and execute the example
 ' commands through the connection.
 con.Open()

 ExecuteNonQueryExample(con)
 Console.WriteLine(Environment.NewLine)

 ExecuteReaderExample(con)
 Console.WriteLine(Environment.NewLine)

 ExecuteScalarExample(con)
 Console.WriteLine(Environment.NewLine)

 ' Close the database connection.
 con.Close()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

The example in this recipe demonstrates how to use a command object to execute a few different
SQL statements against a database. Since the statements are sent to the server as strings, they are not
compiled or interpreted as anything by the .NET compiler. This means syntax checking or errors in
the statement are not performed, which makes diagnosing problems more difficult. Furthermore,
you are forced to know how to use Structured Query Language (SQL).

As mentioned in the introduction to this chapter, .NET 3.5 introduces Language Integrated
Query (LINQ), which provides a structured and interpreted language for querying various data
sources. LINQ to ADO.NET encompasses LINQ to Datasets and LINQ to SQL, which allow LINQ to
be used with databases. Using LINQ limits the need-to-know SQL, and since it is compiled as part of
the language, it supports IntelliSense as well as syntax and error checking. LINQ is covered in greater
detail in Chapter 6.

To use LINQ to Datasets, you would first need to fill a DataTable or DataSet (an object that can
contain multiple tables and represents a disconnected database) with data from the database. One
the data has been loaded, the AsEnumerable extension method (see recipe 1-22 for extension methods) is
used to return the table as an IEnumerable(Of DataRow) collection. The LINQ to Objects API (also
covered in Chapter 6) provides querying functionality for any object that inherits from
IEnumerable(Of T).

LINQ to SQL provides the means to create .NET class objects that represent, and directly map
to, specific tables in a database. Any changes or queries made against the class objects are converted
to the appropriate query language (such as SQL) and sent to the server where they are executed.
Recipe 8-12 and recipe 8-13 cover the two main ways to create these objects.

Herman_970-5C08.fm Page 315 Monday, March 3, 2008 10:04 AM

316 CH AP T E R 8 ■ D AT AB A SE ACC E S S

8-6. Use Parameters in a SQL Command or Stored Procedure

Problem

You need to set the arguments of a stored procedure or use parameters in a SQL query to improve
flexibility.

Solution

Create parameter objects appropriate to the type of command object you intend to execute. Configure
the parameter objects’ data types, values, and directions and add them to the command object’s
parameter collection using the DbCommand.Parameters.Add method.

How It Works

All command objects support the use of parameters, so you can do the following:

• Set the arguments of stored procedures.

• Receive stored procedure return values.

• Substitute values into SQL queries at runtime.

All parameter objects inherit the MustInherit System.Data.Common.DbParameter class, which
implements the System.Data.IDataParameter interface. The DbParameter class represents a param-
eter, and each data provider includes a unique implementation. Here is the list of the
implementations for the five standard data providers:

• System.Data.Odbc.OdbcParameter

• System.Data.OleDb.OleDbParameter

• System.Data.OracleClient.OracleParameter

• System.Data.SqlClient.SqlParameter

• System.Data.SqlServerCe.SqlCeParameter

To use parameters with a text command, you must identify where to substitute the parameter’s
value within the command. The ODBC, OLE DB, and SQL Server CE data providers support positional
parameters; the location of each argument is identified by a question mark (?). For example, the
following command identifies two locations to be substituted with parameter values:

UPDATE HumanResources.Employee SET Title = ? WHERE EmployeeId = ?

The SQL Server and Oracle data providers support named parameters, which allow you to iden-
tify each parameter location using a name preceded by the at symbol (@). Named parameters are very
useful when you need to use the same parameter in multiple locations because you need to create
only one parameter object for it. Here is the equivalent command using named parameters:

UPDATE HumanResources.Employee SET Title = @title WHERE EmployeeId = @id

To specify the parameter values to substitute into a command, you must create parameter
objects of the correct type and add them to the command object’s parameter collection accessible
through the Parameters property. You can add named parameters in any order, but you must add
positional parameters in the same order they appear in the text command. When you execute your
command, the value of each parameter is substituted into the command before it is executed against
the data source. You can create parameter objects in the following ways:

Herman_970-5C08.fm Page 316 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 317

• Use the CreateParameter method of the command object.

• Use the Parameters.Add method of the command object.

• Use System.Data.Common.DbProviderFactory.

• Directly create parameter objects using constructors and configure them using constructor
arguments or through setting their properties. (This approach ties you to a specific database
provider.)

A parameter object’s properties describe everything about a parameter that the command object
needs to use the parameter object when executing a command against a data source. Table 8-4
describes the properties that you will use most frequently when configuring parameters.

When using parameters to execute stored procedures, you must provide parameter objects to
satisfy each argument required by the stored procedure, including both input and output arguments.
If a stored procedure has a return value, the parameter to hold the return value (with a Direction
property equal to ReturnValue) must be the first parameter added to the parameter collection.

The Code

The following example demonstrates the use of parameters in SQL queries. The
ParameterizedCommandExample method demonstrates the use of parameters in a SQL Server UPDATE
statement. The ParameterizedCommandExample method’s arguments include an open SqlConnection,
an Integer, and a String. The values of the two strings are substituted into the UPDATE command
using parameters. The StoredProcedureExample method demonstrates the use of parameters to call
a stored procedure.

Since not all providers support named parameters, this example specifically uses SQL objects.
Instead of using DbConnection, DbCommand, and DataParameter, it uses the specific classes
SqlConnection, SqlCommand, and SqlParameter, respectively.

The appropriate data type, for the parameter, is assigned using the SqlParameter.SqlDbType
property. As Table 8-4 mentions, you could also have used the DbType property, which is overridden
by the SqlParameter class, to return the same information as the SqlDbType property.

Table 8-4. Commonly Used Parameter Properties

Property Description

DbType A value of the System.Data.DbType enumeration that specifies the type of data
contained in the parameter. Commonly used values include String, Int32,
DateTime, and Currency. Since this property is flagged as MustOverride, the
specific providers will override it to return more appropriate information, such
as the SqlDbType enumeration that is returned from the SqlParameter class.
The specific provider class will typically also supply an appropriately named
DbType property that returns the type specific to the provider, such as the
SqlDbType property of the SqlParameter class.

Direction A value from the System.Data.ParameterDirection enumeration that indi-
cates the direction in which the parameter is used to pass data. Valid values
are Input, InputOutput, Output, and ReturnValue. The default is Input.

IsNullable A Boolean that indicates whether the parameter accepts Nothing values.
The default is False.

ParameterName A String containing the name of the parameter.

Value An Object containing the value of the parameter.

Herman_970-5C08.fm Page 317 Monday, March 3, 2008 10:04 AM

318 CH AP T E R 8 ■ D AT AB A SE ACC E S S

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_06

 Public Shared Sub ParameterizedCommandExample(ByVal con As ➥
SqlConnection, ByVal employeeID As Integer, ByVal title As String)

 ' Create and configure a new command containing 2 named parameters.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "UPDATE HumanResources.Employee SET Title " & ➥
"= @title WHERE EmployeeID = @id;"

 ' Create a SqlParameter object for the title parameter.
 Dim p1 As SqlParameter = com.CreateParameter
 p1.ParameterName = "@title"
 p1.SqlDbType = SqlDbType.VarChar
 p1.Value = title
 com.Parameters.Add(p1)

 ' Use a shorthand syntax to add the id parameter.
 com.Parameters.Add("@id", SqlDbType.Int).Value = employeeID

 ' Execute the command and process the result.
 Dim result As Integer = com.ExecuteNonQuery

 If result = 1 Then
 Console.WriteLine("Employee {0} title updated to {1}", ➥
employeeID, title)
 ElseIf result > 1 Then
 ' Indicates multiple records were affected.
 Console.WriteLine("{0} records for employee {1} had " & ➥
"the title updated to {2}", result, employeeID, title)
 Else
 Console.WriteLine("Employee {0} title not updated.", employeeID)
 End If

 End Using

 End Sub

 Public Shared Sub StoredProcedureExample(ByVal con As SqlConnection, ➥
ByVal managerID As Integer)

 ' Create and configure a new command containing 2 named parameters.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.StoredProcedure
 com.CommandText = "uspGetManagerEmployees"

Herman_970-5C08.fm Page 318 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 319

 ' Create the required SqlParameter object.
 com.Parameters.Add("@ManagerID", SqlDbType.Int).Value = managerID

 ' Execute the command and process the result.
 Dim result As Integer = com.ExecuteNonQuery

 Using reader As SqlDataReader = com.ExecuteReader
 Console.WriteLine("Employees managed by manager #{0}.", ➥
managerID.ToString)

 While reader.Read
 ' Display the product details.
 Console.WriteLine(" {0}, {1} ({2})", ➥
reader("LastName"), reader("FirstName"), reader("employeeID"))
 End While

 End Using

 End Using

 End Sub

 Public Shared Sub Main()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Open the database connection and execute the example
 ' commands through the connection.
 con.Open()

 ParameterizedCommandExample(con, 16, "Production Technician")
 Console.WriteLine(Environment.NewLine)

 StoredProcedureExample(con, 185)
 Console.WriteLine(Environment.NewLine)

 ' Close the database connection.
 con.Close()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C08.fm Page 319 Monday, March 3, 2008 10:04 AM

320 CH AP T E R 8 ■ D AT AB A SE ACC E S S

8-7. Process the Results of a SQL Query Using a Data Reader

Problem

You need to process the data contained in the System.Data.DbDataReader class instance returned
when you execute the DbCommand.ExecuteReader method (see recipe 8-5).

Solution

Use the members of the DbDataReader class to move through the rows in the result set sequentially
and access the individual data items contained in each row.

How It Works

The DbDataReader class represents a data reader, which is a forward-only, read-only mechanism for
accessing the results of a SQL query. This is a MustInherit class that implements both the System.
Data.IDataReader and System.Data.IDataRecord interfaces. Each data provider includes a unique
DbDataReader implementation. Here is the list of the implementations for the five standard data
providers:

• System.Data.Odbc.OdbcDataReader

• System.Data.OleDb.OleDbDataReader

• System.Data.OracleClient.OracleDataReader

• System.Data.SqlClient.SqlDataReader

• System.Data.SqlServerCe.SqlCeDataReader

Together, the IDataReader and IDataRecord interfaces supply the functionality that provides
access to both the data and the structure of the data contained in the result set. Table 8-5 describes
some of the commonly used members of the IDataReader and IDataRecord interfaces.

Table 8-5. Commonly Used Members of Data Reader Classes

Member Description

Property

FieldCount Gets the number of columns in the current row.

HasRows Returns True if the DbDataReader has any rows and False if it doesn’t.

IsClosed Returns True if the DbDataReader is closed and False if it’s currently open.

Item Returns an Object representing the value of the specified column in the
current row. Columns can be specified using a zero-based integer index
or a string containing the column name. You must cast the returned value
to the appropriate type. This is the indexer for the IDataRecord interface.

Method

GetDataTypeName Gets the name of the data source data type as a String for a
specified column.

GetFieldType Gets a System.Type instance representing the data type of the value
contained in the column specified using a zero-based integer index.

Herman_970-5C08.fm Page 320 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 321

In addition to those members listed in Table 8-5, the data reader provides a set of methods for
retrieving typed data from the current row. Each of the following methods takes an integer argument
that identifies the zero-based index of the column from which the data should be returned: GetBoolean,
GetByte, GetBytes, GetChar, GetChars, GetDateTime, GetDecimal, GetDouble, GetFloat, GetGuid, GetInt16,
GetInt32, GetInt64, GetString.

The SQL Server and Oracle data readers also include methods for retrieving data as data
source–specific data types. For example, the SqlDataReader includes methods such as GetSqlByte,
GetSqlDecimal, and GetSqlMoney, and the OracleDataReader includes methods such as GetOracleLob,
GetOracleNumber, and GetOracleMonthSpan. Refer to the .NET Framework SDK documentation for
more details.

When you have finished with a data reader, you should always call its Close method so that you
can use the database connection again. DbDataReader extends System.IDisposable, meaning that
each data reader class implements the Dispose method. Dispose automatically calls Close, making
the Using statement a very clean and efficient way of using data readers.

The Code

The following example demonstrates the use of a data reader to process the contents of two result
sets returned by executing a batch query containing two SELECT queries. The first result set is
enumerated and displayed to the console. The second result set is inspected for metadata informa-
tion, which is then displayed.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_07

 Public Shared Sub Main()

GetName Gets the name of the column specified by using a zero-based integer index.

GetOrdinal Gets the zero-based column ordinal for the column with the specified name.

GetSchemaTable Returns a System.Data.DataTable instance that contains metadata
describing the columns contained in the DbDataReader.

IsDBNull Returns True if the value in the specified column contains a data source
null value; otherwise, it returns False.

NextResult If the DbDataReader includes multiple result sets because multiple state-
ments were executed, NextResult moves to the next set of results. This
method returns True or False, indicating whether or not there are more
results. By default, the DbDataReader is positioned on the first result set.

Read Advances the reader to the next record. This method returns True or False,
indicating whether or not there are more records. The reader always starts
prior to the first record.

Table 8-5. Commonly Used Members of Data Reader Classes

Member Description

Herman_970-5C08.fm Page 321 Monday, March 3, 2008 10:04 AM

322 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI"

 ' Create and configure a new command.
 Using com As SqlDbCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SELECT e.BirthDate,c.FirstName," & ➥
"c.LastName FROM HumanResources.Employee e INNER JOIN Person.Contact c ON " & ➥
"e.EmployeeID"=c.ContactID ORDER BY e.BirthDate;SELECT * FROM " & ➥
"humanResources.Employee"

 ' Open the database connection and execute the example
 ' commands through the connection.
 con.Open()

 ' Execute the command and obtain a DataReader.
 Using reader As SqlDataReader = com.ExecuteReader

 ' Process the first set of results and display the
 ' content of the result set.
 Console.WriteLine("Employee Birthdays (By Age).")

 While reader.Read
 Console.WriteLine(" {0,18:D} - {1} {2}", ➥
reader.GetDateTime(0), reader("FirstName"), reader(2))
 End While
 Console.WriteLine(Environment.NewLine)

 ' Process the second set of results and display details
 ' about the columns and data types in the result set.
 If (reader.NextResult()) Then
 reader.NextResult()
 Console.WriteLine("Employee Table Metadata.")
 For field As Integer = 0 To reader.FieldCount - 1
 Console.WriteLine(" Column Name:{0} Type:{1}", ➥
reader.GetName(field), reader.GetDataTypeName(field))
 Next
 End If

 End Using

 ' Close the database connection.
 con.Close()

 End Using

 End Using

 ' Wait to continue.

Herman_970-5C08.fm Page 322 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 323

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

8-8. Obtain an XML Document from a SQL Server Query

Problem

You need to execute a query against a SQL Server 2000 (or later) database and retrieve the results as
XML.

Solution

Specify the FOR XML clause in your SQL query to return the results as XML. Execute the command
using the ExecuteXmlReader method of the System.Data.SqlClient.SqlCommand class, which returns
a System.Xml.XmlReader object through which you can access the returned XML data.

How It Works

SQL Server 2000 (and later versions) provides direct support for XML. You simply need to add the
clause FOR XML AUTO to the end of a SQL query to indicate that the results should be returned as XML.
By default, the XML representation is not a full XML document. Instead, it simply returns the result
of each record in a separate element, with all the fields as attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO

returns XML with the following structure:

<HumanResources.Department DepartmentID="12" Name="Document Control" />
<HumanResources.Department DepartmentID="1" Name="Engineering" />
<HumanResources.Department DepartmentID="16" Name="Executive" />

Alternatively, you can add the ELEMENTS keyword to the end of a query to structure the results
using nested elements rather than attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO, ELEMENTS

returns XML with the following structure:

<HumanResources.Department>
 <DepartmentID>12</DepartmentID>
 <Name>Document Control</Name>
</HumanResources.Department>
<HumanResources.Department>
 <DepartmentID>1</DepartmentID>
 <Name>Engineering</Name>
</HumanResources.Department>
<HumanResources.Department>
 <DepartmentID>16</DepartmentID>
 <Name>Executive</Name>
</HumanResources.Department>

Herman_970-5C08.fm Page 323 Monday, March 3, 2008 10:04 AM

324 CH AP T E R 8 ■ D AT AB A SE ACC E S S

■Tip You can also fine-tune the format using the FOR XML EXPLICIT syntax. For example, this allows you to
convert some fields to attributes and others to elements. Refer to SQL Server Books Online, http://msdn2.
microsoft.com/en-us/library/ms189068.aspx, for more information.

When the ExecuteXmlReader command returns, the connection cannot be used for any other
commands while the XmlReader is open. You should process the results as quickly as possible, and
you must always close the XmlReader. Instead of using the XmlReader to access the data sequentially,
you can read the XML data into an XElement or XDocument class (both of which are located in the
System.Xml.Linq namespace). This way, all the data is retrieved into memory, and the database
connection can be closed. You can then continue to interact with the XML document. (Chapter 7, which
covers LINQ to XML, contains numerous examples on using the XDocument and XElement classes.)

The Code

The following example demonstrates how to retrieve results as XML using the FOR XML clause and the
ExecuteXmlReader method:

Imports System
Imports System.Xml
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_08

 Public Shared Sub ConnectedExample()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command that includes the
 ' FOR XML AUTO clause.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SELECT DepartmentID, [Name], " & ➥
"GroupName FROM HumanResources.Department FOR XML AUTO"

 ' Open the database connection.
 con.Open()

 ' Execute the command and retrieve and XmlReader to access
 ' the results.
 Using reader As XmlReader = com.ExecuteXmlReader

 ' Loop through the reader.
 While reader.Read

Herman_970-5C08.fm Page 324 Monday, March 3, 2008 10:04 AM

http://msdn2

C H AP TE R 8 ■ DA TA B AS E A CC E SS 325

 ' Make sure we are dealing with an actual element of
 ' some type.
 If reader.NodeType = XmlNodeType.Element Then

 ' Create an XElement object based on the current
 ' contents of the reader.
 Dim currentEle As XElement = ➥
XElement.ReadFrom(reader)

 ' Display the name of the current element and list
 ' any attributes that it may have.
 Console.WriteLine("Element: {0}", currentEle.Name)
 If currentEle.HasAttributes Then
 For i As Integer = 0 To ➥
currentEle.Attributes.Count - 1
 Console.Write(" {0}: {1}", ➥
currentEle.Attributes()(i).Name, currentEle.Attributes()(i).Value)
 Next
 End If
 End If
 End While

 End Using

 ' Close the database connection.
 con.Close()

 End Using
 End Using

 End Sub

 Public Shared Sub DisconnectedExample()

 ' This will be used to create the new XML document.
 Dim doc As New XDocument

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command that includes the
 ' FOR XML AUTO clause.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SELECT DepartmentID, [Name], " & ➥
"GroupName FROM HumanResources.Department FOR XML AUTO;"

 ' Open the database connection.
 con.Open()

Herman_970-5C08.fm Page 325 Monday, March 3, 2008 10:04 AM

326 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 ' Execute the command and retrieve and XmlReader to access
 ' the results.
 Using reader As XmlReader = com.ExecuteXmlReader
 ' Create the parent element for the results.
 Dim root As XElement = <Results></Results>

 ' Loop through the reader and add each node as a
 ' child to the root.
 While reader.Read

 ' We need to make sure we are only dealing with
 ' some form of an Element.
 If reader.NodeType = XmlNodeType.Element Then
 Dim newChild As XNode = XElement.ReadFrom(reader)
 root.Add(newChild)
 End If

 End While

 ' Finally, add the root element (and all of its children)
 ' to the new XML document.
 doc.Add(root)

 End Using

 ' Close the database connection.
 con.Close()

 End Using
 End Using

 ' Process the disconnected XmlDocument.
 Console.WriteLine(doc.ToString)

 End Sub

 Public Shared Sub Main()

 ConnectedExample()
 Console.WriteLine(Environment.NewLine)

 DisconnectedExample()
 Console.WriteLine(Environment.NewLine)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C08.fm Page 326 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 327

8-9. Perform Asynchronous Database Operations Against
SQL Server

Problem

You need to execute a query or command against a SQL Server database as a background task while
your application continues with other processing.

Solution

Use the BeginExecuteNonQuery, BeginExecuteReader, or BeginExecuteXmlReader method of the System.
Data.SqlClient.SqlCommand class to start the database operation as a background task. These methods
all return a System.IAsyncResult object that you can use to determine the operation’s status or use
thread synchronization to wait for completion. Use the IAsyncResult object and the corresponding
EndExecuteNonQuery, EndExecuteReader, or EndExecuteXmlReader method to obtain the result of the
operation.

■Note Only the SqlCommand class supports the asynchronous operations described in this recipe. The equivalent
command classes for the Oracle, SQL Server CE, ODBC, and OLE DB data providers do not provide this functionality.

How It Works

You will usually execute operations against databases synchronously, meaning that the calling code
blocks until the operation is complete. Synchronous calls are most common because your code will
usually require the result of the operation before it can continue. However, sometimes it’s useful to
execute a database operation asynchronously, meaning that you start the method in a separate
thread and then continue with other operations.

The SqlCommand class implements the asynchronous execution pattern similar to that discussed
in recipe 4-2. As with the general asynchronous execution pattern described in recipe 4-2, the
arguments of the asynchronous execution methods (BeginExecuteNonQuery, BeginExecuteReader,
and BeginExecuteXmlReader) are the same as those of the synchronous variants (ExecuteNonQuery,
ExecuteReader, and ExecuteXmlReader), but they take the following two additional arguments to
support asynchronous completion:

• A System.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous operation completes. The method is executed in the context of a
thread-pool thread. Passing Nothing means that no method is called and you must use another
completion mechanism (discussed later in this recipe) to determine when the asynchronous
operation is complete.

• An Object reference that the runtime associates with the asynchronous operation. The asyn-
chronous operation does not use or have access to this object, but it’s available to your code
when the operation completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a
common callback method to perform completion.

The EndExecuteNonQuery, EndExecuteReader, and EndExecuteXmlReader methods allow you to
retrieve the return value of an operation that was executed asynchronously, but you must first determine

Herman_970-5C08.fm Page 327 Monday, March 3, 2008 10:04 AM

328 CH AP T E R 8 ■ D AT AB A SE ACC E S S

when it has finished. Here are the four techniques for determining whether an asynchronous
method has finished:

• Blocking: This method stops the execution of the current thread until the asynchronous oper-
ation completes execution. In effect, this is much the same as synchronous execution. However,
you do have the flexibility to decide exactly when your code enters the blocked state, giving
you the opportunity to carry out some additional processing before blocking.

• Polling: This method involves repeatedly testing the state of an asynchronous operation to
determine whether it’s complete. This is a simple technique and is not particularly efficient
from a processing perspective. You should avoid tight loops that consume processor time. It’s
best to put the polling thread to sleep for a period using Thread.Sleep between completion
tests. Because polling involves maintaining a loop, the actions of the waiting thread are limited,
but you can easily update some kind of progress indicator.

• Waiting: This method uses an object derived from the System.Threading.WaitHandle class to
signal when the asynchronous method completes. Waiting is a more efficient version of
polling and in addition allows you to wait for multiple asynchronous operations to complete.
You can also specify time-out values to allow your waiting thread to fail if the asynchronous
operation takes too long or if you want to periodically update a status indicator.

• Callback: This is a method that the runtime calls when an asynchronous operation completes.
The calling code does not need to take any steps to determine when the asynchronous oper-
ation is complete and is free to continue with other processing. Callbacks provide the greatest
flexibility but also introduce the greatest complexity, especially if you have many concur-
rently active asynchronous operations that all use the same callback. In such cases, you must
use appropriate state objects to match completed methods against those you initiated.

The Code

Recipe 4-2 provides examples of all the completion techniques summarized in the preceding list.
The following example demonstrates the use of an asynchronous call to execute a stored procedure
on a SQL Server database. The code uses a callback to process the returned result set.

Imports System
Imports System.Data
Imports System.Threading
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_09

 ' A method to handle asynchronous completion using callbacks.
 Public Shared Sub CallBackHandler(ByVal result As IAsyncResult)

 ' Obtain a reference to the SqlCommand used to initiate the
 ' asynchronous operation.
 Using cmd As SqlCommand = TryCast(result.AsyncState, SqlCommand)
 ' Obtain the result of the stored procedure.
 Using reader As SqlDataReader = cmd.EndExecuteReader(result)

Herman_970-5C08.fm Page 328 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 329

 ' Display the results of the stored procedure to the console.
 ' To ensure the program is thread safe, SyncLock is used
 ' to stop more than one thread from accessing the console
 ' at the same time.
 SyncLock Console.Out
 Console.WriteLine("Bill of Materials:")
 Console.WriteLine("ID Description Quantity" & ➥
" ListPrice")

 While reader.Read
 ' Display the record details.
 Console.WriteLine("{0} {1} {2} {3}", ➥
reader("ComponentID"), reader("ComponentDesc"), reader("TotalQuantity"), ➥
reader("ListPrice"))
 End While

 End SyncLock

 End Using
 End Using

 End Sub

 Public Shared Sub Main()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 ' You must specify Asynchronous Processing=True to support
 ' asynchronous operations over the connection.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Asynchronous Processing=true;"

 ' Create and configure a new command to run a stored procedure.
 Using cmd As SqlCommand = con.CreateCommand

 cmd.CommandType = CommandType.StoredProcedure
 cmd.CommandText = "uspGetBillOfMaterials"

 ' Create the required SqlParameter objects.
 cmd.Parameters.Add("@StartProductID", SqlDbType.Int).Value = 771
 cmd.Parameters.Add("@CheckDate", ➥
SqlDbType.DateTime).Value = DateTime.Parse("07/10/2000")

 ' Open the database connection and execute the command
 ' asynchronously. Pass the reference to the SqlCommand
 ' used to initiate the asynchronous operation.
 con.Open()
 cmd.BeginExecuteReader(AddressOf CallBackHandler, cmd)
 End Using

Herman_970-5C08.fm Page 329 Monday, March 3, 2008 10:04 AM

330 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 ' Continue with other processing.
 For count As Integer = 1 To 10
 SyncLock Console.Out
 Console.WriteLine("{0} : Continue processing...", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 End SyncLock
 Thread.Sleep(500)
 Next

 ' Close the database connection.
 con.Close()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using
 End Sub

 End Class
End Namespace

8-10. Write Database-Independent Code

Problem

You need to write code that can be configured to work against any relational database supported by
an ADO.NET data provider.

Solution

Program to the ADO.NET data provider base classes that inherit the main interfaces, such as
IDbConnection, in the System.Data namespace. Unlike the concrete implementations, such as
SqlConnection, the base classes do not rely on features and data types that are unique to specific
database implementations. Use factory classes and methods to instantiate the data provider objects
you need to use.

How It Works

Using a specific data provider implementation (the SQL Server data provider, for example) simpli-
fies your code and may be appropriate if you need to support only a single type of database or require
access to specific features provided by that data provider, such as the asynchronous execution for
SQL Server detailed in recipe 8-9. However, if you program your application against a specific data
provider implementation, you will need to rewrite and test those sections of your code if you want to
use a different data provider at some point in the future.

Table 8-6 contains a summary of the main interfaces you must program against when writing
generic ADO.NET code that will work with any relational database’s data provider. The table also
explains how to create objects of the appropriate type that implement the interface. Many of the
recipes in this chapter demonstrate the use of ADO.NET data provider interfaces over specific imple-
mentation, as highlighted in the table.

Herman_970-5C08.fm Page 330 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 331

The System.Data.Common.DbProviderFactory class was first introduced in NET Framework 2.0
and provides a set of factory methods for creating all types of data provider objects, making it useful
for implementing generic database code. Most important, DbProviderFactory provides a mechanism for
obtaining an initial IDbConnection instance, which is the critical starting point to writing generic
ADO.NET code. Each of the standard data provider implementations (except the SQL Server CE data
provider) includes a unique factory class derived from DbProviderFactory. Here is the list of
DbProviderFactory subclasses:

• System.Data.Odbc.OdbcFactory

• System.Data.OleDb.OleDbFactory

• System.Data.OracleClient.OracleClientFactory

• System.Data.SqlClient.SqlClientFactory

■Note It’s important to understand that there is no common data type for parameters. You are forced to use
DbType, and you are responsible for understanding the mapping between your generic provider and your data
source.

Table 8-6. Data Provider Interfaces

Interface Description Demonstrated In

IDbConnection Represents a connection to a relational database.
You must program the logic to create a connection
object of the appropriate type based on your
application’s configuration information or use the
CreateConnection factory method of the MustInherit
DbProviderFactory class (discussed in this recipe).

Recipes 8-1 and 8-5

IDbCommand Represents a SQL command that is issued to a
relational database. You can create IDbCommand
objects of the appropriate type using the
IDbConnection.CreateCommand or CreateCommand
factory method of the MustInherit DbProviderFactory
class.

Recipes 8-5 and 8-6

IDataParameter Represents a parameter to an IDbCommand object.
You can create IDataParameter objects of the correct
type using the DbType property and the IDbCommand.
CreateParameter, IDbCommand.Parameters.Add, or
CreateParameter factory method of the MustInherit
DbProviderFactory class.

Recipe 8-6

IDataReader Represents the result set of a database query and
provides access to the contained rows and columns.
An object of the correct type will be returned when
you call the IDbCommand.ExecuteReader method.

Recipes 8-5 and 8-7

IDataAdapter Represents the set of commands used to fill a System.
Data.DataSet from a relational database and to update
the database based on changes to the DataSet. You must
program the logic to create a data adapter object of the
appropriate type based on your application’s configura-
tion information or use the CreateAdapter factory method
of the MustInherit DbProviderFactory class.

(Not covered)

Herman_970-5C08.fm Page 331 Monday, March 3, 2008 10:04 AM

332 CH AP T E R 8 ■ D AT AB A SE ACC E S S

You can obtain an instance of the appropriate DbProviderFactory subclass using the
DbProviderFactories class, which is effectively a factory of factories. Each data provider factory is
described by configuration information in the machine.config file similar to that shown here for the
SQL Server data adapter. This can be changed or overridden by application-specific configuration
information if required.

<configuration>
 <system.data>
 <DbProviderFactories>
 <add name="SqlClient Data Provider" invariant="System.Data.SqlClient" ➥
description=".Net Framework Data Provider for SqlServer" type= ➥
"System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.0.0, ➥
Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="Odbc Data Provider" ... />
 <add name="OleDb Data Provider" ... />
 <add name="OracleClient Data Provider" ... />
 <add name="SQL Server CE Data ... />
 </DbProviderFactories>
 </system.data>
</configuration>

You can enumerate the available data provider factories by calling DbProviderFactories.
GetFactoryClasses, which returns a System.Data.DataTable containing the following columns:

• Name, which contains a human-readable name for the provider factory. This is taken from the
name attribute in the configuration information.

• Description, which contains a human-readable description for the provider factory. This is
taken from the description attribute of the configuration information.

• InvariantName, which contains the unique name used to refer to the data provider factory
programmatically. This is taken from the invariant attribute of the configuration informa-
tion.

• AssemblyQualifiedName, which contains the fully qualified name of the DbProviderFactory
class for the data provider. This is taken from the type attribute of the configuration informa-
tion.

Normally, you would allow the provider to be selected at install time, or the first time the appli-
cation was run, and then store the settings as user or application configuration data. The most
important piece of information is the InvariantName, which you pass to the DbProviderFactories.
GetFactory method to obtain the DbProviderFactory implementation you will use to create your
IDbConnection instances.

■Note Prior to .NET Framework 2.0, it was difficult to write generic ADO.NET code because each data provider
implemented its own exception class that did not extend a common base class. Since .NET Framework 2.0, the
System.Data.Common.DbException class has been added as the base class of all data provider-specific exceptions,
making the generic handling of database exceptions a reality.

The Code

The following example demonstrates the enumeration of all data providers configured for the
local machine and application. It then uses the DbProviderFactories class to instantiate a
DbProviderFactory object (actually a SqlClientFactory) from which it creates the appropriate

Herman_970-5C08.fm Page 332 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 333

IDbConnection. It then uses the factory methods of the data provider interfaces to create other
required objects, resulting in code that is completely generic.

Imports System
Imports System.Data
Imports System.Data.Common

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_10

 Public Shared Sub Main()

 ' Obtain the list of ADO.NET data providers registered in the
 ' machine and application configuration file.
 Using providers As DataTable = DbProviderFactories.GetFactoryClasses

 ' Enumerate the set of data providers and display details.
 Console.WriteLine("Available ADO.NET Data Providers:")

 For Each prov As DataRow In providers.Rows
 Console.WriteLine(" Name:{0}", prov("Name"))
 Console.WriteLine(" Description:{0}", ➥
prov("Description"))
 Console.WriteLine(" Invariant Name:{0}", ➥
prov("InvariantName"))
 Next

 End Using

 ' Obtain the DbProviderFactory for SQL Server. The provider to use
 ' could be selected by the user or read from a configration file.
 ' In this case, we simply pass the invariant name.
 Dim factory As DbProviderFactory = ➥
DbProviderFactories.GetFactory("System.Data.SqlClient")

 ' Use the DbProviderFactory to create the initial IDbConnection, and
 ' then the data provider inteface factory methods for other objects.
 Using con As IDbConnection = factory.CreateConnection

 ' Normally, read the connection string from secure storage.
 ' See recipe 8-2. In this case, use a default value.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command.
 Using com As IDbCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SET ROWCOUNT 10;SELECT prod.Name, " & ➥
"inv.Quantity FROM Production.Product prod INNER JOIN " & ➥
"Production.ProductInventory inv ON prod.ProductID = inv.ProductID " & ➥
"ORDER BY inv.Quantity DESC;"

Herman_970-5C08.fm Page 333 Monday, March 3, 2008 10:04 AM

334 CH AP T E R 8 ■ D AT AB A SE ACC E S S

 ' Open the connection.
 con.Open()

 ' Execute the command and process the results.
 Using reader As IDataReader = com.ExecuteReader

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Quantity of the Ten Most Stocked " & ➥
"Products:")

 While reader.Read
 ' Display the product details.
 Console.WriteLine(" {0} = {1}", reader("Name"), ➥
reader("Quantity"))
 End While

 End Using

 ' Close the database connection.
 con.Close()

 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

8-11. Create a Database Object Model

Problem

You need to create objects that map directly to tables in a relational database.

Solution

Use the Object Relational Designer (O/R Designer) to automatically generate .NET classes that map
directly to tables within the target database.

How It Works

LINQ to SQL, the Language Integrated Query (see Chapter 6) API, provides integrated query support
for databases. It accomplishes this by using object classes, created in any .NET language, that tightly
map to tables in a database. Instead of creating string-based commands to collect or change data in
a database, as shown in the earlier recipes in this chapter, you simply change property values or
create new instances of the mapped object classes.

Herman_970-5C08.fm Page 334 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 335

Although the object classes can be created manually by using the various attributes located in
the System.Data.Linq.Mapping namespace, this could be very error-prone and time-consuming. To
assist in this process, Visual Studio 2008 includes the Object Relational Designer, which is capable of
automatically generated the object classes for you.

The first step in using the O/R Designer to create your object classes is to add it to your project.
You do this by selecting Project ➤ Add New Item, which will open the Add New Item dialog box (see
Figure 8-1). From the template list, select LINQ to SQL Classes, and change the default name to
something that makes sense for your project. Once you are finished, click the Add button.

Figure 8-1. The Add New Item dialog box

A few things happen when you first add the O/R Designer component to your project. To see
everything, you should make sure your project is selected and click the Show All Files icon in the
Solution Explorer. This will reveal any hidden files within the currently selected project.

You will immediately notice that the newly added .dbml item is really a group that contains
a .dbml.layout file and a .designer.vb file. The .dbml file is an XML file that contains all metadata- and
database-specific information, while the .dbml.layout, which is also XML, is just placement and
configuration data used by the designer. The .designer.vb file is the code file that contains all the
automatically generated class objects. At this point, the object contains only the data context class
that inherits from System.Data.Linq.DataContext. This class represents the primary bridge between
the class objects and the database.

Double-clicking the .dbml item will open the O/R Designer, allowing you to begin adding
objects to it. Now you are ready to add tables to the designer. To do this, open the Server Explorer
window, and select the connection folder that contains the tables you want to add. Once your connec-
tion has been successfully established, display the list of available tables, and drag the desired ones
to the designer (see Figure 8-2).

Herman_970-5C08.fm Page 335 Monday, March 3, 2008 10:04 AM

336 CH AP T E R 8 ■ D AT AB A SE ACC E S S

Figure 8-2. The O/R Designer

■Note Currently, the O/R Designer supports only SQL Server.

The designer will display a class diagram for each table added. The first time you add a table
to the designer, a new project setting containing the connection information will automatically be
added to the app.config file for your project. The automatically generated data context class will also
be updated to include a constructor that will use this new setting to connect to the database. Also, a
new class for each table added will be generated.

Each class object, or entity, maps directly to a table in the database, while each property maps
to columns in the table. Any stored procedures or user-defined functions will be functions in the
entity class. Special attributes from the System.Data.Linq.Mapping namespace are used to tag each
element and instruct how they map back to the database. Even relationships that exist in the data-
base are reflected in the new object model as associations.

Once the objects have been created, using them is very straightforward. You just need to under-
stand that instances of each object represent a row in the table. To create a new row, create a new
instance of that object. To change the value of a column in a table, change the property. The
SubmitChanges method of the DataContext class is used to persist any changes to the database. All
you need to get started is a new instance of the generated data context class that will make the
connection to the database for you and be used as a bridge.

Herman_970-5C08.fm Page 336 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 337

■Note You can also use SQLMetal.exe, a command-line utility to generate the object classes. This is covered in
recipe 8-12.

The Code

The following example demonstrates how to retrieve data from the database and perform a basic
query on it, all using the classes automatically generated by the O/R Designer:

Imports System
Imports System.Data.Linq

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_11

 Shared Sub Main()

 ' Create an instance of the DataContext that was
 ' created by the O/R Designer.
 Dim dbContext = New AdventureWorksDataContext()

 ' Create a query to return the name and HireDate for
 ' each employee that was hired prior to the year 2000.
 ' Note that you can easily access a related table (Contact)
 ' without having to perform any joins.
 Dim Query = From emp In dbContext.Employees _
 Where emp.HireDate.Year < 2000 _
 Select Name = emp.Contact.LastName & ", " & ➥
emp.Contact.FirstName, _
 emp.HireDate _
 Order By Name

 ' Execute the query and display the results.
 For Each emp In Query
 Console.WriteLine("{0} was hired on {1}", emp.Name, ➥
emp.HireDate.ToString("MM/dd/yyy"))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C08.fm Page 337 Monday, March 3, 2008 10:04 AM

338 CH AP T E R 8 ■ D AT AB A SE ACC E S S

8-12. Generate Data Object Classes from the Command Line

Problem

You need to create objects that map directly to tables in a relational database, but you do not have
access to Visual Studio 2008 or can’t use the O/R Designer for some reason.

Solution

Use SqlMetal.exe to automatically generate .NET classes that map directly to tables within the target
database.

How It Works

Recipe 8-11 covers the basics on using the new Object Relational Designer (O/R Designer) to create
a set of object classes that model a relational database. Since a situation may arise where you need
to perform this same functionality from the command line, Visual Studio 2008 also includes the
SqlMetal.exe utility.

SqlMetal.exe is distributed with Visual Studio 2008 and is located in a directory similar to
C:\Windows\Microsoft.NET\Framework\v3.5. To use it, just execute it and pass in any appropriate
parameters (see Table 8-7 for a list of the main ones).

Table 8-7. Main SqlMetal.exe Parameters

Parameter Description

/server: Used to specify the SQL server to connect to.

/database: Used to specify the actual database to connect to.

/user Used to specify a name to use to log on to the database. SqlMetal.exe defaults to
using Windows authentication if no user or password is provided.

/password Used to specify a password to use to log on to the database. SqlMetal.exe
defaults to using Windows authentication if no user or password is provided.

/views Instructs the utility to extract all views.

/functions Instructs the utility to extract all functions.

/sprocs Instructs the utility to extract all stored procedures.

/dbml: Instructs the utility to generate a .dbml file that can be opened with the
O/R Designer.

/code: Instructs the utility to generate source code.

/map: Instructs the utility to generate an XML mapping file.

/language: Used to specify what language should be used for generated code.

Herman_970-5C08.fm Page 338 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 339

Usage

In its simplest form, you need to supply only the server and a database to target:

Sqlmetal /server:.\sqlexpress /database:AdventureWorks

However, since no target was specified, the results will be displayed as XML on the screen. In
most situations, this is not desired, so you should specify a target, like this:

Sqlmetal /server:.\sqlexpress /database:AdventureWorks /dbml:AdventureWorks.dbml

This command will create a .dbml file that can be easily opened and edited within Visual Studio
2008 using the O/R Designer (see Figure 8-3) that was covered in recipe 8-11.

Figure 8-3. SqlMetal.exe-generated DBML viewed in the O/R Designer

Herman_970-5C08.fm Page 339 Monday, March 3, 2008 10:04 AM

340 CH AP T E R 8 ■ D AT AB A SE ACC E S S

8-13. Discover All Instances of SQL Server on Your Network

Problem

You need to obtain a list of all instances of SQL Server 2000 or SQL Server 2005 that are accessible on
the network.

Solution

Use the GetDataSources method of the System.Data.Sql.SqlDataSourceEnumerator class.

■Note Your code needs to be granted FullTrust to be able to execute the GetDataSources method.

How It Works

The SqlDataSourceEnumerator class makes it easy to enumerate the SQL Server instances accessible
on the network. Since this class does not have an accessible constructor, you must use the Shared
property SqlDataSourceEnumerator.Instance to return an instance of the class. You then use the
GetDataSources method to return a System.Data.DataTable that contains a set of System.Data.DataRow
objects. Each DataRow represents a single SQL Server instance and contains the following columns:

• ServerName, which contains the name of the server where the SQL Server instance is hosted.

• InstanceName, which contains the name of the SQL Server instance or the empty string if the
SQL Server is the default instance.

• IsClustered, which indicates whether the SQL Server instance is part of a cluster.

• Version, which contains the version of the SQL Server instance (8.00.x for SQL Server 2000, 9.00.x
for SQL Server 2005, or 10.00.x for SQL Server 2008).

The Code

The following example demonstrates the use of the SqlDataSourceEnumerator class to discover and
display details of all SQL Server instances accessible (and visible) on the network:

Imports System
Imports System.Data
Imports System.Data.Sql

Namespace Apress.VisualBasicRecipes.Chapter08

 Public Class Recipe08_13

 Public Shared Sub Main()

 ' Obtain the DataTable of SQL Server instances.
 Using sqlSources As DataTable = ➥
SqlDataSourceEnumerator.Instance.GetDataSources()

 ' Enumerate the set of SQL Servers and display details.
 Console.WriteLine("Discover SQL Server Instances:")

Herman_970-5C08.fm Page 340 Monday, March 3, 2008 10:04 AM

C H AP TE R 8 ■ DA TA B AS E A CC E SS 341

 For Each source As DataRow In sqlSources.Rows
 Console.WriteLine(" Server Name:{0}", source("ServerName"))
 Console.WriteLine(" Instance Name:{0}", source("InstanceName"))
 Console.WriteLine(" Is Clustered:{0}", source("IsClustered"))
 Console.WriteLine(" Version:{0}", source("Version"))
 Console.WriteLine(Environment.NewLine)
 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C08.fm Page 341 Monday, March 3, 2008 10:04 AM

Herman_970-5C08.fm Page 342 Monday, March 3, 2008 10:04 AM

343

■ ■ ■

C H A P T E R 9

Windows Forms

The Microsoft .NET Framework includes a rich set of classes for creating traditional Windows-based
applications in the System.Windows.Forms namespace. These range from basic controls such as the
TextBox, Button, and MainMenu classes to specialized controls such as TreeView, LinkLabel, and
NotifyIcon. In addition, you will find all the tools you need to manage Multiple Document Interface
(MDI) applications, integrate context-sensitive help, and even create multilingual user interfaces—
all without needing to resort to the complexities of the Win32 API.

The traditional model for developing these Windows-based applications has not fundamentally
changed since .NET was first released. The .NET Framework 3.0, initially released with Windows
Vista, has made a formidable attempt to change the model with the introduction of Windows Presen-
tation Foundation (WPF).

WPF allows the development of highly sophisticated user interfaces using an enhanced design
model that allows a much deeper control of all elements and their appearance. Furthermore, an
attempt has been made to separate the user interface design from the code. Similar to how ASP .NET
applications are designed, the front end (or user interface) for WPF applications is created using
Extensible Application Markup Language (XAML, pronounced “zammel”). The back end is all handled
by managed code.

Visual Studio 2008 includes a detailed WPF designer that is similar to the Windows Forms designer.
Other designers (Microsoft Expression Designer, Microsoft XAML Pad, and so on) that let you visually
create XAML-based WPF applications are also available. It is important to note that WPF applications can
be completely written in managed code rather than using XAML. This, however, goes against the
underlying concept of WPF and would force you to create user interfaces without a designer (since
they currently output only XAML).

Since the topic of this book is Visual Basic (and not XAML), the in-depth subject of WPF and
XAML is best handled by other sources such as the Pro WPF with VB 2008: Windows Presentation
Foundation .NET 3.5 by Matthew MacDonald (Apress, 2008), Foundations of WPF: An Introduction
to Windows Presentation Foundation by Laurence Moroney (Apress, 2006), or Applications = Code +
Markup (Microsoft Press) by Charles Petzold. Therefore, this chapter will concentrate on tips and
timesaving techniques to assist with building the more traditional Windows-based applications.

■Note Most of the recipes in this chapter use control classes, which are defined in the System.Windows.
Forms namespace. When introducing these classes, the full namespace name is not indicated. In other words,
System.Windows.Forms is assumed.

Herman_970-5C09.fm Page 343 Thursday, March 6, 2008 8:01 AM

344 CH AP T E R 9 ■ W IN DO W S FO R M S

The recipes in this chapter cover the following:

• Adding controls to a form programmatically at runtime so that you can build forms dynami-
cally instead of building static forms only in the Visual Studio forms designer (recipe 9-1)

• Linking arbitrary data objects to controls to provide an easy way to associate data with a
control without needing to maintain additional data structures (recipe 9-2)

• Processing all the controls on a form in a generic way (recipe 9-3)

• Tracking all the forms and MDI forms in an application (recipes 9-4 and 9-5)

• Saving user-based and computer-based configuration information for Windows Forms appli-
cations using the mechanisms built into the .NET Framework and Windows (recipe 9-6)

• Forcing a list box to always display the most recently added item so that users do not need to
scroll up and down to find it (recipe 9-7)

• Assisting input validation by restricting what data a user can enter into a textbox and imple-
menting a component-based mechanism for validating user input and reporting errors
(recipes 9-8 and 9-16)

• Implementing a custom autocomplete combo box so that you can make suggestions for
completing words as users type data (recipe 9-9)

• Allowing users to sort a list view based on the values in any column (recipe 9-10)

• Quickly laying out all the controls on a form (recipe 9-11)

• Providing multilingual support in your Windows Forms application (recipe 9-12)

• Creating forms that cannot be moved and create borderless forms that can be moved (recipes
9-13 and 9-14)

• Creating an animated system tray icon for your application (recipe 9-15)

• Supporting drag-and-drop functionality in your Windows Forms application (recipe 9-17)

• Providing context-sensitive help to the users of your Windows Forms application (recipe 9-18)

• Displaying web-based information within your Windows application and allowing users to
browse the Web from within your application (recipe 9-19)

• Creating a basic WPF application using VB .NET (recipe 9-20)

• Forcing a Windows Vista application to request administrative privileges using UAC (recipe 9-21)

■Note Visual Studio, with its advanced design and editing capabilities, provides the easiest and most productive
way to develop Windows Forms applications. Therefore, the recipes in this chapter—unlike those in most other
chapters—rely heavily on the use of Visual Studio. Instead of focusing on the library classes that provide the required func-
tionality or looking at the code generated by Visual Studio, these recipes focus on how to achieve the recipe’s goal using
the Visual Studio user interface and the code that you must write manually to complete the required functionality.

9-1. Add a Control Programmatically

Problem

You need to add a control to a form at runtime, not design time.

Herman_970-5C09.fm Page 344 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 345

Solution

Create an instance of the appropriate control class. Then add the control object to a form or a container
control by calling Controls.Add on the container. (The container’s Controls property returns a
ControlCollection instance.)

How It Works

In a .NET form-based application, there is really no difference between creating a control at design
time and creating it at runtime. When you create controls at design time (using a tool such as
Microsoft Visual Studio), the necessary code is added to your form class. Visual Studio places this
code in a separate source file using the partial type functionality. You can use the same code in your
application to create controls on the fly. Just follow these steps:

1. Create an instance of the appropriate control class.

2. Configure the control properties accordingly (particularly the size and position coordinates).

3. Add the control to the form or another container. Every control implements a read-only
Controls property that returns a ControlCollection containing references to all of its child
controls. To add a child control, invoke the Controls.Add method.

4. If you need to handle the events for the new control, you can wire them up to existing methods.

If you need to add multiple controls to a form or container, you should call SuspendLayout on the
parent control before adding the dynamic controls, and then call ResumeLayout once you have finished.
This temporarily disables the layout logic used to position controls and will allow you to avoid signif-
icant performance overheads and weird flickering if many controls are being added.

The Code

The following example demonstrates the dynamic creation of a list of checkboxes. One checkbox is
added for each item in a String array. All the checkboxes are added to a panel that has its AutoScroll
property set to True, which gives basic scrolling support to the checkbox list.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-01.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_01

 Private Sub Recipe09_01_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create an array of strings to use as the labels for
 ' the dynamic checkboxes.
 Dim colors As String() = {"Red", "Green", "Black", "Blue", "Purple", ➥
"Pink", "Orange", "Cyan"}

 ' Suspend the panel's layout logic while multiple controls
 ' are added.
 panel1.SuspendLayout()

Herman_970-5C09.fm Page 345 Thursday, March 6, 2008 8:01 AM

346 CH AP T E R 9 ■ W IN DO W S FO R M S

 ' Specify the Y coordinate of the topmost checkbox in the list.
 Dim topPosition As Integer = 10

 ' Create one new checkbox for each name in the list of colors
 For Each color As String In colors
 ' Create a new checkbox.
 Dim newCheckBox As New CheckBox

 ' Configure the new checkbox.
 newCheckBox.Top = topPosition
 newCheckBox.Left = 10
 newCheckBox.Text = color

 ' Set the Y coordinate of the next checkbox.
 topPosition += 30

 ' Add the checkbox to the panel contained by the form.
 panel1.Controls.Add(newCheckBox)
 Next

 ' Resume the form's layout logic now that all controls
 ' have been added.
 Me.ResumeLayout()

 End Sub

End Class

Usage

Figure 9-1 shows how the example will look when run.

Figure 9-1. A dynamically generated checkbox list

Herman_970-5C09.fm Page 346 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 347

9-2. Link Data to a Control

Problem

You need to link an object to a specific control (perhaps to store some arbitrary information that
relates to a given display item).

Solution

Store a reference to the object in the Tag property of the control.

How It Works

Every class that derives from Control inherits a Tag property. The Tag property is not used by the
control or the .NET Framework. Instead, it’s reserved as a convenient storage place for application-
specific information. In addition, some other classes not derived from Control also provide a Tag
property. Useful examples include the ListViewItem, TreeNode, and MenuItem classes.

Because the Tag property is defined as an Object type, you can use it to store any value type or
reference type, from a simple number or string to a custom object you have defined. When retrieving
data from the Tag property, you must cast the Object to the correct type before use.

The Code

The following example adds a list of file names (as ListViewItem objects) to a ListView control. The
corresponding System.IO.FileInfo object for each file is stored in the Tag property of its respective
ListViewItem. When a user double-clicks one of the file names, the code retrieves the FileInfo object
from the Tag property and displays the file name and size using the MessageBox Shared method Show.

Imports System
Imports System.IO
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-02.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_02

 Private Sub Recipe09_02_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Get all the files in the root directory
 Dim rootDirectory As New DirectoryInfo("C:\")
 Dim files As FileInfo() = rootDirectory.GetFiles

 ' Display the name of each file in the ListView.
 For Each file As FileInfo In files
 Dim item As ListViewItem = listView1.Items.Add(file.Name)
 item.ImageIndex = 0

 ' Associate each FileInfo object with its ListViewItem.
 item.Tag = file
 Next

 End Sub

Herman_970-5C09.fm Page 347 Thursday, March 6, 2008 8:01 AM

348 CH AP T E R 9 ■ W IN DO W S FO R M S

 Private Sub listView1_ItemActivate(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles listView1.ItemActivate

 ' Get information from the linked FileInfo object and display
 ' it using a MessageBox.
 Dim item As ListViewItem = DirectCast(sender, ListView).SelectedItems(0)
 Dim file As FileInfo = DirectCast(item.Tag, FileInfo)
 Dim info As String = String.Format("{0} is {1} bytes.", file.FullName, ➥
file.Length)

 MessageBox.Show(info, "File Information")

 End Sub

End Class

Usage

Figure 9-2 shows how the example will look when run.

Figure 9-2. Storing data in the Tag property

9-3. Process All the Controls on a Form

Problem

You need to perform a generic task with all the controls on the form. For example, you may need to
retrieve or clear their Text property, change their color, or resize them.

Solution

Iterate recursively through the collection of controls. Interact with each control using the properties
and methods of the base Control class.

Herman_970-5C09.fm Page 348 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 349

How It Works

You can iterate through the controls on a form using the ControlCollection object obtained from
the Controls property. The ControlCollection includes all the controls that are placed directly on
the form surface. However, if any of these controls are container controls (such as GroupBox, Panel,
or TabPage), they might contain more controls. Thus, it’s necessary to use recursive logic that searches
the Controls collection of every control on the form.

The Code

The following example demonstrates the use of recursive logic to find every TextBox on a form and
clears the text they contain. When a button is clicked, the code tests each control on the form to
determine whether it is a TextBox by using the TypeOf keyword in conjunction with the Is operator.

Imports System
Imports System.IO
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-03.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_03

 Private Sub cmdProcessAll_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdProcessAll.Click

 ProcessControls(Me)

 End Sub

 Private Sub ProcessControls(ByVal ctrl As Control)

 ' Ignore the control unless it's a text box.
 If TypeOf (ctrl) Is TextBox Then
 ctrl.Text = ""
 End If

 ' Process controls recursively. This is required
 ' if controls contain other controls (for
 ' example, if you use panels, group boxes, or other
 ' container controls).
 For Each ctrlChild As Control In ctrl.Controls
 ProcessControls(ctrlChild)
 Next

 End Sub

End Class

Herman_970-5C09.fm Page 349 Thursday, March 6, 2008 8:01 AM

350 CH AP T E R 9 ■ W IN DO W S FO R M S

9-4. Track the Visible Forms in an Application

Problem

You need access to all the open forms that are currently owned by an application.

Solution

Iterate through the FormCollection object that you get from the Shared property OpenForms of the
Application object.

How It Works

Since .NET Framework 2.0, Windows Forms applications automatically keep track of the open forms
that they own. This information is accessed through the Application.OpenForms property, which
returns a FormCollection object containing a Form object for each form the application owns. You
can iterate through the FormCollection to access all Form objects or obtain a single Form object using
its name (Form.Name) or its position in the FormCollection as an index.

The My object (see Chapter 5 for more information) provides an identical OpenForms property
in the My.Application class. It also provides quick-and-easy design-time access to each form in the
current project via the My.Forms class.

The Code

The following example demonstrates the use of the Application.OpenForms property and the
FormCollection it returns to manage the active forms in an application. The example allows you to
create new forms with specified names. A list of active forms is displayed when you click the Refresh
List button. When you click the name of a form in the list, it is made the active form.

Because of the way the FormCollection works, more than one form may have the same name. If
duplicate forms have the same name, the first one found will be activated. If you try to retrieve a Form
using a name that does not exist, Nothing is returned. The following is the code for the application’s
main form:

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-04.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe09_04

 Private Sub Recipe09_04_Load(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles MyBase.Load

 ' Refresh the list to display the initial set of forms.
 RefreshForms()

 End Sub

Herman_970-5C09.fm Page 350 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 351

 ' A button click event handler to create a new child form.
 Private Sub btnNewForm_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnNewForm.Click

 ' Create a new child form and set its name as specified.
 ' If no name is specified, use a default name.
 Dim child As New Recipe09_04Child

 If Me.txtFormName.Text Is String.Empty Then
 child.Name = "Child Form"
 Else
 child.Name = txtFormName.Text
 End If

 ' Show the new child form.
 child.Show()

 End Sub

 ' List selection event handler to activate the selected form based on
 ' its name.
 Private Sub listForms_SelectedIndexChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles listForms.SelectedIndexChanged

 ' Activate the selected form using its name as the index into the
 ' collection of active forms. If there are duplicate forms with the
 ' same name, the first one found will be activated.
 Dim selectedForm As Form = Application.OpenForms(listForms.Text)

 ' If the form has been closed, using its name as an index into the
 ' FormCollection will return Nothing. In this instance, update the
 ' list of forms.
 If selectedForm IsNot Nothing Then
 ' Activate the selected form.
 selectedForm.Activate()
 Else
 ' Display a message and refresh the form list.
 MessageBox.Show("Form closed; refreshing list...", "Form Closed")
 RefreshForms()
 End If

 End Sub

 ' A button click event handler to initiate a refresh of the list of
 ' active forms.
 Private Sub btnRefresh_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnRefresh.Click

 RefreshForms()

 End Sub

Herman_970-5C09.fm Page 351 Thursday, March 6, 2008 8:01 AM

352 CH AP T E R 9 ■ W IN DO W S FO R M S

 ' A method to perform a refresh of the list of active forms.
 Private Sub RefreshForms()

 ' Clear the list and repopulate from the Application.OpenForms
 ' property.
 listForms.Items.Clear()

 For Each f As Form In Application.OpenForms
 listForms.Items.Add(f.Name)
 Next

 End Sub

End Class

The following is the code for the child forms that is created when the New Form button is clicked:

Imports System
Imports System.Windows.Forms

' class called Recipe09-04Child.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_04Child

 ' A button click event handler to close the child form.
 Private Sub btnClose_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnClose.Click

 Close()

 End Sub

 ' Display the name of the form when it is painted.
 Private Sub Recipe09_04Child_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 ' Display the name of the form.
 lblFormName.Text = Name

 End Sub

End Class

9-5. Find All MDI Child Forms

Problem

You need to find all the forms that are currently being displayed in an MDI application.

Solution

Iterate through the forms returned by the MdiChildren collection property of the MDI parent.

Herman_970-5C09.fm Page 352 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 353

How It Works

The .NET Framework includes two convenient shortcuts for managing the forms open in MDI appli-
cations: the MdiParent and MdiChildren properties of the Form class. The MdiParent property of any
MDI child returns a Form representing the containing parent window. The MdiChildren property
returns an array containing all of the MDI child forms.

The Code

The following example presents an MDI parent window that allows you to create new MDI children
by clicking the New item on the File menu. Each child window contains a label, which displays the
date and time when the MDI child was created, and a button. When the button is clicked, the event
handler walks through all the MDI child windows and displays the label text that each one contains.
Notice that when the example enumerates the collection of MDI child forms, it converts the generic
Form reference to the derived Recipe09_05Child form class so that it can use the LabelText property.
The following is the Recipe09_05Parent class:

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-05Parent.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_05Parent

 ' When the New menu item is clicked, create a new MDI child.
 Private Sub mnuNew_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles mnuNew.Click

 Dim frm As New Recipe09_05Child

 frm.MdiParent = Me
 frm.Show()

 End Sub

End Class

The following is the Recipe09_05Child class:

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-05Child.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_05Child

 ' A property to provide easy access to the label data.
 Public ReadOnly Property LabelText() As String
 Get
 Return label.Text
 End Get
 End Property

Herman_970-5C09.fm Page 353 Thursday, March 6, 2008 8:01 AM

354 CH AP T E R 9 ■ W IN DO W S FO R M S

 ' When a button on any of the MDI child forms is clicked, display the
 ' contents of each form by enumerating the MdiChildren collection.
 Private Sub cmdShowAllWindows_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdShowAllWindows.Click

 For Each frm As Form In Me.MdiParent.MdiChildren
 ' Cast the generic Form to the Recipe07_05Child derived class
 ' type.
 Dim child As Recipe09_05Child = DirectCast(frm, Recipe09_05Child)
 MessageBox.Show(child.LabelText, frm.Text)
 Next

 End Sub

 ' Set the MDI child form's label to the current date/time.
 Private Sub Recipe09_05Child_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 label.Text = DateTime.Now.ToString

 End Sub

End Class

Usage

Figure 9-3 shows how the example will look when run.

Figure 9-3. Getting information from multiple MDI child windows

Herman_970-5C09.fm Page 354 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 355

9-6. Save Configuration Settings for a Form

Problem

You need to store configuration settings for a form so that they are remembered the next time that
the form is shown.

Solution

Use the Application Settings functionality, which is configurable at design time in Visual Studio.

How It Works

The Application Settings functionality, first introduced in .NET Framework 2.0, provides an easy-to-
use mechanism through which you can save application and user settings used to customize the
appearance and operation of a Windows Forms application. You configure Application Settings
through the Properties panel of each Windows control (including the main Windows Form) in your
application. By expanding the ApplicationSettings property and clicking the ellipsis (the three dots)
to the right of (PropertyBinding), you can review and configure Application Settings for each property of
the active control. See Figure 9-4 for an example.

Figure 9-4. Configuring Application Settings in Visual Studio

Herman_970-5C09.fm Page 355 Thursday, March 6, 2008 8:01 AM

356 CH AP T E R 9 ■ W IN DO W S FO R M S

When you configure a new application setting for a control’s property, you must assign it a name,
a default value, and a scope:

• The name allows you to both access the setting programmatically and reuse the application
setting across multiple controls.

• The default value is used if the application cannot obtain a value from a configuration file
at runtime.

• The scope is either User or Application.

Settings with an Application scope are stored in the application’s configuration file (usually
located in the same folder as the application assembly) and are read-only. The benefit of an Applica-
tion scope is that you can change configuration settings by editing the configuration file without
needing to recompile the application. Settings with a User scope are read-write by default and are
stored in a file located in an isolated store (see recipe 5-19 for information about isolated stores).

When you configure your application to use Application Settings, Visual Studio actually autoge-
nerates a wrapper class that provides access to the configuration file information, regardless of
whether it is scoped as Application or User. This class, named MySettings, is in the Settings.Designer.
vb file, which can be found in your project’s My Project folder. This folder also contains the Settings.
settings file. When you open this file in Visual Studio, it will display a dialog box that allows you to
easily edit your application’s settings. You will see these files only if you have turned on the Show All
Files option in the Solution Explorer.

The My.Settings class contains properties with names matching each of the Application Setting
names you configured for your controls’ properties. The controls will automatically read their configura-
tion at startup, but you should store configuration changes prior to terminating your application by
calling the My.Settings.Save method. You can also configure this to occur automatically by checking
the Save My.Settings on Shutdown option in the Application section of your project’s properties, as
shown in Figure 9-5.

Herman_970-5C09.fm Page 356 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 357

Figure 9-5. Automatically saving settings on shutdown

The Code

The following example shows how to update and save application settings, which are Size and Color
in this case, at runtime:

Imports System
Imports System.ComponentModel
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-06.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_06

 Private Sub Recipe09_06_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Me.Size = My.Settings.Size

 End Sub

Herman_970-5C09.fm Page 357 Thursday, March 6, 2008 8:01 AM

358 CH AP T E R 9 ■ W IN DO W S FO R M S

 Private Sub Button_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles redButton.Click, blueButton.Click, ➥
greenButton.Click

 ' Change the color of the textbox depending on which button
 ' was clicked.
 Dim btn As Button = TryCast(sender, Button)

 If btn IsNot Nothing Then
 ' Set the background color of the textbox to the ForeColor
 ' of the button.
 textBox1.BackColor = btn.ForeColor

 ' Update the application settings with the new value.
 My.Settings.Color = textBox1.BackColor

 End If

 End Sub

 Private Sub Recipe09_06_FormClosing(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 ' Update the application settings for Form.
 My.Settings.Size = Me.Size

 ' Store all application settings.
 My.Settings.Save()

 End Sub

End Class

9-7. Force a List Box to Scroll to the Most Recently Added Item

Problem

You need to scroll a list box programmatically so that the most recently added items are visible.

Solution

Set the ListBox.TopIndex property, which sets the first visible list item.

How It Works

In some cases, you might have a list box that stores a significant amount of information or one that
you add information to periodically. Often, the most recent information, which is added at the end
of the list, is more important than the information at the top of the list. One solution is to scroll the
list box so that recently added items are visible. The ListBox.TopIndex property enables you to do
this by allowing you to specify which item is visible at the top of the list.

Herman_970-5C09.fm Page 358 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 359

The Code

The following sample form includes a list box and a button. Each time the button is clicked, 20 items
are added to the list box. Each time new items are added, the code sets the ListBox.TopIndex prop-
erty and forces the list box to display the most recently added items. To provide better feedback, the
same line is also selected.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-07.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_07

 Private counter As Integer = 0

 ' Button click event handler adds 20 new items to the ListBox.
 Private Sub cmdTest_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles cmdTest.Click

 ' Add 20 items.
 For i As Integer = 1 To 20
 counter += 1
 listBox1.Items.Add("Item " & counter.ToString())
 Next

 ' Set the TopIndex property of the ListBox to ensure the
 ' most recently added items are visible. SelectedIndex
 ' is then used to select the new item.
 listBox1.TopIndex = listBox1.Items.Count - 1
 listBox1.SelectedIndex = listBox1.Items.Count - 1

 End Sub

End Class

9-8. Restrict a Text Box to Accepting Only Specific Input

Problem

You need to create a text box that will accept only the specified characters or keystrokes.

Solution

Use the MaskedTextBox control, and set the Mask property to configure the input that is acceptable.

How It Works

One way to ensure user input is valid is to prevent invalid data from being entered in the first place.
The MaskedTextBox control facilitates this approach. The MaskedTextBox.Mask property takes a string
that specifies the input mask for the control. This mask determines what type of input a user can
enter at each point in the control’s text area. If the user enters an incorrect character, the control will

Herman_970-5C09.fm Page 359 Thursday, March 6, 2008 8:01 AM

360 CH AP T E R 9 ■ W IN DO W S FO R M S

beep if the BeepOnError property is True, and the MaskInputRejected event is raised so that you can
customize the handling of incorrect input.

■Note The MaskedTextBox control will not solve all your user-input validation problems. Although it does make
some types of validation easy to implement, without customization, it will not ensure some common validation
requirements are met. For example, you can specify that only numeric digits can be input, but you cannot specify
that they must be less than a specific value, and you cannot control the overall characteristics of the input value.

The Code

The following example demonstrates the use of the MaskedTextBox control. A series of buttons allows
you to change the active mask on the MaskedTextBox control and experiment with the various masks.
Notice that the control automatically tries to accommodate existing content with the new mask
when the mask is changed. If the content is not allowed with the new mask, the control is cleared.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-08.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_08

 Private Sub btnTime_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnTime.Click

 ' Set the input mask to that of a short time.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "00:00"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnDecimal_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnDecimal.Click

 ' Set the input mask to that of a decimal.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "999,999.00"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

Herman_970-5C09.fm Page 360 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 361

 Private Sub btnDate_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnDate.Click

 ' Set the input mask to that of a short date.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "00/00/0000"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnUSZip_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnUSZip.Click

 ' Set the input mask to that of a US ZIP code.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "00000-9999"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnUKPost_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnUKPost.Click

 ' Set the input mask to that of a UK postcode.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = ">LCCC 9LL"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnPinNumber_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnPinNumber.Click

 ' Set the input mask to that of a secret pin.
 Me.mskTextBox.UseSystemPasswordChar = True
 Me.mskTextBox.Mask = "0000"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

End Class

Herman_970-5C09.fm Page 361 Thursday, March 6, 2008 8:01 AM

362 CH AP T E R 9 ■ W IN DO W S FO R M S

9-9. Use an Autocomplete Combo Box

Problem

You want to create a combo box that automatically completes what the user is typing based on the
item list.

Solution

You can implement a basic autocomplete combo box by creating a custom control that overrides the
OnKeyPress and OnTextChanged methods of the ComboBox object.

How It Works

An autocomplete control has many different variations. For example, the control may fill in values
based on a list of recent selections (as Microsoft Excel does when you are entering cell values), or the
control might display a drop-down list of near matches (as Microsoft Internet Explorer does when
you are typing a URL). You can create a basic autocomplete combo box by handling the KeyPress
and TextChanged events or by creating a custom class that derives from ComboBox and overrides the
OnKeyPress and OnTextChanged methods.

Although the approach in this recipe gives you complete control over how the autocomplete
functionality is implemented, the ComboBox control includes some built-in autocomplete function-
ality. Using this built-in functionality is easy and based on using the AutoCompleteSource and
AutoCompleteMode properties.

The Code

The following example contains an AutoCompleteComboBox control that derives from ComboBox. The
AutoCompleteComboBox control supports autocompletion by overriding the OnKeyPress and
OnTextChanged methods. In the OnKeyPress method, the combo box determines whether an auto-
complete replacement should be made. If the user pressed a character key (such as a letter), the
replacement can be made, but if the user pressed a control key (such as the backspace key, the cursor
keys, and so on), no action should be taken. The OnTextChanged method performs the actual replace-
ment after the key processing is complete. This method looks up the first match for the current text
in the list of items and then adds the rest of the matching text. After the text is added, the combo box
selects the characters between the current insertion point and the end of the text. This allows the
user to continue typing and replace the autocomplete text if it is not what the user wants.

Imports System
Imports System.Windows.Forms

Public Class AutoCompleteCombobox
 Inherits ComboBox

 ' A private member to track if a special key is pressed, in
 ' which case, any text replacement operation will be skipped.
 Private controlKey As Boolean = False

 ' Determine whether a special key was pressed.
 Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)

Herman_970-5C09.fm Page 362 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 363

 ' First call the overridden base class method.
 MyBase.OnKeyPress(e)

 ' Clear the text if the Escape key is pressed.
 If e.KeyChar = ChrW(Keys.Escape) Then
 ' Clear the text.
 Me.SelectedIndex = -1
 Me.Text = ""
 controlKey = True
 ElseIf Char.IsControl(e.KeyChar) Then
 ' Don't try to autocomplete when control key is pressed.
 controlKey = True
 Else
 ' Noncontrol keys should trigger autocomplete.
 controlKey = False
 End If

 End Sub

 ' Perform the text substitution.
 Protected Overrides Sub OnTextChanged(ByVal e As System.EventArgs)

 ' First call the overridden base class method.
 MyBase.OnTextChanged(e)

 If Not Me.Text = "" And Not controlKey Then
 ' Search the current contents of the combo box for a
 ' matching entry.
 Dim matchText As String = Me.Text
 Dim match As Integer = Me.FindString(matchText)

 ' If a matching entry is found, insert it now.
 If Not match = -1 Then
 Me.SelectedIndex = match

 ' Select the added text so it can be replaced
 ' if the user keeps trying.
 Me.SelectionStart = matchText.Length
 Me.SelectionLength = Me.Text.Length - Me.SelectionStart
 End If
 End If

 End Sub

End Class

Usage

The following code demonstrates the use of the AutoCompleteComboBox by adding it to a form and
filling it with a list of words. In this example, the control is added to the form manually, and the list
of words is retrieved from a text file named words.txt. As an alternative, you could compile the
AutoCompleteComboBox class to a separate class library assembly and then add it to the Visual Studio
Toolbox so you could add it to forms at design time.

Herman_970-5C09.fm Page 363 Thursday, March 6, 2008 8:01 AM

364 CH AP T E R 9 ■ W IN DO W S FO R M S

Imports System
Imports System.IO
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-09.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_09

 Private Sub Recipe09_09_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load
 ' Add the AutoCompleteComboBox to the form.
 Dim combo As New AutoCompleteCombobox

 combo.Location = New Point(10, 10)
 Me.Controls.Add(combo)

 ' Read the list of words from the file words.txt and add them
 ' to the AutoCompleteComboBox.
 Using fs As New FileStream("..\..\Names.txt", FileMode.Open)
 Using r As New StreamReader(fs)
 While r.Peek > -1
 Dim name As String = r.ReadLine
 combo.Items.Add(name)
 End While
 End Using
 End Using

 End Sub

End Class

Figure 9-6 shows how the AutoCompleteComboBox will look when the example is run.

Figure 9-6. An autocomplete combo box

9-10. Sort a List View by Any Column

Problem

You need to sort a list view, but the built-in ListView.Sort method sorts based on only the first column.

Herman_970-5C09.fm Page 364 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 365

Solution

Create a type that implements the System.Collections.IComparer interface and can sort ListViewItem
objects. The IComparer type can sort based on any ListViewItem criteria you specify. Set the ListView.
ListViewItemSorter property with an instance of the IComparer type before calling the ListView.
Sort method.

How It Works

The ListView control provides a Sort method that orders items alphabetically based on the text in
the first column. If you want to sort based on other column values or order items numerically, you
need to create a custom implementation of the IComparer interface that can perform the work. The
IComparer interface defines a single method named Compare, which takes two Object arguments and
determines which one should be ordered first. Full details of how to implement the IComparer inter-
face are available in recipe 14-3.

The Code

The following example demonstrates how to create an IComparer implementation named
ListViewItemComparer. This class relies on the Compare method of String and Decimal to perform
appropriate comparisons. The ListViewItemComparer class also implements two additional proper-
ties: Column and Numeric. The Column property identifies the column that should be used for sorting.
The Numeric property is a Boolean flag that can be set to True if you want to perform number-based
comparisons instead of alphabetic comparisons. The numeric sorting is applied when the users
clicks the first column.

When the user clicks a column heading, the example creates a ListViewItemComparer instance,
configures the column to use for sorting, and assigns the ListViewItemComparer instance to the
ListView.ListViewItemSorter property before calling the ListView.Sort method.

Imports System
Imports System.Collections
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-10.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_10

 Private Sub listView1_ColumnClick(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.ColumnClickEventArgs) Handles listView1.ColumnClick

 ' Create and/or configure the ListViewItemComparer to sort based on
 ' the column that was clicked.
 Dim sorter As ListViewItemComparer = ➥
TryCast(listView1.ListViewItemSorter, ListViewItemComparer)

 If sorter Is Nothing Then
 ' Create a new ListViewItemComparer.
 sorter = New ListViewItemComparer(e.Column)

 ' Use Decimal comparison for the first column.
 If e.Column = 0 Then
 sorter.Numeric = True

Herman_970-5C09.fm Page 365 Thursday, March 6, 2008 8:01 AM

366 CH AP T E R 9 ■ W IN DO W S FO R M S

 Else
 sorter.Numeric = False
 End If

 listView1.ListViewItemSorter = sorter
 Else
 ' Use Decimal comparison for the first column.
 If e.Column = 0 Then
 sorter.Numeric = True
 Else
 sorter.Numeric = False
 End If

 ' Configure the existing ListViewItemComparer.
 If sorter.Column = e.Column Then
 sorter.Descending = Not sorter.Descending
 Else
 sorter.Column = e.Column
 sorter.Descending = False
 End If
 End If

 ' Sort the ListView.
 listView1.Sort()

 End Sub

End Class

Public Class ListViewItemComparer
 Implements IComparer

 ' Private members to configure comparer logic.
 Private m_Column As Integer
 Private m_Numeric As Boolean = False
 Private m_Descending As Boolean = False

 ' Property to get/set the column to use for comparison.
 Public Property Column() As Integer
 Get
 Return m_Column
 End Get
 Set(ByVal value As Integer)
 m_Column = Value
 End Set
 End Property

 ' Property to get/set whether numeric comparison is required
 ' as opposed to the standard alphabetic comparison.
 Public Property Numeric() As Boolean
 Get
 Return m_Numeric
 End Get

Herman_970-5C09.fm Page 366 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 367

 Set(ByVal value As Boolean)
 m_Numeric = Value
 End Set
 End Property

 ' Property to get/set whether we are sorting in descending
 ' order or not.
 Public Property Descending() As Boolean
 Get
 Return m_Descending
 End Get
 Set(ByVal Value As Boolean)
 m_Descending = Value
 End Set
 End Property

 Public Sub New(ByVal columnIndex As Integer)
 m_Column = columnIndex
 End Sub

 Public Function Compare(ByVal x As Object, ByVal y As Object) ➥
As Integer Implements System.Collections.IComparer.Compare

 ' Convert the arguments to ListViewItem objects.
 Dim itemX As ListViewItem = TryCast(x, ListViewItem)
 Dim itemY As ListViewItem = TryCast(y, ListViewItem)

 ' Handle the logic for a Nothing reference as dictated by the
 ' IComparer interface. Nothing is considered less than
 ' any other value.
 If itemX Is Nothing And itemY Is Nothing Then
 Return 0
 ElseIf itemX Is Nothing Then
 Return -1
 ElseIf itemY Is Nothing Then
 Return 1
 End If

 ' Short-circuit condition where the items are references
 ' to the same object.
 If itemX Is itemY Then Return 0

 ' Determine if numeric comparison is required.
 If Numeric Then
 ' Convert column text to numbers before comparing.
 ' If the conversion fails, just use the value 0.
 Dim itemXVal, itemYVal As Decimal

 If Not Decimal.TryParse(itemX.SubItems(Column).Text, itemXVal) Then
 itemXVal = 0
 End If

Herman_970-5C09.fm Page 367 Thursday, March 6, 2008 8:01 AM

368 CH AP T E R 9 ■ W IN DO W S FO R M S

 If Not Decimal.TryParse(itemY.SubItems(Column).Text, itemYVal) Then
 itemYVal = 0
 End If

 If Descending Then
 Return Decimal.Compare(itemYVal, itemXVal)
 Else
 Return Decimal.Compare(itemXVal, itemYVal)
 End If
 Else
 ' Keep the column text in its native string format
 ' and perform an alphabetic comparison.
 Dim itemXText As String = itemX.SubItems(Column).Text
 Dim itemYText As String = itemY.SubItems(Column).Text

 If Descending Then
 Return String.Compare(itemYText, itemXText)
 Else
 Return String.Compare(itemXText, itemYText)
 End If
 End If

 End Function

End Class

9-11. Lay Out Controls Automatically

Problem

You have a large set of controls on a form and you want them arranged automatically.

Solution

Use the FlowLayoutPanel container to dynamically arrange the controls using a horizontal or vertical
flow, or use the TableLayoutPanel container to dynamically arrange the controls in a grid.

How It Works

The FlowLayoutPanel and TableLayoutPanel containers simplify the design-time and runtime layout
of the controls they contain. At both design time and runtime, as you add controls to one of these
panels, the panel’s logic determines where the control should be positioned, so you do not need to
determine the exact location.

With the FlowLayoutPanel container, the FlowDirection and WrapContents properties determine
where controls are positioned. FlowDirection controls the order and location of controls, and it can
be set to LeftToRight (the default), TopDown, RightToLeft, or BottomUp. The WrapContents property
controls whether controls run off the edge of the panel or wrap around to form a new line of controls.
The default is to wrap controls.

Herman_970-5C09.fm Page 368 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 369

With the TableLayoutPanel container, the RowCount and ColumnCount properties control how
many rows and columns are currently in the panel’s grid. The default for both of these properties is
0, which means there are no rows or columns. The GrowStyle property determines how the grid grows to
accommodate more controls once it is full, and it can be set to AddRows (the default), AddColumns, or
FixedSize (which means the grid cannot grow).

Figure 9-7 shows the design-time appearance of both a TableLayoutPanel container and a
FlowLayoutPanel container. The TableLayoutPanel panel is configured with three rows and three
columns. The FlowLayoutPanel panel is configured to wrap contents and use left-to-right flow
direction.

Figure 9-7. Using a FlowLayoutPanel panel and a TableLayoutPanel panel

9-12. Make a Multilingual Form

Problem

You need to create a localizable form that can be deployed in more than one language.

Solution

Store all locale-specific information in resource files, which are compiled into satellite assemblies.

How It Works

The .NET Framework includes built-in support for localization through its use of resource files. The
basic idea is to store information that is locale-specific (for example, button text) in a resource file.
You can create resource files for each culture you need to support and compile them into satellite
assemblies. When you run the application, .NET will automatically use the correct satellite assembly
based on the locale settings of the current user/computer.

Herman_970-5C09.fm Page 369 Thursday, March 6, 2008 8:01 AM

370 CH AP T E R 9 ■ W IN DO W S FO R M S

You can read to and write from resource files manually; they are XML files (see recipe 1-17 for
more information about resource files). However, Visual Studio also includes extensive design-time
support for localized forms. It works like this:

1. Set the Localizable property of a Form to True using the Properties window.

2. Set the Language property of the form to the locale for which you want to enter information,
as shown in Figure 9-8. Then configure the localizable properties of all the controls on the
form. Instead of storing your changes in the designer-generated code for the form, Visual
Studio will actually create a new resource file to hold your data.

Figure 9-8. Selecting a language for localizing a form

3. Repeat step 2 for each language you want to support. Each time you enter a new locale for
the form’s Language property, a new resource file will be generated. If you select Project ➤
Show All Files from the Visual Studio menu, you will find these resource files under your
form’s folder, as shown in Figure 9-9. If you change the Language property to a locale you have
already configured, your previous settings will reappear, and you will be able to modify
them.

You can now compile and test your application on differently localized systems. Visual Studio
will create a separate directory and satellite assembly for each resource file in the project. You can
select Project ➤ Show All Files from the Visual Studio menu to see how these files are arranged, as
shown in Figure 9-9.

Herman_970-5C09.fm Page 370 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 371

Figure 9-9. Satellite assembly and resource files structure

The Code

Although you do not need to manually code any of the localization functionality, as a testing shortcut,
you can force your application to adopt a specific culture by modifying the Thread.CurrentUICulture
property of the application thread. However, you must modify this property before the form has loaded.

Imports System
Imports System.Threading
Imports System.Globalization
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-12.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_12

 Public Shared Sub Main()

 Thread.CurrentThread.CurrentUICulture = New CultureInfo("fr-FR")
 Application.Run(New Recipe09_12)

 End Sub

End Class

Herman_970-5C09.fm Page 371 Thursday, March 6, 2008 8:01 AM

372 CH AP T E R 9 ■ W IN DO W S FO R M S

Usage

Figure 9-10 shows both the English and French versions of the example. As you can see, both the
language and the layout of the form are different depending on the current locale.

Figure 9-10. English and French localizations

9-13. Create a Form That Cannot Be Moved

Problem

You want to create a form that occupies a fixed location on the screen and cannot be moved.

Solution

Make a borderless form by setting the FormBorderStyle property of the Form class to the value
FormBorderStyle.None.

How It Works

You can create a borderless form by setting the FormBorderStyle property of a Form to None. Border-
less forms cannot be moved. However, as their name implies, they also lack any kind of border. If
you want a border, you will need to add it yourself, either by writing manual drawing code or by
using a background image.

One other approach to creating an immovable form does provide a basic control-style border. First,
set the ControlBox, MinimizeBox, and MaximizeBox properties of the form to False. Then set the Text
property to an empty string. The form will have a raised gray border or black line (depending on the
FormBorderStyle option you use), similar to a button. Figure 9-11 shows both types of immovable forms.

Herman_970-5C09.fm Page 372 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 373

Figure 9-11. Two types of forms that cannot be moved

9-14. Make a Borderless Form Movable

Problem

You need to create a borderless form that can be moved. This might be the case if you are creating a
custom window that has a unique look (for example, for a visually rich application such as a game or
a media player).

Solution

Create another control that responds to the MouseDown, MouseUp, and MouseMove events and program-
matically moves the form.

How It Works

Borderless forms omit a title bar, which makes it impossible for a user to move them. You can compen-
sate for this shortcoming by adding a control to the form that serves the same purpose. For example,
Figure 9-12 shows a form that includes a label to support dragging. The user can click this label and
then drag the form to a new location on the screen while holding down the mouse button. As the
user moves the mouse, the form moves correspondingly, as though it were “attached” to the mouse
pointer.

Herman_970-5C09.fm Page 373 Thursday, March 6, 2008 8:01 AM

374 CH AP T E R 9 ■ W IN DO W S FO R M S

Figure 9-12. A movable borderless form

To implement this solution, take the following steps:

1. Create a form-level Boolean variable that tracks whether the form is currently being dragged.

2. When the label is clicked, the code sets the flag to indicate that the form is in drag mode. At
the same time, the current mouse position is recorded. You add this logic to the event
handler for the Label.MouseDown event.

3. When the user moves the mouse over the label, the form is moved correspondingly, so that
the position of the mouse over the label is unchanged. You add this logic to the event handler
for the Label.MouseMove event.

4. When the user releases the mouse button, the dragging mode is switched off. You add this
logic to the event handler for the Label.MouseUp event.

