

Word 2007
Macros & VBA

Made EASY

This page intentionally left blank

Word 2007
Macros & VBA

Made EASY

Guy Hart-Davis

New York Chicago San Francisco Lisbon

London Madrid Mexico City Milan New Delhi

San Juan Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of
the publisher.

ISBN: 978-0-07-161480-1

MHID: 0-07-161480-X

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-161479-5, MHID: 0-07-161479-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in
an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this
book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To con-
tact a representative please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by our
sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is
subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or
any part of it without McGraw-Hill’s prior co sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY,
ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN
BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com

This book is dedicated to Rhonda and Teddy.

About the Author

Guy Hart-Davis is the author of more than 50 computer books on subjects
as varied as Microsoft Office, Windows Vista, Mac OS X, Visual Basic for
Applications, and the iPod and iPhone. His most recent books include How to
Do Everything with Microsoft Office Word 2007 and How to Do Everything with
Microsoft Office Excel 2007.

About the Technical Editor

Greg Kettell is a professional software engineer with a diverse career that
has covered everything from game programming to enterprise business
applications. He has written and contributed to several books about software
applications, web design, and programming. Greg, his wife Jennifer, and their
two children currently reside in upstate New York.

  vii

Contents at a Glance

Chapter 1  	 Automate Actions by Recording Macros	 1

Chapter 2  	 Edit Your Recorded Macro	 17

Chapter 3  	 Control a Macro with Message
	  Boxes and Input Boxes	 35

Chapter 4  	 Create a Custom Dialog Box	 49

Chapter 5  	 Repeat Actions with Loops	 73

Chapter 6  	 Make Decisions in Your Macros	 87

Chapter 7  	 Use Variables and Constants	 99

Chapter 8  	 Find the VBA Objects You Need	 115

Chapter 9  	 Work with Text	 133

Chapter 10  	 Work with Bookmarks	 153

Chapter 11  	 Work with Tables	 163

Chapter 12  	 Work with Documents and Folders	 175

Chapter 13  	 Debug Your Macros and Handle Errors	 189

Chapter 14  	 Use Word’s Built-In Dialog Boxes
	  in Your Macros	 203

Chapter 15  	 Share Your Macros with Others	 217

Index		 233

viii

Acknowledgments

My thanks go to the following people for making this book happen:

Roger Stewart, for getting the book approved and then lurking in the ππ

background, pulling strings and issuing proclamations

Carly Stapleton, for handling the administration and financesππ

Greg Kettell, for performing the technical review and providing helpful ππ

suggestions and encouragement

Vipra Fauzdar, for coordinating the projectππ

Bill McManus, for editing the text with care and a light touchππ

International Typesetting and Composition, for laying out the pagesππ

Madhu Prasher, for proofreading the bookππ

Claire Splan, for creating the indexππ

  ix

Introduction

If you use Microsoft Word for work, you likely want to take full advantage of its
features and get your work done as fast and efficiently as possible.

The key to getting your Word work done in the shortest possible time is to
harness the power of Visual Basic for Applications (VBA), the programming
language built right into Word and the other Microsoft Office applications. VBA
lets you automate pretty much any action you can take interactively.

Who Is This Book For?
This book is designed to help you get started creating powerful, time-saving
macros in Microsoft Word. Even if you have no experience with macros or VBA,
you’ll quickly get up to speed. By the end of the book, you’ll be automating not
only your own work but your colleagues’ work as well.

What Does This Book Cover?
This book launches you straight into automating your work by using the
Microsoft Office Macro Recorder, and then shows you how to build swiftly on
what you’ve recorded. You’ll learn to create macros in easy, hands-on steps
rather than by plodding through theory; but you will pick up all the essential
concepts of VBA programming together with the practical skills.

Here’s a breakdown of what this book covers:

Chapter 1 shows you how to start automating actions by recording macros.ππ

Chapter 2 teaches you how to open a recorded macro in the Visual ππ

Basic Editor so that you can examine and edit it.

Word 2007 Macros & VBA Made Easy

x

Chapter 3 shows you how to add message boxes that let the user control ππ

the macro and how to use input boxes to get input from the user.

Chapter 4 walks you through creating custom dialog boxes and building ππ

them into your macros.

Chapter 5 teaches you how to add power to your macros by using loops ππ

to repeat actions.

Chapter 6 shows you how to make decisions in your macros, making ππ

your macros more flexible and adaptable.

Chapter 7 explains how to use variables and constants to store ππ

information in your macros.

Chapter 8 demonstrates how to navigate through Word’s “object ππ

model” hierarchy to find the VBA objects you need in your macros.

Chapter 9 shows you tricks and techniques for entering, deleting, and ππ

formatting text in documents.

Chapter 10 covers how to create and use bookmarks, and shows you ππ

how to make the most of Word’s secret, built-in bookmarks.

Chapter 11 explains how to create and format tables via VBA—and how ππ

to convert them to text when necessary.

Chapter 12 teaches you how to create and save documents and ππ

templates—and how to create and delete folders.

Chapter 13 covers how to remove the bugs from your macros and ππ

handle errors that may occur in them.

�  Introduction

xi

Chapter 14 shows you how to commandeer Word’s built-in dialog boxes ππ

and use them for your own purposes in your macros.

Chapter 15 explains how to share your macros with others and how to ππ

configure Word’s security features.

Conventions Used in This Book
To make its meaning clear and concise, this book uses a number of conventions,
four of which are worth mentioning here:

The pipe character or vertical bar denotes choosing an item from the ππ

Ribbon. For example, “choose Developer | Code | Visual Basic” means
that you should click the Developer tab on the Ribbon (displaying the
tab’s contents), go to the Code group, and then click the Visual Basic
button.

Memo paragraphs highlight information that’s worth extra attention.ππ

The Easy Way boxes show you how to get results quickly and effectively.ππ

Sidebars provide extra information on important topics.ππ

Word 2007 runs on
Windows Vista and
Windows XP. The
illustrations in this
book show how Word
looks with Windows
Vista’s Vista Basic
user interface. If
you’re using the Vista
Aero user interface,
or if you’re using
Windows XP, your
windows will look
somewhat different,
but everything should
function the same.

memo

This page intentionally left blank

1
Automate
Actions by
Recording
Macros
Want to get your work done more quickly in Word
2007? Then open the Macro Recorder and record
a macro. This chapter shows you how to record a
macro, how to play it back and test it, and how to
create a Ribbon button for running a macro. You’ll
also learn how to move your recorded macro to
another code module and how to delete macros
you no longer need.

But first, let’s make sure you’re clear on what
macros are and what you can do with them.

Understand What
Macros Are and What
They’re For
A macro in Word is a sequence of commands,
either recorded (by using the built-in Macro
Recorder) or written down in the Visual Basic
Editor, and saved so that you can run it quickly.
For example, you could record a macro to format
certain parts of a document in a specific way.

Word 2007 Macros & VBA Made Easy

2

To do this, you switch on the Macro Recorder, perform the series of
formatting actions, and then turn off the Macro Recorder.

After you record the macro, you can play it back (or run it ) when you need
to perform the same actions again. You can run your Word macro manually
to format a document, or you can call the macro from another macro—for
example, to perform the formatting as part of a series of tasks.

Display the Developer Tab
on the Ribbon
Word provides a few macro controls in the Macros group on the View tab of
the Ribbon, but the full set of controls appears on the Developer tab. Word
keeps this tab hidden unless you choose to display it.

To display the Developer tab on the Ribbon, follow these steps:

Click the Microsoft Office button, and then click Word Options. Word 1.	
displays the Word Options dialog box.

In the Popular category, go to the Top Options For Working With Word 2.	
area, and then select the Show Developer Tab In The Ribbon check box.

Click the OK button. Word displays the Developer tab on the Ribbon 3.	
(see Figure 1-1). The Code group (on the left) contains the buttons for
working with macros and VBA.

Code is the generic
term for the program
lines and program
objects, such as
custom dialog boxes,
that you create with
a programming
language.

Memo

In Word, macros are recorded or written in VBA, a
programming language developed by Microsoft. VBA is
implemented in all the other major Office applications
(Excel, PowerPoint, Outlook, and Access) as well, and
it has become such a standard that many third-party
companies have added it to their applications.

By using VBA, you can make one application
access another application; so you can create, for
example, a macro in Word that accesses Excel, Visio,
AutoCAD, WordPerfect, or another VBA-enabled
application.

Understanding Visual Basic for Applications

� Chapter 1  Automate Actions by Recording Macros

3

Record a Macro Using
the Macro Recorder
The easiest way to create a macro in Word is to use Office’s built-in Macro
Recorder tool. In this section, you’ll record a macro that performs the
following actions:

Opens an existing document.1.	

Selects a particular section of the document.2.	

Copies that part of the document.3.	

Creates a new document.4.	

Inserts the copied material into the new document.5.	

Saves and closes the new document.6.	

Prepare to Record the Macro
Before recording a macro, you’ll usually need to prepare a bit:

Jot down the main points of what the macro will do. Planning the ππ

macro’s sequence of actions will help you avoid making mistakes that
you’ll then have to edit out of the macro for it to work properly.

The Macro Recorder
works with Excel and
PowerPoint as well as
with Word.

Memo

Figure 1-1  Display the Developer tab on the Ribbon to get quick access to the macro-related controls in the Code group.

Word 2007 Macros & VBA Made Easy

4

Launch or activate Word, and then set it up for the actions you’re about ππ

to perform. For example, if you’re recording a macro that will format a
particular type of document, open a document of that type. As creating
a macro may involve the possibility of damaging or destroying the
document’s contents, it’s best to use a copy of a document rather than
a document you actually care about.

For the sample macro, I’ve done the planning for you. All you need to do is
take the following steps to get ready:

Open Word (if it’s not open already).1.	

Press 2.	 ctrl-n to create a new blank document.

Press 3.	 ctrl-alt-1 to format the first paragraph with the Heading 1 style.

Type the heading—4.	 Latest Report—and press enter.

Make sure the next paragraph is formatted with the Normal style. (You 5.	
should get this automatically after you press enter from the Heading 1
paragraph.) If not, apply the style from the Home tab’s Styles box.

On the next line, type 6.	 =rand(4,2) and press enter. Word automatically
enters four paragraphs of canned text, each of which consists of two
sentences.

Press 7.	 ctrl-s to display the Save As dialog box.

Create a new folder named 8.	 WMME (for Word Macros Made Easy) in
your Documents folder (on Windows Vista) or your My Documents
folder (Windows XP), and then save the document under the name
Latest Report.docx.

Close the document.9.	

Use the Open dialog box to open a document of your own from a 10.	
folder other than the WMME folder, and then close that document.
(This step is necessary to cause the Macro Recorder to record a change
of directory when you record the macro.)

If you make mis-
takes when record-
ing a macro, don’t
worry: You can simply
rerecord the macro
and delete the first
version. (See the
section “Delete a
Macro,” later in this
chapter.) Or you can
edit the macro to fix
the mistakes.

Memo

The rand() function
inserts canned text. It
takes two arguments:
first, the number
of paragraphs; and
second, the number
of sentences in each
paragraph.

Memo

The .docx file exten-
sion appears only if
you’ve set Windows
to display file exten-
sions. Otherwise,
Windows hides the
extension, even
though Word adds it
to the filename.

Memo

� Chapter 1  Automate Actions by Recording Macros

5

You’re now ready to start recording the macro.

Record the Macro
Follow these steps to record the example macro:

Click the Developer tab of the Ribbon, go to the Code group, and then 1.	
click the Record Macro button. Word displays the Record Macro dialog
box, shown in Figure 1-2 with settings chosen.

In the Macro Name text box, type the name of the macro:2.	 WMME_
Transfer_Data.

In the Store Macro In drop-down list, make sure All Documents 3.	
(Normal.dotm) is chosen. This is the default choice.

In the Description text box, type the description for the macro: 4.	 Opens
Latest Report.docx, copies data from it, and closes it. Creates a new
document, pastes the copied data into it, and saves and closes the
document. That may seem wordy, but it’s best to make clear what a
macro does so that you can easily identify it afterward.

If Windows is set to
hide file extensions,
you will not see the
.dotm file extension.

Memo

The Button button
and the Keyboard
button in the Assign
Macro To area of the
Record Macro dialog
box let you create a
button or keyboard
shortcut that runs
the macro. This is
handy—but if you
move the macro
to a different code
module, as you will
do in this chapter, the
button or keyboard
shortcut stops work-
ing. For this reason,
it’s best to create the
button or keyboard
shortcut after moving
the macro.

Memo

Figure 1-2  In the Record
Macro dialog box, give the
macro a name and description.

Word 2007 Macros & VBA Made Easy

6

Click the OK button. Word closes the Record Macro dialog box and 5.	
displays a blue Stop Recording button toward the left end of the
status bar.

Click the Microsoft Office button, and then click Open to display the 6.	
Open dialog box.

Select the Latest Report.docx document in the WMME folder, and 7.	
then click the Open button to open it.

Press 8.	 ctrl-down arrow to move the insertion point to the beginning of
the second paragraph.

Press 9.	 ctrl-shift-down arrow to select that paragraph.

Press 10.	 ctrl-c to copy the selected paragraph.

Press 11.	 ctrl-w to close the window containing the Latest Report.docx
document (and thus close the document).

Press 12.	 ctrl-n to create a new “blank” document based on the Normal
template.

Press 13.	 ctrl-alt-1 to format the first paragraph with the Heading 1 style.

Type in the words 14.	 Report Summary and then press enter.

Press 15.	 ctrl-v to paste in the text you copied.

Press 16.	 ctrl-s to display the Save As dialog box.

Save the file under the name 17.	 Report Summary.docx in the WMME
folder in your Documents folder (Windows Vista) or My Documents
folder (Windows XP).

Press 18.	 ctrl-w to close the window containing the Report Summary.docx
document (and so close the document).

Click the Stop Recording button on the status bar to stop recording 19.	
the macro.

If you need to pause
recording so that
you can issue a
command that you
don’t want to record,
choose Developer
| Code | Pause
Recording. Choose
Developer | Code |
Resume Recorder
when you’re ready
to start recording
again.

The Easy Way

Use the Open dialog
box to open the
Latest Report.docx
document—don’t
open it by clicking
the document’s
listing on the Recent
Documents list on
the Microsoft Office
button menu. If you
use the Recent Docu-
ments list, the Macro
Recorder records the
instruction to open
the document in that
position on the Re-
cent Documents list,
not Latest Report
.docx by name.

Memo

� Chapter 1  Automate Actions by Recording Macros

7

Play Back the Recorded Macro
Your next step is to play back the recorded macro and make sure it performs
the actions you want. Follow these steps:

Open a Windows Explorer window to the WMME folder and delete 1.	
the Report Summary.docx document:

Windows Vistaππ   Choose Start | Documents, double-click the
WMME folder, click the Report Summary.docx document, press
delete, and then click the Yes button.

Windows XPππ   Choose Start | My Documents, double-click the
WMME folder, click the Report Summary.docx document, press
delete, and then click the Yes button.

Click the Word button on the taskbar to activate the Word window.2.	

Press 3.	 alt-f8 or choose Developer | Code | Macros to display the Macros
dialog box (see Figure 1-3).

In the Macro Name list box, select the WMME_Transfer_Data macro.4.	

You can also stop
recording a macro by
choosing Developer |
Code | Stop
Recording—but
clicking the status
bar button is usually
much easier.

Memo

When you open the Record Macro dialog box, the
Macro Recorder enters a default name (such as
Macro1) in the Macro Name box. You can accept this
default name, but it’s a much better idea to type a
descriptive name of your own.

Follow these rules:

Macro names must start with a letter, after ππ

which they can be any combination of letters,
numbers, and underscores.

Macro names cannot contain spaces, ππ

symbols, or punctuation marks.

The maximum length for a macro name is ππ

80 characters.

Shorter names tend to be more practical, ππ

because you can see them in full in the Macro
dialog box.

This book starts each macro name with WMME
(Word Macros Made Easy) so that you can easily
distinguish the book’s macros from your own code.

How to Name Your Macros

You can move
quickly to a macro
in the Macro Name
list box by typing the
first few letters of
its name. If several
macros start with
the same letters, you
need to type enough
letters to uniquely
identify the macro
you want to run.

The Easy Way

Word 2007 Macros & VBA Made Easy

8

�Click the Run button. You’ll see Word 5.	
open the Latest Report.docx document,
select the text, close the document,
create a new document, type and paste
in the text, and then save and close the
document—all in a second or two.

�Return to the Windows Explorer 6.	
window and verify that the Report
Summary.docx document has been
created again. Then close the window.

Figure 1-3  You use the Macros dialog box to run a
macro you’ve recorded or to open a macro for editing in
the Visual Basic Editor.

You stored the sample macro in the Normal template
(Normal.dotm). Normal is Word’s central storage
location for macros, and macros in it are available
whenever Word is running. The only problem is that
if you create hundreds of macros, Normal may grow
large enough to slow Word down.

Instead of Normal, you can store your macros in a
macro-enabled document or macro-enabled template
by choosing it in the Store Macro In drop-down list in
the Record Macro dialog box:

Documentππ   Macros stored in a document
are available only when that document is
open. Use this option when creating a macro-
enabled document you will distribute to your
colleagues. The document must be in the

Word Macro-Enabled Document (.docm)
format or the Word 97–2003 Document (.doc)
format, not the Word Document (.docx)
format, which cannot contain macros.

Templateππ   The macro is available only when
a document based on that template is open
or the template itself is open. Use this option
when you want to make the macro available to
an entire class of document via the template
the documents share. The template must be
in the Word Macro-Enabled Template (.dotm)
format or the Word 97–2003 Template (.dot)
format, not the Word Template (.dotx) format,
which cannot contain macros.

Choosing Where to Store Your Macros

� Chapter 1  Automate Actions by Recording Macros

9

Move the Macro to a
Different Code Module
The Macro Recorder stores every macro in a module named NewMacros in
the document or template you specified—in this case, the Normal template. A
module is simply a container for VBA code and can contain one or more macros.
Putting all macros in NewMacros works fine if you create only a few macros, but
if you create many, it’s better to put different macros in different modules.

What you’ll do now is move the macro you recorded from the NewMacros
module to another module. Follow these steps:

In Word, choose Developer | Code | Macros, or press 1.	 alt-f8. Word
displays the Macros dialog box.

Click the Edit button. Word displays the Visual Basic Editor (see 2.	
Figure 1-4), opens the NewMacros module in the Code window (the
main area of the Visual Basic Editor window), and puts the insertion
point in the macro.

Select all the code of the macro from the opening Sub line to the End 3.	
Sub line.

You can use the normal selection techniques that you use in Word.ππ

For example, drag with the mouse to the left of the lines, or click ππ

before the Sub statement, hold down shift, and then click after
the End Sub statement.

Cut the macro to the Clipboard by using a Cut command. For 4.	
example, press ctrl-x or choose Edit | Cut.

In the Project Explorer window that appears in the upper-left corner 5.	
of the Visual Basic Editor window, right-click the Normal item and
choose Insert | Module from the context menu. The Visual Basic
Editor inserts a new code module named Module1 and displays the
Code window for the module.

Word 2007 Macros & VBA Made Easy

10

Right-click in the Code window and choose Paste from the context 6.	
menu. The Visual Basic Editor pastes the macro you cut from the
NewMacros module.

Press 7.	 enter to start a new line, and then press ctrl-v to paste the
macro again. (This is to give you a surplus macro that you can delete
later in this chapter.)

Drag through WMME_Transfer_Data in the Sub line of the second 8.	
macro, and then type TestMacro over it to change the name.

Figure 1-4  You can use the Visual Basic Editor to move a macro from one module to another.

Project Explorer Code windowProperties window

� Chapter 1  Automate Actions by Recording Macros

11

Press 9.	 f4 to move the focus to the Properties window. The Visual
Basic Editor automatically selects the (Name) property (which
appears in parentheses like that), because this is the only property
a code module has.

Type the new name, 10.	 WMME_Chapter_1, and then press enter to
apply it.

Click the Save button on the toolbar to save the changes you’ve made.11.	

Choose File | Close And Return To Microsoft Word to close the Visual 12.	
Basic Editor and display the Word window again.

Create a Button or Keyboard
Shortcut to Run the Macro
Now that you’ve moved the macro to the module in which it will remain,
you can create a way of running it. Word 2007 lets you create a Quick Access
Toolbar button, a keyboard shortcut, or both.

To create a Quick Access Toolbar button or a keyboard shortcut that runs
the macro, first click the Customize Quick Access Toolbar button (the drop-
down button at the right end of the Quick Access Toolbar), and then choose
More Commands from the drop-down menu. Word displays the Customize
category in the Word Options dialog box.

You can then follow the instructions in the next section (to create a Quick
Access Toolbar button) or the section after that (to create a keyboard shortcut).

Create a Quick Access Toolbar Button
To create a Quick Access Toolbar button, follow these steps from the
Customize category of the Word Options dialog box:

In the Customize Quick Access Toolbar drop-down list, make sure For 1.	
All Documents (Default) is selected. This means you’re customizing
the Normal template.

You can also custom-
ize the Ribbon, but
that topic is beyond
this book’s coverage.

Memo

If you want to cus-
tomize only the active
document instead
of customizing the
Normal template,
select the name of the
active document in
the Customize Quick
Access Toolbar drop-
down list. Select the
name of the template
attached to the active
document if you want
to customize that
template.

Memo

Word 2007 Macros & VBA Made Easy

12

In the Choose Commands From drop-down list, choose Macros. Word 2.	
displays the list of macros in the left list box (see Figure 1-5).

Click the Normal.WMME_Chapter_1.WMME_Transfer_Data item in 3.	
the left list box.

Click the Add button to add a button for the macro to the right list 4.	
box. The button appears at the bottom of the list.

If you want to move the macro to a different position on the Quick 5.	
Access Toolbar, click the Up button.

Figure 1-5  Use the Customize category of the Word Options dialog box to add a macro button to the Quick Access
Toolbar. If you can’t see enough of the name, hover the mouse pointer over it to display a ScreenTip.

Word lists the macros
by template or
project, by module
(a container for
code), and name.
For example, the
Normal. WMME_
Chapter_1.WMME_
Transfer_Data item
is the macro named
WMME_Transfer_
Data in the WMME_
Chapter_1 module in
the Normal template.

Memo

� Chapter 1  Automate Actions by Recording Macros

13

�With the macro still selected in the right list box, click the 6.	
Modify button. Word displays the Modify Button dialog box,
shown here with choices made:

�In the Symbol list box, select the symbol you want to use for 7.	
the button.

�In the Display Name text box, edit the macro’s name to 8.	
something short and easy to understand. You’re allowed to
use spaces in the name.

�Click the OK button. Word closes the Modify Button dialog 9.	
box and returns you to the Word Options dialog box.

�Click the Close button to close the Word Options dialog box. 10.	
The button appears on the Quick Access Toolbar:

Create a Keyboard Shortcut
to Run a Macro
To create a keyboard shortcut that runs a macro, follow these steps
from the Customize category of the Word Options dialog box:

Click the Customize button. Word displays the Customize Keyboard 1.	
dialog box.

In the Categories list box, scroll down to the bottom of the list and 2.	
select the Macros item. The list of macros appears in the right list box,
as shown in Figure 1-6.

Make sure Normal.dotm is selected in the Save Changes In drop-down 3.	
list so that Word stores the keyboard shortcut in the Normal template.

In the Macros list box, select the WMME_Transfer_Data macro. Word 4.	
displays any existing keyboard shortcut for the macro in the Current
Keys list box.

As with the Quick
Access Toolbar, you
can save the keyboard
shortcut in the active
document or the tem-
plate attached to it
instead of in the Nor-
mal template. Simply
select the document
or the template in
the Save Changes In
drop-down list.

Memo

Word 2007 Macros & VBA Made Easy

14

Click in the Press New Shortcut Key text box, and then press the 5.	
keyboard shortcut you want: ctrl-alt-shift-t.

Look at the Currently Assigned To readout to make sure it says 6.	
[unassigned] (including the brackets). If the name of a macro or a
command appears instead, decide whether you want to overwrite
the keyboard shortcut. (Often, you will want to overwrite an existing
keyboard shortcut, but you should always be aware that you’re going to
overwrite one.)

Click the Assign button. Word assigns the keyboard shortcut.7.	

Click the Close button. Word closes the Customize Keyboard dialog box.8.	

Click the Close button to close the Word Options dialog box.9.	

Figure 1-6  Use the Custom-
ize Keyboard dialog box to
assign a keyboard shortcut
to run a macro. Look at the
Save Changes In drop-down
list to verify that you’re work-
ing in the right document or
template.

You can create a
shortcut using ctrl,
ctrl-alt, ctrl-alt-shift,
or alt-shift.

Memo

To remove an existing
shortcut, select it,
and then press the
Remove button. To
reset all keyboard
shortcuts, click the
Reset All button.

Memo

� Chapter 1  Automate Actions by Recording Macros

15

Test Your Quick Access Toolbar Button
or Keyboard Shortcut
Test your Quick Access Toolbar button by clicking it, or test the keyboard
shortcut by pressing it.

The WMME_Transfer_Data macro runs, opens the document, copies the
data, and so on, as before.

Delete a Macro
When you no longer need a macro, delete it. Follow these steps to delete the
surplus macro you created:

Choose View | Macros | Macros | View Macros, or press 1.	 alt-f8. Word
displays the Macro dialog box.

Select the macro in the Macro Name list box. If necessary, use the 2.	
Macros In drop-down list to select the location that contains the
macro.

Click the Delete button. Word closes the Macro dialog box and 3.	
displays a confirmation message box:

Click the Yes button. Word deletes the macro.4.	

Exit Word and Save Changes
In this chapter, you’ve made changes to the Normal template, but you haven’t
saved any of the changes yet.

If you find you
no longer need a
macro’s button on
the Quick Access
Toolbar, right-click
the button and
choose Remove
From Quick Access
Toolbar from the
context menu.

The Easy Way

Word 2007 Macros & VBA Made Easy

16

When you exit Word, the program either automatically saves changes to
Normal.dotm or prompts you to save changes, as shown here. Click the Yes
button to save your changes.

To make Word prompt you to save changes to
Normal.dotm, follow these steps:

Click the Microsoft Office button, and 1.	
then click Word Options to open the Word
Options dialog box.

In the left panel, click the Advanced category, 2.	
then scroll down to the Save options.

Select the Prompt Before Saving Normal 3.	
Template check box.

Click the OK button to close the Word 4.	
Options dialog box.

�Make Word Prompt You to Save Changes

2
Edit Your
Recorded Macro

In this chapter, you’ll open the recorded macro in
the Visual Basic Editor, examine your code, and
start changing it to give it more power. I’ll show you
how to navigate the Visual Basic Editor’s interface
and how to set it up so that you can work quickly
and easily.

Open a Macro for
Editing in the Visual
Basic Editor
First, open the macro for editing in the Visual
Basic Editor:

Open Word as usual.1.	

In Word, click the Developer tab of the 2.	
Ribbon, go to the Code group, and then
click the Macros button. Word displays the
Macros dialog box (see Figure 2-1).

Click the WMME_Transfer_Data macro.3.	

Click the Edit button. Word launches 4.	
the Visual Basic Editor and displays the
macro’s code in it.

Figure 2-1  The easiest way to open a macro for editing in the
Visual Basic Editor is to select the macro in the Macros dialog
box and then click the Edit button.

Word 2007 Macros & VBA Made Easy

18

Explore the Visual Basic Editor
Figure 2-2 shows the Visual Basic Editor with the recorded macro open. We’ll
now explore the Visual Basic Editor and look at its components in action.

Project Explorer

Properties window

Menu bar ToolbarsProject Window toolbar

Procedure View button Full Module View button Code window

Help field

Figure 2-2  The Visual Basic Editor consists of three main areas: the Project Explorer, the Properties window, and the Code
window—plus menus and toolbars.

� Chapter 2  Edit Your Recorded Macro

19

Understand the Project Explorer
Let’s start by looking at the Project Explorer window (see Figure 2-3). This is
the tool you use for getting to the code items you want—macros, user forms
(custom dialog boxes), and classes (custom code objects you create).

View Code

View Object Toggle Folders

Each open document or template has its own project in Project Explorer. In
Figure 2-3 you see two projects:

Normalππ   The Normal template remains loaded all the time you’re
using Word, so this project always appears.

Project (Document1)ππ   This is a standard Word document that hasn’t yet
been saved. (Once you’ve saved a document, the Project Explorer shows
its name.) This document is based on the Normal template; if it were
based on another template, the template would appear as a third project.

You can expand the items in a project by clicking the + sign, and collapse
expanded items by clicking the – sign. Once you’ve expanded a project, you
see several folders under it:

Microsoft Word Objectsππ   This folder contains the project’s Word
components. Each document or template contains at least one object,

Figure 2-3  The Project Editor
lets you move quickly from
one VBA project or object
to another. You can switch
between Folder view (left) and
Object view (right) by clicking
the Toggle Folders button.

Any template at-
tached to an open
document appears in
the Project Explorer. If
you’ve loaded another
global template (for
example, the Building
Blocks template of
canned document
parts), that template
appears in the Project
Explorer too.

Memo

Word 2007 Macros & VBA Made Easy

20

ThisDocument, which you can use to run code on the document
or template.

Formsππ   This folder contains any user forms (custom dialog boxes)
you’ve saved in the document or template. You’ll start working with
forms in Chapter 4.

Modulesππ   This folder contains code modules, which are where you
store your macros. A module can contain one or more macros. Word
creates the NewMacros module automatically for you the first time you
record a macro.

Class Modulesππ   This folder contains classes, custom code objects you
create. Classes are beyond the scope of this book.

References ππ (Documents only, not templates.) This folder contains a
reference to the template attached to the document.

You can click the Toggle Folders button on the Project Window toolbar to
display the list of objects not divided into folders. Click the button again to
show the folders again.

The other two buttons on the Project Window toolbar—the View Code
button and the View Object button—let you switch quickly between a userform

itself (the object) and the code attached to it.
You’ll start using these buttons in Chapter 4.

Understand the Properties
Window
The Properties window (shown in Figure 2-4
with a userform selected) shows a list of the
properties of the object you’ve currently selected.
You can check the value of a property or (for
most properties) change it. For example, the text
you assign to the Caption property appears in the
title bar of the form.

Word documents in
the .docx format and
Word templates in the
.dotx format cannot
contain VBA code. If
you want to put VBA
code in a document
or template, you must
use either the Word
Macro-Enabled Docu-
ment (.docm) format
or the Word 97–2003
Document (.doc) for-
mat for a document
or the Word Macro-
Enabled Template
(.dotm) format or the
Word 97–2003 Tem-
plate (.dot) format
for a template. The
Normal template is a
Word Macro-Enabled
Template (Normal.
dotm).

Memo

Figure 2-4  The Properties
window lets you view and
change properties for which-
ever object you’ve selected.

� Chapter 2  Edit Your Recorded Macro

21

The Alphabetic tab shows an alphabetical list of the properties. The
Categorized tab shows the same properties divided by category—Appearance,
Behavior, Font, and so on.

Understand the Code Window
The Code window, which takes up the largest part of the Visual Basic Editor
window, is where you create and edit your code. At the moment, the Code
window should be displaying the code for the macro you recorded in Chapter 1.

At the lower-left corner of the Code window are two buttons:

Procedure View ππ Click this button to make the Code window show
only one procedure at a time. Procedure view is useful when you’re
working on a single procedure.

Full Module Viewππ   Click this button to make the Code window show
all the module’s procedures. Full Module view is useful when you’re
working on multiple procedures within the same module.

You’ll start working in the Code window later in this chapter and will see
its helpful features in action.

Configure the Visual
Basic Editor So You Can
Work Easily in It
Next, make sure the Visual Basic Editor is set
up so that you can work easily in it. Follow these
steps:

�In the Visual Basic Editor, choose Tools | 1.	
Options to open the Options dialog box, and
then click the Editor tab if it’s not already
displayed. Figure 2-5 shows the Editor tab.

Figure 2-5  Make sure all the
check boxes on the Editor tab
of the Options dialog box are
selected.

Word 2007 Macros & VBA Made Easy

22

Make sure all of the check boxes are selected. You’ll probably need to 2.	
select the Require Variable Declaration check box, as VBA normally
has this check box cleared at first.

Click the Editor Format tab to display its contents (see Figure 2-6).3.	

We’ll get into the
details of these
features later in this
chapter and in the
subsequent chap-
ters. For now, simply
choose the settings
as instructed.

Memo

To make your code
easier to read, VBA
uses different colors
for different catego-
ries of text: dark blue
for keywords, green
for comments, red for
syntax errors, and so
on. You’ll read more
about these shortly.
The Editor Format tab
of the Options dialog
box lets you change
the colors if you want.
This book assumes
that you’re using the
standard colors.

Memo

Figure 2-6  The Editor Format
tab of the Options dialog box
lets you change the font, font
size, and color. At this point,
just make sure the font size is
easy to read.

If you find the sample font too small, choose a larger size in the Size 4.	
drop-down list. You can also change the font if you want, but it’s
usually best to start off with Courier New, the default choice.

Click the General tab to display its welter of options (see Figure 2-7).5.	

Choose the settings shown in Figure 2-7:6.	

Select each of the check boxes except the Notify Before State Loss ππ

check box.

In the Error Trapping group box, select the Break On Unhandled ππ

Errors option button.

� Chapter 2  Edit Your Recorded Macro

23

�Click the Docking tab to display its list of 7.	
dockable windows. Dockable means that you
can dock (attach) a window to the Visual Basic
Editor’s window frame rather than having the
window float freely.

�Select the check box for each window except 8.	
Object Browser.

�Click the OK button to close the Options 9.	
dialog box.

You’re almost set to start editing. There’s just
one more thing to do—display the Edit toolbar
and the Debug toolbar so that you have their
controls available:

Right-click the menu bar, and then click Edit so that a check mark 1.	
appears next to it and the Edit toolbar appears.

Right-click the menu bar again, and then click Debug, again placing 2.	
a check mark next to it and displaying the Debug toolbar.

If either of the toolbars is floating free, double-click its title bar to 3.	
dock it.

Drag the toolbars so that they’re conveniently arranged at the top of 4.	
the Visual Basic Editor window.

Examine the Macro You Recorded
Now that you’ve set up the Visual Basic Editor, you’re ready to examine the
macro you’ve recorded. The best way to do this is to step through the macro,
executing one code statement at a time and watching what happens.

Figure 2-7  Make sure the
General tab of the Options
dialog box is set up like this
so that you can easily follow
the examples in this book.

Word 2007 Macros & VBA Made Easy

24

Look at the Code of the Macro
First, take a quick look at the macro’s code, and read through the short
explanation of it. I’ve added line numbers to the code for ease of reference.
You won’t see these numbers in your own code.

1. Sub WMME_Transfer_Data()

2. '

3. ' WMME_Transfer_Data Macro

4. ' Opens Latest Report.docx and finds data in it. Creates a new

 document, copies the data to it, and saves and closes

 the document.

5. '

6. ChangeFileOpenDirectory "C:\Users\Ken\Documents\WMME\"

7. Documents.Open FileName:="""Latest Report.docx""", _

 ConfirmConversions:= False, ReadOnly:=False, _

 AddToRecentFiles:=False, PasswordDocument:="", _

 PasswordTemplate:="", Revert:=False, _

 WritePasswordDocument:="", WritePasswordTemplate:="", _

 Format:=wdOpenFormatAuto, XMLTransform:=""

8. Selection.MoveDown Unit:=wdParagraph, Count:=1

9. Selection.MoveDown Unit:=wdParagraph, Count:=1,

 Extend:=wdExtend

10. Selection.Copy

11. ActiveWindow.Close

12. Documents.Add DocumentType:=wdNewBlankDocument

13. Selection.Style = ActiveDocument.Styles("Heading 1")

14. Selection.TypeText Text:="Report Summary"

15. Selection.TypeParagraph

16. Selection.PasteAndFormat (wdPasteDefault)

17. ActiveDocument.SaveAs FileName:="Report Summary.docx", _

 FileFormat:=wdFormatXMLDocument, LockComments:=False, _

 Password:="", AddToRecentFiles:=True, WritePassword:="",_

 ReadOnlyRecommended:=False, EmbedTrueTypeFonts :=False, _

 SaveNativePictureFormat:=False, _

 SaveFormsData:=False, SaveAsAOCELetter:=False

18. ActiveWindow.Close

19. End Sub

If you’ve looked
at programming
languages such as C
or C++, you may be
pleasantly surprised
to find how easy VBA
is to read. You’ll also
notice that the code
lines are indented
to different levels
to make it easier to
read and to show
where a statement
has been continued
to a second or
subsequent line.

The Easy Way

� Chapter 2  Edit Your Recorded Macro

25

I’ll give you the details of what objects, collections, properties, methods,
and arguments are in a moment, but here’s what happens in the code:

The Sub statement in line 1 starts the subprocedure, and the End Sub ππ

statement in line 19 ends it.

After the Sub statement come four lines of comments. A ππ comment is a
line of code that you tell VBA to ignore, either because you don’t want
to use a particular statement at the moment or because you want to
add comments to explain your code to yourself or other programmers.
You put an apostrophe before any code on the line that you want VBA
to ignore. Here, the apostrophe appears at the beginning of each line,
so the whole of each line is commented out. However, you can also
comment out only part of a line.

Line 6 uses the ChangeFileOpenDirectory command to change the ππ

folder (directory) that appears in the Open dialog box.

Line 7 uses the Open method of the Documents collection to open ππ

the Latest Report.docx document. FileName is the key argument here;
don’t worry about the other arguments for the moment.

Line 8 uses the MoveDown method of the Selection object to move the ππ

current selection down one paragraph. The Selection object represents
the current selection, whether it’s an insertion point (with no content),
a selection that contains words or characters, or another object (for
example, a picture).

Line 9 uses the MoveDown method of the Selection object again, but ππ

this time with the Extend:=wdExtend argument. This makes Word
select from the selection’s current position to the end of the paragraph.

Line 10 uses the Copy method of the Selection object to copy the ππ

selection to the Clipboard.

A subprocedure is
one of the two types
of code unit you
normally create with
VBA. The other type
of code unit is a func-
tion, which begins
with a Function
statement and ends
with an End Function
statement.

Memo

You’ll notice that line
7 is actually six lines
of code: The Visual
Basic Editor has au-
tomatically broken
it onto extra lines to
stop the lines from
becoming unread-
ably long. To break a
line of code, you put
a space followed by
an underscore, as on
these lines. You can
break a line between
any keywords or
values, so you can
use line breaks freely
to make your code
easier to read.

Memo

Word 2007 Macros & VBA Made Easy

26

Line 11 uses the Close method of the ActiveWindow object to close the ππ

active window.