The Code

The following example creates a borderless form that a user can move by clicking a form control and
dragging the form:

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-14.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_14

 ' Boolean member tracks whether the form is in drag mode.
 ' If it is, mouse movements over the label will be translated
 ' into form movements.
 Private dragging As Boolean

 ' Stores the offset where the label is clicked.
 Private pointClicked As Point

Herman_970-5C09.fm Page 374 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 375

 ' MouseDown event handler for the label initiates the dragging process.
 Private Sub lblDrag_MouseDown(ByVal sender As Object,➥
 ByVal e As MouseEventArgs) Handles lblDrag.MouseDown

 If e.Button = Windows.Forms.MouseButtons.Left Then
 ' Turn the drag mode on and store the point clicked.
 dragging = True
 pointClicked = New Point(e.X, e.Y)
 Else
 dragging = False
 End If

 End Sub

 ' MouseMove event handler for the label processes dragging movements if
 ' the form is in drag mode.
 Private Sub lblDrag_MouseMove(ByVal sender As Object, ➥
ByVal e As MouseEventArgs) Handles lblDrag.MouseMove

 If dragging Then

 Dim pointMoveTo As Point

 ' Find the current mouse position in screen coordinates.
 pointMoveTo = Me.PointToScreen(New Point(e.X, e.Y))

 ' Compensate for the position of the control clicked.
 pointMoveTo.Offset(-pointClicked.X, -pointClicked.Y)

 ' Move the form.
 Me.Location = pointMoveTo

 End If

 End Sub

 ' MouseUp event handler for the label switches off drag mode.
 Private Sub lblDrag_MouseUp(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles lblDrag.MouseUp
 dragging = False
 End Sub

 Private Sub cmdClose_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdClose.Click
 Me.Close()
 End Sub

End Class

Herman_970-5C09.fm Page 375 Thursday, March 6, 2008 8:01 AM

376 CH AP T E R 9 ■ W IN DO W S FO R M S

9-15. Create an Animated System Tray Icon

Problem

You need to create an animated system tray icon (perhaps to indicate the status of a long-running task).

Solution

Create and show a NotifyIcon control. Use a timer that fires periodically (every second or so) and
updates the NotifyIcon.Icon property.

How It Works

The .NET Framework makes it easy to show a system tray icon with the NotifyIcon component. You
simply need to add this component to a form and supply an icon by setting the Icon property. Optionally,
you can add a linked context menu through the ContextMenu property. The NotifyIcon component
automatically displays its context menu when it’s right-clicked. You can animate a system tray icon
by swapping the icon periodically.

The Code

The following example uses eight icons, each of which shows a moon graphic in a different stage of
fullness. By moving from one image to another, the illusion of animation is created.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-15.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_15

 ' An array to hold the set of Icons used to create the
 ' animation effect.
 Private images As Icon() = New Icon(8) {}

 ' An integer to identify the current icon to display.
 Dim offset As Integer = 0

 Private Sub Recipe09_15_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Load the basic set of eight icons.
 images(0) = New Icon("moon01.ico")
 images(1) = New Icon("moon02.ico")
 images(2) = New Icon("moon03.ico")
 images(3) = New Icon("moon04.ico")
 images(4) = New Icon("moon05.ico")
 images(5) = New Icon("moon06.ico")
 images(6) = New Icon("moon07.ico")
 images(7) = New Icon("moon08.ico")

 End Sub

Herman_970-5C09.fm Page 376 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 377

 Private Sub timer_Elapsed(ByVal sender As Object, ➥
ByVal e As System.Timers.ElapsedEventArgs) Handles timer.Elapsed

 ' Change the icon. This event handler fires once every
 ' second (500ms).
 notifyIcon.Icon = images(offset)
 offset += 1
 If offset > 7 Then offset = 0

 End Sub

End Class

9-16. Validate an Input Control

Problem

You need to alert the user of invalid input in a control, such as a TextBox.

Solution

Use the ErrorProvider component to display an error icon next to the offending control. Check for
errors before allowing the user to continue.

How It Works

You can perform validation in a Windows-based application in a number of ways. One approach is
to refuse any invalid character as the user presses a key by using a MaskedTextBox control, as shown
in recipe 9-8. Another approach is to respond to control validation events and prevent users from
changing focus from one control to another if an error exists. A less invasive approach is to simply
flag the offending control in some way so that the user can review all the errors at once. You can use
this approach by adding the ErrorProvider component to your form.

The ErrorProvider is a special property extender component that displays error icons next to
invalid controls. You show the error icon next to a control by using the ErrorProvider.SetError
method and specifying the appropriate control and a string error message. The ErrorProvider will
then show a warning icon to the right of the control. When the user hovers the mouse above the
warning icon, the detailed message appears. To clear an error, just pass an empty string to the
SetError method.

You need to add only one ErrorProvider component to your form, and you can use it to display
an error icon next to any control. To add the ErrorProvider, drag it on the form or into the component
tray, or create it manually in code.

The Code

The following example checks the value that a user has entered into a text box whenever the text box
loses focus. The code validates this text box using a regular expression that checks to see whether the
value corresponds to the format of a valid e-mail address (see recipe 2-5 for more details on regular
expressions). If validation fails, the ErrorProvider is used to display an error message. If the text is
valid, any existing error message is cleared from the ErrorProvider. Finally, the Click event handler
for the OK button steps through all the controls on the form and verifies that none of them has errors
before allowing the example to continue. In this example, an empty text box is allowed, although it

Herman_970-5C09.fm Page 377 Thursday, March 6, 2008 8:01 AM

378 CH AP T E R 9 ■ W IN DO W S FO R M S

would be a simple matter to perform additional checks when the OK button is clicked for situations
where empty text boxes are not acceptable.

Imports System
Imports System.Windows.Forms
Imports System.Text.RegularExpressions

' All designed code is stored in the autogenerated partial
' class called Recipe09-16.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_16

 ' Button click event handler ensures the ErrorProvider is not
 ' reporting any error for each control before proceeding.
 Private Sub Button1_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles Button1.Click

 Dim errorText As String = String.Empty
 Dim invalidInput As Boolean = False

 For Each ctrl As Control In Me.Controls
 If Not errProvider.GetError(ctrl) = String.Empty Then
 errorText += " * " & errProvider.GetError(ctrl) & ➥
ControlChars.NewLine
 invalidInput = True
 End If
 Next

 If invalidInput Then
 MessageBox.Show(String.Format("This form contains the " & ➥
"following unresolved errors:{0}{0}{1}", ControlChars.NewLine, errorText, ➥
"Invalid Input", MessageBoxButtons.OK, MessageBoxIcon.Warning))
 Else
 Me.Close()
 End If

 End Sub

 ' When the TextBox loses focus, check that the contents are a valid
 ' e-mail address.
 Private Sub txtEmail_Leave(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles txtEmail.Leave

 ' Create a regular expression to check for valid e-mail addresses.
 Dim emailRegEx As Regex

 emailRegEx = New Regex("^[\w-]+@([\w]+\.)+[\w]+$")

 ' Validate the text from the control that raised the event.
 Dim ctrl As Control = DirectCast(sender, Control)

 If emailRegEx.IsMatch(ctrl.Text) Or ctrl.Text = String.Empty Then
 errProvider.SetError(ctrl, String.Empty)

Herman_970-5C09.fm Page 378 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 379

 Else
 errProvider.SetError(ctrl, "This is not a valid email address.")
 End If

 End Sub

End Class

Usage

Figure 9-13 shows how the ErrorProvider control indicates an input error for the TextBox control
when the example is run.

Figure 9-13. A validated form with the ErrorProvider

9-17. Use a Drag-and-Drop Operation

Problem

You need to use the drag-and-drop feature to exchange information between two controls (possibly
in separate windows or in separate applications).

Solution

Start a drag-and-drop operation using the DoDragDrop method of the Control class, and then respond
to the DragEnter and DragDrop events.

How It Works

A drag-and-drop operation allows the user to transfer information from one place to another by clicking
an item and dragging it to another location. A drag-and-drop operation consists of the following three
basic steps:

1. The user clicks a control, holds down the mouse button, and begins dragging. If the control
supports the drag-and-drop feature, it sets aside some information.

2. The user drags the mouse over another control. If this control accepts the dragged type of
content, the mouse cursor changes to the special drag-and-drop icon (arrow and page). Oth-
erwise, the mouse cursor becomes a circle with a line drawn through it.

3. When the user releases the mouse button, the data is sent to the control, which can then
process it appropriately.

Herman_970-5C09.fm Page 379 Thursday, March 6, 2008 8:01 AM

380 CH AP T E R 9 ■ W IN DO W S FO R M S

To support drag-and-drop functionality, you must handle the DragEnter, DragDrop, and (typi-
cally) MouseDown events. To start a drag-and-drop operation, you call the source control’s DoDragDrop
method. At this point, you submit the data and specify the type of operations that will be supported
(copying, moving, and so on). Controls that can receive dragged data must have the AllowDrop property
set to True. These controls will receive a DragEnter event when the mouse drags the data over them.
At this point, you can examine the data that is being dragged, decide whether the control can accept
the drop, and set the DragEventArgs.Effect property accordingly. The final step is to respond to the
DragDrop event in the destination control, which occurs when the user releases the mouse button.

The DragEventArgs.Data property, which is an IDataObject, represents the data that is being
dragged or dropped. IDataObject is an interface for transferring general data objects. You get the
data by using the GetData method. The GetDataPresent method, which accepts a String or Type, is
used to determine the type of data represented by the IDataObject.

The Code

The following example allows you to drag content between two text boxes, as well as to and from
other applications that support drag-and-drop operations:

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-17.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_17

 Private Sub TextBox_DragDrop(ByVal sender As Object, ➥
ByVal e As DragEventArgs) Handles TextBox1.DragDrop, TextBox2.DragDrop

 Dim txt As TextBox = DirectCast(sender, TextBox)
 txt.Text = DirectCast(e.Data.GetData(DataFormats.Text), String)

 End Sub

 Private Sub TextBox_DragEnter(ByVal sender As Object, ➥
ByVal e As DragEventArgs) Handles TextBox1.DragEnter, TextBox2.DragEnter

 If e.Data.GetDataPresent(DataFormats.Text) Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If

 End Sub

 Private Sub TextBox_MouseDown(ByVal sender As Object, ➥
ByVal e As MouseEventArgs) Handles TextBox1.MouseDown, TextBox2.MouseDown

 Dim txt As TextBox = DirectCast(sender, TextBox)
 txt.SelectAll()
 txt.DoDragDrop(txt.Text, DragDropEffects.Copy)

 End Sub

End Class

Herman_970-5C09.fm Page 380 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 381

9-18. Use Context-Sensitive Help

Problem

You want to display a specific help file topic depending on the currently selected control.

Solution

Use the HelpProvider component, and set the HelpKeyword and HelpNavigator extended properties
for each control.

How It Works

The .NET Framework provides support for context-sensitive help through the HelpProvider class.
The HelpProvider class is a special extender control. You add it to the component tray of a form, and
it extends all the controls on the form with a few additional properties, including HelpNavigator and
HelpKeyword. For example, Figure 9-14 shows a form that has two controls and a HelpProvider named
helpProvider1. The ListBox control, which is currently selected, has several help-specific properties
that are provided through the HelpProvider.

Figure 9-14. The HelpProvider extender properties

Herman_970-5C09.fm Page 381 Thursday, March 6, 2008 8:01 AM

382 CH AP T E R 9 ■ W IN DO W S FO R M S

To use context-sensitive help with HelpProvider, follow these three steps:

1. Set the HelpProvider.HelpNamespace property with the name of the help file (for example,
myhelp.chm).

2. For every control that requires context-sensitive help, set the HelpNavigator extender property to
HelpNavigator.Topic.

3. For every control that requires context-sensitive help, set the HelpKeyword extender property
with the name of the topic that should be linked to this control. (The topic names are spe-
cific to the help file and can be configured in your help-authoring tools.)

If the user presses the F1 key while a control has focus, the help file will be launched automati-
cally, and the linked topic will be displayed in the help window. If the user presses F1 while positioned on
a control that does not have a linked help topic, the help settings for the containing control will be
used (for example, a group box or a panel). If there are no containing controls or the containing control
does not have any help settings, the form’s help settings will be used. You can also use the HelpProvider
methods to set or modify context-sensitive help mapping at runtime.

9-19. Display a Web Page in a Windows-Based Application

Problem

You want to display a web page and provide web-navigation capabilities within your Windows
Forms application.

Solution

Use the WebBrowser control to display the web page and other standard controls like buttons and text
boxes to allow the user to control the operation of the WebBrowser.

■Caution The WebBrowser control is a managed wrapper around the WebBrowser ActiveX control, which is
the same component used by Internet Explorer. This means that if you use a Main method, it must be annotated
with the STAThread attribute. Furthermore, the component is very resource-intensive and should be disposed of
correctly.

How It Works

The WebBrowser control, first introduced in .NET Framework 2.0, makes it a trivial task to embed
highly functional web browser capabilities into your Windows applications. The WebBrowser control
is responsible for displaying web pages and maintaining page history, but it does not provide any
controls for user interaction. Instead, the WebBrowser control exposes properties and events that you
can manipulate programmatically to control the operation of the WebBrowser. This approach makes
the WebBrowser control highly flexible and adaptable to almost any situation. Table 9-1 summarizes
some of the commonly used WebBrowser members related to web navigation.

You can also use the WebBrowser.DocumentText property to set (or get) the currently displayed
HTML contents of the WebBrowser. To manipulate the contents using the Document Object Model
(DOM), get an HtmlDocument instance via the Document property.

Herman_970-5C09.fm Page 382 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 383

The Code

The following example uses the WebBrowser control to allow users to navigate to a web page whose
address is entered into a TextBox. Buttons also allow users to move forward and backward through
page history and navigate directly to their personal home page.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe09-19.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe09_19

 Private Sub goButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles goButton.Click

 ' Navigate to the URL specified in the textbox.
 webBrowser1.Navigate(textURL.Text)

 End Sub

Table 9-1. Commonly Used Members of the WebBrowser Control

Member Description

Property

AllowNavigation Controls whether the WebBrowser can navigate to another page after its
initial page has been loaded

CanGoBack Indicates whether the WebBrowser currently holds back page history,
which would allow the GoBack method to succeed

CanGoForward Indicates whether the WebBrowser currently holds forward page history,
which would allow the GoForward method to succeed

IsBusy Indicates whether the WebBrowser is currently busy downloading a page

Url Holds the URL of the currently displayed/downloading page

Method

GoBack Displays the previous page in the page history, if there is one

GoForward Displays the next page in the page history, if there is one

GoHome Displays the home page of the current user as configured in
Internet Explorer

Navigate Displays the web page at the specified URL

Stop Stops the current WebBrowser activity

Event

DocumentCompleted Signals that the active download has completed and the document is
displayed in the WebBrowser

Herman_970-5C09.fm Page 383 Thursday, March 6, 2008 8:01 AM

384 CH AP T E R 9 ■ W IN DO W S FO R M S

 Private Sub backButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles backButton.Click

 ' Go to the previous page in the WebBrowser history.
 webBrowser1.GoBack()

 End Sub

 Private Sub homeButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles homeButton.Click

 ' Navigate to the current user's home page.
 webBrowser1.GoHome()

 End Sub

 Private Sub forwardButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles forwardButton.Click

 ' Go to the next page in the WebBrowser history.
 webBrowser1.GoForward()

 End Sub

 Private Sub Recipe09_19_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Navigate to the Apress home page when the application first
 ' loads.
 webBrowser1.Navigate("http://www.apress.com")

 End Sub

 ' Event handler to perform general interface maintenance once a
 ' document has been loaded into the WebBrowser.
 Private Sub webBrowser1_DocumentCompleted(ByVal sender As Object, ➥
ByVal e As WebBrowserDocumentCompletedEventArgs) ➥
Handles webBrowser1.DocumentCompleted

 ' Update the content of the TextBox to reflect the current URL.
 textURL.Text = webBrowser1.Url.ToString

 ' Enable or disable the Back button depending on whether the
 ' WebBrowser has back history
 If webBrowser1.CanGoBack Then
 backButton.Enabled = True
 Else
 backButton.Enabled = False
 End If

Herman_970-5C09.fm Page 384 Thursday, March 6, 2008 8:01 AM

http://www.apress.com

CH AP T E R 9 ■ W IN DO W S FO R M S 385

 ' Enable or disable the Forward button depending on whether the
 ' WebBrowser has forward history.
 If webBrowser1.CanGoForward Then
 forwardButton.Enabled = True
 Else
 forwardButton.Enabled = False
 End If

 End Sub

End Class

9-20. Create a Windows Presentation Foundation Application

Problem

You need to create a Windows Presentation Foundation (WPF) application using only managed
code (no XAML).

Solution

Create an instance of the System.Windows class, and use an instance of the System.Windows.Application
to display it.

How It Works

As mentioned in the introduction to this chapter, WPF is a new format for creating Windows-based
applications that uses an approach similar to ASP.NET. The front end is written using XAML, and
many tools are available for visually designing it and outputting XAML. The back end is handled by
managed code.

Although what we’ve just described is how WPF is meant to be used, it is still possible to create
a WPF application completely using managed code. This would allow you to benefit from the new
and powerful functionality available to WPF applications without having to learn a new language.
However, the downside is that you will be unable to visually design your applications because none
of the designers currently provides managed code output.

Two primary objects are required for any WPF application: System.Windows.Window and System.
Windows.Application. The Window object, similar to the Form object in Windows Forms applications,
is the visible representation of your application. There can be more than one Window, but your appli-
cation will end when the last one is closed. The Application object is invisible but is the underlying
object to any WPF application. Every WPF application must have one, and only one, Application
object.

To create a WPF application using managed code, you must first ensure that you have a refer-
ence to the following primary APIs: PresentationCore, PresentationFramework, and WindowsBase. The
most basic application requires only that you create a Window and Application instance. You then call
the Run method of the Application class, which starts the application.

Herman_970-5C09.fm Page 385 Thursday, March 6, 2008 8:01 AM

386 CH AP T E R 9 ■ W IN DO W S FO R M S

The Code

The following example creates a simple WPF application with a button. The form is centered on the
screen and closed when the button is clicked.

Imports System
Imports System.Windows
Imports System.Windows.Controls

Namespace Apress.VisualBasicRecipes.Chapter09

 Class Recipe09_20
 Inherits System.Windows.Window

 Public Shared Sub Main()

 Dim app As New Application
 app.Run(New Recipe09_20)

 End Sub

 Public Sub New()

 Dim btn As New Button

 Title = "Recipe09-20"

 Width = 300
 Height = 300
 Left = SystemParameters.PrimaryScreenWidth / 2 - Width / 2
 Top = SystemParameters.PrimaryScreenHeight / 2 - Height / 2

 AddHandler btn.Click, AddressOf ButtonClick

 btn.Content = "Click To Close"
 btn.Width = 150
 btn.Height = 50
 btn.ToolTip = "Close this WPF form"

 Content = btn

 End Sub

 Private Sub ButtonClick(ByVal sender As Object, ByVal e As RoutedEventArgs)

 Close()

 End Sub

 End Class
End Namespace

Herman_970-5C09.fm Page 386 Thursday, March 6, 2008 8:01 AM

CH AP T E R 9 ■ W IN DO W S FO R M S 387

Usage

Figure 9-15 shows what the Windows Presentation Foundation application looks like when it
is executed.

Figure 9-15. A sample WPF application

9-21. Run a Windows Vista Application with Elevated Rights

Problem

Your Vista application requires administrator rights to execute.

Solution

Create an application manifest with the requestedExecutionLevel element set to requireAdministrator,
and then embed the manifest into your application.

■Note Using the manifest solution is supported only in Windows Vista because it pertains to its User Account
Control (UAC) feature. If you are not using Vista, the manifest will be ignored, and you will want to use impersonation
to force your application to run under a different user’s account.

How It Works

Windows Vista institutes a new security model, in which everything is executed under the rights of a
normal user, even if launched by an administrator. To work around this, a feature known as User
Account Control (UAC) was added. If you have used Windows Vista and encountered a dialog box
requesting elevated permissions, then you have most likely encountered the UAC.

To support the UAC, your application must include a special manifest file that defines the UAC
options. Figure 9-16 shows a typical properties screen for a Visual Studio 2008 project, which now
includes the View UAC Settings button. Clicking this button will display the manifest that will be
embedded in your application.

Herman_970-5C09.fm Page 387 Thursday, March 6, 2008 8:01 AM

388 CH AP T E R 9 ■ W IN DO W S FO R M S

Figure 9-16. View UAC Settings

The manifest is an XML file that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1" ➥
xmlns:asmv1="urn:schemas-microsoft-com:asm.v1" ➥
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <!-- UAC Manifest Options
 If you want to change the Windows User Account Control level replace the
 requestedExecutionLevel node with one of the following.

 <requestedExecutionLevel level="asInvoker" />
 <requestedExecutionLevel level="requireAdministrator" />
 <requestedExecutionLevel level="highestAvailable" />

 If you want to utilize File and Registry Virtualization for backward
 compatibility then delete the requestedExecutionLevel node.
 -->
 <requestedExecutionLevel level="asInvoker" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</asmv1:assembly>

Herman_970-5C09.fm Page 388 Thursday, March 6, 2008 8:01 AM

http://www.w3.org/2001/XMLSchema-instance

CH AP T E R 9 ■ W IN DO W S FO R M S 389

To make your application require administrator access, ensure that the level attribute of the
requestedExecutionLevel property is set to requireAdministrator. Once you compile your applica-
tion, the manifest will be embedded into it. This will be shown by the small shield image that will
automatically become part of your application’s icon.

When you attempt to run the application within Visual Studio 2008, the dialog box shown in
Figure 9-17 will be displayed. This dialog box informs you that your application requires adminis-
trator rights. If you agree, Visual Studio 2008 will be restarted with administrator rights (as shown in
the title bar). If Visual Studio 2008 was already running under elevated administrator rights, you will
not see the dialog box.

Figure 9-17. View UAC Settings

When you attempt to run the application from within Windows, the standard UAC dialog box
will be displayed, requesting approval for elevated access. The application will not execute unless
you allow the elevation of rights.

Herman_970-5C09.fm Page 389 Thursday, March 6, 2008 8:01 AM

Herman_970-5C09.fm Page 390 Thursday, March 6, 2008 8:01 AM

391

■ ■ ■

C H A P T E R 1 0

Multimedia

Multimedia is an expansive subject that covers sound, video, graphics, and printing. The aim of
this chapter is to briefly touch on each main topic. If you want more detailed information, refer to books
devoted to the subject, such as Pro .NET 2.0 Graphics Programming by Eric White (Apress, 2005) or
Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005 by Matthew MacDonald (Apress, 2006).

The .NET Framework provides direct support for most multimedia functionality. The System.
Drawing namespace provides support for manipulating two-dimensional drawings. Most of the classes in
this namespace, such as Drawing2D and Graphics, wrap GDI32.dll and USER32.dll. These libraries
provide the native Graphics Device Interface (GDI) functionality in the Windows application program-
ming interface (API). They also make it easier to draw complex shapes, work with coordinates and
transforms, and process images. The Printing namespace, which contains classes related to printing, is
also part of the System.Drawing namespace. This namespace uses GDI support for drawing text or
images to a Document object. Although this class does provide support for enumerating and collecting
information for installed printers, it is limited to local printers, and it does not support all informa-
tion, such as print jobs.

The System.Media namespace provides support for playing basic sounds, such as WAV files. If
you want to show a video file or play more sophisticated audio files, such as MP3s, you will need to
look beyond the .NET Framework.

For even more enhanced functionality, the .NET Framework 3.0 introduced Windows Presenta-
tion Foundation (WPF). This version of the framework, which was initially released with the release
of Windows Vista, is responsible for much of the graphical effects used by it. WPF, as mentioned in
the previous chapter, is a new model for creating Windows applications. The interfaces are created
using Extensible Application Markup Language (XAML) while events are handled by managed code
(such as VB .NET). This is similar to how ASP.NET applications work where HTML is used for the
interface.

WPF also provides more enhanced support for graphics, including 3D support, and playing
video and audio files. For more detailed information, you should refer to any available books on the
subject, such as Applications = Code + Markup by Charles Petzoid (Microsoft Press, 2006) or Pro WPF:
Windows Presentation Foundation in .NET 3.0 by Matthew MacDonald (Apress, 2007).

This chapter presents recipes that show you how to use built-in .NET features and, where necessary,
native Win32 libraries via P/Invoke or COM Interop. The recipes in this chapter cover the following:

• Finding the fonts installed in your system (recipe 10-1)

• Performing hit testing with shapes (recipe 10-2)

• Creating an irregularly shaped form or control (recipe 10-3)

• Creating a sprite that can be moved around (recipe 10-4)

Herman_970-5C10.fm Page 391 Thursday, March 6, 2008 8:04 AM

392 CH AP T E R 1 0 ■ M U L T I M E D IA

• Displaying an image that can be made to scroll (recipe 10-5)

• Capturing an image of the desktop (recipe 10-6)

• Enabling double buffering to increase performance while redrawing (recipe 10-7)

• Creating a thumbnail for an existing image (recipe 10-8)

• Playing a beep or a system-defined sound (recipe 10-9), playing a WAV file (recipe 10-10),
playing a non-WAV file such as an MP3 file (recipe 10-11), and playing a video with DirectShow
(recipe 10-12)

• Retrieving information about the printers installed in the machine (recipe 10-13), printing a
simple document (recipe 10-14), printing a document that has multiple pages (recipe 10-15),
printing wrapped text (recipe 10-16), showing a print preview (recipe 10-17), and managing
print jobs (recipe 10-18)

■Note Although it is possible to create Windows Presentation Foundation (WPF) applications using VB .NET, it is
more appropriate to use XAML, as intended. For this reason, this chapter does not contain any WPF recipes.

10-1. Find All Installed Fonts

Problem

You need to retrieve a list of all the fonts installed on the current computer.

Solution

Create a new instance of the System.Drawing.Text.InstalledFontCollection class, which contains a
collection of FontFamily objects representing all the installed fonts.

How It Works

The InstalledFontCollection class allows you to retrieve information about currently installed fonts,
via the Families property. The Families property is provided by the MustInherit FontCollection class
which InstalledFontCollection derives from.

The Code

The following code shows a form that iterates through the font collection when it is first created.
Every time it finds a font, it creates a new Label control that will display the font name in the given
font face (at a size of 14 points). The Label is added to a Panel control named pnlFonts with AutoScroll
set to True, allowing the user to scroll through the list of available fonts.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.text

' All designed code is stored in the autogenerated partial
' class called Recipe10-01.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.

Herman_970-5C10.fm Page 392 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 393

Partial Public Class Recipe10_01

 Private Sub Recipe10_01_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create the font collection.
 Using fontFamilies As New InstalledFontCollection

 ' Iterate through all font families
 Dim offset As Integer = 10

 For Each family As FontFamily In fontFamilies.Families

 Try
 ' Create a label that will display text in this font.
 Dim fontLabel As New Label

 fontLabel.Text = family.Name
 fontLabel.Font = New Font(family, 14)
 fontLabel.Left = 10
 fontLabel.Width = pnlFonts.Width
 fontLabel.Top = offset

 ' Add the label to a scrollable Panel.
 pnlFonts.Controls.Add(fontLabel)
 offset += 30
 Catch ex As ArgumentException
 ' An ArgumentException will be thrown if the selected
 ' font does not support regular style (the default used
 ' when creating a font object). For this example, we
 ' will display an appropriate message in the list.
 Dim fontLabel As New Label

 fontLabel.Text = ex.Message
 fontLabel.Font = New Font("Arial", 10, FontStyle.Italic)
 fontLabel.ForeColor = Color.Red
 fontLabel.Left = 10
 fontLabel.Width = 500
 fontLabel.Top = offset

 ' Add the label to a scrollable Panel.
 pnlFonts.Controls.Add(fontLabel)
 offset += 30
 End Try

 Next

 End Using

 End Sub
End Class

Herman_970-5C10.fm Page 393 Thursday, March 6, 2008 8:04 AM

394 CH AP T E R 1 0 ■ M U L T I M E D IA

Usage

Figure 10-1 shows results similar to what you will see when you run the recipe.

Figure 10-1. A list of installed fonts

10-2. Perform Hit Testing with Shapes

Problem

You need to detect whether a user clicks inside a shape.

Solution

Test the point where the user clicked with methods such as Rectangle.Contains and Region.IsVisible
(in the System.Drawing namespace) or GraphicsPath.IsVisible (in the System.Drawing.Drawing2D
namespace), depending on the type of shape.

How It Works

Often, if you use GDI+ to draw shapes on a form, you need to be able to determine when a user clicks
in a given shape. You can determine this using a Rectangle and a Point. A Rectangle is defined by its
height, width, and upper-left coordinates, which are reflected by the Height, Width, X, and Y proper-
ties. A Point, which is an X and Y coordinate, represents a specific location on the screen. The .NET
Framework provides three methods to help with this task:

• The Rectangle.Contains method, which takes a point and returns true if the point is inside a
given rectangle. In many cases, you can retrieve a rectangle for another type of object. For
example, you can use Image.GetBounds to retrieve the invisible rectangle that represents the
image boundaries. The Rectangle structure is a member of the System.Drawing namespace.

• The GraphicsPath.IsVisible method, which takes a point and returns true if the point is
inside the area defined by a closed GraphicsPath. Because a GraphicsPath can contain multiple
lines, shapes, and figures, this approach is useful if you want to test whether a point is contained
inside a nonrectangular region. The GraphicsPath class is a member of the System.Drawing.
Drawing2D namespace.

Herman_970-5C10.fm Page 394 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 395

• The Region.IsVisible method, which takes a point and returns true if the point is inside the
area defined by a Region. A Region, like the GraphicsPath, can represent a complex nonrect-
angular shape. Region is a member of the System.Drawing namespace.

The Code

The following example shows a form that creates a Rectangle and a GraphicsPath. By default, these
two shapes are given light blue backgrounds. However, an event handler responds to the Form.
MouseMove event, checks to see whether the mouse pointer is in one of these shapes, and updates the
shape’s background to bright pink if the pointer is there.

Note that the highlighting operation takes place directly inside the MouseMove and Paint event
handlers. The painting is performed only if the current selection has changed. For simpler code, you
could invalidate the entire form every time the mouse pointer moves in or out of a region and handle
all the drawing in the Form.Paint event handler, but this would lead to more drawing and generate
additional flicker as the entire form is repainted.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
' class called Recipe10-02.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_02

 ' Define the shapes used on this form.
 Private path As GraphicsPath
 Private rect As Rectangle

 ' Define the flags that track where the mouse pointer is.
 Private inPath As Boolean = False
 Private inRectangle As Boolean = False

 ' Define the brushes used for painting the shapes.
 Private highlightBrush As Brush = Brushes.HotPink
 Private defaultBrush As Brush = Brushes.LightBlue

 Private Sub Recipe10_02_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create the shapes that will be displayed.
 path = New GraphicsPath
 path.AddEllipse(10, 10, 100, 60)
 path.AddCurve(New Point() {New Point(50, 50), New Point(10, 33), ➥
New Point(80, 43)})
 path.AddLine(50, 120, 250, 80)
 path.AddLine(120, 40, 110, 50)
 path.CloseFigure()

 rect = New Rectangle(100, 170, 220, 170)

 End Sub

Herman_970-5C10.fm Page 395 Thursday, March 6, 2008 8:04 AM

396 CH AP T E R 1 0 ■ M U L T I M E D IA

 Private Sub Recipe10_02_MouseMove(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

 Using g As Graphics = Me.CreateGraphics
 ' Perform hit testing with rectangle.
 If rect.Contains(e.X, e.Y) Then
 If Not inRectangle Then
 inRectangle = True

 ' Highlight the rectangle.
 g.FillRectangle(highlightBrush, rect)
 g.DrawRectangle(Pens.Black, rect)
 End If
 ElseIf inRectangle Then
 inRectangle = False

 ' Restore the unhighlighted rectangle.
 g.FillRectangle(defaultBrush, rect)
 g.DrawRectangle(Pens.Black, rect)
 End If

 ' Perform hit testing with path.
 If path.IsVisible(e.X, e.Y) Then
 If Not inPath Then
 inPath = True

 ' Highlight the path.
 g.FillPath(highlightBrush, path)
 g.DrawPath(Pens.Black, path)
 End If
 ElseIf inPath Then
 inPath = False

 ' Restore the unhighlighted path.
 g.FillPath(defaultBrush, path)
 g.DrawPath(Pens.Black, path)
 End If

 End Using

 End Sub

 Private Sub Recipe10_02_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 Dim g As Graphics = e.Graphics

 ' Paint the shapes according to the current selection.
 If inPath Then
 g.FillPath(highlightBrush, path)
 g.FillRectangle(defaultBrush, rect)
 ElseIf inRectangle Then
 g.FillRectangle(highlightBrush, rect)
 g.FillPath(defaultBrush, path)

Herman_970-5C10.fm Page 396 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 397

 Else
 g.FillPath(defaultBrush, path)
 g.FillRectangle(defaultBrush, rect)
 End If

 g.DrawPath(Pens.Black, path)
 g.DrawRectangle(Pens.Black, rect)

 End Sub

End Class

Usage

Figure 10-2 shows the application in action.

Figure 10-2. Hit testing with a Rectangle object and a GraphicsPath object

10-3. Create an Irregularly Shaped Control

Problem

You need to create a nonrectangular form or control.

Solution

Create a new System.Drawing.Region object that has the shape you want for the form, and assign it
to the Form.Region or Control.Region property.

Herman_970-5C10.fm Page 397 Thursday, March 6, 2008 8:04 AM

398 CH AP T E R 1 0 ■ M U L T I M E D IA

How It Works

To create a nonrectangular form or control, you first need to define the shape you want. The easiest
approach is to use the System.Drawing.Drawing2D.GraphicsPath object, which can accommodate
any combination of ellipses, rectangles, closed curves, and even strings. You can add shapes to a
GraphicsPath instance using methods such as AddEllipse, AddRectangle, AddClosedCurve, and AddString.
Once you are finished defining the shape you want, you can create a Region object from this
GraphicsPath—just pass the GraphicsPath to the Region class constructor. Finally, you can assign the
Region to the Form.Region property or the Control.Region property.

The Code

The following example creates an irregularly shaped form (shown in Figure 10-3) using two curves
made of multiple points, which are converted into a closed figure using the GraphicsPath.
CloseAllFigures method.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D
' All designed code is stored in the autogenerated partial
' class called Recipe10-03.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_03

 Private Sub Recipe10_03_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim path As New GraphicsPath
 Dim pointsA As Point() = New Point() {New Point(0, 0), ➥
New Point(40, 60), New Point(Me.Width - 100, 10)}
 Dim pointsB As Point() = New Point() {New Point(Me.Width - 40, ➥
Me.Height - 60), New Point(Me.Width, Me.Height), New Point(10, Me.Height)}

 path.AddCurve(pointsA)
 path.AddCurve(pointsB)

 path.CloseAllFigures()

 Me.Region = New Region(path)

 End Sub

 Private Sub cmdClose_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdClose.Click

 Me.Close()

 End Sub

End Class

Herman_970-5C10.fm Page 398 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 399

Usage

When you run the application, you will see results similar to Figure 10-3.

■Note Another method for creating nonrectangular forms (not controls) is using the BackgroundImage and
TransparencyKey properties available in the Form class. However, this method could cause display problems
when monitors are set to a color depth greater than 24-bit. For more information about this topic, refer to the
Microsoft Knowledge Base article at http://support.microsoft.com/kb/822495.

Figure 10-3. A nonrectangular form

For an example that demonstrates a nonrectangular control, refer to recipe 10-4.

10-4. Create a Movable Sprite

Problem

You need to create a shape the user can manipulate on a form, perhaps by dragging it, resizing it, or
otherwise interacting with it.

Solution

Create a custom control, and override the painting logic to draw a shape. Assign your shape to the
Control.Region property. You can then use this Region to perform hit testing, which is demonstrated
in recipe 10-2.

How It Works

If you need to create a complex user interface that incorporates many custom-drawn elements,
you need a way to track these elements and allow the user to interact with them. The easiest approach in
.NET is to create a dedicated control by deriving a class from System.Windows.Forms.Control. You can

Herman_970-5C10.fm Page 399 Thursday, March 6, 2008 8:04 AM

http://support.microsoft.com/kb/822495

400 CH AP T E R 1 0 ■ M U L T I M E D IA

then customize the way this control appears and operates by adding the appropriate functionality
to the appropriate events. For example, if the control needs to respond in a certain way when it is
selected, you may want to add the needed functionality to the MouseEnter, MouseLeave, MouseUp, or
MouseDown event.

The Code

The following example shows a control that represents a simple ellipse shape on a form. All controls
are associated with a rectangular region on a form, so the EllipseShape control generates an ellipse
that fills these boundaries (provided through the Control.ClientRectangle property). Once the
shape has been generated, the Control.Region property is set according to the bounds on the ellipse.
This ensures events such as MouseMove, MouseDown, Click, and so on, will occur only if the mouse is
over the ellipse, not the entire client rectangle.

Here is the full EllipseShape code:

Imports System
Imports System.Drawing
Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
' class called EllipseShape.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class EllipseShape
 Inherits System.Windows.Forms.Control

 Dim path As GraphicsPath = Nothing

 Private Sub RefreshPath()

 ' Create the GraphicsPath for the shape (in this case
 ' an ellipse that fits inside the full control area)
 ' and apply it to the control by setting the Region
 ' property.
 path = New GraphicsPath
 path.AddEllipse(Me.ClientRectangle)
 Me.Region = New Region(path)

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)

 MyBase.OnPaint(e)

 If path IsNot Nothing Then
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
 e.Graphics.FillPath(New SolidBrush(Me.BackColor), path)
 e.Graphics.DrawPath(New Pen(Me.ForeColor, 4), path)
 End If

 End Sub

Herman_970-5C10.fm Page 400 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 401

 Private Sub EllipseShape_Resize(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Resize

 RefreshPath()
 Me.Invalidate()

 End Sub

End Class

You could define the EllipseShape control in a separate class library assembly so you could add
it to the Visual Studio .NET Toolbox and use it at design time. However, even without taking this step,
it is easy to create a simple test application. The following Windows Forms application creates two
ellipses and allows the user to drag both of them around the form, simply by holding the mouse
down and moving the pointer:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe10-04.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_04

 ' Tracks when drag mode is on.
 Private isDraggingA As Boolean = False
 Private isDraggingB As Boolean = False

 ' The ellipse shape controls.
 Private ellipseA, ellipseB As EllipseShape

 Private Sub Recipe10_04_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create and configure both ellipses.
 ellipseA = New EllipseShape
 ellipseA.Width = 100
 ellipseA.Height = 100
 ellipseA.Top = 30
 ellipseA.Left = 30
 ellipseA.BackColor = Color.Red
 Me.Controls.Add(ellipseA)

 ellipseB = New EllipseShape
 ellipseB.Width = 100
 ellipseB.Height = 100
 ellipseB.Top = 130
 ellipseB.Left = 130
 ellipseB.BackColor = Color.LightSteelBlue
 Me.Controls.Add(ellipseB)

Herman_970-5C10.fm Page 401 Thursday, March 6, 2008 8:04 AM

402 CH AP T E R 1 0 ■ M U L T I M E D IA

 ' Attach both ellipses to the same set of event handlers.
 AddHandler ellipseA.MouseDown, AddressOf Ellipse_MouseDown
 AddHandler ellipseA.MouseUp, AddressOf Ellipse_MouseUp
 AddHandler ellipseA.MouseMove, AddressOf Ellipse_MouseMove

 AddHandler ellipseB.MouseDown, AddressOf Ellipse_MouseDown
 AddHandler ellipseB.MouseUp, AddressOf Ellipse_MouseUp
 AddHandler ellipseB.MouseMove, AddressOf Ellipse_MouseMove

 End Sub

 Private Sub Ellipse_MouseDown(ByVal sender As Object, ByVal e As MouseEventArgs)

 If e.Button = Windows.Forms.MouseButtons.Left Then
 ' Get the ellipse that triggered this event.
 Dim ctrl As Control = DirectCast(sender, Control)
 ctrl.Tag = New Point(e.X, e.Y)

 If ctrl Is ellipseA Then
 isDraggingA = True
 Else
 isDraggingB = True
 End If
 End If

 End Sub

 Private Sub Ellipse_MouseUp(ByVal sender As Object, ByVal e As MouseEventArgs)

 isDraggingA = False
 isDraggingB = False

 End Sub

 Private Sub Ellipse_MouseMove(ByVal sender As Object, ByVal e As MouseEventArgs)

 ' Get the ellipse that triggered this event.
 Dim ctrl As Control = DirectCast(sender, Control)

 If (isDraggingA And (ctrl Is ellipseA)) Or (isDraggingB And ➥
(ctrl Is ellipseB)) Then

 ' Get the offset.
 Dim pnt As Point = DirectCast(ctrl.Tag, Point)

 ' Move the control.
 ctrl.Left = e.X + ctrl.Left - pnt.X
 ctrl.Top = e.Y + ctrl.Top - pnt.Y

 End If

 End Sub

End Class

Herman_970-5C10.fm Page 402 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 403

Usage

Figure 10-4 shows the user about to drag an ellipse.

Figure 10-4. Dragging custom shape controls on a form

10-5. Create a Scrollable Image

Problem

You need to create a scrollable picture.

Solution

Leverage the automatic scroll capabilities of the System.Windows.Forms.Panel control by setting
Panel.AutoScroll to True and placing a System.Windows.Forms.PictureBox control with the image
content inside the Panel.

How It Works

The Panel control has built-in scrolling support, as shown in recipe 10-1. If you place any controls in
it that extend beyond its bounds and you set Panel.AutoScroll to True, the panel will show scroll
bars that allow the user to move through the content. This works particularly well with large images.
You can load or create the image in memory, assign it to a picture box (which has no intrinsic support for
scrolling), and then show the picture box inside the panel. The only consideration you need to
remember is to make sure you set the picture box dimensions equal to the full size of the image you
want to show.

The Code

The following example creates an image that represents a document. The image is generated as an
in-memory bitmap, and several lines of text are added using the Graphics.DrawString method. The
image is then bound to a picture box, which is shown in a scrollable panel.

Herman_970-5C10.fm Page 403 Thursday, March 6, 2008 8:04 AM

404 CH AP T E R 1 0 ■ M U L T I M E D IA

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe10-05.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe10_05

 Private Sub Recipe10_05_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim text As String = "The quick brown fox jumps over the lazy dog."

 Using fnt As New Font("Tahoma", 14)

 ' Create an in-memory bitmap.
 Dim bmp As New Bitmap(600, 600)

 Using g As Graphics = Graphics.FromImage(bmp)

 g.FillRectangle(Brushes.White, New Rectangle(0, 0, bmp.Width, ➥
bmp.Height))

 ' Draw several lines of text on the bitmap.
 For i As Integer = 1 To 10
 g.DrawString(text, fnt, Brushes.Black, 50, 50 + i * 60)
 Next

 End Using

 ' Display the bitmap in the picture box.
 pictureBox1.BackgroundImage = bmp
 pictureBox1.Size = bmp.Size

 End Using

 End Sub

End Class

Usage

When you run the application, you will get results similar to those shown in Figure 10-5.

Herman_970-5C10.fm Page 404 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 405

Figure 10-5. Adding scrolling support to custom content

10-6. Perform a Screen Capture

Problem

You need to take a snapshot of the current desktop.

Solution

Use the CopyFromScreen method of the Graphics class to copy screen contents.

How It Works

The Graphics class now includes CopyFromScreen methods that copy color data from the screen onto
the drawing surface represented by a Graphics object. This method requires you to pass the source
and destination points and the size of the image to be copied.

The Code

The following example captures the screen and displays it in a picture box. It first creates a new
Bitmap object and then invokes CopyFromScreen to draw onto the Bitmap. After drawing, the image is
assigned to the picture box.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Herman_970-5C10.fm Page 405 Thursday, March 6, 2008 8:04 AM

406 CH AP T E R 1 0 ■ M U L T I M E D IA

' All designed code is stored in the autogenerated partial
' class called Recipe10-06.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_06

 Private Sub cmdCapture_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdCapture.Click

 Dim screenCapture As New Bitmap(Screen.PrimaryScreen.Bounds.Width, ➥
Screen.PrimaryScreen.Bounds.Height)

 Using g As Graphics = Graphics.FromImage(screenCapture)
 g.CopyFromScreen(0, 0, 0, 0, screenCapture.Size)
 End Using

 pictureBox1.Image = screenCapture

 End Sub

End Class

Usage

When you run the application and click the Capture button, you will get results similar to those
shown in Figure 10-6.

Figure 10-6. Capturing the screen contents

Herman_970-5C10.fm Page 406 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 407

10-7. Use Double Buffering to Increase Redraw Speed

Problem

You need to optimize drawing for a form or an authored control that is frequently refreshed, and you
want to reduce flicker.

Solution

Set the DoubleBuffered property of the form to True.

How It Works

In some applications, you need to repaint a form or control frequently. This is commonly the case
when creating animations. For example, you might use a timer to invalidate your form every second.
Your painting code could then redraw an image at a new location, creating the illusion of motion.
The problem with this approach is that every time you invalidate the form, Windows repaints the
window background (clearing the form) and then runs your painting code, which draws the graphic
element by element. This can cause substantial onscreen flicker.

Double buffering is a technique you can implement to reduce this flicker. With double buffering,
your drawing logic writes to an in-memory bitmap, which is copied to the form at the end of the
drawing operation in a single, seamless repaint operation. Flickering is reduced dramatically.

.NET Framework 2.0 introduced a default double buffering mechanism for forms and controls.
You can enable this by setting the DoubleBuffered property of your form or control to True or by using
the SetStyle method.

The Code

The following example sets the DoubleBuffered property of the form to True and shows an animation
of an image alternately growing and shrinking on the page. The drawing logic takes place in the
Form.Paint event handler, and a timer invalidates the form in a preset interval so that the image can
be redrawn. The user can choose whether to enable double buffering through a checkbox on the
form. Without double buffering, the form flickers noticeably. When double buffering is enabled,
however, the image grows and shrinks with smooth, flicker-free animation.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
' class called Recipe10-07.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_07

 ' Track the image size and the type of animation
 ' (expanding or shrinking).
 Private isShrinking As Boolean = False
 Private imageSize As Integer = 0

 ' Store the logo that will be painted on the form.
 Private img As Image

Herman_970-5C10.fm Page 407 Thursday, March 6, 2008 8:04 AM

408 CH AP T E R 1 0 ■ M U L T I M E D IA

 Private Sub Recipe10_07_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Load the logo image from the file.
 img = Image.FromFile("test.jpg")

 ' Start the time that invalidates the form.
 tmrRefresh.Start()

 End Sub

 Private Sub tmrRefresh_Tick(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles tmrRefresh.Tick

 ' Change the desired image size according to the animation mode.
 If isShrinking Then
 imageSize -= 1
 Else
 imageSize += 1
 End If

 ' Change the sizing direction if it nears the form border.
 If imageSize > (Me.Width - 150) Then
 isShrinking = True
 ElseIf imageSize < 1 Then
 isShrinking = False
 End If

 Me.Invalidate()

 End Sub

 Private Sub Recipe10_07_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 Dim g As Graphics

 g = e.Graphics
 g.SmoothingMode = SmoothingMode.HighQuality

 ' Draw the background.
 g.FillRectangle(Brushes.Yellow, New Rectangle(New Point(0, 0), ➥
Me.ClientSize))

 ' Draw the logo image.
 g.DrawImage(img, 50, 50, 50 + imageSize, 50 + imageSize)

 End Sub

 Private Sub chkUseDoubleBuffering_CheckedChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles chkUseDoubleBuffering.CheckedChanged

Herman_970-5C10.fm Page 408 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 409

 Me.DoubleBuffered = chkUseDoubleBuffering.Checked

 End Sub

End Class

10-8. Show a Thumbnail for an Image

Problem

You need to show thumbnails (small representations of pictures) for the images in a directory.

Solution

Read the image from the file using the Shared FromFile method of the System.Drawing.Image class.
You can then retrieve a thumbnail using the Image.GetThumbnailImage method.

How It Works

The Image class provides the functionality for generating thumbnails through the GetThumbnailImage
method. You simply need to pass the width and height of the thumbnail you want (in pixels), and the
Image class will create a new Image object that fits these criteria. Antialiasing is used when reducing
the image to ensure the best possible image quality, although some blurriness and loss of detail is
inevitable. (Antialiasing is the process of removing jagged edges, often in resized graphics, by adding
shading with an intermediate color.) In addition, you can supply a notification callback, allowing
you to create thumbnails asynchronously.

When generating a thumbnail, it is important to ensure that the aspect ratio remains constant.
For example, if you reduce a 200×100 picture to a 50×50 thumbnail, the width will be compressed to
one quarter and the height will be compressed to one half, distorting the image. To ensure that the
aspect ratio remains constant, you can change either the width or the height to a fixed size and then
adjust the other dimension proportionately.

■Note If you attempt to load a file that is not a supported image type, you will receive an OutOfMemoryException.
This is important to know because it is not the error you might expect to receive in this situation.

The Code

The following example reads a bitmap file and generates a thumbnail that is not greater than
200×200 pixels while preserving the original aspect ratio:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe10-08.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_08

Herman_970-5C10.fm Page 409 Thursday, March 6, 2008 8:04 AM

410 CH AP T E R 1 0 ■ M U L T I M E D IA

 Private thumbNail As Image
 Private Sub Recipe10_08_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Using img As Image = Image.FromFile("test.jpg")

 Dim thumbnailWidth As Integer = 0
 Dim thumbnailHeight As Integer = 0

 ' Adjust the largest dimension to 200 pixels.
 ' This ensures that a thumbnail will not be larger than
 ' 200x200 pixel square for each one.
 If img.Width > img.Height Then
 thumbnailWidth = 200
 thumbnailHeight = Convert.ToInt32((CSng(200) / img.Width) * ➥
img.Height)
 Else
 thumbnailHeight = 200
 thumbnailWidth = Convert.ToInt32((CSng(200) / img.Height) * ➥
img.Height)
 End If

 thumbNail = img.GetThumbnailImage(thumbnailWidth, thumbnailHeight, ➥
Nothing, IntPtr.Zero)

 End Using

 End Sub

 Private Sub Recipe10_08_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 e.Graphics.DrawImage(thumbNail, 10, 10)

 End Sub

End Class

10-9. Play a Simple Beep or System Sound

Problem

You need to play a simple system-defined beep or sound.

Solution

Use the managed Beep method of the Console class or the Play method of the SystemSound class.

Herman_970-5C10.fm Page 410 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 411

How It Works

Overloads of the Console.Beep method, introduced in .NET Framework 2.0, let you play a beep with
the default frequency and duration or with a frequency and duration you specify. Frequency is
represented in hertz (and must range from 37 to 32,767), and the duration is represented in milli-
seconds. Internally, these methods invoke the Beep Win32 function and use the computer’s internal
speaker. Thus, if the computer does not have an internal speaker, no sound will be produced.

The System.Media namespace contains the following classes for playing sound files:

• The SystemSound class represents a Windows sound event, such as an asterisk, beep, question,
and so on. It also defines a Play method, which lets you play the sound associated with it.

• The SystemSounds class defines properties that let you obtain the SystemSound instance of a
specific Windows sound event. For example, it defines an Asterisk property that returns a
SystemSound instance associated with the asterisk Windows sound event.

• The SoundPlayer class lets you play WAV files. For more information about how to play a WAV
file using this class, refer to recipe 10-10.

As an alternative for playing system sounds, you can also use the My namespace (refer to Chapter 5
for further details). My includes the My.Computer.Audio class, which contains the Shared PlaySystemSound
method for playing system sounds. It takes a SystemSound object as its parameter.

The Code

The following example plays two different beeps and the asterisk sound in succession, using the
Console and SystemSound classes:

Imports System
Imports System.Windows.Forms
Imports System.Media

' All designed code is stored in the autogenerated partial
' class called Recipe10-09.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_09

 Private Sub Recipe10_09_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Play a beep with default frequency and
 ' duration (800 and 200, respectively)
 Console.Beep()

 ' Play a beep with frequency as 200 and duration as 300.
 Console.Beep(200, 300)

 ' Play the sound associated with the Asterisk event.
 SystemSounds.Asterisk.Play()

 End Sub

End Class

The following shows how to use the My namespace to play the system sound:

My.Computer.Audio.PlaySystemSound(SystemSounds.Asterisk)

Herman_970-5C10.fm Page 411 Thursday, March 6, 2008 8:04 AM

412 CH AP T E R 1 0 ■ M U L T I M E D IA

10-10. Play a WAV File

Problem

You need to play a WAV file.

Solution

Create a new instance of the System.Media.SoundPlayer class, pass the location or stream of the WAV
file, and invoke the Play method.

How It Works

The System.Media namespace, first introduced in .NET Framework 2.0, contains a SoundPlayer class.
SoundPlayer contains constructors that let you specify the location of a WAV file or its stream. Once
you have created an instance, you just need to invoke the Play method to play the file. The Play
method creates a new thread to play the sound and is thus asynchronous (unless a stream is used).
For playing the sound synchronously, use the PlaySync method. Note that SoundPlayer supports
only the WAV format.

Before a file is played, it is loaded into memory. You can load a file in advance by invoking the
Load or LoadSync method, depending on whether you want the operation to be asynchronous or
synchronous.

The My.Computer.Audio class provides an alternative for playing WAV files. This class consists of
the Shared methods Play, PlaySystemSound (refer to recipe 10-9), and Stop. The Play method, the equiva-
lent of the SoundPlayer.Play method, uses the PlayMode parameter to configure how the sound is played.
PlayMode is an AudioPlayMode enumerated type that can be set to Background (plays the sound asyn-
chronously), BackgroundLoop (plays the sound asynchronously and loops until the Stop method is
called), and WaitToComplete (plays the sound synchronously).

The Code

The following example shows a simple form that allows users to open any WAV file and play it:

Imports System
Imports System.Windows.Forms
Imports System.Media

' All designed code is stored in the autogenerated partial
' class called Recipe10-10.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_10

 Private Sub cmdOpen_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdOpen.Click

 ' Allow the user to choose a file.
 Dim openDialog As New OpenFileDialog

 openDialog.Filter = "WAV Files|*.wav|All Files|*.*"

 If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 Dim player As New SoundPlayer(openDialog.FileName)

Herman_970-5C10.fm Page 412 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 413

 Try
 player.Play()
 Catch ex As Exception
 MessageBox.Show("An error occurred while playing media.")
 Finally
 player.Dispose()
 End Try
 End If

 End Sub

End Class

To use the My namespace, remove references to the Player object and replace Player.Play()
with this:

My.Computer.Audio.Play(openDialog.FileName)

10-11. Play a Sound File

Problem

You need to play a non-WAV format audio file such as an MP3 file.

Solution

Use the ActiveMovie COM component included with Windows Media Player, which supports WAV
and MP3 audio.

How It Works

The ActiveMovie Quartz library provides a COM component that can play various types of audio
files, including the WAV and MP3 formats. The Quartz type library is provided through quartz.dll
and is included as a part of Microsoft DirectX with Media Player and the Windows operating system.

The first step for using the library is to generate an interop class that can manage the interaction
between your .NET application and the unmanaged Quartz library. You can generate a C# class with
this interop code using the Type Library Importer utility (Tlbimp.exe) and the following command
line, where [WindowsDir] is the path for your installation of Windows:

tlbimp [WindowsDir]\system32\quartz.dll /out:QuartzTypeLib.dll

Alternatively, you can generate the interop class using Visual Studio by adding a reference. To
do this, right-click your project in Solution Explorer, choose Add Reference from the context menu,
select the COM tab, and scroll down to select ActiveMovie Control Type Library. If you cannot find
the component in the list, you can browse to the file quartz.dll (shown in the previous path) and add
the reference that way or just use the previous method to create the library yourself.

Once the interop class has been generated and referenced by your project, you can work with
the IMediaControl interface. You can specify the file you want to play using RenderFile, and you can
control playback using methods such as Run, Stop, and Pause. The actual playback takes place on a
separate thread, so it will not block your code.

Although the .NET Framework will eventually release any references to a COM object and collect the
memory it uses, it is best practice to do this yourself as soon as it is no longer needed. Managed code
does not access COM objects directly but instead uses a runtime callable wrapper (RCW). The RCW acts

Herman_970-5C10.fm Page 413 Thursday, March 6, 2008 8:04 AM

414 CH AP T E R 1 0 ■ M U L T I M E D IA

as a proxy between managed code and a referenced COM object. The Shared method ReleaseComObject,
from the System.Runtime.InteropServices.Marshal class, properly destroys the RCW and the COM
object it used.

The Code

The following example shows a simple form that allows you to open any audio file and play it. The
COM object is destroyed using ReleaseComObject.

You can also use the Quartz library to show movie files, as demonstrated in recipe 10-12.

Imports System
Imports System.Windows.Forms
Imports QuartzTypeLib

' All designed code is stored in the autogenerated partial
' class called Recipe10-11.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_11

 Dim graphManager As QuartzTypeLib.FilgraphManager

 Private Sub cmdOpen_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdOpen.Click

 ' Allow the user to choose a file.
 Dim openDialog As New OpenFileDialog

 openDialog.Filter = "Media FIles|*.wav;*.mp3;*.mp2;*.wma|All Files|*.*"

 If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 ' Access the IMediaControl interface.
 graphManager = New QuartzTypeLib.FilgraphManager
 Dim mc As QuartzTypeLib.IMediaControl = DirectCast(graphManager, ➥
QuartzTypeLib.IMediaControl)

 ' Specify the file.
 mc.RenderFile(openDialog.FileName)

 Try
 mc.Run()
 Catch ex As Exception
 MessageBox.Show("An error occurred while playing media.")
 End Try

 End If

 End Sub

 Private Sub Recipe10_11_FormClosing(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

Herman_970-5C10.fm Page 414 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 415

 If graphManager IsNot Nothing Then
 ' Destroy the COM object (QuartzTypeLib) that we are using.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
 End If

 End Sub

End Class

10-12. Show a Video with DirectShow

Problem

You need to play a video file (such as an MPEG, an AVI, or a WMV file) in a Windows Forms application.

Solution

Use the ActiveMovie COM component included with Windows Media Player. Bind the video output
to a picture box on your form by setting the IVideoWindow.Owner property to the PictureBox.Handle
property.

How It Works

Although the .NET Framework does not include any managed classes for interacting with video files,
you can leverage the functionality of DirectShow using the COM-based Quartz library included with
Windows Media Player and the Windows operating system. For information about creating an
interop assembly for the Quartz type library, refer to recipe 10-11.

Once you have created the interop assembly, you can use the IMediaControl interface to load
and play a movie. This is essentially the same technique demonstrated in recipe 10-11 with audio
files. However, if you want to show the video window inside your application interface (rather than in a
separate stand-alone window), you must also use the IVideoWindow interface. The core FilgraphManager
object can be cast to both the IMediaControl interface and the IVideoWindow interface (several other
interfaces are also supported, such as IBasicAudio, which allows you to configure balance and
volume settings). With the IVideoWindow interface, you can bind the video output to a control on your
form, such as a Panel or a PictureBox. To do so, set the IVideoWindow.Owner property to the handle
for the control, which you can retrieve using the Control.Handle property. Then call IVideoWindow.
SetWindowPosition to set the window size and location. You can call this method to change the video
size during playback (for example, if the form is resized).

The Code

The following example shows a simple form that allows users to open any video file and play it back
in the provided picture box. The picture box is anchored to all sides of the form, so it changes size as
the form resizes. The code responds to the PictureBox.SizeChanged event to change the size of the corre-
sponding video window. Also, the reference to the QuartzTypeLib is destroyed using ReleaseComObject
(discussed in recipe 10-11) when the form is closed.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports QuartzTypeLib

Herman_970-5C10.fm Page 415 Thursday, March 6, 2008 8:04 AM

416 CH AP T E R 1 0 ■ M U L T I M E D IA

' All designed code is stored in the autogenerated partial
' class called Recipe10-12.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_12

 ' Define the constants used for specifying the window style.
 Private Const WS_CHILD As Integer = &H40000000
 Private Const WS_CLIPCHILDREN As Integer = &H2000000

 ' Hold a form-level reference to the QuartzTypeLib.FilgraphManager
 ' object.
 Private graphManager As FilgraphManager

 ' Hold a form-level reference to the media control interface,
 ' so the code can control playback of the currently loaded
 ' movie.
 Private mc As IMediaControl = Nothing

 ' Hold a form-level reference to the video window in case it
 ' needs to be resized.
 Private videoWindow As IVideoWindow = Nothing

 Private Sub cmdOpen_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdOpen.Click

 ' Allow the user to choose a file.
 Dim openDialog As New OpenFileDialog

 openDialog.Filter = "Media Files|*.mpg;*.avi;*.wma;*.mov;" & ➥
"*.wav;*.mp2;*.mp3|All Files|*.*"

 If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then

 ' Stop the playback for the current movie, if it exists.
 If mc IsNot Nothing Then mc.Stop()

 ' Load the movie file.
 graphmanager = New FilgraphManager
 graphmanager.RenderFile(openDialog.FileName)

 ' Attach the view to a picture box on the form.
 Try
 videoWindow = DirectCast(graphmanager, IVideoWindow)
 videoWindow.Owner = pictureBox1.Handle.ToInt32
 videoWindow.WindowStyle = WS_CHILD Or WS_CLIPCHILDREN
 videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, ➥
pictureBox1.ClientRectangle.Top, pictureBox1.ClientRectangle.Width, ➥
pictureBox1.ClientRectangle.Height)

Herman_970-5C10.fm Page 416 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 417

 Catch ex As Exception
 ' An error can occur if the file does not have a video
 ' source (for example, an MP3 file).
 ' You can ignore this error and still allow playback to
 ' continue (without any visualization).
 End Try

 ' Start the playback (asynchronously).
 mc = DirectCast(graphmanager, IMediaControl)
 mc.Run()

 End If

 End Sub

 Private Sub pictureBox1_SizeChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles pictureBox1.SizeChanged

 If videoWindow IsNot Nothing Then

 Try
 videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, ➥
pictureBox1.ClientRectangle.Top, pictureBox1.ClientRectangle.Width, ➥
pictureBox1.ClientRectangle.Height)
 Catch ex As Exception
 ' Ignore the exception thrown when resizing the form
 ' when the file does not have a video source.
 End Try

 End If

 End Sub

 Private Sub Recipe10_12_FormClosed(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 ' Destroy the COM object (QuartzTypeLib) that we are using.
 If graphManager IsNot Nothing Then
 System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
 End If

 End Sub

End Class

Usage

Figure 10-7 shows an example of the output you will see.

Herman_970-5C10.fm Page 417 Thursday, March 6, 2008 8:04 AM

418 CH AP T E R 1 0 ■ M U L T I M E D IA

Figure 10-7. Playing a video file

10-13. Retrieve Information About Installed Printers

Problem

You need to retrieve a list of available printers.

Solution

Read the names in the InstalledPrinters collection of the System.Drawing.Printing.PrinterSettings
class.

How It Works

The PrinterSettings class encapsulates the settings for a printer and information about the printer.
For example, you can use the PrinterSettings class to determine supported paper sizes, paper sources,
and resolutions and check for the ability to print color or double-sided (duplexed) pages. In addition,
you can retrieve default page settings for margins, page orientation, and so on.

The PrinterSettings class provides a Shared InstalledPrinters string collection, which includes
the name of every printer installed on the computer. If you want to find out more information about the
settings for a specific printer, create a PrinterSettings instance, and set the PrinterName property
accordingly.

The Code

The following code shows a console application that finds all the printers installed on a computer
and displays information about the paper sizes and the resolutions supported by each one.

You do not need to take this approach when creating an application that provides printing
features. As you will see in recipe 10-14, you can use the PrintDialog class to prompt the user to
choose a printer and its settings. The PrintDialog class can automatically apply its settings to the
appropriate PrintDocument without any additional code.

Herman_970-5C10.fm Page 418 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 419

Imports System
Imports System.Drawing.Printing

Namespace Apress.VisualBasicRecipes.Chapter10

 Public Class Recipe10_13

 Public Shared Sub Main()

 For Each printerName As String In PrinterSettings.InstalledPrinters

 ' Display the printer name.
 Console.WriteLine("Printer: {0}", printerName)

 ' Retrieve the printer settings.
 Dim printer As New PrinterSettings
 printer.PrinterName = printerName

 ' Check that this is a valid printer.
 ' (This step might be required if you read the printer name
 ' from a user-supplied value or a registry or configuration
 ' file setting.)
 If printer.IsValid Then
 ' Display the list of valid resolutions.
 Console.WriteLine("Supported Resolutions:")

 For Each resolution As PrinterResolution In ➥
printer.PrinterResolutions
 Console.WriteLine(" {0}", resolution)
 Next
 Console.WriteLine()

 ' Display the list of valid paper sizes.
 Console.WriteLine("Supported Paper Sizes:")

 For Each size As PaperSize In printer.PaperSizes
 If System.Enum.IsDefined(size.Kind.GetType, size.Kind) Then
 Console.WriteLine(" {0}", size)
 End If
 Next
 Console.WriteLine()
 End If
 Next
 Console.ReadLine()
 End Sub
 End Class

End Namespace

Herman_970-5C10.fm Page 419 Thursday, March 6, 2008 8:04 AM

420 CH AP T E R 1 0 ■ M U L T I M E D IA

Usage

When you run this recipe, you will results similar to the following:

Printer: EPSON al-cx11 advanced
Supported Resolutions:
 [PrinterResolution High]
 [PrinterResolution Medium]
 [PrinterResolution Low]
 [PrinterResolution Draft]
 [PrinterResolution X=300 Y=300]
 [PrinterResolution X=600 Y=600]

Supported Paper Sizes:
 [PaperSize A4 210 x 297 mm Kind=A4 Height=1169 Width=827]
 [PaperSize B4 257 x 364 mm Kind=B4 Height=1433 Width=1012]
 [PaperSize B5 182 x 257 mm Kind=B5 Height=1012 Width=717]
. . .

■Note You can print a document in almost any type of application. However, your application must include a
reference to the System.Drawing.dll assembly. If you are using a project type in Visual Studio that would not
normally have this reference (such as a console application), you must add it.

10-14. Print a Simple Document

Problem

You need to print text or images.

Solution

Create a PrintDocument, and write a handler for the PrintDocument.PrintPage event that uses the
DrawString and DrawImage methods of the Graphics class to print data to the page.

How It Works

The .NET Framework uses an asynchronous event-based printing model. To print a document, you
create a System.Drawing.Printing.PrintDocument instance, configure its properties, and then call its
Print method, which schedules the print job. The common language runtime (CLR) will then fire the
BeginPrint, PrintPage, and EndPrint events of the PrintDocument class on a new thread. You handle
these events and use the provided System.Drawing.Graphics object to output data to the page. Graphics
and text are written to a page in the same way as you draw to a window using GDI+. However, you
might need to track your position on a page, because every Graphics class method requires explicit
coordinates that indicate where to draw.

You configure printer settings through the PrintDocument.PrinterSettings and PrintDocument.
DefaultPageSettings properties. The PrinterSettings property returns a full PrinterSettings object
(as described in recipe 10-13), which identifies the printer that will be used. The DefaultPageSettings
property provides a full PageSettings object that specifies printer resolution, margins, orientation,
and so on. You can configure these properties in code, or you can use the System.Windows.Forms.
PrintDialog class to let the user make the changes using the standard Windows Print dialog box,

Herman_970-5C10.fm Page 420 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 421

shown in Figure 10-8. In the Print dialog box, the user can select a printer and choose the number of
copies. The user can also click the Properties button to configure advanced settings such as page
layout and printer resolution. Finally, the user can either accept or cancel the print operation by
clicking OK or Cancel.

Figure 10-8. Using the PrintDialog class

Before using the PrintDialog class, you must explicitly attach it to a PrintDocument object by
setting the PrintDialog.Document property. Then any changes the user makes in the Print dialog box
will be automatically applied to the PrintDocument object.

The Code

The following example provides a form with a single button. When the user clicks the button, the
application creates a new PrintDocument, allows the user to configure print settings, and then starts
an asynchronous print operation (provided the user clicks OK). An event handler responds to the
PrintPage event and writes several lines of text and an image.

This example has one limitation: it can print only a single page. To print more complex docu-
ments and span multiple pages, you will probably want to create a specialized class that encapsulates
the document information, the current page, and so on, as described in recipe 10-15.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing
Imports System.IO

' All designed code is stored in the autogenerated partial
' class called Recipe10-14.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_14

Herman_970-5C10.fm Page 421 Thursday, March 6, 2008 8:04 AM

422 CH AP T E R 1 0 ■ M U L T I M E D IA

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Create the document and attach an event handler.
 Dim doc As New PrintDocument

 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 ' Allow the user to choose a printer and specify other settings.
 Dim dlgSettings As New PrintDialog
 dlgSettings.Document = doc

 ' If the user clicked OK, print the document.
 If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then
 ' This method returns immediately, before the print job starts.
 ' The PrintPage event will fire asynchronously.
 doc.Print()
 End If

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Determine the font.
 Using fnt As New Font("Arial", 30)
 ' Determine the position on the page. In this case,
 ' we read the margin settings (although there is
 ' nothing that prevents your code from going outside
 ' the margin bounds).
 Dim x As Single = e.MarginBounds.Left
 Dim y As Single = e.MarginBounds.Top

 ' Determine the height of a line (based on the font used).
 Dim lineHeight As Single = Font.GetHeight(e.Graphics)

 ' Print five lines of text.
 For i As Integer = 1 To 5
 ' Draw the text with a black brush, using the
 ' font and coordinates we have determined.
 e.Graphics.DrawString("This is line " & i.ToString, Font, ➥
Brushes.Black, x, y)

 ' Move down the equivalent spacing of one line.
 y += lineheight
 Next
 y += lineHeight

 ' Draw an image.
 e.Graphics.DrawImage(Image.FromFile(Path.Combine(➥
Application.StartupPath,"test.jpg")), x, y)

 End Using
 End Sub

End Class

Herman_970-5C10.fm Page 422 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 423

10-15. Print a Multipage Document

Problem

You need to print complex documents with multiple pages and possibly print several different docu-
ments at once.

Solution

Place the information you want to print into a custom class that derives from PrintDocument, and in
the PrintPage event handler, set the PrintPageEventArgs.HasMorePages property to True as long as
pages are remaining.

How It Works

The PrintDocument.PrintPage event is triggered to let you to print only a single page. If you need to
print more pages, you need to set the PrintPageEventArgs.HasMorePages property to True in the
PrintPage event handler. As long as HasMorePages is set to True, the PrintDocument class will continue
firing PrintPage events. However, it is up to you to track which page you are on, what data should be
placed on each page, and what is the last page for which HasMorePage is not set to True. To facilitate
this tracking, it is a good idea to create a custom class.

The Code

The following example shows a class called TextDocument. This class inherits from PrintDocument
and adds three properties. Text stores an array of text lines, PageNumber reflects the last printed page,
and Offset indicates the last line that was printed from the Text array.

Public Class TextDocument
 Inherits PrintDocument

 Private m_Text As String()
 Private m_PageNumber As Integer
 Private m_Offset As Integer

 Public Sub New(ByVal txt As String())

 Me.Text = txt

 End Sub

 Public Property Text() As String()
 Get
 Return m_Text
 End Get
 Set(ByVal value As String())
 m_Text = value
 End Set
 End Property

Herman_970-5C10.fm Page 423 Thursday, March 6, 2008 8:04 AM

424 CH AP T E R 1 0 ■ M U L T I M E D IA

 Public Property PageNumber() As Integer
 Get
 Return m_PageNumber
 End Get
 Set(ByVal value As Integer)
 m_PageNumber = value
 End Set
 End Property

 Public Property Offset() As Integer
 Get
 Return m_Offset
 End Get
 Set(ByVal value As Integer)
 m_Offset = value
 End Set
 End Property

End Class

Depending on the type of material you are printing, you might want to modify this class. For
example, you could store an array of image data, some content that should be used as a header or
footer on each page, font information, or even the name of a file from which you want to read the
information. Encapsulating the information in a single class makes it easier to print more than one
document at the same time. This is especially important because the printing process runs in a new
dedicated thread. As a consequence, the user is able to keep working in the application and therefore
update your data while the pages are printing. So, this dedicated class should contain a copy of the
data to print to avoid any concurrency problems.

The code that initiates printing is the same as in recipe 10-14, but now it creates a TextDocument
instance instead of a PrintDocument instance. The PrintPage event handler keeps track of the current
line and checks whether the page has space before attempting to print the next line. If a new page is
needed, the HasMorePages property is set to True and the PrintPage event fires again for the next page.
If not, the print operation is deemed complete. This simple code sample also takes into account
whether a line fits on the page, according to the height (see recipe 10-16).

The full form code is as follows:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing

' All designed code is stored in the autogenerated partial
' class called Recipe10-15.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_15

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Create a document with 100 lines.
 Dim printText As String() = New String(100) {}

Herman_970-5C10.fm Page 424 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 425

 For i As Integer = 1 To 100
 printText(i) = i.ToString
 printText(i) += ": The quick brown fox jumps over the lazy dog."
 Next

 Dim doc As New TextDocument(printText)

 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 Dim dlgSettings As New PrintDialog
 dlgSettings.Document = doc

 ' If the user clicked OK, print the document.
 If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then
 ' This method returns immediately, before the print job starts.
 ' The PrintPage event will fire asynchronously.
 doc.Print()
 End If

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Retrieve the document that sent this event.
 Dim doc As TextDocument = DirectCast(sender, TextDocument)

 ' Determine the font and determine the line height.
 Using fnt As New Font("Arial", 10)
 Dim lineHeight As Single = Font.GetHeight(e.Graphics)

 ' Create variables to hold position on the page.
 Dim x As Single = e.MarginBounds.Left
 Dim y As Single = e.MarginBounds.Top

 ' Increment the page counter (to reflect the page that
 ' is about to be printed).
 doc.PageNumber += 1

 ' Print all the information that can fit on the page.
 ' This loop ends when the next line would go over the
 ' bottom margin or there are no more lines to print.
 While ((y + lineHeight) < e.MarginBounds.Bottom And ➥
doc.Offset <= doc.Text.GetUpperBound(0))
 e.Graphics.DrawString(doc.Text(doc.Offset), Font, ➥
Brushes.Black, x, y)

 ' Move to the next line of data.
 doc.Offset += 1

 ' Move the equivalent of one line down the page.
 y += lineHeight
 End While

Herman_970-5C10.fm Page 425 Thursday, March 6, 2008 8:04 AM

426 CH AP T E R 1 0 ■ M U L T I M E D IA

 If doc.Offset < doc.Text.GetUpperBound(0) Then
 ' There is still at least one more page. Signal
 ' this event to fire again.
 e.HasMorePages = True
 End If

 End Using
 End Sub

End Class

10-16. Print Wrapped Text

Problem

You need to parse a large block of text into distinct lines that fit on one page.

Solution

Use the Graphics.DrawString method overload that accepts a bounding rectangle.

How It Works

Often, you will need to break a large block of text into separate lines that can be printed individually
on a page. The .NET Framework can perform this task automatically, provided you use a version of
the Graphics.DrawString method that accepts a bounding rectangle. You specify a rectangle that
represents where you want the text to be displayed. The text is then wrapped automatically to fit
within those confines.

The Code

The following code demonstrates this approach, using the bounding rectangle that represents the
printable portion of the page. It prints a large block of text from a text box on the form.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing

' All designed code is stored in the autogenerated partial
' class called Recipe10-16.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_16

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Create the document and attach an event handler.
 Dim text As String = "Windows Server 2003 builds on the core strengths " & _
 "of the Windows family of operating systems--security, manageability, " & _
 "reliability, availability, and scalability. Windows Server 2003 " & _
 "provides an application environment to build, deploy, manage, and " & _
 "run XML web services. Additionally, advances in Windows Server 2003 " & _

Herman_970-5C10.fm Page 426 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 427

 "provide many benefits for developing applications."

 Dim doc As New ParagraphDocument(text)
 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 ' Allow the user to choose a printer and specify other settings.
 Dim dlgsettings As New PrintDialog
 dlgsettings.Document = doc

 ' If the user clicked OK, print the document.
 If dlgsettings.ShowDialog = Windows.Forms.DialogResult.OK Then
 doc.Print()
 End If

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Retrieve the document that sent this event.
 Dim doc As ParagraphDocument = DirectCast(sender, ParagraphDocument)

 ' Define the font and text.
 Using fnt As New Font("Arial", 35)
 e.Graphics.DrawString(doc.Text, Font, Brushes.Black, ➥
e.MarginBounds, StringFormat.GenericDefault)
 End Using

 End Sub

End Class

Public Class ParagraphDocument
 Inherits PrintDocument

 Private m_Text As String

 Public Sub New(ByVal txt As String)
 Me.Text = txt
 End Sub

 Public Property Text() As String
 Get
 Return m_Text
 End Get
 Set(ByVal value As String)
 m_Text = value
 End Set
 End Property

End Class

Herman_970-5C10.fm Page 427 Thursday, March 6, 2008 8:04 AM

428 CH AP T E R 1 0 ■ M U L T I M E D IA

10-17. Show a Dynamic Print Preview

Problem

You need to use an onscreen preview that shows how a printed document will look.

Solution

Use PrintPreviewDialog or PrintPreviewControl (both of which are found in the System.Windows.
Forms namespace).

How It Works

The .NET Framework provides two elements of user interface that can take a PrintDocument instance, run
your printing code (such as the code demonstrated in recipe 10-15), and use it to generate a graphical
onscreen preview:

• The PrintPreviewDialog, which shows a preview in a stand-alone form

• The PrintPreviewControl, which shows a preview in a control that can be embedded in one
of your own custom forms

To use a stand-alone print preview form, create a PrintPreviewDialog object, assign its Document
property, and call the Show method:

Dim dlgPreview As New PrintPreviewDialog
dlgPreview.Document = doc
dlgPreview.Show()

The Print Preview window (shown in Figure 10-9) provides all the controls the user needs to
move from page to page, zoom in, and so on. The window even provides a print button that allows
the user to send the document directly to the printer. You can tailor the window to some extent by
modifying the PrintPreviewDialog properties.

Figure 10-9. Using the PrintPreviewDialog control

Herman_970-5C10.fm Page 428 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 429

You can also add a PrintPreviewControl control to any of your forms to show a preview alongside
other information. In this case, you do not need to call the Show method. As soon as you set the
PrintPreviewControl.Document property, the preview is generated. To clear the preview, set the Document
property to Nothing. To refresh the preview, reassign the Document property.PrintPreviewControl shows
only the preview pages, not any additional controls. However, you can add your own controls for
zooming, tiling multiple pages, and so on. You simply need to adjust the PrintPreviewControl properties
accordingly.

The Code

As an example, consider the form shown in Figure 10-10. It incorporates a PrintPreviewControl and
allows the user to select a zoom setting.

Figure 10-10. Using the PrintPreviewControl in a custom window

Here is the complete form code:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing

' All designed code is stored in the autogenerated partial
' class called Recipe10-17.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_17

 Private doc As PrintDocument
 Private Sub Recipe10_17_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Set the allowed zoom settings.
 For i As Integer = 1 To 10
 lstZoom.Items.Add((i * 10).ToString)
 Next

Herman_970-5C10.fm Page 429 Thursday, March 6, 2008 8:04 AM

430 CH AP T E R 1 0 ■ M U L T I M E D IA

 ' Create a document with 100 lines.
 Dim printText As String() = New String(100) {}

 For i As Integer = 1 To 100
 printText(i) = i.ToString
 printText(i) += ": The quick brown fox jumps over the lazy dog."
 Next

 Dim doc As New TextDocument(printText)

 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 ' Set the Zoom list to "100"
 lstZoom.Text = "100"

 ' Configure the PrintPreviewControl to show the page at 100%
 ' (Zoom = 1), and two pages vertically (Rows = 2). Finally,
 ' we assign the doc variable to the Document property.
 PrintPreviewControl.Zoom = 1
 printPreviewControl.Rows = 2
 printPreviewControl.Document = doc

 End Sub

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Set the zoom.
 PrintPreviewControl.Zoom = Single.Parse(lstZoom.Text) / 100

 ' Rebind the PrintDocument to refresh the preview.
 PrintPreviewControl.Document = doc

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Retrieve the document that sent this event.
 Dim doc As TextDocument = DirectCast(sender, TextDocument)

 ' Determine the font and determine the line height.
 Using fnt As New Font("Arial", 10)
 Dim lineHeight As Single = Font.GetHeight(e.Graphics)

 ' Create variables to hold position on page.
 Dim x As Single = e.MarginBounds.Left
 Dim y As Single = e.MarginBounds.Top

 ' Increment the page counter (to reflect the page that
 ' is about to be printed).
 doc.PageNumber += 1

Herman_970-5C10.fm Page 430 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 431

 ' Print all the information that can fit on the page.
 ' This loop ends when the next line would go over the
 ' margin bounds, or there are no more lines to print.
 While ((y + lineHeight) < e.MarginBounds.Bottom And doc.Offset <= ➥
doc.Text.GetUpperBound(0))
 e.Graphics.DrawString(doc.Text(doc.Offset), Font, ➥
Brushes.Black, x, y)

 ' Move to the next line of data.
 doc.Offset += 1

 ' Move the equivalent of one line down the page.
 y += lineHeight
 End While

 If doc.Offset < doc.Text.GetUpperBound(0) Then
 ' There is still at least one more page. Signal
 ' this event to fire again.
 e.HasMorePages = True
 End If

 End Using
 End Sub

End Class

' (TextDocument class code omitted. See recipe 10-15.)

10-18. Manage Print Jobs

Problem

You need to pause or resume a print job or a print queue.

Solution

Use Windows Management Instrumentation (WMI). You can retrieve information from the print
queue using a query with the Win32_PrintJob class, and you can use the Pause and Resume methods
of the WMI Win32_PrintJob and Win32_Printer classes to manage the queue.

How It Works

WMI allows you to retrieve a vast amount of system information using a query-like syntax. One of
the tasks you can perform with WMI is to retrieve a list of outstanding print jobs, along with informa-
tion about each one. You can also perform operations such as printing and resuming a job or all the
jobs for a printer. To use WMI, you need to add a reference to the System.Management.dll assembly.

The Code

The following code shows a Windows application that interacts with the print queue. It performs a
WMI query to get a list of all the outstanding print jobs on the computer and displays the job Name for
each one in a list box. When the user selects the item, a more complete WMI query is performed, and

Herman_970-5C10.fm Page 431 Thursday, March 6, 2008 8:04 AM

432 CH AP T E R 1 0 ■ M U L T I M E D IA

additional details about the print job are displayed in a text box. Finally, the user can click the Pause/
Resume button after selecting a job to change its status.

Remember that Windows permissions might prevent you from pausing or resuming print jobs
created by another user. In fact, permissions might even prevent you from retrieving status informa-
tion and could cause a security exception to be thrown.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Management
Imports System.Collections
Imports System.text

' All designed code is stored in the autogenerated partial
' class called Recipe10-18.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe10_18

 Private Sub cmdRefresh_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdRefresh.Click

 Call GetJobs()

 End Sub

 Private Sub Recipe10_18_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Call GetJobs()

 End Sub

 ' This helper method attempts to bind directly to the
 ' specified WMI job. If successful, the found job is
 ' returned.
 Private Function GetSelectedJob(ByVal jobName As String) As ManagementObject

 Try
 ' Select the matching print job.
 Dim job As New ManagementObject("Win32_PrintJob=""" & jobName & """")
 job.Get()

 Return job
 Catch ex As Exception
 ' The job could not be found. It has most likely already completed.
 Return Nothing
 End Try

 End Function

 ' This helper method performs a WMI query and returns all
 ' of the current WMI jobs.
 Private Sub GetJobs()

Herman_970-5C10.fm Page 432 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 433

 ' Select all the outstanding print jobs.
 Dim query As String = "SELECT * FROM Win32_PrintJob"

 Using jobQuery As New ManagementObjectSearcher(query)
 Using jobs As ManagementObjectCollection = jobQuery.Get()
 ' Add the jobs in the queue to the list box.
 lstJobs.Items.Clear()
 txtJobInfo.Text = ""

 For Each job As ManagementObject In jobs
 lstJobs.Items.Add(job("Name"))
 Next
 End Using
 End Using

 End Sub

 Private Sub lstJobs_SelectedIndexChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles lstJobs.SelectedIndexChanged

 Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

 If job Is Nothing Then
 txtJobInfo.Text = ""
 Exit Sub
 End If

 ' Display job information.
 Dim jobInfo As New StringBuilder

 jobInfo.AppendFormat("Document: {0}", job("Document").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("DriverName: {0}", job("DriverName").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("Status: {0}", job("Status").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("Owner: {0}", job("Owner").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("PagesPrinted: {0}", job("PagesPrinted").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("TotalPages: {0}", job("TotalPages").ToString)

 If job("JobStatus") IsNot Nothing Then
 txtJobInfo.Text += Environment.NewLine
 txtJobInfo.Text += "JobStatus: " & job("JobStatus").ToString
 End If

 If job("StartTime") IsNot Nothing Then
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("StartTime: {0}", job("StartTime").ToString)
 End If
 txtJobInfo.Text = jobInfo.ToString

 End Sub

Herman_970-5C10.fm Page 433 Thursday, March 6, 2008 8:04 AM

434 CH AP T E R 1 0 ■ M U L T I M E D IA

 Private Sub cmdPause_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPause.Click

 If lstJobs.SelectedIndex = -1 Then Exit Sub

 Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

 If job Is Nothing Then Exit Sub

 ' Ensure that the job is not already paused (1).
 If Not (CInt(job("StatusMask") And 1)) = 1 Then
 ' Attempt to pause the job.
 Dim returnValue As Integer = CType(job.InvokeMethod("Pause", ➥
Nothing), Integer)

 ' Display information about the return value.
 If returnValue = 0 Then
 MessageBox.Show("Successfully paused job.")
 ElseIf returnValue = 5 Then
 MessageBox.Show("Access denied.")
 Else
 MessageBox.Show("Unrecognized return value when pausing job.")
 End If
 End If

 End Sub

 Private Sub cmdResume_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdResume.Click

 If lstJobs.SelectedIndex = -1 Then Exit Sub

 Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

 If job Is Nothing Then Exit Sub

 ' Check to ensure that the job is actually paused (1).
 If (CInt(job("StatusMask") And 1)) = 1 Then
 ' Attempt to resume the job.
 Dim returnValue As Integer = CType(job.InvokeMethod("Resume", ➥
Nothing), Integer)

 ' Display information about the return value.
 If returnValue = 0 Then
 MessageBox.Show("Successfully resumed job.")
 ElseIf returnValue = 5 Then
 MessageBox.Show("Access denied.")
 Else
 MessageBox.Show("Unrecognized return value when resuming job.")
 End If

 End If

 End Sub
End Class

Herman_970-5C10.fm Page 434 Thursday, March 6, 2008 8:04 AM

CH AP T E R 1 0 ■ M U L T I M E D IA 435

Usage

Figure 10-11 shows an example of running this application.