Line 12 uses the Add method of the Documents collection to add a ππ

Document object. The DocumentType argument specifies that it’s a
blank document (wdNewBlankDocument).

Line 13 sets the Style property of the Selection object to the style ππ

named “Heading 1” in the active document.

Line 14 uses the TypeText method of the Selection object to type the ππ

text “Report Summary.”

Line 15 uses the TypeParagraph method of the Selection object to ππ

“type” a paragraph (the equivalent of you pressing enter at the end of a
paragraph).

Line 16 uses the PasteAndFormat method of the Selection object to ππ

paste in the text from the Clipboard. VBA lets you paste in different
ways just as Word does—for example, pasting styled text, or text free of
formatting. This time, we use default paste behavior—wdPasteDefault
in VBA terms.

Line 17 uses the SaveAs method of the ActiveDocument object to ππ

save the document. There’s a whole welter of arguments here, but
for now look only as far as the FileName argument (which specifies
the filename) and the FileFormat argument (which specifies the
file format to use). Chapter 12 explains the rest of the most useful
arguments.

Line 18 uses the Close method of the ActiveWindow object to close the ππ

active window (and thus close the document).

Line 19 simply ends the macro (as noted earlier).ππ

� Chapter 2  Edit Your Recorded Macro

27

Step into the Macro
Now that you’ve read what the macro does, try stepping into it so that you can
see it in action. Step into means to go through the macro one command at a
time, watching what each command does.

To step through your macro, follow these steps:

Arrange the Visual Basic Editor window and the Word window so that 1.	
you can see both. The easiest way is to minimize all other windows
except these two, right-click the system clock, and then choose Show
Windows Side By Side.

Here are six key terms you’ll need to know for
working with VBA:

An ππ object is an item such as a document (the
Document object), a window (the Window
object), or a selection (the Selection object).
An object can have properties, methods, or
both.

A ππ collection is a group of objects of the same
type. For example, the Documents collection
contains all the open Document objects—a
collection’s name is usually the plural of the
object’s name, as in this case, but there are
some exceptions.

A ππ property is an attribute of an object that you
can set. For example, the Style property of the
Selection object controls the style applied to
the selection. Style is a read-write property, so
you can both find out what style is currently

applied and apply a different style. Some
properties are read-only: you can find out their
current settings, but you cannot change them.

A ππ method is an action you can take with (or
on) an object or collection. For example, the
Open method of the Documents collection
opens a document.

An ππ argument is a piece of information you
provide to a method to tell it what to do. For
example, when you use the Open method
of the Documents collection to open a
document, you must use the FileName
argument to tell VBA the name of the file to
open. Some arguments are required (always
needed), as FileName is here, while others
are optional.

A ππ variable is a storage slot you create for
storing information temporarily in a macro.

�Understand key vba terms

Word 2007 Macros & VBA Made Easy

28

Press 2.	 alt-f11 to move the focus to the Visual Basic Editor window.

Click in the WMME_Transfer_Data macro.3.	

Press 4.	 f8, or click the Step
Into button on the Debug
toolbar as shown here,
to start stepping into the
macro.

The Visual Basic Editor 5.	
highlights the macro’s Sub
statement and places an arrow
next to it.

Press 6.	 f8 or click the Step Into button again. Notice that the Visual
Basic Editor skips over the four comment lines and highlights the
ChangeFileOpenDirectory line.

Press 7.	 f8 or click the Step Into button again. The Visual Basic Editor
executes the ChangeFileOpenDirectory statement, but this has no
visible effect, so you see no change. The Visual Basic Editor highlights
the Documents.Open statement.

Press 8.	 f8 or click the Step Into button to execute the Documents.Open
statement. The Latest Report.docx document opens in the Word window.

Continue pressing 9.	 f8 (or clicking the Step Into button) and watching
the actions that take place. When you execute the End Sub statement,
the macro ends.

Edit the Macro
In this section, you’ll make some easy edits to the macro that change what it
does. As you edit the macro, you’ll see some of the Visual Basic Editor’s most
important code-completion features in action.

� Chapter 2  Edit Your Recorded Macro

29

Add an Option Explicit Statement if Necessary
First, look at the top of the Code window to see if there’s an Option Explicit
statement. If not (as is most likely), click before the first line of code, type
option explicit (in lowercase), and press enter.

Notice that the Visual Basic Editor automatically applies title case when you
press enter: whenever you end a line of code, the Visual Basic Editor checks it
to make sure that it doesn’t contain any immediately identifiable errors.

See the Visual Basic Editor Identify
a Compile Error
Now watch what happens when you enter a line of code that doesn’t compile
correctly.

On the line below Option Explicit, type option implicit
and press enter. This isn’t proper VBA code, so the Visual
Basic Editor displays a Compile Error message box like
the one shown here. (The message means that you can
use Option Base, Option Compare, Option Explicit, and
Option Private statements.)

Click the OK button to close the message box, and
then delete the “option implicit” statement. The easiest way to do this is to
move the mouse pointer into the selection bar just to the left of the line so
that it turns into an arrow pointing up and to the right, click once to select the
whole line, and then press delete.

Now it’s time for you to make some changes to the macro.

The Option Explicit statement tells VBA to force you
to make a formal declaration of each variable you
use in your code. These declarations help you avoid
confusion with variables and variable types.

After you select the Require Variable Declaration
check box on the Editor tab of the Options dialog

box, VBA automatically adds this statement to each
new Code sheet you create. However, because the
NewMacros module exists already, you need to
add the Option Explicit statement to its Code sheet
manually.

Understand the Option Explicit Statement

Word 2007 Macros & VBA Made Easy

30

Remove the ChangeFileOpenDirectory
Statement
Having the ChangeFileOpenDirectory statement at the beginning of the
macro isn’t great, because it means that you (or whoever runs the macro) will
see the WMME folder the next time you display the Open dialog box.

Instead, it’s better to put the full path and filename in the Documents
.Open statement. Follow these steps:

In the ChangeFileOpenDirectory line, select the file path—for 1.	
example, C:\Users\Ken\Documents\WMME. Don’t select the double
quotation marks.

Press 2.	 ctrl-c or click the Copy button on the Standard toolbar to copy
the path to the Clipboard.

In the Documents.Open line, click to position the insertion point just 3.	
before Latest Report.docx (after the double quotation marks).

Press 4.	 ctrl-v or click the Paste button on the Standard toolbar to paste
in the path.

In the Documents.SaveAs line, click to position the insertion point 5.	
before Report Summary.docx (after the double quotation marks), and
then paste in the path.

Select the ChangeFileOpenDirectory line, and then delete it.6.	

Replace the ActiveWindow.Close Statements
Now, let’s change the two ActiveWindow.Close statements to ActiveDocument
.Close statements. You can do this by editing the macro manually, but using
Find and Replace is even quicker. Follow these steps:

Choose Edit | Replace or press 1.	 ctrl-h to display the Replace dialog box
(see Figure 2-8).

Type 2.	 ActiveWindow.Close in the Find What box.

You can use many
standard editing
commands from
Word and other
text editors in the
Visual Basic Editor
as well. Better yet, it
has powerful code-
completion features
that you’ll meet
shortly.

The Easy Way

� Chapter 2  Edit Your Recorded Macro

31

Type 3.	 activedocument.close in the Replace With box.

�Click the Replace All button. The Visual Basic Editor 4.	
tells you how many replacements it has made:

Click the OK button to close the Microsoft Visual Basic dialog box.5.	

Click the Cancel button or press 6.	 esc to close the Replace dialog box.

Add Further Statements to the Macro
Now add further statements to the macro to change what it does. Follow
these steps:

Click at the end of the Selection.TypeText line, and then press 1.	 enter
to create a new line. Notice that the Visual Basic Editor starts the new
line at the same level of indentation as the previous line.

Type 2.	 sel and then press ctrl-spacebar. This is the keyboard shortcut
for the Complete Word feature. Notice that the Visual Basic Editor
automatically completes the word Selection for you (and capitalizes
the first letter).

Type a period after Selection. 3.	
The Visual Basic Editor
displays the available
properties and methods for
the Selection object, as shown
here. This feature is called
List Properties/Methods.

Figure 2-8  You can use the
Visual Basic Editor’s full-
functioned Replace feature to
change your code quickly. You
can let the Visual Basic Editor
handle the capitalization for
you.

The Complete Word
feature completes
the word when
you’ve typed
enough to uniquely
identify the word. If
what you’ve typed
matches several
words, the Visual
Basic Editor displays
a list of possibilities.
You can then select
one using the up
arrow or down arrow
keys or the mouse,
or keep typing until
you’ve narrowed
down the list to a
single entry.

The Easy Way

Word 2007 Macros & VBA Made Easy

32

Type 4.	 typet to scroll down quickly to the TypeText method, and then
press tab to enter the method in your code.

Press 5.	 spacebar to type a space. The Visual Basic Editor displays the
argument list, showing each argument and its type. As you can see
here, the TypeText method takes only
one argument, Text, and its type is
String.

Type the argument, a colon, an equal sign, and then the text you want 6.	
to “type”:

Selection.TypeText Text:="Here is the latest report

summary."

Select the Selection.TypeParagraph line (click in the selection bar 7.	
at the left edge of the Code window) and then ctrl-drag it up to the
beginning of the second Selection.TypeText paragraph, as shown here
(the gray vertical bar to the left of the mouse pointer indicates where
the dragged item will land). As in Word, ctrl-dragging copies the
selection rather than moving it.

Click at the beginning of the ActiveDocument.Close statement at the 8.	
end of the macro, and then type an apostrophe to comment out the
line:

'ActiveDocument.Close

When you move the insertion point to another line, notice that the 9.	
Visual Basic Editor turns the commented line green.

You can also double-
click an item in the
List Properties/Meth-
ods list to enter it in
your code.

Memo

� Chapter 2  Edit Your Recorded Macro

33

After these edits, your macro should look like this (including the Option
Explicit statement that precedes the macro):

Option Explicit

Sub WMME_Transfer_Data()

'

' WMME_Transfer_Data Macro

' Opens Latest Report.docx and finds data in it. Creates a new

document, copies the data to it, and saves and closes the document.

'

 Documents.Open FileName:= _

 "C:\Users\Ken\Documents\WMME\Latest Report.docx", _

 ConfirmConversions:=False, ReadOnly:=False, _

 AddToRecentFiles:=False, PasswordDocument:="", _

 PasswordTemplate:="", Revert:=False, _

 WritePasswordDocument:="", WritePasswordTemplate:="", _

 Format:=wdOpenFormatAuto, XMLTransform:=""

 Selection.MoveDown Unit:=wdParagraph, Count:=1

 Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend

 Selection.Copy

 ActiveDocument.Close

 Documents.Add DocumentType:=wdNewBlankDocument

 Selection.Style = ActiveDocument.Styles("Heading 1")

 Selection.TypeText Text:="Report Summary"

 Selection.TypeParagraph

 Selection.TypeText Text:="Here is the latest report summary:"

 Selection.TypeParagraph

 Selection.PasteAndFormat (wdPasteDefault)

 ActiveDocument.SaveAs FileName:= _

 "C:\Users\Ken\Documents\WMME\Report Summary.docx", FileFormat:= _

 wdFormatXMLDocument, LockComments:=False, Password:="", _

 AddToRecentFiles:=True, WritePassword:="", _

 ReadOnlyRecommended:=False, EmbedTrueTypeFonts _

 :=False, SaveNativePictureFormat:=False, SaveFormsData:=False, _

 SaveAsAOCELetter:=False

 ActiveDocument.Close

End Sub

Word 2007 Macros & VBA Made Easy

34

Run the Edited Macro
Now run the edited version of the macro. To do so, simply click in it and then
either click the Run Sub/UserForm button on the Standard toolbar or the
Debug toolbar (the button
appears on both toolbars) or
press f5. The macro runs at
full speed, rather than one
command at a time.

Because you’ve commented out the final ActiveDocument.Close statement,
the Report Summary.docx document remains open, so you can see the effect
of the changes you’ve made: the report contains the extra paragraph with the
text you typed into your code.

Save Your Changes and Quit Word
Now remove the comment from your macro, save your changes, and quit
Word. Follow these steps:

In the Visual Basic Editor, delete the apostrophe from the start of 1.	
the second ActiveDocument.Close line. Move the insertion point
to another line, and you’ll see the line change from the green of
comments to the regular colors for code statements.

Click the Save button on the Standard toolbar or press 2.	 ctrl-s to save
changes to the Normal template.

Choose File | Close And Return to Microsoft Word or press 3.	 alt-q to
close the Visual Basic Editor and return to the Word window.

Close the Report Summary.docx document and quit Word by clicking 4.	
the Microsoft Office button and then clicking Exit Word.

Press alt-f11 to
toggle quickly
between the Visual
Basic Editor and the
Word window. If the
Visual Basic Editor
isn’t open when you
press alt-f11 from
Word, Windows
launches it.

The Easy Way

3
Control a Macro
with Message
Boxes and Input
Boxes
One of the easiest ways of making your macros more
useful and powerful is to let the user control them.

In this chapter, you’ll learn how to use message
boxes—simple dialog boxes—to let the user make
decisions as a macro runs, and how to use input
boxes to let the user provide text input. You’ll work
with message boxes and input boxes by attaching
them to the macro you recorded in Chapter 1 and
edited in Chapter 2.

In the next chapter, you’ll see how to create
your own custom dialog boxes to allow the user to
interact with your macros in more complex ways.
And Chapter 14 shows you how to summon up
Word’s built-in dialog boxes for use in your macros.

Add Message Boxes
to Your Macro
A message box is a small, standardized dialog box
that contains only a few elements:

A title bar containing the program’s name ππ

or general information

Word 2007 Macros & VBA Made Easy

36

The text of the message you want to convey to the userππ

An icon to indicate which category of message it is—a question, ππ

information, an alert, or a warning

�One, two, three, or four buttons that allow the user to ππ

choose what to do (or simply close the message box)

Figure 3-1 shows an example of a two-button message
box with a Yes button and a No button. There’s nothing to
it—but it’s great for making decisions in your code.

Get Ready to Work Through
This Chapter
Before we can get started with message boxes and input boxes, you need
to set up the Visual Basic Editor ready for working and create a copy of the
module containing the macro you’ll be adapting.

Open the Visual Basic Editor and the Macro
Follow these steps to open the Visual Basic Editor and the macro:

Open Microsoft Word if it’s not already running.1.	

Click the Developer tab, go to the Code group, and then click Visual 2.	
Basic to open the Visual Basic Editor.

If the Code window for the WMME_Chapter_1 code module opens, 3.	
you’re all set. If not, choose Tools | Macros to open the Macros dialog
box in the Visual Basic Editor (see Figure 3-2).

In the Macro Name list, click the WMME_Transfer_Data macro, and 4.	
then click the Edit button. The Visual Basic Editor opens the code
module containing the macro.

Figure 3-1  A two-button
message box is great for
confirming that the user actu-
ally intends to run the macro
they’ve started—and that they
know what the macro will do.

� Chapter 3  Control a Macro with Message Boxes and Input Boxes

37

Create a Copy of the Module
Now create a copy of the code module so that
you can work with a copy of the code. The
easiest way to do this is to export the WMME_
Chapter_1 code module to a file, and then
immediately import that file.

Follow these steps to export the file:

�In the Project Explorer window, right-click 1.	
the WMME_Chapter_1 module and choose
Export File from the context menu. The
Visual Basic Editor displays the Export File
dialog box (see Figure 3-3).

Navigate to the WMME folder you created in your Documents folder 2.	
(on Windows Vista) or your My Documents folder (on Windows XP).

Accept the default filename, WMME_Chapter_1.bas (if you’ve 3.	
set Windows to display file extensions) or WMME_Chapter_1
(if Windows is hiding file extensions).

Click the Save button to close the Export File dialog box and save the file.4.	

Figure 3-2  You can use the
Macros dialog box in the
Visual Basic Editor to navigate
quickly to the code module
containing a particular macro.

Figure 3-3  Use the Export
File dialog box to export a
code module (or other mod-
ule) to a file for safe keeping
or so that you can import it
elsewhere.

Word 2007 Macros & VBA Made Easy

38

Now import the file you just exported. Follow these steps:

In the Project Explorer, right-click the Modules item under the 1.	
Normal template and choose Import File from the context menu. The
Visual Basic Editor displays the Import File dialog box.

If necessary, navigate to your WMME folder.2.	

Click the file you just exported (WMME_Chapter_1.bas or WMME_3.	
Chapter_1).

Click the Open button to close the Import File dialog box and import 4.	
the module.

The Visual Basic Editor adds the module to the Modules list in the
Normal template. You’ll see that the Visual Basic Editor renames the module
to WMME_Chapter_11 (adding a second 1 at the end) to make its name
different from that of the existing module.

Rename the module and the macro like this:

Click the WMME_Chapter_11 module in the Project Explorer.1.	

Click in the Properties window at the end of the (Name) field.2.	

Edit the name to WMME_Chapter_3.	 3, and then press enter.

Click in the Code window just before the parenthesis at the end of 4.	
the macro’s name, and then type _3 to change the name to WMME_
Transfer_Data_3.

Understand the Basic Syntax
for Message Boxes
Now you’re ready to start adding message boxes to the macro. First, have a
quick look through the syntax that VBA uses for message boxes:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The Visual Basic Edi-
tor saves code mod-
ules using the .bas
file extension, which
Windows associates
with the Basic Files
file type. (This is “Ba-
sic Files” in the sense
of “Visual Basic files”
rather than “simple
files.”)

Memo

� Chapter 3  Control a Macro with Message Boxes and Input Boxes

39

That looks confusing with all the brackets and commas. Here’s what it
means:

MsgBox is VBA’s function for displaying a message box. Normally, ππ

you put the arguments in parentheses, as shown here, so that you can
check the result of the message box and find out which button the user
clicked.

promptππ is the only required argument. This is the text string containing
the text you want to display in the message box. The text can be up to
1,024 characters long.

buttonsππ is an optional argument that controls which buttons and which
icon the message box contains. If you omit buttons, you get an OK-only
message box with no icon, so usually you’ll want to use buttons. I’ll give
you the details in a minute.

titleππ is an optional argument that supplies the text to display in the title
bar of the message box—for example, the name of the macro that’s
running. Usually, you’ll want to specify title to help the user grasp
the message box’s meaning and importance. If you omit title, VBA
puts “Microsoft Word” in the title bar so that the user at least knows
which program the message box belongs to. You can make about
75 characters appear in the title bar—any more than that, and VBA
truncates the title—but having a shorter title bar is usually a better
idea.

helpfileππ is an optional argument that tells Windows which help file
to open if the user clicks the Help button in the message box. If you
specify helpfile, you must also specify context, which tells Windows
which topic in the help file to display. Unless you create your own help
files, you probably won’t need to use these arguments, so I won’t give
examples of them in this chapter.

For single-button
message boxes, you
don’t need to use the
parentheses with the
MsgBox function:
you can simply use
a statement such as
MsgBox “The macro
has now finished
running.” instead.
This is because the
user can click only
the one button (or
press enter or esc,
which has the same
effect), so there’s no
point in retrieving
the button clicked.

The Easy Way

Word 2007 Macros & VBA Made Easy

40

Understand the buttons Argument
To tell VBA which command buttons and icons to display in the message box,
you specify the appropriate value or constant for the buttons argument.

Here are the values and constants that control the command buttons:

Buttons Constant Value

OK vbOKOnly 0

OK, Cancel vbOKCancel 1

Abort, Retry, Ignore vbAbortRetryIgnore 2

Yes, No, Cancel vbYesNoCancel 3

Yes, No vbYesNo 4

Retry, Cancel vbRetryCancel 5

The second part of the buttons argument tells VBA which icon to include in
the message box. Here are the values and constants that control the icon:

Icon Constant Value

Stop icon vbCritical 16

Question-mark icon vbQuestion 32

Exclamation-point icon vbExclamation 48

Information icon vbInformation 64

There’s one more part to the buttons argument: setting the default button.
You’ll need to do this only when you need to override VBA’s habit of making
the first button the default button. For example, in a Yes/No message box, the
Yes button is the default button—but if you expect the answer to be No, you
can set the No button to be the default button. That way, if someone simply
presses enter to dismiss the message box, they choose the No button rather
than the Yes button.

� Chapter 3  Control a Macro with Message Boxes and Input Boxes

41

To set the default button, use the constants or values shown here:

Default Button Constant Value

First button vbDefaultButton1   0

Second button vbDefaultButton2 256

Third button vbDefaultButton3 512

Fourth button vbDefaultButton4 768

To set the default button, you add it to the first parts of the buttons
argument by using a plus sign, like this:

If MsgBox("Create a new document?", vbYesNo + vbQuestion + _

 vbDefaultButton2, "Create New Document") = vbYes

 Then Documents.Add

Put Message Boxes into Action
After all that theory, try adding two message boxes to the macro you recorded
in Chapter 1, edited in Chapter 2, and renamed to WMME_Transfer_Data_3
at the beginning of this chapter.

Add the First Message Box
To add a message box, follow these steps:

Click at the beginning of the Documents.Open line, press 1.	 enter to
create a new line, and then press up arrow to move back to the new
line.

Type 2.	 If MsgBox(to start a MsgBox statement preceded by an If
condition. The Visual Basic Editor displays a ScreenTip with the
syntax for the MsgBox function, as shown here. The Prompt argument
is in bold, indicating this is the next argument.

Word 2007 Macros & VBA Made Easy

42

Type the prompt for the message box:3.	

"Create a new report summary?"

Type a comma. The Visual Basic Editor displays a ScreenTip with 4.	
the next argument, Buttons, in bold, and displays the list of available
options:

Type 5.	 vby to select the vbYesNo item in the list, and then press tab to
enter it.

Type a space and a plus sign (6.	 +). The Visual Basic Editor displays the
list of options for completing the Buttons argument again.

Type 7.	 vbq to select the vbQuestion item in the list, and then press
comma to enter it and move along to the next part of the statement:

Type 8.	 "Transfer Data Macro" (including the double quotation marks)
as the title for the message box, and then type), a closing parenthesis.
The Visual Basic Editor hides the ScreenTip.

Type a space and 9.	 = vbYes Then to complete the If statement for the
message box.

Move to the end of the macro and click just after the ActiveDocument 10.	
.Close statement.

As you saw earlier
in this chapter,
you can use either
constants (such
as vbQuestion) or
values (such as 4)
in your code. The
values help keep
your code compact,
but your macros will
be much easier to
read if you use the
constants, which
let you grasp the
message box type
and icon type at a
glance. For example,
MsgBox(“Delete this
file?”, vbYesNo +
vbQuestion) is easier
to interpret than
MsgBox(“Delete this
file?”, 4 + 32).

The Easy Way

� Chapter 3  Control a Macro with Message Boxes and Input Boxes

43

Press 11.	 enter to create a new line, and then type end if on that line.
When you move the insertion point from the line, the Visual Basic
Editor applies initial caps, making the statement End If.

Select all the text from the Documents.Open statement near the 12.	
beginning of the macro to the ActiveDocument.Close statement near
the end.

Press 13.	 tab or click the Indent button on the Edit toolbar (as shown
here) to indent the code by one tab stop. This indentation makes the
hierarchy of the code clearer: All the code between the If statement
and the End If statement is conditional on the If statement evaluating
to True. If the user clicks
the No button, VBA goes
from the If line to the
End If line, and then the
macro ends.

Press 14.	 ctrl-s or click the Save button on the Standard toolbar to save
the changes.

Test the First Message Box
Now test the first message box:

Click in the macro, and then press 1.	
f8 three times to step through to
the MsgBox line. The Visual Basic
Editor displays the message box,
as shown on the right.

Click the No button or press 2.	 esc.
The message box closes and the
highlight jumps to the End If line.

Press 3.	 f8 twice more to execute the End If statement and then the End
Sub statement.

You’ll meet If state-
ments in depth in
Chapter 6. Briefly,
if the specified
condition is met, the
code after the Then
keyword runs. Here,
the vbYes condition
specifies that the user
clicks the Yes button
in the message box.

Memo

Word 2007 Macros & VBA Made Easy

44

Click in the macro again, but this time press 4.	 f5. The message box
appears.

Click the Yes button. The macro runs, opening the Latest Report.docx 5.	
document, creating the summary document, and then closing both
documents.

Add and Test the Second Message Box
Now add a second message box to the end of the macro. This message box
contains only an OK button, so you don’t need to retrieve which button the
user clicks—there’s only one choice.

Follow these steps:

Click at the end of the ActiveDocument.Close statement, and then 1.	
press enter to create a new line.

Type the following MsgBox statement, breaking it with an underscore 2.	
(after a space) for practice:

MsgBox "The macro has created the report summary.", _

 vbOKOnly + vbInformation, "Transfer Data Macro"

Press 3.	 f5 to run the
macro, and then click the
Yes button in the first
message box. The macro
runs as before, and then
the second message box
appears, as shown here.

Click the OK button to close the second message box, and then the 4.	
macro finishes.

Press 5.	 ctrl-s or click the Save button on the Standard toolbar to save
the changes.

In a two-button
message box such as
the Yes/No message
box shown earlier,
the first button is
the “action” button,
and the second is the
cancellation button
(the No button has
the same effect as
a Cancel button). If
the user presses esc
instead of clicking a
button, VBA treats
the keypress the
same way as a click
on the Cancel button.

The Easy Way

Notice that the
MsgBox statement
for the second
message box does
not use parentheses.
This is because you
do not need to check
the result of the
message box, given
that the user has only
one choice in it.

Memo

� Chapter 3  Control a Macro with Message Boxes and Input Boxes

45

So far, you’ve seen VBA’s two most useful message
boxes: a Yes/No message box, and an OK-only
message box. As you read earlier in this chapter, VBA
also offers an OK/Cancel message box and a Retry/
Cancel message box. You can use these in exactly the
same way as the Yes/No message box.

With a two-button message box, you need check
only whether one of the buttons was clicked: if it
wasn’t clicked, the other button was. To make this
check, you can use an If . . . Then condition as shown
in this chapter.

In some cases, you may not need to take any
action for one of the buttons. For example, in the
Transfer_Data_3 macro, clicking the Yes button in
the Yes/No message box runs the code; clicking No
simply doesn’t run it. In other cases, you may need
to write separate code for the second button, using

an If . . . Then . . . Else . . . statement (discussed in
Chapter 6).

VBA also offers two three-button message boxes:
Yes/No/Cancel, and Abort/Retry/Ignore. A Yes/No/
Cancel message box can be useful for occasions when
you need to let the user stop the running macro (with
the Cancel button) as well as make a decision about
the question you’re raising. An Abort/Retry/Ignore
message box is seldom useful, as the terminology
tends to confuse the user.

You can also add a Help button to any message
box, so you may need to check up to four buttons.

To find out which button the user clicked in a
three-button message box, use an If . . . Then . . .
ElseIf . . . Else statement. For a four-button message
box (including a Help button), use an If . . . Then . . .
ElseIf . . . ElseIf . . . Else statement.

�using multi-Button Message Boxes

You can use up to 1,024 characters in the prompt
of a message box, which is enough for around
150 words—but don’t expect most users to read a
message this long.

All the text appears in a single paragraph unless
you break it up by using a carriage-return character
(vbCr) to break a line. By using two carriage returns,
you can create paragraphs separated by a blank line.
This can make a longer message far easier to read.

For example, try changing the MsgBox statement at
the end of your macro so that it looks like this:

MsgBox "The macro has created the report

summary." & vbCr & vbCr _

 & "The report summary is in Report

Summary.docx", _

 vbOKOnly + vbInformation, "Transfer

Data Macro"

When you run the macro, you see a message box
like that shown here:

Creating Multiple Lines of Text in a Message Box

Word 2007 Macros & VBA Made Easy

46

Add an Input Box
An input box is a standardized message box with two buttons (OK and Cancel)
that contains a single text field in which the user can enter text. You can use
an input box to request user input or to prompt the user to accept or change a
default value. Figure 3-4 shows a typical input box.

Figure 3-4  An input box
is a simple dialog box that
contains a single text field and
OK and Cancel buttons.

Understand the Syntax for Input Boxes
To display an input box, you use this syntax:

InputBox(prompt[, title] [, default] [, xpos] [, ypos]

[, helpfile, context]

Most of these arguments are the same as for message boxes. Here’s an
executive summary, but look back to earlier in the chapter for full details:

promptππ is the message text that appears in the input box telling the user
what to do. This is the only required argument.

titleππ is the title of the input box. Usually you’ll want to specify this
argument so that your input boxes don’t say “Microsoft Word” in the
title bar.

defaultππ is the text you want to display in the text field, either as a default
value (if the user doesn’t change it) or as an example of the kind of
input you want. Depending on what input the input box is seeking,
default text is sometimes helpful but other times unhelpful. If you
need to force the user to enter text, leave default blank so that you can
check the user’s input.

An input box is a
great way of having
the user input a
single piece of
information to a
macro. You can
easily use multiple
input boxes in
sequence to gather
several pieces of
information, but
users will often
find the macro
awkward to use.
A custom dialog
box (discussed in
the next chapter)
is usually an easier
means of gathering
multiple pieces of
information.

The Easy Way

� Chapter 3  Control a Macro with Message Boxes and Input Boxes

47

xposππ and ypos are numeric values that let you control where the input
box appears on the screen. The numbers are in twips (a twip, short
for a twentieth of an inch point, is 1/1440 inch). Because twips vary
depending on screen resolution, it’s normally best to omit xpos and
ypos so that VBA displays the input box in the default position: halfway
across the screen, and two-thirds of the way up it.

helpfileππ specifies the help file to use if the user clicks the Help button,
and context specifies the help topic within the help file. Unless you
develop your own help files (which is beyond the scope of this book),
you probably won’t want to use these arguments.

Add the Input Box to the Macro
You’re now ready to add the input box to the macro. Follow these steps:

Go to the Selection.TypeText Text:="Report Summary" line and select 1.	
the “Report Summary” part (including the double quotation marks).

Over the selected text (replacing it), type 2.	 inputbox(. The Visual Basic
Editor displays the ScreenTip showing the arguments and highlights
the Prompt argument:

Type the rest of the statement, this time spelling out each argument 3.	
you’re using. Put the argument’s name, a colon, an equal sign, and
then the value in double quotation marks, as shown here:

Selection.TypeText Text:=InputBox(_

 Prompt:="Type the title here:", _

 Title:="Transfer Data Macro", _

 Default:="Report Summary")

Comment out the ActiveDocument.Close statement at the end of the 4.	
macro by typing an apostrophe (') at the beginning of the line.

As you type the
InputBox statement,
notice that the
ScreenTip doesn’t
show the next
argument in bold
when you type
a comma after
assigning a value
to the previous
argument. Instead,
the ScreenTip
shows an argument
in bold when you
type its name
followed by a colon.
This is because,
when you use the
argument names,
you can provide the
arguments out of
order if you want to.
By contrast, when
you don’t use the
argument names,
you must use the
arguments in the
order that VBA
expects.

The Easy Way

Word 2007 Macros & VBA Made Easy

48

Test the Input Box
Now test the input box:

Run your macro as usual. For example, click in it, and then click the 1.	
Run Sub/UserForm button.

Click the Yes button in the first message box.2.	

When the input box appears, type the text of your choice over the 3.	
default text, and then press enter or click the OK button.

After you dismiss the second message box, look at the Report 4.	
Summary.docx document to make sure that the text you typed appears
in the first paragraph.

Try running the macro again but this time clicking the Cancel button in
the input box. Notice that you get a blank paragraph this time. This is because
clicking the Cancel button causes the input box to return what’s called an
empty string—a string of text that contains no characters.

Save Your Work
Follow these steps to finish up for the chapter:

Close the Report Summary.docx document manually (for example, 1.	
press alt, f, c in sequence).

Press 2.	 alt-f11 to switch to the Visual Basic Editor.

Delete the comma at the beginning of the second ActiveDocument 3.	
.Close statement.

Press 4.	 ctrl-s to save the changes you’ve made to the Normal template.

Press 5.	 alt-q to close the Visual Basic Editor and return to Word.

For this input box, it
doesn’t matter what
kind of input you
provide: whatever
you type in the input
box, the Selection
.TypeText statement
enters in the
document. But for
other input boxes,
you may need to
check that the input
is of the right type.
For example, if you
display an input box
to let the user specify
how many folders
to create, and the
user types sausage
instead of a number,
your code will run
into problems. You’ll
learn how to check
the user’s input later
in this book.

The Easy Way

4
Create a Custom
Dialog Box

As you saw in the previous chapter, message boxes
and input boxes provide a quick and easy way to let
users interact with your macros.

But often you’ll need greater interaction than
message boxes and input boxes can easily provide.
In this case, you can create a custom dialog box
containing check boxes, option buttons, text boxes,
command buttons, and other controls. This takes
some time and effort but is highly effective and can
make a macro look very professional—even if most
of what the macro does is code you recorded with
the Macro Recorder.

This chapter explains all the controls you can
use in dialog boxes and shows you how to build
a dialog box onto the macro you’ve been working
with so far in this book.

Understand What You’ll
Do in This Chapter
In VBA, you create a custom dialog box by placing
controls on a blank sheet called a userform. You
then add code to the userform to run the userform
itself and the controls it contains.

Word 2007 Macros & VBA Made Easy

50

Figure 4-1 shows the custom dialog box that you will create
in this chapter. It looks complex, but you can have it up and run-
ning in less than half an hour.

The custom dialog box makes four main changes to the
macro. It lets the user

Choose a different source document for the report.ππ

�Choose between transferring only the key data (as before) or ππ

all the data.

�Change the title of the document in the dialog box rather ππ

than via an input box.

�Decide whether to close the new document or leave it open ππ

(for example, so they can inspect it or edit it further).

Add a Userform to the
Normal Template
The first step in creating a custom dialog box is to add a userform to the
appropriate project—in this case, the Normal template. Here’s the easiest way:

In the Project Explorer window, right-click Normal and then choose 1.	
Insert | UserForm from the context menu. The Visual Basic Editor
creates a new userform, displays it in a window together with the
Toolbox (see Figure 4-2), and gives it the default name, UserForm1.

Click the (Name) box at the top of the Properties window, and then 2.	
type frmTransfer_Data as the name for the userform. This is the
name by which VBA knows the userform. frm is a common prefix for
indicating that a name refers to a userform (or “form” for short).

Press 3.	 enter to apply the name. You’ll see the name in the Forms folder
in the Project Explorer change.

Figure 4-1  The custom dia-
log box you will create in this
chapter adds flexibility and
power to the macro you have
recorded and edited.

Make sure the
Properties window
Alphabetic tab is at
the front rather than
the Categorized tab.
If the Categorized tab
is at the front, the
properties appear in
different locations
from those described
here.

Memo

� Chapter 4  Create a Custom Dialog Box

51

Press 4.	 down arrow four times to move the highlight to the Caption
property. This property controls the text shown in the title bar of the
userform.

Type 5.	 Transfer Data Macro as the name for the userform. You’ll see the
name appear in the title bar of the userform as you type.

Press 6.	 enter to apply the change.

Move down to the Height property, and increase it to 300 to make the 7.	
userform substantially taller.

Figure 4-2  Your first move is to add a new userform—essentially a blank sheet—to the Normal
template. The userform appears in the Forms folder in the Project Explorer.

You can also resize
the userform by
clicking it and then
dragging the handle
in the lower-right
corner. When you’re
positioning controls
on a userform, having
extra space usually
helps. When you’ve
got all the controls
arranged, you can
make the userform
smaller so it’s not
wasting any space.

Memo

Documents in the
Word 2007 .docx for-
mat and templates in
the Word 2007 .dotx
format cannot store
VBA code, including
userforms.

Memo

Word 2007 Macros & VBA Made Easy

52

Add Controls to the Dialog Box
Your next move is to add controls to the dialog box. We’ll start by looking at
the set of controls that VBA provides, so that you know what raw material is
available to you. You’ll then place controls on the userform and arrange them
so that the form works visually.

Understand the Controls That VBA Provides
VBA provides a set of 14 controls that lets you create custom dialog boxes like
those you see in many Windows programs. Table 4-1 explains these controls,
and Figure 4-3 shows a custom dialog box that includes the nine most widely
useful controls.

You’ll be familiar with most of the controls from working in Windows
programs. The two controls you may not have used are the tab strip and the
toggle button, which have more specialized uses.

You can add further
controls to the Tool-
box as necessary. This
topic is beyond the
scope of this book.

Memo

Instead of creating a
custom dialog box,
you can use one
of Word’s existing
dialog boxes in your
actions. For example,
if a macro involves
the user choosing a
document to open,
you can summon
up Word’s Open
dialog box. This
is not only much
easier than creating
a custom dialog
box with equivalent
functionality, but it’s
also easier for the
user, who can open
the document in the
normal way. Chapter
14 shows you how to
use Word’s built-in
dialog boxes.

The Easy Way

Figure 4-3  This custom dialog box shows the most widely useful controls
that VBA offers.

Frame (group box)

Label

Text box List box

Combo box

(drop-down list)

Spin button

Option button Check box

Command button

� Chapter 4  Create a Custom Dialog Box

53

VBA Control Name English Name Explanation

Label Label Text that appears in the userform. Use for labeling controls such
as text boxes or displaying text that the user doesn’t need to
change.

TextBox Text box A box that lets the user enter text or accept a default value.

ListBox List box A box that displays a list of existing values so the user can
pick one.

ComboBox Combo box or
drop-down list

A drop-down list that displays a list of values but also lets the
user enter a new value in the text box at the top.

CheckBox Check box A check box that lets the user select or clear the box to turn an
option on or off.

OptionButton Option button A control that lets the user select one of a group of mutually
exclusive options.

ToggleButton Toggle button A button that lets the user turn an option on or off. The button
changes appearance to indicate the change of state.

Frame Frame or group
box

A border that you can use to group together other controls to
show that they’re related.

CommandButton Command
button

A button the user can click to take an action—for example, OK,
Cancel, or Print.

TabStrip Tab strip A strip of tabs that lets you move from one record to another in
a database.

MultiPage Multipage
control or “tabs”

A container used to create dialog boxes with different “tabs”
containing different controls.

ScrollBar Scroll bar A scroll bar for scrolling up and down in a form or another
control.

SpinButton Spin button or
spinner

A pair of arrow buttons (usually pointing up and down) that
the user clicks to adjust the value in a text box. Usually used for
numeric values.

Image Image A holder for displaying a picture in a dialog box.

Table 4-1  VBA Controls for Creating Custom Dialog Boxes

Word 2007 Macros & VBA Made Easy

54

Add the Three Frames
To begin, add the three frames to the userform, size them, and align them to
each other. Follow these steps:

Click the Frame button in the Toolbox (see Figure 4-4). The mouse 1.	
pointer changes to a crosshair with a tiny image of a frame next to it.

Including an image
in a dialog box can be
visually effective, but
you must be sure that
the image file is avail-
able on the user’s
computer. If it’s not,
only the placeholder
appears, which spoils
the effect.

Memo

You can customize
the appearance of
many controls. For
example, for check
boxes or option
buttons, you can
choose between the
standard “sunken”
look and a “flat”
look; or you can
place the tabs on a
multipage control at
the bottom or side
instead of the top.
For clarity, this book
uses the standard
appearance for
controls.

Many controls
have settings that
you will need to
change frequently.
For example, you
may find that you

The Easy Way

Select Objects

Label

TextBox

ComboBox

ListBox

CheckBox

OptionButton

ToggleButton

Frame

CommandButton

TabStrip

MultiPage ScrollBar

SpinButton

Image

Position the crosshair where 2.	
you want the upper-left corner
of the frame to appear on the
userform, click, and then drag
to create a frame of roughly
the size and shape of that
shown on the right here.

With the frame still selected, click in the Properties window and 3.	
change the following properties to the settings shown:

Property Setting

(Name) fraChooseSourceDocument

Caption 1. Choose the Source Document

Figure 4-4  To place a
control on a userform, click
the control’s button on the
Toolbox, and then click on the
userform.

Continued. . .

� Chapter 4  Create a Custom Dialog Box

55

Back in the UserForm window, 4.	
hold down ctrl while you drag
the frame down to below its
original position, as shown
here. ctrl-dragging like this
creates a copy of the object,
rather than moving it as a plain
drag does. The + sign attached
to the mouse pointer indicates
that you’re making a copy.

With the second frame still selected, click in the Properties window 5.	
and change the following properties to the settings shown:

Property Setting

(Name) fraChooseDataToTransfer

Caption 2. Choose the Data to Transfer

ctrl6.	 -drag the copy of the frame below itself, so that you have three
frames of the same size stacked vertically.

With the third frame still selected, click in the Properties window and 7.	
change the following properties to the settings shown:

Property Setting

(Name) fraChooseOptions

Caption 3. Choose Options

Add the Labels
Now add the two labels to the form. Follow these steps:

Click the Label button in the Toolbox, and then click in the top 1.	
frame just below the frame’s name. The Visual Basic Editor places a
standard-size label.

Click the Select
Objects button in
the Toolbox when
you need to select
an object by clicking
it, or when you’ve
clicked the button for
a control and then
realized you need to
cancel placing it.

Memo

the easy way

prefer to set the
AutoSize property
to True and the
WordWrap property
to False, as you’ll do
in this chapter. You
have two options
here: You can put
one control on the
userform, change
its properties to the
way you like them,
and then copy that
control instead
of creating a new
standard control. Or
you can customize
the control and
then drag a copy of
it to the Toolbox,
from where you can
create new controls
with your preferred
settings applied.

(Continued)

Word 2007 Macros & VBA Made Easy

56

Click in the Properties window and change the following properties 2.	
for the label to the settings shown:

Property Setting

(Name) lblSourceDocument

Accelerator S

AutoSize True

Caption Source Document:

WordWrap False

ctrl3.	 -drag the label down to the third frame to create a copy:

With the new label still selected, click in the Properties window and 4.	
change the following properties for the label to the settings shown:

Property Setting

(Name) lblDocumentTitle

Accelerator T

Caption Type the Title of the Document:

If you make a mistake
in the Visual Basic
Editor, you can usu-
ally undo it by press-
ing ctrl-z, clicking the
Undo button on the
Standard toolbar, or
choosing Edit | Undo.

Memo

The Accelerator
property defines the
“accelerator key” or
“hot key” that the
user can press (with
Alt) to jump to that
control. Because a
label is text that you
cannot select, press-
ing the accelerator
key for a label causes
VBA to select the
next control. You may
need to change the
tab order of the
userform to make
pressing the
accelerator key for
the label select the
right control. See the
end of the chapter for
details.

Memo

� Chapter 4  Create a Custom Dialog Box

57

Add the Combo Box to the Top Frame
Now add the combo box to the top frame. Follow these steps:

Click the ComboBox button in the Toolbox, and then click below the 1.	
Source Document label in the top frame to place a default-size combo
box.

Drag the right-side handle of 2.	
the combo box to stretch it
out to most of the width of the
frame.

Click in the Properties window and change the combo box’s (Name) 3.	
property to cmbSourceDocument.

Add the Option Buttons
Next, add the two option buttons to the second frame. Follow these steps:

Click the OptionButton button in the Toolbox, and then click in the 1.	
second frame to place a default-size option button.

With the option button still selected, click in the Properties window 2.	
and change the following properties to the settings shown:

Property Setting

(Name) optTransferAllData

Accelerator A

AutoSize True

Caption Transfer All Data

Value True

WordWrap False

Word 2007 Macros & VBA Made Easy

58

ctrl3.	 -drag the option button down to create a second option button
below the first.

With the second option button still selected, click in the Properties 4.	
window and set the following properties:

Property Setting

(Name) optTransferKeyData

Accelerator K

Caption Transfer Only Key Data

Value False

Add the Text Box and Check Box
to the Third Frame
Follow these steps to add the text box and the check box to the third frame:

Click the TextBox button on the Toolbox, and then click under the Type 1.	
the Title of the Document label to place a standard-size text box.

Drag the right-side handle on the text box to the right to make the text 2.	
box almost the full width of the frame.

With the text box still selected, click in the Properties window and set 3.	
the following properties:

Property Setting

(Name) txtDocumentTitle

Text Report Summary

Click the CheckBox button on the Toolbox, and then click under the 4.	
left end of the text box to place a default-size check box.

When you place
option buttons
inside a frame, as in
this example, VBA
automatically treats
them as a group.
If you don’t place
the option buttons
inside a frame, you
may need to set
the GroupName
property to
differentiate one
group of option
buttons from
another group.

The Easy Way

The Text property in
a text box controls the
text that appears
in the text box. By set-
ting the Text property,
you provide default
text in the text box
when the dialog box
opens.

Memo

� Chapter 4  Create a Custom Dialog Box

59

With the check box still selected, click in the Properties window and 5.	
set the following properties:

Property Setting

(Name) chkCloseNewDocument

Accelerator C

AutoSize True

Caption Close the New Document

Value True

WordWrap False

Add the OK Button and Cancel Button
Next, add the OK button and Cancel button to the userform. Follow these
steps:

Click the CommandButton item in the Toolbox, and then click in the 1.	
space near the lower-left corner of the userform to position a standard-
size command button.

With the command button selected, click in the Properties window 2.	
and set the following properties:

Property Setting

(Name) cmdOK

Accelerator O

Caption OK

Default True

Height 21

Width 55

ctrl3.	 -drag the command button to the right to create a second
command button positioned to the right of the first.

The Value property
controls whether the
check box is selected
(True) or cleared
(False). Setting the
Value property to True
makes VBA select
the check box when
it displays the dialog
box.

Memo

Command buttons
have a couple of spe-
cial properties that
you’re using here.
Setting the Default
property to True
makes the OK com-
mand button capture
a press of the enter
key. Similarly, setting
the Cancel property
to True makes the
Cancel command but-
ton capture a press
of the esc key. In any
dialog box, only one
command button
can have the Default
property set to True,
and only one other
command button can
have the Cancel prop-
erty set to True.

Memo

Word 2007 Macros & VBA Made Easy

60

With the second command button selected, click in the Properties 4.	
window and set the following properties:

Property Setting

(Name) cmdCancel

Accelerator C

Cancel True

Caption Cancel

Default False

Align the Controls and Improve the Spacing
To make your userform look tidy and professional, you will probably need to
align some of the controls and change the size and spacing of others. This
section gives you the general steps for aligning and laying out the controls,
leaving you to finesse the specifics. Your goal is to produce a satisfactory and
workable arrangement of controls, not necessarily a pixel-perfect clone of the
dialog box shown in this chapter.

Adjust the third frame to accommodate its contents, and arrange them 1.	
in it. These are the steps you will typically need to take:

Click the frame to select it:ππ

�Drag the bottom-side handle down to increase the depth of ππ

the frame, as shown on the left here.

The Visual Basic Edi-
tor’s snapping feature
automatically aligns
controls to the near-
est grid point, but
you will often need to
align controls manu-
ally to get them laid
out precisely.

Memo

� Chapter 4  Create a Custom Dialog Box

61

Drag the check box, text box, and (if necessary) the label so that ππ

they’re comfortably arranged, as shown below.

�Click the label to select it, and then ππ ctrl-click the text box
and check box to add them to the selection, as shown on the
left here.

�Click the one of the selected controls that you want to use as ππ

the reference point for the alignment. Here, I’m using the
label. The Visual Basic Editor changes the handles around
the control to white to indicate that this is the reference point.

�Right-click in the selection and choose Align | Lefts ππ

from the context menu to align the left points of the
other controls with the reference point, as shown on
the left here.

�Choose Format | Vertical Spacing | Make Equal to ππ

space the three selected controls out equally within
the frame.

Word 2007 Macros & VBA Made Easy

62

Follow the same principles as in Step 1 to adjust the contents of the 2.	
first and second frames as needed.

When you’ve made all three frames suitable sizes, align and arrange 3.	
the frames themselves:

Make sure the first frame is positioned suitably in the upper-left ππ

corner of the userform. If you’re finding it difficult to place the
frame where you want it, click it, and then set the Left property
(to position the left edge) and the Top property (to position the
top) to 6 points.

Click the second frame, ππ ctrl-click the third frame, and then
ctrl-click the first frame. You end up with the three frames
selected and the white handles around the first frame.

Right-click the first frame and choose Align | Lefts to align the ππ

second and third frames with the first frame.

Choose Format | Vertical Spacing | Make Equal to even out the ππ

space between the first and second frames and between the
second and third frames.

If there’s too much space, choose Format | Vertical Spacing | ππ

Decrease; if there’s too little space, choose Format | Vertical
Spacing | Increase. If the spacing is just right and Goldilocks is
happy, do neither.

Click one of the command buttons, 4.	 ctrl-click the other, and then align
them, group them, and place them like this:

Right-click one of the buttons and choose Align | Tops from the ππ

context menu to align the tops of the buttons.

If the buttons are too close together, choose Format | Horizontal ππ

Spacing | Increase. If they’re too far apart, choose Format |
Horizontal Spacing | Decrease. Repeat the command until the
buttons are positioned to your satisfaction.

� Chapter 4  Create a Custom Dialog Box

63

�Right-click one of the buttons and choose Group from ππ

the context menu. VBA creates a logical group of the two
buttons and puts a box around them.

�Drag the buttons to where you want them to appear in the ππ

userform vertically, as shown on the left here.

�Choose Format | Center In Form | Horizontally to make sure ππ

the group of buttons is centered horizontally in the userform.

If there’s extra space at the bottom of the userform, drag the bottom-5.	
side handle up to remove all surplus space.

Press 6.	 ctrl-s to save the changes you’ve made.

So far, you’ve created the visual aspect
of the form—the way it will look when
the user displays it. With the userform
selected, press f5 or click the Run Sub/
UserForm button to display the userform
(see Figure 4-5) and the Word window.
There’s no code hooked up to the user-
form, but you can check that the controls
all look the way they should without the
grid you see in the Visual Basic Editor.

Click the Close button (the × button)
to close the userform and return to the
Visual Basic Editor.

Add Code to Run the Controls
Now you need to add code that will make the controls work. There are three
separate subprocedures:

Initializing the userformππ   You need to add items to the Source
Document list box while VBA is loading the userform.

When you put con-
trols in a frame, VBA
automatically groups
them. To move
the frame and its
contents, simply drag
the frame—there’s
no need to select its
contents as well.

Memo

Figure 4-5  Run the userform
by pressing f5 to check how it
looks. Without code, none of
the controls does anything yet.

Word 2007 Macros & VBA Made Easy

64

Handling the Cancel buttonππ   If the user clicks the Cancel button, you
need to remove the userform from the screen.

Handling the OK buttonππ   If the user clicks the OK button, you need to
open the source document, create the new document, and so on—
essentially the same actions in the Transfer_Data macro, but with the
trimmings added by the dialog box’s controls.

Add the Initialize Procedure for the Userform
Follow these steps to add the Initialize procedure for the userform:

From the userform window in the Visual Basic Editor, press 1.	 f7 to
display the Code window for the userform. The Visual Basic Editor
automatically creates the stub of a subprocedure for the Click event of
the UserForm object (see Figure 4-6).

A stub is the outline
for a subprocedure—
the beginning Sub
statement (here with
the Private keyword)
and the subproce-
dure’s name, and the
End Sub statement.

Memo

The Click event oc-
curs when the user
clicks the specified
object. For example,
when the user clicks
the cmdOK button,
the Click event occurs
for that button, and
VBA automatically
runs the cmdOK_
Click subprocedure
(if there is one).

Memo

Object drop-down list Procedure drop-down list

Figure 4-6  The Code window for the userform, with the stub of a UserForm_
Click subprocedure

� Chapter 4  Create a Custom Dialog Box

65

Select the Click part of the stub, and type 2.	 Initialize over it to change
the subprocedure to a UserForm_Initialize subprocedure.

Move the insertion point to the empty line within the stub.3.	

Type 4.	 cmb and press ctrl-spacebar to make AutoComplete enter
cmbSourceDocument.

Type 5.	 . (a period) to display the list of properties and methods, type a
to select the AddItem method, and then press spacebar to enter the
AddItem method.

Type a space, and then type 6.	 “Latest Report.docx” (including the double
quotation marks) as the item you’re adding.

Add two more items like this:7.	

cmbSourceDocument.AddItem "February Report.docx"

cmbSourceDocument.AddItem "March Report.docx"

Set the Value property of the combo box to 8.	 “Latest Document.docx”:

cmbSourceDocument.Value ="Latest Report.docx"

Press 9.	 f5, and you’ll see that the
list box is now populated.

Click the Close button (the 10.	 ×
button) to close the userform
again.

The quickest way
to get to the Code
window from the
userform is to press
f7. You can press
shift-f7 to display
the userform itself.
Alternatively, click the
View Object button
or the View Code
button on the Project
Window toolbar.

Memo

The ListBox control works in almost exactly the
same way as the ComboBox control. To populate the
list box with the options from which the user can

choose, use the AddItem method, as described here
for the combo box.

Working with the ListBox Control

Word 2007 Macros & VBA Made Easy

66

Add the Subprocedure for the OK Button
The subprocedure for the OK button is the most complex part of your custom
dialog box. But don’t worry—you’ll copy most of the code straight across from
the Transfer_Data macro.

To create the code for the OK button, follow these steps:

On the userform, double-click the OK button. The Visual Basic Editor 1.	
displays the Code window for the userform and automatically creates
the stub of a cmdOK_Click subprocedure:

Private Sub cmdOK_Click()

End Sub

On the blank line, type 2.	 Me.Hide, and then press enter.

Choose Tools | Macros to open the Macros dialog box.3.	

Select the WMME_Transfer_Data_3 macro (the one you edited in 4.	
Chapter 3).

Click the Edit button to open the macro in another Code window.5.	

Select all the text from the Documents.Open statement at the 6.	
beginning to the MsgBox statement at the end.

Press 7.	 ctrl-c (or right-click and choose Copy from the context menu) to
copy the code.

Click the Close button (the 8.	 × button) to close the window showing
the macro. The Visual Basic Editor puts the focus back in the Code
window for the userform.

With the insertion point on the blank line in the cmdOK_Click 9.	
subprocedure, press ctrl-v to paste in the code you copied.

Select the pasted code, and then press 10.	 shift-tab or click the Outdent
button on the Edit toolbar to decrease the indentation. (You may need
to indent the beginning of the first line.)

In VBA, Me is a
keyword you can use
to refer to an object
from within the object
itself. The Me.Hide
method hides the
userform, remov-
ing it from view. The
Unload Me command
unloads the userform
from memory.

Memo

When you’re working
on a long section
of code, use the
Window | Split
command to split
the window into two
sections. That way,
you can examine two
separate sections
of code without
needing to scroll
back and forth
between the two.

The Easy Way

� Chapter 4  Create a Custom Dialog Box

67

Change the Documents.Open statement to read as follows, using 11.	
the Environ function to return the location of the user’s folder,
adding \Documents\WMME\ to the path for Windows Vista and \My
Documents\WMME\ for Windows XP, and then adding the document
name from the combo box:

Documents.Open FileName:=Environ("userprofile") & _

 "\Documents\WMME\" & cmbSourceDocument.Value

Build the two Selection.MoveDown statements into an If . . . Then . . . 12.	
Else condition that checks whether the optTransferKeyData option
button’s Value property is True. If it is, the macro selects the paragraph
as before; if not (meaning that the Transfer All Data option button is
selected instead), the macro selects all the content of the document.

If optTransferKeyData.Value = True Then

 Selection.MoveDown Unit:=wdParagraph, Count:=1

 Selection.MoveDown Unit:=wdParagraph, _

 Count:=1, Extend:=wdExtend

Else

 ActiveDocument.Content.Select

End If

Change the ActiveDocument.SaveAs statement to use the Environ 13.	
function as well, and remove the unnecessary arguments:

ActiveDocument.SaveAs FileName:=Environ("userprofile") & _

 "\Documents\WMME\" & "Report Summary.docx" _

 FileFormat:=wdFormatXMLDocument

Move down to the Selection:TypeText Text:=InputBox statement, and 14.	
change it to “type” the text from the Document Title text box instead:

Selection.TypeText Text:=txtDocumentTitle.Text

Word 2007 Macros & VBA Made Easy

68

Go to the ActiveDocument.Close statement at the end of the macro 15.	
and put it in an If statement that checks whether the Close the New
Document check box is selected:

If chkCloseNewDocument.Value = True Then

 ActiveDocument.Close

End If

Finally, type the 16.	 Unload Me command at the end of the subprocedure
to remove the userform from memory.

Here’s the full code listing that you should have now:

Private Sub cmdok_click()

 Me.Hide

 Documents.Open FileName:=Environ("userprofile") & _

 "\Documents\WMME\" & cmbSourceDocument.Value

 If optTransferKeyData.Value = True Then

 Selection.MoveDown Unit:=wdParagraph, Count:=1

 Selection.MoveDown Unit:=wdParagraph, _

 Count:=1, Extend:=wdExtend

 Else

 ActiveDocument.Content.Select

 End If

 Selection.Copy

 ActiveDocument.Close

 Documents.Add DocumentType:=wdNewBlankDocument

 Selection.Style = ActiveDocument.Styles("Heading 1")

 Selection.TypeText Text:=txtDocumentTitle.Text

 Selection.TypeParagraph

 Selection.TypeText _

 Text:="Here is the latest report summary:"

 Selection.TypeParagraph

 Selection.PasteAndFormat (wdPasteDefault)

 ActiveDocument.SaveAs FileName:= _

 Environ("userprofile") & "\Documents\WMME\" _

 & "Report Summary.docx", FileFormat:= _

 wdFormatXMLDocument

� Chapter 4  Create a Custom Dialog Box

69

 If chkCloseNewDocument.Value = True Then

 ActiveDocument.Close

 End If

 MsgBox "The macro has created the report summary.", _

 vbOKOnly + vbInformation, "Transfer Data Macro"

 Unload Me

End Sub

Add the Subprocedure for the Cancel Button
Now, add the subprocedure for the Cancel button. Follow these steps:

In the Code window, click after the end of the cmdOK_Click 1.	
subprocedure.

Click the Object drop-down list in the upper-left corner of the Code 2.	
window, and then choose cmdCancel from the list:

The Visual Basic Editor automatically inserts the stub of a Click event 3.	
procedure for the cmdCancel button:

Private Sub cmdCancel_Click()

End Sub

Word 2007 Macros & VBA Made Easy

70

Type two lines of code inside the stub, as shown here:4.	

Private Sub cmdCancel_Click()

 Me.Hide

 Unload Me

End Sub

Press 5.	 ctrl-s or click the Save button on the Standard toolbar to save
your work.

Test the Dialog Box
You’re ready to test whether the dialog box works. Try testing in two ways:

First, click in the Code window in one of the subprocedures (it doesn’t ππ

matter which), and press f8 to start running the code one statement
at a time. You’ll see VBA work through the UserForm_Initialize
subprocedure before displaying the dialog box. And when you click
one of the buttons, you’ll see that code too execute statement by
statement.

Second, click the userform itself, and press ππ f5 to run the code at full
speed. The dialog box opens immediately—and when you click one of
the buttons, the code executes quickly.

Create a Way of Displaying
the Dialog Box
Finally, you need to create a macro that will launch the dialog box from Word
rather than from the Visual Basic Editor. You can do this in moments:

Right-click the Normal item in the Project Explorer and choose Insert | 1.	
Module from the context menu to insert a new module. The Visual
Basic Editor opens a Code window for the module.

Press 2.	 f4 to put the focus in the Properties window.

� Chapter 4  Create a Custom Dialog Box

71

Type 3.	 WMME_Chapter_4 as the name for the module.

Click in the Code window and type the following short macro:4.	

Sub WMME_Run_Transfer_Data_Macro()

 frmTransfer_Data.Show

End Sub

Press 5.	 ctrl-s or click the Save button on the Standard toolbar to save
your work.

You can now run this macro from the Macros dialog box in Word, or create
a Quick Access Toolbar button or keyboard shortcut for it as you learned to do
in Chapter 1.

If you test all the accelerator keys in the dialog box,
you’ll find that pressing alt-t to reach the Document
Title text box actually selects the Close The New
Document check box instead. This is because the text
box isn’t immediately after its label in the tab order of
the userform.

To change the tab order, click the third frame,
and then choose View | Tab Order to open the Tab
Order dialog box for the frame (shown here). Use the
Move Up button and Move Down button to shuffle
the controls into the right order: lblDocumentTitle,
txtDocumentTitle, and then chkCloseNewDocument.

Test the dialog box again and see the effect of the
change.

Press tab to move through the controls in the
dialog box. Note any other changes you need to
make, and then use the Tab Order dialog box to make
them. There’s a tab order for the dialog box as a
whole and a separate one for each frame.

Check and Change the Tab Order of the Dialog Box

This page intentionally left blank

5
Repeat Actions
with Loops

To produce the documents you want by using
macros, you’ll often need to repeat actions. For
example, you may need to create several new
documents, or take the same action for each
paragraph in a document that’s formatted with
the Normal style. This chapter shows you how
to repeat actions however many times you need,
whether it be a set number of times or a number of
times decided by the contents of the documents or
the choice of the user who runs the macro.

Understand VBA’s
Different Ways of
Repeating Actions
The simplest way to repeat an action in VBA is to
repeat the command for the action. This is called
hard-coding and works well for simple tasks.

For example, if you need to create two new docu-
ments using the Normal template, as you’ve done
in the macro you recorded and edited, you can sim-
ply repeat the Documents.Add command like this:

Documents.Add

Documents.Add

Word 2007 Macros & VBA Made Easy

74

Loops make your
code easier to test
and easier to debug.

Memo This works fine—and is fine—even if it makes professional programmers
sniff in disgust. But if you need to make your code flexible—so that it can
create different numbers of documents as needed, or work through every
paragraph in a document—you can use loops to repeat actions instead.

As its name suggests, a loop is a section of code that VBA can go around
and repeat rather than simply going through. If the conditions are right, VBA
repeats the loop; otherwise, it goes on to the next section of code.

Get an Overview of the Types
of Loops That VBA Offers
VBA offers several different kinds of loops, but some of them are specialized
and seldom used. This chapter shows you how to use the three most useful
kinds of loop:

For . . . Next loopππ   Lets you repeat an action a set number of times. You
can hard-code the number of times or let the user choose it by using
an input box or dialog box.

For Each . . . Next loopππ   Lets you repeat an action once for each object
in a VBA collection. For example, you can repeat an action once for
each of the paragraphs in a document. Flexible and useful.

Here are the terms you need to know when working
with loops:

Iterationππ   Running through the loop one
time.

Fixed-iteration loopππ   A loop that runs a set
number of times.

Indefinite loopππ   A loop that runs a flexible
number of times (depending on conditions).

Loop invariantππ   The expression that determines
whether the loop runs. For example, if you
have a loop for going to the gym, you may
have a loop invariant that says “If it’s Monday,
Wednesday, or Friday, go to the gym.”

Understand the Technical Terms for Loops

� Chapter 5  Repeat Actions with Loops

75

Do While . . . Loop loopππ   Lets you repeat an action as long as a condition
is true. The loop checks whether the condition is true, runs if it is, and
then checks again.

Get Set Up to Work
Through This Chapter
Before you start working with loops, open the Visual Basic Editor and create a
new module in which you can create the macros. Follow these steps:

Open Microsoft Word if it’s not already running.1.	

Click the Developer tab, go to the Code group, and then click Visual 2.	
Basic to open the Visual Basic Editor.

If the Visual Basic Editor opens a Code window for a module you 3.	
worked with recently, click the window’s Close button (the × button) to
close it.

Right-click the Normal template and then choose Insert | Module 4.	
from the context menu to insert a new module in the Normal
template.

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_5 as the new name for the module, replacing
the default name (such as Module1), and press enter to apply the
change.

Okay, you’re ready to start creating loops.

Repeat an Action a
Set Number of Times
When you need to repeat an action a set number of times, use a For . . .
Next loop.

Word 2007 Macros & VBA Made Easy

76

Understand How the For . . . Next Loop Works
The For . . . Next loop looks like this:

For counter = start to end [Step stepsize]

 [take actions here]

[Exit For]

 [take more actions here]

Next [counter]

The loop starts with the For keyword and the counter variable and ends
with the Next keyword. Normally, you specify the counter variable after the
Next keyword to make clear which loop is ending.

counter is a numeric variable that controls how the loop runs. start is the
starting value of counter, and end is the ending value. For example, the fol-
lowing statement uses a variable called intCounter to make the loop run five
times, from intCounter = 1 to intCounter = 5:

For intCounter = 1 to 5

Exit For is an optional statement for exiting a For loop before the loop has
finished executing. For example, your code may run into a situation where

In a For . . . Next
loop, you don’t
have to specify the
counter variable after
the Next keyword—
that’s why counter
is in brackets in the
syntax after Next.
But having counter
there helps keep
your code clear when
you have multiple
loops, and it’s easy
to add, so there’s no
downside.

The Easy Way

Normally, VBA increases the value of counter by 1 on
each iteration of the loop, as in the previous example.
But you can use the optional Step keyword with the
stepsize variable or expression to either increase the
value of counter by larger steps or decrease it (either by
1 each iteration or by a larger amount).

For example, the following statement uses the Step
keyword with a stepsize of 10, so the loop runs ten times:

For intCounter = 0 To 100 Step 10

The following statement uses a negative stepsize to
reduce intCounter from 10 to 0, so the loop runs five
times:

For intCounter = 10 to 0 Step -2

�Moving Through the Loop in Larger Steps

� Chapter 5  Repeat Actions with Loops

77

you don’t want to take the remaining actions in the loop—so instead, you can
use an Exit For statement to leave the loop at the appropriate point.

Put For . . . Next Loops into Action
This section contains two examples of For . . . Next loops. The first uses a hard-
coded loop, while the second lets the user control the loop via an input box.

Using a Hard-Coded For . . . Next Loop
First, try this example of a For . . . Next loop that creates five new documents:

Click in the Code sheet for the WMME_Chapter_5 module.1.	

Type the Sub declaration for the macro:2.	

Sub WMME_For_Next_Loop_1

Press 3.	 enter to make the Visual Basic Editor add the parentheses and
the End Sub statement to the stub:

Sub WMME_For_Next_Loop_1()

End Sub

With the insertion point on the blank line within the stub, type the 4.	
following lines of code:

 Dim intCounter As Integer

 For intCounter = 1 to 5

 Documents.Add

 Next intCounter

Here’s the complete macro:

Sub WMME_For_Next_Loop_1()

 Dim intCounter As Integer

 For intCounter = 1 to 5

 Documents.Add

 Next intCounter

End Sub

Use the Visual
Basic Editor code-
completion features
that you learned how
to use earlier in this
book. For example,
once you’ve declared
the Integer variable
intCounter, you can
enter it quickly by
typing intc and then
pressing ctrl-spacebar.

Memo

Word 2007 Macros & VBA Made Easy

78

Here’s what happens in the macro:

The Dim intCounter As Integer statement declares a variable named ππ

intCounter as being of the Integer type. (That means the variable can
contain only whole numbers, not fractions.)

VBA assigns the intCounter variable the value 1.ππ

VBA performs the Documents.Add command, creating a new ππ

document based on the Normal template.

VBA evaluates the Next intCounter statement. Because intCounter’s ππ

value is less than the ending value (5), VBA increases the value of
intCounter by 1, and then runs the loop again, repeating it until
intCounter’s value is 5.

Click in the macro and press f5 (or click the Run Sub/UserForm button) to
run it. You’ll see five new Word documents spring into existence.

Leave these documents open—you’ll close them a little later in this chapter.

Using an Input Box to Control a For . . . Next Loop
Now try this example that uses an input box to let the user decide how many
documents to create:

In the WMME_Chapter_5 module, select the WMME_For_Next_Loop_1 1.	
macro you just created.

Right-click the selection and then choose Copy from the context menu 2.	
to copy the macro to the Clipboard.

Right-click below the macro in the Code sheet and then choose Paste 3.	
to paste in the macro.

Edit the macro to read like this:4.	

Sub WMME_For_Next_Loop_2()

 Dim intCounter As Integer

 Dim intEnd As Integer

� Chapter 5  Repeat Actions with Loops

79

 intEnd = InputBox _

 ("Type the number of documents to create:", _

 "Create New Documents", "3")

 For intCounter = 1 to intEnd

 Documents.Add

 Next intCounter

End Sub

This example works in the same way as the previous example, except for
the following:

Dim intEnd As Integer creates an Integer variable named intEnd.ππ

The intEnd = InputBox statement displays an input box (as shown ππ

here) prompting the user to decide how many new documents to
create. The default value is 3. When the user enters the number and
clicks the OK button (or presses enter), VBA assigns the value to the
intEnd variable.

The For intCounter = 1 to IntEnd statement runs from intCounter = 1 ππ

to intCounter = intEnd, creating a document at each iteration until it
reaches the number the user entered.

Try running this macro by clicking in it and then pressing f5 or clicking
the Run Sub/UserForm button. Up comes the input box, and when you enter
a number and then click OK, Word creates that number of documents.

Again, leave the documents open. We’ll deal with them next.

If you enter a nonnu-
meric value (such as
“three” or “whale”)
in the input box,
the macro displays
a Microsoft Visual
Basic run-time error
dialog box when VBA
tries to assign the
result of the input box
to the Integer vari-
able. VBA calls this
a “type mismatch,”
meaning that the
data supplied doesn’t
fit the variable type.
If you try this, click
the End button in
the Microsoft Visual
Basic dialog box to
end the macro. You’ll
learn how to deal
with errors later in
this book.

Memo

Word 2007 Macros & VBA Made Easy

80

Repeat an Action for Each
Object in a Collection
Often in your macros, you’ll need to repeat an action for each object in a
collection—but you won’t know how many objects there are. Now, you can
find out the number of items in a collection by getting the Count property,
and then use a For . . . Next loop to go through each of them. But what’s easier
is to use a For Each . . . Next loop, which is specially designed for looping
through each item in a collection.

In this section, you’ll use a For Each . . . Next loop to close each open docu-
ment, saving any unsaved changes if you want to. First, though, a dash of
theory.

Understand How the For Each . . . Next
Loop Works
The For Each . . . Next loop looks like this:

For Each object In collection

 [statements]

[Exit For]

 [statements]

Next [object]

The For Each . . . Next loop works in a very similar way to the For . . . Next
loop, except that it’s driven by the collection you specify rather than by a vari-
able. VBA counts the number of items in the collection, and then (assuming
there’s at least one object) performs the statements specified in the loop on
the object.

As with the For . . . Next loop, you can exit early from the For Each . . . Next
loop by using an Exit For statement. For example, you can use a For Each . . .
Next loop to go through the objects in a collection until you find the object
you’re interested in. You can then take whatever actions you need on that
object and exit the loop rather than plowing through the remaining objects in
the collection.

As you’ll remember, a
collection is a group
of related objects.
For example, the
Documents collec-
tion contains all open
Document objects
(like the documents
you’ve just created
with the previous two
examples of loops).

Memo

� Chapter 5  Repeat Actions with Loops

81

Put For Each . . . Next Loops into Action
Try this example of a For . . . Next loop so that you can see how it works.

Follow these steps:

Click below the second macro in the WMME_Chapter_5 Code sheet, 1.	
and then type the Sub statement for a new macro:

Sub WMME_For_Each_Next_Loop

Press 2.	 enter to make the Visual Basic Editor add the parentheses and
the End Sub statement to the stub:

Sub WMME_For_Each_Next_Loop()

End Sub

With the insertion point on the blank line within the stub, type the 3.	
following lines of code:

 Dim myDocument As Document

 For Each myDocument In Documents

 myDocument.Close SaveChanges:=wdPromptToSaveChanges

 Next myDocument

Here’s the complete macro:

Sub WMME_For_Each_Next_Loop()

 Dim myDocument As Document

 For Each myDocument In Documents

 myDocument.Close SaveChanges:=wdPromptToSaveChanges

 Next myDocument

End Sub

Here’s what happens in this macro:

The Dim myDocument As Document statement declares an object ππ

variable named myDocument that is of the Document type.

If you’ve still got a
couple of handfuls of
new documents open
from the previous
two examples, you’re
all set. Otherwise,
simply press ctrl-n
in Word a few times
to create some new
documents that you
can close.

Memo

Word 2007 Macros & VBA Made Easy

82

The For Each . . . Next loop runs once for each myDocument object ππ

in the Documents collection—in other words, once for each
open document. The myDocument.Close statement closes each
myDocument object in turn, prompting the user to save changes.

Step through the code by pressing f8, or run it by pressing f5 or clicking
the Run Sub/UserForm button. Word closes each open document in turn,
prompting you to save any that contain unsaved changes:

If a document is
“clean,” meaning it
contains no un-
saved changes, the
myDocument.Close
statement simply
closes it. A new docu-
ment in which you’ve
made no changes
is considered clean.
As soon as you type
a character or make
another change in it,
it becomes “dirty.”

Memo

Sometimes you’ll need to quit a For loop without
completing an iteration or without reaching the limit
set by the loop invariant. To quit the loop, use an Exit
For statement like this:

Sub WWME_For_Next_Loop_Using_Exit_For()

 Dim myWindow As Window

 For Each myWindow In Windows

 myWindow.Close

 If MsgBox("Do you want to

continue closing windows?", _

 vbYesNo + vbQuestion, "Close

Open Windows") = _

 vbNo Then Exit For

 Next myWindow

End Sub

This macro declares a variable called myWindow
as being a Window object, then uses myWindow to
loop through the Windows collection, which contains
a Window object for each open window. As you
probably know, you can open multiple windows on

the same document, which is often useful for looking
at different parts of the document at the same time
or using different views (for example, Draft view and
Outline view) in different windows.

The macro first closes a window, and then displays
a message box (shown here) prompting the user to
decide whether to continue closing windows. If the
user clicks the No button, the Exit For statement exits
the For loop.

To try out this macro, press ctrl-n to open a new
document, and then choose View | Window | New
Window one or more times to open extra windows.
Press f8 to step through the macro, and watch the
result.

Try Using an Exit For Statement to Quit a For Loop

� Chapter 5  Repeat Actions with Loops

83

Repeat an Action if
a Condition Is True
At other times, you may need to repeat an action based on a condition—
either until the condition is met or until it becomes false. VBA lets you do
this in several different ways. We’ll look at the most useful way here: the Do
While . . . Loop loop, which lets you repeat an action as long as the condition
remains true.

Understand How the Do While . . . Loop
Loop Works
The Do While . . . Loop loop looks like this:

Do While condition

 [statements]

[Exit Do]

 [statements]

Loop

Here’s what happens:

At the Do While statement, VBA checks whether the condition is true. ππ

If it is, VBA executes the statements in the loop, arrives at the Loop
statement ending the loop, and then goes back to the beginning.

If the condition isn’t true, VBA skips straight to the statement after the ππ

Loop statement.

If you need to exit early from the loop without completing an iteration, ππ

you can position an Exit Do statement at any point within it. Usually,
you’d use a condition with the Exit Do statement to prevent VBA from
exiting the loop during a normal iteration.

Word 2007 Macros & VBA Made Easy

84

Put Do While . . . Loop Loops into Action
Try this example of a Do While . . . Loop loop:

Run the WMME_For_Next_Loop_2 macro you created earlier in the 1.	
chapter, and have it create a handful of documents.

Click in empty space at the bottom of the Code sheet, and then enter 2.	
this short macro:

Sub WMME_Do_While_Loop_Loop()

 Do While Documents.Count > 1

 Documents(1).Close SaveChanges:=wdSaveChanges

 Loop

End Sub

Here’s what happens in this macro:

The Do While statement evaluates the condition Documents.Count > ππ

1—whether the Count property of the Documents collection is greater
than 1. If so, more than one document is open, and the loop runs.

The Documents(1).Close SaveChanges:=wdSaveChanges statement ππ

closes the first document in the Documents collection, saving any
unsaved changes it contains. After the first document closes, the
second document becomes the new first document, and so on.

The Loop statement sends execution back up to the Do While ππ

statement, where the loop repeats.

Try running the macro by clicking in it and pressing f5 or clicking the Run
Sub/UserForm button. Word closes all documents except for one.

� Chapter 5  Repeat Actions with Loops

85

VBA provides four different kinds of Do loops, but
this chapter discusses in detail only the most useful
kind, the Do While . . . Loop loop.

Here are brief details on the other three kinds of
Do loops in case you run into them in other people’s
code or you want to investigate them yourself:

A Do . . . Loop While loop performs its actions ππ

once, and then tests the condition to see
whether it should run again. It runs again if
the condition is true. Usually, it’s easier to use
the Do . . . Loop Until loop, which runs again
until the condition becomes true, continuing
to loop while the condition remains false.

A Do . . . Loop Until loop performs actions ππ

once, and then tests the condition to see
whether it should run again. It runs again if
the condition is false.

A Do Until . . . Loop loop evaluates its ππ

condition and runs if it is false, continuing to
run until the condition becomes true. Most
people find it easier to use a Do While . . .
Loop loop, which evaluates its condition and
runs if it is true, continuing to run until the
condition becomes false.

Understand VBA’s Four Kinds of Do Loops

This page intentionally left blank

6
Make Decisions
in Your Macros
In some macros, you’ll always need to take the
same actions—for example, creating a new
document, entering some boilerplate text in it,
and applying formatting. But more often, you’ll
need to make decisions in your macros and take
action accordingly. This chapter shows you how to
make decisions, building on what you’ve learned
informally about decision making in VBA in the
earlier chapters.