Figure 10-11. Retrieving information from the print queue

■Note Other WMI methods you might use in a printing scenario include AddPrinterConnection,
SetDefaultPrinter, CancelAllJobs, and PrintTestPage, all of which work with the Win32_Printer
class. For more information about WMI, refer to http://www.microsoft.com/whdc/system/pnppwr/wmi/
default.mspx.

Herman_970-5C10.fm Page 435 Thursday, March 6, 2008 8:04 AM

http://www.microsoft.com/whdc/system/pnppwr/wmi

Herman_970-5C10.fm Page 436 Thursday, March 6, 2008 8:04 AM

437

■ ■ ■

C H A P T E R 1 1

Networking and Remoting

The Microsoft .NET Framework includes a full set of classes for network programming. These classes
support everything from socket-based programming with Transmission Control Protocol/Internet
Protocol (TCP/IP) to downloading files and HTML pages from the Web over Hypertext Transfer Protocol
(HTTP). Not only do these networking classes provide you with a rich set of tried-and-tested tools to
use in your own distributed applications, they are also the foundation on which two high-level distrib-
uted programming models integral to the .NET Framework are built: remoting and web services.

Although remoting and web services share many similarities (for example, they both abstract
cross-process and cross-machine calls as method invocations on remote objects), they also have
fundamental differences. Web services are built using cross-platform standards and are based on the
concept of XML messaging. Web services are executed by the ASP.NET runtime, which means they
gain ASP.NET features such as output caching. This also means that web services are fundamentally
stateless. Overall, web services are best suited when you need to cross platform boundaries (for
example, with a Java client calling an ASP.NET web service) or trust boundaries (for example, in business-
to-business transactions). Although web services are extremely useful and powerful, since they are
built on ASP .NET, which is not covered in this book, they will not be covered in this chapter.

Remoting is a .NET-specific technology for distributed objects and is the successor to Distrib-
uted Component Object Model (DCOM). It’s ideal for in-house systems in which all applications are
built on the .NET platform, such as the backbone of an internal order-processing system. Remoting
allows for different types of communication, including leaner binary messages and more efficient
TCP/IP connections, which aren’t supported by web services. In addition, remoting is the only tech-
nology that supports stateful objects and bidirectional communication through callbacks. It’s also
the only technology that allows you to send custom .NET objects over the wire.

Although not covered in detail in this chapter, it is extremely important to mention Windows
Communication Foundation (WCF). WCF was first introduced in the .NET Framework 3.0 and repre-
sents a central framework that encompasses most communication functionality (such as the ones
mentioned earlier) that previously were handled by various, unrelated namespaces. For more in-
depth coverage of WCF, you can refer to other specific resources such as Windows Communication
Foundation Unleashed by Craig McMurty, et al. (SAMS, 2007) or Pro WCF: Practical Microsoft SOA
Implementation (Pro) by Chris Peiris and Dennis Mulder (Apress, 2007).

The recipes in this chapter cover the following:

• Obtaining configuration and network statistic information about the network interfaces on
a computer, as well as detecting when network configuration changes occur (recipes 11-1
and 11-2)

• Downloading files from File Transfer Protocol (FTP) and HTTP servers (recipes 11-3, 11-4,
and 11-6)

• Responding to HTTP requests from within your application (recipe 11-5)

Herman_970-5C11.fm Page 437 Friday, March 7, 2008 3:30 PM

438 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

• Sending e-mail messages with attachments using Simple Mail Transfer Protocol (SMTP)
(recipe 11-7)

• Using the Domain Name System (DNS) to resolve a host name into an Internet Protocol (IP)
address (recipe 11-8)

• Pinging an IP address to determine whether it is accessible and calculating round-trip
communication speeds by sending it an Internet Control Message Protocol (ICMP) Echo
request (recipe 11-9)

• Communicating between programs through the direct use of TCP in both synchronous and
asynchronous communication models (recipes 11-10 and 11-11)

• Communicating between processes using named pipes (recipe 11-13)

• Creating remotable objects and registering them with the .NET Framework’s remoting infra-
structure (recipes 11-14 and 11-15)

• Hosting a remote object in Internet Information Services (IIS) (recipe 11-16)

• Controlling the lifetime and versioning of remotable objects (recipes 11-17 and 11-18)

• Consuming a Real Simple Syndication (RSS) feed (recipe 11-17)

11-1. Obtain Information About the Local Network Interface

Problem

You need to obtain information about the network adapters and network configuration of the
local machine.

Solution

Call the Shared method GetAllNetworkInterfaces of the System.Net.NetworkInformation.
NetworkInterface class to get an array of objects derived from the abstract class NetworkInterface.
Each object represents a network interface available on the local machine. Use the members of each
NetworkInterface object to retrieve configuration information and network statistics for that interface.

How It Works

The System.Net.NetworkInformation namespace, which was first introduced in .NET Framework 2.0,
provides easy access to information about network configuration and statistics that was not readily
available to .NET applications previously.

The primary means of retrieving network information are the properties and methods of the
NetworkInterface class. You do not instantiate NetworkInterface objects directly. Instead, you
call the Shared method NetworkInterface.GetAllNetworkInterfaces, which returns an array of
NetworkInterface objects. Each object represents a single network interface on the local machine. You
can then obtain network information and statistics about the interface using the NetworkInterface
members described in Table 11-1.

Herman_970-5C11.fm Page 438 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 439

■Tip The System.Net.NetworkInformation.IPGlobalProperties class (first introduced in .NET Frame-
work 2.0) also provides access to useful information about the network configuration of the local computer.

Table 11-1. Members of the NetworkInterface Class

Member Description

Properties

Description Gets a String that provides a general description of the interface.

Id Gets a String that contains the unique identifier of the interface.

IsReceiveOnly Gets a Boolean indicating whether the interface can only receive or
can both send and receive data.

Name Gets a String containing the name of the interface.

NetworkInterfaceType Gets a value from the System.Net.NetworkInformation.
NetworkInterfaceType enumeration that identifies the type of interface.
Common values include Ethernet, FastEthernetT, and Loopback.

OperationalStatus Gets a value from the System.Net.NetworkInformation.
OperationalStatus enumeration that identifies the status of the inter-
face. Common values include Down and Up.

Speed Gets a Long that identifies the speed (in bits per second) of the inter-
face as reported by the adapter, not based on dynamic calculation.

SupportsMulticast Gets a Boolean indicating whether the interface is enabled to receive
multicast packets.

Methods

GetIPProperties Returns a System.Net.NetworkInformation.IPInterfaceProperties
object that provides access to the TCP/IP configuration information
for the interface. Properties of the IPInterfaceProperties object
provide access to WINS, DNS, gateway, and IP address configuration.

GetIPv4Statistics Returns a System.Net.NetworkInformation.IPv4InterfaceStatistics
object that provides access to the TCP/IP v4 statistics for the interface.
The properties of the IPv4InterfaceStatistics object provide access
to information about bytes sent and received, packets sent and received,
discarded packets, and packets with errors.

GetPhysicalAddress Returns a System.Net.NetworkInformation.PhysicalAddress object
that provides access to the physical address of the interface. You
can obtain the physical address as a Byte array using the method
PhysicalAddress.GetAddressBytes or as a String using PhysicalAddress.
ToString.

Supports Returns a Boolean indicating whether the interface supports a speci-
fied protocol. You specify the protocol using a value from the System.
Net.NetworkInformation.NetworkInterfaceComponent enumeration.
Possible values include IPv4 and IPv6.

Herman_970-5C11.fm Page 439 Friday, March 7, 2008 3:30 PM

440 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

The NetworkInterface class also provides two other Shared members that you will find useful:

• The Shared property LoopbackInterfaceIndex returns an Integer identifying the index of the
loopback interface within the NetworkInterface array returned by GetAllNetworkInterfaces.

• The Shared method GetIsNetworkAvailable returns a Boolean indicating whether any
network connection is available; that is, has an OperationalStatus value of Up.

The Code

The following example uses the members of the NetworkInterface class to display information
about all the network interfaces on the local machine:

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_01

 Public Shared Sub Main()

 ' Only proceed if there is a network available.
 If NetworkInterface.GetIsNetworkAvailable Then
 ' Get the set of all NetworkInterface objects for the local
 ' machine.
 Dim interfaces As NetworkInterface() = ➥
NetworkInterface.GetAllNetworkInterfaces

 ' Iterate through the interfaces and display information.
 For Each ni As NetworkInterface In interfaces
 ' Report basic interface information.
 Console.WriteLine("Interface Name: {0}", ni.Name)
 Console.WriteLine(" Description: {0}", ni.Description)
 Console.WriteLine(" ID: {0}", ni.Id)
 Console.WriteLine(" Type: {0}", ni.NetworkInterfaceType)
 Console.WriteLine(" Speed: {0}", ni.Speed)
 Console.WriteLine(" Status: {0}", ni.OperationalStatus)

 ' Report physical address.
 Console.WriteLine(" Physical Address: {0}", ➥
ni.GetPhysicalAddress().ToString)

 ' Report network statistics for the interface.
 Console.WriteLine(" Bytes Sent: {0}", ➥
ni.GetIPv4Statistics().BytesSent)
 Console.WriteLine(" Bytes Received: {0}", ➥
ni.GetIPv4Statistics.BytesReceived)

 ' Report IP configuration.
 Console.WriteLine(" IP Addresses:")
 For Each addr As UnicastIPAddressInformation In ➥
ni.GetIPProperties.UnicastAddresses
 Console.WriteLine(" - {0} (lease expires {1})", ➥
addr.Address, DateTime.Now.AddSeconds(addr.DhcpLeaseLifetime))

Herman_970-5C11.fm Page 440 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 441

 Next
 Console.WriteLine(Environment.NewLine)

 Next
 Else
 Console.WriteLine("No network available.")
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

11-2. Detect Changes in Network Connectivity

Problem

You need a mechanism to check whether changes to the network occur during the life of your
application.

Solution

Add handlers to the Shared NetworkAddressChanged and NetworkAvailabilityChanged events imple-
mented by the System.Net.NetworkInformation.NetworkChange class. The My object also offers a
shared NetworkAvailabilityChanged event. This event is implemented by the My.Computer.Network
class, which is part of the Microsoft.VisualBasic.Devices namespace. (See Chapter 5 for more
information about the My object.)

How It Works

The NetworkChange class provides an easy-to-use mechanism that allows applications to be aware of
changes to network addresses and general network availability. This allows your applications to
adapt dynamically to the availability and configuration of the network.

The NetworkAvailabilityChanged event fires when a change occurs to general network availability.
The NetworkAvailabilityChangedEventHandler delegate is used to handle this event and is passed
a NetworkAvailabilityEventArgs object when the event fires. The NetworkAvailabilityEventArgs.
IsAvailable property returns a Boolean value indicating whether the network is available or unavail-
able following the change.

The NetworkAvailabilityChanged event, of the My object, works in the same way as the matching
event in the NetworkChange class. This version of the event uses the NetworkAvailableEventHandler
delegate to handle this event, but its event arguments parameter is a NetworkAvailableEventArgs
object. Also, the property for retrieving network availability is named IsNetworkAvailable.

The NetworkAddressChanged event fires when the IP address of a network interface changes.
An instance of the NetworkAddressChangedEventHandler delegate is required to handle these events.
No event-specific arguments are passed to the event handler, which must call

Herman_970-5C11.fm Page 441 Friday, March 7, 2008 3:30 PM

442 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

NetworkInterface.GetAllNetworkInterfaces (discussed in recipe 11-1) to determine what has
changed and to take appropriate action. The My object does not offer an equivalent for this event.

The Code

The following example demonstrates how to use handlers that catch NetworkAddressChanged and
NetworkAvailabilityChanged events and then displays status information to the console:

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_02

 ' Declare a method to handle NetworkAvailabilityChanged events.
 Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object, ➥
ByVal e As NetworkAvailabilityEventArgs)

 ' Report whether the network is now available or unavailable.
 If e.IsAvailable Then
 Console.WriteLine("Network Available")
 Else
 Console.WriteLine("Network Unavailable")
 End If

 End Sub

 ' Declare a method to handle NetworkAddressChanged events.
 Private Shared Sub NetworkAddressChanged(ByVal sender As Object, ➥
ByVal e As EventArgs)

 Console.WriteLine("Current IP Addresses:")

 ' Iterate through the interfaces and display information.
 For Each ni As NetworkInterface In ➥
NetworkInterface.GetAllNetworkInterfaces
 For Each addr As UnicastIPAddressInformation In ➥
ni.GetIPProperties.UnicastAddresses
 Console.WriteLine(" - {0} (lease expires {1})", ➥
addr.Address, DateTime.Now.AddSeconds(addr.DhcpLeaseLifetime))
 Next
 Next

 End Sub

 Public Shared Sub Main()

 ' Add the handlers to the NetworkChange events.
 AddHandler NetworkChange.NetworkAvailabilityChanged, ➥
AddressOf NetworkAvailabilityChanged
 AddHandler NetworkChange.NetworkAddressChanged, ➥
AddressOf NetworkAddressChanged

Herman_970-5C11.fm Page 442 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 443

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Press Enter to stop waiting for network events.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

To use the My object equivalent of the NetworkAvailabilityChanged event, replace the
NetworkAvailabilityChanged handler with the following:

 ' Declare a method to handle NetworkAvailabilityChanged events.
 Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object, ➥
ByVal e As Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs)

 ' Report whether the network is now available or unavailable.
 If e.IsNetworkAvailable Then
 Console.WriteLine("Network Available")
 Else
 Console.WriteLine("Network Unavailable")
 End If

 End Sub

You also need to replace the current call to AddHandler with this:

AddHandler My.Computer.Network.NetworkAvailabilityChanged, AddressOf ➥
NetworkAvailabilityChanged

11-3. Download Data over HTTP or FTP

Problem

You need a quick, simple way to download data from the Internet using HTTP or FTP.

Solution

Use the methods of the System.Net.WebClient class or the DownloadFile method of the My.Computer.
Network class. (Refer to Chapter 5 for more information about the My object.)

How It Works

The .NET Framework provides several mechanisms for transferring data over the Internet. One of
the easiest approaches is to use the System.Net.WebClient class. WebClient provides many high-level
methods that simplify the transfer of data by specifying the source as a uniform resource identifier
(URI); Table 11-2 summarizes them. The URI can specify that a file (file://), FTP (ftp://), HTTP
((http://), or HTTPS (https://) protocol be used to download the resource.

Herman_970-5C11.fm Page 443 Friday, March 7, 2008 3:30 PM

444 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

The asynchronous download methods allow you to download data as a background task using
a thread from the thread pool (discussed in recipe 4-1). When the download is finished or fails, the
thread calls the appropriate event on the WebClient object, which you can handle using a method
that matches the signature of the System.ComponentModel.AsyncCompletedEventHandler delegate if
you don’t want to derive a type from WebClient and override the virtual method. However, the
WebClient object can handle only a single concurrent asynchronous download, making a WebClient
object suitable for the background download of large single sets of data but not for the download of
many files concurrently. (You could, of course, create multiple WebClient objects to handle multiple
downloads.) You can cancel the outstanding asynchronous download using the method
CancelAsync.

■Tip The WebClient class derives from System.ComponentModel.Component, so you can add it to the
Visual Studio 2008 Form Designer Toolbox in order to allow you to easily set the properties or define the event
handlers in a Windows Forms–based application.

If you need to download only a file, the My object also offers a DownloadFile method. As with the
matching method in the WebClient class, you can specify a String or Uri for the address parameter.
The My version of the method lets you specify a username and password or a System.Net.ICredential
object, while the WebClient version requires you to use the Credentials property of the class, which
accepts only an ICredential object. Unlike with the WebClient version, you can also specify a time-out
using the connectionTimeout parameter or show a non-modal progress dialog box (which includes a
Cancel button) using the showUI parameter.

Table 11-2. Data Download Methods of the WebClient Class

Method Description

OpenRead Returns a System.IO.Stream that provides access to the data from a
specified URI.

OpenReadAsync Same as OpenRead, but performs the data transfer using a thread-pool
thread so that the calling thread does not block. Add an event handler
to the OpenReadCompleted event to receive notification that the operation
has completed.

DownloadData Returns a Byte array that contains the data from a specified URI.

DownloadDataAsync Same as DownloadData, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadDataCompleted event to receive notification
that the operation has completed.

DownloadFile Downloads data from a specified URI and saves it to a specified local file.

DownloadFileAsync Same as DownloadFile, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadFileCompleted event to receive notification
that the operation has completed.

DownloadString Returns a String that contains the data from a specified URI.

DownloadStringAsync Same as DownloadString, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadStringCompleted event to receive notification
that the operation has completed.

Herman_970-5C11.fm Page 444 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 445

The Code

The following example downloads a specified resource from a URI as a string and, since it is an
HTML page, parses it for any fully qualified URLs that refer to GIF files. It then downloads each of
these files to the local hard drive.

Imports System
Imports System.IO
Imports System.Net
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_03

 Public Shared Sub Main()

 ' Specify the URI of the resource to parse.
 Dim remoteUri As String = "http://www.msdn.com"

 ' Create a WebClient to perform the download.
 Dim client As New WebClient

 Console.WriteLine("Downloading {0}", remoteUri)

 ' Perform the download getting the resource as a string.
 Dim str As String = client.DownloadString(remoteUri)

 ' Use a regular expression to extract all fully qualified
 ' URIs that refer to GIF files.
 Dim matches As MatchCollection = Regex.Matches(str, ➥
"http\S+[^-,;:?]\.gif")

 ' Try to download each referenced GIF file.
 For Each expMatch As Match In matches
 For Each grp As Group In expMatch.Groups
 ' Determine the local filename.
 Dim downloadedFile As String = ➥
grp.Value.Substring(grp.Value.LastIndexOf("/") + 1)

 Try
 ' Download and store the file.
 Console.WriteLine("Downloading {0} to file {1}", ➥
grp.Value, downloadedFile)

 client.DownloadFile(New Uri(grp.Value), downloadedFile)
 Catch ex As Exception
 Console.WriteLine("Failed to download {0}", grp.Value)
 End Try
 Next
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

Herman_970-5C11.fm Page 445 Friday, March 7, 2008 3:30 PM

http://www.msdn.com

446 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 End Sub

 End Class
End Namespace

■Note The regular expression used in the example is simple and is not designed to cater to all possible URL
structures. Recipes 2-5 and 2-6 discuss regular expressions.

Changing the code sample to use the My version of DownloadFile is as simple as replacing
client.DownloadFile with My.Computer.Network.DownloadFile.

Notes

You may also want to upload data to resources specified as a URI, although this technique is not as
commonly used as the other approaches discussed in this recipe. The WebClient class also provides
the following methods for performing uploads that are equivalent to the download methods discussed
previously:

• OpenWrite

• OpenWriteAsync

• UploadData

• UploadDataAsync

• UploadFile

• UploadFileAsync

• UploadString

• UploadStringAsync

Not to be outdone, My offers the UploadFile method, which is used in a similar fashion to the
DownloadFile method.

11-4. Download a File and Process It Using a Stream

Problem

You need to retrieve a file from a web site, but you do not want to save it directly to the hard drive,
or you do not have permission to do so. Instead, you need to process the data in your application
directly in memory.

Solution

Use the System.Net.WebRequest class to create your request, the System.Net.WebResponse class to
retrieve the response from the web server, and some form of reader (typically a System.IO.StreamReader
for HTML or text data, or a System.IO.BinaryReader for a binary file) to parse the response data.

Herman_970-5C11.fm Page 446 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 447

■Note You could also use the OpenRead method of the System.Net.WebClient class to open a stream.
However, the additional capabilities of the WebRequest and WebResponse classes give you more control over the
operation of the network request.

How It Works

Opening and downloading a stream of data from the Web using the WebRequest and WebResponse
classes takes the following four basic steps:

1. Use the Shared method Create of the WebRequest class to specify the page you want. This
method returns a WebRequest-derived object, depending on the type of URI you specify. For
example, if you use an HTTP or HTTPS URI (with the scheme http:// or https://), you will
create an HttpWebRequest instance. If you use a file system URI (with the scheme file://), you
will create a FileWebRequest instance. You can also use an FTP URI (with the scheme ftp://),
which will create an FtpWebRequest.

2. Use the GetResponse method of the WebRequest object to return a WebResponse object for the
page. If the request times out, a System.Net.WebException will be thrown. You can configure
the time-out for the network request through the WebRequest.Timeout property in milliseconds
(the default value is 10000).

3. Create a StreamReader or a BinaryReader that wraps the stream returned by the WebResponse.
GetResponseStream method. In some cases, you might have to use other means to wrap the
returning stream, such as the Image.FromStream method.

4. Perform any steps you need to with the stream contents.

The Code

The following example retrieves and displays a graphic and the HTML content of a web page.

Imports System
Imports System.Net
Imports System.IO
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe11-04.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe11_04

 Private Sub Recipe11_04_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim picUri As String = "http://www.apress.com/img/img05/Hex_RGB4.jpg"
 Dim htmlUri As String = "http://www.apress.com"

 ' Create the requests.
 Dim requestPic As WebRequest = WebRequest.Create(picUri)
 Dim requestHtml As WebRequest = WebRequest.Create(htmlUri)

Herman_970-5C11.fm Page 447 Friday, March 7, 2008 3:30 PM

http://or
http://www.apress.com/img/img05/Hex_RGB4.jpg
http://www.apress.com

448 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Get the responses. This takes the most significant amount of
 ' time, particularly if the file is large, because the whole
 ' response is retrieved.
 Dim responsePic As WebResponse = requestPic.GetResponse
 Dim responseHtml As WebResponse = requestHtml.GetResponse

 ' Read the image from the response stream.
 picturebox1.Image = Image.FromStream(responsePic.GetResponseStream)

 ' Read the text from the response stream.
 Using r As New StreamReader(responseHtml.GetResponseStream)
 textbox1.text = r.ReadToEnd
 End Using

 End Sub

End Class

Usage

Running the example will display, as shown in Figure 11-1, the image and HTML data retrieved from
the target locations.

Figure 11-1. Downloading content from the Web using a stream

11-5. Respond to HTTP Requests from Your Application

Problem

You want your application to be able to respond to HTTP requests programmatically.

Solution

Use the System.Net.HttpListener class, which was first introduced in .NET Framework 2.0.

Herman_970-5C11.fm Page 448 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 449

■Note Your application must be running on Windows XP Service Pack 2 (or later) or Windows 2003 (or later) to
use the HttpListener class; otherwise, a System.PlatformNotSupportedException will be thrown when
you try to instantiate it. Check the Boolean returned by the Shared property HttpListener.IsSupported to
see whether support is available.

How It Works

The HttpListener class provides an easy-to-use mechanism through which your programs can accept
and respond to HTTP requests. To use the HttpListener class, follow these steps:

1. Instantiate an HttpListener object.

2. Configure the URI prefixes that the HttpListener object will handle using the Prefixes
property. A URI prefix is a string that represents the starting portion of a URI, which consists
of the schema type (such as http:// or https://), a host, and optionally a path and port. The
Prefixes property returns a System.Net.HttpListenerPrefixCollection collection to which
you can add URI prefixes using the Add method. Each prefix must end with a forward slash (/),
or a System.ArgumentException is thrown. If you specify a URL prefix that is already being
handled, a System.Net.HttpListenerException is thrown. When a client makes a request, the
request will be handled by the listener configured with the prefix that most closely matches
the client’s requested URL.

3. Start the HttpListener object by calling its Start method. You must call Start before the
HttpListener object can accept and process HTTP requests.

4. Accept client requests using the GetContext method of the HttpListener object. The GetContext
method will block the calling thread until a request is received and then returns a System.Net.
HttpListenerContext object. Alternatively, you can use the BeginGetContext and EndGetContext
methods to listen for requests on a thread-pool thread. When a request is received, the System.
AsynchCallback delegate specified as the argument to the BeginGetContext method will be
called and passed the HttpListenerContext object. Regardless of how it is obtained, the
HttpListenerContext objects implements three read-only properties critical to the handling of
a client request:

• The Request property returns a System.Net.HttpListenerRequest through which you can
access details of the client’s request.

• The Response property returns a System.Net.HttpListenerResponse through which you
can configure the response to send to the client.

• The User property returns an instance of a type implementing System.Security.Principal.
IPrincipal, which you can use to obtain identity, authentication, and authorization infor-
mation about the user associated with the request.

5. Configure the HTTP response through the members of the HttpListenerResponse object
accessible through the HttpListenerContext.Response property.

6. Send the response by calling the Close method of the HttpListenerResponse object.

7. Once you have finished processing HTTP requests, call Stop on the HttpListener object to
stop accepting more requests and pause the listener. Call Close to shut down the HttpListener
object, which will wait until all outstanding requests have been processed, or call Abort to
terminate the HttpListener object without waiting for requests to be complete.

Herman_970-5C11.fm Page 449 Friday, March 7, 2008 3:30 PM

http://or

450 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

■Note When using the HttpListener class, be sure you are running as a system administrator because higher-level
rights are required to use it. If you are running under Windows Vista, you have the option of configuring the User
Access Control (UAC) settings (refer to recipe 9-21 for more information on this) to ensure your application appro-
priately demands administrative rights.

The Code

The following example demonstrates how to use the HttpListener class to process HTTP requests.
The example starts listening for five requests concurrently using the asynchronous BeginGetContext
method and handles the response to each request by calling the RequestHandler method. Each time
a request is handled, a new call is made to BeginGetContext so that you always have the capacity to
handle up to five requests.

To open a connection to the example from your browser, enter the URL http://localhost:19080/
VisualBasicRecipes/ or http://localhost:20000/Recipe11-05/, and you will see the response from
the appropriate request handler.

Imports System
Imports System.IO
Imports System.Net
Imports System.Text
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_05

 ' Configure the maximum number of requests that can be
 ' handled concurrently.
 Private Shared maxRequestHandlers As Integer = 5

 ' An integer used to assign each HTTP request handler a unique
 ' identifier.
 Private Shared requestHandlerID As Integer = 0

 ' The HttpListener is the class that provides all the
 ' capabilities to receive and process HTTP requests.
 Private Shared listener As HttpListener

 Public Shared Sub Main()

 ' Quit gracefully if this feature is not supported.
 If Not HttpListener.IsSupported Then
 Console.WriteLine("You must be running this example on Windows" & ➥
" XP SP2, Windows Server 2003, or higher to create an HttpListener.")

 Exit Sub
 End If

 ' Create the HttpListener.
 listener = New HttpListener

Herman_970-5C11.fm Page 450 Friday, March 7, 2008 3:30 PM

http://localhost:19080
http://localhost:20000/Recipe11-05

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 451

 ' Configure the URI prefixes that will map to the HttpListener.
 listener.Prefixes.Add("http://localhost:19080/VisualBasicRecipes/")
 listener.Prefixes.Add("http://localhost:20000/Recipe11-05/")

 ' Start the HttpListener before listening for incoming requests.
 Console.WriteLine("Starting HTTP Server")
 listener.Start()
 Console.WriteLine("HTTP Server started")
 Console.WriteLine(Environment.NewLine)

 ' Create a number of asynchronous request handlers up to
 ' the configurable maximum. Give each a unique identifier.
 For count As Integer = 1 To maxRequestHandlers
 listener.BeginGetContext(AddressOf RequestHandler, ➥
"RequestHandler_" & Interlocked.Increment(requestHandlerID))
 Next

 ' Wait for the user to stop the HttpListener.
 Console.WriteLine("Press Enter to stop the HTTP Server.")
 Console.ReadLine()

 ' Stop accepting new requests.
 listener.Stop()

 ' Terminate the HttpListener without processing current requests.
 listener.Abort()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' A method to asynchronously process individual requests
 ' and send responses.
 Private Shared Sub RequestHandler(ByVal result As IAsyncResult)

 Console.WriteLine("{0}: Activated.", result.AsyncState)

 Try
 ' Obtain the HttpListenerContext for the new request.
 Dim context As HttpListenerContext = listener.EndGetContext(result)

 Console.WriteLine("{0}: Processing HTTP Request from {1} ({2}).", ➥
result.AsyncState, context.Request.UserHostName, context.Request.RemoteEndPoint)

 ' Build the response using a StreamWriter feeding the
 ' Response.OutputStream.
 Dim sw As New StreamWriter(context.Response.OutputStream, ➥
Encoding.UTF8)

Herman_970-5C11.fm Page 451 Friday, March 7, 2008 3:30 PM

http://localhost:19080/VisualBasicRecipes
http://localhost:20000/Recipe11-05

452 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 sw.WriteLine("<html>")
 sw.WriteLine("<head>")
 sw.WriteLine("<title>Visual Basic Recipes</title>")
 sw.WriteLine("</head>")
 sw.WriteLine("<body>")
 sw.WriteLine("Recipe 11-05: " & result.AsyncState)
 sw.WriteLine("</body>")
 sw.WriteLine("</html>")
 sw.Flush()

 ' Configure the response.
 context.Response.ContentType = "text/html"
 context.Response.ContentEncoding = Encoding.UTF8

 ' Close the response to send it to the client.
 context.Response.Close()

 Console.WriteLine("{0}: Sent HTTP response.", result.AsyncState)
 Catch ex As ObjectDisposedException
 Console.WriteLine("{0}: HttpListener disposed--shutting down.", ➥
result.AsyncState)
 Finally
 ' Start another handler unless the HttpListener is closing.
 If listener.IsListening Then
 Console.WriteLine("{0}: Creating new request handler.", ➥
result.AsyncState)

 listener.BeginGetContext(AddressOf RequestHandler, ➥
"RequestHandler_" & Interlocked.Increment(requestHandlerID))
 End If
 End Try

 End Sub

 End Class
End Namespace

11-6. Get an HTML Page from a Site That Requires Authentication

Problem

You need to retrieve a file from a web site, but the web site requires that you provide credentials for
the purpose of authentication.

Solution

Use the System.Net.WebRequest and System.Net.WebResponse classes as described in recipe 11-4.
Before making the request, configure the WebRequest.Credentials and WebRequest.Certificates
properties with the necessary authentication information.

Herman_970-5C11.fm Page 452 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 453

■Tip You could also use the System.Net.WebClient class (discussed in recipe 11-3). It also has Credentials
and Certificates properties that allow you to associate user credentials with a web request.

How It Works

Some web sites require user authentication information. When connecting through a browser, this
information might be submitted transparently (for example, on a local intranet site that uses Inte-
grated Windows authentication), or the browser might request this information with a login dialog
box. When accessing a web page programmatically, your code needs to submit this information. The
approach you use depends on the type of authentication implemented by the web site:

• If the web site is using basic or digest authentication, you can transmit a username and pass-
word combination by manually creating a new System.Net.NetworkCredential object, which
implements the ICredentials and ICredentialsByHost interfaces, and assigning it to the
WebRequest.Credentials property. With digest authentication, you may also supply a domain
name.

• If the web site is using Integrated Windows authentication, you can take the same approach
and manually create a new System.Net.NetworkCredential object. Alternatively, you can
retrieve the current user login information from the System.Net.CredentialCache object
using the DefaultCredentials property.

• If the web site requires a client certificate, you can load the certificate from a file using the
System.Security.Cryptography.X509Certificates.X509Certificate2 class and add that to
the HttpWebRequest.ClientCertificates collection. Since the base WebRequest class does not
have the ClientCertifcates collection, you must explicitly cast it to an HttpWebRequest object.

• You can load an X.509 certificate from a certificate store using the class System.Security.
Cryptography.X509Certificates.X509Store defined in the System.Security assembly. You
can either find a certificate in the store programmatically using the X509Store.Certificates.
Find method or present users with a Windows dialog box and allow them to select the certifi-
cate. To present a dialog box, pass a collection of X.509 certificates contained in an
X509Certificate2Collection object to the SelectFromCollection method of the System.
Security.Cryptography.X509Certificates.X509Certificate2UI class.

The Code

The following example demonstrates all four of the basic approaches described previously. Note
that you need to add a reference to the System.Security assembly.

Imports System
Imports System.Net
Imports System.Security.Cryptography.X509Certificates

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_06

 Public Shared Sub Main()

 ' Create a WebRequest that authenticates the user with a
 ' username and password combination over basic authentication.
 Dim requestA As WebRequest = WebRequest.Create("http:" & ➥

Herman_970-5C11.fm Page 453 Friday, March 7, 2008 3:30 PM

454 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

"//www.somesite.com")
 requestA.Credentials = New NetworkCredential("username", "password")

 ' Create a WebRequest that authenticates the current user
 ' with Integrated Windows authentication.
 Dim requestB As WebRequest = WebRequest.Create("http:" & ➥
"//www.somesite.com")
 requestB.Credentials = CredentialCache.DefaultCredentials

 ' Create a WebRequest that authenticates the user with a client
 ' certificate loaded from a file.
 Dim requestC As HttpWebRequest = ➥
DirectCast(WebRequest.Create("http:"//www.somesite.com"), HttpWebRequest)
 Dim cert1 = X509Certificate.CreateFromCertFile("..\..\" & ➥
"TestCertificate.cer")
 requestC.ClientCertificates.Add(cert1)

 ' Create a WebRequest that authenticates the user with a client
 ' certificate loaded from a certificate store. Try to find a
 ' certificate with a specific subject, but if it is not found,
 ' present the user with a dialog so he can select the certificate
 ' to use from his personal store.
 Dim requestD As HttpWebRequest = ➥
DirectCast(WebRequest.Create("http://www.somesite.com"), HttpWebRequest)
 Dim store As New X509Store
 Dim certs As X509Certificate2Collection = ➥
store.Certificates.Find(X509FindType.FindBySubjectName, "Todd Herman", False)

 If certs.Count = 1 Then
 requestD.ClientCertificates.Add(certs(0))
 Else
 certs = X509Certificate2UI.SelectFromCollection(➥
store.Certificates,"Select Certificate", "Select the certificate to use for " & ➥
"authentication.", X509SelectionFlag.SingleSelection)

 If Not certs.Count = 0 Then
 requestD.ClientCertificates.Add(certs(0))
 End If
 End If

 ' Now issue the request and process the responses...

 End Sub

 End Class
End Namespace

Herman_970-5C11.fm Page 454 Friday, March 7, 2008 3:30 PM

http://www.somesite.com
http://www.somesite.com
http:"//www.somesite.com
http://www.somesite.com

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 455

11-7. Send E-mail Using SMTP

Problem

You need to send e-mail using an SMTP server.

Solution

Use the SmtpClient and MailMessage classes in the System.Net.Mail namespace.

How It Works

An instance of the SmtpClient class provides the mechanism through which you communicate with
the SMTP server. You configure the SmtpClient using the properties described in Table 11-3.

Table 11-3. Properties of the SmtpClient Class

Property Description

ClientCertificates Gets a System.Security.Cryptography.X509Certificates.
X509CertificatesCollection to which you add the certificates
to use for communicating with the SMTP server (if required).

Credentials Gets or sets an implementation of the System.Net.
ICredentialsByHost interface that represents the credentials to
use to gain access to the SMTP server. The CredentialCache and
NetworkCredential classes implement the ICredentialsByHost
interface. Use NetworkCredential if you want to specify a single set
of credentials and CredentialCache if you want to specify more than
one.

EnableSsl Gets or sets a Boolean value that indicates whether the SmtpClient
should use Secure Sockets Layer (SSL) to communicate with the
SMTP server. The default value is False.

Host Gets or sets a String containing the host name or IP address of the
SMTP server to use to send e-mail.

Port Gets or sets an Integer value containing the port number to
connect to on the SMTP server. The default value is 25.

Timeout Gets or sets an Integer value containing the time-out in milliseconds
when attempting to send e-mail. The default is 100 seconds.

UseDefaultCredentials Gets or sets a Boolean value indicating whether the default user
credentials are used when communicating with the SMTP server. If
true, the credentials passed to the SMTP server are automatically
obtained from the Shared property CredentialCache.
DefaultCredentials. The default value is False.

Herman_970-5C11.fm Page 455 Friday, March 7, 2008 3:30 PM

456 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

■Tip You can specify default settings for the SmtpClient in the <mailSettings> section of your machine or
application configuration files. Configurable default values include the host, port, username, password, and whether
or not the default credentials should be used.

Mail messages are represented by MailMessage objects, which you instantiate and then configure
using the members summarized in Table 11-4.

Once you have configured the SmtpClient, you can send your MailMessage objects using the
SmtpClient.Send method, which will cause your code to block until the send operation is completed
or fails. Alternatively, you can send mail using a thread from the thread pool by calling the SendAsync

Table 11-4. Properties of the MailMessage Class

Property Description

Attachments Gets or sets a System.Net.Mail.AttachmentCollection containing the set of
attachments for the e-mail message. A System.Net.Mail.Attachment object
represents each attachment. You can create Attachment objects from files
or streams, and you can configure the encoding and content type for each
attachment.

Bcc Gets or sets a System.Net.Mail.MailAddressCollection containing the blind
carbon copy addresses for the e-mail message. The MailAddressCollection
contains one or more MailAddress objects.

Body Gets or sets a String value that contains the body text of the e-mail
message.

BodyEncoding Gets or sets a System.Text.Encoding object that specifies the encoding for
the body of the e-mail message. The default value is Nothing, resulting in
a default encoding of us-ascii, which is equivalent to the Encoding object
returned by the Shared property Encoding.ASCII.

CC Gets or sets a System.Net.Mail.MailAddressCollection containing the
carbon copy addresses for the e-mail message. The MailAddressCollection
contains one or more MailAddress objects.

From Gets or sets a System.Net.Mail.MailAddress containing the from address
for the e-mail message.

IsBodyHtml Gets or sets a Boolean value identifying whether the body of the e-mail
message contains HTML.

ReplyTo Gets or sets a System.Net.Mail.MailAddress containing the reply address
for the e-mail message.

Subject Gets or sets a String containing the subject for the e-mail message.

SubjectEncoding Gets or sets a System.Text.Encoding object that specifies the encoding
used to encode the subject of the e-mail subject. The default value is
Nothing, resulting in a default encoding of us-ascii, which is equivalent to
the Encoding object returned by the Shared property Encoding.ASCII.

To Gets or sets a System.Net.Mail.MailAddressCollection containing the
destination addresses for the e-mail message. The MailAddressCollection
contains one or more MailAddress objects.

Herman_970-5C11.fm Page 456 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 457

method. When you call SendAsync, your code will be free to continue other processing while the
e-mail is sent. Add an event handler to the SendCompleted event to receive notification that the asyn-
chronous send has completed.

The Code

The following example demonstrates how to use the SmtpClient class to send an e-mail message
with multiple attachments to a set of recipients whose e-mail addresses are specified as command-
line arguments.

Imports System
Imports System.Net
Imports System.Net.Mail

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_07

 Public Shared Sub Main(ByVal args As String())

 ' Create and configure the SmtpClient that will send the mail.
 ' Specify the host name of the SMTP server and the port used
 ' to send mail.
 Dim client As New SmtpClient("mail.somecompany.com", 25)

 ' Configure the SmtpClient with the credentials used to connect
 ' to the SMTP server.
 client.Credentials = New NetworkCredential("user@somecompany.com", ➥
"password")

 ' Create the MailMessage to represent the e-mail being sent.
 Using msg As New MailMessage

 ' Configure the e-mail sender and subject.
 msg.From = New MailAddress("author@visual-basic-recipes.com")
 msg.Subject = "Greetings from Visual Basic Recipes"

 ' Configure the e-mail body.
 msg.Body = "This is a message from Recipe 11-07 of Visual " & ➥
"Basic Recipes. Attached is the source file and the binary for the recipe."

 ' Attach the files to the e-mail message and set their MIME type.
 msg.Attachments.Add(New Attachment("..\..\Recipe11-07.vb", ➥
"text/plain"))
 msg.Attachments.Add(New Attachment("Recipe11-07.exe", ➥
"application/octet-stream"))

 ' Iterate through the set of recipients specified on the
 ' command line. Add all addresses with the correct structure
 ' as recipients.
 For Each arg As String In args
 ' Create a MailAdress from each value on the command line
 ' and add it to the set of recipients.

Herman_970-5C11.fm Page 457 Friday, March 7, 2008 3:30 PM

mailto:user@somecompany.com
mailto:author@visual-basic-recipes.com

458 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 Try
 msg.To.Add(New MailAddress(arg))
 Catch ex As FormatException
 ' Proceed to the next specified recipient.
 Console.WriteLine("{0}: Error -- {1}", arg, ex.Message)
 Continue For
 End Try

 ' Send the message.
 client.Send(msg)
 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

11-8. Resolve a Host Name to an IP Address

Problem

You want to determine the IP address for a computer based on its fully qualified domain name by
performing a DNS query.

Solution

Use the method GetHostEntry of the System.Net.Dns class, and pass the computer’s fully qualified
domain name as a string parameter.

How It Works

On the Internet, the human-readable names that refer to computers are mapped to IP addresses,
which is what TCP/IP requires in order to communicate between computers. For example, the name
www.apress.com might be mapped to the IP address 65.19.150.100. To determine the IP address for a
given name, the computer contacts a DNS server. The name or IP address of the DNS server contacted is
configured as part of a computer’s network configuration.

The entire process of name resolution is transparent if you use the System.Net.Dns class, which
allows you to retrieve the IP address for a host name by calling GetHostEntry.

The Code

The following example retrieves the IP addresses of all computers whose fully qualified domain
names are specified as command-line arguments:

Imports System
Imports System.Net

Herman_970-5C11.fm Page 458 Friday, March 7, 2008 3:30 PM

http://www.apress.com

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 459

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_08

 Public Shared Sub Main(ByVal args As String())

 For Each comp As String In args

 Try
 ' Retrieve the DNS entry for the specified computer.
 Dim dnsEntry As IPHostEntry = Dns.GetHostEntry(comp)

 ' The DNS entry may contain more than one IP address. Iterate
 ' through them and display each one along with the type of
 ' address (AddressFamily).
 For Each address As IPAddress In dnsEntry.AddressList
 Console.WriteLine("{0} = {1} ({2})", comp, address, ➥
address.AddressFamily)
 Next
 Catch ex As Exception
 Console.WriteLine("{0} = Error ({1})", comp, ex.Message)
 End Try
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note The IPAddress class fully supports both IPv4 and IPv6.

Usage

Running the example with the following command line:

recipe11-08 www.apress.com www.microsoft.com localhost somejunk

will produce the following output. Notice that multiple IP addresses are returned for some host names.

www.apress.com = 65.19.150.101 (InterNetwork)
www.microsoft.com = 207.46.192.254 (InterNetwork)
www.microsoft.com = 207.46.19.190 (InterNetwork)
www.microsoft.com = 207.46.19.254 (InterNetwork)
www.microsoft.com = 207.46.193.254 (InterNetwork)
localhost = 127.0.0.1 (InterNetwork)
somejunk = Error (No such host is known)

Herman_970-5C11.fm Page 459 Friday, March 7, 2008 3:30 PM

http://www.apress.com
http://www.microsoft.com
http://www.apress.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com

460 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

11-9. Ping an IP Address

Problem

You want to check to see whether a computer is online and accessible and gauge its response time.

Solution

Send a ping message. This message is sent using the ICMP, accessible through the Send method of
the System.Net.NetworkInformation.Ping class.

How It Works

A ping message contacts a device at a specific IP address, passing it a test packet, and requests that
the remote device respond by echoing back the packet. To gauge the connection latency between
two computers, you can measure the time taken for a ping response to be received.

■Caution Many commercial web sites do not respond to ping requests because they represent an unnecessary
processing overhead and are often used in denial of service attacks. The firewall that protects the site will usually
filter out ping requests before they reach the specified destination. This will cause your ping request to time out.

The Ping class allows you to send ping messages using the Send method. The Send method provides
a number of overloads, which allow you to specify the following:

• The IP address or host name of the target computer. You can specify this as a String or a
System.Net.IPAddress object.

• The number of milliseconds to wait for a response before the request times out (specified as
an Integer). The default is set to 5000.

• A System.Net.NetworkInformation.PingOptions object that specifies time-to-live and fragmenta-
tion options for the transmission of the ping message.

The Send method will return a System.Net.NetworkInformation.PingReply object. The Status
property of the PingReply will contain a value from the System.Net.NetworkInformation.IPStatus
enumeration from which you can determine the result of the ping request. The most common values
will be Success and TimedOut. If the host name you pass to the Send method cannot be resolved, Send
will throw an exception, but you must look at the InnerException to determine the cause of the problem.

The Ping class also provides a SendAsync method that performs the ping request using a thread-
pool thread so that the calling thread does not block. When the ping is finished or fails because of a
time-out, the thread raises the PingCompleted event on the Ping object, which you can handle using
a method that matches the signature of the System.Net.NetworkInformation.
PingCompletedEventHandler delegate. However, the Ping object can handle only a single concurrent
request; otherwise, it will throw a System.InvalidOperationException.

■Tip The Ping class derives from System.ComponentModel.Component, so you can add it to the Visual
Studio 2008 Form Designer Toolbox. This will allow you to easily set the properties or define the event handlers in
a Windows Forms–based application.

Herman_970-5C11.fm Page 460 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 461

The Code

The following example pings the computers whose domain names or IP addresses are specified as
command-line arguments.

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_09

 Public Shared Sub Main(ByVal args As String())

 ' Create an instance of the Ping class.
 Using png As New Ping
 Console.WriteLine("Pinging:")

 For Each comp As String In args

 Try
 Console.Write(" {0}...", comp)

 ' Ping the specified computer with a time-out of 100ms.
 Dim reply As PingReply = png.Send(comp, 100)

 If reply.Status = IPStatus.Success Then
 Console.WriteLine("Success - IP Address:{0} " & ➥
"Time:{1}ms", reply.Address, reply.RoundtripTime)
 Else
 Console.WriteLine(reply.Status.ToString)
 End If

 Catch ex As Exception
 Console.WriteLine("Error ({0})", ex.InnerException.Message)
 End Try

 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C11.fm Page 461 Friday, March 7, 2008 3:30 PM

462 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

Usage

Running the example with the following command line:

recipe11-09 www.apress.com www.google.com localhost somejunk

will produce the following output:

Pinging:
 www.apress.com...TimedOut
 www.google.com...Success - IP Address: 64.233.169.99 Time:122ms
 localhost...Success - IP Address:127.0.0.1 Time:0ms
 somejunk...Error (No such host is known)

11-10. Communicate Using TCP

Problem

You need to send data between two computers on a network using a TCP/IP connection.

Solution

One computer (the server) must begin listening using the System.Net.Sockets.TcpListener class.
Another computer (the client) connects to it using the System.Net.Sockets.TcpClient class. Once
a connection is established, both computers can communicate using the System.Net.Sockets.
NetworkStream class.

How It Works

TCP is a reliable, connection-oriented protocol that allows two computers to communicate over a
network. It provides built-in flow control, sequencing, and error handling, which make it reliable
and easy to program.

To create a TCP connection, one computer must act as the server and start listening on a specific
endpoint. (An endpoint is a combination of an IP address and a port number.) The other computer
must act as a client and send a connection request to the endpoint on which the first computer is
listening. Once the connection is established, the two computers can take turns exchanging messages.
The .NET Framework makes this process easy through its stream abstraction. Both computers
simply write to and read from a System.Net.Sockets.NetworkStream to transmit data.

■Note Even though a TCP connection always requires a server and a client, an individual application could be
both. For example, in a peer-to-peer application, one thread is dedicated to listening for incoming requests (acting
as a server), and another thread is dedicated to initiating outgoing connections (acting as a client). In the examples
in this chapter, the client and server are provided as separate applications and are placed in separate subdirectories.

Once a TCP connection is established, the two computers can send any type of data by writing
it to the NetworkStream. However, it’s a good idea to begin designing a networked application by
defining the application-level protocol that clients and servers will use to communicate. This protocol
includes constants that represent the allowable commands, ensuring that your application code
doesn’t include hard-coded communication strings.

Herman_970-5C11.fm Page 462 Friday, March 7, 2008 3:30 PM

http://www.apress.com
http://www.google.com
http://www.apress.com...TimedOut
http://www.google.com...Success

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 463

The Code

In this recipe’s example, the defined protocol is basic. You would add more constants depending on
the type of application. For example, in a file transfer application, you might include a client message for
requesting a file. The server might then respond with an acknowledgment and return file details
such as the file size. These constants should be compiled into a separate class library assembly,
which must be referenced by both the client and server. Here is the code for the shared protocol:

Namespace Apress.VisualBasicRecipes.Chapter11

 Public Class Recipe11_10Shared

 Public Const AcknowledgeOK As String = "OK"
 Public Const AcknowledgeCancel = "Cancel"
 Public Const Disconnect As String = "Bye"
 Public Const RequestConnect As String = "Hello"

 End Class

End Namespace

The following code is a template for a basic TCP server. It listens on a fixed port, accepts the first
incoming connection using the TcpListener.AcceptTcpClient method, and then waits for the client
to request a disconnect. At this point, the server could call the AcceptTcpClient method again to wait
for the next client, but instead it simply shuts down.

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter11

 Public Class Recipe11_10Server

 Public Shared Sub Main()

 ' Create a new listener on port 8000.
 Dim listener As New TcpListener(IPAddress.Parse("127.0.0.1"), 8000)

 Console.WriteLine("About to initialize port.")
 listener.Start()
 Console.WriteLine("Listening for a connection...")

 Try
 ' Wait for a connection request, and return a TcpClient
 ' initialized for communication.
 Using client As TcpClient = listener.AcceptTcpClient
 Console.WriteLine("Connection accepted.")

 ' Retrieve the network stream.
 Dim stream As NetworkStream = client.GetStream()

Herman_970-5C11.fm Page 463 Friday, March 7, 2008 3:30 PM

464 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Create a BinaryWriter for writing to the stream.
 Using w As New BinaryWriter(stream)
 ' Create a BinaryReader for reading from the stream.
 Using r As New BinaryReader(stream)

 If r.ReadString = Recipe11_10Shared.RequestConnect Then
 w.Write(Recipe11_10Shared.AcknowledgeOK)
 Console.WriteLine("Connection completed.")

 While Not r.ReadString = ➥
Recipe11_10Shared.Disconnect
 End While

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Disconnect request received.")
 Else
 Console.WriteLine("Can't complete connection.")
 End If

 End Using
 End Using
 End Using

 Console.WriteLine("Connection closed.")

 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 ' Close the underlying socket (stop listening for
 ' new requests).
 listener.Stop()
 Console.WriteLine("Listener stopped.")
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The following code is a template for a basic TCP client. It contacts the server at the specified IP
address and port. In this example, the loopback address (127.0.0.1) is used, which always points to
the local computer. Keep in mind that a TCP connection requires two ports: one at the server end
and one at the client end. However, only the server port to connect to needs to be specified. The
outgoing client port can be chosen dynamically at runtime from the available ports, which is what
the TcpClient class will do by default.

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets

Herman_970-5C11.fm Page 464 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 465

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_10Client

 Public Shared Sub Main()

 Dim client As New TcpClient

 Try

 Console.WriteLine("Attempting to connect to the server on " & ➥
"port 8000.")
 client.Connect(IPAddress.Parse("127.0.0.1"), 8000)
 Console.WriteLine("Connection established.")

 ' Retrieve the network stream.
 Dim stream As NetworkStream = client.GetStream()

 ' Create a BinaryWriter for writing to the stream.
 Using w As New BinaryWriter(stream)
 ' Create a BinaryReader for reading from the stream.
 Using r As New BinaryReader(stream)

 ' Start a dialogue.
 w.Write(Recipe11_10Shared.RequestConnect)

 If r.ReadString = Recipe11_10Shared.AcknowledgeOK Then
 Console.WriteLine("Connected.")
 Console.WriteLine("Press Enter to disconnect.")
 Console.ReadLine()
 Console.WriteLine("Disconnecting...")
 w.Write(Recipe11_10Shared.Disconnect)
 Else
 Console.WriteLine("Connection not completed.")
 End If

 End Using
 End Using

 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 ' Close the connection socket.
 client.Close()
 Console.WriteLine("Port closed.")
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C11.fm Page 465 Friday, March 7, 2008 3:30 PM

466 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

Usage

Here’s a sample connection transcript on the server side:

About to initialize port.
Listening for a connection...
Connection accepted.
Connection completed.

Disconnect request received.
Connection closed.
Listener stopped.

And here’s a sample connection transcript on the client side:

Attempting to connect to the server on port 8000.
Connection established.
Connected.
Press Enter to disconnect.

Disconnecting...
Port closed.

11-11. Create a Multithreaded TCP Server That Supports
Asynchronous Communications

Problem

You need to handle multiple network requests concurrently or perform a network data transfer as a
background task while your program continues with other processing.

Solution

Use the AcceptTcpClient method of the System.Net.Sockets.TcpListener class to accept connections.
Every time a new client connects, start a new thread to handle the connection. Alternatively, use the
TcpListener.BeginAcceptTcpClient to accept a new client connection on a thread-pool thread using
the asynchronous execution pattern (discussed in recipe 4-2).

To start a background task to handle the asynchronous sending of data, you can use the BeginWrite
method of the System.Net.Sockets.NetworkStream class and supply a callback method—each time
the callback is triggered, send more data.

How It Works

A single TCP endpoint (IP address and port) can serve multiple connections. In fact, the operating
system takes care of most of the work for you. All you need to do is create a worker object on the
server that will handle each connection on a separate thread. The TcpListener.AcceptTcpClient
method returns a TcpClient when a connection is established. This should be passed off to a threaded
worker object so that the worker can communicate with the remote client.

Alternatively, call the TcpListener.BeginAcceptTcpClient method to start an asynchronous
operation using a thread-pool thread that waits in the background for a client to connect.
BeginAcceptTcpClient follows the asynchronous execution pattern, allowing you to wait for the
operation to complete or specify a callback that the .NET runtime will call when a client connects.
(See recipe 4-2 for details on the options available.) Whichever mechanism you use, once

Herman_970-5C11.fm Page 466 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 467

BeginAcceptTcpClient has completed, call EndAcceptTcpClient to obtain the newly created
TcpClient object.

To exchange network data asynchronously, you can use the NetworkStream class, which includes
basic support for asynchronous communication through the BeginRead and BeginWrite methods.
Using these methods, you can send or receive a block of data on one of the threads provided by the
thread pool, without blocking your code. When sending data asynchronously, you must send raw
binary data (an array of bytes). It’s up to you to choose the amount you want to send or receive at a
time.

One advantage of this approach when sending files is that the entire content of the file does not
have to be held in memory at once. Instead, it is retrieved just before a new block is sent. Another
advantage is that the server can abort the transfer operation easily at any time.

The Code

The following example demonstrates various techniques for handling network connections and
communications asynchronously. The server (Recipe11-11Server) starts a thread-pool thread
listening for new connections using the TcpListener.BeginAcceptTcpClient method and specifying
a callback method to handle the new connections. Every time a client connects to the server, the
callback method obtains the new TcpClient object and passes it to a new threaded ClientHandler
object to handle client communications.

The ClientHandler object waits for the client to request data and then sends a large amount of
data (read from a file) to the client. This data is sent asynchronously, which means ClientHandler
could continue to perform other tasks. In this example, it simply monitors the network stream for
messages sent from the client. The client reads only a third of the data before sending a disconnect
message to the server, which terminates the remainder of the file transfer and drops the client
connection.

Here is the code for the shared protocol:

Namespace Apress.VisualBasicRecipes.Chapter11

 Public Class Recipe11_11Shared

 Public Const AcknowledgeOK As String = "OK"
 Public Const AcknowledgeCancel = "Cancel"
 Public Const Disconnect As String = "Bye"
 Public Const RequestConnect As String = "Hello"
 Public Const RequestData = "Data"

 End Class

End Namespace

Here is the server code:

Imports System
Imports System.IO
Imports System.Net
Imports System.Threading
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_11Server

Herman_970-5C11.fm Page 467 Friday, March 7, 2008 3:30 PM

468 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' A flag used to indicate whether the server is shutting down.
 Private Shared m_Terminate As Boolean
 Public Shared ReadOnly Property Terminate() As Boolean
 Get
 Return m_Terminate
 End Get
 End Property

 ' A variable to track the identity of each client connection.
 Private Shared ClientNumber As Integer = 0

 ' A single TcpListener will accept all incoming client connections.
 Private Shared listener As TcpListener

 Public Shared Sub Main()

 ' Create a 100KB test file for use in the example. This file will
 ' be sent to clients that connect.
 Using fs As New FileStream("test.bin", FileMode.Create)
 fs.SetLength(100000)
 End Using

 Try
 ' Create a TcpListener that will accept incoming client
 ' connections on port 8000 of the local machine.
 listener = New TcpListener(IPAddress.Parse("127.0.0.1"), 8000)

 Console.WriteLine("Starting TcpListener...")

 ' Start the TcpListener accepting connections.
 m_Terminate = False
 listener.Start()

 ' Begin asynchronously listening for client connections. When a
 ' new connection is established, call the ConnectionHandler method
 ' to process the new connection.
 listener.BeginAcceptTcpClient(AddressOf ConnectionHandler, Nothing)

 ' Keep the server active until the user presses Enter.
 Console.WriteLine("Server awaiting connections. Press Enter " & ➥
"to stop server.")
 Console.ReadLine()

 Finally
 ' Shut down the TcpListener. This will cause any outstanding
 ' asynchronous requests to stop and throw an exception in
 ' the ConnectionHandler when EndAcceptTcpClient is called.
 ' A more robust termination synchronization may be desired here,
 ' but for the purpose of this example, ClientHandler threads
 ' are all background threads and will terminate automatically when
 ' the main thread terminates. This is suitable for our needs.
 Console.WriteLine("Server stopping...")
 m_Terminate = True
 If listener IsNot Nothing Then listener.Stop()

Herman_970-5C11.fm Page 468 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 469

 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' A method to handle the callback when a connection is established
 ' from a client. This is a simple way to implement a dispatcher
 ' but lacks the control and scalability required when implementing
 ' full-blown asynchronous server applications.
 Private Shared Sub ConnectionHandler(ByVal result As IAsyncResult)

 Dim client As TcpClient = Nothing

 ' Always end the asynchronous operation to avoid leaks.
 Try
 ' Get the TcpClient that represents the new client connection.
 client = listener.EndAcceptTcpClient(result)
 Catch ex As ObjectDisposedException
 ' The server is shutting down and the outstanding asynchronous
 ' request calls the completion method with this exception.
 ' The exception is thrown when EndAcceptTcpClient is called.
 ' Do nothing and return.
 Exit Sub
 End Try

 Console.WriteLine("Dispatcher: New connection accepted.")

 ' Begin asynchronously listening for the next client
 ' connection.
 listener.BeginAcceptTcpClient(AddressOf ConnectionHandler, Nothing)

 If client IsNot Nothing Then
 ' Determine the identifier for the new client connection.
 Interlocked.Increment(ClientNumber)

 Dim clientName As String = "Client " & ClientNumber.ToString

 Console.WriteLine("Dispatcher: Creating client handler ({0})", ➥
clientName)

 ' Create a new ClientHandler to handle this connection.
 Dim blah As New ClientHandler(client, clientName)

 End If

 End Sub

 End Class

Herman_970-5C11.fm Page 469 Friday, March 7, 2008 3:30 PM

470 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' A class that encapsulates the logic to handle a client connection.
 Public Class ClientHandler

 ' The TcpClient that represents the connection to the client.
 Private client As TcpClient

 ' A name that uniquely identifies this ClientHandler.
 Private clientName As String

 ' The amount of data that will be written in one block (2KB).
 Private bufferSize As Integer = 2048

 ' The buffer that holds the data to write.
 Private buffer As Byte()

 ' Used to read data from the local file.
 Private testFile As FileStream

 ' A signal to stop sending data to the client.
 Private stopDataTransfer As Boolean

 Public Sub New(ByVal cli As TcpClient, ByVal cliID As String)

 Me.buffer = New Byte(bufferSize) {}
 Me.client = cli
 Me.clientName = cliID

 ' Create a new background thread to handle the client connection
 ' so that we do not consume a thread-pool thread for a long time
 ' and also so that it will be terminated when the main thread ends.
 Dim newThread As New Thread(AddressOf ProcessConnection)
 newThread.IsBackground = True
 newThread.Start()

 End Sub

 Private Sub ProcessConnection()

 Using client

 ' Create a BinaryReader to receive messages from the client. At
 ' the end of the using block, it will close both the BinaryReader
 ' and the underlying NetworkStream.
 Using reader As New BinaryReader(client.GetStream)

 If reader.ReadString = Recipe11_11Shared.RequestConnect Then

 ' Create a BinaryWriter to send messages to the client.
 ' At the end of the using block, it will close both the
 ' BinaryWriter and the underlying NetworkStream.
 Using writer As New BinaryWriter(client.GetStream)

 writer.Write(Recipe11_11Shared.AcknowledgeOK)
 Console.WriteLine(clientName & ": Connection " & ➥
"established.")

Herman_970-5C11.fm Page 470 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 471

 Dim message As String = ""

 While Not message = Recipe11_11Shared.Disconnect

 Try
 ' Read the message from the client.
 message = reader.ReadString
 Catch ex As Exception
 ' For the purpose of the example,
 ' any exception should be taken
 ' as a client disconnect.
 message = Recipe11_11Shared.Disconnect
 End Try

 If message = Recipe11_11Shared.RequestData Then

 Console.WriteLine(clientName & ":" & ➥
"Requested data.", "Sending...")

 ' The filename could be supplied by the client,
 ' but in this example, a test file is
 ' hard-coded.
 testFile = New FileStream("test.bin", ➥
FileMode.Open, FileAccess.Read)

 ' Send the file size. This is how the client
 ' knows how much to read.
 writer.Write(testFile.Length.ToString)

 ' Start an asynchronous send operation.
 stopDataTransfer = False
 StreamData(Nothing)
 ElseIf message = Recipe11_11Shared.Disconnect Then
 Console.WriteLine(clientName & ": Client " & ➥
"disconnecting...")
 stopDataTransfer = True
 Else
 Console.WriteLine(clientName & ": Unknown " & ➥
"command.")
 End If
 End While
 End Using
 Else
 Console.WriteLine(clientName & ": Could not establish " & ➥
"connection.")
 End If
 End Using
 End Using
 Console.WriteLine(clientName & ": Client connection closed.")

 End Sub

Herman_970-5C11.fm Page 471 Friday, March 7, 2008 3:30 PM

472 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 Private Sub StreamData(ByVal asyncResult As IAsyncResult)

 ' Always complete outstanding asynchronous operations to avoid
 ' leaks.
 If asyncResult IsNot Nothing Then

 Try
 client.GetStream.EndWrite(asyncResult)
 Catch ex As Exception
 ' For the purpose of the example, any exception obtaining
 ' or writing to the network should just terminate the
 ' download.
 testFile.Close()
 Exit Sub
 End Try

 End If

 ' Check if the code has been triggered to stop.
 If Not stopDataTransfer And Not Recipe11_11Server.Terminate Then
 ' Read the next block from the file.
 Dim bytesRead As Integer = testFile.Read(buffer, 0, buffer.Length)

 ' If no bytes are read, the stream is at the end of the file.
 If bytesRead > 0 Then
 Console.WriteLine(clientName & ": Streaming next block.")

 ' Write the next block to the network stream.
 client.GetStream.BeginWrite(buffer, 0, buffer.Length, ➥
AddressOf StreamData, Nothing)
 Else
 ' End the operation.
 Console.WriteLine(clientName & ": File streaming complete.")
 testFile.Close()
 End If
 Else
 ' Client disconnected.
 Console.WriteLine(clientName & ": Client disconnected.")
 testFile.Close()
 End If

 End Sub
 End Class

End Namespace

And here is the client code:

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_11Client

Herman_970-5C11.fm Page 472 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 473

 Public Shared Sub Main()

 Using client As New TcpClient

 Console.WriteLine("Attempting to connect to the server on " & ➥
"port 8000.")

 ' Connect to the server.
 client.Connect(IPAddress.Parse("127.0.0.1"), 8000)

 ' Create a BinaryWriter for writing to the stream.
 Using writer As New BinaryWriter(client.GetStream)

 ' Start a dialogue.
 writer.Write(Recipe11_11Shared.RequestConnect)

 ' Create a BinaryReader for reading from the stream.
 Using reader As New BinaryReader(client.GetStream)

 If reader.ReadString = Recipe11_11Shared.AcknowledgeOK Then
 Console.WriteLine("Connection established. Press " & ➥
"Enter to download data.")
 Console.ReadLine()

 ' Send message requesting data to server.
 writer.Write(Recipe11_11Shared.RequestData)

 ' The server should respond with the size of
 ' the data it will send. Assume it does.
 Dim fileSize As Integer = ➥
Integer.Parse(reader.ReadString())

 ' Only get part of the data, then carry out a
 ' premature disconnect.
 For i As Integer = 1 To fileSize / 3
 Console.Write(client.GetStream.ReadByte)
 Next

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Press Enter to disconnect.")
 Console.ReadLine()
 Console.WriteLine("Disconnecting...")

 writer.Write(Recipe11_11Shared.Disconnect)
 Else
 Console.WriteLine("Connection not completed.")
 End If

 End Using
 End Using
 End Using

Herman_970-5C11.fm Page 473 Friday, March 7, 2008 3:30 PM

474 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

11-12. Communicate Using UDP

Problem

You need to send data between two computers on a network using a UDP stream.

Solution

Use the System.Net.Sockets.UdpClient class, and use two threads: one to send data and the other to
receive it.

How It Works

UDP is a connectionless protocol that doesn’t include any flow control or error checking. Unlike
TCP, UDP shouldn’t be used where reliable communication is required. However, because of its
lower overhead, UDP is often used for “chatty” applications where it is acceptable to lose some
messages. For example, imagine you want to create a network in which individual clients send infor-
mation about the current temperature at their locations to a server every few minutes. You might use
UDP in this case because the communication frequency is high and the damage caused by losing a
packet is trivial (because the server can just continue to use the last received temperature reading).

The Code

The application shown in the following code uses two threads: one to receive messages and one to
send them. The application stops when the user presses the Enter key without any text to send.
Notice that UDP applications cannot use the NetworkStream abstraction that TCP applications can.
Instead, they must convert all data to a stream of bytes using an encoding class, as described in
recipe 2-2.

Imports System
Imports System.Text
Imports System.Net
Imports System.Net.Sockets
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_12

 Private Shared localPort As Integer

 Public Shared Sub Main()

Herman_970-5C11.fm Page 474 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 475

 ' Define the endpoint where messages are sent.
 Console.Write("Connect to IP: ")
 Dim ip As String = Console.ReadLine
 Console.Write("Connect to port: ")
 Dim port As Integer = Int32.Parse(Console.ReadLine)

 Dim remoteEndPoint As New IPEndPoint(IPAddress.Parse(ip), port)

 ' Define the local endpoint (where messages are received).
 Console.Write("Local port for listening: ")
 localPort = Int32.Parse(Console.ReadLine)

 ' Create a new thread for receiving incoming messages.
 Dim receiveThread As New Thread(AddressOf ReceiveData)
 receiveThread.IsBackground = True
 receiveThread.Start()

 Using client As New UdpClient
 Console.WriteLine("Type message and press Enter to send:")

 Try
 Dim txt As String

 Do
 txt = Console.ReadLine

 ' Send the text to the remote client.
 If Not txt.Length = 0 Then
 ' Encode the data to binary using UTF8 encoding.
 Dim data As Byte() = Encoding.UTF8.GetBytes(txt)

 ' Send the text to the remote client.
 client.Send(data, data.Length, remoteEndPoint)
 End If
 Loop While Not txt.Length = 0
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 client.Close()
 End Try
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub ReceiveData()

Herman_970-5C11.fm Page 475 Friday, March 7, 2008 3:30 PM

476 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 Using client As New UdpClient(localPort)
 ' This is an endless loop, but since it is running in
 ' a background thread, it will be destroyed when the
 ' application (the main thread) ends.
 While True

 Try
 ' Receive bytes.
 Dim anyIP As New IPEndPoint(IPAddress.Any, 0)
 Dim data As Byte() = client.Receive(anyIP)

 ' Convert bytes to text using UTF8 encoding.
 Dim txt As String = Encoding.UTF8.GetString(data)

 ' Display the retrieved text.
 Console.WriteLine(">> " & txt)

 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 End Try

 End While
 End Using

 End Sub

 End Class
End Namespace

Usage

To test this application, load two instances at the same time. On computer A, specify the IP address
and port for computer B. On computer B, specify the IP address and port for computer A. You can
then send text messages back and forth at will. You can test this application with clients on the local
computer using the loopback alias 127.0.0.1, provided you use different listening ports. For example,
imagine a situation with two UDP clients, client A and client B. Here’s a sample transcript for client A:

Connect to IP: 127.0.0.1
Connect to port: 8001
Local port for listening: 8080
Type message and press Enter to send:
Hi there!

And here’s the corresponding transcript for client B (with the received message):

Connect to IP: 127.0.0.1
Connect to port: 8080
Local port for listening: 8001
Type message and press Enter to send:
>> Hi there!

Herman_970-5C11.fm Page 476 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 477

11-13. Communicate Using Named Pipes

Problem

You need to send data between two processes on the same computer (or remote computers) using a
named pipes connection.

Solution

One computer (the server) must create the server using the NamedPipeServerStream class and wait for
connections clients using the WaitForConnection method. Another computer (the client) establishes
a connection to the server pipe by creating an instance of the NamedPipeClientStream and using the
Connect method.

How It Works

A pipe represents a line of communications between two processes, which may or may not be on the
same machine. These pipes come in two main forms: anonymous and named. Anonymous pipes,
represented by the AnonymousPipeServerStream and AnonymousPipeClientStream classes, work in the
same way that named pipes work, but they are not named and support only one-way communica-
tion. Named pipes, represented by NamedPipeServerStream and NamedPipeClientStream, are created
with a specific name and can be set to send, receive, or send and receive data. System.IO.Pipes is
new to .NET Framework 3.5 and is the parent namespace for all the classes related to pipes.

You create a new named pipe server by creating a new instance of the NamedPipeServerStream
class, which inherits from the PipeStream base class (which inherits from Stream). When creating the
named pipe server, you must specify a name to use. You can also specify the direction of the pipe as
In, Out, or InOut. The server waits for a client connection by calling the WaitForConnection method.

You create a new named pipe client, using the NamedPipeClientStream class, in the same manner
that the server was created, specifying the name of the server pipe itself. By default, the localhost will
be used as the target system that contains the server pipe. A connection is established by calling the
Connect method.

Once a connection has been established, all communications are easily handled using StreamReader
and StreamWriter objects that are instantiated using the appropriate client or server instance of the
named pipe.

The Code

The following is a basic example of a named pipe server, named TestPipeServer. The pipe is opened
to support both input and output so it can receive as well as send data. It waits for incoming client
connections by calling the WaitForConnection method and then relies on a StreamReader and
StreamWriter to interact across the pipe.

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets
Imports System.IO.Pipes

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_13Server

 Public Shared Sub Main()

Herman_970-5C11.fm Page 477 Friday, March 7, 2008 3:30 PM

478 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 Dim namedPipeServer As NamedPipeServerStream = Nothing
 Dim w As StreamWriter = Nothing
 Dim r As StreamReader = Nothing

 Try
 ' Create the named server pipe and configure it to support both
 ' input and output.
 namedPipeServer = New NamedPipeServerStream("TestPipeServer", ➥
PipeDirection.InOut)
 Console.WriteLine("Waiting for client connection...")

 ' Wait for clients to connect to the named pipe.
 namedPipeServer.WaitForConnection()
 Console.WriteLine("Connection established with client.")

 ' Create a StreamReader for reading from the stream.
 r = New StreamReader(namedPipeServer)

 ' Create a StreamWriter for writing to the stream.
 w = New StreamWriter(namedPipeServer)
 w.AutoFlush = True

 Console.WriteLine("From Client: {0}", r.ReadLine())

 ' Send a couple messages to the client pipe.
 w.WriteLine("Welcome to the server. Please send me " & ➥
"some information.")
 w.WriteLine("Send the string 'DONE' when you are done.")

 ' Keep reading information from the pipe until the text
 ' "DONE" is sent.
 Dim msg As String
 Do
 msg = r.ReadLine()
 Console.WriteLine("From Client: {0}", msg)
 Loop Until msg.ToUpper() = "DONE"

 Console.WriteLine("The server has been disconnected.")
 Catch ex As Exception
 ' Display any errors to the screen.
 Console.WriteLine(ex.ToString)
 Finally
 ' Close up the streams and make sure the pipe is shut down.
 If w IsNot Nothing Then w.Close()
 If r IsNot Nothing Then r.Close()

 If namedPipeServer.IsConnected = True Then ➥
namedPipeServer.Disconnect()
 namedPipeServer.Close()
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

Herman_970-5C11.fm Page 478 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 479

 End Sub

 End Class
End Namespace

The following code is a basic example of creating a named pipe client. It connects to the
TestPipeServer, created with the previous code example, running on the local system. Once the
connection has been successfully established, the client sends some information to and receives
some information from the server before it terminates the server by passing DONE.

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets
Imports System.IO.Pipes

Namespace Apress.VisualBasicRecipes.Chapter11

 Public Class Recipe11_13Client

 Public Shared Sub Main()

 Dim pipeClient As NamedPipeClientStream = Nothing
 Dim w As StreamWriter = Nothing
 Dim r As StreamReader = Nothing

 Try

 ' Create the named client pipe and configure it to support both
 ' input and output.
 pipeClient = New NamedPipeClientStream(".", "TestPipeServer", ➥
PipeDirection.InOut)

 Console.WriteLine("Connecting to TestPipeServer server...")

 ' Attempt to connect to the named server pipe.
 pipeClient.Connect()
 Console.WriteLine("Connection established with server.")

 ' Create a StreamWriter for writing to the stream.
 w = New StreamWriter(pipeClient)
 w.AutoFlush = True

 ' Create a StreamReader for reading from the stream.
 r = New StreamReader(pipeClient)

 ' Send some text to the server pipe.
 w.WriteLine("Hello Server. I have some information to send.")

 ' Display text sent from the server pipe.
 Console.WriteLine("From Server: {0}", r.ReadLine())
 Console.WriteLine("From Server: {0}", r.ReadLine())

Herman_970-5C11.fm Page 479 Friday, March 7, 2008 3:30 PM

480 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Generate and send some sample information to the server pipe.
 Console.WriteLine("Sending some information to the server.")
 For i = 1 To 10
 w.WriteLine(Guid.NewGuid().ToString())
 Next

 ' Send the text to trigger the server pipe to close.
 Console.WriteLine("Sending 'DONE' to the server.")
 w.WriteLine("DONE)

 Catch ex As Exception
 ' Display any errors to the screen.
 Console.WriteLine(ex.ToString)
 Finally
 ' Close up the streams and make sure the pipe is shutdown.
 If w IsNot Nothing Then w.Close()
 If r IsNot Nothing Then r.Close()
 pipeClient.Close()
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()
 End Sub

 End Class
End Namespace

Usage

To run this example, you must first launch the Recipe11-13Server.exe application to create the named
pipe server. Once you’ve done that, you can run the Recipe11-13Client.exe application, which will
establish a connection with the server and produce these results on the server:

Waiting for client connection...
Connection established with client.
From Client: Hello Server. I have some information to send.
From Client: 7c4abfce-19c5-499c-8f39-4d02e9d1cac6
From Client: ca559189-af63-4290-ab43-8894ce7f70e6
From Client: 3cf12f00-f5e9-4809-86e1-84c7bd325e42
From Client: 394ba658-cf1f-49c9-beb5-dee2b1d99e38
From Client: e7e94e22-09a1-4d67-9056-2511d1953280
From Client: e12d6b2f-9b67-4df1-8d9a-e28b3a38985b
From Client: be319951-51d7-4da6-b84c-fd674aca75f5
From Client: 921bd692-5ae7-4cdd-9129-5ca5acd818c3
From Client: b06c42d0-500b-4c55-ae94-eac9dd79f0a9
From Client: 03730f41-ff3c-4a28-a8ab-023ab3e10023
From Client: DONE
The server has been disconnected.

Main method complete. Press Enter.

Herman_970-5C11.fm Page 480 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 481

And here’s a sample connection transcript on the client side:

Connecting to TestPipeServer server...
Connection established with server.
From Server: Welcome to the server. Please send me some information.
From Server: Send the string 'DONE' when you are done.
Sending some information to the server.
Sending 'DONE' to the server.

Main method complete. Press Enter.

11-14. Make an Object Remotable

Problem

You need to create a class that can be accessed from another application or another computer on the
network. However, you don’t need cross-platform compatibility, and you want optimum performance.

Solution

Make the class remotable by deriving from System.MarshalByRefObject, and create a component
host that registers the class with the .NET remoting infrastructure.

How It Works

Remoting allows you to make an object accessible across process and machine boundaries. Although
web services are ideal when you need to share functionality across platforms or trust boundaries,
remoting is one of the best-performing choices for a closed system in which all components are built
on .NET and the Windows operating system. Since serialization is used to perform this behavior, the
object in question must be serializable. To use .NET remoting, you need the following ingredients,
each of which must reside in a separate assembly:

• A component host: This application registers the remotable type with the .NET remoting
infrastructure using the RemotingConfiguration class from the System.Runtime.Remoting
namespace. You can use any type of long-running .NET Framework application for a component
host (including Windows Forms–based applications, Windows services, console applications,
and even IIS). As long as the component host is running, remote clients can create or connect
to existing instances of the remotable object. The component host never interacts with the
remotable objects directly. All it does is register the appropriate types with the .NET remoting
infrastructure. After this point, clients can create object instances, and the server application
can continue with other tasks. However, when the component host is closed, any remotable
objects will be destroyed, and no more hosted objects can be created.

• A client application: This application can create or connect to instances of the remotable class
in the component host process and interact with them. The client uses the
RemotingConfiguration class to register the types it wants to access remotely. The client
application uses the RemotingConfiguration.Configure method to register the remote objects
it wants to call. Once this step is taken, the client can create the object exactly as it would
create a local object. However, the object will actually be created in the component host.

Herman_970-5C11.fm Page 481 Friday, March 7, 2008 3:30 PM

482 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

Figure 11-2 shows how these three parts interact. This example has only one client. However,
it’s also possible for multiple clients to create instances of the remotable class at the same time. In
this case, you can configure the remoting host, whether each client has its own remotable object
instance or all clients share a single instance.

Figure 11-2. Using a remotable class

■Note Ideally, the remote object won’t retain any state. This characteristic allows you to use single-call activation,
in which object instances are created at the beginning of each method call and released at the end, much like a web
service. This ensures your objects consume the fewest possible server resources and saves you from the added
complexity of implementing a lease policy to configure object lifetime.

The Code

The following example demonstrates the declaration of a remotable class that reads data from the
Person.Contact table of the AdventureWorks database and returns a System.Data.DataTable. Notice
that the only remoting-specific code is the derivation of the class from the System.MarshalByRef class.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter11

 ' Define a class that extends MarshalByRefObject, making it remotable.
 Public Class Recipe11_14
 Inherits MarshalByRefObject

 Private Shared connectionString As String = "Data Source=.\sqlexpress;" & ➥
"Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

 ' The DataTable returned by this method is serializable, meaning that the
 ' data will be physically passed back to the caller across the network.
 Public Function GetContacts() As DataTable

 Dim SQL As String = "SELECT * FROM Person.Contact;"

Ordinary Object

Client Application

Remotable Object
Cross-application Call

Component Host
(Server Application)

Herman_970-5C11.fm Page 482 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 483

 ' Create ADO.NET objects to execute the DB query.
 Using con As New SqlConnection(connectionString)
 Using com As New SqlCommand(SQL, con)
 Dim adapter As New SqlDataAdapter(com)
 Dim ds As New DataSet

 ' Execute the command.
 Try
 con.Open()
 adapter.Fill(ds, "Contacts")
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 con.Close()
 End Try

 ' Return the first DataTable in the DataSet to the caller.
 Return ds.Tables(0)

 End Using
 End Using

 End Function

 ' This method allows you to verify that the object is running remotely.
 Public Function GetHostLocation() As String
 Return AppDomain.CurrentDomain.FriendlyName
 End Function

 End Class
End Namespace

Usage

To use the Recipe11_14 class remotely, you must host it and then create a client that uses the remote
object. Here is the code for a simple console component host:

Imports System
Imports System.Runtime.Remoting

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_14Host

 Public Shared Sub Main()

 ' Register the remotable classes defined in the specified
 ' configuration file.
 RemotingConfiguration.Configure("Recipe11-14Host.exe.config", False)

Herman_970-5C11.fm Page 483 Friday, March 7, 2008 3:30 PM

484 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' As long as this application is running, the registered remote
 ' objects will be accessible.
 Console.Clear()
 Console.WriteLine("Press Enter to shut down the host.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The component host uses a new section in the standard configuration file (in this case
Recipe11-14 Host.exe.config) to configure the classes it will support, the ports it will support for
network communication, and the URI that the client will use to access the object. The host applica-
tion must have a reference to the assembly, the Recipe11-14 assembly in this case, containing the
implementation of the remote object class. The configuration file also configures the remote object
to use single-call activation, meaning that a new object is created for each client call.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>

 <!-- Define the remotable types. -->
 <service>
 <wellknown
 mode = "SingleCall"
 type = "Apress.VisualBasicRecipes.Chapter11.Recipe11_14, Recipe11-14"
 objectUri = "Recipe11-14.rem" />
 </service>

 <!-- Define the protocol used for network access.
 You can use tcp or http channels. -->
 <channels>
 <channel ref="tcp" port="19080" />
 </channels>

 </application>
 </system.runtime.remoting>
</configuration>

The following sample code shows a simple client that uses the remote object created earlier.
Notice that in this example, the configuration of the remoting infrastructure is performed program-
matically instead of using the configuration file. You should avoid such an approach when using
shared configuration values because using configuration files provides more flexibility. If you did use
a configuration file for the client, it would look similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>

Herman_970-5C11.fm Page 484 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 485

 <client>
 <wellknown
 type="Apress.VisualBasicRecipes.Chapter11.Recipe11_14,Recipe11_14"
 url="tcp://localhost:19080/Recipe11-14.rem" />
 </client>

 </application>
 </system.runtime.remoting>
</configuration>

However, if you want to dynamically configure the remoting infrastructure, you will need to be
familiar with the approach demonstrated here. For detailed information, see Advanced .NET Remoting,
Second Edition by Ingo Rammer and Mario Szpuszta (Apress, 2005). Note that as with the host, the
assembly containing the declaration of the class that will be accessed remotely must still be explicitly
referenced by the application.

Imports System
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Tcp
Imports System.Data

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_14Client

 Public Shared Sub Main()

 ' Register a new TCP Remoting channel to communicate with the
 ' remote object.
 ChannelServices.RegisterChannel(New TcpChannel, False)

 ' Register the classes that will be accessed remotely.
 RemotingConfiguration.RegisterWellKnownClientType(➥
GetType(Recipe11_14), "tcp://localhost:19080/Recipe11-14.rem")

 ' Now any attempts to instantiate the Recipe11_14 class
 ' will actually create a proxy to a remote instance.