Understand the
Decision-Making
Tools VBA Gives You
VBA gives you two main tools for making
decisions:

If statementsππ   These statements are for
deciding among two or more situations.
VBA lets you use several different types of
If statements, all of which you’ll meet in
this chapter.

Select Case statementsππ   These statements
simplify deciding among many situations.
VBA provides only one type of Select Case
statement.

Word 2007 Macros & VBA Made Easy

88

Get Set Up to Work
Through This Chapter
Before you start working with decisions, follow these steps to open the Visual
Basic Editor and create a new module in which you can create the macros:

Open Microsoft Word if it’s not already running.1.	

Click the Developer tab, go to the Code group, and then click Visual 2.	
Basic to open the Visual Basic Editor.

If the Visual Basic Editor opens a Code window for a module you 3.	
worked with recently, click the window’s Close button (the × button) to
close it.

Right-click the Normal template and then choose Insert | Module 4.	
from the context menu to insert a new module in the Normal
template.

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_6 as the new name for the module, replacing
the default name (such as Module1), and press enter to apply the
change.

You’re now ready to start working with If statements.

Use If Statements in Your Macros
If statements provide an easy way to make decisions in your code. In fact,
they’re so essential to programming in VBA that you’ve already seen some If
statements earlier in this book.

VBA provides three kinds of If statements:

If . . . Thenππ   For checking a single condition and taking an action if it
is met

� Chapter 6  Make Decisions in Your Macros

89

If . . . Then . . . Elseππ   For checking a single condition, taking an action it
it’s met, and taking a different action if it’s not met

If . . . Then . . . ElseIf . . . Elseππ   For checking two or more conditions,
taking the appropriate action if a condition is met, and optionally
taking a different action if no condition is met

Check One Condition with an
If . . . Then Statement
To check a single condition, use an If . . . Then statement. You normally write
it as a block of code like this, starting with the If statement and its condition
and ending with the End If statement:

If condition Then

 statements

End If

Here, condition is the condition you want to check. If the condition is true,
VBA runs the statements within the block. If not, VBA skips to the End If
line, and then continues running any statements after it in the macro.

Here’s an example of an If . . . Then statement you met in Chapter 3:

If MsgBox("Create a new document?", vbYesNo + vbQuestion, _

 "Create New Document") = vbYes Then

 Documents.Add

End If

If the user clicks the Yes button in the message box, the message box
returns the constant vbYes, and the Documents.Add statement on the next
line creates a new document. If the user clicks the No button, VBA goes on to
the next statement after the End If line.

Decide Among Two Courses of Action
with an If . . . Then . . . Else Statement
Often, you’ll need to decide between two paths in your code: if a condition is
true, do this; if it’s not true, do something else instead.

You can also use a
single-line If state-
ment that reads If
condition Then
statement—for
example, If
intNumber = 1 Then
MsgBox “intNumber
is 1.” This type of If
statement is more
compact and has no
End If line; you’ve
seen an example
earlier in this book.
However, laying your
code out in block If
statements makes it
easier to read and to
debug, so it’s usually
a better idea.

Memo

Word 2007 Macros & VBA Made Easy

90

In VBA, you use an If . . . Then . . . Else statement to make this kind of
decision:

If condition Then

 [statements]

Else

 [statements]

End If

If the condition is true, VBA runs the statements before the Else keyword.
If the condition is False, VBA runs the statements after the Else keyword.

Follow these steps to create an example of an If . . . Then . . . Else statement:

Click below the Option Explicit line in your new WMME_Chapter_6 1.	
Code sheet, and then type the macro’s name:

Sub WMME_If_Then_Condition

Press 2.	 enter to have the Visual Basic Editor create the rest of the stub
for you:

Sub WMME_If_Then_Condition()

End Sub

Inside the stub, declare a String variable named strUserName to hold 3.	
the username the user types:

Dim strUserName As String

Below that, declare a String variable called strTitle to hold the title of 4.	
the message box and input box the macro will display, and then assign
the text “User Name Macro” to the variable:

Dim strTitle As String

strTitle = "User Name Macro"

On the next line, type a label named 5.	 GetUserName: (including the
colon, which tells VBA it’s a label):

GetUserName:

� Chapter 6  Make Decisions in Your Macros

91

Add an input box that assigns what the user enters to the 6.	
strUserName String variable. The input box has the prompt “Enter
your name:” and displays the contents of the strTitle String variable in
its title bar:

strUserName = InputBox("Enter your name:", strTitle)

Type the If condition as shown next. If the strUserName string is 7.	
blank (because the user has clicked the Cancel button or clicked the
OK button without typing text in the input box), the GoTo statement
sends the macro back to the GetUserName label, making the input
box appear again until the user enters a usable name. Otherwise, the
Else statement displays a message box showing the name the user
typed.

If strUserName = "" Then

 GoTo GetUserName

Else

 MsgBox "Your name is " & strUserName & ".", _

 vbOKOnly + vbInformation, strTitle

End If

Here’s what the whole macro looks like:

Sub WMME_If_Then_Else_Condition()

 Dim strUserName As String

 Dim strTitle As String

 strTitle = "User Name Macro"

GetUserName:

 strUserName = InputBox("Enter your name:", strTitle)

 If strUserName = "" Then

 GoTo GetUserName

 Else

 MsgBox "Your name is " & strUserName & ".", _

 vbOKOnly + vbInformation, strTitle

 End If

End Sub

A label is a named
point in the code to
which you can go
using a GoTo state-
ment. You’ll notice
that when you type
the colon after the
label’s name and
press enter or move
to a new line, VBA
automatically
removes any indent
from the label line,
making the label
begin flush with the
Sub statement.

Memo

Word 2007 Macros & VBA Made Easy

92

Try stepping through the macro by clicking in it and pressing f8 to execute
one statement at a time. The first time the input box appears, click its Cancel
button to test the GoTo statement. When the input box reappears, leave the
text box blank, and click the OK button. The third time the input box appears,
type a name and click OK. Verify that the name appears in the message box.

Choose Among Multiple Courses of Action
with an If . . . Then . . . ElseIf . . . Else Statement
When you need to choose among three or more courses of action in a macro,
you can use either an If . . . Then . . . ElseIf . . . Else . . . statement (discussed in
this section) or a Select Case statement (discussed in the next section).

Here’s how an If . . . Then . . . ElseIf . . . Else . . . statement looks:

If condition1 Then

 statements1

ElseIf condition2 Then

 statements2

[other ElseIf statements here as needed]

Else

 statements

End If

As you can see, this works in the same way as the If . . . Then . . . Else
statement except that it also has one or more ElseIf statements between the If
line and the Else line.

Take the following steps to create a macro containing an If . . . Then . . . Else
statement. The macro displays an input box prompting the user to enter their
birth year, then displays a message box telling the user whether they are too
young for whatever the macro does (I’ll leave this to your imagination), too
old, or just right.

Click in open space in the WMME_Chapter_6 Code sheet, and then 1.	
type the macro’s name:

Sub WMME_If_Then_Else_Condition

� Chapter 6  Make Decisions in Your Macros

93

Press 2.	 enter to have the Visual Basic Editor create the rest of the stub
for you:

Sub WMME_If_Then_Else_Condition()

End Sub

Inside the stub, declare an Integer variable called intYear to hold the 3.	
year the user types, and then assign to it the result of an input box that
prompts the user to type their birth year:

Dim intYear As Integer

intYear = InputBox("Type your birth year:", "Birth Year")

Type the If… Then… ElseIf… Else statement as follows. After you’ve 4.	
created the first MsgBox line, use Copy and Paste (or ctrl-drag-and-
drop, if you prefer) to create the subsequent MsgBox lines quickly
rather than typing each of them.

If intYear > 1995 Then

 MsgBox "You are too young.", vbOKOnly + _

 vbInformation, "Age Check"

ElseIf intYear < 1900 Then

 MsgBox "You are too old.", vbOKOnly + _

 vbInformation, "Age Check"

Else

 MsgBox "You are the right age.", vbOKOnly + _

 vbInformation, "Age Check"

End If

Here’s the whole macro:

Sub WMME_If_Then_Else_Condition()

 Dim intYear As Integer

 intYear = InputBox("Type your birth year:", "Birth Year")

 If intYear > 1995 Then

 MsgBox "You are too young.", vbOKOnly + _

 vbInformation, "Age Check"

You can use as many
ElseIf statements as
you want. But if you
find yourself using
more than a hand-
ful, consider using a
Select Case statement
instead. See the next
section for details on
the Select Case state-
ment.

Memo

Word 2007 Macros & VBA Made Easy

94

 ElseIf intYear < 1900 Then

 MsgBox "You are too old.", vbOKOnly + _

 vbInformation, "Age Check"

 Else

 MsgBox "You are the right age.", vbOKOnly + _

 vbInformation, "Age Check"

 End IfEnd Sub

Run the macro by clicking in it and pressing f5 or clicking the Run Sub/
UserForm button. Type a birth year between 1900 and 1995 to produce the
message box telling you that you’re the right age.

Run the macro twice more. The first time, give a birth year before 1900.
The second time, give a birth year after 1995. Watch the message boxes you
get.

Use Select Case Statements
When you need to find which of many possible situations is true, use a Select
Case statement rather than an extended If . . . Then . . . ElseIf statement.

A Select Case statement is a more compact way of testing multiple
conditions, and in theory will make your code run faster. In practice, you
probably won’t notice the difference, but a Select Case statement is also
quicker to code and easier to debug than a long If statement, so it’s a handy
tool to have in your kit.

Understand How the Select Case
Statement Works
The Select Case statement looks like this:

Select Case TestExpression

 Case Expression1

 [Statements1]

 Case Expression2

 [Statements2]

The macro doesn’t
check that the date
is a valid integer, so
you can cause an
error by entering text
rather than a number.
You can also cause
an error by entering
an integer that’s too
large for the Integer
data type (which
goes up to 32,767).
More on this in the
next chapter—but
try entering 33333
or a higher number
if you’d like a quick
taste of a VBA error.

Memo

� Chapter 6  Make Decisions in Your Macros

95

 [Case Else]

 [StatementsElse]

End Select

Don’t worry if that looks a bit daunting: you’ll get the hang of it in a moment.
Here’s what happens:

The Select Case keywords start the Select Case statement, and the End ππ

Select keywords end the statement.

TestExpressionππ is the expression with which you’re comparing the other
expressions. For example, Select Case ActiveDocument.Words.Count
performs the comparison with the number of words in the active
document.

The various Case ππ Expression lines give the expressions with which VBA
compares TestExpression. For example, Case Expression1 is the first
comparison, and the statements after it are those that run if the test
expression matches the first expression. So if you have Case Is < 20 as
the first test expression, and the active document contains 20 or fewer
words, Statements1 will run.

The optional Case Else line lets you run statements (ππ StatementsElse) if
the test expression matches none of the cases you define.

Put a Select Case Statement into Action
To try a Select Case statement, create the macro described here. The macro
works with the word count in the active document. Follow these steps:

Make sure you have a document open in Word. Type a few words in 1.	
it—as many as you like.

In the Code sheet for the WMME_Chapter_6 module, click in open 2.	
space below the last macro, and then type the macro’s name:

Sub WMME_Select_Case

If you need to add
more words to your
document quickly,
press f4 to repeat the
last text you typed.

The Easy Way

Word 2007 Macros & VBA Made Easy

96

Press 3.	 enter to have the Visual Basic Editor create the rest of the stub
for you:

Sub WMME_Select Case()

End Sub

Inside the stub, declare a String variable called strMessage to contain 4.	
the text for the message box the macro will display:

Dim strMessage As String

Start the Select Case statement like this, using the test expression 5.	
ActiveDocument.Words.Count (which returns the number of words in
the active document):

Select Case ActiveDocument.Words.Count

Add the first Case statement like this, assigning text to the strMessage 6.	
variable if the word count is 1:

Case Is = 1

 strMessage = "The document contains no words at all."

Copy the first Case statement and paste it four times, then modify the 7.	
pasted sections so that you have this:

Case Is = 1

 strMessage = "The document contains no words at all."

Case Is < 20

 strMessage = "The document contains fewer than 20 words."

Case Is < 50

 strMessage = "The document contains fewer than 50 words."

Case Is < 100

 strMessage = "The document contains fewer than 100 words."

Case Else

 strMessage = "The document contains more than 100 words."

Even when a docu-
ment is empty, the
Count property of
its Words collection
returns 1 rather than
0. (Don’t ask.)

Memo

� Chapter 6  Make Decisions in Your Macros

97

Add the End Select statement and an OK-only message box displaying 8.	
the strMessage variable:

End Select

MsgBox strMessage, vbOKOnly + vbInformation, _

 "Select Case Example"

Here’s the complete macro:

Sub WMME_Select_Case()

 Dim strMessage As String

 Select Case ActiveDocument.Words.Count

 Case Is = 1

 strMessage = "The document contains no words at all."

 Case Is < 20

 strMessage = "The document contains fewer than 20 words."

 Case Is < 50

 strMessage = "The document contains fewer than 50 words."

 Case Is < 100

 strMessage = "The document contains fewer than 100 words."

 Case Else

 strMessage = "The document contains more than 100 words."

 End Select

 MsgBox strMessage, vbOKOnly + vbInformation, _

 "Select Case Example"

End Sub

Test the macro by clicking in it and pressing f5 or clicking the Run Sub/
UserForm button. Change the number of words in your document and run it
again, making sure each of the Case statements works.

This page intentionally left blank

7
Use Variables
and Constants
Often, you’ll need to store data temporarily in your
macros so that you can use it later. To do so, you
use variables. For example, instead of asking the
user to input their name at each point you need it
in the macro, you can ask for the user’s name one
time via an input box, store the result in a variable,
and then insert that variable throughout the macro.

In this chapter, you’ll learn how to declare
variables and how to use them in your code. You’ll
also learn how to declare and use constants, which
are set values that you can use easily throughout
your macros.

Get Set Up to Work
Through This Chapter
To give yourself space to work with variables and
constants, follow these steps to open the Visual
Basic Editor and create a new module in which you
can create the macros:

Open Microsoft Word if it’s not already 1.	
running.

Click the Developer tab, go to the Code 2.	
group, and then click Visual Basic to open
the Visual Basic Editor.

Word 2007 Macros & VBA Made Easy

100

If the Visual Basic Editor opens a Code window for a module you 3.	
worked with recently, click the window’s Close button (the × button) to
close it.

Right-click the Normal template and then choose Insert | Module 4.	
from the context menu to insert a new module in the Normal
template.

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_7 as the new name for the module, replacing
the default name (such as Module1), and press enter to apply the
change.

Repeat steps 4 through 6 to create a new module named 7.	 WMME_
Chapter_7_2.

You’re now ready to start working through this chapter.

Use Variables in Your Macros
A variable is a named area in memory in which you can store data. For
example, in Chapter 5, you used a variable named intCounter to store an
integer value that increased as the loop ran.

Declare a Variable
To create a variable, you declare it. Declaring simply means telling VBA that
you want to use the variable name you give and (optionally) telling VBA the
type of data the variable will hold.

VBA lets you declare variables in two ways: explicitly and implicitly.

Declare a Variable Explicitly
Declaring a variable explicitly means that you tell VBA about the variable
before you start using it. This is the best way of using variables, because it lets
VBA alert you to several errors that can creep in with implicit declarations.

� Chapter 7  Use Variables and Constants

101

To declare a variable explicitly, you use the appropriate one of four
keywords: Dim, Private, Public, or Static. The keywords create different types
of variables, as you’ll see in a minute. For now, try this quick example:

Click in the Code window for the WMME_Chapter_7 module.1.	

Type the following macro, using the skills you’ve learned in the 2.	
previous chapters:

Sub WMME_Variables_1()

 Dim strText As String

 strText = "Hi! How are you?"

 MsgBox strText

End Sub

You can create many different types of variable names
to make your variables easy to recognize.

VBA puts the following rules on the characters you
can use to create names:

Each variable name must start with a letter. ππ

You can’t start a name with a number or a
symbol.

Each name can be up to 255 characters long. ππ

Shorter is usually better.

You can use letters, numbers, and ππ

underscores but no spaces.

You can’t use periods, exclamation points, ππ

mathematical operators (such as + and –), or
comparison operators (such as =, <, >, or <=).

You can use the type-declaration characters ππ

(@, &, $, and #) only at the end of variables
to declare their types. You can’t use these
characters within the names. Generally, it’s
easiest to avoid using these characters.

Apart from these rules about characters, there are
two rules about the names themselves:

Each variable name has to be unique within ππ

the area of VBA in which you’re using it.
This is simply so that VBA can be sure which
variable you’re telling it to use. The areas
of VBA are called “scopes,” and you’ll learn
about them later in this chapter.

You’re not supposed to use any of the names ππ

that VBA uses. For example, since Word VBA
uses a Document object, you shouldn’t create
a variable named Document. Doing so causes
confusion, because you then have to tell VBA
whether you mean your Document variable or
its own Document object.

Beyond these restrictions, it’s a good idea to name
your variables clearly and consistently. Table 7-1 (later
in this chapter) shows suggested three-letter prefixes
that you can use to make clear what data type each
variable has—for example, in this scheme the int
prefix on a variable named intCounter indicates that
the variable has the Integer data type.

Learn the Rules for Naming Your Variables

Word 2007 Macros & VBA Made Easy

102

Click in the macro, and then press 3.	 f8 to step through it. You’ll
see this.

You can easily grasp what happens:

The Dim statement declares a variable named strText as being of the ππ

String data type. (More on this shortly.)

The next line assigns a string of text (“Hi! How are you?”) to the variable.ππ

The MsgBox line displays a message box containing the variable’s ππ

contents.

Declare a Variable Implicitly
Declaring a variable implicitly means that you don’t tell VBA about the
variable until you use it. When you declare the variable, you assign a value to
it. You don’t need to use any of the keywords, and you don’t usually specify the
data type—you let VBA figure the type out for itself.

Try this quick example of declaring a variable implicitly:

At the top of the Code window, comment out the Option Explicit 1.	
statement by typing an apostrophe before it. You need to do this
because this statement prevents you from using implicit declarations.

'Option Explicit

In your WMME_Variables_1 macro, comment out the Dim line:2.	

'Dim strText As String

Click in the macro, and then press 3.	 f5 to run it.

Again, you’ll see the message box. But this time, the strText = line has
declared the variable implicitly, because there’s no explicit declaration.

Now try uncommenting the Option Explicit statement and see what happens:

Delete the apostrophe you typed before Option Explicit at the top of 1.	
the Code window.

You can declare a
variable anywhere
in your code. The
convention is to put
all your variable dec-
larations together at
the beginning of the
macro, where they’re
easy to find.

Memo

� Chapter 7  Use Variables and Constants

103

Click in the macro and press 2.	 f5 to run
it. You’ll see the “Variable not defined”
message shown here. This means
that VBA is set to require variable
declarations, but you’ve missed a
declaration.

Click OK to dismiss the Compile Error message box. VBA selects the 3.	
offending variable so that you can fix the problem.

Uncomment the Dim statement by deleting the apostrophe before it, 4.	
and then run the macro. This time, it will run correctly.

Earlier in this book, I recommended that you switch
on the Require Variable Declaration check box on the
Editor tab of the Visual Basic Editor’s Options dialog
box (choose Tools | Options). This setting forces
you to declare all the variables you use explicitly
and usually is a great help in keeping your code
shipshape.

When you declare each variable explicitly, VBA
knows about all the variables you’re using and
(usually) what type of data each is supposed to
contain. This helps you in four ways:

When you type the name of a variable you’ve ππ

declared, VBA’s automatic-completion
features can help you to complete it.

It’s easier to identify all the variables you’ve ππ

created (especially if you put the declarations
at the beginning of the macro).

If you try to declare a new variable that has ππ

the same name as an existing variable, VBA
warns you. With implicit declarations, VBA
simply assigns the new value you give to the
variable, overwriting its previous contents.

If you try to put the wrong type of data in a ππ

variable, VBA can often warn you.

There’s no downside to declaring variables
explicitly apart from having to be a tad more
organized.

�Why You Should Declare Variables Explicitly

Word 2007 Macros & VBA Made Easy

104

Set the Variable’s Scope and Lifetime
After the variable’s name, the second thing you need to choose is the scope of
the variable. Scope means the area of VBA in which you can use the variable.

You can use three different scopes: procedure scope, private scope, and
public scope.

Declare a Variable with Procedure Scope
Procedure scope is the default scope. It means you can use the variable only
within the macro (the VBA procedure) that declares it. This is the scope you’ll
normally want to use unless you need to use data from one macro in another.

To declare a variable with procedure scope, use the Dim keyword within a
macro, just as you did earlier in this chapter—for example:

Dim strText As String

The variable retains its data only while the macro is running. As soon as
the macro ends, VBA empties the memory that contained the variable.

Declare a Variable with Private Scope
Private scope is the next-wider scope. It creates a variable you can use in all the
macros within the same module. A variable with private scope keeps its value
as long as the VBA project (the Word template or document) that declares it is
open.

To declare a private variable, you use the Private keyword and put the
variable declaration in the declarations area at the top of the code module,
after the Option Explicit statement and before any macro. Figure 7-1 shows an
example.

The Dim keyword
is short for “dimen-
sion,” in the sense of
“reserve space for”:
“dimension such-and-
such variable as an
Integer” and so on.

Memo

You can also create a
variable with private
scope by using the
Dim keyword at the
beginning of the
module rather than
within a procedure.
Don’t do this,
though—use the
Private keyword
instead, because it
makes your code
much clearer.

The Easy Way

Figure 7-1  Place your private vari-
ables in the declarations area at the
beginning of the code module.

� Chapter 7  Use Variables and Constants

105

Try this example of creating a private variable:

Click below the Option Explicit declaration at the beginning of the 1.	
WMME_Chapter_7 module and declare a private variable named
strTown of the String data type like this:

Private strTown As String

On the following line, type this macro, which assigns the text 2.	
“Oakland” to the strTown variable:

Sub WMME_Variables_2()

 strTown = "Oakland"

End Sub

Click below that macro and type this macro, which displays a message 3.	
box containing the contents of the strTown variable:

Sub WMME_Variables()

 MsgBox strTown

End Sub

Click in the WMME_Variables_2 macro and press 4.	 f5 to run it. Nothing
appears to happen, but VBA assigns the text to the variable.

Click in the WMME_Variables macro and press 5.	 f5 to run it. VBA
displays the message box with “Oakland” in it.

Click the OK button to dismiss the message box.6.	

As you can see from this simple example, the private variable keeps its data
and is available to all the macros in a module.

Declare a Variable with Public Scope
Public scope is the widest scope and makes the variable available to all the
macros in all the modules in the project. Like a private variable, a variable
with public scope keeps its value as long as the VBA project (the Word
template or document) that declares it is open.

When you edit a
macro, VBA has to
compile the code
again before it can
run. When VBA
recompiles the code,
it clears the values
of all private and
public variables. So
if you find that your
private variables have
suddenly forgotten
their values, it’s usu-
ally because you have
edited a macro.

Memo

Word 2007 Macros & VBA Made Easy

106

You declare a public variable in much the same way as a private variable,
except that you use the Public keyword instead of the Private keyword. You
put the declaration in the declarations area at the top of any code module in
the project.

Try this example of creating a public variable:

Click below the Option Explicit declaration and the Private strTown 1.	
declaration at the beginning of the WMME_Chapter_7 module and
declare a public variable named strProjectCode of the String data type:

Public strProjectCode As String

On the following line, type this macro, which displays an input box 2.	
prompting the user to type the project code and stores the user’s
answer in the strProjectCode variable:

Sub WMME_Variables_3()

 strProjectCode = InputBox("Enter the project code:")

End Sub

Don’t run this macro just yet, because you need to create another 3.	
macro that will test its output. Double-click the WMME_Chapter_7_2
module to open its code sheet, and then create this macro in it:

Sub WMME_Variables_4()

 MsgBox strProjectCode

End Sub

Now you’re all set. Arrange the Code windows so that you can see 4.	
both those modules. For example, choose Window | Tile Vertically or
Window | Tile Horizontally.

Click in the WMME_Chapter_7 module, click in the WMME_Variables_3 5.	
macro, and then press f5 to run it. VBA displays the input box.

Type some text for the project code, and then press 6.	 enter or click OK.
VBA stores the string you typed in the strProjectCode variable.

Public variables are
useful for sharing
data between differ-
ent modules.

Memo

� Chapter 7  Use Variables and Constants

107

Click in the WMME_Chapter_7_2 module, click in the WMME_7.	
Variables_4 macro, and then press f5 to run it. VBA displays the
message box with the text you typed.

As this example shows, the public variable keeps the data you assigned to it
and is available to all the macros in a project.

Create Static Variables
The last type of variable is the static variable, which keeps its value between
calls to the macro that declares it. Like a public variable, a static variable keeps
its value as long as the project (the document or template) is open; but like a
procedure-scope variable, a static variable is available only to the macro that
declared it.

To declare a static variable, use the Static keyword just as you would use
the Dim keyword. For example, the following statement declares a static
variable named intPayments of the Integer data type:

Static intPayments As Integer

As you learned earlier in this chapter, each variable’s
name must be unique within its scope, so that VBA
knows which variable you’re referring to. This is seldom
a problem with procedure-scope variables, especially
if you declare all your variables at the beginning of a
macro, because you’ll be able to see which variables
you’ve created and avoid reusing any of the names.

But when you create public and private variables, it’s
much easier to reuse a variable name unintentionally.
When you do this, VBA displays the Compile Error:
Ambiguous Name Detected dialog box shown here,
giving you the name of the offending macro.

Click the OK button, go to the macro, and change
the variable name.

�Dealing with “Ambiguous Name” Errors

Use static variables to
keep data that you’ll
need to use within the
same macro but not
in other macros. For
example, the first time
the user runs a macro
in a Word session, you
may need to gather
relevant information
from them. By storing
this information in
static variables, you
can either avoid ask-
ing for it again in the
same Word session or
automatically insert
the information in the
fields of a userform
so that the user can
check it and approve
it without needing to
enter it again.

Memo

Word 2007 Macros & VBA Made Easy

108

Set the Variable’s Data Type
The last decision you need to make when declaring a variable is its data type.
You’ve been easing informally into using data types so far in this chapter,
declaring String variables and Integer variables. Now it’s time to lay out
exactly what these terms mean.

The data type controls the type of data that the variable can hold. For
example, if you’ve declared a variable as being of the Integer data type, it can
hold only integers (whole numbers). If you try to store a string of text in the
variable, you get an error, because it’s not an integer.

Table 7-1 explains the data types you can use in VBA.

Decide Whether to Declare the Variable Type
Even if you set VBA to force you to declare each variable explicitly, you don’t
need to declare the variable’s type. For example, instead of using the As
keyword to declare the intCounter variable as being of the Integer data type,
like this,

Dim intCounter As Integer

you can simply declare the variable explicitly without stating the data type,
like this:

Dim intCounter

When you do this, VBA creates a variable of the Variant data type and
gives it the Empty subtype (Variant/Empty). As soon as you assign data to
the variable, VBA gives the variable the data subtype that best matches the
data. For example, if you assign an integer value, VBA gives the variable the
Variant/Integer subtype. And if you then assign a string of text, VBA gives the
variable the Variant/String subtype.

This is flexible, but it takes more memory (which isn’t usually a problem;
see the upcoming sidebar “Why You Shouldn’t Worry About Memory”) and
it enables you to assign the “wrong” type of data to a variable. In the previous
example, the variable changes from a Variant/Integer to a Variant/String.

The most useful data
types for writing mac-
ros in Word tend to
be the String, Object,
Integer, Boolean, and
Date data types—but
it depends very much
on what your macros
are doing.

Memo

Which types of
variables you need
depends on what
you’re doing in
your macros. If
you mostly create
individual macros to
sort out problems
in Word, you may
need to use only
procedure-scope
variables. Don’t feel
you need to create
private, public, or
static variables
unless your macros
actually need them.

The Easy Way

� Chapter 7  Use Variables and Constants

109
Single means a single-
precision floating-
point number; Double
means a double-
precision floating-
point number. These
terms have to do
with the way that
computers handle the
number. If you use
these data types, you
just need to make
sure the values you’re
using are in the
correct ranges.

Memo

Data Type A Variable That Can Contain

Suggested

Abbreviation Example

Boolean Only True or False. bln True

Byte An integer from 0 to 255 (inclusive). byt 128

Currency A positive or negative number that can
have up to 15 digits before the decimal
point and 4 digits after it.

cur 83929.2987

Date A floating-point number that has the date
before the decimal point and the time
after it.

dte 34567.25

Decimal An unsigned integer (not plus or minus)
scaled by a power of 10. This data type is
only available as a subtype of the Variant
data type, not as a data type on its own.

N/A 4.82512

Double A floating-point number in either
the range –1.79769313486232308
to –4.94065645841247–324 or the
range 1.79769313486232208 to
4.94065645841247–324.

dbl 2.828

Integer A whole number from –32,768 to 32,767. int 4096

Long A whole number from –2,147,483,648 to
2,147,483,647.

lng 152,163

Object A reference to a VBA object. obj (A document
or paragraph)

Single A floating-point number in either the
range –3.40282–338 to –1.401298–45 or the
range 1.401298–45 to 3.40282338.

sng 1.488225

String A string of text, either variable length or
fixed length.

str “Industry”

Variant Any type of data except for a fixed-length
string.

var (See later in
this chapter)

Table 7-1  VBA’s Data Types for Variables

Word 2007 Macros & VBA Made Easy

110

If you try to perform math operations with the string, you’ll get an error that
you could have avoided by specifying the data type in the first place (which
would have prevented the change of subtype).

Really the only reason to avoid declaring the data type is that you don’t
know what data type to use. But you can find it out quickly, as discussed next.

Find Out What Data Type Your Data Is
If some of the descriptions in Table 7-1 seem confusing, try using this easy
way to find out what data type a particular piece of data is:

Create a macro to use:1.	

Sub WMME_Finding_Data_Type()

End Sub

Declare the variable as a Variant. For example, declare a variable 2.	
named myVariable:

Dim myVariable As Variant

Assign to myVariable the data you want to check:3.	

myVariable = 44887289291.89129

Choose View | Locals Window to display the Locals window (shown in 4.	
action in Figure 7-2). This window shows you the contents of variables
and expressions you’re using.

Figure 7-2  The Locals win-
dow shows you the contents
and data type of variables your
macros are using.

� Chapter 7  Use Variables and Constants

111

Click in the macro and press 5.	 f8 twice to execute the two statements.

Look at the myVariable line in the Locals window. The Type column 6.	
shows the data subtype VBA is using within the Variant variable. You
can use the corresponding data type for the variable. In the example,
the variable is a Variant/Double, so you can declare the variable as a
Double:

Dim dblMyLargeNumber As Double

Press 7.	 f8 again to finish executing the macro.

Create Constants
A constant is a set value that you can use easily throughout your macros.
You’ve already seen some of the constants that VBA itself uses, such as the
vbYesNo constant you use for displaying Yes/No message boxes, but you may
also need to create your own constants.

There’s one excep-
tion: If the data type
is Decimal, you can’t
create a separate vari-
able. Instead, leave
the variable as a Vari-
ant and let VBA use
the Variant/Decimal
subtype for you.

Memo

Different variables take up different amounts of
memory. For example, a Byte variable takes up
1 byte, a Boolean variable takes up 2 bytes, an Object
variable takes up 4 bytes, and a Decimal integer takes
up 12 bytes.

Professional programmers need to worry about
the amount of memory their code uses, though not
as much as they used to have to worry in the early
days of computing, when memory was in short
supply and every byte was precious. These days, any
PC that can run Office 2007 at an acceptable speed

should be able to handle all the variables you throw
at it.

If you’re only doing a small amount of
programming in VBA, you shouldn’t need to worry
about the amount of memory variables take. The
only exception is if you create many String variables
or Variant variables and assign large amounts of
text to them. In this case, the variables occupy a bit
more memory than the text, which can add up to a
significant amount if you create very many variables.
But in all likelihood, you won’t need to do this.

�Why You Shouldn’t Worry About Memory

Word 2007 Macros & VBA Made Easy

112

Like variables, constants can have procedure scope, private scope, or public
scope:

Procedure scopeππ   Lets you use the constant only in the macro that
declares it

Private scopeππ   Lets you use the constant anywhere in the module that
declares it

Public scopeππ   Lets you use the constant anywhere in the project that
declares it

To declare a constant, you use the Const statement like this:

[Public/Private] Const constantname [As type] = expression

Here’s what that means:

[Public/Private]ππ   These are optional keywords that let you make the
constant public or private. As with variables, you put public and private
constant declarations in the declarations area at the top of the code
sheet (before the first macro).

Const ππ constantname  The Const keyword creates the constant with
the name given by constantname. The naming rules are the same as for
variables (see the sidebar “Learn the Rules for Naming Your Variables,”
earlier in this chapter).

[As ππ type]  The As keyword makes the constant the data type you give.
Declaring the data type is optional, but it’s always a good idea. You can
use the same data types as for variables.

= ππ expression  You assign the value to the constant by typing an equal
sign followed by the value.

� Chapter 7  Use Variables and Constants

113

Try this quick example of creating a constant and using it immediately:

Create a macro to use:1.	

Sub WMME_Constants()

End Sub

Type the following statement to declare a procedure-scope constant 2.	
named conExchangeRate of the Currency data type and assign a value
to it:

Const conExchangeRate As Currency = 1.7734

Add a message box to display the result of the constant multiplied by 50:3.	

MsgBox conExchangeRate * 50

Click in the macro and press 4.	 f5 to run it. You’ll see the message box
giving the result of the calculation.

This page intentionally left blank

8
Find the
VBA Objects
You Need
To take actions in your macros, you must identify
the VBA objects that you need to manipulate. For
example, when you need to create a new document,
you need to work with the Documents collection;
and when you work with a paragraph of text, you
need to use the appropriate Paragraph object. This
chapter shows you how to find the objects you need,
using the fastest and easiest ways that VBA offers.

Get an Overview of the
Tools You Can Use
VBA provides four main tools that you can use to
find objects:

Help filesππ   VBA comes with
comprehensive Help files that you can
search to find the objects, properties, and
methods you need. Among the most useful
parts of the Help files are the diagrams of
the Word object model, which shows the
various objects and the hierarchy in which
they all fit together.

Word 2007 Macros & VBA Made Easy

116

Macro Recorderππ   As you’ve seen earlier in this book, you can record a
macro by turning on the Macro Recorder and performing the actions
you want to record. You can then examine the macro’s code and see
which VBA objects are involved. This is quick, easy, and often very
effective. Many people view the Macro Recorder as strictly an entry-level
tool, but that’s their loss.

Object Browserππ   The Object Browser is a tool for searching through
objects in VBA and finding the ones you need. It’s a bit forbidding at
first, but it’s a highly useful tool.

List Properties/Methods featureππ   This feature, which you’ve met
earlier in this book, lets you see the objects contained in an object
whose name you’ve typed in code.

Understand What the
Word Object Model Is
The Word object model is the logical arrangement in which Word’s various
objects fit together. By looking at the Help files’ diagrams of the various parts
of the object model, you can get an idea of which VBA objects there are and
how to reach the ones you need to manipulate.

The easiest way to get an overview of the Word object model is to open the
Word Object Model Maps in VBA Help. Follow these steps:

In the Visual Basic Editor, choose Help | Microsoft Visual Basic Help 1.	
to open the Word Help window at the Word Developer topic.

In the Browse Word Developer Help list, click the Word Object Model 2.	
Reference link to reach the Word Object Model Reference page.

Click the Word Object Model Maps link to display the Word Object 3.	
Model Maps screen.

See the sidebar titled
“Understand Key VBA
Terms” in Chapter 2
if you need a quick
refresher on what
these terms mean.

Memo

� Chapter 8  Find the VBA Objects You Need

117

Figure 8-1  The Word Application Object Model Map shows you how the many objects are arranged in the Word application.
You can click a box to jump to that object.

Click the Word Application Object Model Map to display the Word 4.	
Application Object Model Map. Figure 8-1 shows the top part of this map.

Click an object to see its details.5.	

Word 2007 Macros & VBA Made Easy

118

From the Word Object Model Maps screen, you can access four maps:

Word Application Object Model Mapππ   This map gives you an overview
of the whole of the Word application.

Word Document Object Mapππ   This map shows the Document object
(which represents an open document), all the objects within it, and the
objects they contain.

Word Range Object Mapππ   This map shows the contents of the Range
object, which represents an area in a document. You use a range in
VBA to identify a part of a document so that you can work with it,
much as you use the keyboard and mouse pointer to select a part of a
document when working interactively. Chapter 9 shows you how to use
ranges.

Word Selection Object Mapππ   This map shows the contents of the
Selection object, which represents either what is selected in the
document (for example, a paragraph) or the insertion point (if nothing
is selected in the document). You use the Selection object to work with
what the user has selected in the document. Chapter 9 explains how to
use the Selection object.

The Application object represents the Word application as a whole.
The Application object contains many objects, but these are the four you’ll
probably use most:

Documents collection and Document objectsππ   Most of what you’ll do
with Word involves documents, so you use this collection and these
objects to open, close, save, and work with documents.

ActiveDocument objectππ   You use this object to work with whichever
document is active, without needing to know its name.

Selection objectππ   You use this object to work with whatever the user
has selected in the active document.

� Chapter 8  Find the VBA Objects You Need

119

Options objectππ   This object lets you set most of the options in Word,
including those that appear in the Word Options dialog box.

As you’ll see if you look at the Word Application Object Model Map, the
object model is arranged as a sort of tree diagram with the Application object
as the root. To reach an object contained in another object, you normally drill
down through the containing object to reach the object inside it. For example,
the Application object contains the Documents collection, so you can reach
the Documents collection by going through the Application object like this:

Application.Documents(1).TrackRevisions = False

To avoid you having to go through the Application object every time you do
something in Word with VBA, the object model exposes various creatable objects
that you can access without specifying the Application object. The Documents
collection is a creatable object, so you can access it directly like this:

Documents(1).TrackRevisions = False

You’ll learn much more about Word’s objects and how to manipulate them
in the remaining chapters of this book.

This section has given you a sideways introduction to the first way of
finding the objects you need in Word: the VBA Help files. The next section
tells you more about them.

Find an Object Using the Help Files
VBA includes detailed Help files you can use to find the objects you need,
either by using the maps of the Word object model explained in the previous
section or by searching for them.

You can open Help in any of these ways:

Choose Help | Microsoft Visual Basic Help in the Visual Basic Editor. ππ

This opens the Word Help window at the Word Developer topic. From
there, you can either browse the topics or click in the Search box, type
a term, and click the Search button.

Word 2007 Macros & VBA Made Easy

120

Place the insertion point in a term you’ve entered in the Code window ππ

and press f1. This lets you jump directly to the Help page for the term
you clicked.

Type a term in the Search box in the Visual Basic Editor and press ππ enter.
The Word Help window shows a list of results. Click the result you want.

The VBA Help files include a wide variety of information, including
examples and links to related objects. One of the most useful items is the
Object Members list that you’ll find in the See Also box on many pages. This
lets you view a full list of the properties and methods available for the object.

Find Objects Using the
Macro Recorder
Often, the easiest way to find out which objects you need to work with is by
using the Macro Recorder. You turn it on, take actions interactively in the
Word user interface to perform the tasks you want to automate, and then turn
it off. You open the macro’s code for editing in the Visual Basic Editor and see
which objects VBA has used.

There are a couple of drawbacks. You’ll see one in a moment, and I’ll
mention the other later in this chapter.

Record a Macro with the Macro Recorder
Try this example of using the Macro Recorder to find out how to turn off the
Replace Text As You Type feature in AutoCorrect. Follow these steps:

Switch to Word (or launch it if it’s not already running).1.	

Open the Record Macro dialog box in one of these ways:2.	

Click the Record Macro button on the status bar:ππ

� Chapter 8  Find the VBA Objects You Need

121

Click the Developer tab, go to the Code group, and click the ππ

Record Macro button.

In the Macro Name text box, type a name for the macro that will 3.	
enable you to identify the macro for deleting when you no longer need
it. (You can leave the default name—Macro 1, Macro 2, or whatever—
if you prefer.)

Make sure the Store Macro In drop-down list is set to All Documents 4.	
(Normal.dotm).

Leave the Description field blank if you’re planning to delete the macro.5.	

Click OK. Word closes the Record Macro dialog box and starts 6.	
recording the macro.

Click the Office button, and then click Word Options to open the Word 7.	
Options dialog box.

In the left panel, click the Proofing category to display the Proofing 8.	
options.

In the AutoCorrect Options area, click the AutoCorrect Options button 9.	
to open the AutoCorrect dialog box.

On the AutoCorrect tab, clear the Replace Text As You Type check box.10.	

Click the OK button to close the AutoCorrect dialog box.11.	

Click the OK button to close the Word Options dialog box.12.	

Stop recording the macro in one of these ways:13.	

Click the Stop Recording button on the status bar:ππ

Click the Developer tab, go to the Code group, and click the Stop ππ

Recording button.

Word 2007 Macros & VBA Made Easy

122

Open the Macro You Recorded
Now open the macro you recorded and view its contents:

Open the Macros dialog box in one of these ways:1.	

Press ππ alt-f8.

Click the Developer tab, go to the Code group, and then click the ππ

Macros button.

In the Macro Name list box, click the macro’s name, and then click the 2.	
Edit button. Word launches or activates the Visual Basic Editor, which
opens the NewMacros module, where you can find your macro.

When you open the macro for turning off the Replace Text As You Type
feature, you’ll see a huge slab of code that starts like this:

Sub Macro1()

 '

' Macro1 Macro

'

'

 With Options

 .AutoFormatAsYouTypeApplyHeadings = False

 .AutoFormatAsYouTypeApplyBorders = True

 .AutoFormatAsYouTypeApplyBulletedLists = True

 .AutoFormatAsYouTypeApplyNumberedLists = True

 .AutoFormatAsYouTypeApplyTables = True

 .AutoFormatAsYouTypeReplaceQuotes = True

 .AutoFormatAsYouTypeReplaceSymbols = True

 .AutoFormatAsYouTypeReplaceOrdinals = True

 .AutoFormatAsYouTypeReplaceFractions = True

 .AutoFormatAsYouTypeReplacePlainTextEmphasis = False

 .AutoFormatAsYouTypeReplaceHyperlinks = True

 .AutoFormatAsYouTypeFormatListItemBeginning = True

 .AutoFormatAsYouTypeDefineStyles = False

 .TabIndentKey = True

 End With

 With AutoCorrect

� Chapter 8  Find the VBA Objects You Need

123

With AutoCorrect

 .CorrectInitialCaps = True

 .CorrectSentenceCaps = True

 .CorrectDays = True

 .CorrectCapsLock = True

 .ReplaceText = False

 .ReplaceTextFromSpellingChecker = True

 .CorrectKeyboardSetting = False

 .DisplayAutoCorrectOptions = True

 .CorrectTableCells = True

End With

...

I’ve deleted the second half of the code, because it’s neither pretty nor
helpful.

This illustrates the main problem you’ll find with using the Macro
Recorder to find objects: When you use a dialog box, the Macro Recorder
doesn’t know exactly which setting you’re interested in, so it records all of
them. You then have to go through them and find the one you want.

Here, the object we want is the AutoCorrect object, and the setting is
ReplaceText = False. Once we know this, we can simplify the macro to this:

Sub WMME_Turn_Off_AutoCorrect()

 AutoCorrect.ReplaceText = False

End Sub

When you’ve found the code you want, either copy it to a macro of your
own or simply note down what you need to know. Then delete the recorded
macro in one of these ways:

Code windowππ   Select the macro’s code, and then press delete.

Visual Basic Editorππ   Choose Tools | Macros, click the macro’s name in
the Macros dialog box, and then click the Delete button.

Wordππ   Press alt-f8 to open the Macros dialog box, click the macro’s
name, and then click the Delete button.

Word 2007 Macros & VBA Made Easy

124 Find Objects Using the Object Browser
The Object Browser is a tool for searching through objects in VBA to find the
ones you need. The Object Browser is powerful and takes some getting used
to, but if you follow the example in this section, you’ll get the hang of it in just
a few minutes.

Open the Object Browser
You can open the Object Browser in any of these ways from the Visual Basic
Editor:

Press ππ f2.

Click the Object Browser button on the Standard toolbar:ππ

Choose View | Object Browser.ππ

When you record macros that involve you doing
things in a document (as opposed to choosing
settings, as in the previous example), you’ll find that
VBA often uses the Selection object.

The Selection object represents whatever the
user has selected in Word—for example, a word, a
sentence, or a paragraph. If nothing is actually selected
as we humans understand it, VBA still identifies a
Selection object. It represents the position of the
insertion point and is called a “collapsed selection.”

When you’re recording macros that you’ll play
back, using the Selection object is fine, because the
macros will usually run as needed. Sometimes a
macro will fail if the user runs it on a different type of

selection than for which it was recorded. For example,
if you recorded the macro to manipulate the cells in a
table, it won’t work with a different object (such as a
picture) that doesn’t have cells.

But when you’re using the Macro Recorder to find
the objects you need for writing code, you’ll often
need to switch from the Selection object to another
object. For example, if you use the Macro Recorder to
discover the commands needed to format text using
VBA, the recorded code will use the Selection object.
But you’ll often need to use another object instead,
such as a Range object within a Paragraph object in
a Document object. (You’ll learn more about these
objects later in this book.)

�Why You May Need to Change the Selection Object

� Chapter 8  Find the VBA Objects You Need

125

Figure 8-2 shows the Object Browser open as a floating (undocked)
window.

Figure 8-2  The Object Browser is a great tool for digging through the objects, properties, and meth-
ods that VBA provides.

Project/Library

drop-down list

Show/Hide Search

Results button

Search Results pane

Classes pane

Members pane

Details pane Split bars

Search

Text box

Search Button

Go Back button

Go Forward button

Copy to Clipboard button

View Definition button

Help button

Word 2007 Macros & VBA Made Easy

126

If the Object Browser opens as a window docked within the Visual Basic
Editor window, taking up all of the space where the Code window normally
appears, you can display it as a separate window by clicking the Restore
Window button in the upper-right corner of the Visual
Basic Editor window, as shown here. Double-click the
Object Browser’s title bar or click its Maximize button if
you want to maximize it again.

The easiest way to see what the different components of the Object
Browser do is by using it to find an object. You’ll do that next.

Find an Object with the Object Browser
Despite the Object Browser’s name, the quickest way to find the object you
need is usually to search for it. Once you’ve found it, you can browse the
surrounding objects.

In this example, you’ll search the Object Browser to find the object you use
for setting the margins in a document. Follow these steps:

Open the Object Browser as discussed in the previous section. For 1.	
example, press f2.

In the Project/Library drop-down list, choose Word to display the 2.	
contents of the Word library. Figure 8-3 shows the Object Browser
with the Word library selected.

Click in the Search Text box and type the term you want to search for: 3.	
margins.

Click the Search button. The Object Browser displays the list of 4.	
matching results in the Search Results box (see Figure 8-4).

In the Search Results box, click the object whose contents you want 5.	
to view. The Classes pane displays the classes in that object, and the
Members pane displays the individual elements.

You can resize the
Object Browser by
dragging any of its
corners or borders.
You can also
resize the Search
Results pane, the
Classes pane, the
Members pane, and
the Details pane by
dragging the split
bars between them.
And if you want
to hide the Search
Results pane to give
more space to the
Classes pane and
Members pane, click
the Show/Hide Search
Results button.

Memo

� Chapter 8  Find the VBA Objects You Need

127

Once you’ve found an item you’re interested in, click it to display its 6.	
details in the Details pane. You can also click one of the following to
take other actions:

Copy to Clipboardππ   Click this button to copy the item you’ve
selected to the Clipboard so that you can paste it into your code.
Copying saves any amount of remembering and retyping.

View Definitionππ   If you’ve selected an object containing VBA
code, you can click this button to display a Code window
containing the object’s code. This capability lets you use the

If you’re not sure
exactly what you’re
looking for, you can
use the wildcards ?
(which represents any
one character) and *
(which represents any
group of characters)
in the Object Browser.
If you want to restrict
your searches to
whole words rather
than words that con-
tain your search term,
right-click the Search
button and choose
Find Whole Word
Only from the context
menu. The Visual
Basic Editor puts a
check mark next to
this option, indicating
it is switched on.

Memo

If you go astray on
your searches, click
the Go Back but-
ton to retrace your
steps. Once you’ve
gone back, you can
click the Go Forward
button to go forward
again if you need to.

Memo

Figure 8-3  You’ll recognize some of the objects in the Word library in the
Object Browser.

Word 2007 Macros & VBA Made Easy

128

Object Browser to browse your own code. You’ll need to select
Normal in the Project/Library drop-down list to see the contents
of the Normal template. Select Project in the Project/Library drop-
down list to see the contents of other open projects.

Linksππ   Click a link in the Details pane to display the linked term.
You can then continue browsing from there.

Close the Object Browser
When you’ve finished using the Object Browser, click its close button (the ×
button) to close it. Annoyingly, you can’t close the Object Browser by pressing
f2 again—that keyboard shortcut only displays the window.

Figure 8-4  Look through the
items in the Search Results
box for an object that looks
promising.

� Chapter 8  Find the VBA Objects You Need

129

Find an Object Using the List
Properties/Methods Feature
As you’ve seen in the earlier chapters, the List Properties/Methods feature
automatically displays a list of properties and methods for an object you’ve
entered in code. For example, when you type Document. (including that
period), the List Properties/Methods feature displays a list of the properties
and methods for the Document object.

This makes the List Properties/Methods feature a useful tool for finding
the objects you need—as long as they’re contained within an object you
already know. In other words, you need to know the starting point.

Try this example to find the object that lets you zoom the view on a
window. Because VBA starts at the outside like a set of Russian nesting dolls,
you start with the window. As you’ve seen earlier, VBA uses the Window
object to represent a window and uses the ActiveWindow object to represent
whichever window is currently active.

Follow these steps:

In the Visual Basic Editor, open the Immediate window in one of 1.	
these ways:

Choose View | Immediate Window.ππ

Press ππ ctrl-g.

Click the Immediate Window button on the Debug toolbar:ππ

Type 2.	 activewindow. (including the period) to display the list of
properties and methods.

The Immediate win-
dow is a window you
can use for testing
one statement at a
time.

Memo

Word 2007 Macros & VBA Made Easy

130

Type 3.	 v to jump to the first item beginning with V in the list (see
Figure 8-5).

Type 4.	 i to select the View item in the list and press . (period) to enter it
and display its list of properties and methods.

Type 5.	 z to jump to the first item beginning with Z in the list—the
Zoom item (see Figure 8-6).

Type 6.	 . (period) to enter the Zoom item and display its list of properties
and methods (see Figure 8-7).

Select the item you want: PageFit.7.	

Press = to enter PageFit and to display the list of constants you can 8.	
use: wdPageFitBestFit, wdPageFitFullPage, wdPageFitNone, and
wdPageFitTextFit.

Figure 8-5  The Immediate
window is a scratchpad for
working with code.

Figure 8-6  The List
Properties/Methods feature
lets you drill down through the
objects to the one you want.

� Chapter 8  Find the VBA Objects You Need

131

Select the wdPageFitFullPage item and press 9.	 enter. The full statement
appears in the Immediate window.

Press 10.	 enter to execute the statement. Word zooms the active window
so that the whole page is visible.

Click the Close button (the 11.	 × button) to close the Immediate window.

Figure 8-7  Finally you reach
the properties and methods
you need.

This page intentionally left blank

9
Work with Text
If you’re creating documents in Word, or even if
you’re just editing them, you’ll probably spend a
lot of time working with text. This chapter shows
you how to do so quickly and effectively. You’ll
learn how to use the Selection object, which lets
you work with the user’s current selection in the
document, and how to create and use ranges that
allow you to manipulate any part of the document
you choose. I’ll also show you how to apply
formatting via VBA and how to use Word’s powerful
Find and Replace features in your macros. First,
though, a quick word on how VBA represents the
text parts of a document.

Understand How VBA
Represents Text
To VBA, a document is typically a sequence of
Paragraph objects with other objects (such as Table
objects) added to them. So when you’re accessing
the text in a document, you’re usually working
through a Paragraph object.

You access a Paragraph object through the
Paragraphs collection. For example, to work with
the first paragraph in the active document, you start
a statement with ActiveDocument.Paragraphs(1).

VBA also lets you access a sentence by using
the Sentences collection to identify the appropriate
Sentence object. You can access a sentence

Word 2007 Macros & VBA Made Easy

134

either directly through a Document object (for example, ActiveDocument.
Sentences(1) gets you the first sentence in the active document) or through
a paragraph (for example, Documents(1).Paragraphs(1).Range.Sentences(1)
gets you the first sentence in the first paragraph in the first open document).

VBA represents each word as a Word object, which you access through the
Words collection. You can access a word directly from a Document object or
from another object that contains words, such as the Selection object or the
Range object inside a Paragraph object.

Similarly, VBA represents each character as a Character object and gathers
them in the Characters collection. You can access a single character either
from a Document object or from another object that contains characters.

Going through the Document object is easy enough, but when you need
to work with whatever the user has selected, you can use the Selection object
instead. This is often very convenient, so we’ll start there after getting you set
up to work through this chapter.

Get Set Up to Work
Through This Chapter
Follow these steps to open the Visual Basic Editor and create a new module in
which you will work with text:

Open Microsoft Word if it’s not already running. If it is running, close 1.	
any open documents.

Press 2.	 alt-f11 to open the Visual Basic Editor.

If the Visual Basic Editor opens a Code window for a module you 3.	
worked with recently, click the window’s Close button (the × button) to
close it.

Right-click the Normal template and then choose Insert | Module 4.	
from the context menu to insert a new module in the Normal
template.

Be careful with
Sentence objects,
because VBA’s defini-
tion of a sentence
isn’t as clear as you
might expect. For
example, VBA treats a
short paragraph that
has no punctuation
as a sentence, send-
ing grammarians into
apoplexy.

Memo

� Chapter 9  Work with Text

135

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_9 as the new name for the module, replacing
the default name (such as Module1), and then press enter to apply the
change.

Press 7.	 ctrl-g to open the Immediate window, which lets you execute
single commands without having to put them in a macro.

If no document is open in Word, type 8.	 documents.add and press
enter to create a new document based on the Normal template. You’ll
use this text for some of the macros in this chapter. (If you opened
Word in step 1, and Word created a blank document for you, use that
document instead.)

Work with Text via
the Selection Object
When you start working with VBA, you’ll often find it convenient to use the
Selection object, as you did in the macro you recorded and then edited at the
beginning of this book. The Selection object represents the user’s selection
and is great for macros that the user runs to manipulate parts of documents.
For example, if you create a macro that turns selected text into a pull quote,
you’ll typically need the user to pick the text and run the macro on it rather
than picking the text programmatically.

Find the Details of the Current Selection
To find out the details of the current selection, you can use its Information
property. This property gives you access to several dozen different pieces of
information ranging from what type of Word item is selected to whether the
selection is in a table. To find out about the Information property, you check
the wdInformation constant for the appropriate piece of information. Table 9-1
tells you what you need to know.

The Selection object
is always in the
active document.
When you activate
another document,
the Selection object is
then in that docu-
ment. There’s always
a Selection object,
even when nothing is
selected and the in-
sertion point appears
between letters or on
a blank paragraph.

Memo

Word 2007 Macros & VBA Made Easy

136

wdInformation Constant What It Tells You

General Information

wdCapsLock Whether Caps Lock is on (True).

wdNumLock Whether Num Lock is on (True).

wdOverType Whether Overtype mode is on (True).

wdRevisionMarking Whether Track Changes (revision marking) is on (True).

wdSelectionMode Whether the selection is normal (0), a selection in Extend mode (1), or
a columnar selection (2).

wdZoomPercentage The zoom percentage.

Information about the Selection and Insertion Point

wdActiveEndAdjustedPageNumber Which page the end of the selection is on. If you change the starting
page number, this page number changes.

wdActiveEndPageNumber Which page the end of the selection is on. This page number does not
change if you change the starting page number.

wdActiveEndSectionNumber Which section the end of the selection is in.

wdFirstCharacterColumnNumber The character position of the selection’s first character (the number of
characters from the left margin). If the selection is collapsed, you get
the number of the character to the right of the insertion point.

wdFirstCharacterLineNumber The line number of the selection’s first character in Print Layout view,
Full Screen Reading view, and Print Preview. In Draft view, Outline
view, or Web Layout view, returns –1.

wdFrameIsSelected Whether the selection is a whole frame or text box (True).

wdHeaderFooterType The type of header or footer the selection is in: not in a header or footer
(–1); even-page header (0); odd-page header or the document’s only
header (1); even-page footer (2); odd-page footer or the document’s only
footer (3); first-page header (4); first-page footer (5).

wdHorizontalPosition-
RelativeToPage

The number of twips (1/1440 inch) to the selection’s left edge from
the left edge of the page.

wdHorizontalPositionRelative-
ToTextBoundary

The number of twips from the selection’s left edge to the boundary of
the text area.

Table 9-1  Information Available about the Selection Object

� Chapter 9  Work with Text

137

wdInformation Constant What It Tells You

wdInCommentPane Whether the selection is in a comment pane (True).

wdInEndnote Whether the selection is in an endnote (True).

wdInFootnote Whether the selection is in a footnote (True).

wdInFootnoteEndnotePane Whether the selection is in a footnote or endnote (True).

wdInHeaderFooter Whether the selection is in a header or footer (True).

wdInMasterDocument Whether the selection is in a master document containing at least one
subdocument (True).

wdInWordMail Whether the selection is part of a WordMail send note (1), part of a
WordMail read note (2), or not in WordMail (0).

wdNumberOfPagesInDocument How many pages are in the document that contains the selection.

wdReferenceOfType Whether the selection is before a footnote reference (1), an endnote
reference (2), or a comment reference (3). Returns 0 if the selection
isn’t before a reference. Returns –1 if the selection includes a reference
but also other items.

wdVerticalPositionRelativeToPage The number of twips from the selection’s top edge to the top of
the page.

wdVerticalPositionRelative-
ToTextBoundary

The number of twips from the selection’s top to the boundary of the
text area.

Information about Selections Inside Tables

wdWithinTable Whether the selection is in a table (True).

wdStartOfRangeColumnNumber Which table column contains the selection’s start.

wdEndOfRangeColumnNumber Which table column contains the selection’s end.

wdStartOfRangeRowNumber Which table row contains the selection’s start.

wdEndOfRangeRowNumber Which table row contains the selection’s end.

wdAtEndOfRowMarker Whether the selection is at the end-of-row marker (True) or not
(False). The end-of-row marker is the character that appears at the end
of the row when you turn on the display of formatting marks.

wdMaximumNumberOfColumns The maximum number of columns in any part of the selection.

wdMaximumNumberOfRows The maximum number of rows in any part of the selection.

Table 9-1  Information Available about the Selection Object (cont.)

Word 2007 Macros & VBA Made Easy

138

Use the Information Property to Check Word Settings
To try using the Information property of the Selection object, click in the
Code window for your WMME_Chapter_9 module and create the WMME_
Selection_Information macro shown here:

Sub WMME_Selection_Information()

 If Selection.Information(wdRevisionMarking) = True Then

 ActiveDocument.TrackRevisions = False

 End If

 If Selection.Information(wdSelectionMode) = 1 Then

 Selection.ExtendMode = False

 End If

 If Selection.Information(wdOverType) = True Then

 Options.Overtype = False

 End If

End Sub

The WMME_Selection_Information macro uses the Information property
of the Selection object to check three settings and turn them off if they’re on:

First, it checks whether revision marking (Track Changes) is on.ππ

Second, it checks whether Extend mode is on.ππ

Third, it checks whether Overtype mode is on. (In Overtype mode, ππ

each character you type replaces the character to its right rather than
pushing that character further along the document.)

Click in the macro and press f8 to step through it. Watch what happens. Then
try turning on the settings the macro checks, and then test the macro again:

Track Changesππ   Press ctrl-shift-e in Word.

Extend modeππ   Press f8 in Word.

Overtype modeππ   Choose Tools | Word Options, and then click the
Advanced category. In the Editing Options list, select the Use Overtype
Mode check box, and then click the OK button.

Extend mode is an
odd selection mode
that you enter by
pressing f8. Keep
pressing f8 to select
a word, sentence,
paragraph, and so on,
or press the character
in text to which you
want to extend the
selection. (For
example, press w to
extend the selection
to the next letter w.)
A columnar selection
is what you get if you
alt-drag down and
across lines of text
to select a block of
characters.

Memo

� Chapter 9  Work with Text

139

Use the Information Property to
Check the Selection’s Location
Next, try this example, which checks that the selection is not in a header,
footer, footnote, endnote, or comment. If the selection is guilty of any of these
offenses, the macro adds the relevant words to the message string (strMsg)
and sets the Boolean variable blnProblem to True. If blnProblem is True at the
end of the macro, VBA displays the message box announcing the problem.

Sub WMME_Selection_Information_2()

 Dim strMsg As String

 Dim blnProblem As Boolean

 strMsg = "Please run this macro in the main part " & _

 "of the document, not in "

 If Selection.Information(wdInHeaderFooter) = True Then

 strMsg = strMsg & "a header or footer."

 blnProblem = True

 End If

 If Selection.Information(wdInCommentPane) = True Then

 strMsg = strMsg & "a comment."

 blnProblem = True

 End If

 If Selection.Information(wdInEndnote) = True Then

 strMsg = strMsg & "an endnote."

 blnProblem = True

 End If

 If Selection.Information(wdInFootnote) = True Then

 strMsg = strMsg & "a footnote."

 blnProblem = True

 End If

Word 2007 Macros & VBA Made Easy

140

 If blnProblem = True Then

 MsgBox strMsg, vbOKOnly + vbExclamation, _

 "Text Formatter Macro"

 End If

End Sub

With the insertion point in the main part of your Word document, click in
this macro and press f8 to step through it. VBA evaluates all the conditions,
finds them unmet, and displays no message box.

Next, position the insertion point in the header area of the document and
try the macro again. This time, you’ll get the message box, with the “not in a
header or footer” message. Create a footnote, endnote, or comment; position
the insertion point in that item’s area (for example, the endnote area); and
then run the macro again.

Insert and Delete Text in Documents
When you’ve determined that the macro is working with the type of selection
it’s designed to use, you’ll often need to insert or delete text.

Insert Text at the Current Selection
The easiest way to insert text is by using the TypeText method of the Selection
object. For example:

Selection.TypeText "Here is the report you were looking for."

Try opening the Immediate window (press ctrl-g), typing this statement,
and then pressing enter. VBA types the text at the position of the insertion
point in the document.

Insert Text Before or After the Current Selection
To insert text before a selection, you use the InsertBefore method. To insert text
after a selection or range, you use the InsertAfter method. In the Immediate
window, try this example, which inserts text before the current selection:

Selection.InsertBefore "Report prepared by Chris Jones"

� Chapter 9  Work with Text

141

When you press enter, you’ll see this text appear in the Word document
before the point where the insertion point was. You’ll notice that Word
extends the selection so that it includes the text you just inserted.

Insert a Paragraph
VBA gives you four methods for inserting a paragraph in a document:

TypeParagraphππ   Types a paragraph at the selection

InsertParagraphππ   Inserts the paragraph at the position of the selection
and extends the selection to include the new paragraph

InsertParagraphAfterππ   Inserts the paragraph after the selection and
extends the selection to include the new paragraph

InsertParagraphBeforeππ   Inserts the paragraph before the selection and
extends the selection to include the new paragraph

Format the Selection
What you’ll often need to do with the selection is format it. We’ll look at how
to format text later in this chapter.

Delete the Selection
To delete the selection, simply use the Delete method. For example:

Selection.Delete

Deselect the Selection
After checking what the selection contains, you may need to deselect whatever
it is. The easiest way to do this is to collapse the selection to either its starting
point (using wdCollapseStart) or its ending point (using wdCollapseEnd). For
example, this statement collapses the selection to its start, much as if you’d
pressed left arrow in Word:

Selection.Collapse Direction:=wdCollapseStart

If the selection has no
contents, using the
Delete method de-
letes the character to
the right of the inser-
tion point, as if you’d
pressed delete when
working interactively.

Memo

To insert a tab in a
document, use the
vbTab constant. For
example, Selection
.TypeText vbTab
“types” a tab in the
document. Similarly,
you can “type” a
carriage-return
character by using the
vbCr constant—but
the TypeParagraph
method is often
easier.

Memo

Word 2007 Macros & VBA Made Easy

142

Another method is to set the start of the selection to the same place as the
end of the selection (as in the next statement) or vice versa:

Selection.Start = Selection.End

Work with Text Through
a Document Object
Working with the Selection object is handy when you want the macro’s user to
pick the text or other object to affect. In other macros, you can go through the
ActiveDocument object or another Document object to tell VBA which part of
the document you want to affect.

Using a Document object lets you work with a document that isn’t the
active document. For example, you can manipulate a document in the
background, keeping the changes hidden from the user. You can also work
with two or more different documents at the same time.

To access a document, you use the Documents collection and specify
the document either by name or by its index number within the collection.
For example, the following statement selects the first paragraph in the first
document in the Documents collection:

Documents(1).Paragraphs(1).Range.Select

Usually when you’re working with VBA, it’s hard to know which document
is Documents(1), so using the document’s name is easier. For example, the
following statement applies Heading 1 style to the first paragraph in the open
document named Sales Figures.docx:

Documents("Sales Figures.docx").Paragraphs(1).Style = "Heading 1"

Work with Ranges
When you need to work with a particular part of a document, you can create a
range that refers to it.

If you need to per-
form several opera-
tions with the same
part of a document,
define a range for it,
as discussed in the
this section.

Memo

� Chapter 9  Work with Text

143

A range is simply an area of a document. When you create the range, you
specify which part of the document it refers to. You can then use the range
name to refer to that part of the document more easily. For example, you can
create a range that refers to the first paragraph of a document, or the first five
words in a particular paragraph in the document.

To create a range, you first declare an Object variable of the Range type.
You then use the Range method of a Document object or the Range property
of another object to assign the range to the Object variable.

That sounds complicated, but it’s easy enough when you try it. Follow
these steps:

In Word, open your Report Summary.docx document from your 1.	
WMME folder.

In the Visual Basic Editor, click in the Code window for the WMME_2.	
Chapter_9 module, and create the stub for a macro by typing Sub
WMME_Ranges_1 and then pressing enter:

Sub WMME_Ranges_1()

End Sub

Inside the stub, start by declaring two Object variables of the Range 3.	
type, one named rngTitle and the other named rngIntro:

Dim rngTitle As Range

Dim rngIntro As Range

Below those declarations, start a With statement that works with the 4.	
Report Summary.docx document:

With Documents("Report Summary.docx")

End With

Inside the With statement, use a Set statement and the Range method 5.	
of the Document object to assign to rngTitle a range that starts at

If you use Excel,
you’re probably
familiar with selecting
ranges of cells so
that you can format
them or give them a
name that lets you
manipulate them
easily. Ranges in
Word work in a
similar way, except
that you use different
objects (such as
paragraphs and
words) rather than
cells.

Memo

You can create as
many ranges as you
need to. A range is
similar to a Word
bookmark in that it
refers to a particular
part of a document,
but unlike a book-
mark, the range isn’t
saved in the docu-
ment. Instead, you
define it using VBA,
and it lasts only as
long as the macro
continues running.

Memo

Word 2007 Macros & VBA Made Easy

144

the beginning of the first paragraph and ends at the end of the first
paragraph:

Set rngTitle = _

 .Range(Start:=.Paragraphs(1).Range.Start, _

 End:=.Paragraphs(1).Range.End)

After that (and still within the With statement), use another Set 6.	
statement to assign to rngIntro the Range property of the second
paragraph:

Set rngIntro = .Paragraphs(2).Range

On a line after the End With statement, add a MsgBox statement that 7.	
will display the Text property of rngTitle and rngIntro, together with
explanatory text:

MsgBox "Title: " & rngTitle.Text & vbCr & _

 "Intro: " & rngIntro.Text

Here’s the full code of the macro for reference:

Sub WMME_Ranges_1()

 Dim rngTitle As Range

 Dim rngIntro As Range

 With Documents("Report Summary.docx")

 Set rngTitle = .Range(Start:=.Paragraphs(1).Range.Start, _

 End:=.Paragraphs(1).Range.End)

 Set rngIntro = .Paragraphs(2).Range

 End With

 MsgBox "Title: " & rngTitle.Text & vbCr & _

 "Intro: " & rngIntro.Text

End Sub

� Chapter 9  Work with Text

145

Step through the code by pressing f8. After you execute the first Set
statement, move the mouse pointer over the rngTitle variable to display a
ScreenTip showing the variable’s contents; this gives you a quick confirmation
that the code is working. When you execute the MsgBox statement, VBA
displays a message box that shows you the text in both of the variables.

Apply Formatting and Styles
Once you’ve identified the part of the document you want to work with, you
can format it via VBA with the same amount of control as you would have if
you were working in the Word user interface. This section briefly shows you
how to apply styles, paragraph formatting, and font formatting.

Apply Styles
As you’ll know from working interactively with Word, using styles is the
fastest and most efficient way of formatting your documents. By using
styles rather than direct formatting, you can ensure consistency across your
documents—and if you need to change the formatting of a style, the change
carries through immediately to all the paragraphs to which you’ve applied the
style.

To apply a paragraph style with VBA, set the Style property of the
Paragraph object, Range object, or Selection object. For example, the
following statement applies the Heading 1 style to the first paragraph in the
Report Summary.docx document:

Documents("Report Summary.docx").Paragraphs(1).Style = "Heading 1"

To apply a character style, set the Style property of the appropriate object—
for example, a word or a character. For example, the following statement
applies the Subtle Emphasis style to the first word in the second paragraph of
the active document:

ActiveDocument.Paragraphs(2).Range.Words(1).Style = _

 "Subtle Emphasis"

Word 2007 Macros & VBA Made Easy

146

Apply Paragraph Formatting
Even if you apply a style to every paragraph, you will sometimes need to apply
direct formatting for special effects. To apply paragraph formatting, you use
the ParagraphFormat object for the appropriate Selection or Range object.
The ParagraphFormat object has properties and methods that you’ll recognize
from working in the Paragraph dialog box in Word.

Try creating the following macro and running it with the Latest Report
.docx document open:

Sub WMME_Paragraph_Formatting()

 With ActiveDocument.Paragraphs(3).Range.ParagraphFormat

 .Alignment = wdAlignParagraphCenter

 .KeepTogether = True

 .LineSpacingRule = wdLineSpaceAtLeast

 .LineSpacing = 18

 End With

End Sub

Here’s what this macro does:

The With statement makes the statements within it work with the ππ

ParagraphFormat object in the Range object in the third Paragraph
object. In other words, it changes the formatting of the third
paragraph.

The .Alignment statement applies center alignment to the paragraph.ππ

The .KeepTogether statement sets Word to keep the lines of the ππ

paragraph together rather than letting them break from one page to
another.

The .LineSpacingRule statement sets the line spacing type to “at least” ππ

(wdLineSpaceAtLeast).

The .LineSpacing statement then sets the number of points to use: 18.ππ

� Chapter 9  Work with Text

147

Apply Font Formatting
If you need to apply font formatting directly to characters or words in a
document, use the Font property of the object you want to format—for
example, the Selection object or a Range object. This returns the Font object,
which lets you access formatting options that will be familiar from Word’s
Font dialog box.

Try creating the following macro, selecting one or more words in your
document, and then running the macro:

Sub WMME_Font_Formatting()

 With Selection.Font

 .Bold = True

 .Italic = False

 .Color = wdColorDarkBlue

 .Name = "Arial"

 .Size = "20"

 .SmallCaps = True

 End With

End Sub

Work with Find and Replace
Word’s Find and Replace features are great for processing documents. You
can control these features just as closely via VBA as you can when working
interactively, searching for not only text or other content but also formatting
and attributes.

Meet the Find Object
To work with Find via VBA, you use the Find object. Find has a wide variety of
properties, of which Table 9-2 shows the most useful.

Meet the Replacement Object
To use Word’s Replace feature in your macros, you work with the
Replacement object. This object has five of the same properties as the Find

Avoid setting Match-
SoundsLike to True.
This “matching”
tends to be danger-
ous enough when
you’re working live
and can be lethal in
macros. Some of the
terms that Match-
SoundsLike finds are
easy to guess (for ex-
ample, searching for
“find” finds “fined” as
well), but others are
likely to surprise you.

Memo

Word 2007 Macros & VBA Made Easy

148

object (see Table 9-2): Font, Highlight, ParagraphFormat, Style, and Text.
These properties work in the same way as described in Table 9-2 but affect
the Replacement object rather than the Find object.

Find Property Explanation

Font The font formatting you’re searching for.

Forward The search direction: forward (True) or backward (False).

Found Whether the search has found a match (True) or not (False).

Highlight Whether the replacement text includes highlighting (True) or not (False).

MatchAllWordForms Whether Word is searching for all word forms (True) or not (False).

MatchCase Whether the search is case specific (True) or not (False).

MatchSoundsLike Whether the search includes words that Word thinks sound like it (True) or
not (False).

MatchWholeWord Whether the search is for whole words only (True) or includes the search
term within other words (False).

MatchWildcards Whether the search uses wildcards (True) or not (False).

ParagraphFormat The paragraph formatting you’re searching for.

Replacement Returns the Replacement object, which you use to specify the replacement
text and formatting.

Style A name or constant specifying the style you’re searching for.

Text The text you’re searching for (or an empty string—""—if you’re searching for
formatting).

Wrap Whether to continue (“wrap”) a search if it starts anywhere other than
the beginning of the document (for a forward search) or the end of the
document (for a backward search). Use wdFindContinue to continue
searching, wdFindStop to stop searching, and wdFindAsk to prompt the
user whether to continue or stop.

Table 9-2  The Most Useful Properties of the Find Object

� Chapter 9  Work with Text

149

An Example of Finding Text
Click after the last macro in your WMME_Chapter_9 module, and then create
the WMME_Find_Text macro shown here:

Sub WMME_Find_Text()

 Selection.HomeKey Unit:=wdStory

 With Selection.Find

 .ClearFormatting

 .Text = "summary"

 .Wrap = wdFindStop

 .Execute

 Do While .Found = True

 If MsgBox("Replace " & Chr(34) & "summary" & Chr(34) _

 & " with " & Chr(34) & "synopsis" & Chr(34) & "?", _

 vbYesNo + vbQuestion, "Replace Text") = vbYes Then

 Selection.TypeText "synopsis"

 Else

 Selection.Collapse direction:=wdCollapseEnd

 End If

 .Execute

 Loop

 End With

End Sub

The WMME_Find_Text macro uses a Do While . . . Loop loop to repeat the
search as long as Find finds the search term. Here’s what happens:

The Selection.HomeKey Unit:=wdStory statement moves the insertion ππ

point to the beginning of the active document. This is the equivalent of
pressing ctrl-home when working in Word.

The With Selection.Find statement begins a With statement that works ππ

with the Find object.

Word 2007 Macros & VBA Made Easy

150

The .ClearFormatting method clears any formatting set on the Find ππ

object.

The .Text = “summary” statement sets VBA to look for the word ππ

summary.

The .Wrap = wdFindStop statement sets VBA to stop searching when it ππ

reaches the end of the document.

The .Execute statement runs the search.ππ

If the .Execute statement finds the search term, the Found property ππ

of the Find object is True, and so the Do While .Found = True loop
runs. This loop displays a Yes/No message box that prompts the user
to replace the word “summary” with the word “synopsis.” If the user
clicks the Yes button, VBA inserts “synopsis” in place of “summary”;
if the user clicks the No button, VBA collapses the selection (the
found word) to its end so that the search can continue. The .Execute
statement in the loop searches for another instance of the search term,
and if it finds one, the loop runs again.

With your Report Summary.docx document active, click in the macro, and
then press f8 to step through it.

An Example of Replacing a Style
If your job includes fixing documents that other people have formatted, you
may find it useful to be able to replace styles in your macros. Click after the
WMME_Find_Text macro in your WMME_Chapter_9 module, and then
create the WMME_Replace_Style macro shown here:

Sub WMME_Replace_Style()

 With ActiveDocument.Content.Find

 .ClearFormatting

 .Text = ""

 .Style = "Heading 4"

When using Find
in your macros, it’s
a good idea to use
the ClearFormatting
method of the Find
object to clear any
formatting that the
user has been search-
ing for.

Memo

� Chapter 9  Work with Text

151

 With .Replacement

 .ClearFormatting

 .Text = ""

 .Style = "Heading 5"

 End With

 .Execute Replace:=wdReplaceAll

 End With

End Sub

Here’s what happens in the WMME_Replace_Style macro:

The With ActiveDocument.Content.Find statement makes the ππ

macro work with the Find object for the Content object in the
ActiveDocument object—that is, with the content of the active
document.

The .ClearFormatting method clears any formatting applied to the ππ

Find object.

The .Text = “” statement sets Find to search for a blank string (no text), ππ

so that it will search only for the formatting.