 ' Interact with the remote object through a proxy.
 Dim proxy As New Recipe11_14

 Try
 ' Display the name of the component host application domain
 ' where the object executes.
 Console.WriteLine("Object executing in: " & proxy.GetHostLocation)
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 End Try

 ' Get the DataTable from the remote object and display its contents.
 Dim dt As DataTable = proxy.GetContacts

 For Each row As DataRow In dt.Rows
 Console.WriteLine("{0}, {1}", row("LastName"), row("FirstName"))
 Next

Herman_970-5C11.fm Page 485 Friday, March 7, 2008 3:30 PM

tcp://localhost:19080/Recipe11-14.rem
tcp://localhost:19080/Recipe11-14.rem

486 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

11-15. Register All the Remotable Classes in an Assembly

Problem

You want to register all the remotable classes that are defined in an assembly without having to
specify them in a configuration file.

Solution

Load the assembly with the remotable classes using reflection. Loop through all its Public types, and
use the RemotingConfiguration.RegisterWellKnownServiceType method to register every remotable
class.

How It Works

.NET makes it equally easy to register remotable classes through a configuration file or programmat-
ically with code. The type being registered must extend MarshalByRefObject, and then you call
RemotingConfiguration.RegisterWellKnownServiceType, passing on the type, the URI on which remote
clients can connect to the type, and a value of the System.Runtime.Remoting.WellKnownObjectMode
enumeration, which describes how the remoting infrastructure should map client calls to object
instances. The possible values are SingleCall, in which every incoming call is serviced by a new
object, and Singleton, in which every incoming call is serviced by the same object. When using
singleton objects, accurate state management and thread synchronization become critical.

The Code

The following server code searches for remotable classes in an assembly that is specified as a command-
line argument. Each class derived from MarshalByRefObject is registered, and then the example
displays the channel where the remotable object is available.

Imports System
Imports System.Reflection
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Tcp

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_15

 Public Shared Sub Main(ByVal args As String())

 ' Ensure there is an argument. We assume it is a valid
 ' filename.

Herman_970-5C11.fm Page 486 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 487

 If Not args.Length = 1 Then Exit Sub

 ' Register a new TCP remoting channel to communicate with
 ' the remote object.
 ChannelServices.RegisterChannel(New TcpChannel(19080), False)

 ' Get the registered remoting channel.
 Dim channel As TcpChannel = ➥
DirectCast(ChannelServices.RegisteredChannels(0), TcpChannel)

 ' Create an Assembly object representing the assembly
 ' where remotable classes are defined.
 Dim remoteAssembly As Assembly = Assembly.LoadFrom(args(0))

 ' Process all the public types in the specified assembly.
 For Each remType As Type In remoteAssembly.GetExportedTypes()

 ' Check if type is remotable.
 If remType.IsSubclassOf(GetType(MarshalByRefObject)) Then
 ' Register each type using the type name as the URI.
 Console.WriteLine("Registering {0}", remType.Name)
 RemotingConfiguration.RegisterWellKnownServiceType(remType, ➥
remType.Name, WellKnownObjectMode.SingleCall)

 ' Determine the URL where this type is published.
 Dim urls As String() = channel.GetUrlsForUri(remType.Name)
 Console.WriteLine("Url: {0}", urls(0))
 End If

 Next

 ' As long as this application is running, the registered remote
 ' objects will be accessible.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Press Enter to shut down the host.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Place the Recipe11-14.dll assembly in the directory where this recipe is and run the following
command line:

recipe11-15 recipe11-14.dll

This will produce results similar to the following output:

Registering Recipe11_14
Url: tcp://192.168.239.80:19080/Recipe11_14

Herman_970-5C11.fm Page 487 Friday, March 7, 2008 3:30 PM

tcp://192.168.239.80:19080/Recipe11_14

488 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

Notes

The preceding code determines if a class is remotable by examining whether it derives from
MarshalByRefObject. This approach always works, but it could lead you to expose some types that
you don’t want to make remotable. For example, the System.Windows.Forms.Form object derives
indirectly from MarshalByRefObject. This means that if your remote object library contains any
forms, they will be exposed remotely. To avoid this problem, don’t include remotable types in your
assembly unless you want to make them publicly available. Alternatively, identify the types you want
to register with a custom attribute. You could then check for this attribute before registering a type.

11-16. Host a Remote Object in IIS

Problem

You want to create a remotable object in IIS (perhaps so that you can use SSL or IIS authentication)
instead of a dedicated component host.

Solution

Place the configuration file and assembly in a directory (configured as an application within IIS),
and modify the object URI so that it ends in .rem or .soap.

How It Works

Instead of creating a dedicated component host, you can host a remotable class in IIS. This allows
you to ensure that the remotable classes will always be available, and it allows you to use IIS features
such as SSL encryption and Integrated Windows authentication.

To host a remotable class in IIS, you must first have a directory configured as an application. The
directory will contain two things: a configuration file named Web.config that registers the remotable
classes and a Bin directory where you must place the corresponding class library assembly (or install
the assembly in the GAC).

The configuration file for hosting in IIS is quite similar to the configuration file you use with a
custom component host. However, you must follow several additional rules:

• You must use the HTTP channel (although you can use the binary formatter for smaller
message sizes).

• You cannot specify a specific port number for listening. IIS listens on all the ports you have
configured in IIS Manager. Typically, this will be ports 80 and 443 (for secure SSL communi-
cation).

• The object URI must end with .rem or .soap.

• When using IIS, you are stepping into ASP.NET territory. The configuration file you use here
for remoting must be named Web.config, which is the configuration file used by ASP.NET
applications.

The Code

Here’s an example Web.config file that registers the remote class shown in recipe 11-14:

Herman_970-5C11.fm Page 488 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 489

<?xml version="1.0"?>
<configuration>
 <system.runtime.remoting>
 <application>
 <!-- Define the remotable types. -->
 <service>
 <wellknown mode="SingleCall" ➥
type="Apress.VisualBasicRecipes.Chapter11.Recipe11_14,Recipe11-14" ➥
objectUri="Recipe11-14.rem" />
 </service>

 <!-- Define the protocol used for network access.
 You can use only the http channel. -->
 <channels>
 <channel ref="http" />
 </channels>

 <!-- Uncomment the following section if you want to use the
 binary formatter rather than the default SOAP formatter.-->
 <!--
 <serverProviders>
 <formatter ref="binary" />
 </serverProviders>
 -->
 </application>
 </system.runtime.remoting>
</configuration>

Usage

A client can use an object hosted in IIS in the same way as an object hosted in a custom component
host. However, if a directory name is present, it will become part of the object URI. For example, if the
Web.config file shown in the preceding code is hosted in the directory http://localhost/RemoteObjects,
the full URL will be http://localhost/RemoteObjects/Recipe11-14.rem.

■Note When hosting an object with IIS, the account used to execute the object is the ASP.NET account defined
in the Machine.config file. If this account doesn’t have the rights to access the database (which is the default situ-
ation), you will receive an error when you try this example. Look at the .NET Framework for documentation on the
<processModel> element.

11-17. Control the Lifetime of a Remote Object

Problem

You want to configure how long a singleton or client-activated object lives while not in use.

Solution

Configure a lease policy by using configuration file settings, override the MarshalByRefObject.
InitializeLifetimeService method, or implement a custom lease provider.

Herman_970-5C11.fm Page 489 Friday, March 7, 2008 3:30 PM

http://localhost/RemoteObjects
http://localhost/RemoteObjects/Recipe11-14.rem

490 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

How It Works

If a remotable object uses single-call activation, it will be destroyed automatically at the end of each
method call. This behavior changes with client-activated and singleton objects, which are given a
longer lifetime dictated by a lifetime lease. With the default settings, a remote object will be automat-
ically destroyed if it’s inactive for 2 minutes, provided it has been in existence for at least 5 minutes.

The component host, remote object, and client each have the opportunity to change lifetime
settings, as described here:

• The component host can specify different lease lifetime defaults in the configuration file using
the <lifetime> element, which is a child of the <system.runtime.remoting> element. The
leaseTime attribute of the element specifies the default lifetime for all hosted objects. The
renewOnCallTime attribute specifies the amount of time by which the lease is extended when
a call is made against a hosted object. You can specify the values for both attributes as positive
integers with a time unit suffix for days (D), hours (H), minutes (M), or seconds (S). For example,
10 hours is 10H, and 30 seconds is 30S.

• The remote class can override its InitializeLifetimeService method (inherited from
MarshalByRefObject) to modify its initial lease settings by configuring and returning an object
that implements the System.Runtime.Remoting.Lifetime.ILease interface. You obtain an
ILease instance by calling the base class method InitializeLifetimeService. Then configure
the returned ILease by setting the InitialLeaseTime and RenewOnCallTime properties to the
desired values using System.TimeSpan objects. If you want the object to have an unlimited life-
time, simply return a Nothing reference instead of an ILease object. This is most commonly
the case if you are creating a singleton object that needs to run independently (and perma-
nently), even if clients aren’t currently using it.

• The client can call the MarshalByRefObject.GetLifetimeService method on a specific remote
object to retrieve an ILease instance. The client can then call the ILease.Renew method to
specify a minimum amount of time the object should be kept alive.

The Code

The following example demonstrates how to use a component host’s configuration file to control
lifetime leases. The configuration gives each hosted object an initial lifetime of 10 minutes, and each
time a member of the object is invoked, the lifetime is set to be at least 3 minutes.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>

 <!-- Define the remotable types. -->
 <service>
 <wellknown
 mode = "SingleCall"
 type = "Apress.VisualBasicRecipes.Chapter11.Recipe11_17, Recipe11-17"
 objectUri = "Recipe11-17" />
 </service>

 <!-- Define the protocol used for network access.
 You can use tcp or http channels. -->
 <channels>
 <channel ref="tcp" port="19080" />
 </channels>

Herman_970-5C11.fm Page 490 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 491

 <lifetime leaseTime="10M" renewOnCallTime="3M" />

 </application>
 </system.runtime.remoting>
</configuration>

The following example demonstrates how to use the second approach outlined where the
remotable object overrides the InitializeLifetimeService method and takes control of its own life-
time. The example shows a remotable object that gives itself a default 10-minute lifetime and 3-minute
renewal time.

Imports System
Imports System.Runtime.Remoting.Lifetime

Namespace Apress.VisualBasicRecipes.Chapter11

 ' Define a class that extends MarshalByRefObject, making it remotable.
 Public Class Recipe11_17
 Inherits MarshalByRefObject

 Public Overrides Function InitializeLifetimeService() As Object

 Dim lease As ILease = DirectCast(MyBase.InitializeLifetimeService(), ➥
ILease)

 ' Lease can only be configured if it is in an initial state.
 If lease.CurrentState = LeaseState.Initial Then
 lease.InitialLeaseTime = TimeSpan.FromMinutes(10)
 lease.RenewOnCallTime = TimeSpan.FromMinutes(3)
 End If

 Return lease

 End Function

 ...

 End Class
End Namespace

11-18. Control Versioning for Remote Objects

Problem

You want to create a component host that can host more than one version of the same object.

Solution

Install all versions of the remotable object into the global assembly cache (GAC), and explicitly
register each version at a different URI endpoint. See recipe 1-17 for details on how to manage the
assemblies in the GAC.

Herman_970-5C11.fm Page 491 Friday, March 7, 2008 3:30 PM

492 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

How It Works

.NET remoting doesn’t include any intrinsic support for versioning. When a client creates a remote
object, the component host automatically uses the version in the local directory or, in the case of a
shared assembly, the latest version from the GAC. To support multiple versions, you have three choices:

• Create separate component host applications: Each component host will host a different
version of the remote object assembly and will register its version with a different URI. This
approach forces you to run multiple component host applications at once and is most practical if
you are using IIS hosting (as described in recipe 11-16).

• Create an entirely new remote object assembly (instead of simply changing the version): You
can then register the classes from both assemblies at different URIs by using the same
component host.

• Install all versions of the remote object assembly in the GAC: You can now create a component
host that maps different URIs to specific versions of the remote object assembly.

The Code

Installing all versions of the remote object assembly in the GAC is the most flexible approach in cases
where you need to support multiple versions. The following configuration file registers two versions
of the RemoteObjects assembly at two different endpoints. Notice that you need to include the exact
version number and public key token when using assemblies from the GAC. You can find this infor-
mation by viewing the assembly in the Windows Explorer GAC plug-in (browse to C:\
[WindowsDir]\Assembly). The client configuration file won’t change at all (aside from possibly
updating the URI and ensuring that the correct version is referenced). The client “chooses” the
version it wants to use by using the corresponding URI.

<configuration>
 <system.runtime.remoting>
 <application>

 <service>

 <!-- The type information is split over two lines to accommodate the
 bounds of the page. In the configuration file, this information
 must all be placed on a single line. -->
 <wellknown mode="SingleCall"
 type="RemoteObjects.RemoteObject, RemoteObjects, Version 1.0.0.1,
 Culture=neutral, PublicKeyToken=8b5ed84fd25209e1"
 objectUri="RemoteObj_1.0" />

 <wellknown mode="SingleCall"
 type="RemoteObjects.RemoteObject, RemoteObjects, Version 2.0.0.1,
 Culture=neutral, PublicKeyToken=8b5ed84fd25209e1"
 objectUri="RemoteObj_2.0" />
 </service>

 <channels>
 <channel ref="tcp" port="19080" />
 </channels>

 </application>
 </system.runtime.remoting>
</configuration>

Herman_970-5C11.fm Page 492 Friday, March 7, 2008 3:30 PM

CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G 493

11-19. Consume an RSS Feed

Problem

You need to consume (or retrieve data from) a Real Simple Syndication (RSS) feed.

Solution

Use the shared Load method of the SyndicationFeed class, which is located in the System.
ServiceModel.Syndication namespace.

How It Works

In previous versions of the .NET Framework, consuming an RSS feed required downloading the file,
using a method similar to the one covered by recipe 11-4, and parsing the returned XML informa-
tion. To accurately parse the information, you needed to have fairly extensive knowledge of the RSS
specifications in which the feed was written.

The SyndicationFeed class, which is part of the Windows Communication Foundation (WCF)
piece released with .NET 3.0 and represents the feed itself, greatly simplifies this process. The shared
Load method, which can accept the source as an Uri or an XmlReader, downloads the specified feed,
parses the information, and returns a SyndicationFeed instance that contains the data from the feed.

The Code

The following example retrieves and displays some of the data contained in the specified RSS feed:

Imports System
Imports System.ServiceModel.Syndication

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_19

 Public Shared Sub main(ByVal args As String())

 ' Attempt to establish a connection to the feed represented by the URL
 ' passed into this method.
 Dim rssFeed As SyndicationFeed
 Try
 rssFeed = SyndicationFeed.Load(New Uri(args(0)))

 ' Display a few of the RSS feeds properties to the screen.
 Console.WriteLine("Title: {0}", rssFeed.Title.Text)
 Console.WriteLine("Description: {0}", rssFeed.Description.Text)
 Console.WriteLine("Copyright: {0}", rssFeed.Copyright.Text)
 Console.WriteLine("ImageUrl: {0}", rssFeed.ImageUrl.ToString)
 Console.WriteLine("LastUpdated: {0}", ➥
rssFeed.LastUpdatedTime.ToString())
 Console.WriteLine("Language: {0}", rssFeed.Language)

 ' Just show the first link (if there is more than one)
 Console.WriteLine("Link: {0}", rssFeed.Links(0).Uri.ToString())

Herman_970-5C11.fm Page 493 Friday, March 7, 2008 3:30 PM

494 CH AP T E R 1 1 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Now, show information for each item contained in the feed.
 Console.WriteLine("Items:")
 For Each item As SyndicationItem In rssFeed.Items
 Console.WriteLine("Title: {0}", item.Title.Text)
 Console.WriteLine("Description: {0}", item.Summary.Text)
 ' Just show the first link (if there is more than one)
 Console.WriteLine("Link: {0}", item.Links(0).Uri.ToString())
 Next
 Console.WriteLine(Environment.NewLine)

 Catch ex As Exception
 Console.WriteLine("Unable to retrieve the feed because of " & ➥
"the following error: {0}", ex.ToString)
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class

End Namespace

Usage

Running the example with the following command line:

recipe11-19 http://www.apress.com/resource/feed/newbook

will produce results similar to the following:

Title: Apress Newest Title List
Description: Apress's recent publish
Copyright: © Copyright 2007, Apress. All Rights Reserved.
ImageUrl: http://www.apress.com/img/apress_RSS_logo.gif
LastUpdated: 1/1/0001 12:00:00 AM
Language: en-us
Link: http://www.apress.com/book?newest=1
Items:
Title: The Definitive Guide to Django: Web Development Done Right
Description: <p>In <i>The Definitive Guide to Django: Web Development Done Right
</i>, one of Django’s creators and a Django lead developer show you how th
ey use this framework to create award–winning web sites. Over the course o
f three sections plus multiple appendixes, you’ll learn about Django funda
mentals, complex features, and configuration options.</p>
Link: http://www.apress.com/book/view/1590597257
...

Herman_970-5C11.fm Page 494 Friday, March 7, 2008 3:30 PM

http://www.apress.com/resource/feed/newbook
http://www.apress.com/img/apress_RSS_logo.gif
http://www.apress.com/book?newest=1
http://www.apress.com/book/view/1590597257

495

■ ■ ■

C H A P T E R 1 2

Security and Cryptography

A principal goal of the Microsoft .NET Framework is to make computing more secure, especially
with respect to the use of mobile code and distributed systems. Most modern operating systems
(including Microsoft Windows) support user-based security, allowing you to control the actions and
resources to which a user has access. However, in the highly connected world resulting from the
proliferation of computer networks, particularly the Internet, it’s insufficient to base security solely
on the identity of a system’s user. In the interest of security, code should not automatically receive
the same level of trust that you assign to the person running the code.

The .NET Framework incorporates two complementary security models that address many of
the issues associated with user and code security: code access security (CAS) and role-based security
(RBS). CAS and RBS do not replace or duplicate the security facilities provided by the underlying
operating system. They are platform-independent mechanisms that provide additional security
capabilities to augment and enhance the overall security of your managed solutions. CAS uses infor-
mation about the source and origin of an assembly (evidence) gathered at runtime to determine
which actions and resources code from the assembly can access (permissions). The .NET Framework
security policy—a hierarchical set of configurable rules—defines the mapping between evidence and
permissions. The building blocks of security policy are code groups, which allow you to configure the
mapping between evidence and permissions. The set of permissions granted to an assembly as a
result of the security policy is known as the assembly’s grant set.

The .NET Framework class library uses permission demands to protect its most important function-
ality from unauthorized access. A demand forces the common language runtime (CLR) to ensure that
the whole stack of code calling a protected method has a specific permission. CAS ensures that the
runtime capabilities of code depend on the level of trust you place in the creator and source of the
code, not the level of trust you place in the user running the code.

Following a more traditional security model, RBS allows you to make runtime decisions based
on the identity and roles of the user on whose behalf an application is running. On the Windows
operating system, this equates to making decisions based on the Windows username and the Windows
groups to which that user belongs. However, RBS provides a generic security mechanism that is
independent of the underlying operating system, allowing you (with some development) to integrate
with any user account system.

Another important aspect of the security features provided by the .NET Framework is cryptog-
raphy. Cryptography is one of the most complex aspects of software development that any developer
will use. The theory of modern cryptographic techniques is extremely difficult to understand and
requires a level of mathematical knowledge that relatively few people have or need. Fortunately, the
.NET Framework class library provides easy-to-use implementations of the most commonly used
cryptographic techniques and support for the most popular and well-understood algorithms.

This chapter provides a wide variety of recipes that cover some of the more commonly used
security capabilities provided by the .NET Framework. As you read the recipes in this chapter and
think about how to apply the techniques to your own code, keep in mind that individual security

Herman_970-5C12.fm Page 495 Friday, March 14, 2008 10:52 AM

496 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

features are rarely effective when implemented in isolation. In particular, cryptography does not
equal security; the use of cryptography is merely one small element of creating a secure solution.

The recipes in this chapter cover the following:

• Developing strong-named assemblies that can still be called by partially trusted code
(recipe 12-1)

• Configuring the .NET Framework security policy to turn off CAS execution permission checks
(recipes 12-2)

• Requesting specific code access permissions for your assemblies, determining at runtime
what permissions the current assembly has, and inspecting third-party assemblies to deter-
mine what permissions they need in order to run correctly (recipes 12-3, 12-4, 12-5, and 12-6)

• Controlling inheritance and member overrides using CAS (recipe 12-7)

• Inspecting the evidence presented by an assembly to the runtime when the assembly is
loaded (recipe 12-8)

• Integrating with Windows security to determine whether a user is a member of a specific
Windows group, restricting which users can execute your code, and impersonating other
Windows users (recipes 12-9, 12-10, and 12-11)

• Generating random numbers that are nondeterministic and are suitable for use in security-
sensitive applications (recipe 12-12)

• Using hash codes and keyed hash codes to store user passwords and determine whether files
have changed (recipes 12-13, 12-14, 12-15, and 12-16)

• Using encryption to protect sensitive data both in memory and when it is stored to disk
(recipes 12-17 and 12-18)

■Note For a broader explanation of secure programming and where cryptography fits in the overall security land-
scape, read Writing Secure Code, Second Edition by Michael Howard and David LeBlanc (Microsoft Press, 2003), a
modern classic of computer literature that contains a wealth of practical field-tested information. For more compre-
hensive coverage of the .NET security classes, see Programming .NET Security by Adam Freeman and Allen Jones
(O’Reilly and Associates, 2003). Although not yet updated for .NET Framework 3.5, Programming .NET Security
provides easily understood descriptions of security fundamentals, covers most of the .NET security classes in detail,
and demonstrates how to extend most aspects of the security framework.

12-1. Allow Partially Trusted Code to Use Your Strong-Named
Assembly

Problem

You need to write a shared assembly that is accessible to code that is not fully trusted. By default,
the runtime does not allow partially trusted code to access the types and members contained in a
strong-named assembly.

Solution

Apply the assembly-level attribute System.Security.AllowPartiallyTrustedCallersAttribute to
your shared assembly.

Herman_970-5C12.fm Page 496 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 497

How It Works

To minimize the security risks posed by malicious code, the runtime does not allow assemblies
granted only partial trust to access strong-named assemblies. This restriction dramatically reduces
the opportunity for malicious code to attack your system, but the reasoning behind such a heavy-
handed approach requires some explanation.

Assemblies that contain important functionality that is shared between multiple applications
are usually strong-named and often installed in the global assembly cache (GAC). This is particularly
true of the assemblies that constitute the .NET Framework class library. Other strong-named assem-
blies from well-known and widely distributed products will also be in the GAC and accessible to
managed applications. The high chance that certain assemblies will be present in the GAC, their easy
accessibility, and their importance to many different applications makes strong-named assemblies
the most likely target for any type of subversive activity by malicious managed code.

Generally, the code most likely to be malicious is that which is loaded from remote locations,
such as the Internet, over which you have little or no control. Under the default security policy in
version 3.5 of the .NET Framework, all code run from the local machine has full trust, whereas code
loaded from remote locations has only partial trust. Stopping partially trusted code from accessing
strong-named assemblies means that partially trusted code has no opportunity to use the features
of the assembly for malicious purposes, and cannot probe and explore the assembly to find exploit-
able holes. Of course, this theory hinges on the assumption that you correctly administer your security
policy. If you simply assign all code full trust, not only will any assembly be able to access your
strong-named assembly, but the code will also be able to access all of the functionality of the .NET
Framework and even Win32 or any COM object through P/Invoke and COM Interop. That would be
a security disaster!

■Note If you design, implement, and test your shared assembly correctly using CAS to restrict access to important
members, you do not need to impose a blanket restriction to prevent partially trusted code from using your assembly.
However, for an assembly of any significance, it’s impossible to prove there are no security holes that malicious
code can exploit. Therefore, you should carefully consider the need to allow partially trusted code to access your
strong-named assembly before applying the AllowPartiallyTrustedCallers attribute. However, you might
have no choice. If you are exposing public classes that provide events, you must apply this attribute. If you do not,
an assembly that is not strong-named will be allowed to register a handler for one of your events, but when it is
called, a security exception will be thrown. Code in an assembly that is not strong-named is not allowed to call code
in a strong-named assembly.

The runtime stops partially trusted code from accessing strong-named assemblies by placing an
implicit LinkDemand for the FullTrust permission set on every Public and Protected member of every
publicly accessible type defined in the assembly. A LinkDemand verifies that the caller has the speci-
fied permissions, during just-in-time (JIT) compilation. This means that only assemblies granted the
permissions equivalent to the FullTrust permission set are able to access the types and members from
the strong-named assembly. Applying AllowPartiallyTrustedCallersAttribute to your strong-named
assembly signals the runtime not to enforce the LinkDemand on the contained types and members.

■Note The runtime is responsible for enforcing the implicit LinkDemand security actions required to protect
strong-named assemblies. The VB .NET assembler does not generate declarative LinkDemand statements at
compile time.

Herman_970-5C12.fm Page 497 Friday, March 14, 2008 10:52 AM

498 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The Code

The following code fragment shows the application of the attribute
AllowPartiallyTrustedCallersAttribute. Notice that you must prefix the attribute with Assembly:
to signal to the compiler that the target of the attribute is the assembly (also called a global attribute).
Because you target the assembly, the attribute must be positioned after any top-level Imports state-
ments, but before any namespace or type declarations.

Imports System.Security

<Assembly: AllowPartiallyTrustedCallers()>

Namespace Apress.VisualBasicRecipes.Chapter12

 Public Class Recipe12_01
 ' Implementation code...
 End Class

End Namespace

■Tip It’s common practice to contain all global attributes in a file separate from the rest of your application code.
Microsoft Visual Studio uses this approach, creating a file named AssemblyInfo.vb (located in the My Projects folder,
which is hidden by default) to contain all global attributes.

Notes

If, after applying AllowPartiallyTrustedCallersAttribute to your assembly, you want to restrict
partially trusted code from calling only specific members, you should implement a LinkDemand for
the FullTrust permission set on the necessary members, as shown in the following code fragment:

<System.Security.Permissions.PermissionSet(SecurityAction.LinkDemand, ➥
Name:="FullTrust")> _
Public Sub SomeMethod()
 ' Method code...
End Sub

12-2. Disable Execution Permission Checks

Problem

You need to load assemblies at runtime without the runtime checking them for execution permission.

Solution

In code, set the property CheckExecutionRights of the class System.Security.SecurityManager to False
and persist the change by calling SecurityManager.SavePolicy. Alternatively, use the Code Access Secu-
rity Policy tool (Caspol.exe), and execute the command caspol -e off from the command line.

How It Works

Code Access Security (CAS) is a key element of the .NET runtime’s security model and one that sets
it apart from many other computing platforms. As the runtime loads each assembly, it ensures that

Herman_970-5C12.fm Page 498 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 499

the assembly’s grant set (the permissions assigned to the assembly based on the security policy)
includes the Execution element of SecurityPermission. The runtime implements a lazy policy reso-
lution process, meaning that the grant set of an assembly is not calculated until the first time a security
demand is made against the assembly. Not only does execution permission checking force the runtime
to check that every assembly has the execution permission, but it also indirectly causes policy reso-
lution for every assembly loaded, effectively negating the benefits of lazy policy resolution. These
factors can introduce a noticeable delay as assemblies are loaded, especially when the runtime loads
a number of assemblies together, as it does at application startup.

In many situations, simply allowing code to load and run is not a significant risk, as long as all
other important operations and resources are correctly secured using CAS and operating system
security. The SecurityManager class contains a set of Shared methods and properties that provide
access to critical security functionality and data. For example, the CheckExecutionRights property
turns on and off execution permission checks.

To modify the value of CheckExecutionRights, your code must have the ControlPolicy element
of SecurityPermission. The change will affect the current process immediately, allowing you to load
assemblies at runtime without the runtime checking them for execution permission. However, the
change will not affect other existing processes. You must call the SavePolicy method to persist the
change to the Windows registry for it to affect new processes.

The Code

The following example contains two methods (ExecutionCheckOn and ExecutionCheckOff) that
demonstrate the code required to turn on and off execution permission checks and persist the
configuration change:

Imports System.Security

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_02

 ' A method to turn on execution permission checking
 ' and persist the change.
 Public Sub ExecutionCheckOn()
 ' Turn on CAS checks.
 SecurityManager.CheckExecutionRights = True

 ' Persist the configuration change.
 SecurityManager.SavePolicy()

 End Sub

 ' A method to turn off execution permission checking
 ' and persist the change.
 Public Sub ExecutionCheckOff()
 ' Turn on CAS checks.
 SecurityManager.CheckExecutionRights = False

 ' Persist the configuration change.
 SecurityManager.SavePolicy()

 End Sub

 End Class
End Namespace

Herman_970-5C12.fm Page 499 Friday, March 14, 2008 10:52 AM

500 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Notes

The .NET runtime allows you to turn off the automatic checks for execution permissions from within
code or by using Caspol.exe. When you enter the command caspol -e off or its counterpart caspol
-e on from the command line, the Caspol.exe utility actually sets the CheckExecutionRights property
of the SecurityManager class before calling SecurityManager.SavePolicy.

12-3. Ensure the Runtime Grants Specific Permissions to
Your Assembly

Problem

You need to ensure that the runtime grants your assembly those code access permissions that are
critical to the successful operation of your application.

Solution

In your assembly, use permission requests to specify the code access permissions that your assembly
must have. You declare permission requests using assembly-level code access permission attributes.

How It Works

The name permission request is a little misleading given that the runtime will never grant permis-
sions to an assembly unless security policy dictates that the assembly should have those permissions.
However, naming aside, permission requests serve an essential purpose, and although the way the
runtime handles permission requests might initially seem strange, the nature of CAS does not allow
for any obvious alternative.

Permission requests identify permissions that your code must have to function. For example,
if you wrote a movie player that your customers could use to download and view movies from your
web server, it would be disastrous if the user’s security policy did not allow your player to open a
network connection to your media server. Your player would load and run, but as soon as the user
tried to connect to your server to play a movie, the application would crash with the exception
System.Security.SecurityException. The solution is to include in your assembly a permission
request for the code access permission required to open a network connection to your server
(System.Net.WebPermission or System.Net.SocketPermission, depending on the type of connection
you need to open).

The runtime honors permission requests using the premise that it’s better that your code never
load than to load and fail sometime later when it tries to perform an action that it does not have
permission to perform. Therefore, if after security policy resolution the runtime determines that the
user does not have the appropriate permissions to satisfy the assembly’s permission requests, the
runtime will fail to load the assembly and will instead throw the exception System.Security.Policy.
PolicyException. Since your own code failed to load, the runtime will handle this security exception
during the assembly loading and transform it into a System.IO.FileLoadException exception that
will terminate your program.

When you try to load an assembly from within code (either automatically or manually), and the
loaded assembly contains permission requests that the security policy does not satisfy, the method you
use to load the assembly will throw a PolicyException exception, which you must handle appropriately.

To declare a permission request, you must use the attribute counterpart of the code access
permission that you need to request. All code access permissions have an attribute counterpart that
you use to construct declarative security statements, including permission requests. For example,
the attribute counterpart of SocketPermission is SocketPermissionAttribute, and the attribute

Herman_970-5C12.fm Page 500 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 501

counterpart of WebPermission is WebPermissionAttribute. All permissions and their attribute coun-
terparts follow the same naming convention and are members of the same namespace.

When making a permission request, it’s important to remember the following:

• You must declare the permission request after any top-level Imports statements but before
any namespace or type declarations.

• The attribute must target the assembly, so you must prefix the attribute name with Assembly.

• You do not need to include the Attribute portion of an attribute’s name, although you can.

• You must specify SecurityAction.RequestMinimum as the first positional argument of the
attribute. This value identifies the statement as a permission request.

• You must configure the attribute to represent the code access permission you want to request
using the attribute’s properties. Refer to the .NET Framework SDK documentation for details
of the properties implemented by each code access security attribute.

• To make more than one permission request, simply include multiple permission request
statements.

The Code

The following example is a console application that includes two permission requests: one for
SocketPermission and the other for SecurityPermission. If you try to execute the
PermissionRequestExample application and your security policy does not grant the assembly the
requested permissions, you will get a FileLoadException exception, and the application will not
execute. Using the default security policy, this will happen if you run the assembly from a network
share, because assemblies loaded from the intranet zone are not granted SocketPermission.

Imports System
Imports System.Net
Imports System.Security.Permissions

' Permission request for SocketPermission that allows the code to
' open a TCP connection to the specified host and port.
<Assembly: SocketPermission(SecurityAction.RequestMinimum, Access:="Connect", ➥
Host:="www.fabrikam.com", Port:="3538", Transport:="Tcp")>

' Permission request for the UnmanagedCode element of SecurityPermission,
' which controls the code's ability to execute unmanaged code.
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, UnmanagedCode:=True)>

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_03

 Public Shared Sub Main()

 ' Do something

 ' Wait to continue.
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C12.fm Page 501 Friday, March 14, 2008 10:52 AM

http://www.fabrikam.com

502 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

12-4. Limit the Permissions Granted to Your Assembly

Problem

You need to restrict the code access permissions granted to your assembly, ensuring that people and
other software can never use your code as a mechanism through which to perform undesirable or
malicious actions.

Solution

Use declarative security statements to specify optional permission requests and permission refusal
requests in your assembly. Optional permission requests define the maximum set of permissions
that the runtime will grant to your assembly. Refused permission requests specify particular permis-
sions that the runtime should not grant to your assembly.

How It Works

In the interest of security, it’s ideal if your code has only those code access permissions required to
perform its function. This minimizes the opportunities for people and other code to use your code
to carry out malicious or undesirable actions. The problem is that the runtime resolves an assembly’s
permissions using security policy, which a user or an administrator configures. Security policy could
be different in every location where your application is run, and you have no control over what
permissions the security policy assigns to your code.

Although you cannot control security policy in all locations where your code runs, the .NET
Framework provides two mechanisms through which you can reject permissions granted to your
assembly:

• Optional permission request: This defines the maximum set of permissions that the runtime
can grant to your assembly. If the final grant set of an assembly contains any permissions
other than those specified in the optional permission request, the runtime removes those
permissions. Unlike as with a minimum permission request (discussed in recipe 12-3), the
runtime will not refuse to load your assembly if it cannot grant all of the permissions specified
in the optional request.

• Refused permission request: This defines the set of permissions that the runtime should never
grant to your assembly. Even if the assembly would normally be granted a permission, it will
be refused if it is part of the refused permission set.

The approach you use depends on how many permissions you want to reject. If you want to
reject only a handful of permissions, a refuse request is easier to code. You just specify the permis-
sions that you do not want to grant to your assembly. However, if you want to reject a large number
of permissions, it’s easier to code an optional request for the few permissions that you do want; all
others not specified will be refused by the assembly.

You include optional and refuse requests in your code using declarative security statements
with the same syntax as the minimum permission requests discussed in recipe 12-3. The only differ-
ence is the value of the System.Security.Permissions.SecurityAction that you pass to the permission
attribute’s constructor. Use SecurityAction.RequestOptional to declare an optional permission request
and SecurityAction.RequestRefuse to declare a refuse request. As with minimal permission requests,
you must declare optional and refuse requests as global attributes by beginning the permission
attribute name with the prefix Assembly. In addition, all requests must appear after any top-level
Imports statements but before any namespace or type declarations.

Herman_970-5C12.fm Page 502 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 503

The Code

The code shown here demonstrates an optional permission request for the Internet permission set.
The Internet permission set is a named permission set defined by the default security policy. When
the runtime loads the example, it will not grant the assembly any permission that is not included
within the Internet permission set. (Consult the .NET Framework SDK documentation for details of
the permissions contained in the Internet permission set.)

Imports System.Security.Permissions

<Assembly: PermissionSet(SecurityAction.RequestOptional, Name:="Internet")>

Namespace Apress.VisualBasicRecipes.Chapter12

 Public Class Recipe12_04_OptionalRequest
 ' Class implementation...
 End Class

End Namespace

In contrast to the preceding example, the following example uses a refuse request to single out
the permission System.Security.Permissions.FileIOPermission—representing write access to the
C: drive—for refusal:

Imports System.Security.Permissions

<Assembly: FileIOPermission(SecurityAction.RequestRefuse, Write:="C:\")>

Namespace Apress.VisualBasicRecipes.Chapter12

 Public Class Recipe12_04_RefuseRequest
 ' Class implementation...
 End Class

End Namespace

12-5. View the Permissions Required by an Assembly

Problem

You need to view the permissions that an assembly must be granted in order to run correctly.

Solution

Use the Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK.

How It Works

To configure security policy correctly, you need to know the code access permission requirements
of the assemblies you intend to run. This is true of both executable assemblies and libraries that you
access from your own applications. With libraries, it’s also important to know which permissions the
assembly refuses so that you do not try to use the library to perform a restricted action, which would
result in a System.Security.SecurityException exception.

Herman_970-5C12.fm Page 503 Friday, March 14, 2008 10:52 AM

504 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK walks through
an assembly and provides an estimate of the permissions the assembly requires to run, regardless of
whether they are declarative or imperative. Declarative permissions are those that are defined directly on
a class or method, while imperative permissions are demanded by code.

The Code

The following example shows a class that declares a minimum, optional, and refusal request, as well
as a number of imperative security demands:

Imports System
Imports System.Net
Imports System.Security.Permissions

' Minimum permission request for SocketPermission.
<Assembly: SocketPermission(SecurityAction.RequestMinimum, Unrestricted:=True)>

' Optional permission request for IsolatedStorageFilePermission.
<Assembly: IsolatedStorageFilePermission(SecurityAction.RequestOptional, ➥
Unrestricted:=True)>

' Refuse request for ReflectionPermission.
<Assembly: ReflectionPermission(SecurityAction.RequestRefuse, Unrestricted:=True)>

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Receipe12_05

 Public Shared Sub Main()

 ' Create and configure a FileIOPermission object that represents
 ' write access to the C:\Data folder.
 Dim fileIOPerm As New FileIOPermission(FileIOPermissionAccess.Write, ➥
"C:\Data")

 ' Make the demand.
 fileIOPerm.Demand()

 ' Do something...

 ' Wait to continue.
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Executing the command permcalc -sandbox Recipe12-05.exe will generate a file named sandbox.
PermCalc.xml that contains XML representations of the permissions required by the assembly. The
sandbox parameter creates a private area (or sandbox) for an application, with the minimum permis-
sions in which the application requires to run. Where the exact requirements of a permission cannot

Herman_970-5C12.fm Page 504 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 505

be determined (because it is based on runtime data), Permcalc.exe reports that unrestricted permis-
sions of that type are required. You can instead default to the Internet zone permissions using the
-Internet flag. Here are the contents of sandbox.PermCalc.xml when run against the sample code:

<?xml version="1.0"?>
<Sandbox>
 <PermissionSet version="1" class="System.Security.PermissionSet">
 <IPermission Write="C:\Data" version="1"
 class="System.Security.Permissions.FileIOPermission, mscorlib,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 <IPermission version="1"
 class="System.Security.Permissions.SecurityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" Flags="Execution" />
 <IPermission version="1" class="System.Security.Permissions.UIPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" Unrestricted="true" />
 <IPermission version="1" class="System.Net.SocketPermission, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 Unrestricted="true" />
 </PermissionSet>
</Sandbox>

12-6. Determine at Runtime Whether Your Code Has a
Specific Permission

Problem

You need to determine at runtime whether your assembly has a specific permission, such as write
access to files.

Solution

Instantiate and configure the permission you want to test for, and then pass it as an argument to the
Shared method IsGranted of the class System.Security.SecurityManager.

How It Works

Using minimum permission requests, you can ensure that the runtime grants your assembly a spec-
ified set of permissions. As a result, when your code is running, you can safely assume that it has the
requested minimum permissions. However, you might want to implement opportunistic function-
ality that your application offers only if the runtime grants your assembly appropriate permissions.
This approach is partially formalized using optional permission requests, which allow you to define
a set of permissions that your code could use if the security policy granted them, but are not essential for
the successful operation of your code. (Recipe 12-4 provides more details on using optional permis-
sion requests.)

The problem with optional permission requests is that the runtime has no ability to communi-
cate to your assembly which of the requested optional permissions it has granted. You can try to use
a protected operation and fail gracefully if the call results in the exception System.Security.
SecurityException. However, it’s more efficient to determine in advance if you have the necessary

Herman_970-5C12.fm Page 505 Friday, March 14, 2008 10:52 AM

506 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

permissions. You can then build logic into your code to avoid invoking secured members that will
cause stack walks and raise security exceptions.

The Code

The following example demonstrates how to use the IsGranted method to determine if the assembly
has write permission to the directory C:\Data. You could make such a call each time you needed to
test for the permission, but it’s more efficient to use the returned Boolean value to set a configura-
tion flag indicating whether to allow users to save files.

Imports System.Security
Imports System.Security.Permissions

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_06
 ' Define a variable to indicate whether the assembly has write
 ' access to the C:\Data folder.
 Private canWrite As Boolean = False

 Public Sub New()
 ' Create and configure a FileIOPermission object that
 ' represents write access the C:\Data folder.
 Dim fileIOPerm As New FileIOPermission(FileIOPermissionAccess.Write, ➥
"C:\Data")

 ' Test if the current assembly has the specified permission.
 canWrite = SecurityManager.IsGranted(fileIOPerm)

 End Sub

 End Class
End Namespace

12-7. Restrict Who Can Extend Your Classes and Override Class
Members

Problem

You need to control what code can extend your classes through inheritance and which class members
a derived class can override.

Solution

Use declarative security statements to apply the SecurityAction.InheritanceDemand to the declara-
tions of the classes and members that you need to protect.

How It Works

Language modifiers such as NotOverridable, NotInheritable, Public, Private, and Overridable give
you a level of control over the ability of classes to inherit from your class and override its members.
However, these modifiers are inflexible, providing no selectivity in restricting which code can extend
a class or override its members. For example, you might want to allow only code written by your

Herman_970-5C12.fm Page 506 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 507

company or department to extend business-critical classes. By applying an InheritanceDemand to
your class or member declaration, you can specify runtime permissions that a class must have to
extend your class or override particular members. Remember that the permissions of a class are the
permissions of the assembly in which the class is declared.

Although you can demand any permission or permission set in your InheritanceDemand, it’s
more common to demand identity permissions. Identity permissions represent evidence presented
to the runtime by an assembly. If an assembly presents certain types of evidence at load time, the
runtime will automatically assign the assembly the appropriate identity permission. Identity permissions
allow you to use regular imperative and declarative security statements to base security decisions
directly on code identity, without the need to evaluate evidence objects directly. Table 12-1 lists the
type of identity permission generated for each type of evidence. (Evidence types are members of the
System.Security.Policy namespace, and identity permission types are members of the System.
Security.Permissions namespace.)

■Note The runtime assigns identity permissions to an assembly based on the evidence presented by the
assembly. You cannot assign additional identity permissions to an assembly through the configuration of security
policy.

You must use declarative security syntax to implement an InheritanceDemand, and so you must
use the attribute counterpart of the permission class that you want to demand. All permission classes,
including InheritanceDemand, have an attribute counterpart that you use to construct declarative
security statements. For example, the attribute counterpart of PublisherIdentityPermission is
PublisherIdentityPermissionAttribute, and the attribute counterpart of
StrongNameIdentityPermission is StrongNameIdentityPermissionAttribute. All permissions and
their attribute counterparts follow the same naming convention and are members of the same
namespace.

To control which code can extend your class, apply the InheritanceDemand to the class declara-
tion using one of the permissions listed in Table 12-1. To control which code can override specific
members of a class, apply the InheritanceDemand to the member declaration.

The Code

The following example demonstrates the use of an InheritanceDemand on both a class and a method.
Applying a PublisherIdentityPermissionAttribute to the Recipe12_07 class means only classes in
assemblies signed by the publisher certificate contained in the pubcert.cer file (or assemblies granted
FullTrust) can extend the class. The contents of the pubcert.cer file are read at compile time, and

Table 12-1. Evidence Type Classes That Generate Identity Permissions

Evidence Class Identity Permission

Publisher PublisherIdentityPermission

Site SiteIdentityPermission

StrongName StrongNameIdentityPermission

Url UrlIdentityPermission

Zone ZoneIdentityPermission

Herman_970-5C12.fm Page 507 Friday, March 14, 2008 10:52 AM

508 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

the necessary certificate information is built into the assembly metadata. To demonstrate that other
permissions can also be used with an InheritanceDemand, the PermissionSetAttribute is used to
allow only classes granted the FullTrust permission set to override the method SomeProtectedMethod.

Imports System.Security.Permissions
Namespace Apress.VisualBasicRecipes.Chapter12

 <PublisherIdentityPermission(SecurityAction.InheritanceDemand, ➥
CertFile:="pubcert.cer")> _
 Public Class Recipe12_07

 <PermissionSet(SecurityAction.InheritanceDemand, Name:="FullTrust")> _
 Public Sub SomeProtectedMethod()
 ' Method implementation...
 End Sub

 End Class
End Namespace

12-8. Inspect an Assembly’s Evidence

Problem

You need to inspect the evidence that the runtime assigned to an assembly.

Solution

Obtain a System.Reflection.Assembly object that represents the assembly in which you are inter-
ested. Get the System.Security.Policy.Evidence class from the Evidence property of the Assembly
object, and access the contained evidence objects using the GetEnumerator, GetHostEnumerator, or
GetAssemblyEnumerator method of the Evidence class.

How It Works

The Evidence class represents a collection of evidence objects. The read-only Evidence property of
the Assembly class returns an Evidence collection object that contains all of the evidence objects that
the runtime assigned to the assembly as the assembly was loaded.

The Evidence class actually contains two collections, representing different types of evidence:

• Host evidence includes those evidence objects assigned to the assembly by the runtime or the
trusted code that loaded the assembly.

• Assembly evidence represents custom evidence objects embedded into the assembly at build
time.

The Evidence class implements three methods for enumerating the evidence objects it contains:
GetEnumerator, GetHostEnumerator, and GetAssemblyEnumerator. The GetHostEnumerator and
GetAssemblyEnumerator methods return a System.Collections.IEnumerator instance that enumer-
ates only those evidence objects from the appropriate collection. The GetEnumerator method, which
is used when you perform a For Each on the Evidence class, returns an IEnumerator instance that
enumerates all of the evidence objects contained in the Evidence collection.

Herman_970-5C12.fm Page 508 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 509

■Note Evidence classes do not extend a standard base class or implement a standard interface. Therefore, when
working with evidence programmatically, you need to test the type of each object and know what particular types
you are seeking. (See recipe 3-11 for details on how to test the type of an object at runtime.)

The Code

The following example demonstrates how to display the host and assembly evidence of an assembly
on the console. The example relies on the fact that all standard evidence classes override the Object.
ToString method to display a useful representation of the evidence object’s state. Although inter-
esting, this example does not always show the evidence that an assembly would have when loaded
from within your program. The runtime host (such as the Microsoft ASP.NET or Internet Explorer
runtime host) is free to assign additional host evidence as it loads an assembly.

Imports System
Imports System.Reflection
Imports System.Collections
Imports System.Security.Policy

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_08

 Public Shared Sub Main(ByVal args As String())

 ' Load the specified assembly.
 Dim a As Assembly = Assembly.LoadFrom(args(0))

 ' Get the evidence collection from the
 ' loaded assembly.
 Dim e As Evidence = a.Evidence

 ' Display the host evidence.
 Dim x As IEnumerator = e.GetHostEnumerator

 Console.WriteLine("HOST EVIDENCE COLLECTION:")

 While x.MoveNext
 Console.Write(x.Current.ToString)
 Console.Write("Press Enter to see next evidence.")
 Console.Write(Environment.NewLine)
 Console.ReadLine()
 End While

 ' Display the assembly evidence.
 x = e.GetAssemblyEnumerator()

 Console.WriteLine("ASSEMBLY EVIDENCE COLLECTION:")

Herman_970-5C12.fm Page 509 Friday, March 14, 2008 10:52 AM

510 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 While x.MoveNext
 Console.Write(x.Current.ToString)
 Console.Write("Press Enter to see next evidence.")
 Console.Write(Environment.NewLine)
 Console.ReadLine()
 End While

 ' Wait to continue.
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note All of the standard evidence classes provided by the .NET Framework are immutable, ensuring that you
cannot change their values after the runtime has created them and assigned them to the assembly. In addition,
you cannot add or remove items while you are enumerating across the contents of a collection using an
IEnumerator; otherwise, the MoveNext method throws a System.InvalidOperationException exception.

Usage

You would execute the example using Recipe12-08.exe Recipe12-08.exe. This will produce output
similar to the following:

HOST EVIDENCE COLLECTION:
<System.Security.Policy.Zone version="1">
<Zone>MyComputer</Zone>
</System.Security.Policy.Zone>
Press Enter to see next evidence.

<System.Security.Policy.Url version="1">
<Url>file:///F:/Programming/Visual Studio 2008/Visual Basic 2008 Recipes/Chapter
12/Recipe12-08/bin/Debug/Recipe12-08.EXE</Url>
</System.Security.Policy.Url>
Press Enter to see next evidence.

<System.Security.Policy.Hash version="1">
<RawData>4D5A90000300000004000000FFFF0000B80000000000000040000000000000000000000
000800000000E1FBA0E00B409CD21B8014

...

0000000000000000000000000</RawData>
</System.Security.Policy.Hash>
Press Enter to see next evidence.

ASSEMBLY EVIDENCE COLLECTION:
Main method complete. Press Enter.

Herman_970-5C12.fm Page 510 Friday, March 14, 2008 10:52 AM

file:///F:/Programming/Visual

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 511

12-9. Determine Whether the Current User Is a Member of a
Specific Windows Group

Problem

You need to determine if the current user of your application is a member of a specific Windows
user group.

Solution

Obtain a System.Security.Principal.WindowsIdentity object representing the current Windows
user by calling the Shared method WindowsIdentity.GetCurrent. Create a System.Security.Principal.
WindowsPrincipal class using the WindowsIdentity class, and then call the method IsInRole of the
WindowsPrincipal object.

How It Works

The role-based security (RBS) mechanism of the .NET Framework abstracts the user-based security
features of the underlying operating system through the following two key interfaces:

• The System.Security.Principal.IIdentity interface, which represents the entity on whose
behalf code is running; for example, a user or service account.

• The System.Security.Principal.IPrincipal interface, which represents the entity’s IIdentity
and the set of roles to which the entity belongs. A role is simply a categorization used to group
entities with similar security capabilities, such as a Windows user group.

To integrate RBS with Windows user security, the .NET Framework provides the following two
Windows-specific classes that implement the IIdentity and IPrincipal interfaces:

• System.Security.Principal.WindowsIdentity, which implements the IIdentity interface
and represents a Windows user.

• System.Security.Principal.WindowsPrincipal, which implements IPrincipal and represents
the set of Windows groups to which the user belongs.

Because .NET RBS is a generic solution designed to be platform-independent, you have no
access to the features and capabilities of the Windows user account through the IIdentity and
IPrincipal interfaces, and you must frequently use the WindowsIdentity and WindowsPrincipal
objects directly.

To determine if the current user is a member of a specific Windows group, you must first call the
Shared method WindowsIdentity.GetCurrent. The GetCurrent method returns a WindowsIdentity
object that represents the Windows user on whose behalf the current thread is running. An overload
of the GetCurrent method takes a Boolean argument and allows you to control what is returned by
GetCurrent if the current thread is impersonating a user different from the one associated with the
process. If the argument is True, GetCurrent returns a WindowsIdentity representing the imperson-
ated user, or it returns Nothing if the thread is not impersonating a user. If the argument is False,
GetCurrent returns the WindowsIdentity of the thread if it is impersonating a user, or it returns the
WindowsIdentity of the process if the thread is not currently impersonating a user. Calling GetCurrent and
passing False is the same as calling GetCurrent with no parameter.

Herman_970-5C12.fm Page 511 Friday, March 14, 2008 10:52 AM

512 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

■Note The WindowsIdentity class provides overloaded constructors that, when running on Microsoft
Windows Server 2003, Windows Vista, or Windows Server 2008, allow you to obtain a WindowsIdentity object
representing a named user. You can use this WindowsIdentity object and the process described in this recipe to
determine if that user is a member of a specific Windows group. If you try to use one of these constructors when
running on an earlier version of Windows, the WindowsIdentity constructor will throw an exception. On Windows
platforms preceding Windows Server 2003, you must use native code to obtain a Windows access token repre-
senting the desired user. You can then use this access token to instantiate a WindowsIdentity object. Recipe 12-11
explains how to obtain Windows access tokens for specific users.

Once you have a WindowsIdentity, instantiate a new WindowsPrincipal object, passing the
WindowsIdentity object as an argument to the constructor. Finally, call the IsInRole method of the
WindowsPrincipal object to test if the user is in a specific group (role). IsInRole returns True if the
user is a member of the specified group; otherwise, it returns False. The IsInRole method provides
three additional overloads:

• The second IsInRole overload accepts an Integer, which specifies a Windows role identi-
fier (RID). RIDs provide a mechanism to identify groups that is independent of language
and localization.

• The third IsInRole overload accepts a member of the System.Security.Principal.
WindowsBuiltInRole enumeration. The WindowsBuiltInRole enumeration defines a set of
members that represent each of the built-in Windows groups. As with RIDs, these groups are
independent of language and localization.

• The fourth IsInRole overload accepts a System.Security.Principal.SecurityIdentifier
object that represents the security identifier (SID) of the group for which you want to test.

Table 12-2 lists the name, RID, and WindowsBuiltInRole value for each of the standard
Windows groups.

Table 12-2. Windows Built-In Account Names and Identifiers

Account Name RID (Hex) WindowsBuiltInRole Value

BUILTIN\Account Operators 0x224 AccountOperator

BUILTIN\Administrators 0x220 Administrator

BUILTIN\Backup Operators 0x227 BackupOperator

BUILTIN\Guests 0x222 Guest

BUILTIN\Power Users 0x223 PowerUser

BUILTIN\Print Operators 0x226 PrintOperator

BUILTIN\Replicators 0x228 Replicator

BUILTIN\Server Operators 0x225 SystemOperator

BUILTIN\Users 0x221 Use

Herman_970-5C12.fm Page 512 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 513

The Code

The following example demonstrates how to test whether the current user is a member of a set of
named Windows groups. You specify the groups that you want to test for as command-line arguments.
Remember to prefix the group name with the machine or domain name, or BUILTIN for standard
Windows groups.

Imports System
Imports System.Security.Principal

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_09

 Public Shared Sub Main(ByVal args As String())

 ' Obtain a WindowsIdentity object representing the currently
 ' logged on Windows user.
 Dim identity As WindowsIdentity = WindowsIdentity.GetCurrent

 ' Create a Windows Principal object that represents the security
 ' capabilities of the specified WindowsIdentity; in this case,
 ' the Windows groups to which the current user belongs.
 Dim principal As New WindowsPrincipal(identity)

 ' Iterate through the group names specified as command-line
 ' arguments and test to see if the current user is a member of
 ' each one.
 For Each role As String In args
 Console.WriteLine("Is {0} a member of {1}? = {2}", identity.Name, ➥
role, principal.IsInRole(role))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you run this example while logged in as a user named Guy on a computer named MACHINE using
this command:

Recipe12-09 BUILTIN\Administrators BUILTIN\Users MACHINE\Accountants

you will see console output similar to the following:

Is MACHINE\Guy a member of BUILTIN\Administrators? = False
Is MACHINE\Guy a member of BUILTIN\Users? = True
Is MACHINE\Guy a member of MACHINE\Accountants? = True

Herman_970-5C12.fm Page 513 Friday, March 14, 2008 10:52 AM

514 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

12-10. Restrict Which Users Can Execute Your Code

Problem

You need to restrict which users can execute elements of your code based on the user’s name or the
roles of which the user is a member.

Solution

Use the permission class System.Security.Permissions.PrincipalPermission and its attribute
counterpart System.Security.Permissions.PrincipalPermissionAttribute to protect your program
elements with RBS demands.

How It Works

The .NET Framework supports both imperative and declarative RBS (refer to recipe 12-9) demands.
The class PrincipalPermission provides support for imperative security statements, and its attribute
counterpart PrincipalPermissionAttribute provides support for declarative security statements.
RBS demands use the same syntax as CAS demands, but RBS demands specify the name the current
user must have, or more commonly, the roles of which the user must be a member. An RBS demand
instructs the runtime to look at the name and roles of the current user, and if that user does not meet
the requirements of the demand, the runtime throws a System.Security.SecurityException exception.

To make an imperative security demand, you must first create a PrincipalPermission object
specifying the username or role name you want to demand, and then you must call its Demand method.
You can specify only a single username and role name per demand. If either the username or the role
name is Nothing, any value will satisfy the demand. Unlike with code access permissions, an RBS
demand does not result in a stack walk; the runtime evaluates only the username and roles of the
current user.

To make a declarative security demand, you must annotate the class or member you want to
protect with a correctly configured PrincipalPermissionAttribute attribute. Class-level demands
apply to all members of the class, unless a member-specific demand overrides the class demand.

Generally, you are free to choose whether to implement imperative or declarative demands.
However, imperative security demands allow you to integrate RBS demands with code logic to achieve
more sophisticated demand behavior. In addition, if you do not know the role or usernames to demand
at compile time, you must use imperative demands. Declarative demands have the advantage that
they are separate from code logic and easier to identify. In addition, you can view declarative demands,
but not imperative ones, using the Permview.exe tool (discussed in recipe 12-5). Whether you imple-
ment imperative or declarative demands, you must ensure that the runtime has access to the name
and roles for the current user to evaluate the demand correctly.

The System.Threading.Thread class represents an operating system thread running managed
code. The Shared property CurrentPrincipal of the Thread class contains an IPrincipal instance
representing the roles on whose behalf the managed thread is running.

At the operating system level, each thread also has an associated Windows access token (repre-
sented by the WindowsIdentity class), which represents the Windows account on whose behalf the
thread is running. The IPrincipal instance and the Windows access token are two separate entities.
Windows uses its access token to enforce operating system security, whereas the .NET runtime uses
its IPrincipal instance to evaluate application-level RBS demands. The identity and principal are
separate entities, and they may represent different user accounts, as noted in recipe 12-11.

The benefit of this approach is that you can implement a user and an RBS model within your appli-
cation using a proprietary user accounts database, without the need for all users to have Windows user
accounts. This is a particularly useful approach in large-scale, publicly accessible Internet applications.

Herman_970-5C12.fm Page 514 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 515

By default, the Thread.CurrentPrincipal property is undefined. Because obtaining user-related
information can be time-consuming, and only a minority of applications use this information, the
.NET designers opted for lazy initialization of the CurrentPrincipal property. The first time code gets
the Thread.CurrentPrincipal property, the runtime assigns an IPrincipal instance to the property
using the following logic:

• If the application domain in which the current thread is executing has a default principal, the
runtime assigns this principal to the Thread.CurrentPrincipal property. By default, applica-
tion domains do not have default principals. You can set the default principal of an application
domain by calling the method SetThreadPrincipal on a System.AppDomain object that represents
the application domain you want to configure. Code must have the ControlPrincipal element of
SecurityPermission to call SetThreadPrincipal. You can set the default principal only once
for each application domain; a second call to SetThreadPrincipal results in the exception
System.Security.Policy.PolicyException.

• If the application domain does not have a default principal, the application domain’s prin-
cipal policy determines which IPrincipal implementation to create and assign to Thread.
CurrentPrincipal. To configure principal policy for an application domain, obtain an AppDomain
object that represents the application domain and call the object’s SetPrincipalPolicy
method. The SetPrincipalPolicy method accepts a member of the enumeration System.
Security.Principal.PrincipalPolicy, which specifies the type of IPrincipal object to assign to
Thread.CurrentPrincipal. Code must have the ControlPrincipal element of SecurityPermission
to call SetPrincipalPolicy. Table 12-3 lists the available PrincipalPolicy values; the default
value is UnauthenticatedPrincipal.

• If your code has the ControlPrincipal element of SecurityPermission, you can instantiate
your own IPrincipal object and assign it to the Thread.CurrentPrincipal property directly.
This will prevent the runtime from assigning default IPrincipal objects or creating new ones
based on principal policy.

Whatever method you use to establish the IPrincipal for the current thread, you must do so
before you use RBS demands, or the correct user (IPrincipal) information will not be available for
the runtime to process the demand. Normally, when running on the Windows platform, you would
set the principal policy of an application domain to PrincipalPolicy.WindowsPrincipal (as shown
here) to obtain Windows user information.

' Obtain a reference to the current application domain.
Dim currentAppDomain As AppDomain = System.AppDomain.CurrentDomain

' Configure the current application domain to use Windows-based principals.
currentAppDomain.SetPrincipalPolicy(➥
Security.Principal.PrincipalPolicy.WindowsPrincipal)

Table 12-3. Members of the PrincipalPolicy Enumeration

Member Name Description

NoPrincipal No IPrincipal object is created. Thread.CurrentPrincipal
returns Nothing.

UnauthenticatedPrincipal An empty System.Security.Principal.GenericPrincipal object
is created and assigned to Thread.CurrentPrincipal.

WindowsPrincipal A WindowsPrincipal object representing the currently logged-on
Windows user is created and assigned to Thread.CurrentPrincipal.

Herman_970-5C12.fm Page 515 Friday, March 14, 2008 10:52 AM

516 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The Code

The following example demonstrates the use of imperative and declarative RBS demands. The
example shows three methods protected using imperative RBS demands (Method1, Method2, and
Method3), and then three other methods protected using the equivalent declarative RBS demands
(Method4, Method5, and Method6).

Imports System
Imports System.Security.Permissions

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_10

 Public Shared Sub Method1()

 ' An imperative role-based security demand for the current
 ' principal to represent an identity with the name Jeremy. The
 ' roles of the principal are irrelevant.
 Dim perm As New PrincipalPermission("MACHINE\Jeremy", Nothing)

 ' Make the demand.
 perm.Demand()

 End Sub

 Public Shared Sub Method2()

 ' An imperative role-based security demand for the current
 ' principal to be a member of the roles Managers or Developers.
 ' If the principal is a member of either role, access is granted.
 ' Using the PrincipalPermission, you can express only an OR type
 ' relationship. This is because the PrincipalPolicy.Intersect method
 ' always returns an empty permission unless the two inputs are the
 ' same. However, you can use code logic to implement more complex
 ' conditions. In this case, the name of the identity is irrelevant.
 Dim perm1 As New PrincipalPermission(Nothing, "MACHINE\Managers")
 Dim perm2 As New PrincipalPermission(Nothing, "MACHINE\Developers")

 ' Make the demand.
 perm1.Union(perm2).Demand()

 End Sub

 Public Shared Sub Method3()

 ' An imperative role-based security demand for the current principal
 ' to represent an identity with the name Jeremy AND be a member of the
 ' Managers role.
 Dim perm As New PrincipalPermission("MACHINE\Jeremy", ➥
"MACHINE\Managers")

 ' Make the demand.
 perm.Demand()

 End Sub

Herman_970-5C12.fm Page 516 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 517

 ' A declarative role-based security demand for the current principal
 ' to represent an identity with the name Jeremy.
 <PrincipalPermission(SecurityAction.Demand, Name:="MACHINE\Jeremy")> _
 Public Shared Sub Method4()

 ' Method implementation...

 End Sub

 ' A declarative role-based security demand for the current principal
 ' to be a member of the roles Managers OR Developers. If the principal
 ' is a member of either role, access is granted. You can express only
 ' an OR type relationship, not an AND relationship.
 <PrincipalPermission(SecurityAction.Demand, Role:="MACHINE\Managers"), ➥
PrincipalPermission(SecurityAction.Demand, Role:="MACHINE\Developers")> _
 Public Shared Sub Method5()

 ' Method implementation...

 End Sub

 ' A declarative role-based security demand for the current principal
 ' to represent an identity with the name Jeremy and be a member of the
 ' Managers role.
 <PrincipalPermission(SecurityAction.Demand, Name:="MACHINE\Jeremy", ➥
Role:="MACHINE\Managers")> _
 Public Shared Sub Method6()

 ' Method implementation...

 End Sub

 End Class
End Namespace

12-11. Impersonate a Windows User

Problem

You need your code to run in the context of a Windows user other than the currently active user
account.

Solution

Obtain a System.Security.Principal.WindowsIdentity object representing the Windows user you
need to impersonate, and then call the Impersonate method of the WindowsIdentity object.

How It Works

Every Windows thread has an associated access token, which represents the Windows account on
whose behalf the thread is running. The Windows operating system uses the access token to deter-
mine whether a thread has the appropriate permissions to perform protected operations on behalf
of the account, such as read and write files, reboot the system, and change the system time.

Herman_970-5C12.fm Page 517 Friday, March 14, 2008 10:52 AM

518 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

By default, a managed application runs in the context of the Windows account that executed the
application. This is normally desirable behavior, but sometimes you will want to run an application
in the context of a different Windows account. This is particularly true in the case of server-side
applications that process transactions on behalf of the users remotely connected to the server.

It’s common for a server application to run in the context of a Windows account created specif-
ically for the application—a service account. This service account will have minimal permissions to
access system resources. Enabling the application to operate as though it were the connected user
permits the application to access the operations and resources appropriate to that user’s security
clearance. When an application assumes the identity of another user, it’s known as impersonation.
Correctly implemented, impersonation simplifies security administration and application design,
while maintaining user accountability.

■Note As discussed in recipe 12-10, a thread’s Windows access token and its .NET principal are separate enti-
ties and can represent different users. The impersonation technique described in this recipe changes only the
Windows access token of the current thread; it does not change the thread’s principal. To change the thread’s prin-
cipal, code must have the ControlPrincipal element of SecurityPermission and assign a new System.
Security.Principal.IPrincipal object to the CurrentPrincipal property of the current System.
Threading.Thread.

The System.Security.Principal.WindowsIdentity class provides the functionality through
which you invoke impersonation. However, the exact process depends on which version of Windows
your application is running. For example, the WindowsIdentity class supports constructor overloads
that create WindowsIdentity objects based on the account name of the user you want to impersonate.
These overloads work only when used on a Windows Server 2003 or 2008 domain.

On all previous versions of Windows, you must first obtain a System.IntPtr containing a refer-
ence to a Windows access token that represents the user to impersonate. To obtain the access token
reference, you must use a native method such as the LogonUser function from the Win32 API.

■Caution A major issue with performing impersonation on Microsoft Windows 2000 and Windows NT is that an
account must have the Windows privilege SE_TCB_NAME to execute LogonUser. This requires you to configure
Windows security policy and grant the account the right to “act as part of operating system.” This grants the account a
very high level of trust. You should never grant the privilege SE_TCB_NAME directly to user accounts. The require-
ment for an account to have the SE_TCB_NAME privilege no longer exists for Windows 2003, Windows XP, and
Windows Vista.

Once you have a WindowsIdentity object representing the user you want to impersonate, call its
Impersonate method. From that point on, all actions your code performs occur in the context of the
impersonated Windows account. The Impersonate method returns a System.Security.Principal.
WindowsSecurityContext object, which represents the active account prior to impersonation. To revert to
the original account, call the Undo method of this WindowsSecurityContext object.

The Code

The following example demonstrates impersonation of a Windows user. The example uses the
LogonUser function of the Win32 API to obtain a Windows access token for the specified user, imper-
sonates the user, and then reverts to the original user context.

Herman_970-5C12.fm Page 518 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 519

Imports System
Imports System.IO
Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.Runtime.InteropServices

' Ensure the assembly has permission to execute unmanaged code
' and control the thread principal.
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, UnmanagedCode:=True, ➥
ControlPrincipal:=True)>
Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_11

 ' Define some constants for use with the LogonUser function.
 Const LOGON32_PROVIDER_DEFAULT As Integer = 0
 Const LOGON32_LOGON_INTERACTIVE As Integer = 2

 ' Import the Win32 LogonUser function from advapi32.dll. Specify
 ' "SetLastError = True" to correctly support access to Win32 error
 ' codes.
 <DllImport("advapi32.dll", SetLastError:=True, CharSet:=CharSet.Unicode)> _
 Private Shared Function LogonUser(ByVal userName As String, ➥
ByVal domain As String, ByVal password As String, ByVal logonType As Integer, ➥
ByVal logonProvider As Integer, ByRef accessToken As IntPtr) As Boolean
 End Function

 Public Shared Sub Main(ByVal args As String())

 ' Create a new IntPtr to hold the access token returned by the
 ' LogonUser function.
 Dim accessToken As IntPtr = IntPtr.Zero

 ' Call the LogonUser function to obtain an access token for the
 ' specified user. The accessToken variable is passed to LogonUser
 ' by reference and will contain a reference to the Windows access
 ' token if LogonUser is successful.
 Dim success As Boolean = LogonUser(args(0), ".", args(1), ➥
LOGON32_LOGON_INTERACTIVE, LOGON32_PROVIDER_DEFAULT, accessToken)

 ' If LogonUser returns false, an error has occurred.
 ' Display the error and exit.
 If Not success Then
 Console.WriteLine("LogonUser returned error {0}", ➥
Marshal.GetLastWin32Error())
 Else
 ' Display the active identity.
 Console.WriteLine("Identity before impersonation = {0}", ➥
WindowsIdentity.GetCurrent.Name)
 ' Create a new WindowsIdentity from the Windows access token.
 Dim identity As New WindowsIdentity(accessToken)

Herman_970-5C12.fm Page 519 Friday, March 14, 2008 10:52 AM

520 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 ' Impersonate the specified user, saving a reference to the
 ' returned WindowsImpersonationContext, which contains the
 ' information necessary to revert to the original user context.
 Dim impContext As WindowsImpersonationContext = ➥
identity.Impersonate

 ' Display the active identity.
 Console.WriteLine("Identity during impersonation = {0}", ➥
WindowsIdentity.GetCurrent.Name)

 ' Perform actions as the impersonated user...

 ' Revert to the original Windows user using the
 ' WindowsImpersonationContext object.
 impContext.Undo()

 ' Display the active identity.
 Console.WriteLine("Identity after impersonation = {0}", ➥
WindowsIdentity.GetCurrent.Name)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End If

 End Sub

 End Class
End Namespace

Usage

The example expects two command-line arguments: the account name of the user on the local
machine to impersonate and the account’s password. For example, the command Recipe12-11
Administrator password impersonates the user Administrator, as long as that user exists in the local
accounts database and has the password “password.”

If you used the previous command while logged on as user TestUser, you would receive results
similar to the following:

Identity before impersonation = TestDomain\TestUser
Identity during impersonation = TestDomain\Administrator
Identity after impersonation = TestDomain\TestUser

Main method complete. Press Enter.

Herman_970-5C12.fm Page 520 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 521

12-12. Create a Cryptographically Random Number

Problem

You need to create a random number that is suitable for use in cryptographic and security applications.

Solution

Use a cryptographic random number generator, derived from System.Security.Cryptography.
RandomNumberGenerator such as the System.Security.Cryptography.RNGCryptoServiceProvider class.

How It Works

The System.Random class is a pseudo-random number generator that uses a mathematical algorithm
to simulate the generation of random numbers. In fact, the algorithm it uses is deterministic, meaning
that you can always calculate what the next number will be based on the previously generated
number. This means that numbers generated by the Random class are unsuitable for use in situations
in which security is a priority, such as generating encryption keys and passwords.

When you need a nondeterministic random number for use in cryptographic or security-related
applications, you must use a random number generator derived from the class RandomNumberGenerator.
The RandomNumberGenerator class is an abstract (MustInherit) class from which all concrete .NET
random number generator classes should inherit. Currently, the RNGCryptoServiceProvider class is
the only concrete implementation provided. The RNGCryptoServiceProvider class provides a managed
wrapper around the CryptGenRandom function of the Win32 CryptoAPI, and you can use it to fill Byte
arrays with cryptographically random Byte values.

■Note The numbers produced by the RNGCryptoServiceProvider class are not truly random. However, they
are sufficiently random to meet the requirements of cryptography and security applications in most commercial and
government environments.

As is the case with many of the .NET cryptography classes, the RandomNumberGenerator base class is
a factory for the concrete implementation classes that derive from it. Calling RandomNumberGenerator.
Create("System.Security.Cryptography.RNGCryptoServiceProvider") will return an instance of
RNGCryptoServiceProvider that you can use to generate random numbers. In addition, because
RNGCryptoServiceProvider is the only concrete implementation provided, it’s the default class
created if you call the Create method without arguments, as in RandomNumberGenerator.Create().

Once you have a RandomNumberGenerator instance, the method GetBytes fills a Byte array with
random Byte values. As an alternative, you can use the GetNonZeroBytes method if you need random
data that contains no zero values.

The Code

The following example instantiates an RNGCryptoServiceProvider object and uses it to generate
random values:

Herman_970-5C12.fm Page 521 Friday, March 14, 2008 10:52 AM

522 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Imports System
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_12

 Public Shared Sub Main()

 ' Create a byte array to hold the random data.
 Dim number As Byte() = New Byte(32) {}

 ' Instantiate the default random number generator.
 Dim rng As RandomNumberGenerator = RandomNumberGenerator.Create

 ' Generate 32 bytes of random data.
 rng.GetBytes(number)

 ' Display the random number.
 Console.WriteLine(BitConverter.ToString(number))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note The computational effort required to generate a random number with RNGCryptoServiceProvider
is significantly greater than that required by Random. For everyday purposes, the use of
RNGCryptoServiceProvider is overkill. You should consider the quantity of random numbers you need to
generate and the purpose of the numbers before deciding to use RNGCryptoServiceProvider. Excessive and
unnecessary use of the RNGCryptoServiceProvider class could have a noticeable effect on application perfor-
mance if many random numbers are generated.

12-13. Calculate the Hash Code of a Password

Problem

You need to store a user’s password securely so that you can use it to authenticate the user in the
future.

Solution

Create and store a cryptographic hash code of the password using a hashing algorithm class derived
from the System.Security.Cryptography.HashAlgorithm class. On future authentication attempts,
generate the hash of the password entered by the user and compare it to the stored hash code.

Herman_970-5C12.fm Page 522 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 523

How It Works

Hashing algorithms are one-way cryptographic functions that take plaintext of variable length and
generate a fixed-size numeric value. They are one-way because it’s nearly impossible to derive the
original plaintext from the hash code. Hashing algorithms are deterministic; applying the same
hashing algorithm to a specific piece of plaintext always generates the same hash code. This makes
hash codes useful for determining if two blocks of plaintext (passwords in this case) are the same.
The design of hashing algorithms ensures that the chance of two different pieces of plaintext gener-
ating the same hash code is extremely small (although not impossible). In addition, there is no
correlation between the similarity of two pieces of plaintext and their hash codes; minor differences
in the plaintext cause significant differences in the resulting hash codes.

When using passwords to authenticate a user, you are not concerned with the content of the
password that the user enters. You need to know only that the entered password maches the pass-
word that you have recorded for that user in your accounts database.

The nature of hashing algorithms makes them ideal for storing passwords securely. When the
user provides a new password, you must create the hash code of the password and store it, and then
discard the plaintext password. Each time the user tries to authenticate with your application, calculate
the hash code of the password that user provides and compare it with the hash code you have stored.

■Note People regularly ask how to obtain a password from a hash code. The simple answer is that you cannot.
The whole purpose of a hash code is to act as a token that you can freely store without creating security holes. If a
user forgets a password, you cannot derive it from the stored hash code. Rather, you must either reset the account
to some default value or generate a new password for the user.

Generating hash codes is simple in the .NET Framework. The MustInherit class HashAlgorithm
provides a base from which all concrete hashing algorithm implementations derive. The .NET Frame-
work class library includes the hashing algorithm implementations listed in Table 12-4. The classes
are members of the System.Security.Cryptography namespace and come in three flavors (noted by
the class names suffix): CryptoServiceProvider, Cng, and Managed.

The CryptoServiceProvider classes wrap functionality provided by the native Win32 CryptoAPI
(CAPI), whereas the Managed classes are fully implemented in managed code. The Cng classes are new
to .NET 3.0 and 3.5 and wrap functionality provided by the native Win32 Cryptographic Next Gener-
ation (CNG) API. CNG is the replacement for CAPI and is currently available only on Windows Vista
and Windows Server 2008.

As the table shows, most of the algorithms have multiple implementations. The algorithms
themselves are the same but differ only in how they are implemented. For example, in the case of
sha1, SHA1CryptoServiceProvider, SHA1Managed, and SHA1Cng, each implements the same algorithm,
but the SHA1Managed class uses the managed library, while the SHA1CryptoServiceProvider and SHA1Cng
classes wrap CryptoAPI and CNG, respectively.

Table 12-4. Hashing Algorithm Implementations

Class Name Algorithm Name Hash Code Size (in Bits)

MD5CryptoServiceProvider MD5 128

*MD5Cng MD5 128

RIPEMD160Managed RIPEMD160 or RIPEMD-160 160

SHA1CryptoServiceProvider SHA or SHA1 160

Herman_970-5C12.fm Page 523 Friday, March 14, 2008 10:52 AM

524 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

* These classes are new to the .NET Framework 3.5.

Although you can create instances of the hashing algorithm classes directly, the HashAlgorithm
base class is a factory for some of the concrete implementation classes that derive from it. Calling the
Shared method HashAlgorithm.Create will return an object of the specified type. The following list
contains the names of the classes that the Create method currently supports:

• MD5CryptoServiceProvider

• RIPEMD160Managed

• SHA1CryptoServiceProvider

• SHA256Managed

• SHA384Managed

• SHA512Managed

 Using the factory approach allows you to write generic code that can work with any hashing
algorithm implementation. Note that unlike in recipe 12-12, you are not required to provide the
complete class name; instead, you pass the algorithm name (as shown in Table 12-4). If you do not
specify an algorithm name, the default, SHA1Managed, is used. Any classes that are not supported by
the Create factory method must be instantiated directly.

Once you have a HashAlgorithm object, its ComputeHash method accepts a Byte array argument
containing plaintext and returns a new Byte array containing the generated hash code. Table 12-4
also shows the size of hash code (in bits) generated by each hashing algorithm class.

The Code

The example shown here demonstrates the creation of a hash code from a string, such as a password.
The application expects two command-line arguments: the name of the hashing algorithm to use
and the string from which to generate the hash. Because the HashAlgorithm.ComputeHash method
requires a Byte array, you must first byte-encode the input string using the class System.Text.Encoding,
which provides mechanisms for converting strings to and from various character-encoding formats.

SHA1Managed N/A 160

*SHA1Cng SHA1 160

*SHA256CryptoServiceProvider N/A 256

SHA256Managed SHA256 or SHA-256 256

*SHA256Cng SHA256 256

*SHA384CryptoServiceProvider N/A 384

SHA384Managed SHA384 or SHA-384 384

*SHA384Cng SHA384 384

*SHA512CryptoServiceProvider N/A 512

SHA512Managed SHA512 or SHA-512 512

*SHA512Cng SHA512 512

Table 12-4. Hashing Algorithm Implementations (Continued)

Class Name Algorithm Name Hash Code Size (in Bits)

Herman_970-5C12.fm Page 524 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 525

Since not everyone has Vista or Windows Server 2008, this example does not use any of the algorithm
classes that rely on the Cryptographic Next Generation (CNG) API.

Imports System
imports System.Text
imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_13

 Public Shared Sub Main(ByVal args As String())

 ' Create a HashAlgorithm of the type specified by the first
 ' command-line argument.
 Dim hashAlg As HashAlgorithm = Nothing

 ' Some of the classes cannot be instantiated using the
 ' factory method so they most be directly created.
 Select Case args(0).ToUpper()
 Case "SHA1MANAGED"
 hashAlg = New SHA1Managed
 Case "SHA256CRYPTOSERVICEPROVIDER"
 hashAlg = New SHA256CryptoServiceProvider
 Case "SHA384CRYPTOSERVICEPROVIDER"
 hashAlg = New SHA384CryptoServiceProvider
 Case "SHA512CRYPTOSERVICEPROVIDER"
 hashAlg = New SHA512CryptoServiceProvider
 Case Else
 hashAlg = HashAlgorithm.Create(args(0))
 End Select

 Using hashAlg

 ' Convert the password string, provided as the second
 ' command-line argument, to an array of bytes.
 Dim pwordData As Byte() = Encoding.Default.GetBytes(args(1))

 ' Generate the hash code of the password.
 Dim hash As Byte() = hashAlg.ComputeHash(pwordData)

 ' Display the hash code of the password to the console.
 Console.WriteLine(BitConverter.ToString(hash))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using

 End Sub

 End Class
End Namespace

Herman_970-5C12.fm Page 525 Friday, March 14, 2008 10:52 AM

526 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Usage

Running the following command:

Recipe12-13 SHA1 ThisIsMyPassword

will display the following hash code to the console:

30-B8-BD-58-29-88-89-00-D1-5D-2B-BE-62-70-D9-BC-65-B0-70-2F

In contrast, executing this command:

Recipe12-13 RIPEMD-160 ThisIsMyPassword2

will display the following hash code:

97-78-D5-0C-33-7E-FB-44-AC-DC-0A-71-20-53-29-9A-14-79-97-8D

12-14. Calculate the Hash Code of a File

Problem

You need to determine if the contents of a file have changed over time.

Solution

Create a cryptographic hash code of the file’s contents using the ComputeHash method of the System.
Security.Cryptography.HashAlgorithm class. Store the hash code for future comparison against
newly generated hash codes.

How It Works

As well as allowing you to store passwords securely (discussed in recipe 12-13), hash codes provide
an excellent means of determining if a file has changed. By calculating and storing the cryptographic
hash of a file, you can later recalculate the hash of the file to determine if the file has changed in the
interim. A hashing algorithm will produce a very different hash code even if the file has been changed
only slightly, and the chances of two different files resulting in the same hash code are extremely small.

■Caution Standard hash codes are not suitable for sending with a file to ensure the integrity of the file’s contents. If
someone intercepts the file in transit, that person can easily change the file and recalculate the hash code, leaving
the recipient none the wiser. Recipe 12-16 discusses a variant of the hash code—a keyed hash code—that is suitable for
ensuring the integrity of a file in transit.

The HashAlgorithm class makes it easy to generate the hash code of a file. First, instantiate one
of the concrete hashing algorithm implementations derived from the HashAlgorithm class. To instantiate
the desired hashing algorithm class, pass the name of the hashing algorithm to the HashAlgorithm.Create
method, as described in recipe 12-13. See Table 12-4 for a list of valid hashing algorithm names.
Then, instead of passing a Byte array to the ComputeHash method, you pass a System.IO.Stream object
representing the file from which you want to generate the hash code. The HashAlgorithm object

Herman_970-5C12.fm Page 526 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 527

handles the process of reading data from the Stream and returns a Byte array containing the hash
code for the file.

■Note The SHA1Managed algorithm cannot be implemented using the factory approach. It must be instantiated
directly.

The Code

The example shown here demonstrates the generation of a hash code from a file. The application
expects two command-line arguments: the name of the hashing algorithm to use and the name of
the file from which the hash is calculated.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_14

 Public Shared Sub Main(ByVal args As String())

 ' Create a HashAlgorithm of the type specified by the first
 ' command-line argument.
 Dim hashAlg As HashAlgorithm = Nothing

 ' The SHA1Managed algorithm cannot be implemented using the
 ' factory approach. It must be instantiated directly.
 If args(0).CompareTo("SHA1Managed") = 0 Then
 hashAlg = New SHA1Managed
 Else
 hashAlg = HashAlgorithm.Create(args(0))
 End If

 ' Open a FileStream to the file specified by the second
 ' command-line argument.
 Using fileArg As New FileStream(args(1), FileMode.Open, FileAccess.Read)

 ' Generate the hash code of the password.
 Dim hash As Byte() = hashAlg.ComputeHash(fileArg)

 ' Display the hash code of the password to the console.
 Console.WriteLine(BitConverter.ToString(hash))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using

 End Sub

 End Class
End Namespace

Herman_970-5C12.fm Page 527 Friday, March 14, 2008 10:52 AM

528 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Usage

Running this command:

Recipe12-14 SHA1 Recipe12-14.exe

will display the following hash code to the console:

F9-0E-31-C7-57-82-12-A3-9B-9F-0C-A3-CB-54-4C-34-68-30-19-58

In contrast, executing this command:

Recipe12-14 RIPEMD-160 Recipe12-14.exe

will display the following hash code:

FB-21-82-E7-0F-BA-71-C4-0B-A0-9A-EB-BC-9D-D3-44-6E-D7-5A-CA

12-15. Verify a Hash Code

Problem

You need to verify a password or confirm that a file remains unchanged by comparing two hash codes.

Solution

Convert both the old and the new hash codes to hexadecimal code strings, Base64 strings, or Byte
arrays and compare them.

How It Works

You can use hash codes to determine if two pieces of data (such as passwords or files) are the same,
without the need to store, or even maintain access to, the original data. To determine if data changes
over time, you must generate and store the original data’s hash code. Later, you can generate another
hash code for the data and compare the old and new hash codes, which will show if any change has
occurred. The format in which you store the original hash code will determine the most appropriate
way to verify a newly generated hash code against the stored one.