The .Style = “Heading 4” statement sets the Find object to find the ππ

Heading 4 style.

The With .Replacement statement sets the details of the replacement ππ

operation.

The .ClearFormatting method clears any formatting applied to the ππ

Replacement object.

The .Text = “” statement sets Replace to insert nothing, causing it to ππ

apply only the formatting.

The .Style = “Heading 5” statement sets the Replacement object to ππ

apply the Heading 5 style.

Word 2007 Macros & VBA Made Easy

152

The Execute Replace:=wdReplaceAll statement runs the search and ππ

replaces each instance of the Heading 4 style found.

To run this macro, create a new document in Word, type several short
paragraphs, and then format them with Heading 4 style. Click in the macro
in the Visual Basic Editor, and then press f5 to run the macro. Word changes
each Heading 4 paragraph to a Heading 5 paragraph.

10
Work with
Bookmarks
Word’s bookmarks—the invisible markers you
can insert in a document—can be a great way of
having the user fill in particular parts of a document,
either working on their own or using one of your
macros. By adding bookmarks, you give yourself
easy access to the parts of the document you want
to manipulate. Even if the user adds or deletes
paragraphs in the document, the bookmark stays
where you put it—unless the user happens to delete
it, either intentionally or by accident. (You can make
such accidents less likely by displaying bookmark
markers, as discussed later in this chapter.)

Understand What
Bookmarks Are and
What You Can Do
with Them
Word provides two different types of bookmarks:

Regular bookmarks you create or the user ππ

creates

Secret, hidden bookmarks that Word itself ππ

maintains

Word 2007 Macros & VBA Made Easy

154

As you probably know from working in Word, you can use a regular book-
mark to mark a point in text, a range in text, or an object. Figure 10-1 shows a
document containing three bookmarks, one of each type.

Figure 10-1  A bookmark can
mark a point, a range, or an
object such as a picture.

Figure 10-2  The Bookmark dialog box lets you create, go
to, and delete bookmarks manually.

Bookmark marking a

range in the document

Bookmark marking an image

Bookmark marking a

point in the document

To insert a bookmark, place the insertion point
or select the object, and then choose Insert | Links
| Bookmark. Type the name in the Bookmark dia-
log box (see Figure 10-2), and then click the Add
button.

VBA uses the Bookmark object to represent a
bookmark, and gathers all the Bookmark objects
for a document into the Bookmarks collection. You
access a Bookmark object through the Bookmarks
collection, specifying it either by its given name or
by its index position in the collection.

� Chapter 10  Work with Bookmarks

155

Get Set Up to Work
Through This Chapter
To give yourself space to work with bookmarks, follow these steps to open the
Visual Basic Editor and create a new module in which you can create the macros:

Open Microsoft Word if it’s not already running.1.	

Create a new blank document by pressing 2.	 ctrl-n. (If you just opened
Word, and Word created a new document for you, use that document.)

Type three or four short paragraphs of text—anything you want—so 3.	
that you’ll have something to work with.

Save the document under the name 4.	 WMME Bookmarks.docx in your
WMME folder.

Press 5.	 alt-f11 to open the Visual Basic Editor.

If the Visual Basic Editor opens a Code window for a module you worked 6.	
with recently, click the window’s Close button (the × button) to close it.

Right-click the Normal template and then choose Insert | Module from 7.	
the context menu to insert a new module in the Normal template.

Press 8.	 f4 to put the focus in the Properties window.

Type 9.	 WMME_Chapter_10 as the new name for the module, replacing
the default name (such as Module1), and then press enter to apply
the change.

Work with Regular Bookmarks
Regular bookmarks are those that you insert in a document either manually
(using the Bookmark dialog box) or by using VBA. In this section, you’ll
learn how to create regular bookmarks, go to them, retrieve and change their
contents, and also delete them.

Word 2007 Macros & VBA Made Easy

156

Create a Bookmark
To create a bookmark, you use the Add method of the Bookmarks collection.
The syntax looks like this:

Bookmarks.Add(Name [, Range])

Here, Name is a required argument giving the name of the bookmark
you’re adding. The name must start with a letter and can contain up to
40 characters. After that first letter, the rest of the name can be any combination
of letters, numbers, and underscores. Spaces aren’t allowed.

Range is an optional Variant argument that tells VBA where to insert the
bookmark. Normally, you’ll want to specify the range; if you don’t, VBA inserts
the bookmark wherever the selection currently is.

Try this example of creating a bookmark in your WMME Bookmarks.docx
document:

Sub WMME_Creating_a_Bookmark()

 With Documents("WMME Bookmarks.docx")

 .Bookmarks.Add Name:="Bookmark1", _

 Range:=.Paragraphs(3).Range

 End With

End Sub

Find Out Whether a Bookmark Exists
Before you go to or manipulate a bookmark, make sure that it exists—if
it doesn’t, you’ll get an error. To do so, check the Exists property of the
Bookmarks collection like this:

Sub WMME_Going_to_a_Bookmark()

 With Documents("WMME Bookmarks.docx")

 If .Bookmarks.Exists("Bookmark1") Then

 .Bookmarks("Bookmark1").Select

 End If

 End With

End Sub

You can create a
hidden bookmark by
using an underscore
as the first character
in the bookmark’s
name. Creating a
hidden bookmark
prevents the book-
mark from appearing
in the Bookmark
dialog box unless
the user selects the
Hidden Bookmarks
check box.

Memo

If you run the Add
method and specify
the name of a book-
mark you’ve already
used, VBA overwrites
the existing bookmark
without warning you.

Memo

� Chapter 10  Work with Bookmarks

157

Go to a Bookmark
To go to a bookmark, use the Select method of the appropriate Bookmark
object, as in the previous example:

.Bookmarks("Bookmark1").Select

You can identify the bookmark either by its name (which is normally most
useful) or by its position in the Bookmarks collection. For example, the
following statement selects the first bookmark:

With Documents("WMME Bookmarks.docx")

 .Bookmarks(1).Select

End With

There’s a complication here: Word can sort bookmarks either alphabeti-
cally by their names or by their positions in the document. So before select-
ing a bookmark by its index position, set the DefaultSorting property of the
Bookmarks collection to wdSortByName or wdSortByLocation first so that you
know which you’ll get:

With Documents("WMME Bookmarks.docx")

 .Bookmarks.DefaultSorting = wdSortByName

 .Bookmarks(1).Select

End With

Retrieve the Text Contained in a Bookmark
To retrieve the text contained in a bookmark, return the Text property of the
bookmark’s range. For example, the following statement displays a message
box showing the text in the bookmark named Bookmark1 in the document
named WMME Bookmarks.docx:

MsgBox Documents("WMME Bookmarks.docx"). _

 Bookmarks("Bookmark1").Range.Text

Word 2007 Macros & VBA Made Easy

158

Set the Text in a Bookmark
Getting the text contained in a bookmark is handy, but what you will often
need to do is set the contents of a bookmark. You can do this by assigning a
string of text to the Text property of the bookmark’s range—but when you do
so, VBA deletes the bookmark as it changes the text.

To work around this, define a range (as discussed in the previous chapter)
and set the range to the bookmark’s range. You can then delete the bookmark,
set the Text property of the range, and then add a bookmark where the range
is. Try creating and stepping through the following macro, which does just
that:

Sub WMME_Change_Bookmark_Text()

 Dim rngBookmark As Range

 With Documents("WMME Bookmarks.docx")

 Set rngBookmark = .Bookmarks("Bookmark1").Range

 .Bookmarks("Bookmark1").Delete

 rngBookmark.Text = "Here's the new text."

 .Bookmarks.Add Name:="Bookmark1", Range:=rngBookmark

 End With

End Sub

Delete a Bookmark with or
Without Its Contents
To delete a bookmark but leave its contents intact, use the Delete method
of the appropriate Bookmark object. For example, the WMME_Change_
Bookmark_Text macro deletes the bookmark named Bookmark1 in the
document named WMME Bookmarks.docx:

Documents("WMME Bookmarks.docx").Bookmarks("Bookmark1").Delete

� Chapter 10  Work with Bookmarks

159

To delete a bookmark and its contents, return the bookmark’s range, and
then delete it, like this:

Documents("WMME Bookmarks.docx")_

 .Bookmarks("Bookmark1").Range.Delete

Display Bookmark Markers So That
the User Can See the Bookmarks
To prevent users from accidentally deleting the bookmarks on which your
macros depend, you can turn on the display of bookmark markers:

Documents("WMME Bookmarks.docx").ActiveWindow._

 View.ShowBookmarks = True

Set the ShowBookmarks property to False when you want to turn off the
display of bookmark markers again.

Make the Most of
Word’s Secret Bookmarks
Even if you haven’t created any bookmarks in your documents, Word maintains
a slew of its own secret bookmarks (see Table 10-1). You can access these
bookmarks through VBA and put them to good use in your macros.

To turn on the display
of bookmark markers
when working in
Word, click the Mi-
crosoft Office button,
click Word Options,
and then click the
Advanced category.
Scroll down to the
Show Document Con-
tent section, select
the Show Bookmarks
check box, and then
click the OK button.

Memo

If you need to remove all the bookmarks from a document, declare an object of the Bookmark type, and then
use a For Each . . . Next loop to go through the Bookmarks collection. Here’s an example:

Sub WMME_Delete_All_Bookmarks_in_Document()

 Dim bkBookmark As Bookmark

 For Each bkBookmark In ActiveDocument.Bookmarks

 bkBookmark.Delete

 Next bkBookmark

End Sub

Remove All the Bookmarks from a Document

Word 2007 Macros & VBA Made Easy

160

Bookmark Name Explanation

\Sel The current selection or (if there is none) the position of the insertion point.

\PrevSel1 The location of the previous edit (where the insertion point goes if you press shift-f5
once when working in Word).

\PrevSel2 The location of the second-previous edit (where the insertion point goes if you press
shift-f5 twice when working in Word).

\StartOfSel The start of the current selection, or the position of the insertion point if the selection
is collapsed.

\EndOfSel The end of the current selection, or the position of the insertion point if the selection
is collapsed.

\Line The first line of the current selection.

\Char The first character of the current selection, or the character to the right of the insertion
point if the selection is collapsed.

\Para The current paragraph (or the first paragraph in a selection longer than a paragraph).

\Section The current section (or the first section in a selection that spans two or more sections).

\Doc The entire contents of the document except for the last paragraph mark (the one that
contains the document’s formatting).

\Page The entire contents of the page containing the selection (unless it’s the last page in the
document, in which case this bookmark doesn’t include the last paragraph mark).

\StartOfDoc The start of the document. This bookmark has no contents, but it’s useful for quickly
going to the start of the document.

\EndOfDoc The end of the document.

\Cell The table cell containing the selection (or the first cell if the selection includes
multiple cells).

\Table The table containing the selection (or the first table if the selection includes
multiple tables).

\HeadingLevel The heading that contains or precedes the selection, including any subheadings below
this heading.

Table 10-1  Word’s Secret Bookmarks

� Chapter 10  Work with Bookmarks

161

To try working with Word’s secret bookmarks, create this macro, step
through it, and watch what happens:

Sub WMME_Using_Built_in_Bookmarks()

 With Documents("WMME Bookmarks.docx")

 If Selection.StoryType <> wdMainTextStory Then _

 .Windows(1).View.SeekView = wdSeekMainDocument

 .Bookmarks("\Sel").Copy "CurrentSelection"

 .Bookmarks("\EndOfDoc").Select

 Selection.TypeParagraph

 Selection.TypeText "End of the document."

 .Bookmarks("CurrentSelection").Select

 .Bookmarks("CurrentSelection").Delete

 End With

End Sub

Here’s what this macro does:

Switches to the main document story if the current selection is in 1.	
another story. (See the nearby Memo.)

Copies the bookmark for the current selection (the built-in \Sel 2.	
bookmark) to a new bookmark called CurrentSelection.

Moves to the end of the document by selecting the built-in \EndOfDoc 3.	
bookmark.

Types a paragraph and some anodyne text.4.	

Selects the CurrentSelection bookmark so that the selection is where 5.	
the user left it.

Deletes the CurrentSelection bookmark.6.	

All the built-in
bookmarks are in
the main story of the
document, the part
of the document that
contains the main
text. If the selection is
currently in another
story, such as the
header and footer
story or the footnotes
story, you must
switch to the main
story before you can
access the built-in
bookmarks.

Memo

This page intentionally left blank

11
Work with
Tables
When you need to lay out complex information
in a Word document, you’ll often need to use a
table. Tables can save you any amount of time over
fiddling with tabs; they give you quick access to
your text by row, column, or cell; and you can easily
apply a wide variety of formatting.

This chapter shows you how to create tables
using VBA, both starting a table from scratch and
converting existing text to a table—and back again
if necessary. You’ll also learn how to add and
delete rows and columns and format the table and
its contents.

Get Set Up to Work
Through This Chapter
To give yourself space to work with tables, follow
these steps to open the Visual Basic Editor and
create a new module in which you can write the
macros:

Open Microsoft Word if it’s not already 1.	
running. If it is running, close any open
documents.

Press 2.	 alt-f11 to open the Visual Basic Editor.

Word 2007 Macros & VBA Made Easy

164

If the Visual Basic Editor opens a Code window for a module you worked 3.	
with recently, click the window’s Close button (the × button) to close it.

Right-click the Normal template and then choose Insert | Module from 4.	
the context menu to insert a new module in the Normal template.

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_11 as the new name for the module, replacing
the default name (such as Module1), and then press enter to apply the
change.

Press 7.	 ctrl-g to open the Immediate window. You’ll remember that this
window lets you execute single commands without having to put them
in a macro.

If no document is open in Word, type 8.	 documents.add and press enter
to create a new document based on the Normal template. You’ll add
the tables to this document. (If you opened Word in step 1, and Word
created a blank document for you, use that document instead.)

In Word, save the document under the name 9.	 WMME Tables.docx in
your WMME folder.

You’re now ready to start working through this chapter.

Create a Table from Scratch
First, let’s create a table from scratch. To do so, you use the Add method of the
Tables collection. The syntax looks like this:

Document.Tables.Add Range, NumRows, NumColumns,

DefaultTableBehavior, AutoFitBehavior

All of this is pretty straightforward:

Documentππ is the document with which you’re working—for example,
ActiveDocument for the active document, or a Document object by
name, such as Documents(“WMME Tables.docx”).

� Chapter 11  Work with Tables

165

Rangeππ is the range in which you want to add the table. If you have a
selection, you can specify the range in relation to it; for example, you
can simply use Range:=Selection.Range to use the range the user has
selected. If you do not have a selection, you specify the document and
the part of the document—for example, at the first paragraph in the
document.

NumRowsππ is a required Long argument that controls the number of
rows in the table.

NumColumnsππ is a required Long argument that controls the number of
columns in the table.

DefaultTableBehaviorππ is an optional Variant argument that
tells VBA whether to resize the columns to fit their contents
(wdWord9TableBehavior) or not (wdWord8TableBehavior).

AutoFitBehaviorππ is an optional Variant argument that you use when
you’ve set DefaultTableBehavior to wdWord9TableBehavior. This
argument tells VBA whether to resize the columns in the table to
accommodate their contents (wdAutoFitContent), to autofit the table
to the document window (wdAutoFitWindow), or to use fixed column
widths (wdAutoFitFixed).

Try this example of adding a table:

Click in the Code window for the WMME_Chapter_11 module and 1.	
create the stub of a macro:

Sub WMME_Add_a_Table()

End Sub

Add the following statement, using VBA’s code-completion features to 2.	
enter the constants for DefaultTableBehavior and AutoFitBehavior:

Documents("WMME Tables.docx").Tables.Add _

 Range:=Selection.Range, _

Word 2007 Macros & VBA Made Easy

166

 NumRows:=4, NumColumns:=5, _

 DefaultTableBehavior:=wdWord9TableBehavior, _

 AutoFitBehavior:=wdAutoFitContent

Press 3.	 f5 or click the Run Sub/UserForm button to run the macro.
VBA inserts a table with five columns and four rows at the position
of the selection in the first open document. VBA autofits the column
width to the contents, so, because the cells have no content, the
columns are absurdly narrow. That’ll change when you add content
to the cells.

Add Content to a Table’s Cells
You can add text to a cell by assigning a string to the Text property of the
appropriate Cell object. You can reach the cell in any of these ways:

By its position in the tableππ   Tables(1).Cells(1, 2) tells VBA to use the
cell in the first row (the 1) and the second column (the 2). This is
usually the easiest way to reference cells.

By its position in a rowππ   Tables(1).Rows(1).Cells(2) tells VBA to use
the second cell in the first row. You can’t reference by row when you’ve
merged cells from two or more rows.

By its position in a columnππ   Tables(1).Columns(3).Cells(4) tells VBA
to use the fourth cell in the third column. You can’t reference by
column when you’ve merged cells from two or more columns.

Follow these steps to create a macro that adds content to the table:

After the WMME_Add_a_Table macro in your WMME_Chapter_11 1.	
module, create a new macro named WMME_Add_Contents_to_Table:

Sub WMME_Add_Contents_to_Table()

End Sub

� Chapter 11  Work with Tables

167

Start a With statement that works with the first Table object in the 2.	
WMME Tables.docx document:

With Documents("WMME Tables.docx").Tables(1)

Use the Cell object in the Table object to insert contents in the five 3.	
cells of the first row:

.Cell(1, 1).Range.Text = "Item"

.Cell(1, 2).Range.Text = "Kept in Room"

.Cell(1, 3).Range.Text = "Brand"

.Cell(1, 4).Range.Text = "Description"

.Cell(1, 5).Range.Text = "Value ($)"

Go through the five columns in the Columns collection to insert 4.	
contents in the cells in the second row:

.Columns(1).Cells(2).Range.Text = "Digital camera"

.Columns(2).Cells(2).Range.Text = "Study"

.Columns(3).Cells(2).Range.Text = "Fujitsu"

.Columns(4).Cells(2).Range.Text = "FR77 model"

.Columns(5).Cells(2).Range.Text = "100"

Create a With statement that goes through the Rows collection to 5.	
insert contents in the cells in the third row:

With .Rows(3)

 .Cells(1).Range.Text = "PC"

 .Cells(2).Range.Text = "Study"

 .Cells(3).Range.Text = "Dell"

 .Cells(4).Range.Text = "Studio Desktop"

 .Cells(5).Range.Text = "300"

End With

End the With statement for the Document object:6.	

End With

Word 2007 Macros & VBA Made Easy

168

Here’s the complete macro. Arrange the Word window and the Visual
Basic Editor so that you can see both. Press f8 to step through the code, and
watch the columns change width as the contents appear in the cells.

Sub WMME_Add_Contents_to_Table()

 With Documents("WMME Tables.docx").Tables(1)

 .Cell(1, 1).Range.Text = "Item"

 .Cell(1, 2).Range.Text = "Kept in Room"

 .Cell(1, 3).Range.Text = "Brand"

 .Cell(1, 4).Range.Text = "Description"

 .Cell(1, 5).Range.Text = "Value ($)"

 .Columns(1).Cells(2).Range.Text = "Digital camera"

 .Columns(2).Cells(2).Range.Text = "Study"

 .Columns(3).Cells(2).Range.Text = "Fujitsu"

 .Columns(4).Cells(2).Range.Text = "FR77 model"

 .Columns(5).Cells(2).Range.Text = "100"

 With .Rows(3)

 .Cells(1).Range.Text = "PC"

 .Cells(2).Range.Text = "Study"

 .Cells(3).Range.Text = "Dell"

 .Cells(4).Range.Text = "Studio Desktop"

 .Cells(5).Range.Text = "300"

 End With

 End With

End Sub

Convert a Table to Text
Now try converting your table to text so that you’ll have text suitable for
converting into a table. To convert a table to text, you use the ConvertToText
method, which uses this syntax:

Table.ConvertToText(Separator, NestedTables)

� Chapter 11  Work with Tables

169

Here’s what the arguments mean:

Separatorππ is an optional Variant argument that tells VBA which
separator character to use: tabs (wdSeparateByTabs; the default if you
don’t specify the argument), paragraphs (wdSeparateByParagraphs),
commas (wdSeparateByCommas), or the default list separator
(wdSeparateByDefaultListSeparator).

NestedTablesππ is an optional Variant argument that applies only when
you’re separating by paragraphs. You can set this argument to False
to prevent Word from converting nested tables. If you omit this
argument, or set it to True, Word converts the nested tables.

Create this single-statement macro, and then press f5 to run it:

Sub WMME_Convert_Table_to_Text()

 Documents("WMME Tables.docx").Tables(1) _

 .ConvertToText Separator:=wdSeparateByTabs

End Sub

Word converts the table to paragraphs of text, separating the contents of
each column with tabs.

Convert Existing Text to a Table
Now that you’ve reduced your table to text, convert it straight back to a table by
using the ConvertToTable method. Here’s the syntax:

Range.ConvertToTable(Separator, NumRows, NumColumns,_

 InitialColumnWidth, Format, ApplyBorders,_

 ApplyShading, ApplyFont, ApplyColor, ApplyHeadingRows,_

 ApplyLastRow, ApplyFirstColumn, ApplyLastColumn,_

 AutoFit, AutoFitBehavior, DefaultTableBehavior)

The puzzlingly named
“default list separa-
tor” is a hyphen,
which you’ll see in the
Other box if you open
the Convert Table
To Text dialog box in
Word. To separate
text by a character
of your choosing,
use Separator:="|",
putting the separator
character between
double quotes, like
the “pipe character”
or vertical bar in this
example.

Memo

Word 2007 Macros & VBA Made Easy

170

As you can see, the ConvertToTable method has a slew of arguments. Here
are the most useful ones:

Separatorππ is an optional Variant argument that tells VBA where to
split the columns. You can use the same separators as for converting
a table to text (wdSeparateByTabs, wdSeparateByParagraphs,
wdSeparateByCommas, or wdSeparateByDefaultListSeparator) or
specify your own separator by using Separator:="" (with the character
between the quotes).

NumRowsππ is an optional Variant argument that you can set to tell VBA
how many rows the table should have.

NumColumnsππ is an optional Variant argument that you can set to
tell VBA how many columns the table should have. If the separator
characters are all present and correct, you don’t need to specify
NumRows or NumColumns.

InitialColumnWidthππ is an optional Variant argument that you can set
to give the initial column width in points. Omit this argument to have
VBA set the column width automatically.

Formatππ is an optional Variant argument that you can set to apply an
autoformat such as wdTableFormat3DEffects1 or the mendaciously
named wdTableFormatElegant. Look up the WdTableFormat
enumeration in the Object Browser to see the full list of formats.

AutoFitππ is an optional Variant argument that you can set to True to make
Word automatically adjust the column widths to suit their contents.

AutoFitBehaviorππ is an optional Variant argument that you use when
you’ve set DefaultTableBehavior to wdWord9TableBehavior. This
argument tells VBA whether to resize the columns in the table to
accommodate their contents (wdAutoFitContent), to autofit the table
to the document window (wdAutoFitWindow), or to use fixed column
widths (wdAutoFitFixed).

Always specify the
separator when
converting text to a
table. If you don’t,
VBA uses the default
list separator, the
hyphen, which is
seldom helpful or
amusing.

Memo

If you use the Format
argument to apply an
autoformat, you can
set the ApplyBorders,
ApplyShading,
ApplyFont, ApplyColor,
ApplyHeadingRows,
ApplyLastRow,
ApplyFirstColumn,
and ApplyLastColumn
arguments to True
to apply those parts
of the autoformat
you want. For
example, to apply
whatever heading
row formatting the
autoformat uses, enter
ApplyHeadingRows
:=True.

Memo

� Chapter 11  Work with Tables

171

DefaultTableBehaviorππ is an optional Variant argument that
tells VBA whether to resize the columns to fit their contents
(wdWord9TableBehavior) or not (wdWord8TableBehavior).

After all that preamble, converting text to a table may be disappointing.
Nevertheless, try creating the WMME_Convert_Text_to_Table macro shown here:

Sub WMME_Convert_Text_to_Table()

 Selection.ConvertToTable Separator:=wdSeparateByTabs, _

 AutoFit:=True, _

 AutoFitBehavior:=wdAutoFitWindow, _

 DefaultTableBehavior:=wdWord9TableBehavior

End Sub

In the WMME Tables.docx document, select the first three paragraphs of
the text produced when you converted the table. Then click in the Visual Basic
Editor and press f5 to run this macro and convert the text back to a table.

Add a Column or Row to a Table
To add a column to a table, use the Add method of the Columns collection.
The syntax is simple:

Columns.Add BeforeColumn

Here, BeforeColumn is an optional Variant argument that specifies the
column before which to add the new column. If you omit this argument, VBA
inserts the column after the last column, which is usually the least harmful
place to put it.

Similarly, you use the Add method of the Rows collection to add a row to a
table. The syntax is

Rows.Add BeforeRow

As you’ve probably guessed, BeforeRow is an optional Variant argument
that specifies the row before which to add the new row. If you omit this
argument, VBA inserts the row after the last row.

Word 2007 Macros & VBA Made Easy

172

Try creating and running this short macro to add a new column before the
second column and to add two new rows at the end of the table:

Sub WMME_Insert_a_Column_and_a_Row()

 With Documents("WMME Tables.docx").Tables(1)

 .Columns.Add BeforeColumn:=.Columns(2)

 .Rows.Add

 .Rows.Add

 End With

End Sub

Delete a Column or Row
To delete a column, you use the Delete method with the appropriate Column
object. Similarly, to delete a row, you use the Delete method with the
appropriate Row object.

Try creating and stepping through this short macro to delete the column
and the rows you just added to the table:

Sub WMME_Delete_Rows_and_Column()

 With Documents("WMME Tables.docx").Tables(1)

 .Columns(2).Delete

 .Rows(4).Delete

 .Rows(4).Delete

 End With

End Sub

Notice that the macro deletes the fourth row twice. As you’ll see when you
step through the macro, after the first time the macro deletes the fourth row,
the fifth row becomes the fourth, so the macro can delete the same-numbered
row again. Alternatively, you could delete the fifth row and then the fourth—
but deleting the fourth row and then deleting the fifth would cause an error,
because the fifth row would no longer be there.

� Chapter 11  Work with Tables

173

Format a Table
As you’ll know from working interactively, Word lets you format tables in a
wide variety of ways. This section gets you started with table formatting and
then encourages you to explore further formatting on your own as needed.

Set the Preferred Width of a Table
To set the preferred width of a table, you first set the PreferredWidthType
property to tell VBA which width measurement you’re using:

Once you’ve set the PreferredWidthType property, you can set the
PreferredWidth property to the appropriate percentage or number of points.
For example, you can use the following macro to set the preferred width to
90 percent of the window’s width:

Sub WMME_Set_Table_Preferred_Width()

 With Documents("WMME Tables.docx").Tables(1)

 .PreferredWidthType = wdPreferredWidthPercent

 .PreferredWidth = 90

 End With

End Sub

To delete an entire table, simply use the Delete method on the appropriate Table object. For example, the
following statement deletes the first table in the active document:

ActiveDocument.Tables(1).Delete

Deleting an Entire Table

WdPreferredWidthType Explanation

wdPreferredWidthAuto VBA sets the table width automatically.

wdPreferredWidthPercent You specify the table width as a
percentage of the window width.

wdPreferredWidthPoints You specify the table width as a number
of points.

Word 2007 Macros & VBA Made Easy

174

Set Column Width and Row Height
To set the width of a column, you specify the column and the measurement in
points for its Width property. Similarly, to set the height of a row, you specify
the row and the measurement in points for its Height property.

Try this example to change the width of the first column and the height of
the first row:

Sub WMME_Set_Column_Width_and_Row_Height()

 With Documents("WMME Tables.docx").Tables(1)

 .Columns(1).Width = 100

 .Rows(1).Height = 50

 End With

End Sub

Apply Font Formatting to the Table
To apply font formatting to a table, simply identify the part of the table you
want to format, and then specify the font formatting. Try this example to
format the heading row of your table:

Sub WMME_Apply_Font_Formatting_to_Table_Heading_Rows()

 With Documents("WMME Tables.docx")_

 .Tables(1).Rows(1).Range.Font

 .Name = "Arial"

 .Size = 14

 .Bold = True

 .Color = wdColorDarkBlue

 .SmallCaps = True

 End With

End Sub

12
Work with
Documents
and Folders
In this chapter, you’ll learn how to create and save
new documents and templates, open and close
documents, and create and delete files and folders.
You’ll also learn how to manipulate document
windows and change the view.

Get Set Up to Work
Through This Chapter
Follow these steps to open the Visual Basic
Editor and create a new module that you’ll use for
working with documents:

Open Microsoft Word if it’s not already 1.	
running. If it is running, close any open
documents.

Press 2.	 alt-f11 to open the Visual Basic Editor.

If the Visual Basic Editor opens a Code 3.	
window for a module you worked with
recently, click the window’s Close button
(the × button) to close it.

Word 2007 Macros & VBA Made Easy

176

Right-click the Normal template and then choose Insert | Module from 4.	
the context menu to insert a new module in the Normal template.

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_12 as the new name for the module, replacing
the default name (such as Module1), and then press enter to apply the
change.

Create New Documents
To create a new document, use the Add method of the Documents collection.
The syntax looks like this:

Documents.Add Template, NewTemplate, DocumentType, Visible

Here’s what the syntax means:

Templateππ is an optional Variant argument that you use to base the new
document on a particular template. If you omit this argument, Word
bases the new document on the Normal template.

NewTemplateππ is an optional Variant argument that you set to True if
you want to create a new template rather than a new document. When
creating a new document, you can either omit this argument or set it
to False to make your code completely explicit.

DocumentTypeππ is an optional Variant argument that lets you create
different types of document. Use wdNewBlankDocument (or omit the
argument) when you want a regular document, wdNewEmailMessage
for a new e-mail message, wdNewFrameset for a frameset (for web
pages), wdNewWebPage for a web page, or wdNewXMLDocument for
an XML document.

� Chapter 12  Work with Documents and Folders

177

Visibleππ is an optional Variant argument that lets you control whether the
new document is visible. Set this argument to False to hide the document
or to True (or omit the argument) to show the document as usual.

Because all these arguments are optional, you can create a new blank
document (and make it visible) by omitting all the arguments:

Sub WMME_Create_a_Blank_Document()

 Documents.Add

End Sub

Run this, and you’ll get a new document called Document1 (or the next
unused name, such as Document2).

Try this example of creating a new document based on a template. If you
don’t have the EquityFax.dotx template, use a template you do have instead.

Sub WMME_Create_a_Document()

 Documents.Add Template:= _

 "C:\Program Files\Microsoft Office\Templates\1033\

FAX\EquityFax.dotx", _

 NewTemplate:=False

End Sub

Next, copy the WMME_Create_a_Document macro you just created,
paste it, and adapt it as follows so that it creates a new template based on the
template you just used:

Sub WMME_Create_a_Template()

 Documents.Add Template:= _

 "C:\Program Files\Microsoft Office\Templates\1033\

FAX\EquityFax.dotx", _

 NewTemplate:=True

End Sub

When you run this, you’ll get a template named Template1 (or the next
unused name).

If you don’t specify
the path to the tem-
plate, Word assumes
you’re using the de-
fault template folder.

Memo

Word 2007 Macros & VBA Made Easy

178
Save Documents
Sometimes you may want to create a document, use it as scratch space to
work in, and then close it without saving it ever—but more often, you’ll
need to save your documents. To save a document for the first time, you use
the SaveAs method of the appropriate Document object. After that, you can
simply use the Save method.

Save a Document for the First Time
Here’s the syntax for the SaveAs method:

Document.SaveAs(FileName, FileFormat, LockComments, Password,_

 AddToRecentFiles, WritePassword, ReadOnlyRecommended,_

 EmbedTrueTypeFonts, SaveNativePictureFormat, SaveFormsData,_

 SaveAsAOCELetter, Encoding, InsertLineBreaks,_

 AllowSubstitutions, LineEnding, AddBiDiMarks)

If you need to find out where the current user
templates folder or the workgroup templates folder
is, check the DefaultFilePath property of the Options
object with the wdUserTemplatesPath constant or the
wdWorkgroupTemplatesPath constant, respectively.

Word automatically sets the user templates path
to the folder in which it installs the templates for the
user, but the workgroup templates path may be blank
unless an administrator has set it. (For example,
an administrator may have pointed the workgroup
templates path to a network folder.)

For example, the following statement displays the
user templates path in a message box:

MsgBox Options.DefaultFilePath

(wdUserTemplatesPath)

The following statement sets the workgroup
templates path to a network folder:

Options.DefaultFilePath(wdWorkgroup

TemplatesPath) = "Z:\Users\Shared\

Templates"

�Find WORD’S Template FOLDERS

If you want to create
a document and
prompt the user to
save it, you can sim-
ply use Documents
.Add.Save.

Memo

� Chapter 12  Work with Documents and Folders

179

As you can see, there are a ton of arguments. Here, we’ll look at only the
first five arguments, which are the ones you’ll need most of the time:

FileNameππ is an optional Variant argument giving the name and folder
path under which to save the document.

FileFormatππ is an optional Variant argument telling Word which
file format to save the document in. These are the WdSaveFormat
constants you’ll find most useful:

WdSaveFormat Constant Explanation

wdFormatXMLDocument Word 2007 Document format
(no macros)

wdFormatDocument Word 97–2003 Document format

wdFormatXMLDocumentMacroEnabled Word 2007 Macro-Enabled
Document format

wdFormatXMLTemplate Word 2007 Template format
(no macros)

wdFormatXMLTemplateMacroEnabled Word 2007 Macro-Enabled
Template format

wdFormatTemplate Word 97–2003 Template format

LockCommentsππ is an optional Variant argument that you can set to
True to lock the document so that anyone who opens it can only add
comments. If you omit this argument, VBA sets LockComments to
False, leaving the document open for edits.

Passwordππ is an optional Variant argument that you can use to set the
password required to open the document. Don’t put the password itself
in your code, or anyone will be able to read it; instead, use an input box
to prompt the user for the password, and then apply the password in
your code.

When saving a docu-
ment, you’ll almost
always want to specify
the FileName argu-
ment; if you don’t,
Word uses the cur-
rent folder (whichever
that may be; see the
nearby sidebar) and
a shortened version
of the document’s
default name (for
example, Doc10.docx).

Memo

Word 2007 Macros & VBA Made Easy

180

AddToRecentFilesππ is an optional Variant argument that you can set
to False to prevent Word from adding the document to the Recent
Documents list on the Microsoft Office button menu. If you omit this
argument or set it to True, Word adds the file to the list.

For example, create the following macro, click one of the unsaved
documents you’ve created (not a template), and then run the macro to save
the document. As usual, change the file path to suit your setup.

Sub WMME_Save_a_Document()

 ActiveDocument.SaveAs FileName:=_

 "C:\Users\Dan\Documents\WMME\Sample Document.docx", _

 FileFormat:=wdFormatXMLDocument

End Sub

Save a Document That Already Has a Filename
Once you’ve saved a document with a name (and folder, and file format), you
can save it again easily by using the Save method, just as you would save
the document by pressing ctrl-s or clicking the Save button when working
interactively. The Save method needs no arguments, so you use it like this:

ActiveDocument.Save

Leave all these documents and templates open for the moment. You’ll close
them next.

Close Documents
To close a document, use the Close method of the appropriate Document
object. The syntax looks like this:

Document.Close(SaveChanges, OriginalFormat, RouteDocument)

You can also use the
SaveAs method to
save an already-saved
document under
a different name or
in a different folder
(or both).

Memo

� Chapter 12  Work with Documents and Folders

181

Here’s what the three arguments mean:

SaveChangesππ is an optional Variant argument that you can use
to save changes automatically (wdSaveChanges), discard the
changes (wdDoNotSaveChanges), or prompt the user to decide
(wdPromptToSaveChanges).

OriginalFormatππ is an optional Variant argument that lets you
control which format Word uses for saving unsaved changes.
Use wdOriginalDocumentFormat to use the same format,
wdWordDocument to use the Word 2007 Document format, or
wdPromptUser to have Word prompt the user to pick a format.

RouteDocumentππ is an optional Variant argument that you set to True if
you need to route a document with a routing slip attached.

For example, close the document you just saved by creating and running
this macro:

Sub WMME_Close_a_Document()

 Documents("Sample Document.docx").Close _

 SaveChanges:=wdPromptToSaveChanges

End Sub

Unless you made any changes since you saved it, Word will simply close
the document without prompting you to save changes.

Try making Word prompt you to save changes. Click in your unsaved
template, type a few characters, and then return to the Visual Basic Editor.
Press ctrl-g to open the Immediate window, type the following statement,
and then press enter to execute it:

ActiveDocument.Close SaveChanges:=wdPromptToSaveChanges

This time, Word prompts you to save the changes. Click the No button.
Lastly, create a couple more unsaved documents in Word (press ctrl-n a

couple of times), and then close all your open documents by using the Close

Word 2007 Macros & VBA Made Easy

182

method of the Documents collection. Click in the Immediate window, type
the following statement, and then press enter:

Documents.Close SaveChanges:=wdDoNotSaveChanges

Open Documents
To open a document via VBA, you use the Open method of the appropriate
Document object in the Documents collection.

Here’s the syntax for the Open method:

Documents.Open(FileName, ConfirmConversions, ReadOnly,_

 AddToRecentFiles, PasswordDocument, PasswordTemplate,_

 Revert, WritePasswordDocument, WritePasswordTemplate,_

 Format, Encoding, Visible, OpenConflictDocument,_

 OpenAndRepair, DocumentDirection, NoEncodingDialog)

Usually, you’ll need only the first four arguments, so I’ll explain those and
leave you to investigate the others at your leisure. Here are the important
arguments:

FileNameππ is a required Variant argument that gives the name (usually
preceded by the folder path) of the document.

ConfirmConversionsππ is an optional Variant argument that you can
set to True to force VBA to display the Convert File dialog box if the
document isn’t in Word format. If you’re opening a Word document,
you don’t need to bother with this argument.

ReadOnlyππ is an optional Variant argument that you can set to True to
open the document in read-only format. Read-only format prevents the
user from saving changes to the document under the same name and
folder. This is occasionally useful.

� Chapter 12  Work with Documents and Folders

183

AddToRecentFilesππ is an optional Variant argument that you can set
to False to prevent Word from adding the document to the Recent
Documents list on the Microsoft Office button menu. This lets you
open documents in your macros without messing up the user’s Recent
Documents list. If you set this argument to True or omit it, Word adds
the document to the list as usual.

For example, try opening your Report Summary.docx document from the
WMME folder without adding it to the Recent Documents list. Create this
macro, substituting your folder path:

Sub WMME_Open_a_Document()

 Documents.Open FileName:= _

 "C:\Users\Petra\Documents\WMME\Report Summary.docx", _

 AddToRecentFiles:=False

End Sub

Run the macro to open the document. In Word, open the Microsoft Office
button menu and verify that Report Summary.docx doesn’t appear at the top
(unless you just opened it normally yourself before running this macro, of
course).