■Note The recipes in this chapter use the ToString method of the class System.BitConverter to convert
Byte arrays to hexadecimal string values for display. Although easy to use and appropriate for display purposes,
this approach may be inappropriate for use when storing hash codes, because it places a hyphen (-) between each
byte value (for example, 4D-79-3A-C9-. . .). In addition, the BitConverter class does not provide a method to
parse such a string representation back into a Byte array.

Hash codes are often stored in text files, either as hexadecimal strings (for example,
89D22213170A9CFF09A392F00E2C6C4EDC1B0EF9), or as Base64-encoded strings (for example,
idIiExcKnP8Jo5LwDixsTtwbDvk=). Alternatively, hash codes may be stored in databases as raw byte
values. Regardless of how you store your hash code, the first step in comparing old and new hash
codes is to get them both into a common form.

Herman_970-5C12.fm Page 528 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 529

The Code

This following example contains three methods that use different approaches to compare hash codes:

• VerifyHexHash: This method converts a new hash code (a Byte array) to a hexadecimal string
for comparison to an old hash code. Other than the BitConverter.ToString method, the .NET
Framework class library does not provide an easy method to convert a Byte array to a hexa-
decimal string. You must program a loop to step through the elements of the byte array, convert
each individual byte to a string, and append the string to the hexadecimal string representa-
tion of the hash code. The use of a System.Text.StringBuilder avoids the unnecessary creation of
new strings each time the loop appends the next byte value to the result string. (See recipe 2-1 for
more details.)

• VerifyB64Hash: This method takes a new hash code as a Byte array and the old hash code as a
Base64-encoded string. The method encodes the new hash code as a Base64 string and performs
a straightforward string comparison of the two values.

• VerifyByteHash: This method compares two hash codes represented as Byte arrays. The .NET
Framework class library does not include a method that performs this type of comparison,
and so you must program a loop to compare the elements of the two arrays. This code uses a
few timesaving techniques, namely ensuring that the Byte arrays are the same length before
starting to compare them and returning False on the first difference found.

Imports System
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_15

 ' A method to compare a newly generated hash code with an
 ' existing hash code that's represented by a hex code string.
 Private Shared Function VerifyHexHash(ByVal hash As Byte(), ➥
ByVal oldHashString As String)

 ' Create a string representation of the hash code bytes.
 Dim newHashString As New StringBuilder(hash.Length)

 ' Append each byte as a two-character uppercase hex string.
 For Each b As Byte In hash
 newHashString.AppendFormat("{0:X2}", b)
 Next

 ' Compare the string representation of the old and new hash
 ' codes and return the result.
 Return oldHashString.Replace("-", "") = newHashString.ToString

 End Function

 ' A method to compare a newly generated hash code with an
 ' existing hash code that's represented by a Base64-encoded
 ' string.
 Private Shared Function VerifyB64Hash(ByVal hash As Byte(), ➥
ByVal oldHashString As String) As Boolean

Herman_970-5C12.fm Page 529 Friday, March 14, 2008 10:52 AM

530 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 ' Create a Base64 representation of the hash code bytes.
 Dim newHashString As String = Convert.ToBase64String(hash)

 ' Compare the string representations of the old and new hash
 ' codes and return the result.
 Return oldHashString = newHashString

 End Function

 ' A method to compare a newly generated hash code with an
 ' existing hash code represented by a byte array.
 Private Shared Function VerifyByteHash(ByVal hash As Byte(), ➥
ByVal oldHash As Byte()) As Boolean

 ' If either array is nothing or the arrays are different lengths,
 ' then they are not equal.
 If hash Is Nothing Or oldHash Is Nothing Or Not (hash.Length = ➥
oldHash.Length) Then
 Return False
 End If

 ' Step through the byte arrays and compare each byte value.
 For count As Integer = 0 To hash.Length - 1
 If Not hash(count) = oldHash(count) Then Return False
 Next

 ' Hash codes are equal.
 Return True

 End Function

 End Class
End Namespace

12-16. Ensure Data Integrity Using a Keyed Hash Code

Problem

You need to transmit a file to someone and provide the recipient with a means to verify the integrity
of the file and its source.

Solution

Share a secret key with the intended recipient. This key would ideally be a randomly generated
number, but it could also be a phrase that you and the recipient agree to use. Use the key with one of the
keyed hashing algorithm classes derived from the System.Security.Cryptography.KeyedHashAlgorithm
class to create a keyed hash code. Send the hash code with the file. On receipt of the file, the recipient
will generate the keyed hash code of the file using the shared secret key. If the hash codes are equal,
the recipient knows that the file is from you and that it has not changed in transit.

Herman_970-5C12.fm Page 530 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 531

How It Works

Hash codes are useful for comparing two pieces of data to determine if they are the same, even if you
no longer have access to the original data. However, you cannot use a hash code to reassure the
recipient of data as to the data’s integrity. If someone could intercept the data, that person could
replace the data and generate a new hash code. When the recipient verifies the hash code, it will
seem correct, even though the data is actually nothing like what you sent originally.

A simple and efficient solution to the problem of data integrity is a keyed hash code. A keyed hash
code is similar to a normal hash code (discussed in recipes 12-13 and 12-14); however, the keyed
hash code incorporates an element of secret data—a key—known only to the sender and the receiver.
Without the key, a person cannot generate the correct hash code from a given set of data. When you
successfully verify a keyed hash code, you can be certain that only someone who knows the secret
key could generate the hash code.

The keyed hash algorithms supplied by the .NET Framework are provided by the HMAC and
MACTripleDes classes. Generating these keyed hash codes is similar to generating normal hash codes.
All HMAC algorithm classes derive themselves from the HMAC base class, which inherits the
KeyedHashAlgorithm class, which inherits the HashAlgorithm class. MACTripleDES inherits the
KeyedHashAlgorithm base class directly. The .NET Framework class library includes the seven keyed
hashing algorithm implementations listed in Table 12-5. Each implementation is a member of the
namespace System.Security.Cryptography.

As with the standard hashing algorithms, you can either create keyed hashing algorithm objects
directly or use the Shared factory method KeyedHashAlgorithm.Create and pass the algorithm name
as an argument. Using the factory approach allows you to write generic code that can work with any
keyed hashing algorithm implementation, but as shown in Table 12-5, MACTripleDES supports fixed
key lengths that you must accommodate in generic code.

If you use constructors to instantiate a keyed hashing object, you can pass the secret key to the
constructor. Using the factory approach, you must set the key using the Key property inherited from
the KeyedHashAlgorithm class. Then call the ComputeHash method and pass either a Byte array or a
System.IO.Stream object. The keyed hashing algorithm will process the input data and return a Byte
array containing the keyed hash code. Table 12-5 shows the size of hash code generated by each
keyed hashing algorithm.

Table 12-5. Keyed Hashing Algorithm Implementations

Algorithm/Class Name Key Size (in Bits) Hash Code Size (in Bits)

HMACMD5 Any 128

HMACRIPEMD160 Any 160

HMACSHA1 Any 160

HMACSHA256 Any 256

HMACSHA384 Any 384

HMACSHA512 Any 512

MACTripleDES 128, 192 6

Herman_970-5C12.fm Page 531 Friday, March 14, 2008 10:52 AM

532 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The Code

The following example demonstrates the generation of a keyed hash code from a file. The example
uses the given class to generate the keyed hash code, and then displays it to the console. The example
requires three command-line arguments: the name of the file from which the hash is calculated, the
name of the algorithm to instantiate, and the key to use when calculating the hash.

Imports System
Imports System.IO
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_16

 Public Shared Sub Main(ByVal args As String())

 ' Create a byte array from the key string, which is the
 ' third command-line argument.
 Dim key As Byte() = Encoding.Default.GetBytes(args(2))

 ' Create a KeyedHashAlgorithm derived object to generate the keyed
 ' hash code for the input file. Pass the byte array representing
 ' the key to the constructor.
 Using hashAlg As KeyedHashAlgorithm = KeyedHashAlgorithm.Create(args(1))

 ' Assign the key.
 hashAlg.Key = key

 ' Open a FileStream to read the input file. The file name is
 ' specified by the first command-line argument.
 Using argFile As New FileStream(args(0), FileMode.Open, ➥
FileAccess.Read)

 ' Generate the keyed hash code of the file's contents.
 Dim hash As Byte() = hashAlg.ComputeHash(argFile)

 ' Display the keyed hash code to the console.
 Console.WriteLine(BitConverter.ToString(hash))

 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C12.fm Page 532 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 533

Usage

Executing the following command:

Recipe12-16 Recipe12-16.exe HMACSHA1 secretKey

will display the following hash code to the console:

53-E6-03-59-C8-BB-F6-74-51-BF-B6-C3-75-B2-78-0B-43-01-3A-E0

In contrast, executing this command:

Recipe12-16 Recipe12-16.exe HMACSHA1 anotherKey

will display the following hash code to the console:

73-09-27-07-08-4C-48-13-F9-6A-A6-BA-D4-0E-87-57-CC-7F-05-D7

12-17. Work with Security-Sensitive Strings in Memory

Problem

You need to work with sensitive string data, such as passwords or credit card numbers, in memory
and need to minimize the risk of other people or processes accessing that data.

Solution

Use the class System.Security.SecureString to hold the sensitive data values in memory.

How It Works

Storing sensitive data such as passwords, personal details, and banking information in memory as
String objects is insecure for many reasons, including the following:

• String objects are not encrypted.

• The immutability of String objects means that whenever you change the String, the old
String value is left in memory until it is dereferenced by the garbage collector and eventually
overwritten.

• Because the garbage collector is free to reorganize the contents of the managed heap, multiple
copies of your sensitive data may be present on the heap.

• If part of your process address space is swapped to disk or a memory dump is written to disk,
a copy of your data may be stored on the disk.

Each of these factors increases the opportunities for others to access your sensitive data. The
SecureString class, first introduced in .NET Framework 2.0, is used to simplify the task of working
with sensitive String data in memory.

You create a SecureString as either initially empty or from a pointer to a character (Char) array.
Then you manipulate the contents of the SecureString one character at a time using the methods
AppendChar, InsertAt, RemoveAt, and SetAt. As you add characters to the SecureString, they are
encrypted using the capabilities of the Data Protection API (DPAPI).

Herman_970-5C12.fm Page 533 Friday, March 14, 2008 10:52 AM

534 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The SecureString class also provides a method named MakeReadOnly. As the name suggests, calling
MakeReadOnly configures the SecureString to no longer allow its value to be changed. Attempting to
modify a SecureString marked as read-only results in the exception System.InvalidOperationException
being thrown. Once you have set the SecureString to read-only, it cannot be undone.

The SecureString class has a ToString method, but rather than retrieving a string representation
of the contained data, it returns only a representation of the type (System.Security.SecureString).
Instead, the class System.Runtime.InteropServices.Marshal implements a number of Shared
methods that take a SecureString object; decrypts it; converts it to a binary string, a block of ANSI,
or a block of Unicode data; and returns a System.IntPtr object that points to the converted data. The
Marshal class also offers Shared methods for displaying the contents referenced by an IntPtr. Here is
a code snippet to demonstrate this:

' Retrieve a pointer to the data contained in a
' SecureString.
Dim secureStringPtr As IntPtr = ➥
Marshal.SecureStringToGlobalAllocUnicode(mySecureString)

' Retrieve a string representation of the data
' referenced by a pointer.
Dim clearText As String = Marshal.PtrToStringAuto(secureStringPtr)

' Display the secure string contents in clear text.
Console.WriteLine(clearText))

At any time, you can call the SecureString.Clear method to clear the sensitive data, and when
you have finished with the SecureString object, call its Dispose method to clear the data and free the
memory. SecureString implements System.IDisposable.

■Note Although it might seem that the benefits of the SecureString class are limited, because there is no way
in Windows Forms applications to get such a secured string from the GUI without first retrieving a nonsecured
String through a TextBox or another control, it is likely that third parties and future additions to the .NET Framework
will use the SecureString class to handle sensitive data. This is already the case in System.Diagnostics.
ProcessStartInfo, where using a SecureString, you can set the Password property to the password of the
user context in which the new process should be run.

The Code

The following example reads a username and password from the console and starts Notepad.exe as
the specified user. The password is masked on input and stored in a SecureString in memory, maxi-
mizing the chances of the password remaining secret.

Imports System
Imports System.Security
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_17

 Public Shared Function ReadString() As SecureString

 ' Create a new empty SecureString.
 Dim str As New SecureString

Herman_970-5C12.fm Page 534 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 535

 ' Read the string from the console one
 ' character at a time without displaying it.
 Dim nextChar As ConsoleKeyInfo = Console.ReadKey(True)

 ' Read characters until Enter is pressed.
 While Not nextChar.Key = ConsoleKey.Enter

 If nextChar.Key = ConsoleKey.Backspace Then
 If str.Length > 0 Then
 ' Backspace pressed. Remove the last character.
 str.RemoveAt(str.Length - 1)

 Console.Write(nextChar.KeyChar)
 Console.Write(" ")
 Console.Write(nextChar.KeyChar)
 Else
 Console.Beep()
 End If
 Else
 ' Append the character to the SecureString and
 ' display a masked character.
 str.AppendChar(nextChar.KeyChar)
 Console.Write("*")
 End If

 ' Read the next character.
 nextChar = Console.ReadKey(True)

 End While

 ' String entry finished. Make it read-only.
 str.MakeReadOnly()

 Return str

 End Function

 Public Shared Sub Main()

 Dim user As String = ""

 ' Get the username under which Notepad.exe will be run.
 Console.Write("Enter the user name: ")
 user = Console.ReadLine

 ' Get the user's password as a SecureString.
 Console.Write("Enter the user's password: ")
 Using pword As SecureString = ReadString()

 ' Start Notepad as the specified user.
 Dim startInfo As New ProcessStartInfo

Herman_970-5C12.fm Page 535 Friday, March 14, 2008 10:52 AM

536 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 startInfo.FileName = "Notepad.exe"
 startInfo.UserName = user
 startInfo.Password = pword
 startInfo.UseShellExecute = False

 ' Create a new Process object.
 Using proc As New Process

 ' Assign the ProcessStartInfo to the Process object.
 proc.StartInfo = startInfo

 Try
 ' Start the new process.
 proc.Start()
 Catch ex As Exception
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Could not start Notepad process.")
 Console.WriteLine(ex.ToString)
 End Try

 End Using

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

12-18. Encrypt and Decrypt Data Using the Data Protection API

Problem

You need a convenient way to securely encrypt data without the headache associated with key
management.

Solution

Use the ProtectedData and ProtectedMemory classes of the System.Security.Cryptography namespace to
access the encryption and key management capabilities provided by the DPAPI.

How It Works

Given that the .NET Framework provides you with well-tested implementations of the most widely
used and trusted encryption algorithms, the biggest challenge you face when using cryptography is
key management—namely the effective generation, storage, and sharing of keys to facilitate the use

Herman_970-5C12.fm Page 536 Friday, March 14, 2008 10:52 AM

CH AP T E R 1 2 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 537

of cryptography. In fact, key management is the biggest problem facing most people when they want
to securely store or transmit data using cryptographic techniques. If implemented incorrectly, key
management can easily render useless all of your efforts to encrypt your data.

DPAPI provides encryption and decryption services without the need for you to worry about key
management. DPAPI automatically generates keys based on Windows user credentials, stores keys
securely as part of your profile, and even provides automated key expiry without losing access to
previously encrypted data.

■Note DPAPI is suitable for many common uses of cryptography in Windows applications, but will not help you
in situations that require you to distribute or share secret or public keys with other users.

The System.Security namespace includes two classes that provide easy access to the encryp-
tion and decryption capabilities of DPAPI: ProtectedData and ProtectedMemory. Both classes allow
you to encrypt a Byte array by passing it to the Shared method Protect, and decrypt a Byte array of
encrypted data by passing it the Shared method Unprotect. The difference in the classes is in the
scope that they allow you to specify when you encrypt and decrypt data.

■Caution You must use ProtectedData if you intend to store encrypted data and reboot your machine before
decrypting it. ProtectedMemory will be unable to decrypt data that was encrypted before a reboot.

When you call ProtectedData.Protect, you specify a value from the enumeration System.Security.
Cryptography.DataProtectionScope. The following are the possible values:

• CurrentUser, which means that only code running in the context of the current user can
decrypt the data

• LocalMachine, which means that any code running on the same computer can decrypt the data

When you call ProtectedMemory.Protect, you specify a value from the enumeration System.
Security.Cryptography.MemoryProtectionScope. The possible values are as follows:

• CrossProcess, which means that any code in any process can decrypt the encrypted data

• SameLogon, which means that only code running in the same user context can decrypt the data

• SameProcess, which means that only code running in the same process can decrypt the data

Both classes allow you to specify additional data (entropy) when you encrypt your data. This
entropy, in the form of byte arrays, is used to further encrypt the data, making certain types of cryp-
tographic attacks less likely to succeed. If you choose to use entropy when you protect data, you must
use the same entropy value when you unprotect the data. It is not essential that you keep the entropy
data secret, so it can be stored freely without encryption.

The Code

The following example demonstrates the use of the ProtectedData class to encrypt a string entered
at the console by the user. Note that you need to reference the System.Security assembly.

Imports System
Imports System.Text
Imports System.Security.Cryptography

Herman_970-5C12.fm Page 537 Friday, March 14, 2008 10:52 AM

538 CH AP T E R 1 2 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_18

 Public Shared Sub Main()

 ' Read the string from the console.
 Console.Write("Enter the string to encrypt: ")
 Dim str As String = Console.ReadLine

 ' Create a byte array of entropy to use in the encryption process.
 Dim entropy As Byte() = {0, 1, 2, 3, 4, 5, 6, 7, 8}

 ' Encrypt the entered string after converting it to a
 ' byte array. Use CurrentUser scope so that only the
 ' current user can decrypt the data.
 Dim enc As Byte() = ProtectedData.Protect(➥
Encoding.Default.GetBytes(str), entropy, DataProtectionScope.CurrentUser)

 ' Display the encrypted data to the console.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Encrypted string = {0}", BitConverter.ToString(enc))

 ' Attempt to decrypt the data using CurrentUser scope.
 Dim dec As Byte() = ProtectedData.Unprotect(enc, entropy, ➥
DataProtectionScope.CurrentUser)

 ' Display the data decrypted using CurrentUser scope.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Decrypted data using CurrentUser scope = {0}", ➥
Encoding.Default.GetString(dec))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C12.fm Page 538 Friday, March 14, 2008 10:52 AM

539

■ ■ ■

C H A P T E R 1 3

Code Interoperability

The Microsoft .NET Framework is an extremely ambitious platform, combining a managed runtime
(the common language runtime, or CLR), a platform for hosting web applications (Microsoft ASP.
NET), and an extensive class library for building all types of applications. However, as expansive as
the .NET Framework is, it does not duplicate all the features that are available in unmanaged code.
Currently, the .NET Framework does not include every function that is available in the Win32 API,
and many businesses are using complex proprietary solutions that they have built with COM-based
languages such as Microsoft Visual Basic 6 (VB 6) and Visual C++ 6.

Fortunately, Microsoft does not intend for businesses to abandon the code base they have built
up when they move to the .NET platform. Instead, the .NET Framework is equipped with interoper-
ability features that allow you to use legacy code from .NET Framework applications and even access
.NET assemblies as though they were COM components.

The recipes in this chapter cover the following:

• Calling functions defined in an unmanaged DLL, getting the handles for a control or window,
invoking an unmanaged function that uses a structure, invoking unmanaged callback functions,
and retrieving unmanaged error information (recipes 13-1 through 13-5)

• Using COM components from .NET Framework applications, releasing COM components,
and using optional parameters (recipes 13-6 through 13-8)

• Using ActiveX controls from .NET Framework applications (recipe 13-9)

• Exposing the functionality of a .NET assembly as a COM component (recipe 13-10)

• Using a Windows Presentation Foundation (WPF) component within a Windows Form appli-
cation (recipe 13-11)

Although most of the recipes in this chapter deal with working with and exchanging information
between managed and unmanaged components, situations may arise where you need to perform
the same functionality between managed components. This chapter includes a recipe on using
Windows Presentation Foundation (WPF) components within a Windows Forms application (both
of which are managed components).

■Note Managed code refers to code developed in a .NET language (such as VB .NET and C#). This code is compiled
to Microsoft Intermediary Language (MSIL) and runs within the CLR. When the code is executed, it is compiled to
machine language using the just-in-time (JIT) compiler. Unmanaged code refers to code developed in a non-.NET
language (such as C++ or VB 6). This code is compiled directly to machine language. If you use Visual C++ .NET,
you can create managed or unmanaged code, depending on the project type you select.

Herman_970-5C13.fm Page 539 Tuesday, March 18, 2008 4:00 PM

540 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

13-1. Call a Function in an Unmanaged DLL

Problem

You need to call a function in a DLL. This function might be part of the Win32 API or your own
legacy code.

Solution

Declare a method in your VB .NET code that you will use to access the unmanaged function. Declare
this method as Shared, and apply the attribute System.Runtime.InteropServices.DllImportAttribute to
specify the DLL file and the name of the unmanaged function.

How It Works

To use a function from an external library (such as one written in C or C++), all you need to do is declare
it appropriately. The CLR automatically handles the rest, including loading the DLL into memory
when the function is called and marshaling the parameters from .NET data types to C data types (or
the data types appropriate for the external library’s language). The .NET service that supports this
cross-platform execution is named Platform Invoke (PInvoke), and the process is usually seamless.
Occasionally, you will need to do a little more work, such as when you need to support in-memory
structures, callbacks, or mutable strings.

PInvoke is often used to access functionality in the Win32 API, particularly Win32 features that
are not present in the set of managed classes that make up the .NET Framework. Three core libraries
make up the Win32 API:

• Kernel32.dll includes operating system–specific functionality such as process loading, context
switching, and file and memory I/O.

• User32.dll includes functionality for manipulating windows, menus, dialog boxes, icons, and
so on.

• GDI32.dll includes graphical capabilities for drawing directly on windows, menus, and
control surfaces, as well as for printing.

As an example, consider the Win32 API functions used for writing and reading INI files, such
as GetPrivateProfileString and WritePrivateProfileString in Kernel32.dll. The .NET Framework
does not include any classes that wrap this functionality. However, you can import these functions
using the attribute DllImportAttribute, like this:

<DllImport("kernel32.dll", EntryPoint:="WritePrivateProfileString")> _
Private Shared Function WritePrivateProfileString(ByVal lpAppName As String, ➥
 ByVal lpKeyName As String, ByVal lpString As String, ➥
 ByVal lpFileName As String) As Boolean
End Function

The arguments specified in the signature of the WritePrivateProfileString method must match
the DLL method, or a runtime error will occur when you attempt to invoke it. Remember that you do
not define any method body, because the declaration refers to a method in the DLL. The EntryPoint
portion of the attribute DllImportAttribute is optional in this example. You do not need to specify
the EntryPoint when the declared function name matches the function name in the external library.

Herman_970-5C13.fm Page 540 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 541

The Code

The following is an example of using some Win32 API functions to get INI file information. It declares the
unmanaged functions used and exposes Public methods to call them. The code first displays the current
value of a key in the INI file, modifies it, retrieves the new value, and then writes the default value.

Imports System
Imports System.Runtime.InteropServices
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class Recipe13_01

 ' Declare the unmanaged functions
 <DllImport("kernel32.dll", EntryPoint:="GetPrivateProfileString")> _
 Private Shared Function GetPrivateProfileString(ByVal lpAppName As ➥
String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal ➥
lpReturnedString As StringBuilder, ByVal nSize As Integer, ByVal lpFileName As ➥
String) As Integer
 End Function

 <DllImport("kernel32.dll", EntryPoint:="WritePrivateProfileString")> _
 Private Shared Function WritePrivateProfileString(ByVal lpAppName As ➥
String, ByVal lpKeyName As String, ByVal lpString As String, ByVal lpFileName As ➥
String) As Boolean
 End Function

 Public Shared Sub Main(ByVal args As String())

 Dim val As String

 ' Obtain current value.
 val = GetIniValue("SampleSection", "Key1", args(0))
 Console.WriteLine("Value of Key1 in [SampleSection] is: {0}", val)

 ' Write a new value.
 WriteIniValue("SampleSection", "Key1", "New Value", args(0))

 ' Obtain the new value.
 val = GetIniValue("SampleSection", "Key1", args(0))
 Console.WriteLine("Value of Key1 in [SampleSection] is now: {0}", val)

 ' Write original value.
 WriteIniValue("SampleSection", "Key1", "Value1", args(0))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

Herman_970-5C13.fm Page 541 Tuesday, March 18, 2008 4:00 PM

542 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

 Public Shared Function GetIniValue(ByVal section As String, ➥
ByVal key As String, ByVal fileName As String) As String

 Dim chars As Integer = 256
 Dim buffer As New StringBuilder(chars)

 If Not GetPrivateProfileString(section, key, "", buffer, chars, ➥
fileName) = 0 Then
 Return buffer.ToString
 Else
 Return Nothing
 End If

 End Function

 Public Shared Function WriteIniValue(ByVal section As String, ➥
ByVal key As String, ByVal value As String, ByVal fileName As String) As String
 Return WritePrivateProfileString(section, key, value, fileName)
 End Function

 End Class
End Namespace

■Note The GetPrivateProfileString method is declared with one StringBuilder parameter
(lpReturnedString). This is because this string must be mutable; when the call completes, it will contain the
returned INI file information. Whenever you need a mutable string, you must substitute StringBuilder in place of
the String class. Often, you will need to create the StringBuilder object with a character buffer of a set size
and then pass the size of the buffer to the function as another parameter. You can specify the number of characters
in the StringBuilder constructor. See recipe 2-1 for more information about using the StringBuilder class.

Usage

To test this example, first create a test file such as the inittest.ini file shown here:

[SampleSection]
Key1=Value1

Now, execute the command Recipe13-01.exe initest.ini. You will get an output such as this:

Value of Key1 in [SampleSection] is: Value1
Value of Key1 in [SampleSection] is now: New Value

Main method complete. Press Enter.

Herman_970-5C13.fm Page 542 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 543

13-2. Get the Handle for a Control, Window, or File

Problem

You need to call an unmanaged function, such as GetWindowText, that requires the handle for a
control, a window, or a file.

Solution

Many classes, including all Control-derived classes and the FileStream class, return the handle of
the unmanaged Windows object they are wrapping as an IntPtr through a property named Handle.
Other classes also provide similar information; for example, the System.Diagnostics.Process class
provides a Process.MainWindowHandle property in addition to the Handle property.

How It Works

The .NET Framework does not hide underlying details such as the operating system handles used for
controls and windows. Although you usually will not use this information, you can retrieve it if you
need to call an unmanaged function that requires it. Many Microsoft Win32 API functions, for example,
require control or window handles.

The Code

As an example, consider the Windows-based application shown in Figure 13-1. It consists of a single
window that always stays on top of all other windows regardless of focus. (This behavior is enforced
by setting the Form.TopMost property to True.) The form also includes a timer that periodically calls
the unmanaged GetForegroundWindow and GetWindowText Win32 API functions to determine which
window is currently active and its caption, respectively.

Figure 13-1. Retrieving information about the active window

Herman_970-5C13.fm Page 543 Tuesday, March 18, 2008 4:00 PM

544 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

One additional detail in this example is that the code also uses the Form.Handle property to get
the handle of the main application form. It then compares it with the handle of the active form to test
whether the current application has focus. The following is the complete code for this form:

Imports System
Imports System.Windows.Forms
Imports System.Runtime.InteropServices
Imports System.Text

' All designed code is stored in the autogenerated partial
' class called ActiveWindowInfo.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class ActiveWindowInfo

 ' Declare external functions.
 <DllImport("user32.dll")> _
 Private Shared Function GetForegroundWindow() As IntPtr
 End Function

 <DllImport("user32.dll")> _
 Private Shared Function GetWindowText(ByVal hWnd As IntPtr, ➥
ByVal text As StringBuilder, ByVal count As Integer) As Integer
 End Function

 Private Sub tmrRefresh_Tick(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles tmrRefresh.Tick

 Dim chars As Integer = 256
 Dim buff As New StringBuilder(chars)

 ' Obtain the handle of the active window.
 Dim handle As IntPtr = GetForeGroundWindow()

 ' Update the controls.
 If GetWindowText(handle, buff, chars) > 0 Then
 lblCaption.Text = buff.ToString
 lblHandle.Text = handle.ToString

 If handle = Me.Handle Then
 lblCurrent.Text = "True"
 Else
 lblCurrent.Text = "False"
 End If

 End If

 End Sub
End Class

Herman_970-5C13.fm Page 544 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 545

■Caution The Windows Forms infrastructure manages window handles for forms and controls transparently.
Changing some of their properties can force the CLR to create a new native window behind the scenes, and a new
handle gets wrapped with a different handle. For that reason, you should always retrieve the handle before you use
it (rather than storing it in a member variable for a long period of time).

13-3. Call an Unmanaged Function That Uses a Structure

Problem

You need to call an unmanaged function, such as GetVersionEx, that accepts a structure as a parameter.

Solution

Define the structure in your VB .NET code. Use the attribute System.Runtime.InteropServices.
StructLayoutAttribute to configure how the structure fields are laid out in memory. Use the Shared
SizeOf method of the System.Runtime.InteropServices.Marshal class if you need to determine the
size of the unmanaged structure in bytes.

How It Works

In VB .NET code, you are not able to directly control how type fields are laid out once the memory is
allocated. Instead, the CLR is free to arrange fields to optimize performance, especially in the context of
moving memory around during garbage collection. This can cause problems when interacting with
legacy functions, such as those written in C, that expect structures to be laid out sequentially in memory
to follow their definition in include files. Fortunately, the .NET Framework allows you to solve this
problem by using the attribute StructLayoutAttribute, which lets you specify how the members of
a given class or structure should be arranged in memory.

The Code

As an example, consider the unmanaged GetVersionEx function provided in the Kernel32.dll file.
This function accepts a pointer to an OSVERSIONINFO structure and uses it to return information
about the current operating system version. To use the OSVERSIONINFO structure in VB .NET code,
you must define it with the attribute StructLayoutAttribute, as shown here:

<StructLayout(LayoutKind.Sequential)> _
Public Structure OSVersionInfo

 Public dwOSVersionInfoSize As Integer
 Public dwMajorVersion As Integer
 Public dwMinorVersion As Integer
 Public dwBuildNumber As Integer
 Public dwPlatformId As Integer
 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
 Public szCSDVersion As String

End Structure

Herman_970-5C13.fm Page 545 Tuesday, March 18, 2008 4:00 PM

546 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

Note that this structure also uses the attribute System.Runtime.InteropServices.
MarshalAsAttribute, which is required for fixed-length strings. In this example, MarshalAsAttribute
specifies the string will be passed by value and will contain a buffer of exactly 128 characters, as specified
in the OSVERSIONINFO structure. This example uses sequential layout, which means the data types in
the structure are laid out in the order they are listed in the class or structure.

Instead of using sequential layout, you could use LayoutKind.Explicit; in that case, you must
define the byte offset of each field using FieldOffsetAttribute. This layout is useful when dealing
with an irregularly packed structure or one where you want to omit some of the fields that you do not
want to use. Here is an example that defines the OSVersionInfo class with an explicit layout:

<StructLayout(LayoutKind.Explicit)> _
Public Structure OSVersionInfo2

 <FieldOffset(0)> Public dwOSVersionInfoSize As Integer
 <FieldOffset(4)> Public dwMajorVersion As Integer
 <FieldOffset(8)> Public dwMinorVersion As Integer
 <FieldOffset(12)> Public dwBuildNumber As Integer
 <FieldOffset(16)> Public dwPlatformId As Integer
 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
 <FieldOffset(20)> Public szCSDVersion As String

End Structure

Now that you’ve defined the structure used by the GetVersionEx function, you can declare the
function and then use it. The following console application shows all the code you will need. A parameter
marked with InAttribute (<[In]()>) is marshaled from the calling assembly to the unmanaged function,
while one marked with OutAttribute (<Out()>) is marshaled in the opposite direction. If neither of
these attributes is used, then marshaling is decided based on how the parameter is passed (ByRef
equals In and Out, while ByVal equals In). In this example, you need to make sure that OSVersionInfo
is marshaled in both directions, so both attributes are applied. In addition, the code uses the Marshal.
SizeOf method to calculate the size the marshaled structure will occupy in memory.

Imports System
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapter13

 <StructLayout(LayoutKind.Sequential)> _
 Public Structure OSVersionInfo

 Public dwOSVersionInfoSize As Integer
 Public dwMajorVersion As Integer
 Public dwMinorVersion As Integer
 Public dwBuildNumber As Integer
 Public dwPlatformId As Integer
 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
 Public szCSDVersion As String

 End Structure

 Public Class Recipe13_03

 ' Declare the external function.
 <DllImport("kernel32.dll")> _

Herman_970-5C13.fm Page 546 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 547

 Public Shared Function GetVersionEx(<[In](), Out()> ByRef osvi As ➥
OSVersionInfo) As Boolean
 End Function

 Public Shared Sub Main()

 Dim osvi As New OSVersionInfo

 osvi.dwOSVersionInfoSize = Marshal.SizeOf(osvi)

 ' Obtain the OS version information.
 GetVersionEx(osvi)

 ' Display the version information from the OSVersionInfo structure.
 Console.WriteLine("Class Size: " & osvi.dwOSVersionInfoSize.ToString)
 Console.WriteLine("Major Version: " & osvi.dwMajorVersion.ToString)
 Console.WriteLine("Minor Version: " & osvi.dwMinorVersion.ToString)
 Console.WriteLine("Build Number: " & osvi.dwBuildNumber.ToString)
 Console.WriteLine("Platform Id: " & osvi.dwPlatformId.ToString)
 Console.WriteLine("CSD Version: " & osvi.szCSDVersion.ToString)

 ' Display some information from the Environment class.
 Console.WriteLine("Platform: " & ➥
Environment.OSVersion.Platform.ToString)
 Console.WriteLine("Version: " & Environment.OSVersion.Version.ToString)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you run this application on a Windows Vista system, you will see information such as this:

Class Size: 148
Major Version: 6
Minor Version: 0
Build Number: 6000
Platform Id: 2
CSD Version:
Platform: Win32NT
Version: 6.0.6000.0

Main method complete. Press Enter.

Herman_970-5C13.fm Page 547 Tuesday, March 18, 2008 4:00 PM

548 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

13-4. Call an Unmanaged Function That Uses a Callback

Problem

You need to call an asynchronous unmanaged function, such as EnumWindows, and allow it to call a
method, or make a callback, in your code.

Solution

Create a delegate that has the required signature for the callback. Use this delegate when defining
and using the unmanaged function.

How It Works

Many of the Win32 API functions use callbacks. For example, if you want to retrieve the name of
all the top-level windows that are currently open, you can call the unmanaged EnumWindows function in
the User32.dll file. When calling EnumWindows, you need to supply a pointer to a function in your code.
The Windows operating system will then call this function repeatedly, once for each top-level
window that it finds, and pass the window handle to your code.

The .NET Framework allows you to handle callback scenarios like this without resorting to
pointers and unsafe code blocks. Instead, you can define and use a delegate that points to your call-
back function. When you pass the delegate to the EnumWindows function, for example, the CLR will
automatically marshal the delegate to the expected unmanaged function pointer.

The Code

The following is a console application that uses EnumWindows with a callback to display the name of
every open window:

Imports System
Imports System.Text
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class Recipe13_04

 ' The signature for the callback method.
 Public Delegate Function CallBack(ByVal hwnd As IntPtr, ➥
ByVal lParam As Integer) As Boolean

 ' The unmanaged function that will trigger the callback
 ' as it enumerates the open windows.
 <DllImport("user32.dll")> _
 Public Shared Function EnumWindows(ByVal windowCallback As CallBack, ➥
ByVal param As Integer) As Integer
 End Function

 <DllImport("user32.dll")> _
 Public Shared Function GetWindowText(ByVal hWnd As IntPtr, ➥
ByVal text As StringBuilder, ByVal count As Integer) As Integer
 End Function

Herman_970-5C13.fm Page 548 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 549

 Public Shared Sub Main()

 ' Request that the operating system enumerate all windows,
 ' and trigger your callback with the handle of each one.
 EnumWindows(AddressOf DisplayWindowInfo, 0)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' The method that will receive the callback. The second
 ' parameter is not used, but is needed to match the
 ' callback's signature.
 Public Shared Function DisplayWindowInfo(ByVal hWnd As IntPtr, ➥
ByVal lParam As Integer) As Boolean

 Dim chars As Integer = 100
 Dim buf As New StringBuilder(chars)

 If Not GetWindowText(hWnd, buf, chars) = 0 Then
 Console.WriteLine(buf)
 End If
 Return True

 End Function

 End Class
End Namespace

13-5. Retrieve Unmanaged Error Information

Problem

You need to retrieve error information (either an error code or a text message) explaining why a
Win32 API call failed.

Solution

On the declaration of the unmanaged method, set the SetLastError field of DllImportAttribute to
True. If an error occurs when you execute the method, call the Shared Marshal.GetLastWin32Error
method to retrieve the error code. To get a text description for a specific error code, use the unmanaged
FormatMessage function.

How It Works

You cannot retrieve error information directly using the unmanaged GetLastError function. The
problem is that the error code returned by GetLastError might not reflect the error caused by the
unmanaged function you are using. Instead, it might be set by other .NET Framework classes or the
CLR. You can retrieve the error information safely using the Shared Marshal.GetLastWin32Error

Herman_970-5C13.fm Page 549 Tuesday, March 18, 2008 4:00 PM

550 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

method. This method should be called immediately after the unmanaged call, and it will return the
error information only once. (Subsequent calls to GetLastWin32Error will simply return the error
code 127.) In addition, you must specifically set the SetLastError field of the DllImportAttribute to
True to indicate that errors from this function should be cached.

<DllImport("user32.dll", SetLastError:=True)>

You can extract additional information from the Win32 error code using the unmanaged
FormatMessage function from the Kernel32.dll file.

The Code

The following console application attempts to show a message box but submits an invalid window
handle. The error information is retrieved with Marshal.GetLastWin32Error, and the corresponding
text information is retrieved using FormatMessage.

Imports System
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class Recipe13_05

 ' Declare the unmanaged functions.
 <DllImport("kernel32.dll")> _
 Private Shared Function FormatMessage(ByVal dwFlags As Integer, ➥
ByVal lpSource As Integer, ByVal dwMessage As Integer, ➥
ByVal dwLanguageId As Integer, ByRef lpBuffer As String, ByVal nSize As Integer, ➥
ByVal Arguments As Integer) As Integer
 End Function

 <DllImport("user32.dll", SetLastError:=True)> _
 Public Shared Function MessageBox(ByVal hWnd As IntPtr, ➥
ByVal pText As String, ByVal pCaption As String, ByVal uType As Integer) As Integer
 End Function

 Public Shared Sub Main()

 ' Invoke the MessageBox function passing an invalid
 ' window handle and thus forcing an error.
 Dim badWindowHandle As IntPtr = New IntPtr(-1)

 MessageBox(badWindowHandle, "Message", "Caption", 0)

 ' Obtain the error information.
 Dim errorCode As Integer = Marshal.GetLastWin32Error

 If Not errorCode = 0 Then
 Console.WriteLine(errorCode)
 Console.WriteLine(GetErrorMessage(errorCode))
 End If

Herman_970-5C13.fm Page 550 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 551

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' GetErrorMessage formats and returns an error message
 ' corresponding to the input error code.
 Public Shared Function GetErrorMessage(ByVal errorCode As Integer) As String

 Dim FORMAT_MESSAGE_ALLOCATE_BUFFER As Integer = &H100
 Dim FORMAT_MESSAGE_IGNORE_INSERTS As Integer = &H200
 Dim FORMAT_MESSAGE_FROM_SYSTEM As Integer = &H1000

 Dim messageSize As Integer = 255
 Dim lpMsgBuf As String = ""
 Dim dwFlags As Integer = FORMAT_MESSAGE_ALLOCATE_BUFFER Or ➥
FORMAT_MESSAGE_FROM_SYSTEM Or FORMAT_MESSAGE_IGNORE_INSERTS

 Dim retVal As Integer = FormatMessage(dwFlags, 0, errorCode, 0, ➥
lpMsgBuf, messageSize, 0)
 If retVal = 0 Then
 Return Nothing
 Else
 Return lpMsgBuf
 End If

 End Function

 End Class
End Namespace

13-6. Use a COM Component in a .NET Client

Problem

You need to use a COM component, such as the older ADODB components, in a .NET client.

Solution

Use a primary interop assembly (PIA), if one is available. Otherwise, generate a runtime callable
wrapper (RCW) using the Type Library Importer (Tlbimp.exe) or the Add Reference feature in Visual
Studio 2008.

How It Works

The .NET Framework includes extensive support for COM interoperability. To allow .NET clients to
interact with a COM component, .NET uses an RCW—a special .NET proxy class that sits between
your .NET code and the COM component. The RCW handles all the details, including marshaling
data types, using the traditional COM interfaces, and handling COM events.

Herman_970-5C13.fm Page 551 Tuesday, March 18, 2008 4:00 PM

552 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

You have the following three options for using an RCW:

• Obtain an RCW from the author of the original COM component. In this case, the RCW is
created from a PIA provided by the publisher, as Microsoft does for Microsoft Office and
ADODB.

• Generate an RCW using the Tlbimp.exe command-line utility or Visual Studio 2008.

• Create your own RCW using the types in the System.Runtime.InteropServices namespace.
(This can be an extremely tedious and complicated process.)

If you want to use Visual Studio 2008 to generate an RCW, you simply need to select Add Refer-
ence from the Project menu and then select the appropriate component from the COM tab. When
you click OK, the RCW will be generated and added to your project references. After that, you can use
the Object Browser to inspect the namespaces and classes that are available.

If possible, you should always use a PIA instead of generating your own RCW. PIAs are more
likely to work as expected, because they are created and digitally signed by the original component
publisher. They might also include additional .NET refinements or enhancements. If a PIA is regis-
tered on your system for a COM component, Visual Studio 2008 will automatically use that PIA when
you add a reference to the COM component. For example, the .NET Framework includes an adodb.
dll assembly that allows you to use the ADO classic COM objects. If you add a reference to the Microsoft
ActiveX Data Objects component, this PIA will be used automatically; no new RCW will be generated.
Similarly, Microsoft Office 2007 provides a PIA that improves .NET support for Office Automation.
However, you must download this assembly from the MSDN web site (at http://www.microsoft.com/
downloads/details.aspx?familyid=59DAEBAA-BED4-4282-A28C-B864D8BFA513&displaylang=en).

If you are not using Visual Studio 2008, you can create a wrapper assembly using the Tlbimp.exe
command-line utility that is included with the .NET Framework. The only mandatory piece of infor-
mation is the file name that contains the COM component. For example, the following statement
creates an RCW with the default file name and namespace, assuming that the MyCOMComponent.
dll file is in the current directory:

tlbimp MyCOMComponent.dll

Assuming that MyCOMComponent.dll has a type named MyClasses, the generated RCW file
will have the name MyClasses.dll and will expose its classes through a namespace named MyClasses.
You can also configure these options with command-line parameters, as described in the MSDN
reference. For example, you can use /out:[Filename] to specify a different assembly file name and
/namespace:[Namespace] to set a different namespace for the generated classes. You can also specify
a key file using /keyfile[keyfilename] so that the component will be signed and given a strong
name, allowing it to be placed in the global assembly cache (GAC). Use the /primary parameter to
create a PIA.

The Code

The following example shows how you can use COM Interop to access the classic ADO objects from
a .NET Framework application:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class Recipe13_06

 ' Be sure to add a reference to ADODB (runtime version 1.1.4322)
 ' to the project.
 Public Shared Sub Main()

Herman_970-5C13.fm Page 552 Tuesday, March 18, 2008 4:00 PM

http://www.microsoft.com

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 553

 ' This example assumes that you have the AdventureWorks
 ' sample database installed. If you don't, you will need
 ' to change the connectionString accordingly.

 ' Create a new ADODB connection.
 Dim con As New ADODB.Connection
 Dim connectionString As String = "Provider=SQLOLEDB.1;Data " & ➥
Source=.\sqlexpress;Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

 con.Open(connectionString, Nothing, Nothing, 0)

 ' Execute a SELECT query.
 Dim recordsAffected As Object = Nothing
 Dim rs As ADODB.Recordset = con.Execute("SELECT * FROM " & ➥
HumanResources.Employee;", recordsAffected, 0)

 ' Print out the results.
 While Not rs.EOF = True

 Console.WriteLine(rs.Fields("EmployeeID").Value)
 rs.MoveNext()

 End While

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

13-7. Release a COM Component Quickly

Problem

You need to ensure that a COM component is removed from memory immediately, without waiting
for garbage collection to take place, or you need to make sure that COM objects are released in a
specific order.

Solution

Release the reference to the underlying COM object using the Shared Marshal.
FinalReleaseComObject method and passing the appropriate RCW reference.

How It Works

COM uses reference counting to determine when objects should be released. When you use an RCW,
the reference will be held to the underlying COM object, even when the object variable goes out of
scope. The reference will be released only when the garbage collector disposes of the RCW object. As
a result, you cannot control when or in what order COM objects will be released from memory.

Herman_970-5C13.fm Page 553 Tuesday, March 18, 2008 4:00 PM

554 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

To get around this limitation, you usually use the Marshal.ReleaseComObject method. However,
if the COM object’s pointer is marshaled several times, you need to repeatedly call this method to
decrease the count to zero. However, the FinalReleaseComObject method allows you to release all
references in one go by setting the reference count of the supplied RCW to zero. This means you
do not need to loop and invoke ReleaseComObject to completely release an RCW. Once an object is
released in this manner, it can no longer be used unless it’s re-created.

For example, in the ADO example in recipe 13-6, you could release the underlying ADO
Recordset and Connection objects by adding these two lines to the end of your code:

System.Runtime.InteropServices.Marshal.FinalReleaseComObject(rs)
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(con)

■Note The ReleaseComObject method does not actually release the COM object; it just decrements the refer-
ence count. If the reference count reaches zero, the COM object will be released. FinalReleaseComObject
works by setting the reference count of an RCW to zero. It thus bypasses the internal count logic and releases all
references.

13-8. Use Optional Parameters

Problem

You need to call a method in a COM component without supplying all the required parameters.

Solution

Use the Type.Missing field.

How It Works

The .NET Framework is designed with a heavy use of method overloading. Most methods are over-
loaded several times so that you can call the version that requires only the parameters you choose to
supply. COM, on the other hand, does not support method overloading. Instead, COM components
usually use methods with a long list of optional parameters. You do not need to specify values for the
optional parameters. For example, if a method includes three optional parameters, you can assign
a value to the first and third one, skipping the second one. Passing Nothing to the second optional
parameter would have the same effect. However, COM parameters are often passed by reference,
which means your code cannot simply pass a Nothing reference. Instead, it must declare an object
variable and then pass that variable.

You can mitigate the problem to some extent by supplying the Type.Missing field whenever you
want to omit an optional parameter. If you need to pass a parameter by reference, you can simply
declare a single object variable, set it equal to Type.Missing, and use it in all cases, like this:

Private Shared n As Object = Type.Missing

Herman_970-5C13.fm Page 554 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 555

The Code

The following example uses the Microsoft Word COM objects to programmatically create and show
a document. Many of the methods the example uses require optional parameters passed by refer-
ence. You will notice that the use of the Type.Missing field simplifies this code greatly. Each use is
emphasized in bold in the code listing.

Imports System
Imports Microsoft.Office.Interop

Namespace Apress.VisualBasicRecipes.Chapter13

 ' This recipe requires a reference to Word and
 ' Microsoft.Office.Core or Microsoft.Office.Interop.Word.
 Public Class Recipe13_08

 Private Shared n As Object = Type.Missing

 Public Shared Sub Main()

 ' Start Word in the background.
 Dim app As New Word.Application
 app.DisplayAlerts = Word.WdAlertLevel.wdAlertsNone

 ' Create a new document (this is not visible to the user).
 Dim doc As Word.Document = app.Documents.Add(n, n, n, n)

 Console.WriteLine()
 Console.WriteLine("Creating new document.")
 Console.WriteLine()

 ' Add a heading and two lines of text.
 Dim range As Word.Range = doc.Paragraphs.Add(n).Range

 range.InsertBefore("Test Document")
 range.Style = "Heading 1"

 range = doc.Paragraphs.Add(n).Range
 range.InsertBefore("Line one." & ControlChars.CrLf & "Line two.")
 range.Font.Bold = 1

 ' Show a print preview, and make Word visible.
 doc.PrintPreview()
 app.Visible = True

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C13.fm Page 555 Tuesday, March 18, 2008 4:00 PM

556 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

13-9. Use an ActiveX Control in a .NET Client

Problem

You need to place an ActiveX control on a form or a user control in a .NET Framework application.

Solution

Use an RCW exactly as you would with an ordinary COM component (see recipe 13-6). To work with
the ActiveX control at design time, add it to the Visual Studio 2008 Toolbox.

How It Works

As with COM components, the .NET Framework fully supports the use of ActiveX controls. When
working with COM (detailed in recipe 13-6), an RCW is required to allow communication between
your code and the COM object. An ActiveX control differs in that it requires two RCWs. The first RCW
provides communication between the COM object and the second RCW. The second RCW is required to
communicate between the first COM object and your Windows Form.

This extra wrapper is required because any control you use on your form must derive from
System.Windows.Forms.Control. The second wrapper derives from the System.Windows.Forms.AxHost
class, which derives from System.Windows.Forms.Control. This provides the standard .NET control
properties, methods, and events (such as Location, Size, Anchor, and so on).

Several methods are available for creating the necessary RCWs. One method is to use the Aximp.
exe command-line utility. This tool is the equivalent to Tlbimp.exe, which is used to generate an
RCW for COM components. You just run aximp and supply the path to the ActiveX component. The
following is an example of using this tool on the Microsoft Masked Edit control:

aximp c:\windows\system32\msmask32.ocx

This will generate MSMask.dll, the first wrapper, and AxMSMask.dll, the second wrapper. The
MSMask.dll file is identical to the RCW that Tlbimp.exe would have produced for a COM component.
The main component of the AxMSMask.dll file is the AxMaskEdBox class, which is part of the AxMSMask
namespace. The Ax prefix represents the word ActiveX and indicates which wrapper derives from the
AxHost class. To use the control in your project, you just need to add a reference to both these assem-
blies and then create an instance of the control. The following code snippet demonstrates creating
an instance of the control and adding it to a form:

' Create a new instance of the ActiveX control.
Dim AxMaskEdBox1 As New AxMSMask.AxMaskEdBox

' Set some properties.
AxMaskEdBox1.Location = New Point(0, 0)
AxMaskEdBox1.Size = New Size(200, 50)

' Add the control to the form.
Me.Controls.Add(AxMaskEdBox1)

The .NET Framework also offers the AxImporter class, found in the System.Windows.Forms.
Design namespace. This class lets you generate the appropriate wrapper assemblies by using the
GenerateFromFile or GenerateFromTypeLibrary method. Both methods return the assembly-qualified
name for the ActiveX control defined by the newly created assemblies. The AxImporter constructor takes
an AxImporter.Option class instance. This class contains several properties that represent options the

Herman_970-5C13.fm Page 556 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 557

importer will use, but only the OutputDirectory property is required. You then use one of the methods,
such as GenerateFromFile, to create the necessary wrappers. Once the assemblies have been generated,
you can reference them at design time, as you would any other component, or you can reference
them at runtime using reflection (described in Chapter 3). The following sample code demonstrates
using AxImporter to create and use an instance of the Masked Edit control at runtime:

' Create the AxImporter options and set the output
' directory.
Dim axOptions As New AxImporter.Options
axOptions.outputDirectory = "C:\"

' Create the AxImporter object and generate the wrappers
' for the c:\windows\system32\msmask32.ocx file.
Dim aximp As New AxImporter(axOptions)
Dim fi As New FileInfo("C:\windows\system32\msmask32.ocx")
Dim assemblyName As String = aximp.GenerateFromFile(fi)

' Load the ActiveX RCW and create an instance of the control
' type named in assemblyName (which is "AxMSMask.AxMaskEdBox,AxMSMask").
Dim MSMaskAssembly As Assembly = Assembly.LoadFrom("C:\AxMSMask.dll")
Dim AxMaskEdBox1 As Object = ➥
MSMaskAssembly.CreateInstance(assemblyName.Substring(0, ➥
assemblyName.IndexOf(",")))

' Set some properties.
AxMaskEdBox1.Location = New Point(0, 0)
AxMaskEdBox1.Size = New Size(200, 50)

' Add the control to the form.
Me.Controls.Add(AxMaskEdBox1)

The simplest method, if you are using Visual Studio, is to add the ActiveX control to the Toolbox.
You do this by selecting Choose Toolbox Items from the Tools menu. This will add an icon representing
the ActiveX control to the Toolbox. Once you place the control on your form, the required RCWs will
be created, and the appropriate references will be added to your project. The only difference between
these generated files and those created by the two previous methods are the names. This method will
name the files AxInterop.MSMask.dll and Interop.MSMask.dll.

Adding the control in this manner will automatically generate code in the hidden designer region of
your form. That code will look similar to this:

Me.AxMaskEdBox1 = New AxMSMask.AxMaskEdBox
CType(Me.AxMaskEdBox1, System.ComponentModel.ISupportInitialize).BeginInit()
'
'AxMaskEdBox1
'
Me.AxMaskEdBox1.Location = New System.Drawing.Point(10, 15)
Me.AxMaskEdBox1.Name = "AxMaskEdBox1"
Me.AxMaskEdBox1.OcxState = CType(resources.GetObject("AxMaskEdBox1.OcxState"), ➥
System.Windows.Forms.AxHost.State)
Me.AxMaskEdBox1.Size = New System.Drawing.Size(247, 43)
Me.AxMaskEdBox1.TabIndex = 0
Me.Controls.Add(Me.AxMaskEdBox1)

Herman_970-5C13.fm Page 557 Tuesday, March 18, 2008 4:00 PM

558 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

13-10. Expose a .NET Component to COM

Problem

You need to create a .NET component that can be called by a COM client.

Solution

Create an assembly that follows certain restrictions identified in this recipe. Export a type library for
this assembly using the Type Library Exporter (Tlbexp.exe) command-line utility.

How It Works

The .NET Framework includes support for COM clients to use .NET components. When a COM client
needs to create a .NET object, the CLR creates the managed object and a COM-callable wrapper
(CCW) that wraps the object. The COM client interacts with the managed object through the CCW.
No matter how many COM clients are attempting to access a managed object, only one CCW is
created for it.

Types that need to be accessed by COM clients must meet certain requirements:

• The managed type (class, interface, struct, or enum) must be Public.

• If the COM client needs to create the object, it must have a Public default constructor. COM
does not support parameterized constructors.

• The members of the type that are being accessed must be Public instance members. Private,
Protected, Friend, and Shared members are not accessible to COM clients.

In addition, you should consider the following recommendations:

• You should not create inheritance relationships between classes, because these relationships
will not be visible to COM clients (although .NET will attempt to simulate this by declaring a
shared base class interface).

• The classes you are exposing should implement an interface. If they don’t implement an
interface, one will be generated automatically. Changing the class in the future may cause
versioning issues, so implementing your own interface is highly suggested. You use the
ClassInterfaceAttribute to turn off the automatic generation of the interface and specify
your own. For added versioning control, you can use the attribute System.Runtime.
InteropServices.GuidAttribute to specify the GUID that should be assigned to an interface.

• Ideally, you should give the managed assembly a strong name so that it can be installed into
the GAC and shared among multiple clients.

For a COM client to create the .NET object, it requires a type library (a .tlb file). The type library
can be generated from an assembly using the Tlbexp.exe command-line utility. Here is an example
of the syntax you use:

tlbexp ManagedLibrary.dll

Tlbexp.exe includes several options that affect how the tool runs and the output is produced.
For example, you can use /out to specify the path and/or name produced by the utility. If you don’t
use this option, the file is created in the current directory with a name based on the assembly name
and ending with .tlb. For automation purposes, you could use the /silent option to suppress all
messages.

Herman_970-5C13.fm Page 558 Tuesday, March 18, 2008 4:00 PM

C HA P TE R 1 3 ■ CO DE IN TE R OP E R A B IL I TY 559

Once you generate the type library, you can reference it from the unmanaged development tool.
With Visual Basic 6, you reference the .tlb file from the dialog box that opens when you select Project ➤
References. In Visual C++ 6, you can use the #import statement to import the type definitions from
the type library.

13-11. Use a Windows Presentation Foundation Control from
a Windows Form

Problem

You need to use a Windows Presentation Foundation (WPF) control or controls from a Windows
Forms application rather than from a WPF application.

Solution

Use the ElementHost control to host the desired WPF control.

How It Works

Windows Presentation Foundation (WPF), discussed in some detail in Chapter 10, is a new application
framework, introduced in .NET Framework 3.0. WPF includes enhanced controls and functionality for
building Windows applications with a more advanced user interface. They are constructed in a
similar manner as ASP.NET applications in that the interface is designed using a markup language
(XAML, in this case) and events are handled with managed code.

WPF includes many of the same controls (such as Button, TextBox, ListBox, and so on) that can be
found in a Windows Forms application, but many of them include more events (MouseEnter, MouseLeave,
and so on) and more functionality. Windows Forms and WPF applications are two completely different
.NET entities and cannot interact with one another without some sort of intermediary.

To allow the interoperability between WPF and Windows Forms, the .NET Framework provides
the ElementHost control, which is part of the System.Windows.Forms.Integration namespace. You
can easily add this control to your form by dragging it from the Toolbox. This will add the following
required references to your project: PresentationCore, PresenatationFramework, UIAutomationProvider,
WindowsBase, and WindowsFormsIntegration.

The ElementHost control works as a container for a single component that derives from UIElement,
which is the base class for all WPF components. If you need to host more than one WPF element (or
component), then you must create a composite user control in WPF and add a reference to it in your
Windows Forms project. Once you have done this, you can then add it to an ElementHost control as
you would normally by assigning an instance of the desired WPF control to the ElementHost.Child
property.

The Code

This example displays a WPF button on a Windows Forms application using the ElementHost
control. The Click event is handled to display a message when the button is clicked.

Imports System
Imports System.Windows.Controls

' All designed code is stored in the autogenerated partial
' class called Recipe13-11.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.

Herman_970-5C13.fm Page 559 Tuesday, March 18, 2008 4:00 PM

560 CH AP T E R 1 3 ■ C OD E I N T E R O P E R AB I L IT Y

Public Class Recipe13_11

 Dim WithEvents wpfButton As System.Windows.Controls.Button

 Private Sub Recipe13_11_Load(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles MyBase.Load

 ' Create a new button instance.
 wpfButton = New System.Windows.Controls.Button

 ' Set a few properties.
 wpfButton.Name = "WPF_Button"
 wpfButton.Content = "WPF BUTTON"

 ' Add the button to the ElementHost control.
 ElementHost1.Child = wpfButton

 End Sub

 Private Sub wpfButton_Click(ByVal sender As Object, ➥
ByVal e As System.Windows.RoutedEventArgs) Handles wpfButton.Click

 MessageBox.Show("You just clicked the WPF Button.", ➥
"WPF Button clicked", MessageBoxButtons.OK)

 End Sub

End Class

When you run the application, you will see a window similar to the one shown in Figure 13-2.

Figure 13-2. WPF InteroperabilityWindow

Herman_970-5C13.fm Page 560 Tuesday, March 18, 2008 4:00 PM

561

■ ■ ■

C H A P T E R 1 4

Commonly Used Interfaces
and Patterns

The recipes in this chapter show you how to implement patterns you will use frequently during the
development of Microsoft .NET Framework applications. Some of these patterns are formalized
using interfaces defined in the .NET Framework class library. Others are less rigid but still require
you to take specific approaches to their design and implementation of your types. The recipes in this
chapter cover the following:

• Creating serializable types that you can easily store to disk, sending across the network, or
passing by value across application domain boundaries (recipe 14-1)

• Providing a mechanism that creates accurate and complete copies (clones) of objects
(recipe 14-2)

• Implementing types that are easy to compare and sort (recipe 14-3)

• Supporting the enumeration of the elements contained in custom collections by creating a
custom iterator (recipe 14-4)

• Ensuring that a type that uses unmanaged resources correctly releases those resources when
they are no longer needed (recipe 14-5)

• Displaying string representations of objects that vary based on format specifiers (recipe 14-6)

• Correctly implementing custom exception and event argument types, which you will use
frequently in the development of your applications (recipes 14-7 and 14-8)

• Implementing the commonly used Singleton and Observer design patterns using the built-in
features of VB .NET and the .NET Framework class library (recipes 14-9 and 14-10)

14-1. Implement a Serializable Type

Problem

You need to implement a custom type that is serializable, allowing you to do the following:

• Store instances of the type to persistent storage (for example, a file or a database).

• Transmit instances of the type across a network.

• Pass instances of the type “by value” across application domain boundaries.

Herman_970-5C14.fm Page 561 Monday, March 17, 2008 11:58 AM

562 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

Solution

For serialization of simple types, apply the attribute System.SerializableAttribute to the type
declaration. For types that are more complex, or to control the content and structure of the serial-
ized data, implement the interface System.Runtime.Serialization.ISerializable.

How It Works

Recipe 2-13 showed how to serialize and deserialize an object using the formatter classes provided
with the .NET Framework class library. However, types are not serializable by default. To implement
a custom type that is serializable, you must apply the attribute SerializableAttribute to your
type declaration. As long as all the data fields in your type are serializable types, applying
SerializableAttribute is all you need to do to make your custom type serializable. If you are imple-
menting a custom class that derives from a base class, the base class must also be serializable.

■Caution Classes that derive from a serializable type don’t inherit the attribute SerializableAttribute. To make
derived types serializable, you must explicitly declare them as serializable by applying the SerializableAttribute
attribute.

Each formatter class contains the logic necessary to serialize types decorated with
SerializableAttribute and will correctly serialize all Public, Protected, and Private fields. You can
exclude specific fields from serialization by applying the attribute System.NonSerializedAttribute
to those fields. As a rule, you should exclude the following fields from serialization:

• Fields that contain nonserializable data types

• Fields that contain values that might be invalid when the object is deserialized, such as
memory addresses, thread IDs, and unmanaged resource handles

• Fields that contain sensitive or secret information, such as passwords, encryption keys, and
the personal details of people and organizations

• Fields that contain data that is easily re-creatable or retrievable from other sources, especially
if the data is large

If you exclude fields from serialization, you must implement your type to compensate for the
fact that some data will not be present when an object is deserialized. Unfortunately, you cannot
create or retrieve the missing data fields in an instance constructor, because formatters do not call
constructors during the process of deserializing objects. The best approach for achieving fine-grained
control of the serialization of your custom types is to use the attributes from the System.Runtime.
Serialization namespace described in Table 14-1. These attributes allow you to identify methods of
the serializable type that the serialization process should execute before and after serialization and
deserialization. Any method annotated with one of these attributes must take a single System.Runtime.
Serialization.StreamingContext argument, which contains details about the source or intended
destination of the serialized object so that you can determine what to serialize. For example, you
might be happy to serialize secret data if it’s destined for another application domain in the same
process, but not if the data will be written to a file.

As types evolve, you often add new member variables to support new features. This new state
causes a problem when deserializing old objects because the new member variables are not part of
the serialized object. .NET Framework 2.0 introduced the attribute System.Runtime.Serialization.
OptionalFieldAttribute. When you create a new version of a type and add data members, annotate
them with OptionalFieldAttribute so that the deserialization process will not fail if they are not present.

Herman_970-5C14.fm Page 562 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 563

You can then annotate new methods with OnDeserializedAttribute (see Table 14-1) to configure the
new member variables appropriately.

For the majority of custom types, the mechanisms described will be sufficient to meet your seri-
alization needs. If you require more control over the serialization process, you can implement the
interface ISerializable. The formatter classes use different logic when serializing and deserializing
instances of types that implement ISerializable. To implement ISerializable correctly, you must
do the following:

• Declare that your type implements ISerializable.

• Apply the attribute SerializableAttribute to your type declaration as just described. What
gets serialized is determined by the GetObjectData method, rather than relying on automatic
serialization. For this reason, you shouldn’t use NonSerializedAttribute because it will have
no effect.

• Implement the ISerializable.GetObjectData method (used during serialization), which
takes the argument types System.Runtime.Serialization.SerializationInfo and System.
Runtime.Serialization.StreamingContext.

• Implement a nonpublic constructor (used during deserialization) that accepts the same argu-
ments as the GetObjectData method. Remember that if you plan to derive classes from your
serializable class, you should make the constructor Protected.

• If you are creating a serializable class from a base class that also implements ISerializable,
your type’s GetObjectData method and deserialization constructor must call the equivalent
method and constructor in the base class.

During serialization, the formatter calls the GetObjectData method and passes it SerializationInfo
and StreamingContext references as arguments. Your type must populate the SerializationInfo
object with the data you want to serialize. The SerializationInfo class acts as a list of field/value
pairs and provides the AddValue method to let you store a field with its value. In each call to AddValue,
you must specify a name for the field/value pair; you use this name during deserialization to retrieve
the value of each field. The AddValue method has 16 overloads that allow you to add values of different
data types to the SerializationInfo object.

Table 14-1. Attributes to Customize the Serialization and Deserialization Processes

Attribute Description

OnSerializingAttribute Apply this attribute to a method to have it executed before the
object is serialized. This is useful if you need to modify object state
before it is serialized. For example, you may need to convert a
DateTime field to UTC time for storage.

OnSerializedAttribute Apply this attribute to a method to have it executed after the
object is serialized. This is useful in case you need to revert the
object state to what it was before the method annotated with
OnSerializingAttribute was run.

OnDeserializingAttribute Apply this attribute to a method to have it executed before the
object is deserialized. This is useful if you need to modify the
object state prior to deserialization.

OnDeserializedAttribute Apply this attribute to a method to have it executed after the object
is deserialized. This is useful if you need to re-create additional
object state that depends on the data that was deserialized with
the object or modify the deserialized state before the object is used.

Herman_970-5C14.fm Page 563 Monday, March 17, 2008 11:58 AM

564 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

When a formatter deserializes an instance of your type, it calls the deserialization constructor,
again passing a SerializationInfo and a StreamingContext reference as arguments. Your type must
extract the serialized data from the SerializationInfo object using one of the SerializationInfo.
Get* methods; for example, using GetString, GetInt32, or GetBoolean. The StreamingContext object
provides information about the purpose and destination of the serialized data, allowing you to
choose which data to serialize. During deserialization, the StreamingContext object provides infor-
mation about the source of the serialized data, allowing you to mirror the logic you implemented for
serialization.

■Note During standard serialization operations, the formatters do not use the capabilities of the StreamingContext
object to provide specifics about the source, destination, and purpose of serialized data. However, if you want to
perform customized serialization, your code can configure the formatter’s StreamingContext object prior to initiating
serialization and deserialization. Consult the .NET Framework SDK documentation for details of the StreamingContext
class.

The Code

The following example demonstrates a serializable Employee class that implements the ISerializable
interface. In this example, the Employee class does not serialize the Address property if the provided
StreamingContext object specifies that the destination of the serialized data is a file. The Main method
demonstrates the serialization and deserialization of an Employee object.

Imports System
Imports System.IO
Imports System.Text
Imports System.Runtime.Serialization
Imports System.Runtime.Serialization.Formatters.Binary

Namespace Apress.VisualBasicRecipes.Chapter14

 <Serializable()> _
 Public Class Employee
 Implements ISerializable

 Private m_Name As String
 Private m_Age As Integer
 Private m_Address As String

 ' Simple Employee constructor.
 Public Sub New(ByVal name As String, ByVal age As Integer, ➥
ByVal address As String)

 m_Name = name
 m_Age = age
 m_Address = address

 End Sub

 ' Constructor required to enable a formatter to deserialize an
 ' Employee object. You should declare the constructor nonpublic
 ' to help ensure it is not called unnecessarily.

Herman_970-5C14.fm Page 564 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 565

 Private Sub New(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)

 ' Extract the name and age of the employee, which will always be
 ' present in the serialized data regardless of the value of the
 ' StreamingContext.
 m_Name = info.GetString("Name")
 m_Age = info.GetInt32("Age")

 ' Attempt to extract the employee's address and fail gracefully
 ' if it is not available.
 Try
 m_Address = info.GetString("Address")
 Catch ex As SerializationException
 m_Address = Nothing
 End Try

 End Sub

 ' Public property to provide access to the employee's name.
 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal Value As String)
 m_Name = Value
 End Set
 End Property

 ' Public property to provide access to the employee's age.
 Public Property Age() As Integer
 Get
 Return m_Age
 End Get
 Set(ByVal value As Integer)
 m_Age = value
 End Set
 End Property

 ' Public property to provide access to the employee's address.
 ' Uses lazy initialization to establish address because a
 ' deserialized object may not have an address value.

 Public Property Address() As String
 Get
 If m_Address Is Nothing Then
 ' Load the address from persistent storage.
 ' In this case, set it to an empty string.
 m_Address = String.Empty
 End If

 Return m_Address
 End Get

Herman_970-5C14.fm Page 565 Monday, March 17, 2008 11:58 AM

566 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 Set(ByVal value As String)
 m_Address = value
 End Set
 End Property

 ' Declared by the ISerializable interface, the GetObjectData method
 ' provides the mechanism with which a formatter obtains the object
 ' data that it should serialize.
 Public Sub GetObjectData(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext) Implements.ISerializable.GetObjectData

 ' Always serialize the employee's name and age.
 info.AddValue("Name", Name)
 info.AddValue("Age", Age)

 ' Don't serialize the employee's address if the StreamingContext
 ' indicates that the serialized data is to be written to a file.
 If (context.State And StreamingContextStates.File) = 0 Then
 info.AddValue("Address", Address)
 End If

 End Sub

 ' Override Object.ToString to return a string representation of the
 ' Employee state.
 Public Overrides Function ToString() As String

 Dim str As New StringBuilder

 str.AppendFormat("Name: {0}{1}", Name, ControlChars.CrLf)
 str.AppendFormat("Age: {0}{1}", Age, ControlChars.CrLf)
 str.AppendFormat("Address: {0}{1}", Address, ControlChars.CrLf)

 Return str.ToString

 End Function

 End Class

 ' A class to demonstrate the use of Employee.
 Public Class Recipe14_01

 Public Shared Sub Main()

 ' Create an Employee object representing an employee named Alex.
 Dim emp As New Employee("Aidan", 35, "Retroville")

 ' Display Employee object.
 Console.WriteLine(emp.ToString())

 ' Serialize the Employee object specifying another application domain
 ' as the destination of the serialized data. All data including the
 ' employee's address is serialized.
 Dim str As Stream = File.Create("Aidan.bin")
 Dim bf As New BinaryFormatter

Herman_970-5C14.fm Page 566 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 567

 bf.Context = New StreamingContext(StreamingContextStates.CrossAppDomain)
 bf.Serialize(str, emp)
 str.Close()

 ' Deserialize and display the Employee object.
 str = File.OpenRead("Aidan.bin")
 bf = New BinaryFormatter
 emp = DirectCast(bf.Deserialize(str), Employee)
 str.Close()
 Console.WriteLine(emp.ToString())

 ' Serialize the Employee object specifying a file as the destination
 ' of the serialized data. In this case, the employee's address is not
 ' included in the serialized data.
 str = File.Create("Aidan.bin")
 bf = New BinaryFormatter
 bf.Context = New StreamingContext(StreamingContextStates.File)
 bf.Serialize(str, emp)
 str.Close()

 ' Deserialize and display the Employee.
 str = File.OpenRead("Aidan.bin")
 bf = New BinaryFormatter
 emp = DirectCast(bf.Deserialize(str), Employee)
 str.Close()
 Console.WriteLine(emp.ToString())

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

14-2. Implement a Cloneable Type

Problem

You need to create a custom type that provides a simple mechanism for programmers to create
copies of type instances.

Solution

Implement the System.ICloneable interface.

How It Works

When you assign one value type to another, you create a copy of the value. No link exists between the
two values—a change to one will not affect the other. However, when you assign one reference type
to another (excluding strings, which receive special treatment by the runtime), you do not create a

Herman_970-5C14.fm Page 567 Monday, March 17, 2008 11:58 AM

568 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

new copy of the reference type. Instead, both reference types refer to the same object, and changes
to the value of the object are reflected in both references. To create a true copy of a reference type,
you must clone the object to which it refers.

The ICloneable interface identifies a type as cloneable and declares the Clone method as the
mechanism through which you obtain a clone of an object. The Clone method takes no arguments
and returns a System.Object, regardless of the implementing type. This means that once you clone
an object, you must explicitly cast the clone to the correct type.

The approach you take to implementing the Clone method for a custom type depends on the
data members declared within the type. If the custom type contains only value-type (Integer, Byte,
and so on) and System.String data members, you can implement the Clone method by instantiating
a new object and setting its data members to the same values as the current object. The Object class
(from which all types derive) includes the Protected method MemberwiseClone, which automates this
process.

If your custom type contains reference-type data members, you must decide whether your
Clone method will perform a shallow copy or a deep copy. A shallow copy means that any reference-
type data members in the clone will refer to the same objects as the equivalent reference-type data
members in the original object. A deep copy means that you must create clones of the entire object
graph so that the reference-type data members of the clone refer to physically independent copies
(clones) of the objects referenced by the original object.

A shallow copy is easy to implement by calling the MemberwiseClone method from within your
Clone method. However, a deep copy is often what programmers expect when they first clone an
object, but it’s rarely what they get. This is especially true of the collection classes in the System.
Collections namespace, which all implement shallow copies in their Clone methods. Although it
would often be useful if these collections implemented a deep copy, there are two key reasons why
types (especially generic collection classes) do not implement deep copies:

• Creating a clone of a large object graph is processor-intensive and memory-intensive.

• General-purpose collections can contain wide and deep object graphs consisting of any type
of object. Creating a deep-copy implementation to cater to such variety is not feasible because
some objects in the collection might not be cloneable, and others might contain circular
references, which would send the cloning process into an infinite loop.

For strongly typed collections in which the nature of the contained elements are understood
and controlled, a deep copy can be a very useful feature; for example, the System.Xml.XmlNode imple-
ments a deep copy in its Clone method. This allows you to create true copies of entire XML object
hierarchies with a single statement.

■Tip If you need to clone an object that does not implement ICloneable but is serializable, you can often seri-
alize and then deserialize the object to achieve the same result as cloning. However, be aware that the serialization
process might not serialize all data members (as discussed in recipe 14-1). Likewise, if you create a custom serial-
izable type, you can potentially use the serialization process just described to perform a deep copy within your
ICloneable.Clone method implementation. To clone a serializable object, use the class System.Runtime.
Serialization.Formatters.Binary.BinaryFormatter to serialize the object to, and then deserialize the
object from a System.IO.MemoryStream object.

The Code

The following example demonstrates various approaches to cloning. The simple class named Employee
contains only String and Integer members and so relies on the inherited MemberwiseClone method
to create a clone. The Team class contains an implementation of the Clone method that performs a

Herman_970-5C14.fm Page 568 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 569

deep copy. The Team class contains a collection of Employee objects, representing a team of people.
When you call the Clone method of a Team object, the method creates a clone of every contained
Employee object and adds it to the cloned Team object. The Team class provides a Private constructor
to simplify the code in the Clone method. The use of constructors is a common approach to simplify
the cloning process.

Imports System
Imports System.Text
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter14

 Public Class Employee
 Implements ICloneable

 Public Name As String
 Public Title As String
 Public Age As Integer

 ' Simple Employee constructor.
 Public Sub New(ByVal _name As String, ByVal _title As String, ➥
ByVal _age As Integer)

 Name = _name
 Title = _title
 Age = _age

 End Sub

 ' Create a clone using the Object.MemberwiseClone method because
 ' the Employee class contains only string and value types.
 Public Function Clone() As Object Implements System.ICloneable.Clone
 Return Me.MemberwiseClone
 End Function

 ' Returns a string representation of the Employee object.
 Public Overrides Function ToString() As String
 Return String.Format("{0} ({1}) - Age {2}", Name, Title, Age)
 End Function

 End Class

 Public Class Team
 Implements ICloneable

 ' A List to hold the Employee team members.
 Public TeamMembers As New List(Of Employee)

 Public Sub New()
 End Sub

 ' Override Object.ToString to return a string representation
 ' of the entire team.

Herman_970-5C14.fm Page 569 Monday, March 17, 2008 11:58 AM

570 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 Public Overrides Function ToString() As String

 Dim str As New StringBuilder

 For Each e As Employee In TeamMembers
 str.AppendFormat(" {0}{1}", e, ControlChars.CrLf)
 Next

 Return str.ToString

 End Function

 ' Implementation of ICloneable.Clone.
 Public Function Clone() As Object Implements System.ICloneable.Clone

 ' Create a deep copy of the team.
 Dim newTeam As New Team

 For Each e As Employee In Me.TeamMembers
 ' Clone the individual Employee objects and
 ' add them to the List.
 newTeam.TeamMembers.Add(DirectCast(e.Clone, Employee))
 Next

 Return newTeam

 End Function

 End Class

 ' A class to demonstrate the use of Employee.
 Public Class Recipe14_02

 Public Shared Sub Main()

 ' Create the original team.
 Dim originalTeam As New Team
 originalTeam.TeamMembers.Add(New Employee("Kai", "Genius", 34))
 originalTeam.TeamMembers.Add(New Employee("Jeremy", ➥
"Jack-Of-All-Trades", 35))
 originalTeam.TeamMembers.Add(New Employee("Guy", "Developer", 25))

 ' Clone the original team.
 Dim clonedTeam As Team = DirectCast(newTeam.Clone, Team)

 ' Display the original team.
 Console.WriteLine("Original Team:")
 Console.WriteLine(originalTeam)

 ' Display the cloned team.
 Console.WriteLine("Cloned Team:")
 Console.WriteLine(clonedTeam)

Herman_970-5C14.fm Page 570 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 571

 ' Make change.
 Console.WriteLine("*** Make a change to original team ***")
 Console.WriteLine(Environment.NewLine)

 originalTeam.TeamMembers(0).Name = "Joed"
 originalTeam.TeamMembers(0).Title = "Manager"
 originalTeam.TeamMembers(0).Age = 30

 ' Display the original team.
 Console.WriteLine("Original Team:")
 Console.WriteLine(originalTeam)

 ' Display the cloned team.
 Console.WriteLine("Cloned Team:")
 Console.WriteLine(clonedTeam)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.Read()

 End Sub

 End Class
End Namespace

14-3. Implement a Comparable Type

Problem

You need to provide a mechanism that allows you to compare custom types, enabling you to easily
sort collections containing instances of those types.

Solution

To provide a standard comparison mechanism for a type, implement the generic System.
IComparable(Of T) interface. To support the comparison of a type based on more than one character-
istic, create separate types that implement the generic System.Collections.Generic.IComparer(Of T)
interface.

■Note The nongeneric System.IComparable and System.Collections.IComparer interfaces, available
prior to .NET Framework 2.0, still exist but do not use generics to ensure type safety. If you use these interface, you
must take extra precautions to ensure the objects passed to the methods of these interfaces are of the appropriate type.

How It Works

To sort a collection, such as a List(Of T), you would call its Sort method. This method sorts the
objects based on their implementation of the IComparable(Of T) interface. IComparable(Of T)
defines a single method named CompareTo, shown here:

Public Function CompareTo(ByVal other As T) As Integer
End Function

Herman_970-5C14.fm Page 571 Monday, March 17, 2008 11:58 AM

572 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

The value returned by CompareTo should be calculated as follows:

• If the current object is less than other, return less than zero (for example, –1).

• If the current object has the same value as other, return zero.

• If the current object is greater than other, return greater than zero (for example, 1).

What these comparisons mean depends on the type implementing the IComparable interface.
For example, if you were sorting people based on their surname, you would do a String comparison
on this field. However, if you wanted to sort by birthday, you would need to perform a comparison
of the corresponding System.DateTime fields.

To support a variety of sort orders for a particular type, you must implement separate helper
types that implement the IComparer(Of T) interface, which defines the Compare method shown here:

Public Function Compare(ByVal x As T, ByVal y As T) As Integer
End Function

These helper types must encapsulate the necessary logic to compare two objects and return a
value based on the following logic:

• If x has the same value as y, return zero.

• If x is greater than y, return greater than zero (for example, 1).

To use any of these helper types, you would pass them into an overloaded version of the collections
Sort method that accepts an IComparer(Of T) .

The Code

The Newspaper class listed here demonstrates the implementation of both the IComparable and IComparer
interfaces. The Newspaper.CompareTo method performs a case-insensitive comparison of two Newspaper
objects based on their Name properties. A Private nested class named AscendingCirculationComparer
implements IComparer and compares two Newspaper objects based on their Circulation properties.
An AscendingCirculationComparer object is obtained using the Shared Newspaper.CirculationSorter
property.

The Main method shown here demonstrates the comparison and sorting capabilities provided
by implementing the IComparable and IComparer interfaces. The method creates a System.Collections.
Generic.List(Of T) collection containing five Newspaper objects. Main then sorts the List(Of T)
twice using the .Sort method. The first Sort operation uses the default Newspaper comparison
mechanism provided by the IComparable.CompareTo method. The second Sort operation uses an
AscendingCirculationComparer object to perform comparisons through its implementation of the
IComparer.Compare method.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Newspaper
 Implements IComparable(Of Newspaper)

 Private _name As String
 Private _circulation As Integer

 ' Simple Newspaper constructor.
 Public Sub New(ByVal name As String, ByVal circulation As Integer)

Herman_970-5C14.fm Page 572 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 573

 _name = name
 _circulation = circulation

 End Sub

 ' Declare a read-only property to access _name field.
 Public ReadOnly Property Name() As String
 Get
 Return _name
 End Get
 End Property

 ' Declare a read-only property to access _circulation field.
 Public ReadOnly Property Circulation() As String
 Get
 Return _circulation
 End Get
 End Property

 ' Declare a read-only property that returns an instance of the
 ' AscendingCirculationComparer.
 Public Shared ReadOnly Property CirculationSorter() As ➥
IComparer(Of Newspaper)
 Get
 Return New AscendingCirculationComparer
 End Get
 End Property

 ' Override Object.ToString.
 Public Overrides Function ToString() As String
 Return String.Format("{0}: Circulation = {1}", _name, _circulation)
 End Function

 ' Implementation of IComparable.CompareTo. The generic definition
 ' of IComparable allows us to ensure that the argument provided
 ' must be a Newspaper object. Comparison is based on a case-
 ' insensitive comparison of the Newspaper names.
 Public Function CompareTo(ByVal other As Newspaper) As Integer ➥
Implements System.IComparable(Of Newspaper).CompareTo

 ' IComparable dictates that an object is always considered
 ' greater than nothing.
 If other Is Nothing Then Return 1

 ' Short-circuit the case where the other Newspaper object is a
 ' reference to this one.
 If other Is Me Then Return 0

 ' Calculate return value by performing a case-insensitive
 ' comparison of the Newspaper names.

Herman_970-5C14.fm Page 573 Monday, March 17, 2008 11:58 AM

574 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Because the Newspaper name is a string, the easiest approach
 ' is to reply on the comparison capabilities of the string
 ' class, which perform culture-sensitive string comparisons.
 Return String.Compare(Me.Name, other.Name, True)

 End Function

 Private Class AscendingCirculationComparer
 Implements IComparer(Of Newspaper)

 ' Implementation of IComparer.Compare. The generic definition of
 ' IComparer allows us to ensure both arguments are Newspaper
 ' objects.
 Public Function Compare(ByVal x As Newspaper, ➥
ByVal y As Newspaper) As Integer Implements ➥
System.Collections.Generic.IComparer(Of Newspaper).Compare

 ' Handle logic for nothing reference as dictated by the
 ' IComparer interface. Nothing is considered less than
 ' any other value.
 If x Is Nothing And y Is Nothing Then
 Return 0
 ElseIf x Is Nothing Then
 Return -1
 ElseIf y Is Nothing Then
 Return 1
 End If

 ' Short-circuit condition where x and y are references.
 ' to the same object.
 If x Is y Then
 Return 0
 End If

 ' Compare the circulation figures. IComparer dictates that:
 ' return less than zero if x < y
 ' return zero if x = y
 ' return greater than zero if x > y
 ' This logic is easily implemented using integer arithmetic.
 Return x.Circulation - y.Circulation

 End Function

 End Class
 End Class

 ' A class to demonstrate the use of Newspaper.
 Public Class Recipe14_03

 Public Shared Sub Main()

 Dim newspapers As New List(Of Newspaper)

Herman_970-5C14.fm Page 574 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 575

 newspapers.Add(New Newspaper("The Washington Post", 125780))
 newspapers.Add(New Newspaper("The Times", 55230))
 newspapers.Add(New Newspaper("The Sun", 88760))
 newspapers.Add(New Newspaper("The Herald", 5670))
 newspapers.Add(New Newspaper("The Gazette", 235950))

 Console.Clear()
 Console.WriteLine("Unsorted newspaper list:")

 For Each n As Newspaper In newspapers
 Console.WriteLine(" {0}", n)
 Next

 ' Sort the newspaper list using the object's implementation
 ' of IComparable.CompareTo.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Newspaper list sorted by name (default order):")
 newspapers.Sort()

 For Each n As Newspaper In newspapers
 Console.WriteLine(" {0}", n)
 Next

 ' Sort the newspaper list using the supplied IComparer object.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Newspaper list sorted by circulation:")
 newspapers.Sort(Newspaper.CirculationSorter)

 For Each n As Newspaper In newspapers
 Console.WriteLine(" {0}", n)
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

14-4. Implement an Enumerable Type Using a Custom Iterator

Problem

You need to create a collection type whose contents you can enumerate using a For Each statement.