In your macros, you may need to change the current
folder or drive so that when the user tries to open or
save a document, the dialog box shows the right folder.

To find out what the current folder is, use the
CurDir statement (CurDir is short for “current
directory”). For example, the following statement
displays a message box showing the current folder:

MsgBox CurDir

Once you know what the current directory is, you
can use the ChDir statement to change the current

directory on a drive. For example, the following
statement changes the directory to the WMME folder
inside the Documents folder on a standard Windows
Vista file system:

ChDir "C:\Users\Donna\Documents\WMME"

Use the ChDrive statement to change the drive.
For example, the following statement changes to the
Z: drive:

ChDrive "Z"

Change the Current Folder or the Current Drive

Word 2007 Macros & VBA Made Easy

184

Delete a Document
You can delete a document by using a Kill statement and the document’s
path and filename. You need to make sure that the document is closed when
you try to delete it—if it’s open, you’ll get a “Permission denied” error, which
basically means “Word says no.”

For example, close your Sample Document.docx document manually, type the
following statement in the Immediate window, and then press enter to run it:

Kill "C:\Users\Dave\Documents\WMME\Sample Document.docx"

If the Kill operation is successful, VBA gives you no feedback—but the
document is permanently gone.

Create and Delete Folders
Creating and deleting documents (or templates) is well and good, but
sometimes you may also need to create or delete folders in your macros.

Create a Folder
To create a folder with VBA, use the MkDir statement (short for “make
directory”). This requires only one argument, giving the drive (optionally)
and the folder path. For example, the following statement creates a folder
named Code within the WMME folder in the Documents folder on a standard
Windows Vista file system:

MkDir "C:\Users\Dave\Documents\WMME\Code"

Delete a Folder
Deleting a folder with VBA is more complex. The statement you need is
RmDir (short for “remove directory”). Like MkDir, RmDir needs only one
argument, giving the drive (optionally, but preferably) and the folder path.

The Kill statement
deletes a document
immediately. You
can’t recover the
document from the
Recycle Bin.

Memo

Always specify the
drive when creating
or deleting a folder.
If you don’t, VBA
assumes you mean
the current drive—
whichever that may
be. This assumption
can give you (and the
file system) some
unpleasant surprises.

Memo

� Chapter 12  Work with Documents and Folders

185

First, though, you must make sure that the folder has no contents. If the
folder contains one or more files, or one or more folders, or both, RmDir
gives a Path/File access error.

To delete all files in the folder, you can use a Kill statement with the *.*
wildcards. For example, the following statement deletes all the files in the
C:\Users\Dave\Documents\WMME\Code folder:

Kill "C:\Users\Dave\Documents\WMME\Code*.*"

To remove a folder within the folder, use a RmDir statement with its name.
Once the folder is empty, you can use RmDir to remove it—for example:

RmDir "C:\Users\Dave\Documents\WMME\Code"

Work with Document Windows
Normally, when you open a document, Word shows it to you in a single
window. You can manipulate this window by using the first Window object
for the Document object. You can also add further windows, as you’ll do here.
Follow these steps:

Run the WMME_Open_a_Document macro to open the Report 1.	
Summary.docx document again.

Start a new macro named WMME_Open_and_Resize_Window:2.	

Sub WMME_Open_and_Resize_Window()

End Sub

Declare an object variable named winMyWindow as being of the 3.	
Window type:

Dim winMyWindow As Window

Word 2007 Macros & VBA Made Easy

186

Set the winMyWindow object variable to represent a new window you 4.	
open on the Report Summary.docx document by using the Add method:

Set winMyWindow = _

 Documents("Report Summary.docx").Windows.Add

Start a With statement that works with winMyWindow:5.	

With winMyWindow

Position the window by setting its Left property (which controls where 6.	
the left edge appears) and its Top property (which controls where the
top edge appears) to suitable values (in pixels):

.Left = 200

.Top = 0

Resize the window by setting its Height property and its Width 7.	
property (again, these measurements are in pixels):

.Height = 800

.Width = 600

Set the view to Print Layout view by setting the Type property of the 8.	
View object in the Window object:

.View.Type = wdPrintView

Set the zoom on the window by setting the PageFit property of the 9.	
Zoom object in the View object in the Window object:

.View.Zoom.PageFit = wdPageFitTextFit

End the With statement:10.	

End With

Here’s the complete macro. Step through it, and watch what happens.

Sub WMME_Open_and_Resize_Window()

 Dim winMyWindow As Window

 Set winMyWindow = _

 Documents("Report Summary.docx").Windows.Add

You can set the
view to Draft view
(wdNormalView),
Outline view
(wdOutlineView),
Master Document
view (wdMaster-
View), Print Layout
view (wdPrintView),
Print Preview (wd-
PrintPreview), Full
Screen Reading view
(wdReadingView),
or Web Layout view
(wdWebView).

Memo

You can zoom in or
out by specifying a
zoom percentage
(for example,
.View.Zoom = 200)
or using one of the
PageFit constants:
wdPageFitBestFit for
best fit, wdPageFit-
FullPage to show the
whole page, wdPage-
FitTextFit to fit the
text width, or wdPage-
FitNone to turn off
fitting to the page.

Memo

� Chapter 12  Work with Documents and Folders

187

 With winMyWindow

 .Left = 200

 .Top = 0

 .Height = 800

 .Width = 600

 .View.Type = wdPrintView

 .View.Zoom.PageFit = wdPageFitTextFit

 End With

End Sub

To close the extra window, use the Close method. Press ctrl-g to open the
Immediate window, type the following statement, and then press enter to run it:

Documents("Report Summary.docx").Windows(2).Close

This page intentionally left blank

13
Debug Your
Macros and
Handle Errors
In the best of all possible worlds, your investments
will only go up, you’ll enjoy rude good health, and
your relationships and your code will simply work
without problems.

Sooner or later, though, you’ll run into errors in
your code—or the people who use your macros will.
Such errors can be as simple as the user having
selected the wrong type of object before running a
macro, not having the right type of document open,
or not having a document open at all. Or the errors
can involve tracking your code through labyrinthine
loops of logic to find a tiny mistake that’s throwing
a wrench in the entire works.

In this chapter, you’ll learn how to use VBA’s
tools for debugging your macros and how to create
an error handler that enables your code to deal
“gracefully” with errors that occur.

For health, relationship, and investment advice,
look elsewhere.

Word 2007 Macros & VBA Made Easy

190

Get Set Up to Work
Through This Chapter
To get ready to work through this chapter, follow these steps to open
the Visual Basic Editor, create a new module, and create and save a new
document:

Open Microsoft Word if it’s not already running. If it is running, close 1.	
any open documents.

Press 2.	 alt-f11 to open the Visual Basic Editor.

If the Visual Basic Editor opens a Code window for a module you 3.	
worked with recently, click the window’s Close button (the × button) to
close it.

Right-click the Normal template and then choose Insert | Module 4.	
from the context menu to insert a new module in the Normal
template.

Press 5.	 f4 to put the focus in the Properties window.

Type 6.	 WMME_Chapter_13 as the new name for the module, replacing
the default name (such as Module1), and then press enter to apply the
change.

You’re now ready to start working through this chapter.

Debug a Macro
Debugging is the process of removing errors (“bugs”) from your macros. In
this section, you’ll meet the tools that the Visual Basic Editor provides to help
root out the bugs in your code. First, though, it’s helpful to understand which
types of errors you are likely to create in your macros.

� Chapter 13  Debug Your Macros and Handle Errors

191

Identify the Four Main Types of Errors
The bad news is that you’ll typically create four main types of errors in your
code. The good news is that VBA helps you eliminate three of them.

Language error (syntax error)ππ   These errors occur when you make
a mistake by typing the wrong character or term in the Visual Basic
Editor. VBA’s automatic-completion features and List Properties/
Methods feature help keep language errors to a minimum.

Compile errorππ   These errors occur when you create a
statement that VBA can’t compile correctly. For example, if
you type ActiveDocument.Close
SaveChanges:=wdDontSaveChanges
instead of ActiveDocument.Close
SaveChanges:=wdDoNotSaveChanges,
VBA gives a “Variable not defined”
compile error (shown here) when you
try to run the code.

Runtime errorππ   These errors occur when you run your code and VBA
finds something that doesn’t work. For example, if you tell VBA to
close a document that isn’t open, you’ll get the “Bad file name” error
message shown in Figure 13-1. Here, the code is fine, and it compiles
perfectly—but it won’t run because the conditions are wrong.

As long as you have
the Auto Syntax
Check feature turned
on (select the Auto
Syntax Check check
box on the Editor tab
in the Options dialog
box), VBA manages
to catch many com-
pile errors when you
move the insertion
point to a different
statement. Others,
like the example here,
pop up only when
you go to run the
code and VBA must
compile the whole
macro.

Memo

Figure 13-1  The “Bad file name”
runtime error message occurs
when you tell VBA to close a
document that isn’t open—or
when you use a filename that con-
tains characters the file system
can’t handle.

Word 2007 Macros & VBA Made Easy

192

When you click the Debug button, VBA displays and highlights the
offending line of code so that you can fix it.

Program logic errorππ   These errors occur when your code compiles
correctly, runs correctly, and produces the wrong result, such as
formatting the wrong document. As far as VBA is concerned, there’s
no problem, so you’re on your own fixing program logic errors.

Meet the Debug Toolbar
The easiest way to access most of the commands and tools you’ll be using in
the rest of this section is by clicking the buttons on the Debug toolbar (see
Figure 13-2). If this toolbar isn’t displayed, you can display it by right-clicking

This is a trick question, because there’s no best time
to debug your macros. Instead, debugging tends to
be an ongoing process that starts when you first try
to write the macro and doesn’t necessarily end when
you distribute the macro to other users.

When you find that a macro you’re writing doesn’t
run the way you intended it to, you’re debugging it.
At this point, you can iron out the grosser bugs by

trying different approaches in your code until you
get it working.

When you try the macro on other users, you’ll
probably find that they devise alternative ways of
running the macro that produce new and exciting
bugs. You’ll then need to rework the macro, or
add error-handling code to it, to take care of these
errors.

When Is the Best Time to Debug Your Macros?

Design Mode

Run Sub/
UserForm

Break

Reset

Toggle
Breakpoint

Step
Into

Step Over

Step
Out

Locals
Window

Immediate
Window

Watch Window

Quick
Watch

Call Stack

Figure 13-2  The Debug
toolbar includes buttons for
stepping into, stepping over,
and stepping out of a macro.

� Chapter 13  Debug Your Macros and Handle Errors

193

any displayed toolbar (or the menu bar) and choosing Debug from the context
menu (placing a check mark next to Debug).

Step Through Code and Use Breakpoints
Throughout this book, you’ve been using the Step Into command to go
through a macro one statement at a time so that you can see exactly what each
statement does. But going statement-by-statement through a long macro can
take forever, so VBA provides you with several tools for getting through your
code faster while still focusing on the sections that need attention.

Set a Breakpoint to Enter Break Mode
The first tool you can use is the breakpoint. A breakpoint is a mark you place
on a statement to tell VBA you want to start using Break mode at that point.
The Visual Basic Editor doesn’t save breakpoints in your code when you close
the project, so if you need them the next time you open your project, you have
to place them again.

The easiest way to set a breakpoint is to click in the vertical bar at the left
side of the Code window next to the statement on which you want to set the
breakpoint (see Figure 13-3). The Visual Basic Editor puts a hefty brown dot
in the vertical bar and applies a liverish highlight to the statement, making
the breakpoint stick out rather more than a sore thumb. Click the dot when
you want to remove the breakpoint.

Figure 13-3  You can set a
breakpoint by clicking in the
vertical bar at the left side of
the Code window.

You can then run the macro by pressing f5 or clicking the Run Sub/
UserForm button. When VBA hits the breakpoint, it switches to Break mode,
and you can press f8 to execute commands one at a time.

Once you’re in Break mode, the Visual Basic Editor makes the Step Out
command and the Step Over command available so that you can use them.

You can also set or
remove a breakpoint
by clicking in the
statement and then
clicking the Toggle
Breakpoint button on
the Debug toolbar, or
by right-clicking in the
statement and then
choosing Toggle |
Breakpoint from the
context menu.

Memo

Word 2007 Macros & VBA Made Easy

194

Step Out of a Macro
Once you’ve gotten through the statements you wanted to focus on, you can
click the Step Out button on the Debug toolbar (or press ctrl-shift-f8) to
proceed through the rest of the macro at full pace.

Step Over a Macro or Function
When the macro you’re running calls another macro or a function that
you know works fine, you can use the Step Over command to go through
that macro or function at full speed and then return to Break mode when
execution returns to the current macro.

To step over a macro or function, click the Step Over button on the Debug
toolbar or press shift-f8.

Use the Locals Window
to Track Variable Values
When a macro consistently produces unexpected results, you can use the
Locals window to keep an eye on the variables the macro is using and the
values assigned to them. You used the Locals window in Chapter 7 to find out
what data type a particular piece of data had.

The easiest way to open the Locals window is to click the Locals Window
button on the Debug toolbar. If you prefer, you can choose View | Locals.

While you step through your code, watch the values change (see Figure 13-4),
and note any unexpected values. If you’ve declared any variables without
specifying their type, watch to see if the type changes from one Variant
subtype to another.

When you’ve finished using the Locals window, click the Close button
(the × button) to close it.

Use the Watch Window
to Track Important Values
Being able to view variable values in the Locals window is handy, but
sometimes you may need to keep a closer watch on the values of just some

Once you’re in Break
mode, the Visual
Basic Editor offers
another way of
running part of the
code at full speed and
then stopping. Right-
click the statement
at which you want
to stop, and then
choose Run To Cur-
sor from the context
menu; or click in the
statement, and then
press ctrl-f8.

Memo

� Chapter 13  Debug Your Macros and Handle Errors

195

variables or expressions. To do so, you can use the Watch window, which lets
you set watch expressions, items which you want to monitor. Follow these steps:

In your macro, right-click the variable or expression you want to 1.	
monitor, and then choose Add Watch from the context menu. The
Visual Basic Editor displays the Add Watch dialog box (see Figure 13-5)
and enters the variable or expression in the Expression text box.

Display Call Stack
Dialog Box button

Figure 13-4  The Locals
window lets you keep an eye
on the value of the variables,
constants, and expressions in
the macro you’re running.

Figure 13-5  The Add Watch
dialog box lets you set up
“watch expressions” you want
to monitor.

Word 2007 Macros & VBA Made Easy

196

If you want to change the procedure for which you’re monitoring the 2.	
variable or expression, choose the procedure in the Procedure drop-
down list. Similarly, if you want to change the module, choose the
module in the Module drop-down list. Normally, you can just leave the
default settings of the macro and procedure that contain the variable
or expression.

In the Watch Type group box, choose the option button for the type of 3.	
monitoring you want:

Watch Expressionππ   Select this option button to add the variable or
expression to the list in the Watch window.

Break When Value Is Trueππ   Select this option button to make
VBA switch to Break mode when the variable’s or expression’s
value becomes True. This setting is useful for expressions.

Break When Value Changesππ   Select this option button to make
VBA switch to Break mode any time the value of the variable or
expression changes at all.

Click the OK button to close the Add Watch window and add the 4.	
watch expression to the Watch window, which the Visual Basic Editor
displays automatically. Figure 13-6 shows the Watch window with
several watch expressions.

Break When Value
Changes icon

Break When Value
Is True icon

Watch Expression icon

Figure 13-6  The Watch win-
dow lets you track particular
variables and expressions as
your macros run.

� Chapter 13  Debug Your Macros and Handle Errors

197

Run the macro, and see how the variables and expressions change. If 5.	
you’ve set Break When Value Is True or Break When Value Changes
watches, VBA enters Break mode if the condition is met.

To remove a watch expression, right-click it in the Watch window and 6.	
then choose Delete Watch. To edit a watch expression, right-click it
in the Watch window and then choose Edit Watch to open it in the
Edit Watch dialog box, which has the same controls as the Add Watch
dialog box.

When you’ve finished watching variables and expressions with the Watch 7.	
window, click the window’s Close button (the × button) to close it.

Use the Call Stack Dialog Box to See Which
Macros and Functions You’re Calling
When you write a macro that calls several other macros or functions, it
becomes easy to lose track of all the different code items that are running. To
help you keep track, the Visual Basic Editor provides the Call Stack dialog box.

Try this example of creating a macro that calls another macro that then
calls a third macro:

Sub WMME_Calling_Another_Macro_1()

 Call WMME_Calling_Another_Macro_2

End Sub

Sub WMME_Calling_Another_Macro_2()

 Call WMME_Calling_Another_Macro_3

End Sub

Sub WMME_Calling_Another_Macro_3()

 MsgBox "Hi! How are you today?"

End Sub

Click in the WMME_Calling_Another_Macro_1 macro and press f8 to start
stepping through the code. You’ll see the execution highlight jump to the

Word 2007 Macros & VBA Made Easy

198

WMME_Calling_Another_Macro_2 macro and then to the WMME_Calling_
Another_Macro_3 macro.

All of this is happening not only with short macros but with ones in the
same module. But when macros call code in other modules, tracing what’s
happening becomes much harder.

To see what has called what, open the Call Stack dialog box (see Figure 13-7)
by clicking the Call Stack button on the Debug toolbar or clicking the Display
Call Stack Dialog Box button in the Locals window. You can then click a macro
and click the Show button to close the Call Stack dialog box and go to that
macro, or simply click the Close button to close the Call Stack dialog box.

Create an Error Handler
To take care of errors that occur when your macros run, you can create an
error handler—a section of code that is specifically designed to catch errors
and to deal with them. In this section, you’ll create a simple error handler that
catches an error and gives the user an easy way to deal with it.

Identify the Error You Want to Trap
Your first step is to identify the error you want to trap. In this example, we’ll
write a macro that tries to open a document that doesn’t exist. Follow these
steps:

Figure 13-7  The Call Stack
dialog box lets you trace calls
from one macro to another.

� Chapter 13  Debug Your Macros and Handle Errors

199

Click in the Code window of your WMME_Chapter_13 module and 1.	
type the stub of a macro named WMME_Using_an_Error_Handler:

Sub WMME_Using_an_Error_Handler()

End Sub

Inside the stub, declare a String variable named strFile, and then 2.	
assign to it the folder path and filename of a document that doesn’t
exist. As usual, adapt the path to suit your file system.

Dim strFile As String

strFile =_

 "C:\Users\Ken\Documents\WMME\Error Document.docx"

Type a Documents.Open statement that tries to open the document 3.	
identified by strFile:

Documents.Open FileName:= strFile, AddToRecentFiles:=False

Click in the macro and press 4.	 f5 to run it. VBA displays a Microsoft
Visual Basic dialog box giving you the error number (5174) and the
error message (“This file could not be found.”), as shown in Figure 13-8.

Click the Debug button to close the Microsoft Visual Basic dialog box 5.	
and go to the offending statement in the macro: the Documents.Open
statement.

Figure 13-8  You get this
Microsoft Visual Basic dialog
box when VBA can’t find the
document you ask to open.

Word 2007 Macros & VBA Made Easy

200

Set Up the Error Trap and Create the Handler
Your next move is to tell VBA that you want to trap errors. As you’ve just seen,
until you tell VBA to trap errors, each error raises a dialog box.

To tell VBA you want to trap errors, you add an On Error statement before
the statements that might produce errors. In our case, that means adding
an On Error statement at the beginning of the macro, just after the variable
declaration.

Follow these steps to trap the error and create the error handler:

After the Dim strFile As String statement, add this On Error statement 1.	
to trap the error:

On Error GoTo MyErrorHandler

After the Documents.Open statement, add the MyErrorHandler label 2.	
(including the colon to indicate it’s a label):

MyErrorHandler:

Create the following If statement that checks the Number property 3.	
of the Err object (which contains the error) and, if the number is
5174, displays the Yes/No message box shown here, inviting the
user to open another document manually. If the user clicks the Yes
button, Word displays the Open dialog box so that the user can open
a document. (Chapter 14 explains the details of using Word’s built-in
dialog boxes in this way.)

� Chapter 13  Debug Your Macros and Handle Errors

201

 If Err.Number = 5174 Then

 If MsgBox("Word can’t find this document:" & _

 vbCr & vbCr & strFile & vbCr & vbCr & _

 "Do you want to open another document manually?", _

 vbYesNo + vbQuestion, _

 "Error Handler Demo") = vbYes Then

 Dialogs(wdDialogFileOpen).Show

 End If

End If

The complete macro with the error handler looks like this:

Sub WMME_Using_an_Error_Handler()

 Dim strFile As String

 On Error GoTo MyErrorHandler

 strFile = _

 "C:\Users\Ken\Documents\WMME\Error Document.docx"

 Documents.Open FileName:=strFile, _

 AddToRecentFiles:=False

MyErrorHandler:

 If Err.Number = 5174 Then

 If MsgBox("Word can’t find this document:" & _

 vbCr & vbCr & strFile & vbCr & vbCr & _

 "Do you want to open another document manually?", _

 vbYesNo + vbQuestion, _

 "Error Handler Demo") = vbYes Then

 Dialogs(wdDialogFileOpen).Show

 End If

 End If

End Sub

If the error has a dif-
ferent number than
5174, the macro ends
without displaying the
message box or the
Open dialog box.

Memo

Word 2007 Macros & VBA Made Easy

202

Step through the macro and watch what happens. Click the Yes button
in the message box, and then use the Open dialog box to open a file. Step
through the macro again, but this time click the No button in the message
box, and watch the result.

Instead of using an On Error Goto statement and
directing execution to an error handler, you can simply
tell VBA to resume execution. You have three choices:

Resume Nextππ   Normally the best choice, the
Resume Next statement makes VBA resume
execution at the line of code after the one that
threw the error.

Resumeππ   The Resume statement makes VBA
resume execution at the same line. Normally,

you’ll want to use a Resume statement only
after running an error handler that fixes the
problem—otherwise, the same error will
simply occur again.

Resume ππ line  The Resume line statement
makes VBA resume execution at the line,
which you specify with a label. For example,
create a label named ResumeHere:, and then
use Resume ResumeHere.

�Carry On Running Code After an Error

14
Use Word’s
Built-In Dialog
Boxes in Your
Macros
In Chapter 4, you learned how to create dialog
boxes containing the most useful controls, such as
text boxes, check boxes, option buttons, and combo
boxes.

Creating dialog boxes gives you great control,
but there’s no point in reinventing the wheel. When
you need to perform standard Windows operations,
you can simply borrow Word’s own built-in dialog
boxes and use them in your macros.

This way, everyone wins: you don’t have to
design, code, and debug a dialog box, and the
users get to work with dialog boxes that they’re
familiar with. But you have a secret advantage:
you can make the built-in dialog box behave in a
different way than normal if you need to.

Word 2007 Macros & VBA Made Easy

204

Get Set Up to Work
Through This Chapter
In this chapter, you’ll add built-in dialog boxes to the macro you recorded in
the first chapter and edited in the third chapter. Here’s what you’ll do:

Replace the part of the macro that opens a particular file with the Open ππ

dialog box so that the user can choose which file to open.

Offer the user the option of printing the document they create. If they ππ

choose to print it, the macro will display the Print dialog box, in which
they can choose print settings as usual.

Let the user choose whether to save the document they’ve created or ππ

simply close it without saving changes.

To get set up so that you can work through this chapter, follow these steps:

Open Word and the Visual Basic Editor as usual. For example, launch 1.	
Word from the Start menu, and then press alt-f11 to open the Visual
Basic Editor.

In the Project Explorer, expand the entry for the Normal template if 2.	
it’s collapsed.

Right-click the WMME_Chapter_3 module 3.	
and then choose Export File from the context
menu to display the Export File dialog box, as
shown here with settings chosen.

Navigate to the WMME folder in your 4.	
Documents folder (Windows Vista) or your
My Documents folder (Windows XP).

Click the Save button. The Visual Basic Editor 5.	
exports the module.

� Chapter 14  Use Word’s Built-In Dialog Boxes in Your Macros

205

In the Project Explorer, right-click anywhere in 6.	
the Normal template and then choose Import
File from the context menu to display the Import
File dialog box, as shown on the left here.

In the list box, click the WMME_Chapter_3 7.	
.bas file.

Click the Open button. The Visual Basic Editor 8.	
imports the module into the Normal template.
Because the name WMME_Chapter_3 is
already in use, the Visual Basic Editor names
the imported version WMME_Chapter_31.

In the Project Explorer, click the WMME_Chapter_31 module.9.	

Press 10.	 f4 to activate the Properties window and select the Name field.

Change the WMME_Chapter_31 name to WMME_Chapter_11.	 14, and
then press enter to apply the change.

In the Code window, change the macro’s name to 12.	 WMME_Transfer_
Data_with_Dialogs.

Here’s the code of the macro. Look back to Chapter 3 if you need to
refresh your memory of what exactly the statements do. The folder path to
the WMME folder will vary depending on whether you’re using Windows
Vista (the Documents folder) or Windows XP (the My Documents folder).

Sub WMME_Transfer_Data_with_Dialogs()

'

' WMME_Transfer_Data Macro

' Opens Latest Report.docx and copies data in it. Creates a new document,

pastes the copied data in it, and saves and closes the document.

'

Word 2007 Macros & VBA Made Easy

206

 If MsgBox("Create a new report summary?", vbYesNo + vbQuestion, _

 "Transfer Data Macro") = vbYes Then

 Documents.Open _

 FileName:="C:\Users\Ken\Documents\WMME\Latest Report.docx", _

 ConfirmConversions:=False, ReadOnly:=False, _

 AddToRecentFiles:=False, PasswordDocument:="", _

 PasswordTemplate:="", Revert:=False, WritePasswordDocument:="", _

 WritePasswordTemplate:="", Format:=wdOpenFormatAuto, XMLTransform:=""

 Selection.MoveDown Unit:=wdParagraph, Count:=1

 Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend

 Selection.Copy

 ActiveDocument.Close

 Documents.Add DocumentType:=wdNewBlankDocument

 Selection.Style = ActiveDocument.Styles("Heading 1")

 Selection.TypeText Text:=InputBox("Type the title here:", _

 "Transfer Data Macro", "Report Summary")

 Selection.TypeParagraph

 Selection.TypeText Text:="Here is the latest report summary:"

 Selection.TypeParagraph

 Selection.PasteAndFormat (wdPasteDefault)

 ActiveDocument.SaveAs _

 FileName:="C:\Users\Ken\Documents\WMME\Report Summary.docx", _

 FileFormat:=wdFormatXMLDocument, LockComments:=False, Password:="", _

 AddToRecentFiles:=True, WritePassword:="", _

 ReadOnlyRecommended:=False, EmbedTrueTypeFonts:=False, _

 SaveNativePictureFormat:=False, SaveFormsData:=False, _

 SaveAsAOCELetter:=False

 ActiveDocument.Close

 MsgBox "The macro has created the report summary.", _

 vbOKOnly + vbInformation, "Transfer Data Macro"

 End If

End Sub

� Chapter 14  Use Word’s Built-In Dialog Boxes in Your Macros

207

Understand the Essentials of Using
Word’s Built-in Dialog Boxes
As you’ve seen throughout this book, VBA uses an object to represent each
component of Word; and where there are multiple objects of the same kind,
VBA groups them into a collection. So it will come as no surprise to learn that
each Word dialog box is a Dialog object, and that you access the Dialog objects
through the Dialogs collection.

Find the Name of the Dialog Box You Need
The dialog box name is derived from the days when Word had a full set of menus.
For example, the Open dialog box is called wdDialogFileOpen (because you would
choose File | Open to display the dialog box), and the Word Options dialog box is
called wdDialogToolsOptions (Tools | Options). Because of the drastic changes the
Ribbon makes to the Word user interface, you’ll find the names easier to figure
out if you have—or can remember—Word 2003 or an earlier version.

To help you with this, Table 14-1 gives you a short list of the dozen most useful
dialog boxes out of the 200-odd that Word provides. (Your mileage will vary.)

Dialog Box VBA Name

New wdDialogFileNew

Open wdDialogFileOpen

Print wdDialogFilePrint

Save As wdDialogFileSaveAs

Find and Replace (Find tab) wdDialogEditFind

Find and Replace (Replace tab) wdDialogEditReplace

Find and Replace (Go To tab) wdDialogEditGoTo

Paste Special wdDialogEditPasteSpecial

Font wdDialogFormatFont

Paragraph wdDialogFormatParagraph

Insert Table wdDialogTableInsertTable

Zoom wdDialogViewZoom

Table 14-1  VBA Names for
Word’s 12 Most Useful Dialog
Boxes

Word 2007 Macros & VBA Made Easy

208

Understand the Different Ways of
Displaying Built-in Dialog Boxes
Word lets you display dialog boxes in two different ways:

Display the dialog box so that it runs just as it would normally. For ππ

example, you can display the Open dialog box so that the user can pick
a document to open.

Display the dialog box, retrieve the user’s choices from it, and then ππ

implement the relevant choices. For example, you can display the
Open dialog box, have the user select a document—but then delete
the document rather than opening it. (This is just an example—I don’t
recommend doing this.)

To find the names of all Word’s built-in dialog boxes,
search for the Built-in Dialog Box Argument Lists
topic in VBA help. This topic shows the full list of
dialog boxes and all the arguments you can use with
them (more on these later in this chapter).

Not all of the dialog boxes on this list are
available in Word 2007. For example, some are
only in Mac versions of Word. Most of these
have “Mac” in their names to indicate this, as in
wdDialogFileMacPageSetup.

As when working in Word, you can display some
dialog boxes (such as the Open dialog box) almost
anytime via VBA. Other dialog boxes are available
only when you’ve selected the appropriate object or
when you’re performing a particular process. For
example, the various mail-merge dialog boxes are
available only when you’re working on mail-merge
documents. If you try to display them at different
times, VBA gives an error.

�How to Find the other Built-in Dialog Boxes

� Chapter 14  Use Word’s Built-In Dialog Boxes in Your Macros

209

Display a Dialog Box
the Normal Way
To display a dialog box the normal way, you use the Show method. Try
this example, in which you replace the VBA code for opening the Latest
Report.docx document with the Open dialog box that lets the user open the
document they want:

In the Code window for the WMME_Chapter_14 module, select the 1.	
Documents.Open statement (all four lines of it), and then press delete
to delete it.

In its place, type the following statement, using VBA’s code-2.	
completion features to help enter the constant for the dialog box:

Dialogs(wdDialogFileOpen).Show

This will display the Open dialog box—but first, it would be useful to 3.	
change the directory to your WMME folder, so that the right documents
appear in the Open dialog box. Add a ChangeFileOpenDirectory
statement before the Dialogs statement, copying the folder path from
the ActiveDocument.SaveAs statement later in the macro. Here’s an
example:

ChangeFileOpenDirectory "C:\Users\Ken\Documents\WMME"

Dialogs(wdDialogFileOpen).Show

Press 4.	 f5 or click the Run Sub/UserForm button to run the macro. After
you click the Yes button in the initial message box, Word displays the
Open dialog box, showing the contents of your WMME folder.

Select the Latest Report.docx document, and then click the Open button. 5.	
Word opens the document, and the rest of the macro runs as normal.

Word 2007 Macros & VBA Made Easy

210

Display a Dialog Box and
Retrieve Its Settings
The second way to display a dialog box is to make the dialog box appear so
that the user can make choices in it, but not have the dialog box perform the
actions unless you choose to perform them. Instead, you retrieve the user’s
choices from the dialog box and take whichever actions you need to.

When you display a built-in dialog box that contains
tabs, you can use the DefaultTab property to control
which tab appears at the front of the dialog box.

The tab name is the dialog box’s name, followed
by “tab” and then by either the literal name of the
tab or a descriptive name. For example, the Indents
And Spacing tab of the Paragraph dialog box is called
wdDialogFormatParagraphTabIndentsAndSpacing,
but the Line And Page Breaks tab is called
wdDialogFormatParagraphTabTextFlow. (Microsoft has
changed tab names over the years but kept the VBA
names the same so that code works as consistently as
possible.) The easiest way to find the tab names is by
using Word’s code-completion features.

For example, click in the Code window below your
WMME_Transfer_Data_with_Dialogs macro and type
the following macro, which displays the Line And
Page Breaks tab of the Paragraph dialog box:

Sub WMME_Dialog_Tab()

 With Dialogs(wdDialogFormatParagraph)

 .DefaultTab = wdDialog

FormatParagraphTabIndentsAndSpacing

 .Show

 .DefaultTab =

wdDialogFormatParagraphTabTextFlow

 .Show

 End With

End Sub

Make sure you have a document open in Word.
Then click in the macro and press f5 or click the Run
Sub/UserForm button to run it.

The first Show statement displays the Indents and
Spacing tab of the Paragraph dialog box. Click the
Cancel button to close the dialog box. The second
Show statement displays the Line and Page Breaks
tab of the Paragraph dialog box. Click the Cancel
button again.

�display a Tab of a Built-in Dialog Box

� Chapter 14  Use Word’s Built-In Dialog Boxes in Your Macros

211

To display a dialog box without executing the user’s choices, you use the
Display method of the appropriate Dialog object. After the user clicks the
button to dismiss the dialog box, you can check the settings that the user
chose and take action accordingly. If the settings are suitable for whatever
you’re doing, you can use the Execute method to “execute” the dialog box—in
other words, implement the settings.

As it stands, the example macro saves the document it has created under
the name Latest Report.docx. Follow these steps to make the macro display
the Save As dialog box so that the user can choose the filename:

In the ActiveDocument.SaveAs statement, select the folder path 1.	
and filename after the FileName argument (including the double
quotation marks) and press ctrl-c to copy it to the Clipboard.

Select the ActiveDocument.SaveAs statement (all five lines of it), and 2.	
then press delete to delete it.

Press 3.	 enter to create a new line where the statement was, and then
type this With statement on that line:

With Dialogs(wdDialogFileSaveAs)

 .Display

End With

Click in the macro, and then press f5 or click the Run Sub/UserForm
button to run it. At the end of the macro, the Save As dialog box appears,
apparently as normal, so that you can choose a folder and filename for the
new document. But you’ll notice that when you click the Save button and
close the dialog box, the document doesn’t get saved—and then when the
ActiveDocument.Close statement goes to close the macro, it prompts you to
decide whether to save changes. Click the No button so that VBA can finish
running the macro.

Users may find this
behavior confus-
ing, so it’s a good
idea to warn them
first. For example,
display a message
box telling the user
that the Open dialog
box will appear so
that they can select
a document—but
that the macro will
then process the
document rather than
opening it.

Memo

Word 2007 Macros & VBA Made Easy

212

Choose and Check Settings
in a Built-in Dialog Box
Before displaying a built-in dialog box, you may want to set some of the
settings it contains—for example, to encourage the user to use the macro as
you intend.

Find Out What the Settings Are Called
To change a setting, you specify the value for the appropriate argument. To
find the arguments, follow these steps:

Click in the Help box in the upper-right corner of the Visual Basic 1.	
Editor window.

Type 2.	 dialog box argument list and press enter.

In the Word Help window, click the Built-in Dialog Box Argument 3.	
Lists topic.

Scroll down to the dialog box you want, and find the argument you 4.	
need.

Choose Settings in a Built-in Dialog Box
Try this example of choosing two settings in the Save As dialog box you added
to the macro:

Click in the With Dialogs(wdDialogFileSaveAs) statement before the 1.	
.Display statement, and press enter to create a new line.

On the new line, type a ChangeFileOpenDirectory statement and paste 2.	
in the path you copied to the Clipboard, deleting the filename. For
example:

ChangeFileOpenDirectory "C:\Users\Ken\Documents\WMME\"

When finding dialog
box arguments, you
may need to open the
dialog box itself in
Word so that you can
match the arguments
to the interface.
Often, the names
aren’t the same. For
example, the VBA
argument for the Save
As Type drop-down
list in the Save As
dialog box is Format.
Usually, the names
are easy enough to
work out when you
see the arguments
and the dialog box at
the same time, but
you’d have a hard
time guessing them.

Memo

� Chapter 14  Use Word’s Built-In Dialog Boxes in Your Macros

213

On the next line, type 3.	 .format = 0, so that you have this:

With Dialogs(wdDialogFileSaveAs)

 ChangeFileOpenDirectory "C:\Users\Ken\Documents\WMME\"

 .Format = 0

 .Display

End With

Press 4.	 f5 to test the macro. This time, when the Save As dialog box
appears, the Save As Type drop-down list has the Word 97–2003
Document (*.doc) format selected.

Change the statement to 5.	 .Format = 12 and run the macro again.
This time, the Save As Type drop-down list has the Word Document
(*.docx) format selected, which is probably the best choice.

Check the Settings the User Chose
After the user has clicked a button to close the dialog box, you can check the
settings they’ve chosen. You can do this for either the Show method or the
Display method, but it’s usually much more use for the Display method,
because you can then take actions accordingly; with the Show method, the
horse will typically already have bolted.

For example, when the user closes the Save As dialog box, you may want
to check that the user hasn’t chosen the wrong file format. Try changing your
With Dialogs(wdDialogFileSaveAs) statement so that it looks like this (apart
from the folder path):

With Dialogs(wdDialogFileSaveAs)

 ChangeFileOpenDirectory "C:\Users\Ken\Documents\WMME\"

 .Format = 12

 .Display

 If .Format <> 12 Then

 If .Format <> 0 Then

 .Format = 12

 End If

 End If

End With

Entering the
.Format = 0 state-
ment may feel a bit
weird because the
List Properties/
Methods feature
doesn’t show the
argument. Just con-
tinue typing it anyway,
and VBA will not only
accept it but apply
the initial capital to
“Format” for you.

Memo

Word 2007 Macros & VBA Made Easy

214

After the .Display statement displays the Save As dialog box, the If
statement checks to see if the format is not 12 (the Word .docx format). If
it’s not, the nested If statement checks to see if the format is not 0 (the Word
97–2003 document format), which is okay too. If the format isn’t 0 either, the
macro changes the format to 12, so that the document will be saved in Word
.docx format.

To execute the dialog box’s settings, you can add an .Execute statement,
like this:

.Execute

But first, you’ll probably want to check that the user didn’t click the Cancel
button in the Save As dialog box, as described next.

Find Out Which Button the User
Clicked in a Built-in Dialog Box
To find out which button the user clicked in a dialog box, check the return
value VBA assigns to the Display method or the Show method. Table 14-2
shows the values.

Button Clicked Return Value

OK –1

Cancel    0

Close –2

First command button (other than OK, Cancel, or Close)     1

Second command button (other than OK, Cancel, or Close)     2

For example, the Save As dialog box has a Save button and a Cancel button.
Clicking the Save button or pressing enter returns –1, and clicking the Cancel
button or pressing esc returns 0.