Solution

Implement the interface System.Collections.IEnumerable or System.Collections.Generic.
IEnumerable(Of T) on your collection type. The GetEnumerator method of the IEnumerable and
IEnumerable(Of T) interfaces returns an enumerator, which is an object that implements either

Herman_970-5C14.fm Page 575 Monday, March 17, 2008 11:58 AM

576 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

the System.Collections.IEnumerator or System.Collections.Generic.IEnumerator(Of T) interface,
respectively. The IEnumerator and IEnumerator(Of T) interfaces define the methods used by the For
Each statement to enumerate the collection.

Implement a private iterator class within the enumerable type that implements either the
IEnumerator or IEnumerator(Of T) interface and can iterate over the enumerable type while main-
taining appropriate state information. In the GetEnumerator method of the enumerable type, create
and return an instance of the iterator class.

How It Works

A numeric indexer allows you to iterate through the elements of most standard collections using a
For loop. However, this technique does not always provide an appropriate abstraction for nonlinear
data structures, such as trees and multidimensional collections. The For Each statement provides an
easy-to-use and syntactically elegant mechanism for iterating through a collection of objects, regardless
of their internal structures. This recipe will focus on the standard (nongeneric) implementation of
an enumerable type.

To support For Each semantics, the type containing the collection of objects should implement
the IEnumerable interface. The IEnumerable interface declares a single method named GetEnumerator,
which does not take any arguments and returns an object that implements IEnumerator.

The next step is to implement a separate class that implements the IEnumerator interface. The
IEnumerator interface provides a read-only, forward-only cursor for accessing the members of the
underlying collection. Table 14-2 describes the members of the IEnumerator interface. The IEnumerator
instance returned by GetEnumerator is your custom iterator—the object that actually supports enumera-
tion of the collection’s data elements.

If your collection class contains different types of data that you want to enumerate separately,
implementing the IEnumerable interface on the collection class requires some extra work. One option,
since each item is returned as an Object, is to add checks to handle each different type within the For
Each loop.

Another possible option would be to implement a number of properties that return different
IEnumerator instances that handle each specific data type. For example, you might have a class that
includes a collection of employees and a collection of tasks. You would create the Employees property,

Table 14-2. Members of the IEnumerator Interface

Member Description

Current Property that returns the current data element. When the enumerator is created,
Current refers to a position preceding the first data element. This means you
must call MoveNext before using Current. If Current is called and the enumerator is
positioned before the first element or after the last element in the data collection,
Current must throw a System.InvalidOperationException.

MoveNext Method that moves the enumerator to the next data element in the collection.
Returns True if there are more elements; otherwise, it returns False. If the
underlying source of data changes during the life of the enumerator, MoveNext
must throw an InvalidOperationException.

Reset Method that moves the enumerator to a position preceding the first element in
the data collection. If the underlying source of data changes during the life of the
enumerator, Reset must throw an InvalidOperationException.

Herman_970-5C14.fm Page 576 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 577

which would return an IEnumerator for the employee collection and the Tasks property, which would
return an IEnumerator for the task collection.

The Code

The TeamMember, Team, and TeamMemberEnumerator classes in the following example demonstrate the
implementation of a custom iterator using the IEnumerable and IEnumerator interfaces. The TeamMember
class represents a member of a team. The Team class, which represents a team of people, is a collec-
tion of TeamMember objects. Team implements the IEnumerable interface and declares a separate class,
named TeamMemberEnumerator, to provide enumeration functionality. Team implements the Observer
pattern using delegate and event members to notify all TeamMemberEnumerator objects if their under-
lying Team changes. (See recipe 14-10 for a detailed description of the Observer pattern.) The
TeamMemberEnumerator class is a Private nested class, so you cannot create instances of it other than
through the Team.GetEnumerator method.

This example also demonstrates what happens when you attempt to change the collection you
are enumerating through. In this case, an InvalidOperationException is thrown.

Imports System
Imports System.Collections.Generic
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter14

 ' The TeamMember class represents an individual team member.
 Public Class TeamMember

 Public Name As String
 Public Title As String

 ' Simple TeamMember constructor.
 Public Sub New(ByVal _name As String, ByVal _title As String)

 Me.Name = _name
 Me.Title = _title

 End Sub

 ' Returns a string representation of the TeamMember.
 Public Overrides Function ToString() As String
 Return String.Format("{0} ({1})", Name, Title)
 End Function

 End Class

 ' Team class represents a collection of TeamMember objects.
 ' It implements the IEnumerable interface to support enumerating
 ' TeamMember objects.
 Public Class Team
 Implements IEnumerable

Herman_970-5C14.fm Page 577 Monday, March 17, 2008 11:58 AM

578 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' A delegate that specifies the signature that all team change
 ' event handler methods must implement.
 Public Delegate Sub TeamChangedEventHandler(ByVal source As Team, ➥
ByVal e As EventArgs)

 ' A List to contain the TeamMember objects.
 Private teamMembers As List(Of TeamMember)

 ' The event used to notify that the Team has changed.
 Public Event TeamChange As TeamChangedEventHandler

 ' Team constructor.
 Public Sub New()
 teamMembers = New List(Of TeamMember)
 End Sub

 ' Implement the IEnumerable.GetEnumerator method.
 Public Function GetEnumerator() As IEnumerator ➥
Implements System.Collections.IEnumerable.GetEnumerator
 Return New TeamMemberEnumerator(Me)
 End Function

 ' Adds a TeamMember object to the Team.
 Public Sub AddMember(ByVal member As TeamMember)

 teamMembers.Add(member)

 ' Notify listeners that the list has changed.
 RaiseEvent TeamChange(Me, EventArgs.Empty)

 End Sub

 ' TeamMemberEnumerator is a private nested class that provides
 ' the functionality to enumerate the TeamMembers contained in
 ' a Team collection. As a nested class, TeamMemberEnumerator
 ' has access to the private members of the Team class.
 Private Class TeamMemberEnumerator
 Implements IEnumerator

 ' The Team that this object is enumerating.
 Private sourceTeam As Team

 ' Boolean to indicate whether underlying Team has changed
 ' and so is invalid for further enumeration.
 Private teamInvalid As Boolean = False

 ' Integer to identify the current TeamMember. Provides
 ' the index of the TeamMember in the underlying List
 ' used by the Team collection. Initialize to -1, which is
 ' the index prior to the first element.
 Private currentMember As Integer = -1

Herman_970-5C14.fm Page 578 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 579

 ' The constructor takes a reference to the Team that is
 ' the source of the enumerated data.
 Friend Sub New(ByVal _team As Team)

 Me.sourceTeam = _team

 ' Register with sourceTeam for change notifications.
 AddHandler Me.sourceTeam.TeamChange, AddressOf Me.TeamChange

 End Sub

 ' Implement the IEnumerator.Current property.
 Public ReadOnly Property Current() As Object Implements ➥
System.Collections.IEnumerator.Current
 Get
 ' If the TeamMemberEnumerator is positioned before
 ' the first element or after the last element, then
 ' throw an exception.
 If currentMember = -1 Or currentMember > ➥
(sourceTeam.teamMembers.Count - 1) Then
 Throw New InvalidOperationException
 End If

 ' Otherwise, return the current TeamMember.
 Return sourceTeam.teamMembers(currentMember)

 End Get
 End Property

 ' Implement the IEnumerator.MoveNext method.
 Public Function MoveNext() As Boolean Implements ➥
System.Collections.IEnumerator.MoveNext

 ' If underlying Team is invalid, throw exception.
 If teamInvalid Then
 Throw New InvalidOperationException("Team modified")
 End If

 ' Otherwise, progress to the next TeamMember.
 currentMember += 1

 ' Return false if we have moved past the last TeamMember.
 If currentMember > (sourceTeam.teamMembers.Count - 1) Then
 Return False
 Else
 Return True
 End If

 End Function

 ' Implement the IEnumerator.Reset method. This method
 ' resets the position of the TeamMemberEnumerator to
 ' the top of the TeamMembers collection.

Herman_970-5C14.fm Page 579 Monday, March 17, 2008 11:58 AM

580 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 Public Sub Reset() Implements System.Collections.IEnumerator.Reset

 ' If underlying Team is invalid, throw exception.
 If teamInvalid Then
 Throw New InvalidOperationException("Team modified")
 End If

 ' Move the currentMember pointer back to the index
 ' preceding the first element.
 currentMember = -1

 End Sub

 ' An event handler to handle notification that the underlying
 ' Team collection has changed.
 Friend Sub TeamChange(ByVal source As Team, ByVal e As EventArgs)

 ' Signal that the underlying Team is now invalid.
 teamInvalid = True

 End Sub

 End Class
 End Class

 ' A class to demonstrate the use of Team.
 Public Class Recipe14_04

 Public Shared Sub Main()

 ' Create a new Team.
 Dim newTeam As New Team

 newTeam.AddMember(New TeamMember("Leah", "Biologist"))
 newTeam.AddMember(New TeamMember("Romi", "Actress"))
 newTeam.AddMember(New TeamMember("Gavin", "Quantum Physicist"))

 ' Enumerate the Team.
 Console.Clear()
 Console.WriteLine("Enumerate with a for each loop:")

 For Each member As TeamMember In newTeam
 Console.WriteLine(member.ToString)
 Next

 ' Enumerate using a while loop.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Enumerate with while loop:")

 Dim e As IEnumerator = newTeam.GetEnumerator

 While e.MoveNext
 Console.WriteLine(e.Current)
 End While

Herman_970-5C14.fm Page 580 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 581

 ' Enumerate the Team and try to add a Team Member.
 ' Since adding a member will invalidate the collection,
 ' the MoveNext method, of the TeamMemberEnumerator class,
 ' will throw an exception.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Modify while enumerating:")

 For Each member As TeamMember In newTeam
 Console.WriteLine(member.ToString)
 newTeam.AddMember(New TeamMember("Joed", "Linguist"))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

The preceding example demonstrates creating your own iterator for a custom collection. You could
have simply created a new collection that inherits from one of the base generic classes, such as
List(Of T). Since the base class is already enumerable, your class would automatically have this
ability. You would not need to create your own enumerator class as required in the previous example.
If you wanted to try this, you would replace the entire Team class with this version:

' Team class represents a generic collection of TeamMember objects.
' It inherits the List(Of TeamMember) class so it automatically
' supports enumerating TeamMember objects.
Public Class Team
 Inherits List(Of TeamMember)

 ' A delegate that specifies the signature that all Team change
 ' event handler methods must implement.
 Public Delegate Sub TeamChangedEventHandler(ByVal source As Team, ➥
ByVal e As EventArgs)

 ' The event used to notify that the Team has changed.
 Public Event TeamChange As TeamChangedEventHandler

 ' Team constructor.
 Public Sub New()
 End Sub

 ' Adds a TeamMember object to the Team.
 Public Overloads Sub Add(ByVal member As TeamMember)

 MyBase.Add(member)

Herman_970-5C14.fm Page 581 Monday, March 17, 2008 11:58 AM

582 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Notify listeners that the list has changed.
 RaiseEvent TeamChange(Me, EventArgs.Empty)

 End Sub

End Class

Here, to mimic the main example, you override the base Add method so you can raise the TeamChange
event. This means you need to replace calls to the AddMember method with calls to the Add method.

14-5. Implement a Disposable Class

Problem

You need to create a class that references unmanaged resources and provide a mechanism for users
of the class to free those unmanaged resources deterministically.

Solution

Implement the System.IDisposable interface, and release the unmanaged resources when client
code calls the IDisposable.Dispose method.

How It Works

An unreferenced object continues to exist on the managed heap and consume resources until the
garbage collector releases the object and reclaims the resources. The garbage collector will automat-
ically free managed resources (such as memory), but it will not free unmanaged resources (such as
file handles and database connections) referenced by managed objects. If an object contains data
members that reference unmanaged resources, the object must free those resources explicitly, or
they will remain in memory for an unknown length of time.

One solution is to declare a destructor—or finalizer—for the class (destructor is a C++ term
equivalent to the more general .NET term finalizer). Prior to reclaiming the memory consumed by
an instance of the class, the garbage collector calls the object’s finalizer. The finalizer can take the
necessary steps to release any unmanaged resources. Unfortunately, because the garbage collector
uses a single thread to execute all finalizers, use of finalizers can have a detrimental effect on the effi-
ciency of the garbage collection process, which will affect the performance of your application. In
addition, you cannot control when the runtime frees unmanaged resources because you cannot call
an object’s finalizer directly, and you have only limited control over the activities of the garbage
collector using the System.GC class.

As a complementary mechanism to using finalizers, the .NET Framework defines the Dispose
pattern as a means to provide deterministic control over when to free unmanaged resources. To
implement the Dispose pattern, a class must implement the IDisposable interface, which declares a
single method named Dispose. In the Dispose method, you must implement the code necessary to
release any unmanaged resources and remove the object from the list of objects eligible for finaliza-
tion if a finalizer has been defined.

Instances of classes that implement the Dispose pattern are called disposable objects. When
code has finished with a disposable object, it calls the object’s Dispose method to free all resources
and make it unusable, but it still relies on the garbage collector to eventually release the object
memory. It’s important to understand that the runtime does not enforce disposal of objects; it’s the
responsibility of the client to call the Dispose method. However, because the .NET Framework class
library uses the Dispose pattern extensively, VB .NET provides the Using statement to simplify the
correct use of disposable objects. The following code shows the structure of a Using statement:

Herman_970-5C14.fm Page 582 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 583

Using fs As New FileStream("SomeFile.txt", FileMode.Open)
 ' do some work
End Using

When the code reaches the end of the block in which the disposable object was declared, the
object’s Dispose method is automatically called, even if an exception is raised. Furthermore, once
you leave the Using block, the object is out of scope and can no longer be accessed, so you cannot use
a disposed object accidentally.

Here are some points to consider when implementing the Dispose pattern:

• Client code should be able to call the Dispose method repeatedly with no adverse effects.

• In multithreaded applications, it’s important that only one thread execute the Dispose
method concurrently. It’s normally the responsibility of the client code to ensure thread
synchronization, although you could decide to implement synchronization within the
Dispose method.

• The Dispose method should not throw exceptions.

• Because the Dispose method does all necessary cleaning up of both managed and unman-
aged objects, you do not need to call the object’s finalizer. Your Dispose method should call
the GC.SuppressFinalize method to ensure the finalizer is not called during garbage collection.

• Implement a finalizer that calls the unmanaged cleanup part of your Dispose method as a
safety mechanism in case client code does not call Dispose correctly. However, avoid refer-
encing managed objects in finalizers, because you cannot be certain of the object’s state.

• If a disposable class extends another disposable class, the Dispose method of the child must
call the Dispose method of its base class. Wrap the child’s code in a Try block and call the base
class’ Dispose method in a Finally clause to ensure execution.

• Other instance methods and properties of the class should throw a System.
ObjectDisposedException exception if client code attempts to execute a method on an
already disposed object.

The Code

The following example demonstrates a common implementation of the Dispose pattern where a
new Dispose method, which accepts a Boolean parameter, overrides the base Dispose method. If this
parameter is True, managed and unmanaged objects will be properly disposed. If it is False, only the
unmanaged objects will be properly disposed. The base Dispose method calls the new method
passing True into the disposing parameter, while the Finalize method, which overrides the base
Finalize method, passes False.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter14

 ' Implement the IDisposable interface in an
 ' example class.
 Public Class DisposeExample
 Implements IDisposable

 ' Private data member to signal if the object has already
 ' been disposed.
 Private isDisposed As Boolean = False

Herman_970-5C14.fm Page 583 Monday, March 17, 2008 11:58 AM

584 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Private data member that holds the handle to an unmanaged
 ' resource.
 Private resourceHandle As IntPtr

 ' Constructor.
 Public Sub New()

 ' Constructor code obtains reference to an unmanaged
 ' resource.
 resourceHandle = IntPtr.Zero

 End Sub

 ' Protected overload of the Dispose method. The disposing argument
 ' signals whether the method is called by consumer code (true), or by
 ' the garbage collector (false). Note that this method is not part
 ' of the IDisposable interface because it has a different signature to
 ' the parameterless Dispose method.
 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Don't try to dispose of the object twice.
 If Not Me.isDisposed Then

 ' Determine if consumer code or the garbage collector is
 ' calling. Avoid referencing other managed objects during
 ' finalization.
 If disposing Then
 ' Method called by consumer code. Call the Dispose method
 ' of any managed data members that implement the IDisposable
 ' interface.
 ' ...
 End If

 ' Whether called by consumer code or the garbage collector,
 ' free all unmanaged resources and set the value of managed
 ' data members to nothing. In the case of an inherited type,
 ' call base.Dispose(disposing).
 End If

 ' Signal that this object has been disposed.
 Me.isDisposed = True
 End Sub

 ' Public implementation of the IDisposable.Dispose method, called
 ' by the consumer of the object in order to free unmanaged resources.
 Public Sub Dispose() Implements IDisposable.Dispose

 ' Call the protected Dispose overload and pass a value of "True"
 ' to indicate that Dispose is being called by consumer code, not
 ' by the garbage collector.
 Dispose(True)

 ' Because the Dispose method performs all necessary cleanup,
 ' ensure the garbage collector does not call the class destructor.
 GC.SuppressFinalize(Me)

Herman_970-5C14.fm Page 584 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 585

 End Sub

 ' Destructor / Finalizer. Because Dispose calls GC.SuppressFinalize,
 ' this method is called by the garbage collection process only if
 ' the consumer of the object does not call Dispose as it should.
 Protected Overrides Sub Finalize()

 ' Call the Dispose method as opposed to duplicating the code to
 ' clean up any unmanaged resources. Use the protected Dispose
 ' overload and pass a value of "False" to indicate that Dispose is
 ' being called during the garbage collection process, not by the
 ' consumer code.
 Dispose(False)

 End Sub

 ' Before executing any functionality, ensure that Dispose had not
 ' already been executed on the object.
 Public Sub SomeMethod()

 ' Throw an exception if the object has already been disposed.
 If isDisposed Then
 Throw New ObjectDisposedException("DisposeExample")
 End If

 ' Execute method functionality.
 ' ...

 End Sub

 End Class

 ' A class to demonstrate the use of DisposeExample.
 Public Class Recipe14_05

 Public Shared Sub Main()

 ' The Using statement ensures the Dispose method is called
 ' even if an exception occurs.
 Using d As New DisposeExample
 ' Do something with d.
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C14.fm Page 585 Monday, March 17, 2008 11:58 AM

586 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

14-6. Implement a Type That Can Be Formatted

Problem

You need to implement a type that can create different string representations of its content based on
the use of format specifiers for use in formatted strings.

Solution

Implement the System.IFormattable interface.

How It Works

The following code fragment demonstrates the use of format specifiers in the WriteLine method of
the System.Console class. The codes in the braces (emphasized in the example) are the format specifiers.

Dim a As Double = 345678.5678
Dim b As UInteger = 12000
Dim c As Byte = 254

Console.WriteLine("a = {0}, b = {1}, and c = {2}", a, b, c)
Console.WriteLine("a = {0:c0}, b = {1:n4}, and c = {2,10:x5}", a, b, c)

When run on a machine configured with English (United States) regional settings, this code will
result in the output shown here:

a = 345678.5678, b = 12000, and c = 254
a = $345,679, b = 12,000.0000, and c = 000fe

As you can see, changing the contents of the format specifiers changes the format of the output
significantly, even though the data has not changed. To enable support for format specifiers in your
own types, you must implement the IFormattable interface. IFormattable declares a single method
named ToString with the following signature:

Public Function ToString(ByVal format As String, ByVal formatProvider As ➥
IFormatProvider) As String
End Function

The format argument is a System.String containing a format string. The format string is the
portion of the format specifier that follows the colon. For example, in the format specifier {2,10:x5}
used in the previous example, x5 is the format string. The format string contains the instructions the
IFormattable instance should use when it’s generating the string representation of its content. The
.NET Framework documentation for IFormattable states that types that implement IFormattable
must support the G (general) format string, but that the other supported format strings depend on
the implementation. The format argument will be Nothing if the format specifier does not include a
format string component, for example, {0} or {1,20}.

The formatProvider argument is a reference to an instance of a type that implements System.
IFormatProvider, and that provides access to information about the cultural and regional prefer-
ences to use when generating the string representation of the IFormattable object. This information
includes data such as the appropriate currency symbol or number of decimal places to use. By default,
formatProvider is Nothing, which means you should use the current thread’s regional and cultural

Herman_970-5C14.fm Page 586 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 587

settings, available through the Shared method CurrentCulture of the System.Globalization.
CultureInfo class. Some methods that generate formatted strings, such as String.Format, allow
you to specify an alternative IFormatProvider to use, such as CultureInfo, DateTimeFormatInfo, or
NumberFormatInfo.

The .NET Framework uses IFormattable primarily to support the formatting of value types, but
it can be used to good effect with any type.

The Code

The following example contains a class named Person that implements the IFormattable interface.
The Person class contains the title and names of a person and will render the person’s name in different
formats depending on the format strings provided. The Person class does not make use of regional
and cultural settings provided by the formatProvider argument. The Main method demonstrates
how to use the formatting capabilities of the Person class.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Person
 Implements IFormattable

 ' Private members to hold the person's title and name details.
 Private title As String
 Private names As String()

 ' Constructor used to set the person's title and names.
 Public Sub New(ByVal _title As String, ByVal ParamArray _names As String())

 Me.title = _title
 Me.names = _names

 End Sub

 ' Override the Object.ToString method to return the person's
 ' name using the general format.
 Public Overrides Function ToString() As String
 Return ToString("G", Nothing)
 End Function

 ' Implementation of the IFormattable.ToString method to return the
 ' person's name in different forms based on the format string
 ' provided.
 Public Overloads Function ToString(ByVal format As String, ➥
ByVal formatProvider As System.IFormatProvider) As String ➥
Implements System.IFormattable.ToString

 Dim result As String = Nothing

 ' Use the general format if none is specified.
 If format Is Nothing Then format = "G"

 ' The contents of the format string determine the format of the
 ' name returned.

Herman_970-5C14.fm Page 587 Monday, March 17, 2008 11:58 AM

588 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 Select Case format.ToUpper()(0)
 Case "S"
 ' Use short form - first initial and surname if a surname
 ' was supplied.
 If names.Length > 1 Then
 result = names(0)(0) & ". " & names(names.Length - 1)
 Else
 result = names(0)
 End If
 Case "P"
 ' Use polite form - title, initials, and surname.
 ' Add the person's title to the result.
 If title IsNot Nothing And Not title.Length = 0 Then
 result = title & ". "
 End If

 ' Add the person's initials and surname.
 For count As Integer = 0 To names.Length - 1

 If Not count = (names.Length - 1) Then
 result += names(count)(0) & ". "
 Else
 result += names(count)
 End If

 Next
 Case "I"
 ' Use informal form - first name only.
 result = names(0)

 Case Else
 ' Use general.default form - first name and surname (if
 ' a surname is supplied).
 If names.Length > 1 Then
 result = names(0) & " " & names(names.Length - 1)
 Else
 result = names(0)
 End If
 End Select

 Return result

 End Function

 ' A class to demonstrate the use of Person.
 Public Class Recipe14_06

 Public Shared Sub Main()

 ' Create a Person object representing a man with the name
 ' Dr. Gaius Baltar.
 Dim newPerson As New Person("Dr", "Gaius", "Baltar")

Herman_970-5C14.fm Page 588 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 589

 ' Display the person's name using a variety of format strings.
 Console.WriteLine("Dear {0:G}", newPerson)
 Console.WriteLine("Dear {0:P}", newPerson)
 Console.WriteLine("Dear {0:I},", newPerson)
 Console.WriteLine("Dear {0}", newPerson)
 Console.WriteLine("Dear {0:S},", newPerson)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class

 End Class
End Namespace

14-7. Implement a Custom Exception Class

Problem

You need to create a custom exception class so that you can use the runtime’s exception-handling
mechanism to handle application-specific exceptions.

Solution

Create a serializable class that inherits the System.Exception class. Add support for any custom data
members required by the exception, including constructors and properties required to manipulate
the data members.

■Tip If you need to define a number of custom exceptions for use in a single application or library, you should
define a single custom exception that extends System.Exception and use this as a common base class for all
your other custom exceptions. There is very little point in extending System.ApplicationException, as is often
recommended. Doing so simply introduces another level in your exception hierarchy and provides little if any benefit
when handling your exception classes—after all, catching a nonspecific exception like ApplicationException
is just as bad a practice as catching Exception.

How It Works

Exception classes are unique in that you do not declare new classes solely to implement new or
extended functionality. The runtime’s exception-handling mechanism—exposed by the VB .NET
statements Try, Catch, and Finally—works based on the type of exception thrown, not the functional
or data members implemented by the thrown exception.

If you need to throw an exception, you should use an existing exception class from the .NET
Framework class library, if a suitable one exists. For example, some useful exceptions include the
following:

Herman_970-5C14.fm Page 589 Monday, March 17, 2008 11:58 AM

590 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

• System.ArgumentNullException, thrown when code passes a Nothing argument value to your
method that does not support Nothing arguments

• System.ArgumentOutOfRangeException, thrown when code passes an inappropriately large or
small argument value to your method

• System.FormatException, thrown when code attempts to pass your method a String argument
containing incorrectly formatted data

If none of the existing exception classes meets your needs or you feel your application would
benefit from using application-specific exceptions, it’s a simple matter to create your own exception
class. To integrate your custom exception with the runtime’s exception-handling mechanism and
remain consistent with the pattern implemented by .NET Framework–defined exception classes,
you should do the following:

• Give your exception class a meaningful name ending in the word Exception, such as
TypeMismatchException or RecordNotFoundException.

• Mark your exception class as NotInheritable if you do not intend other exception classes to
extend it.

• Implement at least one of the Public constructors with the signatures shown here and ensure
they call the base class constructor. Best practices dictate that you should implement the first
three constructors. The last constructor is used if your type is serializable.

Public Sub New
 MyBase.New
End Sub

Public Sub New(ByVal msg As String)
 MyBase.New(msg)
End Sub

Public Sub New(ByVal msg As String, ByVal inner As Exception)
 MyBase.New(msg, inner)
End Sub

Public Sub New(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)
 MyBase.New(info, context)
End Sub

• Make your exception class serializable so that the runtime can marshal instances of your excep-
tion across application domain and machine boundaries. Applying the attribute System.
SerializableAttribute is sufficient for exception classes that do not implement custom
data members. However, because Exception implements the interface System.Runtime.
Serialization.ISerializable, if your exception declares custom data members, you must
override the ISerializable.GetObjectData method of the Exception class as well as implement a
deserialization constructor with this signature. If your exception class is NotInheritable, mark the
deserialization constructor as Private; otherwise, mark it as Protected. The GetObjectData
method and deserialization constructor must call the equivalent base class method to allow
the base class to serialize and deserialize its data correctly. (See recipe 14-1 for details on
making classes serializable.)

Herman_970-5C14.fm Page 590 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 591

■Tip In large applications, you will usually implement quite a few custom exception classes. It pays to put signif-
icant thought into how you organize your custom exceptions and how code will use them. Generally, avoid creating
new exception classes unless code will make specific efforts to catch that exception; use data members, not addi-
tional exception classes, to achieve informational granularity.

The Code

The following example is a custom exception named CustomException that extends Exception and
declares two custom data members, a String named stringInfo and a Boolean named booleanInfo:

Imports System
Imports System.Runtime.Serialization

Namespace Apress.VisualBasicRecipes.Chapter14

 ' Mark CustomException as Serializable.

 <Serializable()> _
 Public NotInheritable Class CustomException
 Inherits Exception

 ' Custom data members for CustomException.
 Private m_StringInfo As String
 Private m_BooleanInfo As Boolean

 ' Three standard constructors that simply call the base
 ' class constructor of System.Exception.
 Public Sub New()
 MyBase.New()
 End Sub

 Public Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub

 Public Sub New(ByVal message As String, ByVal inner As Exception)
 MyBase.New(message, inner)
 End Sub

 ' The deserialization constructor required by the ISerialization
 ' interface. Because CustomException is NotInheritable, this constructor
 ' is private. If CustomException were not NotInheritable, this constructor
 ' should be declared as protected so that derived classes can call
 ' it during deserialization.
 Private Sub New(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)
 MyBase.New(info, context)

 ' Deserialize each custom data member.
 m_StringInfo = info.GetString("StringInfo")
 m_BooleanInfo = info.GetBoolean("BooleanInfo")

 End Sub

Herman_970-5C14.fm Page 591 Monday, March 17, 2008 11:58 AM

592 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Additional constructors to allow code to set the custom data
 ' members.
 Public Sub New(ByVal _message As String, ByVal _StringInfo As String, ➥
ByVal _BooleanInfo As Boolean)
 MyBase.New(_message)

 m_StringInfo = _StringInfo
 m_BooleanInfo = _BooleanInfo

 End Sub

 Public Sub New(ByVal _message As String, ByVal inner As Exception, ➥
ByVal _stringinfo As String, ByVal _booleanInfo As Boolean)
 MyBase.New(_message, inner)

 m_StringInfo = _stringinfo
 m_BooleanInfo = _booleanInfo

 End Sub

 ' Read-only properties that provide access to the custom data members.
 Public ReadOnly Property StringInfo() As String
 Get
 Return m_StringInfo
 End Get
 End Property

 Public ReadOnly Property BooleanInfo() As Boolean
 Get
 Return m_BooleanInfo
 End Get
 End Property

 ' The GetObjectData method (declared in the ISerializable interface)
 ' is used during serialization of CustomException. Because
 ' CustomException declares custom data members, it must override
 ' the base class implementation of GetObjectData.
 Public Overrides Sub GetObjectData(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)

 ' Serialize the custom data members.
 info.AddValue("StringInfo", m_StringInfo)
 info.AddValue("BooleanInfo", m_BooleanInfo)

 ' Call the base class to serialize its members.
 MyBase.GetObjectData(info, context)

 End Sub

 ' Override the base class Message property to include the custom data
 ' members.

Herman_970-5C14.fm Page 592 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 593

 Public Overrides ReadOnly Property Message() As String
 Get
 Dim msg As String = MyBase.Message

 If StringInfo IsNot Nothing Then
 msg += Environment.NewLine & StringInfo & " = " & BooleanInfo
 End If

 Return msg
 End Get
 End Property

 End Class

 ' A class to demonstrate the use of CustomException.
 Public Class Recipe14_07

 Public Shared Sub Main()

 Try
 ' Create and throw a CustomException object.
 Throw New CustomException("Some error", "SomeCustomMessage", True)
 Catch ex As CustomException
 Console.WriteLine(ex.Message)
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

14-8. Implement a Custom Event Argument

Problem

When you raise an event, you need to pass an object that contains data related to the event that
would be useful when handling it. For example, the MouseEventArgs class (used by the MouseDown
event) includes the Button property, which indicates which mouse button was pressed.

Solution

Create a custom event argument class derived from the System.EventArgs class. When you raise the
event, create an instance of your event argument class and pass it to the event handlers.

Herman_970-5C14.fm Page 593 Monday, March 17, 2008 11:58 AM

594 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

How It Works

When you declare your own event types, you will often want to pass event-specific state to any listening
event handlers. To create a custom event argument class that complies with the Event pattern
defined by the .NET Framework, you should do the following:

• Derive your custom event argument class from the EventArgs class. The EventArgs class contains
no data and is used with events that do not need to pass event state.

• Give your event argument class a meaningful name ending in EventArgs, such as
DiskFullEventArgs or MailReceivedEventArgs.

• Mark your argument class as NotInheritable if you do not intend other event argument
classes to extend it.

• Implement additional data members and properties to support event state that you need to
pass to event handlers. It’s best to make event state immutable, so you should use Private
ReadOnly data members and use Public properties to provide read-only access to the data
members.

• Make your event argument class serializable so that the runtime can marshal instances
of it across application domain and machine boundaries. Applying the attribute System.
SerializableAttribute is usually sufficient for event argument classes. However, if your class
has special serialization requirements, you must also implement the interface System.Runtime.
Serialization.ISerializable. (See recipe 14-1 for details on making classes serializable.)

The Code

The following example demonstrates the implementation of an event argument class named
MailReceivedEventArgs. Theoretically, an e-mail server passes instances of the MailReceivedEventArgs
class to event handlers in response to the receipt of an e-mail message. The MailReceivedEventArgs class
contains information about the sender and subject of the received e-mail message.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter14

 <Serializable()> _
 Public NotInheritable Class MailReceivedEventArgs
 Inherits EventArgs

 ' Private read-only members that hold the event state that is to be
 ' distributed to all event handlers. The MailReceivedEventArgs class
 ' will specify who sent the received mail and what the subject is.
 Private ReadOnly m_From As String
 Private ReadOnly m_Subject As String

 ' Constuctor, initializes event state.
 Public Sub New(ByVal _from As String, ByVal _subject As String)

 Me.m_From = _from
 Me.m_Subject = _subject

 End Sub

Herman_970-5C14.fm Page 594 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 595

 ' Read-only properties to provide access to event state.
 Public ReadOnly Property From() As String
 Get
 Return m_From
 End Get
 End Property

 Public ReadOnly Property Subject() As String
 Get
 Return m_Subject
 End Get
 End Property

 End Class

 ' A class to demonstrate the use of MailReceivedEventArgs.
 Public Class Recipe14_08

 Public Shared Sub Main()

 Dim args As New MailReceivedEventArgs("Amy", "Work Plan")

 Console.WriteLine("From: {0}, Subject: {1}", args.From, args.Subject)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes

The preceding example mainly deals with creating a custom EventArgs class. If the example were
part of a full application, you would most likely have an event (such as MailReceived) that would
accept an instance of MailReceivedEventArgs as the second parameter. Your Mail class would appro-
priately raise this event, passing an instance of MailReceivedEventArgs. Recipe 14-10 goes into more
detail on handling custom events and event arguments this way.

14-9. Implement the Singleton Pattern

Problem

You need to ensure that only a single instance of a type exists at any given time and that the single
instance is accessible to all elements of your application.

Solution

Implement the type using the Singleton pattern.

Herman_970-5C14.fm Page 595 Monday, March 17, 2008 11:58 AM

596 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

How It Works

Of all the identified patterns, the Singleton pattern is perhaps the most widely known and commonly
used. The purpose of the Singleton pattern is to ensure that only one instance of a type exists at a
given time and to provide global access to the functionality of that single instance. You can imple-
ment the type using the Singleton pattern by doing the following:

• Implement a Private Shared member within the type to hold a reference to the single instance of
the type.

• Implement a publicly accessible Shared property in the type to provide read-only access to
the singleton instance.

• Implement only a Private constructor so that code cannot create additional instances of
the type.

The Code

The following example demonstrates an implementation of the Singleton pattern for a class named
SingletonExample:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class SingletonExample

 ' A shared member to hold a reference to the singleton instance.
 Private Shared m_Instance As SingletonExample

 ' A shared constructor to create the singleton instance. Another
 ' alternative is to use lazy initialization in the Instance property.
 Shared Sub New()
 m_Instance = New SingletonExample
 End Sub

 ' A private constructor to stop code from creating additional
 ' instances of the singleton type.
 Private Sub New()
 End Sub

 ' A public property to provide access to the singleton instance.
 Public Shared ReadOnly Property Instance() As SingletonExample
 Get
 Return m_Instance
 End Get
 End Property

 ' Public methods that provide singleton functionality.
 Public Sub TestMethod1()
 Console.WriteLine("Test Method 1 ran.")
 End Sub

 Public Sub TestMethod2()
 Console.WriteLine("Test Method 2 ran.")
 End Sub

Herman_970-5C14.fm Page 596 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 597

 End Class
End Namespace

Usage

To invoke the functionality of the SingletonExample class, you can obtain a reference to the singleton
using the Instance property and then call its methods. Alternatively, you can execute members of
the singleton directly through the Instance property. The following code shows both approaches:

Public Class Recipe14_09
 Public Shared Sub Main()

 ' Obtain reference to a singleton and invoke methods.
 Dim s As SingletonExample = SingletonExample.Instance
 s.TestMethod1()

 ' Execute singleton functionality without a reference.
 SingletonExample.Instance.TestMethod2()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
End Class

14-10. Implement the Observer Pattern

Problem

You need to implement an efficient mechanism for an object (the subject) to notify other objects (the
observers) about changes to its state.

Solution

Implement the Observer pattern using delegate types as type-safe function pointers and event types
to manage and notify the set of observers.

How It Works

The traditional approach to implementing the Observer pattern is to implement two interfaces: one
to represent an observer (IObserver) and the other to represent the subject (ISubject). Objects that
implement IObserver register with the subject, indicating that they want to be notified of important
events (such as state changes) affecting the subject. The subject is responsible for managing the list
of registered observers and notifying them in response to events affecting the subject. The subject
usually notifies observers by calling a Notify method declared in the IObserver interface. The subject
might pass data to the observer as part of the Notify method, or the observer might need to call a
method declared in the ISubject interface to obtain additional details about the event.

Although you are free to implement the Observer pattern in VB .NET using the approach just
described, the Observer pattern is so pervasive in modern software solutions that VB .NET and the
.NET Framework include event and delegate types to simplify its implementation. The use of events
and delegates means that you do not need to declare IObserver and ISubject interfaces. In addition,

Herman_970-5C14.fm Page 597 Monday, March 17, 2008 11:58 AM

598 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

you do not need to implement the logic necessary to manage and notify the set of registered
observers—the area where most coding errors occur.

The .NET Framework uses one particular implementation of the event-based and delegate-
based Observer pattern so frequently that it has been given its own name: the Event pattern. (Pattern
purists might prefer the name Event idiom, but Event pattern is the name most commonly used in
Microsoft documentation.)

The Code

The example for this recipe contains a complete implementation of the Event pattern, which includes
the following types:

• Thermostat class (the subject of the example), which keeps track of the current temperature
and notifies observers when a temperature change occurs

• TemperatureChangedEventArgs class, which is a custom implementation of the System.EventArgs
class used to encapsulate temperature change data for distribution during the notification of
observers

• TemperatureChangedEventHandler delegate, which defines the signature of the method that all
observers of a Thermostat object should implement if they want to be notified in the event of
temperature changes

• TemperatureChangeObserver and TemperatureAverageObserver classes, which are observers of
the Thermostat class

The TemperatureChangedEventArgs class (in the following listing) derives from the class System.
EventArgs. The custom event argument class should contain all of the data that the subject needs to
pass to its observers when it notifies them of an event. If you do not need to pass data with your event
notifications, you do not need to define a new argument class; simply pass EventArgs.Empty or
Nothing as the argument when you raise the event. (See recipe 14-8 for details on implementing
custom event argument classes.)

Namespace Apress.VisualBasicRecipes.Chapter14

 ' An event argument class that contains information about a temperature
 ' change event. An instance of this class is passed with every event.
 <Serializable()> _
 Public Class TemperatureChangedEventArgs
 Inherits EventArgs

 ' Private data members contain the old and new temperature readings.
 Private ReadOnly m_OldTemperature As Integer
 Private ReadOnly m_NewTemperature As Integer

 ' Constructor that takes the old and new temperature values.
 Public Sub New(ByVal oldTemp As Integer, ByVal newTemp As Integer)

 m_OldTemperature = oldTemp
 m_NewTemperature = newTemp

 End Sub

 ' Read-only properties provide access to the temperature values.
 Public ReadOnly Property OldTemperature()

Herman_970-5C14.fm Page 598 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 599

 Get
 Return m_OldTemperature
 End Get
 End Property

 Public ReadOnly Property NewTemperature()
 Get
 Return m_NewTemperature
 End Get
 End Property

 End Class
End NameSpace

The following code shows the declaration of the TemperatureChangedEventHandler delegate.
Based on this declaration, all observers must implement a subroutine (the name is unimportant), which
takes two arguments: an Object instance as the first argument and a TemperatureChangedEventArgs object
as the second. During notification, the Object argument is a reference to the Thermostat object that raises
the event, and the TemperatureChangedEventArgs argument contains data about the old and new
temperature values.

Namespace Apress.VisualBasicRecipes.Chapter14

 ' A delegate that specifies the signature that all temperature event
 ' handler methods must implement.
 Public Delegate Sub TemperatureChangedEventHandler(ByVal sender As Object, ➥
ByVal args As TemperatureChangedEventArgs)

End NameSpace

For the purpose of demonstrating the Observer pattern, the example contains two different
observer types: TemperatureAverageObserver and TemperatureChangeObserver. Both classes have the
same basic implementation. TemperatureAverageObserver keeps a count of the number of tempera-
ture change events and the sum of the temperature values, and displays an average temperature
when each event occurs. TemperatureChangeObserver displays information about the change in
temperature each time a temperature change event occurs.

The following listing shows the TemperatureChangeObserver and TemperatureAverageObserver
classes. Notice that the constructors take references to the Thermostat object that the
TemperatureChangeObserver or TemperatureAverageObserver object should observe. When you
instantiate an observer, pass it a reference to the subject. The observer’s constructor must handle the
observer’s event by using AddHandler and specifying the delegate method preceded by the AddressOf
keyword.

Once the TemperatureChangeObserver or TemperatureAverageObserver object has registered its
delegate instance with the Thermostat object, you need to maintain a reference to this Thermostat
object only if you want to stop observing it later. In addition, you do not need to maintain a reference
to the subject, because a reference to the event source is included as the first argument each time the
Thermostat object raises an event through the TemperatureChange method.

Namespace Apress.VisualBasicRecipes.Chapter14

 ' A thermostat observer that displays information about the change in
 ' temperature when a temperature change event occurs.
 Public Class TemperatureChangeObserver

Herman_970-5C14.fm Page 599 Monday, March 17, 2008 11:58 AM

600 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' A constructor that takes a reference to the Thermostat object that
 ' the TemperatureChangeObserver object should observe.
 Public Sub New(ByVal t As Thermostat)

 ' Add a handler for the TemperatureChanged event.
 AddHandler t.TemperatureChanged, AddressOf Me.TemperatureChange

 End Sub

 ' The method to handle temperature change events.
 Public Sub TemperatureChange(ByVal sender As Object, ➥
ByVal args As TemperatureChangedEventArgs)

 Console.WriteLine("ChangeObserver: Old={0}, New={1}, Change={2}", ➥

args.OldTemperature, args.NewTemperature, args.NewTemperature - args.OldTemperature)
 End Sub

 End Class

 ' A Thermostat observer that displays information about the average
 ' temperature when a temperature change event occurs.
 Public Class TemperatureAverageObserver

 ' Sum contains the running total of temperature readings.
 ' Count contains the number of temperature events received.
 Private sum As Integer = 0
 Private count As Integer = 0

 ' A constructor that takes a reference to the Thermostat object that
 ' the TemperatureAverageObserver object should observe.
 Public Sub New(ByVal T As Thermostat)

 ' Add a handler for the TemperatureChanged event.
 AddHandler T.TemperatureChanged, AddressOf Me.TemperatureChange

 End Sub

 ' The method to handle temperature change events.
 Public Sub TemperatureChange(ByVal sender As Object, ➥
ByVal args As TemperatureChangedEventArgs)

 count += 1
 sum += args.NewTemperature

 Console.WriteLine("AverageObserver: Average={0:F}", ➥
CDbl(sum) / CDbl(count))

 End Sub

 End Class
End NameSpace

Herman_970-5C14.fm Page 600 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 601

Finally, the Thermostat class is the observed object in this Observer (Event) pattern. In theory, a
monitoring device sets the current temperature by calling the Temperature property on a Thermostat
object. This causes the Thermostat object to raise its TemperatureChange event and send a
TemperatureChangedEventArgs object to each observer.

The example contains a Recipe14_10 class that defines a Main method to drive the example. After
creating a Thermostat object and two different observer objects, the Main method repeatedly prompts
you to enter a temperature. Each time you enter a new temperature, the Thermostat object notifies
the listeners, which display information to the console. The following is the code for the Thermostat class:

Namespace Apress.VisualBasicRecipes.Chapter14

 ' A class that represents a Thermostat, which is the source of temperature
 ' change events. In the Observer pattern, a Thermostat object is the
 ' subject that observers listen to for change notifications.
 Public Class Thermostat

 ' Private field to hold current temperature.
 Private m_Temperature As Integer = 0

 ' The event used to maintain a list of observer delegates and raise
 ' a temperature change event when a temperature change occurs.
 Public Event TemperatureChanged As TemperatureChangedEventHandler

 ' A protected method used to raise the TemperatureChanged event.
 ' Because events can be triggered only from within the containing
 ' type, using a protected method to raise the event allows derived
 ' classes to provide customized behavior and still be able to raise
 ' the base class event.
 Protected Overridable Sub OnTemperatureChanged(ByVal args As➥
 TemperatureChangedEventArgs)

 ' Notify all observers.
 RaiseEvent TemperatureChanged(Me, args)

 End Sub

 ' Public property to get and set the current temperature. The "set"
 ' side of the property is responsible for raising the temperature
 ' change event to notify all observers of a change in temperature.
 Public Property Temperature() As Integer
 Get
 Return m_Temperature
 End Get
 Set(ByVal value As Integer)
 ' Create a new event argument object containing the old and
 ' new temperatures.
 Dim args As New TemperatureChangedEventArgs(m_Temperature, value)

 ' Update the current temperature.
 m_Temperature = value

Herman_970-5C14.fm Page 601 Monday, March 17, 2008 11:58 AM

602 CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Raise the temperature change event.
 OnTemperatureChanged(args)

 End Set
 End Property

 End Class

 ' A class to demonstrate the use of the Observer pattern.
 Public Class Recipe14_10

 Public Shared Sub Main()

 ' Create a Thermostat instance.
 Dim myThemoStat As New Thermostat

 ' Create the Thermostat observers.
 Dim changeObserver As New TemperatureChangeObserver(myThemoStat)
 Dim averageObserver As New TemperatureAverageObserver(myThemoStat)

 ' Loop, getting temperature readings from the user.
 ' Any non-integer value will terminate the loop.
 Do
 Console.WriteLine(Environment.NewLine)
 Console.Write("Enter current temperature: ")

 Try
 ' Convert the user's input to an integer and use it to set
 ' the current temperature of the Thermostat.
 myThemoStat.Temperature = Int32.Parse(Console.ReadLine)
 Catch ex As Exception
 ' Use the exception condition to trigger termination.
 Console.WriteLine("Terminating Observer Pattern Example.")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()
 Return

 End Try
 Loop While True

 End Sub

 End Class
End Namespace

Herman_970-5C14.fm Page 602 Monday, March 17, 2008 11:58 AM

CH AP T E R 1 4 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 603

Usage

The following listing shows the kind of output you should expect if you build and run the previous
example. The bold values show your input:

Enter current temperature: 35
ChangeObserver: Old=0, New=35, Change=35
AverageObserver: Average=35.00

Enter current temperature: 37
ChangeObserver: Old=35, New=37, Change=2
AverageObserver: Average=36.00

Enter current temperature: 40
ChangeObserver: Old=37, New=40, Change=3
AverageObserver: Average=37.33

Herman_970-5C14.fm Page 603 Monday, March 17, 2008 11:58 AM

Herman_970-5C14.fm Page 604 Monday, March 17, 2008 11:58 AM

605

■ ■ ■

C H A P T E R 1 5

Windows Integration

The intention of the Microsoft .NET Framework is to run on a wide variety of operating systems to
improve code mobility and simplify cross-platform integration. At the time this book was written,
versions of the .NET Framework were available for various operating systems, including Microsoft
Windows, FreeBSD, Linux, and Mac OS X. However, many of these implementations are yet to
be widely adopted. Microsoft Windows is currently the operating system on which the .NET Frame-
work is most commonly installed.

The .NET Framework includes functionality for working with several components (such as the
registry and event log) that are integrated with the Windows operating system. Although other platforms
may provide equivalent functionality, the recipes in this chapter focus specifically on the Windows
implementations. The recipes in this book cover the following topics:

• Retrieving runtime environment information (recipes 15-1 and 15-2)

• Writing to the Windows event log (recipe 15-3)

• Reading, writing, and searching the Windows registry (recipes 15-4 and 15-5)

• Creating and installing Windows services (recipes 15-6 and 15-7)

• Creating a shortcut on the Windows Start menu or desktop (recipe 15-8)

■Note The majority of functionality discussed in this chapter is protected by code access security permissions
enforced by the common language runtime (CLR). See the .NET Framework software development kit (SDK) docu-
mentation for the specific permissions required to execute each member.

15-1. Access Runtime Environment Information

Problem

You need to access information about the runtime environment and platform in which your appli-
cation is running.

Solution

Use the members of the System.Environment class.

Herman_970-5C15.fm Page 605 Monday, March 17, 2008 12:19 PM

606 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

How It Works

The Environment class provides a set of Shared members that you can use to obtain (and in some
cases modify) information about the environment in which an application is running. Table 15-1
describes some of the most commonly used Environment members.

Table 15-1. Commonly Used Members of the Environment Class

Member Description

Properties

CommandLine Gets a String containing the command line used to execute
the current application, including the application name. (See
recipe 1-7 for details.)

CurrentDirectory Gets and sets a String containing the current application
directory. Initially, this property will contain the name of
the directory in which the application was started.

HasShutdownStarted Gets a Boolean that indicates whether the CLR has started to shut
down or the current application domain has started unloading.

MachineName Gets a String containing the name of the machine.

OSVersion Gets a System.OperatingSystem object that contains information
about the platform and version of the underlying operating
system. See the paragraph following this table for more details.

ProcessorCount Gets the number of processors on the machine.

SystemDirectory Gets a String containing the fully qualified path of the system
directory, that is, the system32 subdirectory of the Windows
installation folder.

TickCount Gets an Integer representing the number of milliseconds that
have elapsed since the system was started.

UserDomainName Gets a String containing the Windows domain name to which
the current user belongs. This will be the same as MachineName
if the user has logged in on a machine account instead of a
domain account.

UserInteractive Gets a Boolean indicating whether the application is running in
user interactive mode; in other words, its forms and message
boxes will be visible to the logged-on user. UserInteractive will
return False when the application is running as a service or is a
web application.

UserName Gets a String containing the name of the user that started the
current thread, which can be different from the logged-on user
in case of impersonation.

Version Gets a System.Version object that contains information about
the version of the CLR.

Methods

ExpandEnvironmentVariables Replaces the names of environment variables in a String with
the value of the variable. (See recipe 15-2 for details.)

Herman_970-5C15.fm Page 606 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 607

The System.OperatingSystem object returned by OSVersion contains four properties:

• The Platform property returns a value of the System.PlatformID enumeration identifying the
current operating system; valid values are Unix, Win32NT, Win32S, Win32Windows, and WinCE.

• The ServicePack property returns a String identifying the service pack level installed on
the computer. If no service packs are installed or service packs are not supported, an empty
String is returned.

• The Version property returns a System.Version object that identifies the specific operating
system version. This class includes the Build, Major, MajorRevision, Minor, MinorRevision,
and Revision properties, which allow you to get each specific part of the complete version
number.

• The VersionString property returns a concatenated string summary of the Platform,
ServicePack, and Version properties.

To determine the operating system on which you are running, you must use both the platform
and the version information, as detailed in Table 15-2.

GetCommandLineArgs Returns a String array containing all elements of the command
line used to execute the current application, including the
application name. (See recipe 1-5 for details.)

GetEnvironmentVariable Returns a String containing the value of a specified environment
variable. (See recipe 15-2 for details.)

GetEnvironmentVariables Returns an object implementing System.Collections.
IDictionary, which contains all environment variables
and their values. (See recipe 15-2 for details.)

GetFolderPath Returns a String containing the path to a special system
folder specified using the System.Environment.SpecialFolder
enumeration. This includes folders for the Internet cache,
cookies, history, desktop, and favorites. (See the .NET Framework
SDK documentation for a complete list of values.)

GetLogicalDrives Returns a String array containing the names of all logical drives,
including network mapped drives. Note that each drive has the
following syntax: <drive letter>:\.

Table 15-2. Determining the Current Operating System

PlatformID Major Version Minor Version Operating System

Win32Windows 4 10 Windows 98

Win32Windows 4 90 Windows ME

Win32NT 4 0 Windows NT 4

Win32NT 5 0 Windows 2000

Win32NT 5 1 Windows XP

Win32NT 5 2 Windows Server 2003

Win32NT 6 0 Windows Vista

Table 15-1. Commonly Used Members of the Environment Class

Member Description

Herman_970-5C15.fm Page 607 Monday, March 17, 2008 12:19 PM

608 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

The Code

The following example uses the Environment class to display information about the current environ-
ment to the console:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter15
 Public Class Recipe15_01

 Public Shared Sub Main()

 ' Command line.
 Console.WriteLine("Command line : " & Environment.CommandLine)

 ' OS and CLR version information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("OS PlatformID : " & Environment.OSVersion.Platform)
 Console.WriteLine("OS Major Version : " & ➥
Environment.OSVersion.Version.Major)
 Console.WriteLine("OS Minor Version : " & ➥
Environment.OSVersion.Version.Minor)
 Console.WriteLine("CLR Version : " & Environment.Version.ToString)

 ' User, machine, and domain name information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("User Name : " & Environment.UserName)
 Console.WriteLine("Domain Name : " & Environment.UserDomainName)
 Console.WriteLine("Machine Name : " & Environment.MachineName)

 ' Other environment information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Is interactive? : " & Environment.UserInteractive)
 Console.WriteLine("Shutting down? : " & Environment.HasShutdownStarted)
 Console.WriteLine("Ticks since startup : " & Environment.TickCount)

 ' Display the names of all logical drives.
 Console.WriteLine(Environment.NewLine)
 For Each s As String In Environment.GetLogicalDrives
 Console.WriteLine("Logical drive : " & s)
 Next

 ' Standard folder information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Current folder : " & Environment.CurrentDirectory)
 Console.WriteLine("System folder : " & Environment.SystemDirectory)

 ' Enumerate all special folders and display them.
 Console.WriteLine(Environment.NewLine)
 For Each s As Environment.SpecialFolder In ➥
[Enum].GetValues(GetType(Environment.SpecialFolder))
 Console.WriteLine("{0} folder : {1}", s, ➥
Environment.GetFolderPath(s))
 Next

Herman_970-5C15.fm Page 608 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 609

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

15-2. Retrieve the Value of an Environment Variable

Problem

You need to retrieve the value of an environment variable for use in your application.

Solution

Use the GetEnvironmentVariable, GetEnvironmentVariables, and ExpandEnvironmentVariables
methods of the Environment class.

How It Works

The GetEnvironmentVariable method allows you to retrieve a string containing the value of a single
named environment variable, whereas the GetEnvironmentVariables method returns an object
implementing IDictionary that contains the names and values of all environment variables as
strings. .NET Framework 2.0 introduced additional overloads of the GetEnvironmentVariable and
GetEnvironmentVariables methods, which take a System.EnvironmentVariableTarget argument,
allowing you to specify a subset of environment variables to return based on the target of the variable:
Machine, Process, or User.

The ExpandEnvironmentVariables method provides a simple mechanism for substituting the
value of an environment variable into a string by including the variable name enclosed in percent
signs (%) within the string.

The Code

Here is an example that demonstrates how to use all three methods:

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter15
 Public Class Recipe15_02

 Public Shared Sub Main()

 ' Retrieve a named environment variable.
 Console.WriteLine("Path = " & GetEnvironmentVariable("Path"))
 Console.WriteLine(Environment.NewLine)

 ' Substitute the value of named environment variables.
 Console.WriteLine(ExpandEnvironmentVariables("The Path on " & ➥
"%computername% is %path%"))

Herman_970-5C15.fm Page 609 Monday, March 17, 2008 12:19 PM

610 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

 ' Retrieve all environment variables targeted at the process and
 ' display the values of all that begin with the letter U.
 Dim vars As IDictionary = ➥
GetEnvironmentVariables(EnvironmentVariableTarget.Process)

 For Each s As String In vars.Keys
 If s.ToUpper.StartsWith("U") Then
 Console.WriteLine(s & " = " & vars(s))
 End If
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

15-3. Write an Event to the Windows Event Log

Problem

You need to write an event to the Windows event log.

Solution

Use the members of the System.Diagnostics.EventLog class to create a log (if required), register an
event source, and write events.

How It Works

You can write to the Windows event log using the Shared methods of the EventLog class, or you can
create an EventLog object and use its members. Whichever approach you choose, before writing to
the event log, you must decide which log you will use and register an event source against that log.
The event source is simply a string that uniquely identifies your application. An event source may be
registered against only one log at a time.

By default, the event log contains three separate logs: Application, System, and Security. Usually,
you will write to the Application log, but you might decide your application warrants a custom log in
which to write events. You do not need to explicitly create a custom log; when you register an event
source against a log, if the specified log doesn’t exist, it’s created automatically.

Once you have decided on the destination log and registered an event source, you can start to
write event log entries using the WriteEntry method. WriteEntry provides a variety of overloads that
allow you to specify some or all of the following values:

• A String containing the event source for the log entry (Shared versions of WriteEntry only).

• A String containing the message for the log entry.

• A value from the System.Diagnostics.EventLogEntryType enumeration, which identifies the type
of log entry. Valid values are Error, FailureAudit, Information, SuccessAudit, and Warning.

Herman_970-5C15.fm Page 610 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 611

• An Integer that specifies an application-specific event ID for the log entry.

• A Short that specifies an application-specific subcategory for the log entry.

• A Byte array containing any raw data to associate with the log entry.

■Note The methods of the EventLog class also provide overloads that support the writing of events to the event
log of remote machines. See the .NET Framework SDK documentation for more information.

The Code

The following example demonstrates how to use the Shared members of EventLog class to write an
entry to the event log of the local machine:

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter15
 Public Class Recipe15_03

 Public Shared Sub Main()

 ' If it does not exist, register an event source for this
 ' application against the Application log of the local machine.
 ' Trying to register an event source that already exists on the
 ' specified machine will throw a System.ArgumentException.
 If Not EventLog.SourceExists("Visual Basic 2008 Recipes") Then
 EventLog.CreateEventSource("Visual Basic 2008 Recipes", ➥
"Application")
 End If

 ' Write an event to the event log.
 EventLog.WriteEntry("Visual Basic 2008 Recipes", ➥
"A simple test event.", EventLogEntryType.Information, 1, 0, ➥
New Byte() {10, 55, 200})

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 ' Remove the event source.
 EventLog.DeleteEventSource("Visual Basic 2008 Recipes")

 End Sub

 End Class
End Namespace

Usage

After you run the sample code, launch the Event Viewer (EventVwr.exe), and find the last entry with
a source of “Visual Basic 2008 Recipes.” Figure 15-1 shows how the log entry will look.

Herman_970-5C15.fm Page 611 Monday, March 17, 2008 12:19 PM

612 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

Figure 15-1. Custom message written to the event log

15-4. Read and Write to the Windows Registry

Problem

You need to read information from, or write information to, the Windows registry.

Solution

Use the methods GetValue and SetValue of the Microsoft.Win32.Registry class.

■Tip The GetValue and SetValue methods open a registry key, get or set its value, and close the key each
time they are called. This means they are inefficient when used to perform many read or write operations. The
GetValue and SetValue methods of the Microsoft.Win32.RegistryKey class, discussed in recipe 15-5,
will provide better performance if you need to perform many read or write operations on the registry.

How It Works

The GetValue and SetValue methods allow you to read and write named values in named registry
keys. GetValue takes three arguments:

Herman_970-5C15.fm Page 612 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 613

• A String containing the fully qualified name of the key you want to read. The key name must
start with one of the following root key names:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_CONFIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA

• HKEY_LOCAL_MACHINE

• HKEY_PERFORMANCE_DATA

• HKEY_USERS

• A String containing the name of the value in the key you want to read.

• An Object containing the default value to return if the named value is not present in the key.

GetValue returns an Object containing either the data read from the registry or the default value
specified as the third argument if the named value is not found. If the specified key does not exist,
GetValue returns Nothing.

SetValue offers two overloads. The most functional expects the following arguments:

• A String containing the fully qualified name of the key you want to write. The key must start
with one of the root key names specified previously. If the registry key does not exist, it is created
automatically.

• A String containing the name of the value in the key you want to write.

• An Object containing the value to write.

• An element of the Microsoft.Win32.RegistryValueKind enumeration that specifies the registry
data type that should be used to hold the data.

The second overload allows you to call the SetValue method without specifying the
RegistryValueKind argument. In this case, SetValue attempts to automatically determine what the
data type should be, based on the data type of the Object argument. A 32-bit integer type will be
inferred as a Dword value, and any other numeric type will be inferred as a String. Environment variables,
such as %PATH%, will be ignored by this overload and inferred as a normal String. Use the previously
mentioned overload if you need to ensure the correct data type is used.

The My object offers the My.Computer.Registry class as an alternative. This class includes only
two methods, SetValue and GetValue, which are identical to the SetValue and GetValue methods
from the Microsoft.Win32.Registry class. (Refer to Chapter 5 for more information about the My object.)

The Code

The following example demonstrates how to use GetValue and SetValue to read from and write to the
registry. Every time the example is run, it reads usage information from the registry and displays it to
the screen. The example also updates the stored usage information, which you can see the next time
you run the example.

Imports System
Imports Microsoft.Win32

Namespace Apress.VisualBasicRecipes.Chapter15
 Public Class Recipe15_04

Herman_970-5C15.fm Page 613 Monday, March 17, 2008 12:19 PM

614 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

 Public Shared Sub Main()

 ' Variables to hold usage information read from registry.
 Dim lastUser As String
 Dim lastRun As String
 Dim runCount As Integer

 ' Read the name of the last user to run the application from the
 ' registry. This is stored as the default value of the key and is
 ' accessed by not specifying a value name. Cast the returned object
 ' to a string.
 lastUser = DirectCast(Registry.GetValue("HKEY_CURRENT_USER\" & ➥
"Software\Apress\Visual Basic 2008 Recipes", "", "Nobody"), String)

 ' If lastUser is Nothing, it means that the specified registry key
 ' does not exist.
 If lastUser Is Nothing Then
 lastUser = "Nobody"
 lastRun = "Never"
 runCount = 0
 Else
 ' Read the last run date and specify a default value of
 ' Never. Cast the returned Object to a String.
 lastRun = DirectCast(Registry.GetValue("HKEY_CURRENT_USER\" & ➥
"Software\Apress\Visual Basic 2008 Recipes", "LastRun", "Never"), String)

 ' Read the run count value and specify a default value of
 ' 0 (zero). Cast the returned Object to an Integer.
 runCount = DirectCast(Registry.GetValue("HKEY_CURRENT_USER\" & ➥
"Software\Apress\Visual Basic 2008 Recipes", "RunCount", 0), Integer)
 End If

 ' Display the usage information.
 Console.WriteLine("Last user name: " & lastUser)
 Console.WriteLine("Last run date/time: " & lastRun)
 Console.WriteLine("Previous executions: " & runCount)

 ' Update the usage information. It doesn't matter if the registry
 ' key exists or not; SetValue will automatically create it.

 ' Update the last user information with the current username.
 ' Specify that this should be stored as the default value
 ' for the key by using an empty string as the value name.
 Registry.SetValue("HKEY_CURRENT_USER\Software\Apress\Visual Basic " & ➥
"2008 Recipes", "", Environment.UserName, RegistryValueKind.String)

 ' Update the last run information with the current date and time.
 ' Specify that this should be stored as a String value in the
 ' registry.
 Registry.SetValue("HKEY_CURRENT_USER\Software\Apress\" & ➥
"Visual Basic 2008 Recipes", "LastRun", DateTime.Now.ToString, ➥
RegistryValueKind.String)

Herman_970-5C15.fm Page 614 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 615

 ' Update the usage count information. Specify that this should
 ' be stored as an Integer value in the registry.
 runCount += 1
 Registry.SetValue("HKEY_CURRENT_USER\Software\Apress\" & ➥
"Visual Basic 2008 Recipes", "RunCount", runCount, RegistryValueKind.DWord)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

15-5. Search the Windows Registry

Problem

You need to search the Windows registry for a key that contains a specific value or content.

Solution

Use the Microsoft.Win32.Registry class to obtain a Microsoft.Win32.RegistryKey object that repre-
sents the root key of a registry hive you want to search. Use the members of this RegistryKey object
to navigate through and enumerate the registry key hierarchy, as well as to read the names and
content of values held in the keys.

How It Works

You must first obtain a RegistryKey object that represents a base-level key and navigate through the
hierarchy of RegistryKey objects as required. The Registry class implements a set of seven Shared
properties that return RegistryKey objects representing base-level registry keys; Table 15-3 describes the
registry location to where each of these fields maps. The My object offers the My.Computer.Registry
class, which includes an identical set of properties that provide the same functionality as their
Microsoft.Win32.Registry counterparts. (Refer to Chapter 5 for more information about the My object.)

Table 15-3. Shared Fields of the Registry Class

Field Registry Mapping

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYN_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

Herman_970-5C15.fm Page 615 Monday, March 17, 2008 12:19 PM

616 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

■Tip The Shared method RegistryKey.OpenRemoteBaseKey allows you to open a registry base key on a
remote machine. See the .NET Framework SDK documentation for details of its use.

Once you have the base-level RegistryKey object, you must navigate through its child subkeys
recursively. To support navigation, the RegistryKey class allows you to do the following:

• Get a String array containing the names of all subkeys using the GetSubKeyNames method.

• Get a RegistryKey reference to a subkey using the OpenSubKey method. The OpenSubKey method
provides two overloads: the first opens the named key as read-only, and the second accepts a
Boolean argument that, if true, will open a writable RegistryKey object.

Once you obtain a RegistryKey, you can create, read, update, and delete subkeys and values
using the methods listed in Table 15-4. Methods that modify the contents of the key require you to
have a writable RegistryKey object.

The RegistryKey class implements IDisposable. You should call the IDisposable.Dispose
method to free operating system resources when you have finished with the RegistryKey object.

Table 15-4. RegistryKey Methods to Create, Read, Update, and Delete Registry Keys and Values

Method Description

CreateSubKey Creates a new subkey with the specified name and returns a writable
RegistryKey object. If the specified subkey already exists, CreateSubKey
returns a writable reference to the existing subkey.

DeleteSubKey Deletes the subkey with the specified name, which must be empty of
subkeys (but not values); otherwise, a System.InvalidOperationException
is thrown.

DeleteSubKeyTree Deletes the subkey with the specified name along with all of its subkeys.

DeleteValue Deletes the value with the specified name from the current key.

GetValue Returns the value with the specified name from the current key. The value
is returned as an Object, which you must cast to the appropriate type.
The simplest form of GetValue returns Nothing if the specified value doesn’t
exist. An overload allows you to specify a default value to return (instead
of Nothing) if the named value doesn’t exist.

GetValueKind Returns the registry data type of the value with the specified name in the
current key. The value is returned as a member of the Microsoft.Win32.
RegistryValueKind enumeration.

GetValueNames Returns a String array containing the names of all values in the current
registry key. If the key includes a default value, represented by an empty
string, the empty string will be included in the array of names returned by
this method.

SetValue Creates (or updates) the value with the specified name. You can specify
the data type used to store the value with the overload that takes a
RegistryValueKind as the last parameter. If you don’t provide such a value,
one will be calculated automatically, based on the managed type of the
object you pass as the value to set.

Herman_970-5C15.fm Page 616 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 617

The Code

The following example takes a single command-line argument and recursively searches the CurrentUser
hive of the registry looking for keys with names matching the supplied argument. When the example
finds a match, it displays all String type values contained in the key to the console.

Imports System
Imports Microsoft.Win32

Namespace Apress.VisualBasicRecipes.Chapter15
 Public Class Recipe15_05

 Public Shared Sub SearchSubKeys(ByVal root As RegistryKey, ➥
ByVal searchKey As String)

 ' Loop through all subkeys contained in the current key.
 For Each keyName As String In root.GetSubKeyNames

 Try
 Using key As RegistryKey = root.OpenSubKey(keyName)
 If keyName = searchKey Then PrintKeyValues(key)
 SearchSubKeys(key, searchKey)
 End Using
 Catch ex As Security.SecurityException
 ' Ignore SecurityException for the purpose of this example.
 ' Some subkeys of HKEY_CURRENT_USER are secured and will
 ' throw a SecurityException when opened.
 End Try
 Next

 End Sub

 Public Shared Sub PrintKeyValues(ByVal key As RegistryKey)

 ' Display the name of the matching subkey and the number of
 ' values it contains.
 Console.WriteLine("Registry key found : {0} contains {1} values", ➥
key.Name, key.ValueCount)

 ' Loop through the values and display.
 For Each valueName As String In key.GetValueNames

 If TypeOf key.GetValue(valueName) Is String Then
 Console.WriteLine(" Value : {0} = {1}", valueName, ➥
key.GetValue(valueName))
 End If

 Next

 End Sub

 Public Shared Sub Main(ByVal args As String())

 If args.Length > 0 Then
 ' Open the CurrentUser base key.

Herman_970-5C15.fm Page 617 Monday, March 17, 2008 12:19 PM

618 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

 Using root As RegistryKey = Registry.CurrentUser
 ' Search recursively through the registry for any keys
 ' with the specified name.
 SearchSubKeys(root, args(0))
 End Using
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the example using the command Recipe15-05 Environment will display output similar to
the following when executed using the command on a machine running Windows Vista:

Registry key found : HKEY_CURRENT_USER\Environment contains 3 values
 Value : TEMP = C:\Users\ Todd \AppData\Local\Temp
 Value : TMP = C:\Users\Todd\AppData\Local\Temp
...

Main method complete. Press Enter.

15-6. Create a Windows Service

Problem

You need to create an application that will run as a Windows service.

Solution

Create a class that extends System.ServiceProcess.ServiceBase. Use the inherited properties to
control the behavior of your service, and override inherited methods to implement the functionality
required. Implement a Main method that creates an instance of your service class and passes it to the
Shared ServiceBase.Run method.

■Note The ServiceBase class is defined in the System.ServiceProcess assembly, so you must include a
reference to this assembly when you build your service class.

How It Works

To create a Windows service manually, you must implement a class derived from the ServiceBase
class. The ServiceBase class provides the base functionality that allows the Windows Service Control

Herman_970-5C15.fm Page 618 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 619

Manager (SCM) to configure the service, operate the service as a background task, and control the
life cycle of the service. The SCM also controls how other applications can manage the service
programmatically.

■Tip If you are using Microsoft Visual Studio, you can use the Windows Service project template to create a
Windows service. The template provides the basic code infrastructure required by a Windows service class, which
you can extend with your custom functionality.

To control your service, the SCM uses the eight Protected methods inherited from ServiceBase
class described in Table 15-5. You should override these virtual methods to implement the function-
ality and behavior required by your service. Not all services must support all control messages. The
CanXXX properties inherited from the ServiceBase class declare to the SCM which control messages
your service supports. Table 15-5 specifies the property that controls each operation.

Table 15-5. Methods That Control the Operation of a Service

Method Description

OnStart All services must support the OnStart method, which the SCM calls to start the
service. The SCM passes a String array containing arguments specified for the
service. These arguments can be specified when the ServiceController.
Start method is called and are usually configured in the service’s property
window in Windows Control Panel. However, they are rarely used because
it is better for the service to retrieve its configuration information directly
from a configuration file or the Windows registry. The OnStart method must
normally return within 30 seconds, or the SCM will abort the service. Your
service must call the RequestAdditionalTime method of the ServiceBase
class if it requires more time; specify the additional milliseconds required
as an Integer.

OnStop Called by the SCM to stop a service. The SCM will call OnStop only if the
CanStop property is set to True, which it is by default.

OnPause Called by the SCM to pause a service. The SCM will call OnPause only if the
CanPauseAndContinue property, which is False by default, is set to True.

OnContinue Called by the SCM to continue a paused service. The SCM will call
OnContinue only if the CanPauseAndContinue property, which is False
by default, is set to True.

OnShutdown Called by the SCM when the system is shutting down. The SCM will call
OnShutdown only if the CanShutdown property, which is False by default, is
set to True.

OnPowerEvent Called by the SCM when a system-level power status change occurs, such
as a laptop going into suspend mode. The SCM will call OnPowerEvent only if
the CanHandlePowerEvent property, which is False by default, is set to True.

OnCustomCommand Allows you to extend the service control mechanism with custom control
messages. See the .NET Framework SDK documentation for more details.

OnSessionChange Called by the SCM when a change event is received from the Terminal
Services session or when users log on and off the local machine. A System.
ServiceProcess.SessionChangeDescription object passed as an argument
by the SCM contains details of what type of session change occurred. The
SCM will call OnSessionChange only if the CanHandleSessionChangeEvent
property, which is False by default, is set to True.

Herman_970-5C15.fm Page 619 Monday, March 17, 2008 12:19 PM

620 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

As mentioned in Table 15-5, the OnStart method is expected to return within 30 seconds, so you
should not use OnStart to perform lengthy initialization tasks when you can avoid it. A service class
should implement a constructor that performs initialization, including configuring the inherited
properties of the ServiceBase class. In addition to the properties that declare the control messages
supported by a service, the ServiceBase class implements three other important properties:

• ServiceName is the name used internally by the SCM to identify the service and must be set
before the service is run.

• AutoLog controls whether the service automatically writes entries to the event log when it
receives any of the OnStart, OnStop, OnPause, and OnContinue control messages (see Table 15-5).

• EventLog provides access to an EventLog object that’s preconfigured with an event source
name that’s the same as the ServiceName property registered against the Application log. (See
recipe 15-3 for more information about the EventLog class.)

The final step in creating a service is to implement a Shared Main method. The Main method
must create an instance of your service class and pass it as an argument to the Shared method
ServiceBase.Run.

The Code

The following Windows service example uses a configurable System.Timers.Timer to write an entry
to the Windows event log periodically. You can start, pause, and stop the service using the Services
application in the Control Panel.

Imports System
Imports System.Timers
Imports System.ServiceProcess

Namespace Apress.VisualBasicRecipes.Chapter15

 Class Recipe15_06
 Inherits ServiceBase

 ' A timer that controls how frequently the example writes to the

 ' event log.
 Private serviceTimer As Timer

 Public Sub New()

 ' Set the ServiceBase.ServiceName property.
 ServiceName = "Recipe 15_06 Service"

 ' Configure the level of control available on the service.
 CanStop = True
 CanPauseAndContinue = True
 CanHandleSessionChangeEvent = True

 ' Configure the service to log important events to the
 ' Application event log automatically.
 AutoLog = True

 End Sub

Herman_970-5C15.fm Page 620 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 621

 ' The method executed when the timer expires and writes an
 ' entry to the Application event log.
 Private Sub WriteLogEntry(ByVal sender As Object, ➥
ByVal e As ElapsedEventArgs)

 ' In case this is a long-running process, stop the timer
 ' so it won't attempt to execute multiple times.
 serviceTimer.Stop()

 ' Use the EventLog object automatically configured by the
 ' ServiceBase class to write to the event log.
 EventLog.WriteEntry("Recipe15_06 Service active : " & e.SignalTime)

 ' Restart the timer.
 serviceTimer.Start()

 End Sub

 Protected Overrides Sub OnStart(ByVal args() As String)

 ' Obtain the interval between log entry writes from the first
 ' argument. Use 5000 milliseconds by default and enforce a 1000
 ' millisecond minimum.
 Dim interval As Double

 Try
 interval = Double.Parse(args(0))
 interval = Math.Max(1000, interval)
 Catch ex As Exception
 interval = 5000
 End Try

 EventLog.WriteEntry(String.Format("Recipe15_06 Service starting." & ➥
"Writing log entries every {0} milliseconds...", interval))

 ' Create, configure and start a System.Timers.Timer to
 ' periodically call the WriteLogEntry method. The Start
 ' and Stop methods of the System.Timers.Timer class
 ' make starting, pausing, resuming, and stopping the
 ' service straightforward.
 serviceTimer = New Timer
 serviceTimer.Interval = interval
 serviceTimer.AutoReset = True
 AddHandler serviceTimer.Elapsed, AddressOf WriteLogEntry
 serviceTimer.Start()

 End Sub

 Protected Overrides Sub OnStop()

 EventLog.WriteEntry("Recipe15_06 Service stopping...")
 serviceTimer.Stop()

Herman_970-5C15.fm Page 621 Monday, March 17, 2008 12:19 PM

622 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

 ' Free system resources used by the Timer object.
 serviceTimer.Dispose()
 serviceTimer = Nothing

 End Sub

 Protected Overrides Sub OnPause()

 If serviceTimer IsNot Nothing Then
 EventLog.WriteEntry("Recipe15_06 Service pausing...")
 serviceTimer.Stop()
 End If

 End Sub

 Protected Overrides Sub OnContinue()

 If serviceTimer IsNot Nothing Then
 EventLog.WriteEntry("Recipe15_06 Service resuming...")
 serviceTimer.Start()
 End If

 End Sub

 Protected Overrides Sub OnSessionChange(ByVal changeDescription As ➥
System.ServiceProcess.SessionChangeDescription)

 EventLog.WriteEntry("Recipe15_06 Session change..." & ➥
changeDescription.Reason)

 End Sub

 Public Shared Sub Main()

 ' Create an instance of the Recipe15_06 class that will write
 ' an entry to the Application event log. Pass the object to the
 ' shared ServiceBase.Run method.
 ServiceBase.Run(New Recipe15_06)

 End Sub

 End Class
End Namespace

Usage

If you want to run multiple services in a single process, you must create an array of ServiceBase
objects and pass it to the ServiceBase.Run method. Although service classes have a Main method, you
can’t execute service code directly. Attempting to run a service class directly results in Windows
displaying the Windows Service Start Failure message box, as shown in Figure 15-2. Recipe 15-7
describes what you must do to install your service before it will execute.

Herman_970-5C15.fm Page 622 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 623

Figure 15-2. The Windows Service Start Failure message box

15-7. Create a Windows Service Installer

Problem

You have created a Windows service application and need to install it.

Solution

Add a new class to your Windows service project that extends the System.Configuration.Install.
Installer class to create an installer class containing the information necessary to install and
configure your service class. Use the Installer tool (Installutil.exe) to perform the installation, which
is installed as part of the .NET Framework.

■Note You must create the installer class in the same assembly as the service class for the service to install and
function correctly.

How It Works

As stated in recipe 15-6, you cannot run service classes directly. The high level of integration with the
Windows operating system and the information stored about the service in the Windows registry
means services require explicit installation.

If you have Microsoft Visual Studio, you can create an installation component for your service
automatically by right-clicking in the design view of your service class and selecting Add Installer
from the context menu. This will generate a class called ProjectInstaller. ServiceProcessInstaller
and ServiceInstaller components will be added to the class and configured for your service auto-
matically. You can call this installation class by using deployment projects or by using the Installer
tool to install your service.

You can also create installer components for Windows services manually by following these
steps:

1. In your project, create a class derived from the Installer class.

2. Apply the attribute System.ComponentModel.RunInstallerAttribute(True) to the installer class.

Herman_970-5C15.fm Page 623 Monday, March 17, 2008 12:19 PM

624 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

3. In the constructor of the installer class, create a single instance of the System.ServiceProcess.
ServiceProcessInstaller class. Set the Account, Username, and Password properties of
ServiceProcessInstaller to configure the account under which your service will run. The
Account property is set to one of the values of the ServiceAccount enumerator that represents
the type of account the service will run under: LocalService, LocalSystem, NetworkService,
or User. The default is User and means that you must specify an account to be used via the
Username and Password properties.

4. In the constructor of the installer class, create one instance of the System.ServiceProcess.
ServiceInstaller class for each individual service you want to install. Use the properties
of the ServiceInstaller objects to configure information about each service, including the
following:

• ServiceName, which specifies the name that Windows uses internally to identify the service.
This must be the same as the value assigned to the ServiceBase.ServiceName property.

• DisplayName, which provides a user-friendly name for the service. This property will use
the value of ServiceName by default.

• StartType, which uses values of the System.ServiceProcess.ServiceStartMode enumera-
tion to control whether the service is started automatically or manually or is disabled.

• ServiceDependsUpon, which allows you to provide a string array containing a set of service
names that must be started before this service can start.

5. Add the ServiceProcessInstaller object and all ServiceInstaller objects to the System.
Configuration.Install.InstallerCollection object accessed through the Installers
property, which is inherited by your installer class from the Installer base class.

The Code

The following example is an installer for the Recipe15_06 Windows service created in recipe 15-6.
The sample project contains the code from recipe 15-6 and for the installer class. This is necessary
for the service installation to function correctly. To compile the example, you must reference two
additional assemblies: System.Configuration.Install.dll and System.ServiceProcess.dll.

Imports System.Configuration.Install
Imports System.ServiceProcess
Imports System.ComponentModel

Namespace Apress.VisualBasicRecipes.Chapter15

 <RunInstaller(True)> _
 Public Class Recipe15_07
 Inherits Installer

 Public Sub New()

 ' Instantiate and configure a ServiceProcessInstaller.
 Dim ServiceExampleProcess As New ServiceProcessInstaller
 ServiceExampleProcess.Account = ServiceAccount.LocalSystem

 ' Instantiate and configure a ServiceInstaller.
 Dim ServiceExampleInstaller As New ServiceInstaller
 ServiceExampleInstaller.DisplayName = "Visual Basic 2008 " & ➥
 "Recipes Service Example"

Herman_970-5C15.fm Page 624 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 625

 ServiceExampleInstaller.ServiceName = "Recipe 15_06 Service"
 ServiceExampleInstaller.StartType = ServiceStartMode.Automatic

 ' Add both the ServiceProcessInstaller and ServiceInstaller to
 ' the installers collection, which is inherited from the
 ' Installer base class.
 Installers.Add(ServiceExampleInstaller)
 Installers.Add(ServiceExampleProcess)

 End Sub

 End Class
End Namespace

Usage

To install the Recipe15_06 service, build the project, navigate to the directory where Recipe15-07.exe
is located (bin\Debug by default), and execute the command Installutil Recipe15-07.exe. You will
see output similar to the following:

Microsoft (R) .NET Framework Installation utility Version 2.0.50727.42
Copyright (c) Microsoft Corporation. All rights reserved.

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the C:\Recipe15-07\Recipe15-07.exe assembly's
progress.
The file is located at C:\Recipe15-07\Recipe15-07.InstallLog.
Installing assembly 'C:\Recipe15-07\Recipe15-07.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\Recipe15-07\Recipe15-07.exe
 logfile = C:\Recipe15-07\Recipe15-07.InstallLog
Installing service Recipe 15_06 Service...
Service Recipe 15_06 Service has been successfully installed.
Creating EventLog source Recipe 15_06 Service in log Application...

The Install phase completed successfully, and the Commit phase is beginning.
See the contents of the log file for the C:\Recipe15-07\Recipe15-07.exe assembly's
progress.
The file is located at C:\Recipe15-07\Recipe15-07.InstallLog.
Committing assembly 'C:\Recipe15-07\Recipe15-07.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\Recipe15-07\Recipe15-07.exe
 logfile = C:\Recipe15-07\Recipe15-07.InstallLog

The Commit phase completed successfully.

The transacted install has completed.

Herman_970-5C15.fm Page 625 Monday, March 17, 2008 12:19 PM

626 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

■Note You can use your ServiceInstaller instance automatically with a Visual Studio Setup project. You can
find details on how to do this at http://support.microsoft.com/kb/317421.

You can then see and control the Recipe15_06 service using the Windows Computer Manage-
ment console. However, despite specifying a StartType of Automatic, the service is initially installed
unstarted. You must start the service manually (or restart your computer) before the service will
write entries to the event log. Once the service is running, you can view the entries it writes to the
Application event log using the Event Viewer application. To uninstall the Recipe15_06 service, add
the /u switch to the Installutil command as follows: Installutil /u Recipe15-07.exe. You will get
output similar to the following:

Microsoft (R) .NET Framework Installation utility Version 2.0.50727.42
Copyright (c) Microsoft Corporation. All rights reserved.

The uninstall is beginning.
See the contents of the log file for the C:\Recipe15-07\Recipe15-07.exe assembly's
progress.
The file is located at C:\Recipe15-07\Recipe15-07.InstallLog.
Uninstalling assembly 'C:\Recipe15-07\Recipe15-07.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\Recipe15-07\Recipe15-07.exe
 logfile = C:\Recipe15-07\Recipe15-07.InstallLog
Removing EventLog source Recipe 15_06 Service.
Service Recipe 15_06 Service is being removed from the system...
Service Recipe 15_06 Service was successfully removed from the system.