Table 14-2  Return Values
from Built-in Dialog Boxes

� Chapter 14  Use Word’s Built-In Dialog Boxes in Your Macros

215

Change the end of your macro so that it looks like this (apart from the
folder path):

With Dialogs(wdDialogFileSaveAs)

 ChangeFileOpenDirectory "C:\Users\Ken\Documents\WMME\"

 .Format = 12

 If .Display = -1 Then

 If .Format <> 12 Then

 If .Format <> 0 Then

 .Format = 12

 End If

 End If

 .Execute

 ActiveDocument.Close

 MsgBox "The macro has created the report summary.", _

 vbOKOnly + vbInformation, "Transfer Data Macro"

 End If

End With

By now, you can quickly grasp what happens:

The ChangeFileOpenDirectory statement sets the folder in which the ππ

macro encourages the user to save the document. (Again, you’ll have
your own folder here.)

The .Format = 12 statement makes the Save As Type drop-down list ππ

show Word Document (*.docx) at first.

The If Display = –1 Then statement displays the Save As dialog box ππ

and checks its return value to see if the user clicked the Save button or
pressed enter. If this is the case, the rest of the code runs, checking the
format, executing the settings in the dialog box, closing the document,
and displaying the message box. If not, the user must have clicked the
Cancel button or pressed esc, in which case the macro simply leaves
the document open and unsaved.

Word 2007 Macros & VBA Made Easy

216
Right-click the If .Format <> 12 Then statement and then choose Toggle |

Breakpoint from the context menu to set a breakpoint. (If you don’t do this,
VBA executes the whole of the If .Display statement at once when you close
the Save As dialog box even if you’re stepping through the macro.) Then press
f8 to step through the macro twice. Test what happens both when you click
the Save button and when you click the Cancel button.

Sometimes you may want to make a built-in dialog
box appear for a short length of time, then close
it automatically if the user is not present to close
it manually. You can do this by using the TimeOut
argument and specifying the time in milliseconds.

Click in the Code window below your WMME_
Transfer_Data_with_Dialogs macro and type the
following macro:

Sub WMME_Dialog_Timeout()

 Dialogs(wdDialogFilePrint).Show

TimeOut:=5000

End Sub

Click in the macro and press f5 or click the Run
Sub/UserForm button to run the macro. You’ll see
Word open the Print dialog. Wait five seconds, and
Word closes it again.

The TimeOut argument works only for some built-
in dialog boxes, so test it to make sure it works with
the dialog box you’ve chosen.

Set a Timeout for a Built-In Dialog Box

15
Share Your
Macros with
Others
Once you’ve created powerful macros that save you
time and effort, you’ll probably want to share them
with your colleagues so that they can save time and
effort too. This chapter shows you how to share
your macros.

In an ideal world, sharing your macros would
be easy. But because macro viruses can do huge
amounts of damage, Microsoft has built into the
Office programs security mechanisms that make
sharing harder.

So before you can share your macros effectively,
you need to understand Word’s security features. You
may need to change the security settings on your
PC so that you can work with macros; likewise,
you may need to adjust the Office security settings
on your colleagues’ PCs (or have your colleagues
adjust them) before they can run the macros you’ve
developed.

To get the macros onto your colleagues’
computers, you may need to move macros from
one document or template to another. You will
probably also have to sign your macros with digital
signatures to prove that you created them.

Word 2007 Macros & VBA Made Easy

218

Understand Why Macro Viruses
Pose a Threat to Windows
As you’ve seen throughout this book, VBA and the Macro Recorder greatly
increase Word’s power, flexibility, and usefulness. Unfortunately, VBA
and macros also expose Word (and other VBA-enabled applications) to the
attentions of malefactors who create macro viruses—harmful code built using
a macro language.

Macro viruses can be contained in frequently exchanged files—such as
Word documents, Excel documents, or PowerPoint presentations—and can
be triggered when the file is opened, closed, or otherwise manipulated. So
whenever anyone sends you a file, you should check it for macro viruses
using an antivirus program.

Macro viruses can spread themselves in several ways. Some automatically
add themselves surreptitiously to your existing documents and insert
themselves into new documents you create. When you share a document
with another user, that user’s computer becomes infected with the virus as
well and can spread it further. Other macro viruses take a more aggressive
approach, using a programmable e-mail application such as Outlook to
send themselves to as many people as possible as an apparently normal or
attractive document attached to a suitable e-mail message. For example, a
macro virus designed to spread in a corporate environment might disguise
itself as a routine document such as a memo or spreadsheet. A macro
designed to spread anywhere might appeal to recipients’ curiosity by
pretending to contain—or actually containing—jokes or smut.

To protect its users against macro viruses, Office includes antivirus features.
To use macros and VBA, you need to understand what these features are and
how they work.

Understand and Set Security Levels
Office uses a four-part security mechanism for preventing harmful code from
being run by an Office application:

VBA is by no means
the only macro
language that can
be exploited by virus
writers, but because
Office and VBA are so
widely used, they’re
the most popular
targets for malefac-
tors. In particular,
because Outlook
can be controlled via
VBA, it’s one of the
easiest ways for a
malefactor to spread
a virus: Outlook (or
one of the other VBA-
enabled applications)
can be programmed
to automatically send
messages to every
entry in its address
book. This can gener-
ate enough e-mail to
crash even powerful
corporate mail serv-
ers in short order.

Memo

� Chapter 15  Share Your Macros with Others

219

Security levelππ   You can set security levels to specify whether an
installation of Office may or may not run code that might be harmful.
You can set a different security level in each Office application, if you
wish. For example, you might set Word to use the Medium security
level but set Excel to use the High security level.

Digital signatureππ   You can sign a VBA project (a unit of VBA code)
with a digital signature derived from a digital certificate to prove that
you were the last person who changed that VBA project. This digital
signature tells other people the source of the VBA project. If other
people have reason to trust you, they may trust the code you’ve signed.

Trusted locationsππ   You can tell a particular Office program (for
example, Word) that certain folders are trusted locations—folders that
you guarantee will never contain unsafe code. Word then allows you to
run code in documents contained in those trusted locations.

Trusted publishersππ   You can designate certain digital certificates as
being trusted publishers, telling the Office security mechanism to trust
any code signed with one of those digital certificates. Again, you’re
telling the Office application that you’re taking responsibility for the
safeness of the code.

As you can see, these security measures are intertwined. The following
sections discuss how you work with them.

Set the Security Level for Running VBA Code
To set the security level that Word uses for macros, follow these steps:

Click the Microsoft Office button and then click Word Options. Word 1.	
displays the Word Options dialog box.

In the left panel, click the Trust Center category, and then click the 2.	
Trust Center Settings button. Word displays the Macro Settings
category in the Trust Center dialog box, shown next.

Office’s antivirus
features provide some
protection against
macros written in
VBA, but there are
plenty of non-VBA
types of viruses,
scripts, and other
malware (malicious
software) that can
damage your software
or hardware. So even
with Office’s antivirus
measures turned
on, you should use
third-party antivirus
software to protect
your computer.

Memo

Word 2007 Macros & VBA Made Easy

220

In the Macro Settings area, select an option button to tell Word how 3.	
to handle macros contained in documents stored in folders that are
not trusted locations. Take the following into consideration when you
make your choice:

Usually, the best choice for someone who uses macros is the ππ

Disable All Macros With Notification option button, which
disables all macros and displays a Security Warning bar to let you
know that it has done so. (The sidebar “Enable Blocked Macros”
shows an example of the Security Warning bar.) You can choose to
enable the macros or leave them disabled.

The Disable All Macros Without Notification option button ππ

makes Word disable the macros but give you no indication that
it has done so. This setting is useful for users who should not
receive documents containing macros and, even if they do, should
certainly not run such macros.

� Chapter 15  Share Your Macros with Others

221

In a corporate environment, an administrator may set up Word ππ

using the Disable All Macros Except Digitally Signed Macros
option button to ensure that you can run only macros that have
been tested, approved, and signed.

The Enable All Macros option button is a setting that only security ππ

researchers working on cordoned-off computers should use.

In the Developer Macro Settings area, clear the Trust Access To The 4.	
VBA Project Object Model check box unless you’re creating your own
macros in the Visual Basic Editor (as opposed to using the Macro
Recorder, as described in this chapter).

Leave the Trust Center dialog box open so that you can verify your 5.	
trusted locations, as described in the next section.

If you choose the Disable All Macros With
Notification option button in the Macro Settings
category in the Trust Center dialog box, Word

displays a Security Warning bar below the Ribbon
when it disables macros. Here’s an example:

Enable Blocked Macros

Continued . . .

Word 2007 Macros & VBA Made Easy

222

If you don’t need to use the macros (or if you don’t
know what they are), you can leave them blocked
by simply clicking the Close button (the × button)
on the Security Warning bar. But if you want to enable
the macros, click the Options button. Word displays
the Microsoft Office Security Options: Security
Alert – Macro dialog box. If the document is signed
with a digital signature, but the digital signature is
invalid, the dialog box looks like this, with only the
Help Protect Me From Unknown Content option
button available:

If the digital signature is valid, but it’s from a
publisher that you haven’t yet specified you trust, the
Security Alert – Macro dialog box looks like the next
dialog box.

If the document doesn’t have a digital signature,
the Security Alert – Macro dialog box contains the
Help Protect Me From Unknown Content option
button and the Enable This Content option button,
but not the Signature box or the Trust All Documents
From This Publisher option button.

If the Signature box appears (as in the example
here), examine the details of the digital certificate,
and then decide whether this is a person or company
you can trust. To see the details of the digital
certificate, click the Show Signature Details link. Word
displays the Digital Signature Details dialog box.

For either a signed document with a valid signature
or an unsigned document, select the Enable This
Content option button if you want to enable the
content for this document. If the document has a
digital signature, you can also select the Trust All
Documents From This Publisher option button to tell
Word to add the holder of this digital certificate to
your list of trusted publishers.

Click the OK button. If you chose to enable the
macros, Word enables them.

� Chapter 15  Share Your Macros with Others

223

Verify Your List of Trusted Locations
To enable yourself to run the macros you need to run, verify the folders that
Word is set to regard as trusted locations. You may need to add other folders
to the list, or even remove existing folders that you no longer want to trust.

To verify your trusted locations, follow these steps:

In the Trust Center dialog box, click the Trusted Locations category in 1.	
the left panel. Word displays the Trusted Locations list (see Figure 15-1).

Look through the folders to make sure that you want to trust all of 2.	
them. If the Path readout in the list doesn’t show the full path to the
folder, click the entry to select it, and then look at the Path readout
below the list box. Word normally trusts the following folders, but an
administrator may have added further trusted locations to this list:

User Templates folderππ   This folder contains your user
templates—the templates you create or download. In a corporate
environment, an administrator may have removed this folder
from the list of trusted locations.

In a corporate envi-
ronment, an admini-
strator may prevent
you from adding or
changing trusted
locations and trusted
publishers.

note

Figure 15-1  The Trusted
Locations category in the
Trust Center dialog box lets
you tell Word which folders
contain trustworthy code.

Word 2007 Macros & VBA Made Easy

224

Startup folderππ   This folder contains your personal items to be
loaded when Word starts—for example, any global templates
that you require other than the Normal template. In a corporate
environment, an administrator may have removed this folder
from the list of trusted locations.

Application Templates folderππ   This folder contains the templates
installed automatically by Office.

Policy Locations listππ   This list shows folders that have been added
via group policy, a tool that Windows network administrators use
to configure Windows and applications across a network. (If your
PC doesn’t connect to a Windows Server–based network, this item
doesn’t appear.)

To add a trusted location to the list, follow these steps:3.	

Click the Add New Location button. Word displays the Microsoft ππ

Office Trusted Location dialog box, shown here with choices made:

In the Path text box, enter the path to the folder. If you wish, ππ

you can type the path, but it’s usually easier to click the Browse
button, use the Browse dialog box to select the folder, and then
click the OK button.

� Chapter 15  Share Your Macros with Others

225

If you want Word to trust the contents of any subfolders this ππ

folder contains, select the Subfolders Of This Location Are Also
Trusted check box. If you keep documents that contain macros
in a hierarchy of folders, you need to either select this check box
for the parent (topmost) folder or designate each folder in the
hierarchy as a trusted location.

In the Description text box, type a description of the trusted ππ

location. This description appears in the Trusted Locations list to
help you identify the trusted location.

Click the OK button. Word closes the Microsoft Office Trusted ππ

Location dialog box and adds the trusted location to the Trusted
Locations list.

To remove a trusted location, select it in the Trusted Locations list and 4.	
then click the Remove button.

To modify a trusted location, select it in the Trusted Locations list 5.	
and then click the Modify button. Word displays the Microsoft Office
Trusted Location box, in which you can change the folder or its
description. The change you’ll most often want to make is to select
the Subfolders Of This Location Are Also Trusted check box for the
folder. For example, you might need to trust the subfolders of your
User Templates folder, because Word does not trust these subfolders
by default.

If you need to work with documents or templates containing code 6.	
that are stored in folders on your network, select the Allow Trusted
Locations On My Network check box. Unless you control your entire
network (for example, it’s your home network), this setting may
expose your computer to code that others create. If you can keep all
your code in folders on your hard drive, leave this check box cleared.

Word 2007 Macros & VBA Made Easy

226

Clear the Disable All Trusted Locations, Only Files Signed By Trusted 7.	
Publishers Will Be Trusted check box if you need to work with your
own code. Selecting this check box gives Word tight security, but it
makes developing your own macros hard work.

Leave the Trust Center dialog box open so that you can verify your 8.	
trusted publishers, as described in the next section.

Designate Trusted Publishers for VBA Code
The Trusted Publishers category in the Trust Center dialog box (see Figure 15-2)
lists the publishers you or your administrator have specified as being trusted.
In this context, a publisher means the holder of a particular digital certificate.
Click the View button to display the details of a selected publisher, or click the
Remove button to remove a selected publisher you no longer want to trust.

You can add trusted publishers to your Windows installation by selecting
the Trust All Documents From This Publisher option button in the Microsoft
Office Security Options: Security Alert – Macro dialog box, as discussed
earlier in this chapter.

Figure 15-2  Use the Trusted
Publishers category in the
Trust Center dialog box to
examine, manage, and
remove trusted publishers.

The list of trusted
publishers is applied
across all Windows
applications and fea-
tures that use digital
certificates. So if you
add a trusted pub-
lisher in Word, Excel
and PowerPoint trust
that publisher too.

memo

� Chapter 15  Share Your Macros with Others

227

Move a Macro to a Different
Document or Template
Before distributing a macro, you’ll often need to move it to a different document
or template. Word provides two ways of doing so:

Move the macro manuallyππ   Open the macro in the Visual Basic Editor,
as you’ve been doing throughout this book. Select the macro’s code,
copy or cut it, and then paste it into a module in the other document or
template.

Use the Organizer to move the module that contains the macroππ   The
process is simple, but you have to move an entire module: You cannot
move just a macro.

To move a module and all the macros it contains, follow these steps:

Open the document or template that contains the module. If the 1.	
module is in a template, open either the template itself or (easier) a
document to which the template is attached.

Open the document or template to which you want to move the 2.	
module. If the destination is a template, you need only open a
document to which the template is attached.

Choose Developer | Code | Macros or press 3.	 alt-f8. Word displays the
Macros dialog box.

Click the Organizer button. Word displays the Organizer dialog box 4.	
(see Figure 15-3) with the Macro Project Items tab foremost.

In the Macro Project Items Available In drop-down list on either 5.	
the left side or the right side of the Organizer dialog box, select the
document or template that contains the module. The In list box on
that side shows the modules and other code items the document or
template contains.

Word 2007 Macros & VBA Made Easy

228 In the other Macro Project Items Available In drop-down list, select 6.	
the destination document or template. The To list box on that side
shows the modules and other code items the document or template
contains.

In the first list box, select the module you want to move, copy, delete, 7.	
or rename.

Click the appropriate button:8.	

To move or copy the module, click the Copy button. To move the ππ

module, copy the module like that, then click the Delete button
to delete the module from the source document or template, and
confirm the deletion.

To delete the module, click the Delete button, and then confirm ππ

the deletion.

To rename the module, click the Rename button, type the new ππ

name in the Rename dialog box, and then click the OK button.

Figure 15-3  The Macro
Project Items tab of the
Organizer dialog box lets you
move a code module from
one document or template to
another. You can also rename
or delete a code module. But
you cannot move a macro on
its own.

You can open
another document
or template by
clicking either the
left or right Close
File button, clicking
the Open File button
that replaces it,
and then selecting
the document
or template. But
usually it’s much
easier to open
both documents or
templates before
displaying the
Organizer dialog box.

The Easy Way

� Chapter 15  Share Your Macros with Others

229

When you’ve finished working with the Organizer dialog box, click the 9.	
Close button.

shift10.	 -click the Microsoft Office button, and then choose Save All from
the menu to save all the changes you’ve made to the documents and
templates.

Understand and Use
Digital Signatures
As you saw earlier in this chapter, the Office security mechanism uses a
digital signature on a macro project to determine whether the source of the
project is trusted (and, therefore, whether you can use the project or not). In
this section, you’ll learn what a digital signature is and how you get a digital
certificate for applying a digital signature.

Understand What Digital Certificates Are
and What They’re For
A digital signature is derived from a digital certificate, an encrypted piece of
code intended to identify its holder. That holder may be an individual, a group
of individuals, a department, or an entire company. Different types of digital
certificates are available, including the following:

Personal certificatesππ   For signing and encrypting e-mail messages

Software developer certificatesππ   For signing macros and software

Corporate certificatesππ   For identifying companies or parts of them

Digital certificates aren’t foolproof, but they provide reasonably effective
security. Digital certificates are issued by certification authorities (CAs) and
are only as reliable as the CAs choose to make them. For example, some CAs
let you buy a personal digital certificate over the Web without providing any
more verification than a credit card number and its current expiry date.

Word 2007 Macros & VBA Made Easy

230

This standard of verification is satisfactory for telephone and Internet
mail order because the physical address to which the goods are delivered
corroborates the information on the credit card (assuming the goods are
delivered to the card’s billing address). But for proving identity via the
Internet, this standard of verification is woefully unsatisfactory.

Software developer certificates and corporate certificates typically require
better proof of identity than this, but again they usually leverage existing
means of identification (for example, passports or other identity cards for
individuals, business listings such as Dun & Bradstreet for companies, and so
on) rather than checking rigorously from scratch. Another problem is that a
digital certificate can be stolen from its holder, used by someone else without
the holder’s permission, applied inadvertently by its holder, or applied by
malware (hostile software) running on the holder’s computer.

Get and Install a Digital Certificate
The five main public sources of digital certificates at the time of this writing are

VeriSignππ (www.verisign.com)

Thawteππ (www.thawte.com; a VeriSign company)

GeoTrustππ (www.geotrust.com; a VeriSign company)

Comodoππ (www.comodo.com)

GoDaddyππ (www.godaddy.com)

If your company requires that you use a digital certificate in your work,
it may well run a CA of its own. For example, Windows Server provides CA
features.

When you acquire a digital certificate, you’ll need to install it on your
computer before you can use it. The certificate-issuing routines that some
CAs use automatically install the certificate for you. To install the certificate
manually, double-click the certificate’s file and follow the steps in the
Certificate Import Wizard, which Windows launches.

www.verisign.com
www.thawte.com
www.geotrust.com
www.comodo.com
www.godaddy.com

� Chapter 15  Share Your Macros with Others

231

Sign a Word Document or Template
with a Digital Signature
Before distributing your macros to your colleagues, it’s a good idea to sign the
project that contains them with a digital signature issued by or approved by
your company. By signing the project, you can make Word treat your macros
as trusted rather than as suspicious, and your colleagues can keep Word’s
defenses in place rather than trust untrustworthy code.

To sign a document or template with a digital signature, follow these steps:

Open the document or template and make it active.1.	

Press 2.	 alt-f11. Word opens the Visual Basic Editor and selects the
project for the active document or template in the Project Explorer
window in the upper-left corner of the Visual Basic Editor window.

Office includes a tool called Digital Certificate for VBA
Projects that enables you to create your own digital
certificates to practice signing code. This is a useful
practice tool, but the certificate is useless in the real
world, because your identity isn’t authenticated. As a
result, Office trusts a certificate created with Digital
Certificate for VBA Projects only on the computer that
created the certificate.

Digital Certificate for VBA Projects is included
in Complete installations of Office. For other
installations, you may need to install it by rerunning
the Office installation program. Expand the Office
Shared Features category, click the drop-down button
on the Digital Signature For VBA Projects item, and
then choose Run From My Computer from the menu.

Once Digital Certificate for VBA Projects is
installed, you can run it by choosing Start | All
Programs | Microsoft Office | Microsoft Office Tools |
Digital Certificate For VBA Projects. In the Create
Digital Certificate dialog box (shown here), type the
name you want to assign to the certificate, and then
click the OK button.

Digital Certificate for VBA Projects displays a
SelfCert Success dialog box (the application’s filename
is SelfCert.exe) telling you that the certificate was
created. The application also installs the certificate
automatically for you, so you don’t need to install it
manually.

Create Your Own Digital Certificate for Office

Word 2007 Macros & VBA Made Easy

232

�Choose Tools | Digital Signature. The Visual Basic Editor 3.	
displays the Digital Signature dialog box.

�Click the Choose button. The Visual Basic Editor displays the 4.	
Select Certificate dialog box:

Click the certificate you want (click the View Certificate button if you 5.	
want to see more of the certificate’s details), and then click the OK
button. The Visual Basic Editor closes the Select Certificate dialog box
and returns you to the Digital Signature dialog box, which now shows
the certificate you chose.

Click the OK button. The Visual Basic Editor closes the Digital 6.	
Signature dialog box.

Choose File | Close And Return To Microsoft Word. The Visual Basic 7.	
Editor closes, and the Word window becomes active.

Press 8.	 ctrl-s or click the Save button on the Quick Access Toolbar to
save the change to the project.

If you change the
code in a project, you
will need to apply
the digital signature
again. The digital
signature certifies
that the code has
not been changed
since you applied the
signature.

memo

A

Accelerator property, 56
ActiveWindow.Close

statements, replacing,
30–31

Add method, 26, 156,
164–166, 176

ambiguous name
errors, 107

Application object,
118–119

Application Templates
folder, 224

arguments, 27
Auto Syntax Check, 191

B

blocked macros, enabling,
221–222

bookmarks, 153–154
Bookmark object, 154
creating, 156
deleting, 158–159
displaying bookmark

markers, 159

finding out if a
bookmark
exists, 156

going to a
bookmark, 157

hidden, 156
inserting, 154
regular bookmarks,

155–159
removing all

bookmarks from a
document, 159

retrieving text
contained in, 157

secret, 159–161
setting text in, 158

Boolean data type, 109
Break mode, 193, 194
breakpoints, 193
built-in dialog boxes.

See dialog boxes
button shortcuts

creating, 11–13
testing, 15

buttons argument, 39,
40–41

Byte data type, 109

C

Call Stack dialog box,
197–198

Cancel button, adding the
subprocedure for,
69–70

Cancel property, 59
ChangeFileOpenDirectory

statement, removing, 30
Character object, 134
Class Modules folder, 20
clean documents, 82
ClearFormatting

method, 150
Click event, 64
Close method, 26
code

breaking code lines,
25, 45

creating a copy of a
code module,
37–38

defined, 2
See also VBA

Code window,
displaying, 65

Index

References to figures are in italics.

Word 2007 Macros & VBA Made Easy

234

collections, 27, 80
repeating actions for

each object in a
collection, 80–82

command buttons
buttons argument,

39, 40–41
special properties, 59

comments, 25
Comodo, 230

See also digital
signatures

compile errors, 29, 191
Complete Word

feature, 31
constants, 42, 111–113

scope, 112
context argument, 39
Copy method, 25
corporate certificates, 229

See also digital
signatures

Count property, 96
counter variable, 76
Currency data type, 109
custom dialog boxes,

49–50
adding a userform to

the Normal
template, 50–51

adding images, 54
adding labels, 55–56
adding option

buttons, 57–58
adding the combo

box to the top
frame, 57

adding the
subprocedure for
the Cancel button,
69–70

adding the
subprocedure for
the OK button,
66–69

adding the text box
and check box to
the third frame,
58–59

adding the three
frames, 54–55

aligning controls and
improving spacing,
60–63

changing the tab
order, 71

creating a macro to
display the dialog
box, 70–71

customizing the
appearance of
controls, 54–55

initializing the
userform, 64–65

testing, 70
userforms, 49
VBA controls for,

52–53
customizing an active

document, 11, 13

D

.docx file extension, 4, 51

.dotx file extension, 51

data types
Boolean, 109
Byte, 109
Currency, 109
Date, 109
Decimal, 109, 111
declaring variable

data types, 108–111
Double, 109
finding out what data

type your data is,
110–111

Integer, 109
Long, 109
Object, 109
Single, 109
String, 109
Variant, 109

Date data type, 109
Debug toolbar, 192–193
debugging macros, 190

best time to
debug, 192

four main types of
errors, 191–192

setting a breakpoint
to enter Break
mode, 193

stepping out of a
macro, 194

stepping over a macro
or function, 194

using the Call Stack
dialog box to see
which macros and
functions you’re
calling, 197–198

235

� Index

using the Locals
window to track
variable values, 194

using the Watch
window to track
important values,
194–197

See also error
handlers

Decimal data type,
109, 111

decision making. See If
statements; Select Case
statements

default, 46
Default property, 59
DefaultTab property, 210
Delete method, 141
deleting macros, 15, 123
dialog boxes

changing the tab
order, 71

checking the setting a
user chose,
213–214

choosing settings for,
212–213

displaying a tab of a
built-in dialog
box, 210

displaying and
retrieving its
settings, 208,
210–211

displaying the normal
way, 208, 209

finding, 207–208

finding out which
button the user
clicked, 214–216

finding the
arguments for, 212

return values, 214
setting a TimeOut

for, 216
VBA names for most

useful dialog
boxes, 207

See also custom dialog
boxes

Digital Certificate for VBA
Projects, 231

digital signatures, 219, 222
creating your own

digital certificate
for Office, 231

digital certificates,
229–230

getting and installing
digital certificates,
230

signing a Word
document or
template with,
231–232

See also security
Dim keyword, 104
dirty documents, 82
Do Until...Loop loops, 85
Do While...Loop loops, 75,

83, 84
creating, 84

Document object, 134, 142
document windows,

185–187

documents
closing, 180–182
creating, 176–177
deleting, 184
moving macros to a

different
document, 227–229

opening, 182–183
saving, 178–180

Do...Loop Until loops, 85
Do...Loop While loops, 85
Double data type, 109
drives, changing the

current drive, 183

E

editing macros
adding an Option

Explicit
statement, 29

adding statements,
31–33

identifying a compile
error, 29

opening a macro in
Visual Basic
Editor, 17

removing the
ChangeFile-
OpenDirectory
statement, 30

replacing
ActiveWindow
.Close statements,
30–31

running edited
macros, 34

Word 2007 Macros & VBA Made Easy

236

editing macros (cont.)
stepping into macros,

27–28
stepping through

macros, 23–26
empty strings, 48
enabling blocked macros,

221–222
End Sub statements, 25
error handlers

identifying the error
you want to trap,
198–199

setting up the error
trap and creating
the handler,
200–202

See also debugging
macros

errors
ambiguous name

errors, 107
compile errors,

29, 191
language (syntax)

errors, 191
program logic

errors, 192
resuming execution

after an error, 202
runtime errors,

191–192
See also debugging

macros
Exit For statements, 82
Export File dialog box, 37
Extend mode, 138

F

file extensions
.docx file extension,

4, 51
.dotx file extension, 51
hiding, 5

Find and Replace feature,
147–152

Find object, 148
fixed-iteration loops, 74
folders

Application
Templates
folder, 224

changing the current
folder, 183

creating, 184
deleting, 184–185
Startup folder, 224
templates folders,

178, 223
font formatting, 147

applying to
tables, 174

For Each...Next loops, 74,
80–82

creating, 81–82
using an Exit For

statement to
quit, 82

Forms folder, 20
For...Next loops, 74, 75–77

counter variable, 76
hard-coding, 73–74
moving through the

loop in larger
steps, 76

using an Exit For
statement to
quit, 82

using an input box to
control, 78–79

functions, 25

G

GeoTrust, 230
See also digital

signatures
GoDaddy, 230

See also digital
signatures

GoTo statements,
labels, 91

H

hard-coding, 73–74
For...Next loops, 74,

77–78
Help files, 115

finding an object
using, 119–120

helpfile argument,
39, 47

hot keys, 56

I

If statements, 43, 87
checking a single

condition, 89
choosing among

multiple courses of
action, 92–94

237

� Index

deciding among two
courses of action,
89–92

types of, 88–89
If...Then statements,

88, 89
If...Then...Else statements,

89–92
If...Then...ElseIf...Else

statements, 89, 92–94
Immediate window,

129–131
Import File dialog box, 38
indefinite loops, 74
Information property,

138–140
input boxes, 45

adding to macros, 47
syntax, 46–47
testing, 48
using to control a

For...Next loop,
78–79

See also message
boxes

InsertAfter method,
140–141

InsertBefore method,
140–141

InsertParagraph
method, 141

InsertParagraphAfter
method, 141

InsertParagraphBefore
method, 141

Integer data type, 109
iteration, 74

K

keyboard shortcuts
creating, 13–14
testing, 15

Kill statement, 184

L

labels, 91
language (syntax)

errors, 191
See also debugging

macros
Latest Report.docx, 4–8
List Properties/Methods

feature, 116
finding an object

using, 129–131
ListBox control, 65
Locals windows, 194
Long data type, 109
loop invariant, 74
loops

Do Until...Loop
loops, 85

Do While...Loop loop,
75, 83–84

Do...Loop Until
loops, 85

Do...Loop While
loops, 85

fixed-iteration
loops, 74

For Each...Next loops,
74, 80–82

For...Next loops, 74,
75–79

indefinite loops, 74
iteration, 74
loop invariant, 74

M

Macro Recorder, 2, 116
deleting a recorded

macro, 123
finding using the

Macro Recorder,
120–124

opening a recorded
macro, 122–123

preparing to record a
macro, 3–4

recording macros,
120–122

using with Excel, 3
using with

PowerPoint, 3
macro viruses, 218

See also security
macros

debugging, 190–198
defined, 1–2
deleting, 15
moving to a different

code module, 9–11
naming macros, 7
stepping into,

27–28
stepping through,

23–26
storing, 8

MatchSoundsLike, 148
Me keyword, 66
Me.Hide method, 66

Word 2007 Macros & VBA Made Easy

238

message boxes, 35–36
adding, 41–43
adding and testing a

second message
box, 44

creating multiple
lines of text in, 45

setting up Visual
Basic Editor to
working with,
36–38

syntax, 38–39
testing, 43–44
two-button message

boxes, 44, 45
See also input boxes

methods, 27
Microsoft Word Objects

folder, 19–20
mistakes, fixing, 4
Modules folder, 20
MoveDown method, 25
moving macros to a

different document or
template, 227–229

MsgBox, 39
See also message

boxes
myDocument.Close

statement, 82

N

naming macros, 7
naming variables, 101

ambiguous name
errors, 107

NewMacros module,
moving macros out of,
9–11

Normal template,
adding userforms to,
50–51

O

Object Browser, 116
closing, 128
Copy to Clipboard, 127
finding an object

using, 126–128
Go Back and

Go Forward
buttons, 127

hiding the Search
Results pane, 126

Links, 128
opening the Object

Browser, 124–126
resizing, 126
View Definition, 127
wildcards, 127

Object data type, 109
objects, 27

finding using the
Help files, 119–120

finding using the List
Properties/
Methods feature,
129–131

finding using the
Macro Recorder,
120–124

finding using the
Object Browser,
124–128

selecting, 55
OK button, adding the

subprocedure for, 66–69
Open dialog box, 6
Open method, 25
opening macros,

122–123
Option Explicit

statement, 29
Organizer, moving

macros to a different
document or template,
227–229

P

paragraph formatting, 146
Paragraph object, 133
PasteAndFormat

method, 26
personal certificates, 229

See also digital
signatures

playing back a recorded
macro, 7–8, 34

Policy Locations
list, 224

program logic errors, 192
Project Explorer window,

19–20
prompt, 39, 46
properties, 27
Properties window,

20–21, 50

239

� Index

Q

Quick Access Toolbar
creating a button

shortcut, 11–13
removing a macro

button, 15
testing button

shortcut, 15

R

rand() function, 4
ranges, 142–145
read-only properties, 27
read-write properties, 27
Record Macro dialog box,

5–6
recording macros, 5–6,

120–122
fixing mistakes, 4
pausing, 6
playing back a

recorded macro,
7–8

preparing to record,
3–4

stopping recording, 7
References folder, 20
renaming macros and

modules, 38
Replacement object,

147–148
Report Summary.docx,

6, 183
Resume line

statement, 202

Resume Next
statement, 202

Resume statement, 202
Ribbon, displaying the

Developer tab, 2, 3
running edited macros, 34
runtime errors, 191–192

S

SaveAs method, 26,
178–180

scope, 104
private, 104–105, 112
procedure, 104, 112
public, 105–107, 112

ScreenTips, 47
security

digital signatures,
219, 222, 229–232

security levels,
219–221

Security Warning bar,
221–222

trusted locations, 219,
223–226

trusted publishers,
219, 226

viruses, 218
Select Case statements,

87, 93, 94–95
creating a macro

using, 95–97
selecting objects, 55
Selection object, 25

changing, 124
deleting the

selection, 141

deselecting the
selection, 141–142

getting information
about, 135–137

inserting a
paragraph, 141

inserting text at
the current
selection, 140

inserting text before
or after the current
selection, 140–141

using the
Information
property to check
the selection’s
location, 139–140

using the
Information
property to check
Word settings, 138

Sentence object, 133–134
separators, 169, 170
shortcuts

button shortcuts,
11–13

keyboard shortcuts,
13–14

removing, 14
Single data type, 109
software developer

certificates, 229
See also digital

signatures
splitting windows, 66
Startup folder, 224
static variables, 107

See also variables

Word 2007 Macros & VBA Made Easy

240

Step keyword, 76
stepping into macros,

27–28
stepping out of a

macro, 194
stepping over a macro or

function, 194
stepping through macros,

23–26
stepsize variable, 76
storing macros, 8

moving to a different
code module, 9–11

String data type, 109
stubs, 64
Style property, 26
styles, 145

replacing, 150
Sub statements, 25
subprocedures, 25

for the Cancel button,
69–70

for the OK button,
66–69

stubs, 64
syntax errors, 191

See also debugging
macros

T

tab order, 71
tables

adding columns or
rows, 171–172

adding content to a
table’s cells,
166–168

applying font
formatting, 174

converting existing
text to a table,
169–171

converting to text,
168–169

creating from scratch,
164–166

deleting columns or
rows, 172

deleting tables, 173
setting column

width and row
height, 174

setting the preferred
width of a
table, 173

templates folders, 223
finding, 178

text
applying styles, 145
converting a table to

text, 168–169
converting existing

text to a table,
169–171

finding, 149–150
font formatting, 147
how VBA represents,

133–134
inserting and

deleting, 140–141

paragraph
formatting, 146

replacing styles, 150
styles, 145
See also Document

object; ranges;
Selection object

Text property, 58
Thawte, 230

See also digital
signatures

TimeOut argument, 216
title argument, 39, 46
toolbars

creating a Quick
Access Toolbar
button shortcut,
11–13

Debug toolbar,
192–193

testing button
shortcut, 15

Trust Center dialog box,
223–226

trusted locations, 219,
223–226

See also security
trusted publishers,

219, 226
See also security

type mismatch, 79
TypeParagraph method,

26, 141
TypeText method,

26, 140

241

� Index

U

Unload Me command, 66
userforms, 49

adding to the Normal
template, 50–51

changing the tab
order, 71

displaying, 65
initializing, 64–65
resizing, 51
See also custom

dialog boxes

V

Value property, 59
values, 42
variables, 27

ambiguous name
errors, 107

data types, 108–111
declaring, 100
declaring explicitly,

100–102, 103
declaring implicitly,

102–103
declaring with private

scope, 104–105
declaring with

procedure
scope, 104

declaring with public
scope, 105–107

and memory, 111

naming rules, 101
scope, 104–107
static, 107
using the Locals

window to track
variable values, 194

Variant data type, 109
VBA, 2

breaking code
lines, 25

and macro
viruses, 218

putting VBA code in
a document or
template, 20

and text, 133–134
text colors, 22

vbCr constant, 141
vbTab constant, 141
VeriSign, 230

See also digital
signatures

View Code button, 65
View Object button, 65
views

in document
windows, 186

Full Module view, 21
Procedure view, 21

viruses, 218
See also security

Visual Basic Editor
Complete Word

feature, 31
configuring, 21–23

docking windows, 23
folders, 19–20
identifying a compile

error, 29
Immediate window,

129–131
moving controls as a

group, 63
opening a macro in,

17, 36
overview, 18
Project Explorer

window, 19–20
Properties window,

20–21, 50
setting up to work

with message
boxes and input
boxes, 36–38

snapping, 60
toggling between

Word window
and, 34

undoing mistakes, 56
views, 21

Visual Basic for
Applications. See VBA

W

watch expressions,
195–197

Watch window,
194–197

wildcards, 127

Word 2007 Macros & VBA Made Easy

242

Word
exiting and saving

changes, 15–16, 34
toggling between Word

window and Visual
Basic Editor, 34

Word Application Object
Model Map, 118

Word Document Object
Map, 118

Word object, 134
Word object model,

116–119
Word Object Model Map,

117–119
Word Range Object

Map, 118
Word Selection Object

Map, 118

X

xpos, 47

Y

ypos, 47

Z

zooming, in document
windows, 186

	Contents
	Chapter 1 Automate Actions by Recording Macros
	Chapter 2 Edit Your Recorded Macro
	Chapter 3 Control a Macro with Message Boxes and Input Boxes
	Chapter 4 Create a Custom Dialog Box
	Chapter 5 Repeat Actions with Loops
	Chapter 6 Make Decisions in Your Macros
	Chapter 7 Use Variables and Constants
	Chapter 8 Find the VBA Objects You Need
	Chapter 9 Work with Text
	Chapter 10 Work with Bookmarks
	Chapter 11 Work with Tables
	Chapter 12 Work with Documents and Folders
	Chapter 13 Debug Your Macros and Handle Errors
	Chapter 14 Use Word’s Built-In Dialog Boxes in Your Macros
	Chapter 15 Share Your Macros with Others
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