The uninstall has completed.

■Note If you have the Service application from the Control Panel open when you uninstall the service, the service
will not uninstall completely until you close the Service application. Once you close the Service application, you can
reinstall the service; otherwise, you will get an error telling you that the installation failed because the service is
scheduled for deletion.

15-8. Create a Shortcut on the Desktop or Start Menu

Problem

You need to create a shortcut on the user’s Windows desktop or Start menu.

Solution

Use COM Interop to access the functionality of the Windows Script Host. Create and configure an
IWshShortcut instance that represents the shortcut. The folder in which you save the shortcut deter-
mines whether it appears on the desktop or in the Start menu.

Herman_970-5C15.fm Page 626 Monday, March 17, 2008 12:19 PM

http://support.microsoft.com/kb/317421

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 627

How It Works

The .NET Framework class library does not include the functionality to create desktop or Start menu
shortcuts; however, this is relatively easy to do using the Windows Script Host component accessed
through COM Interop. Chapter 13 describes how to create an interop assembly that provides access
to a COM component. If you are using Visual Studio, add a reference to the Windows Script Host
Object Model listed in the COM tab of the Add Reference dialog box. If you don’t have Visual Studio,
use the Type Library Importer (Tlbimp.exe) to create an interop assembly for the wshom.ocx file,
which is usually located in the Windows\System32 folder. (You can obtain the latest version of the
Windows Script Host from http://www.microsoft.com/downloads/details.
aspx?FamilyID=47809025-D896-482E-A0D6-524E7E844D81&displaylang=en. At the time of this writing,
the latest version is 5.7)

Once you have generated and imported the interop assembly into your project, follow these
steps to create a desktop or Start menu shortcut:

1. Instantiate a WshShell object, which provides access to the Windows shell.

2. Use the SpecialFolders property of the WshShell object to determine the correct path of the
folder where you want to put the shortcut. You must specify the name of the folder you want
as an index to the SpecialFolders property. To create a desktop shortcut, specify the value
Desktop; to create a Start menu shortcut, specify StartMenu. Using the SpecialFolders property,
you can obtain the path to any of the special system folders. If the specified folder does not
exist on the platform you are running on, SpecialFolders returns an empty String. Other
commonly used values include AllUsersDesktop and AllUsersStartMenu. You can find the
full list of special folder names in the section on the SpecialFolders property in the Windows
Script Host documentation.

3. Call the CreateShortcut method of the WshShell object, and provide the fully qualified
filename of the shortcut file you want to create. The file should have the extension .lnk.
CreateShortcut will return an IWshShortcut instance.

4. Use the properties of the IWshShortcut instance to configure the shortcut. You can configure
properties such as the executable that the shortcut references, a description for the shortcut,
a hotkey sequence, and the icon displayed for the shortcut.

5. Call the Save method of the IWshShortcut instance to write the shortcut to disk. The shortcut
will appear either on the desktop or in the Start menu (or elsewhere), depending on the path
specified when the IWshShortcut instance was created.

The Code

The following example class creates a shortcut to Notepad.exe on both the desktop and Start menu
of the current user. The example creates both shortcuts by calling the CreateShortcut method and
specifying a different destination folder for each shortcut file. This approach makes it possible to
create the shortcut file in any of the special folders returned by the WshShell.SpecialFolders prop-
erty.

Imports System
Imports System.IO
Imports IWshRuntimeLibrary

Namespace Apress.VisualBasicRecipes.Chapter15
 Public Class Recipe15_08

 Public Shared Sub CreateShortcut(ByVal destination As String)

Herman_970-5C15.fm Page 627 Monday, March 17, 2008 12:19 PM

http://www.microsoft.com/downloads/details

628 CH AP T E R 1 5 ■ W I N D OW S IN TE G R A T I O N

 ' Create a WshShell instance through which to access the
 ' functionality of the Windows shell.
 Dim hostShell As New WshShell

 ' Assemble a fully qualified name that places the Notepad.lnk
 ' file in the specified destination folder. You could use the
 ' System.Environment.GetFolderPath method to obtain a path, but
 ' the WshShell.SpecialFolders method provides access to a wider
 ' range of folders. You need to create a temporary object
 ' reference to the destination string to satisfy the requirements of
 ' the item method signature.
 Dim destFolder As Object = DirectCast(destination, Object)
 Dim fileName As String = ➥
Path.Combine(DirectCast(hostShell.SpecialFolders.Item(destFolder), String), ➥
"Notepad.lnk")

 ' Create the shortcut object. Nothing is created in the
 ' destination folder until the shortcut is saved.
 Dim shortcut As IWshShortcut = ➥
DirectCast(hostShell.CreateShortcut(fileName), IWshShortcut)

 ' Configure the fully qualified name to the executable.
 ' Use the Environment class for simplicity.
 shortcut.TargetPath = ➥
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.System), ➥
"notepad.exe")

 ' Set the working directory to the Personal (My Documents) folder.
 shortcut.WorkingDirectory = ➥
Environment.GetFolderPath(Environment.SpecialFolder.Personal)

 ' Provide a description for the shortcut.
 shortcut.Description = "Notepad Text Editor"

 ' Assign a hotkey to the shortcut.
 shortcut.Hotkey = "CTRL+ALT+N"

 ' Configure Notepad to always start maximized.
 shortcut.WindowStyle = 3

 ' Configure the shortcut to display the first icon in Notepad.exe.
 shortcut.IconLocation = "notepad.exe,0"

 ' Save the configured shortcut file.
 shortcut.Save()

 End Sub

 Public Shared Sub Main()

 ' Create the Notepad shortcut on the desktop.
 CreateShortcut("Desktop")

Herman_970-5C15.fm Page 628 Monday, March 17, 2008 12:19 PM

C H AP TE R 1 5 ■ W IN D O W S I N T E G R A T I ON 629

 ' Create the Notepad shortcut on the Windows Start menu of
 ' the current user.
 CreateShortcut("StartMenu")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Herman_970-5C15.fm Page 629 Monday, March 17, 2008 12:19 PM

Herman_970-5C15.fm Page 630 Monday, March 17, 2008 12:19 PM

631

Index

■Special Characters
$ element, regular expressions, 63
%PATH% variable, 613
* element, regular expressions, 63
^ element, regular expressions, 63
| (pipe character), 222, 477
+ operator, 71
< > (inequality) operator, 71
< (less than) operator, 71
<= (less than or equal to) operator, 71
= operator, 71
> (greater than) operator, 71
>= (greater than or equal to) operator, 71
" (double quotes), 19
' (single quotes), 19
- (unary negation) operator. See unary (-)

operator

■A
A element, regular expressions, 63
Abort method

HttpListenerContext class, 449
Thread class

terminating execution of thread, 171
unload assemblies or application domains

at runtime, 116
AcceptTcpClient method, TcpListener class

asynchronous communications using
TCP, 466

communicating using TCP/IP, 463
access control lists. See ACL
access tokens, impersonating Windows

users, 517
Account property, ServiceProcessInstaller

class, 624
AccountOperator value, WindowsBuiltInRole

enumeration, 512
ACL (access control lists)

methods for adding/removing ACLs, 230
modifying ACL of file/directory, 229–232

ActiveMovie COM component
playing sound file, 413
playing video with DirectShow, 415

ActiveMovie Control Type Library, 413

ActiveX controls, using in .NET clients, 556–557
Add attribute, 269
Add method, 582

Controls property, 345
creating parameter objects, 317
HttpListenerPrefixCollection, 449
Interlocked class, 168
Parameters collection, 316, 317, 331

Add Reference dialog box, 627
AddAccessRule method, FileSecurity class, 230
AddAfterSelf attribute, 269
AddAfterSelf method, 269
AddBeforeSelf attribute, 269
AddBeforeSelf method, 269
AddClosedCurve method, GraphicsPath

class, 398
AddEllipse method, GraphicsPath class, 398
AddFirst method, 269
addition (+) operator, 71
AddMember method, 582
addmodule /addmodule compiler switch, 8, 9
AddPrinterConnection method, Win32_Printer

class, 435
AddRectangle method, GraphicsPath class, 398
AddressOf keyword, 599
AddressOf operator, 130
AddValue method, ?, 563
AddXyz methods, DateTime structure, 71
Administrator value, WindowsBuiltInRole

enumeration, 512
ADO objects, 552
ADO.NET, 299–300
Aggregate clause, 242, 248
Aggregate method, 243
Aggregate.Into clause, 243, 244, 245, 246, 247
al.exe (Assembly Linker tool), 11
algorithms

hash code algorithm, 212
keyed hashing algorithm

implementations, 531
all tag, 286
AllDirectories value, SearchOption

enumeration, 211
AllowDrop property, Control class, 380

Herman_970-5INDEX.fm Page 631 Monday, March 24, 2008 11:54 AM

632 ■IN D E X

AllowMultiple property, 125
AllowNavigation property, WebBrowser

control, 383
AllowPartiallyTrustedCallers attribute, 497
AllowPartiallyTrustedCallersAttribute class,

496, 498
AND operator, 20, 22
AndAlso operator, 20
animation

creating animated system tray icon, 376
playing video with DirectShow, 415–417

anonymous types, 44–45
AnonymousPipeClientStream class, 477
AnonymousPipeServerStream class, 477
antialiasing, 409
API (application programming interface), 391
APP_CONFIG_FILE key, 101
AppDomain class

BaseDirectory property, 101
CreateDomain method, 100
CreateInstance method, 109
CreateInstanceAndUnwrap method, 109
CreateInstanceFrom method, 109
CreateInstanceFromAndUnwrap method,

107–109
ExecuteAssembly method, 102–103, 109
ExecuteAssemblyByName method, 102–103
GetData method, 101–114
IsFinalizingForUnload method, 116
maintaining reference to instance of, 102
namespace, 100
RelativeSearchPath property, 101
restricting which users can execute code, 515
SetData method, 113–114
SetPrincipalPolicy method, 515
SetThreadPrincipal method, 515
Unload method, 115–116
using isolated file storage, 224–225

AppDomainSetup class, 101
AppendChar method, SecureString class, 533
Application class, 385

OpenForms property, 350
Run method, 5

application development
accessing command-line arguments, 17–19
accessing element named as VB.NET

keyword, 25
building projects from command line using

MSBuild.exe, 14–17

creating and using lambda expressions,
47–49

creating code library from command-line,
10–11

creating code module from command-line, 8
creating console application from

command-line, 2–5
creating extension methods, 45–47
creating SPC to test Authenticode signing of

assembly, 37–38
creating strong-named key pairs, 26–27
creating Windows Forms application from

command-line, 5–8
delay signing assemblies, 31
embedding resource file in assembly, 11–13
giving strong name to assemblies, 27–29
managing Global Assembly Cache, 38–39
manipulating appearance of console, 23
preventing decompilation of assemblies,

39–40
selectively including code at build time, 19
signing assemblies with Authenticode, 37
signing assemblies with authenticode digital

signature, 32–36
tools, .NET SDK, 2
using anonymous types, 44–45
using object initializers, 41–44
verifying strong-named assembly not

modified, 30
application domains/reflection/metadata

creating application domain, 100–102
creating custom attributes, 124–126
creating type can cross application domain

boundaries, 106
creating type can't cross application domain

boundaries, 105–106
executing assembly in remote application

domain, 102–104
inspecting value of custom attributes at

runtime, 127–128
instantiating objects using reflection, 121
instantiating type in remote application

domain, 109–113
application programming interface (API), 391
Application Settings functionality, 355–356
ApplicationBase property, AppDomainSetup

class, 101
ApplicationException

ArgumentException, 79, 449
ArgumentNullException, 121, 590
ArgumentOutOfRangeException, 52, 590
AsyncCallback delegate, 327

Herman_970-5INDEX.fm Page 632 Monday, March 24, 2008 11:54 AM

633■I N D E X

AsynchCallback delegate, 449
Attribute class, 124
AttributeTargets enumeration, 125
AttributeUsageAttribute class, 124
BitConverter class, 56, 528
CannotUnloadAppDomainException, 116
classes deriving from

MarshalByRefObject, 106
Console class, 23, 92, 586
ConsoleColor enumeration, 23
ConsoleKeyInfo class, 93
Convert class, 59
DateTime class, 68
DateTime structure, 148, 185, 572
Enum class, 119
Environment class, 17, 605
EnvironmentVariableTarget

enumeration, 609
EventArgs class, 593, 598
Exception class, 589
FormatException, 590
FormatException class, 69
GC class, 582
IAsyncResult interface, 327
ICloneable interface, 567
IComparable interface, 77, 571
IDisposable interface, 87, 534, 582
IFormatProvider interface, 586
IFormattable interface, 586
IntPtr class, 534
IntPtr type, 518
InvalidCastException, 79, 119
InvalidOperationException, 460, 576
InvalidOperationException class, 510, 534
MarshalByRef class, 482
MarshalByRefObject class, 106, 481
MissingMethodException, 102

applications. See also Windows Forms
application

ensuring only one instance of application
executing, 179–181

responding to HTTP requests from
application, 448–452

start application running in new process,
174–177

terminating process, 177–179
ApplicationSettings property, 355
apply templates command, 295
apply-templates command, 295
args argument, 17

ArgumentException
copying contents of collection to array, 79
responding to HTTP requests from

application, 449
ArgumentException exception, 307
ArgumentNullException, 121, 590
ArgumentOutOfRangeException, 590
arguments

accessing command-line arguments, 17–19
passing data between application

domains, 113
Arguments property, ProcessStartInfo class, 175
arranging controls on form automatically, 369
Array class, Sort method, 77–78
ArrayList class

implementing comparable type, 572
namespace, 114
passing data between application

domains, 114
querying nongeneric collection, 236
Sort method, 77–78, 572
ToArray method, 79

ArrayList class, System.Collections, 90
ArrayList structure, 77–78
arrays

copying contents of collection to array,
79–80

manipulating or evaluating contents of,
80–84

sorting contents of array or ArrayList
collection, 77–78

Ascending keyword, 239
AscendingCirculationComparer class, 572
AscendingCirculationComparer object, 572
ASCII encoding, 201
ASCII property, 54, 456
ASCIIEncoding class, 54
AsEnumerable extension method, 315
aspect ratio, 409
assemblies, 496–498
Assembly: (Assembly prefix), 498
Assembly class, 98, 508

AssemblyCultureAttribute attribute, 28
AssemblyName class, 67
AssemblyVersionAttribute attribute, 28
ConstructorInfo class, 121
Evidence property, 508
GetType method

methods returning Type objects, 117
retrieving object type, 116

Herman_970-5INDEX.fm Page 633 Monday, March 24, 2008 11:54 AM

634 ■IN D E X

GetTypes method
methods returning Type objects, 117
retrieving object type, 116

ICustomAttributeProvider interface, 127
inspecting assembly's evidence, 508
Load method, 98–99
LoadFrom method, 98–99
loading assembly into current application

domain, 98
LoadWithPartialName method, 98
namespace, 98

assembly evidence collection, Evidence
class, 508

Assembly Information dialog box, 29
Assembly Linker tool (al.exe), 11
assembly manifest, 9
Assembly prefix (Assembly:), 498
AssemblyCultureAttribute attribute, 28
AssemblyName class

management of objects, 85
using compiled regular expressions, 67

AssemblyName class, System.Reflection, 67
AssemblyQualifiedName column, 332
AssemblyVersionAttribute attribute, 28
assignment (=) operator, 71
associations, 336
Asterisk property, SystemSounds class, 411
AsyncCallback delegate

asynchronous operations, 327
executing methods asynchronously, 134

AsyncExampleDelegate, 134–135
AsynchCallback delegate, 449
asynchonous method, 140–145
asynchronization. See also synchronization

blocking, 134
calling unmanaged function that uses

callback, 548–549
determining whether asynchronous method

has finished, 134
polling, 134
reading files asynchronously, 208–210
waiting, 134

asynchronous database operations, 327–330
asynchronous methods

determining if asynchronous method
finished, 328

WebClient class, 446
asynchronous operations

asynchronous communications using TCP,
466–474

blocking, 328

callbacks, 328
executing database operations

asynchronously, 327
polling, 328
SqlCommand class, 327
waiting, 328

AsyncProcessor class
reading files asynchronously, 208–210
StartProcess method, 208

AsyncWaitHandle property, IAsyncResult, 134
Attachment class, 456
AttachmentCollection class, 456
Attribute class

creating custom attributes, 124
namespace, 124

attributes
changing value of, 271–272
creating custom attributes, 124–126
decorating types with custom attribute, 126
inspecting value of custom attributes at

runtime, 127–128
removing, 272–274
replacing, 272–274
selectively including code at build time

using, 19
serialization and deserialization, 563
setting file or directory attributes, 189–190

Attributes method, 274
Attributes property, 185, 189
AttributeTargets enumeration, 125
AttributeUsageAttribute class, 125
Audio class, 411
audio files, 413
AudioPlayMode enumerated type, 412
authentication, 452–454
authenticode, 32–38
Author property, 249
AuthorAttribute attribute, 125–126
AutoCompleteComboBox control, 362–364
AutoCompleteMode property, 362
AutoCompleteSource property, 362
autocompletion, 362–364
AutoLog property, ServiceBase class, 620
AutoResetEvent class

classes used as triggers, 150
executing method when WaitHandle

signalled, 150
Set method, 160
synchronizing multiple threads using

event, 159

Herman_970-5INDEX.fm Page 634 Monday, March 24, 2008 11:54 AM

635■I N D E X

AutoScroll property
adding controls to forms at runtime, 345
finding all installed fonts, 392

AutoScroll property, Panel control, 403
AvailableFreeSpace property, 185, 219, 220
average calculations, 243, 244
Average method, 243
AveragePrice property, 248
AxHost class, 556
Aximp.exe, 556
AxImporter class, 556
axis properties, 270–274
AxMaskEdBox class, 556
AxMSMask.dll file, 556

■B
background threads, 133
Background value, PlayMode parameter, 412
BackgroundColor property, Console class, 23
BackgroundImage property, 399
BackgroundLoop parameter, 412
BackgroundLoop value, PlayMode

parameter, 412
BackgroundWorker class, 133–142
BackgroundWorker.ProgressChanged event

handler, 144
BackgroundWorker.RunWorkerAsync

method, 141
BackgroundWorker.WorkerReportsProgress

property, 142
BackgroundWorker.WorkerSupports-

Cancellation property, 142
backslash character (BBB), 19
BackupOperator value, WindowsBuiltInRole

enumeration, 512
Base64 array, 59
BaseDirectory property, AppDomain class, 101
BaseUtcOffset property, 73
BBB (backslash character), 19
BC30420 compilation error, 3
Bcc property, MailMessage class, 456
Beep method, Console class, 410–411
BeepOnError property, MaskedTextBox

control, 359
BeforeExpand event, TreeView control, 197–198
BeginAcceptTcpClient method, TcpListener

class, 466–467
BeginExecuteNonQuery method, 327
BeginExecuteReader method, 327
BeginExecuteXmlReader method, 327
BeginGetContext method, 448–450

BeginInvoke method, 133–134
BeginPrint event, 420–424
BeginRead method

FileStream class, 208
NetworkStream class, 467

BeginWrite method, NetworkStream class,
466–467

BigEndianUnicode property, UnicodeEncoding
class, 54

binary data, 59
binary file, 203–204
BinaryFormatter class

Deserialize method, 89
implementing cloneable type, 568
Serialize method, 89

BinaryFormatter class,
System.Runtime.Serialization.
Formatters.Binary, 89

BinaryReader class
converting byte array to Decimal type, 57
downloading file and processing using

stream, 446–447
Read method, 203
ReadDecimal method, 203
reading and writing binary files, 203
ReadString method, 203

BinaryWriter class, 57, 203
bindingRedirect elements, 99
BitConverter class

converting bool type to/from byte array,
57–58

converting int type to/from byte array, 57–58
GetBytes method, 56
ToBoolean method, 57
ToInt32 method, 57
ToString method, 58, 528–529
verifying hash codes, 528

Bitmap class, 405
BitVector32 class, 173
Blocking, 328
blocking

description, 129
determining if asynchronous method

finished, 328
executing methods asynchronously, 134
threads, 155

Body property, MailMessage class, 456
BodyEncoding property, MailMessage

class, 456
book property, 251
BookList property, 249

Herman_970-5INDEX.fm Page 635 Monday, March 24, 2008 11:54 AM

636 ■IN D E X

bool type, 57–58
Boolean argument, 616
Boolean parameter, 583
Boolean variable, 287
booleanInfo data member, 591
borderless form, 373
boundaries

application domains, 105–106
cross platform, 437

BufferHeight property, Console class, 23
buffering, 407
BufferWidth property, Console class, 23
build time, 19
BUILTIN prefix for Windows groups, 512–513
Button property, 593
ByRef keyword, 167
byte arrays, 56–59, 528, 611
bytes, 56

■C
C function, 540
/c parameter, 294
CA (certificate authority), 32
CallbackExample method, 135
CallbackHandler method, 135
callbacks, 328
Cancel property, DoWorkEventArgs class, 142
CancelAllJobs method, 435
CancelAsync method, 141–142
CancelAsync method, WebClient class, 444
CancellationPending property, 141–142
Cancelled property, 142
CanGoBack property, WebBrowser control, 383
CanGoForward property, WebBrowser

control, 383
CanHandlePowerEvent property, ServiceBase

class, 619
CanHandleSessionChangeEvent property,

ServiceBase class, 619
CannotUnloadAppDomainException, 116
CanPauseAndContinue property, ServiceBase

class, 619
CanShutdown property, ServiceBase class, 619
CanStop property, ServiceBase class, 619
Capacity property, StringBuilder class, 52
CAS (code access security)

allowing partially trusted code to use
strong-named assemblies, 497

description, 495
disabling execution permission checks,

498–500

limiting permissions granted to
assembly, 502

runtime granting specific permissions to
assembly, 500

case-sensitivity, 62
caspol command, 498–500
Caspol.exe, 498–500
Cast method, 259
casting

specialized collection classes, 174
TryCast keyword, 119

Catch statement, 589
CC property, MailMessage class, 456
CCW (COM callable wrapper), 558
cert2spc.exe, 37
certificate authority (CA), 32
Certificate Creation tool (makecert.exe), 37
Certificates class, 453
Certificates property, 452–453
Change method, Timer class, 146
Changed event, 226
ChangeExtension method, Path class, 214–215
char array, 59
character-encoding classes, 54
checkboxes, 346
CheckExecutionRights property,

SecurityManager class, 498–500
CheckFileExists property, OpenFileDialog

class, 221
classes

character-encoding classes, 54
controlling inheritance and member

overrides using CAS, 506–508
generating from schemas, 294–295
generating .NET class from schema, 294–295
IO I/O classes, 183
main root classes of My, 183
networking classes, .NET Framework, 437
passing objects by reference, 107
passing objects by value, 107

ClassesRoot field, RegistryKey class, 615
Clear method, Console class, 24
Clear method, SecureString class, 534
Click event handler, 377
client application, 481
ClientCertificates property, SmtpClient

class, 455
ClientHandler class, 467
ClientRectangle property, Control class, 400
Clone method, ICloneable, 568–569

Herman_970-5INDEX.fm Page 636 Monday, March 24, 2008 11:54 AM

637■I N D E X

cloneable types, 567–571
Close method, 301, 321, 449
CloseAllFigures method, GraphicsPath

class, 398
CloseMainWindow method, Process class,

177–178
CLR (common language runtime), 420, 605

calling unmanaged function that uses
structure, 545

using C function from external library, 540
Cng classes, 523
code

critical section of, 155
managed, 539
preventing decompilation of assemblies,

39–40
selectively including at build time, 19
unmanaged, interoperability recipes,

539, 559
code access security. See CAS
code groups, 495
/code parameter, 338
codeBase elements, 99
collection classes, 173–174
collections

casting to specific type, 259–261
comparing and combining, 256–258
copying contents of collection to array,

79–80
creating generic type, 86–89
displaying collection data using paging, 254
generic, querying, 234–236
predefined generic collections, 85
querying nongeneric collection, 236
retrieving specific elements of, 253–254
sorting data using LINQ, 239
using strongly typed collection, 84–86

Column property, ListViewItemComparer
class, 365

ColumnCount property, TableLayoutPanel
container, 369

COM callable wrapper (CCW), 558
COM clients, 558–559
COM interop, 552
COM Interop

assigning all code full trust, 497
creating shortcut on desktop or Start

menu, 626
COM object, 413
COM port, 228–229

Combine method, Path class, 214
CombinePath method, FileSystem class, 215
ComboBox control, 362–364
command classes, 312–313
command line

accessing command-line arguments, 17–19
building projects from, using MSBuild.exe,

14–17
creating code library, 10–11
creating code module, 8
creating console application, 2–5
creating Windows Forms application, 5–8
generating data object classes from, 338–339
selectively including code at build time, 19

command line utilities
Aximp.exe, 556
Tlbexp.exe, 558
Tlbimp.exe, 552
xsd.exe (XML Schema Definition Tool), 293

Command Prompt shortcut, 2
CommandLine property, Environment class,

17, 606
CommandText property, 311–312
CommandTimeout property, 312
CommandType enumeration, 312
CommandType property, 311–312
CommentTokens property, TextFieldParser

class, 205–206
common language runtime. See CLR
CommonDialog class, 221
Compact Framework data provider, 300
comparable types, 571
Compare method, IComparer, 365, 572
CompareExchange method, Interlocked

class, 168
CompareTo method, IComparable, 571–572
Compiled option, RegexOptions

enumeration, 66
compiler directives, 19
CompileToAssembly method, Regex class,

66–67
complex data types, XML schema, 286
complex types, 286
Component class, 444, 460

classes deriving from
MarshalByRefObject, 106

pinging IP addresses, 460
RunInstallerAttribute, 623–624
WebClient class and, 444

Herman_970-5INDEX.fm Page 637 Monday, March 24, 2008 11:54 AM

638 ■IN D E X

component hosts
controlling versioning for remote

objects, 492
description, 481
making objects remotable, 481

ComputeHash method, HashAlgorithm class
calculating hash code of files, 526
calculating hash code of password, 524
ensuring data integrity using keyed hash

code, 531
testing two files for equality, 213

Computer class, My object, 183
Concat method, 256–257
ConditionalAttribute class, System.Diagnostics

namespace, 19–20
Configuration class, 309
configuration data, 113–115
configuration files, 99
configuration information, 101
configuration settings

saving configuration settings for forms, 355
specifying, 101

Configuration.ConnectionStrings property, 309
ConfigurationFile property, AppDomainSetup

class, 101
ConfigurationManager class, 309
Configuration.Save method, 309
ConfigurationUserLevel enumeration, 311
Configure method, RemotingConfiguration

class, 481
Connect method, 477
connecting, 301–303
connection classes, 301
Connection Lifetime setting, 304
connection pooling, 304–306
Connection property, 312
Connection Reset setting, 304
connection string, 301
connection string builder classes, 307
connection strings

connection string settings controlling
connection pooling, 304

creating database connections, 301
creating programmatically, 306–308
encrypted, writing, 309
security, 308
storing database connection string securely,

308–311
storing securely, 308–311
unencrypted, storing, 309

connections
connection pooling, 304–306
creating database connection string

programmatically, 306
creating database connections, 301
detecting changes in network connectivity,

441–443
IDbConnection interface, 331
storing database connection string securely,

308–311
ConnectionString property, 301–309

creating database connection string
programmatically, 307

database connection classes, 301
ConnectionString property,

ConnectionStringSettings class, 309
ConnectionStrings property,

ConfigurationManager class, 309
ConnectionStringSettings class, 309
ConnectionStringsSection collection, 309
ConnectionStringsSection.SectionInformation.

ProtectSection method, 309
console. See Windows console
Console class

Beep method, 410–411
implementing formattable type, 586
KeyAvailable method, 93
manipulating appearance of console, 24
namespace, 92
playing beep or system-defined sound, 411
properties and methods, 23
Read method, 92
ReadKey method, 92–93
ReadLine method, 92–93
Write method, 8
WriteLine method, 8, 586

Console.Beep method, 411
ConsoleColor enumeration, System

namespace, 23
ConsoleKey enumeration, 93
ConsoleKeyInfo class, 93
ConsoleModifiers enumeration, 93
ConsoleUtils class

creating code library from command-line, 10
creating console application, 3–4

Const HHHConst directive, 19–20
ConstructorInfo class, 121
Container class, 345
Contains method, Rectangle struct, 394
ContextMenu property, NotifyIcon control, 376
context-sensitive help, 381–382

Herman_970-5INDEX.fm Page 638 Monday, March 24, 2008 11:54 AM

639■I N D E X

Control class
AllowDrop property, 380
ClientRectangle property, 400
creating movable shape, 399
DoDragDrop method, 379–380
DragDrop event, 379–380
DragEnter event, 379–380
Handle property, 415
MouseDown event, 373–380
MouseUp event, 373
Region property, 397–400
Tag property, 347
using ActiveX control in .NET clients, 556

control classes, 543
ControlBox property, 372
Control.ClientRectangle property, 400
ControlCollection class

adding controls to forms at runtime, 345
processing all controls on forms, 349

Control.Handle property, 415
controller class, 109
controlling versioning for remote objects,

491–492
detecting changes in network connectivity,

441–443
downloading data over HTTP or FTP,

443–446
downloading file and processing using

stream, 446–448
getting HTML page from site requiring

authentication, 452–454
hosting remote objects in IIS, 488–489
making objects remotable, 481–486
obtaining local network interface

information, 438–441
pinging IP addresses, 460–462
registering remotable classes in assembly,

486–488
resolving host name to IP address using

DNS, 458–459
responding to HTTP requests from

application, 448–452
security and cryptography, 495–537

allowing partially trusted code to use
strong-named assemblies, 496–498

calculating hash code of files, 526–528
calculating hash code of password,

522–526
controlling inheritance and member

overrides using CAS, 506–508
creating cryptographically random

number, 521–522

determining if user is member of Windows
group, 511–513

determining specific permissions at
runtime, 505–506

disabling execution permission checks,
498–500

encryption/decryption using data
protection API, 536–538

ensuring data integrity using keyed hash
code, 530–533

impersonating Windows users, 517–520
inspecting assembly's evidence, 508–510
limiting permissions granted to assembly,

502–503
protecting sensitive strings in memory,

533–536
restricting which users can execute code,

514–517
runtime granting specific permissions to

assembly, 500–501
verifying hash codes, 528–530
viewing permissions required by

assembly, 503–505
sending e-mail using SMPT, 455–458
threads/processes/synchronization,

129–181
creating thread-safe collection instance,

173–174
ensuring only one instance of application

executing, 179–181
uploading data over HTTP or FTP, 446

ControlPolicy element, SecurityPermission
class, 499

ControlPrincipal element, SecurityPermission
class, 515, 518

Control.Region property, 397–400
controls. See also Windows Forms controls

creating irregularly shaped form or control,
397–399

getting handle for control/window/file,
543–545

using ActiveX control in .NET clients,
556–557

Controls property
Add method, 345
adding controls to forms at runtime, 345
processing all controls on forms, 349

Convert class, 59
Convert method, Encoding class, 56
converting, 281–284
ConvertTime method, 74–75
ConvertTimeBySystemTimeZoneId method,

74–75

Herman_970-5INDEX.fm Page 639 Monday, March 24, 2008 11:54 AM

640 ■IN D E X

ConvertTimeFromUtc method, 74
ConvertTimeToUtc method, 74
CopyDirectory method, FileSystem class, 192
CopyFile method, FileSystem class, 192
CopyFromScreen method, Graphics class, 405
copying, 190–193
copying type instances, 567–571
copying/moving/deleting file/directory, 190

FileSystemInfo class and, 186
finding files matching wildcard

expressions, 211
GetDirectories method, 211
GetFiles method, 211
methods, 191
performing file system operations, 183
properties and classes, 184
Refresh method, 186
retrieving file/directory/drive

information, 184
setting file or directory attributes, 189
using Directory class instead, 188

CopyTo method, 79, 191
count calculations, 245–246
Count method, 243–246
Count property, 248
Covington, Michael A., 181
Create method

DirectoryInfo class, 191
FileInfo class, 191
HashAlgorithm class

calculating hash code of files, 526
calculating hash code of password, 524
testing two files for equality, 213

KeyedHashAlgorithm class, 531
RandomNumberGenerator class, 521
WebRequest class, 447
XmlReader class, 285–287

CreateAdapter method, 317, 331–332
CreateCommand factory method, 312
CreateCommand method, 312, 331
CreateConnection factory method, 331
CreateCustomTimeZone method, 74, 75
Created event, 226
CreateDirectory method, FileSystem class, 192
CreateDomain method, AppDomain class,

100–101
CreateInstance method, AppDomain class, 109
CreateInstanceAndUnwrap method,

AppDomain class, 109

CreateInstanceFrom method, AppDomain
class, 109

CreateInstanceFromAndUnwrap method,
AppDomain class, 107–109

CreateParameter method, 317, 331
CreatePrompt property, SaveFileDialog

class, 222
CreateShortcut method, WshShell class, 627
CreateSubdirectory method, DirectoryInfo

class, 185–191
CreateSubKey method, RegistryKey class, 616
CreateText method

File class, 200
FileInfo class, 191

CreationTime property, 185
CredentialCache class, 453–455
Credentials property

SmtpClient class, 455
WebClient class, 453
WebRequest class, 452–453

credit card number, regular expressions, 64, 67
critical section of code, 155
CrossProcess value, MemoryProtectionScope

enumeration, 537
CryptGenRandom function, 521
CryptoAPI, 26
cryptographic service provider. See CSP
cryptography. See also encryption

calculating hash code of files, 526–528
calculating hash code of password, 522–526
creating cryptographically random number,

521–522
description, 495
encryption/decryption using data

protection API, 536–538
ensuring data integrity using keyed hash

code, 530–533
further reading on, 496
protecting sensitive strings in memory,

533–536
verifying hash codes, 528–530

CryptoServiceProvider classes, 523
CSP (cryptographic service provider)

creating strong-named key pairs, 26
giving strong name to assemblies, 28

CultureInfo class, 587
Current member, 576
Current property

implementing enumerable type using
custom iterator, 575–577

inspecting assembly's evidence, 508

Herman_970-5INDEX.fm Page 640 Monday, March 24, 2008 11:54 AM

641■I N D E X

MoveNext method, 576
Reset method, 576

Current property, IEnumerator, 576
CurrentConfig field, RegistryKey class, 615
CurrentCulture method, CultureInfo class, 587
CurrentDirectory property, Environment

class, 606
currentElement element, 274
CurrentPrincipal property, Thread class

impersonating Windows users, 518
restricting which users can execute code,

514–515
CurrentUICulture property, Thread class, 371
CurrentUser field, RegistryKey class, 615
CurrentUser value, DataProtectionScope

enumeration, 537
CursorLeft property, Console class, 23
CursorSize property, Console class, 23
CursorTop property, Console class, 23
CursorVisible property, Console class, 23
custom attribute classes, 124
custom attributes

creating custom attributes, 124–126
inspecting value of custom attributes at

runtime, 127–128
custom event arguments, 593–595
custom exception classes, 589–593
custom iterators, 561, 575–582
custom types

implementing cloneable type, 567–571
implementing serializable types, 561–567

CustomException exception, 591

■D
D element, regular expressions, 62
d element, regular expressions, 62
data

displaying collection data using paging, 254
reading and writing data from streams, 183
sorting data using LINQ, 239

data access, 167–169
data adapters, 331
data integrity, 530–533
data manipulation, 51–97

converting binary data to/from Base64
array, 59

converting dates and times across time
zones, 73–77

converting value types to/from byte arrays,
56–58

copying contents of collection to array,
79–80

creating DateTime objects from strings, 68
creating generic type, 86–89
encoding string using alternate character

encoding, 54–56
manipulating contents of String object,

51–53
manipulating or evaluating conents of array,

80–84
mathematically manipulating DateTime

objects, 70
reading user input from Windows console,

92–95
sorting contents of array or ArrayList

collection, 77–78
storing serializable object with state to file,

89–92
using compiled regular expressions, 65–68
using strongly typed collection, 84–86

data object classes, 338–339
data objects, 344
data parameter classes, 331
Data property, DragEventArgs class, 380
Data Protection API. See DPAPI
data providers

command classes, 312
connection string builder classes, 307
creating database connection string

programmatically, 307
data reader classes, 320
database connection classes, 301
factory classes, 331
interfaces, 330

data reader classes, 320–321, 331
data readers, 320–322
data sources, 299
data structures, 87
database access, 299–341

connecting to databases, 301–303
connection pooling, 304–306
creating database connection string

programmatically, 306
creating database connections, 301
data object classes, generating from

command line, 338–339
database connection strings

creating programmatically, 306–308
storing securely, 308–311

database object models, creating, 334–337

Herman_970-5INDEX.fm Page 641 Monday, March 24, 2008 11:54 AM

642 ■IN D E X

discovering all instances of SQL Server on
network, 340

executing database operations
asynchronously, 327

executing SQL command or stored
procedure, 311

NET .NET Framework data providers, 299
overview, 299–300
processing results of SQL query using data

reader, 320
retrieving results of SQL query as XML, 323
SQL commands

executing, 311–315
using parameters in, 316–319

SQL queries
obtaining XML documents from, 323–326
processing results of using Data Reader,

320–322
SQL Server

discovering all instances of on network,
340–341

performing asynchronous database
operations against, 327–330

stored procedures
executing, 311–315
using parameters in, 316–319

storing database connection string securely,
308–311

using parameters in SQL command or stored
procedure, 316

writing database-independent code, 330–334
database connection classes, 301, 312
database connection strings.

See connection strings
database object models, 334–337
/database parameter, 338
database-independent code, 330–334
databases

connection pooling, 304–306
creating database connections, 301
executing SQL command or stored

procedure, 311
writing database independent code, 330
writing generic ADO.NET code, 330

DataContext class, 336
DataProtectionScope enumeration, 537
DataRow class, 340
DataSet class

IDataAdapter interface, 331
loading unnessary assemblies into

application domains, 104
namespace, 104

DataTable class
discovering all instances of SQL Server on

network, 340
GetFactoryClasses method returning

columns, 332
making objects remotable, 482

dates and times, 68, 70
DateTime class, 68, 70, 75
DateTime structure

adding/subtracting/comparing dates and
times, 70

AddXyz methods, 71
implementing comparable type, 572
operators supported by, 71
System namespace, 148, 185

DateTimeFormatInfo class, 69, 587
DateTimeOffset object, 75
DaylightName property, 73
DbCommand class, 311
DbCommand.ExecuteReader method, 320
DbCommand.Parameters.Add method, 316
DbConnection class, 301
DbConnectionStringBuilder class, 306–307
DbDataReader class, 313, 320
/dbml parameter, 338
DbParameter class, 316
DbParameterCollection, 312
DbProviderFactories class, 332
DbProviderFactories.GetFactory method, 332
DbProviderFactories.GetFactoryClasses

class, 332
DbProviderFactory class, 331, 332
DbTransaction, 312
DbType, 317, 331
DCOM (Distributed Component Object

Model), 437
DEBUG symbol, 21
Decimal type, 56, 57, 59
declarative security, 514
decompilation, 39–40
Decrement method, Interlocked class, 168
Decrypt method, FileInfo class, 191
deep copy, 79, 568
Default property, Encoding class, 54
DefaultCredentials property, CredentialCache

class, 453
DefaultPageSettings property, PrintDocument

class, 420
define /define switch, 19, 20
delay signing assemblies, 31
delaysign /delaysign switch, 31

Herman_970-5INDEX.fm Page 642 Monday, March 24, 2008 11:54 AM

643■I N D E X

DelegateAsyncState parameter, 135
delegates

AddressOf operator, 130
calling unmanaged function that uses

callback, 548
executing methods asynchronously, 133
implementing Observer pattern, 597–598

DELETE command, 313
Delete method, 191
Deleted event, 226
DeleteDirectory method, FileSystem class, 192
DeleteFile method, FileSystem class, 192
DeleteSubKey method, RegistryKey class, 616
DeleteSubKeyTree method, RegistryKey

class, 616
DeleteValue method, RegistryKey class, 616
deleting files or directories, 190–193
delimited files, 281–284
Delimiters property, TextFieldParser class, 205
Demand method, PrincipalPermission

class, 514
demands

declarative, 514
permission, 495

Descendants method, 274
Descending keyword, 239
Description column, 332
Description property, NetworkInterface

class, 439
deserializaiton, 590
deserialization, 562, 563
Deserialize method, 89
desktop

creating shortcuts on, 626–629
performing screen capture, 405–406

destructor, 582
dialog boxes, 221–223
Dictionary collection, 85
digest authentication, 453
digital signatures, authenticode, 32–37
Direction property, 317
directories

calculating size of all files in directory,
194–195

copying/moving/deleting file/directory,
190–193

determining if path is directory or file,
215–216

modifying ACL of file/directory, 229–232
performing file system operations, 183

retrieving file/directory/drive information,
184–188

setting file or directory attributes, 189–190
Directory class

determining if path is directory or file, 215
Exists method, 215
finding files matching wildcard

expressions, 211
GetAccessControl method, 230
GetCurrentDirectory method, 217
GetLogicalDrives method, 219
modifying ACL of file/directory, 230
retrieving file/directory/drive

information, 188
SetAccessControl method, 230
SetCurrentDirectory method, 217
working with relative paths, 217

Directory property, FileInfo class, 185
directory recipes, 183
directory tree, 197–200
DirectoryExists method, FileSystem class, 216
DirectoryInfo class, 189, 192, 194
DirectoryName property, FileInfo class, 185
DirectoryNotFoundException, 186
DirectorySecurity class, 230
DirectShow, 415–417
DisallowPublisherPolicy property,

AppDomainSetup class, 101
DisplayName object, 624
DisplayName property, 74, 624
disposable classes, 582–585
disposable objects, 582
Dispose method, 146, 301, 321, 534,

582–583, 616
Dispose pattern, 582
Distinct clause, 235
Distributed Component Object Model

(DCOM), 437
DLL, 540–542
DllImportAttribute, 540, 549–550
DNS (Domain Name System), 458–459
Dns class, 458
Document object, 391
Document Object Model (DOM), 263
document printing

in any application, 420
multipage, 423–426
showing dynamic print preview, 428–431
simple documents, 420–422

Document property, 382, 421, 428–429

Herman_970-5INDEX.fm Page 643 Monday, March 24, 2008 11:54 AM

644 ■IN D E X

DocumentCompleted event, WebBrowser
control, 383

DocumentText property, WebBrowser
control, 382

DoDragDrop method, Control class, 379–380
DOM (Document Object Model), 263
Domain Name System (DNS), 458–459
Domain property, ProcessStartInfo class, 175
domains, 100–102
double buffering, 407–408
double quotes ("), 19
DoubleBuffered property, 407
DownloadData method, WebClient class, 444
DownloadDataAsync method, WebClient

class, 444
DownloadDataCompleted event, WebClient

class, 444
DownloadFile method, My.Computer.Network

class, 443, 444, 446
DownloadFile method, WebClient class, 444
DownloadFileAsync method, WebClient

class, 444
DownloadFileCompleted event, WebClient

class, 444
downloading

data over HTTP or FTP, 443–446
file and processing using stream, 446–448
getting HTML page from site requiring

authentication, 452–454
DownloadStringAsync method, WebClient

class, 444
DownloadStringCompleted event, WebClient

class, 444
DoWork event, 141–145
DoWorkEventArgs class, 142
DPAPI (Data Protection API)

encryption/decryption using data
protection API, 536–538

protecting sensitive data in memory, 533
DPAPIProtectedConfigurationProvider

class, 309
drag-and-drop functionality, 379
DragDrop event, Control class, 379–380
DragEnter event, Control class, 379–380
DragEventArgs class, 380
DrawImage method, Graphics class, 420
DrawString method, Graphics class

creating scrollable image, 403
printing simple document, 420
printing wrapped text, 426

DriveInfo class
accessing properties, 186
AvailableFreeSpace property, 219–220
determining free space on drive, 219
example, 220
GetDrives method, 219
IsReady property, 186

drives
accessing unavailable network drive, 219
determining free space on drive, 219–220
retrieving file/directory/drive information,

184–188
DriveType enumeration, 185
DriveType property, DriveInfo class, 185
DumpState method, ConditionalAttribute

classs, 21, 22
Dword value, 613
dynamic print preview, 428–431
DynData field, RegistryKey class, 615

■E
e option, caspol command, 498–500
e switch, Certificate Creation tool, 38
EDM (Entity Data Model), 233
Effect property, DragEventArgs class, 380
? element, regular expressions, 63
ElementAt method, 253
ElementHost control, 559
ElementHost.Child property, 559
elements

accessing program element named as
VB.NET keyword, 25

changing value of, 271–272
inserting into XML documents, 269–270
querying for in specific XML namespaces,

276–278
removing, 272–274
replacing, 272–274
searching XML document for elements using

XPath, 278
ELEMENTS keyword, 323
Elements method, 274
Elif HHHElif directive, 19
EllipseShape control, 400–403
Else HHHElse directive, 19
e-mail, 64, 455–458
Employee class, 294, 564–568
Employee node, 273
Employee object, 266, 291
EmployeeRoster class, 294

Herman_970-5INDEX.fm Page 644 Monday, March 24, 2008 11:54 AM

645■I N D E X

EmployeeRoster element, 295
EmployeeRoster object, 291
Employees property, 576
Employees root node, 279
EmptyTypes field, Type class, 121
EnableRaisingEvents property,

FileSystemWatcher class, 226
EnableSsl property, SmtpClient class, 455
encoding

common string encodings, 201
converting binary data to/from Base64

array, 59
NET .NET Framework classes, 200
strings, 54–56
UTF-16 encoding, 56

Encoding class, 200
ASCII property, 456
calculating hash code of password, 524
Convert method, 56
Default property, 54
GetBytes method, 54
GetEncoding method, 54
GetString method, 54
sending e-mail using SMPT, 456

Encrypt method, FileInfo class, 191
encryption. See also cryptography

CSP (cryptographic service provider), 26
entropy, 537
protecting sensitive strings in memory,

533–536
using data protection API, 536–538

EndAcceptTcpClient method, TcpListener
class, 466

EndExecuteNonQuery method, SqlCommand
class, 327, 328

EndExecuteReader method, SqlCommand
class, 327, 328

EndExecuteXmlReader method, SqlCommand
class, 327, 328

EndGetContext method, HttpListener class, 449
Endif HHHEndif directive, 19–20
EndInvoke method, 133–134
EndOfData property, TextFieldParser class, 205
endpoint, 462
EndPrint event, 420
EndRead method, FileStream class, 208
ensuring data integrity using keyed hash code,

530–533
Enter method, Monitor class, 154–155
Entity Data Model (EDM), 233
entropy, 537

EntryPoint portion, DllImportAttribute, 540
Enum class, 119
enumerable types, 575–582
enumerations

AttributeTargets enumeration, 125
ConsoleKey enumeration, 93
RegexOptions enumeration, 66

enumerator, 575
EnumWindows function, 548
Environment class, 606–609

accessing runtime environment
information, 605–609

CommandLine property, 17
ExpandEnvironmentVariables method, 609
GetCommandLineArgs method, 17
GetEnvironmentVariable method, 609
GetEnvironmentVariables method, 609
methods, 606
properties, 606
retrieving value of environment variable,

609–610
SpecialFolder enumeration, 607

environment variables, 609–610
EnvironmentVariableTarget enumeration, 609
equality, 212–214
equality (=) operator, 71
Equals method, 44
Error event, 226
ErrorDialog property, ProcessStartInfo

class, 175
ErrorLine property, TextFieldParser class,

205–206
ErrorLineNumber property, TextFieldParser

class, 205–206
ErrorProvider component, 377–379
errors

retrieving unmanaged error information, 549
validating user input and reporting errors,

377–379
escaping characters, 19
event arguments, 593–595
Event idiom, 598
event log

description, 610
writing event to Windows event log, 610–612

event log, Windows, 610–612
Event pattern, 594–598
EventArgs class

implementing custom event argument,
593–594

implementing Observer pattern, 598–599

Herman_970-5INDEX.fm Page 645 Monday, March 24, 2008 11:54 AM

646 ■IN D E X

EventLog class, 610–611
EventLog property, ServiceBase class, 620
EventLogEntryType enumeration, 610
EventResetMode enumeration, 160
events

FileSystemWatcher class, 225–226
manipulating state between signaled and

unsignaled, 159
synchronizing multiple threads using event,

159–162
writing event to Windows event log, 610–612

EventWaitHandle class, 159–160
evidence

assembly evidence collection, 508
description, 101, 495
evidence classes generating identity

permissions, 507
host evidence collection, 508
inspecting assembly's evidence, 508–510
specifying, 101

evidence classes, 508–510
Evidence property, Assembly class, 508
Except method, 257
exception classes, 589–593
exceptions

ApplicationException, 589
ArgumentException, 79
ArgumentNullException, 590
ArgumentOutOfRangeException, 52, 590
CannotUnloadAppDomainException, 116
FormatException, 590
InvalidCastException, 79, 119
IOException, 219
MalformedLineException, 205
MissingMethodException, 102
SerializationException, 113

ExceptionState property,
ThreadAbortException class, 171

Exchange method, Interlocked class, 168
ExecuteAssembly method, AppDomain class,

102–103, 109
ExecuteAssemblyByName method,

AppDomain class, 102–103
ExecuteNonQuery method, 311–313
ExecuteOracleNonQuery method, 313
ExecuteOracleScalar method, 313
ExecuteReader method, 311–313, 320
ExecuteScalar method, 311–313
ExecuteXmlReader method, 313, 323–324

ExecuteXmlReader method, SqlCommand
class, 323–324

Execution element, SecurityPermission
class, 499

execution permissions, 498–500
ExecutionCheckOff method, 499
ExecutionCheckOn method, 499
Exists method, 215
Exists property, 185–186, 215
Exit method, Monitor class, 154, 155
ExpandEnvironmentVariables method,

606–609
Explicit property, LayoutKind class, 546
Extensible Application Markup Language

(XAML), 391
extension methods, 45–47
Extension property, FileInfo class, 185
ExtensionAttribute attribute, 45–46

■F
factory classes, 331
Families property, 392
FieldCount property, 320
FieldOffsetAttribute class, 546
fields, 562
FieldWidths property, TextFieldParser class,

205–206
File class

CreateText method, 200
determining if path is directory or file, 215
Exists method, 215
Exists property, 215
GetAccessControl method, 230
modifying ACL of file/directory, 230
OpenText method, 200
retrieving file/directory/drive

information, 188
SetAccessControl method, 230

file dialog boxes, 221–223
File Selection screen, Sign Tool, 33
file system, 225–227
File Transfer Protocol (FTP), 443–446
FileAttributes enumeration, 185
FileInfo class

Attributes property, 189
copying/moving/deleting file/directory, 190
FileSystemInfo class and, 186
finding files matching wildcard

expressions, 211
Length property, 194
linking data objects to controls, 347

Herman_970-5INDEX.fm Page 646 Monday, March 24, 2008 11:54 AM

647■I N D E X

methods, 191
performing file system operations, 183
properties and classes, 184
Refresh method, 186
retrieving file/directory/drive information, 184
setting file or directory attributes, 189
using File class instead, 188

FileIOPermission class, 223–224, 503
FileLoadException class, 30, 500–501
FileName property

OpenFileDialog class, 221
ProcessStartInfo class, 175
SaveFileDialog class, 222

FileNames collection, 221
FileNotFoundException

FileStream class, 89, 200–203
FileSystemWatcher class, 225
IO I/O operations, 183
IOException, 219
loading assembly into current application

domain, 99
MemoryStream class, 56, 568
NotifyFilters enumeration, 226
Path class, 214–218, 229
reading properties, 186
Stream class, 87, 444, 531
StreamReader class, 446
StreamWriter class, 200

files
calculating hash code of, 526–528
calculating size of all files in directory,

194–195
copying/moving/deleting, 190–193
temporary, creating, 218–219

FileSecurity class, 230
methods for adding/removing ACLs, 230

FileStream class
EndRead method, 208
Handle property, 543
reading and writing binary files, 203
reading and writing text files, 200
reading files asynchronously, 208
System.IO, 89

FileSystem class
My object, 183–184, 350
My.Computer, 184

FileSystemEventArgs class, 226
FileSystemWatcher class, 225–226
FileVersionInfo class, 196
FileWebRequest class, 447

FilgraphManager class, 415
Fill method, TreeView control, 198
Filter property

FileSystemWatcher class, 226
OpenFileDialog class, 221

filtering data, 240–241
filters, 211–212
Finalize method, 583
Finally block, 155
Finally clause, 583
Finally statement, 589
FinalReleaseComObject method, Marshal

class, 553–554
Find method, Certificates class, 453
FindSystemTimeZoneById method, 74
FindTypes method, 116, 117
First method, 253, 254
first-name attribute, 274
FlowDirection property, FlowLayoutPanel

container, 368
FlowLayoutPanel container, 368
FolderBrowserDialog class, 221, 222
FontFamily class, 392
FontFamily objects, 392
fonts, 392–394
For Each loop, 576
For loop, 576
For ... Next loop, 235
FOR XML AUTO clause, 323
FOR XML clause, 323–324
FOR XML EXPLICIT clause, 324
foreground threads, 133
ForegroundColor property, Console class, 23
Form class

BackgroundImage property, 399
ControlBox property, 372
creating Windows Forms application, 5
DoubleBuffered property, 407
FormBorderStyle property, 372
Handle property, 543–544
Language property, 370
Load event, 198
Localizable property, 370
MaximizeBox property, 372
MdiChildren property, 353
MdiParent property, 353
MinimizeBox property, 372
MouseMove event, 395
Paint event handler, 395, 407
Region property, 397–398

Herman_970-5INDEX.fm Page 647 Monday, March 24, 2008 11:54 AM

648 ■IN D E X

Form class, System.Windows.Forms
namespace, 5

format argument, 586
Format method, String class, 586
format string, 586
FormatException class, 69, 590
FormatMessage function, 549, 550
formatProvider argument, 586–587
formattable type, 586
formatted strings, 586
formatters, 89, 562
FormBorderStyle property, 372
FormCollection class, 350
Form.MouseMove event, 395
Form.Paint event handler, 395, 407
Form.Region property, 397
forms

creating irregularly shaped form or control,
397–399

creating Windows Forms application from
command-line, 5–8

Forms class, My object, 183
Forms recipes, 344
free space, 219–220
Friend members, 9
From clause, 234–242, 251, 259–260
From property, MailMessage class, 456
FromBase64CharArray method, Convert

class, 59
FromBase64String method, Convert class, 59
FromDays property, TimeSpan structure, 148
FromFile method, Image class, 409
FromSerializedString method, 74
FTP (File Transfer Protocol), 443–446
FtpWebRequest class, 447
Full Unicode encoding, 201
FullName property, 185
FullTrust permission, 497–498, 508
fully qualified name, assemblies, 98
functional construction, 265, 269
functions

calling functions defined in unmanaged
DLL, 540–542

calling unmanaged function that uses
callback, 548–549

calling unmanaged function that uses
structure, 545–547

getting handle for control/window/file,
543–545

/functions parameter, 338

■G
GAC (Global Assembly Cache), 497

controlling versioning for remote objects,
491–492

managing Global Assembly Cache, 38–39
specifying publisher policy, 99

gacutil.exe (Global Assembly Cache tool), 38
garbage collector, 582
GC class, 582, 583
GC.SuppressFinalize method, 583
GDI (Graphics Device Interface), 391
GDI32.dll, 540
GenerateFromFile method, 556
GenerateFromTypeLibrary method, 556
generic collections, 85
generic types, 86–89
Get accessor, XmlSerializer class, 290
GetAccessControl method, 230
GetAddressBytes method, 439
GetAdjustmentRules method, 74
GetAllNetworkInterfaces method, 438, 441
GetAssemblyEnumerator method, 508
GetBounds method, Image class, 394
GetBytes method

BitConverter class, 56
Encoding class, 54
RandomNumberGenerator class, 521

GetCommandLineArgs method, Environment
class, 17, 607

GetConstructor method, Type class, 121
GetContext method, HttpListener class, 449
GetCurrent method, WindowsIdentity

class, 511
GetCurrentDirectory method, Directory

class, 217
GetCurrentProcess method, Process class, 178
GetCustomAttributes method,

ICustomAttributeProvider
interface, 127

GetData method, 101, 113–114, 380
GetDataSources method, 340
GetDataTypeName method, 320
GetDirectories method, DirectoryInfo class,

185, 211
GetDirectoryInfo method, 184
GetDirectoryName method, Path class, 215
GetDriveInfo method, 184
GetDrives method, DriveInfo class, 185, 219
GetEncoding method, 54
GetEnumerator method, 508, 575–577

Herman_970-5INDEX.fm Page 648 Monday, March 24, 2008 11:54 AM

649■I N D E X

GetEnvironmentVariable method,
Environment class, 607, 609

GetExtension method, Path class, 215
GetFactory method, 332
GetFactoryClasses method, 332
GetFieldType method, 320
GetFileName method, Path class, 214
GetFileNameWithoutExtension method, Path

class, 215
GetFiles method, 185, 211
GetFolderPath method, Environment class, 607
GetForegroundWindow function, 543
GetFullPath method, Path class, 215, 217
GetHashCode method, 44
GetHostEntry method, Dns class, 458
GetHostEnumerator method, Evidence

class, 508
GetInvalidPathChars method, Path class, 215
GetIPProperties method, NetworkInterface

class, 439
GetIPv4Statistics method, NetworkInterface

class, 439
GetIsNetworkAvailable method,

NetworkInterface class, 440
GetLastWin32Error method, Marshal class,

549–550
GetLifetimeService method,

MarshalByRefObject class, 490
GetLogicalDrives method

Directory class, 219
Environment class, 607

GetName method, 321
GetNestedType method, Type class, 116
GetNestedTypes method, Type class, 116, 117
GetNonZeroBytes method,

RandomNumberGenerator class, 521
GetObject method, ResourceManager class, 11
GetObjectData method, 563, 590
GetOracleLob method, 321
GetOracleMonthSpan method, 321
GetOracleNumber method, 321
GetOrdinal method, 321
GetParentPath method, FileSystem class, 215
GetPathRoot method, Path class, 215
GetPhysicalAddress method, NetworkInterface

class, 439
GetPortNames method, SerialPort class, 228
GetPrivateProfileString method, 540, 542
GetProcessById method, Process class, 178
GetProcesses method, Process class, 178

GetProcessesByName method, Process
class, 178

GetRandomFileName method, Path class, 229
GetResponseStream method, WebResponse

class, 447
GetSchemaTable method, 321
Get/Set property accessors, 290
GetSqlByte method, 321
GetSqlDecimal method, 321
GetSqlMoney method, 321
GetStore method, 223, 224, 225
GetString method

Encoding class, 54
ResourceManager class, 11

GetSubKeyNames method, RegistryKey
class, 616

GetSystemTimeZones method, 74
GetTempFileName method, Path class, 218, 229
GetThumbnailImage method, Image class, 409
GetType method, 116–117, 554
GetUnderlyingType method, Enum class, 119
GetUserStoreForDomain method,

IsolatedStorageFile class, 225
GetUtcOffset method, 74
GetValue method, 612–616
GetValueKind method, RegistryKey class, 616
GetValueNames method, 616
GetVersionEx function, Kernel32.dll, 545
GetVersionInfo method, FileVersionInfo

class, 196
GetWindowText function, 543
GetXmlNamespace method, 277
GetXyz methods, 321, 564
Global Assembly Cache. See GAC
global attributes, 498
GoBack method, WebBrowser control, 383
GoForward method, WebBrowser control, 383
GoHome method, WebBrowser control, 383
grant set, 495
Graphics class

CopyFromScreen method, 405
DrawImage method, 420
DrawString method, 403, 420, 426
printing simple document, 420

Graphics Device Interface (GDI), 391
Graphics.DrawString method, 403, 426
GraphicsPath class

CloseAllFigures method, 398
creating irregularly shaped form or

control, 398

Herman_970-5INDEX.fm Page 649 Monday, March 24, 2008 11:54 AM

650 ■IN D E X

hit testing with GraphicsPath object, 397
IsVisible method, 394
namespace, 394

GraphicsPath property, 398
GraphicsPath.CloseAllFigures method, 398
GraphicsPath.IsVisible method, 394
greater than (>) operator, 71
greater than or equal to (>=) operator, 71
Group Join clause, 280
group query results, 248–250

performing average and sum calculations,
243–244

performing count calculations, 245–246
performing general aggregate operations,

242–243
performing min and max calculations,

246–247
query data from multiple locations, 250–253
querying generic collection, 234–236
querying nongeneric collection, 236
retrieving subset of collection, 253–254
sorting data using LINQ, 239
using implicitly typed variables, 40–41

groups, 511–513
Guest value, WindowsBuiltInRole

enumeration, 512
GuidAttribute class, 558

■H
Handle property, 415, 543–544
handles, 543–545
HasExited property, Process class, 178
HasExtension property, 215
HasFieldsEnclosedInQuotes property,

TextFieldParser class, 205
Hash Algorithm screen, Sign Tool, 36
hash codes

ensuring data integrity using keyed hash
code, 530–533

of files, calculating, 526–528
hashing algorithm implementations, 523
of password, calculating, 522–526
VerifyB64Hash method, 529
VerifyByteHash method, 529
verifying, 528–530

HashAlgorithm class
calculating hash code of files, 526–527
calculating hash code of password, 522–523
ComputeHash method, 213, 524–526, 531
Create method, 213, 524–526

ensuring data integrity using keyed hash
code, 531

testing two files for equality, 212
Hashtable class, 174
HasMorePages property, 424
HasMorePages property, PrintPageEventArgs

class, 423–424
HasRows property, 320
HasShutdownStarted property, Environment

class, 606
help, 381–382
HelpKeyword property, HelpProvider

component, 381–382
HelpNamespace property, HelpProvider

component, 382
HelpNavigator property, HelpProvider

component, 381
HelpProvider component, 381–382
HireDate elements, 273
hit testing, 394–397
HKEY_CURRENT_USER registry key, 175
HKEY_XYZ registry keys, 613
HMAC class, 531
HMACSHA1 class, 531
host evidence collection, Evidence class, 508
host names, 458–459
Host property, SmtpClient class, 455
Hour property, 69
HTML pages, 263, 452–454
HtmlDocument class, 382
HTTP

downloading data over, 443–446
responding to HTTP requests from

application, 448–452
uploading data over, 446

HTTP/HTTPS URL, regular expression for, 64
HttpListener class, 450
HttpListenerContext class, 449
HttpListenerException, 449
HttpListenerPrefixCollection, 449
HttpListenerRequest class

HttpListenerResponse class, 449
ICredential interface, 444
IPAddress class, 460
NetworkCredential class, 453
responding to HTTP requests from

application, 449
SocketPermission class, 500
WebClient class, 443–447
WebException class, 447
WebPermission class, 500

Herman_970-5INDEX.fm Page 650 Monday, March 24, 2008 11:54 AM

651■I N D E X

WebRequest class, 452
WebResponse class, 452

HttpListenerResponse class, 449
HttpWebRequest class, 447
HttpWebRequest.ClientCertificates

collection, 453
Hypertext Markup Language (HTML) page, 263

■I
IAsyncResult, 133–134, 327
IBasicAudio interface, 415
ICloneable interface, 567–569
ICloneable method, 568
ICloneable.Clone method, 568
ICollection interface

CopyTo method, 79
IsSynchronized property, 173
SyncRoot property, 173–174

ICollection(Of T) interface, 243–247
IComparable interface, 77, 571–572
IComparable.CompareTo method, 572
IComparable(Of T) interface, 571
IComparer interface, 365, 571–572
IComparer interface, System.Collections, 77
Icon property, NotifyIcon control, 376
ICredential interface, 444
ICredentialsByHost interface, 455
ICustomAttributeProvider interface, 127
Id property, 74, 439
IDataAdapter interface, 331
IDataObject interface, 380
IDataParameter interface, 316, 331
IDataReader interface, 320, 331
IDataRecord interface, 320
IDbCommand interface, 311, 313, 316, 331
IDbConnection interface, 301, 312, 331
identity permissions, 507
IDisposable interface, 321

creating generic type, 87
Dispose method, 582, 616
IDataReader interface, 321
IDbConnection interface, 301
implementing disposable class, 582
processing results of SQL query using data

reader, 320
protecting sensitive data in memory, 534
RegistryKey objects, 616

IDisposable.Dispose method, 582, 616
IEnumberable(Of T) objects, 273

IEnumerable interface
displaying collection data using paging, 254
GetEnumerator method, 575–577
implementing enumerable type using

custom iterator, 575–577
querying nongeneric collection, 236

IEnumerable objects, 234
IEnumerable(Of DataRow) collection, 315
IEnumerable(Of T) method, 274
IEnumerable(Of T) object, 259
IEnumerable(Of XElement) method, 274
IEnumerator interface, 576–577
If HHHIf directive, 19–20
If HHHIf.HHHEnd If construct, 19–22
IFormatProvider interface

creating DateTime objects from strings, 68
implementing formattable type, 586

IFormattable interface, 586–587
IFormattable object, 586
IFormatter interface, 89
IIdentity interface, 511
IIS, 488–489
Ildasm.exe (MSIL Disassembler tool), 9
ILease interface, 490
Image class, 394, 409
Image.FromStream method, 447
Image.GetThumbnailImage method, 409
images

printing simple document, 420
scrollable, 403–405
thumbnail for existing image, 409

IMediaControl interface, 413–415
immutability of objects

evidence classes, 510
protecting sensitive data in memory, 533
String class, 52

imperative security, 514
Impersonate method, WindowsIdentity class,

517–518
impersonation, 517–520
implementing, 561–603
implicit typing, 40–41
Imports statement, 276
InAttribute, 546
Include attribute, 15
Increment method, Interlocked class, 168
inequality (< >) operator, 71
inequality (NOT) operator, 20
Infinite property, Timeout class, 146, 148

Herman_970-5INDEX.fm Page 651 Monday, March 24, 2008 11:54 AM

652 ■IN D E X

information retrieval
retrieving file version information,

196–197, 212
retrieving file/directory/drive information,

184–188
inheritance

accessing types using COM clients, 558
controlling inheritance and member

overrides using CAS, 506–508
GetType method, 119

InheritanceDemand value, SecurityAction
enumeration, 506–507

Inherited property, 125
InitializeLifetimeService method,

MarshalByRefObject class, 489–491
initializers, 41–44
InitialLeaseTime property, ILease interface, 490
INNER JOIN, 250
InnerException class, 460
input. See user input
INSERT command, 313
InsertAt method, SecureString class, 533
installed printers, 418–420
InstalledFontCollection class, 392
InstalledPrinters collection, PrinterSettings

class, 418
Installer class, 623, 624
InstallerCollection class, 624
Installers property, Installer class, 624
Installutil command, 626
Installutil Recipe15-07.exe command, 625
Installutil.exe, 623
instance constructor, 562
Instance property, 597
InstanceName column, 340
instantiation, 121
int type, 57–58
Integer type, 59
Integer value, 611
Integrated Windows authentication, 453
IntelliSense

creating extension methods, 46
using anonymous types, 45
using object initializers, 43

interface and pattern recipes, 561–603
implementing cloneable type, 567–571
implementing comparable type, 571
implementing custom event argument,

593–595
implementing custom exception class,

589–593

interfaces
data provider interfaces, 330
exposing .NET component to COM, 558

Interlocked class, 167–168
Internet flag, permcalc command, 505
Internet permission set, 503
interoperability, 539–559
Intersect method, 257
IntPtr class, 534, 543
IntPtr type, 518
InvalidCastException

copying contents of collection to array, 79
testing object type, 119

InvalidOperationException, 576
implementing enumerable type using

custom iterator, 577
pinging IP addresses, 460

InvalidOperationException class, 510
InvariantName column, 332
Invoke method, ConstructorInfo class, 121
IO I/O classes, 183
IObserver interface, 597
IOException, 219
IP addresses

endpoint, 462
pinging IP addresses, 460–462
resolving host name to IP address using

DNS, 458–459
IPAddress class, 459
IPGlobalProperties class, 439
IPlugin interface, 110, 122
IPrincipal class, 449
IPrincipal interface

impersonating Windows users, 518
restricting which users can execute code,

514–515
role-based security, 511
WindowsPrincipal class, 511

IPStatus enumeration, 460
irregularly shaped controls, 397–399
Is operator, 119
IsAlive property, Thread class, 169–170
IsAvailable property,

NetworkAvailabilityEventArgs
class, 441

IsBodyHtml property, MailMessage class, 456
IsBusy property, 141, 383
IsClosed property, 320
IsClustered column, 340
IsCompleted property, IAsyncResult instance, 134

Herman_970-5INDEX.fm Page 652 Monday, March 24, 2008 11:54 AM

653■I N D E X

IsDaylightSavingTime method, 74
IsDBNull method, 321
IsDefined method, ICustomAttributeProvider

interface, 127
ISerializable interface, 563–564

GetObjectData method, 563, 590
implementing custom event argument, 594
implementing custom exception class, 590
implementing serializable types, 562–564

ISerializable.GetObjectData method, 563, 590
IsFinalizingForUnload method, AppDomain

class, 116
IsGranted method, 498–500, 505–506
IsInRole method, WindowsPrincipal class,

511–512
IsMatch method, Regex class, 64
IsNot operator, 119
IsNullable property, 317
isolated storage, 223–225
IsolatedStorageFileStream class, 223
IsolatedStoragePermission class, 224
IsPathRooted property, 215
IsPublic property, RegexCompilationInfo class,

66, 80
IsReadOnly property, FileInfo class, 185
IsReady property, DriveInfo class, 186
IsReceiveOnly property, 439
IsSubClassOf method, 119
IsSupported property, HttpListener class, 449
IsSynchronized property, 173
ISubject interface, 597
IsVisible method, 394, 395
Item element, 15, 295
Item property, 320
iterators, 575–582
IVideoWindow interface, 415
IVideoWindow.Owner property, 415
IVideoWindow.SetWindowPosition

property, 415
IWshShortcut instance, 626–627

■J
JIT (just-in-time) compilation, 66, 539
JIT directory tree, 197–200
Join clause, 250–252, 280
Join method, 251

knowing when thread finished, 169–170
synchronizing multiple threads using event,

161–163
synchronizing multiple threads using

semaphore, 166

Join query clause, 280
joining multiple XML documents, 280–281
just-in-time (JIT) compilation, 66, 539

■K
KeepAlive(mutex) statement, 181
Kernel32.dll file, 545, 550
Kernell32.dll, 540
key pairs, strong-named, 26–27
Key property

ConsoleKeyInfo class, 93
KeyedHashAlgorithm class, 531

KeyAvailable method, Console class, 93
KeyChar property, ConsoleKeyInfo class, 93
keycontainer /keycontainer compiler switch, 28
KeyedHashAlgorithm class

Create method, 531
ensuring data integrity using keyed hash

code, 530–531
Key property, 531

keyfile /keyfile compiler switch, 28
KeyPress event, ComboBox control, 362
Kill method, 177–178

MainWindowHandle property, 543
methods, 177
processes running on a remote

computer, 176
start application running in new process,

174–175
Start method, 174–175
WaitForExit method, 176–178

■L
Label class, 374
Label control, 392
LabelText property, 353
lambda expressions, 47–49
Language Integrated Query. See LINQ
language modifiers, 506
/language parameter, 338
Language property, 370
LargestWindowHeight property, Console

class, 23
LargestWindowWidth property, Console

class, 23
Last method, 253
LastAccessTime property, 185
LastWriteTime property, 185
LayoutKind class, 546
lazy policy resolution process, 499
leaseTime attribute, 490

Herman_970-5INDEX.fm Page 653 Monday, March 24, 2008 11:54 AM

654 ■IN D E X

Length property
FileInfo class, 185, 194
StringBuilder class, 52

less than (<) operator, 71
less than or equal to (<=) operator, 71
libpath /libpath switch, 11
lifetime lease, 490
LinkDemand security, 497–498
LinkedList collection, 85
LINQ (Language Integrated Query)

APIs extending LINQ, 233
casting collection to specific type, 259–261
comparing and combing collections, 256–258
control query results, 237–238
displaying collection data using paging, 254
filtering data, 240–241
using implicitly typed variables, 40–41

LINQ to XML, 263–298
overview, 263
schemas

creating for .NET class, 293–294
generating classes from, 294–295

XML documents
changing value of elements or attributes,

271–272
creating, 264–267
inserting elements into, 269–270
joining and querying multiple, 280–281
querying for elements in specific XML

namespaces, 276–278
querying using LINQ, 274–275
querying using XPath, 278–280
removing or replacing elements or

attributes, 272–274
validating against schemas, 285–289

XML files, converting to delimited files,
281–284

list box control, 358
List collection, 85
list view control, 364
ListBox class, 358–359
ListBox control

forcing display of most recently added
item, 358

providing context-sensitive help to
users, 381

ListView control
ListViewItemSorter property, 365
Sort method, 364–365
sorting ListView by any column, 364

ListViewItem class, 347
ListViewItemComparer class, 365
ListViewItemSorter property, ListView

control, 365
literals, 62
little-endian byte ordering, 56
Load event, 198
Load method, 98–99, 268, 295, 412, 493
LoadFrom method, Assembly class, 98–99
loading assembly into current application

domain
instantiating type in remote application

domain, 98–100
loading unnessary assemblies into

application domains, 104–105
passing data between application domains,

113–115
retrieving object type, 116
testing object type, 119
unload assemblies or application domains at

runtime, 115–116
LoadSync method, 412
LoadUserProfile property, ProcessStartInfo

class, 175
LoadWithPartialName method, Assembly

class, 98
Local property, 74
Localizable property, 370
localization

creating multilingual forms, 369–387
English and French localizations, 372–387

LocalMachine field, RegistryKey class, 615
LocalMachine value, DataProtectionScope

enumeration, 537
LocalName property, 277
locks, 155
logical operators, 20
LogonUser function, 518
LongCount function, 245
LongRunningMethod, 134
LoopbackInterfaceIndex property,

NetworkInterface class, 440

■M
m switch, Certificate Creation tool, 38
MachineName property, Environment

class, 606
MACTripleDES algorithm class, 531
MACTripleDES class, 531
MailAddress class, 456
MailAddressCollection class, 456

Herman_970-5INDEX.fm Page 654 Monday, March 24, 2008 11:54 AM

655■I N D E X

MailMessage class, 455–456
MailReceivedEventArgs class, 594
main /main switch, 3
Main method, 5, 564, 572, 587, 601
MainWindowHandle property, Process class, 543
makecert.exe (Certificate Creation tool), 37
MakeReadOnly method, SecureString class, 534
MalformedLineException, 205–206
managed code

description, 539
RCW (runtime callable wrapper), 414

managed types, 558
ManualResetEvent class

classes used as triggers, 150
Reset method, 160
Set method, 160
synchronizing multiple threads using

event, 159
/map parameter, 338
Marshal class

calling unmanaged function that uses
structure, 545

FinalReleaseComObject method, 553–554
GetLastWin32Error method, 549–550
protecting sensitive data in memory, 534
ReleaseComObject method, 414, 554
SizeOf method, 545–546

MarshalAsAttribute, 546
MarshalByRef class, 482
marshal-by-reference types. See MBR types
MarshalByRefObject class

classes deriving from, 106
creating type not deriving from, 105
GetLifetimeService method, 490
InitializeLifetimeService method, 489–491
making objects remotable, 481
MBR (marshal-by-reference) types, 106
namespace, 106
registering remotable classes in assembly,

486–488
marshal-by-value types. See MBV types
Mask property, MaskedTextBox control, 359
MaskedTextBox control

BeepOnError property, 359
Mask property, 359
MaskInputRejected event, 359
restricting input to TextBox, 360
solving user-input validation problems, 360
validating user input and reporting

errors, 377

MaskInputRejected event, MaskedTextBox
control, 359

max calculations, 246–247
Max method, 247
Max Pool Size setting, 304
MaxCapacity property, StringBuilder class, 52
MaximizeBox property, 372
maxOccurs attribute, 286
MBR (marshal-by-reference) types

controller class, 109
description, 106
instantiating type in remote application

domain, 109
passing data between application

domains, 113
passing objects by reference, 107

MBV (marshal-by-value) types
description, 106
instantiating type in remote application

domain, 109
passing data between application

domains, 113
passing MBV references across application

domains, 104
passing objects by value, 107

MD5 algorithm, 523
MD5CryptoServiceProvider class, 524
MDI (Multiple Document Interface)

application, 352–354
MdiChildren property, 353
MdiParent property, 353
Me keyword, 155
member variable, 171
MemberwiseClone method, Object class, 568
memory, 533–536
MemoryProtectionScope enumeration, 537
MemoryStream class

converting Decimal type to byte array, 57
implementing cloneable type, 568
ToArray method, 57

MemoryStream class, System.IO, 56
MenuItem class, 347
MessageBox class, 347
MessageInfo class, 131
metacharacters, 62
metadata

assembly manifest, 9
creating custom attributes, 124–126
loading assembly into current application

domain, 98
Type class retrieving object type, 117

Herman_970-5INDEX.fm Page 655 Monday, March 24, 2008 11:54 AM

656 ■IN D E X

method syntax, 249
MethodBase class, 127
methods

creating asynchronous method to update
user interface, 140–145

creating extension methods, 45–47
executing method asynchronously, 133–140
executing method in separate thread at

specific time, 147–149
Microsoft ActiveX Data Objects component, 552
Microsoft ADO.NET, 299
Microsoft Intermediary Language. See MSIL
Microsoft SQL Server 2005, 129
Microsoft.VisualBasic.FileIO namespace, 205
Microsoft.Win32 namespace

Registry class, 612–615
RegistryKey class, 612–615
RegistryValueKind enumeration, 613–616

Microsoft.Win32.Registry class, 612–615
Microsoft.Win32.RegistryKey class, 612, 615
min calculations, 246–247
Min Pool Size setting, 305
MinimizeBox property, 372
minOccurs attribute, 286
Missing field, Type class, 554
MissingMethodException, 102
modifiers, 506
Modifiers property, ConsoleKeyInfo class, 93
modules, 8–9
Monitor class

compared to Mutex class, 163
constructing in a Using statement, 181
Enter method, 154–155
Exit method, 154–155
Pulse method, 156
PulseAll method, 156
synchronizing multiple threads using

monitor, 154–155
Synclock statement, 155
Wait method, 156

monitors
description, 155
synchronizing multiple threads using

monitor, 154–159
threads acquiring locks, 155

mouse events, 400
MouseDown event, Control class

creating movable borderless form, 373
supporting drag-and-drop functionality, 380

MouseEventArgs class, 593

MouseMove event, 373, 374, 395
MouseUp event, 373, 374
movable sprites, 399–403
MoveDirectory method, FileSystem class, 192
MoveFile method, FileSystem class, 192
MoveNext method, IEnumerator, 576
MoveTo method, 191
MP3 files, 413
MSBuild.exe, 14–17
MSIL (Microsoft Intermediary Language)

managed code, 539
using anonymous types, 44–48
using implicitly typed variables, 40

MSIL Disassembler tool (Ildasm.exe), 9
MSMask.dll file, 556
multilingual forms, 369–387
multimedia, 391–435

creating irregularly shaped form or control,
397–399

creating movable shape, 399–403
creating scrollable image, 403–405
DirectShow, 415–417
finding all installed fonts, 392–394
hit testing with shapes, 394–397
increasing redraw speed with double

buffering, 407–408
irregularly shaped controls, 397–399
movable sprites, 399–403
overview, 391–392
printing

dynamic print preview, 428–431
finding information about installed

printers, 418–420
managing print jobs, 431–435
multipage documents, 423–426
simple documents, 420–422
wrapped text, 426–427

screen captures, 405–406
scrollable images, 403–404
sound files, 413–415
system sounds, 410–411
thumbnails, 409–410
WAV files, 412–413

Multiple Document Interface (MDI)
application, 352–354

multiple threads
asynchronous communications using TCP,

466–474
executing method using thread from thread

pool, 132

Herman_970-5INDEX.fm Page 656 Monday, March 24, 2008 11:54 AM

657■I N D E X

synchronizing access to shared data,
167–169

synchronizing multiple threads
using event, 159–162
using monitor, 154–159

Multiselect property, OpenFileDialog class, 221
MustInherit class, 320
MustInherit FontCollection class, 392
MustInherit keyword, 124
MustInherit

System.Data.Common.DbCommand
class, 311

MustInherit
System.Data.Common.DbConnection
class, 301

MustInherit
System.Data.Common.DbParameter
class, 316

mutable strings, 542
Mutex class

classes used as triggers, 150
ensuring only one instance of application

executing, 179–181
ReleaseMutex method, 163
synchronizing multiple threads using

mutex, 163
mutexes

ensuring only one instance of application
executing, 179–181

synchronizing multiple threads using
mutex, 163

System.GC.KeepAlive(mutex) statement, 181
My object, 183–184, 350
MyAttribute attributes, 274
My.Computer.Audio class, 411–413
My.Computer.FileSystem class

CombinePath method, 215
copying/moving/deleting file/directory, 190
DirectoryExists method, 216
displaying directory tree in TreeView

control, 200
FileExists method, 216
GetDirectoryInfo method, 184
GetDriveInfo method, 184
GetFileInfo method, 184
GetFiles method, 211
GetParentPath method, 215
methods, 192
OpenTextFieldParser method, 205
OpenTextFileReader method, 200–202
OpenTextFileWriter method, 200–202

ReadAllText method, 201
retrieving file/directory/drive

information, 187
specifying invalid path/directory/drive, 186

My.Computer.Network class
DownloadFile method, 443–446
NetworkAvailabilityChanged event, 441–443
UploadFile method, 446

My.Computer.Ports class, 228
My.Computer.Registry class, 613–615
MyElement child elements, 274
My.Forms class, 350
MyGenericType class, 87
My.Settings class, 356

■N
n switch, Certificate Creation tool, 38
Name child elements, 274
Name column, 332
Name property, 66, 185, 277, 309, 439
named pipes, communicating using, 477–481
NamedPipeServerStream class, 477
namespace, 101, 113
Namespace property, 66, 277
name-value pairs, 113
naming

conflicts with, 25
conventions, 124
giving strong name to assemblies, 27–29

Navigate method, WebBrowser control, 383
.NET class, 293–294
.NET classes

creating XML schema for, 293–294
generating from schema, 294–295

.NET Compact Framework data provider, 300

.NET data types, 286

.NET Framework
accessing ADO objects, 552
calling unmanaged function that uses

callback, 548
data providers, 299
description, 539
exposing .NET component to COM, 558–559
interoperability features, 539
method overloading, 554
networking classes, 437
protected configuration, 308
rejecting permissions granted to

assemblies, 502
role-based security, 511

Herman_970-5INDEX.fm Page 657 Monday, March 24, 2008 11:54 AM

658 ■IN D E X

security policy, 495–502
software development kit (SDK), tools, 2
unmanaged code interoperability recipes,

539–559
using ActiveX control in .NET clients,

556–557
using COM component in .NET client,

551–553
.NET Framework software development kit

(SDK), 2
.NET Remoting, 106
Network class, 441
NetworkAddressChanged event,

NetworkChange class, 441–442
NetworkAvailabilityChanged event,

My.Computer.Network class, 441–443
NetworkAvailabilityChanged event,

NetworkChange class, 441–442
NetworkAvailabilityEventArgs class, 441
NetworkChange class

detecting changes in network
connectivity, 441

NetworkAddressChanged event, 441–442
NetworkAvailabilityChanged event, 441–442

NetworkCredential class
getting HTML page from site requiring

authentication, 453
sending e-mail using SMPT, 455

networking and remoting, 437–492
asynchronous communications using TCP,

466–474
communicating using named pipes, 477–481
communicating using TCP/IP, 462–466
communicating using UDP datagrams,

474–476
consuming RSS feed, 493
controlling lifetime of remote objects, 489–491
controlling versioning for remote objects,

491–492
detecting changes in network connectivity,

441–443
downloading data over HTTP or FTP,

443–446
downloading file and processing using

stream, 446–448
getting HTML page from site requiring

authentication, 452–454
hosting remote objects in IIS, 488–489
making objects remotable, 481–486
obtaining local network interface

information, 438–441
pinging IP addresses, 460–462

networking classes, .NET Framework, 437
NetworkInterface class, 439–441

GetAllNetworkInterfaces method, 438–441
methods, 439–440
obtaining local network interface

information, 438–440
NetworkInterfaceComponent

enumeration, 439
NetworkInterfaceType enumeration, 439
NetworkInterfaceType property,

NetworkInterface class, 439
networks

detecting changes in network connectivity,
441–443

discovering all instances of SQL Server on
network, 340

obtaining local network interface
information, 438–441

NetworkStream class
asynchronous communications using

TCP, 466
BeginRead method, 467
BeginWrite method, 466–467
communicating using TCP/IP, 462
communicating using UDP datagrams, 474

New keyword, 44
Newspaper class, 572
Newspaper.CompareTo method, 572
NextResult method, 321
nodes, XML document

inserting nodes in XML document, 269–272
searching XML document for nodes using

XPath, 278
nongeneric collections, 236
nonremotable types, 105, 106. See also

remotable types
nonserializable objects, 105. See also

serializable objects
NonSerializedAttribute

implementing serializable types, 562
Object class, 568
ObjectDisposedException, 583
OperatingSystem class, 606
PlatformNotSupportedException, 449
Random class, 521
SerializableAttribute class, 106, 562, 590–594
String class, 568, 586
TimeSpan structure, 146, 490
Type class, 79
Version class, 606

Herman_970-5INDEX.fm Page 658 Monday, March 24, 2008 11:54 AM

659■I N D E X

NoPrincipal value, PrincipalPolicy
enumeration, 515

NOT (inequality) operator, 20
Notify method, 597
NotifyFilter property, FileSystemWatcher

class, 226
NotifyFilters enumeration, 226
NotifyIcon control, 376
NotInheritable class, 594
NotInheritable keyword

implementing custom event argument, 594
implementing custom exception class, 590

Now property, DateTime structure, 148
NumberFormatInfo class, 587
numeric input, regular expression for, 64
Numeric property, ListViewItemComparer

class, 365

■O
Object argument, 613
Object class, 84, 116–119, 568
Object instance, 599
Object reference, 327
Object Relational Designer (O/R Designer), 334
ObjectDisposedException, 583
ObjectHandle class, 104, 109
objects

accessing objects outside application
domain, 105

immutability of objects, 52
instantiating objects using reflection, 121
linking data objects to controls, 347–348
locking current object, 155
making objects remotable, 481–486
methods returning Type objects, 117
retrieving object type, 116
storing serializable object with state to file,

89–92
testing object type, 119
using object initializers, 41–44

Observer design patterns, 561
observer patterns, 577–603
ODBC connection pooling, 306
ODBC data provider

connection pooling, 306
description, 299

ODBC Data Source Administrator tool, 306
Odbc namespace, System.Data, 299
OdbcCommand class, 312
OdbcConnection class, 301

OdbcConnectionStringBuilder class, 307
OdbcDataReader class, 320
OdbcFactory class, 331
OdbcParameter class, 316
Of keyword, 85–86
Offset property, 69, 423
OLE DB data provider

connection pooling, 306
description, 299

OLE DB Services=-4; setting, 306
OleDb namespace, System.Data, 299
OleDb prefix, 299
OleDbCommand class, 312
OleDbConnection class, 301, 302
OleDbConnectionStringBuilder class, 307
OleDbDataReader class, 320
OleDbFactory class, 332
OleDbParameter class, 316
OnCompletedRead callback, 208
OnContinue method, ServiceBase class, 619
OnCustomCommand method, ServiceBase

class, 619
OnDeserializedAttribute attribute, 563
OnDeserializingAttribute attribute, 563
OnKeyPress method, ComboBox control, 362
OnPause method, ServiceBase class, 619
OnPowerEvent method, ServiceBase class, 619
OnSerializedAttribute attribute, 563
OnSerializingAttribute attribute, 563
OnSessionChange method, ServiceBase

class, 619
OnShutdown method, ServiceBase class, 619
OnStart method, ServiceBase class, 619–620
OnStop method, ServiceBase class, 619
OnTextChanged method, ComboBox control, ?
OnXyz virtual methods, 444
Open method, 191, 301
OpenExeConfiguration method,

ConfigurationManager class, 309, 311
OpenExisting method, EventWaitHandle

class, 160
OpenFileDialog class, 221–222
OpenForms property, Application class, 350
OpenRead method

FileInfo class, 191
WebClient class, 444–447

OpenReadAsync method, WebClient class, 444
OpenReadCompleted event, WebClient

class, 444

Herman_970-5INDEX.fm Page 659 Monday, March 24, 2008 11:54 AM

660 ■IN D E X

OpenRemoteBaseKey method, RegistryKey
class, 616

OpenSerialPort method, Ports class, 228
OpenSubKey method, RegistryKey class, 616
OpenText method

File class, 200
FileInfo class, 191

OpenTextFieldParser method, FileSystem class,
192–205

OpenTextFileReader method, FileSystem class,
192, 200–202

OpenTextFileWriter method, FileSystem
class, 192

OpenWrite method
FileInfo class, 191
WebClient class, 446

OpenWriteAsync method, WebClient class, 446
operating systems, determining if user is

member of Windows group, 607
OperatingSystem class, 606, 607
OperationalStatus property, NetworkInterface

class, 439
operators, DateTime and TimeSpan, 71
Option Infer, 40
Option Strict, 40
optional permission request, 502
OptionalFieldAttribute attribute, 562
OptionalFieldAttribute class, 562
Options property, RegexCompilationInfo

class, 66
Options value, 66
Or bitwise operator, 189
O/R Designer (Object Relational Designer), 334
OR operator, 20
Oracle data provider

connection-pooling functionality, 304
description, 299

OracleClient namespace, System.Data, 299
OracleClientFactory class, 332
OracleCommand class, 313
OracleConnection class, 301
OracleConnectionStringBuilder class, 307
OracleDataReader class

data reader classes, 320
GetOracleXyz methods, 321

OracleDataReader method, 321
OracleParameter class, 316
Order By clause, 239
Order element, 295
OrderBy method, 239

OrElse operator, 20
OSVersion property, Environment class, 606
OSVersionInfo class, 546
OSVERSIONINFO structure, 545–546
out /out switch, 3
OutAttribute, 546
OutOfMemoryException property, 409
overloading, .NET Framework, 554
overriding, controlling inheritance and

member overrides using CAS, 506–508
overuse of conditional compilation

directives, 20
OverwritePrompt property, SaveFileDialog

class, 222
Owner property, IVideoWindow interface, 415

■P
PageNumber property, TextDocument

class, 423
paging, 254
Paint event handler, 395, 407
Panel control, 392–403
parameter classes, 316, 317, 331
ParameterDirection enumeration, 317
ParameterizedCommandExample method, 317
ParameterizedThreadStart delegate, 152
ParameterName property, 317
parameters

calling method in COM component without
required parameters, 554–555

common data type for parameters, 331
IDataParameter interface, 331

Parameters collection
Add method, 316–317, 331
IDbCommand interface, 316, 331

Parameters property, 312–316
Parameters.Add method, 317
Parent property, DirectoryInfo class, 185
Parse method, 68, 268
ParseExact method, 68
parsing

OpenTextFieldParser method, FileSystem
class, 192

parsing contents of delimited text file, 204
TextFieldParser class, 192

partitioning methods, 253
/password parameter, 338
Password property, 176, 624
passwords

calculating hash code of password, 522–526
verifying hash codes, 528–530

Herman_970-5INDEX.fm Page 660 Monday, March 24, 2008 11:54 AM

661■I N D E X

Path class
ChangeExtension method, 214
Combine method, 214
creating temporary files, 218
generating random filenames, 229
GetFileName method, 214
GetFullPath method, 217
GetInvalidPathChars method, 215
GetRandomFileName method, 229
GetTempFileName method, 218–229
manipulating strings representing file

path/name, 214
methods, 215
working with relative paths, 217

Path property, FileSystemWatcher class, 226
paths

determining if path is directory or file,
215–216

manipulating strings representing file
path/name, 214–215

monitoring file system for changes, 225–227
relative paths, 218
working with relative paths, 216–218

Pattern property, RegexCompilationInfo class,
66, 81

pattern recipes. See interface and pattern
recipes

patterns
Dispose pattern, 582
Event pattern, 594
implementing Observer pattern, 597–603
implementing Singleton pattern, 595–597
Observer pattern, 577

Pause method, 413, 431
people.bin file, 92
people.soap file, 92
performance

connection pooling, 304
non-thread-safe collections, 173
using compiled regular expressions, 65–68

PerformanceData field, RegistryKey class, 615
permcalc command, 504, 505
Permcalc.exe, 503–504
permissions

assemblies, 495
determining specific permissions at

runtime, 505–506
disabling execution permission checks,

498–500
giving strong name to assemblies, 27

identity permissions, 507
limiting permissions granted to assembly,

502–503
permission demands, 495
rejecting permissions granted to

assemblies, 502
runtime granting specific permissions to

assembly, 500–501
using isolated file storage, 223–225
viewing permissions required by assembly,

503–505
Permissions View tool, 503
PermissionSetAttribute class, 508
Person class, 587
PerUserRoaming value, 311
PerUserRoamingAndLocal configuration

setting, 311
PhysicalAddress class, 439
PIA (primary interop assembly), 551–552
PictureBox control, 403, 415
PictureBox.Handle property, 415
PictureBox.SizeChanged event, 415
pictures, 403
PIN, regular expressions, 64–67
Ping class, 460
PingCompleted event, Ping class, 460
PingCompletedEventHandler delegate, 460
pinging IP addresses, 460–462
PingOptions class, 460
PInvoke, 497, 540
pipe character (|), 222, 477
Platform Invoke, 540
Platform property, OperatingSystem class, 607
PlatformNotSupportedException, 449
Play method, 410–413
Player object, 413
Player.Play() method, 413
PlayMode parameter, 412
PlaySync method, SoundPlayer class, 412
PlaySystemSound method,

My.Computer.Audio class, 411
PluginManager class, 110
Point class, 394
PolicyException class

restricting which users can execute code, 515
runtime granting specific permissions to

assembly, 500
polling

determining if asynchronous method
finished, 328

executing methods asynchronously, 134

Herman_970-5INDEX.fm Page 661 Monday, March 24, 2008 11:54 AM

662 ■IN D E X

PollingExample method, 135
Pooling setting, 305
Port property, SmtpClient class, 455
ports

listing all available COM ports, 228
writing to COM/serial port, 228–229

Ports class, My.Computer, 228
PowerUser value, WindowsBuiltInRole

enumeration, 512
Prefixes property, HttpListener class, 449
preventing decompilation of assemblies, 39
primary interop assembly (PIA), 551–552
PrincipalPermission class, 514
PrincipalPermissionAttribute class, 514
PrincipalPolicy enumeration, 515
print jobs, 431–435
print preview, 428–431
Print Preview window, 428
PrintDialog class, 418–421

Document property, 421
printing simple document, 420–421
retrieving information about printers, 418

PrintDialog.Document property, 421
PrintDocument class, 418–423
PrintDocument.DefaultPageSettings

property, 420
PrintDocument.PrinterSettings property, 420
PrintDocument.PrintPage event, 420–423
PrinterName property, PrinterSettings

class, 418
printers, retrieving information about, 418–420
PrinterSettings class, 418
PrinterSettings property, PrintDocument

class, 420
printing

managing print jobs, 431–435
multipage documents, 423–426
multiple page document, 423–424
printing multiple page document, 423
printing simple document, 420
printing wrapped text, 426
showing dynamic print preview, 428–431
simple document, 420

PrintOperator value, WindowsBuiltInRole
enumeration, 512

PrintPage event, 420
PrintPage event handler, 424
PrintPageEventArgs class, 423–424
PrintPageEventArgs.HasMorePages

property, 423
PrintPreviewControl class, 428–429

PrintPreviewControl control, 429
PrintPreviewControl property, 429
PrintPreviewControl.Document property, 429
PrintPreviewDialog class, 428
PrintTestPage method, Win32_Printer class, 435
Private constructor, 569, 596
Private field, 562
private key

creating strong-named key pairs, 27
delay signing assemblies, 31

Private Key screen, Sign Tool, 35
Private members, 5
Private methods, 39
Private ReadOnly data members, 594
Private Shared member, 596
PrivateBinPath property, AppDomainSetup

class, 101
privatePath attribute, 99
Process class

CloseMainWindow method, 177–178
getting handle for control/window/file, 543
HasExited property, 178

processes
considerations before using thread pool, 132
defined, 97
start application running in new process,

174–177
synchronization, 129
terminating process, 177–179
threads and processes, 129

Process.GetProcess function, 235–252
ProcessInfo class, 174
ProcessName property, 252
ProcessorCount property, Environment

class, 606
ProcessStartInfo class

properties, 175–176
protecting sensitive data in memory, 534

Process.Threads collection, 245–246
ProcessWindowStyle enumeration, 176
Product class

generating .NET class from XML schema, 295
serializing objects to/from XML, 291

ProductCatalog class
creating XML schema for .NET class, 294
serializing objects to/from XML, 291

ProductCatalog_Invalid.xml file
generating .NET class from XML schema, 295
validating XML document against

schema, 289
productID variable, 265

Herman_970-5INDEX.fm Page 662 Monday, March 24, 2008 11:54 AM

663■I N D E X

ProgressChanged event, 141–142
ProgressChangedEventArgs class, 142
ProgressPercentage property, 142
ProjectInstaller class, 623
properties and classes

retrieving file/directory/drive
information, 184

TotalFreeSpace property, 220
Protect method, 537
protected configuration, .NET Framework, 308
Protected constructor, 563
Protected field, 562
Protected Friend members, 9
Protected members, 5
Protected method, 568, 619
ProtectedData class, 536–537
ProtectedMemory class, 536–537
protecting sensitive data in memory, 534
ProtectSection method, SectionInformation

class, 309
ProviderName property,

ConnectionStringSettings class, 309
proxies, 106–107
Public constructors, 590
Public fields, 295, 562
public key

creating strong-named key pairs, 26
delay signing assemblies, 31

Public properties, 594
Public variables, 290
Publisher class, 507
publisher policy

DisallowPublisherPolicy property, 101
specifying in assemblies, 99

PublisherIdentityPermissionAttribute
class, 507

Pulse method, Monitor class, 156
PulseAll method, Monitor class, 156

■Q
Quartz library, 413, 415
QuartzTypeLib, 415
queries

group query results, 248–250
query data from multiple locations, 250–253

query syntax, 249
querying

control query results, 237–238
for elements in specific XML namespaces,

276–278

filtering data using LINQ, 240–241
generic collection, 234–236
multiple XML documents, 280–281
nongeneric collection, 236
XML documents using LINQ, 274–275
XML documents using XPath, 278–280

Queue collection, 79–85
queues

managing print queues, 431
retrieving information from print queue, 435

QueueUserWorkItem method, ThreadPool
class, 130

■R
Random class, 521
random filenames, 229
random numbers, 521–522
RandomNumberGenerator class, 521
RBS (role-based security)

description, 495
determining if user is member of Windows

group, 511–513
interfaces, 511
restricting which users can execute code,

514–517
RCW (runtime callable wrapper)

creating, 552
description, 413
generating using Visual Studio, 552
using ActiveX control in .NET clients,

556–557
using COM component in .NET client,

551–552
Read method, 92, 200–201, 203, 285, 321
ReadAllText method, FileSystem class, 201
ReadDecimal method, BinaryReader class, 203
ReadFields method, TextFieldParser class,

205–206
reading

binary files, 203–204
reading files asynchronously, 208–210
text files, 200–202
user input from Windows console, 92–95

ReadKey method, Console class, 92–93
ReadLine method

Console class, 92–93
StreamReader class, 200–201

ReadString method, BinaryReader class, 203
ReadToEnd method, StreamReader class, 201
Recipe07-10.exe Employees.xml command, 284
Recipe15-05 Environment command, 618

Herman_970-5INDEX.fm Page 663 Monday, March 24, 2008 11:54 AM

664 ■IN D E X

Rectangle class
hit testing with Rectangle object, 397
object description, 394

Rectangle.Contains method, 394
redraw speed, 407–408
reference counting, 553
reference types, 107
reflection, 97

inspecting value of custom attributes at
runtime, 127–128

instantiating objects using reflection, 121
Type class retrieving object type, 117

Refresh method, 186
refused permission request, 502
Regex class

CompileToAssembly method, 66–67
creating instance compiled to MSIL, 67
IsMatch method, 64
testing multiple strings, 65
ValidateInput method, 64–65

Regex class, System.Text.RegularExpressions,
64–65

RegexCompilationInfo class, 66
RegExDesigner.NET, 62
RegExLib.com, 62
RegexOptions enumeration, 66
Region class, 395, 398
Region property, 397, 398
Region.IsVisible method, 394–395
RegisteredWaitHandle class, 150
RegisterWaitForSingleObject method,

ThreadPool class, 150
RegisterWellKnownServiceType method,

RemotingConfiguration class, 486
Registry class, 615. See also

My.Computer.Registry class
GetValue method, 612
reading and writing to Windows registry, 612
searching Windows registry, 615–618
SetValue method, 612

registry, Windows
reading and writing to, 612–615
searching, 615–618

RegistryKey class
methods, 616
navigating through child subkeys, 616
searching Windows registry, 615–618
shared fields, 615

RegistryKey object, 615–616
RegistryValueKind enumeration, 616

RegistyValueKind enumeration, 613
regular expressions, 62–63
Regulator, The, 62
relative paths, 216–218
RelativeSearchPath property, AppDomain

class, 101
Release method, Semaphore object, 165
ReleaseComObject method, Marshal class,

414, 554
ReleaseMutex method, Mutex class, 163
remotable objects

controlling lifetime of remote objects,
489–491

controlling versioning for remote objects,
491–492

hosting remote objects in IIS, 488–489
making objects remotable, 481–486

remotable types, 109–113. See also
nonremotable types

remote application domains, 102–104
RemoteObjects assembly, 492
remoting, 437–492

controlling lifetime of remote objects,
489–491

controlling versioning for remote objects,
491–492

DCOM and, 437
RemotingConfiguration class, 481, 486
Remove method, 273
RemoveAccessRule method, FileSecurity

class, 230
RemoveAccessRuleAll method, FileSecurity

class, 230
RemoveAccessRuleSpecific method,

FileSecurity class, 230
RemoveAll method, 273, 533
RemoveAttributes method, 273
Renamed event, FileSystemWatcher class, 226
RenamedEventArgs class, 226
RenderFile method, IMediaControl

interface, 413
Renew method, ILease interface, 490
renewOnCallTime attribute, 490
RenewOnCallTime property, ILease

interface, 490
Replace method, FileInfo class, 191
ReplaceAll method, 273
ReplaceAttributes method, 273
ReplaceNodes method, 273
ReplaceWith method, 273

Herman_970-5INDEX.fm Page 664 Monday, March 24, 2008 11:54 AM

665■I N D E X

Replicator value, WindowsBuiltInRole
enumeration, 512

ReplyTo property, MailMessage class, 456
ReportProgress method, 141–142
Request property, HttpListenerContext c

lass, 449
RequestAdditionalTime method, ServiceBase

class, 619
requestedExecutionLevel property, 389
RequestHandler method, HttpListener

class, 450
RequestOptional value, SecurityAction

enumeration, 502
RequestRefuse value, SecurityAction

enumeration, 502
Reset method, 160, 576
ResetAbort method, Thread class, 171
ResetAccessRule method, FileSecurity class, 230
ResetColor method, Console class, 24
resgen.exe (Resource Generator), 11
resource file, 11–13
Resource Generator (resgen.exe), 11
resource /resource switch, 11
ResourceManager class, 11
Resources class, My object, 183
Response property, HttpListenerContext

class, 449
Resume method, Win32_Printer class, 431
Resume method, Win32_PrintJob class, 431
ResumeLayout method, Control class, 345
resx format, 11–13
return values, 113
Reverse method, 46–47
ReverseString method, StringBuilder class, 52
RichTextBox class, 222
RID (Windows role identifier), 512
RIPEMD160 algorithm, 523
RIPEMD160Managed class, 524
RNGCryptoServiceProvider class, 521–522
Roaming flag, IsolatedStorageFile class, 224
role-based security, 495–511. See RBS
Root property, DirectoryInfo class, 185
root test certificate, 37
RowCount property, TableLayoutPanel

container, 369
RsaProtectedConfigurationProvider class, 309
RSS feed, 493
Run As Administrator, 2

Run method
Application class, 5
IMediaControl interface, 413
ServiceBase class, 618–623

RunInstallerAttribute, 623, 624
Running method, ThreadState class, 152
runtime

accessing runtime environment
information, 605–609

determining specific permissions at
runtime, 505–506

inspecting value of custom attributes at
runtime, 127–128

instantiating objects using reflection, 121
unload assemblies or application domains at

runtime, 115–116
runtime callable wrapper. See RCW
runtime environment information, 605–609
runtime hosts, 129
RunWorkerAsync method, 141–142
RunWorkerCompleted event, 141–142

■S
S element, regular expressions, 63
SameLogon value, MemoryProtectionScope

enumeration, 537
SameProcess value, MemoryProtectionScope

enumeration, 537
sandbox parameter, permcalc command, 504
Save method, 264–265, 309, 356, 627
SaveFileDialog class, 221–222
SavePolicy method, SecurityManager class,

498–500
scalability, 301, 304
schemas. See also XML schema

creating for .NET class, 293–294
generating classes from, 294–295
validating XML documents against, 285–289

SCM (Windows Service Control Manager), 619
screen capture, 405–406
Script Host Object Model, 627
scrollable images, 403–405
SDK (.NET Framework software development

kit), 2, 605
SE_TCB_NAME privilege, 518
SearchOption enumeration, 211
secret key, ensuring data integrity using keyed

hash code, 530
SectionInformation class, 309

Herman_970-5INDEX.fm Page 665 Monday, March 24, 2008 11:54 AM

666 ■IN D E X

SecureString class, 175, 533–534
security and cryptography, 495–537

allowing partially trusted code to use
strong-named assemblies, 496–498

calculating hash code of files, 526–528
calculating hash code of password, 522–526
CAS (code access security), 495
CLR using evidence, 101
controlling inheritance and member

overrides using CAS, 506–508
creating cryptographically random number,

521–522
database connection strings, 308
determining if user is member of Windows

group, 511–513
determining specific permissions at

runtime, 505–506
further reading on, 496
LinkDemand security, 497
RBS (role-based security), 495
using isolated file storage, 224

security identifier (SID), 512
security policy, .NET Framework

description, 495
optional permission request, 502

SecurityAction enumeration
InheritanceDemand value, 506
limiting permissions granted to

assemblies, 502
RequestMinimum value, 501

SecurityException class
determining specific permissions at

runtime, 505
restricting which users can execute code, 514
runtime granting specific permissions to

assembly, 500
viewing permissions required by

assembly, 503
SecurityIdentifier class, 512
SecurityManager class

CheckExecutionRights property, 498–500
determining specific permissions at

runtime, 505
SecurityPermission class

ControlPolicy element, 499
ControlPrincipal element, 515–518
Execution element, 499
runtime granting specific permissions to

assembly, 501
SecurityPerssionFlag, 90
Select clause, 237–241, 245, 251, 282

Select method, 238, 251
SELECT queries, 321
SelectedPath property, FolderBrowserDialog

class, 221
SelectFromCollection method,

X509Certificate2UI class, 453
SelectNodes method, XmlDocument class, 278
SelectSingleNode method, XmlDocument

class, 278
semaphores, 165–167
Send method

Ping class, 460
SmtpClient class, 456

SendAsync method, 456, 460
SendCompleted event, 457
sequence tag, 286
serial port, 228–229
serializable class, 589
serializable objects. See also

nonserializable objects
implementing cloneable type, 568
MBV (marshal-by-value) types, 106
passing objects by value, 106–107
storing with state to file, 89–92

serializable types, 561–567
SerializableAttribute

implementing custom exception class, 590
implementing serializable types, 562–563

SerializableAttribute class, 106, 594
serialization

attributes, 563
implementing custom exception class, 590
implementing serializable types, 561–567
serializing objects to/from XML, 290

SerializationException, 113
SerializationFormatter permission,

SecurityPerssionFlag, 90
SerializationInfo class, 563–564
SerializationInfo.Get* method, 564
Serialize method, 89
SerialPort class, 228
SerialPortNames property, Ports class, 228
/server parameter, 338
ServerName column, 340
Service Control Manager (SCM), 619
ServiceAccount enumerator, 624
ServiceBase class, 618–622

creating Windows service, 618–623
events, 619
methods, 619

Herman_970-5INDEX.fm Page 666 Monday, March 24, 2008 11:54 AM

667■I N D E X

properties, 619–620
RequestAdditionalTime method, 619
Run method, 618–622

ServiceBase objects, 622
ServiceBase.Run method, 622
ServiceController class, 619
ServiceDependsUpon object, 624
ServiceDependsUpon property,

ServiceInstaller class, 624
ServiceInstaller class, 623–624
ServiceName object, 624
ServiceName property, 620, 624
ServicePack property, 607
ServiceProcessInstaller class, 623–624
SessionChangeDescription class, 619
Set accessor, XmlSerializer class, 290
Set method, 160
Set property, 290
Set Registry tool (setreg.exe), 37–38
SetAccessControl method, 230
SetAt method, SecureString class, 533
SetAttributeValue attribute, 271
SetAttributeValue method, 273
SetCurrentDirectory method, Directory

class, 217
SetData method, AppDomain class, 113–114
SetDefaultPrinter method, 435
SetDelimiters method, TextFieldParser

class, 205
SetElementValue attribute, 271
SetElementValue method, 273
SetError method, 377
SetFieldWidths method, TextFieldParser

class, 205
SetLastError field, DllImportAttribute, 549–550
SetMaxThreads method, ThreadPool class, 132
SetPrincipalPolicy method, AppDomain class,

515
setreg.exe (Set Registry tool), 37–38
SetStyle method, 407
SetThreadPrincipal method, AppDomain

class, 515
setting file or directory attributes, 189
Settings class, My object. See My.Settings class
SetValue attribute, 271
SetValue method, RegistryKey class, 612–616
SetWindowPosition method, IVideoWindow

interface, 415
SetWindowSize method, Console class, 24
SHA algorithms, 523

SHA1CryptoServiceProvider class, 523–524
SHA1Managed algorithm, 527
SHA1Managed class, 523–524
SHA256Managed class, 524
shallow copy, 79, 568
shapes

creating movable shape, 399–403
hit testing with, 394–397
performing hit testing with shapes, 394–397

shared assemblies, managing GAC, 38–39
Shared FromFile method, 409
Shared InstalledPrinters string collection, 418
Shared Main method, 620
Shared methods, 412, 587, 610
Shared Newspaper.CirculationSorter

property, 572
Shared property, 340, 596
Shared ServiceBase.Run method, 618
Short value, 611
shortcuts, 626–629
Show method, 347, 428
ShowDialog method, OpenFileDialog class, 221
SID (security identifier), 512
Sign Tool

File Selection screen, 33
Hash Algorithm screen, 36
Private Key screen, 35
prompt for password to private key, 35
Signature Certificate screen, 34
signing assemblies with Authenticode, 33–36
Signing Options screen, 34

SignalAndWait method, WaitHandle class, 160
signalled state, 159
Signature Certificate screen, Sign Tool, 34
Signing Options screen, Sign Tool, 34
simple data types, XML schema, 286
simple documents, 420–422, 426–427
Simple Object Access Protocol (SOAP), 89
simple types, 286
Single method, 253, 254
single quotes ('), 19
single-call activation

controlling lifetime of remote objects, 490
description, 482
making objects remotable, 484

SingleCall value, WellKnownObjectMode
enumeration, 486

Singleton pattern, 561, 595–597
Singleton value, WellKnownObjectMode

enumeration, 486

Herman_970-5INDEX.fm Page 667 Monday, March 24, 2008 11:54 AM

668 ■IN D E X

SingletonExample class, 596
Site class, 507
SizeChanged event, PictureBox control, 415
SizeOf method, Marshal class, 545–546
sk switch, Certificate Creation tool, 38
Skip clause, 254
Skip method, 256
Sleep method, Thread class, 134
SMTP, 455–458
SmtpClient class, 455–457
sn.exe. See Strong Name tool
SOAP (Simple Object Access Protocol), 89
SoapFormatter class, 89–92
SocketPermission class, 500–501
SocketPermissionAttribute class, 500
software development kit (SDK), 605
Software Publisher Certificate. See SPC
Software Publisher Certificate Test tool

(cert2spc.exe), 37
SomeProtectedMethod method, 508
Sort method, 77–78, 364–365, 571–572
sorting

collections, 571
contents of array or ArrayList collection,

77–78
data, 239

sound files, 413–415
SoundPlayer class, 411–412
sounds, system, 410–411
SPC (Software Publisher Certificate)

creating SPC to test Authenticode signing of
assembly, 37–38

generating SPC from X.509 certificate, 37
obtaining an SPC, 32
signing assemblies with Authenticode, 32

SpecialFolder enumeration, Environment
class, 607

SpecialFolders property, WshShell class, 627
Speed property, NetworkInterface class, 439
sprites, 399–403
/sprocs parameter, 338
SQL commands

executing, 311–315
executing database operations

asynchronously, 327
executing SQL command or stored

procedure, 311
using parameters in, 316–319
using parameters in SQL command or stored

procedure, 316

SQL queries, 320–323
SQL Server

discovering all instances of on network,
340–341

discovering all instances of SQL Server on
network, 340

executing database operations
asynchronously, 327

performing asynchronous database
operations against, 327–330

SQL Server CE data provider, 300, 306
SQL Server data provider, 300, 304
SqlCe namespace, System.Data, 300
SqlCe prefix, 300
SqlCeCommand class, 312
SqlCeConnection class, 301
SqlCeDataReader class, 320
SqlCeParameter class, 316
SqlClient namespace, System.Data, 300
SqlClientFactory class, 332
SqlCommand class, 313–327
SqlConnection class, 301–302, 317
SqlConnectionStringBuilder class, 307
SqlDataReader class, 320, 321
SqlDataSourceEnumerator class, 337–340
SqlDataSourceEnumerator.Instance class, 340
SqlDbType property, 317
SqlParameter class, 316, 317
SqlParameter.SqlDbType property, 317
SqlParamter class, 317
ss switch, Certificate Creation tool, 38
Stack collection, 79–85
StandardName property, 74
Start menu, 626–629
Start method

HttpListener class, 449
Process class, 174–175
ServiceController class, 619
Thread class, 152, 171

StartProcess method, AsyncProcessor class, 208
StartType object, 624
StartType property, ServiceInstaller class,

624–626
state

remoting, 437
single-call activation, 482
web services, 437

Status property, PingReply class, 460
stockInfo property, 251

Herman_970-5INDEX.fm Page 668 Monday, March 24, 2008 11:54 AM

669■I N D E X

Stop method
IMediaControl interface, 413
My.Computer.Audio class, 412
WebBrowser control, 383

stored procedures
executing, 311–315
executing SQL command or stored

procedure, 311
using parameters in, 316–319
using parameters in SQL command or stored

procedure, 316
StoredProcedure value, 312
StoredProcedureExample method, 317
storing database connection string

securely, 309
storing files, 223–225
storing serializable object with state to file,

89–92
Stream class

calculating hash code of files, 526
classes deriving from

MarshalByRefObject, 106
downloading data over HTTP or FTP, 444
ensuring data integrity using keyed hash

code, 531
System.IO, 87

StreamingContext class, 562–564
StreamReader class

downloading file and processing using
stream, 446–447

NET .NET Framework encoding, 200
Read method, 200–201
reading and writing text files, 200
ReadLine method, 200–201
ReadToEnd method, 201

streams
downloading file and processing using,

446–448
reading and writing data from, 183

StreamWriter class, 200, 477
String argument, 613
String array, 616
string based resource file, 11–13
String class

creating database connection string
programmatically, 306

Format method, 586
immutability of objects, 52
implementing cloneable type, 568
implementing formattable type, 586
protecting sensitive strings in memory, 533

String object, 51–53
string representations, 561
String value, 610
StringBuilder class

Capacity property, 52
instantiating objects using reflection, 121
Length property, 52
manipulating contents of String object, 52
MaxCapacity property, 52
mutable strings, 542
namespace, 121
ReverseString method, 52
ToString method, 52
verifying hash codes, 529

StringBuilder class, System.Text, 52
stringInfo data member, 591
strings

common encodings, 201
creating DateTime objects from strings, 68
determining if path is directory or file,

215–216
encoding using alternate character

encoding, 54–56
fixed-length strings, 546
manipulating contents of String object,

51–53
manipulating strings representing file

path/name, 214–215
mutable strings, 542
protecting sensitive strings in memory,

533–536
working with relative paths, 216–218

Strong Name tool (sn.exe)
creating strong-named key pairs, 26–27
delay signing assemblies, 31–32
verifying strong-named assembly not

modified, 30
Vr switch, 31–32

strongly typed collections, 84–86
StrongName class, 507
strong-named assemblies

allowing partially trusted code to use, 496–498
delay signing assemblies, 31
verifying strong-named assembly not

modified, 30
StrongNameIdentityPermissionAttribute

class, 507
strong-naming

assemblies, 98–99
creating strong-named key pairs, 26–27
giving strong name to assemblies, 27–29

Herman_970-5INDEX.fm Page 669 Monday, March 24, 2008 11:54 AM

670 ■IN D E X

StructLayoutAttribute class, 545
Structured Query Language. See SQL
structures, calling unmanaged function that

uses, 545–547
stylesheet element, 295
subexpression of regular expressions, 63
Subject property, MailMessage class, 456
SubjectEncoding property, MailMessage

class, 456
SubmitChanges method, 336
subtraction (-) operator, 71
success variable, 289
sum calculations, 243, 244
Supports method, NetworkInterface class, 439
SupportsDaylightSavingTime property, 74
SupportsMulticast property, NetworkInterface

class, 439
SuppressFinalize method, GC class, 583
SuspendLayout method, Control class, 345
sv switch, Certificate Creation tool, 38
synchronization

access to shared data, 167–169
access to shared resource, 155
multiple threads using event, 159–162
multiple threads using monitor, 154–159
multiple threads using mutex, 163
multiple threads using semaphore,

165–167
start application running in new process,

167–169
terminating execution of thread, 171–173
terminating process, 177–179
threads on lock wait queue, 155
WaitHandle methods for synchronizing

thread execution, 160
waiting, 328

communicating using named pipes, 477–481
communicating using TCP/IP, 462–466
determining whether asynchronous method

has finished, 134
executing method asynchronously, 133–140
managed-code synchronization

mechanisms, 155
Synchronized method, collections, 173
Synclock statement, 155
SyncRoot property, collections, 173
SyncRoot property, ICollection interface, 174
SyndicationFeed class, 493
System namespace

AppDomain class, 100, 515
AppDomainSetup class, 101

system sounds, 410–411
system tray icon, 376
System.ApplicationException class, 589
System.ArgumentNullException exception, 590
System.ArgumentOutOfRangeException

exception, 590
System.AsyncCallback delegate instance, 327
System.Collections namespace, 173, 568

ArrayList class, 90, 114, 572
deep copy, 568
IComparer interface, 77, 365, 571
IEnumerable interface, 575
IEnumerator interface, 508
shallow copy, 568

System.Collections.Generic namespace, 173
generic collections, 85
IComparer interface, 571
IEnumerator interface, 576
synchronization mechanisms, 174
using strongly typed collection, 84

System.Collections.Generic.IComparer(Of T)
interface, 571

System.Collections.Generic.IEnumerable(Of T)
interface, 575

System.Collections.Generic.List(Of T)
collection, 572

System.Collections.IComparer interface, 571
System.Collections.IEnumerable interface, 575
System.Collections.Specialized

namespace, 173
System.ComponentModel namespace, 444
System.ComponentModel.BackgroundWorker

class, 141
System.ComponentModel.RunInstallerAttribut

e(True) attribute, 623
System.Configuration namespace, 309
System.Configuration.Configuration

object, 309
System.Configuration.ConfigurationManager

class, 309
System.Configuration.ConfigurationManager.

OpenExeConfiguration method, 309
System.Configuration.ConnectionStringSetting

s object, 309
System.Configuration.dll assembly, 309
System.Configuration.Install namespace,

623, 624
System.Configuration.Install.dll assembly, 624
System.Configuration.Install.Installer class, 623
System.Configuration.Install.InstallerCollection

object, 624

Herman_970-5INDEX.fm Page 670 Monday, March 24, 2008 11:54 AM

671■I N D E X

System.Console class, 586
System.Data namespace, 330

command classes, 311–312
CommandType enumeration, 312
connection string builder classes, 306
data providers and data sources, 299
data reader classes, 320
database connection classes, 301
DataRow class, 340
DataSet class, 104, 331
DataTable class, 332, 340, 482
DbParameterCollection, 312
DbTransaction, 312
DbType enumeration, 317
IDbCommand interface, 311
IDbConnection interface, 301
parameter classes, 316
ParameterDirection enumeration, 317
writing database independent code, 330

System.Data.Common namespace, 301,
306, 331

System.Data.Common.DbConnectionString-
Builder class, 306

System.Data.Common.DbException class, 332
System.Data.Common.DbProviderFactory

class, 317, 331
System.Data.DataRow object, 340
System.Data.DbDataReader class, 320
System.Data.DbType enumeration, 317
System.Data.IDataParameter interface, 316
System.Data.IDataReader interface, 320
System.Data.IDataRecord interface, 320
System.Data.IDbCommand interface, 311
System.Data.IDbConnection interface, 301
System.Data.Linq.DataContext class, 335
System.Data.Linq.Mapping namespace,

335–336
System.Data.Odbc namespace

command class, 312
data reader class, 320
database connection class, 301
factory class, 331
parameter class, 316

System.Data.OleDb namespace, 299
command class, 312
data reader class, 320
database connection class, 301
factory class, 332
OleDbConnectionStringBuilder class, 307
parameter class, 316

System.Data.OracleClient namespace, 299
see OracleClient namespace,

System.Data, 299
command class, 312
data reader class, 320
database connection class, 301
factory class, 332
OracleConnectionStringBuilder class, 307

System.Data.SqlClient namespace, 300
command class, 312
data reader class, 320
database connection class, 301
factory class, 332
parameter class, 316
SqlCommand class, 327
SqlConnectionStringBuilder class, 307
SqlDataSourceEnumerator class, 340

System.Data.SqlClient.SqlCommand class,
323–327

System.Data.SqlServerCe namespace, 300
command class, 312
data reader class, 320
database connection class, 301
parameter class, 316

System.Data.Sql.SqlDataSourceEnumerator
class, 340

System.Diagnostics namespace
ConditionalAttribute class, 19
EventLog class, 610
EventLogEntryType enumeration, 610
FileVersionInfo class, 196
Process class, 174, 543
ProcessInfo class, 174
ProcessStartInfo class, 534
ProcessWindowStyle enumeration, 176

System.Diagnostics.EventLog class, 610
System.Diagnostics.EventLogEntryType

enumeration, 610
SystemDirectory property, Environment

class, 606
System.Drawing namespace, 391

Graphics class, 420
Image class, 409
Rectangle struct, 394
Region class, 395

System.Drawing.dll assembly, 420
System.Drawing.Drawing2D namespace,

394–398
System.Drawing.Drawing2D.GraphicsPath

object, 398

Herman_970-5INDEX.fm Page 671 Monday, March 24, 2008 11:54 AM

672 ■IN D E X

System.Drawing.Graphics object, 420
System.Drawing.Image class, 409
System.Drawing.Printing namespace, 391,

418, 420
System.Drawing.Printing.PrintDocument

instance, 420
System.Drawing.Printing.PrinterSettings

class, 418
System.Drawing.Region object, 397
System.Drawing.Text namespace, 392
System.Drawing.Text.InstalledFontCollection

class, 392
System.Environment class, 605
System.EnvironmentVariableTarget

argument, 609
System.EventArgs class, 593–598
System.Exception class, 589
System.FormatException exception, 590
System.GC class, 582
System.GC.KeepAlive(mutex) statement, 181
System.Globalization namespace, 69, 586
System.Globalization.CultureInfo class, 587
System.IAsyncResult object, 327
System.ICloneable interface, 567
System.IComparable interface, 571
System.IComparable(Of T) interface, 571
System.IDisposable interface, 301, 582
System.IFormattable interface, 586
System.IO namespace

BinaryReader class, 57, 203, 446
BinaryWriter class, 57, 203
classes deriving from

MarshalByRefObject, 106
Directory class, 215–217
DirectoryInfo class, 184–189, 190, 211
DriveInfo class, 184
File class, 215
FileAttributes enumeration, 185
FileInfo class, 184–189, 190, 347
FileLoadException class, 30, 500

System.IO.IsolatedStorage namespace, 223
System.IO.MemoryStream object, 568
System.IO.Ports namespace, 228
System.Linq namespace, 234
System.Linq.Enumerable class, 235, 257–259
System.Linq.Enumerable namespace, 253
System.Management.dll assembly, 431
System.Media namespace, 391–412
System.Media.SoundPlayer class, 412

System.NET namespace
Dns class, 458
HttpListener class, 448
HttpListenerContext class, 449
HttpListenerPrefixCollection collection, 449
ICredentialsByHost interface, 455
WebRequest class, 446
WebResponse class, 446

System.Net.Mail namespace, 455, 456
System.Net.NetworkInformation namespace

IPGlobalProperties class, 439
IPStatus enumeration, 460
NetworkChange class, 441
NetworkInterface class, 438
NetworkInterfaceComponent

enumeration, 439
NetworkInterfaceType enumeration, 439
OperationalStatus enumeration, 439
PhysicalAddress class, 439
Ping class, 460
PingCompletedEventHandler delegate, 460
PingOptions class, 460
PingReply class, 460

System.Net.Sockets namespace
NetworkStream class, 462–466
TcpClient class, 462
TcpListener class, 462–466
UdpClient class, 474

System.NonSerializedAttribute attribute, 562
System.ObjectDisposedException

exception, 583
System.OperatingSystem object, 607
SystemOperator value, WindowsBuiltInRole

enumeration, 512
System.Runtime.CompilerServices

namespace, 46
System.Runtime.InteropServices namespace

creating RCW, 552
DllImportAttribute class, 540
GuidAttribute, 558
Marshal class, 414, 534, 545
StructLayoutAttribute class, 545

System.Runtime.InteropServices.Marshal
class, 414

System.Runtime.Remoting namespace
ObjectHandle class, 104
RemotingConfiguration class, 481
WellKnownObjectMode enumeration, 486

System.Runtime.Remoting.Lifetime
namespace, 490

Herman_970-5INDEX.fm Page 672 Monday, March 24, 2008 11:54 AM

673■I N D E X

System.Runtime.Serialization namespace
attributes, 562–563
IFormatter interface, 89
implementing serializable types, 562
ISerializable interface, 562, 590–594
OnDeserializedAttribute, 563
OptionalFieldAttribute class, 562
SerializationException, 113
SerializationInfo class, 563
StreamingContext class, 562–563

System.Runtime.Serialization.Formatters.
Binary namespace, 89, 568

System.Runtime.Serialization.Formatters.
Binary.BinaryFormatter class, 568

System.Runtime.Serialization.Formatters.Soap
namespace, 89

System.Runtime.Serialization.ISerializable
interface, 562, 590–594

System.Runtime.Serialization.OptionalField-
Attribute attribute, 562

System.Runtime.Serialization.SerializationInfo
argument type, 563

System.Runtime.Serialization.StreamingContext
argument type, 563

System.Security namespace, 537
AllowPartiallyTrustedCallersAttribute

class, 496
SecureString class, 175, 533
SecurityException class, 500–505, 514
SecurityManager class, 505

System.Security.Cryptography namespace
calculating hash code of password, 523
DataProtectionScope enumeration, 537
HashAlgorithm class, 212, 522–526, 531
keyed hashing algorithm

implementations, 531
KeyedHashAlgorithm class, 530–531
MemoryProtectionScope enumeration, 537
ProtectedData class, 536
ProtectedMemory class, 536
RandomNumberGenerator class, 521
RNGCryptoServiceProvider class, 521

System.Security.Cryptography.X509Certificates
namespace, 453, 455

System.Security.Permissions namespace
FileIOPermission class, 503
identity permission types, 507
PrincipalPermission class, 514
PrincipalPermissionAttribute class, 514
SecurityAction enumeration, 502

System.Security.Policy namespace
Evidence class, 101, 508
evidence classes generating identity

permissions, 507
PolicyException class, 500, 515

System.Security.Principal namespace
IIdentity interface, 511
IPrincipal class, 449
IPrincipal interface, 511–518
PrincipalPolicy enumeration, 515
SecurityIdentifier class, 512
WindowsBuiltInRole enumeration, 512
WindowsIdentity class, 511, 517–518
WindowsPrincipal class, 511

System.SerializableAttribute attribute, 562,
590–594

System.ServiceModel.Syndication
namespace, 493

System.ServiceProcess assembly, 618
System.ServiceProcess namespace

ServiceProcessInstaller class, 624
SessionChangeDescription class, 619

System.ServiceProcess.dll assembly, 624
System.ServiceProcess.ServiceBase class, 618
System.ServiceProcess.ServiceInstaller

class, 624
System.ServiceProcess.ServiceProcessInstaller

class, 624
SystemSound class, 410–411
SystemSounds class, 411
System.String data members, 568
System.Text namespace

Encoding class, 54, 203, 456, 524
NET .NET Framework encoding, 200
StringBuilder class, 52, 121, 529

System.Text.RegularExpressions namespace,
64–66

System.Threading namespace
AutoResetEvent class, 159
EventResetMode enumeration, 160
EventWaitHandle class, 159
Interlocked class, 167
ManualResetEvent class, 159
Monitor class, 155
Mutex class, 163, 179
ParameterizedThreadStart delegate, 152
Semaphore class, 165
Thread class, 514
ThreadAbortException class, 171

Herman_970-5INDEX.fm Page 673 Monday, March 24, 2008 11:54 AM

674 ■IN D E X

ThreadStart class, 152
ThreadState enumeration, 152
ThreadStateException class, 152
Timeout class, 146
Timer class, 145–147
TimerCallback delegate, 145–147
WaitCallback delegate, 130

System.Threading.WaitHandle class, 328
System.Timers namespace, 145, 620
System.Windows class, 385
System.Windows.Forms namespace

Application class, 5
AxHost class, 556
classes, 343
CommonDialog class, 221
Control class, 399, 556
control classes, 343
FolderBrowserDialog class, 221
Form class, 5, 488
HelpProvider component, 381
OpenFileDialog class, 221
Panel control, 403
PictureBox control, 403
PrintDialog class, 420
PrintPreviewControl class, 428
PrintPreviewDialog class, 428
SaveFileDialog class, 221
Timer class, 145

System.Windows.Forms.Control class, 399
System.Windows.Forms.Design

namespace, 556
System.Windows.Forms.Panel control, 403
System.Windows.Forms.PictureBox

control, 403
System.Windows.Forms.PrintDialog class, 420
System.Xml namespace, 263, 285, 323, 324, 568
System.Xml.Linq class, 280
System.Xml.Linq query clause, 274
System.Xml.Linq.XElement object, 264
System.Xml.Serialization namespace, 290
System.Xml.Serialization.XmlSerializer

class, 290
System.Xml.XmlReader object, 323
System.Xml.XPath.Extensions class, 278
System.Xml.Xsl namespace, 295
System.Xml.Xsl.XslCompiledTransform

class., 295

■T
/t:, 293
TableDirect value, 312
TableLayoutPanel container, 368–369
Tag property, 347–348
Take clause, 254
Take method, 256
Target element, 15
target /target:exe switch, 3, 7
target /target:library switch, 10
target /target:module compiler switch, 8
target target:winexe switch, 7
Tasks property, 577
TCP

asynchronous communications using,
466–474

description, 462
template for TCP client, 464–466
template for TCP server, 463–464

TcpClient class, 462, 464
TCP/IP

communicating using, 462–466
resolving host name to IP address using

DNS, 458
TcpListener class

AcceptTcpClient method, 463, 466
asynchronous communications using

TCP, 466
BeginAcceptTcpClient method, 466–467
communicating using TCP/IP, 462
EndAcceptTcpClient method, 466

Team class, 568–581
TeamChange event, 582
Team.GetEnumerator method, 577
TeamMember class, 577
Temperature property, 601
TemperatureAverageObserver class, 598
TemperatureAverageObserver type, 599
TemperatureChange event, 601
TemperatureChange method, 599
TemperatureChangedEventArgs class, 598
TemperatureChangedEventArgs object,

599–601
TemperatureChangedEventHandler delegate,

598–599
TemperatureChangeObserver class, 598
TemperatureChangeObserver type, 599
templates, XSLT stylesheet, 295

Herman_970-5INDEX.fm Page 674 Monday, March 24, 2008 11:54 AM

675■I N D E X

temporary files, 218–219
testing

creating test X.509 certificate, 37
performing hit testing with shapes, 394–397

text
printing simple document, 420
wrapped, 426–427

text box control, 359
text files

delimited, parsing contents of, 204
reading and writing, 200

Text property, 372, 423
TextBox class, 349
TextBox control, 359, 379
TextChanged event, ComboBox control, 362
TextDocument class, 423
TextFieldParser class, 192, 205, 282
TextFieldType property, TextFieldParser

class, 205
TextReader class, 106
TextWriter class, 106
The Regulator, 62
ThenBy method, 239
Thermostat class, 598, 599
Thread class

Abort method, 116, 171
creating and controling threads, 152
CurrentPrincipal property, 514–518
CurrentUICulture property, 371
IsAlive property, 169–170
Join method, 161–170
ResetAbort method, 171
restricting which users can execute code, 514
Start method, 152, 171

thread pool
considerations before using, 132
executing method using thread from thread

pool, 130–133
thread synchronization, 155
ThreadAbortException class, 171
ThreadPool class, 130–133, 150
threads

acquiring locks, 155
asynchronous communications using TCP,

466–474
background threads, 133
blocking, 129, 155, 328
calling OnXyz virtual methods, 444
creating thread-safe collection instance,

173–174

ensuring only one instance of application
executing, 179–181

executing method asynchronously, 133–140
executing method in separate thread at

specific time, 147–149
executing method in separate thread

periodically, 145–147
executing method using new thread,

152–154
executing method using thread from thread

pool, 130–133
executing method when WaitHandle

signalled, 150–151
executing multiple threads, 129
foreground threads, 133
knowing when thread finished, 169–171
manipulating event state between signaled

and unsignaled, 159
multiple threads reading collection

classes, 173
operating system and managed threads, 129
polling, 328
processes and threads, 129
releasing locks, 155
safety, testing for with IsSynchronized

property, 173
synchronization, 129

ThreadStart class, 152
ThreadStart delegate, 152
ThreadState enumeration, 152
ThreadStateException class, 152
thumbnails, 409–410
TickCount property, Environment class, 606
ticks, 71
TimedOut value, IPStatus enumeration, 460
Timeout class, 146–148
Timeout property

SmtpClient class, 455
WebRequest class, 447

Timer class
Change method, 146
creating Windows service, 620
Dispose method, 146
executing method in separate thread at

specific time, 147–148
executing method in separate thread

periodically, 145–146
TimerCallback delegate, 145–147
times. See dates and times
TimeSpan and DateTime structures, 71
TimeSpan structure, 70, 71, 146, 148, 490

Herman_970-5INDEX.fm Page 675 Monday, March 24, 2008 11:54 AM

676 ■IN D E X

TimeZone class, 73
TimeZoneInfo class, 75
Title property, Console class, 23
Tlbexp.exe, 558
Tlbimp.exe

description, 556
playing sound file, 413
using COM component in .NET client,

551–552
To property, MailMessage class, 456
ToArray method, 57, 79
ToBase64CharArray method, Convert class, 59
ToBase64String method, Convert class, 59
ToBoolean method, BitConverter class, 57
ToInt32 method, BitConverter class, 57
ToList extension method, 273
ToList method, 255
TopIndex property, ListBox class, 358–359
TopMost property, 543
ToSerializedString method, 74
ToString method

BitConverter class, 58, 528, 529
IFormattable, 586
Object class, 509
PhysicalAddress class, 439
SecureString class, 534
StringBuilder class, 52

TotalFreeSpace property, 220
Transaction property, 312
Transform method, XslCompiledTransform

class, 295
TransparencyKey property, 399
TransparentKey property, 399
TreeNode class, 347
TreeView control

BeforeExpand event, 197–198
displaying directory tree in TreeView

control, 197–200
Fill method, 198

triggers, 150
Try ... Catch ... Finally blocks, 589
Try statement, 589
TryCast keyword, 119
TryParse method, 69
TryParseExact method, 68, 69
type attribute, 285
Type class

copying contents of collection to array, 79
EmptyTypes field, 121

GetConstructor method, 121
GetNestedType method, 116, 117
GetNestedTypes method, 116, 117

type instances, 567
Type Library Exporter, 558
Type Library Importer, 413
TypeOf operator, 119
types, 561

cloneable, implementing, 567–571
comparable, implementing, 571–575
creating generic type, 86–89
decorating with custom attribute, 126
enumerable, implementing using custom

iterators, 575–582
GetType operator, 116–117
implementing formattable type, 586
inheritance, 119
instantiating type in remote application

domain, 109–113
retrieving object type, 116
serializable, implementing, 561–567
testing object type, 119
that can be formatted, implementing,

586–589
using anonymous types, 44–45
using implicitly typed variables, 40–41

■U
/u switch, 626
u switch, 626
UAC (User Account Control), 387
UDP (User Datagram Protocol), 474–476
UdpClient class, 474
unary negation (-) operator

element, 279–286, 292
node, 266
section, 309
tag, 286
TimeSpan and DateTime structures, 71

unary plus (+) operator, 71
UnauthenticatedPrincipal value,

PrincipalPolicy enumeration, 515
Undo method, WindowsSecurityContext

class, 518
Unicode characters, 54
Unicode property, UnicodeEncoding class, 54
UnicodeEncoding class, 54
Union method, 256–257
Unload method, AppDomain class, 115–116

Herman_970-5INDEX.fm Page 676 Monday, March 24, 2008 11:54 AM

677■I N D E X

unmanaged code
description, 539
interoperability, 539–559

calling functions defined in unmanaged
DLL, 540–542

calling method in COM component
without required parameters, 554–555

calling unmanaged function that uses
callback, 548–549

unmanaged resources, 582–585
Unprotect method

ProtectedData class, 537
ProtectedMemory class, 537
SectionInformation class, 309

unreferenced objects, 582
Unregister method, RegisteredWaitHandle

class, 150
unsignalled state, 159
UPDATE command, 313, 317
UploadData method, WebClient class, 446
UploadDataAsync method, WebClient

class, 446
UploadFile method, My.Computer.Network

class, 446
UploadFile method, WebClient class, 446
UploadFileAsync method, WebClient class, 446
uploading data over HTTP or FTP, 446
UploadString method, 446
UploadStringAsync method, WebClient

class, 446
Url class, 507
Url property, WebBrowser control, 383
UseDefaultCredentials property, SmtpClient

class, 455
User Account Control (UAC), 387
User class, My object, 183
User Datagram Protocol (UDP), 474–476
user input

validating input using regular expressions,
62–65

validating user input and reporting errors,
377–379

user input, reading from Windows console,
92–95

user interface, creating asynchonous method to
update, 140–145

/user parameter, 338
User property, HttpListenerContext class, 449
User value, WindowsBuiltInRole

enumeration, 512
User32.dll, 540

UserDomainName property, Environment
class, 606

UserInteractive property, Environment
class, 606

UserName property
Environment class, 606
ProcessStartInfo class, 176

Username property, ServiceProcessInstaller
class, 624

users
determining if user is member of Windows

group, 511–513
impersonating Windows users, 517–520
restricting which users can execute code,

514–517
Users field, RegistryKey class, 615
UserState property, 142
Using statement, 301, 321

constructing Monitor class in, 181
simplifying correct use of disposable

objects, 582
start application running in new process, 176

Utc property, 74
UTF-16 encoding, 54–56, 201
UTF-32 encoding, 201
UTF-7 encoding, 201
UTF7Encoding class, 54
UTF-8 encoding, 201

■V
ValidateInput method, Regex class, 64–65
ValidateXml method, 287
validation

input using regular expressions, 62–65
solving user-input validation problems, 360
validating input using regular expressions,

62–65
validating XML document against schema,

285–290
XML documents against schemas, 285–289

ValidationEventHandler event, 285–287
ValidOn property, 125
value of command, 295
Value property, 271, 317
value types

converting to/from byte arrays, 56–58
passing objects by value, 107

value-of command, 295
VB .NET compiler, 2
Vbc task, 15
vbc.exe, 2

Herman_970-5INDEX.fm Page 677 Monday, March 24, 2008 11:54 AM

678 ■IN D E X

vcvarsall.bat, 2
verification, 37
VerifyB64Hash method, 529
VerifyByteHash method, 529
VerifyHexHash method, 529
verifying strong-named assembly not

modified, 30
Version class, 606
Version column, 340
version policy, 99
Version property, 606–607
versions

controlling versioning for remote objects,
491–492

retrieving information about, 196–197, 212
VersionString property, OperatingSystem

class, 607
video, playing with DirectShow, 415–417
/views parameter, 338
Visual Studio

configuring Application Settings in Visual
Studio, 355–356

developing Windows Forms
applications, 344

generating RCWs, 552
Vr switch, Strong Name tool, 31
Vu switch, Strong Name tool, 32

■W
w element, regular expressions, 63
W element, regular expressions, 63
Wait method, Monitor class, 156
wait queue, 155
WaitAll method, WaitHandle class, 160
WaitAllExample method, 135
WaitAny method, WaitHandle class, 160
WaitCallback delegate, 130
WaitForConnection method, 477
WaitForExit method, Process class, 176, 178
WaitHandle class

executing method when WaitHandle
signalled, 150–151

executing methods asynchronously, 134
methods for synchronizing thread

execution, 160
namespace, 150
synchronizing multiple threads using

mutex, 163
System.Threading namespace, 328
WaitOrTimerCallback delegate, 150

WaitingExample method, 135

WaitOne method, WaitHandle class, 160
WaitOrTimerCallback delegate, 150
WaitSleepJoin state, 155
WaitToComplete value, PlayMode

parameter, 412
WAV files, 412–413
web pages, displaying in Windows

application, 382
web services, 437
WebBrowser control, 297, 382
WebClient class

CancelAsync method, 444
Certificates property, 453
Component class and, 444
Credentials property, 453
downloading data over HTTP or FTP,

443–444
downloading file and processing using

stream, 447
methods, 444
OpenRead method, 447
OpenWrite method, 446
OpenWriteAsync method, 446
UploadData method, 446
UploadDataAsync method, 446
UploadFile method, 446
UploadFileAsync method, 446

WebException class, 447
WebPermission class, 500
WebPermissionAttribute class, 500
WebRequest class

Certificates property, 452
classes deriving from

MarshalByRefObject, 106
Create method, 447
Credentials property, 452–453
downloading file and processing using

stream, 446–447
GetResponse method, 447
getting HTML page from site requiring

authentication, 452
Timeout property, 447

WebResponse class
classes deriving from

MarshalByRefObject, 106
downloading file and processing using

stream, 446–447
GetResponseStream method, 447
getting HTML page from site requiring

authentication, 452
WebServices class, My object, 183

Herman_970-5INDEX.fm Page 678 Monday, March 24, 2008 11:54 AM

679■I N D E X

WindowsPrincipal class, 511–512
WindowsPrincipal value, PrincipalPolicy

enumeration, 515
WindowsSecurityContext class, 518
WindowStyle property, ProcessStartInfo

class, 176
WindowWidth property, Console class, 24
With keyword, 41–43
WM_CLOSE message, 178
WMI (Windows Management

Instrumentation), managing print
jobs, 431–435

WorkerRerportsProgress property, 141
WorkerSupportsCancellation property, 141
WorkingDirectory property, ProcessStartInfo

class, 176
WPF (Windows Presentation Foundation),

385–387, 391, 392, 559–560
WrapContents property, FlowLayoutPanel

container, 368
wrapped text, printing, 426–427
wrapper assembly, creating wrapper using

Tlbimp.exe, 552
Write method

BinaryWriter class, 203
Console class, 8
StreamWriter class, 200

WriteEntry method, EventLog class, 610
WriteLine method, Console class

creating Windows Forms application, 8
implementing formattable type, 586

WriteLine method, StreamWriter class, 200
WritePrivateProfileString method, 540
writing

reading and writing binary files, 203–204
reading and writing text files, 200

writing and reading INI files, 540
WshShell class

CreateShortcut method, 627
SpecialFolders property, 627

WshShell object, 627
WshShell.SpecialFolders property, 627

■X
X.509 certificate, 37
X509Certificate2UI class, 453
X509CertificatesCollection class, 455
X509Store class, 453
XAML (Extensible Application Markup

Language), 391
XAttribute class, 264–265

XAttribute objects, 269
XDocument class, 264–266, 324
XDocument instance, 285
XElement class, 264, 268–274, 324
XElement instance, 285
XElement object, 265–269, 276
XElement.Add method, 269
XElement.SetElementValue method, 273
XElement.SetValue method, 271
XML documents

changing value of elements or attributes,
271–272

creating, 264–267
inserting elements into, 269–270
inserting nodes in XML document, 269–272
joining and querying multiple, 280–281
obtaining from SQL Server queries, 323–326
querying for elements in specific XML

namespaces, 276–278
querying using LINQ, 274–275
querying using XPath, 278–280
removing or replacing elements or

attributes, 272–274
retrieving results of SQL query as XML, 323
validating against schemas, 285–289

XML files
converting to delimited files, 281–284
loading into memory, 268

XML literals, 269, 281
XML namespaces, 276–278
XML processing

creating XML schema for .NET class, 293–294
generating .NET class from XML schema,

294–295
inserting nodes in XML document, 269–272
performing XSL transform, 295
searching XML document for nodes using

XPath, 278
serializing objects to/from XML, 290
validating XML document against schema,

285–290
XML schema

creating XML schema for .NET class, 293–294
data types, 286
generating .NET class from XML schema,

294–295
validating XML document against schema,

285–290
XML Schema Definition Tool (xsd.exe),

285–286, 293, 294
XML serialization, 290–293

Herman_970-5INDEX.fm Page 679 Monday, March 24, 2008 11:54 AM

680 ■IN D E X

XmlArray attribute, 290
XmlAttribute attribute, 290
XmlDocument class, 294

retrieving results of SQL query as XML, 324
SelectNodes method, 278
SelectSingleNode method, 278

XmlElement attribute, 290
XmlEnum attribute, 290
XmlException object, 287
XmlIgnore attribute, 290
XmlNode class, 568
xmlns key, 276
XmlReader class

Create method, 285–287
enforcing schema rules, 286
raising ValidationEventHandler event, 287
Read method, 285
retrieving results of SQL query as XML,

323–324
XmlReader.Create method, 286
XmlReader.Create namespace, 285
XmlReaderSettings class, 285
XmlReaderSettings object, 285–287
XmlRoot attribute, 290
XmlSerializer class, 290

creating XML schema for .NET class, 293
generating .NET class from XML schema, 294

XmlSerializer object, 292

xmlTree element, 265
XmlWriter class, 294
XName class, 264–277
XName parameter, 271
XNamespace class, 277
XNamespace instance, 277
XNamespace object, 276
XNode class, 264
XNode.CreateReader method, 285
Xor bitwise operator, 189
XOR operator, 20
XPath, 278–280
XPathSelectElement extension, 278
XPathSelectElement method, 278
XPathSelectElements method, 278
XSD (XML Schema Definition), 285–286
xsd.exe (XML Schema Definition Tool),

285–286, 293, 294
XSL Transformations (XSLT) style sheets,

263, 295
XslCompiledTransform class, 295–297
XslCompiledTransform.Load method, 295
XSLT (XSL Transformations) style sheets,

263, 295
XslTransform class, 297

■Z
z element, regular expressions, 63
Zone class, 73–75

Herman_970-5INDEX.fm Page 680 Monday, March 24, 2008 11:54 AM

	Visual Basic 2008 Recipes
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Application Development
	Unknown
	1-1. Create a Console Application from the Command Line
	Problem
	Solution
	How It Works

	1-2. Create a Windows-Based Application from the Command Line
	Problem
	Solution
	How It Works

	1-3. Create and Use a Code Module from the Command Line
	Problem
	Solution
	How It Works

	1-4. Create and Use a Code Library from the Command Line
	Problem
	Solution
	How It Works

	1-5. Embed a Resource File in an Assembly
	Problem
	Solution
	How It Works
	Notes

	1-6. Build Projects from the Command Line Using MSBuild.exe
	Problem
	Solution
	How It Works

	1-7. Access Command-Line Arguments
	Problem
	Solution
	How It Works

	1-8. Include Code Selectively at Build Time
	Problem
	Solution
	How It Works
	Notes

	1-9. Manipulate the Appearance of the Console
	Problem
	Solution
	How It Works

	1-10. Access a Program Element That Has the Same Name As a Keyword
	Problem
	Solution
	How It Works

	1-11. Create and Manage Strong-Named Key Pairs
	Problem
	Solution
	How It Works

	1-12. Give an Assembly a Strong Name
	Problem
	Solution
	How It Works
	Notes

	1-13. Verify That a Strong-Named Assembly Has Not Been Modified
	Problem
	Solution
	How It Works

	1-14. Delay Sign an Assembly
	Problem
	Solution
	How It Works

	1-15. Sign an Assembly with an Authenticode Digital Signature
	Problem
	Solution
	How It Works
	Usage

	1-16. Create and Trust a Test Software Publisher Certificate
	Problem
	Solution
	How It Works

	1-17. Manage the Global Assembly Cache
	Problem
	Solution
	How It Works

	1-18. Make Your Assembly More Difficult to Decompile
	Problem
	Solution
	How It Works

	1-19. Use Implicitly Typed Variables
	Problem
	Solution
	How It Works

	1-20. Use Object Initializers
	Problem
	Solution
	How It Works

	1-21. Use Anonymous Types
	Problem
	Solution
	How It Works

	1-22. Create and Use Extension Methods
	Problem
	Solution
	How It Works

	1-23. Create and Use Lambda Expressions
	Problem
	Solution
	How It Works

	Data Manipulation
	Unknown
	2-1. Manipulate the Contents of a String Efficiently
	Problem
	Solution
	How It Works

	2-2. Encode a String Using Alternate Character Encoding
	Problem
	Solution
	How It Works
	Notes

	2-3. Convert Basic Value Types to Byte Arrays
	Problem
	Solution
	How It Works

	2-4. Base64 Encode Binary Data
	Problem
	Solution
	How It Works

	2-5. Validate Input Using Regular Expressions
	Problem
	Solution
	How It Works
	Notes

	2-6. Use Compiled Regular Expressions
	Problem
	Solution
	How It Works

	2-7. Create Dates and Times from Strings
	Problem
	Solution
	How It Works

	2-8. Add, Subtract, and Compare Dates and Times
	Problem
	Solution
	How It Works

	2-9. Convert Dates and Times Across Time Zones
	Problem
	Solution
	How It Works

	2-10. Sort an Array or an ArrayList
	Problem
	Solution
	How It Works

	2-11. Copy a Collection to an Array
	Problem
	Solution
	How It Works

	2-12. Manipulate or Evaluate the Contents of an Array
	Problem
	Solution
	How It Works

	2-13. Use a Strongly Typed Collection
	Problem
	Solution
	How It Works

	2-14. Create a Generic Type
	Problem
	Solution
	How It Works

	2-15. Store a Serializable Object to a File
	Problem
	Solution
	How It Works

	2-16. Read User Input from the Console
	Problem
	Solution
	How It Works

	Application Domains, Reflection, and Metadata
	Unknown
	3-1. Load an Assembly into the Current Application Domain
	Problem
	Solution
	How It Works

	3-2. Create an Application Domain
	Problem
	Solution
	How It Works

	3-3. Execute an Assembly in a Different Application Domain
	Problem
	Solution
	How It Works

	3-4. Avoid Loading Unnecessary Assemblies into Application Domains
	Problem
	Solution
	How It Works

	3-5. Create a Type That Cannot Cross Application Domain Boundaries
	Problem
	Solution
	How It Works

	3-6. Create a Type That Can Be Passed Across Application Domain Boundaries
	Problem
	Solution
	How It Works

	3-7. Instantiate a Type in a Different Application Domain
	Problem
	Solution
	How It Works

	3-8. Pass Data Between Application Domains
	Problem
	Solution
	How It Works

	3-9. Unload Assemblies and Application Domains
	Problem
	Solution
	How It Works

	3-10. Retrieve Type Information
	Problem
	Solution
	How It Works

	3-11. Test an Object’s Type
	Problem
	Solution
	How It Works

	3-12. Instantiate an Object Using Reflection
	3-13. Create a Custom Attribute
	Problem
	Solution
	How It Works

	3-14. Inspect the Attributes of a Program Element Using Reflection
	Problem
	Solution
	How It Works

	Threads, Processes, and Synchronization
	Unknown
	4-1. Execute a Method Using the Thread Pool
	Problem
	Solution
	How It Works
	Notes

	4-2. Execute a Method Asynchronously
	Problem
	Solution
	How It Works

	4-3. Creating an Asynchronous Method to Update the User Interface
	Problem
	Solution
	How It Works

	4-4. Execute a Method Periodically
	Problem
	Solution
	How It Works

	4-5. Execute a Method at a Specific Time
	Problem
	Solution
	How It Works

	4-6. Execute a Method by Signaling a WaitHandle Object
	Problem
	Solution
	How It Works

	4-7. Execute a Method Using a New Thread
	Problem
	Solution
	How It Works

	4-8. Synchronize the Execution of Multiple Threads Using a Monitor
	Problem
	Solution
	How It Works

	4-9. Synchronize the Execution of Multiple Threads Using an Event
	Problem
	Solution
	How It Works

	4-10. Synchronize the Execution of Multiple Threads Using a Mutex
	Problem
	Solution
	How It Works

	4-11. Synchronize the Execution of Multiple Threads Using a Semaphore
	Problem
	Solution
	How It Works

	4-12. Synchronize Access to a Shared Data Value
	Problem
	Solution
	How It Works

	4-13. Know When a Thread Finishes
	Problem
	Solution
	How It Works

	4-14. Terminate the Execution of a Thread
	Problem
	Solution
	How It Works

	4-15. Create a Thread-Safe Collection Instance
	Problem
	Solution
	How It Works

	4-16. Start a New Process
	Problem
	Solution
	How It Works

	4-17. Terminate a Process
	Problem
	Solution
	How It Works

	4-18. Ensure That Only One Instance of an Application Can Execute Concurrently
	Problem
	Solution
	How It Works

	Files, Directories, and I/O
	Unknown
	5-1. Retrieve Information About a File, Directory, or Drive
	Problem
	Solution
	How It Works

	5-2. Set File and Directory Attributes
	Problem
	Solution
	How It Works

	5-3. Copy, Move, or Delete a File or a Directory
	Problem
	Solution
	How It Works

	5-4. Calculate the Size of a Directory
	Problem
	Solution
	How It Works

	5-5. Retrieve Version Information for a File
	Problem
	Solution
	How It Works

	5-6. Show a Just-in-Time Directory Tree in the TreeView Control
	Problem
	Solution
	How It Works

	5-7. Read and Write a Text File
	Problem
	Solution
	How It Works

	5-8. Read and Write a Binary File
	Problem
	Solution
	How It Works

	5-9. Parse a Delimited Text File
	Problem
	Solution
	How It Works

	5-10. Read a File Asynchronously
	Problem
	Solution
	How It Works

	5-11. Find Files That Match a Wildcard Expression
	Problem
	Solution
	How It Works

	5-12. Test Two Files for Equality
	Problem
	Solution
	How It Works

	5-13. Manipulate Strings Representing File Names
	Problem
	Solution
	How It Works

	5-14. Determine Whether a Path Is a Directory or a File
	Problem
	Solution
	How It Works

	5-15. Work with Relative Paths
	Problem
	Solution
	How It Works

	5-16. Create a Temporary File
	Problem
	Solution
	How It Works

	5-17. Get the Total Free Space on a Drive
	Problem
	Solution
	How It Works

	5-18. Show the Common File Dialog Boxes
	Problem
	Solution
	How It Works

	5-19. Use an Isolated Store
	Problem
	Solution
	How It Works

	5-20. Monitor the File System for Changes
	Problem
	Solution
	How It Works

	5-21. Access a COM Port
	Problem
	Solution
	How It Works

	5-22. Get a Random File Name
	Problem
	Solution
	How It Works

	5-23. Manipulate the Access Control Lists of a File or Directory
	Problem
	Solution
	How It Works

	Language Integrated Query (LINQ)
	Unknown
	6-1. Query a Generic Collection
	Problem
	Solution
	How It Works

	6-2. Query a Nongeneric Collection
	Problem
	Solution
	How It Works

	6-3. Control Query Results
	Problem
	Solution
	How It Works

	6-4. Sort Data Using LINQ
	Problem
	Solution
	How It Works

	6-5. Filter Data Using LINQ
	Problem
	Solution
	How It Works

	6-6. Perform General Aggregate Operations
	Problem
	Solution
	How It Works

	6-7. Perform Average and Sum Calculations
	Problem
	Solution
	How It Works

	6-8. Perform Count Operations
	Problem
	Solution
	How It Works

	6-9. Perform Min and Max Calculations
	Problem
	Solution
	How It Works

	6-10. Group Query Results
	Problem
	Solution
	How It Works

	6-11. Query Data from Multiple Collections
	Problem
	Solution
	How It Works

	6-12. Returning Specific Elements of a Collection
	Problem
	Solution
	How It Works

	6-13. Display Collection Data Using Paging
	Problem
	Solution
	How It Works
	Notes

	6-14. Compare and Combine Collections
	Problem
	Solution
	How It Works

	6-15. Cast a Collection to a Specific Type
	Problem
	Solution
	How It Works

	LINQ to XML and XML Processing
	Unknown
	7-1. Create an XML Document
	Problem
	Solution
	How It Works

	7-2. Load an XML File into Memory
	Problem
	Solution
	How It Works

	7-3. Insert Elements into an XML Document
	Problem
	Solution
	How It Works

	7-4. Change the Value of an Element or Attribute
	Problem
	Solution
	How It Works

	7-5. Remove or Replace Elements or Attributes
	Problem
	Solution
	How It Works

	7-6. Query an XML Document Using LINQ
	Problem
	Solution
	How It Works

	7-7. Query for Elements in a Specific XML Namespace
	Problem
	Solution
	How It Works

	7-8. Query an XML Document Using XPath
	Problem
	Solution
	How It Works
	Notes

	7-9. Join and Query Multiple XML Documents
	Problem
	Solution
	How It Works

	7-10. Convert an XML File to a Delimited File (and Vice Versa)
	Problem
	Solution
	How It Works

	7-11. Validate an XML Document Against a Schema
	Problem
	Solution
	How It Works

	7-12. Use XML Serialization with Custom Objects
	Problem
	Solution
	How It Works

	7-13. Create a Schema for a .NET Class
	Problem
	Solution
	How It Works

	7-14. Generate a Class from a Schema
	Problem
	Solution
	How It Works

	7-15. Perform an XSL Transform
	Problem
	Solution
	How It Works
	Notes

	Database Access
	Unknown
	8-1. Connect to a Database
	Problem
	Solution
	How It Works

	8-2. Use Connection Pooling
	Problem
	Solution
	How It Works

	8-3. Create a Database Connection String Programmatically
	Problem
	Solution
	How It Works

	8-4. Store a Database Connection String Securely
	Problem
	Solution
	How It Works
	Notes

	8-5. Execute a SQL Command or Stored Procedure
	Problem
	Solution
	How It Works

	8-6. Use Parameters in a SQL Command or Stored Procedure
	Problem
	Solution
	How It Works

	8-7. Process the Results of a SQL Query Using a Data Reader
	Problem
	Solution
	How It Works

	8-8. Obtain an XML Document from a SQL Server Query
	Problem
	Solution
	How It Works

	8-9. Perform Asynchronous Database Operations Against SQL Server
	Problem
	Solution
	How It Works

	8-10. Write Database-Independent Code
	Problem
	Solution
	How It Works

	8-11. Create a Database Object Model
	Problem
	Solution
	How It Works

	8-12. Generate Data Object Classes from the Command Line
	Problem
	Solution
	How It Works

	8-13. Discover All Instances of SQL Server on Your Network
	Problem
	Solution
	How It Works

	Windows Forms
	Unknown
	9-1. Add a Control Programmatically
	Problem
	Solution
	How It Works

	9-2. Link Data to a Control
	Problem
	Solution
	How It Works

	9-3. Process All the Controls on a Form
	Problem
	Solution
	How It Works

	9-4. Track the Visible Forms in an Application
	Problem
	Solution
	How It Works

	9-5. Find All MDI Child Forms
	Problem
	Solution
	How It Works

	9-6. Save Configuration Settings for a Form
	Problem
	Solution
	How It Works

	9-7. Force a List Box to Scroll to the Most Recently Added Item
	Problem
	Solution
	How It Works

	9-8. Restrict a Text Box to Accepting Only Specific Input
	Problem
	Solution
	How It Works

	9-9. Use an Autocomplete Combo Box
	Problem
	Solution
	How It Works

	9-10. Sort a List View by Any Column
	Problem
	Solution
	How It Works

	9-11. Lay Out Controls Automatically
	Problem
	Solution
	How It Works

	9-12. Make a Multilingual Form
	Problem
	Solution
	How It Works

	9-13. Create a Form That Cannot Be Moved
	Problem
	Solution
	How It Works

	9-14. Make a Borderless Form Movable
	Problem
	Solution
	How It Works

	9-15. Create an Animated System Tray Icon
	Problem
	Solution
	How It Works

	9-16. Validate an Input Control
	Problem
	Solution
	How It Works

	9-17. Use a Drag-and-Drop Operation
	Problem
	Solution
	How It Works

	9-18. Use Context-Sensitive Help
	Problem
	Solution
	How It Works

	9-19. Display a Web Page in a Windows-Based Application
	Problem
	Solution
	How It Works

	9-20. Create a Windows Presentation Foundation Application
	Problem
	Solution
	How It Works

	9-21. Run a Windows Vista Application with Elevated Rights
	Problem
	Solution
	How It Works

	Multimedia
	Unknown
	10-1. Find All Installed Fonts
	Problem
	Solution
	How It Works

	10-2. Perform Hit Testing with Shapes
	Problem
	Solution
	How It Works

	10-3. Create an Irregularly Shaped Control
	Problem
	Solution
	How It Works

	10-4. Create a Movable Sprite
	Problem
	Solution
	How It Works

	10-5. Create a Scrollable Image
	Problem
	Solution
	How It Works

	10-6. Perform a Screen Capture
	Problem
	Solution
	How It Works

	10-7. Use Double Buffering to Increase Redraw Speed
	Problem
	Solution
	How It Works

	10-8. Show a Thumbnail for an Image
	Problem
	Solution
	How It Works

	10-9. Play a Simple Beep or System Sound
	Problem
	Solution
	How It Works

	10-10. Play a WAV File
	Problem
	Solution
	How It Works

	10-11. Play a Sound File
	Problem
	Solution
	How It Works

	10-12. Show a Video with DirectShow
	Problem
	Solution
	How It Works

	10-13. Retrieve Information About Installed Printers
	Problem
	Solution
	How It Works

	10-14. Print a Simple Document
	Problem
	Solution
	How It Works

	10-15. Print a Multipage Document
	Problem
	Solution
	How It Works

	10-16. Print Wrapped Text
	Problem
	Solution
	How It Works

	10-17. Show a Dynamic Print Preview
	Problem
	Solution
	How It Works

	10-18. Manage Print Jobs
	Problem
	Solution
	How It Works

	Networking and Remoting
	Unknown
	11-1. Obtain Information About the Local Network Interface
	Problem
	Solution
	How It Works

	11-2. Detect Changes in Network Connectivity
	Problem
	Solution
	How It Works

	11-3. Download Data over HTTP or FTP
	Problem
	Solution
	How It Works
	Notes

	11-4. Download a File and Process It Using a Stream
	Problem
	Solution
	How It Works

	11-5. Respond to HTTP Requests from Your Application
	Problem
	Solution
	How It Works

	11-6. Get an HTML Page from a Site That Requires Authentication
	Problem
	Solution
	How It Works

	11-7. Send E-mail Using SMTP
	Problem
	Solution
	How It Works

	11-8. Resolve a Host Name to an IP Address
	Problem
	Solution
	How It Works

	11-9. Ping an IP Address
	Problem
	Solution
	How It Works

	11-10. Communicate Using TCP
	Problem
	Solution
	How It Works

	11-11. Create a Multithreaded TCP Server That Supports Asynchronous Communications
	Problem
	Solution
	How It Works

	11-12. Communicate Using UDP
	Problem
	Solution
	How It Works

	11-13. Communicate Using Named Pipes
	Problem
	Solution
	How It Works

	11-14. Make an Object Remotable
	Problem
	Solution
	How It Works

	11-15. Register All the Remotable Classes in an Assembly
	Problem
	Solution
	How It Works
	Notes

	11-16. Host a Remote Object in IIS
	Problem
	Solution
	How It Works

	11-17. Control the Lifetime of a Remote Object
	Problem
	Solution
	How It Works

	11-18. Control Versioning for Remote Objects
	Problem
	Solution
	How It Works

	11-19. Consume an RSS Feed
	Problem
	Solution
	How It Works

	Security and Cryptography
	Unknown
	12-1. Allow Partially Trusted Code to Use Your Strong-Named Assembly
	Problem
	Solution
	How It Works
	Notes

	12-2. Disable Execution Permission Checks
	Problem
	Solution
	How It Works
	Notes

	12-3. Ensure the Runtime Grants Specific Permissions to Your Assembly
	Problem
	Solution
	How It Works

	12-4. Limit the Permissions Granted to Your Assembly
	Problem
	Solution
	How It Works

	12-5. View the Permissions Required by an Assembly
	Problem
	Solution
	How It Works

	12-6. Determine at Runtime Whether Your Code Has a Specific Permission
	Problem
	Solution
	How It Works

	12-7. Restrict Who Can Extend Your Classes and Override Class Members
	Problem
	Solution
	How It Works

	12-8. Inspect an Assembly’s Evidence
	Problem
	Solution
	How It Works

	12-9. Determine Whether the Current User Is a Member of a Specific Windows Group
	Problem
	Solution
	How It Works

	12-10. Restrict Which Users Can Execute Your Code
	Problem
	Solution
	How It Works

	12-11. Impersonate a Windows User
	Problem
	Solution
	How It Works

	12-12. Create a Cryptographically Random Number
	Problem
	Solution
	How It Works

	12-13. Calculate the Hash Code of a Password
	Problem
	Solution
	How It Works

	12-14. Calculate the Hash Code of a File
	Problem
	Solution
	How It Works

	12-15. Verify a Hash Code
	Problem
	Solution
	How It Works

	12-16. Ensure Data Integrity Using a Keyed Hash Code
	Problem
	Solution
	How It Works

	12-17. Work with Security-Sensitive Strings in Memory
	Problem
	Solution
	How It Works

	12-18. Encrypt and Decrypt Data Using the Data Protection API
	Problem
	Solution
	How It Works

	Code Interoperability
	Unknown
	13-1. Call a Function in an Unmanaged DLL
	Problem
	Solution
	How It Works

	13-2. Get the Handle for a Control, Window, or File
	Problem
	Solution
	How It Works

	13-3. Call an Unmanaged Function That Uses a Structure
	Problem
	Solution
	How It Works

	13-4. Call an Unmanaged Function That Uses a Callback
	Problem
	Solution
	How It Works

	13-5. Retrieve Unmanaged Error Information
	Problem
	Solution
	How It Works

	13-6. Use a COM Component in a .NET Client
	Problem
	Solution
	How It Works

	13-7. Release a COM Component Quickly
	Problem
	Solution
	How It Works

	13-8. Use Optional Parameters
	Problem
	Solution
	How It Works

	13-9. Use an ActiveX Control in a .NET Client
	Problem
	Solution
	How It Works

	13-10. Expose a .NET Component to COM
	Problem
	Solution
	How It Works

	13-11. Use a Windows Presentation Foundation Control from a Windows Form
	Problem
	Solution
	How It Works

	Commonly Used Interfaces and Patterns
	Unknown
	14-1. Implement a Serializable Type
	Problem
	Solution
	How It Works

	14-2. Implement a Cloneable Type
	Problem
	Solution
	How It Works

	14-3. Implement a Comparable Type
	Problem
	Solution
	How It Works

	14-4. Implement an Enumerable Type Using a Custom Iterator
	Problem
	Solution
	How It Works
	Notes

	14-5. Implement a Disposable Class
	Problem
	Solution
	How It Works

	14-6. Implement a Type That Can Be Formatted
	Problem
	Solution
	How It Works

	14-7. Implement a Custom Exception Class
	Problem
	Solution
	How It Works

	14-8. Implement a Custom Event Argument
	Problem
	Solution
	How It Works
	Notes

	14-9. Implement the Singleton Pattern
	Problem
	Solution
	How It Works

	14-10. Implement the Observer Pattern
	Problem
	Solution
	How It Works

	Windows Integration
	Unknown
	15-1. Access Runtime Environment Information
	Problem
	Solution
	How It Works

	15-2. Retrieve the Value of an Environment Variable
	Problem
	Solution
	How It Works

	15-3. Write an Event to the Windows Event Log
	Problem
	Solution
	How It Works

	15-4. Read and Write to the Windows Registry
	Problem
	Solution
	How It Works

	15-5. Search the Windows Registry
	Problem
	Solution
	How It Works

	15-6. Create a Windows Service
	Problem
	Solution
	How It Works

	15-7. Create a Windows Service Installer
	Problem
	Solution
	How It Works

	15-8. Create a Shortcut on the Desktop or Start Menu
	Problem
	Solution
	How It Works

	Index

